Studies in Computational Intelligence 115

John Fulcher
Lakhmi C. Jain (Eds.)

Computational
Intelligence:
A Compendium

‘@ Springer

John Fulcher and Lakhmi C. Jain (Eds.)

Computational Intelligence: A Compendium

Studies in Computational Intelligence, Volume 115

Editor-in-chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 94. Arpad Kelemen, Ajith Abraham and Yuehui Chen
(Eds.)

Computational Intelligence in Bioinformatics, 2008

ISBN 978-3-540-76802-9

Vol. 95. Radu Dogaru

Systematic Design for Emergence in Cellular Nonlinear
Networks, 2008

ISBN 978-3-540-76800-5

Vol. 96. Aboul-Ella Hassanien, Ajith Abraham and Janusz
Kacprzyk (Eds.)

Computational Intelligence in Multimedia Processing:
Recent Advances, 2008

ISBN 978-3-540-76826-5

Vol. 97. Gloria Phillips-Wren, Nikhil Ichalkaranje and
Lakhmi C. Jain (Eds.)

Intelligent Decision Making: An AI-Based Approach, 2008
ISBN 978-3-540-76829-9

Vol. 98. Ashish Ghosh, Satchidananda Dehuri and Susmita
Ghosh (Eds.)

Multi-Objective Evolutionary Algorithms for Knowledge
Discovery from Databases, 2008

ISBN 978-3-540-77466-2

Vol. 99. George Meghabghab and Abraham Kandel
Search Engines, Link Analysis, and User’s Web Behavior,
2008

ISBN 978-3-540-77468-6

Vol. 100. Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2008
ISBN 978-3-540-77476-1

Vol. 101. Michael Granitzer, Mathias Lux and Marc Spaniol
(Eds.)

Multimedia Semantics - The Role of Metadata, 2008

ISBN 978-3-540-77472-3

Vol. 102. Carlos Cotta, Simeon Reich, Robert Schaefer and
Antoni Ligeza (Eds.)

Knowledge-Driven Computing, 2008

ISBN 978-3-540-77474-7

Vol. 103. Devendra K. Chaturvedi

Soft Computing Techniques and its Applications in Electrical
Engineering, 2008

ISBN 978-3-540-77480-8

Vol. 104. Maria Virvou and Lakhmi C. Jain (Eds.)
Intelligent Interactive Systems in Knowledge-Based
Environment, 2008

ISBN 978-3-540-77470-9

Vol. 105. Wolfgang Guenthner

Enhancing Cognitive Assistance Systems with Inertial
Measurement Units, 2008

ISBN 978-3-540-76996-5

Vol. 106. Jacqueline Jarvis, Dennis Jarvis, Ralph Rénnquist
and Lakhmi C. Jain (Eds.)

Holonic Execution: A BDI Approach, 2008

ISBN 978-3-540-77478-5

Vol. 107. Margarita Sordo, Sachin Vaidya and Lakhmi C. Jain
(Eds.)

Advanced Computational Intelligence Paradigms

in Healthcare - 3, 2008

ISBN 978-3-540-77661-1

Vol. 108. Vito Trianni
Evolutionary Swarm Robotics, 2008
ISBN 978-3-540-77611-6

Vol. 109. Panagiotis Chountas, Ilias Petrounias and Janusz
Kacprzyk (Eds.)

Intelligent Techniques and Tools for Novel System
Architectures, 2008

ISBN 978-3-540-77621-5

Vol. 110. Makoto Yokoo, Takayuki Ito, Minjie Zhang,
Juhnyoung Lee and Tokuro Matsuo (Eds.)
Electronic Commerce, 2008

ISBN 978-3-540-77808-0

Vol. 111. David Elmakias (Ed.)

New Computational Methods in Power System Reliability,
2008

ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanis and Alexander
G. Loukianov

Discrete-Time High Order Neural Control: Trained with
Kalman Filtering, 2008

ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jimenez-Lopez and
Carlos Martin-Vide (Eds.)

New Developments in Formal Languages and Applications,
2008

ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea
Roli and Michael Sampels (Eds.)

Hybrid Metaheuristics, 2008

ISBN 978-3-540-78294-0

Vol. 115. John Fulcher and Lakhmi C. Jain (Eds.)
Computational Intelligence: A Compendium, 2008
ISBN 978-3-540-78292-6

John Fulcher
Lakhmi C. Jain
(Eds.)

Computational Intelligence:
A Compendium

With 321 Figures and 67 Tables

@ Springer

Prof. John Fulcher
School of Computer Science

and Software Engineering
Faculty of Informatics
University of Wollongong
Northfields Ave
Wollongong NSW 2522
Australia

john@uow.edu.au

ISBN 978-3-540-78292-6

Prof. L.C. Jain

Knowledge-Based Engineering
Founding Director of the KES Centre
SCT-Building

Mawson Lakes Campus

University of South Australia
Adelaide South Australia SA 5095
Australia

Lakhmi.jain@unisa.edu.au

e-ISBN 978-3-540-78293-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2008922060

(© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publica-
tion or parts thereof is permitted only under the provisions of the German Copyright Law of September
9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.

Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany

Printed on acid-free paper

987654321

springer.com

Dedicated to the creative spark within us all

Preface

At this point in time, Computational Intelligence (CI) has yet to mature
as a discipline in its own right. Accordingly, there is little consensus as to
a precise definition of this emerging field. Nevertheless, most practitioners
would include Artificial Neural Network (ANN), Fuzzy and evolutionary tech-
niques (and perhaps others), and more especially hybrids of these (this will
be expanded upon in Chap.1.) Our emphasis in this Compendium is very
much on applied methods — ones which have been tired-and-proven effective
on real-world problems.

The 25 chapters have been grouped into the following ten themes (Parts):

I. Overview, Background
I1. Data Preprocessing, Systems Integration & Visualization
III. Artificial Intelligence
IV. Logic and Reasoning
V. Ontology
VI. Intelligent Agents
VII. Fuzzy Systems
VIII. Artificial Neural Networks
IX. Evolutionary Approaches
X. DNA and Immunity-based Computing

This grouping is not the only one we could have used — indeed some
chapters could have just as easily appeared in alternate Parts of the Hand-
book. For example, Lam & Lee’s 1JADE tourist guidance system could just
as readily been grouped into Part-VI (Agents) as Part-V (Ontology); like-
wise, Fyfe’s Topographic Maps would have fitted just as well into Part-VIII
(ANNS), Ishibuchi et al. would have been just as equally well placed in either
Part-VII or Part-IX, and Islam & Yao could have fitted equally well into
Parts VIII or IX. Nevertheless, we have attempted to group together chapters
with common foci.

Returning briefly to the question of real-world applications, Table 1
summarizes those covered in the chapters herein.

VIII

Chapter
2

10
11
12
13
14
15
16

17

18
19
20
21

22

Preface

Table 1. Chapter methods and applications

Method

REDR; SOM;
Mitra Multi-Scale
SOM; GTM;
HaToM; ToPE
networked selfish
agents; probabilistic
cellular automata
affective embodied
agent
paraconsistent
annotated logic
Data-Oriented
Parsing

Conceptual Graph
Theory

mobile/GPS agents;
ontologies
Agent-Based
Modelling software
agents; Peer-to-Peer
& cluster computing
multi-agents;
dynamic clustering
agents; ANN; SVM;
Evolutionary Comp.
reconciliation via
optimization
Evolutionary
multi-objective design
ANNs; MAS

SOM; ViSOM;
SOMN; kernel
methods

neural systems
engineering

GenNt; CGA; FPGA
Evolutionary ANN
ensembles

genetic simulated
annealing

Genetic
Programming (GP)

Application(s)

handwritten digits;
yeast; synthetic
data visualization

self-maintenance/repair;
‘internet being’

synthetic therapist;

human behaviour change
pipeline safety process
verification

Natural Language Processing;
musical notation, physics
problem solving

ontologies: architectural
design; air operations officer
tourist guidance system

‘Stupid’ model

resource allocation;
communication; scheduling
sensor networks

computational economics;
foreign exchange rates

fuzzy rule-based systems
fuzzy rule-based classifiers

network bandwidth
prediction

vector quantization;

image compression/
segmentation; text mining
Blue Brain; SPINN;
SpiNNaker

‘artificial brain’; UXO robot
Credit Card; Diabetes;
Heart Disease; Glass; Letter;
Soybean; Breast Cancer
graph colouring; bin
packing; timetabling
modeling; the ‘Humies’;
image/signal processing;
time series prediction; et al.

Data set(s)

UCI KDD
UCI-ML (algae; wine)

Denial-Of-Service
& Traceroute
websites

Penn Treebank;
Essen Folksong
Collection

DAML; Protége

Santa Fe Institute
artificial stock market

SFI and AI-ECON
artificial stock markets

UCI-ML (breast; glass;
heart; iris; wine)

UCI-ML (iris; yeast)

UCI-ML

DIMACS; Scholl &
Klein; Falkenauer

Preface IX

Table 1. (continued)

Chapter Method Application(s) Data set(s)
23 Particle Swarm finding origin; Rastrigin/ —
Optimization Schwefel functions;
timetabling
24 DNA computing multiple elevator scheduling —
25 immunity-based stable marriage problem; —
computing auto sensor diagnosis; noise
neutralization

Chapters commence with an overview of the field in question, and conclude
with a Resources Appendiz. These resources cover key references (classic texts,
survey articles, key papers), pertinent journals, professional societies/organi-
zations and research groups, international conferences and workshops, and/or
electronic/on-line material (with a particular emphasis on databases and Open
Source software). Each chapter is thus complete unto itself for those readers
wanting to explore just a single topic from the many on offer. In this mode,
the Compendium could be used as a text for graduate programs in Artificial
Intelligence, Intelligent Systems, Soft Computing, Computational Intelligence,
and the like. The Index doubles as a Glossary of Terms (with acronyms shown
in parentheses).

We have gathered together in a single volume chapters by leading experts
in their respective fields — all of international repute, as evidenced (in part)
by the following:

I. Learned Society Fellows: IEEE (Furber, Pedrycz, Yao); Intl. Fuzzy Sys-
tems Association (Pedrycz); Royal Society (Furber); Royal Academy of
Engineering (Furber); British Computer Society (Furber); Intl. Soci-
ety for Genetic and Evolutionary Computation (Koza, Langdon, Poli);
Institution of Engineers, Australia (Jain)

II. Editors-in-Chief: Computing and Information Systems (Fyfe); IEEE
Trans. Evolutionary Computing (Yao); Information Sciences (Pedrycz);
Intelligent Decision Technologies (Jain); Intl. J. Hybrid Intelligent Sys-
tems (Jain); Intl. J. Knowledge-based Intelligent Engineering Systems
(Founding Editor) (Jain); Intl. J. Logic €& Reasoning (Nakamatsu); Intl.
J. Metaheuristics (Mumford); New Mathematics & Natural Computing
(Chen)

III. Associate/Area Editors: Advances in Natural Computation (Yao); Com-
puter and Information Systems (Jain); Evolutionary Computation (Poli);
IEEE Computational Intelligence Magazine (Ishibuchi); IEEE Trans.
Evolutionary Computation (Ishibuchi); IEEE Trans. Fuzzy Systems
(Ishibuchi, Pedrycz); IEEE Trans. Knowledge and Data Engineer-
ing (Wang); IEEE Trans. Neural Networks (Pedrycz, Wang); IEEE
Trans. Neural Networks (Chen, Wang); IEEE Trans. Systems, Man and

X Preface

Cybernetics (Ishibuchi, Jain, Pedrycz); Intl. J. Advances in Fuzzy Systems
(Ishibuchi); Intl. J. Applied Intelligence (Hendtlass); Intl. J. Computa-
tional Intelligence Research (Ishibuchi, Poli); Intl. J. Information Tech-
nology (Chow); Intl. J. Knowledge-based Intelligent Engineering Systems
(Ishida); Intl. J. Metaheuristics (Ishibuchi); Intl. J. Pattern Recognition
and Artificial Intelligence (Jain); J. Artificial Evolution and Applica-
tions (McPhee); J. Economic Research (Chen); J. Genetic Program-
ming and Evolvable Machines (Poli); J. Intelligent and Fuzzy Systems
(Jain); Mathware and Soft Computing (Ishibuchi); Neural Computing and
Applications (Jain); Soft Computing J. (Ishibuchi)

IV. Book Series Editors: CRC' Press (Intl. series on CI) (Jain); IGI (CI: The-
ory and Applications series) (Fyfe, Jain); Kluwer (Genetic Programming)
(Koza); Springer (Advanced Information and Knowledge Processing)
(Jain)

V. Invited Keynote/Plenary Conference Speakers: Chen, deGaris, Fulcher,
Fyfe, Ishida, Jain, Koza, Nakamatsu, Prokopenko, Wang, Yao

VI. Awards: Royal Society Wolfson Research Merit Award (Furber); IET
Faraday Medal (Furber); Queen’s Award for Technology (Furber);
Japanese Society for the Promotion of Science Prize (Ishibuchi); IEEE
Donald G. Fink Prize Paper (Yao); AJB CEBIT Ezhbition Award (Most
Innovative Technology) (Prokopenko); Japanese Society for Artificial
Intelligence Award (Prokopenko); Best Paper Awards (Chow, Langdon,
McPhee, Poli)

VII. Advisory Boards: UK EPSRC Peer Review College (Poli); EU Expert
Evaluator (Poli)

Indeed, this Handbook is a truly international undertaking, with a total of 43
authors from 10 different countries contributing (9 in Australia; 19 in Asia; 11
in UK; and 4 in North America). All chapters were peer reviewed to ensure a
uniformly high standard for the Handbook overall.

Next follows an overview of each Chapter.

In Part-I, Fulcher introduces fundamental Computational Intelligence con-
cepts. This Introductory chapter is intended to serve both as background
reading (tutorial) for students/newcomers to the field, as well as setting the
scene/laying the groundwork for the more specialist chapters that follow.

A critical consideration with applying any CI approach to real-world prob-
lems is data pre-processing. Part-11 begins with a chapter by Chow & Huang
on Data Reduction for Pattern Recognition. They provide an overview of ‘fil-
ter’ and ‘wrapper’ methods, before focusing on their Representative Entropy
Data Reduction (REDR) approach. In their discussion they cover not only
data reduction but also feature selection — another key aspect of pre-processing.

Fyfe’s concern in Chap.3 is data visualization. He illustrates how the
Self-Organizing Map, Generative and Harmonic Topographic Maps, and the

Preface XI

Topographic Product-of-Experts can all be effectively used on the UCI-ML
algae and wine data sets.

Ishida adopts a game-theoretic approach to self-maintenance and repair in
large-scale, complex systems such as the Internet — more specifically, ‘selfish’
agents and Probabilistic Cellular Automata. Emphasis is placed on the emer-
gence of intelligent systems at the Nash Equilibrium in such networks. He
concludes with speculation as to the conditions necessary for the emergence
of a so-called ‘Internet Being’, in the context of such ‘selfishware’.

Part-I1I covers conventional (traditional) AL, but from a slightly different
perspective. In Chap.5 Creed and Beale provide a fascinating insight into
Emotional Intelligence and affective computing. They commence with a dis-
cussion of emotion theory, before introducing ‘affective embodied’ agents. The
authors then demonstrate how such agents can be applied in the real world to
engender behavioural change in humans, through the medium of a so-called
‘simulated (artificial) therapist’.

Part-IV covers logic, reasoning and related approaches to CI. In Chap. 6
Nakamatsu provides a comprehensive discussion of various paraconsistent
annotated logics, including his own extended vector-annotated logic pro-
gram with strong negation — EVALPSN; defeasible reasoning proofs are also
included. Nakamatsu then proceeds to show how EVALPSN can be applied to
pipeline process safety verification, and by extension to pipeline process order
safety verification (by way of before-after EVALPSN).

Bod uses the supervised, corpus-based probabilistic Data-Oriented Pars-
ing approach to reveal the underlying structures in areas as diverse as Natural
Language Processing, the melodic analysis of musical scores, and physics prob-
lem solving. A mechanism for determining the optimum parse tree is described,
and the chapter concludes with an explanation of how DOP could be modified
to support unsupervised learning.

Part-V of the Handbook covers ontology, which is often closely related
to intelligent agents (Part-VI). In Chap.8, Corbett takes the view that
frameworks for intelligent systems are best represented by a combination of
concept type hierarchy, canonical formation rules, conformity relations and
subsumption. He illustrates the validity of this approach with regard to both
architectural design and air operation officer ontologies, and concludes that
his automated reasoning approach could be readily extended to the Semantic
Web.

In Chap.10, Lam and co-authors provide an account of an Intelligent
Ontology Agent-based Tourist Guidance System, which they developed using
the Intelligent Java Agent-based Development Environment (iJADE).

Part-VI is devoted to (intelligent) software agents. Standish commences
with a comparative review in Chap. 11 of open source Agent-based Modelling

XII Preface

platforms, including a performance comparison on a simple pedagogical model
(the so-called ‘Stupid Model’).

Zhang and co-authors follow in Chap. 11 with a discussion of their agent-
based SmartGRID model — incorporating both Peer-to-Peer and clustering
techniques — and which can yield improved resource allocation, as well as
task communication and scheduling in agent grids operating in open envi-
ronments. Piraveenan and co-authors are likewise interested in grids, but in
their case scale-free sensor networks. They use a dynamic, decentralized MAS
algorithm for predicting convergence times for cluster formation in such grids
(networks).

Chen provides a comprehensive account of agent-based computational eco-
nomics (ACE)in Chap. 13, with a particular focus on Genetic Algorithms.
After introducing the cobweb and overlapping generations models, he describes
several applications of ACE, including inflation, foreign exchange rate, and
artificial stock markets.

Fuzzy Systems are the focus of Part-VII. Pedrycz commences with a dis-
cussion of the semantics and perception of fuzzy sets and fuzzy mapping. He
proceeds to show that reconciliation of fuzzy set perception and granular map-
pings can be expressed in the form of an optimization pattern, which in turn
can be subsequently applied to rule-based systems.

In Chap. 15, Ishibushi and co-authors discuss the principles underlying the
evolutionary design of fuzzy classifiers, illustrating the effectiveness of their
approach by way of data sets selected from the UCI-ML repository (breast
cancer; glass; heart; iris; wine).

Part-VIII covers Artificial Neural Networks. Fu and co-authors commence
by illustrating how supervised, feedforward networks (MLP/BP) can be used
in the data mining of Quality-of-Service aware media grids.

Yin provides a comprehensive coverage of Kohonen’s Self-Organizing Map
and its more recent variants in Chap. 17. The performance of SOM, ViSOM,
SOM Mixture Network and SOM kernel methods is compared on vector
quantization, image compression and segmentation, density modelling, data
visualization and text mining.

In Chap. 18, Furber & Temple provide an overview of neural systems engi-
neering, namely the realization of ANNs in hardware form, rather than the
more usual approach of software simulation. DeGaris follows in a similar vein,
describing how Field Programmable Gate Arrays (FPGAs) can be used to
build ‘artificial brains’.

Evolutionary approaches to CI are the subject of Part-IX of the Handbook.
Islam & Yao commence with an account of how ANN ensembles can be first
evolved, then used as classifiers on representative data sets from the UCI-ML
repository.

Preface XIII

In Chap. 21 Mumford concerns herself with a so-called memetic EA — in
the form of a Genetic Simulated Algorithm (GSA) — which she proceeds to
demonstrate can be used to solve set partitioning problems (graph colouring,
bin packing, timetabling).

Genetic Programming is the focus of the Chapter by Langdon and co-
authors. An extensive coverage of basic principles is followed by descriptions
of how to apply GPs in various application domains, including hints for the
novice user (‘tricks-of-the-trade’, as it were). The Chapter rounds off with a
section on theoretical aspects of GP. The authors include an extensive (420
item) reference list.

In Chap. 23, after providing an overview of the basic Particle Swarm Opti-
mization algorithm, Hendtlass then proceeds to describe enhancements to
handle multiple optima, niching and ‘Waves of Swarm Particles’, before out-
lining how one can minimize the computational cost of such algorithms. He
illustrates the effectiveness of the PSO approach by way of finding the origin,
solving Rostrigin’s and Schwefel’s functions, and timetabling.

In the last Part of the Handbook we cover CI approaches inspired by
Nature, but which do not fall under the umbrella of ANNs, EAs or Fuzzy.
Firstly, Watada provides an overview of DNA Computing, then proceeds to
show how this can be successfully applied to the problem of scheduling the
movements of a group of elevators in a high-rise building.

Chapter 25 is concerned with Immunity-based computing (IBC). After
introducing the basic concepts, Ishida shows how IBC can be applied to
automobile sensor diagnosis, noise neutralization, and the ‘Stable Marriage
Problem’. He concludes by proposing a general (immunity-based) problem
solver.

One of your Editors (JF) formatted the Handbook, using MikTex v2.4 and
WinEdit v5.4. In this (considerable) endeavour we are indebted to the follow-
ing for their assistance along the way: Professor Philip Ogunbona (for impart-
ing ‘the joy of LaTex’), Associate Professor Willy Susilo, Associate Professor
Russell Standish, Professor Riccardo Poli, Dr. Bill Langdon, and Jia Tang for
insight into the finer points of LaTex, as well as Nik Milosevic (for creation of
.eps figures). Thanks are also due to Dr. Thomas Ditzinger, Senior Editor, and
Heather King, Engineering Editorial, respectively at Springer-Verlag GmbH,
as well as Srilatha Achuthan, Project Manager at SPi Technologies, Chennai.

We sincerely trust that you find much of interest in the ensuing pages.

Wollongong NSW, Australia John Fulcher
Adelaide SA, Australia Lakhmi C. Jain
September 2007

Contents

Part I Overview, Background

Computational Intelligence: An Introduction

John Fulcher 3
1 Introduction, Overview, Definitions............................ 3
2 Historical Background i 7
2.1 Artificial Intelligence (AT) ..., 7
2.2 Machine Learning (ML)o it 14
2.3 Decision Trees 16
3 Approaches to CI 17
3.1 The Intuitive Appeal of Nature 17
3.2 Brains versus Computers, 20
4 CI Paradigmsooiiii e 20
4.1 Pre-Processingt 21
5 Expert Systems 21
6 Fuzzy Systems........... i 24
7 Artificial Neural Networks 26
71 ANN TYPeS oottt e 26
7.2 Multi-Layer Perceptron/BackPropagation 27
7.3 Other ANN Models i, 29
8 Evolutionary Methods 31
8.1 Genetic Algorithms 32
8.2 Evolutionary Programming 36
8.3 Genetic Programming......... 36
8.4 SWAIMIS . ..ottt 36
9 Immunity-Based and Membrane-Based Computing 39
9.1 Immunity-Based Computing 39
9.2 Membrane-Based Computing 40
10 DNA Computing.oouiinii e 40
11 Intelligent Agentscouuiiin et 41

XVI Contents

12 Hybrid Methods 42
13 ConclusSionou it 48
References 50
Resources 67
1 Key Books ... oo 67
1.1 Computational Intelligence 67
1.2 Artificial Neural Networks 68
1.3 Evolutionary Methods 69
1.4 Fuzzy Systems 71
1.5 Othero 71
2 Key Survey/Review Articles......... ... i, 72
2.1 Artificial Neural Networks, 72
2.2 Evolutionary Methods 73
2.3 Fuzzy Systems ... 73
2.4 Other 73
3 Organizations, Societies, Special Interest Groups, Journals 74
3.1 Computational Intelligence 74
3.2 Artificial Neural Networks 74
3.3 Evolutionary Methods 75
3.4 Fuzzy Systems ... 75
3.5 Other ... 75
4 Key International Conferences/Workshops 76
5 (Open Source) SOftware., 7
6 DataBases........oo i 78

Part IT Preprocessing, Visualization, Systems Integration

Data Reduction for Pattern Recognition and Data
Analysis

Tommy W.S. Chow and Di Huang, 81
1 Introduction.......... 81
2 Data Reduction........... 82
2.1 Wrapper Methods 83
2.2 Filter Methods i 83
2.3 Examples of Filter Methods 84
3 Feature Selection 89
3.1 Feature Evaluation 91
3.2 Search Engine...... 97
3.3 Example Feature Selection Models....................... 98

4 Trends and Challenges of Feature Selection and Data Reduction .. 101
References 103

Contents XVII

Resources 107
1 Key Books ... 107
2 Key Survey/Review Articles......... ... i, 107
3 Organizations, Societies, Special Interest Groups 108
4 Research Groupst 108
5 Discussion Groups, Forums............. 108
6 Key International Conferences/Workshops 108
7 (Open Source) Software............ o i .. 109
8 DataBases........ .. 109
Topographic Maps for Clustering and Data Visualization
Colin Fyfe 111
1 Imtroduction.......... ... 111
2 Clustering and Visualization........... 112
3 The Self-Organizing Mapc. .. 113
3.1 Competitive Learning i i 113
3.2 lustrative Example i 117
3.3 Alternative Traditional Topology Preserving Mappings 118
34 ALast Word.o 120
4 The Generative Topographic Mapping 121
4.1 Tlustrative Examples i 122
4.2 Adjusting the Latent Space 124
4.3 Deleting Latent Points 126
5 Topographic Product of Experts (ToPoE) 126
5.1 Comparison with the GTM 129
5.2 Tlustrative Example i 130
5.3 Projections 131
5.4 Growing and Pruning ToPoEs........ 133
5.5 Different Noise Models 135
5.6 Twinned ToPoEs 135
5.7 Visualizing and Clustering Real Data Sets 136
5.8 DISCUSSION . . v vttt 139
6 Harmonic AVEragescouuiuiiuniiiniinn . 140
6.1 Harmonic k-means.......... i 141
6.2 The Harmonic Topographic Map 142
6.3 Simulations.......... 142
6.4 Generalized Harmony Learning.......................... 144
6.5 Conclusion 146
7 Conclusion 146
References 147
Resources 151
1 Key Books ... 151
2 Key Survey/Review Articles.......... ...t 151
3 KeyJournals ... 152

XVIII Contents

4 Key International Conferences/Workshops 152
5 Softwareo 153
6 DataBases........ .. 153

Complex Systems Paradigms for Integrating Intelligent
Systems: A Game Theoretic Approach

Yoshiteru Ishida 155
1 Imtroduction.......... ... i 155
2 Economic Theory for the Internet Being with Selfish Agents 157
3 A Microscopic Model: Negotiation Between Agents 159
3.1 The Prisoner’s Dilemma 159

3.2 Repairing from Outside the System:
A Conventional Model [12] 160
3.3 Mutual Repair within Systems 160
3.4 Mutual Repair with Selfish Agents....................... 161
4 A Macroscopic Model: Boundary Formation among Agents 163
4.1 A Model with Uniform Control.......................... 163
4.2 The Spatial Prisoner’s Dilemma, 167
4.3 A Model with Selfish Agents 168
4.4 Strategic Repair with Systemic Payoff................. ... 169

4.5 Comparison Between Uniform Repair
and Strategic Repair..... i i 170
5 Selfishware and Internet Being 173
6 Conclusion 175
References 175
Resources 179
1 Key Books ... o 179
2 Organisations, Societies, Special Interest Groups 179
3 Research Groups...........ooiiiiiii i 180
4 Discussion Groups, Forums........... 180
5 Key International Conferences/Workshops 180
6 (Open Source) SOTWAreuuuu i 181
7 DataBases.. ... 181

Part ITT Artificial Intelligence

Emotional Intelligence: Giving Computers Effective
Emotional Skills to Aid Interaction

Chris Creed and Russell Beale 185
1 Introduction......... 185
2 Overview of Affective Computing 187
2.1 What Are Emotions? 187
2.2 Emotions and Moods 190

2.3 Expression of Emotion o 191

Contents

2.4 Influence of Emotion on Human behavior.................
2.5 Emotional Intelligence
2.6 Approaches Used in Developing Emotionally
Intelligent Computersouiuiiiiin ...
2.7 Ethics ...
3 Evaluating Affective Embodied Agents.........................
3.1 What are Affective Embodied Agents?
3.2 Psychological Responses to Simulated Emotion............
3.3 Evaluating Agents over Extended Interactions.............
3.4 Our Affective Embodied Agent
4 Application of Affective Embodied Agents......................
4.1 Affective Embodied Agents for behavior Change...........
4.2 Behavior Change Models
B SUIIMATY ottt ettt e e e e e
References

Resources
Key Books ... oo
Key Survey/Review Articles.........
Organisations, Societies, Special Interest Groups
Research Groups....... ... i
Discussion Groups, Forums............
Key International Conferences/Workshops
(Open Source) Software. ...
Data Bases. ...
8.1 Multimodal Databases
8.2 Face Databases i

CO ~J O UL = W N+

Part IV Logic and Reasoning

The Paraconsistent Annotated Logic Program EVALPSN
and its Application

Kazumi Nakamatsu e
1 Introduction..........
1.1 Background..........
1.2 OVerviewo
2 Preliminary
2.1 Paraconsistent Annotated Logics P7
2.2 Generally Horn Program(GHP)

2.3 ALPSN (Annotated Logic Program with Strong
Negation) and Stable Model Semantics

2.4 VALPSN (Vector Annotated Logic Program with
Strong Negation)

206
207
207

XX

Contents

2.5 EVALPSN (Extended Vector Annotated Logic
Program with Strong Negation) and Defeasible

Deontic Reasoning i i 244

2.6 Defeasible Reasoning and VALPSN 247

2.7 Defeasible Deontic Reasoning and EVALPSN 256

3 EVALPSN Safety Verification for Control 265
3.1 Outline of EVALPSN Safety Verification 265

3.2 EVALPSN Safety Verification for Pipeline Control 266

4 Before-after EVALPSN 284
4.1 Before-after Relation in EVALPSN 285

4.2 TImplementation of bEEVALPSN 291

4.3 Safety Verification in bf-EVALPSN 295

5 Conclusion and Future Work 299
References 300
Resources 305
1 Logic Programming 305
2 Paraconsistent Annotated Logic 305
3 Defeasible LOgIiCt 305
4 Defeasible Deontic Logic i i 306
5 ALPSN, VALPSN, EVALPSN i 306
6 EVALPSN Safety Verification o, 306

The Data-Oriented Parsing Approach:
Theory and Application

Rens Bod 307
1 Imtroduction.......... ... i 307
2 A DOP Model for Language: Combining Likelihood

and Simplicity 308
3 A DOP Model for MUSico vov i 315
4 A DOP Model for Problem Solving in Physics 318
5 Towards a Unifying Approach 323
6 Test Corpora for DOP+ 325
T ComPUING Thest « v v v oe e ettt e e e 327
8 Experiments with DOP+ 330
9 Current Developments: Unsupervised DOP 333
10 ConcluSionot 336
References 336
Resources 343
1 Key Books ... 343
2 Key Survey/Review Articles.......... ..., 343
3 Organisations, Societies, Special Interest Groups 344
4 Research Groupsot 345
5 Discussion Groups, Forums. i 345

Contents
6 Key International Conferences/Workshops
7 (Open Source) Software............ o ..
8 Data Bases...... .o
8.1 Multimodal Databases
8.2 Face Databases

Part V Ontology

Graph-Based Representation and Reasoning
for Ontologies
Dan R. Corbetl
1 Introduction.......... ...
2 Overview of Conceptual Graphs
2.1 The Basicso
2.2 Fundamental Concepts
2.3 Canonical Formation Rules
2.4 Types and Inheritance
2.5 Specialization, Projection and Subsumption...............
3 Projection as an Ontology Operator
Projection of Ontology Types......
5 Knowledge Conjunction......... i i
5.1 Ontology Comparison and Conjunction...................
5.2 Unification, Constraints and Conceptual Graphs...........
5.3 Knowledge Structures, Partialness and Unification
An Architectural Design Tool..........
An Architectural Design Tool: Results and Discussion
The Air Operations Officer
The Air Operations Officer: Results and Discussion..............
0 Conclusions: Semantics for a Knowledge Web
References

=~

= O 00 O

Resources
Key Books ...
Key Survey/Review Articles.........
Research Groupso
Discussion Groups, Forums.
Key International Conferences/Workshops
6 (Open Source) Software..........

U W N~

An Ontology-Based Intelligent Mobile System for Tourist
Guidance

Toby H.W. Lam, Raymond S.T. Lee, and James N.K. Liu
1 Introduction.......... ...
2 Background

2.1 The Semantic Web

2.2 Agent ..

XXII Contents

3 Related Work
4 Ontology-Based Tourist Guide
4.1 iJADE Framework.......... i
4.2 Construction of the Travel Ontology
4.3 1JADE FreeWalker
4.4 iJADE System Architecture
5 Performance Evaluation
5.1 Precision Test
5.2 Usability Test. ...
6 Conclusion and Further Work
References

Resources
Key Books ...
Key Survey/Review Articles.,
WeDSIteS . . .o
Key International Conferences/Workshops
(Open Source) Software............
Data Bases.

DO W N~

Part VI Intelligent Agents

Open Source Agent-Based Modeling Frameworks

Russell K. Standish
1 Imtroduction.......... ...
1.1 Artificial Life (Alife) ... i i
2 Applications.
2.1 SUGATSCAPE . o o
2.2 The Santa Fe Artificial Stock Market
2.3 Heatbugs....... ... i
2.4 MOUSEETAD « « v v vt et
3 Software Modeling Tools
3.1 Open Source versus Freeware
3.2 Programming Languages
3.3 Reflection
3.4 User Interface and Scripting,
3.5 Discrete Event Scheduling
3.6 Random Number Library...........
3.7 SWam ..o
3.8 Repast
3.9 MASOM .ttt
310 Be@ab. .o
3.11 The Logos, StarLogo and NetLogo.......................
312 COTIAS .« o vttt ettt et e e e

Contents XXIII

4 Performance Comparisonso,
5 Conclusioni
References
Resources
1 ABM Platforms.
2 Discussion Fora

Agent-Based Grid Computing
Mingie Zhang, Jia Tang, and John Fulcher
1 Imtroduction.......... ... i
2 Computing Grids
2.1 Development of Computing Grids
2.2 Application-Oriented Metacomputing
2.3 Service-Oriented Grid Computing
2.4 Convergence of Grids and Peer-to-Peer Computing
2.5 Research Questions of Grid Computing...................
Grid Computing in Open Environments........................
4 SmartGrid — A Hybrid Solution to Grid Computing
in Open Environmentst
4.1 Overall Architecture and Core Components
4.2 The Task/Service Model,
4.3 The smartGRID Scheduling Process
5 A Peer-to-Peer Solution to Grid Computing
in Open Environments.
5.1 Overall Architecture and Core Components
of smartGRID2
5.2 Module — An Improved Task Model......................
5.3 Peer-to-Peer Computing Architecture
5.4 Resource Management and Scheduling Mechanisms
5.5 Compatibility and Inter-Operability
6 Conclusion and Further Work
References

w

Resources
Key Books . ..o
Key Survey/Review Articles......,
Journal
Key International Conferences/Workshops
5 Web Resources i

= W N

Decentralized Multi-Agent Clustering in Scale-free

Sensor Networks

Mahendra Piraveenan, Mikhail Prokopenko, Peter Wang,

and AStrid Zeman.
1 Introduction......... ...

XXIV Contents

1.1 Multi-Agent Systems and Self-organization
1.2 Multi-Agent Networks
1.3 Adaptive Topologies and Dynamic Hierarchies
Dynamic Cluster Formation Algorithm
Regularity of Multi-Agent Communication-Volume
Experimental Results........
An Application Scenario — Distributed Energy Management

and Control
6 Conclusionsiiii i
References

U W N

Decentralised Clustering Algorithm........................ ...
Predictor Ko

Resources
Key Books ... oo
Key Survey/Review Article
Organisations, Societies, Special Interest Groups
Research Groupst i
Discussion Group, Forum
6 Key International Conferences/Workshops

T W N =

Computational Intelligence in Agent-Based
Computational Economics

Shu-Heng Chemo e e e
1 Introduction.........
1.1 What is Agent-Based Computational Economics (ACE)? ...
1.2 Algorithmic Foundations of ACE
2 Artificial Neural Networks
2.1 Multilayer Perceptron Neural Networks
2.2 Radial Basis Network
2.3 Recurrent Neural Networks
2.4 Auto-Associative Neural Networks
2.5 Support Vector Machines
2.6 Self-Organizing Maps and k-means
2.7 K Nearest Neighbors....... i
2.8 Instance-Based Learning
3 Evolutionary Computation i
3.1 Evolutionary Strategies
3.2 Evolutionary Programming
3.3 Genetic Programming and Genetic Algorithms
4 Agent-Based Economic Simulations with CI
4.1 The Cobweb Model

4.2 Overlapping Generations Models

Contents

4.3 Foreign Exchange Rate Fluctuations
4.4 Artificial Stock Markets i
4.5 Market/Policy Design,
5 Pushing the Research Frontier with CI.........................
5.1 Developments in Agent Engineering......................

5.2 Distinguishing Features
5.3 Future Directions. i
6 Concluding Remarks i i
References
Resources
1 Key BoOKs ..o

2 Key Survey/Review Articles........
3 Journals
4 Key International Conferences/Workshops
4.1 ECONnOMICSottt
4.2 AGENS . o
(Open Source) SOftWare.oouuuin i
6 Data Bases..........i

ot

Part VII Fuzzy Systems

Semantics and Perception of Fuzzy Sets
and Fuzzy Mappings
Witold Pedryczo. o
1 Semantics of Fuzzy Sets: Some General Observations
2 Domain Knowledge and Problem-Oriented Formation

of Fuzzy Sets . ..o

2.1 Fuzzy Set as a Descriptor of Feasible Solutions

2.2 Fuzzy set as a Descriptor of the Notion of Typicality

2.3 Membership Functions in the Visualization

of Preferences of Solutions

3 User-Centric Estimation of Membership Functions
3.1 Horizontal Membership Function Estimation Scheme.
3.2 Vertical Membership Function Estimation Scheme
3.3 Pairwise Membership Function Estimation Scheme
Fuzzy Sets as Granular Representatives of Numeric Data.........
From Multidimensional Numeric Data to Fuzzy Sets:
Membership Estimation via Fuzzy Clustering
Main Design Guidelines.............. ..
Nonlinear Transformation of Fuzzy Sets........................
Reconciliation of Information Granule Perception
The Optimization Process.........

[SAREEN

© 0o D

XXVI Contents

10 An Application of the Perception Mechanism

to Rule-Based Systems i
11 Reconciliation of Granular Mappings
12 ConclusSionst
References
Resources
1 Key BoOKS ..o
2 Key Survey/Review Articles.......... ... i
3 Organisations, Societies, Special Interest Groups
4 Research Groupsot e
5 Key International Conferences/Workshops

Evolutionary Multiobjective Design
of Fuzzy Rule-Based Classifiers

Hisao Ishibuchi, Yusuke Nojima, and Isao Kuwajima
1 Imtroduction..........
2 Fuzzy Rule-Based Classifiers
2.1 Pattern Classification Problems
2.2 Fuzzy Rules
2.3 Fuzzy Reasoningiuiniiiiininnnan..
2.4 Fuzzy Rule Extraction
2.5 Comparison Between Fuzzy and Interval Rules
3 Evolutionary Multiobjective Optimization (EMO)...............
3.1 Genetic Algorithms (GAS) ...
3.2 Multiobjective Optimization (MO)
3.3 Evolutionary Multiobjective Optimization (EMO)
4 Two Approaches to Evolutionary Multiobjective Design
of Fuzzy Rule-Based Classifiers
4.1 Problem Formulation
4.2 Multiobjective Fuzzy Rule Selection
4.3 Multiobjective Fuzzy Genetics-Based Machine Learning
4.4 Computational Experiments on Test Problems
5 Future Research Directions
6 Concluding Remarks i
References
Resources
1 Key BooKs ..o
1.1 Fuzzy Rule-Based Classification Systems
1.2 Genetic Algorithms i
1.3 Genetic Fuzzy Systemso i
1.4 Evolutionary Multiobjective Optimization

1.5 Evolutionary Multiobjective Machine Learning
and Knowledge Extraction..............

Contents XXVII

2 Conferences
2.1 Fuzzy Systems ...
2.2 Genetic Algorithms
2.3 Genetic Fuzzy Systems i
2.4 Evolutionary Multiobjective Optimization
2.5 Hybrid Systems
2.6 Broader Areas, Including Fuzzy Systems
and Genetic Algorithms
3 Journals
3.1 Fuzzy Systems ...
3.2 Genetic Algorithms i i
3.3 Broader Areas, Including Fuzzy Systems
and Genetic Algorithms
4 Websites . . .ot
5 (Open Source) Software..............oooueiiiiiiiiii ..
6 Data Bases.......... i

Part VIII Artificial Neural Networks

Data Mining in QoS-Aware Media Grids
Xiuju Fu, Xiaorong Li, Lipo Wang, David Ong,

and Stephen John Turner
1 Introduction.......... ...
2 Related Work
2.1 Network Bandwidth Prediction..........................
2.2 Brief Overviews on Neural Networks
3 System Model of Data Analysis over Media Grid
3.1 Architecture
3.2 System Componentsc..ouiiiiiiiiiiii..
4 Data Mining Strategy for Bandwidth Prediction
4.1 Multi-Layer Perceptron Neural Network
4.2 Data Mining Strategyt
4.3 Performance Metrics
5 Experimental System and Performance Evaluation
5.1 System Hardware and Software
5.2 Request Arrival Pattern
5.3 Results and Analysis........ ... oo,
6 Conclusionso
References
Resources
1 Key Books ...
2 Key Survey/Review Articles......... oo L.

3 Organisations, Societies, Special Interest Groups

XXVIIT Contents

4 Key International Conferences/Workshops
5 (Open Source) Software............ o i ..

The Self-Organizing Maps: Background, Theories,
Extensions and Applications

Hugun Yin ..o e
1 Imtroduction..........
2 Background
2.1 Biological Background: Lateral Inhibition
and Hebbian Learning
2.2 From Von Marsburg and Willshaw’s Self-Organization
Model to Kohonen’s SOM i,
2.3 The SOM Algorithm ...l
3 Theoriest
3.1 Convergence and Cost Functions
3.2 Topological Ordering
4 Extensions and Links with Other Learning Paradigms

4.1 SOM, Multidimensional Scaling and Principal Manifolds ...

4.2 SOM and Mixture Models
4.3 SOM and Kernel Method
5 Applications and Case Studies,
5.1 Vector Quantization and Image Compression..............
5.2 Image Segmentation i
5.3 Density Modeling. i
5.4 Gene Expression Analysis
5.5 Data Visualization............ i
5.6 Text Mining and Information Management
6 Summary and Future Directions
References
ResSOUrces
1 Key BoOKS ..o
2 Key Survey/Review Articles......... ... i i,
3 Key International Conferences/Workshops
4 (Open Source) Software.oouuiiiiniiiiiaaai..
Neural Systems Engineering
Steve Furber and Steve Temple
1 Introduction......... ...
1.1 The Neuronc.o .
1.2 Neural Microarchitecture
1.3 Engineering with Neurons
1.4 Scoping the Problem.........
1.5 The Research Agenda i,

1.6 Chapter Structure i,

Contents XXIX

2 Neural Computation 769
2.1 Processing.........c.iuiiii 770
2.2 Communicationoiiiiniineninan. 771
2.3 SEOTAGE .ot 771
3 The Neuron as a Component iiiein... 772
3.1 Communicating with Spikes 772
3.2 Point-Neuron Models 773
3.3 The Spike Response Model 774
3.4 The Izhikevich Model 774
3.5 Axons: The Hodgkin-Huxley Model 776
3.6 Dendritic Trees and Compartmental Models 776
3.7 The Synapset T
4 Engineering Neural Systems T
4.1 Neural Models i 778
4.2 Population Encoding. o i 778
4.3 Spatio-Temporal Spike Neurons 780
4.4 Defining ‘Connectivity’ i i 780
4.5 Implementing Connectivity o.. 781
4.6 Learning, Adapting, and Tuning......................... 781
4.7 Example Neural Systems 782
4.8 Neuromorphic Systems 782
5 Large-Scale Projects........ ... i 783
51 BlueBrain 783
5.2 SPINN .. 784
5.3 SpiNNaker 785
5.4 Virtual Communication 786
5.5 Diverse Approaches....... ... i 789
6 Future Prospects....... 789
References 790
Resources 795
1 Key Books ... 795
2 Key Reference Source i 795
3 Research Groups...........ooiii i 796
4 Key International Workshop....... 796
5 (Open Source) Software.............ooooiiiiiiiiiiiiii.. 796
Artificial Brains: An Evolved Neural Net Module
Approach
Hugo de Garis e 797
1 Imtroduction......... 797
2 Related Work ... 799
2.1 Some Recent Artificial Brain Projects 800
2.2 Some Other Recent Artificial Brain Projects 803
3 The Evolution of Neural Network Modules 804

XXX Contents

3.1 The Evolutionary Tasks 805
3.2 Our Evolutionary Approach 805
3.3 The Standard Genetic Algorithm 806
4 The Celoxica Board i, 806
5 Experimental Results......... 808
5.1 IMSI (Inter Module Signaling Interface) 809
5.2 How Many Modules? 811
6 The Robot and Brain-Robot Interface 812
7 Artificial Brain Architectures i o 814
7.1 A Simple Artificial Brain Architecture 815
7.2 Incrementing the Design.........., 823
7.3 Why Not Just Program Everything? 826
7.4 Evolving Individual Modules 827
8 The Need for Generic Evolution 830
8.1 Limitations of Our Approach 832
8.2 Evolvability - A Key Issue......... o i ... 832
8.3 Book-Keeping of Modules and Circuits 833
9 Future Work 834
9.1 The ‘China Brain’ Project 836
10 Conclusiont 837
10.1 Final Word o 839
References 839
Resources 841
1 Key Books ... 841
1.1 Artificial Brain Architectures 841
1.2 Brain Theory i 842
1.3 Cognitive Modeling i 842
1.4 Evolvable Hardware (EHW), 843
1.5 Gerald Edelman........ i 843
1.6 Ethology ... 844
1.7 Genetic Algorithms (GA)......, 844
2 KeyJournals 845
3 Artificial Brain Research Groups, 845
3.1 Markram’s ‘Blue Brain’ Project 845
3.2 Adaptive Development’s ‘CCortex’ 845
3.3 Edelman’s ‘Darwin IV’ Robot Brain 845
4 Key International Conferences/Workshops 846
4.1 Congress on Evolutionary Computation — CEC (IEEE). 846

4.2 GECCO - Genetic and Evolutionary Computation
Conference 846
4.3 ICES — International Conference on Evolvable Systems. 847

4.4 NASA/DoD Conferences on Evolvable Hardware 847

Contents XXXI

Part IX Evolutionary Approaches

Evolving Artificial Neural Network Ensembles

Md. Monirul Islam and Xin Yao i,

1 Imtroduction..........

2 Evolutionary Ensembles

2.1 An Evolutionary Design System for ANNs — EPNet........

2.2 Combination Methods

2.3 Experimental Studies i

3 Automatic Modularization

4 Negative Correlation Learning oo,
4.1 Evolutionary Ensembles with Negative

Correlation Learning

4.2 Experimental Studies i

5 Constructive Approaches to Ensemble Learning

5.1 Experimental Studies

6 Multi-Objective Approaches to Ensemble Learning

6.1 Experimental Studies

7 Conclusions

References

Resources

1 Key BoOKS ..o

2 Key Survey/Review Articles......... ... o i,

3 Organizations, Societies, Special Interest Groups

4 Research Groupsottt e

5 Discussion Groups, Forums..............

6 Key International Conferences and Workshops

7 (Open Source) Software............ ... i ..

8 DataBases...... ...

An Order Based Memetic Evolutionary Algorithm

for Set Partitioning Problems

Christine L. Mumford i
Introduction.
A Brief History of Genetic Algorithms
A Generic Genetic Algorithm L
Order Based GAS
A Simple Steady-State GA
Set Partitioning Problems.........
6.1 The Graph Coloring Problem
6.2 The Bin Packing Problem
6.3 The Examination Timetabling Problem
6.4 Other Set Partitioning Problems

S U= W N~

XXXII Contents

7 Motivation for the Present Study
Culberson and Luo’s Grouping and Reordering Heuristics
9 Modifications to a Standard Order Based GA
for Set Partitioning i
9.1 Performance Measures/Fitness Values....................
9.2 Comparing Order Based Crossovers......................
9.3 The Genetic Simulated Annealing (GSA) Algorithm
10 Results on Literature Benchmarks.............
10.1 Graph Coloring
10.2 Bin Packing
10.3 Timetabling
11 SUMMATY . oo e e
References

o

Resources
Key Books ... oo
Key International Conferences
Interest Groups/Web sites
(Open Source) Software.ouuuinnn i
Data Sets used in the Chapter

Uk W N~

Genetic Programming: An Introduction and Tutorial,
with a Survey of Techniques and Applications
William B. Langdon, Riccardo Poli, Nicholas F. McPhee,

and John R. Ko0za
1 Introduction.
1.1 GPinaNutshell
1.2 Overview of the Chapter
2 Representation, Initialization and Operators in Tree-Based GP ...
2.1 Representation
2.2 Initializing the Population
2.3 Selection
2.4 Recombination and Mutation
3 Getting Ready to Run Genetic Programming
3.1 Step 1: Terminal Set i
3.2 Step 2: Function Set i
3.3 Step 3: Fitness Function..........
3.4 Steps 4 and 5: Parameters and Termination...............
4 Example Genetic Programming Run.............
4.1 Preparatory Steps
4.2 Step-by-Step Sample Runo
5 Advanced Tree-Based GP Techniques..........................
5.1 Automatically Defined Functions

5.2 Program Architecture and Architecture-Altering
Operationsuuii e

Contents XXXIII

5.3 Genetic Programming Problem Solver.................... 949
5.4 Constraining Syntactic Structures 950
5.5 Developmental Genetic Programming 954
5.6 Strongly Typed Autoconstructive GP — PushGP 954
6 Linear and Graph-Based GP 955
6.1 Linear Genetic Programming 955
6.2 Graph-Based Genetic Programming...................... 957
T Applications. 958
7.1 Curve Fitting, Data Modeling, and Symbolic Regression.... 959
7.2 Human Competitive Results — The Humies 962
7.3 Image and Signal Processing, 965
7.4 Financial Trading, Time Series Prediction
and Economic Modeling 966
7.5 Industrial Process Control 967
7.6 Medicine, Biology and Bioinformatics 968
7.7 Mixing GP with Other Techniques....................... 969
7.8 GP to Create Searchers and Solvers — Hyper-Heuristics. 969
7.9 ATtIStiC ... 969
7.10 Entertainment and Computer Games 970
7.11 Where can we Expect GP to Do Well? 970
8 Tricksof the Trade i 971
8.1 Getting Started 971
8.2 Presenting Results...... i 972
8.3 Reducing Fitness Evaluations/Increasing
their Effectiveness 973
8.4 Co-Evolution 975
8.5 Reducing Cost of Fitness with Caches.................... 976
8.6 GP Running in Parallel 977
8.7 GP Trouble-Shooting i 981
9 Genetic Programming Theory 982
9.1 Mathematical Models 983
9.2 Search Spacest 984
0.3 Bloat 986
10 Conclusions 987
References 989
Resources 1025
1 Key BoOKs ..ot 1025
2 VIdeOS . ot 1026
3 KeyJournals ... 1026
4 Key International Conferences/Workshops 1026
5 Online Resources 1027

XXXIV Contents

The Particle Swarm Algorithm
Tim Hendtlass
1 Introduction.......... e
2 The Basic Particle Swarm Optimization Algorithm
2.1 Pseudo Code Algorithm for the Basic PSO
3 Enhancements to the Basic Particle Swarm Algorithm
3.1 Constriction Factors,
3.2 Adding Controlled Diversification........................
3.3 Handling Problem Constraints
4 Particle Swarm Optimization of Multiple Optima
4.1 Exploring Multiple Optima
4.2 Achieving Parallel Exploration
of Several Positions of Interest (niching)..................
4.3 Achieving Serial Exploration
of Many Positions of Interest (WoSP)
5 Controlling the Computational Expense........................
5.1 Using a Dynamic Swarm Size
5.2 Fitness Estimation
6 Dynamic Optimization Problems...........
6.1 Ways to Achieve these Adaptations
6.2 Preventing Total Convergence...............
6.3 Refreshing the Best Positions
6.4 Forcing Explorer Particles
6.5 Adapting WoSP to Dynamic Problems
7 Particle Swarm and Quantized Problem Spaces
8 Some Sample Results
8.1 Problems used as Examples in this Chapter...............
8.2 Experimental Details
9 Sample Results
9.1 Minimizing the Distance to the Origin in 100 Dimensions . . .
9.2 Rastrigin’s Function in 100 Dimensions.
9.3 Schwefel’s Function in 30 Dimensions

10 Concluding Remarks
References
Resources
1 Key Books ..o
2 Organisations, Societies, Special Interest Groups, Journals
3 Key International Conferences/Workshops
4 (Open Source) Software.

Contents XXXV

Part X DNA and Immunity-Based Computing

DNA Computing and its Application
Junzo Watada
1 Introduction........
2 DNA Computing.uuuiiune e
2.1 Encoding Scheme.........
Comparison with Conventional Computing
Applications of DNA Computing........... ...,
Approaches to Optimization and Scheduling
Elevator Management System
6.1 Restrictions on Elevator Movements
6.2 Elevator Scheduling..............
Bio-Soft Computing Based on DNA Length
8 Bio-Soft Computing with Fixed-Length DNA
8.1 Empirical Study.......... .. .
9 Conclusion
References

O U = W

EN|

Resources
1 Key BoOKs ..o
1.1 DNA Computingc.coouniiiinninia..
1.2 Elevator Management
Key Survey/Review Articles.........
International Organization
Discussion Groups, Forums.
Research Groups
Key International Conferences and Workshops
Web Resource

~N O Uk W N

The Next Generation of Immunity-Based Systems:
From Specific Recognition to Computational Intelligence

Yoshiteru Ishida
1 Introduction....... ...
2 Impact of Recognition i,
2.1 An Impact of Recognition is a Double-Edged Sword
3 Immunity-Based Systems: Evolved Recognitions
3.1 Definition of Immunity-Based Systems
3.2 Networked Recognition.......... i,
3.3 Adaptive Recognition i
4 Antibody-Based Computing: Arrayed Recognition...............
4.1 Definition of Antibody-Based Computing.................

4.2 Solving a Combinatorial Problem: The Stable
Marriage Problem

XXXVI Contents

4.3 Mapping the Stable Marriage Problem

to Antibody-Based Computing 1107

5 Toward a General Problem Solver:
Immunity-Based Problem Solver 1110
6 Conclusioni i 1113
References 1114
Resources 1117
1 Key Books ... 1117
2 Key Survey/Review Articles. 1118
3 Organisations, Societies, Special Interest Groups 1119
4 Research Groupst 1119
5 Key International Conferences/Workshops 1119

Part 1

Overview, Background

Computational Intelligence: An Introduction

John Fulcher

Intelligent Systems Research Centre, University of Wollongong NSW 2522,
Australia, john@uow.edu.au

1 Introduction, Overview, Definitions

The Artificial Intelligence field continues to be plagued by what can only be
described as ‘bold promises for the future syndrome’, often perpetrated by
researchers who should know better.! While impartial assessment can point
to concrete contributions over the past 50 years (such as automated theorem
proving, games strategies, the LISP and Prolog high-level computer languages,
Automatic Speech Recognition, Natural Language Processing, mobile robot
path planning, unmanned vehicles, humanoid robots, data mining, and more),
the more cynical argue that AI has witnessed more than its fair share of
‘unmitigated disasters’ during this time — see, for example [3,58,107,125,186].
The general public becomes rapidly jaded with such ‘bold predictions’ that
fail to live up to their original hype, and which ultimately render the zealots’
promises as counter-productive.

To lay claim to having developed an ‘intelligent” system is to open a hor-
net’s nest of debate — a debate which has raged since the early days of Al
This is not surprising, since one can very quickly stray into the realms of
philosophy, metaphysics and/or religion (and as the adage goes, never discuss
politics or religion with your fellows!). We do not propose to add to the debate
here, but to simply make our contribution by way of practical methods which
have proven effective over time in dealing with real-world applications. It is
a moot point then as to whether the ‘intelligence’ in these systems can be
attributed to some ‘Ghost in the Machine’, as it were, or alternately to their
creator(s) — in other words, to the ‘cleverness’ of the system developer(s).
For readers interested in such philosophical issues, they are referred to the
extensive literature in this area (for starters, see [33,44,45,67,112,245]).

So what then is the focus of the present Handbook, and in particular the
Chapters which follow? In short, the techniques herein described originated

! Fulcher J, Jain LC (2004) Applied Intelligent Systems, Springer: Preface (VII-X).
J. Fulcher: Computational Intelligence: An Introduction, Studies in Computational Intelligence

(SCI) 115, 3-78 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

4 J. Fulcher

in several different fields, including ‘Cybernetics’, ‘Machine Learning’ (ML),
‘Artificial Intelligence’ (AI) (together with its later offshoot ‘Connectionism’),
‘Data Mining’ (DM), ‘Knowledge Engineering’ (KE), ‘Intelligent Systems’,
‘Soft Computing’, and in more recent times, ‘Computational Intelligence’ (CI).
Actually these approaches share more in common than one might at first
suspect, going on their names alone.

Historically, AI has progressed over time by way of ‘quantum leaps’,
beginning with traditional (philosophy/psychology-based) Al, through Artifi-
cial Neural Networks (inspired by neurobiology), Evolutionary Computation
(inspired by genetics and biology), complex systems (inspired by economics
and biology), to present-day CI. What the next leap (‘wave’) will be is open
to speculation, but in this author’s view it stands a very good chance of being
‘Nature-inspired’ (see Sect. 3). The common characteristic of each such ‘wave’
is the aspect of computation. Accordingly, any attempt to define ‘intelligence’
must necessarily bear this in mind. However Conrad makes a valid point in
this regard, that “no system can be at once highly structurally programmable,
evolutionary efficient, and computationally efficient.” [55]

One definition of CI emphasizes (a) the ability to learn, (b) to deal with
new situations, and (c) to reason [80]. Some early definitions of CI restricted
themselves to ‘intelligent agents’ [16,47,247]. Another early definition is more
typical of current-day attitudes: “Artifical Neural Networks (ANNs), Evolu-
tionary Computation (EC), and Fuzzy Systems” (although this same author
has since widened their definition to “the study of adaptive mechanisms to
enable or facilitate intelligent behaviors in complex and changing environ-
ments” [82]). Pedrycz emphasizes the synergy between granular computing (in
particular fuzzy sets), ANNs, and evolutionary optimization [240]. Further, he
maintains the order in which the techniques are applied is important — more
specifically, using a top-down approach, we commence with granular comput-
ing (say fuzzy sets), then refine the system using neural networks on numeric
data.

According to Fogel,

“These technologies of neural, fuzzy and evolutionary systems were
brought together under the rubric of CI, a relatively new term offered
to generally describe methods of computation that can be used to
adapt solutions to new problems and do not rely on explicit human
knowledge.” [94]

Likewise Karplus states:

“CI substitutes intensive computation for insight into how the system
works. Neural Networks, Fuzzy Systems and Evolutionary Computa-
tion were all shunned by classical system and control theorists. CI
umbrellas and unifies these and other revolutionary methods.” [151]

Computational Intelligence: An Introduction 5

Bezdek is more specific, characterizing CI thus:

“A system is computationally intelligent when it: deals with only
numerical (low-level) data, has pattern recognition components, does
not use knowledge in the AI sense; and additionally when it (begins
to) exhibit (1) computational adaptivity; (2) computational fault tol-
erance; (3) speed approaching human-like turnaround, and (4) error
rates that approximate human performance.” [16,17]

According to the IEEE Computational Intelligence Society,? “CI is a field
that greatly evolved in the last quarter century; from initial steps in the
direction of understanding the mechanisms of human reasoning towards the
study of all aspects of natural intelligence and behavior. The ultimate goal
of researchers in this field was mimicking Nature with artificial technologies
to replicate the basic mechanisms of Nature in engineering systems for the
benefit of humanity...CI technologies are living approaches to tackle real-
world problems. . .created as answers to the needs of applications.”

Duch characterizes CI as “that branch of Computer Science studying prob-
lems for which there are no effective computational algorithms”. He further
suggests that Al should be regarded as a sub-set of CI, which will no doubt
upset traditionalists! More specifically, “Al is that part of CI that focuses on
problems that require higher cognition and are at present easier to solve using
symbolic knowledge representation.” [78]

Nowadays, most authors would agree on a core definition of fuzzy, neu-
ral and evolutionary (data-driven) methodologies, but some extend this to
cover granular computing [190,240,326,330], probabilistic reasoning, Bayesian
(belief) networks [147, 161, 216], fuzzy Petri nets, constrained reasoning,
case-based reasoning [231,304], Support Vector Machines [1,270,297], rough
sets [140, 189, 237], learning/adaptive classifiers, fractals [85,200], wavelets
[198,242], and /or chaos theory [228,282], not to mention the intelligent agents
[229] alluded to earlier. [296] make some further observations as to how the CI
field has evolved during the previous decade, with the emergence of differential
evolution, Particle Swarm Optimization (Sect. 8.4), multi-objective evolution-
ary optimization (Sect.8) — such as NSGA-II (fast elitist Non-dominated
Sorting Genetic Algorithm) — and Support Vector Machines (Sect. 7.3).

Henceforth in this Handbook, we use the term CI in its most generic
sense, and take it to mean the use of Artificial Neural Network, evolutionary
and/or Fuzzy techniques, and more especially hybrids or synergistic combina-
tions/ensembles of these complementary approaches (as well as occasionally
incorporating rule-based and/or statistical ones). Moreover, the resulting tech-
nique(s) will usually be iterative in nature, with successive solutions delivering

2 CIS President’s Forum, IEEE World Congress CI, 19 July 2006, Vancouver,
Canada.

6 J. Fulcher

improved performance/accuracy, to a user-specified degree. As such, CI is
potentially capable of solving problems which remain intractable to solution
by any individual technique — truly, the whole is greater than the sum of its
parts.

Application of CI methods will typically result in so-called ‘black box’
solutions to problems of interest, which while they may be effective, are not
always welcomed by users — simply because it is difficult to provide justi-
fication /rationalization/explanation of any decisions thus made (in contrast
say to Decision Trees (DTs), from which it is a relatively straightforward
matter to extract explanatory rules). A strong selling point with CI systems
is nevertheless their superior ability to model complex real-world systems
which have proved intractable using classical (conventional mathematical/
logic) methods — hence their popularity with researchers and practitioners
alike.

As a first approximation, we can discriminate between CI methods which
have an algorithmic or logical rule basis (model-driven) and those best
described as being inherently non-algorithmic. With the latter, there is the
added implication of a data-driven, iterative process, as well as some form
of inspiration from biology, or more generally, Nature, although Teuscher
cautions against biological inspiration for its own sake — rather he advo-
cates inspiration in the broadest sense, including unconventional and novel
paradigms, that need not be biological at all. These issues are elaborated
upon in Sect. 3.

We could explore this a little further in the formulation of an alternative
definition of CI. A classic text from the era of procedural programming (and
the Pascal HLL) was Wirth’s Algorithms + Data Structures = Programs.?
Two decades later, Michaelwicz attempted to similarly define ‘evolutionary
programming’ thus?:

“Genetic Algorithms 4+ Data Structures = Evolution Programs.”
A decade further on, we could define CI as follows:

Nature-inspired method(s) + real-world (training) data = Computa-
tional Intelligence.

Let’s examine each of these three components in our defining ‘equation’.
Firstly, ‘Nature-inspired method’ does not necessarily imply an algorithmic
basis; often heuristics suffice. On the other hand, the backpropagation (BP)

3 Wirth N (1976) Algorithms + Data Structures = Programs. Prentice Hall,
Englewood Cliffs, NJ.

* Michalewicz Z (1996) Genetic Algorithms + Data Structures = FEvolution
Programs. Springer-Verlag, Berlin.

Computational Intelligence: An Introduction 7

algorithm and Genetic algorithms, as their names suggest, have an algorith-
mic foundation. The various sources of inspiration from Nature are further
discussed in Sect. 3.1. Secondly, data structure is not nearly as important as a
sufficient amount of training (validation, and testing) data, notwithstanding
bit-string chromosome representation in EAs, and set membership in Fuzzy
Logic. Thirdly, since we of necessity use real-world data, then CI ipso facto
facilitates real-world problem solving (see the earlier IEEE CI Society defi-
nition of Computational Intelligence). We shall explore this idea further in
Sect. 3.1.

2 Historical Background

Researchers with an historical bent often regard particular scientific gather-
ings as constituting the origin of various disciplines: in the case of ‘Software
Engineering’ this took the form of NATO-sponsored workshops during the late
1960s; with ‘Artificial Intelligence’ — a term coined by John McCarthy, then of
MIT, to mean the science/engineering of constructing intelligent machines —
this can be traced backed to a Workshop at Dartmouth College in the US
in 1956.°

2.1 Artificial Intelligence (AI)

Much debate has taken place over the ensuing decades attempting to define
‘Artificial Intelligence’. Before we consider ‘Al” specifically, we need to come to
some understanding of the more general concept of ‘intelligence’. The following
are typical dictionary definitions:

‘understanding’

‘the collection of information’

‘capacity for understanding and other forms of adaptive behavior’
‘aptitude for grasping facts, truths or meaning’

‘the ability to plan, reason, solve problems, think abstractly, comprehend
ideas and language, and learn’

In 1996, the IEEE Neural Networks Council defined Al as:

“the study of how to make computers do things at which, at the
moment, people are better.”

Others go further, citing both complexity and randomness (chaos) as being
inherent attributes of AI [80]. Stair and Reynolds expand upon this basic
definition by including the processing and manipulation of symbols, the use
of heuristics (in other words, benefiting from experience), as well as notions

5 Although Alan Turing had published an earlier paper on ‘Computing machinery
and intelligence’ (Mind, 1950, 59:433-460).

8 J. Fulcher

of ‘creativity’ and ‘imagination’ (and perhaps also ‘inspiration’?) [283]. Some
authors take this much further, suggesting that one day artificial intelligence
will surpass that of human intelligence [171,202]! At the other extreme there
are those who believe human intelligence is invariably superior to that of
machines (http://www.mturk.com).%

The original focus of AI centered not only around making better (more
‘intelligent’?) computers, but also on computational psychology and/or philos-
ophy. The goal with the former was to glean an understanding of (intelligent?)
human behavior by creating programs which behaved in the same manner as
people (such that they satisfied the Turing test) [244]. The goal with the lat-
ter was to formulate a ‘computational understanding’ of such behavior (it is
debatable however as to whether intelligence can be consider a computational
entity) [261].

Much early effort in AI was directed towards automated theorem prov-
ing — for example, Logic Theorist and the later General Problem Solver,
SOAR, SAINT (Symbolic Logic INTerpreter), and the Geometry Theorem
Prover [261]; more recent examples are SAM, AURA and OTTER [109].
Another popular area has traditionally been game theory — such as checkers
(draughts) [262] and chess (http://www.research.ibm.com/deepblue). Other
early work centered around Microworlds [234], and high-level languages, in
particular the LISt Processing language (LISP) and the LOGic PROgramming
language Prolog (a major thrust of the Japanese 5th Generation Project),
although C/C++ remains the preferred choice for many researchers (for
instance, the C-Language Inference Production System or CLIPS).

Real-world applications of Al have subsequently tended to concentrate in
the areas of robotics, computer vision, and most especially Expert Systems
(Sect. 5). The approach taken with the latter can be characterized as the use
of knowledge and reasoning in order to solve complex problems.

Knowledge Representation and Ontology

The challenge for a Knowledge Engineer (KE) is to first extract knowledge
from a (human) domain expert, then encode it into an appropriate format —
namely one that facilitates not only efficient storage within a Knowledge Base
(KB), but also efficient searching of this KB when the system is presented with
new user queries. Finally, the KE needs to consider how best to present/dis-
play system responses to such queries (along with corresponding confidence
levels) to the user — in other words, in an easily understandable and aesthet-
ically pleasing manner. Not only that, but users typically also expect some

5 For a good summary of open questions pertaining to Al, the reader is referred to
http://www.openquestions.com/oq-te019.htm

Computational Intelligence: An Introduction 9

form of rationale/justification for the decision(s) arrived at by the system —
an especially difficult proposition for an Artificial Neural Network (Sect. 7),
but a straightforward one for a Decision Tree (Sect. 2.3).

Several different techniques exist to assist a KE with the gathering of
knowledge pertinent to a particular domain, including structured or unstruc-
tured interviews, focus groups, direct observation, case studies, and so forth
[27]. Likewise, various alternatives are available for representing knowledge
thereby obtained. These include if..then production rules (or alternatively,
fuzzy rules if the knowledge is inexact, imprecise, or indeed at times, con-
tradictory), formal logic (for example, First-Order Logic), frames (which bear
some resemblance to a ‘record’ data structure), semantic networks (a graphical
technique), Artificial Neural Networks, and so on [281].

These days a KE will also most likely be concerned with constructing an
ontology of the relevant application domain — ‘ontology’ being that branch of
metaphysics concerned with the nature of being, fundamental principles, and
categorizations. In an Al context, ‘ontology’ is taken to mean the specifica-
tion of a system of concepts and the relationships between them, usually in
machine-readable form.

Logic and Reasoning

Formal logic, as its name suggests, concerns itself with ‘form’ (syntax) but
not necessarily meaning (semantics). Propositional logic is a formal system in
which propositions can be generated by combining atomic (‘true’ or ‘false’)
propositions using logical (for example, Boolean) operators and formal ‘proofs’
in order to establish ‘theorems’. First-Order Logic (FOL) or Predicate Calcu-
lus is an extension of propositional logic which utilizes not just statements and
connecting operators, but also variables, functions and predicates, in order to
support quantification over individuals within a given domain (universe of
discourse). FOL is sufficiently expressive to be able to formalize most mathe-
matical concepts. Second-Order Logic extends FOL in order to support sets of
individuals. Higher-Order Logic is a further extension which allows additional
constructs (higher-order predicates which take more than a single predicate
as arguments) according to an underlying type theory formalism. HOLs allow
the quantification not only of objects, but also of relations between them,
functions, and ontologies, however reasoning within a HOL is not straightfor-
ward (it is for this reason that AI/Machine Learning has traditionally used
FOL and/or the A-calculus to represent knowledge in a manner suited to both
storage within and searching of a Knowledge Base (KB). A-calculus is a formal
system developed to support function definition, application and recursion; it
in turn influenced the subsequent development of functional languages such
as LISP and ML. By contrast, FOL facilitates the use of PROLOG for the
processing of user queries.

10 J. Fulcher

Reasoning about knowledge is possible using logical inferences, and by
incorporating either forward- or backward-chaining. With the former, we start
with the known facts (data/information), and proceed towards the goal; hence
we characterize this approach as a ‘data-driven’ one. We proceed in the reverse
direction with the latter; hence this approach can be characterized as being
‘goal-directed’. In either case, searching of the state (solution) space could
proceed in one of several different ways. If we represent knowledge about a
particular domain as a tree structure, then we could search from the root
node down to the leaf nodes in either a breadth-first or depth-first man-
ner, by using exhaustive search, or by employing some heuristic(s) (in other
words, to exploit a priori knowledge about the domain in question). Whatever
approach we take, we will invariably reach ‘dead ends’ and need to backtrack
up the branches of the ‘knowledge tree’ in order to explore a new search
path.

We should point out however that an over-reliance on sequential causality
probably contributes to the ‘brittleness’ of logic-based AI. For example, in
Immunity-Based Computing (Sect.9.1), we also need to take into account
circular causality.

Belief (Bayesian) Networks [147,161,216] are directed acyclic (or cyclic)
graphs which can be used to represent entities and the (causal) relationships
between them, as well as their conditional probabilities. They allow efficient
reasoning about uncertainty. An alternate ‘world view’ (ontology) can be
described in terms of intelligent (cognitive) beliefs-desires-intentions or BDI
agents.

Classifiers
We can state the basic classification problem as being a transformation:
I"=1rm (1)

where n-dimensional input data is transformed into m discrete classes (cate-
gories), with m < n typically.

Usually we will train a classifier on the available data, although unsuper-
vised classifiers are also possible (however the clusters they form may not
always be sensible ones!). Once a classifier has been trained, it will be capa-
ble of generalizing what it has learnt and be able to correctly classify input
patterns it has not previously met, but which are nevertheless ‘similar to’
(in a geometric or vector sense) patterns it knows about, providing of course
that the new pattern is drawn from the same overall population. Several dif-
ferent approaches can be followed in creating supervised classifiers, including
statistical, Decision Tree, SVM, ANN, GA, to mention but a few.

Now a classifier will only be able to discriminate between a finite number —
p — of different (orthogonal?) pattern classes before they begin interfering

Computational Intelligence: An Introduction 11

with each other (leading to pattern crosstalk). In the case of Artificial Neural
Networks (Sect. 7), the patterns are stored in the minima (‘valleys’) of the
solution space (energy landscape), assuming that the network capacity has
not been exceeded. Different types of classifier are capable of forming differ-
ent shaped discriminants (separators, boundaries) between pattern classes —
more specifically, linear in the case of statistical regression, rectangular in
the case of Decision Trees (Sect.2.3), or arbitrary in the case of ANNs (pro-
viding a sufficient number of hidden layers and/or nodes are used, in the
case of MLP/BP). Figure 1 shows the iris data set, which comprises sepal
and petal length and width measurements taken from three different flower
species: setosa, versicolor, and virginica. We observe that separation of the
lower class (setosa) can be performed by inspection (and a straight line sepa-
rator/discriminant drawn accordingly, as in Fig. 2). The other two classes are
more intermixed, and hence more difficult to separate (certainly using a linear
discriminant).

Some classifiers are only capable of forming linear discriminants (straight
line decision boundaries in the case of 2D data, such as eXclusive-OR —
see Fig.2 — top); others are capable of handling non-linear input data. For
instance, both the ADALINE and Rosenblatt’s original 2-layer Perceptron
were only capable of acting as linear discriminators; the later Multi-Layer
Perceptron was not so restricted. In general, for n-dimensional data, the dis-
criminant (decision boundary) is an (n — 1)-dimensional hyperplane (Fig.2 —
bottom).

P(X | H)P(H) o)
P(X)

Naive Bayesian classifiers [284] perform as simple linear statistical classi-
fiers, and are trained using tuples of data attributes and the classes to which
they belong. The basis for constructing such a classifier is the Bayes formula
(Eqn. (2)), which enables the a posteriori conditional probability — of an input
pattern H belonging to a particular class X — to be determined based on a
priori (known) probabilities, or estimates thereof. The ‘naive’ here refers to
the inherent assumption of class conditional independence (in order to reduce
computational cost); likewise, if prior class probabilities are not known, they
are assumed to be equally likely. Notwithstanding these simplifications, the
Naive Bayesian classifier is often used as a benchmark with which to compare
other approaches.

PH | X) =

Mathematical Function Approximation

The fundamental curve fitting (modeling) problem is to fit a mathematical
function which passes through as many of the given data points as pos-
sible, with minimal overall error. In fitting such a function to the data,
one must be mindful of not over-fitting — more specifically, while a higher-
order function may pass through more data points, a lower-order function

12 J. Fulcher

Sepal
45
.
*
*
4 *
*
> *
o o0
. *
35 * o0 .
* * * o0 * L
e o
* LR 4 * L} [] n
£ ¢ o0 mn] # setosa
s 3 * 0 * o0 nn an n] n m versicolor
s * . nems = virginica
n = nn n]
nn n n]
]]]
25 [] []] []
L]]
. []]
]]
2]
15
4 4.5 5 55 6 6.5 7 75 8
Length
Petal
3
25
2
n
]
< L B |] # setosa
T 15 " E=Em 8 m versicolor
s = o mEm virginica
L} LLL L]
Em mE =
] [1]
1 s Ee s mm
3
0.5 .
* o000
*00 o
* 400000 o
* *0
0
0.5 1.5 25 35 4.5 55 6.5 75
Length

Fig. 1. UCI-ML iris data set

(such as a quadratic or set of cubic splines) may result in a better graphical
representation of the data in question. For instance, in the case of foreign
exchange rate or stock market time series data, it may not be so much the
intermediate values that may be of interest, but more the daily, weekly or
monthly average values.

Computational Intelligence: An Introduction 13

(1,1)

(1.0)

(infinite number of)
linear discriminant(s)

(0,1,1) 0 (1.1.1)
3D:
(0,1,009 & (1.1,0)
class
“one”
class (1L0.,1)
£ »
¢ | — o >
(050»0)_% 2D (plane) (1,0,0)

decision boundary

Fig. 2. 1D (linear) and 2D (planar) discriminants/decision boundaries (XOR)

Standard statistical approaches to mathematical function approximation
and/or time series modeling include (simple) regression, Auto-Regressive
Moving Average (ARMA) - and variants thereof — and in more recent
times, Support Vector Machines [1,270,297] and rough sets [140, 189]. ANN
approaches include Multi-Layer Perceptron/BackPropagation, Radial Basis
Function, Higher-Order Neural Networks [328], recurrent networks and Time
Delay Neural Networks, with the latter two incorporating time delay (mem-
ory) elements, in order to retain knowledge of previous network weights in
order to better predict future ones. Higher-order ANNs (HONNS) incorporate
not just the familiar sigmoid and summation neurons, but also ones with mul-
tiplicative activation functions, to better model highly complex, non-linear,
discontinuous real-world data [328].

Modeling of a given data set is often only half the story however; often we
are more interested in predicting future values, based on having first modelled

14 J. Fulcher

them as accurately as possible — not always easy if the system in question is
chaotic rather than deterministic (or even stochastic), let alone in the face of
discontinuities (such as a Stock Market ‘black tuesday’, say).

Figure 3 shows a long-term (top) and medium-term (bottom) view of the
exchange rate between the Australian and US dollars. The former may be
of use to Historians in discussing the effects of de-regulating the Australian
dollar in December 1993, for instance. The latter may be of more interest
to regulators in setting official interest rates, say. Yet again, shorter-term
views (monthly, weekly, daily...) may be more useful for financial market
speculators. In short, on some occasions the short-term variations in such
time series will be important; at other times average values moreso.

2.2 Machine Learning (ML)

Any discussion of Machine Learning (ML) necessarily raises the question as
to what constitutes ‘learning’ in general (in a similar way that ‘AT’ necessarily
led to a consideration of the concept of ‘intelligence’). Again, such questions
border on the philosophical. Typical dictionary definitions include:

‘to gain knowledge of or skill in, by study or experience’

‘to commit to memory’

‘to be told about, be informed of’

‘to become aware of’

‘to receive instruction, be taught’

‘the modification of behavior through interaction with the environment’,
and so on.

We can define information as being data (facts) plus meaning; likewise
knowledge we can regard as being information coupled with understanding.
Similarly, we could define wisdom as knowledge plus experience together with
insight (and so on, for concepts such as consciousness, self-awareness, and the
like). Accordingly, we contrast people versus machines as follows:

e human = body + mind + soul (consciousness)
e machine = body + mind (or just brain?)

If the latter possesses just a brain (the physical organ) and not a mind,”
then it makes sense to talk about logic, reason, rules, ‘knowledge’ (providing
it can be expressed in the form of if..then rules), even ‘learning’, but what
about ‘intelligence’? As to the ‘Ghost in the Machine’ (or soul), again we shall
leave this as an exercise for the reader. On the basis of the above definitions,
Machine Learning would appear to be a valid concept; by contrast, the concept
of ‘AT’ is much more problematic (see earlier). Indeed Naus is quite skeptical:

" We chose not to enter into a debate here as to whether these terms are
synonymous — in other words, whether the mind is nothing more than a biological
(physical) mechanism; readers so inclined are referred to 33,44, 45,63, 245].

Computational Intelligence: An Introduction 15

A$-US$ Exchange Rate

1.6000

1.4000

1.2000

1.0000 -

Exchange rate

0.8000

0.6000

Aor]
W Y
W

0.4000

o &

:\‘5,\6;\41\%%\%‘5%‘3‘6\%%%\6’3636\Q’%Q\Q’bgﬁ

& & &

S

A A A @?*Q/ %QQ’ N o e"*Q/ AN e"*QI e"*Q/ Q»Q’Q‘ rfq’ ezQ’ 9”"2/ 9‘7"2' %‘Z'Q' e?‘QI @?’Q/ eoq' %"'Q' e"*Q/

Month & Year

A$-US$ Exchange Rate

0.9000

0.8500

0.8000

0.7500

0.7000

0.6500

Exchange rate

0.6000

0.5500

0.5000

0.4500

0.4000

S «QQ Q@ S8 8 q\
W o IS W o *

N PFF PP LR R PEEES S

SHTIIF TS ST PN A R S N
W e @ T o @ e T o & T e @S

N

Month & Year

Fig. 3. Financial time series (Australian Bureau of Statistics)

16 J. Fulcher

“Present-day authors argue about mental life from totally defect, con-
fused cognitive notions, in terms such as ‘consciousness’, ‘knowledge’,
‘language’, ‘intelligence’, ‘concept’, that denote nothing clearly, and
moreover that William James’s insight into human mental life as
presented in his Principles of Psychologiy® is unknown.” [211]

Machine Learning takes an algorithmic approach to learning, adaptation
and optimization; by contrast, Computational Intelligence focuses on non-
algorithmic, data-driven approaches, as previously mentioned in Sect. 1. These
ML algorithms can range from supervised learning, through unsupervised
learning, reinforcement learning, and more. ML incorporates both deductive
and inductive techniques. With the former, we reason from premises (assump-
tions) to conclusions (axioms or certainties). In the latter, we attempt to
extract rules and/or patterns from the available data (typically using statisti-
cal or Data Mining [271] techniques); the results are probabilities (likelihoods)
rather than certainties. The classic example in this regard is the following:

e premise: all men are mortal
e premise: Socrates is a man
e conclusion: (therefore) Socrates is mortal.

2.3 Decision Trees

Decision Trees — DT's — are a classification technique which grew out of both
the statistical [24] and ML fields [250,251]. They are supervised learning meth-
ods, with the tree being constructed (‘grown’) according to the attributes that
characterize a particular data set. A test is performed on the most significant
attribute (determinant) of a data record at the root node, and a new branch
grown, depending on the result of this (Y/N) test. The next most important
attribute is then tested, and so on, until we terminate at a leaf node — which
corresponds to a specific class to which this particular training datum belongs.
One could liken the fundamental divide-and-conquer approach of DT's to that
of Principal Component Analysis (PCA), in the sense that the most significant
data attributes determine the uppermost ‘limbs’ of the tree.

Classification of new data corresponds to finding the leaf node (solution)
which most closely matches the input data (‘most closely matching’ here in
terms of either mean squared error, Euclidian distance, vector (dot) prod-
uct, or some other geometric/Cartesian measure). Searching of the solution
space (tree) can be undertaken in either a breadth-first or depth-first man-
ner (with or without backtracking when we find ourselves proceeding down a
‘dead end’), exhaustively (in other words, by visiting all branches in turn), or
by invoking some form of heuristic in the decision making (branching) process.

8 James W (1890) The Principles of Psychology. Henry Holt, USA (reprinted by
Dover, 1950).

Computational Intelligence: An Introduction 17

Pre-processing of the data prior to commencement of tree growth is critical
(in other words, so that noise does not negatively impact the growth process).
More specifically, tree ‘pruning’ is crucial in reducing training times, which
typically vary as O(2P), where p is the number of branches, to guard against
combinatorial explosion.

Once grown, a DT can be used to classify data it has not previously encoun-
tered (but which nevertheless is drawn from the same population as that
used to construct the tree). Put another way, they are able to generalize, but
perhaps not as well as ANNs (see Sect. 7).

3 Approaches to CI

The two fundamental approaches to Al can be characterized as left- versus
right-brained; the former refers to the traditional logical, rule-based, model-
driven algorithmic approach, while the latter (data-driven) connectionist
approach mimics the intuitive/creative/artistic side of our brains. Connec-
tionism, intelligent systems, soft computing, Computational Intelligence is
the primary focus of this Compendium.

Modeling complex systems using formal (higher-order) mathematical equa-
tions is not always feasible (or even possible) in many real-world situations,
hence the appeal of non-algorithmic approaches. In other words, if modeling
a certain complex system is proving intractable, why not instead try to learn
the system characteristics (for instance, the Input-Output describing/ trans-
fer/system function in the case of an industrial plant or process)? This will
only be feasible if we have a sufficient number and diversity of (labeled) input-
output training data (examples) at our disposal for learning purposes however.

3.1 The Intuitive Appeal of Nature

Traditional AT attempts to mimic human thought processes by means of mod-
els, logic, reasoning, heuristics, encapsulated knowledge, symbolic logic and
the like. CI (modern-day AI?) instead attempts to create intelligent machines
and/or processes by copying biological behavior — ‘mimicking Nature for
problem solving’, as so succinctly put by the IEEE Computational Intelli-
gence Society. Some of these natural structures/processes which have provided
inspiration in the past have been [277]:

evolution; natural selection (phylogeny) = evolutionary approaches
multi-cellular organisms (embryology; ontogeny) = cellular automata
[192,276,279,292,310]

e Dbiological brains; cerebral cortex; the nervous, immune and endocrine
systems (epigenesis) = ANNs; immunity-based systems [61,201]

e social organisms; insect swarms, bird flocks, shoals of fish = swarms;
artificial life [185]

18 J. Fulcher

This list is not exhaustive, and no doubt more natural phenomena will inspire
researchers in the years to come.

There is a qualitative difference between biological and artificial systems.
The former can be characterized as being probabilistic, inexact/imprecise,
capable of performing 1-to-many mappings between input and output, and
memory not being exact but even deliberately ‘forgotten’. By contrast, the lat-
ter are typically characterized as being deterministic, exact/precise, restricted
to 1:1 I/O mappings, and with ‘perfect’ memory/recall (in other words, no
forgetting).

There are numerous structures and processes in Nature which can serve as
inspiration for computational methods which may be capable of superior per-
formance compared with conventional statistical (and/or logic-based and/or
algorithmic) techniques. We hasten to add that such natural structures (‘hard-
ware’) and processes (‘software’) are not in the main fully understood, even by
experts in their respective disciplines. Nevertheless, such structures/processes
can serve as the inspiration for alternative computing paradigms, in a similar
way that birds served as the inspiration for the development of aeroplanes,
but with lift being achieved in the latter via a different mechanism than the
flapping of wings (namely, by differential air pressure either side of fized/rigid
aeroplane wings).

As a sideline to the aforementioned, we have also managed to develop
methods which better reflect human thought processes, ones capable of han-
dling ‘grey areas’, and not just (‘black-and-white’) Boolean logic constructs —
one such example of course is Fuzzy Logic (see Sect. 6 of this Chapter, as well
as Part-VII of the Compendium proper).

Traditional computation has always been hampered by the so-called
‘semantic gap’, meaning the gap between the high-level language (HLL) con-
structs of human users which map natural language (linguistics) onto the
low(machine)-level of the underlying hardware on which computer programs
execute. Compilers — specialist software/programs — attempt to bridge this
gap. Traditional AI, being underpinned by formalism and logic, while being
able to capture syntaz (form) has not always been successful in capturing
semantics (meaning). This, by the way, has been a common failing with Soft-
ware Engineering (SE) — hence the emphasis there on requirements elicitation
(problem definition and/or specification). As we shall see in Sect. 5, this has
also hampered many efforts in Expert Systems, inasmuch as it is not always
easy to capture, let alone adequately represent, a domain expert’s knowledge.
Fuzzy logic can assist to a degree in this process, due to its ability to translate
between linguistic terms and computational terms (see Sect. 6).

Indeed, this could be one reason why Fuzzy Logic, in particular, has found
widespread use in real-world applications — in other words, serving as the
interface between human language constructs and practical problem-oriented
languages.

Computational Intelligence: An Introduction 19

Now CI has the potential to bridge this semantic bottleneck (gap) —
which, by the way, has crippled many traditional computational and/or Al
efforts — and interact directly with the application domain (due to its inher-
ent application-oriented, data-driven, bottom-up nature). In bypassing this
(substantial) problem, CI can learn a domain (discipline) ontology indirectly.

Another potential advantage of CI over both traditional AT and/or com-
putation more generally is the possibility of producing a range of solutions
to any given problem. The latter approaches have invariably focused on max-
imum performance at all costs (in other words, irregardless of the available
resources), and often on virtual problems — to use a driving analogy, with the
driver’s foot ‘planted firmly on the accelerator pedal’. CI offers the possibil-
ity of trading off performance against resources, and moreover with regard to
real-world problems, as indicated in Fig. 4.

For instance, relaxing the termination criteria for a ANN/EA (number of
epochs/generations) in order to realize a sub-optimal, yet adequate solution
to the real-world problem of interest. Similarly, ANN convergence to a local,
rather than global, minimum in the energy (solution) landscape can oftentimes
nevertheless lead to an acceptable solution in practice (Sect.7.2).

Lastly, CI has much to contribute as simply a pre-processing method,
rather than a complete solution per se to real-world problems, inasmuch as
system parameters/attributes can be learnt rather than formally modelled
(again, due to its inherent data-driven, bottom-up nature). Indeed, this is
often the approach taken with hybrid systems (see Sect. 12). The data-driven
nature of CI (in contrast to the symbolic-oriented nature of traditional, first-
generation AI) has the potential to deal with data transformation directly —
in fact this can be viewed as a corollary to the semantic gap issue discussed
earlier in this section.

A

Al/computation

performance

SR PR Computational
Intelligence

>
>

1
“ * 1/resources

Fig. 4. Performance vs. resources for CI systems

20 J. Fulcher

Table 1. Brains versus computers

Brains Computers

analog digital

(massively) parallel sequential

slow neurons fast switches

sub-symbolic processing symbolic processing
(bottom-up) data-driven (top-down) model-driven
trained programmed

fuzzy logic precise (crisp, brittle) logic
fault tolerant precise/exact (fault intolerant)
noise tolerant intolerant of errors (noise)

3.2 Brains versus Computers

Despite the relatively slow response times of individual neurons (typically
milliseconds), the brain as a whole is capable of outperforming even the fastest
supercomputer (which boasts picosecond clock cycle time), and by several
orders of magnitude on some tasks. It is also well known that the brain is
organized into local regions/neighbourhoods which perform specific functions
(such as sight, hearing, motor movement, and so forth), and that a substantial
amount of pre-processing takes place in the cerebral cortex, prior to electrical
signals reaching other parts of the brain. Indeed, this has served as inspiration
for work on Hierarchical Temporal Memory [123] (see Sect. 13).

Now brains are able to perform some tasks much better than digital com-
puters, and vice versa. One such task is pattern recognition, where the pattern
of interest could be visual, sound, or derived from some other source. For
example, if we encounter a person some distance away walking towards us
down a street, we reach a certain point where we instantly recognize our
friend; we do mot embark upon a process of elimination — searching the state
(solution) space, as it were — performing a depth search (with backtracking),
in order to reach a leaf node (pattern class) which best matches our friend!

By contrast, humans in the main fare poorly at highly mathematical
and/or logical tasks — ones which a digital computer can be programmed
to handle with ease. Table 1 compares and contrasts brains with computers.

4 CI Paradigms

In Sect.1 we stated that our use of the term ‘Computational Intelligence’
implied iterative, adaptive techniques inspired by Nature, and which possess
the ability to learn, to deal with new situations, and to ‘reason’. In Sect. 3 we
characterized this approach to Al as a right-brained, intuitive/creative, con-
nectionist one. Thus, CI is viewed as incorporating ANN, evolutionary, and /or

Computational Intelligence: An Introduction 21

Fuzzy techniques, and most especially hybrids of these. Moreover, as previ-
ously observed, some researchers cast their nets a little wider in defining CI,
and encompass learning theory, probabilistic reasoning, constrained reasoning,
case-based reasoning, Support Vector Machines, rough sets, learning/adaptive
classifiers, Bayesian networks, intelligent agents, and other techniques.

4.1 Pre-Processing

Irrespective of the specific CI technique used, data pre-processing is an
essential consideration (pre-condition); the adage ‘garbage in, garbage out’
certainly applies in this regard. As a first step, data visualization is strongly
recommended, as we can often gain insights by so doing (the iris example of
Fig. 1is a good example of this; another pertinent example is the use of scatter
plots to reveal data dependencies, since many techniques assume data indepen-
dence). Not only do we need to concern ourselves with error bounds checking,
noise filtering, dealing with missing data, normalizing, re-formatting, trans-
formation and so forth, but reduction of the available data to a ‘minimum yet
sufficient’ number is often vital. This is especially the case with ANN training
(or GA evolution), since computation times typically explode as a function
of data set size m, in other words O(e™). Hence data ‘cleaning’ is essential
prior to training (evolution). Chapter 2 of this Compendium discusses data
reduction in considerably more detail.

CI methods not only require a considerable amount of pre-processing, but
also oftentimes quite a deal of parameter tuning — this will be emphasized
in our separate discussions of Fuzzy Systems (Sect.6), ANNs (Sect.7), and
Evolutionary Computation (Sect. 8).

5 Expert Systems

Georgeff and Azarmi rightly observe that:

“Although we are very far from achieving the ultimate goal of Al,
which is the building of the intelligent machine, AI research and
development has so far led to a myriad of spinoff technologies and tech-
niques that are used in a large variety of applications. For example,
Expert Systems...” [107]

Expert (or Knowledge-based) Systems (ES/KBS) came to the fore dur-
ing the 1980s, initially in the context of interpreting molecular structure
from mass spectrograms (Dendral), medical diagnosis (Mycin), DEC mini-
computer configurations (XCON) — around 30 times faster than humans, with
no errors — assisting students to solve complex symbolic math (MACSYMA),
oil and gas exploration (Schlumberger’s Dipmeter Adviser), gold prospect-
ing (http://www.SPSS.com/clementine/hugin.htm), machine vibration data

22 J. Fulcher

query —— Query el reSpONSE

processing

Inference - T(iv Igfk(;;gy
engine memory
Knowledge
base

Fig. 5. Expert system

analysis (General Motors’ Charley), and bank loan approvals, to mention but
a few [79,139,142,194]. The Emycin shell in fact became the foundation for
many subsequent commercial Expert Systems.

An ES comprises an Input-Output module for handling both user queries
as well as responses to same (in a similar manner to that used in a DataBase
Management System), an inference engine (for the processing of user queries),
a knowledge base, and a working memory for the storage of temporary (inter-
mediate) results, as shown in Fig. 5. The same inference engine could in theory
be used with different knowledge bases in order to realize a range of Expert
Systems appropriate for different application domains (as with Emycin).

So how do we firstly encode and then store knowledge in the Knowledge
Base of an Expert System? Many alternatives exist, including;:

(typically hundreds or even thousands of) if...then production rules,
propositional /first-order predicate calculus (or other suitable formal logic),
(crisp/precise) Boolean logic,

(imprecise, inexact) Fuzzy Rules,

Association Rules,

frames/schema (which map naturally onto the Object-Oriented Program-
ming paradigm) (such as OWL, FRAIL, KODIAK),

e graphically, in the form of a Semantic Network (such as SNePS, NETL),

Computational Intelligence: An Introduction 23

Belief (Bayesian) Networks,

an Ontology,

Beliefs-Desires-Intentions (BDI) within a Multi-Agent System (MAS),
in the internal weights of a trained Artificial Neural Network,

in the fixed length strings of a Genetic/Evolutionary Algorithm,

or by some other means.

The inference engine uses the information stored in the Knowledge Base to
develop a line of reasoning to solve the problem at hand, as already noted in
Sect. 2.1. This process is referred to as ‘forward chaining’. It is also possible to
proceed from the goal back to the necessary set of initial conditions, as with
logic proofs, in which case it is referred to as ‘backward chaining’. In prac-
tice a mixture of both forward- and backward chaining proves more effective;
likewise methods are usually incorporated for expanding the line of reasoning.
Furthermore, if reasoning under uncertainty is appropriate (and more often
than not this will be the case), then fuzzy logic is probably more appropriate
than (crisp, exact) Boolean logic (Sect. 6).

Now both the inference engine and knowledge base could be implemented
either as rule-based or neural network sub-systems. For instance, in the former
knowledge is stored in the form of if..then production rules, whereas in the
latter it is stored within the network weights.

The most difficult part in developing an ES is often in quantifying not only
a domain expert’s knowledge, but also their reasoning processes and the logic
behind what they do (which is not always logicall). The adage ‘garbage in,
garbage out’ certainly applies in this context [73,312]. Experts are not always
able to explain/justify why they do certain things in the way they do — just
that they’ve always done it this way, and it works! A good illustration of this
is James Dyson, of vacuum cleaner fame:

“But a business philosophy is a difficult thing to distil out of the daily
workings of a company, because you never really know how you do it,
you just do it. It’s like asking a horse how it walks.”?

This is an even more daunting prospect when attempting to extract and
encode knowledge from several different domain experts, since there are bound
to be disagreements, inconsistencies and contradictions in what each individ-
ual expert relates to the KE (hence an opportunity here for Fuzzy Logic, Fuzzy
Cognitive Maps (FCM) [162] and the like, which are capable of handling such
conflicting and/or contradictory information).

Later developments in ES involved the incorporation of Belief (Bayesian)
Networks, which enable the generation of sound probabilistic inferences from
the available evidence.

9 Dyson J (1997) Against the Odds: An Autobiography. Orion Business Books,
London, UK: 256.

24 J. Fulcher

Several ES shells exist — both commercial and Open Source — to assist
with the development of application-specific ES. A couple of the more pop-
ular are the C/C++ based CLIPS (http://www.ghg.net/clips/CLIPS.html),
FuzzyCLIPS (http://www.iit.nrc.ca/IR public/fuzzy /fuzzyClips/fuzzy CLIPS/
index.html), and Jess (a Java version of CLIPS), as well as OpenExpert
(http://www.openexpert.org/).

6 Fuzzy Systems

Picture yourself in the early evening sitting in your favourite armchair watch-
ing television, prior to preparing the evening meal. The thought crosses your
mind that soon you will enter the kitchen and begin slicing and dicing vegeta-
bles ready for steaming. Before that however, since it has become somewhat
cooler since you sat down to watch television, you will need to turn on the
room heater. Notice that usage of linguistic terms such as ‘soon’, ‘steaming’
and ‘cooler’ come naturally to us as humans, but that the computers used to
control the TV (clock), hotplate and room heater are usually designed to han-
dle ezact (precise) terms like 1850 hours (10 minutes hence); 100°C, and 28°C,
respectively. Fuzzy Logic allows us to cater for such ‘fuzzy’ but more natural
terms (linguistic variables) in the development of computer (control) systems.
Fuzzy membership functions — i — relate linguistic variables to numeric values,
by way of simple graphical shapes (typically triangular or trapezoidal). Fig. 6
shows a simple example where the same input value exhibits 30% ‘member-
ship’ of fuzzy set-A, simultaneously with 90% membership of fuzzy set-B (in
other words, = ‘belongs’ not just to A or B, but to both).

A A
Fuzzyset |StA B~ C Separate .
Membership|<™~- fuzzy centroid
(03A+09B) |« outputs | 8

(single) input variable-x (single) output variable-y

Input Fuzzy rule ' Output De-
fuzzification ' evaluation fuzzification

input

‘firing’ of
rules 3,9,14

Fuzzy rule base

Fig. 6. Fuzzy inference system

Computational Intelligence: An Introduction 25

The roots of Fuzzy Logic can be traced back to the work of Lukasiewicz
on multi-valued logic (together with fuzzy set structure and the relationship
to conventional logic) [195], and to that of Black on ‘quasi-fuzzy’ sets [20].
However the ‘Father of Fuzzy Logic’ is undoubtedly Lofti Zadeh, who was
the first to introduce the idea of membership sets and fuzzy operators (MAX,
MIN) [323]. MAX and MIN are the fuzzy equivalents of the crisp (precise,
Boolean) operators logical-OR, and logical-AND, respectively. Again refer-
ring to Fig. 6, these fuzzy operators could be used to derive a fuzzy rule set
pertaining to this example, as follows:

tavp = max{ua, pp} = max{0.3;0.9} = 0.9 (3)
parp = min{pa, pp} = min{0.3;0.9} = 0.3 (4)
,uﬁAzl—,qul—O.?):Oﬁ (5)

Despite some early successes with the development of fuzzy controllers
during the late 1970s and early 1980s (for instance, [15] [77] [199] [287]),
research funding basically dried up during the ensuing decade [57] [205]. We
can attribute the resurgence of Fuzzy Logic as a popular control method to
the persistence of Japanese white goods manufacturers during the 1980s [133].

Fuzziness refers to the inexact or imprecise nature of common, everyday
terms [323]. Fuzzy set membership allows the description of such fuzzy terms,
by enabling them to belong to more than one set (30% of set-A, concur-
rent with 90% of set-B, say), in contrast to ‘crisp’ logic which only allows
membership (yes/no) of a single set [324]. Fuzzy logic is said to be a gen-
eralization of conventional (two-valued) logic which enables us to perform
operations on fuzzy sets —in other words, it constitutes a form of ‘approximate
reasoning’ [325].

Figure 6 shows the basic components of a Fuzzy Inference System (FIS),
these being Input Fuzzification, the Fuzzy Rule Base, Fuzzy Inference Engine
(rule evaluation), and Output De-Fuzzification. In the example of Fig. 6, the
preconditions (premises) of rules number 3, 9 and 14 have been satisfied, and
so these rules are ‘fired’ (the antecendents/consequents activated). Convert-
ing discrete (exact) inputs into their fuzzy equivalents is performed on the
basis of their membership of one or more fuzzy sets, as described earlier.
Conversion back from numerical values to linguistic terms (de-fuzzification)
is accomplished using geometrical constructs like ‘centroid’, as indicated.

As emphasized in Sect. 4.1, pre-processing is a critical consideration in
implementing a Fuzzy System (as it is with any CI technique) — more specif-
ically, the choice of linguistic variable terms, the number of fuzzy sets, and
the set membership functions/shapes (triangular, trapezoidal, and the like).
As is also the case with other CI methods, there is typically no proscriptive
formula for determining optimum operating parameters — this more comes as
a result of trial-and-error and/or experience.

26 J. Fulcher
7 Artificial Neural Networks

The origins of Artificial Neural Networks (ANNs) go back even further than
those of Artificial Intelligence (AI). The simplified individual neuron model
most favoured by researchers and users alike stems from the 1940s [204]
(Fig. 7). Theories of ANN learning [14,309] and indeed the prospect of building
‘brain-like’ computers [302] likewise stem from the mid 20th Century.

7.1 ANN Types

ANNSs can be classified along many dimensions, including supervised versus
unsupervised, feedforward versus feedback, and so forth. Supervised networks
require a ‘sufficient” number of labeled Input/Output data pairs (exemplars),
not only for training, but also for testing the network once it has converged.
Such data is not always available, hence the appeal of unsupervised networks,
which only require input data, and which form their own output classes (but
which may or may not be meaningful!) [40,160]. In practice, such unsuper-
vised networks are often used as a preprocessing stage prior to a supervised
network classifier proper. In feedforward networks, connections (weights) are
only present in the forward direction, from input layer to output layer; no
connections exist in the reverse direction. If such connections are present,
as with recurrent networks (such as Hopfield), then the network behavior is
considerably more complex, since we now have the possibility of resonance
occurring in the network.

Biological Plausibility

It is well known that the McCulloch & Pitts neuron model is quite a simplistic
one. By contrast, in biological neurons, outputs are produced in the form of

0 ; threshold
cell (neuron)
body

X1
X, f
) Yi
activation output =
) function weighted sum
) of inputs
X, P

dendrite (if > threshold)

Wn

Fig. 7. McCulloch & Pitts neuron model

Computational Intelligence: An Introduction 27

pulse trains as a result of electrochemical processes (reactions), rather than
simple (electrical) level shifts — indeed, this has prompted some researchers to
pursue the development of Pulsed ANNs [196]. Likewise, synapses are not usu-
ally restricted to forward connections in the brain, as is the case with MLPs, or
symmetrical weights, as assumed in the Hopfield model (a constraint employed
in order to simplify the mathematics) [137]. There is however some justifica-
tion for the localized (and topology preserving) organization and behavior of
SOMs [160]. The point here is that biological plausibility is not essential, pro-
vided the technique in question works (refer back to our earlier comments in
Sect. 3.1 regarding inspiration from Nature).

7.2 Multi-Layer Perceptron/BackPropagation

During the 1960s, networks were favored which were suited to linear systems —
typical of these being the ADALINE [308] and the (2-layer) Perceptron
[257,258]. From the former came the Least-Mean Square (LMS) or Delta
learning rule, which was later revamped into the Generalized Delta learning
rule (BackPropagation). Enthusiasm for Perceptrons began to wane when it
became apparent they could only be successfully applied to linearly separable
data; they could not be used on linearly inseparable data, such as eXclusive-
OR. Indeed, funding for ANN research underwent a so-called ‘neural winter’
as a result of the publication of [209].

Interest in the Perceptron — or more especially the Multi-Layer Per-
ceptron — was rekindled a decade or so later with the development of the
BackPropagation (BP) learning algorithm [37,235,260, 305, 306].

Figure 8 shows a 3-layer MLP. Presentation of input-output training pairs
(exemplars) will generate errors at the output layer between the actual and
desired output values. The difference between these two values is then used
to adjust the weights — firstly those connecting the hidden layer to the output
layer, followed by those connecting the input layer to the hidden layer — in
order to minimize this error or difference signal. In this manner, the error
propagates backwards from the output layer towards the input layer, adjust-
ing the network weights as it does so. The problem with this procedure is
that once we have presented all training exemplars (one epoch), the weight
values will have been changed in completely different directions from the first
weight changes. In practice, many passes through the training data (epochs)
are typically required in order to reduce the overall weight error value to a
minimum — at which point the network is said to have ‘converged’ to a solution
(in other words, it has been ‘trained’). This process can be likened to ‘gradient
descent in weight space’, which is an optimization technique known to suffer
from several limitations, namely (i) oscillation about a minimum (rather than
convergence perse), and/or (ii) convergence to a local, rather than a global
minimum (in the energy/error landscape or solution space).

28 J. Fulcher

1nput
laver output
) layer
input output
vector vector

\ AN
/ " variable
feedforward (adaptable)
connections weights

~ == errors (actual - desired)ol/p

Fig. 8. Multi-Layer Perceptron/BackPropagation

Now whereas previously Perceptrons proved to be of limited use, MLPs
have been shown to be suited to solving numerous pattern recognition and/or
classification problems, despite their being hampered by long training times
(although it has been proven that BP will eventually converge). They are
also particularly well suited to mathematical function approximation (curve
fitting), and by extension to time series modeling, simulation and/or forecast-
ing. We have to be careful here though not to over-fit the data though, as
previously mentioned (in other words, not to over-train the network).

Interest in ANNs in general was also fostered by the publication of
[5,131,137,160], to name but a few. Since that time, MLPs have been applied
to many different problem domains, sometimes indiscriminately so (in other
words, ‘throwing” an ANN at a problem when conventional techniques fail!).
Indeed, when the lay person refers to ‘neural networks’, this is usually syn-
onymous with MLP/BP. For instance, [314] reported that over 95% of ANN
business applications use MLP /BP. A typical pattern classification application
to which MLP/BP has been applied is the discrimination between cancerous
and benign breast tumours on mammograms [300].

It should be noted that often the most difficult part of applying ANNs in
practice is transforming the available training data into an appropriate format
prior to training, most especially by removing noise, reducing the dimension-
ality of the data (since training times increase exponentially as a function of
the number of network weights), feature extraction, and so on (see Sect. 4.1
on Pre-Processing).

Optimal network parameters (numbers of layers/nodes/weights) are typi-
cally determined in practice by a process of trial-and-error, complemented by

Computational Intelligence: An Introduction 29

experience. Alternatively, various researchers have devised heuristics like the
following [124]:

e number of hidden neurons H = geometric mean of I & O (number of
neurons in the input & output layers, respectively)

e 1o need for any more than 2 hidden layers (— arbitrary decision bound-
aries) — Kolmogorov Representation Theorem [59]

e good generalization ability if training set size N > W/e (where W = the
number of network weights + thresholds (biases); and € = the maximum
permissible classification error)

W <N < 10xW
1.5

1 ningeins,
exemplars in class-i)

(where 1 = the learning rate; n; = number of (training

Now MLP/BP training times are notoriously slow, indeed [150] has shown
that finding a set of ANN weights consistent with a set of examples is NP-
complete! Accordingly, numerous attempts have been made to improve the
convergence of BP — in other words, to speed up training times. These range
from simply adding a momentum term (a) to the weight update rule,' to
more sophisticated approaches, such as:

e making use not only of the first derivative of the weight, but also of the
second derivative (Conjugate Gradient;'! QuickProp [84])

e using the sign only of the weight derivative, not the magnitude (Resilient
Back Propagation — Rprop [255])

e making use of previous weight changes (Delta-Bar-Delta [143]; SuperSAB
[293])

e dynamically growing a network of ‘minimum yet sufficient’ size (Cascade
Correlation [84])

Often we find that some weights are quite small and moreover do not
contribute much to the network behavior. Accordingly, some researchers have
developed pruning techniques [121,178], akin to those used in Data Mining
(DM) [251,313].

7.3 Other ANN Models

Many other ANN models have been developed over the years apart from
MLP/BP, including learning vector quantization LVQ [159], radial basis

10w (t + 1) = wij(t) + ndl OF , where wi; is the weight connecting node-i in the
previous layer to node-j in the present layer; 7 is the learning rate (0--- 1); 5]1-3
is the delta (difference or error) between the actual and desired outputs, and Of
the output generated on node-j, following presentation of input pattern-P.

" http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient. pdf

30 J. Fulcher

optimal hyperplane

margin of separation

>
>

() X1

Fig. 9. Support vector machine (linear separator)

function RBF network [248], support vector machine SVM [1,270,297] (the
latter cannot strictly be regarded as an ANN technique, but rather a statisti-
cal one; nevertheless, it has sparked a lot of interest in the ANN community).
Now RBF and SVM, while utilizing the same general architecture as MLPs,
behave quite differently internally. RBF activation functions are usually more
complex than the simple sigmoid!? typically employed by MLP /BP — typically
Gaussian. Applying RBFs can be likened to fitting a mixture of Gaussians,
and hence are quite suited to mathematical function approximation. Their
training times are comparatively short, but they take a long time to fit test
data (which is the exact reverse of MLP/BP).

SVMs use a non-linear mapping to first transform the data set of interest
into a higher (feature) dimension, then to find an optimal linear separat-
ing hyperplane (decision boundary/discriminant) to separate one class from
another. They find this hyperplane using ‘support vectors’ (attractors) and
‘margins’, as indicated in Fig.9. These margins are defined as follows:

wlix4+b=0 (6)

where w is the (adjustable) weight vector, x is the input training vector, and b
is the bias (or threshold) term. The distance from x to the optimal hyperplane
g is
gx = Wi x + bo (7)
The optimum parameters wqy and by provide the maximum possible sepa-
ration between positive and negative training exemplars, and are obtained by
minimizing the Euclidian norm of w. As it happens, SVMs are quite capable
of classifying both linear and nonlinear data; indeed the latter can be extended
to so-called ‘kernel methods’.

Pyle)= ..

Computational Intelligence: An Introduction 31

Now several researchers have shown that MLPs behave as universal
approximators, namely:

“An MLP with an arbitrary bounded non-constant activation function
is capable of universal approximation. More specifically, any suitably
smooth function can be approximated arbitrarily closely by a single
hidden layer MLP/BP. Furthermore, this approximation improves as
the number of nodes in the hidden layer increases. In other words, a
suitable network can always be found.” [138]

and

“A standard multilayer feedforward network with a locally bounded
piecewise continuous activation function can approximate any contin-
uous function to any degree of accuracy if and only if the network’s
activation function is not a polynomial.” [182]

[329] subsequently proved a similar result for ANN groups:

“Consider a neural network piecewise function group, in which each
member is a standard MLP, and which has a locally bounded, piece-
wise continuous (rather than polynomial) activation function and
threshold. Each such group can approximate any kind of piecewise
continuous function, and to any degree of accuracy.”

8 Evolutionary Methods

Evolutionary computation (EC) is a rather broad term which encompasses
optimization techniques which employ evolutionary principles [65]. To the
lay person this approach is synonymous with Genetic Algorithms (GAs);
in reality, there are four distinct branches, albeit with GAs dominating in
practice. More specifically, evolutionary computation encompasses genetic
algorithms, evolutionary programming (EP), evolution strategies, and genetic
programming (GP).

Obviously the inspiration for evolutionary methods goes back to the 1850s
and the work of Charles Darwin with his theories of evolution, natural selec-
tion and ‘survival-of-the-fittest’. Some of the earliest work on the development
of GAs took place during the late 1950s. Fraser first encoded the epista-
sis function parameters!'? of certain biological systems as 15-bit strings, then
chose as suitable parents those strings that produce function values within
the prescribed range [96,97].

Around the same time — the early 1960s — [135] developed the now familiar
reproduction-crossover-mutation cycle within the context of adaptive (artifi-
cial) systems; accordingly, John Holland is nowadays regarded as the ‘Father

'3 Epistasis measures the degree to which a particular gene is suppressed.

32 J. Fulcher

of GAs’. The term ‘genetic algorithm’ was coined during the late 1960s [8].
Interest in GAs took off during the 1970s and continued unabated into the
1980s and beyond [62,114,116,136]. During this period DeJong devised a set
of five GA test functions together with two performance metrics [64]. A decade
or so later, [264] introduced the idea of using a multi- (rather than single-) GA
objective function [54,148,289] (likewise in Fuzzy Systems). Allied to this are
the relatively new fields of parallel EC [217] and memetic algorithms [119,158].

Evolutionary programming (EP) emerged during the 1990s [94], after first
appearing in the 1960s [92]. In a similar manner that Minsky and Papert
received the blame for instigating the so-called ‘neural winter’ [209] (mean-
ing the drying up of research funding during the ensuing decade), [92] has
sometimes been blamed for the ‘evolutionary computation winter’.

Evolutionary strategies can be traced back to the work of [253,254] in the
1960s, in the context of engineering optimization. Genetic programming (GP)
stems from around the same time [100,101], but really came to the fore during
the 1980s due to work of Koza [163-165].

8.1 Genetic Algorithms

In Sect.3.1 we saw how Nature has been the source of inspiration for sev-
eral CI techniques. In the case of Genetic Algorithms (GAs), it is evolution
itself [114]. Darwinism or natural selection involves sexual attraction between
male and female, mating, birth, and child rearing (the extent of which can
vary from non-existent in the case of catfish, to many years in the case of
elephants and humans), hopefully to maturity — in other words to ensure sur-
vival of the species (in the face of numerous obstacles, such as danger from
various predators, variations in the weather, disease and the availability of a
steady food source). Figure 10 summarizes these evolutionary processes, with
crossover of genetic information being illustrated in Fig. 11.

GAs work on populations of (potential) solutions to problems of interest.
These solutions need to be first encoded in the form of (fixed width) ‘genetic
strings’. Obviously this initial encoding process is critical. As discussed earlier
(Sects. 4.1, 6 and 7.2), pre-processing is a vital consideration, as with any CI
technique. For instance, how many bits should be used to adequately represent
chromosomes (problem solutions) in the GA?

As in Nature, the aim with GAs is to evolve ‘stronger’ population members
in successive generations, while at the same time retaining diversity within
the population as a whole (in other words, to avoid inbreeding). This can be
likened to Nature in which strong genes are passed from parents to offspring,
while weak ones tend to die off over successive generations. We start the
evolutionary process with random strings, then proceed to select potential
mates from the current generation based on some fitness (objective) function;
GAs have no knowledge of the solution (search) space.

Computational Intelligence: An Introduction 33

New
population
population
itness
eval];ation (small, random)
mutation
parental
selection
genetic

I . crossover

Fig. 10. The steps in evolution

genetic information
(encoded as fixed-length strings)

Parent(s)
(current generation)

Child (offspring)

(next generation)

(small, random) mutations

Fig. 11. Crossover of genetic information

We have just seen that a major difficulty with applying GAs in prac-
tice is the encoding of potential solutions to a problem into an appropriate
form (namely, ‘genetic string’ or ‘bit chromosome’ representation). This is
entirely in keeping with the general preprocessing principles outlined earlier
in Sect.4.1. Assuming this can in fact be done, then evolving an acceptable
solution to a problem is a straightforward process, albeit a lengthy one (much
longer than the time needed to train an ANN, typically) [62,114].

34 J. Fulcher

Beale and Pryke coupled GAs with interactive 3D dynamic visualization in
their Haiku system in preference to conventional rule-generation approaches
(in other words, knowledge discovery becomes an interactive process, with
what constitutes ‘interesting’ being established by the system user gradually
over time) [12].

Evolvable Hardware

Rather than using fized connections between logic gates in an integrated cir-
cuit (IC), Programmable Logic Devices (PLDs) allow such connections to
be altered, either once only (as with Programmable Read-Only Memory) or
repeatedly (as with EPROM or EEPROM). One such small-scale PLD is the
Programmable Logic Array (PLA) shown in Fig. 12.

Since a PLA essentially comprises just one large AND-gate array fol-
lowed by a similarly large OR~gate array, then potentially any logic function
can be realized (in so-called ‘sum-of-products’ form). Addition of latches/
flip flops — as in Programmable or Gate Array Logic (PAL/GAL) — fur-
ther enables the fabrication of Finite State Machines (in other words, by
incorporating time delay/memory elements in order to track internal state
transitions). The capacities of small-scale devices like PLAs and PALs/
GALs limits their usefulness however. By contrast, a Field Programmable
Gate Array (FPGA) [68,113,241] boasts much higher chip (gate) counts —
comparable with commodity off-the-shelf (COTS) general-purpose and/or
Digital Signal Processors — and at a fraction of the cost of custom VLSI
chip fabrication [206] (http://www.altera.com; http://www.latticesemi.com;
http://www.xilinx.com).

v|v

~
~ fusible link

(>
AND (. intersection) Lﬁ Lﬁ smmmmmEs Lﬁ

p
. " ‘sum-of-products’
n

T

p)

. canonical form

3

OR (+ union)

Fig. 12. Programmable logic array (PLA)

Computational Intelligence: An Introduction 35

IOB|. .
N2
x
-~ | PIB
’ . N ’
N2
N ’ x
N2 2N
10B | - “~[cLe
2N N ’
. N N
N ’ x
N2
x . .
[} ’
. .
[PIB
| N ’
N2
x
! 2N
1 . .
} N .
N2
| x
2N
| PIB |-~ ™
'
N ’
N2
x
2N
10B]

Fig. 13. Generic FPGA layout

FPGASs incorporate programmable I/O blocks (IOB), programmable inter-
connect blocks PIB (also known as programmable switch matrices PSM), and
configurable logic blocks (CLB), with connections between these being created
in situ by the user, appropriate for the application at hand (Fig. 13). The lat-
ter contain lookup tables (LUT), multiplexers/switches, latches, memory, and
various low-level combinatorial logic ‘glue’ (recent offerings even boast entire
CPUs and/or DSPs). Note that LUTs find extensive use in FPGAs since they
provide much faster computation than algorithmic (software) solutions.

Designs can be developed using either hardware (building block schemat-
ics) or software (hardware description languages) form. Vendor-specific devel-
opment platforms support both alternatives, together with timing simulation,
testing and de-bugging facilities. Once a designer is satisfied, a bit stream
is generated for downloading into the FPGA device proper. The beauty of
FPGAs is that they can be re-programmed should the system performance
not meet expectations. Some key aspects which appeal generally about FPGA
designs are their (i) inherent parallelism and (ii) fast speed (both being
typically much higher than COTS processors).

Such dynamic, re-programmable logic devices open up the possibility of
realizing adaptive hardware — in other words the development of ANNs and
Evolutionary Algorithms in hardware form as opposed to software simulations
(currently the dominant approach). More specifically, FPGA inputs can be
altered during successive training iterations according to some learning rule
(ANNS) or evolutionary strategy (EAs). In the case of ANNs, the inherent
parallelism of FPGAs can be exploited at the iteration, layer, neuron or weight
level (the first two correspond to coarse-grain parallelism, while the last two
correspond to fine-grain parallelism). Moreover, while earlier FPGAs were

36 J. Fulcher

limited to fixed-point arithmetic, in recent times we have seen the emergence
of floating-point devices. Omondi and Rajapakse describe FPGA fabrication
of ANNs — not only MLP/BP, but also Associative Memory, SOM and the
Neocognitron [226]. Earlier hardware ANN implementations (not necessarily
FPGA) include [109], [133] and [286].

Evolvable hardware [193,263,278,332], or ‘the combination of soft com-
puting and reconfigurable hardware’, is seen by [266] as leading to the
development of ‘computational machines’. [322] define evolvable hardware
(EHW) as ‘one particular type of hardware whose architecture, structure,
and function change dynamically and autonomously in order to improve its
performance in performing certain tasks’. Such adaptable hardware — usu-
ally realized by way of FPGAs — then has the potential to better match
real world dynamic problems [320]. Typical of such efforts in EHW are
[22,105,110,129,132,259]. Chapters 18 and 19 of this Compendium provide
more extensive, in-depth coverage of EHW.

8.2 Evolutionary Programming

Unlike with GAs, in evolutionary programming (EP), the only evolutionary
principle used is mutation — crossover is not employed. Fogel contrasts evolu-
tionary programming as being a ‘top-down process of adaptive behavior’, in
contrast to GAs, which he likens to a ‘bottom-up process of adaptive genet-
ics’ [94]. In this sense, it can be thought of as ‘survival-of-the-most skillful’,
rather than ‘survival-of-the-fittest’.

8.3 Genetic Programming

Genetic Programming differs from Genetic/Evolutionary Algorithms in that
the population of solutions comprise entire programs — in other words, auto-
matic program generation/evolution [10,163-165,175]. A comprehensive cov-
erage of GP is provided in Chap. 18 of this Compendium.

8.4 Swarms

Collective (Swarm) Intelligence (SI) [21,83,154] takes its inspiration from
social insects (such as ants, termites, bees, wasps), as well as the swarm-
ing, flocking, herding and/or shoaling behavior common in some vertebrates.
The ‘collective intelligence’ of such swarms is reflected in the ability of
large groups of relatively unintelligent individuals to achieve feats far beyond
any single individual, as a direct result of their interactions. Observation of
social insects (ants, bees, and the like) suggests that intelligent group behav-
ior emerges out of simple interactions between individuals, which otherwise

Computational Intelligence: An Introduction 37

exhibit limited capabilities. Swarm Intelligence focuses on local, rather than
global interactions.

Swarms differ from GAs/EAs inasmuch as in the latter individual behavior
directly influences the behavior of future generations; in swarms, this influence
is indirect, since individuals transmit general messages, rather than ‘peer-to-
peer’ messages intended for specific individuals in the community, and which
only relate to the present generation. These messages can be in the form of:

chemicals (namely, pheromones),

audio (sounds),

dance/stylised movements,

altering the surrounding environment (such as by removing all available
food sources).

N

‘Stigmergy’ is defined as any indirect communication that allows the activ-
ities of social insects to be directed towards a common goal — for instance,
ants leaving a (volatile) pheromone trail — which reinforces one particular (pre-
ferred) path over time. Collective Intelligence constraints can be summarized
as follows:

e intra-generation learning only (in contrast to GAs/EAs, which foster inter-
generational learning),

e inter-changeability and simplicity of individual population members (that
is, identical form, function, and status) — although heterogeneous swarms
also exist,

e reliance on indirect communication only.

Apart from intelligent swarms (as above), other variants include Swarm
Intelligence (SI), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO) [71]. Generally speaking, SI can be thought of as a
population-based stochastic method or ‘meta-heuristic’ approach well suited
to optimization problems. PSO is a global optimization method in which solu-
tions to problems of interest are represented as points in n-D space. Particles
are assigned initial velocities, then move towards points (solutions/attractors)
over time, according to some fitness evaluation criterion. ANTS — Autonomous
NanoTechnology Swarm — is a more recent development by NASA in which
100s (1000s) of small, lightweight ‘pico class’ spacecraft are able to be deployed
in order to undertake exploration, provide backup, and ensure survival in
space [130].

ST algorithms have been applied to both static (for example, the Travel-
ling Salesman Problem — TSP), as well as dynamic problems (such as load
balancing in telecommunications networks). In TSP, the salesman needs to
travel through each city once only, in the shortest possible overall tour dis-
tance. Figure 14 shows both a sub-optimal tour of 14 cities in Burma (top),
together with the optimal 14-city tour (bottom). The starting point in both

38 J. Fulcher

Burma1i4 (initial)

99
98 +

97 \ .o _»
A
N/

longitude

N
92 T T T
10 15 20 25 30
latitude
Burma14 (final)
99
98 4 \
97
Q
5 T
2 95
)
94
93
0/
92 T T T
10 15 20 25 30
latitude

Fig. 14. Travelling Salesman Problem: (top) sub-optimum Burmal4 tour; (bottom)
optimum Burmal4 tour

cases is [16.47,96.10], but the initial (non-optimal) tour finishes at city#14
[20.09,94.55], whereas the optimal tour finishes at city#10 [14.05,98.12].
Likewise, Fig. 15 shows two tours of the larger Berlin52 city data set, both
sub-optimal (left) and optimal (right).

Dedicated websites exist which compare various optimization algorithms
and also serve as a TSP data repository.!

14 See for example, http://www.research.att.com/~dsj/chtsp/

Computational Intelligence: An Introduction 39

Fig. 15. Travelling Salesman Problem: (left) sub-optimum tour; (right) optimum
Berlin52 tour

Hendtlass describes the use of both Particle Swarm Optimization (PSO)
and Ant Colony Optimization to solve TSP, by way of the following algorithm
(ACO) [127]:

Algorithm 1 Ant Colony Optimization TSP Algorithm (after [127])

1. initialize pheromone on each path segment, and randomly distribute N ants
among C' cities.
repeat
2. each ant decides which city to move to next (provided they have not
previously visited it)
until they return to their original city
3. each ant calculates the length of its tour, then updates its information about
the shortest tour found to date.
4. the pheromone levels on each path segment are refreshed.
5. all ants that have completed their assigned maximum number of tours (typically
one) die and are replaced by new ants at randomly chosen cities.
6. return to 2. and continue until some termination criterion is met (for example,
best path length < threshold, or maximum number of tours reached — similar to
BP training).

Sharkey and Sharkey show how swarms are well suited to the study of
collective robotic behavior — via so-called ‘swarm robotics’ [269].

9 Immunity-Based and Membrane-Based Computing

9.1 Immunity-Based Computing

Artificial Life (Alife) was a term first coined by Langton [176]. It has sub-
sequently served as the inspiration not only for a lot of research effort in
evolutionary computing (EC), and most especially swarms, but also more

40 J. Fulcher

recently with Immunity-based and Membrane-based Computing. Moreover,
‘Nature-Inspired Computing’ (NIC) emphasizes self-organization and com-
plex systems principles [191]. What all these computing paradigms share in
common is an approach to computing inspired by (based upon) processes
observed in Nature. Immunity-Based Computing (IBC) Systems take as their
inspiration the memory, learning and self-organization ability of biological
immune systems (more specifically, those of invertebrates) [87,141]. The abil-
ity of ‘antibodies’ to discriminate between self and non-self, and to self-repair
in the face of bodily infections are implemented in Artificial Immune Systems
(AIS) by way of computer simulations (in which the attributes of ‘antigens’
and ‘antibodies’ are encoded as strings within an appropriate data structure).

[23] pointed out the similarity between immune systems and intrusion
detection systems, inasmuch as they both need to first identify then respond
to malicious ‘agents’. An immunological selection mechanism was employed
by [38] in their agent-based optimization of neural network architectures.

9.2 Membrane-Based Computing

The inspiration for membrane-based computing paradigm is, as its name
suggests, biological membranes, which house multiple sets of objects within
various compartments, and which evolve over time according to certain (non-
deterministic) ‘reaction rules’ acting in parallel [27]. These objects are able to
pass through membranes, and the membranes themselves are able to change
shape, divide, dissolve, and/or change their permeability. Such characteristics
(attributes) can be used in turn to define not only system state transitions,
but also of state transition sequences, which together can serve as the basis
for (stochastic) computations, optimizations and the like.

10 DNA Computing

Biologically-inspired CI methods — most especially ANNs and GAs — are
usually realized in practice by way of software simulations on digital (silicon-
based) computers, although we saw in Sect.8.1 how success has also been
achieved by way of hardware implementations (most commonly, via Field
Programmable Gate Arrays). In other words, carbon-based techniques are
simulated in silicon. The basic idea behind DNA computing is to do the exact
reverse — namely to realize in ‘wetware’ algorithms derived from the world of
‘software’ (or ‘firmware’), although some researchers do in fact focus on imple-
mentation of DNA computing algorithms in silicon [2,4]. Such an approach
conjures up science fiction visions of the future, more specifically, rather than
build computers, why not grow them (that is, in a test tube)?

DeoxyriboNucleic Acid (DNA) consists of four bases: A(denine),
G(uanine), C(ytosine), T(hymine) — in addition, some constraints apply as to

Computational Intelligence: An Introduction 41

which bases are allowed to connect to which others. In a DNA computer, data
are represented using strands of DNA, next chemicals mixed in a test tube,
then reactions allowed to take place (in parallel), and finally the results of
these reactions extracted and interpreted. Such carbon-based or ‘wet’ com-
putation (as opposed to conventional, silicon-based computing) has more in
common with Quantum Computing (QC) [256,311], in that computations are
inherently massively parallel, but where the encoding (input) and decoding
(output) — in other words, system I/O — is far from straightforward. More
specifically, how do we first encode problems of interest into DNA strand
representation, and once the reactions (computations) have completed, how
do we efficiently extract the results of these calculations into an intelligible
form? Another problem that both DNA- and Quantum Computing share is
the (lack of) repeatability of experiments, inasmuch as errors, being inher-
ently non-deterministic, can have the cumulative effect of producing different
outcomes on different experimental runs!

So what then is the basic appeal of DNA computing? In short it is the
inherently (massive) parallel nature of the simultaneous chemical reactions
taking place within the test tube, despite the reaction times of each being
relatively slow (a situation akin to that of slow neurons within an artificial
neural network nevertheless leading to fast overall network performance —
Sect. 7).

11 Intelligent Agents

During the 1970s and 80s, procedural programming was the norm. This
was largely superseded by Object-based and Object-Oriented Programming
(OOP) during the 1980s and 90s. An alternative approach — agent-oriented
programming [14,53,146] — began to emerge during the 1990s. This paradigm
is founded on the concept of software ‘agents’, as opposed to software ‘objects’
(methods + data). Agents are touted as being better able to interact with
complex, real-world situations than objects, since they are network-centric,
adaptive and self-modifying (indeed, self-repairing) — unlike objects, which
are fixed and unable to modify their behavior over time, being constrained to
obey the Boolean logic rules which underpin them [19,183,197,210,317]. Now
unlike Java applets say, which require a Java Virtual Machine to be executing
on all hosts, mobile agents are free to move at will between the nodes (hosts)
within a heterogeneous network. They only consume network bandwidth when
moving between hosts, and they continue to execute once relocated on to the
new host. This necessarily raises the issue of security and access permissions,
lest a host regards the incoming agent as a virus, worm, or other malicious
form of software, rather than a bona fide application [72]. In fact, some go so
far as to regard intelligent agents as ‘both wrong and evil’ [177].

The autonomous software agent concept came out of work in distributed
AT during the 1980s [89,315-317]. Fundamentally, an agent is an entity that

42 J. Fulcher

perceives its environment through sensors, then takes ‘appropriate’ actions
through ‘effectors’ (actuators). Moreover, an agent is able to automate this
mapping between perception and action(s) [261]. An ‘intelligent’ agent is one
that takes the ‘best’ possible action in any given situation. Ideally, such actions
should be ‘rational’ (although humans are often notoriously irrationall); ‘ratio-
nality’ in this context is taken to mean that an agent’s behavior at any point
in time is a function of:

1. knowledge about its environment,

2. its repertoire of possible actions,

3. its ‘perceptual history’ (in other words, everything it has perceived through
its senses to this point in time — which in turn could be used to modify/
update/adapt its Knowledge Base), and

4. some performance measure (feedback) of the success or otherwise of its
actions.

In the BDI model, intelligent agents are said to possess beliefs, desires and
intentions [106]. In [275], BDI agents are developed to interact with humans
in a multi-player game environment, using the JACK [6] toolkit.

From a CI perspective, intelligent agents are viewed as reactive, proac-
tive, autonomous, social entities (the latter leading naturally to the concept of
Multi-Agent Systems — MAS). In practice, they are software architectures and
programs (methods) which perform the aforementioned ‘rational’ functions.
Many different types of agents have been developed over the years, tailored to
specific applications (such as ‘selfish’ versus ‘cooperative’). In order for intel-
ligent agents to communicate their knowledge and conceptualizations with
their fellow agents, they need to ‘speak a common language’, as it were. To
this end, agent communication languages have been developed (for example,
KQML [90]). In [9], coloured Petri Nets are used to coordinate agent interactions
in open environments.

We also need to define an MAS ontology, by which we mean the formal rep-
resentation of the knowledge pertaining to a particular domain, typically by
specifying commonly used terms, together with explanations of how they inter-
act with each other, in a computer-readable form (Sect.2.1). Such ontologies
can be either general or specific to a particular application domain. Accord-
ingly, ontology generation is facilitated by formal languages such as 0IL [88].

12 Hybrid Methods

Back in Sect. 1 we formulated a working definition of Computational Intelli-
gence as ‘neural network, evolutionary and/or fuzzy techniques, and
more especially hybrids or synergistic combinations/ensembles of these
complementary approaches.” It is the latter aspect which is the focus of the

Computational Intelligence: An Introduction 43

present Section. The basic premise is that should a single CI method fail to
deliver the desired performance, the perhaps a mizture may be able to.

In this regard, we must necessarily examine issues previously consid-
ered by researchers in data/sensor fusion [35, 60,91, 117,157], multi-modal
user interfaces [102,285] [as well as http://research.microsoft.com/mmui and
http://almaden.ibm. com/u/turaman,/chi-2003/mmi-position.html],*> biomet-
ric identification systems [170], and on a more pragmatic level, classifier com-
binations [111,156,169], neural network ensembles [118,120,243,268,298,331],
and indeed parallel processing in the most general sense [70,115]. For instance,
some practitioners have been guilty in the past of inappropriately ‘throwing’
a parallel computer at problems of interest, in the vain hope of rendering
a solution more tractable and/or improving performance. In doing so, they
often lose sight of Amdahl’s Law:

Speedup = S + P/n (8)

where S is that part of the problem of interest that must be executed sequen-
tially, P is that (often small) part which can be solved concurrently, and n is
the number of computers (processors) available in the parallel system.

To take a roadwork analogy, there is no point in having 10 workmen armed
with shovels (‘processors’) if only one shovel can fit in a hole in the ground
at any one time, with the other 9 workmen standing by idle. In other words,
this is an inherently sequential task.

Nevertheless, much effort has been placed in recent times into the devel-
opment of hybrid CI systems [307]. The naive hope is that by incorporating
several CI techniques into a hybrid solution, we will improve system perfor-
mance. Obviously this is not necessarily the case — it really depends on whether
the respective techniques are complementary and/or enhance the performance
of each in isolation.

There are several challenges in developing hybrid systems, in particular
(i) selecting the most appropriate technique(s), depending on the attributes
pertaining to (characteristics exhibited by) the problem under study, and (ii)
how best to combine these techniques [26,219,227]. Ho characterizes the latter
thus: “Instead of looking for the best set of features and the best classifier,
now we look for the best set of classifiers and then the best combination
method.” [134]. Before we rush off to develop new methods though, Kuncheva
counsels us “to make the best use of the tools and methodologies that we have
at present, before setting off for new complicated designs.” [169].

[318] combined multiple classifiers for handwriting recognition, while
Miller and Yan did so in the context of signal processing [208], [46] for speaker
identification, and [108] for intruder detection in computer networks.

15 See also J. Multimodal Interfaces (Springer).

44 J. Fulcher

Table 2. CI technique comparison (after [219])

CI technique Learning Explanation Adaptation Discovery Flexibility

ANN excellent poor excellent fair excellent
EC excellent fair good excellent good
Fuzzy poor fair poor poor excellent

Kuncheva identifies the following four approaches to building classifier
ensembles: (a) at the data level, (b) at the feature level, (¢) at the classifier
level, and (d) at the combination level.!® Furthermore, there are two main
strategies that can be employed for combining classifiers, these being fusion
and selection [169]. With the former approach, each classifier has knowledge
about the entire feature space, whereas with the latter each classifier has
knowledge about (and responsibility for) part of the feature space only.

There are also approaches which fall part way between these two, namely
‘fusion-selection’, also known as the ‘ensemble-modular’ approach [268], or
‘multiple-hybrid’ topology [172] — a typical example is the so-called ‘Mixture-
of-Experts’ [144,149,224].

Example fusion techniques include majority voting [11,168,174], plurality
voting [66,189], naive Bayesian [284], bagging (or ‘bootstrap sampling’) [25,
28,69, 252], boosting — the combination of rough, inaccurate ‘rules-of-thumb’
to produce accurate predictors — [74-76,99], and fuzzy integral [50,166,299].
In [49] fuzzy logic provided the fusion; in [167], it was Genetic Algorithms.

In the context of hybrid CI systems, [219] attempt to characterize neural,
evolutionary and fuzzy (‘intelligent system’) techniques, as well as Knowledge-
based Expert Systems, along dimensions of learning, explanation capability,
adaptation (in response to changes in the environment), knowledge discov-
ery, and flexibility (that is, decision making ability in the face of imprecise,
incomplete and/or new input data) — Table 2.

We leave it as an exercise for the interested reader to expand Table 2
to characterize intelligent agents, swarms, immunity-based systems, and the
many other ancillary CI methods mentioned earlier in this Chapter (refer to
Sect. 1 in particular).

Michalewicz and Fogel caution against attempting to add too many com-
ponents (elements, ‘ingredients’) into the mix (‘stew’), lest we overload the
hybrid system and the techniques begin interfering with each other, leading to
degraded overall system performance [207]. Nevertheless, it is behoven upon
us to cite here some studies which have managed to produce hybrid systems
which exhibit superior performance over that of stand-alone CI methods. One

6 See also the Annual Intl. Workshops on Multiple Classifier Systems (MCS),
sponsored by the International Association for Pattern Recognition.

Computational Intelligence: An Introduction 45

such hybrid approach involves the combination of ANNs and Fuzzy Logic,
another the combination of ANNs and GAs. We briefly describe a couple of
representative examples below.

Fuzzy Expert Systems

[294] observed that if the knowledge at our disposal can be expressed in the
form of linguistic rules, then we can readily construct a Fuzzy Inference System
(FIS). More specifically, we need to specify fuzzy set membership, the fuzzy
operators and the Knowledge Base.

The Fuzzy ES of [80] utilizes user-defined triangular and/or non-linear
membership functions. The three input parameters to the system are: (a) how
the antecedents are handled, (b) how output membership values are formed,
and (¢) how defuzzification is performed.

Now rather than fine tune the fuzzy membership functions manually, we
could alternatively learn these using an ANN.

NeuroFuzzy

Ordinarily, the standard MAX and MIN operators used in Fuzzy Systems are
unable to be differentiated, as in the BP algorithm. In order to link the nodes
in an MLP with Fuzzy Logic rules, one approach is to use a Fuzzy Associative
Memory (FAM) [319]. More specifically, a Fuzzy Associative Memory (FAM)
incorporates both a fuzzy logic rule and an associated (adaptable) weight.
Von Altrock shows how a Fuzzy Inference System (FIS) can be mapped to an
MLP, and where it is possible to use a modified form of BP — more specifically,
with input fuzzification mapped to the input layer, the Inference Engine to
the hidden layer(s), and the output de-fuzzification to the output layer [301].

In NeuroFuzzy systems, the Knowledge Base (Fuzzy Inference System —
FIS) at the bottom of Fig. 5 is replaced by a neural network in which the rules
are encoded within the network weights. Fuzzy rule evaluation then amounts
to determining the output pattern (response) which most closely matches the
input pattern (query). To put it another way, the ANN learning algorithm is
used to determine the parameters [294].

The Adaptive-Network Fuzzy Inference System (ANFIS) of Fig. 16 [145]
implements a 2-input Sugeno model with 9 inputs. There are three fuzzy sets
to which the input linguistic variables (x, y) can belong. Input fuzzification
forms the if (premise) parameters, which in turn fire certain fuzzy rules, which
drive one or more of the then (consequent) variables, which are then finally
converted back to linguistic form during output de-fuzzification.

There have been numerous Neuro-Fuzzy hybrid systems cited in the liter-
ature, including those of [13,36,42,48,103,153,184,187,212-215,230,233,267,
288,295].

46 J. Fulcher

consequent
parameters
'

premise
parameters

Fig. 16. ANFIS (after [145]: 339) — (©1997, reprinted by permission of Pearson
Educational Inc., Upper Saddle River, NJ

Fuzzy Neuro

The basic approach here is to incorporate Fuzzy techniques in the adap-
tation of network weights, in order to improve the performance of ANNs.
Alternatively, Enbutsu has applied fuzzy rule extraction to a trained MLP [81].

In Fuzzy BackPropagation, heuristics based on first- (Change-of-Error)
and second- (change of CE) derivative weight changes can be used to develop a
Fuzzy Rule Base for both learning rate (1) and momentum («). Using such an
approach, some researchers have found both a speedup of network convergence
and smaller resulting mean square error (MSE) [124].

In FuzzyART, stable recognition categories self-organize in response to
arbitrary sequences of either binary (ART1 [40]) or analog (ART2 [41]) input

Computational Intelligence: An Introduction 47

patterns. The Boolean AND (intersection) operator is replaced with the Fuzzy
MIN operator inside a ‘fuzzy cube’ [162]. FuzzyARTMAP is a supervised
extension comprising two Fuzzy ART networks, in which a MIN-MAX learning
rule controls category structure.

Fuzzy min-max NNs [80, 273, 274] use unsupervised pattern clustering,
realized by way of hypercube fuzzy sets. The hypercube contains all patterns,
and moreover defines a membership region in n-dimensional pattern space.
The MIN-MAX points, together with the hyperplane membership functions
define a fuzzy set (cluster). Learning in a Fuzzy Min-Max (Cluster) neural
network corresponds to the creation and adaptation of hypercubes in pattern
space — in other words, a form of un-supervised clustering [80].

Other Fuzzy-Neuro systems are described in [39, 238, 327].

Evolution of Neurons/ANNs

Now rather than train ANNs, we could alternately evolve them. While this is
possible, it is often computationally prohibitive. What is more feasible how-
ever is to evolve the network architecture, rather than the weights, which was
the approach taken by [265] with his use of ‘blueprints’ (which describe the
number of nodes, starting with the input layer, together with their fan-in);
crossover occurs at common points in such blueprint representations. Other
researchers investigating the evolution of ANNs include [203,232]. Cho com-
bined ANNs using GAs [52]. Chapter 20 of this Compendium examines this
topic in considerably more detail.

GAs and Fuzzy

We saw earlier that rather than fine tune fuzzy membership functions manu-
ally, we could alternatively learn these using an ANN; we could just as readily
evolve them using a GA/EA [152]. [80] describes just such a Fuzzy ES in
which the rule set is evolved using a GA. Conversely, the basic GA crossover
and mutation operations can be determined by reference to a fuzzy rule base
(lookup table). [179] take this approach a step further in their development
of an ontology-based genetic fuzzy agent.

There has been considerable activity in GA-Fuzzy hybrid systems, includ-
ing [18,56,86,104, 128,180, 181,220, 221, 249, 272, 303].

Swarms and Fuzzy

[155] combined Particle Swarm Optimization and the Taguchi method for
identifying optimum fuzzy models in the control of a rapid Ni-Cd battery
charger. By contrast, [43] combined swarms and k-nearest neighbours.

48 J. Fulcher
Other Hybrid Approaches

In [280], fuzzy multivariate auto-regression is used to model multivariate time
series data, in particular interest rates and gas furnace measurements. [225]
combined three CI methods in their immunity-based, multi-agent ANNs.

13 Conclusion

We made the observation in the Introductory Section that CI encompasses
more than just intelligent agents — indeed, most researchers nowadays agree
on the core technologies of neural network, evolutionary and fuzzy logic. Duch
characterizes CI as incorporating “all non-algorithmic processes that humans
(and sometimes animals) can solve with various degrees of competence.” [78].
Will we see CI deliver where Al has failed during the past five decades?
Some researchers, including Duch, hold the view that the early activities of
AT were somewhat misguided — indeed, that the problems themselves were
ill-formed. For instance, Ford and Hayes argue that “the traditional view
of the goal of Al — create a machine that can successfully imitate human
behavior — is wrong.” [95]. Moreover, the claim that ‘all intelligence comes
from symbol manipulation’ [222,223] has been largely misinterpreted. Despite
this, McCarthy argues that one way out of this (self-inflicted?) mire could be
more formalism [202].

Brooks postulates the following as being possible explanations to the
rhetorical question "What is going wrong?’ (namely with AT):

1. wrong parameter models,

2. working below some complexity threshold,

3. lack of computing power, and/or

4. we're missing something fundamental and unimagined.

We had much to say earlier in this Chapter regarding model-driven versus
data-driven approaches (with CI belonging to the latter camp). Postulates 2
and 4 above would therefore appear to be most plausible.

According to Pollack, AT has stalled because of its preoccupation with sim-
ulating the human mind and/or mimicking human intelligence [246], coupled
with a fixation on symbolic [202,222,223], rather than sub-symbolic process-
ing. Indeed, he makes the pertinent observation that Moore’s Law of itself (in
other words, raw computational power) should have been able to deliver us
with ‘real AT’ by now; likewise [29-32] pointed out that ‘massive parallelism
adds absolutely zero in terms of expressivity’, and by the way, casts doubt on
Brooks’ third postulate above. Instead, Al applications suffer from the pre-
vailing curse afflicting software generally nowadays, namely that of ‘software
bloat’ — by which we mean an increase in software quantity (size of programs)
quite unmatched by software quality! Pollack further observes that:

Computational Intelligence: An Introduction 49

“...many intelligent processes in Nature perform more powerfully than
human symbolic reasoning, even though they lack any of the mind-like
mechanisms long believed necessary for human ‘competence’.” [246]

Instead, he advocates the study of what he terms ‘mindless intelligence’,
citing the success of TD-Gammon [290] over both rule-based systems and human
backgammon players as being indicative of what can be achieved by following
such an approach. This is reminiscent of Brook’s subsumption architecture
[29,31,32]. Another potential advantage of mimicking such simple organisms —
even ones without a nervous system — is that we may also be able to produce
artificial systems which are likewise capable of self-repair.

As Hawkins rightly observes, it is clear the brain works in a very different
manner to digital computers [123]. In order to build intelligent machines we
therefore need to first understand how brains work, then attempt to repli-
cate them. In his case he has focused on the neocortex, which uses time and
hierarchy to create and perceive world models. He subsequently developed
the ‘Hierarchical Temporal Memory (HTM)’, which is said to learn in much
the same manner as children do — more specifically by exposure to sensory
data.'” Will this approach prove to be a more fruitful path to an ‘intelligent
machine’? More to the point, is this old chestnut an appropriate pursuit for
CI, or should we relegate this to the dustbin of history?

The present author advocates the use of CI techniques simply for their own
sake, and not as justification to continue tilting at windmills & la Don Quixote.
Should this lofty goal eventuate then all well and good; in the meantime, let’s
simply enjoy CI techniques for their own inherent interest (and beauty?). Let
Nature continue to inspire us now and into the future!

Acknowledgements

The author gratefully acknowledges the helpful feedback on earlier chapter
drafts from Professor Witold Pedrycz, Professor Tim Hendtlass (likewise for
the TSP figures), Associate Professor Russell Standish, Dr. Christine Mum-
ford, and especially the ‘think tanks’ undertaken with Professor Yoshi Ishida
whilst on sabbatical during October 2007 (on CI definitions and hybrid sys-
tems). The financial support of the Intelligent Systems Research Centre at
the University of Wollongong is also greatly appreciated. I would also like to
thank the Faculty of Informatics and School of Computer Science and Soft-
ware Engineering at the University of Wollongong for allowing me to take a
six-month sabbatical during Semester-2 of 2007 in order to collaborate with
contributing authors and to bring this Compendium to fruition.

7 http://www.www.numanta.com

50

J. Fulcher

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abe S (2005) Support Vector Machines for Pattern Classification. Springer-
Verlag, New York, NY.

Adelman L (1994) Computing with DNA. Scientific American, 279(2): 54-61.
Allen J (1998) AI growing up: the changes and opportunities. AI Magazine,
Winter: 32-45.

Amos M (2005) Theoretical and Experimental DNA Computation. Springer-
Verlag, Berlin.

Anderson JA, Rosenfeld E (eds.) (1988) Neurocomputing: Foundations of
Research. MIT Press, Cambridge, MA.

AOS (2002) JACK intelligent agents. Agent Oriented Software P/L (available
online at http://www.agent-software.com.au — last accessed November 2006).
Arotaritei D, Negoita GM (2002) Optimisation of recurrent NN by GA with
variable length genotype. In: McKay B, Slaney J (eds.) AI2002: Advances in
Artificial Intelligence. Springer-Verlag, Berlin.

Bagley JD (1967) The behavior of adaptive systems which employ genetic and
correlation algorithms. PhD Thesis, University of Michigan, Ann Arbor, MI.
Bai Q, Zhang M (2006) Coordinating agent interactions under open environ-
ments. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea
Group, Hershey, PA: 52-67.

Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming,
An Introduction: On the Automatic Evolution of Computer Programs and its
Application. Morgan Kaufmann, San Francisco, CA.

Battiti R, Colla AM (1994) democracy in neural networks: voting schemes for
classification. Neural Networks, 7: 691-707.

Beale R, Pryke A (2006) Knowledge through evolution. In: Fulcher J (ed.)
Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 234-250.
Benitez JM, Blanco A, Delgado M, Requena I (1996) Neural methods for
obtaining fuzzy rules. Mathware Soft Computing, 3: 371-382

Bergenti F, Giezes M-P, Zambonelli F (2004) Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook. Springer-Verlag, Berlin.

Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, NY.

Bezdek JC (1994) What is computational intelligence? In: Zurada JM, Marks
IT RJ, Robinson CJ (eds.) Computational Intelligence Imitating Life. IEEE
Press, Piscataway, NJ: 1-12.

Bezdek JC (1998) Computational intelligence defined — by everyone! In:
Kaynak O, Zadeh LA, Tirksen B, Rudas 1J (eds.) Computational Intel-
ligence: Soft Computing and Fuzzy-Neuro Integration with Applications.
Springer-Verlag, Berlin: 10-37.

Bezdek JC, Hathaway RJ (1994) Optimization of fuzzy clustering criteria
using genetic algorithms. In: Proc. World Congress Computational Intelligence
(WCCI’94), June, Orlando, FL. IEEE Computer Society Press, Los Alamitos,
CA: 589-594.

Bigus JP, Bigus J, Bigus J (2001) Constructing Intelligent Agents Using Java
(2nd ed). Wiley, New York, NY.

Black M (1937) Vagueness: an exercise in logical analysis. Philosophy of
Science, 4: 427-455.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

Computational Intelligence: An Introduction 51

Bonabeau E, Dorigo M, Theaulaz G (1999) Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, UK.

Botros NM, Abdul-Aziz M (1994) Hardware implementation of an ANN using
field programmable gate arrays (FPGAs). IEEE Trans. Industrial Electronics,
41(6): 665-667.

Boukerche A, Jucd KRL, Sobral JB, Notare MSMA (2004) An artificial immune
based intrusion detection model for computer and telecommunication systems.
Parallel Computing, 30(5-6): 629-646.

Breiman L, Friedman J, Olshe R, Stone CJ (1984) Classification and Regression
Trees. Chapman and Hall, New York, NY.

Breiman L (1996) Bagging predictors. Machine Learning, 26(2): 123-140.
Breiman L (1999) Combining predictors. In: Sharkey AJC (ed.) Combin-
ing Artificial Neural Networks: Ensemble and Modular Multi-Net Systems.
Springer-Verlag, Berlin: 31-50.

Brewka G (1997) Principles of Knowledge Representation. CSLI Publications,
Stanford, CA.

Brill R, Guiterrez-Osuna, Quek F (2003) Attribute bagging: improving
accuracy of classifier ensembles by using random feature subsets. Pattern
recognition, 36(6): 1291-1302.

Brooks RA (1986) A robot layered control system for a mobile robot. IEEE J.
Robotics and Automation, RA-2: 14-23.

Brooks RA (1991) Intelligence without representation. Artificial Intelligence,
47(1-3): 139-159.

Brooks RA (1991) Intelligence without reason. In: Proc. 12th Intl. Joint. Conf.
Artificial Intelligence — IJCAI. August, Sydney, Australia: 569-595.

Brooks RA (1991) How to build complete creatures rather than isolated cogni-
tive simulators. In: van Lehn K (ed.) Architectures for Intelligence. Lawrence
Erlbaum Associates, Hillsdale, NJ: 225-239.

Brooks RA, Kurzweil R, Gelernter D (2006) Gelernter, Kurzweil debate
machine consciousness. (available online at http://www.kurzweilai.net/meme/
frame.html?m=4 — last accessed April 2007).

Brooks RA (2007) The relaitonship between matter and life. Nature, 409(6818):
409-410.

Brooks RR, Ivengar SS (1997) Multi-Sensor Fusion: Fundamentals and
Applications with Software. Prentice Hall, Upper Saddle River, NJ.

Brown M, Harris CJ (1994) Neuro-fuzzy Adaptive Modeling and Control.
Prentice Hall, Englewood Cliffs, NJ.

Bryson AE, Ho Y-C (1969) Applied Optimal Control. Blaisdell, New York, NY.
Byrski A, Kisiel-Dorohinicki M (2005) Immune-based optimization of predict-
ing neural networks. In: Sunderam VS et al. (eds.) Proc. Workshop Intelligent
Agents in Computing Systems — ICCS 2005, 22-25 May, Atlanta, GA, Lecture
Notes in Computer Science 3516. Springer-Verlag, Berlin.

Calado JMF, Ss da Costa JMG (1999) An expert system coupled with a
hierarchical structure of fuzzy nerual networks for fault diagnosis. J. Applied
Mathematics and Computer Science, 3(9): 667-688.

Carpenter GA, Grossberg SA (1987) A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics,
and Image Understanding, 37: 54-115.

Carpenter GA, Grossberg SA (1987) ART2: self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26(23): 4919-4930.

52

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.
59.

60.

J. Fulcher

Castellano G, Castiello C, Fanelli AM, Mencar C (2003) Discovery prediction
rules by a neuro-fuzzy modeling framework. In: Palade V, Howlett JR, Jain
LC (eds.) Knowledge-Based Intelligent Information and Engineering Systems.
Springer-Verlag, Berlin, 2: 1243-1248.

Cedeno W, Agrafiotis DK (2003) Combining particle swarms and k-nearest
neighbors for the development of qualitative structure-activity relationships.
Bicom Magazine: 43-53.

Chalmers DJ (1997) Moving forward on the problem of consciousness.
Consciousness Studies, 4(1): 3-46.

Chalmers DJ (1998) On the Search for the Neural Correlate of Concsiousness.
MIT Press, Cambridge, MA.

Chen K, Wang L, Chi H (1997) Methods of combining multiple classifiers
with different features and their application to text-independent speaker
identification. Intl. J. Pattern Recognition and Artificial Intelligence, 11(3):
417-445.

Chen Z (2000) Computational Intelligence for Decision Support. CRC Press,
Boca Raton, FL.

Chimmanee S, Wipusitwarakun K, Runggeratigul S (2003) Adaptive per-
application load balancing with neuron-fuzzy to support quality of service over
IP in the internet. In: Palade V, Howlett JR, Jain LC (eds.) Knowledge-Based
Intelligent Information and Engineering Systems. Springer-Verlag, Berlin, I:
533-541.

Cho S-B, Kim JH (1995) Pattern recognition with neural networks combined
by genetic algorithm. Fuzzy Sets and Systems, 103: 339-347.

Cho S-B, Kim JH (1995) Combining multiple neural networks by fuzzy integral
and robust classification. IEEE Trans. Systems, Man, and Cybernetics, 25:
380-384.

Cho S-B, Kim JH (1995) Multiple network fusion using fuzzy logic. IEEE
Trans. Neural Networks, 6: 497-501.

Cho S-B (1999) Pattern recognition with neural networks combined by genetic
algorithm. Fuzzy Sets and Systems, 103: 339-347.

Ciancarini P, Wooldridge MJ (eds.) (2000) Agent-oriented software engineer-
ing. In: Proc. 1st Intl. AOSE Workshop, June, Limerick, Ireland, Lecture Notes
in Computer Science 1957, Springer-Verlag, Berlin.

Cohon JL (2004) Multiobjective Programming and Planning. Dover
Publications, Mineola, NY.

Conrad M (1989) The brain-machine disanalogy. Biosystems, 22(3): 197-213.
Cordon O, Herrera F, Lozano P (1997) On the combination of fuzy logic and
evolutionary computation: a short review and bibliography. In: Pedrycz W
(ed.) Puzzy Evolutionary Computation. Kluwer Academic Publishers, Boston,
MA: 41-42.

Cox E (1994) The Fuzzy System Handbook. AP Professional Books, Boston,
MA.

Crox T (2007) Stop cahsing the Al illusion. Communications ACM, 50(4): 7-8.
Cybenko G (1989) Approximation by superposition of a sigmoidal function.
Math Control, Signals, Systems, 2: 303-314.

Dasarthy BV (1997) Sensor fusion potential exploitation — innovative
architectures and illustrative applications. Proc. IEEE, 85: 24-38.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

Computational Intelligence: An Introduction 53

Dasgupta D, Attoh-Okine N (1997) Immunity-based systems: a survey. In:
Proc. IEEE Intl. Conf. Systems, Man and Cybernetics. Orlando, FL. IEEE
Computer Society Press, Los Almotis, CA: 326-331.

Davis L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, NY.

Deasy H (2007) Consciousness and computers. [EEE Computer, 40(10): 7.
DeJong KA (1975) An analysis of the behavior of a class of genetic adaptive
systems. PhD Thesis, University of Michigan, Ann Arbor, MI.

DeJong KA (2006) FEwvolutionary Computation: A Unified Approach.
Bradford/MIT Press, Cambridge, MA.

Demirekler M, Altincay H (2002) Pluraity voting-based multiple classifier
systems: statistically independent with respect to dependent classifier sets.
Pattern Recognition, 35: 2363-2379.

Dennett D (1991) Consciousness FExplained. Little, Brown and Co.,
Lebanon, IN.

Deschamps JP, Bioul GJA, Sutter GO (2006) Synthesis of Arithmetic Circuits:
FPGAs, ASIC and Enbedded Systems. Wiley, New York, NY.

Dietterich T (2000) An experimental comparison of three methods for con-
structing ensembles of decision trees: bagging, boosting, and randimization.
Machine Learning, 40(2): 139-157.

Dongarra J, Foster I, Fox GC, Gropp W, Kennedy K, Torczon L White
A (2003) The Sourcebook of Parallel Computing. Morgan Kauffman, San
Francisco, CA.

Dorigo M, Stutzle T (2004) Ant Colony Optimization. MIT Press,
Cambridge, MA.

Dowling C (2000) Intelligent agents: some ethical issues and dilemmas. In: Proc.
Australian Institute Conf. Computer Ethics — AICE2000, Canberra, 11-12
November, Australian Computer Society, Darlinghurst, NSW: 28-32.

Dreyfus H, Dreyfus S (1986) Why expert systems do not exhibit expertise.
IEEE Ezpert, 1(2): 86-90.

Drucker H, Schapire RE, Simard P (1992) Improving performance in neu-
ral networks using a boosting algorithm. In: Hanson SJ et al. Advances in
Neural Information Processing Systems 5, 30 November—3 December, Morgan
Kauffman, San Mateo, CA: 42-49.

Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V (1994) Boosting and
other ensemble methods. Neural Computation, 6: 1289-1301.

Drucker H (1999) Boosting using neural networks. In: Sharkey AJC (ed.) Com-
bining Artificial Neural Networks: Ensemble and Modular Multi-Net Systems.
Springer-Verlag, Berlin.

Dubois D, Prade H (1980) Fuzzy Sets and Systems: Theory and Applications.
Academic Press, New York, NY.

Duch W (2007) What is computational intelligence and where is it going?
In: Duch W, Mandziuk J (eds.) Challenges for Computational Intelligence.
Springer-Verlag, Berlin.

Durkin J (1994) Ezpert Systems: Design and Development. Macmillan, New
York, NY.

Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

54

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

J. Fulcher

Enbutsu I, Baba K, Hara N (1991) Fuzzy rule extraction from a multilayered
network. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN’91), 8-12 July,
Seattle, WA. IEEE Computer Society Press, Los Alamitos, CA: 461-465.
Engelbrecht AP (2003) Computational Intelligence: An Introduction. Wiley,
New York, NY.

Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, New York, NY.

Fahlman SE, Lebiere C (1990) The cascade learning learning architecture.
In: Touretzky DS (ed.) Advances in Neural Information Processing Systems.
Morgan Kaufmann, San Mateo, CA: 524-532.

Falconer K (2003) Fractal Geometry: Mathematical Foundations and
Applications. Wiley, New York, NY.

Fagarasan F, Negoita GM (1995) A genetic-based method for learning the
parameter of a fuzzy inference system. In: Kasabov N, Coghill G (eds.) Artifi-
cial Neural Networks and Expert Systems. IEEE Computer Society Press, Los
Alamitos, CA: 223-226.

Farmer JD, Packard NH, Perelson AS (1986) The immune systems: adaptation
and machine learning. Physica A, 22: 187-204.

Fensel D, Hermalen F, Horrocks I, McGuinness D, Patel-Schneider P (2001)
OIL: an ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2): 38-45.

Ferber J (1999) Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley, Reading, MA.

Finin T, Labrou Y, Mayfield J (1997) KQML as an agent communication
language. In: Bradshaw JM (ed.) Software Agents MIT Press, Cambridge, MA.
Fisher R, Fulcher J (1998) Inproving the inversion of ionograms by com-
bining neural network and data fusion techniques. Neural Computing and
Applications, 7: 3-16.

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY

Fogel D (1995) Review of CI: Imitating Life, In: IEEE Trans. Neural Networks,
6: 1562-1565.

Fogel LJ (1995) FEwvolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ.

Ford K, Hayes P (1998) On computational wings: rethinking the goals of Al
Scientific American, 9/4: 78-84.

Fraser AS (1957) Simulation of genetic systems by automatic digital computers.
Australian J. Biological Science, 10: 484-499.

Fraser AS (1960) Simulation of genetic systems by automatic digital computers.
In: Kempthorne O (ed.) Biometrical Genetics. Macmillan, New York, NY:
70-83.

Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag, Berlin.

Freund Y, Scahapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. J. Computer and System Sciences,
55(1): 119-139.

Friedberg RM (1958) A learning machine: part I. IBM J. Research and
Development, 2: 2-13.

Friedberg RM, Dunham B, North JH (1959) A learning machine: Part II. JBM
J. Research and Development, 3: 282—-287.

102.

103.
104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

Computational Intelligence: An Introduction 55

Fulcher J (2008) User interfaces. In: Pagani M (ed.) Encyclopedia of Multimedia
Technology (2nd ed). Information Sciences Reference, Hershey, PA (in press).
Fuller R (1999) Introduction to Neuro-Fuzzy Systems. Springer-Verlag, Berlin.
Furuhashi T, Nakaoka K, Uchikawa Y (1994) A new approach to genetic based
machine learning and an efficient finding of fuzzy rules: proposal of Nagoya
approach In: Proc. IEEE/Nagoya University World Wisepersons Workshop on
Advances in Fuzzy Logic, Neural Networks, and Genetic Algorithms, Lecture
Notes in Computer Science 1011, Springer-Verlag, Berlin: 173-189.

Gallagher JC, Virraham S, Kramer G (2004) A family of compact genetic
algorithms for intrinsic evolvable hardware. IEEE Trans. Evolutionary Com-
putation, 8(2): 111-126.

Georgeff M, et al. (1999) The belief-desire-intention model of agents. In: Miiller
JP, Singh MP, Rao AS (eds.) Proc. 5th Intl. Workshop Intelligent Agents V,
Agent Theories, Architectures, and Languages (ATAL-98). Lecture Notes in
Computer Science 1555. Springer-Verlag, Berlin: 1-10.

Georgeff M, Azarmi N (2003) What has AI done for us? BT Technology J.,
21(4): 15-22.

Giacinto G, Roli F, Didaci L (2003) Fusion of multiple classifier for intrusion
detection in computer networks. Pattern Recognition Letters, 24: 1795-1803.
Giarratano JC, Riley G (2005) Expert Systems: Principles and Programming
(4th ed). Thomson, Boston, MA.

Girau B (2000) FPNA: interaction between FPGA and neural computation.
Intl. J. Neural Systems, 10(3): 243-259.

Ghosh J (2002) Multiclassifier systems: back to the future. In: Roli F, Kittler J
(eds.) Proc. 3rd Intl. Workshop Multiple Classifier Systems (MCS’02), Cagliari,
Italy. Lecture Notes in Computer Science 2364, Springer-Verlag, Berlin: 1-15.
Gladwell M (2005) Blink: The Power of Thinking without Thinking. Little,
Brown and Co., Lebanon, IN.

Gokhale MB, Graham PS (2005) Reconfigurable Computing: Computation with
Field-Programmable Gate Arrays. Springer-Verlag, Berlin.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA.

Grama A, Karypis G, Kumar V, Gupta A (2003) An Introduction to Paral-
lel Computing: Design and Analysis of Algorithms (2nd ed). Addison Wesley,
Reading, MA.

Greffenstette JJ (1984) A user’s guide to GENESIS. Technical Report CS-84-
11, Deptartment of Computer Science, Vanderbilt University, Nashville, TN.
Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc.
IEEE, 85(1): 6-23.

Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(10): 993-1001.

Hart WE, Krasnogor N, Smith JE (eds.) (2005) Recent Advances in Memetic
Algorithms. Springer-Verlag, Berlin.

Hashem S (1997) Optimal linear combinations of neural networks. Neural
Networks, 10(4): 599-614.

Hassibi B, Stork DG, Wolff GJ (1992) Optimal brain surgeon and general
network pruning. In: Proc. IEEE Intl. Joint Conf. Neural Networks I, San
Francisco, CA. IEEE Computer Society Press, Piscataway, NJ: 293-299.
Haupt RL, Haupt SE (2004) Practical Genetic Algorithms. Wiley, New York,
NY.

56

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.
140.

141.

142.

143.

144.

145.

J. Fulcher

Hawkins J (2007) Learn like a human: why can’t a computer be more like a
brain? IEEE Spectrum, 44(4): 17-22.

Haykin SY (1999) Neural Networks: a Comprehensive Foundation (2nd ed).
Prentice Hall, Englewood Cliffs, NJ

Hearst M, Hirsh H (2000) Als greatest trends and controversies. IEEFE
Intelligent Systems, January/February: 8-17.

Hebb DO (1949) The Organization of Behavior. Wiley, New York, NY
Hendtlass T (2004) An introduction to collective intelligence. In: Fulcher J,
Jain LC (eds.) Applied Intelligent Systems: New Directions. Springer-Verlag,
Berlin: 133-178.

Herrera F, Lozano M, Verdegay IL (1993) Tuning fuzzy logic controllers by
genetic algorithms. Technical Report DECSai—93102, June, Universidad de
Granada, Spain.

Higuchi T, et al. (1999) Real-world applications of analog and digital evolvable
hardware. IEEE Trans. Evolutionary Computation, 3(3): 220-235.

Hinchey MG, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. IEEE
Computer, 40(4): 111-113.

Hinton GE, Anderson JA (1981) Parallel Models of Associative Memory.
Lawrence Erblaum Associates, Potomac, MD.

Hirai Y (1993) Hardware implementations of neural networks in Japan.
Neurocomputing, 5: 3—16.

Hirota K (1995) History of Industrial Applications of Fuzzy Logic in Japan. In:
Yen J, Langari R, Zadeh L (eds.) Industrial Applications of Fuzzy Logic and
Intelligent Systems. IEEE Press, Piscataway, NJ: Chapter 2.

Ho TK (2002) Multiple classifier combination: lessons and the next steps.
In: Kandel A, Bunke H (eds.) Hybrid Methods in Pattern Recognition. World
Scientific, Singapore: 171-198.

Holland JH (1962) Outline for a logical theory of adaptive systems. J. ACM,
3: 297-314.

Holland JJ (1992) Adaptation in Natural and Artificial Systems (2nd ed). MIT
Press, Cambridge, MA.

Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those in two-state neurons. Proc. National Academy Science, 81:
3088-3092.

Hornik K (1991) Approximation capabilities of multi-layer feed-forward
networks. Neural Networks, 4: 2151-2157.

Ignizio J (1991) Introduction to Exzpert Systems. McGraw-Hill, New York, NY.
Inuiguchi M, Hirano S, Tsumoto S (eds.) (2003) Rough Set Theory and
Granular Computing. Springer-Verlag, Berlin.

Ishida Y (2004) Immunity-Based Systems: A Design Perspective. Springer-
Verlag, Berlin.

Jackson P (1999) Introduction to Ezpert Systems (3rd ed). Addison Wesley,
Reading, MA.

Jacobs RA (1988) Increased rates of convergence through learning rate
adaptation. Neural Networks, 1: 295-307.

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixture of
local experts. Neural Computation, 3: 79-87.

Jang J-S R, Sun C-T, Mizutani E (1997) Neuro-Fuzzy and Soft Computing: a
Computational Approach to Learning and Machine Intelligence. Prentice Hall,
Englewood Cliffs, Upper Saddle River, NJ.

146.

147.

148.
149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.
162.

163.

164.

165.

166.

167.

168.

169.

Computational Intelligence: An Introduction 57

Jennings NR, Faratin P, Norman TJ (2000) On agent-oriented software
engineering. Artificial Intelligence, 117(2): 277-296.

Jensen FV (2001) Bayesian Networks and Decision Graphs. Springer-Verlag,
Berlin.

Jin'Y (ed.) (2006) Multi-Objective Machine Learning. Springer-Verlag, Berlin.
Jordan MI, Jacobs RA (1994) Hierarchical mixture of experts and the EM
algorithm. Neural Computation, 6(2): 181-214.

Judd JS (1990) Neural Network Design and the Complexity of Learning. MIT
Press, Cambridge, MA.

Karplus W (1998) cited in: Kaynak O, Zadeh LA, Tiirksen B, Rudas IJ (eds.)
Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with
Applications. Springer-Verlag, Berlin.

Karr C (1991) Applying genetics to fuzzy logic. AI Expert, 6(3): 38-43.
Kasabov N (1996) Learning fuzzy rules and approximate reasoning in fuzzy
neural networks and hybrid systems. Fuzzy Sets and Systems, 82: 135-149.
Kennedy J, Eberhart RC, Yuhui S, Shi Y (2001) Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA.

Khosla A, Kumar S, Aggarwal KK (2006) Swarm intelligence and the Taguchi
method for identification of fuzzy models. In: Fulcher J (ed.) Advances in
Applied Artificial Intelligence. Idea Group, Hershey, PA: 273-295.

Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE
Trans. Pattern Analysis and Machine Intelligence, 20(3): 226-239.

Klein LA (2004) Sensor and Data Fusion: A Tool for Information and Decision
Making. Intl. Society for Optical Engineering (SPIE), Bellingham, WA.
Knowles J, Corne D (2004) Memetic algorithms for multiobjective optimiza-
tion: issues, methods and prospects. In: Krasnogor N, Smith JE, Hart WE
(eds.) Recent Advances in Memetic Algorithms. Springer-Verlag, Berlin.
Kohonen T (1986) Learning vector quantization for pattern recognition.
Technical Report TKK-F-A601, Helsinski University of Technology, Finland.
Kohonen T (2001) Self-Organization and Associative Memory (3rd ed).
Springer-Verlag, Berlin.

Korb KB (2004) Bayesian Artificial Intelligence. CRC Press, Boca Raton, FL.
Kosko B (1992) Neural Networks and Fuzzy Systems: a Dynamical Approach
to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.

Koza J (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Koza J (1995) Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA.

Koza J (1999) Genetic Programming III: Darwinian Inventions and Problem
Solving. Morgan Kaufmann, San Mateo, CA.

Kuncheva LI (2003) ”Fuzzy” vs "non-fuzzy” in combining classifiers designed
by boosting. IEEE Trans. Fuzzy Systems, 11: 729-741.

Kuncheva LI, Jain LC (2000) Designing classifier fusion systems by genetic
algorithms. IEEE Trans. Evolutionary Computation, 4(4): 327-336.
Kuncheva LI, Whitaker CJ, Shipp CA, Duin RPW (2003) Limits on the major-
ity vote accuracy in classifier fusion. Pattern Analysis and Applications, 6:
22-31.

Kuncheva LI (2004) Combining Pattern Classifiers: Methods and Algorithms.
Wiley, New York, NY.

58

170.

171.

172.

173.

174.

175.
176.
177.
178.
179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

J. Fulcher

Kung SY, Mak MW, Lin SH (2004) Biometric Authentication: A Machine
Learning Approach. Prentice Hall, Upper Saddle River, NJ.

Kurzweil R (1999) The Age of Spiritual Machines: When Computers Exceed
Human Intelligence. Penguin, New York, NY.

Lam L (2000) Classifier combinations: implementations and theoretical issues.
In: Kittler J, Roli F (eds.) Multiple Classifier Systems. Lecture Notes in
Computer Science 1857, Springer-Verlag, Berlin: 78-86.

Lam L, Suen CY (1995) Optimal combination of pattern classifiers. Pattern
Recognition Letters, 16: 945-954.

Lam L, Suen CY (1997) Application of majority voting to pattern recognition:
an analysis of its behavior and performance. IEEE Trans. Systems, Man, and
Cybernetics, 27(5): 553-568.

Langdon WB (1998) Data Structures and Genetic Programming: GP + Data
Structures = Automatic Programming! Kluwer Academic Press, Boston, MA.
Langton CG (1984) Self-reproduction in cellular automata. Physica D, 10: 1-2.
Lanier J (1995) Agents of Alienation. Interactions, 2(3): 67-72.

LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in
NIPS 2, Morgan Kauffman, San Mateo, CA: 598-605.

Lee CS, Jian CC, Hsieh TC (2005) Ontology-based genetic fuzzy agent. In:
Proc. IEEE Intl. Fuzzy Systems Conf., Reno, NV, 22-25 May: 331-335.

Lee MA, Takagi H (1993) Integrating design stages of fuzzy systems using
genetic algorithms. In: Proc. 2nd IEEE Intl. Conf. Fuzzy Systems (FUZZ-
IEEE’98), 28 March—-1 April, San Francisco, CA. IEEE Computer Society
Press, Los Alamitos, CA. 1: 612-617.

Lee MA, Esbensen H (1997) Fuzzy/multiobjective genetic systems for intel-
ligent design tools and components. In: Pedrycz W (ed.) Fuzzy Ewvolutionary
Computation. Kluwer Academic Publishers, Boston, MA: 57-81.

Leshno M, Lin V, Pinkus A, Schoken S (1993) Multi-layer feed-forward new-
torks with a non-polynomial activation function can approximtae any function.
Neural Networks, 6: 861-867.

Lesser V (1995) Multiagent systems: an emerging subdiscipline of Al. ACM
Computing Surveys, 27(3): 340-342.

Leung SC, Fulcher J (1997) Classification of user expertise level by neural
networks. Intl. J. Neural Systems, 8(2): 155-171.

Levy S (1997) Artificial Life: A Report From the Frontier Where Computers
Meet Biology. Vintage Books, New York, NY.

Lighthill J (1972) Artificial intelligence: a general survey. Scientific Research
Council of Britain. March, SRC: 72-27.

Lin C-T, Lee CSG (1991) Neural network based fuzzy logic control and decision
system. IEEE Trans. Computers, 40(12): 1320-1336.

Lin X, Yacoub S, Burns J, Simske S (2003) Performance analysis of pattern
classifier combination by plurality voting. Pattern Recognition Letters, 24(12):
1795-1969.

Lin YT, Cercone N (1997) Rough Sets and Data Mining: Analysis of Imprecise
Data. Kluwer Academic Publishers, New York, NY.

Lin YT (1999) Granular computing: fuzzy logic and rough sets. In: Zadeh LA,
Kacprzyk J (eds.) Computing with Words in Information/Intelligent Systems.
Springer-Verlag, Berlin.

Liu J, Tsui KC (2006) Toward Nature-inspired computing. Communications
ACM, 49(10): 59-64.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.
203.

204.

205.

206.

207.

208.

209.
210.

211.

212.

213.

Computational Intelligence: An Introduction 59

Lohn ID, Reggia JA (1997) Automatic discovery of self-replicating structures
in cellular automata. IEEE Trans. Evolutionary Computation, 1(3): 165-178.
Lohn JD, Hornby GS (2006) Evolvable hardware: using evolutionary com-
putation to design and optimize hardware systems. IEEE Computational
Intelligence Magazine, 1(1): 19-27.

Lucas P, van der Gaag L (1991) Principles of Expert Systems. Addison Wesley,
Reading, MA.

Lukasiewicz J (1963) Elements of Mathematical Logic. Macmillan, New
York, NY.

Maass W, Bishop CM (eds.) (1999) Pulsed Neural Networks. Bradford/MIT
Press, Cambridge, MA.

Mahmoud Q, Yu L (2006) Making software agents user-friendly. IEEE
Computer, 39(7): 94-96.

Mallat S (1999) A Wavelet Tour of Signal Processing. Academic Press,
Boston, MA.

Mamdani E, Assilian S (1975) An experiment in linguistic synthesis with a
fuzzy logic controller. Intl. J. Man-Machine Studies, 7(1): 1-13.

Mandelbrot BB (1985) The Fractal Geometry of Nature: Updated and
Augmented. WH Freeman, New York, NY.

Mange D, Tomassin M (1998) Bio-Inspired Computing Machines. Presses
Polytechniques et Universitaries Romandes, Laussanne, Switzerland.
McCarthy J (2005) The future of Al: a manifesto. Al Magazine, 26: 39-40.
McCullagh J, Choi B, Bluff K (1997) Genetic evolution of a neural network’s
input vector for meteorological estimation. In: Kasabov N, Kozma R, Ko
K, Coghill G, Gedeon T (eds.) Progress in Connectionist-Based Information
Systems. Springer-Verlag, Berlin: 1046—-1049.

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in
nervous activity. Bulletin Mathematical Physics, 5: 115-117.

McNeill D, Thro E (1994) Fuzzy Logic: A Practical Approach. Academic Press,
Boston, MA.

Mead C (1989) Analog VLSI and Neural Systems. Addison Wesley,
Reading, MA.

Michalewicz Z, Fogel DB (2000) How to Solve It: Modern Hueristics. Springer-
Verlag, Berlin.

Miller DJ, Yan L (1999) Critic-driven ensemble classification. IEEE Trans.
Signal Processing, 47(10): 2833-2844.

Minsky M, Papert S (1969) Perceptrons (2nd ed). MIT Press, Cambridge, MA.
Nardi BA, Miller JR, Wright DJ (1998) Collaborative, Programmable
Intelligent Agents. Communications ACM, 41(3): 96-104.

Naur P (2007) Computing versus human thinking. Communicaitons ACM,
50(1): 85-93.

Neagu C-D (2000) Toxicity prediction using assemblies of hybrid fuzzy neural
models. In: Proc. 6th Intl. Conf. Knowledge-Based Intelligent and Engineering
Systems (KES2002), 16-18 September, Milan, Italy. IOS Press, Amsterdam,
The Netherlands: 1093-1098.

Neagu C-D, Gini G (2003) Neuro-fuzzy knowledge integration applied in tox-
icity prediciton. In: Jain R, Abraham A, Faucher C, ven der Zwaag BJ (eds.)
Innovations in Knowledge Engineering. Advanced Knowledge International,
Magill, South Australia: 311-342.

60

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.
229.

230.

231.

J. Fulcher

Neagu C-D, Palade V (1999) Fuzzy computing in a multi-purpose neural net-
work implementation. In: Reusch B (ed.) Computational Intelligence: Theory
and Applications. Lecture Notes in Computer Science 1625, Springer-Verlag,
Berlin: 697-700.

Neagu C-D, Palade V (2003) A neuro-fuzzy approach for functional genomics
data interpretation and analysis. J. Neural Computing and Applications.
12(3-4): 153-159.

Neapolitan RE (2003) Learning Bayesian Networks. Prentice Hall, Englewood
Cliffs, NJ.

Nedjah N, Alba E, Mourelle LAM (2006) Parallel Evolutionary Computations.
Springer-Verlag, Berlin.

Negnevitsky M (2005) Artificial Intelligence: A Guide to Intelligent Systems
(2nd ed). Prentice Hall, Englewood Cliffs, NJ.

Negoita MG, Neagu D, Palade V (2005) Computational Intelligence:
Engineering of Hybrid Systems. Springer-Verlag, Berlin.

Negoita M, Agapie A, Fagarasan F (1994) The fusion of genetic algorithms and
fuzzy logic: Application in expert systems and intelligent control. In: Proc.
IEEE/Nagoya University WWW Conf. Fuzzy Logic and Neural Networks/
Genetic Algorithms, August, Nagoya, Japan. IEEE Computer Scoiety Press,
Alamitos, CA: 130-133.

Negoita M, Mihaila D (1995) Intelligent techniques based on genetic evolution
with applications to neural networks weights optimization. In: Proc. 14th Intl.
Congress Cybernetics, 21-25 August, Namur, Belgium. Intl. Association for
Cybernetics, Namur, Belgium.

Newell A, Simon HA (1976) Computer Science as empirical enquiry: symbols
and search. Communications ACM, 19(3): 113-126.

Newell A (1990) Unified Theories of Cognition. Harvard University Press,
Cambridge, MA.

Nowlan SJ, Hinto GE (1991) Evaluation of adaptive mixtures of competing
experts. In: Lippmann RP, Moody JE, Touretzky DS (eds.) Advances in Neu-
ral Information Processing Systems 3. Morgan Kauffman, San Mateo, CA:
774-780.

Oeda S, Ichimura T, Yamashita T, Yoshida K (2003) A proposal of
immune multi-agent neural networks and its applicaiton to medical diag-
nostic system for hepatobiliary disorders. In: Palade V, Howlett JR, Jain
LC (eds.) Knowledge-Based Intelligent Engineering Information Systems.
Sprigner-Verlag, New York, NY, II: 526-532.

Omondi AR, Rajapakse JC (eds.) (2006) FPGA Implementations of Neural
Networks. Springer-Verlag, Dordrecht, The Netherlands.

Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J.
Al Research, 11: 169-198.

Ott E (2002) Chaos in Dynamical Systems. Cambridge University Press, UK.
Padgham L, Winikoff M (2004) Developing Intelligent Agent Systems: A
Practical Guide. Wiley, New York, NY.

Pagliosa A, de S& CC, Sasse FD (2005) Obtaining membership functions from
a neuron fuzzy system extended by Kohonen network. In: Nakamatsu K, Abe
JM (eds.) Advances in Logic Based Inteligent Systems (Selected Papers of
LAPTEC’2005). 10S Press, Amsterdam, The Netherlands: 42-49.

Pal SK, Shiu S (2004) Foundations of Soft Computer-Based Reasoning. Wiley,
Hoboken, NJ.

232.

233.

234.
235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.
251.

252.

Computational Intelligence: An Introduction 61

Palade V, Negoita M, Ariton V (1999) Genetic algorithms optimization of
knowledge extraction from nerual networks. In: Proc. 6th Intl. Conf. Neu-
ral Information Processing (ICONIP’99), November, Perth, Australia. IEEE
Computer Society Press, Los Almatios, CA: 752-758.

Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis
of an industrial gas turbine using neurao-fuzzy methods. In: Proc. 15th Intl.
IFAC World Congress, 21-26 July, Barcelona, Spain. Federation for Automatic
Control: 2477-2482.

Papert S (1980) Mindstorms. Basic Books, New York, NY.

Parker DB (1985) Learning logic. Technical Report TR-47, Centre for
Computational Research in Economics and Management Science, MIT.

Paun G (2002) Membrane Computing: An Introduction. Springer-Verlag,
Berlin.

Pawlak Z (1991) Rough Sets: Theoretical Aspects of Reasoning About Data.
Kluwer, Dordrecht, The Netherlands.

Pedrycz W (1993) Fuzzy neural networks and neurocomputations. Fuzzy Sets
and Systems, 56: 1-28.

Pedrycz W (1997) Computational Intelligence: An Introduction. CRC Press,
Boca Raton, FL.

Pedrycz W (1999) Computational Intelligence: an introduction. In: Szczepaniak
PS (ed.) Computational Intelligence and Applications. Physica-Verlag, Berlin:
3-17.

Pellerin D, Thibault S (2005) Practical FPGA Programming in C. Prentice
Hall, Engelwood Cliffs, NJ.

Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis.
Cambridge University Press, UK.

Perrone MP, Cooper LN (1993) When networks disagree: Ensemble methods
for neural networks. In: Mammone RJ (ed.) Artificial Neural Networks for
Speech and Vision. Chapman and Hall, New York, NY: 126-142.

Pfeifer R, Bongard J (2007) How the Body Shapes the Way We Think: A New
View of Artificial Intelligence. MIT Press, Cambridge, MA.

Pinker S (2001) How the mind works. (available online at http://www.
kurzweilai.net/meme/frame.html?m=4 — last accessed April 2007).

Pollack JB (2006) Mindless intelligence. IEEE Intelligent Systems, 21(3):
50-56.

Poole D, Mackworth A, Goebel R (1998) Computational Intelligence — A
Logical Approach. Oxford University Press, New York, NY.

Powell MJD (1985) Radial basis funcitons for multivariate interpolation: a
review. In: Proc. IMA Conf. Algorithms for the Approximaiton of Functions
and Data, RMCS, Shrivenham, UK: 143-167.

Pritchard D, Negoita G (2006) A fuzzy — GA hybrid technique for optimisation
of teaching sequences presented in ITSs. In: Reusch B (ed.) Computa-
tional Intelligence, Theory and Applications (Proc. 8th Fuzzy Days Conf.),
29 September—1 October, Dortmund, Germany. Lecture Notes in Computer
Science 3505, Springer-Verlag, Berlin: 311-316.

Quinlan JR (1986) Induction of decision trees. Machine Learning, 1(1): 81-106.
Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Francisco, CA.

Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proc. AAAI’96, Portland,
OR. AAAI Press, Menlo Park, CA: 725-730.

62

253.

254.

255.

256.

257.

258.

259.
260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

J. Fulcher

Rechenberg 1 (1973) Ewolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen FEvolution. Frommann-Holzboog Verlag,
Stuttgart, Germany.

Rechenberg 1 (1994) Evolution strategy. In: Zurada J, Marks II RJ,
Robinson C (eds.) Computational Intelligence — Imitating Life. IEEE Press,
Piscataway, NJ.

Reidmiller M, Braub H (1992) RPROP: a fast adaptive learning algorithm, In:
Proc. Intl. Symp. Computer and Information Sciences, November, Antalya,
Turkey: 279-285. (ISCIS-VII)

Rieffel EG, Polak W (2000) Quantum computing for non-Physicists. ACM
Computing Surveys, 32(3): 300-335.

Rosenblatt F (1958) The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65: 386-408.
Rosenblatt F (1962) The Principles of Neurodynamics. Spartan Books,
Washington, DC.

Ruckert U (2002) ULSI architectures for ANNs. IEEE Micro, May-June: 10-19.
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
backpropagating errors. In: Rumelhart DE, McClelland JL (eds.) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition I. MIT
Press, Cambridge, MA.

Russell S, Norvig P (2001) Artificial Intleligence: A Modern Approach (2nd
ed). Prenctice Hall, Englewood Cliffs, NJ.

Samuel A (1959) Some studies in machine learning using the game of checkers.
IBM J., 3(3): 210-229.

Sanchez E, Tomassini M (eds.) (1996) Towards Ewvolvable Hardware: The
Evolutionary Engineering Approach. Springer-Verlag, Berlin.

Schaffer JD (1984) Some experiments in machine learning using vector
evaluated genetic algorithms. PhD Thesis, Vanderbilt University, Nashville, TN
Schalkof RJ (1997) Artificial Neural Networks: Application to Ecology and
FEvolution. McGraw Hill, New York, NY.

Sekanina L (2004) FEwvolvable Components: From Theory to Hardware Imple-
mentation. Springer-Verlag, Berlin.

Shann JJ, Fu HC (1995) A fuzzy neural network for rule acquiring on fuzzy
control systems. J. Fuzzy Sets and Systems, 71: 345-357.

Sharkey AJC (ed.) (1999) Combining Artificial Neural Networks: Ensemble
and Modular Multi-Net Systems. Springer-Verlag, Berlin.

Sharkey AJC, Sharkey N (2006) The application of swarm intelligence to col-
lective robots. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence.
Idea Group, Hershey, PA: 157-185.

Shawe-Taylor J, Cristianni N (2000) Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, UK.

Shearer C, Caron P (2002) Handbook of Data Mining and Knowledge Discovery.
Oxford University Press, UK.

Shimojima K, Fukuda T, Hasewaga I (1995) Self-tuning fuzzy modeling with
adaptive membership function, rules, and hierarchical structure based on
genetic algorithm. J. Fuzzy Sets and Systems, 71: 294-309.

Simpson PK (1992) Fuzzy MIN-MAX neural networks — part 1: classification.
IEEE Trans. Neural Networks, 3(5): T76-786.

Simpson PK (1993) Fuzzy MIN-MAX neural networks — part 2: clustering.
IEEE Trans. Fuzzy Systems, 1(1): 32-45.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

Computational Intelligence: An Introduction 63

Sioutis C, Urlings P, Tweedale J, Ichalkaranje N (2004) Forming human-
agent teams within hostil environments. In: Fulcher J, Jain LC (eds.) Applied
Intelligent Systems: New Directions. Springer-Verlag, Berlin: 255-279.

Sipper M (1997) Ewvolution of Parallel Cellular Machines — The Cellular
Programming Approach. Springer-Verlag, Berlin.

Sipper M, Sanchez E, Mange D, Tomassini M, Perez-Uribe A, Stauffer A (1997)
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware
systems. IEEE Trans. Evolutionary Computation, 1(1): 83-97.

Sipper M, Mange D, Sanchez E (1999) Quo Vadis Evolvable Hardware?
Communications ACM, 42(4): 50-59.

Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Computing.
McGraw-Hill, New York, NY.

Sisman-Yilmaz NA, Alpaslan FN, Jain LC (2004) Fuzzy multivariate auto-
regression method and its application. In: Fulcher J, Jain LC (eds.) Applied
Intelligent Systems: New Directions. Springer-Verlag, Berlin: 281-300.

Sowa JF (2000) Knowledge Representation: Logical, Philosophical and Compu-
tational Foundations. Brooks-Cole, Pacific Grove, CA.

Sprott JC (2003) Chaos and Time Series Analysis. Oxford University Press,
UK.

Stair RM, Reynolds GW (1999) Principles of Information Systems (4th ed).
Thomson, Cambridge, MA.

Stevens M (1997) Bayesian Methods for Mizturs of Normal Distributions.
Oxford University Press, Oxford, UK.

Stock O, Zancanaro M (eds.) (2005) Multimodal Intelligent Information
Presentation: Text, Speech and Language Technology. Springer-Varleg, Berlin.
Sundarajan N, Satchandran P (1998) Parallel Architectures for Artificial
Neural Networks. IEEE Press, Los Alamitos, CA.

Sugeno M (1985) Industrial Applications of Industrial Control. North Holland,
New York, NY.

Takagi H (1994) Cooperative systems of neural networks and fuzzy logic and
its applicaiton to consumer products. In: Yen J, Langari R, Zadeh LA (eds.)
Industrial Applications of Fuzzy Control and Intelligent Systems. Van Nostrand
Reinhold, New York, NY.

Tan KC, Khor EF, Lee TH (2005) Multiobjective Evolutionary Algorithms and
Applications. Springer-Verlag, London, UK.

Tesauro G (1992) Temporal difference learning of backgammon strategy. In:
Shafer G, Pearl J (eds.) Proc. Intl. Conf. Machine Learning — ICML92, July,
Aberdeen, UK, Morgan Kaufmann, San Francisco, CA: 451-457.

Teuscher C (2006) Biologically uninspired computaitonal intelligence. Commu-
nications ACM, 49(11): 27-29.

Toffoli T, Margolus N (1987) Cellular Automata Machines. MIT Press,
Cambridge, MA.

Tollenaere T (1990) SuperSAB: fast adaptive backpropagation with good
scaling properties. Neural Networks, 7(5): 561-573.

Tran C, Abraham A, Jain LC (2006) Soft computing paradigms and regres-
sion trees in decision support systems. In: Fulcher J (ed.) Advances in Applied
Artificial Intelligence. Idea Group, Hershey, PA: 1-28.

Uppal FJ, Patton RJ, Palade V (2002) Neuro-fuzzy based fault diag-
nosis applied to an electro-pneumatic valve. In: Proc. 15th IFAC World

64

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

J. Fulcher

Congress, 21-26 July, Barcelnoa, Spain. Intl. Federation for Automatic Control:
2483-2488.

van Eck J, Waltham L, van den Berg J, Kaymak V (2006) Visualizing the CI
Field. IEEE Computational Intelligence Magazine, 1(4): 6-10.

Vapnik VN (1998) Statistical Learning Theory. Wiley, New York, NY.
Verikas A, Lipnickas A, Malmqvist K, Bacauskiene M, Gelzinis A (1999) Soft
combination of neural classifiers: a comparative study. Pattern Recognition
Letters, 20: 429-444.

Verikas A, Lipnickas A (2002) Fusing neural networks through space
partitioning and fuzzy integration. Neural Processing Letters, 16: 53-65.
Verma B, Panchal R (2006) Neural networks for the classification of benign
and malignant patterns in digital mammograms. In: Fulcher J (ed.) Advances
in Applied Artificial Intelligence. Idea Group, Hershey, PA: 251-272.

Von Altrock (1995) Fuzzy Logic and Neurofuzzy Applications Explained.
Prentice Hall, Englewood Cliffs, NJ.

Von Neumann J (1958) The Computer and the Brain. Yale University Press,
New Haven, CT.

Wang D, Fang S-C (1997) A genetics-based approach for aggregated production
planning in a fuzzy environment. IEEE Trans. Systems, Man and Cybernetics,
27(5): 636-645.

Watson I (1997) Applying Base-Based Reasoning: Techniques for Enterprise
Systems. Morgan Kaufmann, San Francisco, CA.

Werbos P (1974) Beyond regression: new tools for prediction and analysis in
the behavioral sciences. PhD Thesis, Harvard University, Cambridge, MA.
Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting. Wiley, New York, NY.

Wermter S, Sun R (2000) Hybrid Neural Systems. Springer-Verlag, Berlin.
Widrow B, Hoff ME (1960) Adaptive switching circuits. In: Proc. IRE
WESCON Convention Record: Part 4, Computers: Man-Machine Systems, Los
Angeles, CA: 96-104.

Wiener N (1948) Cybernetics. Wiley, New York, NY.

Wolfram S (1997) Cellular Automata and Complexity — Collected Papers.
Addison Wesley, Reading, MA.

Willliams CP, Clearwater SH (2000) Ultimate Zero and One: Computing at the
Quantum Frontier. Springer-Verlag, Berlin.

Williams J (1990) When expert systems are wrong. In: Proc. ACM SIGBDP
Conf. — Trends and Directions in Expert Systems. Orlando, FL, ACM Press,
New York, NY: 661-669.

Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kauffman, San Francisco, CA.

Wong B, Lai V, Lam J (2000) A bibliography of neural network business
applications research: 1994 — 1998. Computer and Operations Research, 23:
1045-1076.

Wong HC, Sycara K (1999) Adding security and trust to multi-agent systems.
In: Proc. Autonomous Agents’99, May, Seattle, WA: 149-161.

Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. The
Knowledge Engineering Review, 10(2): 115-152.

Wooldridge M (2002) An Introduction to Multiagent Systems. Wiley,
Chichester, UK.

318.

319.

320.

321.

322.

323.
324.

325.

326.

327.

328.

329.

330.

331.

332.

Computational Intelligence: An Introduction 65

Xu L, Krzyak A, Suen CY (1992) Methods of combining multiple classifiers
and their application to handwriting recognition. IEEE Trans. Systems, Man,
and Cybernetics, 22: 418-435.

Yager R (1992) Implementing fuzzy logic controller using a neural network
framework. Fuzzy Sets and Systems, 48: 53—64.

Yao X (1999) Following the path to evolvable hardware. Communications
ACM, 42(4): 47-49.

Yao YY (2000) Granular compuitng: basic issues and possible solutions. In:
Proc. 5th Joint Conf. Information Sciences, 27 February-3 March, Atlantic
City, NJ: 186-189.

Yao X, Highuchi T (1999) Promises and challenges of evolvabale hardware.
IEEE Trans. Systems, Man and Cybernetcis—Part C, 29(1): 87-89.

Zadeh LA (1965) Fuzzy sets. Information and Control, 8: 338-353.

Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, 1: 3-28.

Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing.
Communications ACM, 37(3): 77-84.

Zadeh LA (1997) Towards a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 19:
111-127.

Zhang J, Morris J (1996) Process modeling fault diagnosis using fuzzy neural
networks. Fuzzy Sets and Systems, 79: 127-140.

Zhang M (2008) Artificial Higher-Order Neural Networks for Economics and
Business. I1GI, Hershey, PA.

Zhang M, Fulcher J, Scofield R (1997) Rainfall estimation using artificial neural
network group. Neurocomputing, 16(2): 97-115.

Zhang Y-Q, Fraser MD, Gagliano RA, Kandel A (2000) Granular neural
networks for numerical-linguistic data fusion and knowledge discovery. IEEE
Trans. Neural Networks, 11(3): 658—667.

Zhou Z-H, Wu J, Tang W (2002) Artificial neural network ensembles. Artificial
Intelligence, 137(1-2): 239-263.

Zykov V, et al. (2005) Self-reproducing machines. Nature, 435(7038): 163-164.

Resources

1 Key Books

In addition to the specific listings below, the following Springer book series
are recommended for general reference: Studies in Computational Intelligence,
Studies in Fuzziness and Soft Computing, and Advances in Soft Computing.

1.1 Computational Intelligence

Chen SH, Wang P, Wang PP (2006) Computational Intelligence in Economics
and Finance. Springer-Verlag, Berlin.

Chen Z (2000) Computational Intelligence for Decision Support. CRC Press,
Boca Raton, FL.

Dick S, Kander A (2005) Computational Intelligence in Software Quality
Assurance. World Scientific, Singapore.

Duch W, Mandziuk J (eds.) (2007) Challenges for Computational Intelligence.
Springer-Verlag, Berlin.

Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

Englebrecht AP (2003) Computational Intelligence: An Introduction. Wiley,
New York, NY.

Fogel DB, Robinson CJ (eds.) (2003) Computational Intelligence: The Experts
Speak. Wiley, New York, NY.

Kecman V (2001) Learning and Soft Computing: Support Vector Machines,
Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge, MA.

68 J. Fulcher

King RE (1999) Computational Intelligence in Control Engineering. Marcel
Dekker, New York, NY.

Konar A (2005) Computational Intelligence: Principles, Techniques, and
Applications. Springer-Verlag, Berlin.

Kusiak A (2000) Computational Intelligence in Design and Manufacturing.
Wiley, New York, NY.

Ovaska SJ (ed.) (2004) Computationally Intelligent Hybrid Systems: The
Fusion of Soft Computing and Hard Computing. Wiley, New York, NY.

Pedrycz W, Peters JF (1998) Computational Intelligence in Software Engi-
neering. World Scientific, Singapore.

Pedrycz W (1997) Computational Intelligence: An Introduction. CRC Press,
Boca Raton, FL.

Poole D, Mackworth A, Goebel R (1998) Computational Intelligence: A Log-
ical Approach. Oxford University Press, New York, NY.

1.2 Artificial Neural Networks

Anderson JA, Rosenfeld E (eds.) (1988) Neurocomputing: Foundations of
Research. MIT Press, Cambridge, MA.

Anderson JA, Pellionisz A, Rosenfeld E (eds.) Neurocomputing 2: Directions
for Research. MIT Press, Cambridge, MA.

Beale R, Jackson T (1990) Neural Computing: An Introduction. Adam Hilger,
Bristol, UK.

Bigus JP (1996) Data Mining with Neural Networks: Solving Business
Problems — From Application Development to Decision Support. McGraw Hill,
New York, NY.

Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, UK.

Fiesler E, Beale R (1997) Handbook of Neural Computation. Oxford Univer-
sity Press/Institute of Physics, New York, NY.

Haykin SY (1999) Neural Networks: A Comprehensive Foundation (2nd ed).
Prentice Hall, Upper Saddle River, NJ.

Computational Intelligence: An Introduction 69

Kohonen T (2001) Self-Organization and Associative Memory (3rd ed).
Springer-Verlag, Berlin.

Orr GB , Mueller K-R (eds.) (1998) Neural Networks: Tricks of the Trade.
Springer-Verlag, Berlin.

Principe JC, Euliano NR, Lefebre WC (2000) Neural and Adaptive Systems:
Fundamentals Through Simulations. Wiley, New York, NY.

Reed RD, Marks IT RJ (1999) Neural Smithing: Supervised Learning for Feed-
forward Artificial Neural Networks. MIT Press, Cambridge, MA.

Ripley BD (1996) Pattern Recognition and Neural Networks. Cambridge Uni-
versity Press, UK.

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
backpropagating erors. In; Rumelhart DE, McClelland JL (eds.) Parallel Dis-
tributed Processing: Fxplorations in the Microstructure of Cognition I. MIT
Press, Cambridge, MA.

Sharkey AJC (1999) Combining Artificial Neural Networks: Ensemble and
Modular Multi-Net Systems. Springer-Verlag, Berlin.

Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. Wiley, New York, NY.

1.3 Evolutionary Methods

Béack T (1996) Ewolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, NY.

Béck T, Fogel DB, Michalewicz Z (1997) Handbook of Evolutionary Com-
putation. Oxford University Press, New York, NY.

Banzhaf W (1998) Genetic Programming: An Introduction. Morgan Kaufmann,
San Francisco, CA.

Bonabeau E, Dorigo M, Theaulaz G (1999) Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, UK.

Davis L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, NY.

70 J. Fulcher

Dorrigo M, Stiitzle T (2004) Ant Colony Optimization. MIT Press, Cambridge,
MA.

Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, New York, NY.

Fogel LJ (1999) Intelligence Through Simulated Evolution. Wiley, New York,
NY.

Fogel DB (2005) FEwvolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Wiley, New York, NY.

Goldberg DE, Deb K (1991) Foundations of Genetic Algorithms: A Com-
parative Analysis of Selection Schemes Used in Genetic Algorithms. Morgan
Kauffman, San Mateo, CA.

Grana M, Duro R, d’Anjou A, Wang PP (2004) Information Processing in
Evolutionary Algorithms: From Industrial Applications to Academic Specula-
tions. Springer-Verlag, Berlin.

Greenwood GW, Tyrrell AM (2006) Introduction to Evolvable Hardware: A
Practical Guide for Designing Self-adaptive Systems. Wiley, New York, NY.

Higuchi T, Yong L, Yao X (eds.) (1999) Evolvable Hardware. Springer-Verlag,
Berlin.

Holland JJ (1992) Adaptation in Natural and Artificial Systems (2nd ed).
MIT Press, Cambridge, MA.

Kennedy J, Eberhart RC, Yuhui S, Shi Y (2001) Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA.

Koza J (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Langdon WB (1998) Data Structures and Genetic Programming: GP + Data
Structures = Automatic Programming! Kluwer Academic Press, Boston, MA.

Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolutio Pro-
grams. Springer-Verlag, Berlin.

Mitchell M (1995) Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA.

Computational Intelligence: An Introduction 71

Sekanina L, Arsian T (2005) Evolvable Components: From Theory to Hard-
ware Implementations. Springer-Verlag, Berlin.

Tyrrell AM (2006) Introduction to Ewvolvable Hardware: A Practical Guide
for Designing Self-Adaptive Systems. Wiley, New York, NY.

1.4 Fuzzy Systems
Cox E (1994) The Fuzzy Systems Handbook. AP Professional Books, Boston,
MA.

Fogel LJ, Owens AJ (eds.) (1997) Handbook of Fuzzy Computation, Oxford
University Press, New York, NY.

Jang J-S R, Sun C-T, Mizutani E (1993) Neuro-Fuzzy and Soft Computing:
a Computational Approach to Learning and Machine Intelligence. Prentice
Hall, Englewood Cliffs, NJ.

Kosko B (1997) Fuzzy Engineering. Prentice Hall, Upper Saddle River, NJ.

McNeill D, Thro E (1994) Fuzzy Logic: A Practical Approach. Academic Press,
Boston, MA.

Nauck D (1997) Foundations of Neuro-Fuzzy Systems. Wiley, New York, NY.

Pedrycz W, Gomide F (1998) An Introduction to Fuzzy Sets: Analysis and
Design. MIT Press, Cambridge, MA.

Ruspini E, Bonissone P, Pedrycz W (eds.) Handbook of Fuzzy Computation.
Oxford University Press, New York, NY.

Von Altrock (1995) Fuzzy Logic and Neurofuzzy Applications Explained. Pren-
tice Hall, Englewood Cliffs, NJ.

1.5 Other
Brown M, Harris C (1994) Neurofuzzy Adaptive Modeling and Control. Pren-
tice Hall, Englewood Cliffs, NJ.

Giarratano JC, Riley G (2005) Expert Systems: Principles and Programming
(4th ed). Thomson, Boston, MA.

Ignizio J (1991) Introduction to Expert Systems. McGraw-Hill, New York,
NY.

72 J. Fulcher

Jackson P (1998) Introduction to Expert Systems (3rd ed). Addison Wesley,
Reading, MA.

Negnevitsky M (2005) Artificial Intelligence: A Guide to Intelligent Systems
(2nd ed). Prentice Hall, Englewood Cliffs, NJ.

Padgham L, Winikoff M (2004) Developing Intelligent Agent Systems: A Prac-
tical Guide. Wiley, New York, NY.

Pedrycz W (ed.) (1997) Fuzzy Evolutionary Computing. Kluwer Academic
Publishers, New York, NY.

Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Com-
puting. McGraw Hill, New York, NY.

Wolfram S (1997) Cellular Automnata and Complexity — Collected Papers.
Addison Wesley, Reading, MA.

Wooldridge M (2002) An Introduction to Multiagent Systems. Wiley, Chich-
ester, UK.

Zomaya AY (ed.) (2006) Handbook of Nature-Inspired and Innovative Com-
puting: Integrating Classical Models with Emerging Technologies. Springer-
Verlag, Berlin.

2 Key Survey/Review Articles

2.1 Artificial Neural Networks

Carpenter GA, Grossberg SA (1987) A massively parallel architecture for a
self-organizing neural pattern recognition machine. Computer Vision, Graph-
ics, and Image Understanding, 37: 54-115.

Hinton GE (1992) How neural networks learn through experience. Scientific
American. 267: 144-151.

Hopfield JJ (1984) Neurons with graded response have collective computa-
tional properties like those in two-state neurons. Proc. National Academy
Science, 81: 3088-3092.

Lipmann RP (1987) An introduction to computing with neural networks.
IEEE ASSP Magazine, 1: 4-42.

Computational Intelligence: An Introduction 73
2.2 Evolutionary Methods

Hinchey MG, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. [EEE
Computer, 40(4): 111-113.

2.3 Fuzzy Systems

Zadeh L (1994) Fuzzy logic, neural networks, and soft computing. Communi-
cations ACM, 37(3): 77-84.

2.4 Other

Allen J (1998) AI growing up: the challenges and opportunities. AI Magazine,
Winter: 32-45.

Bauch T, et al. (2006) How AT and multi-robot systems research will acceler-
ate our understanding of social animal behavior. Proc. IEEE, July: 1445-1463.

Dasgupta D, Attoh-Okine N (1997) Immunity-based systems: a survey. In:
Proc. IEEE Intl. Conf. Systems, Man and Cybernetics. Orlando, FL. IEEE
Computer Society Press, Los Alamitos, CA: 326-331.

Hearst M, Hirsh H (2000) Als greatest trends and controversies. IEEE Intel-
ligent Systems, January/February: 8-17.

Hendler J (2006) Introducing the Future of Al. IEEE Intelligent Systems,
21(3): 2-4.

Lesser V (1995) Multiagent systems: an emerging subdiscipline of AI. ACM
Computing Surveys, 27(3): 340-342.

Williams C (1986) Expert systems, knowledge engineering, and Al tools —
an overview. IEEE Expert, 1(2): 2-6.

Wooldridge M, Jennings JR (1995) Intelligent agents: theory and practice.
The Knowledge Engineering Review, 10(2): 115-152.

Zykov V, et al. (2005) Self-reproducing machines. Nature, 435(7038): 163-164.

74 J. Fulcher

3 Organizations, Societies, Special Interest Groups,
Journals

3.1 Computational Intelligence

Computational Intelligence (Blackwell) {1.415}18
IEEE Computational Intelligence Magazine (IEEE CI Society)
IEEE Intelligent Systems (IEEE Computer Society) {2.413}

Intl. J. Computational Intelligence
(World Academy of Science Engineering and Technology)

Intl. J. Computational Intelligence and Applications (World Scientific)

Intl. J. Computational Intelligence and Organizations (Lawrence Erlbaum and
Associates)

Intl. J. Computational Intelligence Research (Research India Publications)
Intl. J. Computational Intelligence Theory and Practice (Serials Publication)
International Journal of Intelligent Systems (Wiley)

Journal of Advanced Computational Intelligence and Intelligent Informatics
(Fuji Technology Press)

3.2 Artificial Neural Networks

IEEE Transactions on Neural Networks (IEEE Neural Network Society)
{2.620}

International Journal of Neural Systems (World Scientific)
Network — Computation in Neural Systems (MIT Press) {1.0}
Neural Computation (MIT Press) {2.229}

Neural Networks International Neural Networks Society (Elsevier) {2.0}

'8 2006 Thomson ISI Journal Citation Reports — Science {impact factor}.

Computational Intelligence: An Introduction 75

Neural Processing Letters (Kluwer) {0.753}

Neurocomputing (Elsevier) {0.860}

3.3 Evolutionary Methods

Evolutionary Computation (MIT Press) {1.325}
Genetic Programming and Evolvable Machines J. (Kluwer)

IEEE Transactions on Evolutionary Computation (IEEE CI Society) {1.325}

3.4 Fuzzy Systems

Fuzzy Optimization and Decision Making (Springer)

Fuzzy Sets and Systems (Elsevier) {1.181}

IEEFE Transactions on Fuzzy Systems (IEEE CI Society) {1.803}

Intl. J. Soft Computing and Intelligence (Intl. Fuzzy Systems Association)
Intl. J. Uncertainty, Fuzziness & Knowledge-Based Systems (World Scientific)

J. Intelligent and Fuzzy Systems: Applications in Engineering and Technology
(IOS Press)

3.5 Other

AT Magazine (Association for the Advancement of Artificial Intelligence) {1.0}
Applied Soft Computing (Elsevier)

Artificial Intelligence (Elsevier) {2.271}

Artificial Life (MIT Press) {1.769}

Autonomous Agents and Multi-Agent Systems (Springer) {1.974}

Connection Science (Taylor and Francis) {1.297}

76 J. Fulcher

IEEFE Trans. Knowledge and Data Engineering (IEEE Computer Society)
IEEFE Transactions on Systems, Man and Cybernetics (IEEE SMC Society)
Intl. J. Intelligent Systems (Wiley)

J. Artificial Intelligence Research (AAAI Press) {1.795}

J. Intelligent Information Systems (Springer)

J. Machine Learning Research (MIT Press) {2.255}

KES Journal: Innovation in Knowledge-Based Intelligent Engineering Systems
(KES International)

Machine Learning (Springer) {2.654}

Soft Computing: A Fusion of Foundations, Methodology, and Applications
(Springer) {0.516}

4 Key International Conferences/Workshops

Congress on Evolutionary Computation — CEC (IEEE)

European Symposium ANNs (ENNS, INNS, IEEE-CIS)

Genetic and Evolutionary Computation Conf. (GECCO) (ACM SIGEVO)

Neural Information Processing Symposium — NIPS [published as Advances in
Neural Information Processing Systems. Morgan Kaufmann, San Francisco,
CA] (NIPS Foundation)

Intl. Conf. Fuzzy Systems — FUZZ-IEEE (IEEE)
Intl. Joint Conf. Neural Networks (IEEE/Intl. Neural Network Society)

Intl. Conf. Knowledge-Based Intelligent Information Engineering Systems
(KES International)

World Congress on Computational Intelligence — WCCI (IEEE)

Computational Intelligence: An Introduction 77

5 (Open Source) Software

Stuttgart Neural Network Simulator
hitp://www-ra.informatik.uni-tuebingen.de/SNNS

http://www.scilab.org/ (link to ANN, EVOL toolboxes)

http://www.mindmedia.com/links/mind tools software neural network
software.html (FAST ANN library)

http://neuralnetworks. ai-depot.com /Software. html
(includes Freeware, Shareware and Open Source)

http:www. geocities.com/adotsaha/NNinExcel html

http://sourceforge.net

(search on ‘Computational Intelligence’ (CILib), ‘Neural Network’ (FANN),
‘Genetic Algorithm’ (GAUL), ‘Fuzzy Logic’ (FFLL), ‘Swarm Intelligence’)
http://fann.sourceforge.net (Fast ANN)

http://simbrain.sourceforge.net

http://gaul. sourceforge.net (Genetic Algorithm Utility Library)

http://ffil.sourceforge.net (FreeFuzzy Logic Library)

http://dmoz.org/Computers/Artificial Intelligence/Fuzzy
(Open Source Fuzzy Inference Engine for Java)

http://dmoz.org/Computers/Artificial Intelligence/Genetic Programming/
Algorithms/

http://aaai.org/aitopics /html/soft.hitml

http: //www.openchannelfoundation.org/ (Al and Expert Systems)
http://opensource.arc.nasa.gov/ (link to JavaGenes)

http: //www.genetic-programming.org/gpftpsite.html (GP and GA)
http://geneticalgorithm.ai-depot.com/Libraries.html

http://www.jaga.org (Java API for GAs)

78 J. Fulcher

http:/ /www.gamedia.com/neuralfuzzy.html (ANNs, GAs, Fuzzy Logic)

http://www.ghg.net/clips/CLIPS.html (C-language Inference Production
System — CLIPS)

http://www.iit.nrc.ca/IR public/fuzzy/fuzzyClips/fuzzy CLIPS /index.html
(FuzzyCLIPS)

http:/ /www. fizyka.umk.pl/~ duch/software.html

6 Data Bases

UCI Knowledge Discovery in Databases Repository
http://kdd.ics.uci.edu/

University of California, Irvine Machine Learning Data Repository
http://mlearn.ics.uci.edu/MLRepository.html

Part 11

Preprocessing, Visualization,
Systems Integration

Data Reduction for Pattern Recognition
and Data Analysis

Tommy W.S. Chow and Di Huang

Department of Electronic Engineering, City University of Hong Kong,
eetchow@cityu.edu.hk, sshh007@hotmail.com

1 Introduction

Pattern recognition [5,13,58] involves various human activities of great prac-
tical significance, such as data-based bankruptcy prediction, speech/image
recognition, machine fault detection and cancer diagnosis. Clearly, it would
be immensely useful to build machines to fulfill pattern recognition tasks
in a reliable and efficient way. The most general and most natural pattern
recognition frameworks mainly rely on statistical characterizations of pat-
terns with an assumption that they are generated by a probabilistic system.
Research on neural pattern recognition has been widely conducted during
the past few decades. In contrast to statistical methods, no assumptions (a
priori knowledge) are required for building a neural pattern recognition frame-
work. Despite the fact that different pattern recognition systems use different
working mechanisms, the basic procedures of all these systems are basically
the same. A typical pattern recognition procedure generally consists of three
sequential parts — a sensing model for collecting and preprocessing raw data
from real sites, a data processing model (which includes feature extraction/
selection and pattern selection), and a recognition/classification model [13,58].
When one is handling a pattern recognition process, the following basic issues
must be addressed:

e How to process the raw data for a pattern recognition task? This issue
concerns the sensing and preprocessing stage of pattern recognition;

e How to determine appropriate data for a given pattern recognition model?
This is a very important concern in the data processing stage. Deleting
noisy or redundant data (including features and patterns) invariably leads
to enhanced recognition performance;

e How to design an appropriate classifier based on a given data set? This
topic has been widely discussed in the pattern recognition community.

T.W.S. Chow and D. Huang: Data Reduction for Pattern Recognition and Data Analysis,
Studies in Computational Intelligence (SCI) 115, 81-109 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

82 T.W.S. Chow and D. Huang

Various learning algorithms and models have been proposed in an attempt
to enhance recognition accuracy as much as possible, and in a fashion that
is as simple as possible.

Basically, through eliminating ‘noisy’ data (such as noisy samples and
irrelevant features) and compressing redundant samples/features, a data pro-
cessing technique is used to reduce the data volume without causing the loss of
useful information. The main merits of such data processing include enhancing
the scalability, recognition accuracy, computational and measurement effi-
ciency, as well as to facilitate interpretation of the entire pattern recognition
procedure [6,24,43]. As the size of data has significantly increased in recent
applications, data preprocessing has become essential in many pattern recog-
nition procedures. In this Chapter, data reduction/selection is specifically
denoted as reduction/selection of data samples.

2 Data Reduction

While computer technology grows at an unprecedented pace, the size of data
increases to an extent making pattern recognition incommodious. Data reduc-
tion therefore holds increasing appeal to researchers, although the use of more
data samples can usually lead to more accurate pattern recognition results.
With the aim of enhancing the overall computational efficiency, a huge pattern
set is usually first reduced to a small representative (informative) pattern set
on which pattern recognition models are built. It is generally assumed that
data reduction should introduce no or minimal effect on final recognition
results.

The simplest data reduction method is to sample the data in a random
or stratified way [10]. In these methods, the user just needs to randomly
draw the desired amount of samples from a data set. Generally speaking,
these are very simple methods so that they can be easily implemented, and
also have negligible computational burden. Thus, they have been used as
an evaluation baseline in many studies. These random sampling schemes are
clearly not sufficiently sophisticated to guarantee stable performance. They
are so simple that they are likely to cause a loss of important data distribution
information [8].

A number of more sophisticated data reduction techniques have also been
developed. According to the working mechanism, data reduction models can
broadly be categorized as ‘filter’ and ‘wrapper’ models. A filter model works
prior to pattern recognition and is totally independent of the training of recog-
nition models, whilst a wrapper data reduction process is embedded within
the training process. The results of recognition training play a vital role in a
wrapper data reduction process.

Data Reduction for Pattern Recognition and Data Analysis 83
2.1 Wrapper Methods

Assuming that all patterns are not equally informative (useful) to a pattern
recognition learning algorithm [63], wrapper models modify the original data
distribution according to the behavior of a pattern recognition hypothesis.
Useful patterns are selected into a learning process with higher probability
than others.

In general, wrapper data reduction schemes [15,25,30,52] start with a ran-
dom data subset. A pattern recognition hypothesis is constructed using the
data subset. Then, according to the performance of the resulting recognition
model, the selected data subset is gradually modified. This data-modifying-
model-building process repeats until the recognition accuracy cannot be
improved further.

The wrapper method is model-dependent. Further, as the original data
distribution has been distorted, the data reduction results may not be useful
for unsupervised pattern recognition tasks, such as density estimation and
data visualization. As mentioned earlier, wrapper models generally consider
the samples likely to be incorrectly recognized as being ‘informative’. Samples
with more information have a higher probability of participating in training
the wrapper models. With this mechanism, wrapper models are likely to fail
by confusing outliers with real informative samples because the former always
have relatively high recognition uncertainty [55]. This is the main shortcoming
of wrapper models.

2.2 Filter Methods

In contrast with wrapper methods, filter models are independent of recogni-
tion model training. Uncertain sampling — an example filter model — employs
a classifier A to determine the informative patterns for building another clas-
sifier that may be very different [40]. ‘Informative’ patterns are those that can
be correctly classified by A with lowest certainty. Most filter models explore
the data distribution information instead of the classification results when
conducting data reduction.

The basic aim of filter models is to determine a representative set — in
other words, a reduced data set — which preserves the original data distribu-
tion as much as possible [2,18,32,46,68]. These methods are thus found to
be versatile. Apart from classification, filter models can work for other pat-
tern recognition tasks, such as data visualization and data clustering. Vector
quantization error (VQE) is widely used for filter data reduction [2,17,30].
VQE [18] measures the extent of similarity between each given pattern and
its nearest representative. The smaller the vector quantization error, or the
closer that patterns are to their corresponding representatives, the better the
data reduction result. Through minimizing the VQE, representative data is

84 T.W.S. Chow and D. Huang

found. Self-organizing maps (SOMs) [32] are a typical descent-based algo-
rithm designed for minimizing the VQE. It is well known however that it
is difficult to determine the learning parameters for a SOM, since they are
problem-dependent. Also, VQE-based data reduction models often generate
new data points in a given data space rather than select data points from
an original data set. The generated data points may have no physical mean-
ing, thus making them unsuitable for direct use in many pattern recognition
procedures.

Another popular type of filter method is based upon probability density
distribution [46, 62]. The crucial issue of density-based methods lies in the
estimation of probability density functions (pdf) underlying a given data set.
In [68], density is estimated by employing the maximum likelihood learning
algorithm. This approach may not be efficient enough for tackling complex
data distribution. In [2,46], a much simpler and more efficient strategy is
used to analyze density. The basic idea of this strategy is that the density of
a pattern z is inversely related to the distance between z and its kth near-
est neighbor. In other words, when the distance between a pattern and its
neighbor is small, the probability density at that pattern must be high. Based
on this idea, the density around each pattern is evaluated. The most dense
pattern — say x4 — is then identified and is placed into the representative set.
The patterns around x4 are rejected during the remainder of the representative
selection process. This operation repeats until there is no pattern left for repre-
sentative selection. Without involving the learning processes to build a density
estimator, the above density analysis is more efficient than the maximum-
likelihood approach used in [68]. However, as this approach [2,46] requires
the calculation of distances between all possible pattern pairs, they are very
expensive in terms of computation and memory requirements, especially when
a large amount of patterns is given.

2.3 Examples of Filter Methods

In order to provide a sound discussion on data reduction models, two typical
distribution-based data reduction frameworks are detailed in this Section,
these being the multi-scale and entropy-based data reduction methods.

The Multi-Scale Method

The multi-scale method is a typical density-based filter data reduction method,
in which the pattern density is analyzed according to the distance of that pat-
tern from its neighbor [51]. All patterns are then ranked in order of density.
Based on the pattern order, the representatives are recursively determined.
Given a datum X, this method can be briefly stated as follows:

Data Reduction for Pattern Recognition and Data Analysis 85

Algorithm 1 The Multi-Scale Method

step 1. Determine the parameter k£ which is closely related to the size of the data

region covered by a representative;

step 2. Calculate the distance between all possible pattern pairs in X;

step 3.

repeat

for each pattern in X do

(i) Determine the distance between the pattern and its kth neighbor;
(ii) According to these distances, identify the most dense pattern — say, x4 —
and mark it as representative;
(iii) Draw a circle with center x4 and radius 2radgs, where radg is the distance
between z4 and its k th neighbor;
(iv) Delete all patterns which fall within the circle.

until no remaining pattern in X

Entropy-Based Data Reduction Method

Recently, a new density-based method has been proposed. This method relies
on the representative entropy (RE) to guide the data reduction process, and
thus is named ‘REDR’ (representative entropy data reduction) [27]. Assuming
that R is the result of the data reduction process, the probability of z (x € X)
being represented by r;(r; € R) is then p(r; |). Further, the sum of the
representative probabilities of z is 1, that is, Z]K:l p(r; |) = 1. Ideally,
each pattern in X is close to one and only one representative. In terms of
probability, it is expected that p(r; | =) will be zero for all i except one.
The more uneven the distribution of the representation information of R to
X, the better the representative set R will be. This is the rationale behind
‘representative entropy’ (RE). Given a data set X and a representative set R,
RE is defined as

RE(R:X) = o 33 el |aestolrs 1)

where N and K are the size of X and R, respectively. Assuming that a
representative covers the L original patterns nearest to it, we have

_ d(l:,Tj)) <) .
p(rj | z) o< s(rj,x) = { 1= Radius(r;)’ d(x,r;) < Radius(r;)

: 2)
0, otherwise

where Radius (rj) is the distance of 7; to the (L + 1)th pattern nearest to it.

After normalization, this becomes

L str)
p(T] |) Z S(?"j,"ﬂ) (3)

reR

The REDR method includes two sequential stages, these being (i) a for-
ward search stage, followed by (ii) a RE-based stepwise search stage. At the

86 T.W.S. Chow and D. Huang

beginning, a set of data points, say Ry, is randomly drawn from a given
data set, and the representative set R is empty. Then, the forward search is
conducted on R to recursively place the appropriate representatives into R.
This process stops when Ry has been completely scanned, or R has become a
desirable size. Following the forward process is a RE based stepwise process,
in which a pattern is firstly identified as representative from the area not yet
well covered by R. When R is of the desired size, the ‘worst’ representative is
deleted after a new representative is determined — the ‘worst’ representative
being the one exhibiting the lowest representative ability. The representative
ability of a representative — say r; — can be measured using

1

RE(rj; X) = Nlog(K)

Y —plry | @)log(p(r; |) (4)

allzeX

Given a data set X containing N patterns, REDR can be stated as follows:

Algorithm 2 Representative Entropy Data Reduction (REDR)

step 1. Randomly select a pattern set Ro. Set the representative set R empty.
Determine K, the desired size of R. Naturally, a representative represents L (L =
N/K) patterns of X.
step 2.
repeat
In X, determine the top L patterns nearest to r; (r; € Ro).
Based on the sum of the distances of r; to these patterns, the most dense
element of Ro (say, rq) is identified and placed into R.
The top L patterns nearest to 74 (including, of course, rq itself) will be rejected
in the subsequent forward search stage.
until Ry is completely scanned or R contains K elements
step 3. In X, select out the patterns having mawrjeRpouter(x | 7;) > 0. Among
these patterns, identify the one with min(maz, e rpouter(x | 75)), and put it into
R. pouter(x | r5) is defined by:

X |Ty) =
pouter(| J) otherwise

{ 1-— Ra;{fz:ﬁ”), d(z,7;) < Radouter(T5)

where Radouter(r;) is the distance of r; with the 2Lth pattern nearest to it.

step 4. When R consists of K 41 representatives, delete the worst representative —
in other words, the one exhibiting the largest RE(r;, X).

step 5. Calculate RE(R, X) for the newly constructed R.

step 6. Repeat Steps 3 through 5 until RE(R, X) cannot be reduced for five
consecutive iterations.

In the above process, the condition of max,,crPouter(z | 75) > 0 in
Step 3 guarantees a stable data reduction process. Apparently, patterns with
maxy;crRPouter(x | 75) > 0 must be the ones uncovered by R. Without
a priori knowledge on the density distribution of these patterns, it is not

Data Reduction for Pattern Recognition and Data Analysis 87

recommended to determine the representative from them. With the constraint
of maty; e R Pouter (z | r;) > 0, the newly determined representative must be
around the boundary of the area that has already been covered by R. In this
way, the proposed method can gradually and reliably explore the entire data
space.

Given a data set comprising N patterns, the computational and memory
requirement of the multi-scale method is O(N?). This means that the multi-
scale method is computationally demanding when applied to a large data set.
For REDR, the computational complexity is O(N(n; + ko)), where kg is the
number of patterns initially selected into R, and n; is the number of RE-based
processes for iteratively adjusting R. Generally, (n; + kq) is much less than N.
REDR always requires substantially less computational overhead compared
with the multi-scale method.

Data Reduction Method Comparison

In this Section, REDR, random sampling, SOM [18] and Mitra’s multi-scale
methods are compared on five data sets — three synthetic and two real,
from the University of California at Irvine Knowledge Discovery in Databases
repository (http://kdd.ics.uci.edu/) — as summarized in Table 1.

The comparisons are conducted from the perspectives of efficiency and
effectiveness, with running time used to evaluate the former. For a data
reduction method, ‘effectiveness’ means the extent that the original data dis-
tribution information is preserved after data reduction. This can be measured
by the difference between the density functions estimated on the original data
set and the reduced data set delivered by the tested method. Assume that we
have the density function obtained on the original data — say f(x) — and the
one obtained on the reduced data — (g(x)). To evaluate the difference between
f(z) and g(x), two indexes can be used. They are the absolution distance Dy,
and the Kullback-Liebler distance (divergence) Dy

Das((/ | f(2) - g(2) | de (5)

and
Drr(f(/f logfz x (6)
Also, we can have
Dap(f(x),g(x)) = D | fltw:) — g(tw:) | Ata, (7)
te, €T X
and
Dgr(f(x) Z ftz;)log (t %)Ataci (8)

te, €TX i)

88 T.W.S. Chow and D. Huang

Table 1. The data sets used for data reduction

Name of Number of training data patterns Number of Number
dataset test data of
patterns features
Pen-based 5000 3498 16
recognition of
handwritten
digits
Yeast data 800 684 8
. . 10
Synthetic 2000 points from N |{ [0, 0],
01
Data 1
. . 0.2 0
Synthetic 1000 points from N |{ [0, 0],
0 0.2
Data 2

1000 points from N ([0.3, 0.3], {0(')1 001 })

1000 points from N <[_0,3’ —0.3], [0.1 0])

0 0.1
. . 0.1 0
Synthetic 1000 points from N | [0, 0],
0 0.1
Data 3

1000 points from N ([0.37 0.3], {0(')2 002})

1000 points from N <[—0.37 ~0.3], {0(.)1 001})

1000 points from N ([0.170.1], [0'85 0%5})

when the data set T'X is large enough and can cover most of the area with
f(z) > 0 or g(x) > 0. A smaller Dy, or Dgy, means a better data reduction
result.

The comparative results are listed in Table 2 (data reduction effectiveness)
and Table 3 (computational efficiency). In each cell of Table 2, the upper and
lower values are the means and standard deviations of the results of 20 tri-
als, respectively. RR or reduction ratio is the ratio of the reduced data set
size to the original data set size. The results on different examples lead to
similar conclusions. In terms of effectiveness, density-based methods — such as
REDR and the multi-scale based method — significantly outperform SOM and
random sampling. From the viewpoint of computational efficiency, SOM per-
forms better than density-based methods — namely REDR and the multi-scale

Data Reduction for Pattern Recognition and Data Analysis 89

Table 2. Results of data reduction methods in terms of density difference

Data set Random SOM Multiscale- REDR-DR
sampling based method

Doy Dxr Da DkrL Dyp Dkr RR D. Dxkp

RR =1/20
Synthetic ~ 0.052 0.073 0.050 0.057 0.042 0.056 0.05 0.041 0.054
Data 1 0.0044 0.0079 0.0007 0.0017 0.00054 0.0011 0.002 0.0004 0.0006

Synthetic 0.052 0.073 0.05 0.057 0.042 0.056 0.05 0.041 0.054
Data 2 0.0044 0.0079 0.0007 0.0017 0.00054 0.0011 0.002 0.0004 0.0006

Synthetic 0.16 0.2 0.12 0.17 0.11 0.14 0.05 0.11 0.14
Data 3 0.021 0.022 0.002 0.004 0.001 0.001 0.003 0.002 0.002

Pen-based 1.41 0.91 1.39 0.82 1.35 0.86 0.05 1.34 0.81
handwriting 0.054 0.031 0.035 0.02 0.031 0.009 0.005 0.01 0.005
(x1077)

Yeast 1.39 097 058 046 0.54 042 0.05 055 0.53
(x1079) 0.066 0.046 0.034 0.019 0.03 0.02 0.008 0.017 0.036

RR =1/10

Synthetic ~ 0.048 0.059 0.038 0.044 0.033 0.038 0.1 0.033 0.037
Data 1 0.0033 0.0056 0.0007 0.0008 0.0002 0.0006 0.02 0.0005 0.0005
Synthetic ~ 0.11 0.13 0.08 0.2 0075 0089 0.1 0.076 0.088
Data 2 0.008 0.01 0.001 0.003 0.001 0.002 0.01 0.0008 0.0009

Synthetic 0.15 0.19 0.11 0.15 0.11 0.12 01 011 0.12
Data 3 0.02 0.03 0.001 0.003 0.003 0.004 0.002 0.002 0.001

Pen-based 1.01 0.7 0.81 0.65 0.55 048 0.1 053 047
handwriting 0.05 0.028 0.05 0.052 0.12 0.005 0.03 0.01 0.01
(x1077)

Yeast 0.86 072 054 043 0.53 043 011 048 04
(x1079) 0.046 0.039 0.063 0.046 0.018 0.019 0.03 0.017 0.013

based one — as suggested in Table 3. Moreover, REDR is much more efficient
than the multi-scale based method, which is consistent with the preceding
theoretical analysis.

3 Feature Selection
An appropriate reduction of a feature set can not only improve the effi-

ciency and scalability of a pattern recognition procedure, in some cases, it
also enhances the recognition accuracy because of the finite sample size.

90 T.W.S. Chow and D. Huang

Table 3. Results of data reduction methods in terms of running time (in seconds)

Dataset SOM Multiscale- REDR-DR
based method
RR=1/20
Syntheticl 5 12 4
Synthetic2 8 44 15
Synthetic3 11 102 40
Pen-based 51 1600 349
handwriting
Yeast 2 7 3
RR=1/10
Syntheticl 7 30 14
Synthetic2 9 203 37
Synthetic3 12 217 79
Pen-based 85 3500 888
handwriting
Yeast 3 14 7
Original a candidata
foature set Feature searching feature subset o Feature
engine evaluation

A
evaluation

value

Selected feature

subset

Fig. 1. Feature selection model general outline

Compared with a complex recognition model, a simple model is always prefer-
able. These are the main reasons why feature selection has always been an
essential consideration in statistics and neural computation.

Feature selection is an optimization process in the hypothesis space which
includes all possible feature subsets. A general feature selection model is illus-
trated in Fig.1. Now both the feature evaluation criteria and the feature
search engine are two crucial parts in any feature selection model. In the fol-
lowing Sections, the major feature selection techniques are surveyed according
to these two aspects.

Data Reduction for Pattern Recognition and Data Analysis 91
3.1 Feature Evaluation

Feature evaluation indices are designed to enumerate the relevancy of a fea-
ture subset to a recognition task or the redundancy among a feature subset
[6,29,33]. According to the types of feature evaluation criteria, feature selec-
tion schemes are categorized into one of three groups — the filter scheme, the
embedded scheme, and the wrapper scheme.

Wrapper Model

Wrapper feature selection models [29, 31] directly employ the accuracy of a
certain recognition procedure to evaluate the quality of feature subsets. Due
to this mechanism, it is generally argued that a wrapper scheme is able to
provide better pattern recognition behavior compared with other types of
feature selection models. For example, in [9,29], comparative results show that
a wrapper model performs better than a filter model for building a decision
tree (DT).

On the other hand, wrapper models are usually criticized for being too
computationally demanding [21,29,65]. This is the main shortcoming of wrap-
per models. Given each tested feature subset, a pattern recognition model is
constructed. Then based on the performance of that model on validation data,
or under a cross-validation scheme ([29] shows that the latter outperforms
the former), the quality of the tested feature subset is evaluated. However,
repeating this evaluation process on many feature subsets is computationally
demanding. Another problem with wrapper models is overfitting. A pattern
recognition procedure built in a high-dimensional domain needs to be com-
plex. Most likely, this procedure will overfit the training data. Also, using a
single data set many times over may increase the likelihood that the final
selection results only perform well on the data used in the feature selection
process [65].

Embedded Model

In an embedded model, the intermediate results of a pattern recognition
learning algorithm rather than the final recognition results are employed to
evaluate the importance of features. In practice, the rationale behind embed-
ded feature selection methods is the idea of pruning. This idea is not novel in
the neurocomputing community where it is well known that pruning unim-
portant components of a recognition model can avoid overfitting and bring
computational and memory savings.

In [20,44,56,61,62], a pattern recognition model (such as Support Vec-
tor Machine [20, 62] or Multi-Layer Perceptron network [56,61]) is firstly
built using all the given features. Then, based on the model parameters, the

92 T.W.S. Chow and D. Huang

pattern recognition importance of each feature is estimated. Following elim-
ination of unimportant features, another training iteration is performed and
unimportant features are then eliminated.

Generally, an embedded method is more efficient than a wrapper method.
However the basic problems of wrapper methods — namely the huge com-
putational load and high likelihood of overfitting — cannot be instinctively
addressed because constructing a recognition model in a high-dimensional
domain is still inevitable in an embedded scheme.

Filter Model

In a filter model, feature selection is conducted before the learning phase of a
recognition model. In other words, a ‘good’ feature subset is identified prior
to construction of a recognition model. In such a way, the problems of huge
computational complexity and overfitting can be circumvented.

Up to now, various statistical or distribution-based criteria [3,12,22,23,
26, 28, 35, 36, 39,42, 46, 50, 51, 60, 64, 65] have been developed for measuring
feature relevance (in other words, the relationship between features and out-
put variable(s)), and/or feature dependence (that is, the relationship between
features). Some useful surveys on these criteria can be found in [42,47]. In
general, these filter criteria are categorized into several groups such as depen-
dency, information, consistency, distance, and so forth. In this Chapter, we
summarize these criteria from a different perspective. They are categorized
into three main groups: variable-similarity-based, probability-divergence-based,
and pattern-distance-based.

Variable-similarity-based criteria

Variable-similarity-based criteria employ or adopt various statistical metrics —
for instance correlation coefficient and mutual information (MI) — to enumer-
ate the similarity between feature(s) and output variable, or alternatively the
association among features.

In [46], a correlation coefficient-based criterion is designed to estimate the
similarity of two features. According to estimation results, similar features are
identified and clustered together. Then, through selecting one representative
feature from each feature cluster and discarding the others, the original feature
set is reduced.

In [22], the correlation-based feature selection (CFS) index is defined as

mrcf

CFS(S) = Vm+m(m —L)ryy

9)

where S is the tested feature subset with cardinality m, r.s is the average
feature-class correlation of S, and ¢ is the average feature-feature correlation

Data Reduction for Pattern Recognition and Data Analysis 93

of S. In CFS(S), the numerator indicates the predictiveness of the feature set
S, and the denominator measures the extent of redundancy of S. Obviously,
in order to achieve a large value of CFS(S), the pattern recognition ability of
each feature in S should be high, and at the same time the redundancy in S
is required to be low.

These correlation-based criteria are relatively efficient from a computa-
tional point of view. The concept of correlation, however, is not sophisticated
enough to handle the complicated nature of a problem because correlation
measures only the relationship between two variables, whereas feature selec-
tion schemes need to deal with hundreds (or even thousands) of variables. The
feature clustering algorithm in [44] only considers the relationship between
two features, and ignores the relationship of any more than two. Moreover,
in CFS(S), the multi-variable relationship is approximated using the linear
averages of related 2-variable correlations, 7.y and ryy. This strategy is appar-
ently not sufficiently sophisticated to measure complex relationships between
variables.

Mutual information (MI) is an effective alternative for evaluating the rela-
tionship between variables. Given two variables X and Y, MI can evaluate
the similarity between these two variables. Shannon’s MI is defined as

B 2)l p(z,y) »
I(X,Y) = /p(Yl gp(w)p(y)d dy. (10)

z,y

Compared with the correlation coefficient, it is more flexible in the sense
that MI does not require X and Y to be of the same dimensionality, moreover
MI can reflect the arbitrary relationship between X and Y. The main challenge
of MI-based indices lies in the computation of MI as elaborated in Eqn. (10).
It shows that the estimation of MI requires the probabilities underlying X
and Y to be estimated. Furthermore, we need to conduct a rather computa-
tionally demanding integration when continuous variables are present. This
computational process is rather difficult under a high-dimensional domain.

To estimate the probabilities p(x) and p(x,y), histogram and Parzen win-
dow estimators are the most common approaches. Using histograms can
simplify integration of computing MI as summation. However the problem
of pattern shortage paralyzes histogram estimators when working in a high-
dimensional space [14,48]. On the other hand, Parzen window is considered
more effective and reliable than histograms as a probability estimator. Nev-
ertheless Parzen window may pose certain computational difficulties because
of the integral procedure involved in estimating MI.

In the MI-based feature selection method (MIFS) [3] and the MI-based
feature selection method with uniform modification (MIFS-U) [35], histogram
estimators are used to estimate the probability density functions. To avoid
the difficulties that histograms will encounter in high-dimensional spaces,

94 T.W.S. Chow and D. Huang

MIFS and MIFS-U do not directly estimate a high-dimensional MI. Instead,
high-dimensional MIs are analyzed through a linear combination of related
2-dimensional MI estimates. This approach successfully overcomes the com-
putational problems of MI, but generates other problems, these being (1)
the complex relationship between features or between input and output may
not be reflected correctly using linear equations; and (2) there are no princi-
ples (guidelines) to determine the most important parameter for controlling
redundancy in selected features.

In [8,11,36], Parzen window estimators are used in MI-based evaluation
criteria. Suppose that a pattern in X belongs to one of L classes. The L classes
are represented by wq,wa, ...wr. In [36], the MI-based criterion is defined as

L
I060) = HO) + [o) Y pleon | allog(oon | a)ds (1)
k=1

x

L
|X|Zpr]|xlogpw]|$) (12)

rzeX j=1

The criterion developed in [54] is

L
O — - wllo Pz, wy) . . p(z,wi)

1‘ wk
x| Z log = MI —raw (14)

zeX)
where | X| represents the cardinality of X.

In these criteria, the integration procedure for estimating MI is approxi-
mated by a summation. This is a crude way of solving the problem because
this approximation may not be reliable when X is not large enough. In [10],
the MI-based criterion is modelled as:

Z/ o)l S P(wk)z/p(x)QdaL‘

QMI = Ics(X;C) = log" h=1 (15)

3 [vl 0)Ppl)ds
k=1

Probability divergence-based criteria

Probability divergence-based criteria explore the conditional probabilities of
different classes to determine the ‘goodness’ of a feature subset. The rationale
behind these criteria is that a feature subset with high discriminant capa-
bility must guarantee a large distance between the conditional probabilities

Data Reduction for Pattern Recognition and Data Analysis 95

of different classes [12, 26, 34]. Given two classes w; and ws, there are
many formats to evaluate their divergence [12,34], such as Bhattacharryya
divergence (Eqn. (16))

abwhm)Zm/@@|mM@|m»U%$ (16)

x

and Kullback-Liebler divergence (Eqn. (17)).

I (wi,we) = /(p(x | wi) —p(x | w2))(In(p(x | wi) — In(p(x | we)dz (17)

The 2-class divergence has been generalized to multi-class cases [12, 26]

L L

in a simple way as J =) > P(w;)P(wj)J(w;,w;), where the measurement
i=1j=1

J(ws,w;) can be in any format of 2-class divergence.

There is an important aspect of the divergence-based criteria [58]. When
it is known (or assumed) that all the classes are normally distributed with the
same covariance, that is

plx |w;) = ((277)M | Z |>71/2 erp (—;(3@ - Mz)z

where p; is the mean of all x belonging to the class w;, X' is the covariance
matrix, and M is the dimensionality of x. The above divergences (Eqn. (16)
and Eqn. (17)) can be simplified to the Mahalanobis distance

-1

@-w)) 0s)

T =85 = (i — 2)>" (s — priz)” (19)

which is a feature selection criterion first developed within the statistics
community.

Consistency [42] is designed in a discrete or discretized data space. Suppose
that there are J totally distinct patterns in X, with dz; being the ith one.
Also, for dz;, the dominant class — de; — is the class in which dx; appears most
in X. Consistency of the feature subset S is defined as

J
> inconsistency count of dx;
Consistency(S) =1 — =! N (20)
J 4
S (ngtt —)
=1 "= (21)

where N is the size of X, ng!!

n;"” is the number of dz; occurring in its dominant class de;. In terms of

is the number of dx; occurrences in X, and

96 T.W.S. Chow and D. Huang

probability, the consistency (Eqn.(20)) can be explained in a clear way. It
is known that n¢!!/N and n]"’ /N are the probability p(dz;) and the joint
probability p(dz;, dc;), respectively. The consistency (Eqn. (21)) is in fact the
divergence of p(dz;) to p(dx;,dc;) over a given domain.

More recently, a Bayesian discriminant feature selection criterion has been
proposed, in which the distance between conditional posterior probabilities
of different classes is used to measure the classification capability of feature
subsets [26]. Given a feature set-S, the Bayesian discriminant feature selection
criterion is defined as

BDFS(S IX\Z gPSw#C‘ 2) (22)

A large BDFS(S) means a low likelihood of being incorrectly recognized.

Now, despite the fact that the divergence-based-criteria and MI-based ones
are derived from different viewpoints, they are very similar in format, and
encounter the same computational difficulties.

Pattern distance-based criteria

Pattern distance-based criteria exploit data distribution information without
explicitly estimating the underlying probabilities [39,47,51,60,64]. In order
to accurately distinguish patterns of different classes, it is natural to require
that a pattern surrounded by ones from the same class, or that patterns
belonging to different classes, are far from each other. This is the basis of pat-
tern distance-based criteria, including interclass distance [47] and similarity
index [39]. The interclass distance-based criterion is defined as

L L
Jinter—class - Zp(wl) Z P(wj)D(wiawj) (23)

j=it1

where D(w;,w;) — the distance of two classes w; and w; — can be measured by
way of

1 1

D(wisw;) = | class — w; | | class — wj | Z Z d(zq, k) (24)
rrEclass—w; rg€class—w;

A large value of Jipier—class is preferred to discriminate the patterns in differ-
ent classes. In [44], the similarity between patterns is firstly measured using
the distance of patterns. Then, based on the similarity estimates, a feature
selection index is derived, which decreases as the interclass(intraclass) dis-
tances increase/decrease. In other words, a low value of this index indicates a
clear separation of the classes.

In Q-a-FS [64], the inner products of patterns — another type of pattern
distance measurement — are employed to evaluate a feature subset in terms

Data Reduction for Pattern Recognition and Data Analysis 97

of cluster coherence of the first biggest k clusters. A high value of that index
can indirectly indicate that the original dataset is ‘well-clustered’. Through
optimizing it, the contribution of a feature to clearly cluster patterns is eval-
uated. Based on these evaluation results, the appropriate features are finally
determined.

Fuzzy feature evaluation index (FFEI) [51] evaluates the relationship
between the distance values measured in the original input space and a reduced
input space. An appropriate reduction of input space should not distort the
original distribution. In other words, it is expected that patterns close to (far
from) each other in the original data space should be close to (far from) each
other in the reduced data space. This is the basic idea of FFEI.

3.2 Search Engine

Search engine in a discrete feature domain has been an active research area.
Generally, a search engine is seen from two perspectives — search direction
and search strategy [43,47]. In this Chapter, we consider search direction and
search strategy as a single issue for ease of understanding. Search engines can
be grouped into four categories: an optimal search engine, a heuristic search
engine, a stochastic search engine, and a weighting-based search engine.

Optimal Search Engine

Optimal search engine can deliver optimal theoretical results. Optimal search
engines are often referred as complete (or exhaustive) search, or best-first
search [42,50,66]. As all possible feature subsets are tested and compared, a
complete search is able to identify the best feature subset(s). However with
a computation complexity of O(2M) (M being the cardinality of the original
feature set), it is practically impossible to apply the complete search procedure
in most real world applications.

The branch-and-bound algorithm [42,50] is another optimal search scheme.
Depending on a monotonic feature evaluation criterion, this algorithm can
implicitly inspect all possible feature subsets without conducting a complete
search. Through reducing the feature search domain, the branch-and-bound
algorithm can offer computational savings compared with the complete search
scheme. However this improvement is not enough. The branch-and-bound
algorithm is not computationally feasible even when operating on a mod-
erate size feature set. In [42], this algorithm is only applied to examples with
less than 20 features.

Heuristic Search Engines

Heuristic search engines are the most popular of the four types of search
engine. By avoiding expensive searching of the entire feature space, a heuristic

98 T.W.S. Chow and D. Huang

search scheme can greatly reduce computation burden. As a tradeoff, this type
of search engine may not be able to deliver optimal selection results. However,
it is alleged that floating search — a type of heuristic search scheme — is able
to deliver results comparable to optimal search [54].

Typical heuristic search schemes are sequential forward search, sequential
backward search and floating (compound) search [12]. As its name suggests,
in the sequential forward (backward) search scheme, the important (unimpor-
tant) features are iteratively identified and added into (or eliminated from) the
selected feature subset. The cost of these search methods is O(M*), where M
and k are the number of given features and the number of features identified
in a single step, respectively (generally, k is set to 1). As for floating search, its
basic idea is simple: we apply a forward steps followed by b backward steps.
The cost of this type of bidirectional search scheme is O(M+0+1).

Stochastic Search Engines

Stochastic (random or non-deterministic) search engines are based on a
stochastic algorithm, such as a genetic algorithm (GA) or the anytime algo-
rithm [37,57,68]. The basic idea of these algorithms is that the next tested
object (a feature subset in the feature search domain) is generated in a rela-
tively random way, in order not to stick to a local optimization result. Unlike
heuristic search, a stochastic search engine does not reduce the original search
space. However, the actual number of tested feature subsets can be greatly
reduced by setting a reasonable search termination criterion.

Weighting-Based Search Engines

Weighting-based search engines [39,64] firstly associate each original feature
with a weight in a certain feature evaluation criterion. The value of this weight
reflects the recognition contribution of the corresponding feature. Through
using this weighting operation, feature selection can be fulfilled by employing
an optimization algorithm in the continuous domain. In search engines of this
type, an efficient and effective optimization process in the continuous domain
is crucial.

3.3 Example Feature Selection Models

Several typical feature selection methods are considered in this Section to
demonstrate their performance. These are Battiti’s MI-based feature selection
model (MIFS) [3], the MI raw-based feature selection model (MI-raw-FS) [§],
the quadratic MI-based feature selection method (QMIFS) [11], the Bayesian
Discriminant-based Feature Selection scheme [26], support vector machine
based recursive feature elimination (SVM-RFE) [20], and Q-a-FS [64].

Data Reduction for Pattern Recognition and Data Analysis 99

The first four methods are filter models in which a one-step forward search
strategy is adopted. During each iteration, the one-step forward search evalu-
ates the importance of each unselected feature and places the most important
one into a selected feature subset. In MIFS, the importance of a feature (say f)
is determined by

I(f;C|S)=1(f;C) = B> _I(f; f) (25)

fes

where S is the set of selected features, and C' represents the output vari-
able. The MI-raw-FS and QMIFS models employ MI-raw (Eqn.(14)) and
QMI (Eqn. (15)) respectively to measure feature importance, while BDF'S uses
Eqn. (22) for this purpose.

The SVM-RFE [20] is a typical and efficient embedded model. Tt firstly
builds an SVM model based on all features. According to the SVM model
parameters, certain unimportant features are eliminated. Based on the remain-
ing features, a new SVM model is built, thereby certain unimportant features
are detected and deleted. The given feature set is reduced gradually in such
a way. Q-a-FS uses the distribution of patterns to determine which features
lead to improved clustering.

To evaluate the quality of selected feature subsets, four classifiers are
employed. They are a neural network (NN) classifier, support vector machine
model (SVM) with linear kernel, decision tree (DT), and k-Nearest Neigh-
bour rule with £ = 1. The above feature selection methodologies are applied
to four datasets — two from the University of California, Irvine Knowledge
Discovery in Databases repository (http://kdd.ics.uci.edu/), and two being
cancer diagnosis data sets, as summarized in Table 4. The results are briefly
presented in Tables 5 through 8. MIFS shows less effectiveness than the other
five, which can be attributed to the fact that MIFS does not directly estimate
the usefulness of a feature subset. This is illustrated in Eqn. (25). Moreover, in
contrast to the other methods, Q-a-FS is an unsupervised approach. In other
words, the class information of patterns is not used. This is the reason why
Q-a-FS is unable to consistently deliver satisfactory results.

Table 4. The data sets used for the feature selection study

Dataset name Number of Number of Number Number
features classes of training of test
patterns patterns
Sonar 60 2 104 104
Tonosphere 34 2 200 151
Colon tumor [61] 2,000 2 30 32
ALL-AML [62] 7,128 2 38 34

100 T.W.S. Chow and D. Huang

Table 5. Results on the sonar classification data set

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-a-FS
of selected FS
features
k-NN 4 0.69 0.76 0.7 0.76 0.72 0.6
8 0.76 0.8 0.83 0.85 0.82 0.78
15 0.76 0.82 0.86 0.88 0.92 0.87
60 0.83
SVM 4 0.6 0.63 0.7 0.74 0.69 0.40
8 0.69 0.71 0.69 0.75 0.74 0.64
15 0.69 0.69 0.74 0.73 0.77 0.73
60 0.75
ANN 4 0.62 0.69 0.7 0.72 0.74 0.61
8 0.69 0.73 0.77 0.8 0.81 0.63
15 0.74 0.79 0.77 0.77 0.84 0.84
60 0.84
DT 4 0.65 0.69 0.65 0.65 0.65 0.4
8 0.69 0.71 0.67 0.67 0.71 0.4
15 0.71 0.72 0.7 0.71 0.76 0.75
60 0.74

Table 6. Results on the ionosphere classification data set

Number MIFS Ml-raw- QMIFS SVM-RFE BDFE Q-a-FS
of selected FS
features
k-NN 3 0.69 0.76 0.7 0.76 0.72 0.6
5 0.76 0.8 0.83 0.85 0.82 0.78
9 0.76 0.82 0.86 0.88 0.92 0.87
33 0.83
SVM 3 0.6 0.63 0.7 0.74 0.69 0.40
5 0.69 0.71 0.69 0.75 0.74 0.64
9 0.69 0.69 0.74 0.73 0.77 0.73
33 0.75
ANN 3 0.62 0.69 0.7 0.72 0.74 0.61
5 0.69 0.73 0.77 0.8 0.81 0.63
9 0.74 0.79 0.77 0.77 0.84 0.84
33 0.84
DT 3 0.65 0.69 0.65 0.65 0.65 0.4
5 0.69 0.71 0.67 0.67 0.71 0.4
9 0.71 0.72 0.7 0.71 0.76 0.75

33 0.74

Data Reduction for Pattern Recognition and Data Analysis 101

Table 7. Results on the cancer classification data set

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-a-FS

of selected FS

features

k-NN 2 0.69 0.76 0.7 0.76 0.72 0.6
4 0.76 0.8 0.83 0.85 0.82 0.78
8 0.76 0.82 0.86 0.88 0.92 0.87

SVM 2 0.6 0.63 0.7 0.74 0.69 0.40
4 0.69 0.71 0.69 0.75 0.74 0.64
8 0.69 0.69 0.74 0.73 0.77 0.73

ANN 2 0.62 0.69 0.7 0.72 0.74 0.61
4 0.69 0.73 0.77 0.8 0.81 0.63
8 0.74 0.79 0.77 0.77 0.84 0.84

DT 2 0.65 0.69 0.65 0.65 0.65 0.4
4 0.69 0.71 0.67 0.67 0.71 0.4
8 0.71 0.72 0.7 0.71 0.76 0.75

Table 8. Comparative results on ALL-AML data sets in terms of classification
accuracy

Number MIFS Ml-raw- QMIFS SVM-RFE BDFE Q-a-FS

of selected FS

features

k-NN 2 0.72 0.94 0.79 0.91 0.76 0.71
4 0.79 0.91 0.91 0.79 0.82 0.79
8 0.82 0.82 0.97 0.82 0.91 0.76

SVM 2 0.72 0.88 0.76 0.88 0.79 0.5
4 0.79 0.91 0.91 0.85 0.76 0.62
8 0.59 0.59 0.59 0.88 0.79 0.62

ANN 2 0.73 0.76 0.79 0.88 0.79 0.62
4 0.76 0.82 0.88 0.79 0.76 0.62
8 0.79 0.88 0.94 0.79 0.85 0.62

DT 2 0.73 0.73 0.79 0.88 0.88 0.59
4 0.73 0.73 0.79 0.88 0.88 0.59
8 0.79 0.91 0.79 0.88 0.94 0.62

4 Trends and Challenges of Feature Selection
and Data Reduction

In the previous Sections, we discussed data reduction and feature selection.
Their merits and shortcomings have been detailed. With the advent of numer-
ous techniques and the development of computers generally, data volumes
continue to increase. A major issue is to find an effective method to handle

102 T.W.S. Chow and D. Huang

huge volume data sets. In this Section, we briefly describe different methods
that attempt to address the challenge posed by huge data volumes.

Firstly, in many physical applications, a data set may have a huge fea-
ture set, while the number of patterns is relatively small. A typical example is
microarray gene expression data sets. Microarray is a relatively recent biomed-
ical technique enabling biomedical researchers to record expression levels of
up to ten thousands of genes simultaneously [19,21]. However Microarray data
sets usually contain only tens or hundreds of patterns, due to the difficulties of
data collection. Similar small-pattern/huge-feature problems may also occur
in some image-based object recognition examples [4].

With small pattern sets, the problem of overfitting should be considered in
order to deliver reliable feature selection results. When embedded or wrapper
feature selection models are employed, researchers are recommended to choose
a recognition model exhibiting high regularization capability. For example,
support vector machine and the penalized COX model have been used in
[19,21] to select important genes (namely, features), based on microarray
gene expression data.

As to filter feature selection models, few strategies have been designed to
date for improving their regularization ability. In [4], a bootstrap framework is
employed to alleviate overfitting. In this framework, certain data subsets are
randomly selected from a given data set. Mutual information of a feature to
the output variable is estimated using each data subset. Using all the obtained
estimates, the relevance of a feature is finally measured. This approach can
alleviate the problem of overfitting. However its large computational require-
ment, which is arguably the main shortcoming of the approach, substantially
restricts its application.

Secondly, there are applications where the number of patterns and number
of features are both large. For example, with the development of computer
techniques, a large quantity of patterns can be easily collected in the context
of text mining, customer management, and web page analysis [38,49,59]. In
these cases, researchers are required to identify useful features from a large
pattern set. Feature selection has to work together with data reduction in
order to enhance the efficiency of feature selection.

Broadly speaking, there are two ways of combining feature selection with
data reduction. First, feature selection and data reduction can be integrated
in a filter way. That is, we can firstly reduce a huge pattern set. Subsequently,
feature selection is conducted based on the reduced pattern set. For example,
in [63], a given large data set was firstly partitioned into several parts using
a KD-Tree. From each part, representative patterns were selected. Useful fea-
tures were then detected based on the representative patterns. But it must be
noted that this mechanism requires an efficient data reduction technique.

Second, feature selection and data reduction can be fused in an embedded
way. This embedded approach generally begins with a random selection of

Data Reduction for Pattern Recognition and Data Analysis 103

a set of representative patterns. Using the selected representatives, certain
useful features are selected. The representative set will continually be updated
according to the performance of patterns on the selected features. In such a
way, feature selection and data reduction are conducted in turn and iteratively
until the result cannot be further enhanced. Generally, compared with filter
schemes, embedded methods are less efficient, but more effective because the
reduced data sets are actively adapted in the course of feature selection.

References

1. Alon U, Barkar N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1996)
Broad pattern of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proc. National Academy
Science, 96(12): 6745-6750.

2. Astrahan MM (1970) Speech analysis by clustering, or the hyperphoneme
method. Stanford AI Project Memo, Stanford University, CA.

3. Battiti R (1994) Using mutual information for selecting features in supervised
neural net learning. IEEE Trans. Neural Networks, 5: 537-550.

4. Bins J, Draper B (2001) Feature selection from huge feature sets. In: Proc. Intl.
Conf. Computer Vision, July, Vancouver, Canada: 159-165.

5. Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University
Press, New York, NY.

6. Blum AL, Langley P (1993) Selecting concise training sets from clean data.
IEEE Trans. Neural Networks, 4(2): 305-318.

7. Blum AL, Langley P (1997) Selection of relevant feature and examples in
machine learning. Artificial Intelligence, 97(1-2): 245-271.

8. Bonnlander B (1996) Nonparametric selection of input variables for connec-
tionist learning. PhD Thesis, Department of Computer Science, University of
Colorado at Boulder, CU-CS-812-96.

9. Carunana RA, Freitag D (1994) Greedy attribute selection. In: Cohen WW,
Hirsh H (eds) Proc. 11th Intl. Conf. Machine Learning, New Brunswick, NJ,
July. Morgan Kaufmann, San Francisco, CA: 28-36.

10. Catlett J (1991) Megaindiction: machine learning on very large databases. PhD
Thesis, Department of Computer Science, University of Sydney, Australia.

11. Chow TWS, Huang D (2005) Estimating optimal feature subsets using effi-
cient estimation of high-dimensional mutual information. IEEE Trans. Neural
Networks, 16(1): 213-224.

12. Devijver PA, Kittler J (1982) Pattern Recognition: a Statistical Approach.
Prentice Hall, Englewood Cliffs, NJ.

13. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York,
NY.

14. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors
from mutual information. Physics Reviews A, 33(2): 1134-1140.

15. Freund Y, Seung H, Shamir E, Tishby N (1997) Selective sampling using the
query by committee algorithm. Machine Learning, 28: 133-168.

16. Friedman JH (1997) Data mining and statistics: what’s the connection? In:
Scott DW (ed) Proc. 29th Symp. Interface Between Computer Science and

104

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

T.W.S. Chow and D. Huang

Statistics, Houston, TX, May (available online at http://www.stat.stanford.
edu/jhf/ftp/dm-stats.ps — last accessed March 2007).

Golub TR, Slonim DK, Tamayo P, Huard C, Gassenbeck M, Mesirov JP,
Coller H, Loh L, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999)
Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286: 531-537.

Gray RM (1984) Vector quantization. IEEE ASSP Magazine, 1(2): 4-29.

Gui J, Li H (2005) Penalized Cox regression analysis in the high-dimensional
and low sample size settings, with application to microarray gene expression.
Bioinformatics, 21(13): 3001-3008.

Guyon I, Weston J, Barnhill S (2002) Gene selection for cancer classification
using support vector machines. Machine Learning, 46: 389-422.

Guyon 1, Elisseeff (2003) An introduction to variable and feature selection.
J. Machine Learning Research, 3: 1157-1183.

Hall MA (1999) Correlation-based feature selection for machine learning. PhD
Thesis, Department of Computer Science, University of Waikato, New Zealand.
Hall MA, Holmes G (2000) Benchmarking attribute selection techniques for
data mining. Working Paper 00/10, Department of Computer Science, Uni-
versity of Waikato, New Zealand (available online at http://citeseer.ist.psu.
edu/382752.html — last accessed March 2007).

Han JW, Kamber M (2001) Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA.

Hart PE (1968) The condensed nearest neighbour rule. IEEE Trans. Information
Theory, 14: 515-516.

Huang D, Chow TWS (2005) Efficiently searching the important input variables
using Bayesian discriminant. IEEE Trans. Circuits and Systems — Part I, 52(4):
785-793.

Huang D, Chow TWS (2006) Enhancing density-based data reduction using
entropy. Neural Computation, 18: 470-495.

Jain AK, Zongker D (1997) Feature selection: evaluation, application, and small
sample performance. IEEE Trans. Pattern Analysis and Machine Intelligence,
19(2): 153-158.

John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection
problem. In: Cohen WW, Hirsh H (eds) Proc. 11th Intl. Conf. Machine Learning,
New Brunswick, NJ, July. Morgan Kaufmann, San Francisco, CA: 121-129.
John GH, Langley P (1996) Statistics vs. dynamics sampling for data mining. In:
Simoudis E, Han J, Fayyad UM (eds) Proc. 2nd Intl. Conf. Knowledge Discovery
and Data Mining, Portlnd, OR, August. AAAI Press, Menlo Park, CA: 367-370.
Kohavi R, John GH (1998) The wrapper approach. In: Liu H, Motoda H (eds)
Feature Extraction, Construction and Selection. Kluwer Academic Publishers,
New York, NY: 33-50.

Kohonen T (2001) Self-Organizing Maps. Springer-Verlag, London, UK.

Kudo M, Sklansky (1997) A comparative evaluation of medium and large-scale
feature selectors for pattern classifiers. In: Pudil P, Novovicova J, Grim J (eds)
Proc. 1st Intl. Workshop Statistical Techniques in Pattern Recognition, Prague,
Czech Republic, June: 91-96.

Kudo M, Sklansky J (2000) Comparison of algorithms that select features for
pattern classifiers. Pattern Recognition, 33: 25—41.

Kwak N, Choi C-H (2002) Input feature selection for classification problems.
IEEE Trans. Neural Networks, 13: 143-159.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Data Reduction for Pattern Recognition and Data Analysis 105

Kwak N, Choi C-H (2002) Input feature selection by mutual information based
on Parzen window. IEEE Trans. Pattern Analysis and Machine Intelligence,
24(12): 1667-1671.

Last M, Kandel A, Maimon O, Eberbach E (2000) Anytime algorithm for feature
selection. In: Ziarko W, Yao Y (eds) Rough Sets and Current Trends in Comput-
ing (Proc. 2nd Intl. Conf. RSCTC), October, Banff, Canada. Springer-Verlag,
London, UK: 16-19.

Law M, Figueiredo M, Jain A (2002) Feature saliency in unsupervised learning.
Technical Report, Department of Computer Science, Michigan State Univer-
sity (available at http://www.cse.msu.edu/#lawhiu/papers/ TR02.ps.gz — last
accessed March 2007).

Lazzerini B, Marcelloni F (2001) Feature selection based on similarity.
Electronics Letters, 38(3): 121-122.

Lewis DD, Catlett J (1994) Heterogeneous uncertainty: sampling estimation of
error reduction. In: Cohen WW, Hirsh H (eds) Proc. 11th Intl. Conf. Machine
Learning, New Brunswick, NJ, July. Morgan Kauffman, San Francisco, CA:
148-156.

Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, London, UK.

Liu H, Motoda H, Dash M (1998) A monotonic measure for optimal feature selec-
tion. In: Nedellec C, Rouveiral C (eds) Proc. European Conf. Machine Learning,
Chemnitz, Germany, April. Springer-Verlag, London, UK: 101-106.

Liu H, Motoda H, Yu L (2002) Feature selection with selective sampling. In:
Sammut C, Hoffmann A (eds) Proc. 9th Intl. Conf. Machine Learning, Sydney,
Australia, July. Morgan Kaufmann, San Francisco, CA: 395-402.

MacKay D (1992) A practical Bayesian framework for backpropagation
networks. Neural Computation, 4: 448-472.

Mitra P, Murthy CA, Pal SK (2002) Density-based multi-scale data con-
densation. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(6):
734-747.

Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature seelction using fea-
ture similarity. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(3):
301-312.

Molina LC, Belanche L, Nebot A (2002) Feature selection algorithms: a survey
and experimental evaluation. Technical Report, Department de Llenguatges i
Sistemes Informétics, Universitat Politéncnica de Catalunya.

Moon Y, Rajagopalan B, Lall U (1995) Estimation of mutual information using
kernel density estimators. Physics Reviews E, 52: 2318-2321.

Moore J, Han E, Boley D, Gini M, Gross R, Hastings K, Karypis G, Kumar
V, Mobasher B (1997) Web page categorization and feature seelction using
association rule and principal component clustering. Proc. 7th Intl. Workshop
Information Technologies and Systems, Atlanta, GA, December (available online
at http://citeseer.ist.psu.edu/15436.html — last accessed March 2007)
Narendra PM, Fukunaga K (1997) A branch and bound algorithm for feature
subset selection. IEEE Trans. Computers — C, 26(9): 917-922.

Pal SK, De RK, Basak J (2000) Unsupervised feature evaluation: a neuro-fuzzy
approach. IEEE Trans. Neural Networks, 11(2): 366-376.

Plutowski M, White H (1993) Selecting concise training sets from clean data.
IEEE Trans. Neural Networks, 4(2): 305-318.

106

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

T.W.S. Chow and D. Huang

Provost F, Kolluri V (1999) A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery, 2: 131-169.

Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature
selection. Pattern Recogition Letters, 15: 1119-1125.

Roy N, McCallum A (2001) Toward optimal active learning through sampling
estimation of error reduction. In: Lapalme KG (eds) Proc. 18th Intl. Conf.
Machine Learning, Williamstown, MA, June. Morgan Kauffman, San Francisco,
CA: 441-448.

Setiono R, Liu H (1997) Neural network feature selector. IEEE Trans. Neural
Networks, 8(3): 654-661.

Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large scale on
feature selection. Pattern Recogition Letters, 10: 335-347.

Thedodoridis S, Koutroumbas K (1998) Pattern Recognition. Academic Press,
London, UK.

Tong S, Koller D (2000) Support vector machine active learning with applica-
tions to text classification. In: Langley P (ed) Proc. 17th Intl. Conf. Machine
Learning, Stanford, CA, June. Morgan Kaufmann, San Francisco, CA: 999-1006.
Wang H, Bell D, Murtagh F (1999) Axiomatic approach to feature sub-
set selection based on relevance. IEEE Trans. Pattern Analysis and Machine
Intelligence, 21(3): 271-277.

Wang W, Jones P, Patridge D (2001) A comparative study of feature-salience
ranking techniques. Neural Computation, 13: 1603-1623.

Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2001)
Feature selection for SVMs. In: Solla SA, Leen TK, Muller K-R (eds) Advances
in Neural Information Processing Systems 13. MIT Press, Cambridge, MA: 688—
674.

Wilson AL, Martinez TR (2000) Reduction techniques for instance-based
learning algorithms. Machine Learning, 38: 257-286.

Wolf L, Shashua A (2003) Feature selection for unsupervised and supervised
inference: the emergence of sparsity in a wieghted-based approach. Technical
Report 2003-58, June, Hebrew University, Israel.

Xing EP, Jordan MI, Karp RM (2001) Feature selection for high-dimensional
genomic microarray data. In: Brodley CE, Danyluk AP (eds) Proc. 18th Intl.
Conf. Machine Learning, Boston, MA, June. Morgan Kauffman, San Francisco,
CA.

Xu L, Yan P, Chang T (1998) Best first strategy for feature selection. Proc.
9th Intl. Conf. Pattern Recognition, Rome, Italy, November. IEEE Computer
Society Press, Piscataway, NJ: 706-708.

Yang J, Honavar VG (1998) Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems, 13(2): 44-49.

Yang ZP, Zwolinski (2001) Mutual information theory for adaptive mix-
ture models. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(4):
396-403.

Resources

1 Key Books

Devijver PA, Kittler J (1982) Pattern Recognition: a Statistical Approach.
Prentice Hall, Englewood Cliffs, NJ.

Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, London, UK.

2 Key Survey/Review Articles

Blum AL, Langley P (1997) Selection of relevant feature and examples in
machine learning. Artificial Intelligence, 97(1-2): 245-271.

Guyon I, Elisseeff A (2003) An introduction to variable and feature selec-
tion. J. Machine Learning Research, 3: 1157-1183.

Jain AK, Zongker D (1997) Feature selection: evaluation, application, and
small sample performance. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 19(2): 153-158.

Kudo M, Sklansky J (1997) A comparative evaluation of medium and large-
scale feature selectors for pattern classifiers. In: Pudil P, Novovicova J, Grim J
(eds) Proc. 1st Intl. Workshop Statistical Techniques in Pattern Recognition,
Prague, Czech Republic, June: 91-96.

Kudo M, Sklansky J (2000) Comparison of algorithms that select feature
for pattern classifiers. Pattern Recognition, 33: 25-41.

108 T.W.S. Chow and D. Huang

Molina LC, Belanche L, Nebot A (2002) Feature selection algorithms: a
survey and experimental evaluation. Technical Report, Departament de Llen-
guatges i Sistemes Informtics, Universitat Politécnica de Catalunya (available
at: http://www.lsi.upc.es/dept/techreps/html/R02-62.html — last accessed
March 2007)

Provost F, Kolluri V (1999) A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery, 2: 131-169.

3 Organizations, Societies, Special Interest Groups

ACM Special Interest Group on Knowledge Discovery and Data Mining
http://www.acm.org/sigs/sigkdd/

China Data Mining Research
http:/ /www.dmresearch.net/

4 Research Groups

Data Mining Research Group of Jiawei Han
http://dm1.cs.wiuc.edu/

Research Group of Huan Liu
http: //www.public.asu.edu/” huanliv/index.html

WEKA Machine Learning Project
http: / /www.cs.waikato.ac.nz/~ml/

5 Discussion Groups, Forums

Data Miner
http://blogger.org.cn/blog/blog.asp fname=idmer

KDnuggets
http:/ /www.kdnuggets.com/

6 Key International Conferences/Workshops

IEEE International Conference on Data Mining (ICDM)
http:/ /www.comp.hkbu.edu.hk/~ wii06 /icdm/

ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
http:/ /www.kdd2006.com,/

Data Reduction for Pattern Recognition and Data Analysis

7 (Open Source) Software

WEKA (Machine Learning algorithms, including feature selection)
http://www.cs.waikato.ac.nz/"ml/

8 Data Bases

University of California, Irvine Machine Learning Repository
hitp://www.ics.uci.edu/ mlearn/MLRepository.html

Kent Ridge Biomedical Repository
http://research.i2r.a-star.edu.sq/rp/

Broad institute Bioinformatic Data
http:/ /www.broad.mit.edu/tools/data.html

109

Topographic Maps for Clustering
and Data Visualization

Colin Fyfe

Applied Computational Intelligent Research Unit, The University of Paisley,
Scotland, UK, colin.fyfe@paisley.ac.uk

1 Introduction

Topographic maps (also known as topology-preserving mappings) are pro-
jections of a data set which attempt to capture some underlying structure
therein. These are essentially unsupervised mappings (though supervised ver-
sions do exist), and so the algorithms must be structured in some way so that
the final projection reveals some underlying structure in the data.

The self-organizing map (SOM) of Kohonen [21] is the oldest of such map-
pings and remains one of the most popular exploratory data analysis tools: a
biennial conference is one of the most interesting and respected conferences on
the academic circuit; a recent one — in Paris 2005 — attracted over 100 partic-
ipants including most of the eminent scholars in this field (including Kohonen
himself). The SOM is based on an artificial neural network methodology and
attempts to mimic aspects of self-organization seen in vivo. There are many
flavours of SOM but we cannot discuss them all here since it is a wide and still
very active field of research, so will content ourselves with identifying some
of the major trends in research in this area. We apologise in advance for any
omissions we make to this review.

A more recent development is the Generative Topographic Mapping
(GTM) developed by [1] in the late 1990s. This was a very active research area
for a few years but the field seems to have lost some of its vitality recently.
Some of this is no doubt due to the fact that the GTM is much more complex
than the SOM and so researchers more interested in viewing their data sets
rather than innovating in the field of topographic mappings have tended to
use the SOM rather than the GTM. Also, the emphasis of GTM publications
tended to be on the fact that it was a ‘principled alternative’ to the SOM. If
researchers feel bound to stick to principled approaches, their research pro-
cesses are limited in ways that do not happen in more application-oriented
research. Also the quasi-religious Bayesian approach does not appeal to all
researchers.

C. Fyfe: Topographic Maps for Clustering and Data Visualization, Studies in Computational

Intelligence (SCI) 115, 111-153 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

112 C. Fyfe

The rest of this Chapter is structured as follows: in Sect. 3, we discuss
the basic competitive learning paradigm and the extension which leads to the
SOM. In Sect. 4, we review the GTM and illustrate its use. Finally we review
some of our recent work in this area.

2 Clustering and Visualization

These two topics may at first sight seem somewhat disparate yet they are
closely linked. Clustering is used with high-dimensional data sets when we
have no prior information about groups into which individual data items may
be placed. This is in contrast to classification in which we have a set of train-
ing examples for which we already have prior knowledge of the classes to
which the data belong. Learning to cluster data is an unsupervised learning
problem, whereas classification is a supervised learning problem. Perhaps the
most widely used clustering algorithm is the K-Means algorithm [4,12, 23]
which places K prototypes throughout a data space in such a way that each
lies in the centre of a group of data; each data point may then be allocated
a label which identifies it as lying in that cluster which is represented by the
prototype. If the data is high dimensional, there is no quick and easy way
for human intuition to see these clusters, but we can, through this process,
understand that all points which are given the same label have some features
which are similar to one another; by quantizing the data to the prototypes we
have augmented our knowledge about the data.

However clustering does not give us any information about the relationship
between clusters. One way to get this information is to view the labels above
as lying in a feature space and then investigate the relationships between the
labels in this feature space. Indeed, many techniques go beyond this: they first
of all specify the relationships between the labels in the feature space and then
perform the clustering while maintaining these relationships. The movements
of the prototype has to be constrained in ways which accommodates these
relationships. This, indeed, is the technique used by the Self-Organizing Map
which is discussed in the next Section. The resulting clustering can then be
used for visualization if the relationship between the labels is sufficiently low
dimensional, that is, 1, 2 or 3 dimensional. Visualization is another technique
for augmenting our knowledge about a data set: we are taking a high dimen-
sional data set and labeling the members of the data set in such a way that
we can visually see the relationship between different data points.

Of course the above discussion assumes that the labels can be forced to lie
in a sufficiently low dimensional space, while simultaneously the prototypes
associated with the labels can sufficiently accurately model the data in data
space. Sometimes these two criteria conflict and so we achieve a visualization
which does not accurately reflect all the features of the data. We may still
hope that we have increased our knowledge of the data set though accepting

Topographic Maps for Clustering and Data Visualization 113

that there is more structure to be found in the data set which is beyond human
visualization capabilities.

The era of computerization has enabled us to extend visualization in ways
which have never previously been possible. Most visualization algorithms have,
as their core, the basic idea that they are using the computer to grind out dif-
ficult (for a human) computation, while presenting the results in a way that is
easy (for a human) to spot patterns. It is notoriously difficult to create generic
pattern matching software yet humans (and presumably animals) find it very
easy to find structure in visual data. Therefore we are using the computer to
do what it is best doing (number crunching), while leaving the human to do
what he/she is best doing (pattern matching). The remainder of this Chapter
will consider a variety of ways of performing clustering and visualization.

3 The Self-Organizing Map

With Minsky and Papert’s [24] famous book Perceptrons, research into arti-
ficial neural networks almost stopped for nearly two decades. Among the few
exceptions to this was Kohonen, who developed a topographic mapping based
on competitive learning. In the next Section we discuss competitive learning
before reviewing the SOM itself [21].

3.1 Competitive Learning

One of the non-biological aspects of the basic Hebbian learning rule is that
there is no limit to the amount of resources which may be given to a synapse.
This is at odds with real neural growth in that it is believed that there is a limit
on the number and efficiency of synapses per neuron. In other words, there
comes a point during learning in which if one synapse is to be strengthened,
another must be weakened. This is usually modelled as a competition for
resources.

In competitive learning, there is a competition between the output neurons
to fire. Such output neurons are often called ‘winner-take-all’ units. The aim
of competitive learning is to cluster the data. However, as with the Hebbian
learning networks, we provide no correct answer (that is, no labelling infor-
mation) to the network. It must self-organise on the basis of the structure of
the input data.

The basic mechanism of simple competitive learning is to find a winning
unit and update its weights to make it more likely to win in future should a
similar input be given to the network. We first have a competition between
the output neurons and then

Aw;j =n(zj —wij), for the winning neuron i (1)

114 C. Fyfe

Note that the change in weights is a function of the difference between the
weights and the input. This rule will move the weights of the winning neuron
directly towards the input. If used over a distribution, the weights will tend to
the mean value of the distribution since Aw;; — 0 <= w;; — E(z;), where
E(.) indicates the ensemble average.

Probably the three most important variations of competitive learning are

1. Learning Vector Quantisation [19]
2. The ART models [2,3]
3. The Kohonen feature map [21]

The last of these is one of the subjects of this Chapter.

The Kohonen Feature Map

The interest in feature maps stems directly from their biological importance.
A feature map uses the ‘physical layout’ of the output neurons to model some
feature of the input space. In particular, if two inputs x; and xo are close
together with respect to some distance measure in the input space, then if
they cause output neurons y, and ¥, to fire respectively, y, and y, must be
close together in some layout of the output neurons. Further, we can state
that the opposite should hold: if y, and ¥, are close together in the output
layer, then those inputs which cause y, and ¥, to fire should be close together
in the input space. When these two conditions hold, we have a feature map.
Such maps are also called topology preserving maps.

Examples of such maps in biology include:

e the retinotopic map, which takes input from the retina (at the eye) and
maps it onto the visual cortex (back of the brain) in a two dimensional map,

e somatosensory map, which maps our touch centres on the skin to the
somatosensory cortex,

e the tonotopic map, which maps the responses of our ears to the auditory
cortex.

FEach of these maps is believed to be determined genetically but refined by
usage. For example, the retinotopic map is very different if one eye is excluded
from seeing during particular periods of development.

Kohonen’s algorithm [21] is exceedingly simple — the network is a simple
2-layer network and competition takes place between the output neurons; how-
ever now not only are the weights into the winning neuron updated but also
the weights into its neighbours. Kohonen defined a neighbourhood function
f(i,i*) of the winning neuron i*. The neighbourhood function is a function of
the distance between i and i*. A typical function is the Difference of Gaussians
function; thus if unit 7 is at point r; in the output layer then

Topographic Maps for Clustering and Data Visualization 115

o —|ri — i ? —[ri =i |?
f(z,z):aexp(| 902 |>—bexp(| 952 |) (2)

1

where 7, is the position in neuron space of the kth centre: if the neuron space is
1-dimensional, 7, = k is a typical choice; if the neuron space is 2-dimensional,
rr = (Tk, Yk), its two dimensional Cartesian coordinates.

Results from an example experiment are shown in Fig. 1. The experiment
consists of a neural network with two inputs and twenty five outputs. The
two inputs at each iteration are drawn from a uniform distribution over the
square from —1 to 1 in two directions. The algorithm is

Algorithm 1 Kohonen’s Self-Organizing Map Algorithm
repeat
1. Select at random an input point.
2. There is a competition among the output neurons; that neuron whose centres
are closest to the input data point wins the competition:

winning neuron, i* = arg min(|| x — w; ||) (3)
3. Now update all neurons’ centres using
Awij = ax; — wiz) * f(i,1") (4)

where))
—|ri — x| —|ri — x|
—b 5
pr)b, %)

until some termination criterion has been met

J(i,i%) = aexp(

Converged Kohonen One D Map
I

o o o o
o M & o o©

]]
.8-0.6-0.4-0.2 0 0.20.40.60.8 1

I
o
Lo o & N

Fig. 1. A one-dimensional mapping of the two-dimensional input space

116 C. Fyfe

Map in output space Map in input space Trained map
or Pame=ry ++++ (gt ++++
+ +
1 ecoceeeeee ol ® & gl (o iy e
Slhegm 8 Tk 4
2 0000000000 ® i Ve + ¥ & ji%

0'8’.{3,‘ *;f‘ ‘e Oﬂ’ﬁﬁﬁfﬁfﬁ +

®
30000000000 e i Yled] 0.7 +ﬂ'ﬁ“q5'.¢ I
"o ie®: o, i | i00g +
4 0000000000 il A L+ + **Qﬁ
06) - & 0q 06 @egy iw
C s Qg s + ¥ iy
5/0000000000 " i + HULF
o o5 +Meecees®
6 0000000000 . o " Eﬁ.;‘ﬁ +
u T+ + +
b+ 04 E T +
7leccc000000 ‘oj H 1+ Soogeeee®:--

0.3

o g 02F B
.$+ B A

8 0000000000

°
[4
()
04 @
#
{
+
o2
i
+

00000000000

10 0000000000

.7] O, F o+ h
110 : : 0 has

5 10

Fig. 2. Left: the neurons lie in a triangular grid in feature space; centre: the centres
are initialised to lie randomly in data space; right: the centres in data space move
into regular positions in the data space

Kohonen typically keeps the learning rate constant for the first 1000 iterations
or so and then slowly decreases it to zero over the remainder of the experiment
(we can be using 100,000 or more iterations for self-organising maps).

From the SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox/), we

have Fig.2, which illustrates the two positions which each centre may be
thought to define: firstly each point determines a centre in data space but
each point is also given a position in feature space which determines how
close it is to the winning neuron (or any other neuron) in the feature space.
The left diagram of Fig. 2 shows the positions of points in feature space. The
middle diagram shows the initial positions of centres in data space while the
right shows their positions in data space after training.

Note that, for visualization purposes, we ideally would like

1.

points which are far distant from one another to be distant in the feature
space,

points which are close to one another to be close in feature space,

points which are distant in feature space to be representing points distant
in data space,

points which are close in feature space to be representing points close in
data space.

Topographic Maps for Clustering and Data Visualization 117

Most existing topology preserving maps satisfy 1. and 4. but, as seen in
Fig.1, few satisfy 2. and 3. In that figure, this is caused by the fact that
the data is 2-dimensional but the mapping used by this SOM network was
1-dimensional, and so the mapping has to coil round on itself to cover all of the
data. This is not a problem for this data set since we can merely increase the
dimensionality of the map to 2, however in general we are trying to visualise a
high-dimensional data set with a two-dimensional map, and so we are making
an implicit assumption that there exists a two-dimensional manifold which
can adequately capture the main features of the data.

In [21], a whole chapter is given over to applications of the SOM; exam-
ples include text mining (specifically of web pages), a phonetic typewriter,
clustering of financial variables, robot control and forecasting.

We have said that the most common topographic mappings are Kohonen’s
self-organizing map (SOM) [21] and varieties of multi-dimensional scaling [12].
The SOM was introduced as a data quantization method but has found at
least as much use as a visualization tool. It does have the disadvantage that
it retains the quantization element so that while its centres may lie on a
manifold, the user must interpolate between the centres to infer the shape of
the manifold. The Generative Topographic Mapping removes this necessity.

3.2 Illustrative Example

In this Chapter, we will use as a standard data set — a set of 118 samples from
a scientific study of various forms of algae, some of which have been manually
identified (http://www.ics.uci.edu/~mlearn/MLSummary.html). Each sample
is recorded as an 18-dimensional vector representing the magnitudes of various
pigments. 72 samples have been identified as belonging to a specific class of
algae which are labeled from ‘1’ to ‘9’; 46 samples have yet to be classified
and these are labeled ‘0’.

We show in Fig. 3 (top) a visualization of this data set from a two dimen-
sional 10x10 SOM. Each data point is visualized as residing at the node on
the map which would win the competition for that data point. However we
can do rather better by defining the responsibility that the j** node has for
the i*" data point as

ey I x—w,)
o
1Ty exp(—y [xi— wi)

We then project points taking into account these responsiblities: let 3;; be the
projection of the i*" data point onto the j** dimension of the feature space,

then
Yij = D WijTki (7)
k

(6)

We show this projection in Fig.3 (bottom) for the same simulation which
produced the top diagram.

SOM Visualisation of Algae data set — data quantized to winners

9 b = x v v = x

8 & o x:x % v x:x o

7 B O % bl % = = =

6 % * * * O >

5 = = *

4 + b bt b bt

3 r g * # *

2 & x #

1 | n " | | | | |)
0 1 2 3 4 5 6 7 8 9

SOM visualization of algae data using responsibilities

g,

v
8 r \Y%

I
r &

P R o
6,*"%&}&@% s %x o> T @
& % w
b3 x
5r .
4t i .
3,
. #

5l X&“
1 L L L L L L J
1 2 3 4 5 6 7 8

Fig. 3. Top: visualization of the algae data set when data points quantized to SOM
nodes; bottom: visualization from the same simulation when we use responsibilities
(see text)

3.3 Alternative Traditional Topology Preserving Mappings

Although the SOM is the most popular mapping which preserves some topol-
ogy in the data set, it is by no means the only traditional mapping of
this type. We mention only two alternatives in this Section. The first is
multi-dimensional scaling which is designed for data sets about which we

Topographic Maps for Clustering and Data Visualization 119

only have distance information — in other words, we know the distances or
differences between pairs of data points but have no actual positions with
which to ground our mapping. Let d;; be the distance between the ith and
jth data point in data space and let §;; be the distance between the projections
z; and z; of the data points in feature space. Then classical multi-dimensional
scaling seeks to minimise the stress function

S = ZZ(di]’ —6:5)° (8)
i i
by altering the positions of z; and z;. Perhaps the most popular variant of mul-

tidimensional scaling is the Sammon mapping [12] which places more emphasis
on preserving smaller distances with

(dij — 0i)°
S = 9
Z Z d;j ©)
)
An example of the Sammon mapping (which also used the implementation
from the SOM Toolbox) on the algae dataset is shown in Fig. 4.

One of the disadvantages which a clustering which attempts to preserve
the topography of a data sets can have is that the resultant map may have
nodes which are in regions of the data space where there is no data. These
are essentially dead neurons and have been pulled into their positions by the
positioning of the neurons which act as its neighbours in feature space. An
interesting variation on self-organising maps creates equi-probabilistic map-
pings, a mapping in which each node is equally likely to respond given the
data set on which it is trained [27].

Sammon mapping of algae data set

0.5t
0.4t
sexk
0.3F B g
= 2535
0.2r 0O g¥
x XX & *M *
0.1r U 5 %
X
of : i © o &
AP 3
—01} ¢ % % *
B
PI %
-02f s W
v B
| L \% -
0.3 v y K
-0.4f v
-05F
-0.4 -0.2 0 0.2 0.4 0.6

Fig. 4. A Sammon mapping of the algae data set

120 C. Fyfe

Kohonen himself [20] has created a mapping which visualizes an episode
of data, a set of data which takes into account changes in the data over time.
We may also consider combining the SOM with other visualization techniques,
some of which are perhaps complementary, thereby providing us with meth-
ods which are more powerful that the individual techniques which have been
combined [10].

Prior to the Generative Topographic Mapping (Sect. 4), several resear-
chers investigated probabilistic mappings which have topology-preserving
properties. Notable among these is Luttrell, who for a decade carried forward
such investigations (see, for example, [22] for an early investigation).

Many researchers have investigated growing and pruning such maps.
Perhaps the work of Fritzke [5-7] who investigated and compared such maps
should be mentioned here.

3.4 A Last Word

We have mentioned the biennial conference on self-organizing maps; a recent
one — in Paris 2005 — attracted over 100 participants and had a wide range of
papers covering a variety of issues pertaining to topology preserving mappings
(indeed the final sections of this Chapter are based on work presented at that
conference). The next one (as I write) takes place in 2007 in Germany. It is
anticipated that subsequent conferences will take place every two years after
that.

Perhaps the most respected journal in the artificial neural network field
is Neural Computation (MIT Press). Recently, a book containing some of
the strongest articles on self-organizing map formation which have appeared
in Neural Computation over the decade 1989-1999 has appeared [26]; it is
essential reading for the serious researcher. There are also a number of other
books on the topic.

A special edition of the journal Neural Networks has been devoted to
current developments in self-organizing maps. Many of the leading researchers
in this field have contributed articles to this issue and the resulting journal
should be extremely interesting.

Other recent (as I write) developments include

e In August 2006, a research workshop was organized by Prof. A. Gorban,
University of Leicester, UK, on ‘Principal manifolds for data cartogra-
phy and dimension reduction’, which brought together researchers with
interests in a number of related techniques.

e Another gathering of researchers in this field took place in March 2007 at
the famous Schloss Dagstuhl, devoted to ‘similarity-based clustering’.

Topographic Maps for Clustering and Data Visualization 121

Finally, we should point interested readers to the Helsinki University of
Technology website,which provides Matlab source code known as the SOM
Toolbox (http://www.cis.hut.fi/projects/somtoolbox).

4 The Generative Topographic Mapping

In the next Section, we introduce two new topology preserving mappings
the first of which we call the Topographic Products of Experts (ToPoE) and
the second we call the Harmonic Topographic Map (HaToM). Based on a
generative model of the experts, we show how a topology preserving mapping
can be created from a product of experts in a manner very similar to that
used by [1] to convert a mixture of experts to the Generative Topographic
Mapping (GTM). In contrast to the SOM, neither of these mappings quantizes
but rather spread the points across the manifold.

We begin with a set of experts who reside in some latent space and take
responsibility for generating the data set. In a mixture of experts [17,18], the
experts divide up the data space between them, each taking responsibility
for a part of the data space. This division of labour enables each expert to
concentrate on a specific part of the data set and ignore those regions of the
space for which it has no responsibility. The probability associated with any
data point is the sum of the probabilities awarded to it by the experts. There
are efficient algorithms, notably the Expectation-Maximization algorithm, for
finding the parameters associated with mixtures of experts [1] constrained the
experts’ positions in latent space and showed that the resulting mapping also
had topology preserving properties.

The Generative Topographic Mapping (GTM) [1] is a mixture of experts
model which treats the data as having been generated by a set of latent points.
These K latent points are also mapped through a set of M basis functions
and a set of adjustable weights to the data space. The parameters of the
combined mapping are adjusted to make the data as likely as possible under
this mapping. The GTM is a probabilistic formulation so that if we define
y = ®W = ®(t)W, where t is the vector of latent points, the probability of
the data is determined by the position of the projections of the latent points
in data space and so we must adjust this position to increase the likelihood
of the data. More formally, let

be the projections of the latent points into the feature space. Then, if we
assume that each of the latent points has equal probability

o) = éP(i)p(xi) >0 (2) S (-5ime-xE) ay

i=1

122 C. Fyfe

where D is the dimensionality of the data space — in other words, all the data
is assumed to be noisy versions of the mapping of the latent points.

In the GTM, the parameters W and [are updated using the EM algorithm
to maximise the likelihood of the data under this model. Thus we must be
very precise about the format of this model. More specifically, the underlying
structure of the experts can be represented by K latent points, t1,t2, -+ ,tx.
To allow local and non-linear modeling, we map those latent points through a
set of M basis functions, f1(), f2(), -, far(). This gives us a matrix ¢ where
¢r; = f;(tr). Thus each row of @ is the response of the basis functions to
one latent point, or alternatively we may state that each column of @ is the
response of one of the basis functions to the set of latent points. One of the
functions, f;(), acts as a bias term and is set to one for every input. Typically
the others are Gaussians centered in the latent space. The outputs of these
functions are then mapped by a set of weights, W, into data space. W is
M x D, where D is the dimensionality of the data space, and is the sole
parameter which we change during training. We will use w; to represent the
ith column of W and ®; to represent the row vector of the mapping of the
4t latent point. Thus each basis point is mapped to a point in data space,

= (o;W)T.

To change W, we consider a specific data point, say x;. We calculate the
current responsibility of the j latent point for this data point

()
Y Zk exp(—’yd?k)

where dp, = ||x,—myg||, the Euclidean distance between the p'" data point and
the projection of the ¢! latent point (through the basis functions and then
multiplied by W). If no centres are close to the data point (the denominator

of Eqn.(12) is zero), we set r;; = Il(,Vj.

(12)

We use these responsibilities to change W using

T
Wnew

= (¢7Go) T RX (13)

where R is the matrix of responsibilities, G is a diagonal matrix with G;; =
Zj ri; and X is the N x D data matrix. § is similarly adjusted using

N K

4.1 Illustrative Examples

We begin with an example from the GTM DEMO from Netlab [25] which
is highly recommended (http://www.ncrg.aston.ac.uk/netlab/index.php). In
Fig.5 we show the convergence of the GTM on an artificial two-dimensional

Topographic Maps for Clustering and Data Visualization 123

Initial configuration

S I
50
Q
o0 ° o s
+6+09++++oﬁ5+++'** A
o @ o
(e}
D (e)
6)0

After 8 iterations of training

After 4 iterations of training

[}

Fig. 5. The initialised GTM centres are strung out along the first principal com-
ponent and all mixture components have equal variance; we then see the changes in
the positions of the centres and the variances of the components after 4, 8 and 15
iterations

data set in which y = x 4+ 1.25sin(2z) + p, where x is drawn uniformly from
[0.15,3.05] and f is noise. The centres are initialized to lie uniformly along the
first principal component of the data and we can see that, during training,
they move to the centre of the data manifold very quickly (the top right
diagram shows the positions after only four iterations of the EM algorithm).
Eventually the system stabilizes with the variance of the Gaussians very much
smaller than the initial estimates.

It is of interest to compare the GTM on the algae data: we use a two-
dimensional latent space with a 10x10 grid for comparison. The results are
shown in Fig.6. The GTM makes a very confident classification: we see that
the responsibilities for data points are very confidently assigned, in that indi-
vidual classes tend to be allocated to a single latent point. This, however
works against the GTM in that, even with zooming in to the map, one cannot
sometimes disambiguate the two different classes such as at the points (1,—1)
and (1,1). This was not alleviated by using regularization in the GTM though
we should point out that we have a very powerful model for a rather small
data set.

124 C. Fyfe

The GTM is very sure

1 » ® x g k4 o
08 it
06 [
o e e e pes
04
o £ L+
02 r
] t
0 -
] -] B &
-02
m o @ v
-04
i1} o e L+
-06 v
-08 =
_1 I'-“ 1 * 1 L e 1 ¢ 1 3 L 1 1 {V;
=1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6. The projection of the algae data given by the GTM

4.2 Adjusting the Latent Space

The GTM suffers from a common problem with topographic mappings — the
latent points determine the topography a priori and the model is then made
to fit the data as well as possible. So what happens in cases in which the
model does not fit the data so well? An example is shown in Fig. 7: we see
that the data is composed of four clusters of points which lie approximately
on a line. We have used a 1-dimensional set of latent points and so they should
be well-matched to the data. However, some of the latent points are mapped
to regions of the data space in which there is no data. As noted above, this
type of problem has been tackled by SOM researchers but does not feature in
GTM research. Yet there are many models which combine top-down generative
models with bottom-up data driven modeling, for instance [15,29].

These models alternate optimising the parameters assuming the latent
model to be correct with optimising the parameters assuming the data has
priority. We now add the latter feature to the GTM. Note that

Pifxy = LX) _ PEDP() _ Plxit)

P(x) P(x) KP(x) (15)

Topographic Maps for Clustering and Data Visualization 125

After 100 iterations of training

Fig. 7. The standard GTM positions the projection of some latent points well away
from the data

if P(t) = . Then we wish to maximize this probability — that is, we are
assuming now that the data has priority and retain the same model structure
as before, but now change the position of the latent points in latent space.
With some abuse of the notation, we will now use ¢ both for the latent point
and its position. We note that the denominator is independent of ¢ and so

PO o exp(— /2 (@)W)" (@(OW —)BPOW —)" (@(OW)

(16)
Thus we enable the latent points to change positions in latent space using
gradient ascent. We have found it useful to either

1. use the constraint that they must retain their ordering so that ¢; < ¢;41 +
€,Vi at all times; € is a small real number used to ensure there remains
some distance between the latent points.

2. or if the change to the k" latent point takes it closer to the (k+ 1) then
move all the points from k& up to K by the same amount. Similarly if the
change to the k' latent point takes it closer to the (k — 1)*", move all the
points from k& down to 1 by the same amount.

Both of these methods are designed to ensure that the resulting movement
retains the topographic ordering of the latent points.

Using gradient descent with the latter method, we get positions such as
shown in Fig. 8.

126 C. Fyfe

After 100 iterations of training

T T T T T

[
4- NS
Q)

D TR)
|ﬁa o)

A
S

1 1 1 1

Fig. 8. Allowing the positions of the latent points to change (in latent space) enables
their projections to better fit the data

Examining the positions of the latent points in latent space we see that
they have formed four clusters which enables the nonlinear mapping to data
space to easily identify the four clusters of data points. The final positions of
the latent points are shown in Fig. 9.

4.3 Deleting Latent Points

An alternative is to delete latent points which have been misplaced. To deter-
mine a latent point which has been misplaced, we need only ascertain which
latent points have not been given greatest responsibility for any data points.
An equivalent criterion would be to determine which latent points have pro-
jections in data space which are not closest to any data point. Whichever
criterion is used, such points can be deleted. The positions of the remaining
latent points in latent space are not changed but the ¢ matrix must be re-
calculated. Training now continues with the reduced set. An example of this
method is shown in Fig. 10.

5 Topographic Product of Experts (ToPoE)

In a product-of-experts, all the experts take responsibility for all the data: the
probability associated with any data point is the (normalized) product of the
probabilities given to it by the experts. As pointed out in for example [16],

Topographic Maps for Clustering and Data Visualization 127

25

1.51
Transitions between /
latent point positions

latent point position

0 5 10 15 20
latent point number

Fig. 9. The final positions of the latent points

After 10 iterations of training After 10 iterations of training

Fig. 10. The projections of the GTM latent points after 10, 20 and 30 iterations,
at which time the map had stabilized. After every 10 iterations, those points not
currently closest to any data point are deleted

128 C. Fyfe

this enables each expert to waste probability mass in regions of the data space
where there is no data, provided each expert wastes his/her mass in a different
region. The most common situation is to have each expert take responsibility
for having information about the data’s position in one dimension while having
no knowledge at all about the other dimensions, a specific case of which is
called a Gaussian pancake [28]: a probability density function which is very
wide in most dimensions but is very narrow (precisely locating the data)
in one dimension. It is very elegantly associated with Minor Components
Analysis [28].

[14] investigated a product of K experts with

K

p(xa|0) o [T p(calk) (17)

k=1

where O is the set of current parameters in the model. Hinton notes that using
Gaussians alone does not allow us to model say multi-modal distributions,
however the Gaussian is ideal for our purposes. Thus our base model is

pxu[6) ﬁ (2) oo (=1t 9

We will, as with the GTM, allow latent points to have different responsi-
bilities depending on the data point presented:

K H
poel) x T1 (5r) o (~glme—xalPra) 09

where 7, is the responsibility of the k*" expert for the data point x,,. Thus
all the experts are acting in concert to create the data points but some will
take more responsibility than others. Note how crucial the responsibilities are
in this model: if an expert has no responsibility for a particular data point, it
is in essence saying that the data point could have a high probability as far
as it is concerned. We do not allow a situation to develop where no expert
accepts responsibility for a data point; if no expert accepts responsibility for
a data point, they all are given equal responsibility for that data point (see
below). For comparison, the probability of a data point under the GTM is

o0 = > Pt =3+ (1) S (<5ime-xE) 20

i=1 i=1

We wish to maximize the likelihood of the data set X = {x,, : n =
1,---, N} under this model. The ToPoE learning rule Eqn. (22) is derived
from the minimization of —log(p(x,|@)) with respect to a set of parameters
which generate the my,.

Topographic Maps for Clustering and Data Visualization 129

The underlying model is identical to the GTM: we have K experts which
generate the K centres, my. The experts can be represented by K latent
points, t1,ts, -+ ,tx which are mapped through a set of M basis functions,
f10s f20),- -+, far(). This gives us a matrix ¢ where ¢; = f;(tx). The output
of these functions are then mapped by a set of weights, W, into data space.
W is M x D, where D is the dimensionality of the data space, and is the sole
parameter which we change during training. Each basis point is mapped to a
point in data space, m; = (&;W)7.

We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say x;. We calculate
the current responsibility of the j** latent point for this data point,

()
Y Zk exp(—’yd?k)

where dp, = ||x,—myg||, the Euclidean distance between the p'" data point and
the projection of the ¢ latent point (through the basis functions and then
multiplied by W). If no centres are close to the data point (the denominator
of Eqn.(21) is zero), we set r;; = Il{,Vj.

(21)

Now we wish to maximize Eqn.(20) so that the data is most likely under
this model. We do this by minimizing the -log() of that probability: define
m&k) = Zn]\le Wind®rm — in other words, m((ik) is the projection of the k"

latent point on the d” dimension in data space. Similarly let a:((i”) be the d*"
coordinate of x,,. These are used in the update rule

K
ApWimd = Z NPrkm (m&n) — mglk))r;m (22)
k=1

where we have used 4A,, to signify the change due to the presentation of the
nth data point, x,, so that we are summing the changes due to each latent
point’s response to the data points. Note that, for the basic model, we do not
change the @ matrix during training at all.

5.1 Comparison with the GTM

The Generative Topographic Mapping (GTM) [1] is a mixture-of-experts
model which treats the data as having been generated by a set of latent points.
The GTM is a probabilistic formulation so that if we define y = ®W =
P(t)W, where t is the vector of latent points, the probability of the data
is determined by the position of the projections of the latent points in data
space and so we must adjust this position to increase the likelihood of the
data. Then, if we assume that each of the latent points has equal probability

o) = éP(i)p(xi) >0 (2) S (-5ime-xE))

i=1

130 C. Fyfe

where D is the dimensionality of the data space — that is, all the data is
assumed to be noisy versions of the mapping of the latent points. This equation
should be compared with Eqns. (19) and (20).

In the GTM, the parameters W and g are updated using the EM algorithm
though the authors do state that they could use gradient ascent. Indeed, in
the ToPoE, the calculation of the responsibilities may be thought of as being
a partial E-step while the weight update rule is a partial M-step.

The GTM, however, does have the advantage that it can optimise with
respect to [as well as W. However note that, in Eqns. (19) and (20), the
variance of each expert is dependent on its distance from the current data
point via the hyper-parameter, . Thus we may define

exp(—ydyy)
> exp(—vdy,)

Therefore the responsibilities are adapting the width of each expert locally
dependent on both the expert’s current projection into data space and the
data point for which responsibility must be taken. Initially, i, = Il(,Vkm
and so we have the standard product-of-experts. However during training, the
responsibilities are refined so that individual latent points take more responsi-
bility for specific data points. We may view this as the model softening from a
true product of experts to something between that and a mixture of experts.

(/Bk)|x:xn = /Brlcn = ﬁ (24)

A model based on products of experts has some advantages and disad-
vantages. The major disadvantage is that no efficient EM algorithm exists for
optimizing parameters. [14] suggests using Gibbs sampling but even with the
very creative method discussed in that paper, the simulation times were exces-
sive. Thus we have opted for gradient descent as the parameter optimization
method.

The major advantage which a product-of-experts method has is that it is
possible to get very much sharper probability density functions with a product
rather than a sum of experts.

5.2 Illustrative Example

Figure 11 shows the result of a simulation in which we have 20 latent points
deemed to be equally spaced in a one-dimensional latent space, passed through
five Gaussian basis functions and then mapped to the data space by the linear
mapping W which is the only parameter we adjust. We generated 60 two-
dimensional data points, (x1,x2), from the function xo = x1 +1.25sin(x1) +p
where y is noise from a uniform distribution in [0, 1]. We use 10000 iterations
of the learning rule (randomly sampling with replacement from the data set)
with 6 = 2,7 = 20,7 = 0.1. The final placement of the projections of the
latent points is shown by the asterisks in the Figure and we clearly see that

Topographic Maps for Clustering and Data Visualization 131

4 T T T T T T
*
*
35 -
+
4+
+
*
3 + 1 %
ok + -
+ + +
. +
25 . ¥ UL+ + * 4
i +
+ +
* + + * u +
+ + +
+ +
L + * * _
4 s + +t
* + i
+ +
#* + * * +
L + % + + 4
1.5 +F g + T, +
=¥ * * N +
®
& .,
+
“ [—
+
*
0.5 1 1 1 1 1 1
] 0.5 1 1.6 2 25 3 3.5

Fig. 11. The projections of 20 latent points into data space is shown by the asterisks;
the training data are the other points

the 1-dimensional nature of the data has been identified. Also, the centres are
placed along this manifold in the order in which they appear in the latent
space showing that a topographic projection has been created.

We have similar results when we use a batch method, presenting all the
data and not updating the weights till we have accumulated all the changes.
Also we have similar experiments with higher dimensional data and grids, for
instance with 400 latent points arranged in a two dimensional grid (20 x 20)
and 5 x 5 basis functions.

We may show the growth of the responsibilities from either the perspective
of an individual latent point (Fig. 13) or from the perspective of a single data
point (Fig. 12). Initially we see the latent points assuming a broad responsibil-
ity which is refined in time till each latent point has only a responsibility for
a few data points and conversely each data point is being generated (under
the model) by only a few latent points: we have moved some way from the
product-of-experts towards a mixture-of-experts.

5.3 Projections

As a visualization technique the ToPoE has one advantage over the stan-
dard SOM: the projections of the data onto the grid need not be solely to

132 C. Fyfe

0.8
0.6

0.4

Responsibilities

0.2

500

Fig. 12. There is an initial competition to take responsibility for a specific data
point but quickly converge so that just a few latent points do so

0.8
0.6

0.4

Responsibilities

0.2

500

0 o

Fig. 13. The latent point initially has broad responsibilities but learns to take
responsibility for only a few data points

the grid nodes. If we project each data point to that node which has highest
responsibility for the data point, we get a similar quantization to that of the
SOM. However if we project each data point, x,, onto), my * rg,, we get
a mapping onto the manifold at intermediate points. Figure 14 (left) shows

Topographic Maps for Clustering and Data Visualization 133

' 15 2 25 2 15

Fig. 14. Left: the responsibilities of the 20 latent points for 60 data points which
are arranged in approximately increasing distance along the manifold; Right: the
re-projection of the 60 data points onto the manifold

the responsibilities which 20 latent points have for 60 data points (arranged
in ascending order of their position along the manifold), and (right) the
subsequent re-projection of the latent points to the data space when taking
these responsibilities into account.

5.4 Growing and Pruning ToPoEs

One advantage of this method is that we can easily grow a net: we train a net
with a small number of latent points and then increase the number of latent
points. Thus we have to recalculate the @ matrix but need not change the W
matrix of weights which can simply continue to learn from its current values.
An example is shown in Fig. 15 in which we use five basis functions (together
with a bias term) on the same data as before and increase the number of
latent points from 7 to 20. The mapping becomes increasingly smooth.

Equally we may question the completed map to investigate whether any
latent point is being mapped to a part of the data space which has no data
nearby. If a latent point does not have the greatest responsibility for any
data point, it can be deleted from the map. This technique is illustrated in
Fig.16. In each diagram the ‘+’s show the positions of the data points: the
data consists of 4 distinct clusters. The trained map is shown on the left: the
projections of the 20 latent points map cover the data set but some are placed
in positions in which there is no data for which they need take responsibility.
Such points are excluded and the map continues to learn to get the situation
in the right diagram: only 10 latent points remain. It must be emphasized that
we do not alter the positions of either the latent points (in latent space) or
the basis functions when we continue training. These remain at their original
locations.

134 C. Fyfe
3 35
3
25
2.5
2 b
2
1.5¢
5 1.5
1 1
0 1 2 3 0 1 2 3
3 ¥ 3
25 25
2 2
1.5} 1.5
1 1
0 1 2 3 0 1 2 3

Fig. 15. The growing map. Top left: 7 latent points; top
bottom left: 16 latent points; bottom right: 20 latent points

4
YV + N +
L + + L + +
55 * #* +* 55 * ™~ +*
+ +
* # o R
sk + + * st + oA
*
+
4+ * L+ ++
450 * 450 * R
+
i + §+
[- * ST]
*t +
a5 + 0+ + £+ *y
. i 35 T
* *
o4 TR
+ +
3k + ¥t a3t * 0t R
+
i+ 4t
++ * ++
25+ 4 + 4 250+ 4 q
o+ w4
+ 0+ + ey
i + . P S . . .
2 25 3 35 45 5 55 6 6.5 2 25 35 4 45 5 55 6

right

. 11 latent points;

Fig. 16. In both diagrams the data set is shown by the ‘+’s. Left: the projections

of the 20 latent points are shown with “*’s.;

latent points may continue training

right: after pruning, the 10 remaining

Topographic Maps for Clustering and Data Visualization 135

5.5 Different Noise Models

We may change the underlying noise model and reflect this in a differ-
ent learning rule. For example, an alternative model based on a Laplacian
distribution is

K
pix) = exp (—§ > (- xnnmn)) (25)

k=1

where ||.||1 signifies the 1-norm [8]. In this case, we derive the learning rule

K
ApWng =1 Z (bkmsign(a;((i”) — m((ik))rkn (26)
k=1

where sign(t) = 1, if ¢ > 0 and sign(¢) = —1, otherwise.

While this rule may be more appropriate for rather more kurtotic noise
than in the above simulations, it can be used with data which is corrupted by
Gaussian noise or even uniform (and hence far from kurtotic) noise. Sim-
ulations on exactly the same data as used for Fig.1 have shown similar
convergence to that achieved in that figure.

5.6 Twinned ToPoEs

[11] have previously investigated twinning principal curves and self-organizing
maps with a view to forecasting one data set from another with which it has
some (nonlinear) correlation. We may do the same with the ToPoE. Consider
first having a single underlying cause which we can map into two data spaces
simultaneously — namely, we have my = @, W in the first data space and
I, = @, W5 in the second data space. Figure 17 illustrates the results of this
twinning when we calculate a single responsibility of each latent point for both
data points together. Let x; in one space be twinned with y; in the second
data space. Then

. exp(—vd?)
Y exp(—ydd)

where dpq = ||xp — my|| + ||yp — 1gl|.- The “*’s in Fig. 17 illustrate that the
latent points have indeed been mapped to appropriate positions in data space.

(27)

However unless one changes either the nature of the nonlinearity which
maps from latent space or the noise model, one can argue that this method is
equivalent to a single ToPoE mapping into a data space of dimension equal to
the sum of the dimensions of the two spaces in this Section. Therefore we really
require to use different nonlinear basis functions or different noise models to
benefit from this method. A different noise model was discussed above when
we used Laplacian noise; an alternative is to use other radial basis functions
or as, we shall see, even non-radial functions.

136 C. Fyfe

Second data set and projections of latent points
First data set and projections of latent points 3

L L L L T L L L L ,
s - 05 [05 1 15 0 1 2 3 4 5 6

Fig. 17. The two diagrams show the two data sets (‘+’s) and the projections of the
latent points (‘*’s)

[13] lists the most common radial basis functions as

1. multiquadrics: f;(t;) = /(42 + t2)
. . . e F(4) 1
2. inverse multiquadrics: f;(t;) =)

3. and of course the Gaussian used above.

Note that the first of these is non-local in character but [13] notes that such
functions can approximate a smooth mapping with greater accuracy than say
the Gaussian.

Of course, we need not restrict ourselves to these functions. For example,
we may keep the model entirely as it was above but use a matrix @ in which
¢r; = fij(ty) = tanh(jty). On the same data set as previously the tanh ()
model gives very similar results. It might be thought that the tanh () non-
linearity, being global, might present a difficulty for the learning of the local
responsibilities. Figure 18 shows that this is not so.

5.7 Visualizing and Clustering Real Data Sets

In this Section, we use a 2-dimensional grid of latent points: we use a 10x10
grid of latent points being passed through a 5x5 set of Gaussian basis vectors.
We begin by illustrating the method on the well-known wine data set from
the UCI Repository of machine learning databases (http://www.ics.uci.edu/
“mlearn/MLSummary.html). It has 178 samples, 13 features and 3 classes.
The resulting projection is shown in Fig. 19. Because some of the features are
scaled up to 1500 and others lie between 0 and 1, we preprocessed the data
by normalizing all features between —0.1 and 0.1. The clustering is obvious.

Figure 20 shows the projection of the 9 labeled classes (72 samples). Most
of these are easily identified. When we zoom into the central part of this
mapping (Fig.21(left)), we find that we can disambiguate the 8th and 9th
classes. However, the right half of that figure suggests that the remaining two

Topographic Maps for Clustering and Data Visualization 137

Responsibilites

20

jints
0 g \atent poiTt

Fig. 18. Even though the tanh() nonlinearity is not local, the responsibilities learned
are very local

Wine - 3 types
9
o
sl
o
o® o9 o o
O@o 8 ° o
7+ o Qo @@ o o)
OOO oo o o
o (@)
o o
6 o o & © °© P
7 o ® o o
Oo o
le) [¢]
5- 8 *
° o
o
B * o
4+ % "
ke *
ot
* % X
3k e
¥ %
*%*ae *%*
PR
2r &?g
Ky
*£
1 Il Il Il Il Il Il J
1 2 3 4 5 6 7 8

Fig. 19. The projection of the wine data set

classes are not completely distinguished. Figure 22 shows the projection of the
whole data set including the unlabeled samples. From this, we conjecture that

e there are other classes in the data set which have not yet been identified,

138 C. Fyfe

9 species of algae

PEER

Fig. 20. Projection of the 9 classes by the ToPoE

P . Second zoom
Zooming in on the central portion

55}
5 L
-
51 LI .
48 *
. 5
450 *
B> o
46 ® * ot
©© > 4l o
**
44 + *
5
351
42 | o
3l
o
4 L
L L L L L L 25t L L L L L L L
5.3 5.4 5.5 5.6 5.7 5.8 0.2 04 06 08 1 1.2 1.4

Fig. 21. Left: zooming in on the central portion; Right: zooming in on the left side

e some of the unclassified samples belong to classes already identified,
e some may be simply outliers.

These are, however, speculations on our part and must be validated by a
scientist with biological expertise.

Topographic Maps for Clustering and Data Visualization 139

Using the unclassified algae

9 —
New class?
8r w¥ o B \%
« ﬁ@z ‘ﬁ&"
% N x ;
7t 8% “ v
%
6 -
outlier ? S
* outlier ?
5+ De?:‘xc: * P
gt %
;E@ T o P
* b
4 i
%D 3 © =
P $
O ¢ x 0
3r P
8 o g
O
2 =
outlier ? o
type 3 ? =
1 -
X X
3
0 1 1 1 X% 1 1 1 1 1]
0 1 2 3 4 5 6 7 8 9

Fig. 22. The projection of the whole data set by the ToPoE

In fact, we can control the level of quantization by changing the v param-
eter in Eqn. (21). For example by lowering -y, we share the responsibilities
more equally and so the map contracts to the centre of the latent space to get
results such as shown in Fig. 23; the different clusters can still be identified
but rather less easily. Alternately, by increasing v, one tends to get the data
clusters confined to a single node, that which has sole responsibility for that
cluster.

5.8 Discussion

We have shown above that we can grow these maps incrementally and prune
them if necessary also. Intuitively, since this growth requires us only to change
the number K of latent points, and we are only adapting W which is M x D
and so not directly concerned with the latent points, we can train W with
a certain number of latent points and then increase this number but simply
continue training W without resetting W: W is approximately correct and
training can be continued from its current values. This is an optional feature in

140 C. Fyfe

455
454}
453 v
452
451F DDE N R

45}
449}

a
448} x * Ky
*

447+ O o

4.46 I I I I I I I]
4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54

Fig. 23. By lowering the v parameter, the ToPoE map is contracted

ToPoE but becomes essential in the Harmonic Topographic Mapping, HaToM,
which we discuss in the next Section.

One feature of ToPoE which is less than satisfactory is that when no latent
point accepts responsibility for a data point, all latent points are given equal
responsibility for that data point. This ensures that every data point is covered
by the projections of the latent points but, while this is a sensible thing to
do at the start of training, it seems unconvincing when it is performed in the
middle of training. We therefore seek a mapping which does not have this
feature.

As we leave this Section, we note that minimization of the logarithm of
Eqn. (20) is equivalent to minimization of the mean squared error between the
data and the projections of the latent points. This has led us to investigate
alternative criteria such as used in the HaToM.

6 Harmonic Averages
Harmonic Means or Harmonic Averages are defined for spaces of derivatives.

For example, if you travel half of a journey at 10 km/hour and the other half
at 20 km/hour, your total time taken is ff) + 2% and so the average speed is

Topographic Maps for Clustering and Data Visualization 141

2d — 2 In general, the Harmonic Average is defined as

1d0+20 110+20
. K
A({a;,i=1,--- | K}) = K 1 (28)
Zk:l ag

6.1 Harmonic k-means

This has recently [30,31] been used to make the K-means algorithm more
robust. The k-means algorithm [12] is a well-known clustering algorithm in
which N data points are allocated to K means which are positioned in data
space. The algorithm is known to be dependent on its initialization: a poor set
of initial positions for the means will cause convergence to a poor final clus-
tering. [30,31] have developed an algorithm based on the Harmonic Average
which converges to a better solution than the standard algorithm.

The algorithm calculates the Euclidean distance between the " data
point and the k*" centre as d(x;, my). Then the performance function using
Harmonic averages seeks to minimize

N

PeerA = Z

1
i=1 Zk:l d(x;,my)?

K (20)

Then we wish to move the centres using gradient descent on this performance
function

8PeerA _ i —my) (30)

om Xz7mk) {Zz 1 d(xi, mz)2}

Setting this equal to 0 and ‘solving’ for the my’s, we get a recursive formula

(31)
@(SHE 4

where we have used d; j, for d(x;, my) to simplify the notation. There are some
practical issues to deal with in the implementation details of which are given
in [30,31].

[31] have extensive simulations showing that this algorithm converges
to a better solution (less prone to finding a local minimum because of poor
initialization) than both standard K-means or a mixture of experts trained
using the EM algorithm.

142 C. Fyfe
6.2 The Harmonic Topographic Map

The above can now be used with the latent variable model. Since

OPerfga OPerfyaOmy OPerfpa

oy, (32)

ow om;, OW Omy

we could use the algorithm directly in a learning rule as with the ToPoE.
However an alternative method is suggested in this Chapter.

With this learning rule on the same model as above, we get a mapping
which has elements of topology preservation but which often exhibits twists,
such as are well-known in the SOM [21]. We therefore opt to begin with a
small value of K (for 1-dimensional latent spaces, we tend to use K = 2, for
2-dimensional latent spaces and a square grid, we use K = 2x 2) and grow the
mapping. As noted earlier, we do not randomize W each time we augment K.
The current value of W is approximately correct and so we need only continue
training from this current value. Also for this Chapter we have implemented
a pseudo-inverse method for the calculation of W from the positions of the
centres, rather than Eqn. (32). Then the algorithm is

Algorithm 2 Harmonic Topographic Map (HaToM) Algorithm

1. Initialise K to 2; initialise the W weights randomly and spread the centres of
the M basis functions uniformly in latent space.
2. Initialise the K latent points in latent space.
3. Calculate the projection of the latent points to data space. This gives the K
centres, my.

(a) count = 0

(b) For every data point, x;, calculate d; = ||x; — mg]|.

(¢) Recalculate means using Eqn.(31).

(d) If count<MAXCOUNT, count= count +1 and return to 3(b).
4. Recalculate W using (7@ + 6I)"'¢"m where m is the matrix containing the
centres, I is identity matrix and ¢ is a small constant, necessary because initially
K < M and so the matrix &7 is singular.
5. If K < Kpaey, K = K+ 1 and return to 2.

In the simulations below, MAXCOUNT was set at 20.

6.3 Simulations
Artificial Data

With similar data as before, we get results such as in Fig.24. We see that
for a small number of latent points the mapping from latent space to data
space preserves the 1-dimensional nature of the data. However the last dia-
gram in that figure shows the mapping of 20 latent points to data space. We

Topographic Maps for Clustering and Data Visualization 143

2 latent points mapping with 4 latent points

Fig. 24. The harmonic topology preserving mappings with 2, 4, 8 and 20 latent
points

see that the algorithm is so eager to spread these projections about in data
space that the mapping moves across the data set rather than just along the
manifold. This begins to happen with about 16 latent points and becomes
more pronounced as more latent points are added.

With the standard (for illustrative purposes) data set of data drawn from
a uniform distribution in [—1, 1] x [—1, 1], we get the results shown in Fig. 25.
We see that the mapping loses its shape fairly quickly. We consider this as
evidence of an over-responsiveness to the data so that the structure of the
latent space is very strongly deformed in its projection in data space.

The Algae data set

We show in Fig.26 the projections of the above algae data set onto a
two-dimensional manifold from a 10 x 10 harmonic topographic map. If we
compare this map with the equivalent map from ToPoE (or the GTM), we
see that it is far more spread out than before; the data points’ projections
into this space are more diffuse than before and so more of the space is being
used for discriminating the data. Note that only at a single boundary between
classes (‘.” and ‘+’) is the separation not linear. Also the unclassified points’
projections show an interesting structure composed of a central cluster and
two extruding arms, the meaning of which would have to be the subject of a
biologist’s investigation.

144 C. Fyfe

T - T + e e
I T e R P R
ospt L+ T, TN e T A T
bt s
e o o
i P 5
o6t + ol o o B {;k
e + L OH
il R A EE
04y 4 v B b L
M Y N PR
oab w5 ie B R,
N * b
[g *f++;#+ + # +:* I+ }*
off ¢ A R e
o F AN 4t R
A tiﬁﬁ& RS O AP S
-2, e E P Lt L
4 + ﬂt: + +++ T E B+ g
-04f %¢++++ + + R 4
b Pt e i +
R + et
Y R S + T +
+F Tt i 5+
F CAAE + o
—osf t F ot ¥ ST L o
RN PR T
e £+ I
-1 05 05 1

1 T Ny e e TRy

g i d B g

-+ TEEY et #3 E
T RS T S

ot
o.s%:t ¥ A
1+ P
0.4 i f
¥
b L
0.2} 4 +
-
i
ofs 7 oL
SN
"
-0.2 e
iy +
"
~04p +
[
-065 o+
e ot o
08+ .
,
+ kg
=
-1

Fig. 25. The harmonic topology preserving mappings with grids of size 3 x 3, 5 x 5,
7x 7, and 10 x 10

Note that the types of algae represented by triangles and diamonds have
this time been easily separated though there is one algae represented by a ‘x’
which is badly positioned. This merely emphasizes that different projections
are helpful in exploratory data investigations.

6.4 Generalized Harmony Learning

[30] generalizes the above using

N

Pe?’fHAZZ

K 1
=1 2k—1 d(xi,my,)P

K (33)

Then we wish to move the centres using gradient descent on this performance

function

OPerfra o 2p(x; — my)
om = —KZ dix 2 K 1 2 (34)
k i=1 (X’L7mk) {Zl:l d(xi,ml)p}

Solving now for my, we get

511 ! 2 X4
aP(sE)
my = N 1 - (35)
i=1

2
p+2 K 1
i, (Zz=1 ar,)
i,

with which we can readily replace Eqn. (31) in the above algorithm.

0.8

0.6

0.2

Topographic Maps for Clustering and Data Visualization

2d projection of labelled algae data

%%K X

0.8

0.6

0.2r

-1

1 1 1 1

-1

-0.5 0 0.5 1

145

Fig. 26. Top: the projection of the 9 labelled classes on a harmonic mapping with a
2-dimensional set of 10 x 10 latent points; bottom: the projection of the whole data

set

146 C. Fyfe

[30] shows how this algorithm with p > 2 acts like boosting for supervised
learning: data points which are not well represented by the K-Harmonic Means
are given greater priority in the recalculation of the positions of the means.
Since the current data sets are already well covered by the HaToM, we are
currently seeking especially difficult data sets to investigate this effect.

6.5 Conclusion

We have discussed a model which uses latent points which have some structure
in an underlying latent space. We have investigated projecting these latent
points into data space by mapping them through a nonlinear basis and then
taking linear combinations of this to map a data set. We have trained the
weights of this mapping by two methods:

1. The first was based on a product-of-experts. We trained the weights in order
to maximize the probability of the data under this product-of-experts. The
crucial difference between this model and other models involving products
of experts is that we incorporate a responsibility term which causes the
whole model to move somewhat from a pure product-of-experts to some-
thing approaching a mixture of experts. It remains however defined as a
product-of-local experts.

2. The second mapping is based on the harmonic average. The Harmonic
K-Means algorithm is extensively shown in [31] to converge to better solu-
tions than K-means or the mixture-of-experts. For our purposes, we have
shown that HaToM is more data driven than ToPoE.

The fact of being more data driven is not necessarily a good thing. If we wish
to emphasize the low dimensionality of a data set, then allowing the mapping
to spread may reduce insight into a low-dimensional manifold. On the other
hand, we have shown with the algae data set that more insight into a data
set can be achieved through diverse mappings.

Thus this Chapter has introduced two additional topographic mappings
which will not replace existing mappings but will be used in addition to exist-
ing mappings to give data analysts more insight into high-dimensional data
sets.

7 Conclusion

We have discussed a number of different topology preserving mappings, par-
ticularly in the context of visualization of high dimensional data. In particular,
we have discussed

The Self-Organizing Map An established technique which is robust, reli-
able and well-used. There are many different varieties of SOM and we
have not been able to provide pointers to more than a few.

Topographic Maps for Clustering and Data Visualization 147

The Generative Topographic Mapping A more modern probabilistic

mapping which received a great deal of publicity in the late 1990s but
which does not seem to be gaining many adherents in terms of researchers
whose interest is in investigating specific data sets. It is possible that
its more complex structure is to blame for this. However, it is also true
that this mapping was sold as a principled alternative to the SOM and
so researchers may feel obliged to have to make the effort to understand
the probabilistic principles underlying the GTM whereas they can merely
pick up the SOM and use it in an ad hoc manner.

The Topographic Product of Experts This mapping is relatively new

and is based on probabilistic underpinnings of a product of experts rather
than a mixture. It utilizes the same underlying model as the GTM but
self-organizes in a different manner. Indeed, it is worth noting that the
final map lies somewhat between a product and a mixture of experts,
being a mixture of local products of experts.

The Harmonic Topographic Mapping This mapping uses the same

underlying map as the GTM and ToPoE but recognizes that the result-
ing ToPoE algorithm needs no such underpinnings and so dispenses with
the gradient descent method to use the underlying K-Harmonic means
method. ToPoE and HaToM are our own contributions which we hope
will take their place with the other mappings as alternative visualization
techniques.

We have illustrated these methods on a single data set but recognize that this
is far from satisfactory from the perspective of providing a truly objective
comparison of these methods. One would have to analyze a large number of
such data sets and then find a way of comparing the resulting projections
which was based on objectivity rather than a researcher’s, perhaps coloured,
beliefs. One possible method, suggested in [9] is based on clustering indices
but that would form the basis for a further article.

References

1.

2.

Bishop CM, Svensen M, Williams CKI (1997) GTM: the generative topographic
mapping. Neural Computation, 10(1): 215-234.

Carpenter GA, Grossberg S (1987) Art 2: self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26: 4919-4930.
Carpenter GA, Grossberg S (1990) Art 3: hierarchical search using chem-
ical transmitters in self-organizing pattern recognition architectures. Neural
Networks, 3: 129-152.

Duda RO, Hart PE, Stork DG (2001) Pattern Classification (2nd ed). Wiley-
Interscience, New York, NY.

Fritzke B (1991) Let it grow- self-organising feature maps with problem depen-
dent structure. In: Kohonen T, Mkisara K, Simula O, Kangas J (eds.) Proc.
Intl. Conf. Artificial Neural Networks (ICANN-91), Helsinki, Finland, Elsevier
Science, Amsterdam, The Netherlands: 403—408.

148

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

C. Fyfe

Fritzke B (1993) Kohonen feature maps and growing cell structures — a perfor-
mance comparison. In: Hanson SJ, Cowan JD, Giles CL (eds.) Advances in Neu-
ral Information Processing Systems 5 (Proc. NIPS92, 30 November—3 December,
Denver, CO. Morgan Kaufmann, San Francisco, CA: 123-130.

Fritzke B (1993) Vector quantization with a growing and splitting elastic net.
In: Gielen S, Kappen B (eds.) Proc. Intl. Conf. Artificial Neural Networks, 13-16
September, Amsterdam. Springer-Verlag, London, UK: 580-585.

Fyfe C, MacDonald D (2002) Epsilon-insensitive hebbian learning. Neuro-
computing, 47: 35-5H7.

Garcia-Osorio C (2005) Data mining and visualization. PhD thesis, School of
Computing, University of Paisley, Scotland, UK.

Garcia-Osorio C, Fyfe C (2005) The combined use of self-organising maps and
Andrews’ curves. Intl. J. Neural Systems, 15(3): 197-206.

Han Y, Corchado E, Fyfe C (2004) Forecasting using twinned principal curves
and twinned self organising maps. Neurocomputing, (57): 37-47.

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning.
Springer-Verlag, Berlin.

Haykin S (1994) Neural Networks- A Comprehensive Foundation. Macmillan,
New York, NY.

Hinton GE (2000) Training products of experts by minimizing contrastive
divergence. Technical Report GCNU TR 2000-004, Gatsby Computational Neu-
roscience Unit, University College, London (available online at http://www.
gatsby.ucl.ac.uk/ — last accessed: April 2007).

Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The ‘wake-sleep’ algorithm for
unsupervised neural networks. Science, 268: 1158-1161.

Hinton GE, Teh Y-W (2001) Discovering multiple constraints that are frequently
approximately satisfied. In: Breese JS, Koller D (eds.) Proc. 17th Conf. Uncer-
tainty in Artificial Intelligence, 2-5 August, Seattle, WA. Morgan Kaufmann,
San Francisco, CA: 227-234.

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of
local experts. Neural Computation, 3: 79-87.

Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the em
algorithm. Neural Computation, 6: 181-214.

Kohonen T (1984) Self-Organization and Associative Memory. Springer-Verlag,
Berlin.

Kohonen T (1974) An adaptive associative memory principle. IEEE Trans.
Computers, C-23: 444-445.

Kohonen T (2001) Self-Organising Maps (3rd ed). Springer-Verlag, Berlin.
Luttrell SP (1991) Code vector density in topographic mappings: Scalar case.
IEEE Trans. Neural Networks, 2(4): 427-436.

MacKay DJ (2003) Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridgae, UK.

Minsky M, Papert S (1969) Perceptrons: an introduction to computational
geometry. MIT Press, Cambridge, MA.

Nabney IT (2001) Netlab, Algorithms for Pattern Recognition. Springer-Verlag,
Berlin.

Obermayer C, Sejnowski TJ (eds.) (2001) Self-Organizing Map Formation,
Foundations of Neural Computation. MIT Press, Cambridge, MA.

27.

28.

29.

30.

31.

Topographic Maps for Clustering and Data Visualization 149

Van Hulle M (2000) Faithful Representations and Topographic Maps: from Dis-
tortion to Information-based Self-organization. Wiley-Interscience, New York,
NY.

Williams C, Agakov FV (2001) Products of gaussians and probabilistic
minor components analysis. Technical Report EDI-INF-RR-0043, University of
Edinburgh, Scotland, UK.

Xu L Byy harmony learning, structural rpcl, and topological self-organizing on
mixture models. Neural Networks, 15: 1125-1151.

Zhang B (2000) Generalized k-harmonic means — boosting in unsupervised
learning. Technical Report, HP Laboratories, Palo Alto, CA, October.

Zhang B, Hsu M, Dayal U (1999) k-harmonic means — a data clustering
algorithm. Technical Report, HP Laboratories, Palo Alto, CA, October.

Resources

1 Key Books

Allinson NM, Yin H (2002) Self-organizing Maps for Pattern Recognition. In:
Kaski S, Oja E (eds.) Kohonen Maps. Elsevier, New York, NY: 111-120.

Kohonen T (2001) Self-Organizing Maps (3rd ed). Springer-Verlag, Berlin.

Kohonen T (1984) Self-Organization and Associative Memory. Springer-
Verlag, Berlin.

Obermayer C, Sejnowski TJ (eds.) (2001) Self-Organizing Map Formation,
Foundations of Neural Computation. MIT Press, Cambridge, MA.

Ritter H, Martinez T, Schulten K (1992) Neural Computation and Self-
organizing Maps: An Introduction. Addison Wesley, Reading, MA.

Seiffert U, Jain LC (eds.) (2002) Self-Organizing Neural Networks. Springer-
Verlag, Berlin.

2 Key Survey/Review Articles

Allinson NM, Opermeyer K, Yin H (eds.) (2002) Neural Networks (special
issue on New Developments in SOMs), 15.

Bishop CM, Svensen M, Williams CKI (1997) GTM: the generative topo-
graphic mapping. Neural Computation, 10(1): 215-234.

Cottrell M, Verleysen M (eds.) (2006) Neural Networks, (Special Issue on
Advances in SOMs — WSOM’05), 19(6-7): 721 — 976.

152 C. Fyfe

Ishikawa M, Miikkulainen R, Ritter H (eds.) (2004) Neural Networks, (Special
Issue on New Developments in SOMs), 17(8-9): 1037-1389.

MacDonald D, Fyfe C (2000) The kernel self organizing map. In: Howlett RJ,
Jain LC (eds.) Proc. 4th Intl. Conf. Knowledge-based Intelligent Engineering
Systems and Applied Technology Conf. (KES’2000) 30 August—1 September,
Brighton, UK. IEEE Press, Piscataway, NJ: 317-320.

Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM)
papers: 1998-2001 addendum. Neural Computing Surveys, 3: 1-156.

3 Key Journals

Neural Computation (MIT Press).

Neural Networks (Elsevier).

IEEE Transactions on Neural Networks (IEEE).

International Journal on Neural Systems (World Scientific).
Neurocomputing (Elsevier).

Neural Processing Letters (Kluwer).

Machine Learning (Springer).

4 Key International Conferences/Workshops

ICANN — International Conference on Artificial Neural Networks.
ESANN — European Symposium on Artificial Neural Networks.
ICONIP — International Conference on Neural Information Processing.
IJCNN - International Joint Conference on Neural Networks.

ECML - European Conference on Machine Learning.

International Workshops on SOM:

WSOM’97: Helsinki University of Technology, Finland
WSOM’99: Helsinki University of Technology, Finland

Topographic Maps for Clustering and Data Visualization 153

WSOM’01: University of Linconshire and Humberside, UK
WSOM’03: Kyoshu Institute of Technology, Japan
WSOM’05: Université Paris I Panthéon Sorbonne, France
WSOM’07: University of Bielefeld, Germany

5 Software

We have mentioned two sets of downloadable resources in the main text. They
are repeated here for convenience:

The SOM Toolbox
http://www.cis.hut.fi/projects /somtoolbox/

Netlab
http:/ /www.ncrg.aston. ac.uk/netlad /index.php

6 Data Bases

University of California, Irvine Machine Learning Data Repository
http://www.ics.uci.edu/” mlearn/MLSummary.html

Complex Systems Paradigms for Integrating
Intelligent Systems: A Game Theoretic
Approach

Yoshiteru Ishida

Department of Knowledge-Based Information Engineering, Intelligent Sensing
System Research Center, Research Center for Future Vehicle, Toyohashi University
of Technology, Tempaku, Toyohashi 441-8580, Japan, ishida@tutkie.tut.ac.jp

1 Introduction

Complex systems have provided not only an analytic view that computa-
tional intelligence could be attained at a critical point (edge of chaos) where
a phase transition takes place, but also a synthetic view that computational
intelligence could be embedded in the field where an open and evolutionary
environment for selfish agents will lead to collective phenomena. In the syn-
thetic view, using complex systems themselves for intelligent systems, such as
DNA computing (we focus on immunity-based computing in another Chap-
ter of this volume), grid computing, and parasitic computing, is another
important paradigm.

The Internet is undoubtedly the most complex and largest artifact that
humankind has ever invented. Observing how the Internet has been built and
evolved suggests that systems of this complexity may be built not by a usual
design but by its own logic that not even the designer conceived of before
its maturation. After the Internet itself became an area that allows many
selfish activities, several utilities and protocols converged on what may be
called the ‘Nash equilibrium’ from which no players want to deviate [19]. The
game theoretic approach sheds new light on computational intelligence. That
is, rather than implementing an intelligent program, one could design a field
in the Internet that allows intelligent systems to emerge as the Nash equilib-
rium of the Internet. Further, game theoretic and computational approaches
to the Internet (see, for example, [6,7,15,17,23,25]) reveal that it is compu-
tationally difficult to obtain a Nash equilibrium. Conversely, this fact suggests
that a computationally difficult task could be solved by selfish agents [8, 20].
Resource allocation, for example, which is computationally tough, is solved
by a market mechanism in which many selfish agents participate [29].

Y. Ishida: Complex Systems Paradigms for Integrating Intelligent Systems: A Game Theoretic
Approach, Studies in Computational Intelligence (SCI) 115, 155-181 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

156 Y. Ishida

This Chapter investigates the first step towards embedding computational
intelligence in the Internet field by selfish agents, namely, whether selfish
agents can ever cooperate and converge on some tasks. Selfish routing and
task allocation have been studied extensively in the computational game com-
munity, but can intelligent tasks be done or can agents ever take care of
themselves in the first place? We first pose the problem of self maintenance in
an agent population, and then use a game theoretic approach to test whether
cooperation would occur or under what conditions cooperation will occur.

The above-mentioned research focused on algorithms and computational
complexity for obtaining equilibrium when selfish agents compete for resources,
or the Nash equilibrium as a convenient substitute. The cost for the Nash equi-
librium relative to the optimized solution has also been discussed to measure
the cost of ‘anarchy’ [15]. Instead, this Chapter focuses on the self mainte-
nance task, self-repairs by mutual copying in particular, and discusses when
selfish agents begin to cooperate. We extend the discussion to when these self-
ish agents (called ‘selfishware’) organize themselves to mutually supporting
collectives (called ‘Internet being’).

The present research is significant in two respects: one is engineering and
the other is theoretical. For engineering significance, a computing paradigm
such as grid computing [9] and parasitic computing becomes the background.
When grid computing becomes dominant for large-scale computing, what we
call agents (autonomous programs that can passively move from nodes to
nodes) will become like processes in the Unix OS. One important difference is
that agents (or what we call later selfishware) are selfish, and will not be orga-
nized with central authority as is done in a conventional OS. Therefore, an
organization of selfish agents will become an organization with weakest central
authority, or even with distributed authority, as seen in the free market econ-
omy. Naturally, information processing with selfish agents will be imperative,
thus making the game theoretic approach and economic approach — such as
selfish task allocation and routing — important.

Also of significance is that it will provide an organizational view for arti-
ficial life or what we call an ‘Internet being’ (a life-like form which has some
identity and hence boundary). Self-organization of selfish agents will be more
than a mere collection of independent agents, but rather an organization of
cooperative agents. This would reveal an intrinsic logic and process that self-
ish agents form multi-agent organisms, similarly to multi-cellular organisms.
The game theoretic approach would provide conditions and mechanisms for
defective selfish agents to develop into cooperative selfish agents when payoffs
are recast in a broader context of time and space.

After a brief introduction in Sect.2, a microscopic analysis focusing on
interactions between two agents will be presented in Sect. 3. Section 4 deals
with a macroscopic model with many networked agents. In both the micro
and macro models, the importance of involving neighbor agents in each agent’s

Integrating Intelligent Systems: A Game Theoretic Approach 157

payoff is stressed. Section 5 briefly discusses the significance of the game theo-
retic approach to large-scale complex systems such as the Internet. The game
theoretic approach is imperative, since autonomous and distributed control
and management is inevitable for such complex and large-scale systems.

2 Economic Theory for the Internet Being
with Selfish Agents

The game theoretic approach has demonstrated its power in the field of eco-
nomics and biology. The Internet has already reached a level of complexity
comparable to that of economic and biological systems. Moreover, the agent
approach permits a structural similarity where selfish individuals (in the free
market of the economic system) and selfish genes (in biological systems)
cooperate or defect in an open network where many options have been left
undetermined before the convergence.

The economic approach has been actively studied in the distributed arti-
ficial intelligence community (for instance, [27,29]), and its application to
auctions is a successful example (such as [24]). The economic approach, and
the game theoretic approach in particular, has been extensively studied in
the algorithm and computation community and has had an impact on net-
work applications. Rigorous arguments with equilibrium concepts — the Nash
equilibrium, among others — are providing a framework ground theory for
the economic aspects of the Internet. The cost of selfish routing has been esti-
mated by examining how bad is the equilibrium to which selfish routing might
converge (that is, the Nash equilibrium from where no one wants to deviate)
relative to the optimal solution. In the seminal paper by [23], the TCP /TP
protocol is recast as the Nash equilibrium and an economic model that allows
TCP/IP as an equilibrium point has been called for as an open problem.
That is, design an Internet model where TCP/IP is the Nash equilibrium
in a space of available protocols. Protocols such as TCP [1], Aloha, CDMA
and CSMA /CA have been studied. Packet forwarding strategies in wireless ad
hoc networks can also be recast in the framework. Network intrusion detection
has also been investigated [16] within the framework of a two-player game:
‘intruder’ and ‘defender’.

What has been computed by a market mechanism or more generally by a
collection of selfish agents turned out to be difficult when attempted by com-
putation (a typical example is prices of commodities as an index for resource
allocation). This fact indicates that the market economy — or more generally
free and hence selfish agents properly networked — has a potential for comput-
ing something that could be difficult when approached otherwise. Also, some
cases in which a planned economy perturbed by a market economy resulted in
eradication of the planned economy by the market economy indicates that the
market economy may be ‘evolutionarily stable’ within these economic systems.

158 Y. Ishida

This fact further indicates that a problem solving framework by properly
networked selfish agents may have some advantage over other usual problem
solving frameworks, such as the one organized with central authority. Also,
solutions can be obtained almost free or as a byproduct of the problem solving
mechanism, or solutions that are almost inseparably embedded in the solv-
ing mechanism. The above two observations encourage us to recast problems
which have been known to be computationally difficult or problems which are
difficult to even properly define and approach, such as attaining intelligent
systems.

Mechanism Design, a subfield of Economics, has been studied [20] and
has recently been extended to Algorithmic Mechanism Design [6] and to
Distributed Algorithmic Mechanism Design [8].

Studies on computational intelligence by agents usually assume that agents
can be autonomous, hence allowing different rules of interactions — in other
words, heterogeneous agents. We further assume that agents are selfish in
the sense that they will try to maximize the payoff for themselves. Thus,
agents are broader than a program (or software), and they involve users that
are committed to the agents. We use the word ‘selfishware’ to include not
only programs but also the humans (end-point users and providers running
autonomous systems for the Internet) behind the programs. The organization
that would appear to be a collective interplay with selfishware will be called
an ‘Internet being’. It can be an entity that can perform some tasks that
require intelligence. Spam email, computer viruses and worms may not be
called Internet beings, because they are obviously not mutually supporting
collectives (with exceptions, such as Distributed Denial-of-Service — DDOS
attacks), although they are guided by selfishware. They are rather parasitic
lone wolves.

The idea developed here can apply not only to the Internet but also to other
information networks, such as sensor networks, as long as they are put in the
model. The models dealt with in this Chapter have the following components:

M1. States: agents have two states (0 for normal; 1 for faulty). The state will
be determined by the action and state of interacting agents.

M2. Actions: agents have two actions (C' for cooperation; D for defection).

M3. Network: agents are connected by a network and agents can act only on
the connected agents (neighbor agents).

Actions may be controlled uniformly (Sect.4.1) or may be determined by
the acting agent itself in the selfish agent framework (Sect. 4.4), such that the
payoff assigned to each agent will be maximized. A network may be defined
explicitly with a graph or implicitly by specifying the neighbor agents (for
example, lattice structure as in cellular automata and dynamical network as
in scale-free networks).

Integrating Intelligent Systems: A Game Theoretic Approach 159

Since we focus on the self-maintenance task by mutual repair, cooperation
and defection correspond to repairing and not repairing, respectively. As we
have remarked, we do not assume recognition of the states of target agents
before actions, since repairing could harm the target agents, particularly if
the acting agents themselves are faulty: this is what we call a ‘double-edged
sword’.

In the agent-based approach of this Chapter, we place the following restric-
tions on our view which we also placed in perusing immunity-based systems,
since an autonomous and distributed character is similar to them.

e Local information: for each immune cell mounting a receptor or a receptor
itself (antibody), only matching or not (some quantitative information on
degree of matching is allowed) can be provided as information.

e No a priori labeling: for an immune cell or antibody, an antigen is labeled
neither as ‘antigen’ nor as ‘nonself’.

Because of these two restrictions and because we do not assume recognition
(in contrast to recognition centered in immunity-based systems in Chap. 25
of this Handbook) of the states of target agents before actions, we face the
double-edged sword problem in this Chapter, since the effector part (repairing
by copying) could harm rather than cure, based only on local information.
This problem may be more significant than that of immunity-based systems
because we do not assume recognition capability (that could avoid adverse
effects) here as in immunity-based systems; actions of agents are motivated
by selfishness (payoff) rather than the state of the target.

In Sect. 3, we use a Markov model used for reliability theory as a micro-
scopic model, and probabilistic cellular automata used for percolation theory
as a macroscopic model. Both models incorporate M1, M2 and M3, as above.
While the microscopic model in Sect.4 focuses on the incentive for coopera-
tion retaining a simple network with only two agents, the macroscopic model
deals with situations where faulty agents are eradicated by comparing agents
controlled with central authority and selfish agents.

3 A Microscopic Model: Negotiation Between Agents

3.1 The Prisoner’s Dilemma

In solving the problem of cleaning a contaminated network by mutual copying,
another problem (other than the double-edged sword) is that each autonomous
(and hence selfish) node may not repair others and fall into a deadlock waiting
for other nodes to be repaired. The situation is similar to that of the Prisoner’s
Dilemma (PD) that has been well studied in game theory and has been applied
to many fields.

160 Y. Ishida

Table 1. The payoff matrix of the Prisoner’s Dilemma: R, S, T, P are payoffs to
agent-1

C (Agent 2) D (Agent 2)
C (Agent 1) R (reward) S (sucker)
D (Agent 1) T (temptation) P (punishment)

The Prisoner’s Dilemma (PD) [5] is a game played just once by two agents
with two actions (cooperation C, or defect D). Each agent receives a payoff
(R,T,S,P) (Table 1) where T > R > P > S and 2R > T + S.

In the Iterated Prisoner’s Dilemma (IPD) [2], each iterated action is
evaluated. In the Spatial Prisoner’s Dilemma (SPD) [21], each site in a two-
dimensional lattice corresponding to an agent plays PD with the neighbors,
and changes its action according to the total score it received.

3.2 Repairing from Outside the System:
A Conventional Model [12]

Consider a model with only two agents ¢ (i = 1,2) that become faulty and
thence repaired. Using conventional notations in reliability theory, v and p
indicate the rate for becoming faulty and the rate for repair, respectively.
When the repair is done from outside the system (by repairmen, for example),
the state-transition diagram as a Markov model is as shown in Fig.1 (for
example, [26]). The corresponding Kolmogorov equation is:

dP(t)

L =MP() (1)

where the time dependent vector variable P(t) = (poo(t), po1(t), p1o(t), p11(t))”
comprises a component ps, s,(t) denoting the probability of agent-1 being sq
and agent-2 being so at time ¢, where s1, s2 € {0,1} (0: normal; 1: abnormal).
The matrix M is a transition matrix corresponding to the state-transition
diagram shown in Fig. 1.

3.3 Mutual Repair within Systems

When the repair is done by these two agents mutually, some complications
occur. The double-edged sword framework allows agents that are capable of

Integrating Intelligent Systems: A Game Theoretic Approach 161

1-A—u

Fig. 1. State-transition diagram for the conventional Markov state diagram for
availability for ordinary repairing from outside the system; white circles indicate
normal nodes and black ones abnormal nodes

1=A-(u(-a)+p,)(A-4)

\ /

Hy(1=2))] A+ p(1=-H1-a)

1=A=-(u,(1-a)+u)1- 1)

Fig. 2. State-transition diagram for the mutually-repairing two-agent system; white
circles indicate normal nodes and black ones abnormal nodes [12]

repairing other agents, but when the repairing agents are themselves faulty
they will cause the target agents to become faulty (infect contamination)
rather than repair them. Thus the state-transition diagram as a Markov model
is as shown in Fig. 2 [12]. Let u; denote the repair done by the agent i, and «
(<1) indicate the success rate when repair is done by a faulty agent. In this
model, a transition matrix M corresponding to the state-transition diagram
is as follows:

—2A pa(l—A p2(l—2A) 0
Mo | A A -+ u) - 0 ape
- 0 A= (11 =) +p2)(1 = N) o
0 At p2(l=2)(1 -) At p(l =21 -a) —a(p1 + p2)

3)

3.4 Mutual Repair with Selfish Agents

For a game theoretic argument, it is further assumed that an agent must
decide whether it will repair others or not, corresponding to cooperation and
defection in the Prisoner’s Dilemma. For agent ¢, C; = 1 if it repairs other
agents, and 0 otherwise. Let P;(C1, C2) denote the probability of agent i being

162 Y. Ishida

Table 2. Steady-state reliability of each agent when mutual repair is involved

Cy=1 Cy=0
— — B —
Cr=1 Pi(1,1) = N Pi(1,0) =0
Py(1,1) = Pi(1,1) Py(1,0) = P1(0,1)

Ci=0 Pi(0,1) = Py(0,0) = P»(0,0) =0

1
A B

P(0,1) = Pi(1,0)

alive when agent i’s action is C;. Simple calculation yields the steady-state
probability P;(C1,C2) in Table 2 below, arranged as per Table 1 [12].

Table 2 can be regarded as a payoff matrix of the two-player game where
each ij entry indicates the payoff that player i gains. If we simply regard
P;(Cy,Cs) as agent i’s payoff when actions Cy,Cy are taken, mutual repair-
ing would happen due to the inequalities: P;(1,1) > P;(0,1) > Pi(1,0) =
P1(0,0); Po(1,1) > P5(1,0) > P»(0,1) = P»(0,0).

While the self action does not make any difference (for instance, for agent 1,
P;(1,0) = P1(0,0)) when the other agent does not cooperate, the agent should
certainly cooperate when the other agent cooperates (for example, for agent 1,
Pi(1,1) = P;(0,1)). This raises the reliability of others, making the repairing
of self by others more effective and having a cyclic effect.

Let us take the cost of repairing into consideration. Then agent 1, for
example, will choose its action Cy to maximize P;(Cy,Cs) —c¢-C1), where ¢ is
the cost of repairing relative to the benefit measured by the reliability of itself.
Involving the cost for cooperation would naturally bias the situation towards
more defect-benefiting. When the opponent defects, the agent simply loses the
cost of cooperation if it cooperates. However, there is still a chance for mutual
cooperation when the opponent cooperates, so P;(1,1) — ¢ > P;(0,1) holds
when the cost relative to benefit satisfies:

B-NO+ L) -0

>c (4)
(A +)+ B+ 1)

Selfishness of an agent is reflected on the objective function that the agent
will maximize, but this reflection is not a trivial task. The above agents are
a short-sighted implementation of selfishness; a more foresighted agent would
consider the event of other agent failure as losing the chance of being repaired
by the agent, and the extinction of all agents as a fatal event that should be
avoided by paying a high cost. In the above model where repairing by faulty
agents does not happen, extinction of alive agents is an absorbing state from
which no other state arises.

Integrating Intelligent Systems: A Game Theoretic Approach 163

0.8

P H1,1L-P;HO, 1L

Fig. 3. Plot of the difference Pi(1,1) — P1(0,1) when the repair success rate by
abnormal agents a changes from 0 to 1, and A = 10™%, z = 10®\ are fixed [12]

Table 3. Steady-state availability AV

Cy=1 Cy=0
_ _ B+ _ 1
Ci =1 AV (1,1) = X(AJer)Jrﬂ AV(1,0) = A+Q’BH
Ci =0 AV (0,1) =)\Jrlx AV (0,0) =0
B

ap

Figure 3 plots the difference P;(1,1) — P1(0,1) when the repair success
rate by abnormal agent o changes from 0 to 1 and A = 1074, = 102\ are
fixed [12]. There is a strong incentive for agent 1 to cooperate when the success
rate is about 0.1. The incentive decreases linearly when the rate exceeds 0.2,
which indicates that reliable repairs by abnormal agents promote cooperation.

If the availability (the probability that at least one agent remains normal)
is used as a payoff for each agent, then there will be stronger incentive to
cooperate when the other agents cooperate, since the difference AV (1,1) —
AV (0.1) is larger than the difference P;(1,1) — P(0,1), as shown in Table 3.

This indicates that even for selfish agents, they will be more likely to
cooperate if they take a systemic payoff that evaluates the cost and benefit in

a more system wide and longer term; this is the beginning of self-organization
to mutual supporting collectives.

4 A Macroscopic Model: Boundary Formation
among Agents

4.1 A Model with Uniform Control

We consider the possibility of cleaning up the network by mutual copying.
Repair by copying in information systems is also a double-edged sword and it
should be identified under what condition the network can eradicate abnormal

164 Y. Ishida

elements from the system. We consider a probabilistic cellular automata
(PCA) to model the situation where computers in a local area network (LAN)
mutually repair by copying their content. Since the problem involves the
double-edged sword leading to a critical phenomenon, repairs have to be
decided giving consideration to the resources used and remaining in the system
and the network environment.

As a first macro model, we use a PCA [11]; we assume the actions are
done in a synchronous fashion. As in the micro model, the repairing may be
done by copying its content to the other agents. Further, the network for the
model considered in this Section is restricted to the one-dimensional array
shown in Fig.4 (which could be an n-dimensional array, a complete graph, a
random graph, or even a scale-free network) that could have S neighbors for
each agent with a boundary condition — in other words, the structure of the
array is a ring with agent 1 adjacent to agent V.

Also, a probabilistic cellular automaton requires probabilistic rules for
interactions. The model of the current Section controls the repairing of all the
agents uniformly. That is, each agent tries to repair its neighbor agents in a
synchronous fashion with a probability u (repair rate). Repair will be success-
ful with probability gy when it is done by a normal agent, but with probability
« when done by an abnormal agent (o« < g). The repaired agents will be nor-
mal when all repairs are successful. Thus, when repairing is performed by the
two neighbor agents, both of these two repairs must be successful in order for
the repaired agent to be normal.

As a probabilistic cellular automaton, the transition rules are shown in
Table 4. The self-state is the center in parentheses, and the two neighbor states
to the left and right; the self-state will be changed to the state indicated to
the right of the arrow.

Fig. 4. One-dimensional array with two states: normal (0) and abnormal (1)

Table 4. State change rules in the probabilistic cellular automaton

State change Probability

(000) — 1 n(1 —a0)(2 — p(1 — a0))

(001) — 1 12(1 = aao) + (1 —) (1 —) + (1 - av))
(101) — 1 u(1—a)(2 = p(1 - a))

(010) — 1 1 — pao(2(1 —) + pao)

(011) — 1 1 — (@ + ao)(1 —) + paao)

(111) — 1 1 — popo+2(1 — p))

Integrating Intelligent Systems: A Game Theoretic Approach 165

Table 5. State change rules in the PCA when ap =1

State change Probability

(000) — 1 0

(001) — 1 w(l —a)

(101) — 1 (1 —)2 - p(l - a))

(010) — 1 (1 — p)?

(011) — 1 (1—1)* +p(l -)

(111) — 1 (1=)2 — p(l —a)) + (1 —)’

Table 6. Rules for the DK model, where p; and p2 are two parameters for the DK
model, and the symbol * is a wildcard

State change Probability
(0%0) — 0 1
(0*1) — 1 P1
(1*1) — 1 p2

When the repair rate by normal agents oy = 1, the probability in the
change rule can be reduced greatly (Table 5). The relation among these change
probabilities is obvious — for instance, the probability for the state change
(111) — 1 can be obtained by adding those for (101) — 1 and (001) — 1;
also the probability for the state change (011) — 1 can be obtained by adding
those for (010) — 1 and (001) — 1.

The Domany-Kinzel (DK) model [4] is a one-dimensional, two-state and
totalistic probabilistic cellular automaton (PCA) in which the interaction
timing is specific. The interaction is done in an alternated synchronous fash-
ion: the origin cell with state 1 is numbered as 0. The numbering proceeds
{1, 2,} to the right, and {—1, —2,} to the left. At the N-th step the
even numbered cells will act on the odd numbered cells, and the odd num-
bered cells will act at the next step. The neighbor is two cells adjacent to
oneself without self-interaction. The interaction rule is as shown in Table 6.

Our PCA model can be equated with the DK model [11] when p = 1
(namely, agents always repair), with parameters p; = (1 — a), p2 = (1 — a?);
that is, the case of the directed bond percolation.

Under the approximation that the probability that the state of agent 0
is a constant py (mean field approximation and steady state), the following
steady state probability of pg is obtained:

dy
dt

where a = —p? (g — @)?,b = —2u(1 — ag)(—p(cg — @) + 1) + pu(p — 2a), and
¢ =p(l—ag)(2 - p(l — ao)).

=ay’ +by+c (5)

166 Y. Ishida

When ap > « (hence « < 0), the steady state can be obtained as follows:
1
po=1+, (b+ Vb2 — 4ac) (6)

When o = 1, the above form reduces to a = —p2(1 — a)?,b = pu(u — 2a),
and ¢ = 0, and hence

a(2(1 = p) + ap)
n(l—a)?

In order for abnormal nodes to be eradicated, ¢ must be 0 (that is, ag = 1),
otherwise normal nodes could have spread abnormal states. When ¢ = 0, the
following threshold condition must be satisfied for eradication of abnormal

agents, since the time derivative ‘2’; must be negative in the equation above.

po =1+

(7)

200 > (8)

This steady state probability also matches qualitatively with the above
simulation results (Fig.5), however, simulations are needed when the result
by mean field analysis does not match well with the simulation result when
ap =1 (Figs. 5 and 6). Here he size of lattice is 20 x 20, hence the number of
agents is 400. Simulation results qualitatively match the steady state fraction
of normal agents obtained by the mean field analysis above. When the repair
success rate by normal agents ag = 1, the result by mean field analysis does
not closely match the simulation result.

, 408 : (

a _

[

Pl

© 358 :

@

@ Y

i :

= 388 1

L

[3

bt

= 250 .

3

i 200 Repair Success Rate-

& by Hormal Agents
1.8 HFA

- . 3

g 190 8.9 MFA —

: 8.6 HFA ——

= 188 1.8 SIN ——

e 8.9 SIH

: 8.6 SIN —#—

2

£

=

a 8.2 8.4 8.6 8.8 1
Repair Success Rate by Abnornal Agents

Fig. 5. The number of normal agents after 1500 steps, when the repair success rate
by normal agents « varies

Integrating Intelligent Systems: A Game Theoretic Approach 167

1 T T T T m T T T T

<]

*

w
T

Active Phase o : .
/ Border by Sinulations
8.8 7 Border by HFA —

8,7 - atnie o . e . : . =l

8.5 - s Frozen Phase j .

Repair Rate

%] & i 1 1 L i i i i i
a 8,1 8,2 8,3 8,4 08,5 08,6 8,7 0,8 08,9 1

Repair Success Rate by Abnormal RAgents

Fig. 6. Frozen (the right region where all the units are normal), and active phases
(the left region where some units remain abnormal) when as =1 [11]

4.2 The Spatial Prisoner’s Dilemma

The Spatial Prisoner’s Dilemma (SPD) has been studied to investigate when,
how, and why cooperation emerges among selfish agents when they are spa-
tially arranged, hence interactions are limited only to their neighbors. In SPD
pioneered by [21], each player was placed at each lattice of the two-dimensional
lattice. Each player has an action and a strategy, and receives a score. Each
player plays PD with the neighbors, and changes its strategy to the strategy
that earns the highest total score among the neighbors. We will use this deter-
ministic SPD. In the stochastic version, the agent will decide its action based
on a probability proportional to the difference between its own payoff and
the highest payoff in the neighbors’ agents (similarly to replicator dynamics
[10, 28]).

The SPD is generalized by introducing a spatial strategy [13], which deter-
mines the next action dependent upon the spatial pattern of actions in the
neighbors. A score is calculated by summing up all the scores received from
PD with 8 neighbor players. After r (strategy update cycle) steps of inter-
actions with neighbors, the strategy will be chosen from a strategy with the
highest score among the neighbors.

To specify a spatial strategy, the actions of all the neighbors and the player
itself must be specified. For simplicity, we restrict ourselves to a ‘totalistic

168 Y. Ishida

spatial strategy’ that depends on the number of D (defect) actions of the
neighbor, not on their positions.

4.3 A Model with Selfish Agents

Although the actions of agents in the above models are controlled uniformly
by the parameter pu, selfish agents in the current model will determine their
actions by accounting their payoffs. To implement this selfish framework, we
use spatial strategies in the Spatial Prisoner’s Dilemma.

The self-repairing network consists of agents capable of repairing other
agents connected to them. In the probabilistic cellular automaton model of
Sect. 4.1, agents do not have a failure rate and do not become abnormal by
themselves, however, the agents in the present model [14] incorporate a failure
rate (\). Repairing is controlled by repair rate (u). When a repair is carried
out, it will be successful with a repair success rate («), and the repaired agents
are rendered normal.

The adverse impact caused by the abnormal agents is implemented by
raising the failure rate (by an amount according to the damage rate &) of
the repaired agents (when repaired by abnormal agents). Further, the agents
are assumed to use some resources (Ry) for repair. This amounts to a cost
for cooperation, and hence motivates selfish agents to engage in free-riding.
The agents have to perform the tasks assigned to them, but without per-
forming repairs. Abnormal agents increase and the performance of the system
decreases — hence we are faced with a dilemma. An agent is able to repair
more than one other agent, provided that the quantity of maximum resource
Rinaz is not exceeded. We consider the available resource (the resource not
used for repair) as the agent’s ‘score’. Throughout this Chapter, simulations
are conducted using the parameters listed in Table 7.

Table 7. Parameter list

Description Value
LxL size of the space 50 x 50
N number of agents 2500
N(0) initial number of abnormal agents 100
A failure rate 0.01
n repair rate 0.01
« repair success rate 0.1
1) damage rate 0.1
r strategy update cycle 100
Roax maximum number of resources 25
Ry number of resources used for repairing 1

Integrating Intelligent Systems: A Game Theoretic Approach 169

18088 Steps after I

8.9 - =
0.8 il -
8.7 ,f il
8.6 ~
8.5 r |I

8.4 - :
8.3 r .
8.2 | <
0,1 - /} o

8 : ! " ! !
8,7 8.75 6.8 8,85 a.9 8,95 1
1 - danage rate

Fraction of Nornal Agents

Fig. 7. The fraction of normal agents when the damage rate § varies (parameters
are as per Table 7, except failure rate 0.001, repair rate 1.0, repair success rate
0.01, and the damage rate varies; a random selection of 100 agents is initially made
abnormal [22])

Simulations are conducted in a 2-dimensional lattice. To contrast the
results with the selfish repair rate control in Sect. 3, simulations are conducted
for the above self-repair network with a uniform repair rate. This model has
a threshold for the damage rate ¢ (Fig.7) [22], as expected from the proba-
bilistic cellular automaton in Sect. 4.1. Above the damage rate threshold, all
the agents become abnormal.

To contrast with the one with systemic payoff, we use only two trivial
strategies: All-C' and All-D; we have reported elsewhere [22] on the use of
nontrivial spatial strategies such as k—C. In the simulation shown in Fig. 8,
All-D will eradicate All-C' strategies; hence all agents will remain silent
without repairing any other agents. Thus, eventually all the agents will be
abnormal with a positive failure rate. In Sect. 4.4, we will modify the pay-
off, incorporating not only its own remaining resources but also all neighbor
resources.

4.4 Strategic Repair with Systemic Payoff

As in the simulation (Fig.8) [22], a repair control by allowing agents to take
only All-C (repair) or All-D (not repair) resulted in all silent agents, and hence
ended with all abnormal agents. Here, thepayoff is modified to include all the
neighbor resources. This modified payoff has the impact of making agents

170 Y. Ishida

@

.

@
——r

=
.
&

@
.
L
T
#

Fraction of Nornal Agents

2
]

—y—

= ~

Fraction of ALl-C normal Agents

]

E

a 500 1080 1500 2000 a 588 1008 1508 2008

FailureRates 8.985
a.81

Fig. 8. SPD with simple payoff measured by available agent resources (parameters
are: failure rate 0.005-0.10, repair success rate 0.1, damage rate 0.1, strategy update
cycle 20, max resources 9, cost for repair 1. 100 agents are made randomly abnormal
initially, and half chosen at random to take all-D [22])

more attentive by caring for neighbor agents that might possibly repair them
in the future.

Simulations were conducted for strategic repair with modified payoff: not
only the remaining agent resources but also resources of the neighboring agents
were added to the payoff. Figure 9 plots (a) the time evolution of the fraction
of normal agents, (b) the available resources left in the system, and (c) the
fraction of agents with All-C' [22].

It can be observed that this strategic repair with modified payoff can adapt
to the failure rate: when the failure rate is low, the fraction of All-C' agents
is kept small (Fig.9(c)) limiting unnecessary repair, whereas when the failure
rate is high, the fraction of All-C' agents is also made high. As a result of this
flexible change of repair rate, the fraction of normal agents (Fig.9(a)) as well
as available resources (Fig. 9(b)) are made stable and the difference in failure
rate is absorbed.

4.5 Comparison Between Uniform Repair and Strategic Repair

An advantage of strategic control with SPD is that agents can switch between
repair and not-repair adapting to the spatial environment around the agents.
Strategic control with modified payoff (where the available resources of neigh-
boring agents are added to the payoff) has been compared with control by a
uniform rate in a spatially heterogeneous environment, where the lattice space
is divided into two regions: the right region with high failure rate (A = 0.1),
and the left region with low failure rate (A = 0.001) (Fig. 10). Black indicates a
normal cooperator, white an abnormal cooperator, light gray a normal defec-
tor, and dark gray an abnormal defector. It can be observed that cooperators

Integrating Intelligent Systems: A Game Theoretic Approach 171

1]
; P | e
E & o
3 !
§ Cl
5 B4 k]
L ;
=~ 7]
o L]
[" I I I) -L'
a8 26008 4008 [0] a808 18608
Tine Steps
{a) {c)
25
FailureRate= @8.6881 ~+ 6,858 O©O
g.018 a.18 ©
ad 0.838 ~«

= &

[t
"

Available resources
{Average value per Agents)

{b)

Fig. 9. SPD with strategic control with modified payoff (available resources of the
neighbor agents being added to the payoff): (a) fraction of normal agents, (b) avail-
able resources, (c) fraction of All-C' agents (parameters are as per Table 7, and the
initial configuration is with half of All-D agents and 100 failure agents chosen at
random [22])

STEP= 1400 STEP=1400

Fig. 10. Snapshot of agent configurations at 1400 time steps when simulation is
carried out with the parameters listed in Table 7, except for failure rate and repair
rate p = 0.5, where strategic repair (left) and uniform repair (right) are compared

172

Y. Ishida

Fraction of Nornal Agents

8.84 8.86 8.88
Failure rate

{a}

Available resources

{Average value per Agents)

Repair rate = 8,1 ——

0,02

8,84 8,06 8,08

Failure rate

b

8.1

1,8 —6—
strategic repair —8—

0.9

Fig. 11. Maximum number of resources is 25 — comparison between strategic con-
trol with modified payoff (available resources of neighboring agents being added to
the payoff), and control with uniform rate: (a) fraction of normal agents, and (b)
available resources when the failure rate \ varies [22]

1 e ———— E T T - :
4 y " —a—s wE 127%
\ : == 8
g RN “ Ei‘ 10 |y
& X R
Cl 3 1] -4 s Y
£ oo ¥ 1 i \r "
= 1 CERRE 3 "
T 8.4 \ 23 4" et —a——n 5 A-a-a
E \ i~ g X = 4
‘é 8,2 I"-, 4 g T 2 \
e \ E \
=] \ 2 4 — —t—
a + + + + b] 8,82 8,84 0,06 8,68 8,1
8.62 9.04 0.86 08.88 0.1 Eail ”
Failure rate bl
(a} (b}
Repair rate = 8,1 —— 1.8 —&—

8,5
8.9

strategic repair —8—

Fig. 12. Maximum number of resources is 13 — comparison between strategic con-
trol with modified payoff (available resources of neighboring agents being added to
the payoff), and control with uniform rate: (a) fraction of normal agents, and (b)
available resources when the failure rate \ varies [22]

(black and white agents) are found in the right region with high failure rate
in the strategic repair (left), while no such adaptive behavior is observed for
uniform repair.

Further, in spatially homogeneous environment, strategic control with
modified payoff has been compared with control by a uniform rate. Figures 11
and 12 are simulation results for varying values of max resource: 25 and 13,
respectively [22]. Changes of the max resource will change the relative cost of
repair. In each figure, the fraction of normal agents (a) as well as the available

Integrating Intelligent Systems: A Game Theoretic Approach 173

resources (b) are monitored; available resources, which are correlated with the
fraction of normal agents, are a rough measure of performance.

First, it can be observed that the performance of the uniform rate control
varies in these three simulations, while that of the strategic rate control shows
reasonable performance. For example, the available resources by the uniform
rate control with repair rate 0.5 is worst when the failure rate is 0.1 and
max resource is 25 (Fig.11(b)), however it is the best when max resource
is 12 (Fig.12(b)). Thus, the performance comparison between uniform and
strategic rate control can be summarized as:

e the strategic rate control is neither best nor worst;
e strategic control is robust against parameter changes.

The simulations indicate that an appropriate uniform rate could be set
when parameters were correctly identified. However, it is often the case that
parameters are difficult to identify, or that they may change dynamically. In
such cases, strategic rate control can be used. The above discussion holds only
when the damage rate is below the threshold (as in Fig. 7).

It has been shown that strategic repair leaves the decision as to whether to
repair neighbor agents to each selfish agent. This game theoretic framework
is suitable for an autonomous and distributed decision-making context that is
suitable for the regulation and maintenance of large-scale information systems.

A major problem of using the Spatial Prisoner’s Dilemma in regulating
the repair rate of agents is that agents tend to remain silent and stuck at
the Nash equilibrium of mutual defection. Here, we present a new solution
to this problem: involving more systemic payoff incorporating not only its
own remaining resources, but all its neighbor resources. With this modified
payoff, agents not only have an adaptive decision-making dependent on the
environmental parameters, such as failure rate and damage rate, but also have
a more favorable resource allocation compared with a uniform regulation of
repair rate.

5 Selfishware and Internet Being

In the microscopic model, we have shown the possibility of cooperation
emerging when more systemic payoffs such as system reliability and further
availability are taken into account, rather than simply counting the cost for
repair. Indeed, when the payoff is modified to a more systemic one involving
neighbor resources in the macro model, a cooperative strategy that will sup-
port neighbors by repairing can exist even when a defective strategy exists.
With extended payoff, even adaptability to the environment (such as fault
probability and maximum resources) has emerged.

174 Y. Ishida

Strategic repair cannot outperform a uniform repair strategy that is opti-
mally tuned to the environment, however, the optimal one changes when the
environment changes. Although strategic repair is not optimum in any envi-
ronment, it has shown reasonable performance. This is due to the fact that
strategic repair amounts to distributing the repair rate in a spatio-temporal
sense: distinct agents can have distinct repair rates and agents can have dis-
tinct repair rates at distinct times. The merit of spatio-temporal flexibility of
strategic repair will be more conspicuous in spatio-temporally dynamic envi-
ronments — for example, failure rate could vary from agent to agent and from
time to time.

Although we focused on a self-repairing task, the tendency would hold for
other tasks that require cooperation of agents. The condition for existence of
both selfishware and Internet being is obviously that all the players involved
in the entity will benefit from it, or at least will not suffer from it. For the
existence and maintenance of Internet being, however, a further condition is
needed: payoff involves not only the short-sighted one, but also a payoff on a
more systemic and longer term basis.

This would explain two phenomena observed in the Internet: one is that
hypertexts (web documents) are posted and linked so explosively, and another
is that computer viruses, worms, spyware, and spam email cannot be wiped
out. The former is considered to be example of Internet being, corresponding
to an organization of cooperators, while the latter is an example of selfish-
ware but not Internet being, corresponding to an isolated small cluster of
defectors.

The linked network of web documents benefits all the players involved —
that is, not only the readers but also the providers (the ones who make post-
ings), thus forming the Nash equilibrium. Viruses and spam mail benefit only
the providers and rather harm users. However, the users have to pay a high
cost to eradicate them and instead choose to neglect them, forming again a
Nash equilibrium.

Focusing on spam mail, the usual e-mail network is an Internet being in the
sense that both senders and receivers benefit from it. Spam mail can appear
as ‘intruders’, since the usual e-mail network is not an evolutionarily stable
strategy (ESS) [18].

Game theoretic study of complex systems such as the Internet will reveal
that the network is a ‘culture media’ for artificial life, since it would allow
Internet beings to emerge when certain conditions are met. As the network
is used as a repository of knowledge and data, it can be a concentrator of
computational intelligence when an organization such as grid computing is in
operation. Then parasitic computing [3] will also emerge as selfishware.

Integrating Intelligent Systems: A Game Theoretic Approach 175

6 Conclusion

For complex and large-scale artificial systems such as the Internet, the sys-
tems tend to be out of control; centralized and planned control would be
difficult to apply. Autonomous and distributed management will be impera-
tive and unavoidable rather than uniform control using a central authority.
Autonomous and distributed management is favorable not only for control
and management purposes but also for robustness against dynamic change,
for such complex systems always undergo changes. When autonomous and
distributed management is chosen as a framework, then we have to deal with
selfish agents in exchange for leaving the control and management to each
agent. The framework must guide the selfish actions of each agent toward the
welfare of the entire system. Game theory has been studied and developed for
such purpose, and has been applied to theoretical biology as well as economics.

The game theoretic approach to both micro and macro models for a net-
work cleaning problem in a self-repairing network has been discussed. The
game theoretic approach revealed conditions that selfish agents can cooper-
ate and form an organization of cooperative selfish agents: their payoff must
involve not only the selfish agent itself but also its neighbors’ survival. By
doing so, interacting selfish agents can avoid not only being deadlocked wait-
ing for neighbors’ support (Nash equilibrium), but also being attracted to all
the dead states (attractor).

Based on the results, we also discussed when selfishware will emerge and
under what condition it would further develop into an Internet being.

Acknowledgements

T am grateful to Prof. Fulcher not only for giving me the opportunity to present
this work, but also his great assistance in editing and proofreading. I am also
grateful to the anonymous reviewers, whose comments were quite helpful in
improving the Chapter. I am indebted to Mr. Toshikazu Mori, Mr. Masakazu
Oohashi and Mr. Yuta Aoki who helped conduct the simulations. This work
was supported in part by a Grant-in-Aid for Scientific Research (B) 16300067,
2004. This work was also partly supported by the 21st Century COE Program
‘Intelligent Human Sensing’ of the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

References

1. Akella A, Seshan S, Karp R, Shenker S, Papadimitriou C (2002) Selfish
behavior and stability of the internet: a game theoretic analysis of TCP. In:
Proc. ACM Annual Conf. of Speical Interest Group on Data Communications
(SIGCOMM’02), August, Pittsburg, PA. ACM Press, New York, NY: 117-130.

176

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Y. Ishida

Axelrod R (1984) The Evolution of Cooperation. Basic Books, New York, NY.

Barabasi A-L, Freeh VW, Jeong H, Brockman JB (2000) Parasitic computing.
Nature, 412: 894-897.

Domany E, Kinzel W (1984) Fquivalence of Cellular Automata to Ising Models
and Directed Percolation. Phys. Rev. Lett. 53: 311

Dresher M (1961) The Mathematics of Games of Strategy: Theory and
Applications. Prentice-Hall, Englewood Cliffs, NJ.

. Feigenbaum J, Papadimitriou C, Shenker S (2001) Sharing the cost of multicast

transmissions. J. Computer and System Sciences, 63: 21-41.

Feigenbaum J, Papadimitriou C, Sami R, Shenker S (2002) A bgp-based mecha-
nism for lowest-cost routing. In: Proc. 21st ACM Symp. Principles of Distributed
Computing (PODC’02), July, Monterey, CA, ACM Press, New York, NY:
173-182.

Feigenbaum J, Shenker S (2002) Distributed algorithmic mechanism design:
recent results and future directions. In: Proc. 6th ACM Workshop Discrete Algo-
rithms and Methods for Communication (Dial-M’02), 28 September, Atlanta,
GA. ACM Press, New York, NY: 1-13.

Foster I, Kesselman C (eds) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, CA.

Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bulletin American
Mathematical Society, 40: 479-519.

Ishida Y (2005) A critical phenomenon in a self-repair network by mutual
copying. In: Khosla R, Howlett RJ, Jain LC (eds.) Proc. 9th Knowledge-
Based Intelligent Engineering Systems (KES 2005), Lecture Notes in Computer
Science LNCS/LNALI 3682. Springer-Verlag, Berlin: 86-92.

Ishida Y (2006) A game theoretic analysis on incentive for cooperation in a self-
repairing network. In: Elleithy K (ed.) Advances and Innovations in Systems,
Computing Sciences and Software Engineering. Proc. Intl. Joint Conf. Com-
puter, Information and Systems Sciences and Engineering (CIS2E 06), 4-14
December, Bridgeport, CT, Springer-Verlag, Berlin.

Ishida Y, Mori T (2005) Spatial strategies on a generalized spatial prisoner’s
dilemma. J. Artificial Life and Robotics, 9(3): 139-143.

Ishida Y, Mori T (2005) A network self-repair by spatial strategies in spa-
tial prisoner’s dilemma. In: Khosla R, Howlett RJ, Jain LC (eds.) Proc. 9th
Knowledge-Based Intelligent Engineering Systems (KES 2005), Lecture Notes
in Computer Science (LNCS/LNAI 3682), Springer-Verlag, Berlin: 79-85.
Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. In: Meinel C,
Tison S (eds.) Lecture Notes in Computer Science LNCS1563: 404-413.
Lakshman TV, Kodialam M (2003) Detecting network intrusions via sampling:
a game theoretic approach. In: Proc. 22nd Annual Joint Conf. IEEE Com-
puter and Communications Societies (INFOCOM’03), 30 March — 3 April, San
Francisco, CA. IEEE Press, Piscataway, NJ: 1880-1889.

Mavronikolas M, Spirakis P (2001) The price of selfish routing. In: Proc. 33rd
Symp. Theory of Computing (STOC’01), 6-8 July, Hersonissos, Greece. ACM
Press, New York, NY: 510-519.

Maynard-Smith J (1982) Ewolution and the Theory of Games. Cambridge
University Press, Cambridge, UK.

Nash J (1950) The bargaining problem. Econometrica, 18: 155-162.

Nisan N, Ronen A (2001) Algorithmic mechanism design. Games and Economic
Behavior, 35: 166-196.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Integrating Intelligent Systems: A Game Theoretic Approach 177

Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature, 359:
826-829.

Oohashi M, Ishida Y (2007) A game theoretic approach to regulating mutual
repairing in a self-repairing network. In: Sobh T, Elleithy K, Mahmood A,
Karim M (eds.) Innovative Algorithms and Techniques in Automation, Industrial
Electronics and Telecommunications. Springer-Verlag, Berlin: 281-286.
Papadimitriou C (2001) Algorithms, games, and the internet. In: Proc. 33rd
Symp. Theory of Computing (STOC’01), 6-8 July, Hersonissos, Greece. ACM
Press, New York, NY: 749-753.

Parkes D (1977) Iterative combinatorial auctions: achieving economic and com-
putational efficiency. PhD Thesis, Department of Computer and Information
Science, University of Pensylvania, PA.

Roughgarden T, Tardos E (2002) How bad is selfish routing? J. ACM, 49(2):
236-259.

Shooman ML (1968) Probabilistic Reliability: An FEngineering Approach
McGraw-Hill, New York, NY.

Shoham Y, Wellman M (1997) Economic principles of multi-agent systems.
Artificial Intelligence, 94: 1-6.

Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game
dynamics. Mathematical Bioscience, 40: 145-156.

Walsh W, Wellman M (1998) A market protocol for decentralized task alloca-
tion. In: Proc. 3rd Intl. Conf. Multi-Agent Systems (ICMAS-98), July, France.
IEEE Computer Society Press, Los Alamitos, CA: 325-332.

Resources

1 Key Books
Axelrod R (1984) The Evolution of Cooperation. Basic Books, New York, NY.

Bertsekas D, Gallager R (1992) Data Networks (2nd ed). Prentice-Hall,
Englewood Cliffs, NJ.

Czumaj A (2004) Selfish routing on the Internet. In: Leung J (ed.) Handbook
of Scheduling. CRC Press, Boca Raton, FL.

McKnight LW, Bailey JP (eds.) (1997) Internet Economics. MIT Press,
Cambridge, MA.

Maynard-Smith J (1982) Fuvolution and the Theory of Games. Cambridge
University Press, UK.

Tayler M (1987) The Possibility of Cooperation. Cambridge University Press,
UK.

Weibull J (1995) Evolutionary Game Theory. MIT Press, Cambridge, MA.

2 Organisations, Societies, Special Interest Groups

Grid Computing Info Centre
http: / /www.gridcomputing.com/

TEEE distributed systems online
http://dsonline.computer.org/portal/site/dsonline /index.jsp

Market Design Inc.
http:/ /www.market-design.com

180 Y. Ishida

3 Research Groups

Papadimitriou CH, Computer Science Division, University of California,
Berkeley
http: / /www.cs.berkeley. edu/ " christos/

Czumaj A, Department of Computer Science, New Jersey Institute of Tech-
nology
http://web.njit.edu/ " czumaj/

Kearns M, Institute for Research in Cognitive Science at University of
Pennsylvania
http: //www.cis.upenn.edu/ "mkearns

4 Discussion Groups, Forums

Topology Project
http://topology.eecs.umich.edu/

5 Key International Conferences/Workshops

FOCS 2007: 48th Annual IEEE Symposium on the Foundations of Computer
Science
http://www.focs2007.org/

IEEE INFOCOM: Annual Joint Conference of the IEEE Computer and Com-
munications Societies
http:/ /www.comsoc.org/confs/infocom/index.html

PODC: ACM Symposium on Principles of Distributed Computing
http://www.acm.org/podc/

SODA : ACM/SIAM Symposium on Discrete Algorithms
http: / /www.informatik.uni-trier.de/ "ley/db/conf/soda/index. html

STACS: Symposium on Theoretical Aspects of Computer Science
http: / /www.informatik.uni-trier.de/ "ley/db/conf/stacs/index.html

STOC: ACM Symposium on the Theory of Computing
http://sigact.acm.org/stoc/

Integrating Intelligent Systems: A Game Theoretic Approach

6 (Open Source) Software
The network simulator: ns-2

http://isi.edu/nsnam/ns/

7 Data Bases

Consensus road map for defeating distributed denial of service attacks
http://www.sans.org/dosstep /roadmap.php

Traceroute and Looking Glass
http://www.traceroute.org

181

Part 111

Artificial Intelligence

Emotional Intelligence: Giving Computers
Effective Emotional Skills to Aid Interaction

Chris Creed and Russell Beale

School of Computer Science, University of Birmingham, UK, cpc@cs.bham.ac.uk,
r.beale@cs.bham.ac.uk

1 Introduction

Why do computers need emotional intelligence? Science fiction often portrays
emotional computers as dangerous and frightening, and as a serious threat
to human life. One of the most famous examples is HAL, the supercomputer
onboard the spaceship Discovery, in the movie 2001: A Space Odyssey. HAL
could express, recognize and respond to human emotion, and generally had
strong emotional skills — the consequences of which were catastrophic. How-
ever, since the movie’s release almost 40 years ago, the traditional view
of emotions as contributing to irrational and unpredictable behavior has
changed. Recent research has suggested that emotions play an essential role in
important areas such as learning, memory, motivation, attention, creativity,
and decision making. These findings have prompted a large number of research
groups around the world to start examining the role of emotions and emotional
intelligence in human-computer interaction (HCI).

For almost half a century, computer scientists have been attempting to
build machines that can interact intelligently with us, and despite initial opti-
mism, they are still struggling to do so. For much of this time, the role of
emotion in developing intelligent computers was largely overlooked, and it is
only recently that interest in this area has risen dramatically. This increased
interest can largely be attributed to the work of [6] and [85] who were amongst
the first to bring emotion to the attention of computer scientists. The former
highlighted emotion as a fundamental component required in building believ-
able agents, while the latter further raised the awareness of emotion and its
potential importance in HCI. Since these publications, the literature on emo-
tions and computing has grown considerably with progress being made on a
number of different fronts.

The concept of designing computers to have emotional intelligence may
seem strange, but equipping computers with this type of intelligence may pro-
vide a number of important advantages. For example, in spite of a computer’s
C. Creed and R. Beale: Emotional Intelligence: Giving Computers Effective Emotional Skills

to Aid Interaction, Studies in Computational Intelligence (SCI) 115, 185-230 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

186 C. Creed and R. Beale

impressive ability to process huge volumes of data in milliseconds and to
perform complex calculations in a fraction of a second, they still have neither
the ability to see or hear us, nor the ability to understand how we are feel-
ing and to adapt themselves accordingly. Users often experience feelings of
frustration at computers when they display obscure error messages, behave
in erratic ways, and frequently crash. We may feel like venting our anger and
frustration towards the computer, but it does not have the ability to respond
in a constructive way. However, a computer that has some form of emotional
intelligence would be able to detect that the user is feeling frustrated and
angry, and would be in a position to take productive steps to alter this.

Such computers could use a number of strategies to help alleviate feelings
of anger and frustration, such as opening a dialogue with users to ascertain
the source of their emotions, apologizing for any mistakes made and work-
ing with the user to resolve them, and through expressions of empathy and
understanding at the user’s emotional state. Recent research has suggested
that people who have damaged the emotional components of their brain find
it difficult to make decisions as they cannot associate any emotion to a decision
(in other words, would a particular course of action result in positive or nega-
tive feelings? [32]). Such a disability can have a destructive effect on people’s
lives as they consistently make poor decisions. This suggests that instead of
computers becoming more unpredictable and irrational through having emo-
tional intelligence, they would instead act and behave more rationally and
predictably.

So how do we go about giving computers effective emotional skills that aid
our interaction with them? This Chapter will provide an overview of what is
required to achieve this, as well as the numerous issues involved in doing so.
This Chapter is split into three core sections. Section 2 concentrates on the
theory and research related to the building of emotional intelligence into com-
puters. It starts by providing an overview of emotion theory, with a particular
focus on the concepts and ideas most relevant for building and evaluating emo-
tionally intelligent agents. A detailed perspective of the different approaches
used in developing emotional intelligence in computers is then provided, along
with a discussion of the limitations of these different approaches.

Section 3 provides an overview of our own work and how it relates to
the standard approaches detailed in the previous Section. This includes an
overview of what affective embodied agents are, how we respond to synthetic
displays of emotion in such agents, research which has suggested that we have
social and emotional relationships with computers, a discussion of the impor-
tance of conducting longitudinal studies when evaluating interface agents,
and a description of the affective embodied agent that we have developed for
experimental purposes. The final Section contains a discussion of the appli-
cation of our approach to the real world by initially discussing areas and
problems that affective embodied agents could potentially be useful for. We
then provide a detailed example of where such an agent can be used within

Emotional Intelligence 187

a nutritional scenario, detailing how it can simulate a human health profes-
sional to help people change problematic behavior such as smoking, eating,
and exercise.

2 Overview of Affective Computing

In order to understand how we can give computers effective emotions that
aid our interactions with them, we need to start with an understanding of
what emotions are and what exactly constitutes emotional intelligence. This
section starts by providing an overview of what we currently know about emo-
tions, including what causes them, how we express them, and what influences
they have on the way we feel and behave. A detailed overview of the stan-
dard approaches used in attempting to incorporate emotional intelligence into
computers is then provided.

2.1 What Are Emotions?

Emotion theorists have debated for centuries about what emotions are and
what their primary function in human life is. This debate is far from over and
there is currently no universally agreed upon definition of emotions. How-
ever, many scholars would at least agree that we experience different types of
emotions in our everyday lives. An overview of these is provided below.

Basic Emotions

For much of the previous century, emotion scholars generally subscribed to
a cultural theory of emotion, where emotions were believed to be culturally-
specific learned behaviors that could only be experienced through observing
other people expressing such emotions. However, [38] discovered that some
emotions are not necessarily learned as previously believed, but are in fact
innate and shared across all cultures. In his study, Ekman travelled to a prelit-
erate culture (the Fore, in New Guinea) to ensure that the people there had not
been exposed to Western media and had not learned the emotional expressions
of Westerners. The subjects were told a number of stories, then asked to choose
from a set of photographs of Americans expressing different emotions, the one
which most closely matched the story. When tested, the Fore pointed to the
same expressions that Westerners linked to the story. For further clarification,
some Fore people were videotaped displaying facial expressions appropriate
to each of the stories. After returning home, the experiment was completed in
reverse by asking Americans to link the Fore faces to the different stories. The
judgements of both the Fore people and the Americans again matched. These
were named ‘basic emotions’, and while researchers often disagree about how
many basic emotions there are, many would agree that anger, disgust, fear,
joy, sadness and surprise can be classed as basic emotions.

188 C. Creed and R. Beale

Culturally Specific Expressions of Emotions

There are also cultural variations in the way in which humans express emo-
tion. For example, [38] investigated the different emotion display rules that
Americans and the Japanese have. In this experiment, both American and
Japanese men were videotaped whilst watching some video clips. The clips
varied as to whether they displayed neutral or pleasant events (such as a canoe
trip) or less pleasant events (for example, nasal surgery). There were two show-
ings of the video clips: one where subjects watched the clips on their own and
another where subjects watched the clips with an interviewer present. When
subjects watched the clips in private, similar expressions were noted in both
American and Japanese subjects. However, when the interviewer was present,
Japanese subjects smiled more and showed less disgust than the American sub-
jects. When the videotapes were watched back in slow motion the researchers
noticed that when the interviewer was present, Japanese subjects actually
started to make the same expressions of disgust as the Americans did, but
they were able to mask these expressions very quickly afterwards. There-
fore, it appeared that the American and Japanese participants did actually
experience the same basic emotions as these were automatic responses hard-
wired into their brains. It was only a few hundred milliseconds later, that the
Japanese subjects could apply their learnt cultural display rules and override
the automatic response.

It has also been suggested that some emotions are culturally specific. For
example, [65] reported on an emotion that is experienced by the Gururumba
people of New Guinea that is not believed to be experienced from people of
other cultures. This is known as the state of ‘being a wild pig’ and people
who experience this state can become aggressive and often start looting, but
rarely is anyone actually hurt or anything of importance stolen. This state is
considered as normal among the Gururumba, as a way of relieving stress and
maintaining mental health across the community.

Higher Cognitive Emotions

[56] has argued that in addition to basic and culturally-specific emotions,
there are also ‘higher cognitive emotions’. These emotions are similar to basic
emotions in that they are universal, but there are also variations on the way
that they are expressed and experienced by different cultures, and there is also
no single facial expression associated with them. Higher cognitive emotions
also take longer than basic emotions to both develop and pass away. For
example, consider romantic love. This emotion usually develops gradually in
people over a period of weeks and months, while surprise (a basic emotion) is
typically a very quick reaction to an event. Surprise also has a single universal
facial expression associated with it, while there is no single universal facial
expression for love. It is suggested that emotions such as love, jealousy, pride,
embarrassment and guilt should be called ‘higher cognitive emotions’, because

Emotional Intelligence 189

these emotions typically require more processing in the cortex of the brain.
This essentially means that these emotions can be influenced more by cognitive
thought processes, while basic emotions are more reactive in nature.

Neurological Model of Emotion

The model of Fig.1 has been developed for some emotions (in particular,
fear), based on work in neuroscience where it was found that fear is controlled
by two different pathways in the brain [65]. Furthermore, the following three
key regions of the brain were identified as being associated with fear: the
thalamus, the limbic system (in particular, the amygdala) and the cortex [65].
Sensory input is initially received by the thalamus from the environment and
transmitted simultaneously across the low road to the limbic system and up
the high road to the cortex. The relevance of the inputs to an individual’s
concerns (in other words, their needs and goals) are then continually assessed
by the limbic system, and if an input is evaluated as relevant, signals are sent
both to the body for physiological reaction and to the cortex for processing.
The first pathway (the thalamic-limbic) is the quicker of the two, and forces
us to react to potential dangers. In being quicker, it is prone to make more
errors and can often be initiated by false alarms, such as hearing a door slam.
The second pathway (the thalamic-cortex) is slower, but more accurate, and
can override feelings of fear evoked from the first pathway.

SENSORY CORTEX

SENSORY THALAMUS

EMOTIONAL STIMULUS EMOTIONAL RESPONSES

Fig. 1. LeDoux’s neurological model of fear [65]

190 C. Creed and R. Beale
Primary, Secondary, and Tertiary Emotions

Emotions aroused from the first pathway are referred to as ‘primary emotions’,
in other words, our hard-wired primitive emotions [32]. Primary emotions
are typically reactions to stimuli such as outrage, being startled, or sexually
stimulated. By contrast, ‘secondary emotions’ are defined as those emotions
that require more cognitive thought, such as grief, frustration and pride. One
patient — ‘Elliot’ (who had acquired damage to his frontal cortex as a result
of a brain tumour) — was used to illustrate the difference between primary
and secondary emotions. Elliot’s primary emotions still appeared to be func-
tioning correctly as he could, for example, still be startled by a loud bang.
However, if he saw a disturbing scene depicting a human head exploding, he
knew cognitively that he should feel shocked, but physiologically there was no
response where normally there would be. Elliot’s limbic-cortical pathway had
been damaged, and as a result he knew that he should feel certain emotions,
but did not.

It has been argued that there also exist ‘tertiary emotions’, these being
emotional states that involve a partial loss of control over thought processes.
When experiencing a tertiary emotion, it can be hard to concentrate on any-
thing else, making it particularly difficult to attend to important and urgent
tasks. Humiliation, infatuation, guilt and excited anticipation can be viewed
as examples of tertiary emotions [97].

2.2 Emotions and Moods

A major problem in emotion research is the lack of a common language. Terms
such as emotion, moods, drives, sentiments and attitudes are often used inter-
changeably by researchers and it can be unclear what is being referred to at
times. These terms have meanings of their own and have been discussed at
length in the literature [40]. Here we will focus primarily on the relationship
between emotions and moods, since distinction between the two can be par-
ticularly difficult (people often use similar words, such as ‘happy’, to describe
both). One obvious difference between the two is the duration for which each
lasts. Despite disagreement about exactly how long emotions last, [39] sug-
gests that they are very brief in comparison to moods and typically last a few
seconds or minutes at most, whereas moods tend to last for hours or days.

[51] distinguishes between emotions and moods by arguing that emotions
are ‘intentional’ and involve relationships between people and objects: “one
is afraid of something, angry at someone, happy about something.” Moods,
however, are ‘nonintentional’ and experienced more generally than emotions.
Unlike emotions, they are not directed at any object in particular (although
an object does have the potential to indirectly cause moods).

[33] suggests that emotions and moods can be distinguished through a
functional analysis of each. Some emotion theorists have argued that the main

Emotional Intelligence 191

function of emotion is to bias the action we take in reaction to a particular
situation. These emotions prepare the body to act quickly to these events and
are usually very brief. However, the key function of moods is to bias cognition
over extended periods of time. [33] further suggests that moods are always
present and can affect our evaluation of events encountered both internally
and externally. For example, someone in a positive mood is likely to view
everything more positively, while somebody who is in a negative mood is
likely to view everything more negatively.

Moods also appear to lower the threshold for experiencing other mood-
related emotion. For example, an individual in an irritated mood can become
more readily angry than they usually would. Situations or objects that would
not normally cause such anger can do so more easily because of the mood of
the person [39].

2.3 Expression of Emotion

Humans can express emotion in a variety of ways, the primary ones being writ-
ten language, facial expressions, speech, and body language (such as posture
and gait).

Written Language

Written language is a powerful medium for expressing emotion. People often
express their emotions through stories, poetry and personal letters. People can
literally state how they are feeling using emotive words such as ‘happy’, ‘sad’,
or ‘ecstatic’. The colour, size, and shape of words can also be manipulated
to add emotional emphasis to content (for instance, by animating text [106]).
Symbols such as emoticons — for example, :-) or :-(— can also be used to
convey emotion, and are particularly popular within domains where emotional
information is lacking, such as email, instant messaging or text messaging.

Speech

Another powerful method for communicating and expressing emotion is
through speech. In some scenarios, it is the only channel available for com-
munication (for example, telephone conversations). Speech can also provide
other information about a speaker such as their identity, age and gender.
People can also use speech to simply communicate the emotions they are
experiencing. Pitch (level, range and variability), tempo and loudness are
considered the most influential parameters for expressing emotion through
speech [4]. [75] have defined the general characteristics of a range of basic
emotions (Table 1).

192 C. Creed and R. Beale

Table 1. Summary of emotional effects in speech (relative to neutral speech)

Anger Happiness Sadness Fear Disgust
Speech slightly faster or slightly much very much
rate faster slower slower faster slower
Pitch very much much slightly very much very much
average higher higher lower higher lower
Pitch much much slightly much slightly
range wider wider narrower wider wider
Intensity higher higher lower normal lower
Voice breathy, breathy, resonant irregular wide, downward
quality chest tone blaring resonant voicing terminal inflections
Articulation tense normal slurring precise normal

Facial Expressions

Facial expressions are one of the primary ways in which we can detect emo-
tions in others. [41] have detailed the typical facial features that are associated
with six basic emotions with the mouth, cheeks, eyes, eyebrows and forehead
making up the core components of the face that are used to express emo-
tion. [42] have also produced the Facial Action Coding System (FACS), which
details the specific set of muscular movements for each of the basic emotions.
FACS helped to develop the Facial Definition Parameter (FDP) and Facial
Animation Parameter (FAP) sets which were designed according to the ISO
MPEG-4 standard to enable the animation of faces, expressions, emotions,
and lip movement. Humans are particularly adept at recognizing emotion in
facial expression, and research has shown that people can accurately iden-
tify the emotional expressions of faces represented by as little as 37 lines,
concentrating on the eye-brows, eyelids and mouth [44].

Gestures and Body Language

An overview and explanation of the meaning of different head, hand and body
movements is provided in [52]. For example, a vertical (up and down) ‘head-
nod’ often displays agreement or comprehension while listening. Clenched fists
can signal an aroused emotional state, such as fear, anger, or excitement (for
instance celebrating your team scoring at a sports event). Another example is
arm-crossing, which is seen as a self-comforting and stimulating posture that
is unconsciously used to ease anxiety and social stress [52].

Emotional Intelligence 193
2.4 Influence of Emotion on Human behavior
Attention

Emotion and attention are closely related. Paying attention to something
can trigger an emotion while an emotion can influence what we focus our
attention on. When an emotion is triggered it focuses our attention and mental
focus onto an external object or event that produced the emotion [82]. For
example, when we are angry we focus on the thing that angered us; when we
are frightened we concentrate on what scared us; when sad we focus on what
upset us.

Moods can also influence attention by focusing thoughts on the object or
event that caused the mood. For example, when feeling upset, depressed or
down, we tend to focus our thoughts on what made us feel this way. However,
we can still experience moods without our attention being focused on anything
in particular. For example, being in an anxious mood when walking down a
dark alley at night helps us to keep alert for any potential signs of danger [45].

Numerous studies have focused on the effects of anxiety on attention. Anx-
iety narrows attention to whatever has caused the anxious feelings and little
attention is given to almost everything else. Researchers have examined the
effects of anxiety on attention through an experiment known as the ‘emotional
Stroop test.” [98] found that if people are asked to look at the printed text of
colour names that were printed in a different colour from the text (for exam-
ple, the printed text ‘red’ in a blue colour) and were then asked to name the
colour of the text for each word, they take longer when the colour of the word
and the colour of the print do not match. When the colour of the text and
the printed word are mismatched it causes confusion and thus it takes longer
to say the colour of the text.

The idea of the emotional Stroop test is that the words shown are both
neutral and (potentially) emotionally arousing, to test whether it takes longer
to name the colour of the words which are emotionally arousing. For example,
[47] found that subjects who had been victims of rape where slower at naming
the coloured words that were related to rape. This suggests that the anxi-
ety caused by seeing a word associated with a traumatic experience focuses
attention on that word, making it difficult to focus on other details such as
the colour of the print.

Memory

Emotions and moods influence what we remember. We are able to recall events
that are associated with either a strong positive or negative emotional reaction
more easily that neutral events. For example, [24] reported on five experiments
where groups of students watched a set of fifteen colour slides of what someone
might see when walking to work. All groups of students saw the same slides,

194 C. Creed and R. Beale

except for the eighth one, of which there were three variants, namely: (i) a
woman riding a bicycle, (ii) the same woman carrying the bicycle over her
shoulder, and (iii) the same woman lying on the side of the road as if she
had been hit by a passing car. After viewing the slides, students were then
asked to recall what they had seen. Results found that people who had seen
the woman lying on the side of the road could remember details like the
colour of her coat more accurately than other groups. However, they struggled
to remember other (peripheral) details, such as the colour of the car in the
distance as well as the other groups.

The mood that we are in when attempting to remember something also
influences our ability to recall it. For example, [12] illustrated that when we
are in a happy mood, we seem to be able to recall pleasant events more easily
than unpleasant ones. The opposite appears to apply when we are in a sad
mood. In this experiment, subjects were asked to recall and describe incidents
from when they were a child. The following day, when the subjects were in a
neutral mood, they were asked to rate each incident as ‘pleasant’, ‘unpleasant’,
or ‘neutral’. The next day, happy or sad moods were induced in subjects and
they were then asked to recall as many of their incidents as possible. Results
found that people who had been induced into a good mood could remember
more incidents that they classed as ‘happy’, but remembered less of the ones
they classed as ‘sad’. A similar (opposite) effect was also found for people
who had been induced into a sad mood. This effect is often referred to as
‘mood-congruent recall.’

Judgement and Decision Making

Emotions also have a strong influence on our judgement and the decisions
we make. For example, one experiment [2] suggested that our judgement of
other people is often influenced by the mood we are in when we meet them.
In this study, same sex subjects were paired together to practice a job inter-
view. Unknown to subjects was that their partners were actually helping the
experimenters. The subjects were chosen to be the interviewers while their
partners were the interviewees. Subjects were put into a good or bad mood
by the experimenter by giving them problems to solve and then commenting
on their performance, telling them that they had either performed much better
than others, had performed averagely, or had done far worse than other peo-
ple. The subjects were then asked to interview their partner through asking a
set of pre-scripted questions, such as “What are your most important traits?”
The interviewee replied with positive (for example, “I'm ambitious and reli-
able”) and negative answers (such as “I'm impatient”). After the interview,
the interviewers were requested to assess the interviewee on both work and
personal aspects. It was found that subjects who were in a good mood had
a tendency to rate the interviewees more positively and were more likely to
employ them, while the subjects in a bad mood had a tendency to rate people

Emotional Intelligence 195

more negatively and were less likely to hire people [2]. This is despite the
answers received by subjects being the same.

Creative Problem Solving

Moods have been found to have an influence on problem solving. For exam-
ple, in one experiment [58], subjects were induced into either a good or bad
mood and then asked to solve Dunker’s candle task [36]. Given only a box
of thumbtacks, the goal of this problem is to attach a lighted candle to the
wall in such a way that no wax falls to the floor. It was found that subjects
who were put in a good mood before the start of the task were more success-
ful at solving this problem [58]. Another study which suggested the influence
of emotions and moods on problem solving was that of [59]. In this study,
medical students had either positive, negative, or neutral moods induced, and
were then asked to diagnose patients based on their X-rays. Results from this
study found that subjects who had a positive mood induced were able to make
the correct diagnosis faster than subjects who had either negative or neutral
moods induced.

Persuasion

Emotions also play a vital role in persuading people to do things. [71] investi-
gated this by questioning students about whether or not they were in favour of
gun control. Half of the students had a positive mood induced by watching a
short comedy show, while the other half watched a more neutral programme
about wine. Both groups were then provided with an argument about gun
control that contradicted their own view on the subject — people who were
in favour of greater control were presented with an argument against further
restrictions, while people against greater control read an argument in favour of
this. Half of the subjects were also presented with strong arguments, while the
other half were provided with weak arguments. Furthermore, some subjects
were informed that the person presenting the argument was a first-year stu-
dent, while others were told that an expert was making the argument. Some
subjects were also given only a short period of time to read the argument,
while others were allowed to take as long as they desired. Once subjects had
finished reading the argument, they were tested again to see if there were
any changes in their view on the subject area. Results found that subjects
were generally more influenced by the strong arguments than the weak ones.
However, there was only a small difference for subjects who were put into
a positive mood and had only a short period of time to read the argument,
while the other groups found the weak arguments much less persuasive.

Emotional responses can also be used to manipulate the emotions and per-
ceptions of others, for their own purposes. For example, sales people often try
and build rapport through appearing empathic and understanding of their

196 C. Creed and R. Beale

potential customer’s needs and concerns to make themselves appear more
likeable. By making themselves appear more friendly, warm and likeable, they
can increase the likelihood that people will comply with their requests [25].
Advertisers often attempt to play with our emotions to help sell their products.
They use emotionally evocative images and music alongside the presentation
of their product, in the hope that we will associate positive emotions with it.
The same is also true when attempting to persuade people to stop participat-
ing in potentially dangerous and harmful things — for example, hard-hitting
television advertisements which contain highly evocative graphical images of
car crashes to warn about the dangers of drink driving. The hope here is that
viewers will associate strong negative emotions with such behavior and thus
avoid doing it.

2.5 Emotional Intelligence

The notion of emotional intelligence was first introduced by [95], and later
popularized by [53]. Emotional intelligence is defined as: “...an ability to rec-
ognize the meanings of emotion and their relationships, and to reason and
problem-solve on the basis of them. Emotional intelligence is involved in the
capacity to perceive emotions, assimilate emotion-related feelings, understand
the information of those emotions, and manage them.” [72]

As can be seen from the above definition, the concept of emotional intelli-
gence has been divided into four different areas to create a four-branch model,
these being [73]:

Accurately perceiving emotion
Using emotions to facilitate thinking
Understanding emotional meanings
Managing emotions

Goleman’s Emotional Competence Framework, on the other hand, divides
emotional intelligence into five core competencies [54]:

o Self Awareness: knowing one’s internal states, preferences, resources and
intuitions

Self-Regulation: managing one’s internal states, impulses, and resources
Motivation: emotional tendencies that guide or facilitate reaching goals
Empathy: awareness of others’ feelings, needs, and concerns

Social skills: adeptness at inducing desirable responses in others

Goleman suggests that the above emotional intelligence capacities make up a
hierarchy in which they build on each other [54]. For example, self-awareness
is essential for self-regulation and empathy, while self-regulation and self-
awareness are crucial for motivation. All four preceding competencies are
required for social skills.

Emotional Intelligence 197

These different categorizations are not contradictory; instead, they reflect
slightly different perspectives from the researchers as to the focus and extent
of emotion, and serve to illustrate that emotions are complex things with
multiple effects on ourselves, on our perceptions of the world and others in it,
on our desires and actions, and on our behavior and responses.

2.6 Approaches Used in Developing Emotionally Intelligent
Computers

So how can we build emotionally intelligent computers? The previous Section
discussed some of the core competencies required for humans to be considered
emotionally intelligent. Therefore, if we wish to simulate human emotional
intelligence, computers will also need to be adept in these areas. But this
is problematic. For example, one of the major disadvantages that computers
have over humans is that they do not have the sensory organs of humans —
such as eyes and ears — for recognizing emotional responses in others. Recent
progress has been made in building emotional voice recognition software and
applications that can track subtle facial movements and measure physiological
signals associated with emotion, but much of this work is still in its infancy.
This Section provides an overview of the different approaches being taken with
regard to building emotionally intelligent computers.

Computational Emotion Models

The goal in developing a model of emotion is to enable machines to evalu-
ate events and objects in such a way that they exhibit believable emotional
reactions to what has been evaluated (in other words, an emotional response
similar to that of a human). For these emotional reactions to be convincing,
emotion models should enable computers to express emotions believably at
both the right intensity and at the appropriate time. The following references
provide an overview of work that has been completed in this research area
[20,21,23,35,84,87,103, 104].

Appraisal theories have had a strong influence on the development of com-
putational models of emotion. The term ‘appraisal’ refers to the evaluation of
antecedent events that result in a particular emotion being experienced. The
model most often used to incorporate emotion into agents (that is based on
appraisal theory) is the OCC model [83], which is a computational model of
emotion that contains 22 emotion categories based on valanced reactions to
the consequences of goal relevant events, actions of another agent (as well as
itself), or according to the attractiveness of objects. The model also provides
variables for determining the intensity of an emotion.

The model, however, does have its limitations. [5] suggests that this
model provides a useful starting point for incorporating emotion into agents,
but is too complex for creating believable characters. For example, if facial

198 C. Creed and R. Beale

expressions are used as the medium to express emotion, it then becomes very
difficult to map the 22 emotional categories of the OCC model to the 6 facial
expressions identified by [38] as being used to convey emotion. Therefore,
when the model is used in this context, it needs to be simplified to match the
abilities of the interface agents. It has been further suggested that the OCC
model requires extended features, including a history function, a personality
designer, and the interaction of emotional categories (in other words, how the
emotional value of an event should affect the current emotional state of the
agent) [5].

An alternative model is that of [55], who have developed a domain-
independent model based on a framework of appraisal and coping which is
used in the design of autonomous virtual humans. The usefulness of this model
has been demonstrated with a Mission Rehearsal Exercise (MRE) system that
trains people for peacekeeping activities.

Computational models of emotion are often tested visually through the
use of embodied agents and virtual worlds. Advances in 3D graphics have
enabled developers to create realistic embodied agents that can be used for
testing purposes to examine whether emotion models are providing the desired
emotional responses (see, for example, [85]).

Detecting Emotions to Aid Interaction

Knowing whether a user is experiencing frustration, satisfaction or some other
emotional state provides the computer with the opportunity to intelligently
adapt itself in an attempt to enhance its interaction with people. However,
simply detecting user emotions is far from easy and even if achieved, there is
then perhaps the larger issue of how should computers appropriately adapt
themselves to these emotional states? For computers to be able to express
useful emotions, they need to be able to understand how a user is feeling.
This section provides an overview of the different ways in which a computer
can detect human emotion.

Autonomic Responses

Emotion can be measured (to an extent) through measuring automatic phys-
iological activity such as heart rate, blood pressure, blood pulse volume,
respiration, temperature, pupil dilation, skin conductivity and muscle tension.
Emotion can also be measured through neurological changes, with the most
common measure for this being the electroencephalogram (EEG). However,
while it is now relatively easy to measure many of the above, it is still very
difficult to distinguish between different emotions. For example, a number
of different emotional reactions such as fear, anger, surprise and happiness
involve an increase in heart rate [17]. Therefore, when an increase in heart
rate is observed by a computer, it has no way of knowing which of these emo-
tions is being experienced. Despite problems such as these, some success has

Emotional Intelligence 199

been achieved through the use of multiple measures of autonomic signals. For
example, [88] achieved 81% recognition accuracy on eight emotions by com-
bining a variety of measures such as facial muscle tension, respiration, skin
conductance and blood pressure volume.

Another study with promising results was that by [94] who reported on an
experimental system that aimed to automatically recognize user frustration
from physiological signs of skin conductivity and blood volume pressure. In
this study, subjects played a competitive computer game where they had to
efficiently and accurately solve as many visual puzzles as possible, in order
to win a cash prize. To induce frustration in subjects, the computer game
experienced a deliberate delay, at irregular intervals, in which the mouse
appeared not to work. Whilst playing the game, the subject’s skin conductiv-
ity and blood volume pressure were measured to observe if frustration that
was likely to be caused by the game (namely, when there was a delay) could
be told apart from times when the game was less likely to cause frustration (in
other words, when the game was running without any delays). It was found
that this approach worked significantly better than having a random guess at
when the game might cause frustration. Additionally, results found a correla-
tion between the mouse clicking behavior of subjects and frustration-eliciting
events.

Lie detectors — so beloved of older police and spy dramas — provide us with
an example of a physiological stress measurement, with the assumption being
that under stress, galvanic skin response is altered and can easily be detected.
Their accuracy is critically dependent on the skill of the operator, and even
then is able to be fooled by practiced participants.

Facial Expression

Another potential way for computers to detect emotion in users is through
monitoring facial expressions. FACS [41] is often the foundation used by
designers when attempting to give machines the ability to recognize facial
expressions [102]. One approach that has attracted a lot of interest and
has provided some promising results is that of pattern recognition of dif-
ferent images, with recognition accuracy approaching 100% with some basic
emotions [27,43,68,70]. Another method for recognizing facial expressions
that has had some success is facial electromyography (EMG). EMG sig-
nals have shown promise in being able to distinguish between different basic
emotions [18].

Speech,

Speech provides another opportunity for computers to detect a user’s emo-
tional state. As mentioned previously, our voices can express emotion through
changes in speech such as pitch range, speech rate and rhythm [77]. Few
systems have been built which attempt to autonomously detect emotion from

200 C. Creed and R. Beale

speech, but some have shown promise, such as [1] and the ASSESS (Auto-
matic Statistical Summary of Elementary Speech Structures) system [26].
Autonomously extracting emotional content from speech can be a difficult
process. For example, [71] conducted a study that examined autonomous
detection of a small set of emotions expressed (in a highly emotive fashion) in
an echo-free and quiet environment. The authors mention a number of issues
in attempting to do this, such as having to create large databases of emo-
tional content, using a method that produces appropriate emotional content
for analysis (such as getting people to read emotive text, as opposed to using
spontaneous emotional speech) and assessing the quality of emotional speech.
A detailed review of emotion recognition systems is provided in [27].

Questioning Users

Another approach for determining the emotional state of a user is to simply
ask them. An often-used approach is to ask subjects to choose an emo-
tional adjective that best describes the way they are feeling. Profile of Mood
States (POMS) [75] is an adjective-based measure of mood that is often used.
Another example is the Differential Emotion Scale (DES) [60] which is a ques-
tionnaire that contains twenty-four emotional adjectives that people rate on
seven-point scales as a means of detailing their affective feelings. Other ques-
tionnaires are based on dimensional theories of emotion where the assumption
is that emotion can be described through two different dimensions: arousal and
valance (see, for instance, [64]).

Using questionnaires such as these to determine the emotional states of
users raises a number of issues. For example, people often find it difficult to
articulate how they are feeling, and using a single adjective to do this can
make it more difficult for them. Also, if questionnaires are used after the
completion of an experiment to determine the emotions experienced, then, as
previously discussed, people’s memories are likely to have been influenced by
the emotions they experienced. Asking subjects how they are feeling during
the experiment is likely to interrupt that emotion and thus influence their
response.

Simulating Human Expressions of Emotion

This Section provides an overview of the three main ways in which comput-
ers can simulate emotion: (1) through written language and manipulation of
static text, (2) through synthetic or recorded speech, and (3) through the use
of embodied agents which can simulate human facial expressions and body
language.

Emotive Text

A number of studies have shown that emotive textual content displayed by
a computer can have a significant impact on our perceptions, behavior and

Emotional Intelligence 201

performance. For example, subjects in [48] played a guessing game with a text-
based interface and received one of three differing types of feedback during the
interaction: sincere praise, flattery (insincere praise) or generic feedback. In the
sincere praise and flattery conditions, the computer would display responses
like “your question makes an interesting and useful distinction”, or “you seem
to have an uncommon ability to structure data logically”. In the generic feed-
back condition, subjects simply saw a message that said “begin next round”.
The flattering comments made by the interface agent were found to have a
similar effect as flattery from another person, even though subjects were fully
aware that their participation was with a computer. In this case, subjects
found the interaction with an agent that flattered them to be more enjoyable
than with one which did not. That is, the textual content displayed by the
computer had a significant influence on user’s perceptions and emotions.

Another example of how emotive text can influence people is a study which
found that computers have the potential to alleviate feelings of frustration
[62]. In this study, subjects participated in a game which froze at random
intervals (to frustrate subjects) when competing for a cash prize. To help ease
the subject’s frustration, an interactive ‘affect support’ agent was designed in
the form of a text-based questionnaire. Subjects were split into three groups,
with each group interacting with a different type of agent: a support agent,
an agent that allowed subjects to ‘vent’ their anger, and an agent which
ignored their feelings completely. During the first phase of interaction, subjects
initially played the game and then interacted with one of the agents. After
this interaction, subjects were then asked to play another version of the game
(which did not freeze) for at least another three minutes. After this time had
elapsed subjects were free to continue playing or to leave.

In the ignore condition, subjects were asked close-ended questions that did
not involve emotions or provide an opportunity to report a problem like web
delays. In the vent condition, subjects were asked open-ended questions that
gave them the opportunity to report the relevant problem, as well as their
emotional state. In the affect-support condition, subjects were asked mostly
the same questions as in the vent condition; however, after the computer asked
how frustrated the user was feeling, the computer gave feedback based on the
user’s reported frustration level. Feedback included comments like, “wow, it
sounds like you felt really frustrated playing this game”, and “that must feel
lousy. It is no fun trying to play a simple game, only to have the whole expe-
rience derailed by something out of your control.” It was found that subjects
who had initially interacted with the support agent, spent significantly more
time in the second phase interacting with the computer that had tried to frus-
trate them, than subjects who interacted with agents that had either ignored
their feelings completely or allowed them to ‘vent’ their frustrations. This
experiment used simple plain text to manipulate subjects’ behavior.

202 C. Creed and R. Beale
Emotive Speech

There has been a lot of interest in speech interfaces over the last decade with
the intelligibility of synthetic speech nearing that of human speech [78]. Incor-
porating emotion into speech has proved to be quite a challenge, although [19]
illustrated that synthetic speech can contain recognizable affect by copying
the effects of emotion on human speech. Computers do not always need to use
synthetic speech to communicate with users — they can also be programmed
to use recorded human speech, which can be used to convey emotion more
clearly (for example, through a happy or sad voice). The choice of words used
by a computer can also be used to give an indication of its feelings. For exam-
ple, when asking a computer to do something, if it replies with “if I must”, as
opposed to “of course, no problem”, this can suggest how the computer feels.

Facial Expressions

As mentioned previously, research has consistently provided evidence that
humans are capable of identifying and distinguishing between different basic
emotions (independent of their culture) including anger, fear, joy, sadness
and surprise [38]. The FACS system [42] (and other similar systems) which
detail the specific set of muscular movements required for the facial expres-
sion of each basic emotion, have been used by researchers as a basis for giving
embodied agents emotional expressions. Embodied agents that have used sys-
tems like this include Baldi [11] and Perlin’s responsive face [86]. Research
has also provided evidence that despite current technology not being suffi-
ciently advanced to dynamically generate facial expressions exactly the same
as human ones, humans can still consistently identify the facial expressions
being displayed. For example, [3] used Baldi (Fig.2) to test whether or not an
embodied agent’s emotional expressions were as convincing as human expres-
sions. It was found that the emotional expressions of Baldi were as convincing
as human expression and that knowledge about the source of the emotional
expression had no major impact upon the convincingness. Although Baldi is
an animated agent, some studies — such as [13] — have successfully used still
images to get embodied agents to express emotion.

Body Language and Gesture

While the relationship between emotion and gestures is not as well understood
as that of facial expressions and emotions, a number of affective embodied
agents can still use body language and gestures to convey information. An
exercise advisor named Laura [10] uses a range of non-verbal behaviors includ-
ing hand gestures, body posture shifts, gazing at (away from) the user, raising
and lowering of eye brows, head nods, and walking on and off the screen. Laura
also has the ability to convey immediacy behavior and when expressing empa-
thy can appear nearer to the screen to show an empathic facial expression.

Emotional Intelligence 203

Fig. 2. Screen shot of Baldi

Other embodied agents that use body language and gestures to communicate
with users include Herman the Bug [66] and the Real Estate Agent (REA) [9].

2.7 Ethics

In order for computers to build social and emotional relationships with users,
they require certain capabilities to allow them to detect and manipulate user
emotion, as well as being able to express emotional states of their own through
different channels. This raises numerous ethical and technical issues, many of
which have been discussed in the literature [89]. In this Section, we highlight
some of the main issues involved.

Genuine Emotional Expressions

One ethical issue that arises from incorporating affective capabilities into com-
puters is whether or not emotional support offered by computers is genuine?
That is, does it matter that when computers express or communicate emotion
to users that they do not actually feel the emotions as humans would? Look-
ing to human-human interaction, it would suggest not, as we often interact
with people who are trained to use certain relational strategies to build trust
with us, despite them not genuinely feeling sympathetic or empathic toward
us. For example, social workers, nurses, general practitioners (doctors), and
psychotherapists are all trained to use certain relational strategies, such as
empathy, to enhance relations. Also, consider a help desk assistant who has
to deal with numerous queries every day and who is trained (and expected)

204 C. Creed and R. Beale

to empathise with each customer’s individual problem. Are these expressions
of emotion genuine or are these people just performing their everyday tasks?
At times they may build a genuine rapport with a customer and feel bad that
the product purchased by the customer is faulty, but on most occasions it is
likely that they are empathising since this is what is expected of them, both
by the customer and their employer.

[87] uses the scenario of a dog greeting its master to suggest that expressed
emotions do not necessarily have to be authentic to meet some of our basic
emotional needs. When the master arrives home the dog is often happy and
will start wagging its tail. However, if the master appears to be sad, dogs
somehow have the ability to recognize this and they will often put their heads
down and flick back their ears in response to their master’s emotional state.
The master, in seeing the empathic response, will often change their posture
and begin to feel a little better. Once the dog recognizes this, it too will raise
its head and start wagging its tail. It is not known how dogs can perceive the
emotional states of others, or whether they have their master’s best interests
at heart, but this simple interaction often has the effect of meeting some of
the simple emotional needs that we as humans have.

Should HCI Replace Human-Human Interaction?

Another important question is that of whether HCI should ever replace
human-human interaction. For example, in the future, should teaching agents
replace human teachers? At present, it is hard to argue in favour of com-
puters replacing important roles requiring social interaction, as they do not
have the social and emotional intelligence required. They struggle in build-
ing rapport with users and cannot inspire or motivate people outside of a
narrow social dialogue. Technological advances over the coming years may
change this, resulting in more socially astute agents, but would this ever war-
rant replacing their human equivalent? They would likely be cost-effective,
require little maintenance, and would not complain about how much they get
paid. However, while it is often easy to envisage fully embodied and socially
competent agents conversing with people in natural language, it is not so
easy to predict how people would respond to these entities. People may feel
uncomfortable interacting with such agents and reject the technology out-
right. Alternatively, they may find it novel, entertaining, and a natural way
to interact, and thus embrace such agents. Using computers to help supple-
ment the roles that humans perform would perhaps be more practical and
useful. Agents that can help with exam revision, explain more about particu-
lar illnesses after you have visited the doctor, or help you practice important
interviews or presentations, could potentially be of use.

Emotional Intelligence 205
Manipulation

One issue which arises from building computers with affective capabilities, is
the opportunity for manipulation [29]. Computers that can accurately and
reliably detect emotional states have access to some very personal and pri-
vate information, which could potentially be used to manipulate how we feel.
Recent work has illustrated that agents which are programmed to be empathic
toward the user are perceived as more caring and trustworthy [1,10]. In
human-human interaction, someone who we perceive to care about us can
have more of an influence over our behavior and we generally trust informa-
tion more when it is from such a source [25]. Therefore, caring computers
may have increased persuasive powers that can be used to influence us. Is it
acceptable for agents to manipulate (and possibly deceive) people in this way
to help companies sell more products? Perhaps, as long as the user feels they
have received good value for their money and do not feel manipulated. Human
sales people often present the products they sell in their best light, even when
they are fully aware that the product has certain features that are not desir-
able for the customer. Most people are aware of this and while they may not
be overly keen about it, they generally do not mind if they feel that they have
received good service and value for money. The same is likely to apply with
computers; if users feel that they have received a good deal and service then
they will be happy, otherwise, if they feel manipulated and cheated, they will
be unhappy and unlikely to return with their money.

Negative Emotions

Assuming that computers will one day have the ability to detect user emotion,
should they try to eliminate all (so-called) ‘negative’ emotions and attempt to
make a user feel better on a consistent basis? A problem with this question is
that it is hard to define what is meant by ‘negative’ emotions, and in any case,
if there was an appropriate definition, negative emotions are not necessarily
all bad. [16] are investigating how an embodied teaching agent can help users
work through frustration, which is often regarded as a negative state. However,
the ability to work through frustration is essential in learning environments, as
the adage ‘no pain, no gain’ suggests. This is particularly clear when observing
people playing computer games, in which a difficult passage of the game is
attempted again and again until the user manages to crack the techniques
needed: the frustration felt there serves to motivate them to continue until
they succeed. The skill in designing good games comes in pitching the level of
difficulty such that the frustration levels are not too great to cause the player
to give up, but hard enough so that their sense of achievement and relief is
sufficiently high. Thus, computers should not necessarily try to restrict users
from experiencing certain emotional states, but instead should attempt to help
them understand and make use of their emotions, to help them achieve their
goals. For example, a computer could help alleviate anger through teaching

206 C. Creed and R. Beale

users anger management strategies. In essence, computers would be helping
user’s to build their emotional intelligence.

Privacy

Privacy of emotional data is another issue raised from computers detecting
emotion. If a computer detects that a user is suicidal, should it inform some-
body, such as the person’s doctor, the police or a friend? If the user is just
feeling a little depressed after a hard day, should the computer contact a
friend or family member in an attempt to cheer the person up? Or should
it not interfere? These are hypothetical questions as computers are still not
capable of accurately and reliably detecting human emotion, nonetheless, if
computers do one day have this ability, then how responsible the computer is
for managing the user’s emotional state becomes an important issue.

Human Relationships

Another important concern surrounding computers and their attempts to
build social relationships with people is whether or not they will have an
impact upon people having healthy social relationships with others. Many
argue that we should be spending more time away from our computers and
should be interacting more with other people. This is a valid point, but it could
be argued that it is unlikely that just because a computer becomes more con-
siderate and makes more of an effort to consider your feelings (through raised
emotional intelligence), that people will want to spend more time interacting
with it. For example, people often interact with pets, but while they meet
some of the basic emotional needs that we have, most people still crave the
company of others. However, the research of [63] — highlighted previously —
suggests that people may be more willing to spend time interacting with com-
puters that have some form of emotional intelligence. Thus, it remains difficult
to predict how people will respond to emotionally intelligent machines.

3 Evaluating Affective Embodied Agents

This Section provides an overview of embodied agent research in the field of
affective computing. We start by providing an overview of the use of embodied
agents and research that has looked at incorporating emotion into them. We
then move on to discuss research which has looked at how people respond to
simulated displays of emotion and the effects it has been reported to have on
them. Following this, we discuss the importance of evaluating interface agents
of all types over extended periods of interaction, and then proceed to discuss
an embodied agent that we have developed which is capable of simulating
emotional facial expressions.

Emotional Intelligence 207
3.1 What are Affective Embodied Agents?

Terms such as ‘embodied agents’, ‘virtual humans’, ‘interactive characters’,
‘software agents’, ‘interface agents’, and ‘intelligent agents’ are among many
that are often used interchangeably when talking about similar entities. On
many occasions, this can lead to confusion and difficulty in understanding
exactly what is being referred to. Therefore, it is important to clarify what
is meant by the term ‘embodied agent’ for the purposes of this Chapter.
Embodied agents are essentially animated or static entities that are based on
a computer screen and attempt to interact with users in some way. They can
use a number of techniques to interact with users including written language,
speech, gesture, facial expressions, head nods, and eye gazes. These agents
can also have a variety of different representations (for instance, human, alien,
paperclips, dogs, cats, and so on). Affective embodied agents are agents that
exhibit, express and/or act on emotion. They are often based on an emotional
model that determines their emotional reactions, but this is not always the
case. A wide range of affective embodied agents have been developed over the
last decade including the pedagogical agents Cosmo [65] and Herman the Bug
[67], Steve [94], PPP Persona [105], Gandalf [101], MACK [22], Olga [7], Laura
[8] and the REA [9].

3.2 Psychological Responses to Simulated Emotion

In order to understand if the emotions that designers have incorporated into
an embodied agent actually aid an interaction, it is important to understand
how people respond to synthetic displays of emotion. How do we respond to
synthetic displays of joy, happiness, sadness, frustration, fear and anger? Can
we catch emotions from computers? Do we like agents that are always happy,
or does this annoy us after a while?

Social-Emotional Relationships with Computers

Numerous studies have suggested that we interact with computers as though
they are social entities. [92] developed the Computers Are Social Actors
(CASA) paradigm, which implies that the social rules that apply in human-
human interaction also apply to HCI. The reason for this, they suggest, is
that our ‘old brains’ have not evolved to deal with current technology and
therefore we treat all media as if it were a social entity. It may seem a little
strange to suggest that we respond to computers like people, but it has been
shown that the response is particularly strong and often unconscious. Even
when we are consciously aware that the entity is not human (for instance, a
computer or television) the response is still not weakened.

For example, [81] suggested that humans are polite to computers. Research
completed in social psychology has found that interviewers who ask about
their own performance are likely to receive more positive feedback than if

208 C. Creed and R. Beale

feedback is received from another source. This study tested if the same polite-
ness rules also applied to human-computer interaction. The study involved
subjects completing a task on a text-based computer and upon completion
they were interviewed about the performance of the computer by either the
same computer, a pencil-and-paper questionnaire, or a different but identi-
cal computer. Similar to that of human-human interaction, results found that
subjects evaluated the computer more positively when the computer asked for
feedback about its own performance, compared with subjects who evaluated
the computer through a pencil-and-paper questionnaire or another computer.

Another study found that we seem to attribute personalities to computers
and also respond to those computer personalities as if they are human [80].
In this study, properties associated with dominance and submissiveness were
incorporated into computers using plain text. It was found that subjects not
only recognized the computer’s personality, but also reported being more sat-
isfied with the interaction they had with the computer that shared a similar
personality to their own. Again, this finding is similar to human-human inter-
action, where research has found that people tend to prefer interacting with
other people who have a similar personality to their own. Similarly, [79] found
the same attraction using computer-generated speech by incorporating the
properties associated with introversion and extraversion. When the person-
ality of the computer voice matched the personality of the subject, subjects
reported the voices as being more attractive, informative, and trustworthy.
Moreover, they were more likely to buy books reviewed by the computer.

Simulated Emotion

Our tendency to respond to computational entities as social actors suggests
that we may well respond to synthetic displays of emotion in a similar way
to human emotion, and a number of researchers have been investigating this.
One of the main approaches used to investigate this is to compare different
types of emotionally expressive agents with each other. For example, [13]
examined how we respond to both self-oriented and other-oriented empathic
emotion. Subjects played a blackjack game and were matched up with an
agent that either exhibited or lacked self-oriented or other-oriented empathic
emotion. The agent was a static photograph of a human face, which could
communicate with subjects via a speech bubble next to the photograph. When
a round of the game had finished, the agent would always communicate to
the subjects an evaluation of it’s own performance (for instance, “I'm glad I
won”), and then followed that with an evaluation of the subject’s performance
(for example, “I'm glad you won”). Also, in the conditions where empathic
emotion was used, the agent’s evaluation of the subject’s performance included
an emotional response: the agent would express negative emotion if the user
lost and positive emotion if the user won. The results from this study found
that people generally preferred the agents that were empathic to them more
than ones which were not.

Emotional Intelligence 209

Another approach is to compare an emotional entity with a different type
of entity. For example, [100] used a card matching game to compare the
impact of an emotional face and a 3D arrow on a subject’s eye movements
and response times. The arrow and the face were both used to provide feed-
back to the user during the game. For example, through pointing or gazing
at the player whose turn it was next. Results from this study found that the
emotional face elicited more eye contact from subjects than the 3D arrow.
The authors therefore concluded that the emotional face was more engaging
to subjects than the arrow.

There have been a lack of studies which have explicitly tested an emotional
agent against an unemotional one. In many related studies, emotional agents
are used, but the incorporation of emotion into the agent is not the main focus
of the study. Therefore, the potential impact of simulated emotion has to be
inferred from the reported results. This can make it particularly difficult to
attribute any of the effects found to the inclusion (or exclusion) of emotion in
agents. For example, [66] examined the effect of different types of animated
agents on the learning performance and experience of middle school children
by asking them to design a plant that would be able to survive in a particular
environment. The children received varying levels of help from the animated
agents and the results of the experiment found that a fully expressive agent
(that is, an agent which offered advice using both animation and speech) was
perceived to be equally as entertaining as a muted agent (in other words,
an agent which offered no advice whatsoever). However, the incorporation
of emotion was not explicitly tested in this experiment, so caution must be
applied when analyzing the results.

3.3 Evaluating Agents over Extended Interactions

Very few studies have focused on how we respond to emotionally expressive
embodied agents over extended periods of interaction. As discussed above,
some recent studies have suggested that we seem to perceive emotional agents
as more likeable and trustworthy than unemotional agents, but does this effect
remain consistent over five, six, seven or forty separate interactions? The
Microsoft Office Paperclip was an emotionally expressive agent that many
people tended to find novel to interact with initially, but after further inter-
actions, it began to frustrate people and was ultimately rejected by users.
As we move more towards managing computer systems rather than directly
manipulating them, we will work more closely with agents in everyday activ-
ities as they undertake tasks on our behalf. We are likely to start interacting
with them on multiple occasions spanning days, weeks and months. Therefore,
we need to understand in more detail how our perceptions towards affective
embodied agents change over numerous interactions and extended periods of
time.

210 C. Creed and R. Beale

[10] are some of the few researchers who have started to investigate this
space. They developed an embodied exercise advisor named Laura, which
attempted to maintain a relationship with subjects who interacted with the
agent daily over the period of a month. People who were not completing
required levels of exercise recommended for United States’ adults (namely
30 minutes or 10,000 steps per day) were chosen as subjects, in an attempt
to help them improve their exercise habits through interacting with Laura.
A variety of different strategies were used by the agent to help maintain a
relationship with subjects, including social, empathic and polite communica-
tion, talking about the relationship, humour and appropriate forms of address.
Laura also used a range of non-verbal behaviors, as discussed earlier. Results
from this study found that subjects liked Laura more when they interacted
with the relational version as opposed to a non-relational one (that is, where
no relational strategies were used).

A similar effect was found by [69], who asked subjects to use a mobile
health device for eight days and then examined the effect it had on subjects’
perceptions and behavior. Subjects were split into two groups: one group
interacted with an empathic version of the device for four days and then
switched to the non-empathic device for the final four days, while the other
group did the opposite. The system made use of a text-based agent which
would interrupt subjects at different times of the day to discuss issues relating
to their health. The empathetic agent would make empathic comments when
interacting with the subject while the non-empathic agent would not. Results
found that a significant number of subjects who were asked which device
they would like to continue interacting with at the completion of the study,
stated that they would prefer to continue interacting with the empathic device.
Subjects also reported that they felt less stress when interacting with the
empathic device.

3.4 Our Affective Embodied Agent

In order to investigate our responses to synthetic displays of emotion in
embodied agents, we have developed our own for testing purposes (Fig. 3).
Agents such as these used to be costly to develop in both terms of time and
expense; however, it is now possible to easily develop such agents using afford-
able software which automates much of the process [90]. Our agent simulates
the role of a human health professional through making use of many of the
skills and strategies that human health professionals use (discussed in the next
Section). The agent can move its head, speak (via a recorded voice), and can
display a wide range of (facial) emotional expressions. There are a number
of applications that can be used to develop agents such as these, but one
of the most popular for specifically building virtual characters is Poser [37].
We used Poser 5 for developing our agent, along with Mimic 3 [34], which is
compatible with Poser and can be used for automatically generating facial ani-
mation and lip synchronization from imported audio files containing recorded

Emotional Intelligence 211

Fig. 3. Our embodied agent

speech. As we are conducting our experiments over the World Wide Web, we
converted the animations produced by Poser and Mimic to the Macromedia
Flash format, so that we can incorporate the animations into a web page.

4 Application of Affective Embodied Agents

Affective embodied agents have often been touted as one of the primary ways
in which we will interact with computers in the future. Advocates of embodied
agents believe that they will make an interaction more natural and engaging,
while opponents believe that they will raise expectations of what the computer
is capable of, and thus hinder interaction [30]. The future of agents such
as these is still unclear, as many different fields of research need to mature
sufficiently before we can really assess their potential. The agents that have
been developed to date are unable to interact naturally with people, and as a
result they quickly lose credibility. Areas where embodied agents seem to have
found their niche is within computer games and simulations. These are likely to
be areas where affective embodied agents will be of real use, unlike work-based
tasks where an agent of this sort is not really required (as exemplified by the
Microsoft Office Paperclip). Another area where affective embodied agents
could be of use is where human relationships are known to be important. For
example, in the behavior change domain, the relationship between a helper
and client has been shown on numerous occasions to be fundamental in helping
people to change problematic behavior. In this Section, we detail our research
into how an affective embodied agent could be used to simulate the role of a
human health professional to help people change problematic behavior such
as eating, smoking, and exercising.

212 C. Creed and R. Beale
4.1 Affective Embodied Agents for behavior Change

behavior change is one domain where affective embodied agents may prove
useful. Changing problematic behavior in humans can often be a long and
difficult process. Exercise regimes, healthy dieting, smoking cessation, and
a number of other behavior change plans are regularly initiated with much
enthusiasm, but all too often are abandoned before the new behavior replaces
the old. People who have difficulties in changing unhealthy behavior often seek
professional advice to help them achieve their behavioral change goals. The
effective management and use of emotion in a therapist-client relationship is
essential to building a strong working alliance, which is critical for increasing
the likelihood of a successful outcome [61]. Therapists need to make use of
a wide range of skills and theory-based health strategies to help evoke emo-
tions in clients that enhance motivation toward behavior change. These skills
and strategies could potentially be utilized by computational agents. While
the most effective way of helping someone to change problematic behavior is
often a face-to-face interaction with a highly-trained and experienced (human)
health expert, this approach can only have a small impact within a large
population of people, as therapists are limited in the number of people they
can see and help. Attempts to automate such behavior change techniques
have been applied through using a wide-range of media (for instance, desktop
computers, telecommunications and mobile devices) to a number of different
behaviors (such as nutrition, exercise, and smoking) with varying degrees of
success [14,49,50,57,93]. For example, MoodGym [76] is a Cognitive behavior
Therapy (CBT) website aimed at young people for the treatment of depression
and anxiety and/or as an adjunct to therapy.

Therapists and Counselling Services have also started to provide computer
mediated counselling and therapy through the use of email, instant messaging,
video-conferencing, and virtual environments [62,99], but there is still a limit
on the number of people a single therapist can help. One potentially fruitful
avenue that has received little attention to date is in the development of
affective embodied agents that attempt to closely simulate the actions of a
human therapist. Working on the premise that we treat computers as social
actors [92], agents that can closely match the actions of human therapists may
be able to provide many of the psychological benefits (for example, evocation
of constructive emotions in clients which encourage motivation) that result
from interacting with therapists. Agents of this type may also be used to
help therapists in their everyday tasks. For instance, they could be used to
automate the initial assessment of a client’s symptoms and to assess which
type of therapy (if any) might potentially help clients most.

Computer mediated therapy provides a number of advantages over more
traditional forms of face-to-face therapy and many of these advantages are
also likely to apply to synthetic therapists. For example, [46] suggests that
computer mediated and online interventions provided by therapists can be

Emotional Intelligence 213

of great help to people who are unable to visit therapists because of physical
(disabled, say), personal (for example, sexuality) or geographical issues. More-
over, some people might like the anonymity that interacting with a synthetic
therapist would offer as it would enable them to avoid the anxiety related to
disclosing uncomfortable feelings and emotions to human therapists and may
encourage them to be more open, expressive, and honest about how they feel.
Therefore, an online interaction with a synthetic therapist may provide an
important opportunity to those who have reservations, fears or doubts about
a face-to-face interaction with a human therapist.

4.2 Behavior Change Models

Our approach in getting affective agents to simulate the skills and strategies
that human health professionals use is to make use of a behavior change
model. The four most commonly used behavior change models are the Health
Belief Model, Theory of Reasoned Action/Planned behavior, Social Cognitive
Theory, and the Transtheoretical Model (TTM) [91]. Initial work in this area
has concentrated on using the TTM and has had limited success. [10] made
use of the TTM when designing Laura and despite finding that subjects did
more exercise whilst interacting with the agent, after the experiment had
reached its completion, subjects tended to return to their old habitual exercise
patterns. However, the fact that people did change their exercise behavior
whilst interacting with the agent highlights the potential for computational
agents to influence people’s behavior.

Overview of TTM

The TTM works on the assumption that behavior change involves people
moving through a number of different stages before change is achieved. The
main stages of the model are:

e precontemplation — when people have no intention of changing their
behavior,
contemplation — when people intend to change within the next six months,
preparation — when individuals intend to take action within the next
month,

e action — people who have done something to change their behavior within
the past six months, and

e maintenance — when the desired change has remained for at least six
months.

Whilst in the maintenance stage, there are two possible outcomes: (1) a relapse
into old behavioral patterns, which usually results in moving back into one
of the other stages (most often contemplation), or (2) termination of behav-
ior, which is said to take place when strong urges to return to old behavioral
patterns no longer exist. As well as assessing each stage of change, the model

214 C. Creed and R. Beale

also defines other core constructs including change processes (activities that
are used to help progress through the stages), decisional balance (the abil-
ity to weigh the pros and cons of changing a behavior), and self-efficacy (the
confidence felt about performing an activity). The model suggests that cer-
tain change processes are more useful at different stages. This information is
particularly helpful for therapists as they can potentially help their clients
more effectively through assessment of which stage a client is in, and then
emphasizing the appropriate change processes for that stage.

Stage-matching (linking the correct process with the correct stage)
increases the likelihood that a person will effectively progress through the
different stages of change. Conversely, linking the wrong process with a stage
increases the probability that people will relapse and return to their old behav-
ioral patterns. Making use of the model within a clinical setting initially
involves assessing which stage of change a client is at. This can be completed
by using a number of different methods, including staging algorithms, which
assess the stage people are at through the use of questionnaires [31]. The next
step is to provide the client with advice and information that is appropriate
for the stage they are at. For those who are in the early stages of change, it is
imperative to concentrate on the need to change, not necessarily on how they
intend to change. For those in the later stages, interventions should focus on
strategies that will help maintain the new behavior.

Use of Emotion in TTM

The use of the TTM in therapy can have a huge influence on the emotions
that people experience. The processes recommended for use in the pre-action
stages, such as consciousness raising, dramatic relief, and self re-evaluation, all
have the potential to evoke constructive emotions and increase motivation to
change problematic behavior. By constructive emotions, it is not necessarily
meant that attempts are made at only eliciting typically positive emotions (for
instance happiness or satisfaction), but that emotions that are often perceived
to be negative (such as fear or anxiety) can also help the change process. For
example, the consciousness raising process might induce emotional feelings
of fear and anxiety at the health risks associated with a high fat diet and
the increased likelihood of premature death. However, these emotions do not
always have a derogatory effect; they can spur people into action and help
motivate them to change their unhealthy behavior. Conversely, processes such
as dramatic relief and attempts at increasing self-efficacy encourage people to
focus on experiencing positive emotions such as satisfaction, pleasure, and
fulfilment to help increase people’s confidence about changing their behavior.

Whilst some processes concentrate specifically on evoking beneficial emo-
tions, others increase the likelihood that helpful emotions will be experienced
at a later date. For example, the processes of increasing self-efficacy, social
re-evaluation, and the minimization of barriers, are all unlikely to initially

Emotional Intelligence 215

evoke intense emotional responses, but their emphasis in the pre-action stages
increases the likelihood of progress through the stages of change and thus
the experiencing of constructive emotions that facilitate change. In the action
stages, the processes concentrate more on inducing emotional feelings of deter-
mination and resolve. Processes such as coping with relapse and building
‘helping’ relationships focus on using strategies that will help people to feel
motivated during the difficult maintenance stage. Other processes such as
self-liberation and increasing self-efficacy are all about concentrating on the
positive emotional feelings that changes in behavior evoke, in an attempt
to aid motivation toward behavior change goals. Like the pre-action stages,
there are also processes such as reinforcement and enhancing the benefits of
change, which directly attempt to help people feel emotions of satisfaction
and achievement, and thus facilitate forward movement through the different
stages of change.

Using TTM with Synthetic Therapists

Agents that are able to autonomously and correctly determine at which stage
of change a person is in, and effectively apply the appropriate processes, have
the potential to induce helpful emotions in people that will enable them
to change their behavior. However, an agent will also need to consider the
impact of its own emotional expressions on the emotional feelings evoked in
clients. For example, if a therapist was to respond with strong emotional
expressions of disappointment, frustration, and anger at somebody who con-
sistently relapses into old unhealthy behavioral patterns, this could have a
detrimental effect on how motivated that person feels and might result in
emotional feelings of shame, distress, and hopelessness. These feelings could
escalate and inevitably result in the client leaving therapy altogether. Con-
versely, if a therapist’s emotional responses to the relapses of clients were
more supportive, understanding, and encouraging (for example, empathic
responses), this could have a more positive impact on the emotional feel-
ings experienced by clients and thus their future behavior. While this is
a very basic example of how the emotional expressions of a therapist can
influence the emotional feelings in clients, it is clear that a therapist’s emo-
tional expressions can have a huge influence on how successful therapy will
be. For example, in physician-patient interactions, [15] found that patients
generally prefer physicians who express more positive emotion. The same
is also likely to apply with agents that play the role of a therapist. It is
not enough for them to be able to correctly assess at which stage a client
is in and to emphasize the correct processes; they also need to be able to
deliver their interventions in a manner which is helpful and appropriate for
the client.

Despite the effective management and manipulation of emotions in a
therapist-client relationship being of fundamental importance, the role of

216 C. Creed and R. Beale

agent emotion simulation (within a behavior change domain) has not been
explicitly studied or tested. While [10] incorporated emotional capabilities
into their agent, they did not explicitly test whether it had any impact on
the interaction. Instead, they tested the incorporation of a number of differ-
ent relational strategies (as discussed above) into their agent, which makes
it difficult to ascertain the individual impact that emotion had on subjects.
Several recent studies have suggested that simulated emotion can have a psy-
chological impact on subjects, but it is still largely unknown how strong that
response is [28]. For example, a number of studies have suggested that we
generally seem to rate emotional agents more positively than unemotional
agents [13], but how strong is this influence? In human-human interaction,
we are more likely to act on the advice offered by a person we like and trust
than someone we dislike and distrust [25]. Does the same apply in agent-
human relationships? More research is required to understand how simulation
of emotion influences people’s attitudes and emotions, and whether these
responses can be beneficially manipulated to help assist people with behavioral
change.

5 Summary

This Chapter has discussed the busy research area of affective computing, with
a particular focus on how we can build emotionally intelligent computers that
can aid our interactions with them. We started by detailing emotion theory
that was most related to the building of emotional computers through intro-
ducing the notions of basic, culturally-specific and higher cognitive emotions.
We then highlighted the influence that emotions can have on our attitudes and
behavior, with particular emphasis on how they can influence our attention,
memory, judgement and decision-making capabilities and creative problem
solving skills. The means by which we express emotion through written lan-
guage, speech, facial expressions and body language were also described. To
conclude Sect. 2, we detailed the different approaches taken when attempting
to build emotionally intelligent computers. These included building compu-
tational models of emotion, enabling computers to autonomously detect user
emotion, and simulating human emotional expressions (through 3D graphics,
synthetic speech, and so forth), as well as highlighting some of the ethical
issues involved in building emotional computers.

In Sect.3 we discussed research related to evaluating affective embodied
agents over extended periods of interaction. This included defining what was
meant by the term ‘affective embodied agents’ and discussing research which
has investigated how we respond to synthetic displays of emotion. Following
this, we highlighted the importance of conducting longitudinal studies when
developing emotionally intelligent agents and also described our own affective
embodied agent that we have developed for experimental purposes.

Emotional Intelligence 217

In Sect.4 we discussed the application of our approach to the real world
by describing how such an agent could make use of a behavior change model
to simulate a human health professional, to help people change problematic
behavior such as smoking, eating, and (lack of) exercise.

When attempting to build emotional capabilities into computers, it is
essential to consider how this will influence their functioning and our interac-
tions with them. Emotional computers present both opportunities and dangers
and it is imperative that we concentrate on how we can develop applications
and systems that aid interaction, and discuss fully the issues and concerns
related to the dangers of such computers. The goal of building emotionally
intelligent computers is an extremely complex and difficult one, but nonethe-
less, a worthy goal that can enhance human-computer relationships, making
them more productive, satisfying and enjoyable.

References

1. Banse R, Scherer K (1996) Acoustic profiles in vocal emotion expression.
J. Personality and Social Psychology, 70: 614-636.

2. Baron RA (1996) Interviewer’s mood and reaction to job applicants. J. Applied
Social Psychology, 17: 911-926.

3. Bartneck C (2001) How Convincing is Mr. Data’s Smile: affective expressions
of machines. User Modeling and User-Adapted Interaction, 11: 279-295.

4. Bartneck C (2002) eMuu — an embodied emotional character for the ambient
intelligent home. PhD Thesis, Eindhoven University of Technology, Eindhoven.

5. Bartneck C (2002) Integrating the OCC model of emotions in embodied
characters. Proc. Workshop on Virtual Conversational Characters: Appli-
cations, Methods, and Research Challenges (available online at: http://
www.bartneck.de/work /bartneck hf2002.pdf — last accessed: 14 October 2006).

6. Bates J (1994) How Convincing is Mr. Data’s Smile: affective expressions of
machines. Communications ACM, 37(7): 122-125.

7. Beskow J, McGlashan S (1997) Olga — a conversational agent with gestures.
In: André E, et al. (eds) Proc. Intl. Joint Conf. AI’97, Workshop on Animated
Interface Agents — Making them Intelligent. 25 August, Nagoya, Japan. Morgan
Kaufmann, San Francisco, CA.

8. Bickmore T (2003) Relational agents: effecting change through human-
computer relationships. PhD Thesis, Department of Media Arts and Sciences,
Massachusetts Institute of Technology.

9. Bickmore T, Cassell J (2001) Relational agents: a model and implementation
of building user trust. In: Beaudouin-Lafon M, Jacob R (eds) Proc. ACM CHI
2001 — Human Factors in Computing Systems Conf., 31 March—5 April, Seattle,
WA. ACM Press, New York, NY: 396-403.

10. Bickmore T, Picard R (2005) Establishing and maintaining long-term human-
computer relationships. ACM Trans. Computer-Human Interaction, 12(2):
293-327.

11. Bosseler A, Massaro DW (2003) Development and evaluation of a computer-
animated tutor for vocabulary and language learning in children with autism.
J. Autism and Developmental Disorders, 33(6): 653-672.

218

12.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

C. Creed and R. Beale

Bower GH (1981) Mood and memory. American Psychologist, 36: 129-148.

. Brave S, Nass C, Hutchinson K (2005) Computers that care: investigating the
effects of orientation of emotion exhibited by an embodied computer agent.
Intl. J. Human-Computer Studies, 62(2): 161-178.

Brug J, Steenhuis I, Assema PV, Vries HD (1996) The Impact of a Computer-
Tailored Nutrition Intervention. Preventive Medicine, 25(52): 236-242.

Buller D, Street R (1992) Physician-patient relationships. In: Feldman R
(ed) Application of Nonverbal behavioral Theories and Research. Lawrence
Erlbaum, Hillside, NJ: 119-141.

Burleson W, Picard R (2004) Affective agents: sustaining motivation to
learn through failure and a state of stuck. Proc. Social and Emotional
Intelligence in Learning Environments Workshop(in conjunction with the
7th Intl. Conf. Intelligent Tutoring Systems), 31 August, available online
at: http://affect.media.mit.edu/pdfs/04.burleson-picard.pdf (last accessed: 14
October 2006).

Cacioppo JT, Bernston GG, Klein DJ, Poehlmann KM (1997) Psychophys-
iology of emotion across the life span. Annual Review of Gerontology and
Geriatrics, 17: 27-74.

Cacioppo JT, Bernston GG, Larsen JT, Poehlmann KM, Ito TA (2000) The
psychophysiology of emotion. In: Lewis M, Haviland-Jone (eds) Handbook of
Emotions. The Guildford Press, New York, NY: 173-191.

Cahn J (1990) The generation of affect in synthesised speech. J. American
Voice 1/0 Society, 8: 1-19.

Canamero LD (ed) (1998) Emotional and Intelligent: The Tangled Knot of
Cognition (Papers from the 1998 AAAI Fall Symposium). AAAI Press, Menlo
Park, CA.

Canamero LD (ed) (2001) Emotional and Intelligent I11: The Tangled Knot of
Social Cognition (Papers from the 2001 AAAI Fall Symposium). AAAT Press,
Menlo Park, CA.

Cassell J, Stocky T, Bickmore T, Gao Y, Nakano Y, Ryokai K, Tversky
D, Vilhjalmsson CVH (2002) Mack: Media lab autonomous conversational
kiosk. Proc. Intl. Festival for Digital Images — IMAGINA’02, 12-15 February,
available online at: http://www.soc.northwestern.edu/justine/publications/
imagina02.pdf (last accessed: 14 October 2006).

Cassell J, Sullivan J, Prevost S, Churchill E (eds) (2000) Embodied
Conversational Agents. MIT Press, Cambridge, MA.

Christianson SA, Loftus E (1991) Remembering emotional events: the fate of
detailed information. Cognition and Emotion, 5: 81-108.

Cialdini R (2003) Influence: Science and Practice. Allyn and Bacon, Boston,
MA.

Cowie R, Douglas-Cowie E (1996) Automatic statistical analysis of the signal
and prosodic signs of emotion in speech. In: Bunnell T, Idsardi W (eds) Proc.
4th Intl. Conf. Spoken Language Processing. 3—6 October, Philadelphia, PA.
IEEE Press, Piscataway, NJ: 1989-1992.

Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz
W (2001) Emotion recognition in human-computer interaction. IEEE Signal
Processing Magazine, 18(1): 32-80.

Creed C (2006) Using Computational Agents to Motivate Diet Change. In:
IJsselsteijn W, de Kort Y, Midden C, van den Hoven E (eds) Proc. 1st Intl.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Emotional Intelligence 219

Conf. Persuasive Technology for Human Well-being. 18-19 May, Eindhoven
University of Technology, the Netherlands. Springer, Berlin: 100-103.

Creed C, Beale R (2006) Agent Abuse: The Potential Dangers of Socially
Intelligent Embodied Agents. In: De Angeli A, et al. (eds) Proc. Work-
shop on Misuse and Abuse of Interactive Technologies (in cooperation with
Conf. Human Factors in Computing Systems — CHI2006). 22 April, Montreal,
Canada: 17-20.

Creed C, Beale R (2006) Embodied Interfaces: The Next Generation of HCI?
In: Jacobs R (ed) Proc. Workshop on The Next Generation of HCI (in cooper-
ation with Conf. Human Factors in Computing Systems — CHI2006). 23 April,
Tufts University, Montreal, Canada: 96-99.

Curry S, Kristal A, Bowen D (1992) An application of the stage model
of behavior change to dietary fat reduction. Health Education Research, T:
97-105.

Damasio A (1994) Descartes Error. Macmillan, London, UK.

Davidson RJ (1994) On emotion, mood, and other related affective con-
structs. In: Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental
Questions. Oxford University Press, New York, NY: 51-55.

DAZ-Productions (2006) Mimic 3. http://www.daz3d.com/Mimic/poser.php
(last accessed: 2 August 2006).

de Rosis F (2002) Toward merging cognition and affect in HCI. Applied
Artificial Intelligence, 16(7-8): 487-494.

Duncker K (1945) On problem-solving. Psychological Monographs, 85(5):
1-113.

E-Frontier (2006) Poser 5 Software. http://www.e-frontier.com/ (last accessed:
2 August 2006).

Ekman P (1972) Universals and cultural differences in facial expressions of
emotion. In: Cole J (ed) Proc. Nebraska Symposium on Motivation, University
of Nebraska Press, Lincoln: 207-283.

Ekman P (1994) All emotions are basic. In: Ekman P, Davidson RJ (eds) The
Nature of Emotion: Fundamental Questions. Oxford University Press, New
York, NY: 7-19.

Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental Questions.
Oxford University Press, New York, NY.

Ekman P, Friesen WV (1975) Unmasking the Face. Prentice Hall, Englewood
Cliffs, NJ.

Ekman P, Friesen WV (1977) Facial Action Coding System. Consluting
Psychologists Press, Palo Alto, CA.

Essa IA, Pentland AP (1997) Coding, analysis, interpretation, and recognition
of facial expressions. IEEE Trans. Pattern Analysis and Machine Intelligence,
19(7): 757-763.

Etcoff NL, Magee JJ (1992) Categorical perception of facial expressions.
Cognition, 44: 227-240.

Evans D (2001) Emotion: the Science of Sentiment. Oxford University Press,
New York, NY.

Fenichel M, Suler JR, Barak A, Zelvin E, Jones G, Munro K, Meunier V,
Walker-Schmucker W (2002) Myths and realities of online clinical work.
CyberPsychology and behavior, 5(5): 481-497.

220

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

C. Creed and R. Beale

Foa EB, Feske U, Murdoch TB, Kozak MJ, McCarthy PR, (1989) Processing of
threat-related information in rape victims. J. Abnormal Psychology, 45: 1183—
1187.

Fogg BJ, Nass C (1997) Silicon sycophants: the effects of computers that flatter.
Intl. J. Human Computer Studies, 46(5): 551-561.

Friedman RH (1997) Automated Telephone Conversations to Assess Health
Behavior and Deliver Behavioral Interventions. J. Medical Systems, 22(2):
95-102.

Friedman RH, Stollerman J, Mahoney D, Rozenblyum L (1997) The Vir-
tual Visit: Using Telecommunications Technology to Take Care of Patients.
J. American Medical Informatics Association, 4(5): 413-425.

Frijda N (1994) Varieties of affect: emotions and episodes, moods and senti-
ments. In: Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental
Questions. Oxford University Press, New York, NY: 59-67.

Givens DB (2002) The Nonverbal Dictionary of Gestures, Signs, and Body
Language Cues. Center for Nonverbal Studies Press, Washington, DC.
Goleman D (1996) Emotional Intelligence: Why it can matter more than I1Q.
Bloomsbury Publishing, London, UK.

Goleman D (2004) Emotional Intelligence: Why it can matter more than 1Q &
Working with Emotional Intelligence. Bloomsbury Publishing, London, UK.
Gratch J, Marsells S (2004) A domain-independent framework for modeling
emotion. J. Cognitive Systems Research, 5(4): 269-306.

Griffiths P (1997) What Emotions Really Are. The University of Chicago Press,
Chicago, IL.

Hirst G, Dimarco C, Hovy E, Parsons K (1997) Authoring and generating
health-education documents that are tailored to the needs of the individual
patient. In: Jameson A, Paris C, Tasso C (eds) Proc. 6th Intl. Conf. User
Modeling — UM97. 2-5 June, Vienna, Austria. Springer-Verlag, Berlin: 107-118.
Isen AM, Daubman KA, Nowicki GP (1987) Positive affect facilitates creative
problem solving. J. Personality and Social Psychology, 52(6): 1122-1131.

Isen AM, Rosenzweig AS, Young MJ (1991) The influence of positive affect on
clinical problem solving. Medical Decision Making, 11: 221-227.

Izard CE (1971) The Face of Emotion. Appleton-Century Crofts, New York,
NY.

Jacobs M (1999) Psychodynamic Counselling in Action. Sage Publications,
London, UK.

Kids Helpline http://kidshelp.com.au/home-KHL.aspx?S=6 (last accessed 14
August 2006).

Klein J, Moon Y, Picard R (2002) This computer responds to user frustration:
theory, design, and results. Interacting with Computers, 14(2): 119-140.

Lang PJ (1995) The emotion probe. American Psychologist, 50(5): 372-385.
Ledoux J (1996) The Emotional Brain. Simon and Schuster, New York, NY.
Lester J, Converse S, Kahler S, Barlow T, Stone B, Bhogal R (1997) The
persona effect: affective impact of animated pedagogical agents. In: Pember-
ton S (ed) Proc. SIGCHI Conf. Human Factors in Computing Systems — CHI
’9722-27 March, Atlanta, GA. ACM Press, New York: 359-366.

Lester JC, Stone B, Stelling G (1999) Lifelike pedagogical agents for mixed-
initiative problem solving in constructivist learning environments. User
Modeling and User-Adapted Interaction, 9(1-2): 1-44.

68.

69.

70.

71.

2.

73.

74.

75.
76.
7.

78.
79.

80.

81.

82.

83.

84.

85.

Emotional Intelligence 221

Lisetti CL, Schiano DJ (2000) Automatic facial expression interpretation:
where human-computer interaction, artificial intelligence and cognitive sci-
ence intersect. Pragmatics and Cognition (Special Issue on Facial Information
Processing: A Multidisciplinary Perspective), 8(1): 185-235.

Liu K, Pickard R (2005) Embedded Empathy in Continuous, Interactive Health
Assessment. Proc. Computer-Human Interaction Workshop on Computer-
Human Interaction Challenges in Health Assessment. 4 April (available
online at: http://affect.media.mit.edu/pdfs/05.liu-picard.pdf — last accessed:
14 October 2006).

Lyons M, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor
wavelets. In: Yachida M (ed) Proc. 3rd IEEE Intl. Conf. Automatic Face and
Gesture Recognition. 14-16 April, Nara, Japan: 200-205.

Mackie DM, Worth LT (1989) Processing deficits and the mediation of positive
affect in persuasion. J. Personality and Social Psychology, 57: 27-40.

Mayer JD, Caruso DR, Salovey P (2000) Emotional Intelligence Meets
Traditional Standards for an Intelligence. Intelligence, 27(4): 267-298.

Mayer JD, Salovey P (1997) What is emotional intelligence? In: Salovey P, Slu-
tyer D (eds) Emotional Development and Emotional Intelligence: Educational
Implications. Basic Books, New York, NY.

McGilloway S, Cowie R, Douglas-Cowie E, Gielen S, Westerdijk M, Stroeve S
(2000) Approaching Automatic Recognition of Emotion from Voice: A Rough
Benchmark. In: Cowie R, Douglas-Cowie E, Schroder M (eds) Proc. Intl. Speech
Communication Association (ISCA) — Workshop on Speech and Emotion. 57
September, Newcastle, UK: 207-212.

McNair DM, Lorr M, Droppleman LF (1981) Manual of the Profile of Mood
States. Educational and Industrial Testing Services, San Diego, CA.
MoodGym http://www.moodgym.anu.ed.au/ (last accessed: 14 August 2006).
Murray IR, Arnott JL (1993) Toward the simulation of emotion in synthetic
speech: a review of the literature on human vocal emotion. J. Acoustical Society
of America, 93(2): 1097-1108.

Nass C, Brave S (2005) Wired for Speech. MIT Press, Cambridge, MA.

Nass C, Lee KM (2001) Does computer-synthesized speech manifest
personality? Experimental tests of recognition, similarity-attraction, and
consistency-attraction. J. Ezperimental Psychology: Applied, 7(3): 171-181.
Nass C, Moon Y, Fogg BJ, Reeves B, Dryer DC (1995) Can computer per-
sonalities be human personalities? Intl. J. Human Computer Studies, 43(2):
223-239.

Nass C, Moon Y, Fogg BJ, Reeves B, Dryer DC (1999) Are respondents polite
to computers? social desirability and direct responses to computers. J. Applied
Social Psychology, 29(5): 1093-1110.

Oatley K, Jenkins JM (1996) Understanding Emotions. Educational and
Industrial Testing Blackwell Publishers, Oxford, UK.

Ortony A, Clore G, Collins A (1988) The Cognitive Structure of Emotions.
Cambridge University Press, Cambridge, UK.

Pavia A (ed) (2000) Affective Interactions: Towards a New Generation of
Computer Interfaces. Springer-Verlag, Berlin.

Paleari M, Lisetti CL (2006) Psychologically Grounded Avatars Expressions.
In: Reichardt D, Levi P, Meyer C (eds) Emotion and Computing — Current
Research and Future Impact (Workshop at 29th Annual German Conf. Artificial

222

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

C. Creed and R. Beale

Intelligence — KI 2006). 19 June, Bremen, Germany. University of Bremen:
39-42.

Perlin K (1997) Responsive Face. http://mrl.nyu.edu/ perlin/facedemo/ (last
accessed: 2 August 2006).

Picard R (1997) Affective Computing. MIT Press, Cambridge MA.

Picard R, Vyzas E, Healy J (2001) Toward Machine Emotional Intelligence:
Analysis of Affective Physiological State. IEEE Trans. Pattern Analysis and
Machine Intelligence, 23(10):1175-1191.

Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers,
14(2): 141-169.

Plantect P (2004) Virtual Humans. Amacon, New York, NY.

Redding CA, Rossi JS, Rossi SR, Velicer WF, Prochaska JO (2000) Health
behavior Models. Intl. Electronic J. Health Education, 3: 180-193.

Reeves B, Nass C (1996) The media equation: How people treat computers,
televisions, and new media like real people and places. Cambridge University
Press, Cambridge, UK.

Revere D, Dunbar P (2001) Review of oomputer-generated outpatient health
behavior interventions: clinical encounters ‘in absentia’. J. American Medical
Informatics Association, 8(1): 62-79.

Rickel J, Johnson WL (1999) Animated agents for procedural training in
virtual reality: Perception, cognition, and motor control. Applied Artificial
Intelligence, 13: 343-382.

Salovey P, Mayer JD (1990) Emotional Intelligence. Imagination, Cognition
and Personality, 9: 185-211.

Scheirer J, Fernandez R, Klein J, Picard RW (2002) Frustrating the user
on purpose: a step towards building an affective computer. Interacting with
Computers, 14: 93-118.

Sloman A (ed) (1999) Architectural requirements for human-like agents both
natural and artificial (what sorts of machines can love?). John Benjamins
Publishing, Amsterdam, The Netherlands.

Stroop JR (1935) Studies of interference in serial verbal reactions. J.
FEzxperimental Psychology, 18: 643-662.

Suler JR (2000) Psychotherapy in cyberspace: a five-dimensional model of
online and computer-mediated psychotherapy. CyberPsychology and behavior,
3(2): 151-159.

Takeuchi A, Naito T (1995) Situated facial displays: towards social interaction.
In: Katz IR, et al. (eds) Proc. SIGCHI Conf. Human factors in Computing
Systems — CHI 95 Denver, CO, 7-11 May. ACM Press, New York, NY: 450
455.

Thorisson KR (1999) A mind model for multimodal communicative creatures
and humanoids. Applied Artificial Intelligence, 13(4-5): 449-486.

Tian YI, Kanade T, Cohn JF (2001) Recognizing action units for facial expres-
sion analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(2):
97-115.

Trappl R, Petta P (eds) (1997) Creating Personalities for Synthetic Actors.
Springer-Verlag, New York, NY.

Trappl R, Petta P, Payr S (eds) (2003) Emotions in Humans and Artifacts.
MIT Press, Cambridge, MA.

105.

106.

Emotional Intelligence 223

van Mulken S, André E, Miiller (1998) The persona effect: how substantial
is it? In: Johnson H, Laurence N, Roast C (eds) Proc. HCI Conf. on People
and Computers XIII — HCI 98 1-4 September, Sheffield, UK. Springer-Verlag,
London: 53-66.

Wang H, Predinger H, Igarashi T (2004) Communicating Emotions in Online
Chat Using Physiological Sensors and Animated Text. In: Dykstra-Erickson
E, Tscheligi M (eds) Human Factors in Computing Systems — Late Break-
ing Results.(Proc. ACM CHI 2004 Conf.) 24-29 April, Vienna, Austria, ACM
Press, New York, NY: 1171-1174.

Resources

1 Key Books

Cassell J, et al. (eds) (2000) Embodied Conversational Agents. MIT Press,
Cambridge, MA.

Damasio A (1994) Descartes Error. Macmilliam Publishers, London, UK.

Evans D (2001) Emotion: the Science of Sentiment. Oxford University Press,
New York, NY.

LeDoux J (1996) The Emotional Brain. Simon and Schuster, New York, NY.

Oatley K, Jenkins JM (1996) Understanding Emotions. Blackwell Publishers,
Oxford, UK.

Picard R (1997) Affective Computing. MIT Press, Massachusetts, MA.
Plantec P (2004) Virtual Humans. Amacon, New York, NY.

Prendinger H, Ishizuka M (2004) Life-Like Characters. Tools, Affective Func-
tions, and Applications. Springer, Berlin.

Reeves B, Nass C (1996) The Media Equation: How People Treat Computers,
Televisions, and New Media Like Real People and Places. Cambridge Univer-
sity Press, New York, NY.

226 C. Creed and R. Beale
2 Key Survey/Review Articles

Bates J (1994) The role of emotion in believable agents. Communications
ACM.37(7): 122-125.

Cowie R, et al. (2001) Emotion recognition in human-computer interaction.
IEEFE Signal Processing Magazine 18(1): 32-80.

Dehn D, Van Mulken S (2000) The impact of animated interface agents: a
review of empirical research. Intl. J. Human-Computer Studies 52(1): 1-22.

Brave S, Nass C (2002) Emotion in human-computer interaction, In: Jacko
JA, Sears A (eds) The Human-Computer Interaction Handbook: Fundamen-
tals, Fvolving Technologies and Emerging Applications. Lawrence Erlbaum
Associates, Mahwah, NJ: 81-96.

Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers.
14(2): 141-169.

http://emotion-research.net/deliverables HUMAINE (Human-Machine Inter-
action Network on Emotion) deliverable Dxx: Proposed exemplar and work
towards it:

Scherer K et al. (2005) D3e: Theory of Emotion.
Douglas-Cowie E, et al. (2005) Dbe: Data and Databases.
Kollias S, et al. (2005) D4d: Signals and Signs of Emotion.
Pelachaud C, et al. (2005) D6d: Emotion in Interaction.
Canamero L, et al. (2005) D7d: Emotion in Cognition and Action.
Stock O, et al. (2005) D8d: Communication and Emotions.
Hook K, et al. (2005) D9d: Usability.
Goldie P, et al. (2005) D1