

John Fulcher and Lakhmi C. Jain (Eds.)

Computational Intelligence: A Compendium

Studies in Computational Intelligence, Volume 115

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 94. Arpad Kelemen, Ajith Abraham and Yuehui Chen
(Eds.)
Computational Intelligence in Bioinformatics, 2008
ISBN 978-3-540-76802-9

Vol. 95. Radu Dogaru
Systematic Design for Emergence in Cellular Nonlinear
Networks, 2008
ISBN 978-3-540-76800-5

Vol. 96. Aboul-Ella Hassanien, Ajith Abraham and Janusz
Kacprzyk (Eds.)
Computational Intelligence in Multimedia Processing:
Recent Advances, 2008
ISBN 978-3-540-76826-5

Vol. 97. Gloria Phillips-Wren, Nikhil Ichalkaranje and
Lakhmi C. Jain (Eds.)
Intelligent Decision Making: An AI-Based Approach, 2008
ISBN 978-3-540-76829-9

Vol. 98. Ashish Ghosh, Satchidananda Dehuri and Susmita
Ghosh (Eds.)
Multi-Objective Evolutionary Algorithms for Knowledge
Discovery from Databases, 2008
ISBN 978-3-540-77466-2

Vol. 99. George Meghabghab and Abraham Kandel
Search Engines, Link Analysis, and User’s Web Behavior,
2008
ISBN 978-3-540-77468-6

Vol. 100. Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2008
ISBN 978-3-540-77476-1

Vol. 101. Michael Granitzer, Mathias Lux and Marc Spaniol
(Eds.)
Multimedia Semantics - The Role of Metadata, 2008
ISBN 978-3-540-77472-3

Vol. 102. Carlos Cotta, Simeon Reich, Robert Schaefer and
Antoni Ligeza (Eds.)
Knowledge-Driven Computing, 2008
ISBN 978-3-540-77474-7

Vol. 103. Devendra K. Chaturvedi
Soft Computing Techniques and its Applications in Electrical
Engineering, 2008
ISBN 978-3-540-77480-8

Vol. 104. Maria Virvou and Lakhmi C. Jain (Eds.)
Intelligent Interactive Systems in Knowledge-Based
Environment, 2008
ISBN 978-3-540-77470-9

Vol. 105. Wolfgang Guenthner
Enhancing Cognitive Assistance Systems with Inertial
Measurement Units, 2008
ISBN 978-3-540-76996-5

Vol. 106. Jacqueline Jarvis, Dennis Jarvis, Ralph Rönnquist
and Lakhmi C. Jain (Eds.)
Holonic Execution: A BDI Approach, 2008
ISBN 978-3-540-77478-5

Vol. 107. Margarita Sordo, Sachin Vaidya and Lakhmi C. Jain
(Eds.)
Advanced Computational Intelligence Paradigms
in Healthcare - 3, 2008
ISBN 978-3-540-77661-1

Vol. 108. Vito Trianni
Evolutionary Swarm Robotics, 2008
ISBN 978-3-540-77611-6

Vol. 109. Panagiotis Chountas, Ilias Petrounias and Janusz
Kacprzyk (Eds.)
Intelligent Techniques and Tools for Novel System
Architectures, 2008
ISBN 978-3-540-77621-5

Vol. 110. Makoto Yokoo, Takayuki Ito, Minjie Zhang,
Juhnyoung Lee and Tokuro Matsuo (Eds.)
Electronic Commerce, 2008
ISBN 978-3-540-77808-0

Vol. 111. David Elmakias (Ed.)
New Computational Methods in Power System Reliability,
2008
ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanı́s and Alexander
G. Loukianov
Discrete-Time High Order Neural Control: Trained with
Kalman Filtering, 2008
ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jimenez-Lopez and
Carlos Mart́ın-Vide (Eds.)
New Developments in Formal Languages and Applications,
2008
ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea
Roli and Michael Sampels (Eds.)
Hybrid Metaheuristics, 2008
ISBN 978-3-540-78294-0

Vol. 115. John Fulcher and Lakhmi C. Jain (Eds.)
Computational Intelligence: A Compendium, 2008
ISBN 978-3-540-78292-6

John Fulcher
Lakhmi C. Jain
(Eds.)

Computational Intelligence:
A Compendium

With 321 Figures and 67 Tables

123

Prof. John Fulcher
School of Computer Science

and Software Engineering
Faculty of Informatics
University of Wollongong
Northfields Ave
Wollongong NSW 2522
Australia

john@uow.edu.au

Prof. L.C. Jain
Knowledge-Based Engineering
Founding Director of the KES Centre
SCT-Building
Mawson Lakes Campus
University of South Australia
Adelaide South Australia SA 5095
Australia

Lakhmi.jain@unisa.edu.au

ISBN 978-3-540-78292-6 e-ISBN 978-3-540-78293-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2008922060

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publica-
tion or parts thereof is permitted only under the provisions of the German Copyright Law of September
9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Dedicated to the creative spark within us all

Preface

At this point in time, Computational Intelligence (CI) has yet to mature
as a discipline in its own right. Accordingly, there is little consensus as to
a precise definition of this emerging field. Nevertheless, most practitioners
would include Artificial Neural Network (ANN), Fuzzy and evolutionary tech-
niques (and perhaps others), and more especially hybrids of these (this will
be expanded upon in Chap. 1.) Our emphasis in this Compendium is very
much on applied methods – ones which have been tired-and-proven effective
on real-world problems.

The 25 chapters have been grouped into the following ten themes (Parts):

I. Overview, Background
II. Data Preprocessing, Systems Integration & Visualization

III. Artificial Intelligence
IV. Logic and Reasoning
V. Ontology

VI. Intelligent Agents
VII. Fuzzy Systems

VIII. Artificial Neural Networks
IX. Evolutionary Approaches
X. DNA and Immunity-based Computing

This grouping is not the only one we could have used – indeed some
chapters could have just as easily appeared in alternate Parts of the Hand-
book. For example, Lam & Lee’s iJADE tourist guidance system could just
as readily been grouped into Part-VI (Agents) as Part-V (Ontology); like-
wise, Fyfe’s Topographic Maps would have fitted just as well into Part-VIII
(ANNs), Ishibuchi et al. would have been just as equally well placed in either
Part-VII or Part-IX, and Islam & Yao could have fitted equally well into
Parts VIII or IX. Nevertheless, we have attempted to group together chapters
with common foci.

Returning briefly to the question of real-world applications, Table 1
summarizes those covered in the chapters herein.

VIII Preface

Table 1. Chapter methods and applications

Chapter Method Application(s) Data set(s)

2 REDR; SOM; handwritten digits; UCI KDD
Mitra Multi-Scale yeast; synthetic

3 SOM; GTM; data visualization UCI-ML (algae; wine)
HaToM; ToPE

4 networked selfish self-maintenance/repair; Denial-Of-Service
agents; probabilistic ‘internet being’ & Traceroute
cellular automata websites

5 affective embodied synthetic therapist; —
agent human behaviour change

6 paraconsistent pipeline safety process —
annotated logic verification

7 Data-Oriented Natural Language Processing; Penn Treebank;
Parsing musical notation, physics Essen Folksong

problem solving Collection

8 Conceptual Graph ontologies: architectural —
Theory design; air operations officer

9 mobile/GPS agents; tourist guidance system DAML; Protége
ontologies

10 Agent-Based ‘Stupid’ model Santa Fe Institute
Modelling software artificial stock market

11 agents; Peer-to-Peer resource allocation; —
& cluster computing communication; scheduling

12 multi-agents; sensor networks —
dynamic clustering

13 agents; ANN; SVM; computational economics; SFI and AI-ECON
Evolutionary Comp. foreign exchange rates artificial stock markets

14 reconciliation via fuzzy rule-based systems —
optimization

15 Evolutionary fuzzy rule-based classifiers UCI-ML (breast; glass;
multi-objective design heart; iris; wine)

16 ANNs; MAS network bandwidth —
prediction

17 SOM; ViSOM; vector quantization; UCI-ML (iris; yeast)
SOMN; kernel image compression/
methods segmentation; text mining

18 neural systems Blue Brain; SPINN; —
engineering SpiNNaker

19 GenNt; CGA; FPGA ‘artificial brain’; UXO robot —

20 Evolutionary ANN Credit Card; Diabetes; UCI-ML
ensembles Heart Disease; Glass; Letter;

Soybean; Breast Cancer

21 genetic simulated graph colouring; bin DIMACS; Scholl &
annealing packing; timetabling Klein; Falkenauer

22 Genetic modeling; the ‘Humies’; —
Programming (GP) image/signal processing;

time series prediction; et al.

Preface IX

Table 1. (continued)

Chapter Method Application(s) Data set(s)

23 Particle Swarm finding origin; Rastrigin/ —
Optimization Schwefel functions;

timetabling

24 DNA computing multiple elevator scheduling —

25 immunity-based stable marriage problem; —
computing auto sensor diagnosis; noise

neutralization

Chapters commence with an overview of the field in question, and conclude
with a Resources Appendix. These resources cover key references (classic texts,
survey articles, key papers), pertinent journals, professional societies/organi-
zations and research groups, international conferences and workshops, and/or
electronic/on-line material (with a particular emphasis on databases and Open
Source software). Each chapter is thus complete unto itself for those readers
wanting to explore just a single topic from the many on offer. In this mode,
the Compendium could be used as a text for graduate programs in Artificial
Intelligence, Intelligent Systems, Soft Computing, Computational Intelligence,
and the like. The Index doubles as a Glossary of Terms (with acronyms shown
in parentheses).

We have gathered together in a single volume chapters by leading experts
in their respective fields – all of international repute, as evidenced (in part)
by the following:

I. Learned Society Fellows: IEEE (Furber, Pedrycz, Yao); Intl. Fuzzy Sys-
tems Association (Pedrycz); Royal Society (Furber); Royal Academy of
Engineering (Furber); British Computer Society (Furber); Intl. Soci-
ety for Genetic and Evolutionary Computation (Koza, Langdon, Poli);
Institution of Engineers, Australia (Jain)

II. Editors-in-Chief: Computing and Information Systems (Fyfe); IEEE
Trans. Evolutionary Computing (Yao); Information Sciences (Pedrycz);
Intelligent Decision Technologies (Jain); Intl. J. Hybrid Intelligent Sys-
tems (Jain); Intl. J. Knowledge-based Intelligent Engineering Systems
(Founding Editor) (Jain); Intl. J. Logic & Reasoning (Nakamatsu); Intl.
J. Metaheuristics (Mumford); New Mathematics & Natural Computing
(Chen)

III. Associate/Area Editors: Advances in Natural Computation (Yao); Com-
puter and Information Systems (Jain); Evolutionary Computation (Poli);
IEEE Computational Intelligence Magazine (Ishibuchi); IEEE Trans.
Evolutionary Computation (Ishibuchi); IEEE Trans. Fuzzy Systems
(Ishibuchi, Pedrycz); IEEE Trans. Knowledge and Data Engineer-
ing (Wang); IEEE Trans. Neural Networks (Pedrycz, Wang); IEEE
Trans. Neural Networks (Chen, Wang); IEEE Trans. Systems, Man and

X Preface

Cybernetics (Ishibuchi, Jain, Pedrycz); Intl. J. Advances in Fuzzy Systems
(Ishibuchi); Intl. J. Applied Intelligence (Hendtlass); Intl. J. Computa-
tional Intelligence Research (Ishibuchi, Poli); Intl. J. Information Tech-
nology (Chow); Intl. J. Knowledge-based Intelligent Engineering Systems
(Ishida); Intl. J. Metaheuristics (Ishibuchi); Intl. J. Pattern Recognition
and Artificial Intelligence (Jain); J. Artificial Evolution and Applica-
tions (McPhee); J. Economic Research (Chen); J. Genetic Program-
ming and Evolvable Machines (Poli); J. Intelligent and Fuzzy Systems
(Jain); Mathware and Soft Computing (Ishibuchi); Neural Computing and
Applications (Jain); Soft Computing J. (Ishibuchi)

IV. Book Series Editors: CRC Press (Intl. series on CI) (Jain); IGI (CI: The-
ory and Applications series) (Fyfe, Jain); Kluwer (Genetic Programming)
(Koza); Springer (Advanced Information and Knowledge Processing)
(Jain)

V. Invited Keynote/Plenary Conference Speakers: Chen, deGaris, Fulcher,
Fyfe, Ishida, Jain, Koza, Nakamatsu, Prokopenko, Wang, Yao

VI. Awards: Royal Society Wolfson Research Merit Award (Furber); IET
Faraday Medal (Furber); Queen’s Award for Technology (Furber);
Japanese Society for the Promotion of Science Prize (Ishibuchi); IEEE
Donald G. Fink Prize Paper (Yao); AJB CEBIT Exhbition Award (Most
Innovative Technology) (Prokopenko); Japanese Society for Artificial
Intelligence Award (Prokopenko); Best Paper Awards (Chow, Langdon,
McPhee, Poli)

VII. Advisory Boards: UK EPSRC Peer Review College (Poli); EU Expert
Evaluator (Poli)

Indeed, this Handbook is a truly international undertaking, with a total of 43
authors from 10 different countries contributing (9 in Australia; 19 in Asia; 11
in UK; and 4 in North America). All chapters were peer reviewed to ensure a
uniformly high standard for the Handbook overall.

Next follows an overview of each Chapter.

In Part-I, Fulcher introduces fundamental Computational Intelligence con-
cepts. This Introductory chapter is intended to serve both as background
reading (tutorial) for students/newcomers to the field, as well as setting the
scene/laying the groundwork for the more specialist chapters that follow.

A critical consideration with applying any CI approach to real-world prob-
lems is data pre-processing. Part-II begins with a chapter by Chow & Huang
on Data Reduction for Pattern Recognition. They provide an overview of ‘fil-
ter’ and ‘wrapper’ methods, before focusing on their Representative Entropy
Data Reduction (REDR) approach. In their discussion they cover not only
data reduction but also feature selection – another key aspect of pre-processing.

Fyfe’s concern in Chap. 3 is data visualization. He illustrates how the
Self-Organizing Map, Generative and Harmonic Topographic Maps, and the

Preface XI

Topographic Product-of-Experts can all be effectively used on the UCI-ML
algae and wine data sets.

Ishida adopts a game-theoretic approach to self-maintenance and repair in
large-scale, complex systems such as the Internet – more specifically, ‘selfish’
agents and Probabilistic Cellular Automata. Emphasis is placed on the emer-
gence of intelligent systems at the Nash Equilibrium in such networks. He
concludes with speculation as to the conditions necessary for the emergence
of a so-called ‘Internet Being’, in the context of such ‘selfishware’.

Part-III covers conventional (traditional) AI, but from a slightly different
perspective. In Chap. 5 Creed and Beale provide a fascinating insight into
Emotional Intelligence and affective computing. They commence with a dis-
cussion of emotion theory, before introducing ‘affective embodied’ agents. The
authors then demonstrate how such agents can be applied in the real world to
engender behavioural change in humans, through the medium of a so-called
‘simulated (artificial) therapist’.

Part-IV covers logic, reasoning and related approaches to CI. In Chap. 6
Nakamatsu provides a comprehensive discussion of various paraconsistent
annotated logics, including his own extended vector-annotated logic pro-
gram with strong negation – EVALPSN; defeasible reasoning proofs are also
included. Nakamatsu then proceeds to show how EVALPSN can be applied to
pipeline process safety verification, and by extension to pipeline process order
safety verification (by way of before-after EVALPSN).

Bod uses the supervised, corpus-based probabilistic Data-Oriented Pars-
ing approach to reveal the underlying structures in areas as diverse as Natural
Language Processing, the melodic analysis of musical scores, and physics prob-
lem solving. A mechanism for determining the optimum parse tree is described,
and the chapter concludes with an explanation of how DOP could be modified
to support unsupervised learning.

Part-V of the Handbook covers ontology, which is often closely related
to intelligent agents (Part-VI). In Chap. 8, Corbett takes the view that
frameworks for intelligent systems are best represented by a combination of
concept type hierarchy, canonical formation rules, conformity relations and
subsumption. He illustrates the validity of this approach with regard to both
architectural design and air operation officer ontologies, and concludes that
his automated reasoning approach could be readily extended to the Semantic
Web.

In Chap. 10, Lam and co-authors provide an account of an Intelligent
Ontology Agent-based Tourist Guidance System, which they developed using
the Intelligent Java Agent-based Development Environment (iJADE).

Part-VI is devoted to (intelligent) software agents. Standish commences
with a comparative review in Chap. 11 of open source Agent-based Modelling

XII Preface

platforms, including a performance comparison on a simple pedagogical model
(the so-called ‘Stupid Model’).

Zhang and co-authors follow in Chap. 11 with a discussion of their agent-
based SmartGRID model – incorporating both Peer-to-Peer and clustering
techniques – and which can yield improved resource allocation, as well as
task communication and scheduling in agent grids operating in open envi-
ronments. Piraveenan and co-authors are likewise interested in grids, but in
their case scale-free sensor networks. They use a dynamic, decentralized MAS
algorithm for predicting convergence times for cluster formation in such grids
(networks).

Chen provides a comprehensive account of agent-based computational eco-
nomics (ACE)in Chap. 13, with a particular focus on Genetic Algorithms.
After introducing the cobweb and overlapping generations models, he describes
several applications of ACE, including inflation, foreign exchange rate, and
artificial stock markets.

Fuzzy Systems are the focus of Part-VII. Pedrycz commences with a dis-
cussion of the semantics and perception of fuzzy sets and fuzzy mapping. He
proceeds to show that reconciliation of fuzzy set perception and granular map-
pings can be expressed in the form of an optimization pattern, which in turn
can be subsequently applied to rule-based systems.

In Chap. 15, Ishibushi and co-authors discuss the principles underlying the
evolutionary design of fuzzy classifiers, illustrating the effectiveness of their
approach by way of data sets selected from the UCI-ML repository (breast
cancer; glass; heart; iris; wine).

Part-VIII covers Artificial Neural Networks. Fu and co-authors commence
by illustrating how supervised, feedforward networks (MLP/BP) can be used
in the data mining of Quality-of-Service aware media grids.

Yin provides a comprehensive coverage of Kohonen’s Self-Organizing Map
and its more recent variants in Chap. 17. The performance of SOM, ViSOM,
SOM Mixture Network and SOM kernel methods is compared on vector
quantization, image compression and segmentation, density modelling, data
visualization and text mining.

In Chap. 18, Furber & Temple provide an overview of neural systems engi-
neering, namely the realization of ANNs in hardware form, rather than the
more usual approach of software simulation. DeGaris follows in a similar vein,
describing how Field Programmable Gate Arrays (FPGAs) can be used to
build ‘artificial brains’.

Evolutionary approaches to CI are the subject of Part-IX of the Handbook.
Islam & Yao commence with an account of how ANN ensembles can be first
evolved, then used as classifiers on representative data sets from the UCI-ML
repository.

Preface XIII

In Chap. 21 Mumford concerns herself with a so-called memetic EA – in
the form of a Genetic Simulated Algorithm (GSA) – which she proceeds to
demonstrate can be used to solve set partitioning problems (graph colouring,
bin packing, timetabling).

Genetic Programming is the focus of the Chapter by Langdon and co-
authors. An extensive coverage of basic principles is followed by descriptions
of how to apply GPs in various application domains, including hints for the
novice user (‘tricks-of-the-trade’, as it were). The Chapter rounds off with a
section on theoretical aspects of GP. The authors include an extensive (420
item) reference list.

In Chap. 23, after providing an overview of the basic Particle Swarm Opti-
mization algorithm, Hendtlass then proceeds to describe enhancements to
handle multiple optima, niching and ‘Waves of Swarm Particles’, before out-
lining how one can minimize the computational cost of such algorithms. He
illustrates the effectiveness of the PSO approach by way of finding the origin,
solving Rostrigin’s and Schwefel’s functions, and timetabling.

In the last Part of the Handbook we cover CI approaches inspired by
Nature, but which do not fall under the umbrella of ANNs, EAs or Fuzzy.
Firstly, Watada provides an overview of DNA Computing, then proceeds to
show how this can be successfully applied to the problem of scheduling the
movements of a group of elevators in a high-rise building.

Chapter 25 is concerned with Immunity-based computing (IBC). After
introducing the basic concepts, Ishida shows how IBC can be applied to
automobile sensor diagnosis, noise neutralization, and the ‘Stable Marriage
Problem’. He concludes by proposing a general (immunity-based) problem
solver.

One of your Editors (JF) formatted the Handbook, using MikTex v2.4 and
WinEdit v5.4. In this (considerable) endeavour we are indebted to the follow-
ing for their assistance along the way: Professor Philip Ogunbona (for impart-
ing ‘the joy of LaTex’), Associate Professor Willy Susilo, Associate Professor
Russell Standish, Professor Riccardo Poli, Dr. Bill Langdon, and Jia Tang for
insight into the finer points of LaTex, as well as Nik Milosevic (for creation of
.eps figures). Thanks are also due to Dr. Thomas Ditzinger, Senior Editor, and
Heather King, Engineering Editorial, respectively at Springer-Verlag GmbH,
as well as Srilatha Achuthan, Project Manager at SPi Technologies, Chennai.

We sincerely trust that you find much of interest in the ensuing pages.

Wollongong NSW, Australia John Fulcher
Adelaide SA, Australia Lakhmi C. Jain
September 2007

Contents

Part I Overview, Background

Computational Intelligence: An Introduction
John Fulcher . 3
1 Introduction, Overview, Definitions . 3
2 Historical Background . 7

2.1 Artificial Intelligence (AI) . 7
2.2 Machine Learning (ML) . 14
2.3 Decision Trees . 16

3 Approaches to CI . 17
3.1 The Intuitive Appeal of Nature . 17
3.2 Brains versus Computers . 20

4 CI Paradigms . 20
4.1 Pre-Processing . 21

5 Expert Systems . 21
6 Fuzzy Systems . 24
7 Artificial Neural Networks . 26

7.1 ANN Types . 26
7.2 Multi-Layer Perceptron/BackPropagation 27
7.3 Other ANN Models . 29

8 Evolutionary Methods . 31
8.1 Genetic Algorithms . 32
8.2 Evolutionary Programming . 36
8.3 Genetic Programming . 36
8.4 Swarms . 36

9 Immunity-Based and Membrane-Based Computing 39
9.1 Immunity-Based Computing . 39
9.2 Membrane-Based Computing . 40

10 DNA Computing . 40
11 Intelligent Agents . 41

XVI Contents

12 Hybrid Methods . 42
13 Conclusion . 48
References . 50

Resources . 67
1 Key Books . 67

1.1 Computational Intelligence . 67
1.2 Artificial Neural Networks . 68
1.3 Evolutionary Methods . 69
1.4 Fuzzy Systems . 71
1.5 Other . 71

2 Key Survey/Review Articles . 72
2.1 Artificial Neural Networks . 72
2.2 Evolutionary Methods . 73
2.3 Fuzzy Systems . 73
2.4 Other . 73

3 Organizations, Societies, Special Interest Groups, Journals 74
3.1 Computational Intelligence . 74
3.2 Artificial Neural Networks . 74
3.3 Evolutionary Methods . 75
3.4 Fuzzy Systems . 75
3.5 Other . 75

4 Key International Conferences/Workshops . 76
5 (Open Source) Software . 77
6 Data Bases . 78

Part II Preprocessing, Visualization, Systems Integration

Data Reduction for Pattern Recognition and Data
Analysis
Tommy W.S. Chow and Di Huang . 81
1 Introduction . 81
2 Data Reduction . 82

2.1 Wrapper Methods . 83
2.2 Filter Methods . 83
2.3 Examples of Filter Methods . 84

3 Feature Selection . 89
3.1 Feature Evaluation . 91
3.2 Search Engine . 97
3.3 Example Feature Selection Models . 98

4 Trends and Challenges of Feature Selection and Data Reduction . . 101
References . 103

Contents XVII

Resources . 107
1 Key Books . 107
2 Key Survey/Review Articles . 107
3 Organizations, Societies, Special Interest Groups 108
4 Research Groups . 108
5 Discussion Groups, Forums . 108
6 Key International Conferences/Workshops . 108
7 (Open Source) Software . 109
8 Data Bases . 109

Topographic Maps for Clustering and Data Visualization
Colin Fyfe . 111
1 Introduction . 111
2 Clustering and Visualization . 112
3 The Self-Organizing Map . 113

3.1 Competitive Learning . 113
3.2 Illustrative Example . 117
3.3 Alternative Traditional Topology Preserving Mappings 118
3.4 A Last Word. 120

4 The Generative Topographic Mapping . 121
4.1 Illustrative Examples . 122
4.2 Adjusting the Latent Space . 124
4.3 Deleting Latent Points . 126

5 Topographic Product of Experts (ToPoE) . 126
5.1 Comparison with the GTM . 129
5.2 Illustrative Example . 130
5.3 Projections . 131
5.4 Growing and Pruning ToPoEs . 133
5.5 Different Noise Models . 135
5.6 Twinned ToPoEs . 135
5.7 Visualizing and Clustering Real Data Sets 136
5.8 Discussion . 139

6 Harmonic Averages . 140
6.1 Harmonic k-means . 141
6.2 The Harmonic Topographic Map . 142
6.3 Simulations . 142
6.4 Generalized Harmony Learning . 144
6.5 Conclusion . 146

7 Conclusion . 146
References . 147

Resources . 151
1 Key Books . 151
2 Key Survey/Review Articles . 151
3 Key Journals . 152

XVIII Contents

4 Key International Conferences/Workshops . 152
5 Software . 153
6 Data Bases . 153

Complex Systems Paradigms for Integrating Intelligent
Systems: A Game Theoretic Approach
Yoshiteru Ishida . 155
1 Introduction . 155
2 Economic Theory for the Internet Being with Selfish Agents 157
3 A Microscopic Model: Negotiation Between Agents 159

3.1 The Prisoner’s Dilemma . 159
3.2 Repairing from Outside the System:

A Conventional Model [12] . 160
3.3 Mutual Repair within Systems . 160
3.4 Mutual Repair with Selfish Agents . 161

4 A Macroscopic Model: Boundary Formation among Agents 163
4.1 A Model with Uniform Control . 163
4.2 The Spatial Prisoner’s Dilemma . 167
4.3 A Model with Selfish Agents . 168
4.4 Strategic Repair with Systemic Payoff . 169
4.5 Comparison Between Uniform Repair

and Strategic Repair . 170
5 Selfishware and Internet Being . 173
6 Conclusion . 175
References . 175

Resources . 179
1 Key Books . 179
2 Organisations, Societies, Special Interest Groups 179
3 Research Groups . 180
4 Discussion Groups, Forums . 180
5 Key International Conferences/Workshops . 180
6 (Open Source) Software . 181
7 Data Bases . 181

Part III Artificial Intelligence

Emotional Intelligence: Giving Computers Effective
Emotional Skills to Aid Interaction
Chris Creed and Russell Beale . 185
1 Introduction . 185
2 Overview of Affective Computing . 187

2.1 What Are Emotions? . 187
2.2 Emotions and Moods . 190
2.3 Expression of Emotion . 191

Contents XIX

2.4 Influence of Emotion on Human behavior 193
2.5 Emotional Intelligence . 196
2.6 Approaches Used in Developing Emotionally

Intelligent Computers . 197
2.7 Ethics . 203

3 Evaluating Affective Embodied Agents . 206
3.1 What are Affective Embodied Agents? 207
3.2 Psychological Responses to Simulated Emotion 207
3.3 Evaluating Agents over Extended Interactions 209
3.4 Our Affective Embodied Agent . 210

4 Application of Affective Embodied Agents . 211
4.1 Affective Embodied Agents for behavior Change 212
4.2 Behavior Change Models . 213

5 Summary . 216
References . 217

Resources . 225
1 Key Books . 225
2 Key Survey/Review Articles . 226
3 Organisations, Societies, Special Interest Groups 226
4 Research Groups . 227
5 Discussion Groups, Forums . 228
6 Key International Conferences/Workshops . 228
7 (Open Source) Software . 229
8 Data Bases . 229

8.1 Multimodal Databases . 229
8.2 Face Databases . 230

Part IV Logic and Reasoning

The Paraconsistent Annotated Logic Program EVALPSN
and its Application
Kazumi Nakamatsu . 233
1 Introduction . 233

1.1 Background. 233
1.2 Overview . 234

2 Preliminary . 235
2.1 Paraconsistent Annotated Logics PT . 235
2.2 Generally Horn Program(GHP) . 237
2.3 ALPSN (Annotated Logic Program with Strong

Negation) and Stable Model Semantics 241
2.4 VALPSN (Vector Annotated Logic Program with

Strong Negation) . 243

XX Contents

2.5 EVALPSN (Extended Vector Annotated Logic
Program with Strong Negation) and Defeasible
Deontic Reasoning . 244

2.6 Defeasible Reasoning and VALPSN . 247
2.7 Defeasible Deontic Reasoning and EVALPSN 256

3 EVALPSN Safety Verification for Control . 265
3.1 Outline of EVALPSN Safety Verification 265
3.2 EVALPSN Safety Verification for Pipeline Control 266

4 Before-after EVALPSN . 284
4.1 Before-after Relation in EVALPSN . 285
4.2 Implementation of bf-EVALPSN . 291
4.3 Safety Verification in bf-EVALPSN . 295

5 Conclusion and Future Work . 299
References . 300

Resources . 305
1 Logic Programming . 305
2 Paraconsistent Annotated Logic . 305
3 Defeasible Logic . 305
4 Defeasible Deontic Logic . 306
5 ALPSN, VALPSN, EVALPSN . 306
6 EVALPSN Safety Verification . 306

The Data-Oriented Parsing Approach:
Theory and Application
Rens Bod . 307
1 Introduction . 307
2 A DOP Model for Language: Combining Likelihood

and Simplicity . 308
3 A DOP Model for Music . 315
4 A DOP Model for Problem Solving in Physics 318
5 Towards a Unifying Approach . 323
6 Test Corpora for DOP+ . 325
7 Computing Tbest . 327
8 Experiments with DOP+ . 330
9 Current Developments: Unsupervised DOP . 333
10 Conclusion . 336
References . 336

Resources . 343
1 Key Books . 343
2 Key Survey/Review Articles . 343
3 Organisations, Societies, Special Interest Groups 344
4 Research Groups . 345
5 Discussion Groups, Forums . 345

Contents XXI

6 Key International Conferences/Workshops . 346
7 (Open Source) Software . 347
8 Data Bases . 347

8.1 Multimodal Databases . 347
8.2 Face Databases . 348

Part V Ontology

Graph-Based Representation and Reasoning
for Ontologies
Dan R. Corbett . 351
1 Introduction . 351
2 Overview of Conceptual Graphs . 352

2.1 The Basics . 352
2.2 Fundamental Concepts . 354
2.3 Canonical Formation Rules . 355
2.4 Types and Inheritance . 355
2.5 Specialization, Projection and Subsumption 357

3 Projection as an Ontology Operator . 358
4 Projection of Ontology Types . 360
5 Knowledge Conjunction . 362

5.1 Ontology Comparison and Conjunction 362
5.2 Unification, Constraints and Conceptual Graphs 364
5.3 Knowledge Structures, Partialness and Unification 365

6 An Architectural Design Tool . 367
7 An Architectural Design Tool: Results and Discussion 368
8 The Air Operations Officer . 370
9 The Air Operations Officer: Results and Discussion 372
10 Conclusions: Semantics for a Knowledge Web 372
References . 374

Resources . 377
1 Key Books . 377
2 Key Survey/Review Articles . 377
3 Research Groups . 378
4 Discussion Groups, Forums . 378
5 Key International Conferences/Workshops . 378
6 (Open Source) Software . 379

An Ontology-Based Intelligent Mobile System for Tourist
Guidance
Toby H.W. Lam, Raymond S.T. Lee, and James N.K. Liu 381
1 Introduction . 381
2 Background . 383

2.1 The Semantic Web . 383
2.2 Agent . 386

XXII Contents

3 Related Work . 388
4 Ontology-Based Tourist Guide . 389

4.1 iJADE Framework . 389
4.2 Construction of the Travel Ontology . 390
4.3 iJADE FreeWalker . 395
4.4 iJADE System Architecture . 397

5 Performance Evaluation . 400
5.1 Precision Test . 401
5.2 Usability Test . 401

6 Conclusion and Further Work . 402
References . 403

Resources . 405
1 Key Books . 405
2 Key Survey/Review Articles . 405
3 Websites . 405
4 Key International Conferences/Workshops . 406
5 (Open Source) Software . 406
6 Data Bases . 406

Part VI Intelligent Agents

Open Source Agent-Based Modeling Frameworks
Russell K. Standish . 409
1 Introduction . 409

1.1 Artificial Life (Alife) . 409
2 Applications . 411

2.1 Sugarscape . 412
2.2 The Santa Fe Artificial Stock Market . 413
2.3 Heatbugs . 416
2.4 Mousetrap . 417

3 Software Modeling Tools . 417
3.1 Open Source versus Freeware . 417
3.2 Programming Languages . 418
3.3 Reflection . 421
3.4 User Interface and Scripting . 421
3.5 Discrete Event Scheduling . 422
3.6 Random Number Library . 422
3.7 Swarm . 423
3.8 Repast . 424
3.9 Mason . 425
3.10 EcoLab . 426
3.11 The Logos, StarLogo and NetLogo . 427
3.12 Cormas . 428

Contents XXIII

4 Performance Comparisons . 428
5 Conclusion . 431
References . 431

Resources . 435
1 ABM Platforms . 435
2 Discussion Fora . 436

Agent-Based Grid Computing
Minjie Zhang, Jia Tang, and John Fulcher . 439
1 Introduction . 439
2 Computing Grids . 440

2.1 Development of Computing Grids . 441
2.2 Application-Oriented Metacomputing . 442
2.3 Service-Oriented Grid Computing . 443
2.4 Convergence of Grids and Peer-to-Peer Computing 444
2.5 Research Questions of Grid Computing 445

3 Grid Computing in Open Environments . 446
4 SmartGrid – A Hybrid Solution to Grid Computing

in Open Environments . 446
4.1 Overall Architecture and Core Components 447
4.2 The Task/Service Model . 451
4.3 The smartGRID Scheduling Process . 453

5 A Peer-to-Peer Solution to Grid Computing
in Open Environments . 462
5.1 Overall Architecture and Core Components

of smartGRID2 . 462
5.2 Module – An Improved Task Model . 465
5.3 Peer-to-Peer Computing Architecture . 467
5.4 Resource Management and Scheduling Mechanisms 471
5.5 Compatibility and Inter-Operability . 475

6 Conclusion and Further Work . 475
References . 477

Resources . 481
1 Key Books . 481
2 Key Survey/Review Articles . 481
3 Journal . 482
4 Key International Conferences/Workshops . 482
5 Web Resources . 482

Decentralized Multi-Agent Clustering in Scale-free
Sensor Networks
Mahendra Piraveenan, Mikhail Prokopenko, Peter Wang,
and Astrid Zeman . 485
1 Introduction . 485

XXIV Contents

1.1 Multi-Agent Systems and Self-organization 485
1.2 Multi-Agent Networks . 487
1.3 Adaptive Topologies and Dynamic Hierarchies 488

2 Dynamic Cluster Formation Algorithm . 490
3 Regularity of Multi-Agent Communication-Volume 494
4 Experimental Results . 496
5 An Application Scenario – Distributed Energy Management

and Control . 501
6 Conclusions . 502
References . 503

Decentralised Clustering Algorithm . 507

Predictor K2 . 511

Resources . 513
1 Key Books . 513
2 Key Survey/Review Article . 513
3 Organisations, Societies, Special Interest Groups 513
4 Research Groups . 514
5 Discussion Group, Forum . 514
6 Key International Conferences/Workshops . 514

Computational Intelligence in Agent-Based
Computational Economics
Shu-Heng Chen . 517
1 Introduction . 517

1.1 What is Agent-Based Computational Economics (ACE)? . . . 517
1.2 Algorithmic Foundations of ACE . 518

2 Artificial Neural Networks . 519
2.1 Multilayer Perceptron Neural Networks 520
2.2 Radial Basis Network . 522
2.3 Recurrent Neural Networks . 522
2.4 Auto-Associative Neural Networks . 524
2.5 Support Vector Machines . 528
2.6 Self-Organizing Maps and k-means . 529
2.7 K Nearest Neighbors . 532
2.8 Instance-Based Learning . 533

3 Evolutionary Computation . 536
3.1 Evolutionary Strategies . 538
3.2 Evolutionary Programming . 540
3.3 Genetic Programming and Genetic Algorithms 540

4 Agent-Based Economic Simulations with CI . 549
4.1 The Cobweb Model . 549
4.2 Overlapping Generations Models . 552

Contents XXV

4.3 Foreign Exchange Rate Fluctuations . 558
4.4 Artificial Stock Markets . 562
4.5 Market/Policy Design . 568

5 Pushing the Research Frontier with CI . 570
5.1 Developments in Agent Engineering . 570
5.2 Distinguishing Features . 572
5.3 Future Directions . 576

6 Concluding Remarks . 579
References . 580

Resources . 591
1 Key Books . 591
2 Key Survey/Review Articles . 592
3 Journals . 592
4 Key International Conferences/Workshops . 592

4.1 Economics . 592
4.2 Agents . 593

5 (Open Source) Software . 593
6 Data Bases . 594

Part VII Fuzzy Systems

Semantics and Perception of Fuzzy Sets
and Fuzzy Mappings
Witold Pedrycz . 597
1 Semantics of Fuzzy Sets: Some General Observations 597
2 Domain Knowledge and Problem-Oriented Formation

of Fuzzy Sets . 599
2.1 Fuzzy Set as a Descriptor of Feasible Solutions 599
2.2 Fuzzy set as a Descriptor of the Notion of Typicality 601
2.3 Membership Functions in the Visualization

of Preferences of Solutions . 603
3 User-Centric Estimation of Membership Functions 605

3.1 Horizontal Membership Function Estimation Scheme 605
3.2 Vertical Membership Function Estimation Scheme 606
3.3 Pairwise Membership Function Estimation Scheme 607

4 Fuzzy Sets as Granular Representatives of Numeric Data 609
5 From Multidimensional Numeric Data to Fuzzy Sets:

Membership Estimation via Fuzzy Clustering 614
6 Main Design Guidelines . 620
7 Nonlinear Transformation of Fuzzy Sets . 621
8 Reconciliation of Information Granule Perception 625
9 The Optimization Process . 626

XXVI Contents

10 An Application of the Perception Mechanism
to Rule-Based Systems . 627

11 Reconciliation of Granular Mappings . 629
12 Conclusions . 634
References . 634

Resources . 637
1 Key Books . 637
2 Key Survey/Review Articles . 637
3 Organisations, Societies, Special Interest Groups 638
4 Research Groups . 638
5 Key International Conferences/Workshops . 639

Evolutionary Multiobjective Design
of Fuzzy Rule-Based Classifiers
Hisao Ishibuchi, Yusuke Nojima, and Isao Kuwajima 641
1 Introduction . 641
2 Fuzzy Rule-Based Classifiers . 644

2.1 Pattern Classification Problems . 644
2.2 Fuzzy Rules . 644
2.3 Fuzzy Reasoning . 648
2.4 Fuzzy Rule Extraction . 650
2.5 Comparison Between Fuzzy and Interval Rules 653

3 Evolutionary Multiobjective Optimization (EMO) 655
3.1 Genetic Algorithms (GAs) . 655
3.2 Multiobjective Optimization (MO) . 657
3.3 Evolutionary Multiobjective Optimization (EMO) 658

4 Two Approaches to Evolutionary Multiobjective Design
of Fuzzy Rule-Based Classifiers . 661
4.1 Problem Formulation . 662
4.2 Multiobjective Fuzzy Rule Selection . 663
4.3 Multiobjective Fuzzy Genetics-Based Machine Learning 667
4.4 Computational Experiments on Test Problems 669

5 Future Research Directions . 673
6 Concluding Remarks . 674
References . 675

Resources . 681
1 Key Books . 681

1.1 Fuzzy Rule-Based Classification Systems 681
1.2 Genetic Algorithms . 681
1.3 Genetic Fuzzy Systems . 682
1.4 Evolutionary Multiobjective Optimization 682
1.5 Evolutionary Multiobjective Machine Learning

and Knowledge Extraction . 682

Contents XXVII

2 Conferences . 682
2.1 Fuzzy Systems . 682
2.2 Genetic Algorithms . 683
2.3 Genetic Fuzzy Systems . 683
2.4 Evolutionary Multiobjective Optimization 683
2.5 Hybrid Systems . 683
2.6 Broader Areas, Including Fuzzy Systems

and Genetic Algorithms . 683
3 Journals . 683

3.1 Fuzzy Systems . 683
3.2 Genetic Algorithms . 684
3.3 Broader Areas, Including Fuzzy Systems

and Genetic Algorithms . 684
4 Websites . 684
5 (Open Source) Software . 685
6 Data Bases . 685

Part VIII Artificial Neural Networks

Data Mining in QoS-Aware Media Grids
Xiuju Fu, Xiaorong Li, Lipo Wang, David Ong,
and Stephen John Turner . 689
1 Introduction . 689
2 Related Work . 691

2.1 Network Bandwidth Prediction . 691
2.2 Brief Overviews on Neural Networks . 692

3 System Model of Data Analysis over Media Grid 694
3.1 Architecture . 694
3.2 System Components . 696

4 Data Mining Strategy for Bandwidth Prediction 697
4.1 Multi-Layer Perceptron Neural Network 697
4.2 Data Mining Strategy . 699
4.3 Performance Metrics . 701

5 Experimental System and Performance Evaluation 702
5.1 System Hardware and Software . 702
5.2 Request Arrival Pattern . 702
5.3 Results and Analysis . 703

6 Conclusions . 704
References . 709

Resources . 713
1 Key Books . 713
2 Key Survey/Review Articles . 713
3 Organisations, Societies, Special Interest Groups 714

XXVIII Contents

4 Key International Conferences/Workshops . 714
5 (Open Source) Software . 714

The Self-Organizing Maps: Background, Theories,
Extensions and Applications
Hujun Yin . 715
1 Introduction . 715
2 Background . 716

2.1 Biological Background: Lateral Inhibition
and Hebbian Learning . 716

2.2 From Von Marsburg and Willshaw’s Self-Organization
Model to Kohonen’s SOM . 721

2.3 The SOM Algorithm . 725
3 Theories . 726

3.1 Convergence and Cost Functions . 726
3.2 Topological Ordering . 729

4 Extensions and Links with Other Learning Paradigms 731
4.1 SOM, Multidimensional Scaling and Principal Manifolds . . . 732
4.2 SOM and Mixture Models . 738
4.3 SOM and Kernel Method . 740

5 Applications and Case Studies . 743
5.1 Vector Quantization and Image Compression 743
5.2 Image Segmentation . 744
5.3 Density Modeling . 745
5.4 Gene Expression Analysis . 747
5.5 Data Visualization . 749
5.6 Text Mining and Information Management 750

6 Summary and Future Directions . 753
References . 754

Resources . 761
1 Key Books . 761
2 Key Survey/Review Articles . 761
3 Key International Conferences/Workshops . 762
4 (Open Source) Software . 762

Neural Systems Engineering
Steve Furber and Steve Temple . 763
1 Introduction . 763

1.1 The Neuron . 764
1.2 Neural Microarchitecture . 766
1.3 Engineering with Neurons . 766
1.4 Scoping the Problem . 767
1.5 The Research Agenda . 768
1.6 Chapter Structure . 769

Contents XXIX

2 Neural Computation . 769
2.1 Processing . 770
2.2 Communication . 771
2.3 Storage . 771

3 The Neuron as a Component . 772
3.1 Communicating with Spikes . 772
3.2 Point-Neuron Models . 773
3.3 The Spike Response Model . 774
3.4 The Izhikevich Model . 774
3.5 Axons: The Hodgkin-Huxley Model . 776
3.6 Dendritic Trees and Compartmental Models 776
3.7 The Synapse . 777

4 Engineering Neural Systems . 777
4.1 Neural Models . 778
4.2 Population Encoding . 778
4.3 Spatio-Temporal Spike Neurons . 780
4.4 Defining ‘Connectivity’ . 780
4.5 Implementing Connectivity . 781
4.6 Learning, Adapting, and Tuning . 781
4.7 Example Neural Systems . 782
4.8 Neuromorphic Systems . 782

5 Large-Scale Projects . 783
5.1 Blue Brain . 783
5.2 SPINN . 784
5.3 SpiNNaker . 785
5.4 Virtual Communication . 786
5.5 Diverse Approaches . 789

6 Future Prospects . 789
References . 790

Resources . 795
1 Key Books . 795
2 Key Reference Source . 795
3 Research Groups . 796
4 Key International Workshop . 796
5 (Open Source) Software . 796

Artificial Brains: An Evolved Neural Net Module
Approach
Hugo de Garis . 797
1 Introduction . 797
2 Related Work . 799

2.1 Some Recent Artificial Brain Projects . 800
2.2 Some Other Recent Artificial Brain Projects 803

3 The Evolution of Neural Network Modules . 804

XXX Contents

3.1 The Evolutionary Tasks . 805
3.2 Our Evolutionary Approach . 805
3.3 The Standard Genetic Algorithm . 806

4 The Celoxica Board . 806
5 Experimental Results . 808

5.1 IMSI (Inter Module Signaling Interface) 809
5.2 How Many Modules? . 811

6 The Robot and Brain-Robot Interface . 812
7 Artificial Brain Architectures . 814

7.1 A Simple Artificial Brain Architecture 815
7.2 Incrementing the Design. 823
7.3 Why Not Just Program Everything? . 826
7.4 Evolving Individual Modules . 827

8 The Need for Generic Evolution . 830
8.1 Limitations of Our Approach . 832
8.2 Evolvability – A Key Issue . 832
8.3 Book-Keeping of Modules and Circuits 833

9 Future Work . 834
9.1 The ‘China Brain’ Project . 836

10 Conclusion . 837
10.1 Final Word . 839

References . 839

Resources . 841
1 Key Books . 841

1.1 Artificial Brain Architectures . 841
1.2 Brain Theory . 842
1.3 Cognitive Modeling . 842
1.4 Evolvable Hardware (EHW) . 843
1.5 Gerald Edelman . 843
1.6 Ethology . 844
1.7 Genetic Algorithms (GA) . 844

2 Key Journals . 845
3 Artificial Brain Research Groups . 845

3.1 Markram’s ‘Blue Brain’ Project . 845
3.2 Adaptive Development’s ‘CCortex’ . 845
3.3 Edelman’s ‘Darwin IV’ Robot Brain . 845

4 Key International Conferences/Workshops . 846
4.1 Congress on Evolutionary Computation – CEC (IEEE) 846
4.2 GECCO – Genetic and Evolutionary Computation

Conference . 846
4.3 ICES – International Conference on Evolvable Systems 847
4.4 NASA/DoD Conferences on Evolvable Hardware 847

Contents XXXI

Part IX Evolutionary Approaches

Evolving Artificial Neural Network Ensembles
Md. Monirul Islam and Xin Yao . 851
1 Introduction . 851
2 Evolutionary Ensembles . 852

2.1 An Evolutionary Design System for ANNs – EPNet 853
2.2 Combination Methods . 855
2.3 Experimental Studies . 856

3 Automatic Modularization . 859
4 Negative Correlation Learning . 860

4.1 Evolutionary Ensembles with Negative
Correlation Learning . 862

4.2 Experimental Studies . 864
5 Constructive Approaches to Ensemble Learning 865

5.1 Experimental Studies . 868
6 Multi-Objective Approaches to Ensemble Learning 870

6.1 Experimental Studies . 871
7 Conclusions . 872
References . 872

Resources . 877
1 Key Books . 877
2 Key Survey/Review Articles . 877
3 Organizations, Societies, Special Interest Groups 878
4 Research Groups . 878
5 Discussion Groups, Forums . 878
6 Key International Conferences and Workshops 878
7 (Open Source) Software . 879
8 Data Bases . 879

An Order Based Memetic Evolutionary Algorithm
for Set Partitioning Problems
Christine L. Mumford . 881
1 Introduction . 881
2 A Brief History of Genetic Algorithms . 883
3 A Generic Genetic Algorithm . 883
4 Order Based GAs . 886
5 A Simple Steady-State GA . 891
6 Set Partitioning Problems . 892

6.1 The Graph Coloring Problem . 893
6.2 The Bin Packing Problem . 894
6.3 The Examination Timetabling Problem 894
6.4 Other Set Partitioning Problems . 895

XXXII Contents

7 Motivation for the Present Study . 896
8 Culberson and Luo’s Grouping and Reordering Heuristics 898
9 Modifications to a Standard Order Based GA

for Set Partitioning . 902
9.1 Performance Measures/Fitness Values . 904
9.2 Comparing Order Based Crossovers . 906
9.3 The Genetic Simulated Annealing (GSA) Algorithm 906

10 Results on Literature Benchmarks . 911
10.1 Graph Coloring . 912
10.2 Bin Packing . 914
10.3 Timetabling . 917

11 Summary . 919
References . 920

Resources . 923
1 Key Books . 923
2 Key International Conferences . 923
3 Interest Groups/Web sites . 924
4 (Open Source) Software . 924
5 Data Sets used in the Chapter . 925

Genetic Programming: An Introduction and Tutorial,
with a Survey of Techniques and Applications
William B. Langdon, Riccardo Poli, Nicholas F. McPhee,
and John R. Koza . 927
1 Introduction . 927

1.1 GP in a Nutshell . 928
1.2 Overview of the Chapter . 929

2 Representation, Initialization and Operators in Tree-Based GP . . . 929
2.1 Representation . 929
2.2 Initializing the Population . 931
2.3 Selection . 934
2.4 Recombination and Mutation . 934

3 Getting Ready to Run Genetic Programming 936
3.1 Step 1: Terminal Set . 937
3.2 Step 2: Function Set . 937
3.3 Step 3: Fitness Function . 940
3.4 Steps 4 and 5: Parameters and Termination 942

4 Example Genetic Programming Run . 943
4.1 Preparatory Steps . 943
4.2 Step-by-Step Sample Run . 944

5 Advanced Tree-Based GP Techniques . 948
5.1 Automatically Defined Functions . 948
5.2 Program Architecture and Architecture-Altering

Operations . 949

Contents XXXIII

5.3 Genetic Programming Problem Solver . 949
5.4 Constraining Syntactic Structures . 950
5.5 Developmental Genetic Programming . 954
5.6 Strongly Typed Autoconstructive GP – PushGP 954

6 Linear and Graph-Based GP . 955
6.1 Linear Genetic Programming . 955
6.2 Graph-Based Genetic Programming . 957

7 Applications . 958
7.1 Curve Fitting, Data Modeling, and Symbolic Regression 959
7.2 Human Competitive Results – The Humies 962
7.3 Image and Signal Processing . 965
7.4 Financial Trading, Time Series Prediction

and Economic Modeling . 966
7.5 Industrial Process Control . 967
7.6 Medicine, Biology and Bioinformatics . 968
7.7 Mixing GP with Other Techniques . 969
7.8 GP to Create Searchers and Solvers – Hyper-Heuristics 969
7.9 Artistic . 969
7.10 Entertainment and Computer Games . 970
7.11 Where can we Expect GP to Do Well? 970

8 Tricks of the Trade . 971
8.1 Getting Started . 971
8.2 Presenting Results . 972
8.3 Reducing Fitness Evaluations/Increasing

their Effectiveness . 973
8.4 Co-Evolution . 975
8.5 Reducing Cost of Fitness with Caches . 976
8.6 GP Running in Parallel . 977
8.7 GP Trouble-Shooting . 981

9 Genetic Programming Theory . 982
9.1 Mathematical Models . 983
9.2 Search Spaces . 984
9.3 Bloat . 986

10 Conclusions . 987
References . 989

Resources . 1025
1 Key Books . 1025
2 Videos . 1026
3 Key Journals . 1026
4 Key International Conferences/Workshops . 1026
5 Online Resources . 1027

XXXIV Contents

The Particle Swarm Algorithm
Tim Hendtlass . 1029
1 Introduction . 1029
2 The Basic Particle Swarm Optimization Algorithm 1030

2.1 Pseudo Code Algorithm for the Basic PSO 1034
3 Enhancements to the Basic Particle Swarm Algorithm 1034

3.1 Constriction Factors . 1034
3.2 Adding Controlled Diversification. 1035
3.3 Handling Problem Constraints . 1035

4 Particle Swarm Optimization of Multiple Optima 1036
4.1 Exploring Multiple Optima . 1037
4.2 Achieving Parallel Exploration

of Several Positions of Interest (niching) 1037
4.3 Achieving Serial Exploration

of Many Positions of Interest (WoSP) . 1038
5 Controlling the Computational Expense. 1041

5.1 Using a Dynamic Swarm Size . 1041
5.2 Fitness Estimation . 1041

6 Dynamic Optimization Problems . 1043
6.1 Ways to Achieve these Adaptations . 1044
6.2 Preventing Total Convergence . 1045
6.3 Refreshing the Best Positions . 1045
6.4 Forcing Explorer Particles . 1046
6.5 Adapting WoSP to Dynamic Problems 1046

7 Particle Swarm and Quantized Problem Spaces 1046
8 Some Sample Results . 1048

8.1 Problems used as Examples in this Chapter 1048
8.2 Experimental Details . 1050

9 Sample Results . 1050
9.1 Minimizing the Distance to the Origin in 100 Dimensions . . . 1051
9.2 Rastrigin’s Function in 100 Dimensions 1052
9.3 Schwefel’s Function in 30 Dimensions . 1054

10 Concluding Remarks . 1059
References . 1059

Resources . 1061
1 Key Books . 1061
2 Organisations, Societies, Special Interest Groups, Journals 1061
3 Key International Conferences/Workshops . 1061
4 (Open Source) Software . 1062

Contents XXXV

Part X DNA and Immunity-Based Computing

DNA Computing and its Application
Junzo Watada . 1065
1 Introduction . 1065
2 DNA Computing . 1065

2.1 Encoding Scheme . 1067
3 Comparison with Conventional Computing . 1069
4 Applications of DNA Computing . 1071
5 Approaches to Optimization and Scheduling . 1071
6 Elevator Management System . 1072

6.1 Restrictions on Elevator Movements . 1074
6.2 Elevator Scheduling . 1076

7 Bio-Soft Computing Based on DNA Length . 1077
8 Bio-Soft Computing with Fixed-Length DNA 1079

8.1 Empirical Study . 1081
9 Conclusion . 1084
References . 1085

Resources . 1087
1 Key Books . 1087

1.1 DNA Computing . 1087
1.2 Elevator Management . 1087

2 Key Survey/Review Articles . 1088
3 International Organization . 1088
4 Discussion Groups, Forums . 1088
5 Research Groups . 1088
6 Key International Conferences and Workshops 1089
7 Web Resource . 1089

The Next Generation of Immunity-Based Systems:
From Specific Recognition to Computational Intelligence
Yoshiteru Ishida . 1091
1 Introduction . 1091
2 Impact of Recognition . 1093

2.1 An Impact of Recognition is a Double-Edged Sword 1094
3 Immunity-Based Systems: Evolved Recognitions 1095

3.1 Definition of Immunity-Based Systems 1095
3.2 Networked Recognition . 1096
3.3 Adaptive Recognition . 1101

4 Antibody-Based Computing: Arrayed Recognition 1105
4.1 Definition of Antibody-Based Computing 1106
4.2 Solving a Combinatorial Problem: The Stable

Marriage Problem . 1106

XXXVI Contents

4.3 Mapping the Stable Marriage Problem
to Antibody-Based Computing . 1107

5 Toward a General Problem Solver:
Immunity-Based Problem Solver . 1110

6 Conclusion . 1113
References . 1114

Resources . 1117
1 Key Books . 1117
2 Key Survey/Review Articles . 1118
3 Organisations, Societies, Special Interest Groups 1119
4 Research Groups . 1119
5 Key International Conferences/Workshops . 1119

Index . 1121

Part I

Overview, Background

Computational Intelligence: An Introduction

John Fulcher

Intelligent Systems Research Centre, University of Wollongong NSW 2522,
Australia, john@uow.edu.au

1 Introduction, Overview, Definitions

The Artificial Intelligence field continues to be plagued by what can only be
described as ‘bold promises for the future syndrome’, often perpetrated by
researchers who should know better.1 While impartial assessment can point
to concrete contributions over the past 50 years (such as automated theorem
proving, games strategies, the LISP and Prolog high-level computer languages,
Automatic Speech Recognition, Natural Language Processing, mobile robot
path planning, unmanned vehicles, humanoid robots, data mining, and more),
the more cynical argue that AI has witnessed more than its fair share of
‘unmitigated disasters’ during this time – see, for example [3,58,107,125,186].
The general public becomes rapidly jaded with such ‘bold predictions’ that
fail to live up to their original hype, and which ultimately render the zealots’
promises as counter-productive.

To lay claim to having developed an ‘intelligent’ system is to open a hor-
net’s nest of debate – a debate which has raged since the early days of AI.
This is not surprising, since one can very quickly stray into the realms of
philosophy, metaphysics and/or religion (and as the adage goes, never discuss
politics or religion with your fellows!). We do not propose to add to the debate
here, but to simply make our contribution by way of practical methods which
have proven effective over time in dealing with real-world applications. It is
a moot point then as to whether the ‘intelligence’ in these systems can be
attributed to some ‘Ghost in the Machine’, as it were, or alternately to their
creator(s) – in other words, to the ‘cleverness’ of the system developer(s).
For readers interested in such philosophical issues, they are referred to the
extensive literature in this area (for starters, see [33, 44, 45, 67, 112,245]).

So what then is the focus of the present Handbook, and in particular the
Chapters which follow? In short, the techniques herein described originated
1 Fulcher J, Jain LC (2004) Applied Intelligent Systems, Springer: Preface (VII–X).

J. Fulcher: Computational Intelligence: An Introduction, Studies in Computational Intelligence

(SCI) 115, 3–78 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

4 J. Fulcher

in several different fields, including ‘Cybernetics’, ‘Machine Learning’ (ML),
‘Artificial Intelligence’ (AI) (together with its later offshoot ‘Connectionism’),
‘Data Mining’ (DM), ‘Knowledge Engineering’ (KE), ‘Intelligent Systems’,
‘Soft Computing’, and in more recent times, ‘Computational Intelligence’ (CI).
Actually these approaches share more in common than one might at first
suspect, going on their names alone.

Historically, AI has progressed over time by way of ‘quantum leaps’,
beginning with traditional (philosophy/psychology-based) AI, through Artifi-
cial Neural Networks (inspired by neurobiology), Evolutionary Computation
(inspired by genetics and biology), complex systems (inspired by economics
and biology), to present-day CI. What the next leap (‘wave’) will be is open
to speculation, but in this author’s view it stands a very good chance of being
‘Nature-inspired’ (see Sect. 3). The common characteristic of each such ‘wave’
is the aspect of computation. Accordingly, any attempt to define ‘intelligence’
must necessarily bear this in mind. However Conrad makes a valid point in
this regard, that “no system can be at once highly structurally programmable,
evolutionary efficient, and computationally efficient.” [55]

One definition of CI emphasizes (a) the ability to learn, (b) to deal with
new situations, and (c) to reason [80]. Some early definitions of CI restricted
themselves to ‘intelligent agents’ [16,47,247]. Another early definition is more
typical of current-day attitudes: “Artifical Neural Networks (ANNs), Evolu-
tionary Computation (EC), and Fuzzy Systems” (although this same author
has since widened their definition to “the study of adaptive mechanisms to
enable or facilitate intelligent behaviors in complex and changing environ-
ments” [82]). Pedrycz emphasizes the synergy between granular computing (in
particular fuzzy sets), ANNs, and evolutionary optimization [240]. Further, he
maintains the order in which the techniques are applied is important – more
specifically, using a top-down approach, we commence with granular comput-
ing (say fuzzy sets), then refine the system using neural networks on numeric
data.

According to Fogel,

“These technologies of neural, fuzzy and evolutionary systems were
brought together under the rubric of CI, a relatively new term offered
to generally describe methods of computation that can be used to
adapt solutions to new problems and do not rely on explicit human
knowledge.” [94]

Likewise Karplus states:

“CI substitutes intensive computation for insight into how the system
works. Neural Networks, Fuzzy Systems and Evolutionary Computa-
tion were all shunned by classical system and control theorists. CI
umbrellas and unifies these and other revolutionary methods.” [151]

Computational Intelligence: An Introduction 5

Bezdek is more specific, characterizing CI thus:

“A system is computationally intelligent when it: deals with only
numerical (low-level) data, has pattern recognition components, does
not use knowledge in the AI sense; and additionally when it (begins
to) exhibit (1) computational adaptivity; (2) computational fault tol-
erance; (3) speed approaching human-like turnaround, and (4) error
rates that approximate human performance.” [16, 17]

According to the IEEE Computational Intelligence Society,2 “CI is a field
that greatly evolved in the last quarter century; from initial steps in the
direction of understanding the mechanisms of human reasoning towards the
study of all aspects of natural intelligence and behavior. The ultimate goal
of researchers in this field was mimicking Nature with artificial technologies
to replicate the basic mechanisms of Nature in engineering systems for the
benefit of humanity. . .CI technologies are living approaches to tackle real-
world problems. . .created as answers to the needs of applications.”

Duch characterizes CI as “that branch of Computer Science studying prob-
lems for which there are no effective computational algorithms”. He further
suggests that AI should be regarded as a sub-set of CI, which will no doubt
upset traditionalists! More specifically, “AI is that part of CI that focuses on
problems that require higher cognition and are at present easier to solve using
symbolic knowledge representation.” [78]

Nowadays, most authors would agree on a core definition of fuzzy, neu-
ral and evolutionary (data-driven) methodologies, but some extend this to
cover granular computing [190,240,326,330], probabilistic reasoning, Bayesian
(belief) networks [147, 161, 216], fuzzy Petri nets, constrained reasoning,
case-based reasoning [231, 304], Support Vector Machines [1, 270, 297], rough
sets [140, 189, 237], learning/adaptive classifiers, fractals [85, 200], wavelets
[198,242], and/or chaos theory [228,282], not to mention the intelligent agents
[229] alluded to earlier. [296] make some further observations as to how the CI
field has evolved during the previous decade, with the emergence of differential
evolution, Particle Swarm Optimization (Sect. 8.4), multi-objective evolution-
ary optimization (Sect. 8) – such as NSGA-II (fast elitist Non-dominated
Sorting Genetic Algorithm) – and Support Vector Machines (Sect. 7.3).

Henceforth in this Handbook, we use the term CI in its most generic
sense, and take it to mean the use of Artificial Neural Network, evolutionary
and/or Fuzzy techniques, and more especially hybrids or synergistic combina-
tions/ensembles of these complementary approaches (as well as occasionally
incorporating rule-based and/or statistical ones). Moreover, the resulting tech-
nique(s) will usually be iterative in nature, with successive solutions delivering

2 CIS President’s Forum, IEEE World Congress CI, 19 July 2006, Vancouver,
Canada.

6 J. Fulcher

improved performance/accuracy, to a user-specified degree. As such, CI is
potentially capable of solving problems which remain intractable to solution
by any individual technique – truly, the whole is greater than the sum of its
parts.

Application of CI methods will typically result in so-called ‘black box’
solutions to problems of interest, which while they may be effective, are not
always welcomed by users – simply because it is difficult to provide justi-
fication/rationalization/explanation of any decisions thus made (in contrast
say to Decision Trees (DTs), from which it is a relatively straightforward
matter to extract explanatory rules). A strong selling point with CI systems
is nevertheless their superior ability to model complex real-world systems
which have proved intractable using classical (conventional mathematical/
logic) methods – hence their popularity with researchers and practitioners
alike.

As a first approximation, we can discriminate between CI methods which
have an algorithmic or logical rule basis (model-driven) and those best
described as being inherently non-algorithmic. With the latter, there is the
added implication of a data-driven, iterative process, as well as some form
of inspiration from biology, or more generally, Nature, although Teuscher
cautions against biological inspiration for its own sake – rather he advo-
cates inspiration in the broadest sense, including unconventional and novel
paradigms, that need not be biological at all. These issues are elaborated
upon in Sect. 3.

We could explore this a little further in the formulation of an alternative
definition of CI. A classic text from the era of procedural programming (and
the Pascal HLL) was Wirth’s Algorithms + Data Structures = Programs.3

Two decades later, Michaelwicz attempted to similarly define ‘evolutionary
programming’ thus4:

“Genetic Algorithms + Data Structures = Evolution Programs.”

A decade further on, we could define CI as follows:

Nature-inspired method(s) + real-world (training) data = Computa-
tional Intelligence.

Let’s examine each of these three components in our defining ‘equation’.
Firstly, ‘Nature-inspired method’ does not necessarily imply an algorithmic
basis; often heuristics suffice. On the other hand, the backpropagation (BP)

3 Wirth N (1976) Algorithms + Data Structures = Programs. Prentice Hall,
Englewood Cliffs, NJ.

4 Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, Berlin.

Computational Intelligence: An Introduction 7

algorithm and Genetic algorithms, as their names suggest, have an algorith-
mic foundation. The various sources of inspiration from Nature are further
discussed in Sect. 3.1. Secondly, data structure is not nearly as important as a
sufficient amount of training (validation, and testing) data, notwithstanding
bit-string chromosome representation in EAs, and set membership in Fuzzy
Logic. Thirdly, since we of necessity use real-world data, then CI ipso facto
facilitates real-world problem solving (see the earlier IEEE CI Society defi-
nition of Computational Intelligence). We shall explore this idea further in
Sect. 3.1.

2 Historical Background

Researchers with an historical bent often regard particular scientific gather-
ings as constituting the origin of various disciplines: in the case of ‘Software
Engineering’ this took the form of NATO-sponsored workshops during the late
1960s; with ‘Artificial Intelligence’ – a term coined by John McCarthy, then of
MIT, to mean the science/engineering of constructing intelligent machines –
this can be traced backed to a Workshop at Dartmouth College in the US
in 1956.5

2.1 Artificial Intelligence (AI)

Much debate has taken place over the ensuing decades attempting to define
‘Artificial Intelligence’. Before we consider ‘AI’ specifically, we need to come to
some understanding of the more general concept of ‘intelligence’. The following
are typical dictionary definitions:

• ‘understanding’
• ‘the collection of information’
• ‘capacity for understanding and other forms of adaptive behavior’
• ‘aptitude for grasping facts, truths or meaning’
• ‘the ability to plan, reason, solve problems, think abstractly, comprehend

ideas and language, and learn’

In 1996, the IEEE Neural Networks Council defined AI as:

“the study of how to make computers do things at which, at the
moment, people are better.”

Others go further, citing both complexity and randomness (chaos) as being
inherent attributes of AI [80]. Stair and Reynolds expand upon this basic
definition by including the processing and manipulation of symbols, the use
of heuristics (in other words, benefiting from experience), as well as notions

5 Although Alan Turing had published an earlier paper on ‘Computing machinery
and intelligence’ (Mind, 1950, 59:433–460).

8 J. Fulcher

of ‘creativity’ and ‘imagination’ (and perhaps also ‘inspiration’?) [283]. Some
authors take this much further, suggesting that one day artificial intelligence
will surpass that of human intelligence [171,202]! At the other extreme there
are those who believe human intelligence is invariably superior to that of
machines (http://www.mturk.com).6

The original focus of AI centered not only around making better (more
‘intelligent’?) computers, but also on computational psychology and/or philos-
ophy. The goal with the former was to glean an understanding of (intelligent?)
human behavior by creating programs which behaved in the same manner as
people (such that they satisfied the Turing test) [244]. The goal with the lat-
ter was to formulate a ‘computational understanding’ of such behavior (it is
debatable however as to whether intelligence can be consider a computational
entity) [261].

Much early effort in AI was directed towards automated theorem prov-
ing – for example, Logic Theorist and the later General Problem Solver,
SOAR, SAINT (Symbolic Logic INTerpreter), and the Geometry Theorem
Prover [261]; more recent examples are SAM, AURA and OTTER [109].
Another popular area has traditionally been game theory – such as checkers
(draughts) [262] and chess (http://www.research.ibm.com/deepblue). Other
early work centered around Microworlds [234], and high-level languages, in
particular the LISt Processing language (LISP) and the LOGic PROgramming
language Prolog (a major thrust of the Japanese 5th Generation Project),
although C/C++ remains the preferred choice for many researchers (for
instance, the C-Language Inference Production System or CLIPS).

Real-world applications of AI have subsequently tended to concentrate in
the areas of robotics, computer vision, and most especially Expert Systems
(Sect. 5). The approach taken with the latter can be characterized as the use
of knowledge and reasoning in order to solve complex problems.

Knowledge Representation and Ontology

The challenge for a Knowledge Engineer (KE) is to first extract knowledge
from a (human) domain expert, then encode it into an appropriate format –
namely one that facilitates not only efficient storage within a Knowledge Base
(KB), but also efficient searching of this KB when the system is presented with
new user queries. Finally, the KE needs to consider how best to present/dis-
play system responses to such queries (along with corresponding confidence
levels) to the user – in other words, in an easily understandable and aesthet-
ically pleasing manner. Not only that, but users typically also expect some
6 For a good summary of open questions pertaining to AI, the reader is referred to

http://www.openquestions.com/oq-te019.htm

Computational Intelligence: An Introduction 9

form of rationale/justification for the decision(s) arrived at by the system –
an especially difficult proposition for an Artificial Neural Network (Sect. 7),
but a straightforward one for a Decision Tree (Sect. 2.3).

Several different techniques exist to assist a KE with the gathering of
knowledge pertinent to a particular domain, including structured or unstruc-
tured interviews, focus groups, direct observation, case studies, and so forth
[27]. Likewise, various alternatives are available for representing knowledge
thereby obtained. These include if..then production rules (or alternatively,
fuzzy rules if the knowledge is inexact, imprecise, or indeed at times, con-
tradictory), formal logic (for example, First-Order Logic), frames (which bear
some resemblance to a ‘record’ data structure), semantic networks (a graphical
technique), Artificial Neural Networks, and so on [281].

These days a KE will also most likely be concerned with constructing an
ontology of the relevant application domain – ‘ontology’ being that branch of
metaphysics concerned with the nature of being, fundamental principles, and
categorizations. In an AI context, ‘ontology’ is taken to mean the specifica-
tion of a system of concepts and the relationships between them, usually in
machine-readable form.

Logic and Reasoning

Formal logic, as its name suggests, concerns itself with ‘form’ (syntax) but
not necessarily meaning (semantics). Propositional logic is a formal system in
which propositions can be generated by combining atomic (‘true’ or ‘false’)
propositions using logical (for example, Boolean) operators and formal ‘proofs’
in order to establish ‘theorems’. First-Order Logic (FOL) or Predicate Calcu-
lus is an extension of propositional logic which utilizes not just statements and
connecting operators, but also variables, functions and predicates, in order to
support quantification over individuals within a given domain (universe of
discourse). FOL is sufficiently expressive to be able to formalize most mathe-
matical concepts. Second-Order Logic extends FOL in order to support sets of
individuals. Higher-Order Logic is a further extension which allows additional
constructs (higher-order predicates which take more than a single predicate
as arguments) according to an underlying type theory formalism. HOLs allow
the quantification not only of objects, but also of relations between them,
functions, and ontologies, however reasoning within a HOL is not straightfor-
ward (it is for this reason that AI/Machine Learning has traditionally used
FOL and/or the λ-calculus to represent knowledge in a manner suited to both
storage within and searching of a Knowledge Base (KB). λ-calculus is a formal
system developed to support function definition, application and recursion; it
in turn influenced the subsequent development of functional languages such
as LISP and ML. By contrast, FOL facilitates the use of PROLOG for the
processing of user queries.

10 J. Fulcher

Reasoning about knowledge is possible using logical inferences, and by
incorporating either forward- or backward-chaining. With the former, we start
with the known facts (data/information), and proceed towards the goal; hence
we characterize this approach as a ‘data-driven’ one. We proceed in the reverse
direction with the latter; hence this approach can be characterized as being
‘goal-directed’. In either case, searching of the state (solution) space could
proceed in one of several different ways. If we represent knowledge about a
particular domain as a tree structure, then we could search from the root
node down to the leaf nodes in either a breadth-first or depth-first man-
ner, by using exhaustive search, or by employing some heuristic(s) (in other
words, to exploit a priori knowledge about the domain in question). Whatever
approach we take, we will invariably reach ‘dead ends’ and need to backtrack
up the branches of the ‘knowledge tree’ in order to explore a new search
path.

We should point out however that an over-reliance on sequential causality
probably contributes to the ‘brittleness’ of logic-based AI. For example, in
Immunity-Based Computing (Sect. 9.1), we also need to take into account
circular causality.

Belief (Bayesian) Networks [147, 161, 216] are directed acyclic (or cyclic)
graphs which can be used to represent entities and the (causal) relationships
between them, as well as their conditional probabilities. They allow efficient
reasoning about uncertainty. An alternate ‘world view’ (ontology) can be
described in terms of intelligent (cognitive) beliefs-desires-intentions or BDI
agents.

Classifiers

We can state the basic classification problem as being a transformation:

Γ n =⇒ Γ m (1)

where n-dimensional input data is transformed into m discrete classes (cate-
gories), with m � n typically.

Usually we will train a classifier on the available data, although unsuper-
vised classifiers are also possible (however the clusters they form may not
always be sensible ones!). Once a classifier has been trained, it will be capa-
ble of generalizing what it has learnt and be able to correctly classify input
patterns it has not previously met, but which are nevertheless ‘similar to’
(in a geometric or vector sense) patterns it knows about, providing of course
that the new pattern is drawn from the same overall population. Several dif-
ferent approaches can be followed in creating supervised classifiers, including
statistical, Decision Tree, SVM, ANN, GA, to mention but a few.

Now a classifier will only be able to discriminate between a finite number –
p – of different (orthogonal?) pattern classes before they begin interfering

Computational Intelligence: An Introduction 11

with each other (leading to pattern crosstalk). In the case of Artificial Neural
Networks (Sect. 7), the patterns are stored in the minima (‘valleys’) of the
solution space (energy landscape), assuming that the network capacity has
not been exceeded. Different types of classifier are capable of forming differ-
ent shaped discriminants (separators, boundaries) between pattern classes –
more specifically, linear in the case of statistical regression, rectangular in
the case of Decision Trees (Sect. 2.3), or arbitrary in the case of ANNs (pro-
viding a sufficient number of hidden layers and/or nodes are used, in the
case of MLP/BP). Figure 1 shows the iris data set, which comprises sepal
and petal length and width measurements taken from three different flower
species: setosa, versicolor, and virginica. We observe that separation of the
lower class (setosa) can be performed by inspection (and a straight line sepa-
rator/discriminant drawn accordingly, as in Fig. 2). The other two classes are
more intermixed, and hence more difficult to separate (certainly using a linear
discriminant).

Some classifiers are only capable of forming linear discriminants (straight
line decision boundaries in the case of 2D data, such as eXclusive-OR –
see Fig. 2 – top); others are capable of handling non-linear input data. For
instance, both the ADALINE and Rosenblatt’s original 2-layer Perceptron
were only capable of acting as linear discriminators; the later Multi-Layer
Perceptron was not so restricted. In general, for n-dimensional data, the dis-
criminant (decision boundary) is an (n− 1)-dimensional hyperplane (Fig. 2 –
bottom).

P (H | X) =
P (X | H)P (H)

P (X)
(2)

Näıve Bayesian classifiers [284] perform as simple linear statistical classi-
fiers, and are trained using tuples of data attributes and the classes to which
they belong. The basis for constructing such a classifier is the Bayes formula
(Eqn. (2)), which enables the a posteriori conditional probability – of an input
pattern H belonging to a particular class X – to be determined based on a
priori (known) probabilities, or estimates thereof. The ‘näıve’ here refers to
the inherent assumption of class conditional independence (in order to reduce
computational cost); likewise, if prior class probabilities are not known, they
are assumed to be equally likely. Notwithstanding these simplifications, the
Näıve Bayesian classifier is often used as a benchmark with which to compare
other approaches.

Mathematical Function Approximation

The fundamental curve fitting (modeling) problem is to fit a mathematical
function which passes through as many of the given data points as pos-
sible, with minimal overall error. In fitting such a function to the data,
one must be mindful of not over-fitting – more specifically, while a higher-
order function may pass through more data points, a lower-order function

12 J. Fulcher

Sepal

1.5

2

2.5

3

3.5

4

4.5

4 4.5 5 5.5 6 6.5 7 7.5 8

Length

W
id

th setosa
versicolor
virginica

Petal

0

0.5

1

1.5

2

2.5

3

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

Length

W
id

th setosa
versicolor
virginica

Fig. 1. UCI-ML iris data set

(such as a quadratic or set of cubic splines) may result in a better graphical
representation of the data in question. For instance, in the case of foreign
exchange rate or stock market time series data, it may not be so much the
intermediate values that may be of interest, but more the daily, weekly or
monthly average values.

Computational Intelligence: An Introduction 13

Fig. 2. 1D (linear) and 2D (planar) discriminants/decision boundaries (XOR)

Standard statistical approaches to mathematical function approximation
and/or time series modeling include (simple) regression, Auto-Regressive
Moving Average (ARMA) – and variants thereof – and in more recent
times, Support Vector Machines [1, 270, 297] and rough sets [140, 189]. ANN
approaches include Multi-Layer Perceptron/BackPropagation, Radial Basis
Function, Higher-Order Neural Networks [328], recurrent networks and Time
Delay Neural Networks, with the latter two incorporating time delay (mem-
ory) elements, in order to retain knowledge of previous network weights in
order to better predict future ones. Higher-order ANNs (HONNs) incorporate
not just the familiar sigmoid and summation neurons, but also ones with mul-
tiplicative activation functions, to better model highly complex, non-linear,
discontinuous real-world data [328].

Modeling of a given data set is often only half the story however; often we
are more interested in predicting future values, based on having first modelled

14 J. Fulcher

them as accurately as possible – not always easy if the system in question is
chaotic rather than deterministic (or even stochastic), let alone in the face of
discontinuities (such as a Stock Market ‘black tuesday’, say).

Figure 3 shows a long-term (top) and medium-term (bottom) view of the
exchange rate between the Australian and US dollars. The former may be
of use to Historians in discussing the effects of de-regulating the Australian
dollar in December 1993, for instance. The latter may be of more interest
to regulators in setting official interest rates, say. Yet again, shorter-term
views (monthly, weekly, daily. . .) may be more useful for financial market
speculators. In short, on some occasions the short-term variations in such
time series will be important; at other times average values moreso.

2.2 Machine Learning (ML)

Any discussion of Machine Learning (ML) necessarily raises the question as
to what constitutes ‘learning’ in general (in a similar way that ‘AI’ necessarily
led to a consideration of the concept of ‘intelligence’). Again, such questions
border on the philosophical. Typical dictionary definitions include:

• ‘to gain knowledge of or skill in, by study or experience’
• ‘to commit to memory’
• ‘to be told about, be informed of’
• ‘to become aware of’
• ‘to receive instruction, be taught’
• ‘the modification of behavior through interaction with the environment’,

and so on.

We can define information as being data (facts) plus meaning; likewise
knowledge we can regard as being information coupled with understanding.
Similarly, we could define wisdom as knowledge plus experience together with
insight (and so on, for concepts such as consciousness, self-awareness, and the
like). Accordingly, we contrast people versus machines as follows:

• human = body + mind + soul (consciousness)
• machine = body + mind (or just brain?)

If the latter possesses just a brain (the physical organ) and not a mind,7

then it makes sense to talk about logic, reason, rules, ‘knowledge’ (providing
it can be expressed in the form of if..then rules), even ‘learning’, but what
about ‘intelligence’? As to the ‘Ghost in the Machine’ (or soul), again we shall
leave this as an exercise for the reader. On the basis of the above definitions,
Machine Learning would appear to be a valid concept; by contrast, the concept
of ‘AI’ is much more problematic (see earlier). Indeed Naus is quite skeptical:

7 We chose not to enter into a debate here as to whether these terms are
synonymous – in other words, whether the mind is nothing more than a biological
(physical) mechanism; readers so inclined are referred to [33,44,45,63,245].

Computational Intelligence: An Introduction 15

A$-US$ Exchange Rate

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

Sep
-59

Sep
-61

Sep
-63

Sep
-65

Sep
-67

Sep
-69

Sep
-71

Sep
-73

Sep
-75

Sep
-77

Sep
-79

Sep
-81

Sep
-83

Sep
-85

Sep
-87

Sep
-89

Sep
-91

Sep
-93

Sep
-95

Sep
-97

Sep
-99

Sep
-01

Sep
-03

Sep
-05

Month & Year

Ex
ch

an
ge

 ra
te

A$-US$ Exchange Rate

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

Mar-
00

Ju
n-0

0

Sep
-00

Dec
-00

Mar-
01

Ju
n-0

1

Sep
-01

Dec
-01

Mar-
02

Ju
n-0

2

Sep
-02

Dec
-02

Mar-
03

Ju
n-0

3

Sep
-03

Dec
-03

Mar-
04

Ju
n-0

4

Sep
-04

Dec
-04

Mar-
05

Ju
n-0

5

Sep
-05

Dec
-05

Mar-
06

Ju
n-0

6

Sep
-06

Dec
-06

Mar-
07

Ju
n-0

7

Month & Year

Ex
ch

an
ge

 ra
te

Fig. 3. Financial time series (Australian Bureau of Statistics)

16 J. Fulcher

“Present-day authors argue about mental life from totally defect, con-
fused cognitive notions, in terms such as ‘consciousness’, ‘knowledge’,
‘language’, ‘intelligence’, ‘concept’, that denote nothing clearly, and
moreover that William James’s insight into human mental life as
presented in his Principles of Psychology8 is unknown.” [211]

Machine Learning takes an algorithmic approach to learning, adaptation
and optimization; by contrast, Computational Intelligence focuses on non-
algorithmic, data-driven approaches, as previously mentioned in Sect. 1. These
ML algorithms can range from supervised learning, through unsupervised
learning, reinforcement learning, and more. ML incorporates both deductive
and inductive techniques. With the former, we reason from premises (assump-
tions) to conclusions (axioms or certainties). In the latter, we attempt to
extract rules and/or patterns from the available data (typically using statisti-
cal or Data Mining [271] techniques); the results are probabilities (likelihoods)
rather than certainties. The classic example in this regard is the following:

• premise: all men are mortal
• premise: Socrates is a man
• conclusion: (therefore) Socrates is mortal.

2.3 Decision Trees

Decision Trees – DTs – are a classification technique which grew out of both
the statistical [24] and ML fields [250,251]. They are supervised learning meth-
ods, with the tree being constructed (‘grown’) according to the attributes that
characterize a particular data set. A test is performed on the most significant
attribute (determinant) of a data record at the root node, and a new branch
grown, depending on the result of this (Y/N) test. The next most important
attribute is then tested, and so on, until we terminate at a leaf node – which
corresponds to a specific class to which this particular training datum belongs.
One could liken the fundamental divide-and-conquer approach of DTs to that
of Principal Component Analysis (PCA), in the sense that the most significant
data attributes determine the uppermost ‘limbs’ of the tree.

Classification of new data corresponds to finding the leaf node (solution)
which most closely matches the input data (‘most closely matching’ here in
terms of either mean squared error, Euclidian distance, vector (dot) prod-
uct, or some other geometric/Cartesian measure). Searching of the solution
space (tree) can be undertaken in either a breadth-first or depth-first man-
ner (with or without backtracking when we find ourselves proceeding down a
‘dead end’), exhaustively (in other words, by visiting all branches in turn), or
by invoking some form of heuristic in the decision making (branching) process.

8 James W (1890) The Principles of Psychology. Henry Holt, USA (reprinted by
Dover, 1950).

Computational Intelligence: An Introduction 17

Pre-processing of the data prior to commencement of tree growth is critical
(in other words, so that noise does not negatively impact the growth process).
More specifically, tree ‘pruning’ is crucial in reducing training times, which
typically vary as O(2p), where p is the number of branches, to guard against
combinatorial explosion.

Once grown, a DT can be used to classify data it has not previously encoun-
tered (but which nevertheless is drawn from the same population as that
used to construct the tree). Put another way, they are able to generalize, but
perhaps not as well as ANNs (see Sect. 7).

3 Approaches to CI

The two fundamental approaches to AI can be characterized as left- versus
right-brained; the former refers to the traditional logical, rule-based, model-
driven algorithmic approach, while the latter (data-driven) connectionist
approach mimics the intuitive/creative/artistic side of our brains. Connec-
tionism, intelligent systems, soft computing, Computational Intelligence is
the primary focus of this Compendium.

Modeling complex systems using formal (higher-order) mathematical equa-
tions is not always feasible (or even possible) in many real-world situations,
hence the appeal of non-algorithmic approaches. In other words, if modeling
a certain complex system is proving intractable, why not instead try to learn
the system characteristics (for instance, the Input-Output describing/ trans-
fer/system function in the case of an industrial plant or process)? This will
only be feasible if we have a sufficient number and diversity of (labeled) input-
output training data (examples) at our disposal for learning purposes however.

3.1 The Intuitive Appeal of Nature

Traditional AI attempts to mimic human thought processes by means of mod-
els, logic, reasoning, heuristics, encapsulated knowledge, symbolic logic and
the like. CI (modern-day AI?) instead attempts to create intelligent machines
and/or processes by copying biological behavior – ‘mimicking Nature for
problem solving’, as so succinctly put by the IEEE Computational Intelli-
gence Society. Some of these natural structures/processes which have provided
inspiration in the past have been [277]:

• evolution; natural selection (phylogeny) =⇒ evolutionary approaches
• multi-cellular organisms (embryology; ontogeny) =⇒ cellular automata

[192,276,279,292,310]
• biological brains; cerebral cortex; the nervous, immune and endocrine

systems (epigenesis) =⇒ ANNs; immunity-based systems [61, 201]
• social organisms; insect swarms, bird flocks, shoals of fish =⇒ swarms;

artificial life [185]

18 J. Fulcher

This list is not exhaustive, and no doubt more natural phenomena will inspire
researchers in the years to come.

There is a qualitative difference between biological and artificial systems.
The former can be characterized as being probabilistic, inexact/imprecise,
capable of performing 1-to-many mappings between input and output, and
memory not being exact but even deliberately ‘forgotten’. By contrast, the lat-
ter are typically characterized as being deterministic, exact/precise, restricted
to 1:1 I/O mappings, and with ‘perfect’ memory/recall (in other words, no
forgetting).

There are numerous structures and processes in Nature which can serve as
inspiration for computational methods which may be capable of superior per-
formance compared with conventional statistical (and/or logic-based and/or
algorithmic) techniques. We hasten to add that such natural structures (‘hard-
ware’) and processes (‘software’) are not in the main fully understood, even by
experts in their respective disciplines. Nevertheless, such structures/processes
can serve as the inspiration for alternative computing paradigms, in a similar
way that birds served as the inspiration for the development of aeroplanes,
but with lift being achieved in the latter via a different mechanism than the
flapping of wings (namely, by differential air pressure either side of fixed/rigid
aeroplane wings).

As a sideline to the aforementioned, we have also managed to develop
methods which better reflect human thought processes, ones capable of han-
dling ‘grey areas’, and not just (‘black-and-white’) Boolean logic constructs –
one such example of course is Fuzzy Logic (see Sect. 6 of this Chapter, as well
as Part-VII of the Compendium proper).

Traditional computation has always been hampered by the so-called
‘semantic gap’, meaning the gap between the high-level language (HLL) con-
structs of human users which map natural language (linguistics) onto the
low(machine)-level of the underlying hardware on which computer programs
execute. Compilers – specialist software/programs – attempt to bridge this
gap. Traditional AI, being underpinned by formalism and logic, while being
able to capture syntax (form) has not always been successful in capturing
semantics (meaning). This, by the way, has been a common failing with Soft-
ware Engineering (SE) – hence the emphasis there on requirements elicitation
(problem definition and/or specification). As we shall see in Sect. 5, this has
also hampered many efforts in Expert Systems, inasmuch as it is not always
easy to capture, let alone adequately represent, a domain expert’s knowledge.
Fuzzy logic can assist to a degree in this process, due to its ability to translate
between linguistic terms and computational terms (see Sect. 6).

Indeed, this could be one reason why Fuzzy Logic, in particular, has found
widespread use in real-world applications – in other words, serving as the
interface between human language constructs and practical problem-oriented
languages.

Computational Intelligence: An Introduction 19

Now CI has the potential to bridge this semantic bottleneck (gap) –
which, by the way, has crippled many traditional computational and/or AI
efforts – and interact directly with the application domain (due to its inher-
ent application-oriented, data-driven, bottom-up nature). In bypassing this
(substantial) problem, CI can learn a domain (discipline) ontology indirectly.

Another potential advantage of CI over both traditional AI and/or com-
putation more generally is the possibility of producing a range of solutions
to any given problem. The latter approaches have invariably focused on max-
imum performance at all costs (in other words, irregardless of the available
resources), and often on virtual problems – to use a driving analogy, with the
driver’s foot ‘planted firmly on the accelerator pedal’. CI offers the possibil-
ity of trading off performance against resources, and moreover with regard to
real-world problems, as indicated in Fig. 4.

For instance, relaxing the termination criteria for a ANN/EA (number of
epochs/generations) in order to realize a sub-optimal, yet adequate solution
to the real-world problem of interest. Similarly, ANN convergence to a local,
rather than global, minimum in the energy (solution) landscape can oftentimes
nevertheless lead to an acceptable solution in practice (Sect. 7.2).

Lastly, CI has much to contribute as simply a pre-processing method,
rather than a complete solution per se to real-world problems, inasmuch as
system parameters/attributes can be learnt rather than formally modelled
(again, due to its inherent data-driven, bottom-up nature). Indeed, this is
often the approach taken with hybrid systems (see Sect. 12). The data-driven
nature of CI (in contrast to the symbolic-oriented nature of traditional, first-
generation AI) has the potential to deal with data transformation directly –
in fact this can be viewed as a corollary to the semantic gap issue discussed
earlier in this section.

performance

1/resources

AI/computation

Computational
Intelligence

Fig. 4. Performance vs. resources for CI systems

20 J. Fulcher

Table 1. Brains versus computers

Brains Computers

analog digital

(massively) parallel sequential

slow neurons fast switches

sub-symbolic processing symbolic processing

(bottom-up) data-driven (top-down) model-driven

trained programmed

fuzzy logic precise (crisp, brittle) logic

fault tolerant precise/exact (fault intolerant)
noise tolerant intolerant of errors (noise)

3.2 Brains versus Computers

Despite the relatively slow response times of individual neurons (typically
milliseconds), the brain as a whole is capable of outperforming even the fastest
supercomputer (which boasts picosecond clock cycle time), and by several
orders of magnitude on some tasks. It is also well known that the brain is
organized into local regions/neighbourhoods which perform specific functions
(such as sight, hearing, motor movement, and so forth), and that a substantial
amount of pre-processing takes place in the cerebral cortex, prior to electrical
signals reaching other parts of the brain. Indeed, this has served as inspiration
for work on Hierarchical Temporal Memory [123] (see Sect. 13).

Now brains are able to perform some tasks much better than digital com-
puters, and vice versa. One such task is pattern recognition, where the pattern
of interest could be visual, sound, or derived from some other source. For
example, if we encounter a person some distance away walking towards us
down a street, we reach a certain point where we instantly recognize our
friend; we do not embark upon a process of elimination – searching the state
(solution) space, as it were – performing a depth search (with backtracking),
in order to reach a leaf node (pattern class) which best matches our friend!

By contrast, humans in the main fare poorly at highly mathematical
and/or logical tasks – ones which a digital computer can be programmed
to handle with ease. Table 1 compares and contrasts brains with computers.

4 CI Paradigms

In Sect. 1 we stated that our use of the term ‘Computational Intelligence’
implied iterative, adaptive techniques inspired by Nature, and which possess
the ability to learn, to deal with new situations, and to ‘reason’. In Sect. 3 we
characterized this approach to AI as a right-brained, intuitive/creative, con-
nectionist one. Thus, CI is viewed as incorporating ANN, evolutionary, and/or

Computational Intelligence: An Introduction 21

Fuzzy techniques, and most especially hybrids of these. Moreover, as previ-
ously observed, some researchers cast their nets a little wider in defining CI,
and encompass learning theory, probabilistic reasoning, constrained reasoning,
case-based reasoning, Support Vector Machines, rough sets, learning/adaptive
classifiers, Bayesian networks, intelligent agents, and other techniques.

4.1 Pre-Processing

Irrespective of the specific CI technique used, data pre-processing is an
essential consideration (pre-condition); the adage ‘garbage in, garbage out’
certainly applies in this regard. As a first step, data visualization is strongly
recommended, as we can often gain insights by so doing (the iris example of
Fig. 1 is a good example of this; another pertinent example is the use of scatter
plots to reveal data dependencies, since many techniques assume data indepen-
dence). Not only do we need to concern ourselves with error bounds checking,
noise filtering, dealing with missing data, normalizing, re-formatting, trans-
formation and so forth, but reduction of the available data to a ‘minimum yet
sufficient’ number is often vital. This is especially the case with ANN training
(or GA evolution), since computation times typically explode as a function
of data set size n, in other words O(en). Hence data ‘cleaning’ is essential
prior to training (evolution). Chapter 2 of this Compendium discusses data
reduction in considerably more detail.

CI methods not only require a considerable amount of pre-processing, but
also oftentimes quite a deal of parameter tuning – this will be emphasized
in our separate discussions of Fuzzy Systems (Sect. 6), ANNs (Sect. 7), and
Evolutionary Computation (Sect. 8).

5 Expert Systems

Georgeff and Azarmi rightly observe that:

“Although we are very far from achieving the ultimate goal of AI,
which is the building of the intelligent machine, AI research and
development has so far led to a myriad of spinoff technologies and tech-
niques that are used in a large variety of applications. For example,
Expert Systems. . .” [107]

Expert (or Knowledge-based) Systems (ES/KBS) came to the fore dur-
ing the 1980s, initially in the context of interpreting molecular structure
from mass spectrograms (Dendral), medical diagnosis (Mycin), DEC mini-
computer configurations (XCON) – around 30 times faster than humans, with
no errors – assisting students to solve complex symbolic math (MACSYMA),
oil and gas exploration (Schlumberger’s Dipmeter Adviser), gold prospect-
ing (http://www.SPSS.com/clementine/hugin.htm), machine vibration data

22 J. Fulcher

User interface

Query responsequery processing

Inference
engine

Tem porary
(working)
memory

Knowledge
base

Fig. 5. Expert system

analysis (General Motors’ Charley), and bank loan approvals, to mention but
a few [79, 139, 142, 194]. The Emycin shell in fact became the foundation for
many subsequent commercial Expert Systems.

An ES comprises an Input-Output module for handling both user queries
as well as responses to same (in a similar manner to that used in a DataBase
Management System), an inference engine (for the processing of user queries),
a knowledge base, and a working memory for the storage of temporary (inter-
mediate) results, as shown in Fig. 5. The same inference engine could in theory
be used with different knowledge bases in order to realize a range of Expert
Systems appropriate for different application domains (as with Emycin).

So how do we firstly encode and then store knowledge in the Knowledge
Base of an Expert System? Many alternatives exist, including:

• (typically hundreds or even thousands of) if...then production rules,
• propositional/first-order predicate calculus (or other suitable formal logic),
• (crisp/precise) Boolean logic,
• (imprecise, inexact) Fuzzy Rules,
• Association Rules,
• frames/schema (which map naturally onto the Object-Oriented Program-

ming paradigm) (such as OWL, FRAIL, KODIAK),
• graphically, in the form of a Semantic Network (such as SNePS, NETL),

Computational Intelligence: An Introduction 23

• Belief (Bayesian) Networks,
• an Ontology,
• Beliefs-Desires-Intentions (BDI) within a Multi-Agent System (MAS),
• in the internal weights of a trained Artificial Neural Network,
• in the fixed length strings of a Genetic/Evolutionary Algorithm,
• or by some other means.

The inference engine uses the information stored in the Knowledge Base to
develop a line of reasoning to solve the problem at hand, as already noted in
Sect. 2.1. This process is referred to as ‘forward chaining’. It is also possible to
proceed from the goal back to the necessary set of initial conditions, as with
logic proofs, in which case it is referred to as ‘backward chaining’. In prac-
tice a mixture of both forward- and backward chaining proves more effective;
likewise methods are usually incorporated for expanding the line of reasoning.
Furthermore, if reasoning under uncertainty is appropriate (and more often
than not this will be the case), then fuzzy logic is probably more appropriate
than (crisp, exact) Boolean logic (Sect. 6).

Now both the inference engine and knowledge base could be implemented
either as rule-based or neural network sub-systems. For instance, in the former
knowledge is stored in the form of if..then production rules, whereas in the
latter it is stored within the network weights.

The most difficult part in developing an ES is often in quantifying not only
a domain expert’s knowledge, but also their reasoning processes and the logic
behind what they do (which is not always logical!). The adage ‘garbage in,
garbage out’ certainly applies in this context [73,312]. Experts are not always
able to explain/justify why they do certain things in the way they do – just
that they’ve always done it this way, and it works! A good illustration of this
is James Dyson, of vacuum cleaner fame:

“But a business philosophy is a difficult thing to distil out of the daily
workings of a company, because you never really know how you do it,
you just do it. It’s like asking a horse how it walks.”9

This is an even more daunting prospect when attempting to extract and
encode knowledge from several different domain experts, since there are bound
to be disagreements, inconsistencies and contradictions in what each individ-
ual expert relates to the KE (hence an opportunity here for Fuzzy Logic, Fuzzy
Cognitive Maps (FCM) [162] and the like, which are capable of handling such
conflicting and/or contradictory information).

Later developments in ES involved the incorporation of Belief (Bayesian)
Networks, which enable the generation of sound probabilistic inferences from
the available evidence.
9 Dyson J (1997) Against the Odds: An Autobiography. Orion Business Books,

London, UK: 256.

24 J. Fulcher

Several ES shells exist – both commercial and Open Source – to assist
with the development of application-specific ES. A couple of the more pop-
ular are the C/C++ based CLIPS (http://www.ghg.net/clips/CLIPS.html),
FuzzyCLIPS (http://www.iit.nrc.ca/IR public/fuzzy/fuzzyClips/fuzzyCLIPS/
index.html), and Jess (a Java version of CLIPS), as well as OpenExpert
(http://www.openexpert.org/).

6 Fuzzy Systems

Picture yourself in the early evening sitting in your favourite armchair watch-
ing television, prior to preparing the evening meal. The thought crosses your
mind that soon you will enter the kitchen and begin slicing and dicing vegeta-
bles ready for steaming. Before that however, since it has become somewhat
cooler since you sat down to watch television, you will need to turn on the
room heater. Notice that usage of linguistic terms such as ‘soon’, ‘steaming’
and ‘cooler’ come naturally to us as humans, but that the computers used to
control the TV (clock), hotplate and room heater are usually designed to han-
dle exact (precise) terms like 1850 hours (10 minutes hence); 100◦C, and 28◦C,
respectively. Fuzzy Logic allows us to cater for such ‘fuzzy’ but more natural
terms (linguistic variables) in the development of computer (control) systems.
Fuzzy membership functions – µ – relate linguistic variables to numeric values,
by way of simple graphical shapes (typically triangular or trapezoidal). Fig. 6
shows a simple example where the same input value exhibits 30% ‘member-
ship’ of fuzzy set-A, simultaneously with 90% membership of fuzzy set-B (in
other words, x ‘belongs’ not just to A or B, but to both).

Input
fuzzification

Fuzzy rule
evaluation

Fuzzy rule base

(single) input variable-x

set-A B C

‘firing’ of
rules 3,9,14

(single) output variable-y

centroid
Separate

fuzzy
outputs

Fuzzy set
Membership
(0.3A + 0.9B)

Output De-
fuzzification

outputinput

Fig. 6. Fuzzy inference system

Computational Intelligence: An Introduction 25

The roots of Fuzzy Logic can be traced back to the work of Lukasiewicz
on multi-valued logic (together with fuzzy set structure and the relationship
to conventional logic) [195], and to that of Black on ‘quasi-fuzzy’ sets [20].
However the ‘Father of Fuzzy Logic’ is undoubtedly Lofti Zadeh, who was
the first to introduce the idea of membership sets and fuzzy operators (MAX,
MIN) [323]. MAX and MIN are the fuzzy equivalents of the crisp (precise,
Boolean) operators logical-OR and logical-AND, respectively. Again refer-
ring to Fig. 6, these fuzzy operators could be used to derive a fuzzy rule set
pertaining to this example, as follows:

µA∨B = max{µA, µB} = max{0.3; 0.9} = 0.9 (3)
µA∧B = min{µA, µB} = min{0.3; 0.9} = 0.3 (4)

µ¬A = 1− µA = 1− 0.3 = 0.7 (5)

Despite some early successes with the development of fuzzy controllers
during the late 1970s and early 1980s (for instance, [15] [77] [199] [287]),
research funding basically dried up during the ensuing decade [57] [205]. We
can attribute the resurgence of Fuzzy Logic as a popular control method to
the persistence of Japanese white goods manufacturers during the 1980s [133].

Fuzziness refers to the inexact or imprecise nature of common, everyday
terms [323]. Fuzzy set membership allows the description of such fuzzy terms,
by enabling them to belong to more than one set (30% of set-A, concur-
rent with 90% of set-B, say), in contrast to ‘crisp’ logic which only allows
membership (yes/no) of a single set [324]. Fuzzy logic is said to be a gen-
eralization of conventional (two-valued) logic which enables us to perform
operations on fuzzy sets – in other words, it constitutes a form of ‘approximate
reasoning’ [325].

Figure 6 shows the basic components of a Fuzzy Inference System (FIS),
these being Input Fuzzification, the Fuzzy Rule Base, Fuzzy Inference Engine
(rule evaluation), and Output De-Fuzzification. In the example of Fig. 6, the
preconditions (premises) of rules number 3, 9 and 14 have been satisfied, and
so these rules are ‘fired’ (the antecendents/consequents activated). Convert-
ing discrete (exact) inputs into their fuzzy equivalents is performed on the
basis of their membership of one or more fuzzy sets, as described earlier.
Conversion back from numerical values to linguistic terms (de-fuzzification)
is accomplished using geometrical constructs like ‘centroid’, as indicated.

As emphasized in Sect. 4.1, pre-processing is a critical consideration in
implementing a Fuzzy System (as it is with any CI technique) – more specif-
ically, the choice of linguistic variable terms, the number of fuzzy sets, and
the set membership functions/shapes (triangular, trapezoidal, and the like).
As is also the case with other CI methods, there is typically no proscriptive
formula for determining optimum operating parameters – this more comes as
a result of trial-and-error and/or experience.

26 J. Fulcher

7 Artificial Neural Networks

The origins of Artificial Neural Networks (ANNs) go back even further than
those of Artificial Intelligence (AI). The simplified individual neuron model
most favoured by researchers and users alike stems from the 1940s [204]
(Fig. 7). Theories of ANN learning [14,309] and indeed the prospect of building
‘brain-like’ computers [302] likewise stem from the mid 20th Century.

7.1 ANN Types

ANNs can be classified along many dimensions, including supervised versus
unsupervised, feedforward versus feedback, and so forth. Supervised networks
require a ‘sufficient’ number of labeled Input/Output data pairs (exemplars),
not only for training, but also for testing the network once it has converged.
Such data is not always available, hence the appeal of unsupervised networks,
which only require input data, and which form their own output classes (but
which may or may not be meaningful!) [40, 160]. In practice, such unsuper-
vised networks are often used as a preprocessing stage prior to a supervised
network classifier proper. In feedforward networks, connections (weights) are
only present in the forward direction, from input layer to output layer; no
connections exist in the reverse direction. If such connections are present,
as with recurrent networks (such as Hopfield), then the network behavior is
considerably more complex, since we now have the possibility of resonance
occurring in the network.

Biological Plausibility

It is well known that the McCulloch & Pitts neuron model is quite a simplistic
one. By contrast, in biological neurons, outputs are produced in the form of

θi threshold

Σ f

cell (neuron)
bodyw1

X1

X2

:
:
:
Xn

Yi

wn
dendrite

axon

activation output =
function weighted sum

of inputs
(if > threshold)

Fig. 7. McCulloch & Pitts neuron model

Computational Intelligence: An Introduction 27

pulse trains as a result of electrochemical processes (reactions), rather than
simple (electrical) level shifts – indeed, this has prompted some researchers to
pursue the development of Pulsed ANNs [196]. Likewise, synapses are not usu-
ally restricted to forward connections in the brain, as is the case with MLPs, or
symmetrical weights, as assumed in the Hopfield model (a constraint employed
in order to simplify the mathematics) [137]. There is however some justifica-
tion for the localized (and topology preserving) organization and behavior of
SOMs [160]. The point here is that biological plausibility is not essential, pro-
vided the technique in question works (refer back to our earlier comments in
Sect. 3.1 regarding inspiration from Nature).

7.2 Multi-Layer Perceptron/BackPropagation

During the 1960s, networks were favored which were suited to linear systems –
typical of these being the ADALINE [308] and the (2-layer) Perceptron
[257, 258]. From the former came the Least-Mean Square (LMS) or Delta
learning rule, which was later revamped into the Generalized Delta learning
rule (BackPropagation). Enthusiasm for Perceptrons began to wane when it
became apparent they could only be successfully applied to linearly separable
data; they could not be used on linearly inseparable data, such as eXclusive-
OR. Indeed, funding for ANN research underwent a so-called ‘neural winter’
as a result of the publication of [209].

Interest in the Perceptron – or more especially the Multi-Layer Per-
ceptron – was rekindled a decade or so later with the development of the
BackPropagation (BP) learning algorithm [37,235,260,305,306].

Figure 8 shows a 3-layer MLP. Presentation of input-output training pairs
(exemplars) will generate errors at the output layer between the actual and
desired output values. The difference between these two values is then used
to adjust the weights – firstly those connecting the hidden layer to the output
layer, followed by those connecting the input layer to the hidden layer – in
order to minimize this error or difference signal. In this manner, the error
propagates backwards from the output layer towards the input layer, adjust-
ing the network weights as it does so. The problem with this procedure is
that once we have presented all training exemplars (one epoch), the weight
values will have been changed in completely different directions from the first
weight changes. In practice, many passes through the training data (epochs)
are typically required in order to reduce the overall weight error value to a
minimum – at which point the network is said to have ‘converged’ to a solution
(in other words, it has been ‘trained’). This process can be likened to ‘gradient
descent in weight space’, which is an optimization technique known to suffer
from several limitations, namely (i) oscillation about a minimum (rather than
convergence perse), and/or (ii) convergence to a local, rather than a global
minimum (in the energy/error landscape or solution space).

28 J. Fulcher

input
outputlayer
layer

input
vector

output
vector

variable
feedforward (adaptable)
connections weights

errors (actual - desired)o/p
Fig. 8. Multi-Layer Perceptron/BackPropagation

Now whereas previously Perceptrons proved to be of limited use, MLPs
have been shown to be suited to solving numerous pattern recognition and/or
classification problems, despite their being hampered by long training times
(although it has been proven that BP will eventually converge). They are
also particularly well suited to mathematical function approximation (curve
fitting), and by extension to time series modeling, simulation and/or forecast-
ing. We have to be careful here though not to over-fit the data though, as
previously mentioned (in other words, not to over-train the network).

Interest in ANNs in general was also fostered by the publication of
[5,131,137,160], to name but a few. Since that time, MLPs have been applied
to many different problem domains, sometimes indiscriminately so (in other
words, ‘throwing’ an ANN at a problem when conventional techniques fail!).
Indeed, when the lay person refers to ‘neural networks’, this is usually syn-
onymous with MLP/BP. For instance, [314] reported that over 95% of ANN
business applications use MLP/BP. A typical pattern classification application
to which MLP/BP has been applied is the discrimination between cancerous
and benign breast tumours on mammograms [300].

It should be noted that often the most difficult part of applying ANNs in
practice is transforming the available training data into an appropriate format
prior to training, most especially by removing noise, reducing the dimension-
ality of the data (since training times increase exponentially as a function of
the number of network weights), feature extraction, and so on (see Sect. 4.1
on Pre-Processing).

Optimal network parameters (numbers of layers/nodes/weights) are typi-
cally determined in practice by a process of trial-and-error, complemented by

Computational Intelligence: An Introduction 29

experience. Alternatively, various researchers have devised heuristics like the
following [124]:

• number of hidden neurons H = geometric mean of I & O (number of
neurons in the input & output layers, respectively)

• no need for any more than 2 hidden layers (→ arbitrary decision bound-
aries) – Kolmogorov Representation Theorem [59]

• good generalization ability if training set size N ≥ W/ε (where W = the
number of network weights + thresholds (biases); and ε = the maximum
permissible classification error)

• W ≤ N ≤ 10xW
• η = 1.5√

n2
1+n2

2+···+n2
m

(where η = the learning rate; ni = number of (training

exemplars in class-i)

Now MLP/BP training times are notoriously slow, indeed [150] has shown
that finding a set of ANN weights consistent with a set of examples is NP-
complete! Accordingly, numerous attempts have been made to improve the
convergence of BP – in other words, to speed up training times. These range
from simply adding a momentum term (α) to the weight update rule,10 to
more sophisticated approaches, such as:

• making use not only of the first derivative of the weight, but also of the
second derivative (Conjugate Gradient;11 QuickProp [84])

• using the sign only of the weight derivative, not the magnitude (Resilient
Back Propagation – Rprop [255])

• making use of previous weight changes (Delta-Bar-Delta [143]; SuperSAB
[293])

• dynamically growing a network of ‘minimum yet sufficient’ size (Cascade
Correlation [84])

Often we find that some weights are quite small and moreover do not
contribute much to the network behavior. Accordingly, some researchers have
developed pruning techniques [121, 178], akin to those used in Data Mining
(DM) [251,313].

7.3 Other ANN Models

Many other ANN models have been developed over the years apart from
MLP/BP, including learning vector quantization LVQ [159], radial basis

10 wij(t + 1) = wij(t) + ηδP
j OP

j , where wij is the weight connecting node-i in the
previous layer to node-j in the present layer; η is the learning rate (0· · · 1); δP

j

is the delta (difference or error) between the actual and desired outputs, and OP
j

the output generated on node-j, following presentation of input pattern-P .
11 http://www.cs.cmu.edu/˜quake-papers/painless-conjugate-gradient.pdf

30 J. Fulcher

x1

x2

optimal hyperplane

margin of separation

support vectors

Fig. 9. Support vector machine (linear separator)

function RBF network [248], support vector machine SVM [1, 270, 297] (the
latter cannot strictly be regarded as an ANN technique, but rather a statisti-
cal one; nevertheless, it has sparked a lot of interest in the ANN community).
Now RBF and SVM, while utilizing the same general architecture as MLPs,
behave quite differently internally. RBF activation functions are usually more
complex than the simple sigmoid12 typically employed by MLP/BP – typically
Gaussian. Applying RBFs can be likened to fitting a mixture of Gaussians,
and hence are quite suited to mathematical function approximation. Their
training times are comparatively short, but they take a long time to fit test
data (which is the exact reverse of MLP/BP).

SVMs use a non-linear mapping to first transform the data set of interest
into a higher (feature) dimension, then to find an optimal linear separat-
ing hyperplane (decision boundary/discriminant) to separate one class from
another. They find this hyperplane using ‘support vectors’ (attractors) and
‘margins’, as indicated in Fig. 9. These margins are defined as follows:

wT x + b = 0 (6)

where w is the (adjustable) weight vector, x is the input training vector, and b
is the bias (or threshold) term. The distance from x to the optimal hyperplane
g is

gx = wT
0 x + b0 (7)

The optimum parameters w0 and b0 provide the maximum possible sepa-
ration between positive and negative training exemplars, and are obtained by
minimizing the Euclidian norm of w. As it happens, SVMs are quite capable
of classifying both linear and nonlinear data; indeed the latter can be extended
to so-called ‘kernel methods’.
12 y(x) = 1

1+e−x .

Computational Intelligence: An Introduction 31

Now several researchers have shown that MLPs behave as universal
approximators, namely:

“An MLP with an arbitrary bounded non-constant activation function
is capable of universal approximation. More specifically, any suitably
smooth function can be approximated arbitrarily closely by a single
hidden layer MLP/BP. Furthermore, this approximation improves as
the number of nodes in the hidden layer increases. In other words, a
suitable network can always be found.” [138]

and

“A standard multilayer feedforward network with a locally bounded
piecewise continuous activation function can approximate any contin-
uous function to any degree of accuracy if and only if the network’s
activation function is not a polynomial.” [182]

[329] subsequently proved a similar result for ANN groups:

“Consider a neural network piecewise function group, in which each
member is a standard MLP, and which has a locally bounded, piece-
wise continuous (rather than polynomial) activation function and
threshold. Each such group can approximate any kind of piecewise
continuous function, and to any degree of accuracy.”

8 Evolutionary Methods

Evolutionary computation (EC) is a rather broad term which encompasses
optimization techniques which employ evolutionary principles [65]. To the
lay person this approach is synonymous with Genetic Algorithms (GAs);
in reality, there are four distinct branches, albeit with GAs dominating in
practice. More specifically, evolutionary computation encompasses genetic
algorithms, evolutionary programming (EP), evolution strategies, and genetic
programming (GP).

Obviously the inspiration for evolutionary methods goes back to the 1850s
and the work of Charles Darwin with his theories of evolution, natural selec-
tion and ‘survival-of-the-fittest’. Some of the earliest work on the development
of GAs took place during the late 1950s. Fraser first encoded the epista-
sis function parameters13 of certain biological systems as 15-bit strings, then
chose as suitable parents those strings that produce function values within
the prescribed range [96, 97].

Around the same time – the early 1960s – [135] developed the now familiar
reproduction-crossover-mutation cycle within the context of adaptive (artifi-
cial) systems; accordingly, John Holland is nowadays regarded as the ‘Father
13 Epistasis measures the degree to which a particular gene is suppressed.

32 J. Fulcher

of GAs’. The term ‘genetic algorithm’ was coined during the late 1960s [8].
Interest in GAs took off during the 1970s and continued unabated into the
1980s and beyond [62,114,116,136]. During this period DeJong devised a set
of five GA test functions together with two performance metrics [64]. A decade
or so later, [264] introduced the idea of using a multi- (rather than single-) GA
objective function [54,148,289] (likewise in Fuzzy Systems). Allied to this are
the relatively new fields of parallel EC [217] and memetic algorithms [119,158].

Evolutionary programming (EP) emerged during the 1990s [94], after first
appearing in the 1960s [92]. In a similar manner that Minsky and Papert
received the blame for instigating the so-called ‘neural winter’ [209] (mean-
ing the drying up of research funding during the ensuing decade), [92] has
sometimes been blamed for the ‘evolutionary computation winter’.

Evolutionary strategies can be traced back to the work of [253,254] in the
1960s, in the context of engineering optimization. Genetic programming (GP)
stems from around the same time [100,101], but really came to the fore during
the 1980s due to work of Koza [163–165].

8.1 Genetic Algorithms

In Sect. 3.1 we saw how Nature has been the source of inspiration for sev-
eral CI techniques. In the case of Genetic Algorithms (GAs), it is evolution
itself [114]. Darwinism or natural selection involves sexual attraction between
male and female, mating, birth, and child rearing (the extent of which can
vary from non-existent in the case of catfish, to many years in the case of
elephants and humans), hopefully to maturity – in other words to ensure sur-
vival of the species (in the face of numerous obstacles, such as danger from
various predators, variations in the weather, disease and the availability of a
steady food source). Figure 10 summarizes these evolutionary processes, with
crossover of genetic information being illustrated in Fig. 11.

GAs work on populations of (potential) solutions to problems of interest.
These solutions need to be first encoded in the form of (fixed width) ‘genetic
strings’. Obviously this initial encoding process is critical. As discussed earlier
(Sects. 4.1, 6 and 7.2), pre-processing is a vital consideration, as with any CI
technique. For instance, how many bits should be used to adequately represent
chromosomes (problem solutions) in the GA?

As in Nature, the aim with GAs is to evolve ‘stronger’ population members
in successive generations, while at the same time retaining diversity within
the population as a whole (in other words, to avoid inbreeding). This can be
likened to Nature in which strong genes are passed from parents to offspring,
while weak ones tend to die off over successive generations. We start the
evolutionary process with random strings, then proceed to select potential
mates from the current generation based on some fitness (objective) function;
GAs have no knowledge of the solution (search) space.

Computational Intelligence: An Introduction 33

Old
population

New
population

fitness
evaluation

parental
selection

mating

genetic
crossover

(small, random)
mutation

Fig. 10. The steps in evolution

genetic information
(encoded as fixed-length strings)

Parent(s)
(current generation)

Child (offspring)
(next generation)

(small, random) mutations

Fig. 11. Crossover of genetic information

We have just seen that a major difficulty with applying GAs in prac-
tice is the encoding of potential solutions to a problem into an appropriate
form (namely, ‘genetic string’ or ‘bit chromosome’ representation). This is
entirely in keeping with the general preprocessing principles outlined earlier
in Sect. 4.1. Assuming this can in fact be done, then evolving an acceptable
solution to a problem is a straightforward process, albeit a lengthy one (much
longer than the time needed to train an ANN, typically) [62, 114].

34 J. Fulcher

Beale and Pryke coupled GAs with interactive 3D dynamic visualization in
their Haiku system in preference to conventional rule-generation approaches
(in other words, knowledge discovery becomes an interactive process, with
what constitutes ‘interesting’ being established by the system user gradually
over time) [12].

Evolvable Hardware

Rather than using fixed connections between logic gates in an integrated cir-
cuit (IC), Programmable Logic Devices (PLDs) allow such connections to
be altered, either once only (as with Programmable Read-Only Memory) or
repeatedly (as with EPROM or EEPROM). One such small-scale PLD is the
Programmable Logic Array (PLA) shown in Fig. 12.

Since a PLA essentially comprises just one large AND-gate array fol-
lowed by a similarly large OR-gate array, then potentially any logic function
can be realized (in so-called ‘sum-of-products’ form). Addition of latches/
flip flops – as in Programmable or Gate Array Logic (PAL/GAL) – fur-
ther enables the fabrication of Finite State Machines (in other words, by
incorporating time delay/memory elements in order to track internal state
transitions). The capacities of small-scale devices like PLAs and PALs/
GALs limits their usefulness however. By contrast, a Field Programmable
Gate Array (FPGA) [68, 113, 241] boasts much higher chip (gate) counts –
comparable with commodity off-the-shelf (COTS) general-purpose and/or
Digital Signal Processors – and at a fraction of the cost of custom VLSI
chip fabrication [206] (http://www.altera.com; http://www.latticesemi.com;
http://www.xilinx.com).

fusible link

‘sum-of-products’
canonical form

AND (. intersection)

OR (+ union)

Fig. 12. Programmable logic array (PLA)

Computational Intelligence: An Introduction 35

IOB

IOB

IOB

PIB

CLB

PIB

CLB

PIB

Fig. 13. Generic FPGA layout

FPGAs incorporate programmable I/O blocks (IOB), programmable inter-
connect blocks PIB (also known as programmable switch matrices PSM), and
configurable logic blocks (CLB), with connections between these being created
in situ by the user, appropriate for the application at hand (Fig. 13). The lat-
ter contain lookup tables (LUT), multiplexers/switches, latches, memory, and
various low-level combinatorial logic ‘glue’ (recent offerings even boast entire
CPUs and/or DSPs). Note that LUTs find extensive use in FPGAs since they
provide much faster computation than algorithmic (software) solutions.

Designs can be developed using either hardware (building block schemat-
ics) or software (hardware description languages) form. Vendor-specific devel-
opment platforms support both alternatives, together with timing simulation,
testing and de-bugging facilities. Once a designer is satisfied, a bit stream
is generated for downloading into the FPGA device proper. The beauty of
FPGAs is that they can be re-programmed should the system performance
not meet expectations. Some key aspects which appeal generally about FPGA
designs are their (i) inherent parallelism and (ii) fast speed (both being
typically much higher than COTS processors).

Such dynamic, re-programmable logic devices open up the possibility of
realizing adaptive hardware – in other words the development of ANNs and
Evolutionary Algorithms in hardware form as opposed to software simulations
(currently the dominant approach). More specifically, FPGA inputs can be
altered during successive training iterations according to some learning rule
(ANNs) or evolutionary strategy (EAs). In the case of ANNs, the inherent
parallelism of FPGAs can be exploited at the iteration, layer, neuron or weight
level (the first two correspond to coarse-grain parallelism, while the last two
correspond to fine-grain parallelism). Moreover, while earlier FPGAs were

36 J. Fulcher

limited to fixed-point arithmetic, in recent times we have seen the emergence
of floating-point devices. Omondi and Rajapakse describe FPGA fabrication
of ANNs – not only MLP/BP, but also Associative Memory, SOM and the
Neocognitron [226]. Earlier hardware ANN implementations (not necessarily
FPGA) include [109], [133] and [286].

Evolvable hardware [193, 263, 278, 332], or ‘the combination of soft com-
puting and reconfigurable hardware’, is seen by [266] as leading to the
development of ‘computational machines’. [322] define evolvable hardware
(EHW) as ‘one particular type of hardware whose architecture, structure,
and function change dynamically and autonomously in order to improve its
performance in performing certain tasks’. Such adaptable hardware – usu-
ally realized by way of FPGAs – then has the potential to better match
real world dynamic problems [320]. Typical of such efforts in EHW are
[22, 105, 110, 129, 132, 259]. Chapters 18 and 19 of this Compendium provide
more extensive, in-depth coverage of EHW.

8.2 Evolutionary Programming

Unlike with GAs, in evolutionary programming (EP), the only evolutionary
principle used is mutation – crossover is not employed. Fogel contrasts evolu-
tionary programming as being a ‘top-down process of adaptive behavior’, in
contrast to GAs, which he likens to a ‘bottom-up process of adaptive genet-
ics’ [94]. In this sense, it can be thought of as ‘survival-of-the-most skillful’,
rather than ‘survival-of-the-fittest’.

8.3 Genetic Programming

Genetic Programming differs from Genetic/Evolutionary Algorithms in that
the population of solutions comprise entire programs – in other words, auto-
matic program generation/evolution [10,163–165,175]. A comprehensive cov-
erage of GP is provided in Chap. 18 of this Compendium.

8.4 Swarms

Collective (Swarm) Intelligence (SI) [21, 83, 154] takes its inspiration from
social insects (such as ants, termites, bees, wasps), as well as the swarm-
ing, flocking, herding and/or shoaling behavior common in some vertebrates.
The ‘collective intelligence’ of such swarms is reflected in the ability of
large groups of relatively unintelligent individuals to achieve feats far beyond
any single individual, as a direct result of their interactions. Observation of
social insects (ants, bees, and the like) suggests that intelligent group behav-
ior emerges out of simple interactions between individuals, which otherwise

Computational Intelligence: An Introduction 37

exhibit limited capabilities. Swarm Intelligence focuses on local, rather than
global interactions.

Swarms differ from GAs/EAs inasmuch as in the latter individual behavior
directly influences the behavior of future generations; in swarms, this influence
is indirect, since individuals transmit general messages, rather than ‘peer-to-
peer’ messages intended for specific individuals in the community, and which
only relate to the present generation. These messages can be in the form of:

1. chemicals (namely, pheromones),
2. audio (sounds),
3. dance/stylised movements,
4. altering the surrounding environment (such as by removing all available

food sources).

‘Stigmergy’ is defined as any indirect communication that allows the activ-
ities of social insects to be directed towards a common goal – for instance,
ants leaving a (volatile) pheromone trail – which reinforces one particular (pre-
ferred) path over time. Collective Intelligence constraints can be summarized
as follows:

• intra-generation learning only (in contrast to GAs/EAs, which foster inter-
generational learning),

• inter-changeability and simplicity of individual population members (that
is, identical form, function, and status) – although heterogeneous swarms
also exist,

• reliance on indirect communication only.

Apart from intelligent swarms (as above), other variants include Swarm
Intelligence (SI), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO) [71]. Generally speaking, SI can be thought of as a
population-based stochastic method or ‘meta-heuristic’ approach well suited
to optimization problems. PSO is a global optimization method in which solu-
tions to problems of interest are represented as points in n-D space. Particles
are assigned initial velocities, then move towards points (solutions/attractors)
over time, according to some fitness evaluation criterion. ANTS – Autonomous
NanoTechnology Swarm – is a more recent development by NASA in which
100s (1000s) of small, lightweight ‘pico class’ spacecraft are able to be deployed
in order to undertake exploration, provide backup, and ensure survival in
space [130].

SI algorithms have been applied to both static (for example, the Travel-
ling Salesman Problem – TSP), as well as dynamic problems (such as load
balancing in telecommunications networks). In TSP, the salesman needs to
travel through each city once only, in the shortest possible overall tour dis-
tance. Figure 14 shows both a sub-optimal tour of 14 cities in Burma (top),
together with the optimal 14-city tour (bottom). The starting point in both

38 J. Fulcher

Burma14 (initial)

92

93

94

95

96

97

98

99

10 15 20 25 30

latitude

lo
n

g
it

u
d

e

Burma14 (final)

92

93

94

95

96

97

98

99

10 15 20 25 30

latitude

lo
n

g
it

u
d

e

Fig. 14. Travelling Salesman Problem: (top) sub-optimum Burma14 tour; (bottom)
optimum Burma14 tour

cases is [16.47, 96.10], but the initial (non-optimal) tour finishes at city#14
[20.09, 94.55], whereas the optimal tour finishes at city#10 [14.05, 98.12].
Likewise, Fig. 15 shows two tours of the larger Berlin52 city data set, both
sub-optimal (left) and optimal (right).

Dedicated websites exist which compare various optimization algorithms
and also serve as a TSP data repository.14

14 See for example, http://www.research.att.com/˜dsj/chtsp/

Computational Intelligence: An Introduction 39

Fig. 15. Travelling Salesman Problem: (left) sub-optimum tour; (right) optimum
Berlin52 tour

Hendtlass describes the use of both Particle Swarm Optimization (PSO)
and Ant Colony Optimization to solve TSP, by way of the following algorithm
(ACO) [127]:

Algorithm 1 Ant Colony Optimization TSP Algorithm (after [127])
1. initialize pheromone on each path segment, and randomly distribute N ants
among C cities.
repeat

2. each ant decides which city to move to next (provided they have not
previously visited it)

until they return to their original city
3. each ant calculates the length of its tour, then updates its information about
the shortest tour found to date.
4. the pheromone levels on each path segment are refreshed.
5. all ants that have completed their assigned maximum number of tours (typically
one) die and are replaced by new ants at randomly chosen cities.
6. return to 2. and continue until some termination criterion is met (for example,
best path length < threshold, or maximum number of tours reached – similar to
BP training).

Sharkey and Sharkey show how swarms are well suited to the study of
collective robotic behavior – via so-called ‘swarm robotics’ [269].

9 Immunity-Based and Membrane-Based Computing

9.1 Immunity-Based Computing

Artificial Life (Alife) was a term first coined by Langton [176]. It has sub-
sequently served as the inspiration not only for a lot of research effort in
evolutionary computing (EC), and most especially swarms, but also more

40 J. Fulcher

recently with Immunity-based and Membrane-based Computing. Moreover,
‘Nature-Inspired Computing’ (NIC) emphasizes self-organization and com-
plex systems principles [191]. What all these computing paradigms share in
common is an approach to computing inspired by (based upon) processes
observed in Nature. Immunity-Based Computing (IBC) Systems take as their
inspiration the memory, learning and self-organization ability of biological
immune systems (more specifically, those of invertebrates) [87,141]. The abil-
ity of ‘antibodies’ to discriminate between self and non-self, and to self-repair
in the face of bodily infections are implemented in Artificial Immune Systems
(AIS) by way of computer simulations (in which the attributes of ‘antigens’
and ‘antibodies’ are encoded as strings within an appropriate data structure).

[23] pointed out the similarity between immune systems and intrusion
detection systems, inasmuch as they both need to first identify then respond
to malicious ‘agents’. An immunological selection mechanism was employed
by [38] in their agent-based optimization of neural network architectures.

9.2 Membrane-Based Computing

The inspiration for membrane-based computing paradigm is, as its name
suggests, biological membranes, which house multiple sets of objects within
various compartments, and which evolve over time according to certain (non-
deterministic) ‘reaction rules’ acting in parallel [27]. These objects are able to
pass through membranes, and the membranes themselves are able to change
shape, divide, dissolve, and/or change their permeability. Such characteristics
(attributes) can be used in turn to define not only system state transitions,
but also of state transition sequences, which together can serve as the basis
for (stochastic) computations, optimizations and the like.

10 DNA Computing

Biologically-inspired CI methods – most especially ANNs and GAs – are
usually realized in practice by way of software simulations on digital (silicon-
based) computers, although we saw in Sect. 8.1 how success has also been
achieved by way of hardware implementations (most commonly, via Field
Programmable Gate Arrays). In other words, carbon-based techniques are
simulated in silicon. The basic idea behind DNA computing is to do the exact
reverse – namely to realize in ‘wetware’ algorithms derived from the world of
‘software’ (or ‘firmware’), although some researchers do in fact focus on imple-
mentation of DNA computing algorithms in silicon [2, 4]. Such an approach
conjures up science fiction visions of the future, more specifically, rather than
build computers, why not grow them (that is, in a test tube)?

DeoxyriboNucleic Acid (DNA) consists of four bases: A(denine),
G(uanine), C(ytosine), T(hymine) – in addition, some constraints apply as to

Computational Intelligence: An Introduction 41

which bases are allowed to connect to which others. In a DNA computer, data
are represented using strands of DNA, next chemicals mixed in a test tube,
then reactions allowed to take place (in parallel), and finally the results of
these reactions extracted and interpreted. Such carbon-based or ‘wet’ com-
putation (as opposed to conventional, silicon-based computing) has more in
common with Quantum Computing (QC) [256,311], in that computations are
inherently massively parallel, but where the encoding (input) and decoding
(output) – in other words, system I/O – is far from straightforward. More
specifically, how do we first encode problems of interest into DNA strand
representation, and once the reactions (computations) have completed, how
do we efficiently extract the results of these calculations into an intelligible
form? Another problem that both DNA- and Quantum Computing share is
the (lack of) repeatability of experiments, inasmuch as errors, being inher-
ently non-deterministic, can have the cumulative effect of producing different
outcomes on different experimental runs!

So what then is the basic appeal of DNA computing? In short it is the
inherently (massive) parallel nature of the simultaneous chemical reactions
taking place within the test tube, despite the reaction times of each being
relatively slow (a situation akin to that of slow neurons within an artificial
neural network nevertheless leading to fast overall network performance –
Sect. 7).

11 Intelligent Agents

During the 1970s and 80s, procedural programming was the norm. This
was largely superseded by Object-based and Object-Oriented Programming
(OOP) during the 1980s and 90s. An alternative approach – agent-oriented
programming [14,53,146] – began to emerge during the 1990s. This paradigm
is founded on the concept of software ‘agents’, as opposed to software ‘objects’
(methods + data). Agents are touted as being better able to interact with
complex, real-world situations than objects, since they are network-centric,
adaptive and self-modifying (indeed, self-repairing) – unlike objects, which
are fixed and unable to modify their behavior over time, being constrained to
obey the Boolean logic rules which underpin them [19,183,197,210,317]. Now
unlike Java applets say, which require a Java Virtual Machine to be executing
on all hosts, mobile agents are free to move at will between the nodes (hosts)
within a heterogeneous network. They only consume network bandwidth when
moving between hosts, and they continue to execute once relocated on to the
new host. This necessarily raises the issue of security and access permissions,
lest a host regards the incoming agent as a virus, worm, or other malicious
form of software, rather than a bona fide application [72]. In fact, some go so
far as to regard intelligent agents as ‘both wrong and evil’ [177].

The autonomous software agent concept came out of work in distributed
AI during the 1980s [89, 315–317]. Fundamentally, an agent is an entity that

42 J. Fulcher

perceives its environment through sensors, then takes ‘appropriate’ actions
through ‘effectors’ (actuators). Moreover, an agent is able to automate this
mapping between perception and action(s) [261]. An ‘intelligent’ agent is one
that takes the ‘best’ possible action in any given situation. Ideally, such actions
should be ‘rational’ (although humans are often notoriously irrational!); ‘ratio-
nality’ in this context is taken to mean that an agent’s behavior at any point
in time is a function of:

1. knowledge about its environment,
2. its repertoire of possible actions,
3. its ‘perceptual history’ (in other words, everything it has perceived through

its senses to this point in time – which in turn could be used to modify/
update/adapt its Knowledge Base), and

4. some performance measure (feedback) of the success or otherwise of its
actions.

In the BDI model, intelligent agents are said to possess beliefs, desires and
intentions [106]. In [275], BDI agents are developed to interact with humans
in a multi-player game environment, using the JACK [6] toolkit.

From a CI perspective, intelligent agents are viewed as reactive, proac-
tive, autonomous, social entities (the latter leading naturally to the concept of
Multi-Agent Systems – MAS). In practice, they are software architectures and
programs (methods) which perform the aforementioned ‘rational’ functions.
Many different types of agents have been developed over the years, tailored to
specific applications (such as ‘selfish’ versus ‘cooperative’). In order for intel-
ligent agents to communicate their knowledge and conceptualizations with
their fellow agents, they need to ‘speak a common language’, as it were. To
this end, agent communication languages have been developed (for example,
KQML [90]). In [9], coloured Petri Nets are used to coordinate agent interactions
in open environments.

We also need to define an MAS ontology, by which we mean the formal rep-
resentation of the knowledge pertaining to a particular domain, typically by
specifying commonly used terms, together with explanations of how they inter-
act with each other, in a computer-readable form (Sect. 2.1). Such ontologies
can be either general or specific to a particular application domain. Accord-
ingly, ontology generation is facilitated by formal languages such as OIL [88].

12 Hybrid Methods

Back in Sect. 1 we formulated a working definition of Computational Intelli-
gence as ‘neural network, evolutionary and/or fuzzy techniques, and
more especially hybrids or synergistic combinations/ensembles of these
complementary approaches.’ It is the latter aspect which is the focus of the

Computational Intelligence: An Introduction 43

present Section. The basic premise is that should a single CI method fail to
deliver the desired performance, the perhaps a mixture may be able to.

In this regard, we must necessarily examine issues previously consid-
ered by researchers in data/sensor fusion [35, 60, 91, 117, 157], multi-modal
user interfaces [102, 285] [as well as http://research.microsoft.com/mmui and
http://almaden.ibm. com/u/turaman/chi-2003/mmi-position.html],15 biomet-
ric identification systems [170], and on a more pragmatic level, classifier com-
binations [111,156,169], neural network ensembles [118,120,243,268,298,331],
and indeed parallel processing in the most general sense [70,115]. For instance,
some practitioners have been guilty in the past of inappropriately ‘throwing’
a parallel computer at problems of interest, in the vain hope of rendering
a solution more tractable and/or improving performance. In doing so, they
often lose sight of Amdahl’s Law:

Speedup = S + P/n (8)

where S is that part of the problem of interest that must be executed sequen-
tially, P is that (often small) part which can be solved concurrently, and n is
the number of computers (processors) available in the parallel system.

To take a roadwork analogy, there is no point in having 10 workmen armed
with shovels (‘processors’) if only one shovel can fit in a hole in the ground
at any one time, with the other 9 workmen standing by idle. In other words,
this is an inherently sequential task.

Nevertheless, much effort has been placed in recent times into the devel-
opment of hybrid CI systems [307]. The näıve hope is that by incorporating
several CI techniques into a hybrid solution, we will improve system perfor-
mance. Obviously this is not necessarily the case – it really depends on whether
the respective techniques are complementary and/or enhance the performance
of each in isolation.

There are several challenges in developing hybrid systems, in particular
(i) selecting the most appropriate technique(s), depending on the attributes
pertaining to (characteristics exhibited by) the problem under study, and (ii)
how best to combine these techniques [26,219,227]. Ho characterizes the latter
thus: “Instead of looking for the best set of features and the best classifier,
now we look for the best set of classifiers and then the best combination
method.” [134]. Before we rush off to develop new methods though, Kuncheva
counsels us “to make the best use of the tools and methodologies that we have
at present, before setting off for new complicated designs.” [169].

[318] combined multiple classifiers for handwriting recognition, while
Miller and Yan did so in the context of signal processing [208], [46] for speaker
identification, and [108] for intruder detection in computer networks.

15 See also J. Multimodal Interfaces (Springer).

44 J. Fulcher

Table 2. CI technique comparison (after [219])

CI technique Learning Explanation Adaptation Discovery Flexibility

ANN excellent poor excellent fair excellent
EC excellent fair good excellent good
Fuzzy poor fair poor poor excellent

Kuncheva identifies the following four approaches to building classifier
ensembles: (a) at the data level, (b) at the feature level, (c) at the classifier
level, and (d) at the combination level.16 Furthermore, there are two main
strategies that can be employed for combining classifiers, these being fusion
and selection [169]. With the former approach, each classifier has knowledge
about the entire feature space, whereas with the latter each classifier has
knowledge about (and responsibility for) part of the feature space only.

There are also approaches which fall part way between these two, namely
‘fusion-selection’, also known as the ‘ensemble-modular’ approach [268], or
‘multiple-hybrid’ topology [172] – a typical example is the so-called ‘Mixture-
of-Experts’ [144, 149, 224].

Example fusion techniques include majority voting [11,168,174], plurality
voting [66, 189], näıve Bayesian [284], bagging (or ‘bootstrap sampling’) [25,
28, 69, 252], boosting – the combination of rough, inaccurate ‘rules-of-thumb’
to produce accurate predictors – [74–76,99], and fuzzy integral [50, 166,299].
In [49] fuzzy logic provided the fusion; in [167], it was Genetic Algorithms.

In the context of hybrid CI systems, [219] attempt to characterize neural,
evolutionary and fuzzy (‘intelligent system’) techniques, as well as Knowledge-
based Expert Systems, along dimensions of learning, explanation capability,
adaptation (in response to changes in the environment), knowledge discov-
ery, and flexibility (that is, decision making ability in the face of imprecise,
incomplete and/or new input data) – Table 2.

We leave it as an exercise for the interested reader to expand Table 2
to characterize intelligent agents, swarms, immunity-based systems, and the
many other ancillary CI methods mentioned earlier in this Chapter (refer to
Sect. 1 in particular).

Michalewicz and Fogel caution against attempting to add too many com-
ponents (elements, ‘ingredients’) into the mix (‘stew’), lest we overload the
hybrid system and the techniques begin interfering with each other, leading to
degraded overall system performance [207]. Nevertheless, it is behoven upon
us to cite here some studies which have managed to produce hybrid systems
which exhibit superior performance over that of stand-alone CI methods. One
16 See also the Annual Intl. Workshops on Multiple Classifier Systems (MCS),

sponsored by the International Association for Pattern Recognition.

Computational Intelligence: An Introduction 45

such hybrid approach involves the combination of ANNs and Fuzzy Logic,
another the combination of ANNs and GAs. We briefly describe a couple of
representative examples below.

Fuzzy Expert Systems

[294] observed that if the knowledge at our disposal can be expressed in the
form of linguistic rules, then we can readily construct a Fuzzy Inference System
(FIS). More specifically, we need to specify fuzzy set membership, the fuzzy
operators and the Knowledge Base.

The Fuzzy ES of [80] utilizes user-defined triangular and/or non-linear
membership functions. The three input parameters to the system are: (a) how
the antecedents are handled, (b) how output membership values are formed,
and (c) how defuzzification is performed.

Now rather than fine tune the fuzzy membership functions manually, we
could alternatively learn these using an ANN.

NeuroFuzzy

Ordinarily, the standard MAX and MIN operators used in Fuzzy Systems are
unable to be differentiated, as in the BP algorithm. In order to link the nodes
in an MLP with Fuzzy Logic rules, one approach is to use a Fuzzy Associative
Memory (FAM) [319]. More specifically, a Fuzzy Associative Memory (FAM)
incorporates both a fuzzy logic rule and an associated (adaptable) weight.
Von Altrock shows how a Fuzzy Inference System (FIS) can be mapped to an
MLP, and where it is possible to use a modified form of BP – more specifically,
with input fuzzification mapped to the input layer, the Inference Engine to
the hidden layer(s), and the output de-fuzzification to the output layer [301].

In NeuroFuzzy systems, the Knowledge Base (Fuzzy Inference System –
FIS) at the bottom of Fig. 5 is replaced by a neural network in which the rules
are encoded within the network weights. Fuzzy rule evaluation then amounts
to determining the output pattern (response) which most closely matches the
input pattern (query). To put it another way, the ANN learning algorithm is
used to determine the parameters [294].

The Adaptive-Network Fuzzy Inference System (ANFIS) of Fig. 16 [145]
implements a 2-input Sugeno model with 9 inputs. There are three fuzzy sets
to which the input linguistic variables (x, y) can belong. Input fuzzification
forms the if (premise) parameters, which in turn fire certain fuzzy rules, which
drive one or more of the then (consequent) variables, which are then finally
converted back to linguistic form during output de-fuzzification.

There have been numerous Neuro-Fuzzy hybrid systems cited in the liter-
ature, including those of [13,36,42,48,103,153,184,187,212–215,230,233,267,
288,295].

46 J. Fulcher

A1 A2 A3

B3

B2

B1

A1

A2

A3

y

premise
parameters

B1

B2

B3

y

x

Π

Π

Π N

N

N

1

2

Π

Π

Π

Π

Π

Π

N

N

N

N

N

N

3

4

5

6

7

8

9

consequent
parameters

y

Σ
O

Fig. 16. ANFIS (after [145]: 339) – c©1997, reprinted by permission of Pearson
Educational Inc., Upper Saddle River, NJ

Fuzzy Neuro

The basic approach here is to incorporate Fuzzy techniques in the adap-
tation of network weights, in order to improve the performance of ANNs.
Alternatively, Enbutsu has applied fuzzy rule extraction to a trained MLP [81].

In Fuzzy BackPropagation, heuristics based on first- (Change-of-Error)
and second- (change of CE) derivative weight changes can be used to develop a
Fuzzy Rule Base for both learning rate (η) and momentum (α). Using such an
approach, some researchers have found both a speedup of network convergence
and smaller resulting mean square error (MSE) [124].

In FuzzyART, stable recognition categories self-organize in response to
arbitrary sequences of either binary (ART1 [40]) or analog (ART2 [41]) input

Computational Intelligence: An Introduction 47

patterns. The Boolean AND (intersection) operator is replaced with the Fuzzy
MIN operator inside a ‘fuzzy cube’ [162]. FuzzyARTMAP is a supervised
extension comprising two FuzzyART networks, in which a MIN-MAX learning
rule controls category structure.

Fuzzy min-max NNs [80, 273, 274] use unsupervised pattern clustering,
realized by way of hypercube fuzzy sets. The hypercube contains all patterns,
and moreover defines a membership region in n-dimensional pattern space.
The MIN-MAX points, together with the hyperplane membership functions
define a fuzzy set (cluster). Learning in a Fuzzy Min-Max (Cluster) neural
network corresponds to the creation and adaptation of hypercubes in pattern
space – in other words, a form of un-supervised clustering [80].

Other Fuzzy-Neuro systems are described in [39, 238, 327].

Evolution of Neurons/ANNs

Now rather than train ANNs, we could alternately evolve them. While this is
possible, it is often computationally prohibitive. What is more feasible how-
ever is to evolve the network architecture, rather than the weights, which was
the approach taken by [265] with his use of ‘blueprints’ (which describe the
number of nodes, starting with the input layer, together with their fan-in);
crossover occurs at common points in such blueprint representations. Other
researchers investigating the evolution of ANNs include [203, 232]. Cho com-
bined ANNs using GAs [52]. Chapter 20 of this Compendium examines this
topic in considerably more detail.

GAs and Fuzzy

We saw earlier that rather than fine tune fuzzy membership functions manu-
ally, we could alternatively learn these using an ANN; we could just as readily
evolve them using a GA/EA [152]. [80] describes just such a Fuzzy ES in
which the rule set is evolved using a GA. Conversely, the basic GA crossover
and mutation operations can be determined by reference to a fuzzy rule base
(lookup table). [179] take this approach a step further in their development
of an ontology-based genetic fuzzy agent.

There has been considerable activity in GA-Fuzzy hybrid systems, includ-
ing [18, 56, 86, 104,128,180,181,220,221,249,272,303].

Swarms and Fuzzy

[155] combined Particle Swarm Optimization and the Taguchi method for
identifying optimum fuzzy models in the control of a rapid Ni-Cd battery
charger. By contrast, [43] combined swarms and k-nearest neighbours.

48 J. Fulcher

Other Hybrid Approaches

In [280], fuzzy multivariate auto-regression is used to model multivariate time
series data, in particular interest rates and gas furnace measurements. [225]
combined three CI methods in their immunity-based, multi-agent ANNs.

13 Conclusion

We made the observation in the Introductory Section that CI encompasses
more than just intelligent agents – indeed, most researchers nowadays agree
on the core technologies of neural network, evolutionary and fuzzy logic. Duch
characterizes CI as incorporating “all non-algorithmic processes that humans
(and sometimes animals) can solve with various degrees of competence.” [78].
Will we see CI deliver where AI has failed during the past five decades?
Some researchers, including Duch, hold the view that the early activities of
AI were somewhat misguided – indeed, that the problems themselves were
ill-formed. For instance, Ford and Hayes argue that “the traditional view
of the goal of AI – create a machine that can successfully imitate human
behavior – is wrong.” [95]. Moreover, the claim that ‘all intelligence comes
from symbol manipulation’ [222,223] has been largely misinterpreted. Despite
this, McCarthy argues that one way out of this (self-inflicted?) mire could be
more formalism [202].

Brooks postulates the following as being possible explanations to the
rhetorical question ’What is going wrong?’ (namely with AI):

1. wrong parameter models,
2. working below some complexity threshold,
3. lack of computing power, and/or
4. we’re missing something fundamental and unimagined.

We had much to say earlier in this Chapter regarding model-driven versus
data-driven approaches (with CI belonging to the latter camp). Postulates 2
and 4 above would therefore appear to be most plausible.

According to Pollack, AI has stalled because of its preoccupation with sim-
ulating the human mind and/or mimicking human intelligence [246], coupled
with a fixation on symbolic [202, 222,223], rather than sub-symbolic process-
ing. Indeed, he makes the pertinent observation that Moore’s Law of itself (in
other words, raw computational power) should have been able to deliver us
with ‘real AI’ by now; likewise [29–32] pointed out that ‘massive parallelism
adds absolutely zero in terms of expressivity’, and by the way, casts doubt on
Brooks’ third postulate above. Instead, AI applications suffer from the pre-
vailing curse afflicting software generally nowadays, namely that of ‘software
bloat’ – by which we mean an increase in software quantity (size of programs)
quite unmatched by software quality! Pollack further observes that:

Computational Intelligence: An Introduction 49

“...many intelligent processes in Nature perform more powerfully than
human symbolic reasoning, even though they lack any of the mind-like
mechanisms long believed necessary for human ‘competence’.” [246]

Instead, he advocates the study of what he terms ‘mindless intelligence’,
citing the success of TD-Gammon [290] over both rule-based systems and human
backgammon players as being indicative of what can be achieved by following
such an approach. This is reminiscent of Brook’s subsumption architecture
[29,31,32]. Another potential advantage of mimicking such simple organisms –
even ones without a nervous system – is that we may also be able to produce
artificial systems which are likewise capable of self-repair.

As Hawkins rightly observes, it is clear the brain works in a very different
manner to digital computers [123]. In order to build intelligent machines we
therefore need to first understand how brains work, then attempt to repli-
cate them. In his case he has focused on the neocortex, which uses time and
hierarchy to create and perceive world models. He subsequently developed
the ‘Hierarchical Temporal Memory (HTM)’, which is said to learn in much
the same manner as children do – more specifically by exposure to sensory
data.17 Will this approach prove to be a more fruitful path to an ‘intelligent
machine’? More to the point, is this old chestnut an appropriate pursuit for
CI, or should we relegate this to the dustbin of history?

The present author advocates the use of CI techniques simply for their own
sake, and not as justification to continue tilting at windmills à la Don Quixote.
Should this lofty goal eventuate then all well and good; in the meantime, let’s
simply enjoy CI techniques for their own inherent interest (and beauty?). Let
Nature continue to inspire us now and into the future!

Acknowledgements

The author gratefully acknowledges the helpful feedback on earlier chapter
drafts from Professor Witold Pedrycz, Professor Tim Hendtlass (likewise for
the TSP figures), Associate Professor Russell Standish, Dr. Christine Mum-
ford, and especially the ‘think tanks’ undertaken with Professor Yoshi Ishida
whilst on sabbatical during October 2007 (on CI definitions and hybrid sys-
tems). The financial support of the Intelligent Systems Research Centre at
the University of Wollongong is also greatly appreciated. I would also like to
thank the Faculty of Informatics and School of Computer Science and Soft-
ware Engineering at the University of Wollongong for allowing me to take a
six-month sabbatical during Semester-2 of 2007 in order to collaborate with
contributing authors and to bring this Compendium to fruition.

17 http://www.www.numanta.com

50 J. Fulcher

References

1. Abe S (2005) Support Vector Machines for Pattern Classification. Springer-
Verlag, New York, NY.

2. Adelman L (1994) Computing with DNA. Scientific American, 279(2): 54–61.
3. Allen J (1998) AI growing up: the changes and opportunities. AI Magazine,

Winter: 32–45.
4. Amos M (2005) Theoretical and Experimental DNA Computation. Springer-

Verlag, Berlin.
5. Anderson JA, Rosenfeld E (eds.) (1988) Neurocomputing: Foundations of

Research. MIT Press, Cambridge, MA.
6. AOS (2002) JACK intelligent agents. Agent Oriented Software P/L (available

online at http://www.agent-software.com.au – last accessed November 2006).
7. Arotaritei D, Negoita GM (2002) Optimisation of recurrent NN by GA with

variable length genotype. In: McKay B, Slaney J (eds.) AI2002: Advances in
Artificial Intelligence. Springer-Verlag, Berlin.

8. Bagley JD (1967) The behavior of adaptive systems which employ genetic and
correlation algorithms. PhD Thesis, University of Michigan, Ann Arbor, MI.

9. Bai Q, Zhang M (2006) Coordinating agent interactions under open environ-
ments. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea
Group, Hershey, PA: 52–67.

10. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming,
An Introduction: On the Automatic Evolution of Computer Programs and its
Application. Morgan Kaufmann, San Francisco, CA.

11. Battiti R, Colla AM (1994) democracy in neural networks: voting schemes for
classification. Neural Networks, 7: 691–707.

12. Beale R, Pryke A (2006) Knowledge through evolution. In: Fulcher J (ed.)
Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 234–250.

13. Benitez JM, Blanco A, Delgado M, Requena I (1996) Neural methods for
obtaining fuzzy rules. Mathware Soft Computing, 3: 371–382

14. Bergenti F, Giezes M-P, Zambonelli F (2004) Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook. Springer-Verlag, Berlin.

15. Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, NY.

16. Bezdek JC (1994) What is computational intelligence? In: Zurada JM, Marks
II RJ, Robinson CJ (eds.) Computational Intelligence Imitating Life. IEEE
Press, Piscataway, NJ: 1–12.

17. Bezdek JC (1998) Computational intelligence defined – by everyone! In:
Kaynak O, Zadeh LA, Türksen B, Rudas IJ (eds.) Computational Intel-
ligence: Soft Computing and Fuzzy-Neuro Integration with Applications.
Springer-Verlag, Berlin: 10–37.

18. Bezdek JC, Hathaway RJ (1994) Optimization of fuzzy clustering criteria
using genetic algorithms. In: Proc. World Congress Computational Intelligence
(WCCI’94), June, Orlando, FL. IEEE Computer Society Press, Los Alamitos,
CA: 589–594.

19. Bigus JP, Bigus J, Bigus J (2001) Constructing Intelligent Agents Using Java
(2nd ed). Wiley, New York, NY.

20. Black M (1937) Vagueness: an exercise in logical analysis. Philosophy of
Science, 4: 427–455.

Computational Intelligence: An Introduction 51

21. Bonabeau E, Dorigo M, Theaulaz G (1999) Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, UK.

22. Botros NM, Abdul-Aziz M (1994) Hardware implementation of an ANN using
field programmable gate arrays (FPGAs). IEEE Trans. Industrial Electronics,
41(6): 665–667.

23. Boukerche A, Jucá KRL, Sobral JB, Notare MSMA (2004) An artificial immune
based intrusion detection model for computer and telecommunication systems.
Parallel Computing, 30(5–6): 629–646.

24. Breiman L, Friedman J, Olshe R, Stone CJ (1984) Classification and Regression
Trees. Chapman and Hall, New York, NY.

25. Breiman L (1996) Bagging predictors. Machine Learning, 26(2): 123–140.
26. Breiman L (1999) Combining predictors. In: Sharkey AJC (ed.) Combin-

ing Artificial Neural Networks: Ensemble and Modular Multi-Net Systems.
Springer-Verlag, Berlin: 31–50.

27. Brewka G (1997) Principles of Knowledge Representation. CSLI Publications,
Stanford, CA.

28. Brill R, Guiterrez-Osuna, Quek F (2003) Attribute bagging: improving
accuracy of classifier ensembles by using random feature subsets. Pattern
recognition, 36(6): 1291–1302.

29. Brooks RA (1986) A robot layered control system for a mobile robot. IEEE J.
Robotics and Automation, RA-2: 14–23.

30. Brooks RA (1991) Intelligence without representation. Artificial Intelligence,
47(1–3): 139–159.

31. Brooks RA (1991) Intelligence without reason. In: Proc. 12th Intl. Joint. Conf.
Artificial Intelligence – IJCAI. August, Sydney, Australia: 569–595.

32. Brooks RA (1991) How to build complete creatures rather than isolated cogni-
tive simulators. In: van Lehn K (ed.) Architectures for Intelligence. Lawrence
Erlbaum Associates, Hillsdale, NJ: 225–239.

33. Brooks RA, Kurzweil R, Gelernter D (2006) Gelernter, Kurzweil debate
machine consciousness. (available online at http://www.kurzweilai.net/meme/
frame.html?m=4 – last accessed April 2007).

34. Brooks RA (2007) The relaitonship between matter and life. Nature, 409(6818):
409–410.

35. Brooks RR, Ivengar SS (1997) Multi-Sensor Fusion: Fundamentals and
Applications with Software. Prentice Hall, Upper Saddle River, NJ.

36. Brown M, Harris CJ (1994) Neuro-fuzzy Adaptive Modeling and Control.
Prentice Hall, Englewood Cliffs, NJ.

37. Bryson AE, Ho Y-C (1969) Applied Optimal Control. Blaisdell, New York, NY.
38. Byrski A, Kisiel-Dorohinicki M (2005) Immune-based optimization of predict-

ing neural networks. In: Sunderam VS et al. (eds.) Proc. Workshop Intelligent
Agents in Computing Systems – ICCS 2005, 22–25 May, Atlanta, GA, Lecture
Notes in Computer Science 3516. Springer-Verlag, Berlin.

39. Calado JMF, Ss da Costa JMG (1999) An expert system coupled with a
hierarchical structure of fuzzy nerual networks for fault diagnosis. J. Applied
Mathematics and Computer Science, 3(9): 667–688.

40. Carpenter GA, Grossberg SA (1987) A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics,
and Image Understanding, 37: 54–115.

41. Carpenter GA, Grossberg SA (1987) ART2: self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26(23): 4919–4930.

52 J. Fulcher

42. Castellano G, Castiello C, Fanelli AM, Mencar C (2003) Discovery prediction
rules by a neuro-fuzzy modeling framework. In: Palade V, Howlett JR, Jain
LC (eds.) Knowledge-Based Intelligent Information and Engineering Systems.
Springer-Verlag, Berlin, 2: 1243–1248.

43. Cedeño W, Agrafiotis DK (2003) Combining particle swarms and k-nearest
neighbors for the development of qualitative structure-activity relationships.
Bicom Magazine: 43–53.

44. Chalmers DJ (1997) Moving forward on the problem of consciousness.
Consciousness Studies, 4(1): 3–46.

45. Chalmers DJ (1998) On the Search for the Neural Correlate of Concsiousness.
MIT Press, Cambridge, MA.

46. Chen K, Wang L, Chi H (1997) Methods of combining multiple classifiers
with different features and their application to text-independent speaker
identification. Intl. J. Pattern Recognition and Artificial Intelligence, 11(3):
417–445.

47. Chen Z (2000) Computational Intelligence for Decision Support. CRC Press,
Boca Raton, FL.

48. Chimmanee S, Wipusitwarakun K, Runggeratigul S (2003) Adaptive per-
application load balancing with neuron-fuzzy to support quality of service over
IP in the internet. In: Palade V, Howlett JR, Jain LC (eds.) Knowledge-Based
Intelligent Information and Engineering Systems. Springer-Verlag, Berlin, I:
533–541.

49. Cho S-B, Kim JH (1995) Pattern recognition with neural networks combined
by genetic algorithm. Fuzzy Sets and Systems, 103: 339–347.

50. Cho S-B, Kim JH (1995) Combining multiple neural networks by fuzzy integral
and robust classification. IEEE Trans. Systems, Man, and Cybernetics, 25:
380–384.

51. Cho S-B, Kim JH (1995) Multiple network fusion using fuzzy logic. IEEE
Trans. Neural Networks, 6: 497–501.

52. Cho S-B (1999) Pattern recognition with neural networks combined by genetic
algorithm. Fuzzy Sets and Systems, 103: 339–347.

53. Ciancarini P, Wooldridge MJ (eds.) (2000) Agent-oriented software engineer-
ing. In: Proc. 1st Intl. AOSE Workshop, June, Limerick, Ireland, Lecture Notes
in Computer Science 1957, Springer-Verlag, Berlin.

54. Cohon JL (2004) Multiobjective Programming and Planning. Dover
Publications, Mineola, NY.

55. Conrad M (1989) The brain-machine disanalogy. Biosystems, 22(3): 197–213.
56. Cordon O, Herrera F, Lozano P (1997) On the combination of fuzy logic and

evolutionary computation: a short review and bibliography. In: Pedrycz W
(ed.) Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Boston,
MA: 41–42.

57. Cox E (1994) The Fuzzy System Handbook. AP Professional Books, Boston,
MA.

58. Crox T (2007) Stop cahsing the AI illusion. Communications ACM, 50(4): 7–8.
59. Cybenko G (1989) Approximation by superposition of a sigmoidal function.

Math Control, Signals, Systems, 2: 303–314.
60. Dasarthy BV (1997) Sensor fusion potential exploitation – innovative

architectures and illustrative applications. Proc. IEEE, 85: 24–38.

Computational Intelligence: An Introduction 53

61. Dasgupta D, Attoh-Okine N (1997) Immunity-based systems: a survey. In:
Proc. IEEE Intl. Conf. Systems, Man and Cybernetics. Orlando, FL. IEEE
Computer Society Press, Los Almotis, CA: 326–331.

62. Davis L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, NY.

63. Deasy H (2007) Consciousness and computers. IEEE Computer, 40(10): 7.
64. DeJong KA (1975) An analysis of the behavior of a class of genetic adaptive

systems. PhD Thesis, University of Michigan, Ann Arbor, MI.
65. DeJong KA (2006) Evolutionary Computation: A Unified Approach.

Bradford/MIT Press, Cambridge, MA.
66. Demirekler M, Altincay H (2002) Pluraity voting-based multiple classifier

systems: statistically independent with respect to dependent classifier sets.
Pattern Recognition, 35: 2363–2379.

67. Dennett D (1991) Consciousness Explained. Little, Brown and Co.,
Lebanon, IN.

68. Deschamps JP, Bioul GJA, Sutter GO (2006) Synthesis of Arithmetic Circuits:
FPGAs, ASIC and Enbedded Systems. Wiley, New York, NY.

69. Dietterich T (2000) An experimental comparison of three methods for con-
structing ensembles of decision trees: bagging, boosting, and randimization.
Machine Learning, 40(2): 139–157.

70. Dongarra J, Foster I, Fox GC, Gropp W, Kennedy K, Torczon L White
A (2003) The Sourcebook of Parallel Computing. Morgan Kauffman, San
Francisco, CA.

71. Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press,
Cambridge, MA.

72. Dowling C (2000) Intelligent agents: some ethical issues and dilemmas. In: Proc.
Australian Institute Conf. Computer Ethics – AICE2000, Canberra, 11–12
November, Australian Computer Society, Darlinghurst, NSW: 28–32.

73. Dreyfus H, Dreyfus S (1986) Why expert systems do not exhibit expertise.
IEEE Expert, 1(2): 86–90.

74. Drucker H, Schapire RE, Simard P (1992) Improving performance in neu-
ral networks using a boosting algorithm. In: Hanson SJ et al. Advances in
Neural Information Processing Systems 5, 30 November–3 December, Morgan
Kauffman, San Mateo, CA: 42–49.

75. Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V (1994) Boosting and
other ensemble methods. Neural Computation, 6: 1289–1301.

76. Drucker H (1999) Boosting using neural networks. In: Sharkey AJC (ed.) Com-
bining Artificial Neural Networks: Ensemble and Modular Multi-Net Systems.
Springer-Verlag, Berlin.

77. Dubois D, Prade H (1980) Fuzzy Sets and Systems: Theory and Applications.
Academic Press, New York, NY.

78. Duch W (2007) What is computational intelligence and where is it going?
In: Duch W, Mandziuk J (eds.) Challenges for Computational Intelligence.
Springer-Verlag, Berlin.

79. Durkin J (1994) Expert Systems: Design and Development. Macmillan, New
York, NY.

80. Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

54 J. Fulcher

81. Enbutsu I, Baba K, Hara N (1991) Fuzzy rule extraction from a multilayered
network. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN’91), 8–12 July,
Seattle, WA. IEEE Computer Society Press, Los Alamitos, CA: 461–465.

82. Engelbrecht AP (2003) Computational Intelligence: An Introduction. Wiley,
New York, NY.

83. Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, New York, NY.

84. Fahlman SE, Lebiere C (1990) The cascade learning learning architecture.
In: Touretzky DS (ed.) Advances in Neural Information Processing Systems.
Morgan Kaufmann, San Mateo, CA: 524–532.

85. Falconer K (2003) Fractal Geometry: Mathematical Foundations and
Applications. Wiley, New York, NY.

86. Fagarasan F, Negoita GM (1995) A genetic-based method for learning the
parameter of a fuzzy inference system. In: Kasabov N, Coghill G (eds.) Artifi-
cial Neural Networks and Expert Systems. IEEE Computer Society Press, Los
Alamitos, CA: 223–226.

87. Farmer JD, Packard NH, Perelson AS (1986) The immune systems: adaptation
and machine learning. Physica A, 22: 187–204.

88. Fensel D, Hermalen F, Horrocks I, McGuinness D, Patel-Schneider P (2001)
OIL: an ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2): 38–45.

89. Ferber J (1999) Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley, Reading, MA.

90. Finin T, Labrou Y, Mayfield J (1997) KQML as an agent communication
language. In: Bradshaw JM (ed.) Software Agents MIT Press, Cambridge, MA.

91. Fisher R, Fulcher J (1998) Inproving the inversion of ionograms by com-
bining neural network and data fusion techniques. Neural Computing and
Applications, 7: 3–16.

92. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY

93. Fogel D (1995) Review of CI: Imitating Life, In: IEEE Trans. Neural Networks,
6: 1562–1565.

94. Fogel LJ (1995) Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ.

95. Ford K, Hayes P (1998) On computational wings: rethinking the goals of AI.
Scientific American, 9/4: 78–84.

96. Fraser AS (1957) Simulation of genetic systems by automatic digital computers.
Australian J. Biological Science, 10: 484–499.

97. Fraser AS (1960) Simulation of genetic systems by automatic digital computers.
In: Kempthorne O (ed.) Biometrical Genetics. Macmillan, New York, NY:
70–83.

98. Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag, Berlin.

99. Freund Y, Scahapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. J. Computer and System Sciences,
55(1): 119–139.

100. Friedberg RM (1958) A learning machine: part I. IBM J. Research and
Development, 2: 2–13.

101. Friedberg RM, Dunham B, North JH (1959) A learning machine: Part II. IBM
J. Research and Development, 3: 282–287.

Computational Intelligence: An Introduction 55

102. Fulcher J (2008) User interfaces. In: Pagani M (ed.) Encyclopedia of Multimedia
Technology (2nd ed). Information Sciences Reference, Hershey, PA (in press).

103. Fuller R (1999) Introduction to Neuro-Fuzzy Systems. Springer-Verlag, Berlin.
104. Furuhashi T, Nakaoka K, Uchikawa Y (1994) A new approach to genetic based

machine learning and an efficient finding of fuzzy rules: proposal of Nagoya
approach In: Proc. IEEE/Nagoya University World Wisepersons Workshop on
Advances in Fuzzy Logic, Neural Networks, and Genetic Algorithms, Lecture
Notes in Computer Science 1011, Springer-Verlag, Berlin: 173–189.

105. Gallagher JC, Virraham S, Kramer G (2004) A family of compact genetic
algorithms for intrinsic evolvable hardware. IEEE Trans. Evolutionary Com-
putation, 8(2): 111–126.

106. Georgeff M, et al. (1999) The belief-desire-intention model of agents. In: Müller
JP, Singh MP, Rao AS (eds.) Proc. 5th Intl. Workshop Intelligent Agents V,
Agent Theories, Architectures, and Languages (ATAL-98). Lecture Notes in
Computer Science 1555. Springer-Verlag, Berlin: 1–10.

107. Georgeff M, Azarmi N (2003) What has AI done for us? BT Technology J.,
21(4): 15–22.

108. Giacinto G, Roli F, Didaci L (2003) Fusion of multiple classifier for intrusion
detection in computer networks. Pattern Recognition Letters, 24: 1795–1803.

109. Giarratano JC, Riley G (2005) Expert Systems: Principles and Programming
(4th ed). Thomson, Boston, MA.

110. Girau B (2000) FPNA: interaction between FPGA and neural computation.
Intl. J. Neural Systems, 10(3): 243–259.

111. Ghosh J (2002) Multiclassifier systems: back to the future. In: Roli F, Kittler J
(eds.) Proc. 3rd Intl. Workshop Multiple Classifier Systems (MCS’02), Cagliari,
Italy. Lecture Notes in Computer Science 2364, Springer-Verlag, Berlin: 1–15.

112. Gladwell M (2005) Blink: The Power of Thinking without Thinking. Little,
Brown and Co., Lebanon, IN.

113. Gokhale MB, Graham PS (2005) Reconfigurable Computing: Computation with
Field-Programmable Gate Arrays. Springer-Verlag, Berlin.

114. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA.

115. Grama A, Karypis G, Kumar V, Gupta A (2003) An Introduction to Paral-
lel Computing: Design and Analysis of Algorithms (2nd ed). Addison Wesley,
Reading, MA.

116. Greffenstette JJ (1984) A user’s guide to GENESIS. Technical Report CS-84-
11, Deptartment of Computer Science, Vanderbilt University, Nashville, TN.

117. Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc.
IEEE, 85(1): 6–23.

118. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(10): 993–1001.

119. Hart WE, Krasnogor N, Smith JE (eds.) (2005) Recent Advances in Memetic
Algorithms. Springer-Verlag, Berlin.

120. Hashem S (1997) Optimal linear combinations of neural networks. Neural
Networks, 10(4): 599–614.

121. Hassibi B, Stork DG, Wolff GJ (1992) Optimal brain surgeon and general
network pruning. In: Proc. IEEE Intl. Joint Conf. Neural Networks I, San
Francisco, CA. IEEE Computer Society Press, Piscataway, NJ: 293–299.

122. Haupt RL, Haupt SE (2004) Practical Genetic Algorithms. Wiley, New York,
NY.

56 J. Fulcher

123. Hawkins J (2007) Learn like a human: why can’t a computer be more like a
brain? IEEE Spectrum, 44(4): 17–22.

124. Haykin SY (1999) Neural Networks: a Comprehensive Foundation (2nd ed).
Prentice Hall, Englewood Cliffs, NJ

125. Hearst M, Hirsh H (2000) AIs greatest trends and controversies. IEEE
Intelligent Systems, January/February: 8–17.

126. Hebb DO (1949) The Organization of Behavior. Wiley, New York, NY
127. Hendtlass T (2004) An introduction to collective intelligence. In: Fulcher J,

Jain LC (eds.) Applied Intelligent Systems: New Directions. Springer-Verlag,
Berlin: 133–178.

128. Herrera F, Lozano M, Verdegay IL (1993) Tuning fuzzy logic controllers by
genetic algorithms. Technical Report DECSai–93102, June, Universidad de
Granada, Spain.

129. Higuchi T, et al. (1999) Real-world applications of analog and digital evolvable
hardware. IEEE Trans. Evolutionary Computation, 3(3): 220–235.

130. Hinchey MG, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. IEEE
Computer, 40(4): 111–113.

131. Hinton GE, Anderson JA (1981) Parallel Models of Associative Memory.
Lawrence Erblaum Associates, Potomac, MD.

132. Hirai Y (1993) Hardware implementations of neural networks in Japan.
Neurocomputing, 5: 3–16.

133. Hirota K (1995) History of Industrial Applications of Fuzzy Logic in Japan. In:
Yen J, Langari R, Zadeh L (eds.) Industrial Applications of Fuzzy Logic and
Intelligent Systems. IEEE Press, Piscataway, NJ: Chapter 2.

134. Ho TK (2002) Multiple classifier combination: lessons and the next steps.
In: Kandel A, Bunke H (eds.) Hybrid Methods in Pattern Recognition. World
Scientific, Singapore: 171–198.

135. Holland JH (1962) Outline for a logical theory of adaptive systems. J. ACM,
3: 297–314.

136. Holland JJ (1992) Adaptation in Natural and Artificial Systems (2nd ed). MIT
Press, Cambridge, MA.

137. Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those in two-state neurons. Proc. National Academy Science, 81:
3088–3092.

138. Hornik K (1991) Approximation capabilities of multi-layer feed-forward
networks. Neural Networks, 4: 2151–2157.

139. Ignizio J (1991) Introduction to Expert Systems. McGraw-Hill, New York, NY.
140. Inuiguchi M, Hirano S, Tsumoto S (eds.) (2003) Rough Set Theory and

Granular Computing. Springer-Verlag, Berlin.
141. Ishida Y (2004) Immunity-Based Systems: A Design Perspective. Springer-

Verlag, Berlin.
142. Jackson P (1999) Introduction to Expert Systems (3rd ed). Addison Wesley,

Reading, MA.
143. Jacobs RA (1988) Increased rates of convergence through learning rate

adaptation. Neural Networks, 1: 295–307.
144. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixture of

local experts. Neural Computation, 3: 79–87.
145. Jang J-S R, Sun C-T, Mizutani E (1997) Neuro-Fuzzy and Soft Computing: a

Computational Approach to Learning and Machine Intelligence. Prentice Hall,
Englewood Cliffs, Upper Saddle River, NJ.

Computational Intelligence: An Introduction 57

146. Jennings NR, Faratin P, Norman TJ (2000) On agent-oriented software
engineering. Artificial Intelligence, 117(2): 277–296.

147. Jensen FV (2001) Bayesian Networks and Decision Graphs. Springer-Verlag,
Berlin.

148. Jin Y (ed.) (2006) Multi-Objective Machine Learning. Springer-Verlag, Berlin.
149. Jordan MI, Jacobs RA (1994) Hierarchical mixture of experts and the EM

algorithm. Neural Computation, 6(2): 181–214.
150. Judd JS (1990) Neural Network Design and the Complexity of Learning. MIT

Press, Cambridge, MA.
151. Karplus W (1998) cited in: Kaynak O, Zadeh LA, Türksen B, Rudas IJ (eds.)

Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with
Applications. Springer-Verlag, Berlin.

152. Karr C (1991) Applying genetics to fuzzy logic. AI Expert, 6(3): 38–43.
153. Kasabov N (1996) Learning fuzzy rules and approximate reasoning in fuzzy

neural networks and hybrid systems. Fuzzy Sets and Systems, 82: 135–149.
154. Kennedy J, Eberhart RC, Yuhui S, Shi Y (2001) Swarm Intelligence. Morgan

Kaufmann, San Francisco, CA.
155. Khosla A, Kumar S, Aggarwal KK (2006) Swarm intelligence and the Taguchi

method for identification of fuzzy models. In: Fulcher J (ed.) Advances in
Applied Artificial Intelligence. Idea Group, Hershey, PA: 273–295.

156. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE
Trans. Pattern Analysis and Machine Intelligence, 20(3): 226–239.

157. Klein LA (2004) Sensor and Data Fusion: A Tool for Information and Decision
Making. Intl. Society for Optical Engineering (SPIE), Bellingham, WA.

158. Knowles J, Corne D (2004) Memetic algorithms for multiobjective optimiza-
tion: issues, methods and prospects. In: Krasnogor N, Smith JE, Hart WE
(eds.) Recent Advances in Memetic Algorithms. Springer-Verlag, Berlin.

159. Kohonen T (1986) Learning vector quantization for pattern recognition.
Technical Report TKK-F-A601, Helsinski University of Technology, Finland.

160. Kohonen T (2001) Self-Organization and Associative Memory (3rd ed).
Springer-Verlag, Berlin.

161. Korb KB (2004) Bayesian Artificial Intelligence. CRC Press, Boca Raton, FL.
162. Kosko B (1992) Neural Networks and Fuzzy Systems: a Dynamical Approach

to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.
163. Koza J (1992) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA.
164. Koza J (1995) Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, Cambridge, MA.
165. Koza J (1999) Genetic Programming III: Darwinian Inventions and Problem

Solving. Morgan Kaufmann, San Mateo, CA.
166. Kuncheva LI (2003) ”Fuzzy” vs ”non-fuzzy” in combining classifiers designed

by boosting. IEEE Trans. Fuzzy Systems, 11: 729–741.
167. Kuncheva LI, Jain LC (2000) Designing classifier fusion systems by genetic

algorithms. IEEE Trans. Evolutionary Computation, 4(4): 327–336.
168. Kuncheva LI, Whitaker CJ, Shipp CA, Duin RPW (2003) Limits on the major-

ity vote accuracy in classifier fusion. Pattern Analysis and Applications, 6:
22–31.

169. Kuncheva LI (2004) Combining Pattern Classifiers: Methods and Algorithms.
Wiley, New York, NY.

58 J. Fulcher

170. Kung SY, Mak MW, Lin SH (2004) Biometric Authentication: A Machine
Learning Approach. Prentice Hall, Upper Saddle River, NJ.

171. Kurzweil R (1999) The Age of Spiritual Machines: When Computers Exceed
Human Intelligence. Penguin, New York, NY.

172. Lam L (2000) Classifier combinations: implementations and theoretical issues.
In: Kittler J, Roli F (eds.) Multiple Classifier Systems. Lecture Notes in
Computer Science 1857, Springer-Verlag, Berlin: 78–86.

173. Lam L, Suen CY (1995) Optimal combination of pattern classifiers. Pattern
Recognition Letters, 16: 945–954.

174. Lam L, Suen CY (1997) Application of majority voting to pattern recognition:
an analysis of its behavior and performance. IEEE Trans. Systems, Man, and
Cybernetics, 27(5): 553–568.

175. Langdon WB (1998) Data Structures and Genetic Programming: GP + Data
Structures = Automatic Programming! Kluwer Academic Press, Boston, MA.

176. Langton CG (1984) Self-reproduction in cellular automata. Physica D, 10: 1–2.
177. Lanier J (1995) Agents of Alienation. Interactions, 2(3): 67–72.
178. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in

NIPS 2, Morgan Kauffman, San Mateo, CA: 598–605.
179. Lee CS, Jian CC, Hsieh TC (2005) Ontology-based genetic fuzzy agent. In:

Proc. IEEE Intl. Fuzzy Systems Conf., Reno, NV, 22-25 May: 331–335.
180. Lee MA, Takagi H (1993) Integrating design stages of fuzzy systems using

genetic algorithms. In: Proc. 2nd IEEE Intl. Conf. Fuzzy Systems (FUZZ-
IEEE’93), 28 March–1 April, San Francisco, CA. IEEE Computer Society
Press, Los Alamitos, CA. 1: 612–617.

181. Lee MA, Esbensen H (1997) Fuzzy/multiobjective genetic systems for intel-
ligent design tools and components. In: Pedrycz W (ed.) Fuzzy Evolutionary
Computation. Kluwer Academic Publishers, Boston, MA: 57–81.

182. Leshno M, Lin V, Pinkus A, Schoken S (1993) Multi-layer feed-forward new-
torks with a non-polynomial activation function can approximtae any function.
Neural Networks, 6: 861–867.

183. Lesser V (1995) Multiagent systems: an emerging subdiscipline of AI. ACM
Computing Surveys, 27(3): 340–342.

184. Leung SC, Fulcher J (1997) Classification of user expertise level by neural
networks. Intl. J. Neural Systems, 8(2): 155–171.

185. Levy S (1997) Artificial Life: A Report From the Frontier Where Computers
Meet Biology. Vintage Books, New York, NY.

186. Lighthill J (1972) Artificial intelligence: a general survey. Scientific Research
Council of Britain. March, SRC: 72–27.

187. Lin C-T, Lee CSG (1991) Neural network based fuzzy logic control and decision
system. IEEE Trans. Computers, 40(12): 1320–1336.

188. Lin X, Yacoub S, Burns J, Simske S (2003) Performance analysis of pattern
classifier combination by plurality voting. Pattern Recognition Letters, 24(12):
1795–1969.

189. Lin YT, Cercone N (1997) Rough Sets and Data Mining: Analysis of Imprecise
Data. Kluwer Academic Publishers, New York, NY.

190. Lin YT (1999) Granular computing: fuzzy logic and rough sets. In: Zadeh LA,
Kacprzyk J (eds.) Computing with Words in Information/Intelligent Systems.
Springer-Verlag, Berlin.

191. Liu J, Tsui KC (2006) Toward Nature-inspired computing. Communications
ACM, 49(10): 59–64.

Computational Intelligence: An Introduction 59

192. Lohn ID, Reggia JA (1997) Automatic discovery of self-replicating structures
in cellular automata. IEEE Trans. Evolutionary Computation, 1(3): 165–178.

193. Lohn JD, Hornby GS (2006) Evolvable hardware: using evolutionary com-
putation to design and optimize hardware systems. IEEE Computational
Intelligence Magazine, 1(1): 19–27.

194. Lucas P, van der Gaag L (1991) Principles of Expert Systems. Addison Wesley,
Reading, MA.

195. Lukasiewicz J (1963) Elements of Mathematical Logic. Macmillan, New
York, NY.

196. Maass W, Bishop CM (eds.) (1999) Pulsed Neural Networks. Bradford/MIT
Press, Cambridge, MA.

197. Mahmoud Q, Yu L (2006) Making software agents user-friendly. IEEE
Computer, 39(7): 94–96.

198. Mallat S (1999) A Wavelet Tour of Signal Processing. Academic Press,
Boston, MA.

199. Mamdani E, Assilian S (1975) An experiment in linguistic synthesis with a
fuzzy logic controller. Intl. J. Man-Machine Studies, 7(1): 1–13.

200. Mandelbrot BB (1985) The Fractal Geometry of Nature: Updated and
Augmented. WH Freeman, New York, NY.

201. Mange D, Tomassin M (1998) Bio-Inspired Computing Machines. Presses
Polytechniques et Universitaries Romandes, Laussanne, Switzerland.

202. McCarthy J (2005) The future of AI: a manifesto. AI Magazine, 26: 39–40.
203. McCullagh J, Choi B, Bluff K (1997) Genetic evolution of a neural network’s

input vector for meteorological estimation. In: Kasabov N, Kozma R, Ko
K, Coghill G, Gedeon T (eds.) Progress in Connectionist-Based Information
Systems. Springer-Verlag, Berlin: 1046–1049.

204. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in
nervous activity. Bulletin Mathematical Physics, 5: 115–117.

205. McNeill D, Thro E (1994) Fuzzy Logic: A Practical Approach. Academic Press,
Boston, MA.

206. Mead C (1989) Analog VLSI and Neural Systems. Addison Wesley,
Reading, MA.

207. Michalewicz Z, Fogel DB (2000) How to Solve It: Modern Hueristics. Springer-
Verlag, Berlin.

208. Miller DJ, Yan L (1999) Critic-driven ensemble classification. IEEE Trans.
Signal Processing, 47(10): 2833–2844.

209. Minsky M, Papert S (1969) Perceptrons (2nd ed). MIT Press, Cambridge, MA.
210. Nardi BA, Miller JR, Wright DJ (1998) Collaborative, Programmable

Intelligent Agents. Communications ACM, 41(3): 96–104.
211. Naur P (2007) Computing versus human thinking. Communicaitons ACM,

50(1): 85–93.
212. Neagu C-D (2000) Toxicity prediction using assemblies of hybrid fuzzy neural

models. In: Proc. 6th Intl. Conf. Knowledge-Based Intelligent and Engineering
Systems (KES2002), 16–18 September, Milan, Italy. IOS Press, Amsterdam,
The Netherlands: 1093–1098.

213. Neagu C-D, Gini G (2003) Neuro-fuzzy knowledge integration applied in tox-
icity prediciton. In: Jain R, Abraham A, Faucher C, ven der Zwaag BJ (eds.)
Innovations in Knowledge Engineering. Advanced Knowledge International,
Magill, South Australia: 311–342.

60 J. Fulcher

214. Neagu C-D, Palade V (1999) Fuzzy computing in a multi-purpose neural net-
work implementation. In: Reusch B (ed.) Computational Intelligence: Theory
and Applications. Lecture Notes in Computer Science 1625, Springer-Verlag,
Berlin: 697–700.

215. Neagu C-D, Palade V (2003) A neuro-fuzzy approach for functional genomics
data interpretation and analysis. J. Neural Computing and Applications.
12(3-4): 153–159.

216. Neapolitan RE (2003) Learning Bayesian Networks. Prentice Hall, Englewood
Cliffs, NJ.

217. Nedjah N, Alba E, Mourelle LdM (2006) Parallel Evolutionary Computations.
Springer-Verlag, Berlin.

218. Negnevitsky M (2005) Artificial Intelligence: A Guide to Intelligent Systems
(2nd ed). Prentice Hall, Englewood Cliffs, NJ.

219. Negoita MG, Neagu D, Palade V (2005) Computational Intelligence:
Engineering of Hybrid Systems. Springer-Verlag, Berlin.

220. Negoita M, Agapie A, Fagarasan F (1994) The fusion of genetic algorithms and
fuzzy logic: Application in expert systems and intelligent control. In: Proc.
IEEE/Nagoya University WWW Conf. Fuzzy Logic and Neural Networks/
Genetic Algorithms, August, Nagoya, Japan. IEEE Computer Scoiety Press,
Alamitos, CA: 130–133.

221. Negoita M, Mihaila D (1995) Intelligent techniques based on genetic evolution
with applications to neural networks weights optimization. In: Proc. 14th Intl.
Congress Cybernetics, 21–25 August, Namur, Belgium. Intl. Association for
Cybernetics, Namur, Belgium.

222. Newell A, Simon HA (1976) Computer Science as empirical enquiry: symbols
and search. Communications ACM, 19(3): 113–126.

223. Newell A (1990) Unified Theories of Cognition. Harvard University Press,
Cambridge, MA.

224. Nowlan SJ, Hinto GE (1991) Evaluation of adaptive mixtures of competing
experts. In: Lippmann RP, Moody JE, Touretzky DS (eds.) Advances in Neu-
ral Information Processing Systems 3. Morgan Kauffman, San Mateo, CA:
774–780.

225. Oeda S, Ichimura T, Yamashita T, Yoshida K (2003) A proposal of
immune multi-agent neural networks and its applicaiton to medical diag-
nostic system for hepatobiliary disorders. In: Palade V, Howlett JR, Jain
LC (eds.) Knowledge-Based Intelligent Engineering Information Systems.
Sprigner-Verlag, New York, NY, II: 526–532.

226. Omondi AR, Rajapakse JC (eds.) (2006) FPGA Implementations of Neural
Networks. Springer-Verlag, Dordrecht, The Netherlands.

227. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J.
AI Research, 11: 169–198.

228. Ott E (2002) Chaos in Dynamical Systems. Cambridge University Press, UK.
229. Padgham L, Winikoff M (2004) Developing Intelligent Agent Systems: A

Practical Guide. Wiley, New York, NY.
230. Pagliosa A, de Sá CC, Sasse FD (2005) Obtaining membership functions from

a neuron fuzzy system extended by Kohonen network. In: Nakamatsu K, Abe
JM (eds.) Advances in Logic Based Inteligent Systems (Selected Papers of
LAPTEC’2005). IOS Press, Amsterdam, The Netherlands: 42–49.

231. Pal SK, Shiu S (2004) Foundations of Soft Computer-Based Reasoning. Wiley,
Hoboken, NJ.

Computational Intelligence: An Introduction 61

232. Palade V, Negoita M, Ariton V (1999) Genetic algorithms optimization of
knowledge extraction from nerual networks. In: Proc. 6th Intl. Conf. Neu-
ral Information Processing (ICONIP’99), November, Perth, Australia. IEEE
Computer Society Press, Los Almatios, CA: 752–758.

233. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis
of an industrial gas turbine using neurao-fuzzy methods. In: Proc. 15th Intl.
IFAC World Congress, 21–26 July, Barcelona, Spain. Federation for Automatic
Control: 2477–2482.

234. Papert S (1980) Mindstorms. Basic Books, New York, NY.
235. Parker DB (1985) Learning logic. Technical Report TR-47, Centre for

Computational Research in Economics and Management Science, MIT.
236. Paun G (2002) Membrane Computing: An Introduction. Springer-Verlag,

Berlin.
237. Pawlak Z (1991) Rough Sets: Theoretical Aspects of Reasoning About Data.

Kluwer, Dordrecht, The Netherlands.
238. Pedrycz W (1993) Fuzzy neural networks and neurocomputations. Fuzzy Sets

and Systems, 56: 1–28.
239. Pedrycz W (1997) Computational Intelligence: An Introduction. CRC Press,

Boca Raton, FL.
240. Pedrycz W (1999) Computational Intelligence: an introduction. In: Szczepaniak

PS (ed.) Computational Intelligence and Applications. Physica-Verlag, Berlin:
3–17.

241. Pellerin D, Thibault S (2005) Practical FPGA Programming in C. Prentice
Hall, Engelwood Cliffs, NJ.

242. Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis.
Cambridge University Press, UK.

243. Perrone MP, Cooper LN (1993) When networks disagree: Ensemble methods
for neural networks. In: Mammone RJ (ed.) Artificial Neural Networks for
Speech and Vision. Chapman and Hall, New York, NY: 126–142.

244. Pfeifer R, Bongard J (2007) How the Body Shapes the Way We Think: A New
View of Artificial Intelligence. MIT Press, Cambridge, MA.

245. Pinker S (2001) How the mind works. (available online at http://www.
kurzweilai.net/meme/frame.html?m=4 – last accessed April 2007).

246. Pollack JB (2006) Mindless intelligence. IEEE Intelligent Systems, 21(3):
50–56.

247. Poole D, Mackworth A, Goebel R (1998) Computational Intelligence – A
Logical Approach. Oxford University Press, New York, NY.

248. Powell MJD (1985) Radial basis funcitons for multivariate interpolation: a
review. In: Proc. IMA Conf. Algorithms for the Approximaiton of Functions
and Data, RMCS, Shrivenham, UK: 143–167.

249. Pritchard D, Negoita G (2006) A fuzzy – GA hybrid technique for optimisation
of teaching sequences presented in ITSs. In: Reusch B (ed.) Computa-
tional Intelligence, Theory and Applications (Proc. 8th Fuzzy Days Conf.),
29 September–1 October, Dortmund, Germany. Lecture Notes in Computer
Science 3505, Springer-Verlag, Berlin: 311–316.

250. Quinlan JR (1986) Induction of decision trees. Machine Learning, 1(1): 81–106.
251. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann,

San Francisco, CA.
252. Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proc. AAAI’96, Portland,

OR. AAAI Press, Menlo Park, CA: 725–730.

62 J. Fulcher

253. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag,
Stuttgart, Germany.

254. Rechenberg I (1994) Evolution strategy. In: Zurada J, Marks II RJ,
Robinson C (eds.) Computational Intelligence – Imitating Life. IEEE Press,
Piscataway, NJ.

255. Reidmiller M, Braub H (1992) RPROP: a fast adaptive learning algorithm, In:
Proc. Intl. Symp. Computer and Information Sciences, November, Antalya,
Turkey: 279–285. (ISCIS-VII)

256. Rieffel EG, Polak W (2000) Quantum computing for non-Physicists. ACM
Computing Surveys, 32(3): 300–335.

257. Rosenblatt F (1958) The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65: 386–408.

258. Rosenblatt F (1962) The Principles of Neurodynamics. Spartan Books,
Washington, DC.

259. Ruckert U (2002) ULSI architectures for ANNs. IEEE Micro, May-June: 10–19.
260. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by

backpropagating errors. In: Rumelhart DE, McClelland JL (eds.) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition I. MIT
Press, Cambridge, MA.

261. Russell S, Norvig P (2001) Artificial Intleligence: A Modern Approach (2nd
ed). Prenctice Hall, Englewood Cliffs, NJ.

262. Samuel A (1959) Some studies in machine learning using the game of checkers.
IBM J., 3(3): 210–229.

263. Sanchez E, Tomassini M (eds.) (1996) Towards Evolvable Hardware: The
Evolutionary Engineering Approach. Springer-Verlag, Berlin.

264. Schaffer JD (1984) Some experiments in machine learning using vector
evaluated genetic algorithms. PhD Thesis, Vanderbilt University, Nashville, TN

265. Schalkof RJ (1997) Artificial Neural Networks: Application to Ecology and
Evolution. McGraw Hill, New York, NY.

266. Sekanina L (2004) Evolvable Components: From Theory to Hardware Imple-
mentation. Springer-Verlag, Berlin.

267. Shann JJ, Fu HC (1995) A fuzzy neural network for rule acquiring on fuzzy
control systems. J. Fuzzy Sets and Systems, 71: 345–357.

268. Sharkey AJC (ed.) (1999) Combining Artificial Neural Networks: Ensemble
and Modular Multi-Net Systems. Springer-Verlag, Berlin.

269. Sharkey AJC, Sharkey N (2006) The application of swarm intelligence to col-
lective robots. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence.
Idea Group, Hershey, PA: 157–185.

270. Shawe-Taylor J, Cristianni N (2000) Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, UK.

271. Shearer C, Caron P (2002) Handbook of Data Mining and Knowledge Discovery.
Oxford University Press, UK.

272. Shimojima K, Fukuda T, Hasewaga I (1995) Self-tuning fuzzy modeling with
adaptive membership function, rules, and hierarchical structure based on
genetic algorithm. J. Fuzzy Sets and Systems, 71: 294–309.

273. Simpson PK (1992) Fuzzy MIN-MAX neural networks – part 1: classification.
IEEE Trans. Neural Networks, 3(5): 776–786.

274. Simpson PK (1993) Fuzzy MIN-MAX neural networks – part 2: clustering.
IEEE Trans. Fuzzy Systems, 1(1): 32–45.

Computational Intelligence: An Introduction 63

275. Sioutis C, Urlings P, Tweedale J, Ichalkaranje N (2004) Forming human-
agent teams within hostil environments. In: Fulcher J, Jain LC (eds.) Applied
Intelligent Systems: New Directions. Springer-Verlag, Berlin: 255–279.

276. Sipper M (1997) Evolution of Parallel Cellular Machines – The Cellular
Programming Approach. Springer-Verlag, Berlin.

277. Sipper M, Sanchez E, Mange D, Tomassini M, Perez-Uribe A, Stauffer A (1997)
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware
systems. IEEE Trans. Evolutionary Computation, 1(1): 83–97.

278. Sipper M, Mange D, Sanchez E (1999) Quo Vadis Evolvable Hardware?
Communications ACM, 42(4): 50–59.

279. Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Computing.
McGraw-Hill, New York, NY.

280. Sisman-Yilmaz NA, Alpaslan FN, Jain LC (2004) Fuzzy multivariate auto-
regression method and its application. In: Fulcher J, Jain LC (eds.) Applied
Intelligent Systems: New Directions. Springer-Verlag, Berlin: 281–300.

281. Sowa JF (2000) Knowledge Representation: Logical, Philosophical and Compu-
tational Foundations. Brooks-Cole, Pacific Grove, CA.

282. Sprott JC (2003) Chaos and Time Series Analysis. Oxford University Press,
UK.

283. Stair RM, Reynolds GW (1999) Principles of Information Systems (4th ed).
Thomson, Cambridge, MA.

284. Stevens M (1997) Bayesian Methods for Mixturs of Normal Distributions.
Oxford University Press, Oxford, UK.

285. Stock O, Zancanaro M (eds.) (2005) Multimodal Intelligent Information
Presentation: Text, Speech and Language Technology. Springer-Varleg, Berlin.

286. Sundarajan N, Satchandran P (1998) Parallel Architectures for Artificial
Neural Networks. IEEE Press, Los Alamitos, CA.

287. Sugeno M (1985) Industrial Applications of Industrial Control. North Holland,
New York, NY.

288. Takagi H (1994) Cooperative systems of neural networks and fuzzy logic and
its applicaiton to consumer products. In: Yen J, Langari R, Zadeh LA (eds.)
Industrial Applications of Fuzzy Control and Intelligent Systems. Van Nostrand
Reinhold, New York, NY.

289. Tan KC, Khor EF, Lee TH (2005) Multiobjective Evolutionary Algorithms and
Applications. Springer-Verlag, London, UK.

290. Tesauro G (1992) Temporal difference learning of backgammon strategy. In:
Shafer G, Pearl J (eds.) Proc. Intl. Conf. Machine Learning – ICML92, July,
Aberdeen, UK, Morgan Kaufmann, San Francisco, CA: 451–457.

291. Teuscher C (2006) Biologically uninspired computaitonal intelligence. Commu-
nications ACM, 49(11): 27–29.

292. Toffoli T, Margolus N (1987) Cellular Automata Machines. MIT Press,
Cambridge, MA.

293. Tollenaere T (1990) SuperSAB: fast adaptive backpropagation with good
scaling properties. Neural Networks, 7(5): 561–573.

294. Tran C, Abraham A, Jain LC (2006) Soft computing paradigms and regres-
sion trees in decision support systems. In: Fulcher J (ed.) Advances in Applied
Artificial Intelligence. Idea Group, Hershey, PA: 1–28.

295. Uppal FJ, Patton RJ, Palade V (2002) Neuro-fuzzy based fault diag-
nosis applied to an electro-pneumatic valve. In: Proc. 15th IFAC World

64 J. Fulcher

Congress, 21–26 July, Barcelnoa, Spain. Intl. Federation for Automatic Control:
2483–2488.

296. van Eck J, Waltham L, van den Berg J, Kaymak V (2006) Visualizing the CI
Field. IEEE Computational Intelligence Magazine, 1(4): 6–10.

297. Vapnik VN (1998) Statistical Learning Theory. Wiley, New York, NY.
298. Verikas A, Lipnickas A, Malmqvist K, Bacauskiene M, Gelzinis A (1999) Soft

combination of neural classifiers: a comparative study. Pattern Recognition
Letters, 20: 429–444.

299. Verikas A, Lipnickas A (2002) Fusing neural networks through space
partitioning and fuzzy integration. Neural Processing Letters, 16: 53–65.

300. Verma B, Panchal R (2006) Neural networks for the classification of benign
and malignant patterns in digital mammograms. In: Fulcher J (ed.) Advances
in Applied Artificial Intelligence. Idea Group, Hershey, PA: 251–272.

301. Von Altrock (1995) Fuzzy Logic and Neurofuzzy Applications Explained.
Prentice Hall, Englewood Cliffs, NJ.

302. Von Neumann J (1958) The Computer and the Brain. Yale University Press,
New Haven, CT.

303. Wang D, Fang S-C (1997) A genetics-based approach for aggregated production
planning in a fuzzy environment. IEEE Trans. Systems, Man and Cybernetics,
27(5): 636–645.

304. Watson I (1997) Applying Base-Based Reasoning: Techniques for Enterprise
Systems. Morgan Kaufmann, San Francisco, CA.

305. Werbos P (1974) Beyond regression: new tools for prediction and analysis in
the behavioral sciences. PhD Thesis, Harvard University, Cambridge, MA.

306. Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting. Wiley, New York, NY.

307. Wermter S, Sun R (2000) Hybrid Neural Systems. Springer-Verlag, Berlin.
308. Widrow B, Hoff ME (1960) Adaptive switching circuits. In: Proc. IRE

WESCON Convention Record: Part 4, Computers: Man-Machine Systems, Los
Angeles, CA: 96–104.

309. Wiener N (1948) Cybernetics. Wiley, New York, NY.
310. Wolfram S (1997) Cellular Automata and Complexity – Collected Papers.

Addison Wesley, Reading, MA.
311. Willliams CP, Clearwater SH (2000) Ultimate Zero and One: Computing at the

Quantum Frontier. Springer-Verlag, Berlin.
312. Williams J (1990) When expert systems are wrong. In: Proc. ACM SIGBDP

Conf. – Trends and Directions in Expert Systems. Orlando, FL, ACM Press,
New York, NY: 661–669.

313. Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kauffman, San Francisco, CA.

314. Wong B, Lai V, Lam J (2000) A bibliography of neural network business
applications research: 1994 – 1998. Computer and Operations Research, 23:
1045–1076.

315. Wong HC, Sycara K (1999) Adding security and trust to multi-agent systems.
In: Proc. Autonomous Agents’99, May, Seattle, WA: 149–161.

316. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. The
Knowledge Engineering Review, 10(2): 115–152.

317. Wooldridge M (2002) An Introduction to Multiagent Systems. Wiley,
Chichester, UK.

Computational Intelligence: An Introduction 65

318. Xu L, Krzyak A, Suen CY (1992) Methods of combining multiple classifiers
and their application to handwriting recognition. IEEE Trans. Systems, Man,
and Cybernetics, 22: 418–435.

319. Yager R (1992) Implementing fuzzy logic controller using a neural network
framework. Fuzzy Sets and Systems, 48: 53–64.

320. Yao X (1999) Following the path to evolvable hardware. Communications
ACM, 42(4): 47–49.

321. Yao YY (2000) Granular compuitng: basic issues and possible solutions. In:
Proc. 5th Joint Conf. Information Sciences, 27 February–3 March, Atlantic
City, NJ: 186–189.

322. Yao X, Highuchi T (1999) Promises and challenges of evolvabale hardware.
IEEE Trans. Systems, Man and Cybernetcis–Part C, 29(1): 87–89.

323. Zadeh LA (1965) Fuzzy sets. Information and Control, 8: 338–353.
324. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets

and Systems, 1: 3–28.
325. Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing.

Communications ACM, 37(3): 77–84.
326. Zadeh LA (1997) Towards a theory of fuzzy information granulation and its

centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 19:
111–127.

327. Zhang J, Morris J (1996) Process modeling fault diagnosis using fuzzy neural
networks. Fuzzy Sets and Systems, 79: 127–140.

328. Zhang M (2008) Artificial Higher-Order Neural Networks for Economics and
Business. IGI, Hershey, PA.

329. Zhang M, Fulcher J, Scofield R (1997) Rainfall estimation using artificial neural
network group. Neurocomputing, 16(2): 97–115.

330. Zhang Y-Q, Fraser MD, Gagliano RA, Kandel A (2000) Granular neural
networks for numerical-linguistic data fusion and knowledge discovery. IEEE
Trans. Neural Networks, 11(3): 658–667.

331. Zhou Z-H, Wu J, Tang W (2002) Artificial neural network ensembles. Artificial
Intelligence, 137(1–2): 239–263.

332. Zykov V, et al. (2005) Self-reproducing machines. Nature, 435(7038): 163–164.

Resources

1 Key Books

In addition to the specific listings below, the following Springer book series
are recommended for general reference: Studies in Computational Intelligence,
Studies in Fuzziness and Soft Computing, and Advances in Soft Computing.

1.1 Computational Intelligence

Chen SH, Wang P, Wang PP (2006) Computational Intelligence in Economics
and Finance. Springer-Verlag, Berlin.

Chen Z (2000) Computational Intelligence for Decision Support. CRC Press,
Boca Raton, FL.

Dick S, Kander A (2005) Computational Intelligence in Software Quality
Assurance. World Scientific, Singapore.

Duch W, Mandziuk J (eds.) (2007) Challenges for Computational Intelligence.
Springer-Verlag, Berlin.

Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

Englebrecht AP (2003) Computational Intelligence: An Introduction. Wiley,
New York, NY.

Fogel DB, Robinson CJ (eds.) (2003) Computational Intelligence: The Experts
Speak. Wiley, New York, NY.

Kecman V (2001) Learning and Soft Computing: Support Vector Machines,
Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge, MA.

68 J. Fulcher

King RE (1999) Computational Intelligence in Control Engineering. Marcel
Dekker, New York, NY.

Konar A (2005) Computational Intelligence: Principles, Techniques, and
Applications. Springer-Verlag, Berlin.

Kusiak A (2000) Computational Intelligence in Design and Manufacturing.
Wiley, New York, NY.

Ovaska SJ (ed.) (2004) Computationally Intelligent Hybrid Systems: The
Fusion of Soft Computing and Hard Computing. Wiley, New York, NY.

Pedrycz W, Peters JF (1998) Computational Intelligence in Software Engi-
neering. World Scientific, Singapore.

Pedrycz W (1997) Computational Intelligence: An Introduction. CRC Press,
Boca Raton, FL.

Poole D, Mackworth A, Goebel R (1998) Computational Intelligence: A Log-
ical Approach. Oxford University Press, New York, NY.

1.2 Artificial Neural Networks

Anderson JA, Rosenfeld E (eds.) (1988) Neurocomputing: Foundations of
Research. MIT Press, Cambridge, MA.

Anderson JA, Pellionisz A, Rosenfeld E (eds.) Neurocomputing 2: Directions
for Research. MIT Press, Cambridge, MA.

Beale R, Jackson T (1990) Neural Computing: An Introduction. Adam Hilger,
Bristol, UK.

Bigus JP (1996) Data Mining with Neural Networks: Solving Business
Problems – From Application Development to Decision Support. McGraw Hill,
New York, NY.

Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, UK.

Fiesler E, Beale R (1997) Handbook of Neural Computation. Oxford Univer-
sity Press/Institute of Physics, New York, NY.

Haykin SY (1999) Neural Networks: A Comprehensive Foundation (2nd ed).
Prentice Hall, Upper Saddle River, NJ.

Computational Intelligence: An Introduction 69

Kohonen T (2001) Self-Organization and Associative Memory (3rd ed).
Springer-Verlag, Berlin.

Orr GB , Mueller K-R (eds.) (1998) Neural Networks: Tricks of the Trade.
Springer-Verlag, Berlin.

Principe JC, Euliano NR, Lefebre WC (2000) Neural and Adaptive Systems:
Fundamentals Through Simulations. Wiley, New York, NY.

Reed RD, Marks II RJ (1999) Neural Smithing: Supervised Learning for Feed-
forward Artificial Neural Networks. MIT Press, Cambridge, MA.

Ripley BD (1996) Pattern Recognition and Neural Networks. Cambridge Uni-
versity Press, UK.

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
backpropagating erors. In; Rumelhart DE, McClelland JL (eds.) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition I. MIT
Press, Cambridge, MA.

Sharkey AJC (1999) Combining Artificial Neural Networks: Ensemble and
Modular Multi-Net Systems. Springer-Verlag, Berlin.

Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. Wiley, New York, NY.

1.3 Evolutionary Methods

Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, NY.

Bäck T, Fogel DB, Michalewicz Z (1997) Handbook of Evolutionary Com-
putation. Oxford University Press, New York, NY.

Banzhaf W (1998) Genetic Programming:An Introduction. Morgan Kaufmann,
San Francisco, CA.

Bonabeau E, Dorigo M, Theaulaz G (1999) Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, UK.

Davis L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, NY.

70 J. Fulcher

Dorrigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge,
MA.

Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, New York, NY.

Fogel LJ (1999) Intelligence Through Simulated Evolution. Wiley, New York,
NY.

Fogel DB (2005) Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Wiley, New York, NY.

Goldberg DE, Deb K (1991) Foundations of Genetic Algorithms: A Com-
parative Analysis of Selection Schemes Used in Genetic Algorithms. Morgan
Kauffman, San Mateo, CA.

Grana M, Duro R, d’Anjou A, Wang PP (2004) Information Processing in
Evolutionary Algorithms: From Industrial Applications to Academic Specula-
tions. Springer-Verlag, Berlin.

Greenwood GW, Tyrrell AM (2006) Introduction to Evolvable Hardware: A
Practical Guide for Designing Self-adaptive Systems. Wiley, New York, NY.

Higuchi T, Yong L, Yao X (eds.) (1999) Evolvable Hardware. Springer-Verlag,
Berlin.

Holland JJ (1992) Adaptation in Natural and Artificial Systems (2nd ed).
MIT Press, Cambridge, MA.

Kennedy J, Eberhart RC, Yuhui S, Shi Y (2001) Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA.

Koza J (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Langdon WB (1998) Data Structures and Genetic Programming: GP + Data
Structures = Automatic Programming! Kluwer Academic Press, Boston, MA.

Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolutio Pro-
grams. Springer-Verlag, Berlin.

Mitchell M (1995) Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA.

Computational Intelligence: An Introduction 71

Sekanina L, Arsian T (2005) Evolvable Components: From Theory to Hard-
ware Implementations. Springer-Verlag, Berlin.

Tyrrell AM (2006) Introduction to Evolvable Hardware: A Practical Guide
for Designing Self-Adaptive Systems. Wiley, New York, NY.

1.4 Fuzzy Systems

Cox E (1994) The Fuzzy Systems Handbook. AP Professional Books, Boston,
MA.

Fogel LJ, Owens AJ (eds.) (1997) Handbook of Fuzzy Computation, Oxford
University Press, New York, NY.

Jang J-S R, Sun C-T, Mizutani E (1993) Neuro-Fuzzy and Soft Computing:
a Computational Approach to Learning and Machine Intelligence. Prentice
Hall, Englewood Cliffs, NJ.

Kosko B (1997) Fuzzy Engineering. Prentice Hall, Upper Saddle River, NJ.

McNeill D, Thro E (1994) Fuzzy Logic: A Practical Approach. Academic Press,
Boston, MA.

Nauck D (1997) Foundations of Neuro-Fuzzy Systems. Wiley, New York, NY.

Pedrycz W, Gomide F (1998) An Introduction to Fuzzy Sets: Analysis and
Design. MIT Press, Cambridge, MA.

Ruspini E, Bonissone P, Pedrycz W (eds.) Handbook of Fuzzy Computation.
Oxford University Press, New York, NY.

Von Altrock (1995) Fuzzy Logic and Neurofuzzy Applications Explained. Pren-
tice Hall, Englewood Cliffs, NJ.

1.5 Other

Brown M, Harris C (1994) Neurofuzzy Adaptive Modeling and Control. Pren-
tice Hall, Englewood Cliffs, NJ.

Giarratano JC, Riley G (2005) Expert Systems: Principles and Programming
(4th ed). Thomson, Boston, MA.

Ignizio J (1991) Introduction to Expert Systems. McGraw-Hill, New York,
NY.

72 J. Fulcher

Jackson P (1998) Introduction to Expert Systems (3rd ed). Addison Wesley,
Reading, MA.

Negnevitsky M (2005) Artificial Intelligence: A Guide to Intelligent Systems
(2nd ed). Prentice Hall, Englewood Cliffs, NJ.

Padgham L, Winikoff M (2004) Developing Intelligent Agent Systems: A Prac-
tical Guide. Wiley, New York, NY.

Pedrycz W (ed.) (1997) Fuzzy Evolutionary Computing. Kluwer Academic
Publishers, New York, NY.

Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Com-
puting. McGraw Hill, New York, NY.

Wolfram S (1997) Cellular Automata and Complexity – Collected Papers.
Addison Wesley, Reading, MA.

Wooldridge M (2002) An Introduction to Multiagent Systems. Wiley, Chich-
ester, UK.

Zomaya AY (ed.) (2006) Handbook of Nature-Inspired and Innovative Com-
puting: Integrating Classical Models with Emerging Technologies. Springer-
Verlag, Berlin.

2 Key Survey/Review Articles

2.1 Artificial Neural Networks

Carpenter GA, Grossberg SA (1987) A massively parallel architecture for a
self-organizing neural pattern recognition machine. Computer Vision, Graph-
ics, and Image Understanding, 37: 54–115.

Hinton GE (1992) How neural networks learn through experience. Scientific
American. 267: 144–151.

Hopfield JJ (1984) Neurons with graded response have collective computa-
tional properties like those in two-state neurons. Proc. National Academy
Science, 81: 3088–3092.

Lipmann RP (1987) An introduction to computing with neural networks.
IEEE ASSP Magazine, 1: 4–42.

Computational Intelligence: An Introduction 73

2.2 Evolutionary Methods

Hinchey MG, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. IEEE
Computer, 40(4): 111–113.

2.3 Fuzzy Systems

Zadeh L (1994) Fuzzy logic, neural networks, and soft computing. Communi-
cations ACM, 37(3): 77–84.

2.4 Other

Allen J (1998) AI growing up: the challenges and opportunities. AI Magazine,
Winter: 32–45.

Bauch T, et al. (2006) How AI and multi-robot systems research will acceler-
ate our understanding of social animal behavior. Proc. IEEE, July: 1445–1463.

Dasgupta D, Attoh-Okine N (1997) Immunity-based systems: a survey. In:
Proc. IEEE Intl. Conf. Systems, Man and Cybernetics. Orlando, FL. IEEE
Computer Society Press, Los Alamitos, CA: 326–331.

Hearst M, Hirsh H (2000) AIs greatest trends and controversies. IEEE Intel-
ligent Systems, January/February: 8–17.

Hendler J (2006) Introducing the Future of AI. IEEE Intelligent Systems,
21(3): 2–4.

Lesser V (1995) Multiagent systems: an emerging subdiscipline of AI. ACM
Computing Surveys, 27(3): 340–342.

Williams C (1986) Expert systems, knowledge engineering, and AI tools –
an overview. IEEE Expert, 1(2): 2–6.

Wooldridge M, Jennings JR (1995) Intelligent agents: theory and practice.
The Knowledge Engineering Review, 10(2): 115–152.

Zykov V, et al. (2005) Self-reproducing machines. Nature, 435(7038): 163–164.

74 J. Fulcher

3 Organizations, Societies, Special Interest Groups,
Journals

3.1 Computational Intelligence

Computational Intelligence (Blackwell) {1.415}18

IEEE Computational Intelligence Magazine (IEEE CI Society)

IEEE Intelligent Systems (IEEE Computer Society) {2.413}

Intl. J. Computational Intelligence
(World Academy of Science Engineering and Technology)

Intl. J. Computational Intelligence and Applications (World Scientific)

Intl. J. Computational Intelligence and Organizations (Lawrence Erlbaum and
Associates)

Intl. J. Computational Intelligence Research (Research India Publications)

Intl. J. Computational Intelligence Theory and Practice (Serials Publication)

International Journal of Intelligent Systems (Wiley)

Journal of Advanced Computational Intelligence and Intelligent Informatics
(Fuji Technology Press)

3.2 Artificial Neural Networks

IEEE Transactions on Neural Networks (IEEE Neural Network Society)
{2.620}

International Journal of Neural Systems (World Scientific)

Network – Computation in Neural Systems (MIT Press) {1.0}

Neural Computation (MIT Press) {2.229}

Neural Networks International Neural Networks Society (Elsevier) {2.0}

18 2006 Thomson ISI Journal Citation Reports – Science {impact factor}.

Computational Intelligence: An Introduction 75

Neural Processing Letters (Kluwer) {0.753}

Neurocomputing (Elsevier) {0.860}

3.3 Evolutionary Methods

Evolutionary Computation (MIT Press) {1.325}

Genetic Programming and Evolvable Machines J. (Kluwer)

IEEE Transactions on Evolutionary Computation (IEEE CI Society) {1.325}

3.4 Fuzzy Systems

Fuzzy Optimization and Decision Making (Springer)

Fuzzy Sets and Systems (Elsevier) {1.181}

IEEE Transactions on Fuzzy Systems (IEEE CI Society) {1.803}

Intl. J. Soft Computing and Intelligence (Intl. Fuzzy Systems Association)

Intl. J. Uncertainty, Fuzziness & Knowledge-Based Systems (World Scientific)

J. Intelligent and Fuzzy Systems: Applications in Engineering and Technology
(IOS Press)

3.5 Other

AI Magazine (Association for the Advancement of Artificial Intelligence) {1.0}

Applied Soft Computing (Elsevier)

Artificial Intelligence (Elsevier) {2.271}

Artificial Life (MIT Press) {1.769}

Autonomous Agents and Multi-Agent Systems (Springer) {1.974}

Connection Science (Taylor and Francis) {1.297}

76 J. Fulcher

IEEE Trans. Knowledge and Data Engineering (IEEE Computer Society)

IEEE Transactions on Systems, Man and Cybernetics (IEEE SMC Society)

Intl. J. Intelligent Systems (Wiley)

J. Artificial Intelligence Research (AAAI Press) {1.795}

J. Intelligent Information Systems (Springer)

J. Machine Learning Research (MIT Press) {2.255}

KES Journal: Innovation in Knowledge-Based Intelligent Engineering Systems
(KES International)

Machine Learning (Springer) {2.654}

Soft Computing: A Fusion of Foundations, Methodology, and Applications
(Springer) {0.516}

4 Key International Conferences/Workshops

Congress on Evolutionary Computation – CEC (IEEE)

European Symposium ANNs (ENNS, INNS, IEEE-CIS)

Genetic and Evolutionary Computation Conf. (GECCO) (ACM SIGEVO)

Neural Information Processing Symposium – NIPS [published as Advances in
Neural Information Processing Systems. Morgan Kaufmann, San Francisco,
CA] (NIPS Foundation)

Intl. Conf. Fuzzy Systems – FUZZ-IEEE (IEEE)

Intl. Joint Conf. Neural Networks (IEEE/Intl. Neural Network Society)

Intl. Conf. Knowledge-Based Intelligent Information Engineering Systems
(KES International)

World Congress on Computational Intelligence – WCCI (IEEE)

Computational Intelligence: An Introduction 77

5 (Open Source) Software

Stuttgart Neural Network Simulator
http://www-ra.informatik.uni-tuebingen.de/SNNS

http://www.scilab.org/ (link to ANN, EVOL toolboxes)

http://www.mindmedia.com/links/mind tools software neural network
software.html (FAST ANN library)

http://neuralnetworks.ai-depot.com/Software.html
(includes Freeware, Shareware and Open Source)

http:www.geocities.com/adotsaha/NNinExcel.html

http://sourceforge.net
(search on ‘Computational Intelligence’ (CILib), ‘Neural Network’ (FANN),
‘Genetic Algorithm’ (GAUL), ‘Fuzzy Logic’ (FFLL), ‘Swarm Intelligence’)

http://fann.sourceforge.net (Fast ANN)

http://simbrain.sourceforge.net

http://gaul.sourceforge.net (Genetic Algorithm Utility Library)

http://ffll.sourceforge.net (FreeFuzzy Logic Library)

http://dmoz.org/Computers/Artificial Intelligence/Fuzzy
(Open Source Fuzzy Inference Engine for Java)

http://dmoz.org/Computers/Artificial Intelligence/Genetic Programming/
Algorithms/

http://aaai.org/aitopics/html/soft.html

http://www.openchannelfoundation.org/ (AI and Expert Systems)

http://opensource.arc.nasa.gov/ (link to JavaGenes)

http://www.genetic-programming.org/gpftpsite.html (GP and GA)

http://geneticalgorithm.ai-depot.com/Libraries.html

http://www.jaga.org (Java API for GAs)

78 J. Fulcher

http://www.gamedia.com/neuralfuzzy.html (ANNs, GAs, Fuzzy Logic)

http://www.ghg.net/clips/CLIPS.html (C-language Inference Production
System – CLIPS)

http://www.iit.nrc.ca/IR public/fuzzy/fuzzyClips/fuzzyCLIPS/index.html
(FuzzyCLIPS)

http://www.fizyka.umk.pl/~duch/software.html

6 Data Bases

UCI Knowledge Discovery in Databases Repository
http://kdd.ics.uci.edu/

University of California, Irvine Machine Learning Data Repository
http://mlearn.ics.uci.edu/MLRepository.html

Part II

Preprocessing, Visualization,
Systems Integration

Data Reduction for Pattern Recognition
and Data Analysis

Tommy W.S. Chow and Di Huang

Department of Electronic Engineering, City University of Hong Kong,
eetchow@cityu.edu.hk, sshh007@hotmail.com

1 Introduction

Pattern recognition [5,13,58] involves various human activities of great prac-
tical significance, such as data-based bankruptcy prediction, speech/image
recognition, machine fault detection and cancer diagnosis. Clearly, it would
be immensely useful to build machines to fulfill pattern recognition tasks
in a reliable and efficient way. The most general and most natural pattern
recognition frameworks mainly rely on statistical characterizations of pat-
terns with an assumption that they are generated by a probabilistic system.
Research on neural pattern recognition has been widely conducted during
the past few decades. In contrast to statistical methods, no assumptions (a
priori knowledge) are required for building a neural pattern recognition frame-
work. Despite the fact that different pattern recognition systems use different
working mechanisms, the basic procedures of all these systems are basically
the same. A typical pattern recognition procedure generally consists of three
sequential parts – a sensing model for collecting and preprocessing raw data
from real sites, a data processing model (which includes feature extraction/
selection and pattern selection), and a recognition/classification model [13,58].
When one is handling a pattern recognition process, the following basic issues
must be addressed:

• How to process the raw data for a pattern recognition task? This issue
concerns the sensing and preprocessing stage of pattern recognition;

• How to determine appropriate data for a given pattern recognition model?
This is a very important concern in the data processing stage. Deleting
noisy or redundant data (including features and patterns) invariably leads
to enhanced recognition performance;

• How to design an appropriate classifier based on a given data set? This
topic has been widely discussed in the pattern recognition community.

T.W.S. Chow and D. Huang: Data Reduction for Pattern Recognition and Data Analysis,

Studies in Computational Intelligence (SCI) 115, 81–109 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

82 T.W.S. Chow and D. Huang

Various learning algorithms and models have been proposed in an attempt
to enhance recognition accuracy as much as possible, and in a fashion that
is as simple as possible.

Basically, through eliminating ‘noisy’ data (such as noisy samples and
irrelevant features) and compressing redundant samples/features, a data pro-
cessing technique is used to reduce the data volume without causing the loss of
useful information. The main merits of such data processing include enhancing
the scalability, recognition accuracy, computational and measurement effi-
ciency, as well as to facilitate interpretation of the entire pattern recognition
procedure [6, 24, 43]. As the size of data has significantly increased in recent
applications, data preprocessing has become essential in many pattern recog-
nition procedures. In this Chapter, data reduction/selection is specifically
denoted as reduction/selection of data samples.

2 Data Reduction

While computer technology grows at an unprecedented pace, the size of data
increases to an extent making pattern recognition incommodious. Data reduc-
tion therefore holds increasing appeal to researchers, although the use of more
data samples can usually lead to more accurate pattern recognition results.
With the aim of enhancing the overall computational efficiency, a huge pattern
set is usually first reduced to a small representative (informative) pattern set
on which pattern recognition models are built. It is generally assumed that
data reduction should introduce no or minimal effect on final recognition
results.

The simplest data reduction method is to sample the data in a random
or stratified way [10]. In these methods, the user just needs to randomly
draw the desired amount of samples from a data set. Generally speaking,
these are very simple methods so that they can be easily implemented, and
also have negligible computational burden. Thus, they have been used as
an evaluation baseline in many studies. These random sampling schemes are
clearly not sufficiently sophisticated to guarantee stable performance. They
are so simple that they are likely to cause a loss of important data distribution
information [8].

A number of more sophisticated data reduction techniques have also been
developed. According to the working mechanism, data reduction models can
broadly be categorized as ‘filter’ and ‘wrapper’ models. A filter model works
prior to pattern recognition and is totally independent of the training of recog-
nition models, whilst a wrapper data reduction process is embedded within
the training process. The results of recognition training play a vital role in a
wrapper data reduction process.

Data Reduction for Pattern Recognition and Data Analysis 83

2.1 Wrapper Methods

Assuming that all patterns are not equally informative (useful) to a pattern
recognition learning algorithm [63], wrapper models modify the original data
distribution according to the behavior of a pattern recognition hypothesis.
Useful patterns are selected into a learning process with higher probability
than others.

In general, wrapper data reduction schemes [15,25,30,52] start with a ran-
dom data subset. A pattern recognition hypothesis is constructed using the
data subset. Then, according to the performance of the resulting recognition
model, the selected data subset is gradually modified. This data-modifying-
model-building process repeats until the recognition accuracy cannot be
improved further.

The wrapper method is model-dependent. Further, as the original data
distribution has been distorted, the data reduction results may not be useful
for unsupervised pattern recognition tasks, such as density estimation and
data visualization. As mentioned earlier, wrapper models generally consider
the samples likely to be incorrectly recognized as being ‘informative’. Samples
with more information have a higher probability of participating in training
the wrapper models. With this mechanism, wrapper models are likely to fail
by confusing outliers with real informative samples because the former always
have relatively high recognition uncertainty [55]. This is the main shortcoming
of wrapper models.

2.2 Filter Methods

In contrast with wrapper methods, filter models are independent of recogni-
tion model training. Uncertain sampling – an example filter model – employs
a classifier A to determine the informative patterns for building another clas-
sifier that may be very different [40]. ‘Informative’ patterns are those that can
be correctly classified by A with lowest certainty. Most filter models explore
the data distribution information instead of the classification results when
conducting data reduction.

The basic aim of filter models is to determine a representative set – in
other words, a reduced data set – which preserves the original data distribu-
tion as much as possible [2, 18, 32, 46, 68]. These methods are thus found to
be versatile. Apart from classification, filter models can work for other pat-
tern recognition tasks, such as data visualization and data clustering. Vector
quantization error (VQE) is widely used for filter data reduction [2, 17, 30].
VQE [18] measures the extent of similarity between each given pattern and
its nearest representative. The smaller the vector quantization error, or the
closer that patterns are to their corresponding representatives, the better the
data reduction result. Through minimizing the VQE, representative data is

84 T.W.S. Chow and D. Huang

found. Self-organizing maps (SOMs) [32] are a typical descent-based algo-
rithm designed for minimizing the VQE. It is well known however that it
is difficult to determine the learning parameters for a SOM, since they are
problem-dependent. Also, VQE-based data reduction models often generate
new data points in a given data space rather than select data points from
an original data set. The generated data points may have no physical mean-
ing, thus making them unsuitable for direct use in many pattern recognition
procedures.

Another popular type of filter method is based upon probability density
distribution [46, 62]. The crucial issue of density-based methods lies in the
estimation of probability density functions (pdf) underlying a given data set.
In [68], density is estimated by employing the maximum likelihood learning
algorithm. This approach may not be efficient enough for tackling complex
data distribution. In [2, 46], a much simpler and more efficient strategy is
used to analyze density. The basic idea of this strategy is that the density of
a pattern x is inversely related to the distance between x and its k th near-
est neighbor. In other words, when the distance between a pattern and its
neighbor is small, the probability density at that pattern must be high. Based
on this idea, the density around each pattern is evaluated. The most dense
pattern – say xd – is then identified and is placed into the representative set.
The patterns around xd are rejected during the remainder of the representative
selection process. This operation repeats until there is no pattern left for repre-
sentative selection. Without involving the learning processes to build a density
estimator, the above density analysis is more efficient than the maximum-
likelihood approach used in [68]. However, as this approach [2, 46] requires
the calculation of distances between all possible pattern pairs, they are very
expensive in terms of computation and memory requirements, especially when
a large amount of patterns is given.

2.3 Examples of Filter Methods

In order to provide a sound discussion on data reduction models, two typical
distribution-based data reduction frameworks are detailed in this Section,
these being the multi-scale and entropy-based data reduction methods.

The Multi-Scale Method

The multi-scale method is a typical density-based filter data reduction method,
in which the pattern density is analyzed according to the distance of that pat-
tern from its neighbor [51]. All patterns are then ranked in order of density.
Based on the pattern order, the representatives are recursively determined.
Given a datum X , this method can be briefly stated as follows:

Data Reduction for Pattern Recognition and Data Analysis 85

Algorithm 1 The Multi-Scale Method
step 1. Determine the parameter k which is closely related to the size of the data
region covered by a representative;
step 2. Calculate the distance between all possible pattern pairs in X;
step 3.
repeat

for each pattern in X do
(i) Determine the distance between the pattern and its kth neighbor;
(ii) According to these distances, identify the most dense pattern – say, xd –
and mark it as representative;
(iii) Draw a circle with center xd and radius 2radd, where radd is the distance
between xd and its k th neighbor;
(iv) Delete all patterns which fall within the circle.

until no remaining pattern in X

Entropy-Based Data Reduction Method

Recently, a new density-based method has been proposed. This method relies
on the representative entropy (RE) to guide the data reduction process, and
thus is named ‘REDR’ (representative entropy data reduction) [27]. Assuming
that R is the result of the data reduction process, the probability of x (x ∈ X)
being represented by rj(rj ∈ R) is then p(rj | x). Further, the sum of the
representative probabilities of x is 1, that is,

∑K
j=1 p(rj | x) = 1. Ideally,

each pattern in X is close to one and only one representative. In terms of
probability, it is expected that p(ri | x) will be zero for all i except one.
The more uneven the distribution of the representation information of R to
X, the better the representative set R will be. This is the rationale behind
‘representative entropy’ (RE). Given a data set X and a representative set R,
RE is defined as

RE(R; X) =
1

Nlog(K)

∑
all x∈X

∑
r∈R

−p(rj | x)log(p(rj | x)) (1)

where N and K are the size of X and R, respectively. Assuming that a
representative covers the L original patterns nearest to it, we have

p(rj | x) ∝ s(rj , x) =

{
1− d(x,rj)

Radius(rj)
, d(x, rj) ≤ Radius(rj)

0, otherwise
(2)

where Radius (rj) is the distance of rj to the (L + 1)th pattern nearest to it.
After normalization, this becomes

p(rj | x) =
s(rj , x)∑

r∈R

s(rj , x)
(3)

The REDR method includes two sequential stages, these being (i) a for-
ward search stage, followed by (ii) a RE-based stepwise search stage. At the

86 T.W.S. Chow and D. Huang

beginning, a set of data points, say R0, is randomly drawn from a given
data set, and the representative set R is empty. Then, the forward search is
conducted on R0 to recursively place the appropriate representatives into R.
This process stops when R0 has been completely scanned, or R has become a
desirable size. Following the forward process is a RE based stepwise process,
in which a pattern is firstly identified as representative from the area not yet
well covered by R. When R is of the desired size, the ‘worst’ representative is
deleted after a new representative is determined – the ‘worst’ representative
being the one exhibiting the lowest representative ability. The representative
ability of a representative – say rj – can be measured using

RE(rj ; X) =
1

Nlog(K)

∑
all x∈X

−p(rj | x)log(p(rj | x)) (4)

Given a data set X containing N patterns, REDR can be stated as follows:

Algorithm 2 Representative Entropy Data Reduction (REDR)
step 1. Randomly select a pattern set R0. Set the representative set R empty.
Determine K, the desired size of R. Naturally, a representative represents L (L =
N/K) patterns of X.
step 2.
repeat

In X, determine the top L patterns nearest to rj (rj ∈ R0).
Based on the sum of the distances of rj to these patterns, the most dense
element of R0 (say, rd) is identified and placed into R.
The top L patterns nearest to rd (including, of course, rd itself) will be rejected
in the subsequent forward search stage.

until R0 is completely scanned or R contains K elements
step 3. In X, select out the patterns having maxrj∈Rpouter(x | rj) > 0. Among
these patterns, identify the one with min(maxrj∈Rpouter(x | rj)), and put it into
R. pouter(x | rj) is defined by:

pouter(x | rj) =

{
1 − d(x,rj)

Radouter(rj)
, d(x, rj) ≤ Radouter(rj)

0, otherwise

where Radouter(rj) is the distance of rj with the 2Lth pattern nearest to it.
step 4. When R consists of K+1 representatives, delete the worst representative –
in other words, the one exhibiting the largest RE(rj, X).
step 5. Calculate RE(R,X) for the newly constructed R.
step 6. Repeat Steps 3 through 5 until RE(R,X) cannot be reduced for five
consecutive iterations.

In the above process, the condition of maxrj∈RPouter(x | rj) > 0 in
Step 3 guarantees a stable data reduction process. Apparently, patterns with
maxrj∈RPouter(x | rj) > 0 must be the ones uncovered by R. Without
a priori knowledge on the density distribution of these patterns, it is not

Data Reduction for Pattern Recognition and Data Analysis 87

recommended to determine the representative from them. With the constraint
of maxrj∈RPouter(x | rj) > 0, the newly determined representative must be
around the boundary of the area that has already been covered by R. In this
way, the proposed method can gradually and reliably explore the entire data
space.

Given a data set comprising N patterns, the computational and memory
requirement of the multi-scale method is O(N2). This means that the multi-
scale method is computationally demanding when applied to a large data set.
For REDR, the computational complexity is O(N(ni + k0)), where k0 is the
number of patterns initially selected into R, and ni is the number of RE-based
processes for iteratively adjusting R. Generally, (ni +k0) is much less than N .
REDR always requires substantially less computational overhead compared
with the multi-scale method.

Data Reduction Method Comparison

In this Section, REDR, random sampling, SOM [18] and Mitra’s multi-scale
methods are compared on five data sets – three synthetic and two real,
from the University of California at Irvine Knowledge Discovery in Databases
repository (http://kdd.ics.uci.edu/) – as summarized in Table 1.

The comparisons are conducted from the perspectives of efficiency and
effectiveness, with running time used to evaluate the former. For a data
reduction method, ‘effectiveness’ means the extent that the original data dis-
tribution information is preserved after data reduction. This can be measured
by the difference between the density functions estimated on the original data
set and the reduced data set delivered by the tested method. Assume that we
have the density function obtained on the original data – say f(x) – and the
one obtained on the reduced data – (g(x)). To evaluate the difference between
f(x) and g(x), two indexes can be used. They are the absolution distance Dab

and the Kullback-Liebler distance (divergence) DKL:

Dab(f(x), g(x)) =
∫

x

| f(x)− g(x) | dx (5)

and

DKL(f(x), g(x)) =
∫

x

f(x)log
f(x)
g(x)

dx (6)

Also, we can have

Dab(f(x), g(x)) ≈
∑

txi∈TX

| f(txi)− g(txi) | ∆txi, (7)

and

DKL(f(x), g(x)) ≈
∑

txi∈TX

f(txi)log
f(txi)
g(txi)

∆txi (8)

88 T.W.S. Chow and D. Huang

Table 1. The data sets used for data reduction

Name of
dataset

Number of training data patterns Number of
test data
patterns

Number
of

features

Pen-based 5000 3498 16
recognition of
handwritten
digits

Yeast data 800 684 8

Synthetic
Data 1

2000 points from N

(
[0, 0],

[
1 0
0 1

])

Synthetic
Data 2

1000 points from N

(
[0, 0],

[
0.2 0
0 0.2

])

1000 points from N

(
[0.3, 0.3],

[
0.1 0
0 0.1

])

1000 points from N

(
[−0.3,−0.3],

[
0.1 0
0 0.1

])

Synthetic
Data 3

1000 points from N

(
[0, 0],

[
0.1 0
0 0.1

])

1000 points from N

(
[0.3, 0.3],

[
0.2 0
0 0.2

])

1000 points from N

(
[−0.3,−0.3],

[
0.1 0
0 0.1

])

1000 points from N

(
[0.1, 0.1],

[
0.05 0
0 0.05

])

when the data set TX is large enough and can cover most of the area with
f(x) > 0 or g(x) > 0. A smaller Dab or DKL means a better data reduction
result.

The comparative results are listed in Table 2 (data reduction effectiveness)
and Table 3 (computational efficiency). In each cell of Table 2, the upper and
lower values are the means and standard deviations of the results of 20 tri-
als, respectively. RR or reduction ratio is the ratio of the reduced data set
size to the original data set size. The results on different examples lead to
similar conclusions. In terms of effectiveness, density-based methods – such as
REDR and the multi-scale based method – significantly outperform SOM and
random sampling. From the viewpoint of computational efficiency, SOM per-
forms better than density-based methods – namely REDR and the multi-scale

Data Reduction for Pattern Recognition and Data Analysis 89

Table 2. Results of data reduction methods in terms of density difference

Data set Random SOM Multiscale- REDR-DR
sampling based method

Dab DKL Dab DKL Dab DKL RR Dab DKL

RR = 1/20
Synthetic 0.052 0.073 0.050 0.057 0.042 0.056 0.05 0.041 0.054
Data 1 0.0044 0.0079 0.0007 0.0017 0.00054 0.0011 0.002 0.0004 0.0006

Synthetic 0.052 0.073 0.05 0.057 0.042 0.056 0.05 0.041 0.054
Data 2 0.0044 0.0079 0.0007 0.0017 0.00054 0.0011 0.002 0.0004 0.0006

Synthetic 0.16 0.2 0.12 0.17 0.11 0.14 0.05 0.11 0.14
Data 3 0.021 0.022 0.002 0.004 0.001 0.001 0.003 0.002 0.002

Pen-based 1.41 0.91 1.39 0.82 1.35 0.86 0.05 1.34 0.81
handwriting 0.054 0.031 0.035 0.02 0.031 0.009 0.005 0.01 0.005
(×10−9)

Yeast 1.39 0.97 0.58 0.46 0.54 0.42 0.05 0.55 0.53
(×10−5) 0.066 0.046 0.034 0.019 0.03 0.02 0.008 0.017 0.036

RR = 1/10
Synthetic 0.048 0.059 0.038 0.044 0.033 0.038 0.1 0.033 0.037
Data 1 0.0033 0.0056 0.0007 0.0008 0.0002 0.0006 0.02 0.0005 0.0005

Synthetic 0.11 0.13 0.08 0.12 0.075 0.089 0.1 0.076 0.088
Data 2 0.008 0.01 0.001 0.003 0.001 0.002 0.01 0.0008 0.0009

Synthetic 0.15 0.19 0.11 0.15 0.11 0.12 0.1 0.11 0.12
Data 3 0.02 0.03 0.001 0.003 0.003 0.004 0.002 0.002 0.001

Pen-based 1.01 0.7 0.81 0.65 0.55 0.48 0.1 0.53 0.47
handwriting 0.05 0.028 0.05 0.052 0.12 0.005 0.03 0.01 0.01
(×10−9)

Yeast 0.86 0.72 0.54 0.43 0.53 0.43 0.11 0.48 0.4
(×10−5) 0.046 0.039 0.063 0.046 0.018 0.019 0.03 0.017 0.013

based one – as suggested in Table 3. Moreover, REDR is much more efficient
than the multi-scale based method, which is consistent with the preceding
theoretical analysis.

3 Feature Selection

An appropriate reduction of a feature set can not only improve the effi-
ciency and scalability of a pattern recognition procedure, in some cases, it
also enhances the recognition accuracy because of the finite sample size.

90 T.W.S. Chow and D. Huang

Table 3. Results of data reduction methods in terms of running time (in seconds)

Dataset SOM Multiscale- REDR-DR
based method

RR = 1/20
Synthetic1 5 12 4
Synthetic2 8 44 15
Synthetic3 11 102 40
Pen-based 51 1600 349
handwriting
Yeast 2 7 3
RR = 1/10
Synthetic1 7 30 14
Synthetic2 9 203 37
Synthetic3 12 217 79
Pen-based 85 3500 888
handwriting
Yeast 3 14 7

Feature searching
engine

Feature
evaluation

Stop?

Original

feature set

a candidata

feature subset

evaluation

value

Y

Selected feature

subset

N

Fig. 1. Feature selection model general outline

Compared with a complex recognition model, a simple model is always prefer-
able. These are the main reasons why feature selection has always been an
essential consideration in statistics and neural computation.

Feature selection is an optimization process in the hypothesis space which
includes all possible feature subsets. A general feature selection model is illus-
trated in Fig. 1. Now both the feature evaluation criteria and the feature
search engine are two crucial parts in any feature selection model. In the fol-
lowing Sections, the major feature selection techniques are surveyed according
to these two aspects.

Data Reduction for Pattern Recognition and Data Analysis 91

3.1 Feature Evaluation

Feature evaluation indices are designed to enumerate the relevancy of a fea-
ture subset to a recognition task or the redundancy among a feature subset
[6, 29, 33]. According to the types of feature evaluation criteria, feature selec-
tion schemes are categorized into one of three groups – the filter scheme, the
embedded scheme, and the wrapper scheme.

Wrapper Model

Wrapper feature selection models [29, 31] directly employ the accuracy of a
certain recognition procedure to evaluate the quality of feature subsets. Due
to this mechanism, it is generally argued that a wrapper scheme is able to
provide better pattern recognition behavior compared with other types of
feature selection models. For example, in [9,29], comparative results show that
a wrapper model performs better than a filter model for building a decision
tree (DT).

On the other hand, wrapper models are usually criticized for being too
computationally demanding [21,29,65]. This is the main shortcoming of wrap-
per models. Given each tested feature subset, a pattern recognition model is
constructed. Then based on the performance of that model on validation data,
or under a cross-validation scheme ([29] shows that the latter outperforms
the former), the quality of the tested feature subset is evaluated. However,
repeating this evaluation process on many feature subsets is computationally
demanding. Another problem with wrapper models is overfitting. A pattern
recognition procedure built in a high-dimensional domain needs to be com-
plex. Most likely, this procedure will overfit the training data. Also, using a
single data set many times over may increase the likelihood that the final
selection results only perform well on the data used in the feature selection
process [65].

Embedded Model

In an embedded model, the intermediate results of a pattern recognition
learning algorithm rather than the final recognition results are employed to
evaluate the importance of features. In practice, the rationale behind embed-
ded feature selection methods is the idea of pruning. This idea is not novel in
the neurocomputing community where it is well known that pruning unim-
portant components of a recognition model can avoid overfitting and bring
computational and memory savings.

In [20, 44, 56, 61, 62], a pattern recognition model (such as Support Vec-
tor Machine [20, 62] or Multi-Layer Perceptron network [56, 61]) is firstly
built using all the given features. Then, based on the model parameters, the

92 T.W.S. Chow and D. Huang

pattern recognition importance of each feature is estimated. Following elim-
ination of unimportant features, another training iteration is performed and
unimportant features are then eliminated.

Generally, an embedded method is more efficient than a wrapper method.
However the basic problems of wrapper methods – namely the huge com-
putational load and high likelihood of overfitting – cannot be instinctively
addressed because constructing a recognition model in a high-dimensional
domain is still inevitable in an embedded scheme.

Filter Model

In a filter model, feature selection is conducted before the learning phase of a
recognition model. In other words, a ‘good’ feature subset is identified prior
to construction of a recognition model. In such a way, the problems of huge
computational complexity and overfitting can be circumvented.

Up to now, various statistical or distribution-based criteria [3, 12, 22, 23,
26, 28, 35, 36, 39, 42, 46, 50, 51, 60, 64, 65] have been developed for measuring
feature relevance (in other words, the relationship between features and out-
put variable(s)), and/or feature dependence (that is, the relationship between
features). Some useful surveys on these criteria can be found in [42, 47]. In
general, these filter criteria are categorized into several groups such as depen-
dency, information, consistency, distance, and so forth. In this Chapter, we
summarize these criteria from a different perspective. They are categorized
into three main groups: variable-similarity-based, probability-divergence-based,
and pattern-distance-based.

Variable-similarity-based criteria

Variable-similarity-based criteria employ or adopt various statistical metrics –
for instance correlation coefficient and mutual information (MI) – to enumer-
ate the similarity between feature(s) and output variable, or alternatively the
association among features.

In [46], a correlation coefficient-based criterion is designed to estimate the
similarity of two features. According to estimation results, similar features are
identified and clustered together. Then, through selecting one representative
feature from each feature cluster and discarding the others, the original feature
set is reduced.

In [22], the correlation-based feature selection (CFS) index is defined as

CFS(S) =
mrcf√

m + m(m− 1)rff

(9)

where S is the tested feature subset with cardinality m, rcf is the average
feature-class correlation of S, and rff is the average feature-feature correlation

Data Reduction for Pattern Recognition and Data Analysis 93

of S. In CFS (S), the numerator indicates the predictiveness of the feature set
S, and the denominator measures the extent of redundancy of S. Obviously,
in order to achieve a large value of CFS (S), the pattern recognition ability of
each feature in S should be high, and at the same time the redundancy in S
is required to be low.

These correlation-based criteria are relatively efficient from a computa-
tional point of view. The concept of correlation, however, is not sophisticated
enough to handle the complicated nature of a problem because correlation
measures only the relationship between two variables, whereas feature selec-
tion schemes need to deal with hundreds (or even thousands) of variables. The
feature clustering algorithm in [44] only considers the relationship between
two features, and ignores the relationship of any more than two. Moreover,
in CFS (S), the multi-variable relationship is approximated using the linear
averages of related 2-variable correlations, rcf and rff . This strategy is appar-
ently not sufficiently sophisticated to measure complex relationships between
variables.

Mutual information (MI) is an effective alternative for evaluating the rela-
tionship between variables. Given two variables X and Y , MI can evaluate
the similarity between these two variables. Shannon’s MI is defined as

I(X, Y) =
∫

x,y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy. (10)

Compared with the correlation coefficient, it is more flexible in the sense
that MI does not require X and Y to be of the same dimensionality, moreover
MI can reflect the arbitrary relationship between X and Y . The main challenge
of MI-based indices lies in the computation of MI as elaborated in Eqn. (10).
It shows that the estimation of MI requires the probabilities underlying X
and Y to be estimated. Furthermore, we need to conduct a rather computa-
tionally demanding integration when continuous variables are present. This
computational process is rather difficult under a high-dimensional domain.

To estimate the probabilities p(x) and p(x,y), histogram and Parzen win-
dow estimators are the most common approaches. Using histograms can
simplify integration of computing MI as summation. However the problem
of pattern shortage paralyzes histogram estimators when working in a high-
dimensional space [14, 48]. On the other hand, Parzen window is considered
more effective and reliable than histograms as a probability estimator. Nev-
ertheless Parzen window may pose certain computational difficulties because
of the integral procedure involved in estimating MI.

In the MI-based feature selection method (MIFS) [3] and the MI-based
feature selection method with uniform modification (MIFS-U) [35], histogram
estimators are used to estimate the probability density functions. To avoid
the difficulties that histograms will encounter in high-dimensional spaces,

94 T.W.S. Chow and D. Huang

MIFS and MIFS-U do not directly estimate a high-dimensional MI. Instead,
high-dimensional MIs are analyzed through a linear combination of related
2-dimensional MI estimates. This approach successfully overcomes the com-
putational problems of MI, but generates other problems, these being (1)
the complex relationship between features or between input and output may
not be reflected correctly using linear equations; and (2) there are no princi-
ples (guidelines) to determine the most important parameter for controlling
redundancy in selected features.

In [8, 11, 36], Parzen window estimators are used in MI-based evaluation
criteria. Suppose that a pattern in X belongs to one of L classes. The L classes
are represented by ω1, ω2, . . . ωL. In [36], the MI-based criterion is defined as

I(X ; C) = H(C) +
∫
x

p(x)
L∑

k=1

p(ωk | x)log(p(ωk | x))dx (11)

≈ H(C) +
1

| X |
∑
x∈X

L∑
j=1

p(ωj | x)logp(ωj | x) (12)

The criterion developed in [54] is

I(X ; C) =
∫
x

L∑
k=1

p(x, ωk)log
p(x, ωk)

p(x)p(ωk)
dx = Ex,ωk

[
log

p(x, ωk)
p(x)p(ωk)

]
(13)

≈ 1
|X |

∑
x∈X

log
p(x, ωk)

p(x)p(ωk)
= MI − raw (14)

where |X | represents the cardinality of X .

In these criteria, the integration procedure for estimating MI is approxi-
mated by a summation. This is a crude way of solving the problem because
this approximation may not be reliable when X is not large enough. In [10],
the MI-based criterion is modelled as:

QMI = ICS(X ; C) = log

L∑
k=1

∫
p(x, ωk)2dx

L∑
k=1

P (ωk)2
∫

p(x)2dx

L∑
k=1

∫
p(ωk, x)P (ωk)p(x)dx

(15)

Probability divergence-based criteria

Probability divergence-based criteria explore the conditional probabilities of
different classes to determine the ‘goodness’ of a feature subset. The rationale
behind these criteria is that a feature subset with high discriminant capa-
bility must guarantee a large distance between the conditional probabilities

Data Reduction for Pattern Recognition and Data Analysis 95

of different classes [12, 26, 34]. Given two classes ω1 and ω2, there are
many formats to evaluate their divergence [12, 34], such as Bhattacharryya
divergence (Eqn. (16))

JB(ω1, ω2) = ln

∫
x

(p(x | ω1)p(x | ω2))1/2dx (16)

and Kullback-Liebler divergence (Eqn. (17)).

JM (ω1, ω2) =
∫
x

(p(x | ω1)− p(x | ω2))(ln(p(x | ω1)− ln(p(x | ω2)dx (17)

The 2-class divergence has been generalized to multi-class cases [12, 26]

in a simple way as J =
L∑

i=1

L∑
j=1

P (ωi)P (ωj)J(ωi, ωj), where the measurement

J(ωi, ωj) can be in any format of 2-class divergence.

There is an important aspect of the divergence-based criteria [58]. When
it is known (or assumed) that all the classes are normally distributed with the
same covariance, that is

p(x | ωi) =
(
(2π)M |

∑
|
)−1/2

exp

(
−1

2
(x− µi)

∑−1
(x− µi)T

)
(18)

where µi is the mean of all x belonging to the class ωi, Σ is the covariance
matrix, and M is the dimensionality of x. The above divergences (Eqn. (16)
and Eqn. (17)) can be simplified to the Mahalanobis distance

JM = 8JB = (µ1 − µ2)
∑−1

(µi1 − µi2)T (19)

which is a feature selection criterion first developed within the statistics
community.

Consistency [42] is designed in a discrete or discretized data space. Suppose
that there are J totally distinct patterns in X , with dxi being the ith one.
Also, for dxi, the dominant class – dci – is the class in which dxi appears most
in X . Consistency of the feature subset S is defined as

Consistency(S) = 1−

J∑
i=1

inconsistency count of dxi

N
(20)

= 1−

J∑
i=1

(nall
i − nmj

i)

Nx
(21)

where N is the size of X , nall
i is the number of dxi occurrences in X , and

nmj
i is the number of dxi occurring in its dominant class dci. In terms of

96 T.W.S. Chow and D. Huang

probability, the consistency (Eqn. (20)) can be explained in a clear way. It
is known that nall

i /N and nmj
i /N are the probability p(dxi) and the joint

probability p(dxi, dci), respectively. The consistency (Eqn. (21)) is in fact the
divergence of p(dxi) to p(dxi, dci) over a given domain.

More recently, a Bayesian discriminant feature selection criterion has been
proposed, in which the distance between conditional posterior probabilities
of different classes is used to measure the classification capability of feature
subsets [26]. Given a feature set-S, the Bayesian discriminant feature selection
criterion is defined as

BDFS (S) =
1
|X |

∑
x∈X

log
PS(ω = c | x)
PS(ω
= c | x)

(22)

A large BDFS (S) means a low likelihood of x being incorrectly recognized.

Now, despite the fact that the divergence-based-criteria and MI-based ones
are derived from different viewpoints, they are very similar in format, and
encounter the same computational difficulties.

Pattern distance-based criteria

Pattern distance-based criteria exploit data distribution information without
explicitly estimating the underlying probabilities [39, 47, 51, 60, 64]. In order
to accurately distinguish patterns of different classes, it is natural to require
that a pattern surrounded by ones from the same class, or that patterns
belonging to different classes, are far from each other. This is the basis of pat-
tern distance-based criteria, including interclass distance [47] and similarity
index [39]. The interclass distance-based criterion is defined as

Jinter−class =
L∑

i=1

P (ωi)
L∑

j=i+1

P (ωj)D(ωi, ωj) (23)

where D(ωi, ωj) – the distance of two classes ωi and ωj – can be measured by
way of

D(ωi, ωj) =
1

| class− ωi |
1

| class− ωj |
∑

xk∈class−ωi

∑
xq∈class−ωj

d(xq , xk) (24)

A large value of Jinter−class is preferred to discriminate the patterns in differ-
ent classes. In [44], the similarity between patterns is firstly measured using
the distance of patterns. Then, based on the similarity estimates, a feature
selection index is derived, which decreases as the interclass(intraclass) dis-
tances increase/decrease. In other words, a low value of this index indicates a
clear separation of the classes.

In Q-α-FS [64], the inner products of patterns – another type of pattern
distance measurement – are employed to evaluate a feature subset in terms

Data Reduction for Pattern Recognition and Data Analysis 97

of cluster coherence of the first biggest k clusters. A high value of that index
can indirectly indicate that the original dataset is ‘well-clustered’. Through
optimizing it, the contribution of a feature to clearly cluster patterns is eval-
uated. Based on these evaluation results, the appropriate features are finally
determined.

Fuzzy feature evaluation index (FFEI) [51] evaluates the relationship
between the distance values measured in the original input space and a reduced
input space. An appropriate reduction of input space should not distort the
original distribution. In other words, it is expected that patterns close to (far
from) each other in the original data space should be close to (far from) each
other in the reduced data space. This is the basic idea of FFEI.

3.2 Search Engine

Search engine in a discrete feature domain has been an active research area.
Generally, a search engine is seen from two perspectives – search direction
and search strategy [43,47]. In this Chapter, we consider search direction and
search strategy as a single issue for ease of understanding. Search engines can
be grouped into four categories: an optimal search engine, a heuristic search
engine, a stochastic search engine, and a weighting-based search engine.

Optimal Search Engine

Optimal search engine can deliver optimal theoretical results. Optimal search
engines are often referred as complete (or exhaustive) search, or best-first
search [42, 50, 66]. As all possible feature subsets are tested and compared, a
complete search is able to identify the best feature subset(s). However with
a computation complexity of O(2M) (M being the cardinality of the original
feature set), it is practically impossible to apply the complete search procedure
in most real world applications.

The branch-and-bound algorithm [42,50] is another optimal search scheme.
Depending on a monotonic feature evaluation criterion, this algorithm can
implicitly inspect all possible feature subsets without conducting a complete
search. Through reducing the feature search domain, the branch-and-bound
algorithm can offer computational savings compared with the complete search
scheme. However this improvement is not enough. The branch-and-bound
algorithm is not computationally feasible even when operating on a mod-
erate size feature set. In [42], this algorithm is only applied to examples with
less than 20 features.

Heuristic Search Engines

Heuristic search engines are the most popular of the four types of search
engine. By avoiding expensive searching of the entire feature space, a heuristic

98 T.W.S. Chow and D. Huang

search scheme can greatly reduce computation burden. As a tradeoff, this type
of search engine may not be able to deliver optimal selection results. However,
it is alleged that floating search – a type of heuristic search scheme – is able
to deliver results comparable to optimal search [54].

Typical heuristic search schemes are sequential forward search, sequential
backward search and floating (compound) search [12]. As its name suggests,
in the sequential forward (backward) search scheme, the important (unimpor-
tant) features are iteratively identified and added into (or eliminated from) the
selected feature subset. The cost of these search methods is O(Mk), where M
and k are the number of given features and the number of features identified
in a single step, respectively (generally, k is set to 1). As for floating search, its
basic idea is simple: we apply a forward steps followed by b backward steps.
The cost of this type of bidirectional search scheme is O(Ma+b+1).

Stochastic Search Engines

Stochastic (random or non-deterministic) search engines are based on a
stochastic algorithm, such as a genetic algorithm (GA) or the anytime algo-
rithm [37, 57, 68]. The basic idea of these algorithms is that the next tested
object (a feature subset in the feature search domain) is generated in a rela-
tively random way, in order not to stick to a local optimization result. Unlike
heuristic search, a stochastic search engine does not reduce the original search
space. However, the actual number of tested feature subsets can be greatly
reduced by setting a reasonable search termination criterion.

Weighting-Based Search Engines

Weighting-based search engines [39, 64] firstly associate each original feature
with a weight in a certain feature evaluation criterion. The value of this weight
reflects the recognition contribution of the corresponding feature. Through
using this weighting operation, feature selection can be fulfilled by employing
an optimization algorithm in the continuous domain. In search engines of this
type, an efficient and effective optimization process in the continuous domain
is crucial.

3.3 Example Feature Selection Models

Several typical feature selection methods are considered in this Section to
demonstrate their performance. These are Battiti’s MI-based feature selection
model (MIFS) [3], the MI raw-based feature selection model (MI-raw-FS) [8],
the quadratic MI-based feature selection method (QMIFS) [11], the Bayesian
Discriminant-based Feature Selection scheme [26], support vector machine
based recursive feature elimination (SVM-RFE) [20], and Q-α-FS [64].

Data Reduction for Pattern Recognition and Data Analysis 99

The first four methods are filter models in which a one-step forward search
strategy is adopted. During each iteration, the one-step forward search evalu-
ates the importance of each unselected feature and places the most important
one into a selected feature subset. In MIFS, the importance of a feature (say f)
is determined by

I(f ; C | S) = I(f ; C)− β
∑
f∈S

I(f ; ḟ) (25)

where S is the set of selected features, and C represents the output vari-
able. The MI-raw-FS and QMIFS models employ MI-raw (Eqn. (14)) and
QMI (Eqn. (15)) respectively to measure feature importance, while BDFS uses
Eqn. (22) for this purpose.

The SVM-RFE [20] is a typical and efficient embedded model. It firstly
builds an SVM model based on all features. According to the SVM model
parameters, certain unimportant features are eliminated. Based on the remain-
ing features, a new SVM model is built, thereby certain unimportant features
are detected and deleted. The given feature set is reduced gradually in such
a way. Q-α-FS uses the distribution of patterns to determine which features
lead to improved clustering.

To evaluate the quality of selected feature subsets, four classifiers are
employed. They are a neural network (NN) classifier, support vector machine
model (SVM) with linear kernel, decision tree (DT), and k-Nearest Neigh-
bour rule with k = 1. The above feature selection methodologies are applied
to four datasets – two from the University of California, Irvine Knowledge
Discovery in Databases repository (http://kdd.ics.uci.edu/), and two being
cancer diagnosis data sets, as summarized in Table 4. The results are briefly
presented in Tables 5 through 8. MIFS shows less effectiveness than the other
five, which can be attributed to the fact that MIFS does not directly estimate
the usefulness of a feature subset. This is illustrated in Eqn. (25). Moreover, in
contrast to the other methods, Q-α-FS is an unsupervised approach. In other
words, the class information of patterns is not used. This is the reason why
Q-α-FS is unable to consistently deliver satisfactory results.

Table 4. The data sets used for the feature selection study

Dataset name Number of Number of Number Number
features classes of training of test

patterns patterns

Sonar 60 2 104 104
Ionosphere 34 2 200 151
Colon tumor [61] 2,000 2 30 32
ALL-AML [62] 7,128 2 38 34

100 T.W.S. Chow and D. Huang

Table 5. Results on the sonar classification data set

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-α-FS
of selected FS
features

k-NN 4 0.69 0.76 0.7 0.76 0.72 0.6
8 0.76 0.8 0.83 0.85 0.82 0.78

15 0.76 0.82 0.86 0.88 0.92 0.87
60 0.83

SVM 4 0.6 0.63 0.7 0.74 0.69 0.40
8 0.69 0.71 0.69 0.75 0.74 0.64

15 0.69 0.69 0.74 0.73 0.77 0.73
60 0.75

ANN 4 0.62 0.69 0.7 0.72 0.74 0.61
8 0.69 0.73 0.77 0.8 0.81 0.63

15 0.74 0.79 0.77 0.77 0.84 0.84
60 0.84

DT 4 0.65 0.69 0.65 0.65 0.65 0.4
8 0.69 0.71 0.67 0.67 0.71 0.4

15 0.71 0.72 0.7 0.71 0.76 0.75
60 0.74

Table 6. Results on the ionosphere classification data set

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-α-FS
of selected FS
features

k-NN 3 0.69 0.76 0.7 0.76 0.72 0.6
5 0.76 0.8 0.83 0.85 0.82 0.78
9 0.76 0.82 0.86 0.88 0.92 0.87

33 0.83

SVM 3 0.6 0.63 0.7 0.74 0.69 0.40
5 0.69 0.71 0.69 0.75 0.74 0.64
9 0.69 0.69 0.74 0.73 0.77 0.73

33 0.75

ANN 3 0.62 0.69 0.7 0.72 0.74 0.61
5 0.69 0.73 0.77 0.8 0.81 0.63
9 0.74 0.79 0.77 0.77 0.84 0.84

33 0.84

DT 3 0.65 0.69 0.65 0.65 0.65 0.4
5 0.69 0.71 0.67 0.67 0.71 0.4
9 0.71 0.72 0.7 0.71 0.76 0.75

33 0.74

Data Reduction for Pattern Recognition and Data Analysis 101

Table 7. Results on the cancer classification data set

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-α-FS
of selected FS
features

k-NN 2 0.69 0.76 0.7 0.76 0.72 0.6
4 0.76 0.8 0.83 0.85 0.82 0.78
8 0.76 0.82 0.86 0.88 0.92 0.87

SVM 2 0.6 0.63 0.7 0.74 0.69 0.40
4 0.69 0.71 0.69 0.75 0.74 0.64
8 0.69 0.69 0.74 0.73 0.77 0.73

ANN 2 0.62 0.69 0.7 0.72 0.74 0.61
4 0.69 0.73 0.77 0.8 0.81 0.63
8 0.74 0.79 0.77 0.77 0.84 0.84

DT 2 0.65 0.69 0.65 0.65 0.65 0.4
4 0.69 0.71 0.67 0.67 0.71 0.4
8 0.71 0.72 0.7 0.71 0.76 0.75

Table 8. Comparative results on ALL-AML data sets in terms of classification
accuracy

Number MIFS MI-raw- QMIFS SVM-RFE BDFE Q-α-FS
of selected FS
features

k-NN 2 0.72 0.94 0.79 0.91 0.76 0.71
4 0.79 0.91 0.91 0.79 0.82 0.79
8 0.82 0.82 0.97 0.82 0.91 0.76

SVM 2 0.72 0.88 0.76 0.88 0.79 0.5
4 0.79 0.91 0.91 0.85 0.76 0.62
8 0.59 0.59 0.59 0.88 0.79 0.62

ANN 2 0.73 0.76 0.79 0.88 0.79 0.62
4 0.76 0.82 0.88 0.79 0.76 0.62
8 0.79 0.88 0.94 0.79 0.85 0.62

DT 2 0.73 0.73 0.79 0.88 0.88 0.59
4 0.73 0.73 0.79 0.88 0.88 0.59
8 0.79 0.91 0.79 0.88 0.94 0.62

4 Trends and Challenges of Feature Selection
and Data Reduction

In the previous Sections, we discussed data reduction and feature selection.
Their merits and shortcomings have been detailed. With the advent of numer-
ous techniques and the development of computers generally, data volumes
continue to increase. A major issue is to find an effective method to handle

102 T.W.S. Chow and D. Huang

huge volume data sets. In this Section, we briefly describe different methods
that attempt to address the challenge posed by huge data volumes.

Firstly, in many physical applications, a data set may have a huge fea-
ture set, while the number of patterns is relatively small. A typical example is
microarray gene expression data sets. Microarray is a relatively recent biomed-
ical technique enabling biomedical researchers to record expression levels of
up to ten thousands of genes simultaneously [19,21]. However Microarray data
sets usually contain only tens or hundreds of patterns, due to the difficulties of
data collection. Similar small-pattern/huge-feature problems may also occur
in some image-based object recognition examples [4].

With small pattern sets, the problem of overfitting should be considered in
order to deliver reliable feature selection results. When embedded or wrapper
feature selection models are employed, researchers are recommended to choose
a recognition model exhibiting high regularization capability. For example,
support vector machine and the penalized COX model have been used in
[19, 21] to select important genes (namely, features), based on microarray
gene expression data.

As to filter feature selection models, few strategies have been designed to
date for improving their regularization ability. In [4], a bootstrap framework is
employed to alleviate overfitting. In this framework, certain data subsets are
randomly selected from a given data set. Mutual information of a feature to
the output variable is estimated using each data subset. Using all the obtained
estimates, the relevance of a feature is finally measured. This approach can
alleviate the problem of overfitting. However its large computational require-
ment, which is arguably the main shortcoming of the approach, substantially
restricts its application.

Secondly, there are applications where the number of patterns and number
of features are both large. For example, with the development of computer
techniques, a large quantity of patterns can be easily collected in the context
of text mining, customer management, and web page analysis [38, 49, 59]. In
these cases, researchers are required to identify useful features from a large
pattern set. Feature selection has to work together with data reduction in
order to enhance the efficiency of feature selection.

Broadly speaking, there are two ways of combining feature selection with
data reduction. First, feature selection and data reduction can be integrated
in a filter way. That is, we can firstly reduce a huge pattern set. Subsequently,
feature selection is conducted based on the reduced pattern set. For example,
in [63], a given large data set was firstly partitioned into several parts using
a KD-Tree. From each part, representative patterns were selected. Useful fea-
tures were then detected based on the representative patterns. But it must be
noted that this mechanism requires an efficient data reduction technique.

Second, feature selection and data reduction can be fused in an embedded
way. This embedded approach generally begins with a random selection of

Data Reduction for Pattern Recognition and Data Analysis 103

a set of representative patterns. Using the selected representatives, certain
useful features are selected. The representative set will continually be updated
according to the performance of patterns on the selected features. In such a
way, feature selection and data reduction are conducted in turn and iteratively
until the result cannot be further enhanced. Generally, compared with filter
schemes, embedded methods are less efficient, but more effective because the
reduced data sets are actively adapted in the course of feature selection.

References

1. Alon U, Barkar N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1996)
Broad pattern of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proc. National Academy
Science, 96(12): 6745–6750.

2. Astrahan MM (1970) Speech analysis by clustering, or the hyperphoneme
method. Stanford AI Project Memo, Stanford University, CA.

3. Battiti R (1994) Using mutual information for selecting features in supervised
neural net learning. IEEE Trans. Neural Networks, 5: 537–550.

4. Bins J, Draper B (2001) Feature selection from huge feature sets. In: Proc. Intl.
Conf. Computer Vision, July, Vancouver, Canada: 159–165.

5. Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University
Press, New York, NY.

6. Blum AL, Langley P (1993) Selecting concise training sets from clean data.
IEEE Trans. Neural Networks, 4(2): 305–318.

7. Blum AL, Langley P (1997) Selection of relevant feature and examples in
machine learning. Artificial Intelligence, 97(1–2): 245–271.

8. Bonnlander B (1996) Nonparametric selection of input variables for connec-
tionist learning. PhD Thesis, Department of Computer Science, University of
Colorado at Boulder, CU-CS-812-96.

9. Carunana RA, Freitag D (1994) Greedy attribute selection. In: Cohen WW,
Hirsh H (eds) Proc. 11th Intl. Conf. Machine Learning, New Brunswick, NJ,
July. Morgan Kaufmann, San Francisco, CA: 28–36.

10. Catlett J (1991) Megaindiction: machine learning on very large databases. PhD
Thesis, Department of Computer Science, University of Sydney, Australia.

11. Chow TWS, Huang D (2005) Estimating optimal feature subsets using effi-
cient estimation of high-dimensional mutual information. IEEE Trans. Neural
Networks, 16(1): 213–224.

12. Devijver PA, Kittler J (1982) Pattern Recognition: a Statistical Approach.
Prentice Hall, Englewood Cliffs, NJ.

13. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York,
NY.

14. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors
from mutual information. Physics Reviews A, 33(2): 1134–1140.

15. Freund Y, Seung H, Shamir E, Tishby N (1997) Selective sampling using the
query by committee algorithm. Machine Learning, 28: 133–168.

16. Friedman JH (1997) Data mining and statistics: what’s the connection? In:
Scott DW (ed) Proc. 29th Symp. Interface Between Computer Science and

104 T.W.S. Chow and D. Huang

Statistics, Houston, TX, May (available online at http://www.stat.stanford.
edu/jhf/ftp/dm-stats.ps – last accessed March 2007).

17. Golub TR, Slonim DK, Tamayo P, Huard C, Gassenbeck M, Mesirov JP,
Coller H, Loh L, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999)
Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286: 531–537.

18. Gray RM (1984) Vector quantization. IEEE ASSP Magazine, 1(2): 4–29.
19. Gui J, Li H (2005) Penalized Cox regression analysis in the high-dimensional

and low sample size settings, with application to microarray gene expression.
Bioinformatics, 21(13): 3001–3008.

20. Guyon I, Weston J, Barnhill S (2002) Gene selection for cancer classification
using support vector machines. Machine Learning, 46: 389–422.

21. Guyon I, Elisseeff (2003) An introduction to variable and feature selection.
J. Machine Learning Research, 3: 1157–1183.

22. Hall MA (1999) Correlation-based feature selection for machine learning. PhD
Thesis, Department of Computer Science, University of Waikato, New Zealand.

23. Hall MA, Holmes G (2000) Benchmarking attribute selection techniques for
data mining. Working Paper 00/10, Department of Computer Science, Uni-
versity of Waikato, New Zealand (available online at http://citeseer.ist.psu.
edu/382752.html – last accessed March 2007).

24. Han JW, Kamber M (2001) Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA.

25. Hart PE (1968) The condensed nearest neighbour rule. IEEE Trans. Information
Theory, 14: 515–516.

26. Huang D, Chow TWS (2005) Efficiently searching the important input variables
using Bayesian discriminant. IEEE Trans. Circuits and Systems – Part I, 52(4):
785–793.

27. Huang D, Chow TWS (2006) Enhancing density-based data reduction using
entropy. Neural Computation, 18: 470–495.

28. Jain AK, Zongker D (1997) Feature selection: evaluation, application, and small
sample performance. IEEE Trans. Pattern Analysis and Machine Intelligence,
19(2): 153–158.

29. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection
problem. In: Cohen WW, Hirsh H (eds) Proc. 11th Intl. Conf. Machine Learning,
New Brunswick, NJ, July. Morgan Kaufmann, San Francisco, CA: 121–129.

30. John GH, Langley P (1996) Statistics vs. dynamics sampling for data mining. In:
Simoudis E, Han J, Fayyad UM (eds) Proc. 2nd Intl. Conf. Knowledge Discovery
and Data Mining, Portlnd, OR, August. AAAI Press, Menlo Park, CA: 367–370.

31. Kohavi R, John GH (1998) The wrapper approach. In: Liu H, Motoda H (eds)
Feature Extraction, Construction and Selection. Kluwer Academic Publishers,
New York, NY: 33–50.

32. Kohonen T (2001) Self-Organizing Maps. Springer-Verlag, London, UK.
33. Kudo M, Sklansky (1997) A comparative evaluation of medium and large-scale

feature selectors for pattern classifiers. In: Pudil P, Novovicova J, Grim J (eds)
Proc. 1st Intl. Workshop Statistical Techniques in Pattern Recognition, Prague,
Czech Republic, June: 91–96.

34. Kudo M, Sklansky J (2000) Comparison of algorithms that select features for
pattern classifiers. Pattern Recognition, 33: 25–41.

35. Kwak N, Choi C-H (2002) Input feature selection for classification problems.
IEEE Trans. Neural Networks, 13: 143–159.

Data Reduction for Pattern Recognition and Data Analysis 105

36. Kwak N, Choi C-H (2002) Input feature selection by mutual information based
on Parzen window. IEEE Trans. Pattern Analysis and Machine Intelligence,
24(12): 1667–1671.

37. Last M, Kandel A, Maimon O, Eberbach E (2000) Anytime algorithm for feature
selection. In: Ziarko W, Yao Y (eds) Rough Sets and Current Trends in Comput-
ing (Proc. 2nd Intl. Conf. RSCTC), October, Banff, Canada. Springer-Verlag,
London, UK: 16–19.

38. Law M, Figueiredo M, Jain A (2002) Feature saliency in unsupervised learning.
Technical Report, Department of Computer Science, Michigan State Univer-
sity (available at http://www.cse.msu.edu/#lawhiu/papers/TR02.ps.gz – last
accessed March 2007).

39. Lazzerini B, Marcelloni F (2001) Feature selection based on similarity.
Electronics Letters, 38(3): 121–122.

40. Lewis DD, Catlett J (1994) Heterogeneous uncertainty: sampling estimation of
error reduction. In: Cohen WW, Hirsh H (eds) Proc. 11th Intl. Conf. Machine
Learning, New Brunswick, NJ, July. Morgan Kauffman, San Francisco, CA:
148–156.

41. Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, London, UK.

42. Liu H, Motoda H, Dash M (1998) A monotonic measure for optimal feature selec-
tion. In: Nedellec C, Rouveiral C (eds) Proc. European Conf. Machine Learning,
Chemnitz, Germany, April. Springer-Verlag, London, UK: 101–106.

43. Liu H, Motoda H, Yu L (2002) Feature selection with selective sampling. In:
Sammut C, Hoffmann A (eds) Proc. 9th Intl. Conf. Machine Learning, Sydney,
Australia, July. Morgan Kaufmann, San Francisco, CA: 395–402.

44. MacKay D (1992) A practical Bayesian framework for backpropagation
networks. Neural Computation, 4: 448–472.

45. Mitra P, Murthy CA, Pal SK (2002) Density-based multi-scale data con-
densation. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(6):
734–747.

46. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature seelction using fea-
ture similarity. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(3):
301–312.

47. Molina LC, Belanche L, Nebot A (2002) Feature selection algorithms: a survey
and experimental evaluation. Technical Report, Department de Llenguatges i
Sistemes Informátics, Universitat Politèncnica de Catalunya.

48. Moon Y, Rajagopalan B, Lall U (1995) Estimation of mutual information using
kernel density estimators. Physics Reviews E, 52: 2318–2321.

49. Moore J, Han E, Boley D, Gini M, Gross R, Hastings K, Karypis G, Kumar
V, Mobasher B (1997) Web page categorization and feature seelction using
association rule and principal component clustering. Proc. 7th Intl. Workshop
Information Technologies and Systems, Atlanta, GA, December (available online
at http://citeseer.ist.psu.edu/15436.html – last accessed March 2007)

50. Narendra PM, Fukunaga K (1997) A branch and bound algorithm for feature
subset selection. IEEE Trans. Computers – C, 26(9): 917–922.

51. Pal SK, De RK, Basak J (2000) Unsupervised feature evaluation: a neuro-fuzzy
approach. IEEE Trans. Neural Networks, 11(2): 366–376.

52. Plutowski M, White H (1993) Selecting concise training sets from clean data.
IEEE Trans. Neural Networks, 4(2): 305–318.

106 T.W.S. Chow and D. Huang

53. Provost F, Kolluri V (1999) A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery, 2: 131–169.

54. Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature
selection. Pattern Recogition Letters, 15: 1119–1125.

55. Roy N, McCallum A (2001) Toward optimal active learning through sampling
estimation of error reduction. In: Lapalme KG (eds) Proc. 18th Intl. Conf.
Machine Learning, Williamstown, MA, June. Morgan Kauffman, San Francisco,
CA: 441–448.

56. Setiono R, Liu H (1997) Neural network feature selector. IEEE Trans. Neural
Networks, 8(3): 654–661.

57. Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large scale on
feature selection. Pattern Recogition Letters, 10: 335–347.

58. Thedodoridis S, Koutroumbas K (1998) Pattern Recognition. Academic Press,
London, UK.

59. Tong S, Koller D (2000) Support vector machine active learning with applica-
tions to text classification. In: Langley P (ed) Proc. 17th Intl. Conf. Machine
Learning, Stanford, CA, June. Morgan Kaufmann, San Francisco, CA: 999–1006.

60. Wang H, Bell D, Murtagh F (1999) Axiomatic approach to feature sub-
set selection based on relevance. IEEE Trans. Pattern Analysis and Machine
Intelligence, 21(3): 271–277.

61. Wang W, Jones P, Patridge D (2001) A comparative study of feature-salience
ranking techniques. Neural Computation, 13: 1603–1623.

62. Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2001)
Feature selection for SVMs. In: Solla SA, Leen TK, Muller K-R (eds) Advances
in Neural Information Processing Systems 13. MIT Press, Cambridge, MA: 688–
674.

63. Wilson AL, Martinez TR (2000) Reduction techniques for instance-based
learning algorithms. Machine Learning, 38: 257–286.

64. Wolf L, Shashua A (2003) Feature selection for unsupervised and supervised
inference: the emergence of sparsity in a wieghted-based approach. Technical
Report 2003-58, June, Hebrew University, Israel.

65. Xing EP, Jordan MI, Karp RM (2001) Feature selection for high-dimensional
genomic microarray data. In: Brodley CE, Danyluk AP (eds) Proc. 18th Intl.
Conf. Machine Learning, Boston, MA, June. Morgan Kauffman, San Francisco,
CA.

66. Xu L, Yan P, Chang T (1998) Best first strategy for feature selection. Proc.
9th Intl. Conf. Pattern Recognition, Rome, Italy, November. IEEE Computer
Society Press, Piscataway, NJ: 706–708.

67. Yang J, Honavar VG (1998) Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems, 13(2): 44–49.

68. Yang ZP, Zwolinski (2001) Mutual information theory for adaptive mix-
ture models. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(4):
396–403.

Resources

1 Key Books

Devijver PA, Kittler J (1982) Pattern Recognition: a Statistical Approach.
Prentice Hall, Englewood Cliffs, NJ.

Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, London, UK.

2 Key Survey/Review Articles

Blum AL, Langley P (1997) Selection of relevant feature and examples in
machine learning. Artificial Intelligence, 97(1–2): 245–271.

Guyon I, Elisseeff A (2003) An introduction to variable and feature selec-
tion. J. Machine Learning Research, 3: 1157–1183.

Jain AK, Zongker D (1997) Feature selection: evaluation, application, and
small sample performance. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 19(2): 153–158.

Kudo M, Sklansky J (1997) A comparative evaluation of medium and large-
scale feature selectors for pattern classifiers. In: Pudil P, Novovicova J, Grim J
(eds) Proc. 1st Intl. Workshop Statistical Techniques in Pattern Recognition,
Prague, Czech Republic, June: 91–96.

Kudo M, Sklansky J (2000) Comparison of algorithms that select feature
for pattern classifiers. Pattern Recognition, 33: 25–41.

108 T.W.S. Chow and D. Huang

Molina LC, Belanche L, Nebot A (2002) Feature selection algorithms: a
survey and experimental evaluation. Technical Report, Departament de Llen-
guatges i Sistemes Informtics, Universitat Politécnica de Catalunya (available
at: http://www.lsi.upc.es/dept/techreps/html/R02-62.html – last accessed
March 2007)

Provost F, Kolluri V (1999) A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery, 2: 131–169.

3 Organizations, Societies, Special Interest Groups

ACM Special Interest Group on Knowledge Discovery and Data Mining
http://www.acm.org/sigs/sigkdd/

China Data Mining Research
http://www.dmresearch.net/

4 Research Groups

Data Mining Research Group of Jiawei Han
http://dm1.cs.uiuc.edu/

Research Group of Huan Liu
http://www.public.asu.edu/~huanliu/index.html

WEKA Machine Learning Project
http://www.cs.waikato.ac.nz/~ml/

5 Discussion Groups, Forums

Data Miner
http://blogger.org.cn/blog/blog.asp?name=idmer

KDnuggets
http://www.kdnuggets.com/

6 Key International Conferences/Workshops

IEEE International Conference on Data Mining (ICDM)
http://www.comp.hkbu.edu.hk/~wii06/icdm/

ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
http://www.kdd2006.com/

Data Reduction for Pattern Recognition and Data Analysis 109

7 (Open Source) Software

WEKA (Machine Learning algorithms, including feature selection)
http://www.cs.waikato.ac.nz/~ml/

8 Data Bases

University of California, Irvine Machine Learning Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html

Kent Ridge Biomedical Repository
http://research.i2r.a-star.edu.sg/rp/

Broad institute Bioinformatic Data
http://www.broad.mit.edu/tools/data.html

Topographic Maps for Clustering
and Data Visualization

Colin Fyfe

Applied Computational Intelligent Research Unit, The University of Paisley,
Scotland, UK, colin.fyfe@paisley.ac.uk

1 Introduction

Topographic maps (also known as topology-preserving mappings) are pro-
jections of a data set which attempt to capture some underlying structure
therein. These are essentially unsupervised mappings (though supervised ver-
sions do exist), and so the algorithms must be structured in some way so that
the final projection reveals some underlying structure in the data.

The self-organizing map (SOM) of Kohonen [21] is the oldest of such map-
pings and remains one of the most popular exploratory data analysis tools: a
biennial conference is one of the most interesting and respected conferences on
the academic circuit; a recent one – in Paris 2005 – attracted over 100 partic-
ipants including most of the eminent scholars in this field (including Kohonen
himself). The SOM is based on an artificial neural network methodology and
attempts to mimic aspects of self-organization seen in vivo. There are many
flavours of SOM but we cannot discuss them all here since it is a wide and still
very active field of research, so will content ourselves with identifying some
of the major trends in research in this area. We apologise in advance for any
omissions we make to this review.

A more recent development is the Generative Topographic Mapping
(GTM) developed by [1] in the late 1990s. This was a very active research area
for a few years but the field seems to have lost some of its vitality recently.
Some of this is no doubt due to the fact that the GTM is much more complex
than the SOM and so researchers more interested in viewing their data sets
rather than innovating in the field of topographic mappings have tended to
use the SOM rather than the GTM. Also, the emphasis of GTM publications
tended to be on the fact that it was a ‘principled alternative’ to the SOM. If
researchers feel bound to stick to principled approaches, their research pro-
cesses are limited in ways that do not happen in more application-oriented
research. Also the quasi-religious Bayesian approach does not appeal to all
researchers.
C. Fyfe: Topographic Maps for Clustering and Data Visualization, Studies in Computational

Intelligence (SCI) 115, 111–153 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

112 C. Fyfe

The rest of this Chapter is structured as follows: in Sect. 3, we discuss
the basic competitive learning paradigm and the extension which leads to the
SOM. In Sect. 4, we review the GTM and illustrate its use. Finally we review
some of our recent work in this area.

2 Clustering and Visualization

These two topics may at first sight seem somewhat disparate yet they are
closely linked. Clustering is used with high-dimensional data sets when we
have no prior information about groups into which individual data items may
be placed. This is in contrast to classification in which we have a set of train-
ing examples for which we already have prior knowledge of the classes to
which the data belong. Learning to cluster data is an unsupervised learning
problem, whereas classification is a supervised learning problem. Perhaps the
most widely used clustering algorithm is the K-Means algorithm [4, 12, 23]
which places K prototypes throughout a data space in such a way that each
lies in the centre of a group of data; each data point may then be allocated
a label which identifies it as lying in that cluster which is represented by the
prototype. If the data is high dimensional, there is no quick and easy way
for human intuition to see these clusters, but we can, through this process,
understand that all points which are given the same label have some features
which are similar to one another; by quantizing the data to the prototypes we
have augmented our knowledge about the data.

However clustering does not give us any information about the relationship
between clusters. One way to get this information is to view the labels above
as lying in a feature space and then investigate the relationships between the
labels in this feature space. Indeed, many techniques go beyond this: they first
of all specify the relationships between the labels in the feature space and then
perform the clustering while maintaining these relationships. The movements
of the prototype has to be constrained in ways which accommodates these
relationships. This, indeed, is the technique used by the Self-Organizing Map
which is discussed in the next Section. The resulting clustering can then be
used for visualization if the relationship between the labels is sufficiently low
dimensional, that is, 1, 2 or 3 dimensional. Visualization is another technique
for augmenting our knowledge about a data set: we are taking a high dimen-
sional data set and labeling the members of the data set in such a way that
we can visually see the relationship between different data points.

Of course the above discussion assumes that the labels can be forced to lie
in a sufficiently low dimensional space, while simultaneously the prototypes
associated with the labels can sufficiently accurately model the data in data
space. Sometimes these two criteria conflict and so we achieve a visualization
which does not accurately reflect all the features of the data. We may still
hope that we have increased our knowledge of the data set though accepting

Topographic Maps for Clustering and Data Visualization 113

that there is more structure to be found in the data set which is beyond human
visualization capabilities.

The era of computerization has enabled us to extend visualization in ways
which have never previously been possible. Most visualization algorithms have,
as their core, the basic idea that they are using the computer to grind out dif-
ficult (for a human) computation, while presenting the results in a way that is
easy (for a human) to spot patterns. It is notoriously difficult to create generic
pattern matching software yet humans (and presumably animals) find it very
easy to find structure in visual data. Therefore we are using the computer to
do what it is best doing (number crunching), while leaving the human to do
what he/she is best doing (pattern matching). The remainder of this Chapter
will consider a variety of ways of performing clustering and visualization.

3 The Self-Organizing Map

With Minsky and Papert’s [24] famous book Perceptrons, research into arti-
ficial neural networks almost stopped for nearly two decades. Among the few
exceptions to this was Kohonen, who developed a topographic mapping based
on competitive learning. In the next Section we discuss competitive learning
before reviewing the SOM itself [21].

3.1 Competitive Learning

One of the non-biological aspects of the basic Hebbian learning rule is that
there is no limit to the amount of resources which may be given to a synapse.
This is at odds with real neural growth in that it is believed that there is a limit
on the number and efficiency of synapses per neuron. In other words, there
comes a point during learning in which if one synapse is to be strengthened,
another must be weakened. This is usually modelled as a competition for
resources.

In competitive learning, there is a competition between the output neurons
to fire. Such output neurons are often called ‘winner-take-all’ units. The aim
of competitive learning is to cluster the data. However, as with the Hebbian
learning networks, we provide no correct answer (that is, no labelling infor-
mation) to the network. It must self-organise on the basis of the structure of
the input data.

The basic mechanism of simple competitive learning is to find a winning
unit and update its weights to make it more likely to win in future should a
similar input be given to the network. We first have a competition between
the output neurons and then

∆wij = η(xj − wij), for the winning neuron i (1)

114 C. Fyfe

Note that the change in weights is a function of the difference between the
weights and the input. This rule will move the weights of the winning neuron
directly towards the input. If used over a distribution, the weights will tend to
the mean value of the distribution since ∆wij → 0 ⇐⇒ wij → E(xj), where
E(.) indicates the ensemble average.

Probably the three most important variations of competitive learning are

1. Learning Vector Quantisation [19]
2. The ART models [2, 3]
3. The Kohonen feature map [21]

The last of these is one of the subjects of this Chapter.

The Kohonen Feature Map

The interest in feature maps stems directly from their biological importance.
A feature map uses the ‘physical layout’ of the output neurons to model some
feature of the input space. In particular, if two inputs x1 and x2 are close
together with respect to some distance measure in the input space, then if
they cause output neurons ya and yb to fire respectively, ya and yb must be
close together in some layout of the output neurons. Further, we can state
that the opposite should hold: if ya and yb are close together in the output
layer, then those inputs which cause ya and yb to fire should be close together
in the input space. When these two conditions hold, we have a feature map.
Such maps are also called topology preserving maps.

Examples of such maps in biology include:

• the retinotopic map, which takes input from the retina (at the eye) and
maps it onto the visual cortex (back of the brain) in a two dimensional map,

• somatosensory map, which maps our touch centres on the skin to the
somatosensory cortex,

• the tonotopic map, which maps the responses of our ears to the auditory
cortex.

Each of these maps is believed to be determined genetically but refined by
usage. For example, the retinotopic map is very different if one eye is excluded
from seeing during particular periods of development.

Kohonen’s algorithm [21] is exceedingly simple – the network is a simple
2-layer network and competition takes place between the output neurons; how-
ever now not only are the weights into the winning neuron updated but also
the weights into its neighbours. Kohonen defined a neighbourhood function
f(i, i∗) of the winning neuron i∗. The neighbourhood function is a function of
the distance between i and i∗. A typical function is the Difference of Gaussians
function; thus if unit i is at point ri in the output layer then

Topographic Maps for Clustering and Data Visualization 115

f(i, i∗) = a exp
(
−|ri − ri∗ |2

2σ2

)
− b exp

(
−|ri − ri∗ |2

2σ2
1

)
(2)

where rk is the position in neuron space of the kth centre: if the neuron space is
1-dimensional, rk = k is a typical choice; if the neuron space is 2-dimensional,
rk = (xk, yk), its two dimensional Cartesian coordinates.

Results from an example experiment are shown in Fig. 1. The experiment
consists of a neural network with two inputs and twenty five outputs. The
two inputs at each iteration are drawn from a uniform distribution over the
square from −1 to 1 in two directions. The algorithm is

Algorithm 1 Kohonen’s Self-Organizing Map Algorithm
repeat

1. Select at random an input point.
2. There is a competition among the output neurons; that neuron whose centres
are closest to the input data point wins the competition:

winning neuron, i∗ = arg min(‖ x −wi ‖) (3)

3. Now update all neurons’ centres using

∆wij = α(xj − wij) ∗ f(i, i∗) (4)

where

f(i, i∗) = a exp(
−|ri − ri∗ |2

2σ2
) − b exp(

−|ri − ri∗ |2
2σ2

1

) (5)

until some termination criterion has been met

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4-0.2 0 0.2 0.4 0.6 0.8 1

Converged Kohonen One D Map

"temp.dat"

Fig. 1. A one-dimensional mapping of the two-dimensional input space

116 C. Fyfe

0 5 10

0

1

2

3

4

5

6

7

8

9

10

11

Map in output space

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Map in input space

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trained map

Fig. 2. Left: the neurons lie in a triangular grid in feature space; centre: the centres
are initialised to lie randomly in data space; right: the centres in data space move
into regular positions in the data space

Kohonen typically keeps the learning rate constant for the first 1000 iterations
or so and then slowly decreases it to zero over the remainder of the experiment
(we can be using 100,000 or more iterations for self-organising maps).

From the SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox/), we
have Fig. 2, which illustrates the two positions which each centre may be
thought to define: firstly each point determines a centre in data space but
each point is also given a position in feature space which determines how
close it is to the winning neuron (or any other neuron) in the feature space.
The left diagram of Fig. 2 shows the positions of points in feature space. The
middle diagram shows the initial positions of centres in data space while the
right shows their positions in data space after training.

Note that, for visualization purposes, we ideally would like

1. points which are far distant from one another to be distant in the feature
space,

2. points which are close to one another to be close in feature space,
3. points which are distant in feature space to be representing points distant

in data space,
4. points which are close in feature space to be representing points close in

data space.

Topographic Maps for Clustering and Data Visualization 117

Most existing topology preserving maps satisfy 1. and 4. but, as seen in
Fig. 1, few satisfy 2. and 3. In that figure, this is caused by the fact that
the data is 2-dimensional but the mapping used by this SOM network was
1-dimensional, and so the mapping has to coil round on itself to cover all of the
data. This is not a problem for this data set since we can merely increase the
dimensionality of the map to 2, however in general we are trying to visualise a
high-dimensional data set with a two-dimensional map, and so we are making
an implicit assumption that there exists a two-dimensional manifold which
can adequately capture the main features of the data.

In [21], a whole chapter is given over to applications of the SOM; exam-
ples include text mining (specifically of web pages), a phonetic typewriter,
clustering of financial variables, robot control and forecasting.

We have said that the most common topographic mappings are Kohonen’s
self-organizing map (SOM) [21] and varieties of multi-dimensional scaling [12].
The SOM was introduced as a data quantization method but has found at
least as much use as a visualization tool. It does have the disadvantage that
it retains the quantization element so that while its centres may lie on a
manifold, the user must interpolate between the centres to infer the shape of
the manifold. The Generative Topographic Mapping removes this necessity.

3.2 Illustrative Example

In this Chapter, we will use as a standard data set – a set of 118 samples from
a scientific study of various forms of algae, some of which have been manually
identified (http://www.ics.uci.edu/~mlearn/MLSummary.html). Each sample
is recorded as an 18-dimensional vector representing the magnitudes of various
pigments. 72 samples have been identified as belonging to a specific class of
algae which are labeled from ‘1’ to ‘9’; 46 samples have yet to be classified
and these are labeled ‘0’.

We show in Fig. 3 (top) a visualization of this data set from a two dimen-
sional 10×10 SOM. Each data point is visualized as residing at the node on
the map which would win the competition for that data point. However we
can do rather better by defining the responsibility that the jth node has for
the ith data point as

rji =
exp(−γ ‖ xi −wj ‖2)∑
k exp(−γ ‖ xi −wk ‖2)

(6)

We then project points taking into account these responsiblities: let yij be the
projection of the ith data point onto the jth dimension of the feature space,
then

yij =
∑

k

wkjrki (7)

We show this projection in Fig. 3 (bottom) for the same simulation which
produced the top diagram.

118 C. Fyfe

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9
SOM Visualisation of Algae data set − data quantized to winners

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
SOM visualization of algae data using responsibilities

Fig. 3. Top: visualization of the algae data set when data points quantized to SOM
nodes; bottom: visualization from the same simulation when we use responsibilities
(see text)

3.3 Alternative Traditional Topology Preserving Mappings

Although the SOM is the most popular mapping which preserves some topol-
ogy in the data set, it is by no means the only traditional mapping of
this type. We mention only two alternatives in this Section. The first is
multi-dimensional scaling which is designed for data sets about which we

Topographic Maps for Clustering and Data Visualization 119

only have distance information – in other words, we know the distances or
differences between pairs of data points but have no actual positions with
which to ground our mapping. Let dij be the distance between the ith and
jth data point in data space and let δij be the distance between the projections
zi and zj of the data points in feature space. Then classical multi-dimensional
scaling seeks to minimise the stress function

S =
∑

i

∑
j �=i

(dij − δij)2 (8)

by altering the positions of zi and zj . Perhaps the most popular variant of mul-
tidimensional scaling is the Sammon mapping [12] which places more emphasis
on preserving smaller distances with

S =
∑

i

∑
j �=i

(dij − δij)2

dij
(9)

An example of the Sammon mapping (which also used the implementation
from the SOM Toolbox) on the algae dataset is shown in Fig. 4.

One of the disadvantages which a clustering which attempts to preserve
the topography of a data sets can have is that the resultant map may have
nodes which are in regions of the data space where there is no data. These
are essentially dead neurons and have been pulled into their positions by the
positioning of the neurons which act as its neighbours in feature space. An
interesting variation on self-organising maps creates equi-probabilistic map-
pings, a mapping in which each node is equally likely to respond given the
data set on which it is trained [27].

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Sammon mapping of algae data set

Fig. 4. A Sammon mapping of the algae data set

120 C. Fyfe

Kohonen himself [20] has created a mapping which visualizes an episode
of data, a set of data which takes into account changes in the data over time.
We may also consider combining the SOM with other visualization techniques,
some of which are perhaps complementary, thereby providing us with meth-
ods which are more powerful that the individual techniques which have been
combined [10].

Prior to the Generative Topographic Mapping (Sect. 4), several resear-
chers investigated probabilistic mappings which have topology-preserving
properties. Notable among these is Luttrell, who for a decade carried forward
such investigations (see, for example, [22] for an early investigation).

Many researchers have investigated growing and pruning such maps.
Perhaps the work of Fritzke [5–7] who investigated and compared such maps
should be mentioned here.

3.4 A Last Word

We have mentioned the biennial conference on self-organizing maps; a recent
one – in Paris 2005 – attracted over 100 participants and had a wide range of
papers covering a variety of issues pertaining to topology preserving mappings
(indeed the final sections of this Chapter are based on work presented at that
conference). The next one (as I write) takes place in 2007 in Germany. It is
anticipated that subsequent conferences will take place every two years after
that.

Perhaps the most respected journal in the artificial neural network field
is Neural Computation (MIT Press). Recently, a book containing some of
the strongest articles on self-organizing map formation which have appeared
in Neural Computation over the decade 1989–1999 has appeared [26]; it is
essential reading for the serious researcher. There are also a number of other
books on the topic.

A special edition of the journal Neural Networks has been devoted to
current developments in self-organizing maps. Many of the leading researchers
in this field have contributed articles to this issue and the resulting journal
should be extremely interesting.

Other recent (as I write) developments include

• In August 2006, a research workshop was organized by Prof. A. Gorban,
University of Leicester, UK, on ‘Principal manifolds for data cartogra-
phy and dimension reduction’, which brought together researchers with
interests in a number of related techniques.

• Another gathering of researchers in this field took place in March 2007 at
the famous Schloss Dagstuhl, devoted to ‘similarity-based clustering’.

Topographic Maps for Clustering and Data Visualization 121

Finally, we should point interested readers to the Helsinki University of
Technology website,which provides Matlab source code known as the SOM
Toolbox (http://www.cis.hut.fi/projects/somtoolbox).

4 The Generative Topographic Mapping

In the next Section, we introduce two new topology preserving mappings
the first of which we call the Topographic Products of Experts (ToPoE) and
the second we call the Harmonic Topographic Map (HaToM). Based on a
generative model of the experts, we show how a topology preserving mapping
can be created from a product of experts in a manner very similar to that
used by [1] to convert a mixture of experts to the Generative Topographic
Mapping (GTM). In contrast to the SOM, neither of these mappings quantizes
but rather spread the points across the manifold.

We begin with a set of experts who reside in some latent space and take
responsibility for generating the data set. In a mixture of experts [17,18], the
experts divide up the data space between them, each taking responsibility
for a part of the data space. This division of labour enables each expert to
concentrate on a specific part of the data set and ignore those regions of the
space for which it has no responsibility. The probability associated with any
data point is the sum of the probabilities awarded to it by the experts. There
are efficient algorithms, notably the Expectation-Maximization algorithm, for
finding the parameters associated with mixtures of experts [1] constrained the
experts’ positions in latent space and showed that the resulting mapping also
had topology preserving properties.

The Generative Topographic Mapping (GTM) [1] is a mixture of experts
model which treats the data as having been generated by a set of latent points.
These K latent points are also mapped through a set of M basis functions
and a set of adjustable weights to the data space. The parameters of the
combined mapping are adjusted to make the data as likely as possible under
this mapping. The GTM is a probabilistic formulation so that if we define
y = ΦW = Φ(t)W, where t is the vector of latent points, the probability of
the data is determined by the position of the projections of the latent points
in data space and so we must adjust this position to increase the likelihood
of the data. More formally, let

mi = Φ(ti)W (10)

be the projections of the latent points into the feature space. Then, if we
assume that each of the latent points has equal probability

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(11)

122 C. Fyfe

where D is the dimensionality of the data space – in other words, all the data
is assumed to be noisy versions of the mapping of the latent points.

In the GTM, the parameters W and β are updated using the EM algorithm
to maximise the likelihood of the data under this model. Thus we must be
very precise about the format of this model. More specifically, the underlying
structure of the experts can be represented by K latent points, t1, t2, · · · , tK .
To allow local and non-linear modeling, we map those latent points through a
set of M basis functions, f1(), f2(), · · · , fM (). This gives us a matrix Φ where
φkj = fj(tk). Thus each row of Φ is the response of the basis functions to
one latent point, or alternatively we may state that each column of Φ is the
response of one of the basis functions to the set of latent points. One of the
functions, fj(), acts as a bias term and is set to one for every input. Typically
the others are Gaussians centered in the latent space. The outputs of these
functions are then mapped by a set of weights, W , into data space. W is
M × D, where D is the dimensionality of the data space, and is the sole
parameter which we change during training. We will use wi to represent the
ith column of W and Φj to represent the row vector of the mapping of the
jth latent point. Thus each basis point is mapped to a point in data space,
mj = (ΦjW)T .

To change W , we consider a specific data point, say xi. We calculate the
current responsibility of the jth latent point for this data point

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(12)

where dpq = ||xp−mq||, the Euclidean distance between the pth data point and
the projection of the qth latent point (through the basis functions and then
multiplied by W). If no centres are close to the data point (the denominator
of Eqn.(12) is zero), we set rij = 1

K , ∀j.
We use these responsibilities to change W using

WT
new = (ΦT GΦ)−1ΦT RX (13)

where R is the matrix of responsibilities, G is a diagonal matrix with Gii =∑
j rij and X is the N ×D data matrix. β is similarly adjusted using

1
βnew

=
1

ND

N∑
n=1

K∑
k=1

rnk||WnewΦ(tk)− xn||2 (14)

4.1 Illustrative Examples

We begin with an example from the GTM DEMO from Netlab [25] which
is highly recommended (http://www.ncrg.aston.ac.uk/netlab/index.php). In
Fig. 5 we show the convergence of the GTM on an artificial two-dimensional

Topographic Maps for Clustering and Data Visualization 123

Initial configuration After 4 iterations of training

After 8 iterations of training After 15 iterations of training

Fig. 5. The initialised GTM centres are strung out along the first principal com-
ponent and all mixture components have equal variance; we then see the changes in
the positions of the centres and the variances of the components after 4, 8 and 15
iterations

data set in which y = x + 1.25 sin(2x) + µ, where x is drawn uniformly from
[0.15,3.05] and µ is noise. The centres are initialized to lie uniformly along the
first principal component of the data and we can see that, during training,
they move to the centre of the data manifold very quickly (the top right
diagram shows the positions after only four iterations of the EM algorithm).
Eventually the system stabilizes with the variance of the Gaussians very much
smaller than the initial estimates.

It is of interest to compare the GTM on the algae data: we use a two-
dimensional latent space with a 10×10 grid for comparison. The results are
shown in Fig. 6. The GTM makes a very confident classification: we see that
the responsibilities for data points are very confidently assigned, in that indi-
vidual classes tend to be allocated to a single latent point. This, however
works against the GTM in that, even with zooming in to the map, one cannot
sometimes disambiguate the two different classes such as at the points (1,−1)
and (1,1). This was not alleviated by using regularization in the GTM though
we should point out that we have a very powerful model for a rather small
data set.

124 C. Fyfe

Fig. 6. The projection of the algae data given by the GTM

4.2 Adjusting the Latent Space

The GTM suffers from a common problem with topographic mappings – the
latent points determine the topography a priori and the model is then made
to fit the data as well as possible. So what happens in cases in which the
model does not fit the data so well? An example is shown in Fig. 7: we see
that the data is composed of four clusters of points which lie approximately
on a line. We have used a 1-dimensional set of latent points and so they should
be well-matched to the data. However, some of the latent points are mapped
to regions of the data space in which there is no data. As noted above, this
type of problem has been tackled by SOM researchers but does not feature in
GTM research. Yet there are many models which combine top-down generative
models with bottom-up data driven modeling, for instance [15, 29].

These models alternate optimising the parameters assuming the latent
model to be correct with optimising the parameters assuming the data has
priority. We now add the latter feature to the GTM. Note that

P (t|x) =
P (t,x)
P (x)

=
P (x|t)P (t)

P (x)
=

P (x|t)
KP (x)

(15)

Topographic Maps for Clustering and Data Visualization 125

After 100 iterations of training

Fig. 7. The standard GTM positions the projection of some latent points well away
from the data

if P (t) = 1
K . Then we wish to maximize this probability – that is, we are

assuming now that the data has priority and retain the same model structure
as before, but now change the position of the latent points in latent space.
With some abuse of the notation, we will now use t both for the latent point
and its position. We note that the denominator is independent of t and so

∂P (t|x)
∂t

∝ exp(−β/2 ∗ (Φ(t)W − x)T (Φ(t)W − x))β(Φ(t)W − x)T (Φ(t)W)

(16)
Thus we enable the latent points to change positions in latent space using
gradient ascent. We have found it useful to either

1. use the constraint that they must retain their ordering so that ti < ti+1 +
ε, ∀i at all times; ε is a small real number used to ensure there remains
some distance between the latent points.

2. or if the change to the kth latent point takes it closer to the (k +1)th, then
move all the points from k up to K by the same amount. Similarly if the
change to the kth latent point takes it closer to the (k − 1)th, move all the
points from k down to 1 by the same amount.

Both of these methods are designed to ensure that the resulting movement
retains the topographic ordering of the latent points.

Using gradient descent with the latter method, we get positions such as
shown in Fig. 8.

126 C. Fyfe

After 100 iterations of training

Fig. 8. Allowing the positions of the latent points to change (in latent space) enables
their projections to better fit the data

Examining the positions of the latent points in latent space we see that
they have formed four clusters which enables the nonlinear mapping to data
space to easily identify the four clusters of data points. The final positions of
the latent points are shown in Fig. 9.

4.3 Deleting Latent Points

An alternative is to delete latent points which have been misplaced. To deter-
mine a latent point which has been misplaced, we need only ascertain which
latent points have not been given greatest responsibility for any data points.
An equivalent criterion would be to determine which latent points have pro-
jections in data space which are not closest to any data point. Whichever
criterion is used, such points can be deleted. The positions of the remaining
latent points in latent space are not changed but the Φ matrix must be re-
calculated. Training now continues with the reduced set. An example of this
method is shown in Fig. 10.

5 Topographic Product of Experts (ToPoE)

In a product-of-experts, all the experts take responsibility for all the data: the
probability associated with any data point is the (normalized) product of the
probabilities given to it by the experts. As pointed out in for example [16],

Topographic Maps for Clustering and Data Visualization 127

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

2.5

latent point number

la
te

nt
 p

oi
nt

 p
os

iti
on

Transitions between
latent point positions

Fig. 9. The final positions of the latent points

After 10 iterations of training After 10 iterations of training

After 10 iterations of training

Fig. 10. The projections of the GTM latent points after 10, 20 and 30 iterations,
at which time the map had stabilized. After every 10 iterations, those points not
currently closest to any data point are deleted

128 C. Fyfe

this enables each expert to waste probability mass in regions of the data space
where there is no data, provided each expert wastes his/her mass in a different
region. The most common situation is to have each expert take responsibility
for having information about the data’s position in one dimension while having
no knowledge at all about the other dimensions, a specific case of which is
called a Gaussian pancake [28]: a probability density function which is very
wide in most dimensions but is very narrow (precisely locating the data)
in one dimension. It is very elegantly associated with Minor Components
Analysis [28].

[14] investigated a product of K experts with

p(xn|Θ) ∝
K∏

k=1

p(xn|k) (17)

where Θ is the set of current parameters in the model. Hinton notes that using
Gaussians alone does not allow us to model say multi-modal distributions,
however the Gaussian is ideal for our purposes. Thus our base model is

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2

exp
(
−β

2
||mk − xn||2

)
(18)

We will, as with the GTM, allow latent points to have different responsi-
bilities depending on the data point presented:

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2

exp
(
−β

2
||mk − xn||2rkn

)
(19)

where rkn is the responsibility of the kth expert for the data point xn. Thus
all the experts are acting in concert to create the data points but some will
take more responsibility than others. Note how crucial the responsibilities are
in this model: if an expert has no responsibility for a particular data point, it
is in essence saying that the data point could have a high probability as far
as it is concerned. We do not allow a situation to develop where no expert
accepts responsibility for a data point; if no expert accepts responsibility for
a data point, they all are given equal responsibility for that data point (see
below). For comparison, the probability of a data point under the GTM is

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(20)

We wish to maximize the likelihood of the data set X = {xn : n =
1, · · · , N} under this model. The ToPoE learning rule Eqn. (22) is derived
from the minimization of − log(p(xn|Θ)) with respect to a set of parameters
which generate the mk.

Topographic Maps for Clustering and Data Visualization 129

The underlying model is identical to the GTM: we have K experts which
generate the K centres, mk. The experts can be represented by K latent
points, t1, t2, · · · , tK which are mapped through a set of M basis functions,
f1(), f2(), · · · , fM (). This gives us a matrix Φ where φkj = fj(tk). The output
of these functions are then mapped by a set of weights, W , into data space.
W is M ×D, where D is the dimensionality of the data space, and is the sole
parameter which we change during training. Each basis point is mapped to a
point in data space, mj = (ΦjW)T .

We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say xi. We calculate
the current responsibility of the jth latent point for this data point,

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(21)

where dpq = ||xp−mq||, the Euclidean distance between the pth data point and
the projection of the qth latent point (through the basis functions and then
multiplied by W). If no centres are close to the data point (the denominator
of Eqn.(21) is zero), we set rij = 1

K , ∀j.
Now we wish to maximize Eqn.(20) so that the data is most likely under

this model. We do this by minimizing the -log() of that probability: define
m

(k)
d =

∑M
m=1 wmdφkm – in other words, m

(k)
d is the projection of the kth

latent point on the dth dimension in data space. Similarly let x
(n)
d be the dth

coordinate of xn. These are used in the update rule

∆nwmd =
K∑

k=1

ηφkm(x(n)
d −m

(k)
d)rkn (22)

where we have used ∆n to signify the change due to the presentation of the
nth data point, xn, so that we are summing the changes due to each latent
point’s response to the data points. Note that, for the basic model, we do not
change the Φ matrix during training at all.

5.1 Comparison with the GTM

The Generative Topographic Mapping (GTM) [1] is a mixture-of-experts
model which treats the data as having been generated by a set of latent points.
The GTM is a probabilistic formulation so that if we define y = ΦW =
Φ(t)W, where t is the vector of latent points, the probability of the data
is determined by the position of the projections of the latent points in data
space and so we must adjust this position to increase the likelihood of the
data. Then, if we assume that each of the latent points has equal probability

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(23)

130 C. Fyfe

where D is the dimensionality of the data space – that is, all the data is
assumed to be noisy versions of the mapping of the latent points. This equation
should be compared with Eqns. (19) and (20).

In the GTM, the parameters W and β are updated using the EM algorithm
though the authors do state that they could use gradient ascent. Indeed, in
the ToPoE, the calculation of the responsibilities may be thought of as being
a partial E-step while the weight update rule is a partial M-step.

The GTM, however, does have the advantage that it can optimise with
respect to β as well as W . However note that, in Eqns. (19) and (20), the
variance of each expert is dependent on its distance from the current data
point via the hyper-parameter, γ. Thus we may define

(βk)|x=xn
= βrkn = β

exp(−γd2
nk)∑

t exp(−γd2
nt)

(24)

Therefore the responsibilities are adapting the width of each expert locally
dependent on both the expert’s current projection into data space and the
data point for which responsibility must be taken. Initially, rkn = 1

K , ∀k, n
and so we have the standard product-of-experts. However during training, the
responsibilities are refined so that individual latent points take more responsi-
bility for specific data points. We may view this as the model softening from a
true product of experts to something between that and a mixture of experts.

A model based on products of experts has some advantages and disad-
vantages. The major disadvantage is that no efficient EM algorithm exists for
optimizing parameters. [14] suggests using Gibbs sampling but even with the
very creative method discussed in that paper, the simulation times were exces-
sive. Thus we have opted for gradient descent as the parameter optimization
method.

The major advantage which a product-of-experts method has is that it is
possible to get very much sharper probability density functions with a product
rather than a sum of experts.

5.2 Illustrative Example

Figure 11 shows the result of a simulation in which we have 20 latent points
deemed to be equally spaced in a one-dimensional latent space, passed through
five Gaussian basis functions and then mapped to the data space by the linear
mapping W which is the only parameter we adjust. We generated 60 two-
dimensional data points, (x1, x2), from the function x2 = x1 +1.25 sin(x1)+µ
where µ is noise from a uniform distribution in [0, 1]. We use 10000 iterations
of the learning rule (randomly sampling with replacement from the data set)
with β = 2, γ = 20, η = 0.1. The final placement of the projections of the
latent points is shown by the asterisks in the Figure and we clearly see that

Topographic Maps for Clustering and Data Visualization 131

Fig. 11. The projections of 20 latent points into data space is shown by the asterisks;
the training data are the other points

the 1-dimensional nature of the data has been identified. Also, the centres are
placed along this manifold in the order in which they appear in the latent
space showing that a topographic projection has been created.

We have similar results when we use a batch method, presenting all the
data and not updating the weights till we have accumulated all the changes.
Also we have similar experiments with higher dimensional data and grids, for
instance with 400 latent points arranged in a two dimensional grid (20×20)
and 5× 5 basis functions.

We may show the growth of the responsibilities from either the perspective
of an individual latent point (Fig. 13) or from the perspective of a single data
point (Fig. 12). Initially we see the latent points assuming a broad responsibil-
ity which is refined in time till each latent point has only a responsibility for
a few data points and conversely each data point is being generated (under
the model) by only a few latent points: we have moved some way from the
product-of-experts towards a mixture-of-experts.

5.3 Projections

As a visualization technique the ToPoE has one advantage over the stan-
dard SOM: the projections of the data onto the grid need not be solely to

132 C. Fyfe

0

5

10

15

20

0

100

200

300

400

500
0

0.2

0.4

0.6

0.8

1
R

es
po

ns
ib

ili
tie

s

iteration *100
latent point

Fig. 12. There is an initial competition to take responsibility for a specific data
point but quickly converge so that just a few latent points do so

0

10

20

30

40

50

60

0

100

200

300

400

500
0

0.2

0.4

0.6

0.8

1

R
es

po
ns

ib
ili

tie
s

Data points

Iterations *100

Fig. 13. The latent point initially has broad responsibilities but learns to take
responsibility for only a few data points

the grid nodes. If we project each data point to that node which has highest
responsibility for the data point, we get a similar quantization to that of the
SOM. However if we project each data point, xn onto

∑
k mk ∗ rkn, we get

a mapping onto the manifold at intermediate points. Figure 14 (left) shows

Topographic Maps for Clustering and Data Visualization 133

0

5

10

15

20

0
10

20
30

40
50

60
0

0.2

0.4

0.6

0.8

1

Fig. 14. Left: the responsibilities of the 20 latent points for 60 data points which
are arranged in approximately increasing distance along the manifold; Right: the
re-projection of the 60 data points onto the manifold

the responsibilities which 20 latent points have for 60 data points (arranged
in ascending order of their position along the manifold), and (right) the
subsequent re-projection of the latent points to the data space when taking
these responsibilities into account.

5.4 Growing and Pruning ToPoEs

One advantage of this method is that we can easily grow a net: we train a net
with a small number of latent points and then increase the number of latent
points. Thus we have to recalculate the Φ matrix but need not change the W
matrix of weights which can simply continue to learn from its current values.
An example is shown in Fig. 15 in which we use five basis functions (together
with a bias term) on the same data as before and increase the number of
latent points from 7 to 20. The mapping becomes increasingly smooth.

Equally we may question the completed map to investigate whether any
latent point is being mapped to a part of the data space which has no data
nearby. If a latent point does not have the greatest responsibility for any
data point, it can be deleted from the map. This technique is illustrated in
Fig. 16. In each diagram the ‘+’s show the positions of the data points: the
data consists of 4 distinct clusters. The trained map is shown on the left: the
projections of the 20 latent points map cover the data set but some are placed
in positions in which there is no data for which they need take responsibility.
Such points are excluded and the map continues to learn to get the situation
in the right diagram: only 10 latent points remain. It must be emphasized that
we do not alter the positions of either the latent points (in latent space) or
the basis functions when we continue training. These remain at their original
locations.

134 C. Fyfe

Fig. 15. The growing map. Top left: 7 latent points; top right: 11 latent points;
bottom left: 16 latent points; bottom right: 20 latent points

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 16. In both diagrams the data set is shown by the ‘+’s. Left: the projections
of the 20 latent points are shown with ‘*’s.; right: after pruning, the 10 remaining
latent points may continue training

Topographic Maps for Clustering and Data Visualization 135

5.5 Different Noise Models

We may change the underlying noise model and reflect this in a differ-
ent learning rule. For example, an alternative model based on a Laplacian
distribution is

p(xn) =
1
Z

exp

(
−β

2

K∑
k=1

(||mk − xn||1rkn)

)
(25)

where ||.||1 signifies the 1-norm [8]. In this case, we derive the learning rule

∆nwmd = η

K∑
k=1

φkmsign(x(n)
d −m

(k)
d)rkn (26)

where sign(t) = 1, if t > 0 and sign(t) = −1, otherwise.

While this rule may be more appropriate for rather more kurtotic noise
than in the above simulations, it can be used with data which is corrupted by
Gaussian noise or even uniform (and hence far from kurtotic) noise. Sim-
ulations on exactly the same data as used for Fig. 1 have shown similar
convergence to that achieved in that figure.

5.6 Twinned ToPoEs

[11] have previously investigated twinning principal curves and self-organizing
maps with a view to forecasting one data set from another with which it has
some (nonlinear) correlation. We may do the same with the ToPoE. Consider
first having a single underlying cause which we can map into two data spaces
simultaneously – namely, we have mk = ΦkW1 in the first data space and
lk = ΦkW2 in the second data space. Figure 17 illustrates the results of this
twinning when we calculate a single responsibility of each latent point for both
data points together. Let xi in one space be twinned with yi in the second
data space. Then

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(27)

where dpq = ||xp − mq|| + ||yp − lq||. The ‘*’s in Fig. 17 illustrate that the
latent points have indeed been mapped to appropriate positions in data space.

However unless one changes either the nature of the nonlinearity which
maps from latent space or the noise model, one can argue that this method is
equivalent to a single ToPoE mapping into a data space of dimension equal to
the sum of the dimensions of the two spaces in this Section. Therefore we really
require to use different nonlinear basis functions or different noise models to
benefit from this method. A different noise model was discussed above when
we used Laplacian noise; an alternative is to use other radial basis functions
or as, we shall see, even non-radial functions.

136 C. Fyfe

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
First data set and projections of latent points

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Second data set and projections of latent points

Fig. 17. The two diagrams show the two data sets (‘+’s) and the projections of the
latent points (‘*’s)

[13] lists the most common radial basis functions as

1. multiquadrics: fj(ti) =
√

(j2 + t2i)
2. inverse multiquadrics: fj(ti) = 1√

(j2+t2i)

3. and of course the Gaussian used above.

Note that the first of these is non-local in character but [13] notes that such
functions can approximate a smooth mapping with greater accuracy than say
the Gaussian.

Of course, we need not restrict ourselves to these functions. For example,
we may keep the model entirely as it was above but use a matrix Φ in which
φkj = fj(tk) = tanh(jtk). On the same data set as previously the tanh ()
model gives very similar results. It might be thought that the tanh () non-
linearity, being global, might present a difficulty for the learning of the local
responsibilities. Figure 18 shows that this is not so.

5.7 Visualizing and Clustering Real Data Sets

In this Section, we use a 2-dimensional grid of latent points: we use a 10×10
grid of latent points being passed through a 5×5 set of Gaussian basis vectors.
We begin by illustrating the method on the well-known wine data set from
the UCI Repository of machine learning databases (http://www.ics.uci.edu/
~mlearn/MLSummary.html). It has 178 samples, 13 features and 3 classes.
The resulting projection is shown in Fig. 19. Because some of the features are
scaled up to 1500 and others lie between 0 and 1, we preprocessed the data
by normalizing all features between −0.1 and 0.1. The clustering is obvious.

Figure 20 shows the projection of the 9 labeled classes (72 samples). Most
of these are easily identified. When we zoom into the central part of this
mapping (Fig. 21(left)), we find that we can disambiguate the 8th and 9th
classes. However, the right half of that figure suggests that the remaining two

Topographic Maps for Clustering and Data Visualization 137

0
5

10
15

20

0

10

20

30

40

50

60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

latent points

Data points

R
es

po
ns

ib
ili

te
s

Fig. 18. Even though the tanh() nonlinearity is not local, the responsibilities learned
are very local

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Wine − 3 types

Fig. 19. The projection of the wine data set

classes are not completely distinguished. Figure 22 shows the projection of the
whole data set including the unlabeled samples. From this, we conjecture that

• there are other classes in the data set which have not yet been identified,

138 C. Fyfe

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
9 species of algae

Fig. 20. Projection of the 9 classes by the ToPoE

5. 3 5. 4 5. 5 5. 6 5. 7 5. 8

4

4..2

4.4

4.6

4.8

5

Zooming in on the central por tion

0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4
2. 5

3

3. 5

4

4. 5

5

5. 5

Second zoom

Fig. 21. Left : zooming in on the central portion; Right : zooming in on the left side

• some of the unclassified samples belong to classes already identified,
• some may be simply outliers.

These are, however, speculations on our part and must be validated by a
scientist with biological expertise.

Topographic Maps for Clustering and Data Visualization 139

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Using the unclassified algae

outlier ?

outlier ?

outlier ?

New class?

type 3 ?

Fig. 22. The projection of the whole data set by the ToPoE

In fact, we can control the level of quantization by changing the γ param-
eter in Eqn. (21). For example by lowering γ, we share the responsibilities
more equally and so the map contracts to the centre of the latent space to get
results such as shown in Fig. 23; the different clusters can still be identified
but rather less easily. Alternately, by increasing γ, one tends to get the data
clusters confined to a single node, that which has sole responsibility for that
cluster.

5.8 Discussion

We have shown above that we can grow these maps incrementally and prune
them if necessary also. Intuitively, since this growth requires us only to change
the number K of latent points, and we are only adapting W which is M ×D
and so not directly concerned with the latent points, we can train W with
a certain number of latent points and then increase this number but simply
continue training W without resetting W : W is approximately correct and
training can be continued from its current values. This is an optional feature in

140 C. Fyfe

4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54
4.46

4.47

4.48

4.49

4.5

4.51

4.52

4.53

4.54

4.55

Fig. 23. By lowering the γ parameter, the ToPoE map is contracted

ToPoE but becomes essential in the Harmonic Topographic Mapping, HaToM,
which we discuss in the next Section.

One feature of ToPoE which is less than satisfactory is that when no latent
point accepts responsibility for a data point, all latent points are given equal
responsibility for that data point. This ensures that every data point is covered
by the projections of the latent points but, while this is a sensible thing to
do at the start of training, it seems unconvincing when it is performed in the
middle of training. We therefore seek a mapping which does not have this
feature.

As we leave this Section, we note that minimization of the logarithm of
Eqn. (20) is equivalent to minimization of the mean squared error between the
data and the projections of the latent points. This has led us to investigate
alternative criteria such as used in the HaToM.

6 Harmonic Averages

Harmonic Means or Harmonic Averages are defined for spaces of derivatives.
For example, if you travel half of a journey at 10 km/hour and the other half
at 20 km/hour, your total time taken is d

10 + d
20 and so the average speed is

Topographic Maps for Clustering and Data Visualization 141

2d
d
10+ d

20
= 2

1
10 + 1

20
. In general, the Harmonic Average is defined as

HA({ai, i = 1, · · · , K}) =
K∑K

k=1
1
ak

(28)

6.1 Harmonic k-means

This has recently [30, 31] been used to make the K-means algorithm more
robust. The k-means algorithm [12] is a well-known clustering algorithm in
which N data points are allocated to K means which are positioned in data
space. The algorithm is known to be dependent on its initialization: a poor set
of initial positions for the means will cause convergence to a poor final clus-
tering. [30, 31] have developed an algorithm based on the Harmonic Average
which converges to a better solution than the standard algorithm.

The algorithm calculates the Euclidean distance between the ith data
point and the kth centre as d(xi,mk). Then the performance function using
Harmonic averages seeks to minimize

PerfHA =
N∑

i=1

K∑K
k=1

1
d(xi,mk)2

(29)

Then we wish to move the centres using gradient descent on this performance
function

∂PerfHA

∂mk
= −K

N∑
i=1

4(xi −mk)

d(xi,mk)3{
∑K

l=1
1

d(xi,ml)2
}2

(30)

Setting this equal to 0 and ‘solving’ for the mk’s, we get a recursive formula

mk =

∑N
i=1

1

d3
i,k

(∑K
l=1

1
d2

i,l

)2 xi

∑N
i=1

1

d3
i,k

(∑K
l=1

1
d2

i,l

)2

(31)

where we have used di,k for d(xi,mk) to simplify the notation. There are some
practical issues to deal with in the implementation details of which are given
in [30, 31].

[31] have extensive simulations showing that this algorithm converges
to a better solution (less prone to finding a local minimum because of poor
initialization) than both standard K-means or a mixture of experts trained
using the EM algorithm.

142 C. Fyfe

6.2 The Harmonic Topographic Map

The above can now be used with the latent variable model. Since

∂PerfHA

∂W
=

∂PerfHA

∂mk

∂mk

∂W
=

∂PerfHA

∂mk
Φk (32)

we could use the algorithm directly in a learning rule as with the ToPoE.
However an alternative method is suggested in this Chapter.

With this learning rule on the same model as above, we get a mapping
which has elements of topology preservation but which often exhibits twists,
such as are well-known in the SOM [21]. We therefore opt to begin with a
small value of K (for 1-dimensional latent spaces, we tend to use K = 2, for
2-dimensional latent spaces and a square grid, we use K = 2×2) and grow the
mapping. As noted earlier, we do not randomize W each time we augment K.
The current value of W is approximately correct and so we need only continue
training from this current value. Also for this Chapter we have implemented
a pseudo-inverse method for the calculation of W from the positions of the
centres, rather than Eqn. (32). Then the algorithm is

Algorithm 2 Harmonic Topographic Map (HaToM) Algorithm
1. Initialise K to 2; initialise the W weights randomly and spread the centres of
the M basis functions uniformly in latent space.
2. Initialise the K latent points in latent space.
3. Calculate the projection of the latent points to data space. This gives the K
centres, mk.

(a) count = 0
(b) For every data point, xi, calculate di,k = ||xi − mk||.
(c) Recalculate means using Eqn.(31).
(d) If count<MAXCOUNT, count= count +1 and return to 3(b).

4. Recalculate W using (ΦT Φ + δI)−1ΦT m where m is the matrix containing the
centres, I is identity matrix and δ is a small constant, necessary because initially
K < M and so the matrix ΦT Φ is singular.
5. If K < Kmax, K = K + 1 and return to 2.

In the simulations below, MAXCOUNT was set at 20.

6.3 Simulations

Artificial Data

With similar data as before, we get results such as in Fig. 24. We see that
for a small number of latent points the mapping from latent space to data
space preserves the 1-dimensional nature of the data. However the last dia-
gram in that figure shows the mapping of 20 latent points to data space. We

Topographic Maps for Clustering and Data Visualization 143

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7
2 latent points

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7
mapping with 4 latent points

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7
harmonic mapping with 8 latent points

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7
Harmonic mapping with 20 latent points

Fig. 24. The harmonic topology preserving mappings with 2, 4, 8 and 20 latent
points

see that the algorithm is so eager to spread these projections about in data
space that the mapping moves across the data set rather than just along the
manifold. This begins to happen with about 16 latent points and becomes
more pronounced as more latent points are added.

With the standard (for illustrative purposes) data set of data drawn from
a uniform distribution in [−1, 1]× [−1, 1], we get the results shown in Fig. 25.
We see that the mapping loses its shape fairly quickly. We consider this as
evidence of an over-responsiveness to the data so that the structure of the
latent space is very strongly deformed in its projection in data space.

The Algae data set

We show in Fig. 26 the projections of the above algae data set onto a
two-dimensional manifold from a 10×10 harmonic topographic map. If we
compare this map with the equivalent map from ToPoE (or the GTM), we
see that it is far more spread out than before; the data points’ projections
into this space are more diffuse than before and so more of the space is being
used for discriminating the data. Note that only at a single boundary between
classes (‘.’ and ‘+’) is the separation not linear. Also the unclassified points’
projections show an interesting structure composed of a central cluster and
two extruding arms, the meaning of which would have to be the subject of a
biologist’s investigation.

144 C. Fyfe

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 25. The harmonic topology preserving mappings with grids of size 3×3, 5×5,
7 × 7, and 10 × 10

Note that the types of algae represented by triangles and diamonds have
this time been easily separated though there is one algae represented by a ‘x’
which is badly positioned. This merely emphasizes that different projections
are helpful in exploratory data investigations.

6.4 Generalized Harmony Learning

[30] generalizes the above using

PerfHA =
N∑

i=1

K∑K
k=1

1
d(xi,mk)p

(33)

Then we wish to move the centres using gradient descent on this performance
function

∂PerfHA

∂mk
= −K

N∑
i=1

2p(xi −mk)

d(xi,mk)p+2{
∑K

l=1
1

d(xi,ml)p }2
(34)

Solving now for mk, we get

mk =

∑N
i=1

1

dp+2
i,k

(∑
K
l=1

1
d

p
i,l

)2 xi

∑N
i=1

1

dp+2
i,k

(∑
K
l=1

1
d

p
i,l

)2

(35)

with which we can readily replace Eqn. (31) in the above algorithm.

Topographic Maps for Clustering and Data Visualization 145

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2d projection of labelled algae data

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2d projection of all of algae data set using HaToM

Fig. 26. Top: the projection of the 9 labelled classes on a harmonic mapping with a
2-dimensional set of 10 × 10 latent points; bottom: the projection of the whole data
set

146 C. Fyfe

[30] shows how this algorithm with p > 2 acts like boosting for supervised
learning: data points which are not well represented by the K-Harmonic Means
are given greater priority in the recalculation of the positions of the means.
Since the current data sets are already well covered by the HaToM, we are
currently seeking especially difficult data sets to investigate this effect.

6.5 Conclusion

We have discussed a model which uses latent points which have some structure
in an underlying latent space. We have investigated projecting these latent
points into data space by mapping them through a nonlinear basis and then
taking linear combinations of this to map a data set. We have trained the
weights of this mapping by two methods:

1. The first was based on a product-of-experts. We trained the weights in order
to maximize the probability of the data under this product-of-experts. The
crucial difference between this model and other models involving products
of experts is that we incorporate a responsibility term which causes the
whole model to move somewhat from a pure product-of-experts to some-
thing approaching a mixture of experts. It remains however defined as a
product-of-local experts.

2. The second mapping is based on the harmonic average. The Harmonic
K-Means algorithm is extensively shown in [31] to converge to better solu-
tions than K-means or the mixture-of-experts. For our purposes, we have
shown that HaToM is more data driven than ToPoE.

The fact of being more data driven is not necessarily a good thing. If we wish
to emphasize the low dimensionality of a data set, then allowing the mapping
to spread may reduce insight into a low-dimensional manifold. On the other
hand, we have shown with the algae data set that more insight into a data
set can be achieved through diverse mappings.

Thus this Chapter has introduced two additional topographic mappings
which will not replace existing mappings but will be used in addition to exist-
ing mappings to give data analysts more insight into high-dimensional data
sets.

7 Conclusion

We have discussed a number of different topology preserving mappings, par-
ticularly in the context of visualization of high dimensional data. In particular,
we have discussed

The Self-Organizing Map An established technique which is robust, reli-
able and well-used. There are many different varieties of SOM and we
have not been able to provide pointers to more than a few.

Topographic Maps for Clustering and Data Visualization 147

The Generative Topographic Mapping A more modern probabilistic
mapping which received a great deal of publicity in the late 1990s but
which does not seem to be gaining many adherents in terms of researchers
whose interest is in investigating specific data sets. It is possible that
its more complex structure is to blame for this. However, it is also true
that this mapping was sold as a principled alternative to the SOM and
so researchers may feel obliged to have to make the effort to understand
the probabilistic principles underlying the GTM whereas they can merely
pick up the SOM and use it in an ad hoc manner.

The Topographic Product of Experts This mapping is relatively new
and is based on probabilistic underpinnings of a product of experts rather
than a mixture. It utilizes the same underlying model as the GTM but
self-organizes in a different manner. Indeed, it is worth noting that the
final map lies somewhat between a product and a mixture of experts,
being a mixture of local products of experts.

The Harmonic Topographic Mapping This mapping uses the same
underlying map as the GTM and ToPoE but recognizes that the result-
ing ToPoE algorithm needs no such underpinnings and so dispenses with
the gradient descent method to use the underlying K-Harmonic means
method. ToPoE and HaToM are our own contributions which we hope
will take their place with the other mappings as alternative visualization
techniques.

We have illustrated these methods on a single data set but recognize that this
is far from satisfactory from the perspective of providing a truly objective
comparison of these methods. One would have to analyze a large number of
such data sets and then find a way of comparing the resulting projections
which was based on objectivity rather than a researcher’s, perhaps coloured,
beliefs. One possible method, suggested in [9] is based on clustering indices
but that would form the basis for a further article.

References

1. Bishop CM, Svensen M, Williams CKI (1997) GTM: the generative topographic
mapping. Neural Computation, 10(1): 215–234.

2. Carpenter GA, Grossberg S (1987) Art 2: self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26: 4919–4930.

3. Carpenter GA, Grossberg S (1990) Art 3: hierarchical search using chem-
ical transmitters in self-organizing pattern recognition architectures. Neural
Networks, 3: 129–152.

4. Duda RO, Hart PE, Stork DG (2001) Pattern Classification (2nd ed). Wiley-
Interscience, New York, NY.

5. Fritzke B (1991) Let it grow- self-organising feature maps with problem depen-
dent structure. In: Kohonen T, Mkisara K, Simula O, Kangas J (eds.) Proc.
Intl. Conf. Artificial Neural Networks (ICANN-91), Helsinki, Finland, Elsevier
Science, Amsterdam, The Netherlands: 403–408.

148 C. Fyfe

6. Fritzke B (1993) Kohonen feature maps and growing cell structures – a perfor-
mance comparison. In: Hanson SJ, Cowan JD, Giles CL (eds.) Advances in Neu-
ral Information Processing Systems 5 (Proc. NIPS92, 30 November–3 December,
Denver, CO. Morgan Kaufmann, San Francisco, CA: 123–130.

7. Fritzke B (1993) Vector quantization with a growing and splitting elastic net.
In: Gielen S, Kappen B (eds.) Proc. Intl. Conf. Artificial Neural Networks, 13-16
September, Amsterdam. Springer-Verlag, London, UK: 580–585.

8. Fyfe C, MacDonald D (2002) Epsilon-insensitive hebbian learning. Neuro-
computing, 47: 35–57.

9. Garcia-Osorio C (2005) Data mining and visualization. PhD thesis, School of
Computing, University of Paisley, Scotland, UK.

10. Garcia-Osorio C, Fyfe C (2005) The combined use of self-organising maps and
Andrews’ curves. Intl. J. Neural Systems, 15(3): 197–206.

11. Han Y, Corchado E, Fyfe C (2004) Forecasting using twinned principal curves
and twinned self organising maps. Neurocomputing, (57): 37–47.

12. Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning.
Springer-Verlag, Berlin.

13. Haykin S (1994) Neural Networks- A Comprehensive Foundation. Macmillan,
New York, NY.

14. Hinton GE (2000) Training products of experts by minimizing contrastive
divergence. Technical Report GCNU TR 2000–004, Gatsby Computational Neu-
roscience Unit, University College, London (available online at http://www.
gatsby.ucl.ac.uk/ – last accessed: April 2007).

15. Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The ‘wake-sleep’ algorithm for
unsupervised neural networks. Science, 268: 1158–1161.

16. Hinton GE, Teh Y-W (2001) Discovering multiple constraints that are frequently
approximately satisfied. In: Breese JS, Koller D (eds.) Proc. 17th Conf. Uncer-
tainty in Artificial Intelligence, 2–5 August, Seattle, WA. Morgan Kaufmann,
San Francisco, CA: 227–234.

17. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of
local experts. Neural Computation, 3: 79–87.

18. Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the em
algorithm. Neural Computation, 6: 181–214.

19. Kohonen T (1984) Self-Organization and Associative Memory. Springer-Verlag,
Berlin.

20. Kohonen T (1974) An adaptive associative memory principle. IEEE Trans.
Computers, C-23: 444–445.

21. Kohonen T (2001) Self-Organising Maps (3rd ed). Springer-Verlag, Berlin.
22. Luttrell SP (1991) Code vector density in topographic mappings: Scalar case.

IEEE Trans. Neural Networks, 2(4): 427–436.
23. MacKay DJ (2003) Information Theory, Inference, and Learning Algorithms.

Cambridge University Press, Cambridgae, UK.
24. Minsky M, Papert S (1969) Perceptrons: an introduction to computational

geometry. MIT Press, Cambridge, MA.
25. Nabney IT (2001) Netlab, Algorithms for Pattern Recognition. Springer-Verlag,

Berlin.
26. Obermayer C, Sejnowski TJ (eds.) (2001) Self-Organizing Map Formation,

Foundations of Neural Computation. MIT Press, Cambridge, MA.

Topographic Maps for Clustering and Data Visualization 149

27. Van Hulle M (2000) Faithful Representations and Topographic Maps: from Dis-
tortion to Information-based Self-organization. Wiley-Interscience, New York,
NY.

28. Williams C, Agakov FV (2001) Products of gaussians and probabilistic
minor components analysis. Technical Report EDI-INF-RR-0043, University of
Edinburgh, Scotland, UK.

29. Xu L Byy harmony learning, structural rpcl, and topological self-organizing on
mixture models. Neural Networks, 15: 1125–1151.

30. Zhang B (2000) Generalized k-harmonic means – boosting in unsupervised
learning. Technical Report, HP Laboratories, Palo Alto, CA, October.

31. Zhang B, Hsu M, Dayal U (1999) k-harmonic means – a data clustering
algorithm. Technical Report, HP Laboratories, Palo Alto, CA, October.

Resources

1 Key Books

Allinson NM, Yin H (2002) Self-organizing Maps for Pattern Recognition. In:
Kaski S, Oja E (eds.) Kohonen Maps. Elsevier, New York, NY: 111–120.

Kohonen T (2001) Self-Organizing Maps (3rd ed). Springer-Verlag, Berlin.

Kohonen T (1984) Self-Organization and Associative Memory. Springer-
Verlag, Berlin.

Obermayer C, Sejnowski TJ (eds.) (2001) Self-Organizing Map Formation,
Foundations of Neural Computation. MIT Press, Cambridge, MA.

Ritter H, Martinez T, Schulten K (1992) Neural Computation and Self-
organizing Maps: An Introduction. Addison Wesley, Reading, MA.

Seiffert U, Jain LC (eds.) (2002) Self-Organizing Neural Networks. Springer-
Verlag, Berlin.

2 Key Survey/Review Articles

Allinson NM, Opermeyer K, Yin H (eds.) (2002) Neural Networks (special
issue on New Developments in SOMs), 15.

Bishop CM, Svensen M, Williams CKI (1997) GTM: the generative topo-
graphic mapping. Neural Computation, 10(1): 215–234.

Cottrell M, Verleysen M (eds.) (2006) Neural Networks, (Special Issue on
Advances in SOMs – WSOM’05), 19(6–7): 721 – 976.

152 C. Fyfe

Ishikawa M, Miikkulainen R, Ritter H (eds.) (2004) Neural Networks, (Special
Issue on New Developments in SOMs), 17(8–9): 1037–1389.

MacDonald D, Fyfe C (2000) The kernel self organizing map. In: Howlett RJ,
Jain LC (eds.) Proc. 4th Intl. Conf. Knowledge-based Intelligent Engineering
Systems and Applied Technology Conf. (KES’2000) 30 August–1 September,
Brighton, UK. IEEE Press, Piscataway, NJ: 317–320.

Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM)
papers: 1998–2001 addendum. Neural Computing Surveys, 3: 1–156.

3 Key Journals

Neural Computation (MIT Press).

Neural Networks (Elsevier).

IEEE Transactions on Neural Networks (IEEE).

International Journal on Neural Systems (World Scientific).

Neurocomputing (Elsevier).

Neural Processing Letters (Kluwer).

Machine Learning (Springer).

4 Key International Conferences/Workshops

ICANN – International Conference on Artificial Neural Networks.

ESANN – European Symposium on Artificial Neural Networks.

ICONIP – International Conference on Neural Information Processing.

IJCNN – International Joint Conference on Neural Networks.

ECML – European Conference on Machine Learning.

International Workshops on SOM:

WSOM’97: Helsinki University of Technology, Finland
WSOM’99: Helsinki University of Technology, Finland

Topographic Maps for Clustering and Data Visualization 153

WSOM’01: University of Linconshire and Humberside, UK
WSOM’03: Kyoshu Institute of Technology, Japan
WSOM’05: Université Paris I Panthéon Sorbonne, France
WSOM’07: University of Bielefeld, Germany

5 Software

We have mentioned two sets of downloadable resources in the main text. They
are repeated here for convenience:

The SOM Toolbox
http://www.cis.hut.fi/projects/somtoolbox/

Netlab
http://www.ncrg.aston.ac.uk/netlab/index.php

6 Data Bases

University of California, Irvine Machine Learning Data Repository
http://www.ics.uci.edu/~mlearn/MLSummary.html

Complex Systems Paradigms for Integrating
Intelligent Systems: A Game Theoretic
Approach

Yoshiteru Ishida

Department of Knowledge-Based Information Engineering, Intelligent Sensing
System Research Center, Research Center for Future Vehicle, Toyohashi University
of Technology, Tempaku, Toyohashi 441-8580, Japan, ishida@tutkie.tut.ac.jp

1 Introduction

Complex systems have provided not only an analytic view that computa-
tional intelligence could be attained at a critical point (edge of chaos) where
a phase transition takes place, but also a synthetic view that computational
intelligence could be embedded in the field where an open and evolutionary
environment for selfish agents will lead to collective phenomena. In the syn-
thetic view, using complex systems themselves for intelligent systems, such as
DNA computing (we focus on immunity-based computing in another Chap-
ter of this volume), grid computing, and parasitic computing, is another
important paradigm.

The Internet is undoubtedly the most complex and largest artifact that
humankind has ever invented. Observing how the Internet has been built and
evolved suggests that systems of this complexity may be built not by a usual
design but by its own logic that not even the designer conceived of before
its maturation. After the Internet itself became an area that allows many
selfish activities, several utilities and protocols converged on what may be
called the ‘Nash equilibrium’ from which no players want to deviate [19]. The
game theoretic approach sheds new light on computational intelligence. That
is, rather than implementing an intelligent program, one could design a field
in the Internet that allows intelligent systems to emerge as the Nash equilib-
rium of the Internet. Further, game theoretic and computational approaches
to the Internet (see, for example, [6, 7, 15, 17, 23, 25]) reveal that it is compu-
tationally difficult to obtain a Nash equilibrium. Conversely, this fact suggests
that a computationally difficult task could be solved by selfish agents [8, 20].
Resource allocation, for example, which is computationally tough, is solved
by a market mechanism in which many selfish agents participate [29].

Y. Ishida: Complex Systems Paradigms for Integrating Intelligent Systems: A Game Theoretic

Approach, Studies in Computational Intelligence (SCI) 115, 155–181 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

156 Y. Ishida

This Chapter investigates the first step towards embedding computational
intelligence in the Internet field by selfish agents, namely, whether selfish
agents can ever cooperate and converge on some tasks. Selfish routing and
task allocation have been studied extensively in the computational game com-
munity, but can intelligent tasks be done or can agents ever take care of
themselves in the first place? We first pose the problem of self maintenance in
an agent population, and then use a game theoretic approach to test whether
cooperation would occur or under what conditions cooperation will occur.

The above-mentioned research focused on algorithms and computational
complexity for obtaining equilibrium when selfish agents compete for resources,
or the Nash equilibrium as a convenient substitute. The cost for the Nash equi-
librium relative to the optimized solution has also been discussed to measure
the cost of ‘anarchy’ [15]. Instead, this Chapter focuses on the self mainte-
nance task, self-repairs by mutual copying in particular, and discusses when
selfish agents begin to cooperate. We extend the discussion to when these self-
ish agents (called ‘selfishware’) organize themselves to mutually supporting
collectives (called ‘Internet being’).

The present research is significant in two respects: one is engineering and
the other is theoretical. For engineering significance, a computing paradigm
such as grid computing [9] and parasitic computing becomes the background.
When grid computing becomes dominant for large-scale computing, what we
call agents (autonomous programs that can passively move from nodes to
nodes) will become like processes in the Unix OS. One important difference is
that agents (or what we call later selfishware) are selfish, and will not be orga-
nized with central authority as is done in a conventional OS. Therefore, an
organization of selfish agents will become an organization with weakest central
authority, or even with distributed authority, as seen in the free market econ-
omy. Naturally, information processing with selfish agents will be imperative,
thus making the game theoretic approach and economic approach – such as
selfish task allocation and routing – important.

Also of significance is that it will provide an organizational view for arti-
ficial life or what we call an ‘Internet being’ (a life-like form which has some
identity and hence boundary). Self-organization of selfish agents will be more
than a mere collection of independent agents, but rather an organization of
cooperative agents. This would reveal an intrinsic logic and process that self-
ish agents form multi-agent organisms, similarly to multi-cellular organisms.
The game theoretic approach would provide conditions and mechanisms for
defective selfish agents to develop into cooperative selfish agents when payoffs
are recast in a broader context of time and space.

After a brief introduction in Sect. 2, a microscopic analysis focusing on
interactions between two agents will be presented in Sect. 3. Section 4 deals
with a macroscopic model with many networked agents. In both the micro
and macro models, the importance of involving neighbor agents in each agent’s

Integrating Intelligent Systems: A Game Theoretic Approach 157

payoff is stressed. Section 5 briefly discusses the significance of the game theo-
retic approach to large-scale complex systems such as the Internet. The game
theoretic approach is imperative, since autonomous and distributed control
and management is inevitable for such complex and large-scale systems.

2 Economic Theory for the Internet Being
with Selfish Agents

The game theoretic approach has demonstrated its power in the field of eco-
nomics and biology. The Internet has already reached a level of complexity
comparable to that of economic and biological systems. Moreover, the agent
approach permits a structural similarity where selfish individuals (in the free
market of the economic system) and selfish genes (in biological systems)
cooperate or defect in an open network where many options have been left
undetermined before the convergence.

The economic approach has been actively studied in the distributed arti-
ficial intelligence community (for instance, [27, 29]), and its application to
auctions is a successful example (such as [24]). The economic approach, and
the game theoretic approach in particular, has been extensively studied in
the algorithm and computation community and has had an impact on net-
work applications. Rigorous arguments with equilibrium concepts – the Nash
equilibrium, among others – are providing a framework ground theory for
the economic aspects of the Internet. The cost of selfish routing has been esti-
mated by examining how bad is the equilibrium to which selfish routing might
converge (that is, the Nash equilibrium from where no one wants to deviate)
relative to the optimal solution. In the seminal paper by [23], the TCP/IP
protocol is recast as the Nash equilibrium and an economic model that allows
TCP/IP as an equilibrium point has been called for as an open problem.
That is, design an Internet model where TCP/IP is the Nash equilibrium
in a space of available protocols. Protocols such as TCP [1], Aloha, CDMA
and CSMA/CA have been studied. Packet forwarding strategies in wireless ad
hoc networks can also be recast in the framework. Network intrusion detection
has also been investigated [16] within the framework of a two-player game:
‘intruder’ and ‘defender’.

What has been computed by a market mechanism or more generally by a
collection of selfish agents turned out to be difficult when attempted by com-
putation (a typical example is prices of commodities as an index for resource
allocation). This fact indicates that the market economy – or more generally
free and hence selfish agents properly networked – has a potential for comput-
ing something that could be difficult when approached otherwise. Also, some
cases in which a planned economy perturbed by a market economy resulted in
eradication of the planned economy by the market economy indicates that the
market economy may be ‘evolutionarily stable’ within these economic systems.

158 Y. Ishida

This fact further indicates that a problem solving framework by properly
networked selfish agents may have some advantage over other usual problem
solving frameworks, such as the one organized with central authority. Also,
solutions can be obtained almost free or as a byproduct of the problem solving
mechanism, or solutions that are almost inseparably embedded in the solv-
ing mechanism. The above two observations encourage us to recast problems
which have been known to be computationally difficult or problems which are
difficult to even properly define and approach, such as attaining intelligent
systems.

Mechanism Design, a subfield of Economics, has been studied [20] and
has recently been extended to Algorithmic Mechanism Design [6] and to
Distributed Algorithmic Mechanism Design [8].

Studies on computational intelligence by agents usually assume that agents
can be autonomous, hence allowing different rules of interactions – in other
words, heterogeneous agents. We further assume that agents are selfish in
the sense that they will try to maximize the payoff for themselves. Thus,
agents are broader than a program (or software), and they involve users that
are committed to the agents. We use the word ‘selfishware’ to include not
only programs but also the humans (end-point users and providers running
autonomous systems for the Internet) behind the programs. The organization
that would appear to be a collective interplay with selfishware will be called
an ‘Internet being’. It can be an entity that can perform some tasks that
require intelligence. Spam email, computer viruses and worms may not be
called Internet beings, because they are obviously not mutually supporting
collectives (with exceptions, such as Distributed Denial-of-Service – DDOS
attacks), although they are guided by selfishware. They are rather parasitic
lone wolves.

The idea developed here can apply not only to the Internet but also to other
information networks, such as sensor networks, as long as they are put in the
model. The models dealt with in this Chapter have the following components:

M1. States: agents have two states (0 for normal; 1 for faulty). The state will
be determined by the action and state of interacting agents.

M2. Actions: agents have two actions (C for cooperation; D for defection).
M3. Network: agents are connected by a network and agents can act only on

the connected agents (neighbor agents).

Actions may be controlled uniformly (Sect. 4.1) or may be determined by
the acting agent itself in the selfish agent framework (Sect. 4.4), such that the
payoff assigned to each agent will be maximized. A network may be defined
explicitly with a graph or implicitly by specifying the neighbor agents (for
example, lattice structure as in cellular automata and dynamical network as
in scale-free networks).

Integrating Intelligent Systems: A Game Theoretic Approach 159

Since we focus on the self-maintenance task by mutual repair, cooperation
and defection correspond to repairing and not repairing, respectively. As we
have remarked, we do not assume recognition of the states of target agents
before actions, since repairing could harm the target agents, particularly if
the acting agents themselves are faulty: this is what we call a ‘double-edged
sword’.

In the agent-based approach of this Chapter, we place the following restric-
tions on our view which we also placed in perusing immunity-based systems,
since an autonomous and distributed character is similar to them.

• Local information: for each immune cell mounting a receptor or a receptor
itself (antibody), only matching or not (some quantitative information on
degree of matching is allowed) can be provided as information.

• No a priori labeling: for an immune cell or antibody, an antigen is labeled
neither as ‘antigen’ nor as ‘nonself’.

Because of these two restrictions and because we do not assume recognition
(in contrast to recognition centered in immunity-based systems in Chap. 25
of this Handbook) of the states of target agents before actions, we face the
double-edged sword problem in this Chapter, since the effector part (repairing
by copying) could harm rather than cure, based only on local information.
This problem may be more significant than that of immunity-based systems
because we do not assume recognition capability (that could avoid adverse
effects) here as in immunity-based systems; actions of agents are motivated
by selfishness (payoff) rather than the state of the target.

In Sect. 3, we use a Markov model used for reliability theory as a micro-
scopic model, and probabilistic cellular automata used for percolation theory
as a macroscopic model. Both models incorporate M1, M2 and M3, as above.
While the microscopic model in Sect. 4 focuses on the incentive for coopera-
tion retaining a simple network with only two agents, the macroscopic model
deals with situations where faulty agents are eradicated by comparing agents
controlled with central authority and selfish agents.

3 A Microscopic Model: Negotiation Between Agents

3.1 The Prisoner’s Dilemma

In solving the problem of cleaning a contaminated network by mutual copying,
another problem (other than the double-edged sword) is that each autonomous
(and hence selfish) node may not repair others and fall into a deadlock waiting
for other nodes to be repaired. The situation is similar to that of the Prisoner’s
Dilemma (PD) that has been well studied in game theory and has been applied
to many fields.

160 Y. Ishida

Table 1. The payoff matrix of the Prisoner’s Dilemma: R, S, T, P are payoffs to
agent-1

C (Agent 2) D (Agent 2)

C (Agent 1) R (reward) S (sucker)
D (Agent 1) T (temptation) P (punishment)

The Prisoner’s Dilemma (PD) [5] is a game played just once by two agents
with two actions (cooperation C, or defect D). Each agent receives a payoff
(R, T, S, P) (Table 1) where T > R > P > S and 2R > T + S.

In the Iterated Prisoner’s Dilemma (IPD) [2], each iterated action is
evaluated. In the Spatial Prisoner’s Dilemma (SPD) [21], each site in a two-
dimensional lattice corresponding to an agent plays PD with the neighbors,
and changes its action according to the total score it received.

3.2 Repairing from Outside the System:
A Conventional Model [12]

Consider a model with only two agents i (i = 1, 2) that become faulty and
thence repaired. Using conventional notations in reliability theory, ν and µ
indicate the rate for becoming faulty and the rate for repair, respectively.
When the repair is done from outside the system (by repairmen, for example),
the state-transition diagram as a Markov model is as shown in Fig. 1 (for
example, [26]). The corresponding Kolmogorov equation is:

dP(t)
dt

= MP(t) (1)

where the time dependent vector variable P(t) = (p00(t), p01(t), p10(t), p11(t))T

comprises a component ps1,s2(t) denoting the probability of agent-1 being s1

and agent-2 being s2 at time t, where s1, s2 ∈ {0, 1} (0: normal; 1: abnormal).
The matrix M is a transition matrix corresponding to the state-transition
diagram shown in Fig. 1.

M =

⎛
⎜⎜⎝
−2λ µ µ 0
λ −λ 0 µ
λ 0 −λ µ
0 λ λ −2µ

⎞
⎟⎟⎠ (2)

3.3 Mutual Repair within Systems

When the repair is done by these two agents mutually, some complications
occur. The double-edged sword framework allows agents that are capable of

Integrating Intelligent Systems: A Game Theoretic Approach 161

µλ −−1

λµ

µ µ21 −λ21− λ λ

λ

µ

µ

µλ −−1

Fig. 1. State-transition diagram for the conventional Markov state diagram for
availability for ordinary repairing from outside the system; white circles indicate
normal nodes and black ones abnormal nodes

)1)()1((1 21 λµαµλ −+−−−

)1)(1(2 αλµλ −−+)1(1 λµ −

λ

)1)(1(1 αλµλ −−+

λ 1αµ
2αµλ21−)(1 2 1 µµα +−

)1(2 λµ −

)1)()1((1 12 λµαµλ −+−−−

Fig. 2. State-transition diagram for the mutually-repairing two-agent system; white
circles indicate normal nodes and black ones abnormal nodes [12]

repairing other agents, but when the repairing agents are themselves faulty
they will cause the target agents to become faulty (infect contamination)
rather than repair them. Thus the state-transition diagram as a Markov model
is as shown in Fig. 2 [12]. Let µi denote the repair done by the agent i, and α
(<1) indicate the success rate when repair is done by a faulty agent. In this
model, a transition matrix M corresponding to the state-transition diagram
is as follows:

M =

⎛
⎜⎜⎝
−2λ µ1(1 − λ µ2(1 − λ) 0

λ −λ − (µ2(1 − α) + µ1)(1 − λ) 0 αµ2

λ 0 −λ − (µ1(1 − α) + µ2)(1 − λ) αµ1

0 λ + µ2(1 − λ)(1 − α) λ + µ1(1 − λ)(1 − α) −α(µ1 + µ2)

⎞
⎟⎟⎠
(3)

3.4 Mutual Repair with Selfish Agents

For a game theoretic argument, it is further assumed that an agent must
decide whether it will repair others or not, corresponding to cooperation and
defection in the Prisoner’s Dilemma. For agent i, Ci = 1 if it repairs other
agents, and 0 otherwise. Let Pi(C1, C2) denote the probability of agent i being

162 Y. Ishida

Table 2. Steady-state reliability of each agent when mutual repair is involved

C2 = 1 C2 = 0

C1 = 1 P1(1, 1) = β

λ(λ+ β
αµ

)+β
P1(1, 0) = 0

P2(1, 1) = P1(1, 1) P2(1, 0) = P1(0, 1)

C1 = 0 P1(0, 1) = 1

λ+
β

αµ

P1(0, 0) = P2(0, 0) = 0

P2(0, 1) = P1(1, 0)

alive when agent i’s action is Ci. Simple calculation yields the steady-state
probability Pi(C1, C2) in Table 2 below, arranged as per Table 1 [12].

Table 2 can be regarded as a payoff matrix of the two-player game where
each ij entry indicates the payoff that player i gains. If we simply regard
Pi(C1, C2) as agent i’s payoff when actions C1, C2 are taken, mutual repair-
ing would happen due to the inequalities: P1(1, 1) > P1(0, 1) > P1(1, 0) =
P1(0, 0); P2(1, 1) > P2(1, 0) > P2(0, 1) = P2(0, 0).

While the self action does not make any difference (for instance, for agent 1,
P1(1, 0) = P1(0, 0)) when the other agent does not cooperate, the agent should
certainly cooperate when the other agent cooperates (for example, for agent 1,
P1(1, 1) = P1(0, 1)). This raises the reliability of others, making the repairing
of self by others more effective and having a cyclic effect.

Let us take the cost of repairing into consideration. Then agent 1, for
example, will choose its action C1 to maximize P1(C1, C2)− c ·C1), where c is
the cost of repairing relative to the benefit measured by the reliability of itself.
Involving the cost for cooperation would naturally bias the situation towards
more defect-benefiting. When the opponent defects, the agent simply loses the
cost of cooperation if it cooperates. However, there is still a chance for mutual
cooperation when the opponent cooperates, so P1(1, 1) − c > P1(0, 1) holds
when the cost relative to benefit satisfies:

(β − λ)(λ + β
αµ)− β

(λ(λ + β
αµ) + β)(λ + β

αµ)
> c (4)

Selfishness of an agent is reflected on the objective function that the agent
will maximize, but this reflection is not a trivial task. The above agents are
a short-sighted implementation of selfishness; a more foresighted agent would
consider the event of other agent failure as losing the chance of being repaired
by the agent, and the extinction of all agents as a fatal event that should be
avoided by paying a high cost. In the above model where repairing by faulty
agents does not happen, extinction of alive agents is an absorbing state from
which no other state arises.

Integrating Intelligent Systems: A Game Theoretic Approach 163

0 0.2 0.4 0.6 0.8 1
a

0

0.2

0.4

0.6

0.8

P
1
H
1
,
1
L
-
P
1
H
0
,
1
L

Fig. 3. Plot of the difference P1(1, 1) − P1(0, 1) when the repair success rate by
abnormal agents α changes from 0 to 1, and λ = 10−4, µ = 102λ are fixed [12]

Table 3. Steady-state availability AV

C2 = 1 C2 = 0

C1 = 1 AV (1, 1) = β+λ

λ(λ+ β
αµ

)+β
AV (1, 0) = 1

λ+ β
αµ

C1 = 0 AV (0, 1) = 1

λ+ λ
β

αµ

AV (0, 0) = 0

Figure 3 plots the difference P1(1, 1) − P1(0, 1) when the repair success
rate by abnormal agent α changes from 0 to 1 and λ = 10−4, µ = 102λ are
fixed [12]. There is a strong incentive for agent 1 to cooperate when the success
rate is about 0.1. The incentive decreases linearly when the rate exceeds 0.2,
which indicates that reliable repairs by abnormal agents promote cooperation.

If the availability (the probability that at least one agent remains normal)
is used as a payoff for each agent, then there will be stronger incentive to
cooperate when the other agents cooperate, since the difference AV (1, 1) −
AV (0.1) is larger than the difference P1(1, 1)− P (0, 1), as shown in Table 3.

This indicates that even for selfish agents, they will be more likely to
cooperate if they take a systemic payoff that evaluates the cost and benefit in
a more system wide and longer term; this is the beginning of self-organization
to mutual supporting collectives.

4 A Macroscopic Model: Boundary Formation
among Agents

4.1 A Model with Uniform Control

We consider the possibility of cleaning up the network by mutual copying.
Repair by copying in information systems is also a double-edged sword and it
should be identified under what condition the network can eradicate abnormal

164 Y. Ishida

elements from the system. We consider a probabilistic cellular automata
(PCA) to model the situation where computers in a local area network (LAN)
mutually repair by copying their content. Since the problem involves the
double-edged sword leading to a critical phenomenon, repairs have to be
decided giving consideration to the resources used and remaining in the system
and the network environment.

As a first macro model, we use a PCA [11]; we assume the actions are
done in a synchronous fashion. As in the micro model, the repairing may be
done by copying its content to the other agents. Further, the network for the
model considered in this Section is restricted to the one-dimensional array
shown in Fig. 4 (which could be an n-dimensional array, a complete graph, a
random graph, or even a scale-free network) that could have S neighbors for
each agent with a boundary condition – in other words, the structure of the
array is a ring with agent 1 adjacent to agent N .

Also, a probabilistic cellular automaton requires probabilistic rules for
interactions. The model of the current Section controls the repairing of all the
agents uniformly. That is, each agent tries to repair its neighbor agents in a
synchronous fashion with a probability µ (repair rate). Repair will be success-
ful with probability α0 when it is done by a normal agent, but with probability
α when done by an abnormal agent (α < α0). The repaired agents will be nor-
mal when all repairs are successful. Thus, when repairing is performed by the
two neighbor agents, both of these two repairs must be successful in order for
the repaired agent to be normal.

As a probabilistic cellular automaton, the transition rules are shown in
Table 4. The self-state is the center in parentheses, and the two neighbor states
to the left and right; the self-state will be changed to the state indicated to
the right of the arrow.

Fig. 4. One-dimensional array with two states: normal (0) and abnormal (1)

Table 4. State change rules in the probabilistic cellular automaton

State change Probability

(000) → 1 µ(1 − α0)(2 − µ(1 − α0))
(001) → 1 µ2(1 − αα0) + µ(1 − µ)((1 − α) + (1 − α0))
(101) → 1 µ(1 − α)(2 − µ(1 − α))
(010) → 1 1 − µα0(2(1 − µ) + µα0)
(011) → 1 1 − µ((α + α0)(1 − µ) + µαα0)
(111) → 1 1 − µα(µα + 2(1 − µ))

Integrating Intelligent Systems: A Game Theoretic Approach 165

Table 5. State change rules in the PCA when α0 = 1

State change Probability

(000) → 1 0
(001) → 1 µ(1 − α)
(101) → 1 µ(1 − α)(2 − µ(1 − α))
(010) → 1 (1 − µ)2

(011) → 1 (1 − µ)2 + µ(1 − α)
(111) → 1 µ(1 − α)(2 − µ(1 − α)) + (1 − µ)2

Table 6. Rules for the DK model, where p1 and p2 are two parameters for the DK
model, and the symbol * is a wildcard

State change Probability

(0*0) → 0 1
(0*1) → 1 p1

(1*1) → 1 p2

When the repair rate by normal agents α0 = 1, the probability in the
change rule can be reduced greatly (Table 5). The relation among these change
probabilities is obvious – for instance, the probability for the state change
(111) → 1 can be obtained by adding those for (101) → 1 and (001) → 1;
also the probability for the state change (011) → 1 can be obtained by adding
those for (010) → 1 and (001) → 1.

The Domany-Kinzel (DK) model [4] is a one-dimensional, two-state and
totalistic probabilistic cellular automaton (PCA) in which the interaction
timing is specific. The interaction is done in an alternated synchronous fash-
ion: the origin cell with state 1 is numbered as 0. The numbering proceeds
{1, 2,} to the right, and {−1, −2,} to the left. At the N -th step the
even numbered cells will act on the odd numbered cells, and the odd num-
bered cells will act at the next step. The neighbor is two cells adjacent to
oneself without self-interaction. The interaction rule is as shown in Table 6.

Our PCA model can be equated with the DK model [11] when µ = 1
(namely, agents always repair), with parameters p1 = (1− α), p2 = (1− α2);
that is, the case of the directed bond percolation.

Under the approximation that the probability that the state of agent 0
is a constant p0 (mean field approximation and steady state), the following
steady state probability of p0 is obtained:

dy

dt
= ay2 + by + c (5)

where a = −µ2(α0 − α)2, b = −2µ(1− α0)(−µ(α0 − α) + 1) + µ(µ− 2α), and
c = µ(1 − α0)(2 − µ(1− α0)).

166 Y. Ishida

When α0 > α (hence α < 0), the steady state can be obtained as follows:

p0 = 1 +
1
2a

(b +
√

b2 − 4ac) (6)

When α0 = 1, the above form reduces to a = −µ2(1− α)2, b = µ(µ− 2α),
and c = 0, and hence

p0 = 1 +
α(2(1− µ) + αµ)

µ(1− α)2
(7)

In order for abnormal nodes to be eradicated, c must be 0 (that is, α0 = 1),
otherwise normal nodes could have spread abnormal states. When c = 0, the
following threshold condition must be satisfied for eradication of abnormal
agents, since the time derivative dy

dt must be negative in the equation above.

2α ≥ µ (8)

This steady state probability also matches qualitatively with the above
simulation results (Fig. 5), however, simulations are needed when the result
by mean field analysis does not match well with the simulation result when
α0 = 1 (Figs. 5 and 6). Here he size of lattice is 20× 20, hence the number of
agents is 400. Simulation results qualitatively match the steady state fraction
of normal agents obtained by the mean field analysis above. When the repair
success rate by normal agents α0 = 1, the result by mean field analysis does
not closely match the simulation result.

Fig. 5. The number of normal agents after 1500 steps, when the repair success rate
by normal agents α varies

Integrating Intelligent Systems: A Game Theoretic Approach 167

Fig. 6. Frozen (the right region where all the units are normal), and active phases
(the left region where some units remain abnormal) when α2 = 1 [11]

4.2 The Spatial Prisoner’s Dilemma

The Spatial Prisoner’s Dilemma (SPD) has been studied to investigate when,
how, and why cooperation emerges among selfish agents when they are spa-
tially arranged, hence interactions are limited only to their neighbors. In SPD
pioneered by [21], each player was placed at each lattice of the two-dimensional
lattice. Each player has an action and a strategy, and receives a score. Each
player plays PD with the neighbors, and changes its strategy to the strategy
that earns the highest total score among the neighbors. We will use this deter-
ministic SPD. In the stochastic version, the agent will decide its action based
on a probability proportional to the difference between its own payoff and
the highest payoff in the neighbors’ agents (similarly to replicator dynamics
[10, 28]).

The SPD is generalized by introducing a spatial strategy [13], which deter-
mines the next action dependent upon the spatial pattern of actions in the
neighbors. A score is calculated by summing up all the scores received from
PD with 8 neighbor players. After r (strategy update cycle) steps of inter-
actions with neighbors, the strategy will be chosen from a strategy with the
highest score among the neighbors.

To specify a spatial strategy, the actions of all the neighbors and the player
itself must be specified. For simplicity, we restrict ourselves to a ‘totalistic

168 Y. Ishida

spatial strategy’ that depends on the number of D (defect) actions of the
neighbor, not on their positions.

4.3 A Model with Selfish Agents

Although the actions of agents in the above models are controlled uniformly
by the parameter µ, selfish agents in the current model will determine their
actions by accounting their payoffs. To implement this selfish framework, we
use spatial strategies in the Spatial Prisoner’s Dilemma.

The self-repairing network consists of agents capable of repairing other
agents connected to them. In the probabilistic cellular automaton model of
Sect. 4.1, agents do not have a failure rate and do not become abnormal by
themselves, however, the agents in the present model [14] incorporate a failure
rate (λ). Repairing is controlled by repair rate (µ). When a repair is carried
out, it will be successful with a repair success rate (α), and the repaired agents
are rendered normal.

The adverse impact caused by the abnormal agents is implemented by
raising the failure rate (by an amount according to the damage rate δ) of
the repaired agents (when repaired by abnormal agents). Further, the agents
are assumed to use some resources (Rλ) for repair. This amounts to a cost
for cooperation, and hence motivates selfish agents to engage in free-riding.
The agents have to perform the tasks assigned to them, but without per-
forming repairs. Abnormal agents increase and the performance of the system
decreases – hence we are faced with a dilemma. An agent is able to repair
more than one other agent, provided that the quantity of maximum resource
Rmax is not exceeded. We consider the available resource (the resource not
used for repair) as the agent’s ‘score’. Throughout this Chapter, simulations
are conducted using the parameters listed in Table 7.

Table 7. Parameter list

Description Value

L × L size of the space 50 × 50
N number of agents 2500
Nf (0) initial number of abnormal agents 100
λ failure rate 0.01
µ repair rate 0.01
α repair success rate 0.1
δ damage rate 0.1
r strategy update cycle 100
Rmax maximum number of resources 25
Rλ number of resources used for repairing 1

Integrating Intelligent Systems: A Game Theoretic Approach 169

Fig. 7. The fraction of normal agents when the damage rate δ varies (parameters
are as per Table 7, except failure rate 0.001, repair rate 1.0, repair success rate
0.01, and the damage rate varies; a random selection of 100 agents is initially made
abnormal [22])

Simulations are conducted in a 2-dimensional lattice. To contrast the
results with the selfish repair rate control in Sect. 3, simulations are conducted
for the above self-repair network with a uniform repair rate. This model has
a threshold for the damage rate δ (Fig. 7) [22], as expected from the proba-
bilistic cellular automaton in Sect. 4.1. Above the damage rate threshold, all
the agents become abnormal.

To contrast with the one with systemic payoff, we use only two trivial
strategies: All-C and All-D; we have reported elsewhere [22] on the use of
nontrivial spatial strategies such as k−C. In the simulation shown in Fig. 8,
All-D will eradicate All-C strategies; hence all agents will remain silent
without repairing any other agents. Thus, eventually all the agents will be
abnormal with a positive failure rate. In Sect. 4.4, we will modify the pay-
off, incorporating not only its own remaining resources but also all neighbor
resources.

4.4 Strategic Repair with Systemic Payoff

As in the simulation (Fig. 8) [22], a repair control by allowing agents to take
only All-C (repair) or All-D (not repair) resulted in all silent agents, and hence
ended with all abnormal agents. Here, thepayoff is modified to include all the
neighbor resources. This modified payoff has the impact of making agents

170 Y. Ishida

Fig. 8. SPD with simple payoff measured by available agent resources (parameters
are: failure rate 0.005–0.10, repair success rate 0.1, damage rate 0.1, strategy update
cycle 20, max resources 9, cost for repair 1. 100 agents are made randomly abnormal
initially, and half chosen at random to take all-D [22])

more attentive by caring for neighbor agents that might possibly repair them
in the future.

Simulations were conducted for strategic repair with modified payoff: not
only the remaining agent resources but also resources of the neighboring agents
were added to the payoff. Figure 9 plots (a) the time evolution of the fraction
of normal agents, (b) the available resources left in the system, and (c) the
fraction of agents with All-C [22].

It can be observed that this strategic repair with modified payoff can adapt
to the failure rate: when the failure rate is low, the fraction of All-C agents
is kept small (Fig. 9(c)) limiting unnecessary repair, whereas when the failure
rate is high, the fraction of All-C agents is also made high. As a result of this
flexible change of repair rate, the fraction of normal agents (Fig. 9(a)) as well
as available resources (Fig. 9(b)) are made stable and the difference in failure
rate is absorbed.

4.5 Comparison Between Uniform Repair and Strategic Repair

An advantage of strategic control with SPD is that agents can switch between
repair and not-repair adapting to the spatial environment around the agents.
Strategic control with modified payoff (where the available resources of neigh-
boring agents are added to the payoff) has been compared with control by a
uniform rate in a spatially heterogeneous environment, where the lattice space
is divided into two regions: the right region with high failure rate (λ = 0.1),
and the left region with low failure rate (λ = 0.001) (Fig. 10). Black indicates a
normal cooperator, white an abnormal cooperator, light gray a normal defec-
tor, and dark gray an abnormal defector. It can be observed that cooperators

Integrating Intelligent Systems: A Game Theoretic Approach 171

Fig. 9. SPD with strategic control with modified payoff (available resources of the
neighbor agents being added to the payoff): (a) fraction of normal agents, (b) avail-
able resources, (c) fraction of All-C agents (parameters are as per Table 7, and the
initial configuration is with half of All-D agents and 100 failure agents chosen at
random [22])

Fig. 10. Snapshot of agent configurations at 1400 time steps when simulation is
carried out with the parameters listed in Table 7, except for failure rate and repair
rate µ = 0.5, where strategic repair (left) and uniform repair (right) are compared

172 Y. Ishida

Fig. 11. Maximum number of resources is 25 – comparison between strategic con-
trol with modified payoff (available resources of neighboring agents being added to
the payoff), and control with uniform rate: (a) fraction of normal agents, and (b)
available resources when the failure rate λ varies [22]

Fig. 12. Maximum number of resources is 13 – comparison between strategic con-
trol with modified payoff (available resources of neighboring agents being added to
the payoff), and control with uniform rate: (a) fraction of normal agents, and (b)
available resources when the failure rate λ varies [22]

(black and white agents) are found in the right region with high failure rate
in the strategic repair (left), while no such adaptive behavior is observed for
uniform repair.

Further, in spatially homogeneous environment, strategic control with
modified payoff has been compared with control by a uniform rate. Figures 11
and 12 are simulation results for varying values of max resource: 25 and 13,
respectively [22]. Changes of the max resource will change the relative cost of
repair. In each figure, the fraction of normal agents (a) as well as the available

Integrating Intelligent Systems: A Game Theoretic Approach 173

resources (b) are monitored; available resources, which are correlated with the
fraction of normal agents, are a rough measure of performance.

First, it can be observed that the performance of the uniform rate control
varies in these three simulations, while that of the strategic rate control shows
reasonable performance. For example, the available resources by the uniform
rate control with repair rate 0.5 is worst when the failure rate is 0.1 and
max resource is 25 (Fig. 11(b)), however it is the best when max resource
is 12 (Fig. 12(b)). Thus, the performance comparison between uniform and
strategic rate control can be summarized as:

• the strategic rate control is neither best nor worst;
• strategic control is robust against parameter changes.

The simulations indicate that an appropriate uniform rate could be set
when parameters were correctly identified. However, it is often the case that
parameters are difficult to identify, or that they may change dynamically. In
such cases, strategic rate control can be used. The above discussion holds only
when the damage rate is below the threshold (as in Fig. 7).

It has been shown that strategic repair leaves the decision as to whether to
repair neighbor agents to each selfish agent. This game theoretic framework
is suitable for an autonomous and distributed decision-making context that is
suitable for the regulation and maintenance of large-scale information systems.

A major problem of using the Spatial Prisoner’s Dilemma in regulating
the repair rate of agents is that agents tend to remain silent and stuck at
the Nash equilibrium of mutual defection. Here, we present a new solution
to this problem: involving more systemic payoff incorporating not only its
own remaining resources, but all its neighbor resources. With this modified
payoff, agents not only have an adaptive decision-making dependent on the
environmental parameters, such as failure rate and damage rate, but also have
a more favorable resource allocation compared with a uniform regulation of
repair rate.

5 Selfishware and Internet Being

In the microscopic model, we have shown the possibility of cooperation
emerging when more systemic payoffs such as system reliability and further
availability are taken into account, rather than simply counting the cost for
repair. Indeed, when the payoff is modified to a more systemic one involving
neighbor resources in the macro model, a cooperative strategy that will sup-
port neighbors by repairing can exist even when a defective strategy exists.
With extended payoff, even adaptability to the environment (such as fault
probability and maximum resources) has emerged.

174 Y. Ishida

Strategic repair cannot outperform a uniform repair strategy that is opti-
mally tuned to the environment, however, the optimal one changes when the
environment changes. Although strategic repair is not optimum in any envi-
ronment, it has shown reasonable performance. This is due to the fact that
strategic repair amounts to distributing the repair rate in a spatio-temporal
sense: distinct agents can have distinct repair rates and agents can have dis-
tinct repair rates at distinct times. The merit of spatio-temporal flexibility of
strategic repair will be more conspicuous in spatio-temporally dynamic envi-
ronments – for example, failure rate could vary from agent to agent and from
time to time.

Although we focused on a self-repairing task, the tendency would hold for
other tasks that require cooperation of agents. The condition for existence of
both selfishware and Internet being is obviously that all the players involved
in the entity will benefit from it, or at least will not suffer from it. For the
existence and maintenance of Internet being, however, a further condition is
needed: payoff involves not only the short-sighted one, but also a payoff on a
more systemic and longer term basis.

This would explain two phenomena observed in the Internet: one is that
hypertexts (web documents) are posted and linked so explosively, and another
is that computer viruses, worms, spyware, and spam email cannot be wiped
out. The former is considered to be example of Internet being, corresponding
to an organization of cooperators, while the latter is an example of selfish-
ware but not Internet being, corresponding to an isolated small cluster of
defectors.

The linked network of web documents benefits all the players involved –
that is, not only the readers but also the providers (the ones who make post-
ings), thus forming the Nash equilibrium. Viruses and spam mail benefit only
the providers and rather harm users. However, the users have to pay a high
cost to eradicate them and instead choose to neglect them, forming again a
Nash equilibrium.

Focusing on spam mail, the usual e-mail network is an Internet being in the
sense that both senders and receivers benefit from it. Spam mail can appear
as ‘intruders’, since the usual e-mail network is not an evolutionarily stable
strategy (ESS) [18].

Game theoretic study of complex systems such as the Internet will reveal
that the network is a ‘culture media’ for artificial life, since it would allow
Internet beings to emerge when certain conditions are met. As the network
is used as a repository of knowledge and data, it can be a concentrator of
computational intelligence when an organization such as grid computing is in
operation. Then parasitic computing [3] will also emerge as selfishware.

Integrating Intelligent Systems: A Game Theoretic Approach 175

6 Conclusion

For complex and large-scale artificial systems such as the Internet, the sys-
tems tend to be out of control; centralized and planned control would be
difficult to apply. Autonomous and distributed management will be impera-
tive and unavoidable rather than uniform control using a central authority.
Autonomous and distributed management is favorable not only for control
and management purposes but also for robustness against dynamic change,
for such complex systems always undergo changes. When autonomous and
distributed management is chosen as a framework, then we have to deal with
selfish agents in exchange for leaving the control and management to each
agent. The framework must guide the selfish actions of each agent toward the
welfare of the entire system. Game theory has been studied and developed for
such purpose, and has been applied to theoretical biology as well as economics.

The game theoretic approach to both micro and macro models for a net-
work cleaning problem in a self-repairing network has been discussed. The
game theoretic approach revealed conditions that selfish agents can cooper-
ate and form an organization of cooperative selfish agents: their payoff must
involve not only the selfish agent itself but also its neighbors’ survival. By
doing so, interacting selfish agents can avoid not only being deadlocked wait-
ing for neighbors’ support (Nash equilibrium), but also being attracted to all
the dead states (attractor).

Based on the results, we also discussed when selfishware will emerge and
under what condition it would further develop into an Internet being.

Acknowledgements

I am grateful to Prof. Fulcher not only for giving me the opportunity to present
this work, but also his great assistance in editing and proofreading. I am also
grateful to the anonymous reviewers, whose comments were quite helpful in
improving the Chapter. I am indebted to Mr. Toshikazu Mori, Mr. Masakazu
Oohashi and Mr. Yuta Aoki who helped conduct the simulations. This work
was supported in part by a Grant-in-Aid for Scientific Research (B) 16300067,
2004. This work was also partly supported by the 21st Century COE Program
‘Intelligent Human Sensing’ of the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

References

1. Akella A, Seshan S, Karp R, Shenker S, Papadimitriou C (2002) Selfish
behavior and stability of the internet: a game theoretic analysis of TCP. In:
Proc. ACM Annual Conf. of Speical Interest Group on Data Communications
(SIGCOMM’02), August, Pittsburg, PA. ACM Press, New York, NY: 117–130.

176 Y. Ishida

2. Axelrod R (1984) The Evolution of Cooperation. Basic Books, New York, NY.
3. Barabasi A-L, Freeh VW, Jeong H, Brockman JB (2000) Parasitic computing.

Nature, 412: 894–897.
4. Domany E, Kinzel W (1984) Equivalence of Cellular Automata to Ising Models

and Directed Percolation. Phys. Rev. Lett. 53: 311
5. Dresher M (1961) The Mathematics of Games of Strategy: Theory and

Applications. Prentice-Hall, Englewood Cliffs, NJ.
6. Feigenbaum J, Papadimitriou C, Shenker S (2001) Sharing the cost of multicast

transmissions. J. Computer and System Sciences, 63: 21–41.
7. Feigenbaum J, Papadimitriou C, Sami R, Shenker S (2002) A bgp-based mecha-

nism for lowest-cost routing. In: Proc. 21st ACM Symp. Principles of Distributed
Computing (PODC’02), July, Monterey, CA, ACM Press, New York, NY:
173–182.

8. Feigenbaum J, Shenker S (2002) Distributed algorithmic mechanism design:
recent results and future directions. In: Proc. 6th ACM Workshop Discrete Algo-
rithms and Methods for Communication (Dial-M’02), 28 September, Atlanta,
GA. ACM Press, New York, NY: 1–13.

9. Foster I, Kesselman C (eds) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, CA.

10. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bulletin American
Mathematical Society, 40: 479–519.

11. Ishida Y (2005) A critical phenomenon in a self-repair network by mutual
copying. In: Khosla R, Howlett RJ, Jain LC (eds.) Proc. 9th Knowledge-
Based Intelligent Engineering Systems (KES 2005), Lecture Notes in Computer
Science LNCS/LNAI 3682. Springer-Verlag, Berlin: 86–92.

12. Ishida Y (2006) A game theoretic analysis on incentive for cooperation in a self-
repairing network. In: Elleithy K (ed.) Advances and Innovations in Systems,
Computing Sciences and Software Engineering. Proc. Intl. Joint Conf. Com-
puter, Information and Systems Sciences and Engineering (CIS2E 06), 4–14
December, Bridgeport, CT, Springer-Verlag, Berlin.

13. Ishida Y, Mori T (2005) Spatial strategies on a generalized spatial prisoner’s
dilemma. J. Artificial Life and Robotics, 9(3): 139–143.

14. Ishida Y, Mori T (2005) A network self-repair by spatial strategies in spa-
tial prisoner’s dilemma. In: Khosla R, Howlett RJ, Jain LC (eds.) Proc. 9th
Knowledge-Based Intelligent Engineering Systems (KES 2005), Lecture Notes
in Computer Science (LNCS/LNAI 3682), Springer-Verlag, Berlin: 79–85.

15. Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. In: Meinel C,
Tison S (eds.) Lecture Notes in Computer Science LNCS1563: 404–413.

16. Lakshman TV, Kodialam M (2003) Detecting network intrusions via sampling:
a game theoretic approach. In: Proc. 22nd Annual Joint Conf. IEEE Com-
puter and Communications Societies (INFOCOM’03), 30 March – 3 April, San
Francisco, CA. IEEE Press, Piscataway, NJ: 1880–1889.

17. Mavronikolas M, Spirakis P (2001) The price of selfish routing. In: Proc. 33rd
Symp. Theory of Computing (STOC’01), 6–8 July, Hersonissos, Greece. ACM
Press, New York, NY: 510–519.

18. Maynard-Smith J (1982) Evolution and the Theory of Games. Cambridge
University Press, Cambridge, UK.

19. Nash J (1950) The bargaining problem. Econometrica, 18: 155–162.
20. Nisan N, Ronen A (2001) Algorithmic mechanism design. Games and Economic

Behavior, 35: 166–196.

Integrating Intelligent Systems: A Game Theoretic Approach 177

21. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature, 359:
826–829.

22. Oohashi M, Ishida Y (2007) A game theoretic approach to regulating mutual
repairing in a self-repairing network. In: Sobh T, Elleithy K, Mahmood A,
Karim M (eds.) Innovative Algorithms and Techniques in Automation, Industrial
Electronics and Telecommunications. Springer-Verlag, Berlin: 281–286.

23. Papadimitriou C (2001) Algorithms, games, and the internet. In: Proc. 33rd
Symp. Theory of Computing (STOC’01), 6–8 July, Hersonissos, Greece. ACM
Press, New York, NY: 749–753.

24. Parkes D (1977) Iterative combinatorial auctions: achieving economic and com-
putational efficiency. PhD Thesis, Department of Computer and Information
Science, University of Pensylvania, PA.

25. Roughgarden T, Tardos E (2002) How bad is selfish routing? J. ACM, 49(2):
236–259.

26. Shooman ML (1968) Probabilistic Reliability: An Engineering Approach
McGraw-Hill, New York, NY.

27. Shoham Y, Wellman M (1997) Economic principles of multi-agent systems.
Artificial Intelligence, 94: 1–6.

28. Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game
dynamics. Mathematical Bioscience, 40: 145–156.

29. Walsh W, Wellman M (1998) A market protocol for decentralized task alloca-
tion. In: Proc. 3rd Intl. Conf. Multi-Agent Systems (ICMAS-98), July, France.
IEEE Computer Society Press, Los Alamitos, CA: 325–332.

Resources

1 Key Books

Axelrod R (1984) The Evolution of Cooperation. Basic Books, New York, NY.

Bertsekas D, Gallager R (1992) Data Networks (2nd ed). Prentice-Hall,
Englewood Cliffs, NJ.

Czumaj A (2004) Selfish routing on the Internet. In: Leung J (ed.) Handbook
of Scheduling. CRC Press, Boca Raton, FL.

McKnight LW, Bailey JP (eds.) (1997) Internet Economics. MIT Press,
Cambridge, MA.

Maynard-Smith J (1982) Evolution and the Theory of Games. Cambridge
University Press, UK.

Tayler M (1987) The Possibility of Cooperation. Cambridge University Press,
UK.

Weibull J (1995) Evolutionary Game Theory. MIT Press, Cambridge, MA.

2 Organisations, Societies, Special Interest Groups

Grid Computing Info Centre
http://www.gridcomputing.com/

IEEE distributed systems online
http://dsonline.computer.org/portal/site/dsonline/index.jsp

Market Design Inc.
http://www.market-design.com

180 Y. Ishida

3 Research Groups

Papadimitriou CH, Computer Science Division, University of California,
Berkeley
http://www.cs.berkeley.edu/˜christos/

Czumaj A, Department of Computer Science, New Jersey Institute of Tech-
nology
http://web.njit.edu/˜czumaj/

Kearns M, Institute for Research in Cognitive Science at University of
Pennsylvania
http://www.cis.upenn.edu/˜mkearns

4 Discussion Groups, Forums

Topology Project
http://topology.eecs.umich.edu/

5 Key International Conferences/Workshops

FOCS 2007: 48th Annual IEEE Symposium on the Foundations of Computer
Science
http://www.focs2007.org/

IEEE INFOCOM: Annual Joint Conference of the IEEE Computer and Com-
munications Societies
http://www.comsoc.org/confs/infocom/index.html

PODC: ACM Symposium on Principles of Distributed Computing
http://www.acm.org/podc/

SODA : ACM/SIAM Symposium on Discrete Algorithms
http://www.informatik.uni-trier.de/˜ley/db/conf/soda/index.html

STACS: Symposium on Theoretical Aspects of Computer Science
http://www.informatik.uni-trier.de/˜ley/db/conf/stacs/index.html

STOC: ACM Symposium on the Theory of Computing
http://sigact.acm.org/stoc/

Integrating Intelligent Systems: A Game Theoretic Approach 181

6 (Open Source) Software

The network simulator: ns-2
http://isi.edu/nsnam/ns/

7 Data Bases

Consensus road map for defeating distributed denial of service attacks
http://www.sans.org/dosstep/roadmap.php

Traceroute and Looking Glass
http://www.traceroute.org

Part III

Artificial Intelligence

Emotional Intelligence: Giving Computers
Effective Emotional Skills to Aid Interaction

Chris Creed and Russell Beale

School of Computer Science, University of Birmingham, UK, cpc@cs.bham.ac.uk,
r.beale@cs.bham.ac.uk

1 Introduction

Why do computers need emotional intelligence? Science fiction often portrays
emotional computers as dangerous and frightening, and as a serious threat
to human life. One of the most famous examples is HAL, the supercomputer
onboard the spaceship Discovery, in the movie 2001: A Space Odyssey. HAL
could express, recognize and respond to human emotion, and generally had
strong emotional skills – the consequences of which were catastrophic. How-
ever, since the movie’s release almost 40 years ago, the traditional view
of emotions as contributing to irrational and unpredictable behavior has
changed. Recent research has suggested that emotions play an essential role in
important areas such as learning, memory, motivation, attention, creativity,
and decision making. These findings have prompted a large number of research
groups around the world to start examining the role of emotions and emotional
intelligence in human-computer interaction (HCI).

For almost half a century, computer scientists have been attempting to
build machines that can interact intelligently with us, and despite initial opti-
mism, they are still struggling to do so. For much of this time, the role of
emotion in developing intelligent computers was largely overlooked, and it is
only recently that interest in this area has risen dramatically. This increased
interest can largely be attributed to the work of [6] and [85] who were amongst
the first to bring emotion to the attention of computer scientists. The former
highlighted emotion as a fundamental component required in building believ-
able agents, while the latter further raised the awareness of emotion and its
potential importance in HCI. Since these publications, the literature on emo-
tions and computing has grown considerably with progress being made on a
number of different fronts.

The concept of designing computers to have emotional intelligence may
seem strange, but equipping computers with this type of intelligence may pro-
vide a number of important advantages. For example, in spite of a computer’s
C. Creed and R. Beale: Emotional Intelligence: Giving Computers Effective Emotional Skills

to Aid Interaction, Studies in Computational Intelligence (SCI) 115, 185–230 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

186 C. Creed and R. Beale

impressive ability to process huge volumes of data in milliseconds and to
perform complex calculations in a fraction of a second, they still have neither
the ability to see or hear us, nor the ability to understand how we are feel-
ing and to adapt themselves accordingly. Users often experience feelings of
frustration at computers when they display obscure error messages, behave
in erratic ways, and frequently crash. We may feel like venting our anger and
frustration towards the computer, but it does not have the ability to respond
in a constructive way. However, a computer that has some form of emotional
intelligence would be able to detect that the user is feeling frustrated and
angry, and would be in a position to take productive steps to alter this.

Such computers could use a number of strategies to help alleviate feelings
of anger and frustration, such as opening a dialogue with users to ascertain
the source of their emotions, apologizing for any mistakes made and work-
ing with the user to resolve them, and through expressions of empathy and
understanding at the user’s emotional state. Recent research has suggested
that people who have damaged the emotional components of their brain find
it difficult to make decisions as they cannot associate any emotion to a decision
(in other words, would a particular course of action result in positive or nega-
tive feelings? [32]). Such a disability can have a destructive effect on people’s
lives as they consistently make poor decisions. This suggests that instead of
computers becoming more unpredictable and irrational through having emo-
tional intelligence, they would instead act and behave more rationally and
predictably.

So how do we go about giving computers effective emotional skills that aid
our interaction with them? This Chapter will provide an overview of what is
required to achieve this, as well as the numerous issues involved in doing so.
This Chapter is split into three core sections. Section 2 concentrates on the
theory and research related to the building of emotional intelligence into com-
puters. It starts by providing an overview of emotion theory, with a particular
focus on the concepts and ideas most relevant for building and evaluating emo-
tionally intelligent agents. A detailed perspective of the different approaches
used in developing emotional intelligence in computers is then provided, along
with a discussion of the limitations of these different approaches.

Section 3 provides an overview of our own work and how it relates to
the standard approaches detailed in the previous Section. This includes an
overview of what affective embodied agents are, how we respond to synthetic
displays of emotion in such agents, research which has suggested that we have
social and emotional relationships with computers, a discussion of the impor-
tance of conducting longitudinal studies when evaluating interface agents,
and a description of the affective embodied agent that we have developed for
experimental purposes. The final Section contains a discussion of the appli-
cation of our approach to the real world by initially discussing areas and
problems that affective embodied agents could potentially be useful for. We
then provide a detailed example of where such an agent can be used within

Emotional Intelligence 187

a nutritional scenario, detailing how it can simulate a human health profes-
sional to help people change problematic behavior such as smoking, eating,
and exercise.

2 Overview of Affective Computing

In order to understand how we can give computers effective emotions that
aid our interactions with them, we need to start with an understanding of
what emotions are and what exactly constitutes emotional intelligence. This
section starts by providing an overview of what we currently know about emo-
tions, including what causes them, how we express them, and what influences
they have on the way we feel and behave. A detailed overview of the stan-
dard approaches used in attempting to incorporate emotional intelligence into
computers is then provided.

2.1 What Are Emotions?

Emotion theorists have debated for centuries about what emotions are and
what their primary function in human life is. This debate is far from over and
there is currently no universally agreed upon definition of emotions. How-
ever, many scholars would at least agree that we experience different types of
emotions in our everyday lives. An overview of these is provided below.

Basic Emotions

For much of the previous century, emotion scholars generally subscribed to
a cultural theory of emotion, where emotions were believed to be culturally-
specific learned behaviors that could only be experienced through observing
other people expressing such emotions. However, [38] discovered that some
emotions are not necessarily learned as previously believed, but are in fact
innate and shared across all cultures. In his study, Ekman travelled to a prelit-
erate culture (the Fore, in New Guinea) to ensure that the people there had not
been exposed to Western media and had not learned the emotional expressions
of Westerners. The subjects were told a number of stories, then asked to choose
from a set of photographs of Americans expressing different emotions, the one
which most closely matched the story. When tested, the Fore pointed to the
same expressions that Westerners linked to the story. For further clarification,
some Fore people were videotaped displaying facial expressions appropriate
to each of the stories. After returning home, the experiment was completed in
reverse by asking Americans to link the Fore faces to the different stories. The
judgements of both the Fore people and the Americans again matched. These
were named ‘basic emotions’, and while researchers often disagree about how
many basic emotions there are, many would agree that anger, disgust, fear,
joy, sadness and surprise can be classed as basic emotions.

188 C. Creed and R. Beale

Culturally Specific Expressions of Emotions

There are also cultural variations in the way in which humans express emo-
tion. For example, [38] investigated the different emotion display rules that
Americans and the Japanese have. In this experiment, both American and
Japanese men were videotaped whilst watching some video clips. The clips
varied as to whether they displayed neutral or pleasant events (such as a canoe
trip) or less pleasant events (for example, nasal surgery). There were two show-
ings of the video clips: one where subjects watched the clips on their own and
another where subjects watched the clips with an interviewer present. When
subjects watched the clips in private, similar expressions were noted in both
American and Japanese subjects. However, when the interviewer was present,
Japanese subjects smiled more and showed less disgust than the American sub-
jects. When the videotapes were watched back in slow motion the researchers
noticed that when the interviewer was present, Japanese subjects actually
started to make the same expressions of disgust as the Americans did, but
they were able to mask these expressions very quickly afterwards. There-
fore, it appeared that the American and Japanese participants did actually
experience the same basic emotions as these were automatic responses hard-
wired into their brains. It was only a few hundred milliseconds later, that the
Japanese subjects could apply their learnt cultural display rules and override
the automatic response.

It has also been suggested that some emotions are culturally specific. For
example, [65] reported on an emotion that is experienced by the Gururumba
people of New Guinea that is not believed to be experienced from people of
other cultures. This is known as the state of ‘being a wild pig’ and people
who experience this state can become aggressive and often start looting, but
rarely is anyone actually hurt or anything of importance stolen. This state is
considered as normal among the Gururumba, as a way of relieving stress and
maintaining mental health across the community.

Higher Cognitive Emotions

[56] has argued that in addition to basic and culturally-specific emotions,
there are also ‘higher cognitive emotions’. These emotions are similar to basic
emotions in that they are universal, but there are also variations on the way
that they are expressed and experienced by different cultures, and there is also
no single facial expression associated with them. Higher cognitive emotions
also take longer than basic emotions to both develop and pass away. For
example, consider romantic love. This emotion usually develops gradually in
people over a period of weeks and months, while surprise (a basic emotion) is
typically a very quick reaction to an event. Surprise also has a single universal
facial expression associated with it, while there is no single universal facial
expression for love. It is suggested that emotions such as love, jealousy, pride,
embarrassment and guilt should be called ‘higher cognitive emotions’, because

Emotional Intelligence 189

these emotions typically require more processing in the cortex of the brain.
This essentially means that these emotions can be influenced more by cognitive
thought processes, while basic emotions are more reactive in nature.

Neurological Model of Emotion

The model of Fig. 1 has been developed for some emotions (in particular,
fear), based on work in neuroscience where it was found that fear is controlled
by two different pathways in the brain [65]. Furthermore, the following three
key regions of the brain were identified as being associated with fear: the
thalamus, the limbic system (in particular, the amygdala) and the cortex [65].
Sensory input is initially received by the thalamus from the environment and
transmitted simultaneously across the low road to the limbic system and up
the high road to the cortex. The relevance of the inputs to an individual’s
concerns (in other words, their needs and goals) are then continually assessed
by the limbic system, and if an input is evaluated as relevant, signals are sent
both to the body for physiological reaction and to the cortex for processing.
The first pathway (the thalamic-limbic) is the quicker of the two, and forces
us to react to potential dangers. In being quicker, it is prone to make more
errors and can often be initiated by false alarms, such as hearing a door slam.
The second pathway (the thalamic-cortex) is slower, but more accurate, and
can override feelings of fear evoked from the first pathway.

Fig. 1. LeDoux’s neurological model of fear [65]

190 C. Creed and R. Beale

Primary, Secondary, and Tertiary Emotions

Emotions aroused from the first pathway are referred to as ‘primary emotions’,
in other words, our hard-wired primitive emotions [32]. Primary emotions
are typically reactions to stimuli such as outrage, being startled, or sexually
stimulated. By contrast, ‘secondary emotions’ are defined as those emotions
that require more cognitive thought, such as grief, frustration and pride. One
patient – ‘Elliot’ (who had acquired damage to his frontal cortex as a result
of a brain tumour) – was used to illustrate the difference between primary
and secondary emotions. Elliot’s primary emotions still appeared to be func-
tioning correctly as he could, for example, still be startled by a loud bang.
However, if he saw a disturbing scene depicting a human head exploding, he
knew cognitively that he should feel shocked, but physiologically there was no
response where normally there would be. Elliot’s limbic-cortical pathway had
been damaged, and as a result he knew that he should feel certain emotions,
but did not.

It has been argued that there also exist ‘tertiary emotions’, these being
emotional states that involve a partial loss of control over thought processes.
When experiencing a tertiary emotion, it can be hard to concentrate on any-
thing else, making it particularly difficult to attend to important and urgent
tasks. Humiliation, infatuation, guilt and excited anticipation can be viewed
as examples of tertiary emotions [97].

2.2 Emotions and Moods

A major problem in emotion research is the lack of a common language. Terms
such as emotion, moods, drives, sentiments and attitudes are often used inter-
changeably by researchers and it can be unclear what is being referred to at
times. These terms have meanings of their own and have been discussed at
length in the literature [40]. Here we will focus primarily on the relationship
between emotions and moods, since distinction between the two can be par-
ticularly difficult (people often use similar words, such as ‘happy’, to describe
both). One obvious difference between the two is the duration for which each
lasts. Despite disagreement about exactly how long emotions last, [39] sug-
gests that they are very brief in comparison to moods and typically last a few
seconds or minutes at most, whereas moods tend to last for hours or days.

[51] distinguishes between emotions and moods by arguing that emotions
are ‘intentional’ and involve relationships between people and objects: “one
is afraid of something, angry at someone, happy about something.” Moods,
however, are ‘nonintentional’ and experienced more generally than emotions.
Unlike emotions, they are not directed at any object in particular (although
an object does have the potential to indirectly cause moods).

[33] suggests that emotions and moods can be distinguished through a
functional analysis of each. Some emotion theorists have argued that the main

Emotional Intelligence 191

function of emotion is to bias the action we take in reaction to a particular
situation. These emotions prepare the body to act quickly to these events and
are usually very brief. However, the key function of moods is to bias cognition
over extended periods of time. [33] further suggests that moods are always
present and can affect our evaluation of events encountered both internally
and externally. For example, someone in a positive mood is likely to view
everything more positively, while somebody who is in a negative mood is
likely to view everything more negatively.

Moods also appear to lower the threshold for experiencing other mood-
related emotion. For example, an individual in an irritated mood can become
more readily angry than they usually would. Situations or objects that would
not normally cause such anger can do so more easily because of the mood of
the person [39].

2.3 Expression of Emotion

Humans can express emotion in a variety of ways, the primary ones being writ-
ten language, facial expressions, speech, and body language (such as posture
and gait).

Written Language

Written language is a powerful medium for expressing emotion. People often
express their emotions through stories, poetry and personal letters. People can
literally state how they are feeling using emotive words such as ‘happy’, ‘sad’,
or ‘ecstatic’. The colour, size, and shape of words can also be manipulated
to add emotional emphasis to content (for instance, by animating text [106]).
Symbols such as emoticons – for example, :-) or :-(– can also be used to
convey emotion, and are particularly popular within domains where emotional
information is lacking, such as email, instant messaging or text messaging.

Speech

Another powerful method for communicating and expressing emotion is
through speech. In some scenarios, it is the only channel available for com-
munication (for example, telephone conversations). Speech can also provide
other information about a speaker such as their identity, age and gender.
People can also use speech to simply communicate the emotions they are
experiencing. Pitch (level, range and variability), tempo and loudness are
considered the most influential parameters for expressing emotion through
speech [4]. [75] have defined the general characteristics of a range of basic
emotions (Table 1).

192 C. Creed and R. Beale

Table 1. Summary of emotional effects in speech (relative to neutral speech)

Anger Happiness Sadness Fear Disgust

Speech slightly faster or slightly much very much
rate faster slower slower faster slower

Pitch very much much slightly very much very much
average higher higher lower higher lower

Pitch much much slightly much slightly
range wider wider narrower wider wider

Intensity higher higher lower normal lower

Voice breathy, breathy, resonant irregular wide, downward
quality chest tone blaring resonant voicing terminal inflections

Articulation tense normal slurring precise normal

Facial Expressions

Facial expressions are one of the primary ways in which we can detect emo-
tions in others. [41] have detailed the typical facial features that are associated
with six basic emotions with the mouth, cheeks, eyes, eyebrows and forehead
making up the core components of the face that are used to express emo-
tion. [42] have also produced the Facial Action Coding System (FACS), which
details the specific set of muscular movements for each of the basic emotions.
FACS helped to develop the Facial Definition Parameter (FDP) and Facial
Animation Parameter (FAP) sets which were designed according to the ISO
MPEG-4 standard to enable the animation of faces, expressions, emotions,
and lip movement. Humans are particularly adept at recognizing emotion in
facial expression, and research has shown that people can accurately iden-
tify the emotional expressions of faces represented by as little as 37 lines,
concentrating on the eye-brows, eyelids and mouth [44].

Gestures and Body Language

An overview and explanation of the meaning of different head, hand and body
movements is provided in [52]. For example, a vertical (up and down) ‘head-
nod’ often displays agreement or comprehension while listening. Clenched fists
can signal an aroused emotional state, such as fear, anger, or excitement (for
instance celebrating your team scoring at a sports event). Another example is
arm-crossing, which is seen as a self-comforting and stimulating posture that
is unconsciously used to ease anxiety and social stress [52].

Emotional Intelligence 193

2.4 Influence of Emotion on Human behavior

Attention

Emotion and attention are closely related. Paying attention to something
can trigger an emotion while an emotion can influence what we focus our
attention on. When an emotion is triggered it focuses our attention and mental
focus onto an external object or event that produced the emotion [82]. For
example, when we are angry we focus on the thing that angered us; when we
are frightened we concentrate on what scared us; when sad we focus on what
upset us.

Moods can also influence attention by focusing thoughts on the object or
event that caused the mood. For example, when feeling upset, depressed or
down, we tend to focus our thoughts on what made us feel this way. However,
we can still experience moods without our attention being focused on anything
in particular. For example, being in an anxious mood when walking down a
dark alley at night helps us to keep alert for any potential signs of danger [45].

Numerous studies have focused on the effects of anxiety on attention. Anx-
iety narrows attention to whatever has caused the anxious feelings and little
attention is given to almost everything else. Researchers have examined the
effects of anxiety on attention through an experiment known as the ‘emotional
Stroop test.’ [98] found that if people are asked to look at the printed text of
colour names that were printed in a different colour from the text (for exam-
ple, the printed text ‘red’ in a blue colour) and were then asked to name the
colour of the text for each word, they take longer when the colour of the word
and the colour of the print do not match. When the colour of the text and
the printed word are mismatched it causes confusion and thus it takes longer
to say the colour of the text.

The idea of the emotional Stroop test is that the words shown are both
neutral and (potentially) emotionally arousing, to test whether it takes longer
to name the colour of the words which are emotionally arousing. For example,
[47] found that subjects who had been victims of rape where slower at naming
the coloured words that were related to rape. This suggests that the anxi-
ety caused by seeing a word associated with a traumatic experience focuses
attention on that word, making it difficult to focus on other details such as
the colour of the print.

Memory

Emotions and moods influence what we remember. We are able to recall events
that are associated with either a strong positive or negative emotional reaction
more easily that neutral events. For example, [24] reported on five experiments
where groups of students watched a set of fifteen colour slides of what someone
might see when walking to work. All groups of students saw the same slides,

194 C. Creed and R. Beale

except for the eighth one, of which there were three variants, namely: (i) a
woman riding a bicycle, (ii) the same woman carrying the bicycle over her
shoulder, and (iii) the same woman lying on the side of the road as if she
had been hit by a passing car. After viewing the slides, students were then
asked to recall what they had seen. Results found that people who had seen
the woman lying on the side of the road could remember details like the
colour of her coat more accurately than other groups. However, they struggled
to remember other (peripheral) details, such as the colour of the car in the
distance as well as the other groups.

The mood that we are in when attempting to remember something also
influences our ability to recall it. For example, [12] illustrated that when we
are in a happy mood, we seem to be able to recall pleasant events more easily
than unpleasant ones. The opposite appears to apply when we are in a sad
mood. In this experiment, subjects were asked to recall and describe incidents
from when they were a child. The following day, when the subjects were in a
neutral mood, they were asked to rate each incident as ‘pleasant’, ‘unpleasant’,
or ‘neutral’. The next day, happy or sad moods were induced in subjects and
they were then asked to recall as many of their incidents as possible. Results
found that people who had been induced into a good mood could remember
more incidents that they classed as ‘happy’, but remembered less of the ones
they classed as ‘sad’. A similar (opposite) effect was also found for people
who had been induced into a sad mood. This effect is often referred to as
‘mood-congruent recall.’

Judgement and Decision Making

Emotions also have a strong influence on our judgement and the decisions
we make. For example, one experiment [2] suggested that our judgement of
other people is often influenced by the mood we are in when we meet them.
In this study, same sex subjects were paired together to practice a job inter-
view. Unknown to subjects was that their partners were actually helping the
experimenters. The subjects were chosen to be the interviewers while their
partners were the interviewees. Subjects were put into a good or bad mood
by the experimenter by giving them problems to solve and then commenting
on their performance, telling them that they had either performed much better
than others, had performed averagely, or had done far worse than other peo-
ple. The subjects were then asked to interview their partner through asking a
set of pre-scripted questions, such as “What are your most important traits?”
The interviewee replied with positive (for example, “I’m ambitious and reli-
able”) and negative answers (such as “I’m impatient”). After the interview,
the interviewers were requested to assess the interviewee on both work and
personal aspects. It was found that subjects who were in a good mood had
a tendency to rate the interviewees more positively and were more likely to
employ them, while the subjects in a bad mood had a tendency to rate people

Emotional Intelligence 195

more negatively and were less likely to hire people [2]. This is despite the
answers received by subjects being the same.

Creative Problem Solving

Moods have been found to have an influence on problem solving. For exam-
ple, in one experiment [58], subjects were induced into either a good or bad
mood and then asked to solve Dunker’s candle task [36]. Given only a box
of thumbtacks, the goal of this problem is to attach a lighted candle to the
wall in such a way that no wax falls to the floor. It was found that subjects
who were put in a good mood before the start of the task were more success-
ful at solving this problem [58]. Another study which suggested the influence
of emotions and moods on problem solving was that of [59]. In this study,
medical students had either positive, negative, or neutral moods induced, and
were then asked to diagnose patients based on their X-rays. Results from this
study found that subjects who had a positive mood induced were able to make
the correct diagnosis faster than subjects who had either negative or neutral
moods induced.

Persuasion

Emotions also play a vital role in persuading people to do things. [71] investi-
gated this by questioning students about whether or not they were in favour of
gun control. Half of the students had a positive mood induced by watching a
short comedy show, while the other half watched a more neutral programme
about wine. Both groups were then provided with an argument about gun
control that contradicted their own view on the subject – people who were
in favour of greater control were presented with an argument against further
restrictions, while people against greater control read an argument in favour of
this. Half of the subjects were also presented with strong arguments, while the
other half were provided with weak arguments. Furthermore, some subjects
were informed that the person presenting the argument was a first-year stu-
dent, while others were told that an expert was making the argument. Some
subjects were also given only a short period of time to read the argument,
while others were allowed to take as long as they desired. Once subjects had
finished reading the argument, they were tested again to see if there were
any changes in their view on the subject area. Results found that subjects
were generally more influenced by the strong arguments than the weak ones.
However, there was only a small difference for subjects who were put into
a positive mood and had only a short period of time to read the argument,
while the other groups found the weak arguments much less persuasive.

Emotional responses can also be used to manipulate the emotions and per-
ceptions of others, for their own purposes. For example, sales people often try
and build rapport through appearing empathic and understanding of their

196 C. Creed and R. Beale

potential customer’s needs and concerns to make themselves appear more
likeable. By making themselves appear more friendly, warm and likeable, they
can increase the likelihood that people will comply with their requests [25].
Advertisers often attempt to play with our emotions to help sell their products.
They use emotionally evocative images and music alongside the presentation
of their product, in the hope that we will associate positive emotions with it.
The same is also true when attempting to persuade people to stop participat-
ing in potentially dangerous and harmful things – for example, hard-hitting
television advertisements which contain highly evocative graphical images of
car crashes to warn about the dangers of drink driving. The hope here is that
viewers will associate strong negative emotions with such behavior and thus
avoid doing it.

2.5 Emotional Intelligence

The notion of emotional intelligence was first introduced by [95], and later
popularized by [53]. Emotional intelligence is defined as: “...an ability to rec-
ognize the meanings of emotion and their relationships, and to reason and
problem-solve on the basis of them. Emotional intelligence is involved in the
capacity to perceive emotions, assimilate emotion-related feelings, understand
the information of those emotions, and manage them.” [72]

As can be seen from the above definition, the concept of emotional intelli-
gence has been divided into four different areas to create a four-branch model,
these being [73]:

• Accurately perceiving emotion
• Using emotions to facilitate thinking
• Understanding emotional meanings
• Managing emotions

Goleman’s Emotional Competence Framework, on the other hand, divides
emotional intelligence into five core competencies [54]:

• Self Awareness: knowing one’s internal states, preferences, resources and
intuitions

• Self-Regulation: managing one’s internal states, impulses, and resources
• Motivation: emotional tendencies that guide or facilitate reaching goals
• Empathy: awareness of others’ feelings, needs, and concerns
• Social skills: adeptness at inducing desirable responses in others

Goleman suggests that the above emotional intelligence capacities make up a
hierarchy in which they build on each other [54]. For example, self-awareness
is essential for self-regulation and empathy, while self-regulation and self-
awareness are crucial for motivation. All four preceding competencies are
required for social skills.

Emotional Intelligence 197

These different categorizations are not contradictory; instead, they reflect
slightly different perspectives from the researchers as to the focus and extent
of emotion, and serve to illustrate that emotions are complex things with
multiple effects on ourselves, on our perceptions of the world and others in it,
on our desires and actions, and on our behavior and responses.

2.6 Approaches Used in Developing Emotionally Intelligent
Computers

So how can we build emotionally intelligent computers? The previous Section
discussed some of the core competencies required for humans to be considered
emotionally intelligent. Therefore, if we wish to simulate human emotional
intelligence, computers will also need to be adept in these areas. But this
is problematic. For example, one of the major disadvantages that computers
have over humans is that they do not have the sensory organs of humans –
such as eyes and ears – for recognizing emotional responses in others. Recent
progress has been made in building emotional voice recognition software and
applications that can track subtle facial movements and measure physiological
signals associated with emotion, but much of this work is still in its infancy.
This Section provides an overview of the different approaches being taken with
regard to building emotionally intelligent computers.

Computational Emotion Models

The goal in developing a model of emotion is to enable machines to evalu-
ate events and objects in such a way that they exhibit believable emotional
reactions to what has been evaluated (in other words, an emotional response
similar to that of a human). For these emotional reactions to be convincing,
emotion models should enable computers to express emotions believably at
both the right intensity and at the appropriate time. The following references
provide an overview of work that has been completed in this research area
[20, 21, 23, 35, 84, 87, 103, 104].

Appraisal theories have had a strong influence on the development of com-
putational models of emotion. The term ‘appraisal’ refers to the evaluation of
antecedent events that result in a particular emotion being experienced. The
model most often used to incorporate emotion into agents (that is based on
appraisal theory) is the OCC model [83], which is a computational model of
emotion that contains 22 emotion categories based on valanced reactions to
the consequences of goal relevant events, actions of another agent (as well as
itself), or according to the attractiveness of objects. The model also provides
variables for determining the intensity of an emotion.

The model, however, does have its limitations. [5] suggests that this
model provides a useful starting point for incorporating emotion into agents,
but is too complex for creating believable characters. For example, if facial

198 C. Creed and R. Beale

expressions are used as the medium to express emotion, it then becomes very
difficult to map the 22 emotional categories of the OCC model to the 6 facial
expressions identified by [38] as being used to convey emotion. Therefore,
when the model is used in this context, it needs to be simplified to match the
abilities of the interface agents. It has been further suggested that the OCC
model requires extended features, including a history function, a personality
designer, and the interaction of emotional categories (in other words, how the
emotional value of an event should affect the current emotional state of the
agent) [5].

An alternative model is that of [55], who have developed a domain-
independent model based on a framework of appraisal and coping which is
used in the design of autonomous virtual humans. The usefulness of this model
has been demonstrated with a Mission Rehearsal Exercise (MRE) system that
trains people for peacekeeping activities.

Computational models of emotion are often tested visually through the
use of embodied agents and virtual worlds. Advances in 3D graphics have
enabled developers to create realistic embodied agents that can be used for
testing purposes to examine whether emotion models are providing the desired
emotional responses (see, for example, [85]).

Detecting Emotions to Aid Interaction

Knowing whether a user is experiencing frustration, satisfaction or some other
emotional state provides the computer with the opportunity to intelligently
adapt itself in an attempt to enhance its interaction with people. However,
simply detecting user emotions is far from easy and even if achieved, there is
then perhaps the larger issue of how should computers appropriately adapt
themselves to these emotional states? For computers to be able to express
useful emotions, they need to be able to understand how a user is feeling.
This section provides an overview of the different ways in which a computer
can detect human emotion.

Autonomic Responses

Emotion can be measured (to an extent) through measuring automatic phys-
iological activity such as heart rate, blood pressure, blood pulse volume,
respiration, temperature, pupil dilation, skin conductivity and muscle tension.
Emotion can also be measured through neurological changes, with the most
common measure for this being the electroencephalogram (EEG). However,
while it is now relatively easy to measure many of the above, it is still very
difficult to distinguish between different emotions. For example, a number
of different emotional reactions such as fear, anger, surprise and happiness
involve an increase in heart rate [17]. Therefore, when an increase in heart
rate is observed by a computer, it has no way of knowing which of these emo-
tions is being experienced. Despite problems such as these, some success has

Emotional Intelligence 199

been achieved through the use of multiple measures of autonomic signals. For
example, [88] achieved 81% recognition accuracy on eight emotions by com-
bining a variety of measures such as facial muscle tension, respiration, skin
conductance and blood pressure volume.

Another study with promising results was that by [94] who reported on an
experimental system that aimed to automatically recognize user frustration
from physiological signs of skin conductivity and blood volume pressure. In
this study, subjects played a competitive computer game where they had to
efficiently and accurately solve as many visual puzzles as possible, in order
to win a cash prize. To induce frustration in subjects, the computer game
experienced a deliberate delay, at irregular intervals, in which the mouse
appeared not to work. Whilst playing the game, the subject’s skin conductiv-
ity and blood volume pressure were measured to observe if frustration that
was likely to be caused by the game (namely, when there was a delay) could
be told apart from times when the game was less likely to cause frustration (in
other words, when the game was running without any delays). It was found
that this approach worked significantly better than having a random guess at
when the game might cause frustration. Additionally, results found a correla-
tion between the mouse clicking behavior of subjects and frustration-eliciting
events.

Lie detectors – so beloved of older police and spy dramas – provide us with
an example of a physiological stress measurement, with the assumption being
that under stress, galvanic skin response is altered and can easily be detected.
Their accuracy is critically dependent on the skill of the operator, and even
then is able to be fooled by practiced participants.

Facial Expression

Another potential way for computers to detect emotion in users is through
monitoring facial expressions. FACS [41] is often the foundation used by
designers when attempting to give machines the ability to recognize facial
expressions [102]. One approach that has attracted a lot of interest and
has provided some promising results is that of pattern recognition of dif-
ferent images, with recognition accuracy approaching 100% with some basic
emotions [27, 43, 68, 70]. Another method for recognizing facial expressions
that has had some success is facial electromyography (EMG). EMG sig-
nals have shown promise in being able to distinguish between different basic
emotions [18].

Speech

Speech provides another opportunity for computers to detect a user’s emo-
tional state. As mentioned previously, our voices can express emotion through
changes in speech such as pitch range, speech rate and rhythm [77]. Few
systems have been built which attempt to autonomously detect emotion from

200 C. Creed and R. Beale

speech, but some have shown promise, such as [1] and the ASSESS (Auto-
matic Statistical Summary of Elementary Speech Structures) system [26].
Autonomously extracting emotional content from speech can be a difficult
process. For example, [71] conducted a study that examined autonomous
detection of a small set of emotions expressed (in a highly emotive fashion) in
an echo-free and quiet environment. The authors mention a number of issues
in attempting to do this, such as having to create large databases of emo-
tional content, using a method that produces appropriate emotional content
for analysis (such as getting people to read emotive text, as opposed to using
spontaneous emotional speech) and assessing the quality of emotional speech.
A detailed review of emotion recognition systems is provided in [27].

Questioning Users

Another approach for determining the emotional state of a user is to simply
ask them. An often-used approach is to ask subjects to choose an emo-
tional adjective that best describes the way they are feeling. Profile of Mood
States (POMS) [75] is an adjective-based measure of mood that is often used.
Another example is the Differential Emotion Scale (DES) [60] which is a ques-
tionnaire that contains twenty-four emotional adjectives that people rate on
seven-point scales as a means of detailing their affective feelings. Other ques-
tionnaires are based on dimensional theories of emotion where the assumption
is that emotion can be described through two different dimensions: arousal and
valance (see, for instance, [64]).

Using questionnaires such as these to determine the emotional states of
users raises a number of issues. For example, people often find it difficult to
articulate how they are feeling, and using a single adjective to do this can
make it more difficult for them. Also, if questionnaires are used after the
completion of an experiment to determine the emotions experienced, then, as
previously discussed, people’s memories are likely to have been influenced by
the emotions they experienced. Asking subjects how they are feeling during
the experiment is likely to interrupt that emotion and thus influence their
response.

Simulating Human Expressions of Emotion

This Section provides an overview of the three main ways in which comput-
ers can simulate emotion: (1) through written language and manipulation of
static text, (2) through synthetic or recorded speech, and (3) through the use
of embodied agents which can simulate human facial expressions and body
language.

Emotive Text

A number of studies have shown that emotive textual content displayed by
a computer can have a significant impact on our perceptions, behavior and

Emotional Intelligence 201

performance. For example, subjects in [48] played a guessing game with a text-
based interface and received one of three differing types of feedback during the
interaction: sincere praise, flattery (insincere praise) or generic feedback. In the
sincere praise and flattery conditions, the computer would display responses
like “your question makes an interesting and useful distinction”, or “you seem
to have an uncommon ability to structure data logically”. In the generic feed-
back condition, subjects simply saw a message that said “begin next round”.
The flattering comments made by the interface agent were found to have a
similar effect as flattery from another person, even though subjects were fully
aware that their participation was with a computer. In this case, subjects
found the interaction with an agent that flattered them to be more enjoyable
than with one which did not. That is, the textual content displayed by the
computer had a significant influence on user’s perceptions and emotions.

Another example of how emotive text can influence people is a study which
found that computers have the potential to alleviate feelings of frustration
[62]. In this study, subjects participated in a game which froze at random
intervals (to frustrate subjects) when competing for a cash prize. To help ease
the subject’s frustration, an interactive ‘affect support’ agent was designed in
the form of a text-based questionnaire. Subjects were split into three groups,
with each group interacting with a different type of agent: a support agent,
an agent that allowed subjects to ‘vent’ their anger, and an agent which
ignored their feelings completely. During the first phase of interaction, subjects
initially played the game and then interacted with one of the agents. After
this interaction, subjects were then asked to play another version of the game
(which did not freeze) for at least another three minutes. After this time had
elapsed subjects were free to continue playing or to leave.

In the ignore condition, subjects were asked close-ended questions that did
not involve emotions or provide an opportunity to report a problem like web
delays. In the vent condition, subjects were asked open-ended questions that
gave them the opportunity to report the relevant problem, as well as their
emotional state. In the affect-support condition, subjects were asked mostly
the same questions as in the vent condition; however, after the computer asked
how frustrated the user was feeling, the computer gave feedback based on the
user’s reported frustration level. Feedback included comments like, “wow, it
sounds like you felt really frustrated playing this game”, and “that must feel
lousy. It is no fun trying to play a simple game, only to have the whole expe-
rience derailed by something out of your control.” It was found that subjects
who had initially interacted with the support agent, spent significantly more
time in the second phase interacting with the computer that had tried to frus-
trate them, than subjects who interacted with agents that had either ignored
their feelings completely or allowed them to ‘vent’ their frustrations. This
experiment used simple plain text to manipulate subjects’ behavior.

202 C. Creed and R. Beale

Emotive Speech

There has been a lot of interest in speech interfaces over the last decade with
the intelligibility of synthetic speech nearing that of human speech [78]. Incor-
porating emotion into speech has proved to be quite a challenge, although [19]
illustrated that synthetic speech can contain recognizable affect by copying
the effects of emotion on human speech. Computers do not always need to use
synthetic speech to communicate with users – they can also be programmed
to use recorded human speech, which can be used to convey emotion more
clearly (for example, through a happy or sad voice). The choice of words used
by a computer can also be used to give an indication of its feelings. For exam-
ple, when asking a computer to do something, if it replies with “if I must”, as
opposed to “of course, no problem”, this can suggest how the computer feels.

Facial Expressions

As mentioned previously, research has consistently provided evidence that
humans are capable of identifying and distinguishing between different basic
emotions (independent of their culture) including anger, fear, joy, sadness
and surprise [38]. The FACS system [42] (and other similar systems) which
detail the specific set of muscular movements required for the facial expres-
sion of each basic emotion, have been used by researchers as a basis for giving
embodied agents emotional expressions. Embodied agents that have used sys-
tems like this include Baldi [11] and Perlin’s responsive face [86]. Research
has also provided evidence that despite current technology not being suffi-
ciently advanced to dynamically generate facial expressions exactly the same
as human ones, humans can still consistently identify the facial expressions
being displayed. For example, [3] used Baldi (Fig. 2) to test whether or not an
embodied agent’s emotional expressions were as convincing as human expres-
sions. It was found that the emotional expressions of Baldi were as convincing
as human expression and that knowledge about the source of the emotional
expression had no major impact upon the convincingness. Although Baldi is
an animated agent, some studies – such as [13] – have successfully used still
images to get embodied agents to express emotion.

Body Language and Gesture

While the relationship between emotion and gestures is not as well understood
as that of facial expressions and emotions, a number of affective embodied
agents can still use body language and gestures to convey information. An
exercise advisor named Laura [10] uses a range of non-verbal behaviors includ-
ing hand gestures, body posture shifts, gazing at (away from) the user, raising
and lowering of eye brows, head nods, and walking on and off the screen. Laura
also has the ability to convey immediacy behavior and when expressing empa-
thy can appear nearer to the screen to show an empathic facial expression.

Emotional Intelligence 203

Fig. 2. Screen shot of Baldi

Other embodied agents that use body language and gestures to communicate
with users include Herman the Bug [66] and the Real Estate Agent (REA) [9].

2.7 Ethics

In order for computers to build social and emotional relationships with users,
they require certain capabilities to allow them to detect and manipulate user
emotion, as well as being able to express emotional states of their own through
different channels. This raises numerous ethical and technical issues, many of
which have been discussed in the literature [89]. In this Section, we highlight
some of the main issues involved.

Genuine Emotional Expressions

One ethical issue that arises from incorporating affective capabilities into com-
puters is whether or not emotional support offered by computers is genuine?
That is, does it matter that when computers express or communicate emotion
to users that they do not actually feel the emotions as humans would? Look-
ing to human-human interaction, it would suggest not, as we often interact
with people who are trained to use certain relational strategies to build trust
with us, despite them not genuinely feeling sympathetic or empathic toward
us. For example, social workers, nurses, general practitioners (doctors), and
psychotherapists are all trained to use certain relational strategies, such as
empathy, to enhance relations. Also, consider a help desk assistant who has
to deal with numerous queries every day and who is trained (and expected)

204 C. Creed and R. Beale

to empathise with each customer’s individual problem. Are these expressions
of emotion genuine or are these people just performing their everyday tasks?
At times they may build a genuine rapport with a customer and feel bad that
the product purchased by the customer is faulty, but on most occasions it is
likely that they are empathising since this is what is expected of them, both
by the customer and their employer.

[87] uses the scenario of a dog greeting its master to suggest that expressed
emotions do not necessarily have to be authentic to meet some of our basic
emotional needs. When the master arrives home the dog is often happy and
will start wagging its tail. However, if the master appears to be sad, dogs
somehow have the ability to recognize this and they will often put their heads
down and flick back their ears in response to their master’s emotional state.
The master, in seeing the empathic response, will often change their posture
and begin to feel a little better. Once the dog recognizes this, it too will raise
its head and start wagging its tail. It is not known how dogs can perceive the
emotional states of others, or whether they have their master’s best interests
at heart, but this simple interaction often has the effect of meeting some of
the simple emotional needs that we as humans have.

Should HCI Replace Human-Human Interaction?

Another important question is that of whether HCI should ever replace
human-human interaction. For example, in the future, should teaching agents
replace human teachers? At present, it is hard to argue in favour of com-
puters replacing important roles requiring social interaction, as they do not
have the social and emotional intelligence required. They struggle in build-
ing rapport with users and cannot inspire or motivate people outside of a
narrow social dialogue. Technological advances over the coming years may
change this, resulting in more socially astute agents, but would this ever war-
rant replacing their human equivalent? They would likely be cost-effective,
require little maintenance, and would not complain about how much they get
paid. However, while it is often easy to envisage fully embodied and socially
competent agents conversing with people in natural language, it is not so
easy to predict how people would respond to these entities. People may feel
uncomfortable interacting with such agents and reject the technology out-
right. Alternatively, they may find it novel, entertaining, and a natural way
to interact, and thus embrace such agents. Using computers to help supple-
ment the roles that humans perform would perhaps be more practical and
useful. Agents that can help with exam revision, explain more about particu-
lar illnesses after you have visited the doctor, or help you practice important
interviews or presentations, could potentially be of use.

Emotional Intelligence 205

Manipulation

One issue which arises from building computers with affective capabilities, is
the opportunity for manipulation [29]. Computers that can accurately and
reliably detect emotional states have access to some very personal and pri-
vate information, which could potentially be used to manipulate how we feel.
Recent work has illustrated that agents which are programmed to be empathic
toward the user are perceived as more caring and trustworthy [1, 10]. In
human-human interaction, someone who we perceive to care about us can
have more of an influence over our behavior and we generally trust informa-
tion more when it is from such a source [25]. Therefore, caring computers
may have increased persuasive powers that can be used to influence us. Is it
acceptable for agents to manipulate (and possibly deceive) people in this way
to help companies sell more products? Perhaps, as long as the user feels they
have received good value for their money and do not feel manipulated. Human
sales people often present the products they sell in their best light, even when
they are fully aware that the product has certain features that are not desir-
able for the customer. Most people are aware of this and while they may not
be overly keen about it, they generally do not mind if they feel that they have
received good service and value for money. The same is likely to apply with
computers; if users feel that they have received a good deal and service then
they will be happy, otherwise, if they feel manipulated and cheated, they will
be unhappy and unlikely to return with their money.

Negative Emotions

Assuming that computers will one day have the ability to detect user emotion,
should they try to eliminate all (so-called) ‘negative’ emotions and attempt to
make a user feel better on a consistent basis? A problem with this question is
that it is hard to define what is meant by ‘negative’ emotions, and in any case,
if there was an appropriate definition, negative emotions are not necessarily
all bad. [16] are investigating how an embodied teaching agent can help users
work through frustration, which is often regarded as a negative state. However,
the ability to work through frustration is essential in learning environments, as
the adage ‘no pain, no gain’ suggests. This is particularly clear when observing
people playing computer games, in which a difficult passage of the game is
attempted again and again until the user manages to crack the techniques
needed: the frustration felt there serves to motivate them to continue until
they succeed. The skill in designing good games comes in pitching the level of
difficulty such that the frustration levels are not too great to cause the player
to give up, but hard enough so that their sense of achievement and relief is
sufficiently high. Thus, computers should not necessarily try to restrict users
from experiencing certain emotional states, but instead should attempt to help
them understand and make use of their emotions, to help them achieve their
goals. For example, a computer could help alleviate anger through teaching

206 C. Creed and R. Beale

users anger management strategies. In essence, computers would be helping
user’s to build their emotional intelligence.

Privacy

Privacy of emotional data is another issue raised from computers detecting
emotion. If a computer detects that a user is suicidal, should it inform some-
body, such as the person’s doctor, the police or a friend? If the user is just
feeling a little depressed after a hard day, should the computer contact a
friend or family member in an attempt to cheer the person up? Or should
it not interfere? These are hypothetical questions as computers are still not
capable of accurately and reliably detecting human emotion, nonetheless, if
computers do one day have this ability, then how responsible the computer is
for managing the user’s emotional state becomes an important issue.

Human Relationships

Another important concern surrounding computers and their attempts to
build social relationships with people is whether or not they will have an
impact upon people having healthy social relationships with others. Many
argue that we should be spending more time away from our computers and
should be interacting more with other people. This is a valid point, but it could
be argued that it is unlikely that just because a computer becomes more con-
siderate and makes more of an effort to consider your feelings (through raised
emotional intelligence), that people will want to spend more time interacting
with it. For example, people often interact with pets, but while they meet
some of the basic emotional needs that we have, most people still crave the
company of others. However, the research of [63] – highlighted previously –
suggests that people may be more willing to spend time interacting with com-
puters that have some form of emotional intelligence. Thus, it remains difficult
to predict how people will respond to emotionally intelligent machines.

3 Evaluating Affective Embodied Agents

This Section provides an overview of embodied agent research in the field of
affective computing. We start by providing an overview of the use of embodied
agents and research that has looked at incorporating emotion into them. We
then move on to discuss research which has looked at how people respond to
simulated displays of emotion and the effects it has been reported to have on
them. Following this, we discuss the importance of evaluating interface agents
of all types over extended periods of interaction, and then proceed to discuss
an embodied agent that we have developed which is capable of simulating
emotional facial expressions.

Emotional Intelligence 207

3.1 What are Affective Embodied Agents?

Terms such as ‘embodied agents’, ‘virtual humans’, ‘interactive characters’,
‘software agents’, ‘interface agents’, and ‘intelligent agents’ are among many
that are often used interchangeably when talking about similar entities. On
many occasions, this can lead to confusion and difficulty in understanding
exactly what is being referred to. Therefore, it is important to clarify what
is meant by the term ‘embodied agent’ for the purposes of this Chapter.
Embodied agents are essentially animated or static entities that are based on
a computer screen and attempt to interact with users in some way. They can
use a number of techniques to interact with users including written language,
speech, gesture, facial expressions, head nods, and eye gazes. These agents
can also have a variety of different representations (for instance, human, alien,
paperclips, dogs, cats, and so on). Affective embodied agents are agents that
exhibit, express and/or act on emotion. They are often based on an emotional
model that determines their emotional reactions, but this is not always the
case. A wide range of affective embodied agents have been developed over the
last decade including the pedagogical agents Cosmo [65] and Herman the Bug
[67], Steve [94], PPP Persona [105], Gandalf [101], MACK [22], Olga [7], Laura
[8] and the REA [9].

3.2 Psychological Responses to Simulated Emotion

In order to understand if the emotions that designers have incorporated into
an embodied agent actually aid an interaction, it is important to understand
how people respond to synthetic displays of emotion. How do we respond to
synthetic displays of joy, happiness, sadness, frustration, fear and anger? Can
we catch emotions from computers? Do we like agents that are always happy,
or does this annoy us after a while?

Social-Emotional Relationships with Computers

Numerous studies have suggested that we interact with computers as though
they are social entities. [92] developed the Computers Are Social Actors
(CASA) paradigm, which implies that the social rules that apply in human-
human interaction also apply to HCI. The reason for this, they suggest, is
that our ‘old brains’ have not evolved to deal with current technology and
therefore we treat all media as if it were a social entity. It may seem a little
strange to suggest that we respond to computers like people, but it has been
shown that the response is particularly strong and often unconscious. Even
when we are consciously aware that the entity is not human (for instance, a
computer or television) the response is still not weakened.

For example, [81] suggested that humans are polite to computers. Research
completed in social psychology has found that interviewers who ask about
their own performance are likely to receive more positive feedback than if

208 C. Creed and R. Beale

feedback is received from another source. This study tested if the same polite-
ness rules also applied to human-computer interaction. The study involved
subjects completing a task on a text-based computer and upon completion
they were interviewed about the performance of the computer by either the
same computer, a pencil-and-paper questionnaire, or a different but identi-
cal computer. Similar to that of human-human interaction, results found that
subjects evaluated the computer more positively when the computer asked for
feedback about its own performance, compared with subjects who evaluated
the computer through a pencil-and-paper questionnaire or another computer.

Another study found that we seem to attribute personalities to computers
and also respond to those computer personalities as if they are human [80].
In this study, properties associated with dominance and submissiveness were
incorporated into computers using plain text. It was found that subjects not
only recognized the computer’s personality, but also reported being more sat-
isfied with the interaction they had with the computer that shared a similar
personality to their own. Again, this finding is similar to human-human inter-
action, where research has found that people tend to prefer interacting with
other people who have a similar personality to their own. Similarly, [79] found
the same attraction using computer-generated speech by incorporating the
properties associated with introversion and extraversion. When the person-
ality of the computer voice matched the personality of the subject, subjects
reported the voices as being more attractive, informative, and trustworthy.
Moreover, they were more likely to buy books reviewed by the computer.

Simulated Emotion

Our tendency to respond to computational entities as social actors suggests
that we may well respond to synthetic displays of emotion in a similar way
to human emotion, and a number of researchers have been investigating this.
One of the main approaches used to investigate this is to compare different
types of emotionally expressive agents with each other. For example, [13]
examined how we respond to both self-oriented and other-oriented empathic
emotion. Subjects played a blackjack game and were matched up with an
agent that either exhibited or lacked self-oriented or other-oriented empathic
emotion. The agent was a static photograph of a human face, which could
communicate with subjects via a speech bubble next to the photograph. When
a round of the game had finished, the agent would always communicate to
the subjects an evaluation of it’s own performance (for instance, “I’m glad I
won”), and then followed that with an evaluation of the subject’s performance
(for example, “I’m glad you won”). Also, in the conditions where empathic
emotion was used, the agent’s evaluation of the subject’s performance included
an emotional response: the agent would express negative emotion if the user
lost and positive emotion if the user won. The results from this study found
that people generally preferred the agents that were empathic to them more
than ones which were not.

Emotional Intelligence 209

Another approach is to compare an emotional entity with a different type
of entity. For example, [100] used a card matching game to compare the
impact of an emotional face and a 3D arrow on a subject’s eye movements
and response times. The arrow and the face were both used to provide feed-
back to the user during the game. For example, through pointing or gazing
at the player whose turn it was next. Results from this study found that the
emotional face elicited more eye contact from subjects than the 3D arrow.
The authors therefore concluded that the emotional face was more engaging
to subjects than the arrow.

There have been a lack of studies which have explicitly tested an emotional
agent against an unemotional one. In many related studies, emotional agents
are used, but the incorporation of emotion into the agent is not the main focus
of the study. Therefore, the potential impact of simulated emotion has to be
inferred from the reported results. This can make it particularly difficult to
attribute any of the effects found to the inclusion (or exclusion) of emotion in
agents. For example, [66] examined the effect of different types of animated
agents on the learning performance and experience of middle school children
by asking them to design a plant that would be able to survive in a particular
environment. The children received varying levels of help from the animated
agents and the results of the experiment found that a fully expressive agent
(that is, an agent which offered advice using both animation and speech) was
perceived to be equally as entertaining as a muted agent (in other words,
an agent which offered no advice whatsoever). However, the incorporation
of emotion was not explicitly tested in this experiment, so caution must be
applied when analyzing the results.

3.3 Evaluating Agents over Extended Interactions

Very few studies have focused on how we respond to emotionally expressive
embodied agents over extended periods of interaction. As discussed above,
some recent studies have suggested that we seem to perceive emotional agents
as more likeable and trustworthy than unemotional agents, but does this effect
remain consistent over five, six, seven or forty separate interactions? The
Microsoft Office Paperclip was an emotionally expressive agent that many
people tended to find novel to interact with initially, but after further inter-
actions, it began to frustrate people and was ultimately rejected by users.
As we move more towards managing computer systems rather than directly
manipulating them, we will work more closely with agents in everyday activ-
ities as they undertake tasks on our behalf. We are likely to start interacting
with them on multiple occasions spanning days, weeks and months. Therefore,
we need to understand in more detail how our perceptions towards affective
embodied agents change over numerous interactions and extended periods of
time.

210 C. Creed and R. Beale

[10] are some of the few researchers who have started to investigate this
space. They developed an embodied exercise advisor named Laura, which
attempted to maintain a relationship with subjects who interacted with the
agent daily over the period of a month. People who were not completing
required levels of exercise recommended for United States’ adults (namely
30 minutes or 10,000 steps per day) were chosen as subjects, in an attempt
to help them improve their exercise habits through interacting with Laura.
A variety of different strategies were used by the agent to help maintain a
relationship with subjects, including social, empathic and polite communica-
tion, talking about the relationship, humour and appropriate forms of address.
Laura also used a range of non-verbal behaviors, as discussed earlier. Results
from this study found that subjects liked Laura more when they interacted
with the relational version as opposed to a non-relational one (that is, where
no relational strategies were used).

A similar effect was found by [69], who asked subjects to use a mobile
health device for eight days and then examined the effect it had on subjects’
perceptions and behavior. Subjects were split into two groups: one group
interacted with an empathic version of the device for four days and then
switched to the non-empathic device for the final four days, while the other
group did the opposite. The system made use of a text-based agent which
would interrupt subjects at different times of the day to discuss issues relating
to their health. The empathetic agent would make empathic comments when
interacting with the subject while the non-empathic agent would not. Results
found that a significant number of subjects who were asked which device
they would like to continue interacting with at the completion of the study,
stated that they would prefer to continue interacting with the empathic device.
Subjects also reported that they felt less stress when interacting with the
empathic device.

3.4 Our Affective Embodied Agent

In order to investigate our responses to synthetic displays of emotion in
embodied agents, we have developed our own for testing purposes (Fig. 3).
Agents such as these used to be costly to develop in both terms of time and
expense; however, it is now possible to easily develop such agents using afford-
able software which automates much of the process [90]. Our agent simulates
the role of a human health professional through making use of many of the
skills and strategies that human health professionals use (discussed in the next
Section). The agent can move its head, speak (via a recorded voice), and can
display a wide range of (facial) emotional expressions. There are a number
of applications that can be used to develop agents such as these, but one
of the most popular for specifically building virtual characters is Poser [37].
We used Poser 5 for developing our agent, along with Mimic 3 [34], which is
compatible with Poser and can be used for automatically generating facial ani-
mation and lip synchronization from imported audio files containing recorded

Emotional Intelligence 211

Fig. 3. Our embodied agent

speech. As we are conducting our experiments over the World Wide Web, we
converted the animations produced by Poser and Mimic to the Macromedia
Flash format, so that we can incorporate the animations into a web page.

4 Application of Affective Embodied Agents

Affective embodied agents have often been touted as one of the primary ways
in which we will interact with computers in the future. Advocates of embodied
agents believe that they will make an interaction more natural and engaging,
while opponents believe that they will raise expectations of what the computer
is capable of, and thus hinder interaction [30]. The future of agents such
as these is still unclear, as many different fields of research need to mature
sufficiently before we can really assess their potential. The agents that have
been developed to date are unable to interact naturally with people, and as a
result they quickly lose credibility. Areas where embodied agents seem to have
found their niche is within computer games and simulations. These are likely to
be areas where affective embodied agents will be of real use, unlike work-based
tasks where an agent of this sort is not really required (as exemplified by the
Microsoft Office Paperclip). Another area where affective embodied agents
could be of use is where human relationships are known to be important. For
example, in the behavior change domain, the relationship between a helper
and client has been shown on numerous occasions to be fundamental in helping
people to change problematic behavior. In this Section, we detail our research
into how an affective embodied agent could be used to simulate the role of a
human health professional to help people change problematic behavior such
as eating, smoking, and exercising.

212 C. Creed and R. Beale

4.1 Affective Embodied Agents for behavior Change

behavior change is one domain where affective embodied agents may prove
useful. Changing problematic behavior in humans can often be a long and
difficult process. Exercise regimes, healthy dieting, smoking cessation, and
a number of other behavior change plans are regularly initiated with much
enthusiasm, but all too often are abandoned before the new behavior replaces
the old. People who have difficulties in changing unhealthy behavior often seek
professional advice to help them achieve their behavioral change goals. The
effective management and use of emotion in a therapist-client relationship is
essential to building a strong working alliance, which is critical for increasing
the likelihood of a successful outcome [61]. Therapists need to make use of
a wide range of skills and theory-based health strategies to help evoke emo-
tions in clients that enhance motivation toward behavior change. These skills
and strategies could potentially be utilized by computational agents. While
the most effective way of helping someone to change problematic behavior is
often a face-to-face interaction with a highly-trained and experienced (human)
health expert, this approach can only have a small impact within a large
population of people, as therapists are limited in the number of people they
can see and help. Attempts to automate such behavior change techniques
have been applied through using a wide-range of media (for instance, desktop
computers, telecommunications and mobile devices) to a number of different
behaviors (such as nutrition, exercise, and smoking) with varying degrees of
success [14, 49, 50, 57, 93]. For example, MoodGym [76] is a Cognitive behavior
Therapy (CBT) website aimed at young people for the treatment of depression
and anxiety and/or as an adjunct to therapy.

Therapists and Counselling Services have also started to provide computer
mediated counselling and therapy through the use of email, instant messaging,
video-conferencing, and virtual environments [62, 99], but there is still a limit
on the number of people a single therapist can help. One potentially fruitful
avenue that has received little attention to date is in the development of
affective embodied agents that attempt to closely simulate the actions of a
human therapist. Working on the premise that we treat computers as social
actors [92], agents that can closely match the actions of human therapists may
be able to provide many of the psychological benefits (for example, evocation
of constructive emotions in clients which encourage motivation) that result
from interacting with therapists. Agents of this type may also be used to
help therapists in their everyday tasks. For instance, they could be used to
automate the initial assessment of a client’s symptoms and to assess which
type of therapy (if any) might potentially help clients most.

Computer mediated therapy provides a number of advantages over more
traditional forms of face-to-face therapy and many of these advantages are
also likely to apply to synthetic therapists. For example, [46] suggests that
computer mediated and online interventions provided by therapists can be

Emotional Intelligence 213

of great help to people who are unable to visit therapists because of physical
(disabled, say), personal (for example, sexuality) or geographical issues. More-
over, some people might like the anonymity that interacting with a synthetic
therapist would offer as it would enable them to avoid the anxiety related to
disclosing uncomfortable feelings and emotions to human therapists and may
encourage them to be more open, expressive, and honest about how they feel.
Therefore, an online interaction with a synthetic therapist may provide an
important opportunity to those who have reservations, fears or doubts about
a face-to-face interaction with a human therapist.

4.2 Behavior Change Models

Our approach in getting affective agents to simulate the skills and strategies
that human health professionals use is to make use of a behavior change
model. The four most commonly used behavior change models are the Health
Belief Model, Theory of Reasoned Action/Planned behavior, Social Cognitive
Theory, and the Transtheoretical Model (TTM) [91]. Initial work in this area
has concentrated on using the TTM and has had limited success. [10] made
use of the TTM when designing Laura and despite finding that subjects did
more exercise whilst interacting with the agent, after the experiment had
reached its completion, subjects tended to return to their old habitual exercise
patterns. However, the fact that people did change their exercise behavior
whilst interacting with the agent highlights the potential for computational
agents to influence people’s behavior.

Overview of TTM

The TTM works on the assumption that behavior change involves people
moving through a number of different stages before change is achieved. The
main stages of the model are:

• precontemplation – when people have no intention of changing their
behavior,

• contemplation – when people intend to change within the next six months,
• preparation – when individuals intend to take action within the next

month,
• action – people who have done something to change their behavior within

the past six months, and
• maintenance – when the desired change has remained for at least six

months.

Whilst in the maintenance stage, there are two possible outcomes: (1) a relapse
into old behavioral patterns, which usually results in moving back into one
of the other stages (most often contemplation), or (2) termination of behav-
ior, which is said to take place when strong urges to return to old behavioral
patterns no longer exist. As well as assessing each stage of change, the model

214 C. Creed and R. Beale

also defines other core constructs including change processes (activities that
are used to help progress through the stages), decisional balance (the abil-
ity to weigh the pros and cons of changing a behavior), and self-efficacy (the
confidence felt about performing an activity). The model suggests that cer-
tain change processes are more useful at different stages. This information is
particularly helpful for therapists as they can potentially help their clients
more effectively through assessment of which stage a client is in, and then
emphasizing the appropriate change processes for that stage.

Stage-matching (linking the correct process with the correct stage)
increases the likelihood that a person will effectively progress through the
different stages of change. Conversely, linking the wrong process with a stage
increases the probability that people will relapse and return to their old behav-
ioral patterns. Making use of the model within a clinical setting initially
involves assessing which stage of change a client is at. This can be completed
by using a number of different methods, including staging algorithms, which
assess the stage people are at through the use of questionnaires [31]. The next
step is to provide the client with advice and information that is appropriate
for the stage they are at. For those who are in the early stages of change, it is
imperative to concentrate on the need to change, not necessarily on how they
intend to change. For those in the later stages, interventions should focus on
strategies that will help maintain the new behavior.

Use of Emotion in TTM

The use of the TTM in therapy can have a huge influence on the emotions
that people experience. The processes recommended for use in the pre-action
stages, such as consciousness raising, dramatic relief, and self re-evaluation, all
have the potential to evoke constructive emotions and increase motivation to
change problematic behavior. By constructive emotions, it is not necessarily
meant that attempts are made at only eliciting typically positive emotions (for
instance happiness or satisfaction), but that emotions that are often perceived
to be negative (such as fear or anxiety) can also help the change process. For
example, the consciousness raising process might induce emotional feelings
of fear and anxiety at the health risks associated with a high fat diet and
the increased likelihood of premature death. However, these emotions do not
always have a derogatory effect; they can spur people into action and help
motivate them to change their unhealthy behavior. Conversely, processes such
as dramatic relief and attempts at increasing self-efficacy encourage people to
focus on experiencing positive emotions such as satisfaction, pleasure, and
fulfilment to help increase people’s confidence about changing their behavior.

Whilst some processes concentrate specifically on evoking beneficial emo-
tions, others increase the likelihood that helpful emotions will be experienced
at a later date. For example, the processes of increasing self-efficacy, social
re-evaluation, and the minimization of barriers, are all unlikely to initially

Emotional Intelligence 215

evoke intense emotional responses, but their emphasis in the pre-action stages
increases the likelihood of progress through the stages of change and thus
the experiencing of constructive emotions that facilitate change. In the action
stages, the processes concentrate more on inducing emotional feelings of deter-
mination and resolve. Processes such as coping with relapse and building
‘helping’ relationships focus on using strategies that will help people to feel
motivated during the difficult maintenance stage. Other processes such as
self-liberation and increasing self-efficacy are all about concentrating on the
positive emotional feelings that changes in behavior evoke, in an attempt
to aid motivation toward behavior change goals. Like the pre-action stages,
there are also processes such as reinforcement and enhancing the benefits of
change, which directly attempt to help people feel emotions of satisfaction
and achievement, and thus facilitate forward movement through the different
stages of change.

Using TTM with Synthetic Therapists

Agents that are able to autonomously and correctly determine at which stage
of change a person is in, and effectively apply the appropriate processes, have
the potential to induce helpful emotions in people that will enable them
to change their behavior. However, an agent will also need to consider the
impact of its own emotional expressions on the emotional feelings evoked in
clients. For example, if a therapist was to respond with strong emotional
expressions of disappointment, frustration, and anger at somebody who con-
sistently relapses into old unhealthy behavioral patterns, this could have a
detrimental effect on how motivated that person feels and might result in
emotional feelings of shame, distress, and hopelessness. These feelings could
escalate and inevitably result in the client leaving therapy altogether. Con-
versely, if a therapist’s emotional responses to the relapses of clients were
more supportive, understanding, and encouraging (for example, empathic
responses), this could have a more positive impact on the emotional feel-
ings experienced by clients and thus their future behavior. While this is
a very basic example of how the emotional expressions of a therapist can
influence the emotional feelings in clients, it is clear that a therapist’s emo-
tional expressions can have a huge influence on how successful therapy will
be. For example, in physician-patient interactions, [15] found that patients
generally prefer physicians who express more positive emotion. The same
is also likely to apply with agents that play the role of a therapist. It is
not enough for them to be able to correctly assess at which stage a client
is in and to emphasize the correct processes; they also need to be able to
deliver their interventions in a manner which is helpful and appropriate for
the client.

Despite the effective management and manipulation of emotions in a
therapist-client relationship being of fundamental importance, the role of

216 C. Creed and R. Beale

agent emotion simulation (within a behavior change domain) has not been
explicitly studied or tested. While [10] incorporated emotional capabilities
into their agent, they did not explicitly test whether it had any impact on
the interaction. Instead, they tested the incorporation of a number of differ-
ent relational strategies (as discussed above) into their agent, which makes
it difficult to ascertain the individual impact that emotion had on subjects.
Several recent studies have suggested that simulated emotion can have a psy-
chological impact on subjects, but it is still largely unknown how strong that
response is [28]. For example, a number of studies have suggested that we
generally seem to rate emotional agents more positively than unemotional
agents [13], but how strong is this influence? In human-human interaction,
we are more likely to act on the advice offered by a person we like and trust
than someone we dislike and distrust [25]. Does the same apply in agent-
human relationships? More research is required to understand how simulation
of emotion influences people’s attitudes and emotions, and whether these
responses can be beneficially manipulated to help assist people with behavioral
change.

5 Summary

This Chapter has discussed the busy research area of affective computing, with
a particular focus on how we can build emotionally intelligent computers that
can aid our interactions with them. We started by detailing emotion theory
that was most related to the building of emotional computers through intro-
ducing the notions of basic, culturally-specific and higher cognitive emotions.
We then highlighted the influence that emotions can have on our attitudes and
behavior, with particular emphasis on how they can influence our attention,
memory, judgement and decision-making capabilities and creative problem
solving skills. The means by which we express emotion through written lan-
guage, speech, facial expressions and body language were also described. To
conclude Sect. 2, we detailed the different approaches taken when attempting
to build emotionally intelligent computers. These included building compu-
tational models of emotion, enabling computers to autonomously detect user
emotion, and simulating human emotional expressions (through 3D graphics,
synthetic speech, and so forth), as well as highlighting some of the ethical
issues involved in building emotional computers.

In Sect. 3 we discussed research related to evaluating affective embodied
agents over extended periods of interaction. This included defining what was
meant by the term ‘affective embodied agents’ and discussing research which
has investigated how we respond to synthetic displays of emotion. Following
this, we highlighted the importance of conducting longitudinal studies when
developing emotionally intelligent agents and also described our own affective
embodied agent that we have developed for experimental purposes.

Emotional Intelligence 217

In Sect. 4 we discussed the application of our approach to the real world
by describing how such an agent could make use of a behavior change model
to simulate a human health professional, to help people change problematic
behavior such as smoking, eating, and (lack of) exercise.

When attempting to build emotional capabilities into computers, it is
essential to consider how this will influence their functioning and our interac-
tions with them. Emotional computers present both opportunities and dangers
and it is imperative that we concentrate on how we can develop applications
and systems that aid interaction, and discuss fully the issues and concerns
related to the dangers of such computers. The goal of building emotionally
intelligent computers is an extremely complex and difficult one, but nonethe-
less, a worthy goal that can enhance human-computer relationships, making
them more productive, satisfying and enjoyable.

References

1. Banse R, Scherer K (1996) Acoustic profiles in vocal emotion expression.
J. Personality and Social Psychology, 70: 614–636.

2. Baron RA (1996) Interviewer’s mood and reaction to job applicants. J. Applied
Social Psychology, 17: 911–926.

3. Bartneck C (2001) How Convincing is Mr. Data’s Smile: affective expressions
of machines. User Modeling and User-Adapted Interaction, 11: 279–295.

4. Bartneck C (2002) eMuu – an embodied emotional character for the ambient
intelligent home. PhD Thesis, Eindhoven University of Technology, Eindhoven.

5. Bartneck C (2002) Integrating the OCC model of emotions in embodied
characters. Proc. Workshop on Virtual Conversational Characters: Appli-
cations, Methods, and Research Challenges (available online at: http://
www.bartneck.de/work/bartneck hf2002.pdf – last accessed: 14 October 2006).

6. Bates J (1994) How Convincing is Mr. Data’s Smile: affective expressions of
machines. Communications ACM, 37(7): 122–125.

7. Beskow J, McGlashan S (1997) Olga – a conversational agent with gestures.
In: André E, et al. (eds) Proc. Intl. Joint Conf. AI’97, Workshop on Animated
Interface Agents – Making them Intelligent. 25 August, Nagoya, Japan. Morgan
Kaufmann, San Francisco, CA.

8. Bickmore T (2003) Relational agents: effecting change through human-
computer relationships. PhD Thesis, Department of Media Arts and Sciences,
Massachusetts Institute of Technology.

9. Bickmore T, Cassell J (2001) Relational agents: a model and implementation
of building user trust. In: Beaudouin-Lafon M, Jacob R (eds) Proc. ACM CHI
2001 – Human Factors in Computing Systems Conf., 31 March–5 April, Seattle,
WA. ACM Press, New York, NY: 396–403.

10. Bickmore T, Picard R (2005) Establishing and maintaining long-term human-
computer relationships. ACM Trans. Computer-Human Interaction, 12(2):
293–327.

11. Bosseler A, Massaro DW (2003) Development and evaluation of a computer-
animated tutor for vocabulary and language learning in children with autism.
J. Autism and Developmental Disorders, 33(6): 653–672.

218 C. Creed and R. Beale

12. Bower GH (1981) Mood and memory. American Psychologist, 36: 129–148.
13. Brave S, Nass C, Hutchinson K (2005) Computers that care: investigating the

effects of orientation of emotion exhibited by an embodied computer agent.
Intl. J. Human-Computer Studies, 62(2): 161–178.

14. Brug J, Steenhuis I, Assema PV, Vries HD (1996) The Impact of a Computer-
Tailored Nutrition Intervention. Preventive Medicine, 25(52): 236–242.

15. Buller D, Street R (1992) Physician-patient relationships. In: Feldman R
(ed) Application of Nonverbal behavioral Theories and Research. Lawrence
Erlbaum, Hillside, NJ: 119–141.

16. Burleson W, Picard R (2004) Affective agents: sustaining motivation to
learn through failure and a state of stuck. Proc. Social and Emotional
Intelligence in Learning Environments Workshop(in conjunction with the
7th Intl. Conf. Intelligent Tutoring Systems), 31 August, available online
at: http://affect.media.mit.edu/pdfs/04.burleson-picard.pdf (last accessed: 14
October 2006).

17. Cacioppo JT, Bernston GG, Klein DJ, Poehlmann KM (1997) Psychophys-
iology of emotion across the life span. Annual Review of Gerontology and
Geriatrics, 17: 27–74.

18. Cacioppo JT, Bernston GG, Larsen JT, Poehlmann KM, Ito TA (2000) The
psychophysiology of emotion. In: Lewis M, Haviland-Jone (eds) Handbook of
Emotions. The Guildford Press, New York, NY: 173–191.

19. Cahn J (1990) The generation of affect in synthesised speech. J. American
Voice I/O Society, 8: 1–19.

20. Canamero LD (ed) (1998) Emotional and Intelligent: The Tangled Knot of
Cognition (Papers from the 1998 AAAI Fall Symposium). AAAI Press, Menlo
Park, CA.

21. Canamero LD (ed) (2001) Emotional and Intelligent II: The Tangled Knot of
Social Cognition (Papers from the 2001 AAAI Fall Symposium). AAAI Press,
Menlo Park, CA.

22. Cassell J, Stocky T, Bickmore T, Gao Y, Nakano Y, Ryokai K, Tversky
D, Vilhjalmsson CVH (2002) Mack: Media lab autonomous conversational
kiosk. Proc. Intl. Festival for Digital Images – IMAGINA’02, 12–15 February,
available online at: http://www.soc.northwestern.edu/justine/publications/
imagina02.pdf (last accessed: 14 October 2006).

23. Cassell J, Sullivan J, Prevost S, Churchill E (eds) (2000) Embodied
Conversational Agents. MIT Press, Cambridge, MA.

24. Christianson SA, Loftus E (1991) Remembering emotional events: the fate of
detailed information. Cognition and Emotion, 5: 81–108.

25. Cialdini R (2003) Influence: Science and Practice. Allyn and Bacon, Boston,
MA.

26. Cowie R, Douglas-Cowie E (1996) Automatic statistical analysis of the signal
and prosodic signs of emotion in speech. In: Bunnell T, Idsardi W (eds) Proc.
4th Intl. Conf. Spoken Language Processing. 3–6 October, Philadelphia, PA.
IEEE Press, Piscataway, NJ: 1989–1992.

27. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz
W (2001) Emotion recognition in human-computer interaction. IEEE Signal
Processing Magazine, 18(1): 32–80.

28. Creed C (2006) Using Computational Agents to Motivate Diet Change. In:
IJsselsteijn W, de Kort Y, Midden C, van den Hoven E (eds) Proc. 1st Intl.

Emotional Intelligence 219

Conf. Persuasive Technology for Human Well-being. 18–19 May, Eindhoven
University of Technology, the Netherlands. Springer, Berlin: 100–103.

29. Creed C, Beale R (2006) Agent Abuse: The Potential Dangers of Socially
Intelligent Embodied Agents. In: De Angeli A, et al. (eds) Proc. Work-
shop on Misuse and Abuse of Interactive Technologies (in cooperation with
Conf. Human Factors in Computing Systems – CHI2006). 22 April, Montreal,
Canada: 17–20.

30. Creed C, Beale R (2006) Embodied Interfaces: The Next Generation of HCI?
In: Jacobs R (ed) Proc. Workshop on The Next Generation of HCI (in cooper-
ation with Conf. Human Factors in Computing Systems – CHI2006). 23 April,
Tufts University, Montreal, Canada: 96–99.

31. Curry S, Kristal A, Bowen D (1992) An application of the stage model
of behavior change to dietary fat reduction. Health Education Research, 7:
97–105.

32. Damasio A (1994) Descartes Error. Macmillan, London, UK.
33. Davidson RJ (1994) On emotion, mood, and other related affective con-

structs. In: Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental
Questions. Oxford University Press, New York, NY: 51–55.

34. DAZ-Productions (2006) Mimic 3. http://www.daz3d.com/Mimic/poser.php
(last accessed: 2 August 2006).

35. de Rosis F (2002) Toward merging cognition and affect in HCI. Applied
Artificial Intelligence, 16(7–8): 487–494.

36. Duncker K (1945) On problem-solving. Psychological Monographs, 85(5):
1–113.

37. E-Frontier (2006) Poser 5 Software. http://www.e-frontier.com/ (last accessed:
2 August 2006).

38. Ekman P (1972) Universals and cultural differences in facial expressions of
emotion. In: Cole J (ed) Proc. Nebraska Symposium on Motivation, University
of Nebraska Press, Lincoln: 207–283.

39. Ekman P (1994) All emotions are basic. In: Ekman P, Davidson RJ (eds) The
Nature of Emotion: Fundamental Questions. Oxford University Press, New
York, NY: 7–19.

40. Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental Questions.
Oxford University Press, New York, NY.

41. Ekman P, Friesen WV (1975) Unmasking the Face. Prentice Hall, Englewood
Cliffs, NJ.

42. Ekman P, Friesen WV (1977) Facial Action Coding System. Consluting
Psychologists Press, Palo Alto, CA.

43. Essa IA, Pentland AP (1997) Coding, analysis, interpretation, and recognition
of facial expressions. IEEE Trans. Pattern Analysis and Machine Intelligence,
19(7): 757–763.

44. Etcoff NL, Magee JJ (1992) Categorical perception of facial expressions.
Cognition, 44: 227–240.

45. Evans D (2001) Emotion: the Science of Sentiment. Oxford University Press,
New York, NY.

46. Fenichel M, Suler JR, Barak A, Zelvin E, Jones G, Munro K, Meunier V,
Walker-Schmucker W (2002) Myths and realities of online clinical work.
CyberPsychology and behavior, 5(5): 481–497.

220 C. Creed and R. Beale

47. Foa EB, Feske U, Murdoch TB, Kozak MJ, McCarthy PR (1989) Processing of
threat-related information in rape victims. J. Abnormal Psychology, 45: 1183–
1187.

48. Fogg BJ, Nass C (1997) Silicon sycophants: the effects of computers that flatter.
Intl. J. Human Computer Studies, 46(5): 551–561.

49. Friedman RH (1997) Automated Telephone Conversations to Assess Health
Behavior and Deliver Behavioral Interventions. J. Medical Systems, 22(2):
95–102.

50. Friedman RH, Stollerman J, Mahoney D, Rozenblyum L (1997) The Vir-
tual Visit: Using Telecommunications Technology to Take Care of Patients.
J. American Medical Informatics Association, 4(5): 413–425.

51. Frijda N (1994) Varieties of affect: emotions and episodes, moods and senti-
ments. In: Ekman P, Davidson RJ (eds) The Nature of Emotion: Fundamental
Questions. Oxford University Press, New York, NY: 59–67.

52. Givens DB (2002) The Nonverbal Dictionary of Gestures, Signs, and Body
Language Cues. Center for Nonverbal Studies Press, Washington, DC.

53. Goleman D (1996) Emotional Intelligence: Why it can matter more than IQ.
Bloomsbury Publishing, London, UK.

54. Goleman D (2004) Emotional Intelligence: Why it can matter more than IQ &
Working with Emotional Intelligence. Bloomsbury Publishing, London, UK.

55. Gratch J, Marsells S (2004) A domain-independent framework for modeling
emotion. J. Cognitive Systems Research, 5(4): 269–306.

56. Griffiths P (1997) What Emotions Really Are. The University of Chicago Press,
Chicago, IL.

57. Hirst G, Dimarco C, Hovy E, Parsons K (1997) Authoring and generating
health-education documents that are tailored to the needs of the individual
patient. In: Jameson A, Paris C, Tasso C (eds) Proc. 6th Intl. Conf. User
Modeling – UM97. 2–5 June, Vienna, Austria. Springer-Verlag, Berlin: 107–118.

58. Isen AM, Daubman KA, Nowicki GP (1987) Positive affect facilitates creative
problem solving. J. Personality and Social Psychology, 52(6): 1122–1131.

59. Isen AM, Rosenzweig AS, Young MJ (1991) The influence of positive affect on
clinical problem solving. Medical Decision Making, 11: 221–227.

60. Izard CE (1971) The Face of Emotion. Appleton-Century Crofts, New York,
NY.

61. Jacobs M (1999) Psychodynamic Counselling in Action. Sage Publications,
London, UK.

62. Kids Helpline http://kidshelp.com.au/home-KHL.aspx?S=6 (last accessed 14
August 2006).

63. Klein J, Moon Y, Picard R (2002) This computer responds to user frustration:
theory, design, and results. Interacting with Computers, 14(2): 119–140.

64. Lang PJ (1995) The emotion probe. American Psychologist, 50(5): 372–385.
65. Ledoux J (1996) The Emotional Brain. Simon and Schuster, New York, NY.
66. Lester J, Converse S, Kahler S, Barlow T, Stone B, Bhogal R (1997) The

persona effect: affective impact of animated pedagogical agents. In: Pember-
ton S (ed) Proc. SIGCHI Conf. Human Factors in Computing Systems – CHI
’9722–27 March, Atlanta, GA. ACM Press, New York: 359–366.

67. Lester JC, Stone B, Stelling G (1999) Lifelike pedagogical agents for mixed-
initiative problem solving in constructivist learning environments. User
Modeling and User-Adapted Interaction, 9(1–2): 1–44.

Emotional Intelligence 221

68. Lisetti CL, Schiano DJ (2000) Automatic facial expression interpretation:
where human-computer interaction, artificial intelligence and cognitive sci-
ence intersect. Pragmatics and Cognition (Special Issue on Facial Information
Processing: A Multidisciplinary Perspective), 8(1): 185–235.

69. Liu K, Pickard R (2005) Embedded Empathy in Continuous, Interactive Health
Assessment. Proc. Computer-Human Interaction Workshop on Computer-
Human Interaction Challenges in Health Assessment. 4 April (available
online at: http://affect.media.mit.edu/pdfs/05.liu-picard.pdf – last accessed:
14 October 2006).

70. Lyons M, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor
wavelets. In: Yachida M (ed) Proc. 3rd IEEE Intl. Conf. Automatic Face and
Gesture Recognition. 14–16 April, Nara, Japan: 200–205.

71. Mackie DM, Worth LT (1989) Processing deficits and the mediation of positive
affect in persuasion. J. Personality and Social Psychology, 57: 27–40.

72. Mayer JD, Caruso DR, Salovey P (2000) Emotional Intelligence Meets
Traditional Standards for an Intelligence. Intelligence, 27(4): 267–298.

73. Mayer JD, Salovey P (1997) What is emotional intelligence? In: Salovey P, Slu-
tyer D (eds) Emotional Development and Emotional Intelligence: Educational
Implications. Basic Books, New York, NY.

74. McGilloway S, Cowie R, Douglas-Cowie E, Gielen S, Westerdijk M, Stroeve S
(2000) Approaching Automatic Recognition of Emotion from Voice: A Rough
Benchmark. In: Cowie R, Douglas-Cowie E, Schroder M (eds) Proc. Intl. Speech
Communication Association (ISCA) – Workshop on Speech and Emotion. 5–7
September, Newcastle, UK: 207–212.

75. McNair DM, Lorr M, Droppleman LF (1981) Manual of the Profile of Mood
States. Educational and Industrial Testing Services, San Diego, CA.

76. MoodGym http://www.moodgym.anu.ed.au/ (last accessed: 14 August 2006).
77. Murray IR, Arnott JL (1993) Toward the simulation of emotion in synthetic

speech: a review of the literature on human vocal emotion. J. Acoustical Society
of America, 93(2): 1097–1108.

78. Nass C, Brave S (2005) Wired for Speech. MIT Press, Cambridge, MA.
79. Nass C, Lee KM (2001) Does computer-synthesized speech manifest

personality? Experimental tests of recognition, similarity-attraction, and
consistency-attraction. J. Experimental Psychology: Applied, 7(3): 171–181.

80. Nass C, Moon Y, Fogg BJ, Reeves B, Dryer DC (1995) Can computer per-
sonalities be human personalities? Intl. J. Human Computer Studies, 43(2):
223–239.

81. Nass C, Moon Y, Fogg BJ, Reeves B, Dryer DC (1999) Are respondents polite
to computers? social desirability and direct responses to computers. J. Applied
Social Psychology, 29(5): 1093–1110.

82. Oatley K, Jenkins JM (1996) Understanding Emotions. Educational and
Industrial Testing Blackwell Publishers, Oxford, UK.

83. Ortony A, Clore G, Collins A (1988) The Cognitive Structure of Emotions.
Cambridge University Press, Cambridge, UK.

84. Pavia A (ed) (2000) Affective Interactions: Towards a New Generation of
Computer Interfaces. Springer-Verlag, Berlin.

85. Paleari M, Lisetti CL (2006) Psychologically Grounded Avatars Expressions.
In: Reichardt D, Levi P, Meyer C (eds) Emotion and Computing – Current
Research and Future Impact (Workshop at 29th Annual German Conf. Artificial

222 C. Creed and R. Beale

Intelligence – KI 2006). 19 June, Bremen, Germany. University of Bremen:
39–42.

86. Perlin K (1997) Responsive Face. http://mrl.nyu.edu/ perlin/facedemo/ (last
accessed: 2 August 2006).

87. Picard R (1997) Affective Computing. MIT Press, Cambridge MA.
88. Picard R, Vyzas E, Healy J (2001) Toward Machine Emotional Intelligence:

Analysis of Affective Physiological State. IEEE Trans. Pattern Analysis and
Machine Intelligence, 23(10):1175–1191.

89. Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers,
14(2): 141–169.

90. Plantect P (2004) Virtual Humans. Amacon, New York, NY.
91. Redding CA, Rossi JS, Rossi SR, Velicer WF, Prochaska JO (2000) Health

behavior Models. Intl. Electronic J. Health Education, 3: 180–193.
92. Reeves B, Nass C (1996) The media equation: How people treat computers,

televisions, and new media like real people and places. Cambridge University
Press, Cambridge, UK.

93. Revere D, Dunbar P (2001) Review of oomputer-generated outpatient health
behavior interventions: clinical encounters ‘in absentia’. J. American Medical
Informatics Association, 8(1): 62–79.

94. Rickel J, Johnson WL (1999) Animated agents for procedural training in
virtual reality: Perception, cognition, and motor control. Applied Artificial
Intelligence, 13: 343–382.

95. Salovey P, Mayer JD (1990) Emotional Intelligence. Imagination, Cognition
and Personality, 9: 185–211.

96. Scheirer J, Fernandez R, Klein J, Picard RW (2002) Frustrating the user
on purpose: a step towards building an affective computer. Interacting with
Computers, 14: 93–118.

97. Sloman A (ed) (1999) Architectural requirements for human-like agents both
natural and artificial (what sorts of machines can love?). John Benjamins
Publishing, Amsterdam, The Netherlands.

98. Stroop JR (1935) Studies of interference in serial verbal reactions. J.
Experimental Psychology, 18: 643–662.

99. Suler JR (2000) Psychotherapy in cyberspace: a five-dimensional model of
online and computer-mediated psychotherapy. CyberPsychology and behavior,
3(2): 151–159.

100. Takeuchi A, Naito T (1995) Situated facial displays: towards social interaction.
In: Katz IR, et al. (eds) Proc. SIGCHI Conf. Human factors in Computing
Systems – CHI ’95 Denver, CO, 7–11 May. ACM Press, New York, NY: 450–
455.

101. Thorisson KR (1999) A mind model for multimodal communicative creatures
and humanoids. Applied Artificial Intelligence, 13(4–5): 449–486.

102. Tian YI, Kanade T, Cohn JF (2001) Recognizing action units for facial expres-
sion analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(2):
97–115.

103. Trappl R, Petta P (eds) (1997) Creating Personalities for Synthetic Actors.
Springer-Verlag, New York, NY.

104. Trappl R, Petta P, Payr S (eds) (2003) Emotions in Humans and Artifacts.
MIT Press, Cambridge, MA.

Emotional Intelligence 223

105. van Mulken S, Andrè E, Müller (1998) The persona effect: how substantial
is it? In: Johnson H, Laurence N, Roast C (eds) Proc. HCI Conf. on People
and Computers XIII – HCI ’98 1–4 September, Sheffield, UK. Springer-Verlag,
London: 53–66.

106. Wang H, Predinger H, Igarashi T (2004) Communicating Emotions in Online
Chat Using Physiological Sensors and Animated Text. In: Dykstra-Erickson
E, Tscheligi M (eds) Human Factors in Computing Systems – Late Break-
ing Results.(Proc. ACM CHI 2004 Conf.) 24–29 April, Vienna, Austria, ACM
Press, New York, NY: 1171–1174.

Resources

1 Key Books

Cassell J, et al. (eds) (2000) Embodied Conversational Agents. MIT Press,
Cambridge, MA.

Damasio A (1994) Descartes Error. Macmilliam Publishers, London, UK.

Evans D (2001) Emotion: the Science of Sentiment. Oxford University Press,
New York, NY.

LeDoux J (1996) The Emotional Brain. Simon and Schuster, New York, NY.

Oatley K, Jenkins JM (1996) Understanding Emotions. Blackwell Publishers,
Oxford, UK.

Picard R (1997) Affective Computing. MIT Press, Massachusetts, MA.

Plantec P (2004) Virtual Humans. Amacon, New York, NY.

Prendinger H, Ishizuka M (2004) Life-Like Characters. Tools, Affective Func-
tions, and Applications. Springer, Berlin.

Reeves B, Nass C (1996) The Media Equation: How People Treat Computers,
Televisions, and New Media Like Real People and Places. Cambridge Univer-
sity Press, New York, NY.

226 C. Creed and R. Beale

2 Key Survey/Review Articles

Bates J (1994) The role of emotion in believable agents. Communications
ACM.37(7): 122–125.

Cowie R, et al. (2001) Emotion recognition in human-computer interaction.
IEEE Signal Processing Magazine 18(1): 32–80.

Dehn D, Van Mulken S (2000) The impact of animated interface agents: a
review of empirical research. Intl. J. Human-Computer Studies 52(1): 1–22.

Brave S, Nass C (2002) Emotion in human-computer interaction, In: Jacko
JA, Sears A (eds) The Human-Computer Interaction Handbook: Fundamen-
tals, Evolving Technologies and Emerging Applications. Lawrence Erlbaum
Associates, Mahwah, NJ: 81–96.

Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers.
14(2): 141–169.

http://emotion-research.net/deliverables HUMAINE (Human-Machine Inter-
action Network on Emotion) deliverable Dxx: Proposed exemplar and work
towards it:

Scherer K et al. (2005) D3e: Theory of Emotion.
Douglas-Cowie E, et al. (2005) D5e: Data and Databases.
Kollias S, et al. (2005) D4d: Signals and Signs of Emotion.
Pelachaud C, et al. (2005) D6d: Emotion in Interaction.
Canamero L, et al. (2005) D7d: Emotion in Cognition and Action.
Stock O, et al. (2005) D8d: Communication and Emotions.
Hook K, et al. (2005) D9d: Usability.
Goldie P, et al. (2005) D10b: Interim report on ethical
frameworks for emotion-oriented systems.

3 Organisations, Societies, Special Interest Groups

CHIL (Computers in the Human Loop)
http://chil.server.de/servlet/is/101/

COSY (Cognitive Systems for Cognitive Assistants)
http://www.cognitivesystems.org/

Design and Emotion Society
http://www.designandemotion.org/

Emotional Intelligence 227

Enactive Interfaces (EU Network of Excellence)
http://www.reflex.lth.se/enactive/

HUMAINE (Human-Machine Interaction Network on Emotion)
http://emotion-research.net/

International Society for Research on Emotion
http://isre.org/prd/index.php

SIMILAR (The European taskforce creating human-machine interfaces SIM-
ILAR to human-human interfaces)
http://www.similar.cc/

Virtual Human (Anthropomorphic Interaction Agents)
http://www.virtual-human.org/start en.html

4 Research Groups

Affective Computing at MIT Media Lab
http://affect.media.mit.edu/

Cognition and Affect Project at University of Birmingham (UK)
http://www.cs.bham.ac.uk/research/projects/cogaff

Geneva Emotion Research Group
http://www.unige.ch/fapse/emotion/

LeDoux Lab, New York University
http://www.cns.nyu.edu/home/ledoux/

Relational Agents Group, Northeastern University
http://www.ccs.neu.edu/research/rag/

RITL (Center for Research of Innovative Technologies for Learning, Florida
State University)
http://ritl.fsu.edu/

Virtual Reality Lab, Swiss Federal Institute of Technology
http://ligwww.epfl.ch/

228 C. Creed and R. Beale

5 Discussion Groups, Forums

The Emotion Forum
http://homepages.feis.herts.ac.uk/ comqlc/emotion.html

Emotional Intelligence Information Website
http://www.unh.edu/emotional intelligence/

Facial Action Coding System (FACS) Manual
http://face-and-emotion.com/dataface/facs/description.jsp

Facial Expressions Resources Page
http://www.kasrl.org/facial expression.html

Socially Intelligent Agents
http://homepages.feis.herts.ac.uk/ comqkd/aaai-social.html

Stanford University Persuasive Technology Lab
http://captology.stanford.edu/

Virtual Humans
http://www.ordinarymagic.com/v-people/#

6 Key International Conferences/Workshops

ACII 2005: 1st Intl. Conf. Affective Computing and Intelligent Interaction
http://www.affectivecomputing.org/2005/

ACE 2006: Agent Construction and Emotions: Modeling the Cognitive
Antecedents and Consequences of Emotion
http://www.ofai.at/p̃aolo.petta/conf/ace2006/

Theories and Models of Emotion (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp3

From Signals to Signs of Emotion and Vice Versa (HUMAINE Workshop –
2004)
http://emotion-research.net/ws/wp4

Data and Databases (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp5

Emotion in Interaction (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp6/

Emotional Intelligence 229

Emotion in Cognition and Action (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp7

Emotion in Communication (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp8/proceedings-wswp8.pdf

Innovative Approaches for Evaluating Affective Systems (HUMAINE
Workshop – 2006)
http://emotion-research.net/ws/wp9/

7 (Open Source) Software

Croquet (Software for creating 3D collaborative multi-user online applica-
tions)
http://www.opencroquet.org/

Emofilt (Simulate emotional arousal with speech synthesis)
http://felix.syntheticspeech.de/publications/emofiltInterspeech05.pdf

FEELTRACE (Tool for rating the emotion expressed in audio-visual stimuli)
http://emotion-research.net/download/Feeltrace%20Package.zip

OpenAL (Cross Platform 3D Audio)
http://www.openal.org/

OpenGL (Graphics API)
http://www.opengl.org/

OpenMary (Open Source Emotional Text-to-Speech Synthesis System)
http://mary.dfki.de

TraceTools (Tools for tracing the presence of emotion)
http://emotion-research.net/download/ECatPack.zip

8 Data Bases

8.1 Multimodal Databases

Belfast Naturalistic Database
http://www.idiap.ch/mmm/corpora/emotion-corpus

230 C. Creed and R. Beale

ISLE project corpora
http://isle.nis.sdu.dk/

SMARTKOM
http://www.phonetik.uni-muenchen.de/Bas/BasMultiModaleng.html#
SmartKom

SALAS
http://www.image.ntua.gr/ermis/

8.2 Face Databases

AR Face Database
http://cobweb.ecn.purdue.edu/ãleix/aleix face DB.html

CMU Facial Expression Database (Cohn-Kanade)
http://vasc.ri.cmu.edu//idb/html/face/facial expression/index.html

CMU PIE (Pose, Illumination and Expression) Database
http://www.ri.cmu.edu/projects/project 418.html

CVL Face Database
http://www.lrv.fri.uni-lj.si/facedb.html

Psychological Image Collection at Stirling
http://pics.psych.stir.ac.uk/

Japanese Female Facial Expression (JAFFE) Database
http://www.kasrl.org/jaffe.html

Yale Face Database
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Yale Face Database B
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

Part IV

Logic and Reasoning

The Paraconsistent Annotated Logic Program
EVALPSN and its Application

Kazumi Nakamatsu

School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike,
Himeji 670-0092, Japan, nakamatu@shse.u-hyogo.ac.jp

1 Introduction

1.1 Background

The main purpose of paraconsistent logic is to deal with inconsistency in
a framework for consistent logical systems. It has been almost six decades
since the first paraconsistent logical system was proposed by [13]. It was four
decades later that a family of paraconsistent logic called ‘annotated logics’ was
proposed by [6,51]. It can deal with inconsistency by introducing many truth
values called ‘annotations’ that should be attached to each atomic formula,
although their semantics is basically two-valued.

The paraconsistent annotated logic was developed from the viewpoint of
logic programming, aiming at application to Computer Science such as the
semantics for knowledge bases by [5,14,50]. Furthermore, in order to deal with
inconsistency and non-monotonic reasoning in a framework of annotated logic
programming, the paraconsistent annotated logic program [5] was developed
to have ontological (strong) negation and stable model semantics [10] by [20],
and was named Annotated Logic Program with Strong Negation (ALPSN
for short). It has been applied to some non-monotonic systems, default logic
[48], autoepistemic logic [18] and a non-monotonic ATMS (Assumption Based
Truth Maintenance System) [7] as their computational models [21, 39, 40].

ALPSN can deal not only with inconsistency, such as conflict, but also
non-monotonic reasoning, such as default reasoning. However, it seems to be
more important and useful from a practical viewpoint to deal with conflict
resolution in a logical way than just to express conflicts consistently. It is not
so adequate for ALPSN to deal with conflict resolution or decision making
based on conflict resolution in its own logical framework. Defeasible logic
is known as one formalization for non-monotonic reasoning called defeasible
reasoning that can deal with conflict resolution easily in a logical way [3,42,43].
However, defeasible logic cannot treat inconsistency in its syntax, and its
K. Nakamatsu: The Paraconsistent Annotated Logic Program EVALPSN and its Application,

Studies in Computational Intelligence (SCI) 115, 233–306 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

234 K. Nakamatsu

inference rules are too complicated to implement easily. Therefore, in order
to deal with defeasible reasoning in a framework of paraconsistent annotated
logic programming, a new version of ALPSN called Vector Annotated Logic
Program with Strong Negation (VALPSN for short) was also proposed and
applied to conflict resolution by [22–24].

It also has been shown that VALPSN provides a computational model of a
defeasible logic [25]. Moreover, VALPSN has been extended to deal with deon-
tic notions (obligation, forbiddance and permission), and this extended version
of VALPSN was named Extended VALPSN (EVALPSN for short) [26, 27].
EVALPSN can deal with defeasible deontic reasoning and has been applied to
various kinds of safety verification-based control, railway interlocking safety
verification [30], robot action control [28, 31, 32, 41], safety verification for air
traffic control [29], traffic signal control [33], discrete event control [34–36] and
pipeline valve control [37, 38].

1.2 Overview

This Chapter focuses on the development of EVALPSN toward treating
before-after relations and applications of EVALPSN to safety verification for
process control and process order control with simple practical examples. The
basic ideas of EVALPSN safety verification are that each control system has
norms such as guidelines for safe control; such norms can be formulated in
EVALPSN deontic expression; then the safety verification for control systems
can be carried out by EVALPSN defeasible deontic reasoning. Compared to
conventional safety verification methods, EVALPSN safety verification has
some advantages, such as providing a formal safety verification method and
a computational framework for control systems such as logic programming.
We introduce an EVALPSN safety verification method for pipeline process
control in this Chapter.

Considering safety verification for process control, there is an occasion
in which the safety verification for process order is significant. We develop
EVALPSN toward treating safety verification for process order control by
providing new paraconsistent meanings to some EVALPSN annotations to
express before-after relationships. Since the newly developed EVALPSN called
bf(before-after)-EVALPSN can deal with before-after relations between pro-
cesses systematically, it can be easily applied to safety verification for process
order control just as well as EVALPSN. As far as we know there seems to
be no other efficient computational tool dealing with safety verification for
process order control than bf-EVALPSN. We also introduce a bf-EVALPSN
safety verification method for pipeline process order control in this Chapter.

This Chapter is organized as follows: in Sect. 2, background knowledge in
terms of EVALPSN, paraconsistent annotated logic, paraconsistent annotated
logic programs, defeasible reasoning, defeasible deontic reasoning, and the like

The Paraconsistent Annotated Logic Program EVALPSN 235

are introduced, along with simple examples; Sect. 3 describes how to apply
EVALPSN to safety verification for pipeline process control by way of a simple
brewery pipeline process control example; lastly, in Sect. 4, bf-EVALPSN and
its application to safety verification for process order control is described in
terms of the same example of the brewery pipeline control.

2 Preliminary

This Section is devoted to clarifying the formal background of this Chapter.
We assume that the reader is familiar with basic knowledge of classical logic
and logic programming [15]. The following items are introduced as prelimi-
nary for understanding the paraconsistent logic program EVALPSN and its
application:

• Paraconsistent Annotated Logics PT ,
• Paraconsistent Annotated Logic Programs,

– GHP (Generally Horn Program),
– ALPSN (Annotated Logic Program with Strong Negation),
– VALPSN (Vector Annotated Logic Program with Strong Negation),
– EVALPSN (Extended Vector Annotated Logic Program with Strong

Negation),
• Stable Model Semantics for ALPSN,
• Defeasible Reasoning,
• Defeasible Deontic Reasoning.

2.1 Paraconsistent Annotated Logics PT

Here we recapitulate the syntax and semantics for propositional paraconsistent
annotated logics PT proposed by [6].

Generally, a truth value called an annotation is attached to each atomic
formula explicitly in annotated logic, and the set of annotations constitutes a
complete lattice. The paraconsistent annotated logic denoted by PT has the
complete lattice T of annotations.

Definition 1

The primitive symbols of PT are:

1. propositional symbols p, q, · · · , pi, qi, · · · ;
2. each member of T is an annotation constant (which we may

simply call an ‘annotation’);
3. ‘connectives’ and ‘parentheses’ ∧, ∨, →, ¬, (,).

236 K. Nakamatsu

f t

Fig. 1. The 4-valued complete lattice T

Formulae are defined recursively as follows:

1. if p is a propositional symbol and µ ∈ T is an annotation constant, then
p :µ is an annotated atomic formula (atom);

2. if F, F1, F2 are formulae, then ¬F, F1 ∧ F2, F1 ∨ F2, F1 → F2 are formulae.

We suppose the four-valued lattice in Fig. 1 as the complete lattice T ,
where the annotation t may be intuitively interpreted as the truth value
true and the annotation f as the truth value false. It may be comprehensible
that the annotations ⊥, t, f and � correspond to the truth values ∗, T, F and
TF in [52] and None, T, F, and Both in [2], respectively. Moreover, the
complete lattice T can be viewed as a bi-lattice in which the vertical direction−→⊥� indicates knowledge amount ordering and the horizontal direction

−→
ft does

truth ordering [8]. We use the symbol ≤ to denote the ordering in terms of
knowledge amount (the vertical direction

−→⊥�) over the complete lattice T ,
and the symbols ⊥ and � are used to denote the bottom and top elements,
respectively. In the paraconsistent annotated logic PT , each annotated atomic
formula can be interpreted epistemically, for example, p :t may be interpreted
epistemically as “the proposition p is known to be true”.

There are two kinds of negation in the annotated logic, one of them rep-
resented by the symbol ¬ in Definition 1 is called epistemic negation, and
epistemic negation followed by an annotated atomic formula is defined as a
mapping between the elements of the complete lattice T as follows:

¬(⊥) = ⊥, ¬(t) = f, ¬(f) = t, ¬(�) = �.

This definition shows that epistemic negation maps annotations to themselves
without changing the knowledge amounts of the annotations, and epistemic
negation followed by an annotated atomic formula can be eliminated by syn-
tactical mapping. For example, the knowledge amount of the annotation t is

The Paraconsistent Annotated Logic Program EVALPSN 237

the same as that of the annotation f as shown in the complete lattice T , and
we have the epistemic negation ¬(p :t) = p :¬(t) = p :f.1 Which shows that
the knowledge amount in terms of the proposition p cannot be changed by
the epistemic negation. There is another negation called ontological (strong)
negation that is defined by the epistemic negation in PT .

Definition 2 (Strong Negation)

Let F be any formula,

∼ F =def F → ((F → F) ∧ ¬(F → F)).

The epistemic negation in the above definition is not interpreted as the
mapping between annotations since it is not followed by an annotated atomic
formula. Therefore, the strongly negated formula ∼F is intuitively interpreted
so that if the formula F exists, the contradiction ((F → F) ∧ ¬(F → F)) is
implied. Usually, strong negation is used for denying the existence of the
formula following it.

The semantics for the paraconsistent annotated logics PT are defined
as follows: We consider an intuitive interpretation for the strong negation
of annotated atoms with the complete lattice T in Fig. 1. For example,
the strongly negated literal ∼(p:t) implies the knowledge “p is false (f) or
unknown (⊥)” since it denies the existence of knowledge that “p is true
(t)”. This intuitive interpretation is proven by Definition 3 as follows: if
vI(∼(p:t)) = 1, vI(p:t) = 0 and for any annotation µ ∈ {⊥, f, t,�} ≤ t,
vI(p :µ) = 1, therefore µ = f or µ = ⊥.

2.2 Generally Horn Program(GHP)

We review a basic paraconsistent annotated logic program called Generally
Horn Program (GHP for short) introduced by [5], which will serve as the
basis of ALPSN. We assume the same complete lattice T in Fig. 1 and its
ordering ≤.

The left part A0 and right part A1 ∧ · · · ∧An of the symbol ← are called
the head and body of the program clause, respectively. Furthermore, the body
A1 ∧ · · ·∧An is called the definition of the literal A0. A program clause A0 ←
that consists of only head part is called a unit program clause, which is denoted
by just A0 without the symbol ←. A logic program is a set of program clauses.
1 An expression ¬p : µ is conveniently used for expressing a negative annotated

literal instead of ¬(p :µ) or p :¬(µ).

238 K. Nakamatsu

Definition 3

Let ν be the set of all propositional symbols and F be the set of all
formulae. An interpretation I is a function,

I : ν −→ T .

To each interpretation I , we can associate the valuation function such
that

vI : F −→ {0, 1},
which is defined as:

1. let p be a propositional symbol and µ an annotation,

vI(p :µ) = 1 iff µ ≤ I(p),

vI(p :µ) = 0 iff µ
≤I(p) ;

2. let A and B be any formulae, and A not an annotated atom,

vI(¬A) = 1 iff vI(A) = 0,

vI(∼ B) = 1 iff vI(B) = 0 ;

other formulae A → B, A ∧ B, A ∨ B are evaluated as usual.

Definition 4 (annotated literal)

If A is a literal and µ ∈ T is an annotation, then A : µ is called an
annotated literal. If µ is one of {t, f}, A :µ is called a well-annotated
literal, and µ is called a w-annotation.

Definition 5 (Logic Program)

Let A0 be a positive literal and A1, . . . , An literals.

A0 ← A1 ∧ · · · ∧ An

is called a Horn clause or a program clause.

In this Chapter, we use the symbol ← to distinguish with a logical con-
nective (implication) in the paraconsistent annotated logics PT in program
clauses as far as no confusion occurs. For example, the set {p, q ← p} is a logic
program and p is a unit program clause. The paraconsistent annotated logic
program GHP is defined as follows:

The Paraconsistent Annotated Logic Program EVALPSN 239

Definition 6 (Generally-Horn Program)

If A0, . . . , An are literals and µ0, . . . , µn are w-annotations,

A0 :µ0 ← A1 :µ1 ∧ · · · ∧ An :µn

is called a generalized Horn clause (gh-clause for short). A generally-
Horn program(GHP for short) is a set of gh-clauses.

Herbrand-like interpretation [15] is considered for GHP as its semantics.
The universe of individuals in the interpretation consists of all ground terms
of the language being interpreted. Let the set of individuals in models and
interpretations be a Herbrand universe. A Herbrand interpretation I can be
regarded as an interpretation such that

I : BP −→ T ,

where BP is the Herbrand base (the set of all variable-free atoms) of the
GHP P . The complete lattice of annotations and the epistemic negation in
GHP are defined as well as the paraconsistent annotated logic PT . Usually,
an interpretation I for a GHP is denoted by the set

{(p :�µi)|I |= p :µ1 ∧ · · · ∧ p :µn},

where �µi is the least upper bound of the set {µ1, . . . , µn}. Then the ordering
≤ over the complete lattice T is extended to an ordering over the set of
interpretations.

Example 1

Consider the following GHP

P = {p(a) :t← p(b) :f
p(b) :t← p(a) :f}.

The GHP P has several models and some of them are listed below:

Definition 7

Let I1 and I2 be any interpretations for a GHP P , and A an atom
in the Herbrand base BP ,

I1 ≤I I2 =def (∀A ∈ BP)(I1(A) ≤ I2(A)).

240 K. Nakamatsu

I1 : I1(p(a)) = t, I1(p(b)) = t ;
I2 : I2(p(a)) = t, I2(p(b)) = f ;
I3 : I3(p(a)) = f, I3(p(b)) = t ;
I4 : I4(p(a)) = ⊥, I4(p(b)) = ⊥ ;
I5 : I5(p(a)) = ⊥, I5(p(b)) = t ;
I6 : I6(p(a)) = t, I6(p(b)) = ⊥ ;
I7 : I7(p(a)) = �, I7(p(b)) = � ;
I8 : I8(p(a)) = t, I8(p(b)) = � ;
I9 : I9(p(a)) = �, I9(p(b)) = t.

Then the GHP P has the least model I4 and the greatest model I7.

Example 2

Consider the following logic program P representing the definition of even
numbers and its translation P ′ into GHP.

P = { even(0),
even(s(s(x))) ← even(x),
q, ¬q },

P ′ = { even(0) :t,
even(s(s(x))) :t ← even(x) :t
q :t, q :f }.

The logic program P is inconsistent. Nonetheless, there is an intuition that
tells us that the definition of q has nothing to do with the definition of even.
Therefore, we should still be able to compute even numbers, however, clas-
sical logic program model theory does not permit us to do so. The GHP P ′

has the least model (even though the logic program P does not have any
model) that assigns t to all the atoms of the form even(0), even(s(s(0)),
even(s(s(s(s(0))))), . . ., and assigns � to q. It captures correctly the intu-
ition that the definition of even is sensible, while the definition of q is
inconsistent.

The fixpoint semantics [15] for GHP is defined as well as usual logic pro-
grams. Associate with each GHP P over the complete lattice T , a monotonic
operator TP from Herbrand interpretations to themselves is defined.

The Paraconsistent Annotated Logic Program EVALPSN 241

Definition 8

Let P be a GHP, A, B1, . . . , Bk literals, I an interpretation and
µ, µ1, . . . µk annotations. Then the monotonic operator TP is defined
as:

TP (I)(A) = {µ | A :µ ← B1 :µ1 ∧ · · · ∧ Bk :µk is a ground instance of

a gh-clause in P and I |= B1 :µ1 ∧ · · · ∧ Bk :µk },

where the symbol is used for denoting the least upper bound.

Definition 9

Let ∆ be a special interpretation for GHP that assigns the annotation
⊥ to all members of BP . Then the upward iteration of TP is defined
iteratively :

TP ↑ 0 = ∆,

TP ↑ α = TP (TP ↑ (α − 1)),

TP ↑ λ = {TP ↑ η|η < λ},

where α is a successor ordinal and λ is a limit one.

Some well-known characteristics of the operator TP are presented without
proofs; the proofs for the following theorem are found in [5].

Theorem 1. 1. TP is a monotonic function.
2. Any GHP P has the least model MP that is identical to the least fixpoint

of the function TP .
3. TP ↑ ω = MP .

2.3 ALPSN (Annotated Logic Program with Strong Negation)
and Stable Model Semantics

Now we introduce the Annotated Logic Program with Strong Negation
(ALPSN for short), which is obtained by merging the strong negation into
GHP, and the stable model semantics for ALPSN [20].

Definition 10 (ALPSN)

Let L0, · · · , Ln be well-annotated literals over the complete lattice T
in Fig. 1, then

L0 ← L1 ∧ · · · ∧ Li∧ ∼ Li+1 ∧ · · · ∧ ∼ Ln

is called an annotated clause with strong negation clause (ALPSN
clause or asn-clause for short), where the symbol ∼ is the strong
negation. ALPSN is defined as a finite set of ALPSN-clauses.

242 K. Nakamatsu

Note: we assume that ALPSN is a set of ground ALPSN-clauses, then there is
no loss of generality in making this assumption, since any logic program in the
sense of [15] may be viewed as such a set of ALPSN-clauses by instanciating
all variables occuring in the ALPSN-clauses.

The stable model semantics for general logic program (logic program with
strong negation) was proposed by [10] and has been taken up as the gen-
eral semantics for various non-monotonic reasonings [44]. Here we extend the
stable model semantics for general logic program to ALPSN. First of all,
in order to eliminate the strong negation in ALPSN the Gelfond-Lifschitz
transformation for general logic program is modified.

Definition 11 (Gelfond-Lifschitz Transformation for ALPSN)

Let I be a Herbrand interpretation for an ALPSN P . Then P I , the
Gelfond-Lifschitz transformation of the ALPSN P with respect to I ,
is a GHP obtained from the ALPSN P by deleting

1. each ALPSN-clause that has a strongly negated annotated literal
∼(C :µ) in its body with I |= C :µ, and

2. all strongly negated annotated literals in bodies of the remaining
ALPSN-clauses.

The the Gelfond-Lifschitz transformation P I has the unique least model
given by TP I ↑ ω (See. Theorem 2.1) since it includes neither epistemic nor
strong negations. Then the stable model for ALPSN is defined as follows:

Definition 12 (Stable Model for ALPSN)

Let I be a Herbrand interpretation for an ALPSN P . Let I be a
Herbrand interpretation of an ALPSN P ,

I is called a stable model of P iff I = TP I ↑ ω

We have shown that ALPSN can provide annotated semantics for some
non-monotonic logics such as Reiter’s default logic [48] in [20, 21, 40]. For
example, we proposed a translation from Reiter’s default theory into ALPSN
and proved that there is a one-to-one correspondence between the extension
of the original default theory and the stable model for the ALPSN transla-
tion. This result shows that default theory extension can be computed by
the corresponding ALPSN stable model computation. However, it is not so
appropriate for formalizing the semantics for other kinds of non-monotonic
reasoning, such as defeasible reasoning.

The Paraconsistent Annotated Logic Program EVALPSN 243

2.4 VALPSN (Vector Annotated Logic Program
with Strong Negation)

A new version of ALPSN called Vector Annotated Logic Program with Strong
Negation (VALPSN for short), which is able to deal with defeasible reasoning,
is introduced in this Section. Annotations in ALPSN represent simple truth
values such as t(true) and f(false) in ALPSN. On the other hand, annotations
in VALSPN called vector annotations are 2-dimensional vectors such as (i, j)
whose components i and j are non-negative integers.

Definition 13 (Vector Annotation)

A vector annotation is a 2-dimensional vector whose components
are non-negative integers, and the complete lattice Tv(n) of vector
annotations is defined as follows:

Tv(n) = {(i, j) | 0 ≤ i ≤ n, 0 ≤ j ≤ n, i, j and n are integers}.

The ordering of the lattice Tv(n) is denoted by the symbol �v and defined as
follows : let v1 = (x1, y1) and v2 = (x2, y2) be vector annotations,

v1 �v v2 iff x1 ≤ x2 and y1 ≤ y2.

The first component i of the vector annotation (i, j) denotes the amount
of positive information to support the literal and the second one j does
the amount of negative one as well. Vector annotated literals also can be
interpreted epistemically as well as usual annotated literals in ALPSN. For
example, the vector annotated literal p : (2, 0) can be interpreted positively as
“p is known to be true of strength 2”, the vector annotated literal p : (0, 1)
negatively as “p is known to be false of strength 1”, the vector annotated lit-
eral p : (2, 1) paraconsistently as “p is known to be true of strength 2 and false
of strength 1”, and the vector annotated literal p : (0, 0) as “p is known to be
neither true nor false” (there is no information in terms of the literal p). There-
fore, the epistemic negation for vector annotated literals can be defined as a
mapping to exchange the first and second components of vector annotations.

Definition 14 (Epistemic Negation in VALPSN)

Let (i, j) be a vector annotation. The epistemic negation ¬ for vec-
tor annotated literals is defined as the following mapping over the
complete lattice Tv(n),

¬(i, j) = (j, i)

244 K. Nakamatsu

The epistemic negations followed by vector annotated literals can be
eliminated as well as the case of ALPSN. VALPSN is defined.

Definition 15 (Well Vector Annotated Literal)

Let p be a literal.

p : (i, 0) or p : (0, j)

are called well vector annotated literals (wva-literals for short), where
i and j are positive integers.

Defeasible logic is known as a non-monotonic formalism that can deal with
defeasible reasoning [9]. A defeasible logic was firstly introduced by [42]. Since
then defeasible logic has been developed by [3,4,43,44]. It has been shown that
VALPSN can provide a vector annotated semantics for defeasible reasoning
based on a syntactical translation from Billington’s defeasible theory [4] into
VALPSN [25]. We will show details of the relation between defeasible reasoning
and VALPSN after introducing EVALPSN.

Definition 16 (VALPSN)

Let L0, · · · , Ln be well vector annotated literals over the complete
lattice Tv(n), then,

L0 ← L1 ∧ · · · ∧ Li∧ ∼ Li+1 ∧ · · · ∧ ∼ Ln

is called a vector annotated clause with strong negation (VALPSN
clause for short). A Vector Annotated Logic Program with Strong
Negation (VALPSN clause for short) is a finite set of VALPSN-
clauses. If a VALPSN or a VALPSN clause contain no strong
negation, they may be called just a VALP or a VALP clause,
respectively.

2.5 EVALPSN (Extended Vector Annotated Logic Program
with Strong Negation) and Defeasible Deontic Reasoning

Deontic logic is known as one of the modal logics that reason about normative
behavior by modal operators such as obligation, permission and forbiddance.
it has been applied to Computer Science [16, 17] and to modeling legal argu-
ment [46]. Usually, the symbol © is used to represent obligation in deontic
logic as follows: let p be a literal, then the formulas p, ©p, ©¬p and ¬©¬p
denote that the literal p is a fact, obligatory, forbidden and permitted, respec-
tively. Furthermore, a defeasible deontic logic to deal with deontic notions

The Paraconsistent Annotated Logic Program EVALPSN 245

and defeasible deontic reasoning has been developed by [45] We have pro-
posed EVALPSN by extending VALPSN to deal with such deontic notions
and shown that it can deal with defeasible deontic reasoning [26, 27].

An extended annotation in EVALPSN is called an extended vector anno-
tation and represented in a form of [(i, j), µ]. The first component (i, j) of an
extended vector annotation is a vector annotation and the second one µ is an
index representing fact(α), obligation(β), non-obligation(γ), unknown(⊥) and
paraconsistency(∗1, ∗2, ∗3 and �). The ordering of Td is denoted by a symbol

Definition 17

The complete lattice Te(n) of extended vector annotations is defined
as the product of the two complete lattices Tv(n) and Td,

Te(n) = Tv(n) × Td,

where
Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

�d. The complete lattices Te(2) = Tv(2) × Td are described as the Hasse’s
diagrams in Fig. 2. The intuitive meanings of the elements in the complete
lattice Td (cube) in Fig. 2 are: ⊥ (no knowledge), α (fact), β (obligation), γ
(non-obligation), ∗1 (both fact and obligation), ∗2 (both obligation and non-
obligation), ∗3 (both fact and non-obligation) and � (fact, obligation and
non-obligation). The complete lattice Td also is a quatro-lattice in which the
direction

−→⊥� measures knowledge amount, the direction
−→
γβ deontic truth, the

direction
−−→⊥∗2 deontic knowledge amount and the direction

−→⊥α factuality. For
example, the annotation β(obligation) can be intuitively interpreted to be
more obligatory than the annotation γ(non-obligation), and the annotations
⊥(no knowledge) and ∗2(obligation and non-obligation) are deontically neu-
tral, that is to say, it cannot be said whether they represent obligation or
non-obligation.

Definition 18

The ordering for the complete lattice Te of extended vector annota-
tions is denoted by a symbol �e and defined as follows: let [(i1, j1), µ1]
and [(i2, j2), µ2] be extended vector annotations,

[(i1, j1), µ1] �e [(i2, j2), µ2] iff (i1, j1) �v (i2, j2) and µ1 �d µ2.

246 K. Nakamatsu

�
�

�
�

�
�

�
�

�
�

�
�

� �

�

�

�

�

�

�

�

(1, 0)

(2, 1)

(0, 1)

(1, 2)

(0, 0)

(0, 2) (2, 0)

(2, 2)

(1, 1)

�����

���
�����

���

���
�����

⊥

α

βγ

∗1

∗2

∗3

�

Fig. 2. The complete lattice Te(2) = Td(2) × Td

EVALPSN has two kinds of epistemic negation ¬1 and ¬2, which are
defined as mappings over the complete lattices Tv(n) and Td, respectively.
The epistemic negations, ¬1 and ¬2, followed by extended vector annotated
literals can be eliminated by the syntactic operations in the above definition,

Definition 19 (Epistemic Negations in EVALPSN, ¬1 and ¬2)

¬1([(i, j), µ]) = [(j, i), µ], ∀µ ∈ Td

¬2([(i, j),⊥]) = [(i, j),⊥], ¬2([(i, j), α]) = [(i, j), α],

¬2([(i, j), β]) = [(i, j), γ], ¬2([(i, j), γ]) = [(i, j), β],

¬2([(i, j), ∗1]) = [(i, j), ∗3], ¬2([(i, j), ∗2]) = [(i, j), ∗2],

¬2([(i, j), ∗3]) = [(i, j), ∗1], ¬2([(i, j),�]) = [(i, j),�].

and the strong negation∼ in EVALPSN can be defined by one of the epistemic
negations ¬1 or ¬2 (see Definition 2).

Definition 20 (Well Extended Vector Annotated Literal)

Let p be a literal.

p : [(i, 0), µ] or p : [(0, j), µ]

are called well extended vector annotated literals (weva-literals for
short), where i and j are non-negative integers (1 ≤ i, j ≤ n) and
µ ∈ { α, β, γ }.

The Paraconsistent Annotated Logic Program EVALPSN 247

Definition 21 (EVALPSN)

If L0, · · · , Ln are well extended vector annotated literals,

L0 ← L1 ∧ · · · ∧ Li∧ ∼ Li+1 ∧ · · · ∧ ∼ Ln

is called an Extended Vector Annotated Logic Program Clause with
Strong Negation (EVALPSN clause for short). An Extended Vector
Annotated Logic Program with Strong Negation (EVALPSN for short)
is a finite set of EVALP- SN clauses. If an EVALPSN or an EVALPSN
clause contain no strong negation, they may be called just an EVALP
or an EVALP clause, respectively.

Facts, as well as the deontic notions obligation, forbiddance and permis-
sion, can be represented by the following extended vector annotations:

• “fact of strength m” is denoted by an extended vector annotation [(m, 0), α],
• “obligation of strength m” by an extended vector annotation [(m, 0), β],
• “forbiddance of strength m” by an extended vector annotation [(0, m), β],
• “permission of strength m” by an extended vector annotation [(0, m), γ].

where m is a positive integer. For example, p : [(2, 0), α] can be intuitively
interpreted as “p is known to be a fact of strength 2”, and q : [(0, 1), β] as “q is
known to be forbidden of strength 1”.

2.6 Defeasible Reasoning and VALPSN

First of all, we begin by briefly introducing defeasible reasoning in Nute’s
defeasible deontic logic [45]. Defeasible deontic reasoning will be introduced
in the following Section.

The notations and terminologies of his logic are a little bit modified from
his original paper to avoid the confusion with notations in other logics.

Definition 22

If φ is a literal;

– ©φ and ¬© φ are deontic formula,
– φ and ¬φ are the complements each other,
– ©φ and ¬© φ are also the complements each other,
– φ denotes the complement of any formula φ.

All and only literals and deontic formulas are formulas of the language. Rules
are a class of expressions distinct from formulas, which are constructed by
using three primitive symbols: →, ⇒ and �. If A ∪ {φ} is a set of formulae:

248 K. Nakamatsu

– A → φ is a strict rule,
– A ⇒ φ is a defeasible rule,
– A � φ is an undercutting defeater (or just a defeater),

in each case; A is called the antecedent of the rule and φ is called the consequent
of the rule. Antecedents for strict rules and defeaters must be non-empty,
however, antecedents for defeasible rules may be empty. Such a defeasible rule
has a form {} ⇒ φ and is called a presumption.

The intuitive interpretations of a strict rule A → φ, a defeasible rule
A ⇒ φ, a presumption {} ⇒ φ and a defeater A � φ are that ; whenever all
the literals in the antecedent A are accepted then the consequent φ must be
accepted, if all the literals in the antecedent A are accepted then the conse-
quent φ is accepted provided that there is an insufficient evidence against the
literal φ, if all the literals in the antecedent A are accepted then A � φ̄ is an
evidence against the literal φ but not for the complement φ̄ of φ,2 respectively.

Definition 23 (Defeasible Theory)

A defeasible theory is a quadruple 〈F, R,C,�〉 such that

F is a set of formulae,
R is a set of rules,
C is a set of finite sets of formulae such that for every formula φ,
either {φ} ∈ C or {¬φ} ∈ C, or {φ,¬φ} ∈ C, the members of
the set C are called conflict sets, and
� is an acyclic binary relation over the non-strict rules in R.

The set C in a defeasible theory represents minimal sets of conflicting
formulas. Conflicting formulas may be inconsistent such as φ and φ̄. The
ultimate purpose of the set C of conflict sets is to determine the sets of
competing rules. Two more notions that will be used for describing defeasible
reasoning are defined.

Definition 24

Let T = 〈F, R, C,�〉 be a defeasible theory, and let φ and S be a
formula and a set of formulae, respectively. Then,

φ �T Cφ iff {φ} ∪ Cφ ∈ C and Cφ /∈ C,

CR covers S in T iff CR is a subset of R such that for each

φ ∈ S − F, there is exactly one rule in

CR that has φ as its consequent.

2 The role of a defeater is only to interfere with the process of drawing an inference
from a defeasible rule.

The Paraconsistent Annotated Logic Program EVALPSN 249

Four provability relations: strict derivability, strict refutability, defeasible
derivability and defeasible refutability are considered as defeasible assertions.

Let us consider what relations are there between those four defeasi-
ble assertions. For instance, we may consider deriving a formula by using
only defeasible rules although the formula cannot be derived by using only
strict rules. Thus, a formula might be both defeasibly derivable and strictly
refutable. The following can be considered as defeasible consequence relation.

Definition 25 (Defeasible Assertion)

Let T be a defeasible theory and φ a literal.

– T � +∆φ denotes that φ is strictly derivable in the defeasible
theory T ,

– T � −∆φ denotes that it is proved in the defeasible theory T
that φ cannot be strictly derived,

– T � +∂φ denotes that φ is defeasibly derivable in the defeasible
theory T and

– T � −∂φ denotes that it is proved in the defeasible theory T
that φ cannot be defeasibly derived.

Definition 26 (Defeasible Consequence Relation)

A defeasible consequence relation is a set Σ of defeasible assertions
such that for every defeasible theory T and every formula φ,

if T � +∆φ ∈ Σ, then T � +∂φ ∈ Σ,

if T � −∂φ ∈ Σ, then T � −∆φ ∈ Σ,

if T � +∆φ ∈ Σ, then T � −∆φ /∈ Σ and

if T � +∂φ ∈ Σ, then T � −∂φ /∈ Σ.

Besides the coherence conditions in Definition 26, there are other prin-
ciples for defeasible reasoning. Considering condition 3.(b) in the Defeasible
Derivation Principle (Definition 27), a rule that has been defeated by superior
strict and defeasible rules should not be allowed to defeat any other defeasible
rules. Its power as a defeater has been preempted, and the principle described
by this condition is called preemption.

Next a proof theory of the defeasible logic is defined.

It has been proved that SD is a defeasible consequence relation in [45].
We introduce two examples for defeasible reasoning.

250 K. Nakamatsu

Example 3 – Genetically Altered Penguin [4, 45]

It is known that

• penguins (p) are definitely birds(b),
• defeasibly birds fly(f), and
• defeasibly penguins do not fly (¬f).

Definition 27 (Defeasible Reasoning Principles)

Let T = 〈F, R,C,�〉 be a defeasible theory.

Strict Derivation
If φ ∈ F or if there is A → φ ∈ R such that T � +∆A ∈ Σ,
then T � +∆φ ∈ Σ.

Strict Refutation
If φ /∈ F and for all A → φ ∈ R, T � −∆A ∈ Σ,
then T � −∆φ ∈ Σ.

Immediate Defeasible Derivation
If T � +∆φ ∈ Σ, then T � +∂φ ∈ Σ.

Semi-strict Derivation
If there is A → φ ∈ R such that
1. T � +∂A ∈ Σ,
2. for all φ �T Cφ, T � −∆Cφ ∈ Σ,

and
3. for all φ �T Cφ and CR covering Cφ in T such that

every member of CR is strict,
there is B → ψ ∈ CR such that T � −∂B ∈ Σ,

then T � +∂φ ∈ Σ.
Defeasible Derivation

If there is A ⇒ φ ∈ R such that
1. T � +∂A ∈ Σ,
2. for all φ �T Cφ, T � −∆Cφ ∈ Σ,

and
3. for all φ �T Cφ and CR covering Cφ in T ,

either
(a) there is B → ψ ∈ CR [B ⇒ ψ ∈ CR, B � ψ ∈ CR] such

that T � −∂B ∈ Σ,
or

(b) for some B ⇒ ψ ∈ CR [B � ψ ∈ CR], B ⇒ ψ � A ⇒ φ
[B � φ � A ⇒ φ],

then, T � +∂φ ∈ Σ.
Defeasible Refutation

If
1. (Case that Immediate Defeasible Derivation fails) T �

−∆φ ∈ Σ and

The Paraconsistent Annotated Logic Program EVALPSN 251

Definition 27 (continued)

2. (Case that Semi-strict Derivation fails) for each A → φ ∈ R,
either
(a) T � −∂A ∈ Σ,
(b) there is φ �T Cφ such that T � +∆Cφ,

or
(c) there is φ �T Cφ and CR covering Cφ in T such that

each rule in CR is strict and
for each B → ψ ∈ CR, T � +∂B ∈ Σ;

and
3. (Case that Defeasible Derivation fails) for each A ⇒ φ ∈ R,

either
(a) T � −∂A ∈ Σ,
(b) there is φ �T Cφ such that T � +∆Cψ,

or
(c) there is φ �T Cφ and CR covering Cφ in T such that

i. for all B → ψ ∈ CR [B ⇒ ψ ∈ CR, B � ψ ∈ CR],
T � +∂B,

ii. for all B ⇒ ψ ∈ CR [B � ψ ∈ R], B ⇒ ψ
�A ⇒ φ
[B � ψ
�A ⇒ φ],

then, T � −∂φ ∈ Σ.

Definition 28

Let σ be a finite sequence of defeasible assertions and let k ≤
length(σ).

1. T � +∆A succeeds at σk iff for every φ ∈ A, there is

j < k such that σj = T � +∆φ ;

2. T � −∆A succeeds at σk iff there is φ ∈ A and j < k

such that σj = T � −∆φ ;

3. T � +∂A succeeds at σk iff for every φ ∈ A, there is j < k

such that σj = T � +∂φ ;

4. T � −∂A succeeds at σk iff there is φ ∈ A and j < k

such that σj = T � −∂φ ;

5. T � +∆ © A succeeds at σk iff for every literal φ ∈ A

and deontic formula © φ ∈ A, there is j < k

such that σj = T � +∆ © φ ;

252 K. Nakamatsu

Definition 28 (continued)

6. T � −∆ © A succeeds at σk iff there is a literal φ ∈ A or

deontic formula © φ ∈ A

such that for some j < k, σj = T � −∆ © φ ;

7. T � +∂ © A succeeds at σk iff for every literal φ ∈ A and

deontic formula © φ ∈ A,

there is j < k such that σj = T � +∂ © φ ;

8. T � −∂ © A succeeds at σk iff there is a literal φ ∈ A or

deontic formula © φ ∈ A

such that for some j < k, σj = T � −∂ © φ.

Now suppose that there is a penguin with large wings and flight muscles.
Such a genetically altered penguin(gap) might fly. Suppose that Opus(o) is
a genetically altered penguin. Then, we may have a defeasible theory T =
〈F, R, C,�〉 with

F = { F1 : gap(o) },
R = { R1 : gap(o) → p(o), R2 : p(o) → b(o),

R3 : b(o) ⇒ f(o), R4 : p(o) ⇒ ¬f(o),
R5 : gap(o) � f(o) },

C = { { f(o), ¬f(o) } }.

Definition 29 (SD-Proof)

An SD-proof in a defeasible theory T = 〈F, R,C,�〉 is a sequence σ
of defeasible assertions such that for each k ≤ length(σ), one of the
following conditions holds.

[M+] σk = T � +∆φ and either φ ∈ F or there is A → φ ∈ R such
that T � +∆A succeeds at σk.

[M−] σk = T � −∆φ, φ /∈ F , and for each A → φ ∈ R, T � −∆A
succeeds at σk.

[E+] σk = T + ∂φ and T � +∆φ succeeds at σk.
[SS+] σk = T � +∂φ and there is A → φ ∈ R such that

1. T � +∂A succeeds at σk,
2. for each φ �T Cφ, T � −∆Cφ succeeds at σk,

and

The Paraconsistent Annotated Logic Program EVALPSN 253

Definition 29 (continued)

3. for each φ �T Cφ and CR covering Cφ in T such that
every member of CR is strict, there is B → ψ ∈ CR such
that
T � −∂B succeeds at σk.

[SD+] σk = T � +∂φ and there is A ⇒ φ ∈ R such that
1. T � +∂A succeeds at σk,
2. for each φ �T Cφ there is ψ ∈ Cφ such that T � −∆ψ

succeeds at σk, and
3. for each φ �T Cφ and CR covering Cφ in T ,

either
(a) there is ψ ∈ Cφ and B → ψ ∈ CR [B ⇒ ψ ∈ CR,

B � ψ ∈ R] such that T � −∂B succeeds at σk,
or

(b) for some B ⇒ ψ ∈ CR [B � ψ ∈ R], B ⇒ ψ � A ⇒ φ
[B � ψ � A ⇒ φ].

[SD−] σk = T � −∂φ and
1. (Case that [E+] fails) T � −∆φ succeeds at σk ;
2. (Case that [SS+] fails) for each A → φ ∈ R,

either
(a) T � −∂A succeeds at σk,
(b) there is φ �T Cφ such that T � +∆Cφ,

or
(c) there is φ �T Cφ and CR covering Cφ such that every

member of CR is strict and for each B → ψ ∈ CR,
T � +∂B succeeds at σk ;

and
3. (Case that [SD+] fails) for each A ⇒ φ ∈ R,

either
(a) T � −∂A succeeds at σk,
(b) there is φ �T Cφ such that T � +∆Cφ succeeds at σk,

or
(c) there is φ �T Cφ and CR covering Cφ in T such that

i. for all B → ψ ∈ CR [B ⇒ ψ ∈ CR, B � ψ ∈ CR],
T � +∂B succeeds at σk, and

ii. for all B ⇒ ψ ∈ CR [B � ψ ∈ R], B ⇒ ψ
�A ⇒ φ
[B � ψ
� A ⇒ φ].

There are superiority relations R4 � R5 and R3 � R4. We show an
intuitive derivation.

1. T � +∆gap(o) by [M+], with the fact F1.
2. T � +∆p(o) by [M+], with 1 and the strict rule R1.
3. T � +∆b(o) by [M+], with 2 and the strict rule R2.

254 K. Nakamatsu

4. Both the antecedents of the defeasible rules R3 and R4 are strictly deriv-
able, however, the defeasible rule R3 is defeated by the defeasible rule R4
since there is the superiority relation R3 � R4. Thus, T � −∂f(o) by
[SD−].

5. Both the antecedents of the defeasible rule R4 and the defeater R5
are strictly derivable, however, the defeasible rule R4 is defeated by
the defeater R5 since there is the superiority relation R4 � R5. Thus,
T � −∂¬f(o) by [SD−].

In defeasible logic, defeaters cannot be used to derive their own conse-
quents but to prevent their conflicting rules from deriving their conflicting
consequents. Therefore, we could not obtain T � +∂¬f(o).

Let us consider another example of defeasible reasoning.

Example 4

Suppose a defeasible theory T = 〈F, R, C,�〉 with two facts and two defeasible
rules,

F = {F2 : q, F3 : r}, R = {R6 : q ⇒ p, R7 : r ⇒ ¬p},

and the conflict sets C = {{p,¬p}}. According to the superiority relation
between the defeasible rules R6 and R7, it is decided whether the literals
p and ¬p are defeasibly derivable or refutable. Apparently, T � +∆q and
T � +∆r by [M+].

• If there is the superiority relation R7 � R6, T � +∂p by [SD+] 1,2 and
3(b) since T � −∆¬p by [M−], and T � −∂¬p by [SD−] 1, 2 and 3(c) since
T � −∆¬p by [M−].

• Conversely, if there is the superiority relation R6 � R7, T � +∂¬p by
[SD+] 1, 2 and 3(b) since T � −∆p by [M−], and T � −∂p by [SD−] 1,2
and 3(c)ii since T � −∆p by [M−].

• On the other hand, if there is no superiority relation between the defeasible
rules R6 and R7, both T � −∂p and T � −∂¬p by [SD−] 1, 2 and 3(c)ii
since both T � −∆p and T � −∆¬p by [M−], that is to say, neither the
literals p nor ¬p are defeasibly derivable if no superiority relation exists.

Now we will briefly introduce the basic idea of translation from defeasible
theory into VALPSN. The basic idea is that: considering the defeasible con-
sequence relations in Definition 26, if a literal is strictly derivable, there is
stronger evidence to support the literal positively than defeasible derivable
because if the literal is strictly derivable, it is also defeasibly derivable, but
not vice versa; furthermore, if a literal is neither strictly nor defeasibly deriv-
able, there is no evidence to support the literal; thus, we can consider three
levels of information to support the literal and they can be expressed by sim-
ple integers 0, 1 and 2 in vector annotation; therefore, “a literal φ is strictly

The Paraconsistent Annotated Logic Program EVALPSN 255

derivable +∆φ” can be translated to “a vector annotated literal φ : (2, 0) is sat-
isfiable” and “a literal φ is defeasibly derivable +∂φ” to “a vector annotated
literal φ : (1, 0) is satisfiable”.

We have already provided the syntactical translation rules from Billing-
ton’s defeasible theory into VALPSN, and proved that there are the following
relations between defeasible theory derivability and VALPSN stable model
satisfiability based on the translation in [25]. Let φ be a literal, T a defeasible
theory, I an interpretation of a VALPSN P , and MP the set of all stable
models of the VALPSN P . Then, we have the following relations:

T � +∆φ iff ∀I ∈MP , I |= φ : (2, 0),
T � +∂φ iff ∀I ∈MP , I |= φ : (1, 0),
T � −∆φ iff ∃I ∈MP , I
|= φ : (2, 0) (i.e. I |=∼ φ : (2, 0)),
T � −∂φ iff ∃I ∈MP , I
|= φ : (1, 0) (i.e. I |=∼ φ : (1, 0)).

We describe how to translate defeasible theory into VALPSN with taking
the defeasible theory in Example 4 as an example. Details of the translation
from Billington’s defeasible theory into VALPSN are provided in [25].

The literals q and r cannot be defeated by anything since they are facts,
and T � +∆q and T � +∆r by [M+]. Therefore, the two facts F2 and F3 can
be translated to the VALP clauses,

q : (2, 0) and r : (2, 0) (1)

respectively. In order to consider the translation of defeasible rules into
VALPSN, we focus on only the defeasible rules R6 and R7 as an exam-
ple, and suppose the superiority relation R7 � R6. Then, the following four
cases v1, v2, v3 and v4 should be taken into account.

Case v1: if T � −∂q and T � −∂r,
then apparently T � −∂p and T � −∂¬p by [SD−];

Case v2: if T � +∂q and T � −∂r,
then T � +∂p by [SD+] and T � −∂¬p by [SD−] as T � −∆¬p;

Case v3: if T � −∂q and T � +∂r,
then T � −∂p by [SD−] and T � +∂¬p by [SD+],
even though R7 � R6, as T � −∆p;

Case v4: if T � +∂q and T � +∂r,
then T � +∂p by [SD+] and T � −∂¬p by [SD−]
since R7 � R6, as T � −∆p.

Thus, the defeasible rules R6 and R7 can be translated to the VALPSN
clauses,

R6 p : (1, 0) ← q : (1, 0)∧ ∼ p : (0, 2) (2)
R7 p : (0, 1) ← r : (1, 0)∧ ∼ q : (1, 0)∧ ∼ p : (2, 0) (3)

256 K. Nakamatsu

Then, we have only one stable model

M1 = {q : (2, 0), r : (2, 0), p : (1, 0)}

for the VALPSN P1 = {(1), (2), (3)}. The stable model M1 shows that q and r
are strictly derivable, p is defeasibly derivable, and ¬p is defeasibly refutable.

Conversely, suppose the superiority relation R6 �R7. Then, it is similarly
inferred that the defeasible rules R6 and R7 can be translated to the VALPSN
clauses,

R6 p : (1, 0) ← q : (1, 0)∧ ∼ r : (1, 0)∧ ∼ p : (0, 2) (4)
R7 p : (0, 1) ← r : (1, 0)∧ ∼ p : (2, 0) (5)

Then, we also have only one stable model

M2 = {q : (2, 0), r : (2, 0), p : (0, 1)}

for the VALPSN P2 = {(1), (4), (5)}. The stable model M2 shows that q and r
are strictly derivable, p is defeasibly refutable, and ¬p is defeasibly derivable.

Moreover, if we suppose no superiority relation between rules R6 and R7,
another case (a case in which both the antecedents q and r of the defeasible
rules R6 and R7 are defeasibly derivable) should be considered instead of the
case v4.

Case v5: if T � +∂q and T � +∂r,
then T � −∂p and T � −∂¬p by [SD−] since no superiority relation,
as T � −∆p and T � −∆¬p.

Thus, the defeasible rules R6 and R7 can be translated to the VALPSN
clauses,

R6 p : (1, 0) ← q : (1, 0)∧ ∼ r : (1, 0)∧ ∼ p : (0, 2) (6)
R7 p : (0, 1) ← r : (1, 0)∧ ∼ q : (1, 0)∧ ∼ p : (2, 0) (7)

Then, we also have only one stable model

M3 = {q : (2, 0), r : (2, 0), p : (0, 0)}

for the VALPSN P3 = {(1), (6), (7)}. The stable model M3 shows that both q
and r are strictly derivable and both p and ¬p are defeasibly refutable. The
stable model M3 also shows that defeasible reasoning is skeptical reasoning.

2.7 Defeasible Deontic Reasoning and EVALPSN

Nute’s defeasible deontic reasoning principles are obtained by extending the
defeasible reasoning principles in Definition 27. Let T be a defeasible theory
and φ a literal, and ©A denotes that the deontic operator © is applied to all

The Paraconsistent Annotated Logic Program EVALPSN 257

the literals in A. Then the following principles are considered for defeasible
deontic reasoning:

Strict Principles
A → φ and T � +∆A supports T � +∆φ,

A → φ and T � +∆©A supports T � +∆© φ,

A →©φ and T � +∆© A supports T � +∆© φ,

Semi-strict Principles
A → φ and T � +∂A supports T � +∂φ,

A → φ and T � +∂ © A supports T � +∂ © φ,

A →©φ and T � +∂ ©A supports T � +∂ © φ,

Defeasible Factual Detachment

A ⇒ φ and T � +∂A supports T � +∂φ,

Defeasible Deontic Detachment

A ⇒©φ and T � +∂ ©A supports T � +∂ © φ,

where the strength order of the principles is

Strict > Semi-strict > Defeasible Factual > Defeasible Deontic.

A proof theory for the defeasible deontic logic is developed by modifying
the SD-proof conditions in Definition 29 and adding some new proof conditions
for normative reasoning to the original proof conditions. The notion of a set
of rules covering a set of literals is modified to define the new conditions.
Here DSD-proof is defined as well as the SD-proof in Definition 29.

A precise statement of the proof theory is quite complicated, however the
intuitions are clear.

1. Strict inferences are never defeated and defeat all non-strict competing
principles. Familiar deontic inheritance is a strict inference.

Definition 30

Let T = 〈F, R, C,�〉 be a defeasible theory and let S be a set of
formulae.

CR d − covers S in T iff CR is a subset of R such that

for eachφ ∈ S − F,

there is exactly one ruler in CR

such that either

1. φ is the consequence of r, or

2. r is strict, ψ is the consequent

of r, and φ = ©ψ.

258 K. Nakamatsu

2. Semi-strict principles can only be defeated by strict inferences and by other
semi-strict inferences.

3. Defeasible factual detachment is weaker than any strict or semi-strict
inferences. Defeasible factual detachments can also be defeated by other
potential defeasible factual detachments.

4. Defeasible deontic detachment is the weakest kind of inference in the
defeasible deontic logic.

Next, we briefly introduce an overview of the translation from defeasible
deontic theory into EVALPSN by considering the so-called ‘Chisholm Exam-
ple’ [45] – details of the translation are provided in [26]. Let ψ be a formula
that has one of the forms {φ, ©φ, ¬ © φ}, where φ is a literal, T a defea-
sible deontic theory, I an interpretation of the EVALPSN P translated from
the defeasible deontic theory T , and MP the set of all stable models for the
EVALPSN P . Then we have the following relations between defeasible deontic
derivibility and VALPSN stable model satisfiability:

T � +∆ψ iff ∀I ∈MP , I |= φ : [(2, 0), µ],
T � +∂ψ iff ∀I ∈MP , I |= φ : [(1, 0), µ],
T � −∆ψ iff ∃I ∈MP , I
|= φ : [(2, 0), µ] (i.e.I |=∼ φ : [(2, 0), µ]),
T � −∂ψ iff ∃I ∈MP , I
|= φ : [(1, 0), µ] (i.e.I |=∼ φ : [(1, 0), µ]),

provided that if ψ = φ, then µ = α; if ψ = ©φ, then µ = β; if ψ = ¬© φ,
then µ = γ.

Definition 31 part-(i)

The condition [M+] has to be modified by supplementing a new condi-
tion incorporating deontic reasoning principles. Let T = 〈F, R, C,�〉
be a defeasible theory.

[DM+] σk = T � +∆ © φ and there is A → φ ∈ R or A → ©φ ∈ R
such that T � ©A succeeds at σk.

The condition [M−] also has to be modified to address the case in
which both [M+] and [DM+] fail.

[DM−] σk = T � −∆ © φ,
1. φ
∈F ,
2. for each A → φ ∈ R, T � −∆A succeeds at σk, and
3. if φ = ©ψ, then for each A → ψ ∈ R or A → ©ψ ∈ R,

T � −∆ © A succeeds at σk.

The condition [SS+] is replaced by the following new conditions for
semi-strict defeasible inheritance.

The Paraconsistent Annotated Logic Program EVALPSN 259

Definition 31 (continued)

[SS+
D] σk = T � +∂φ and there is A → φ ∈ RT such that
1. T � +∂A succeeds at σk,
2. for each φ �T Cφ there is ψ ∈ Cφ such that

T � −∆ψ succeeds at σk, and
3. for each φ �T Cφ and CR d-covering Cφ in T such that

every rule in CR is strict, either
(a) there is a literal ψ ∈ Cφ and B → ψ ∈ CR such that

T � −∂B succeeds at σk,
(b) there is ©ψ ∈ Cφ and B → ψ ∈ CR such that

T � −∂ © B succeeds at σk, or
(c) there is ©ψ ∈ Cφ and B → ©ψ ∈ CR such that

both T � −∂B and T � −∂ © B succeed at σk.
[DSS+] σk = T � +∂ © φ and there is A → φ ∈ R or A → ©φ ∈ R

such that
1. T � +∂ © A succeeds at σk,
2. for each ©φ �T C©φ there is ψ ∈ C©φ such that

T � −∆ψ succeeds at σk, and
3. for each ©φ �T C©φ and CR d-covering C©φ in T such that

every rule in CR is strict, either
(a) there is a literal ψ ∈ C©φ and B → ψ ∈ CR such that

T � −∂B succeeds at σk,
(b) there is ©ψ ∈ C©φ and B → ψ ∈ CR such that

T � −∂ © B succeeds at σk, or
(c) there is ©ψ ∈ C©φ and B → ©ψ ∈ CR such that

both T � −∂B and T � −∂ © B succeed at σk.

The condition [SD+] should be reformulated since it can be defeated
by semi-strict deontic inferences.

[DSD+] σk = T � +∂φ and there is A ⇒ φ ∈ R such that
1. T � +∂A succeeds at σk,
2. for each φ �T Cφ there is ψ ∈ Cφ such that T � −∆ψ

succeeds at σk, and
3. for each φ �T Cφ and CR d-covering Cφ in T , either

(a) there is a literal ψ ∈ Cφ and B → ψ ∈ CR such that
T � −∂B succeeds at σk,

(b) there is ©ψ ∈ Cφ and B → ψ ∈ CR such that
T � −∂ © B succeeds at σk,

(c) there is ©ψ ∈ Cφ and B → ©ψ ∈ CR such that
both T � −∂B and T � −∂ © B succeed at σk, or

(d) there is B ⇒ ψ ∈ CR [B � ψ ∈ CR] such that either
i. T � −∂B succeeds at σk, or
ii. B ⇒ ψ � A ⇒ φ [B � ψ � A ⇒ φ].

260 K. Nakamatsu

Definition 32 part-(ii)

Next, the condition for defeasible deontic detachment is formulated.

[DDD+] σk = T � +∂ © φ and there is A ⇒ ©φ ∈ R such that
1. T � +∂A succeeds at σk,
2. for each ©φ �T C©φ there is ψ ∈ C©φ such that

T � −∆ψ succeeds at σk, and
3. for each ©φ �T C©φ and CR d-covering C©φ in T , either

(a) there is a literal ψ ∈ C©φ and B → ψ ∈ CR such that
T � −∂B succeeds at σk,

(b) there is ©ψ ∈ C©φ and B → ψ ∈ CR such that
T � −∂ © B succeeds at σk,

(c) there is ©ψ ∈ C©φ and B → ©ψ ∈ CR such that
both T � −∂B and T � −∂ © B succeed at σk,

(d) there is B ⇒ ψ ∈ CR [B � ψ ∈ CR] such that either
i. T � −∂B succeeds at σk, or
ii. B ⇒ ψ � A ⇒ ©φ [B � ψ � A ⇒ ©φ]

(e) there is B ⇒ ©ψ ∈ CR [B � ©ψ ∈ CR] such that
either
i. both T � −∂B and T � −∂ © B succeed at σk, or
ii. B ⇒ ©ψ � A ⇒ ©φ [B � ©ψ � A ⇒ ©φ].

Finally, a new proof condition for defeasible refutation is defined. The
condition is very complicated since the defeasible refutation must
include all cases in which derivation rules succeed.

[DSD−] σk = T � −∂φ and
1. (Case that [M+],[DM+] and [E+] fail.) T � −∆φ succeeds at

σk,
2. (Case that [SS+

D] fails.) for each A → φ ∈ R, either
(a) T � −∂A succeeds at σk,
(b) there is φ �T Cφ such that T � −∂Cφ succeeds at σk,

or
(c) there is φ �T Cφ and CR d-covering Cφ in T such that

each rule in CR is strict,
i. for each literal ψ ∈ Cφ and B → ψ ∈ CR,

T � +∂B succeeds in σk,
ii. for each ©ψ ∈ Cφ and B → ψ ∈ CR,

T � +∂ © B succeeds at σk, and
iii. for each ©ψ ∈ Cφ and B → ©ψ ∈ CR,

either T � +∂B or T � +∂ © B succeed at σk,
3. (Case that [DSS+] fails) for each A → ψ ∈ R or A → ©ψ ∈ R

such that φ = ©ψ, either
(a) both T � −∂A and T � −∂ © A succeed at σk,
(b) there is φ �T Cφ such that

for each ψ ∈ Cφ, T � +∆ψ succeeds at σk, or
(c) there is φ �T Cφ and CR d-covering Cφ in T such that

each rule in CR is strict,

The Paraconsistent Annotated Logic Program EVALPSN 261

Definition 32 (continued)

i. for each literal χ ∈ Cφ and B → χ ∈ CR,
T � +∂B succeeds in σk,

ii. for each ©χ ∈ Cφ and B → χ ∈ CR,
T � +∂ © B succeeds at σk, and

iii. for each ©χ ∈ Cφ and B → ©χ ∈ CR,
either T � +∂B or T � +∂ © B succeed at σk,

Definition 33 part-(iii)

4. (Case that [DSD+] fails.) for each A ⇒ φ ∈ R, either
(a) T � −∂A succeeds at σk,
(b) there is φ �T Cφ such that T � +∆Cψ succeeds at σk,

or
(c) there is φ �T Cφ and CR d-covering Cφ in T such that

i. for each literal ψ ∈ Cφ and B → ψ ∈ CR,
T � +∂B succeeds at σk,

ii. for each ©ψ ∈ Cφ and B → ψ ∈ CR,
T � +∂ © B succeeds at σk,

iii. for each ©ψ ∈ Cφ and B → ©ψ ∈ CR,
either T � +∂B or T � +∂ © B succeed at σk, and

iv. for each B ⇒ ψ ∈ CR [B � ψ ∈ CR],
A. T � +∂B succeeds at σk, and
B. B ⇒ ψ
�A ⇒ φ [B � ψ
�A ⇒ φ],

5. (Case that [DDD+] fails.) if φ = ©ψ, then for each A ⇒
©ψ ∈ R, either
(a) T � −∂ © A succeeds at σk,
(b) there is ©ψ �T C©ψ such that T � +∆C©φ succeeds

at σk, or
(c) there is ©ψ �T C©ψ and CR d-covering C©ψ in T such

that
i. for each literal χ ∈ C©ψ and B → χ ∈ CR,

T � +∂B succeeds at σk,
ii. for each ©χ ∈ C©ψ and B → ©χ ∈ CR,

T � −∂B succeeds in σk,
iii. for each ©χ ∈ C©ψ and B → ©χ ∈ CR,

either T � +∂B or T � +∂ © B succeed at σk,
iv. for each B ⇒ χ ∈ CR [B � χ ∈ CR],

A. T � +∂B succeeds at σk, and
B. B ⇒ χ
�A ⇒ ©ψ [B � χ
�A ⇒ ©ψ],

and
v. for each B ⇒ ©χ ∈ CR [B � ©χ ∈ CR],

A. either T � +∂B or T � +∂ © B succeed at σk,
and

B. B ⇒ ©χ
� A ⇒ ©ψ [B � ©χ
� A ⇒ ©ψ].

262 K. Nakamatsu

Definition 34 (DSD-Proof)

A DSD-proof in a defeasible theory T = 〈F, R, C,�〉 is a sequence of
defeasible assertions such that for each k ≤ length(σ), one of [M+],
[DM+], [DM−], [E+], [SS+

D], [DSS+], [DSD+], [DDD+] or [DSD−]
holds.

Example 5 – Chisholm Example in EVALPSN

We consider a problem consisting of one fact, one obligation and two defeasible
rules with no superiority relation.

F4 In fact, Jones does not visit his mother.
O Jones ought to visit his mother.
R8 If Jones visits his mother, he ought to call her and tell her he is coming.
R9 It ought to be that if Jones does not visit his mother, he does not call

her and tell her he is coming.

If we formalize the above problem as a defeasible deontic theory, it includes

F4 ¬v,

O ©v,

R8 v ⇒©c,

R9 ¬v ⇒©¬c,

where the letters v and c denote ‘visiting his mother’ and ‘calling his mother’.
Apparently, the defeasible theory includes the conflicting defeasible rules
R8 and R9 whose consequents constitute a conflict set {{©c,©¬c}}. With
respect to the conflict set, defeasible deontic reasoning is carried out. Intu-
itively, we obtain the conclusion T � +∂ © ¬c by [DSD+] and T � −∂ © c
by [DDD−], because the application of [DDD+] to the obligation O and the
defeasible rule R8 is prevented since the factual detachment [DSD+] takes
precedence over the deontic detachment [DDD+].

Now we show how to translate the defeasible theory into EVALPSN. It
should be considered that the negation ¬ followed by a literal p in the defea-
sible theory is translated to the epistemic negation ¬1 in EVALPSN and the
negation ¬ followed by the deontic operator © is translated to the epistemic
negation ¬2. Obviously, the fact F4 and the obligation O are translated to
the EVALPSN clauses,

v : [(0, 2), α] and v : [(2, 0), β], (8)

respectively. In order to translate the defeasible rule R8 to EVALPSN clauses,
we take the proof conditions [DSD+] (Defeasible Factual Detachment) and

The Paraconsistent Annotated Logic Program EVALPSN 263

[DDD+](Defeasible Deontic Detachment) to carry out defeasible deontic rea-
soning. We consider two cases e1 and e2 in which the consequent of the rule
R8 can be defeasibly derivable.

Case e1 (Derivation by [DSD+]):
Suppose that the consequent ©c of the defeasible rule R8 is defeasibly
derived by [DSD+]. The consequent ©¬c of the competing defeasible rule
R9 should not be defeasibly derived by [DSD+]. We take only this situation
since [DSD+] is precedent to [DDD+]. Therefore, we need the following
conditions to derive ©c defeasibly :

– the antecedent v of the defeasible rule R8 is strictly or defeasibly
derivable,

– the antecedent ¬v of the competing defeasible rule R9 is not defeasibly
derivable, and

– the consequent ©¬c of the competing defeasible rule R9 is not strictly
derivable.

Case e2 (Derivation by [DSD+]):
Suppose that the consequent ©c of the defeasible rule R8 is defeasibly
derived by [DDD+]. The consequent ©¬c of the competing defeasible rule
R9 should be defeasibly derived by neither [DSD+] nor [DDD+]. Therefore,
we need the following conditions to derive ©c defeasibly :

– the obligatory antecedent ©v of the defeasible rule R8 is defeasibly
derivable,

– neither the antecedent ¬v of the competing defeasible rule R9 nor its
obligation ©¬v is defeasibly provable, and

– the consequent ©¬c of the competing defeasible rule R9 is not strictly
provable.

If we formalize the cases e1 and e2 in EVALPSN, the following EVALPSN
clauses are obtained as the translation of the defeasible rule R8 in the
defeasible theory T .

c : [(1, 0), β] ← v : [(1, 0), α]∧ ∼ v : [(0, 1), α]∧ ∼ c : [(0, 2), β], (9)
c : [(1, 0), β] ← v : [(1, 0), β]∧ ∼ v : [(0, 1), α]∧ ∼ v : [(0, 1), β]

∧ ∼ c : [(0, 2), β]. (10)

The defeasible rule R9 is translated to the following EVALPSN clauses as
well as the defeasible rule R8,

c : [(0, 1), β] ← v : [(0, 1), α]∧ ∼ v : [(1, 0), α]∧ ∼ c : [(2, 0), β], (11)
c : [(0, 1), β] ← v : [(0, 1), β]∧ ∼ v : [(1, 0), α]∧ ∼ v : [(1, 0), β]

∧ ∼ c : [(2, 0), β]. (12)

Then, the EVALPSN P = {(8), (9), (10), (11), (12)} has only one stable model

M4 = {v : [(2, 0), β], v : [(0, 2), α], c : [(0, 1), β]},

264 K. Nakamatsu

which shows T � +∆© v, T � +∆¬v, T � +∂ © ¬c and T � −∂ © c since
M4 |=∼ c : [(1, 0), β].

Generally, if an EVALPSN contains the strong negation ∼, it has stable
model semantics just as with VALPSN. However, the stable model semantics
may have the problem that some EVALPSNs may have more than two stable
models, whereas others have no stable model. Moreover, the stable model
computation takes a long time compared to usual logic programming such
as PROLOG. Therefore, it does not seem to be so appropriate for practical
application such as real time processing. However, we fortunately have cases
to implement EVALPSN practically, if an EVALPSN is a stratified program,
it has a tractable model called a perfect model [47] and strong negation in
EVALPSN can be treated as Negation as Failure in normal logic programming.
The details of stratified program and some tractable models for normal logic
programs and databases can be found in [1, 11, 47, 49]. We define stratified
EVALPSN by modifying the definition of stratified logic program [1] and
introduce stratification of EVALPSN that might be used in EVALPSN safety
verification.

Definition 35 (Stratified EVALPSN)

An EVALPSN P is called stratified if there is a partition,

P = P1 ∪ · · · ∪ Pn

such that the following two conditions hold for i = 1, . . . , n :

1. if a positive weva-literal occures in an EVALPSN clause in Pi,
then its definition is contained within

⋃
j≤i Pj ;

2. if a strongly negated weva-literal in an EVALPSN clause in Pi,
then its definition is contained within

⋃
j<i Pj , and P1 can be

empty.

Then it is said that P is stratified by P1 ∪ · · · ∪ Pn and each Pi is
called a stratum of P .

In the above definition of EVALPSN stratification, for weva-literals q :
[µ1, µ2] and q : [λ1, λ2] with the same predicate q, if [µ1, µ2]
�e [λ1, λ2] and
[λ1, λ2]
�e [µ1, µ2], they can be regarded as different weva-literals. We show
an example of EVALPSN stratification.

The Paraconsistent Annotated Logic Program EVALPSN 265

Example 6

Suppose an EVALPSN

P = { p:[(1, 0), α], (13)
q:[(0, 2), β] ←∼ p:[(1, 0), α], (14)
q:[(0, 2), γ] ←∼ q:[(0, 2), β] }, (15)

which shows a stereotype of safety verification EVALPSN that will appear
in the following Sections. The EVALPSN P can be intuitively interpreted as
follows: the fact p:[(1, 0), α] (13) has been obtained; there are two rules; if
there is not the fact p:[(1, 0), α] as sensor information, then the forbiddance
q:[(0, 2), β] is derived (Eqn. (14)), and if there is not forbiddance q:[(0, 2), β],
then the permission q:[(0, 2), γ] is derived (Eqn.(15)). The EVALPSN P has
a stratification:

P1 = { p:[(1, 0), α] },
P2 = { q:[(0, 2), β] ←∼ p:[(1, 0), α] },
P3 = { q:[(0, 2), γ] ←∼ q:[(0, 2), β] }

since [(0, 2), β]
�e[(0, 2), γ] and [(0, 2), γ]
�e[(0, 2), β]. Then, the forbiddance

q : [(0, 2), β] (16)

is not derived since there is the fact (Eqn.(13)). However, the permission
q : [(0, 2), γ] is derived since there is not the forbiddance (Eqn. (16)).

Therefore, inefficient EVALPSN stable model computation does not have
to be taken into account in practice since all EVALPSNs that will appear in
the following Sections are stratified.

3 EVALPSN Safety Verification for Control

Safety verification is a crucial issue for all control systems. We have applied
EVALPSN to various control and safety verifications, and provided some sim-
ulation systems for them [28, 29, 32–34, 37]. In this Section, we introduce an
application of EVALPSN to the safety verification of a brewery pipeline valve
control.

3.1 Outline of EVALPSN Safety Verification

First of all, we briefly introduce the basic idea of EVALPSN-based safety
verification. Usually, control systems have their own safety properties to be
secured, which can be described in deontic expression and easily translated
into EVALPSN. The general flow of EVALPSN safety verification is shown
in Fig. 3 and the verification process is carried out according to the following
three steps:

266 K. Nakamatsu

Input

Output

EVALPSN
safety

verification

�

�

Safety
Property,
Regulation,
Rule,
Law, etc.

⇐

�

�

Fig. 3. The EVALPSN safety verification system

1. translate the safety control property into EVALPSN previously and con-
struct the EVALPSN safety verification system;

2. various kinds of information for control – such as sensor information and
the current physical state information of the system – are input to the
EVALPSN safety verification system;

3. the EVALPSN safety verification system verifies the control system safety
by EVALPSN defeasible deontic reasoning; if its safety is verified, we obtain
permission for the verified process; otherwise we obtain forbiddance from
processing.

3.2 EVALPSN Safety Verification for Pipeline Control

We will introduce an application of EVALPSN safety verification for pipeline
valve control in a brewery plant by way of a simple example.

The basic idea of EVALPSN safety verification as a formal safety verifica-
tion method originally stems from the safety verification method for railway
interlocking by [19]. Morley’s method has been proposed only for verifying
railway interlocking safety, and it seems to be logically incomplete as it is
implemented in the higher-order logical language HOL [12]. On the other hand,
our method is logically complete and easy to implement since it is based on
defeasible deontic reasoning in EVALPSN.

The Paraconsistent Annotated Logic Program EVALPSN 267

�

�� ��

T2

Pi2

�

�� ��

T0 � Pi1 �

�� ��

T1

�

�� ��

T3
�

Pi0 �

V0

�

Pi4

Pi3

V1

�

Fig. 4. Pipeline example

Brewery Pipeline Network

The pipeline network described in Fig. 4 is taken as a simple example for
EVALPSN safety verification of brewery pipeline valve control. In Fig. 4, liquid
flows are denoted by arrows, tanks by home-plate pentagons, and valves by
cross figures.

In the pipeline network, physical and logical entities are considered, and
the following items are defined as physical entities:

– four tanks, T = {T0, T1, T2, T3};
– five pipes, Pi = {Pi0, P i1, P i2, P i3, P i4};

(a pipe includes neither valves nor tanks)
– two valves, V al = {V0, V1}.
Moreover, the following logical entities:

– four processes, Pr = {Pr0, P r1, P r2, P r3};
(a process is defined as a sequence of sub-processes and valves)

– five sub-processes,
SPr = {SPr0, SPr1, SPr2, SPr3, SPr4}

are defined. For example, process Pr0 consists of the sequence (SPr0, V0,
SPr1). Each entity is supposed to have logical, physical or both states. Sub-
processes have two states locked(l) and free(f). Thus, if the sub-process is
logically reserved with one sort of liquid, such a state is described as “the
sub-process is locked by the liquid” and ‘free’ is defined as a state not being
locked. Valves in the pipeline network are assumed to be able to control two

268 K. Nakamatsu

�

�

�

�

�

�

� �

NORMAL CROSS

Fig. 5. Normal and cross directions

�

���

� �

MIXTURE SEPARATE

Fig. 6. Controlled mix and separate

liquid flows in the normal and cross directions, as shown in Fig. 5. Then, valves
have two controlled states, controlled mix(cm) representing that it is controlled
to mix two liquid flows in the normal and cross directions, and controlled
separate(cs) representing that it is controlled to separate two liquid flows in
the normal and cross directions as shown in Fig. 6. Processes have two states
set (s) and unset (xs), then “the process is set” is defined as a logical state
in which all the sub-processes in the process are locked, and ‘unset’ is as not
set.

In the pipeline network the following four processes Pr0,1,2,3 dealing with
beer(b) and five sorts of pipe cleaning liquid, cold water(cw), warm water(ww),
hot water(hw), nitric acid(na) and caustic soda(cs), are processed:

• Process Pr0: a beer process,

T0 −→ V0(cs) −→ T1

• Process Pr1: a cleaning process by nitric acid,

T2

↑
V0(cs)

↑
T3 −→ V1(cm)

The Paraconsistent Annotated Logic Program EVALPSN 269

• Process Pr2: a cleaning process by cold water,

T2

↑

V0(cs)

↑
T3 −→ V1(cm)

• Process Pr3: a brewery process with mixing.

T2

↑

T0 −→ V0(cm) −→ T1

↑

T3 −→ V1(cm)

In order to verify the safety for the processes Pr0,1,2,3, the pipeline con-
troller/operator issues a process request having an if...then form before
starting each process. The if-part of the request describes the current state of
the entities that should be used at the process, and the then-part describes
the permission for setting the process. For example, a process request for the
process Pr1 can be described as:

if the sub-process SPr0 is free,
the sub-process SPr1 is free,
the valve V0 is controlled separate,

then the process Pr0 can be set ?

We consider the following process schedule for the four processes Pr0,1,2,3.3

PRS-0 the process Pr0 starts before any other processes;
PRS-1 the process Pr1 starts immediately after the process Pr0;
PRS-2 the process Pr2 starts immediately after the process Pr1;
PRS-3 the process Pr3 starts immediately after both the processes Pr0 and

Pr2,

which are shown as the process schedule chart in Fig. 7.

3 we shortly denote A0,1,2,...,k instead of A0,A1,A2, · · · and Ak for any physical or
logical entities A.

270 K. Nakamatsu

BREWERY

CLEANING

�Pr0 �Pr3

�Pr1 �Pr2

Fig. 7. Process schedule chart

Pipeline Safety Property

We assume three safety properties, SPr for sub-processes, Val for valves, and
Pr for processes, to assure the pipeline valve safety – that is to say, to avoid
unexpected mix of different sorts of liquid while processing in the pipeline
network.

SPr is a forbidden case where the sub-process over a given pipe is simul-
taneously locked with different sorts of liquid;

Val is a forbidden case where valves are controlled for an unexpected mix
of liquid;

Pr whenever a process is set, all its component sub-processes are locked
and all its component valves are consistently controlled.

The safety of pipeline processes is assured by verifying whether process
requests by operators contradict the safety properties or not in EVALPSN
programming. Then, we have the following three steps as the EVALPSN safety
verification process:

1. the safety properties SPr, Val and Pr for the pipeline processes Pr0,1,2,3

are translated to EVALPSN clauses, which should be stored as an EVALP-
SN Psc;

2. the if-part and then-part of a process request are translated to EVALP
clauses as EVALPs Pi and Pt, respectively;

3. the EVALP Pt is inquired from the EVALPSN Psc ∪ Pi, then if yes is
returned, the safety for the process request is assured; otherwise, it is not
assured.

Now, we introduce some literals used in the EVALPSN safety verification
system.

• Pr(i, l) denotes that the process i for the liquid l is set(s) or unset(xs),
where i ∈ {p0, p1, p2, p3} is a process id corresponding to one of the pro-
cesses Pr0,1,2,3, l ∈ {b, cw, ww, hw, na, cs} indicates the sort of liquid used
in the pipeline. We have an EVALP clause

Pr(i, l) : [µ1, µ2],

where

µ1 ∈ {s, xs} Tv(1)1 = {⊥1, s, xs,�1},
µ2 ∈ {α, β, γ}.

The Paraconsistent Annotated Logic Program EVALPSN 271

(0 0)

(0 1) (1 0)

(1,

,

, ,

1)

Fig. 8. The complete lattice Tv(1)

The complete lattice Tv(1)1 is a variant interpretation of the complete
lattice Tv(1) in Fig. 8.

Therefore, the annotations ⊥1, s, xs and �1 stand for the vector annota-
tions (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The epistemic negation ¬1

over Tv(1)1 is defined as the following mapping:

¬1([⊥1, µ2]) = [⊥1, µ2], ¬1([s, µ2]) = [xs, µ2],
¬1([�1, µ2]) = [�1, µ2], ¬1([xs, µ2]) = [s, µ2].

For example, an EVALP clause Pr(p2, b) : [s, β] can be intuitively inter-
preted as “it is obligatory that the beer process Pr2 is set”.

• SPr(i, j, l) denotes that the sub-process from valve i (or tank i) to valve
j (or tank j) occupied by liquid l is locked(l) or free(f). We assume that
if the sub-process is free and the sort of liquid in the pipe is ‘don’t care’,
then the liquid is logically represented by the symbol ‘0’(zero). Therefore,

l ∈ {b, cw, ww, hw, na, cs, 0},
and

i, j ∈ {v0, v1, t0, t1, t2, t3},
which are valve or tank IDs corresponding to the valves V0 and V1, and
the tanks T0,1,2,3. Then, we have an EVALP clause,

SPr(i, j, l) : [µ1, µ2],

where

µ1 ∈ {l, f, } Tv(1)2 = {⊥2, l, f,�2},
µ2 ∈ {α, β, γ}.

The complete lattice Tv(1)2 is a variant interpretation of the complete
lattice Tv(1) in Fig. 8. Therefore, the annotations ⊥2, l, f and �2 stand
for the vector annotations (0, 0), (1, 0), (0, 1) and (1, 1), respectively.

272 K. Nakamatsu

The epistemic negation ¬1 over Tv(1)2 is defined as the following mapping:

¬1([⊥2, µ2]) = [⊥2, µ2], ¬1([l, µ2]) = [f, µ2],
¬1([�2, µ2]) = [�2, µ2], ¬1([f, µ2]) = [l, µ2].

For example, an EVALP clause SPr(v0, t1, b) : [f, γ] can be intuitively
interpreted as “the sub-process from valve v0 to tank t1 is permitted to
be locked by beer b”.

• V al(i, ln, lc) denotes that valve i occupied by two sorts of liquid ln, lc ∈
{b, cw, ww, hw, na, cs, 0} is controlled separate(cs) or mix(cm), where i ∈
{v0, v1}. The arguments ln and lc denote the two liquids flowing in the
normal and cross directions in the valve, respectively. Generally, if a valve
is released from its controlled state such as a controlled mix, the liquid
flow in the valve is represented by the symbol 0 that means the sort of the
liquid is ‘don’t care’. We have an EVALP clause,

V al(i, ln, lc) : [µ1, µ2],

where

µ1 ∈ {cm, cs} Tv(1)3 = {⊥3, cm, cs,�3},
µ2 ∈ {α, β, γ}.

The complete lattice Tv(1)3 is a variant interpretation of the complete lat-
tice Tv(1) in Fig. 8. Therefore, the annotations ⊥3, cm, cs and �3 stand for
the vector annotations (0, 0), (1, 0), (0, 1) and (1, 1), respectively. Epistemic
negation ¬1 over Tv(1)3 is defined as the following mapping:

¬1([⊥3, µ2]) = [⊥3, µ2], ¬1([cs, µ2]) = [cm, µ2],
¬1([�3, µ2]) = [�3, µ2], ¬1([cm, µ2]) = [cs, µ2].

We assume that if a process finishes, all the valves included in the
process are controlled separate(closed). For example, an EVALP clause,
V al(v0, 0, 0) : [cs, α] can be intuitively interpreted as “valve v0 has
been released from the state controlled separate”; an EVALP clause,
V al(v0, b, cw) : [cs, β] can be intuitively interpreted as both “it is for-
bidden for valve v0 to be controlled mix with beer b being in the normal
direction and cold water cw in the cross direction”, and “it is obligatory
for valve v0 to be controlled separate with beer b being in the normal
direction and cold water cw in the cross direction;”, and an EVALP clause
V al(v0, 0, b) : [cs, α] can be intuitively interpreted as “it is a fact that valve
v0 is controlled separate with the free flow 0 in the normal direction and
beer b in the cross direction.

The Paraconsistent Annotated Logic Program EVALPSN 273

• Eql(l1, l2) denotes that the sorts of liquids l1 and l2 are the same(sa) or
different(di), where l1, l2 ∈ {b, cw, ww, hw, na, cs, 0}. We have an EVALP
clause

Eql(l1, l2) : [µ1, µ2],

where

µ1 ∈ {sa, di} Tv(1)4 = {⊥4, sa, di,�4},
µ2 ∈ {α, β, γ}.

The complete lattice Tv(1)4 is a variant interpretation of the complete
lattice Tv(1) in Fig. 8. Therefore, the annotations ⊥4, sa, di and �4 stand
for the vector annotations (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The
epistemic negation ¬1 over Tv(1)4 is defined as the following mapping:

¬1([⊥4, µ2]) = [⊥4, µ2], ¬1([di, µ2]) = [sa, µ2],
¬1([�4, µ2]) = [�4, µ2], ¬1([sa, µ2]) = [di, µ2].

If the verified process has finished safely, the process should be released
from the set state and all the sub-processes and valves in the process
should be free. Considering to represent the process release conditions in
EVALPSN, we need to define some more predicates. We assume that if
the terminal tank Ti of a process Prj has been filled with liquid, the finish
signal Fin(pj) of the process Prj is issued.

• Tan(ti, l) denotes that tank ti has been filled fully(fu) with liquid l or
empty(em). Then, we have an EVALP clause,

Tan(ti, l) : [µ1, µ2],

where ti ∈ {t0, t1, t2, t3} l ∈ {b, cw, ww, hw, na, cs, 0},

µ1 ∈ {fu, em} Tv(1)5 = {⊥5, fu, em,�5},
µ2 ∈ {α, β, γ}.

The complete lattice Tv(1)5 is a variant interpretation of the complete lat-
tice Tv(1) in Fig. 8. Therefore, the annotations ⊥5, fu, em and �5 stand for
the vector annotations (0, 0), (1, 0), (0, 1) and (1, 1), respectively. Epistemic
negation ¬1 over Tv(1)5 is defined as the following mapping:

¬1([⊥5, µ2]) = [⊥5, µ2], ¬1([fu, µ2]) = [em, µ2],
¬1([�5, µ2]) = [�5, µ2], ¬1([em, µ2]) = [fu, µ2].

Note that the annotation ⊥5 can be intuitively interpreted to denote that
“the tank is filled with some amount of liquid but not fully”, that is to
say, “no information in terms of fullness”. For example, an EVALP clause
Tan(t2, 0): [em, α] can be interpreted as “it is a fact that tank t2 is empty”.

274 K. Nakamatsu

• Str(pi) denotes that the start signal of the process Pri has been issued
(is) or not (ni).

• Fin(pj) denotes that the finish signal of the process Prj has been
issued(is) or not (ni). Then, we have EVALP clauses

Str(pi) : [µ1, µ2], F in(pi) : [µ1, µ2],

where pi, pj ∈ {p0, p1, p2, p3},

µ1 ∈ {ni, is} Tv(1)6 = {⊥6, ni, is,�6},
µ2 ∈ {α, β, γ}.

The complete lattice Tv(1)6 is a variant interpretation of the complete
lattice Tv(1) in Fig. 8. Therefore, the annotations ⊥6, is, ni and �6 stand
for the vector annotations (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The
epistemic negation ¬1 over Tv(1)6 is defined as the following mapping:

¬1([⊥6, µ2]) = [⊥6, µ2], ¬1([is, µ2]) = [ni, µ2],
¬1([�6, µ2]) = [�6, µ2], ¬1([ni, µ2]) = [is, µ2].

For example, an EVALP clause Fin(p3) : [ni, α] can be interpreted as “it
is a fact that the finish signal for the process p3 has not been issued yet”.

Safety Property in EVALPSN

First of all, we introduce how to apply EVALPSN defeasible deontic reasoning
to the safety verification by taking the sub-process SPr0 on which beer is
transferred from the tank T0 to the valve V0 via the pipe Pi0 as a simple
example. If the safety property for the sub-process SPr0 is satisfied, the sub-
process SPr0 is allowed to be locked by beer. The safety property is described
more concretely as:

if sub-process SPr0 is not locked by any processes,

then Sub-process SPr0 can be locked;

else sub-process SPr0 should not be set.

The safety property can be translated to the following defeasible deontic
rules DR1 and DR2:

DR1 {¬SPrlock(t0, v0, l)}
⇒ ¬© ¬SPrlock(t0, v0, b),

DR2 { } ⇒ ©¬SPrlock(t0, v0, b),

The Paraconsistent Annotated Logic Program EVALPSN 275

and the superiority relation DR2 � DR1, where the liquid l is not beer(b).
The antecedent of the rule DR1 is a fact, which is defined as just sensed
information and the antecedent of the rule DR2 is empty and always satisfied.
Therefore, we consider only DFD as being defeasible deontic reasoning in
this case. Moreover, as neither the consequent ¬ © ¬SPrlock(t0, v0, b) nor
©¬SPrlock(t0, v0, b) appears as the consequent of any other strict rules, those
consequents cannot be strictly provable. Thus, the defeasible deontic rules
DR1 and DR2 with the superiority relation are simply translated to instances
of EVALPSN clauses Eqn. (17) and Eqn. (18) in the next paragraph.

Now, we formalize all the safety properties SPr, Val and Pr in EVALPSN.

SPr
The property can be intuitively interpreted as derivation rules of forbiddance
such as “if the sub-process from valve/tank i to valve/tank j is locked with one
sort of liquid, it is forbidden that the sub-process is locked with different sorts
of liquid simultaneously”. Thus, we have the following EVALPSN clauses,

SPr(i, j, l2) : [f, β] ← SPr(i, j, l1) : [l, α]∧ ∼ Eql(l1, l2) : [sa, α], (17)

where l1, l2 ∈ {b, cw, ww, hw, na, cs, 0}. Moreover, in order to derive permis-
sion for locking sub-processes, we need the following EVALPSN clauses,

SPr(i, j, l) : [f, γ] ←∼ SPr(i, j, l) : [f, β], (18)

where l ∈ {b, cw, ww, hw, na, cs, 0}.

Val
The safety property can be intuitively interpreted as derivation rules of the
forbiddance from controlling valves. We have to consider two cases: one is
for deriving the forbiddance from changing the control state of valves, and
another one is for deriving the forbiddance from mixing different sorts of liq-
uid without changing the control state of valves.

Case 1
If a valve is separately controlled, it is forbidden for it to be a controlled mix;
conversely, if a valve is a controlled mixture, it is forbidden for the valve to
be separately controlled. Thus, we have the following EVALPSN clauses:

V al(i, ln, lc) : [cs, β] ← V al(i, ln, lc) : [cs, α]∧ ∼ Eql(ln, 0): [sa, α]
∧ ∼ Eql(lc, 0): [sa, α], (19)

V al(i, ln, lc) : [cm, β] ← V al(i, ln, lc) : [cm, α]∧ ∼ Eql(ln, 0): [sa, α]
∧ ∼ Eql(lc, 0): [sa, α], (20)

where ln, lc ∈ {b, cw, ww, hw, na, cs, 0}.

276 K. Nakamatsu

Case 2
Next, we consider the other forbiddance derivation case in which different
sorts of liquid are mixed even if the valve control state is not changed. We
have the following EVALPSN clauses:

V al(i, ln2, lc2) : [cm, β] ← V al(i, ln1, lc1) : [cs, α]∧ ∼ Eql(ln1 , ln2) : [sa, α]
∧ ∼ Eql(ln1 , 0): [sa, α], (21)

V al(i, ln2, lc2) : [cm, β] ← V al(i, ln1, lc1) : [cs, α]∧ ∼ Eql(lc1 , lc2) : [sa, α]
∧ ∼ Eql(lc1 , 0): [sa, α], (22)

V al(i, ln2, lc2) : [cs, β] ← V al(i, ln1, lc1) : [cm, α]∧ ∼ Eql(ln1 , ln2) : [sa, α], (23)

V al(i, ln2, lc2) : [cs, β] ← V al(i, ln1, lc1) : [cm, α]∧ ∼ Eql(lc1 , lc2) : [sa, α], (24)

where ln1 , lc1 , ln2 , lc2 ∈ {b, cw, ww, hw, na, cs, 0}.

Note that the EVALPSN clause ∼ Eql(ln, 0) : [sa, α] represents “there does
not exist information such that the normal direction with the liquid ln in the
valve is free (not controlled either)”.

As well as sub-processes, in order to derive permission for controlling
valves, we need the following EVALPSN clauses:

V al(i, ln, lc) : [cm, γ] ←∼ V al(i, ln, lc) : [cm, β], (25)

V al(i, ln, lc) : [cs, γ] ←∼ V al(i, ln, lc) : [cs, β], (26)

where ln, lc ∈ {b, cw, ww, hw, na, cs, 0}.

Pr
The property can be intuitively interpreted as derivation rules of the per-
mission for setting processes and directly translated into EVALPSN clauses
as a rule “if all the components of the process can be locked or controlled
consistently, then the process can be set”. For example, if the beer process
Pr0 consists of the sub-process from tank T0 to valve V0, then valve V0 with
separately controlled for beer in the normal direction, and sub-process from
valve V0 to tank T1, then we have the following EVALP clause for obtaining
permission for setting process Pr0,

Process Pr0 :
Pr(p0, b) : [xs, γ] ← SPr(t0, v0, b) : [f, γ] ∧ SPr(v0, t1, b) : [f, γ] ∧

V al(v0, b, l) : [cm, γ] ∧ Tan(t0, b) : [fu, α] ∧
Tan(t1, 0): [em, α], (27)

where l ∈ {b, cw, ww, hw, na, cs, 0}.

The Paraconsistent Annotated Logic Program EVALPSN 277

We also have the following EVALP clauses for setting the other processes:

Process Pr1 :
Pr(p1, na) : [xs, γ] ← SPr(t3, v1, na) : [f, γ] ∧ SPr(v1, v0, na) : [f, γ] ∧

SPr(v0, t2, na) : [f, γ] ∧ V al(v0, l, na) : [cm, γ] ∧
V al(v1, na, 0): [cs, γ] ∧ Tan(t3, na) : [fu, α] ∧
Tan(t2, 0): [em, α], (28)

Process Pr2 :
Pr(p2, cw) : [xs, γ] ← SPr(t3, v1, cw) : [f, γ] ∧ SPr(v1, v0, cw) : [f, γ] ∧

SPr(v0, t2, cw) : [f, γ] ∧ V al(v0, l, cw) : [cm, γ] ∧
V al(v1, cw, 0): [cs, γ] ∧ Tan(t3, cw) : [fu, α] ∧
Tan(t2, 0): [em, α], (29)

Process Pr3 :
Pr(p3, b) : [xs, γ] ← SPr(t0, v0, b) : [f, γ] ∧ SPr(t3, v1, b) : [f, γ] ∧

SPr(v0, t1, b) : [f, γ] ∧ SPr(v0, t2, b) : [f, γ] ∧
SPr(v1, v0, b) : [f, γ] ∧ V al(v0, b, b) : [cs, γ] ∧
V al(v1, b, 0): [cs, γ] ∧ Tan(t0, b) : [fu, α] ∧
Tan(t1, 0): [em, α] ∧ Tan(t3, b) : [fu, α] ∧
Tan(t2, 0): [em, α], (30)

where l ∈ {b, cw, ww, hw, na, cs, 0}.
Therefore, we have the safety verification EVALPSN,

Psc = {(17), · · · , (30)}. (31)

Process Release Control

If a process has finished, we need to release all entities in the process from
‘locked’ states to ‘free’ states. Then, we need process release conditions to be
verified at the end of each process in EVALPSN.

Example 7

Suppose that the process Pri that transfers liquid l in tank Tj to tank Tk has
finished. Then, we may have the process release condition expressed by the
following if...then rule:

278 K. Nakamatsu

if the liquid l in tank Tj has been transferred into tank Tk

in process Pri after process Pri starts,
and the finish signal Fin(pi) for process Pri has been issued;

then process Pri itself is allowed to be unset,
and each logical entity of process Pri is also allowed to be free.

The release condition for the process Pri may be translated to the EVALP
clauses,

Pr(pi, b) : [s, γ] ← Str(pi) : [is, α] ∧ Tan(tj, b) : [em, α] ∧
Tan(tk, b) : [fu, α] ∧ Fin(pi) : [is, α].

As well as Example 7, we can formalize the release conditions for the
processes Pr0,1,2,3 in EVALPSN.

Process Pr0:

Pr(p0, b) : [s, γ] ← Str(p0): [is, α] ∧ Tan(t0, b) : [em, α] ∧
Tan(t1, b) : [fu, α] ∧ Fin(p0): [is, α], (32)

SPr(t0, v0, 0): [l, γ] ← Pr(p0, b) : [s, γ], (33)
SPr(v0, t1, 0): [l, γ] ← Pr(p0, b) : [s, γ], (34)
V al(v0, 0, l) : [cm, γ] ← Pr(p0, b) : [s, γ], (35)

Process Pr1:

Pr(p1, na) : [s, γ] ← Str(p1): [is, α] ∧ Tan(t3, na) : [em, α] ∧
Tan(t2, na) : [fu, α] ∧ Fin(p1): [is, α], (36)

SPr(v0, t2, 0): [l, γ] ← Pr(p1, na) : [s, γ], (37)
SPr(v1, v0, 0): [l, γ] ← Pr(p1, na) : [s, γ], (38)
SPr(t3, v1, 0): [l, γ] ← Pr(p1, na) : [s, γ], (39)
V al(v0, l, 0): [cm, γ] ← Pr(p1, na) : [s, γ], (40)
V al(v1, 0, 0): [cm, γ] ← Pr(p1, na) : [s, γ], (41)

Process Pr2:

Pr(p2, cw) : [s, γ] ← Str(p2): [is, α] ∧ Tan(t3, cw) : [em, α] ∧
Tan(t2, cw) : [fu, α] ∧ Fin(p2): [is, α], (42)

SPr(v0, t2, 0): [l, γ] ← Pr(p2, cw) : [s, γ], (43)

The Paraconsistent Annotated Logic Program EVALPSN 279

SPr(v1, v0, 0): [l, γ] ← Pr(p2, cw) : [s, γ], (44)
SPr(t3, v1, 0): [l, γ] ← Pr(p2, cw) : [s, γ], (45)
V al(v0, l, 0): [cm, γ] ← Pr(p2, cw) : [s, γ], (46)
V al(v1, 0, 0): [cm, γ] ← Pr(p2, cw) : [s, γ], (47)

Process Pr3:

Pr(p3, b) : [s, γ] ← Str(p3): [is, α] ∧ Tan(t0, b) : [em, α] ∧
Tan(t3, b) : [em, α] ∧ Tan(t1, b) : [fu, α] ∧
Tan(t2, b) : [fu, α] ∧ Fin(p3): [is, α], (48)

SPr(t0, v0, 0): [l, γ] ← Pr(p3, b) : [s, γ], (49)
SPr(v0, t1, 0): [l, γ] ← Pr(p3, b) : [s, γ], (50)
SPr(v0, t2, 0): [l, γ] ← Pr(p3, b) : [s, γ], (51)
SPr(v1, v0, 0): [l, γ] ← Pr(p3, b) : [s, γ], (52)
SPr(t3, v1, 0): [l, γ] ← Pr(p3, b) : [s, γ], (53)
V al(v0, l, 0): [cm, γ] ← Pr(p3, b) : [s, γ], (54)
V al(v1, 0, 0): [cm, γ] ← Pr(p3, b) : [s, γ], (55)

where l = {b, cw, ww, hw, na, cs, 0}.
Therefore, we have the EVALP clause,

Ppr = {(32), · · · , (55)} (56)

as the process release safety control.

Example

Now we show an example of EVALPSN safety verification for setting and
releasing processes Pr0,1,2,3 according to the process schedule chart in Fig. 7.

Initial Stage All the sub-processes and valves are free (unlocked), and
no process has already started at this stage. In order to verify the safety
of all the processes Pr0,1,2,3, the following fact EVALP clauses (detected
information) are input to EVALPSN Psc Eqn. (31):

P 1
input = { SPr(t0, v0, 0): [f, α], V al(v0, 0, 0): [cs, α],

SPr(v0, t1, 0): [f, α], V al(v1, 0, 0): [cs, α],
SPr(v0, t2, 0): [f, α],
SPr(v1, v0, 0): [f, α],
SPr(t3, v1, 0): [f, α],
T an(t0, b) : [fu, α], T an(t1, 0): [em, α], (57)
Tan(t2, 0): [em, α], T an(t3, na) : [fu, α] }. (58)

280 K. Nakamatsu

Then all the sub-processes and valves are permitted to be locked or con-
trolled. However, the tank conditions Eqn. (57) and Eqn. (58) do not permit
the processes Pr2 and Pr3 to be set. The beer process Pr0 can be verified to
be set as follows:

• we have neither forbiddance from locking the sub-processes SPr0 and
SPr1, nor forbiddance from controlling valve V0 separate with beer in
the normal direction, by EVALPSN clauses Eqns. (17), (20), (21) and (22)
in EVALPSN Psc and the input EVALP P 1

input;

• then, we have permission for locking sub-processes SPr0 and SPr1, and
controlling valve V0 separately with beer in the normal direction and any
sort of liquid in the cross direction,

SPr(t0, v0, b) : [f, γ], V al(v0, b, l) : [cm, γ],
SPr(v0, t1, b) : [f, γ],

where l ∈ {b, cw, ww, hw, na, cs, 0}, by the EVALPSN clauses Eqn. (18)
and Eqn. (25);

• moreover, we have other tank conditions,

Tan(t0, b) : [fu, α], T an(t1, 0): [em, α];

• thus, we have permission for process Pr0 to be set,

Pr(p0, b) : [xs, γ],

by EVALP clause Eqn. (27).

According to the process schedule in Fig. 7, if process Pr0 has started first,
then the next process Pr1 has to have its safety verified at the next stage.

2nd Stage Beer process Pr0 has already started but not yet finished
at this stage. Then in order to verify the safety of the other three pro-
cesses Pr1,2,3, the following fact EVALP clauses are input to EVALPSN Psc

Eqn. (31):

P 2
input = { SPr(t0, v0, b) : [l, α], V al(v0, b, 0): [cs, α],

SPr(v0, t1, b) : [l, α], V al(v1, 0, 0): [cs, α],
SPr(v0, t2, 0): [f, α],
SPr(v1, v0, 0): [f, α],
SPr(t3, v1, 0): [f, α],
T an(t2, 0): [em, α], (59)
Tan(t3, na) : [fu, α] }. (60)

The Paraconsistent Annotated Logic Program EVALPSN 281

Since tank conditions Eqns. (59) and (60) permit the setting of neither
process Pr2 nor process Pr3 at this stage, only process Pr1 is assured of its
safety, as follows:

• we have neither forbiddance from locking the three sub-processes SPr2,3,4,
forbiddance from controlling the valves V0 separate with any sort of liquid
in the normal direction and nitric acid in the cross direction, nor for-
biddance from controlling the valve V1 mix(open) with nitric acid in the
normal direction and no liquid in the cross direction, by the EVALPSN
clauses Eqns. (17) – (24) and the input EVALP P 2

input;
• therefore, we have permission for locking the three sub-processes SPr2,3,4,

and controlling valves V0 and V1 as described previously,

SPr(v0, t2, na) : [f, γ], V al(v0, b, na) : [cm, γ],
SPr(v1, v0, na) : [f, γ], V al(v1, na, 0): [cs, γ],
SPr(t3, v1, na) : [f, γ],

by EVALP clauses Eqns. (18), (25) and (26);
• moreover, we have the tank conditions,

Tan(t3, na) : [fu, α], T an(t2, 0): [em, α] ;

• thus, it is permited to set process Pr1,

Pr(p1, na) : [xs, γ],

by EVALPSN clause Eqn. (28).

Both processes Pr0 and Pr1 have started, then the other processes Pr2

and Pr3 need to have their safety verified at the next stage.

3rd Stage In order to verify the safety of processes Pr2 and Pr3, the
following fact EVALP clauses are input to EVALPSN Psc:

P 3
input = { SPr(t0, v0, b) : [l, α], V al(v0, b, na) : [cs, α],

SPr(v0, t1, b) : [l, α], V al(v1, na, 0): [cm, α],
SPr(v0, t2, na) : [l, α],
SPr(v1, v0, na) : [l, α],
SPr(t3, v1, na) : [l, α] }.

Apparently, neither process Pr2 nor Pr3 is permitted to be set, since there
is no tank condition in the input EVALP P 3

input to be satisfied. We show the
failed safety verification for the process Pr2:

• we have forbiddance from locking the three sub-processes SPr2,3,4, for-
biddance from controlling valve V0 separately with beer in the normal
direction and cold water in the cross direction, as well as forbiddance from

282 K. Nakamatsu

controlling valve V1 mix with cold water in the normal direction and no
liquid in the cross direction,

SPr(v0, t2, cw) : [f, β], V al(v0, b, cw) : [cm, β],
SPr(v1, v0, cw) : [f, β], V al(v1, cw, 0): [cs, β],
SPr(t3, v1, cw) : [f, β],

by EVALPSN clauses Eqns. (17), (22), and (23), and the input EVALP
P 3

input.

The finish condition for the nitric acid process Pr1 is that tank T2 is fully
filled with nitric acid and tank T3 is empty. If the nitric acid process Pr1 has
finished and its finish conditions have been satisfied, process Pr1 is permit-
ted to be released (unset) by EVALP Ppr Eqn. (56). It is also supposed that
tank T3 is filled with cold water and that tank T2 is empty, as preparation
for the cold water process Pr2 immediately after process Pr1 finishes. Then,
cold water process Pr2 has to be verified and started according to the pro-
cess schedule. We show the safety verification of process Pr2 during the next
stage.

4th Stage If the nitric acid process Pr1 has finished and its finishing
conditions have been satisfied, the three sub-processes SPr2,3,4, valve V1, and
the cross direction of valve V0 are permitted to be released by EVALP clauses
Eqns. (36) – (41). Since only Pr0 is an ongoing process, the other three pro-
cesses Pr1,2,3 have to be verified. In order to do that, the following input
EVALP P 4

input is input to EVALPSN Psc:

P 4
input = { SPr(t0, v0, b) : [l, α], V al(v0, b, 0): [cs, α],

SPr(v0, t1, b) : [l, α], V al(v1, 0, 0): [cs, α],
SPr(v0, t2, 0): [f, α],
SPr(v1, v0, 0): [f, α],
SPr(t3, v1, 0): [f, α],
T an(t2, 0): [em, α], T an(t3, cw) : [fu, α] }.

Since process Pr0 is still ongoing, neither Pr1 nor Pr3 are permitted to
be set, and only process Pr2 is permitted to be set – as well as process
Pr1 – during the 2nd stage. Therefore, we have permission for setting process
Pr2,

Pr(p2, cw) : [xs, γ],

by EVALP clause Eqn. (29).

Now, both processes Pr0 and Pr2 are ongoing. Then, apparently any other
processes are not permitted to be set. Moreover, even if one of the processes

The Paraconsistent Annotated Logic Program EVALPSN 283

Pr0 and Pr2 has finished, process Pr3 is not permitted to be set until both
Pr0 and Pr2 finish. We show the safety verification for the last process Pr3

during the next stages.

5th Stage If neither process Pr0 nor Pr2 has finished yet, we have to
verify the safety of processes Pr1 and Pr3. The following input EVALP P 5

input

is input to EVALPSN Psc Eqn. (31):

P 5
input = { SPr(t0, v0, b) : [l, α], V al(v0, b, cw) : [cs, α],

SPr(v0, t1, b) : [l, α], V al(v1, cw, 0): [cm, α],
SPr(v0, t2, cw) : [l, α],
SPr(v1, v0, cw) : [l, α],
SPr(t3, v1, cw) : [l, α] }.

Then, since all sub-processes and valves are locked and controlled, neither
processes Pr1 nor Pr3 is permitted to be set. It is shown that process Pr3 is
not permitted to be set as follows:

• we have forbiddance from locking the three sub-processes SPr2,3,4 in
process Pr3 and controlling the two valves V0,1,

SPr(v0, t2, b) : [f, β], V al(v0, b, b) : [cs, β],
SPr(t3, v1, b) : [f, β], V al(v1, b, 0): [cs, β],
SPr(v1, v0, b) : [f, β],

by the EVALPSN clauses Eqn. (17) – (23) and the input EVALP P 5
input;

• therefore, we cannot have permission for setting process Pr3.

The finish conditions for process Pr2 are that tank T2 is fully filled with
cold water and tank T3 is empty. If process Pr2 has finished and its finish
conditions have been satisfied, then process Pr2 is permitted to be released
(unset) by EVALP Ppr Eqn. (56). It is also supposed that tank T3 is filled
with beer and that tank T2 is empty as preparation for the beer process Pr3

immediately after process Pr2 finishes. Then, process Pr3 has to be verified
as safe and started according to the process schedule, but process Pr3 cannot
be permitted to be set. We show the safety verification for process Pr3 during
the next stage.

6th Stage If process Pr2 has finished and its finish conditions have been
satisfied, the three sub-processes SPr2,3,4, valve V1, and the cross direction of
valve V0 are permitted to be released by EVALP clauses Eqns. (36) – (41) in
the EVALP Ppr. Since only process Pr0 is ongoing, the other three processes

284 K. Nakamatsu

Pr1,2,3 need to have their safety verified. In order to do so, the following input
EVALP P 6

input is input to EVALPSN Psc Eqn. (31):

P 6
input = { SPr(t0, v0, b) : [l, α], V al(v0, b, 0): [cs, α],

SPr(v0, t1, b) : [l, α], V al(v1, 0, 0): [cs, α],
SPr(v0, t2, 0): [f, α],
SPr(v1, v0, 0): [f, α],
SPr(t3, v1, 0): [f, α],
T an(t2, 0): [em, α], T an(t3, b) : [fu, α] }.

Since process Pr0 is still being processed, process Pr3 does not have its
safety verified due to the tank conditions and the safety property Val for valve
V0. Safety verification for process Pr3 is carried out as follows:

• we have the forbiddance from controlling the valve V0 mix,

V al(v0, b, b) : [cs, β],

by EVALPSN clause Eqn. (19);
• therefore, we cannot have permission for setting process Pr3 then. On the

other hand, even if process Pr0 has finished while process Pr2 is still being
processed, process Pr3 is not permitted to be set. If both processes Pr0

and Pr2 have finished, then process Pr3 is assured its safety and set. Then,
process Pr3 starts according to the process schedule.

Safety verification of subsequent stages is executed in a similar manner to
the preceding ones.

4 Before-after EVALPSN

We have introduced EVALPSN and its application to the safety verification
for pipeline valve control. This was for verifying the safety of each individ-
ual process; however, we still need to consider another safety verification for
process order. For example, recall the brewery pipeline processes of the pre-
vious Section. Dangerous liquids such as nitric acid and caustic soda are used
for cleaning the pipelines in the same pipeline. If those liquids are processed
continuously and mixed, explosion by neutralization could result. In order to
avoid such a dangerous event, the safety of process order should be strictly
verified. It is not so appropriate for EVALPSN safety verification to deal with
process order (before-after (bf) relations between processes). In order to deal
with process order in the same EVALPSN safety verification framework, we
provide a new interpretation of vector annotations in EVALPSN.

The Paraconsistent Annotated Logic Program EVALPSN 285

4.1 Before-after Relation in EVALPSN

First of all, we introduce a special literal R(pi, pj, t) whose vector annotation
represents the before-after relation between processes Pri(pi) and Prj(pj) at
the time t, and the literal R(pi, pj, t) is called a bf-literal.4

Definition 36 (bf-EVALPSN)

An extended vector annotated literal R(pi, pj , t) : [µ1, µ2] is called a
bf-EVALP literal, where µ1 is a vector annotation and µ2 ∈ {α, β, γ}.
If an EVALPSN clause contains bf-EVALP literals, it is called a bf-
EVALPSN clause or just a bf-EVALP clause if it contains no strong
negation. A bf-EVALPSN is a finite set of bf-EVALPSN clauses.

We provide some paraconsistent interpretations of vector annotations for
representing bf-relations, which are called bf-annotations. Strictly speaking,
bf-relations between processes are classified into 15 sorts according to bf-
relations between start/finish times of two processes. Suppose that there are
two processes, Pri with start time xs and finish time xf , and Prj with start
time ys and finish time yf . Then 15 sorts of bf-annotations are defined.

Before (be)/After (af)

Firstly, we define basic bf-relations before/after between two processes accord-
ing to the bf-relation between the start times of the two processes, which
are represented by the bf-annotations be/af, respectively. If one process has
started before/after another, then the bf-relations between those processes
are defined as ‘before(be)/after(af)’, respectively. The bf-relations also are
described in the process time chart Fig. 9 with the condition that process Pri

has started before process Prj starts. The bf-relation between their start/fin-
ish times is denoted by the inequality {xs < ys}.5 For example, the fact that at
time t “process Pri has started before process Prj starts” can be represented
by the bf-EVALP clause,

R(pi, pj, t) : [be, α].

The bf-relations before/after do not care when the two processes finish.

Disjoint Before (db)/After (da)

The bf-relations disjoint before/after between processes Pri and Prj are rep-
resented by the bf-annotations db/da, respectively. The expressions ‘disjoint

4 Hereafter in this Chapter the phrase ‘before-after’ is abbreviated as simply ‘bf’.
5 If time t1 is earlier than time t2, we conveniently denote the relation by the

inequality t1 < t2 in this Section.

286 K. Nakamatsu

xs Pri

ys Prj

Fig. 9. Bf-relations, Before/After

�
xs xfPri �

ys yfPrj

Fig. 10. Bf-relations disjoint before/after

�
xs xf

Pri �
ys yfPrj

Fig. 11. Bf-relations, Immediate Before/After

before/after’ imply that there is a time lag between the earlier process finish
time and the later process start time. They also are described in the process
time chart Fig. 10 with the condition that process Pri has finished before
process Prj starts. The bf-relation between their start/finish times is denoted
by the inequality {xf < ys}. For example, an obligation at time t that “process
Pri must start after process Prj finishes” can be represented by the bf-EVALP
clause,

R(pi, pj, t) : [da, β].

Immediate Before (mb)/After (ma)

The bf-relations immediate before/after between processes Pri and Prj are
represented by the bf-annotations mb/ma, respectively. The expressions ‘imme-
diate before/after’ imply that there is no time lag between the earlier process
finish time and the later process start time. The bf-relations also are described
in the process time chart Fig. 11 with the condition that process Pri has fin-
ished immediately before process Prj starts. The bf-relation between their
start/finish times is denoted by the equality {xf = ys}. For example, the
fact that at time t “process Pri has finished immediately before process Prj

starts” can be represented by the bf-EVALP clause,

R(pi, pj, t) : [mb, α].

Joint Before (jb)/After (ja)

The bf-relations, joint before/after between processes Pri and Prj are rep-
resented by the bf-annotations jb/ja, respectively. The expressions ‘joint
before/after’ imply that the two processes overlap and the earlier process has

The Paraconsistent Annotated Logic Program EVALPSN 287

�
xs xfPri

�
ys yfPrj

Fig. 12. Bf-relations joint before/after

�
xs xfPri

�
ys yfPrj

Fig. 13. Bf-relations s-included before/after

finished before the later one finishes. The bf-relations also are described in
the process time chart Fig. 12 with the condition that process Pri has started
before process Prj starts, and that process Pri has finished before process
Prj finishes. The bf-relation between their start/finish times is denoted by
the inequalities {xs < ys < xf < yf}. For example, the fact at time t “pro-
cess Pri has started before process Prj starts, and finishes before process Prj

finishes” can be represented by the bf-EVALP clause,

R(pi, pj, t) : [jb, α].

S-included Before (sb)/After (sa)

The bf-relations s-included before/after between processes Pri and Prj are
represented by the bf-annotations sb/sa, respectively. The expressions
‘s-included before/after’ imply that one process has started before the other,
and that they finish at the same time. The bf-relations also are described in
the process time chart Fig. 13 with the condition that process Pri has started
before process Prj starts, and they finish at the same time. The bf-relation
between their start/finish times is denoted by the equality and inequalities
{xs < ys < xf = yf}. For example, the fact that at time t “process Pri has
started before process Prj starts, and they finish at the same time” can be
represented by the bf-EVALP clause,

R(pi, pj, t) : [sb, α].

Included Before (ib)/After (ia)

The bf-relations included before/after between processes Pri and Prj are rep-
resented by the bf-annotations ib/ia, respectively. The expressions ‘included
before/after’ imply that one process has started/finished before/after another
one starts/finishes, respectively. The bf-relations also are described in the
process time chart Fig. 14 with the condition that process Pri has started

288 K. Nakamatsu

�
xs xfPri

�
ys yfPrj

Fig. 14. Bf-relations included before/after

�
xs xfPri

�
ys yfPrj

Fig. 15. Bf-relations f-included before/after

before process Prj starts, and finishes after process Prj finishes. The bf-
relation between their start/finish times is denoted by the inequalities {xs <
ys, yf < xf}. For example, an obligation at time t that “process Pri must
start before process Prj starts, and finish after process Prj finishes” can be
represented by the bf-EVALP clause,

R(pi, pj, t) : [ib, β].

F-included Before (fb)/After (fa)

The bf-relations f-included before/after between processes Pri and Prj are rep-
resented by the bf-annotations fb/fa, respectively. The expressions ‘f-included
before/after’ imply that the two processes have started at the same time, and
that one process finishes before the other. The bf-relations also are described
in the process time chart Fig. 15 with the condition that processes Pri and
Prj start at the same time, and that process Pri finishes after process Prj .
The bf-relation between their start/finish times is denoted by the equality and
inequality {xs = ys, yf < xf}. For example, the fact at time t “processes Pri

and Prj start at the same time, and that process Pri finishes after process
Prj” can be represented by the bf-EVALP clause,

R(pi, pj, t) : [fa, α].

Paraconsistent Before-after (pba)

The bf-relation paraconsistent before-after between processes Pri and Prj is
represented by the bf-annotation pba. The expression ‘paraconsistent before-
after’ implies that the two processes start at the same time and also finish
at the same time. The bf-relation is also described in the process time chart
Fig. 16 with the condition that processes Pri and Prj not only start at the

The Paraconsistent Annotated Logic Program EVALPSN 289

�
xs xfPri

�
ys yfPrj

Fig. 16. Bf-relation paraconsistent before-after

same time but also finish at the same time. The bf-relation between their
start/finish times is denoted by the equalities {xs = ys, yf = xf}. For exam-
ple, an obligation at time t “processes Pri and Prj must not only start but
also finish at the same time” can be represented by the bf-EVALP clause

R(pi, pj, t) : [pba, β].

Here we define the epistemic negation ¬1 that maps bf-annotations to
themselves.

If we consider the before-after measure over the 15 bf-annotations, obvi-
ously there exists a partial order(<h) based on the before-after measure, where
µ1 <h µ2 is intuitively interpreted that the bf-annotation µ1 denotes a more
“before” degree than the bf-annotation µ2, and µ1, µ2 ∈ {be, af, db, da, mb, ma,
jb, ja, ib, ia, sb, sa, fb, fa, pba}. If the bf-annotations µ1 and µ2 have the
same before-after degree, we denote it µ1 ≡h µ2. Then we have the following
ordering :

db <h mb <h jb <h sb <h ib <h fb <h pba <h

fa <h ia <h sa <h ja <h ma <h da

and
jb ≡h be <h af ≡h ja.

Definition 37 (Epistemic Negation ¬1 for Bf-annotations)

The epistemic negation ¬1 over the bf-annotations

{be, af, da, db, ma, mb, ja, jb, sa, sb, ia, ib, fa, fb, pba}

is obviously defined as the following mappings :

¬1(af) = be, ¬1(be) = af,

¬1(da) = db, ¬1(db) = da,

¬1(ma) = mb, ¬1(mb) = ma,

¬1(ja) = jb, ¬1(jb) = ja,

¬1(sa) = sb, ¬1(sb) = sa,

¬1(ia) = ib, ¬1(ib) = ia,

¬1(fa) = fb, ¬1(fb) = fa,

¬1(pba) = pba.

290 K. Nakamatsu

On the other hand, if we take the before-after knowledge(information)
amount of each bf-relation into account as another measure, obviously there
also exists another partial order(<v) in terms of the knowledge amount, where
µ1 <v µ2 is intuitively interpreted that the bf-annotation µ1 has less knowl-
edge amount in terms of before-after relation than the bf-annotation µ2. If
the annotations µ1 and µ2 have the same before-after knowledge amount, we
denote it µ1 ≡v µ2. Then we have the following ordering:

be <v µ1, µ1 ∈ { db, mb, jb, sb, ib },
af <v µ2, µ1 ∈ { da, ma, ja, sa, ia },

db ≡v mb ≡v jb ≡v sb ≡v ib ≡v fb ≡v pba ≡v

fa ≡v ia ≡v sa ≡v ja ≡v ma ≡v da

and
be ≡v af.

If we regard the before-after measure as the horizontal one and the before-
after knowledge amount as the vertical one, we obtain the complete bi-lattice
Tv(12)bf of bf-annotations.

Tv(12)bf = { ⊥12(0, 0), · · · , be(0, 8), · · · , db(0, 12), · · · , mb(1, 11), · · · ,

jb(2, 10), · · · , sb(3, 9), · · · , ib(4, 8), · · · , fb(5, 7), · · · ,

be(6, 0), · · · , pba(6, 6), · · · , fa(7, 5), · · · , af(8, 0), · · · ,

ia(8, 4), · · · , sa(9, 3), · · · , ja(10, 2), · · · , ma(11, 1), · · · ,

da(12, 0), · · · ,�12(12, 12)},

which is described as the Hasse diagram in Fig. 17.

We note that a bf-EVALP literal,

R(pi, pj, t) : [µ1(m, n), µ2],
where µ2 ∈ {α, β, γ} and
µ1 ∈ {be, db, mb, jb, sb, ib, fb, pba, fa, ia, sa, jb, ma, da, af},

is not well annotated if m
= 0 and n
= 0, however, since the bf-EVALP literal
is equivalent to the following two well annotated bf-EVALP literals:

R(pi, pj) : [(m, 0), µ] and R(pi, pj) : [(0, n), µ].

Therefore, such non-well annotated bf-EVALP literals can be dealt with
as the conjunction of two well annotated EVALP literals. Take, for example,
the non-well annotated bf-EVALP clause,

R(pi, pj, t1) : [(k, l), µ1] ← R(pi, pj, t2) : [(m, n), µ2],

The Paraconsistent Annotated Logic Program EVALPSN 291

�

�� afterbefore

�

knowledge

⊥12

�12

af

db damb majb jasb saib iafb fapba

Fig. 17. The complete bi-lattice Tv(12)bf of bf-annotations

where k
= 0, l
= 0, m
= 0 and n
= 0. It can be equivalently transformed into
the two well annotated bf-EVALP clauses,

R(pi, pj, t1) : [(k, 0), µ1] ← R(pi, pj, t2) : [(m, 0), µ2] ∧R(pi, pj, t2) : [(0, n), µ2],
R(pi, pj, t1) : [(0, l), µ1] ← R(pi, pj, t2) : [(m, 0), µ2] ∧R(pi, pj, t2) : [(0, n), µ2].

4.2 Implementation of bf-EVALPSN

We now explain how to implement bf-EVALPSN in process order safety
verification systems. For simplicity, we assume that one process does not
start/finish with another at the same time, however, the process order con-
trol system can deal with immediately before/after relations between two
processes. Then, we do not have to take the bf-annotations, sb/sa, fb/fa
and pba into account, but only the ten bf-annotations corresponding to the
following vector annotations:

before(be)/after(af), (0, 4)/(4, 0),
discrete before(db)/after(da), (0, 7)/(7, 0),
immediate before(mb)/after(ma), (1, 6)/(6, 1),

292 K. Nakamatsu

�� afterbefore

�

knowledge

⊥7

�7

be af

db damb majb jaib ia

Fig. 18. The complete bi-lattice Tv(7)bf of Bf-annotations

joint before(jb)/after(ja), (2, 5)/(5, 2),
included before(ib)/after(ia). (3, 4)/(4, 3).

The complete bi-lattice Tv(7)bf of those bf-annotations are described in
Fig. 18.

Example 8

Suppose that there are three processes Pr1(id p1), Pr2(id p2) and Pr3(id p3)
appearing, and the next process Pr4(id p4) not appearing in the process time
chart of Fig. 19.

Those processes are supposed to be processed according to the process
schedule in Fig. 19. Then, we consider three bf-relations represented by the
three bf-EVALP clauses Eqns.(61) – (63) that are inferred by each process
start/finish information based on the time sequence t0, · · · , t7 in Fig. 19:

R(p1, p2, t) : [(i1, j1), α], (61)
R(p2, p3, t) : [(i2, j2), α], (62)
R(p3, p4, t) : [(i3, j3), α]. (63)

The Paraconsistent Annotated Logic Program EVALPSN 293

�
�

� time

Proc.

P r3

Pr2

Pr1

t0 t1 t2 t3 t4 t5 t6 t7

�

�

�

Fig. 19. Process time chart

At time (t0): no process has started yet. Thus, we have no knowledge in
terms of each bf-relation. Therefore, we have the bf-EVALP clauses,

R(p1, p2, t0) : [(0, 0), α],
R(p2, p3, t0) : [(0, 0), α],
R(p3, p4, t0) : [(0, 0), α].

At time (t1): only process Pr1 has started before process Pr2 starts, and
the bf-literal R(p1, p2, t1) has the bf-annotation be(0, 4). Because the four
bf-relations ‘disjoint before’db (0, 7), ‘immediately before’mb (1, 6), ‘joint
before’jb (2, 5) or ‘included before’ib (3, 4) could be the final bf-relation
between processes Pr1 and Pr2, thus the greatest lower bound be(0, 4) of
those vector annotations (0, 7), (1, 6), (2, 5) and (3, 4) becomes the vector
annotation of the bf-literal R(p1, p2, t1). Other bf-literals have the bottom
vector annotation (0, 0). Therefore, we have the bf-EVALP clauses,

R(p1, p2, t1) : [(0, 4), α],
R(p2, p3, t1) : [(0, 0), α],
R(p3, p4, t1) : [(0, 0), α].

At time (t2): the second process Pr2 also has started before process
Pr1 finishes. Then, the two bf-relations ‘joint before’jb(2, 5) or ‘included
before’ib(3, 4) could be the final bf-relation between processes Pr1 and
Pr2 at this time. Thus, the greatest lower bound (2, 4) of the vector
annotations (2, 5) and (3, 4) has to become the vector annotation of the
bf-literal R(p1, p2, t2). In addition, the bf-literal R(p2, p3, t2) has the vec-
tor annotation (0, 4) as well as the bf-literal R(p1, p2, t1), since process
Pr2 has also started before process Pr3 starts. The bf-literal R(p3, p4, t2)
has the bottom vector annotation (0, 0), since process Pr3 has not started
yet. Therefore, we have the bf-EVALP clauses,

R(p1, p2, t2) : [(2, 4), α],
R(p2, p3, t2) : [(0, 4), α],
R(p3, p4, t2) : [(0, 0), α].

294 K. Nakamatsu

At time (t3): process Pr3 has started before both processes Pr1 and Pr2

finish. Then, the bf-literals R(p1, p2, t3) and R(p2, p3, t3) have the same
vector annotation (2, 4) as well as the bf-literal R(p1, p2, t2). Moreover,
the bf-literal R(p3, p4, t3) has the vector annotation (0, 4) as well as the
bf-literal R(p1, p2, t1). Therefore, we have the bf-EVALP clauses,

R(p1, p2, t3) : [(2, 4), α],
R(p2, p3, t3) : [(2, 4), α],
R(p3, p4, t3) : [(0, 4), α].

At time (t4): process Pr3 has finished before both processes Pr1 and Pr2

finish. Then, the bf-literal R(p1, p2, t4) still should have the same vector
annotation (2, 4) as well as the previous time t3. In addition, the bf-literal
R(p2, p3, t4) has its final bf-annotation ib(3, 4). There are still two alter-
natives for the final bf-relation between processes Pr3 and Pr4: (1) if
process Pr4 starts immediately after process Pr3 finishes, the bf-literal
R(p3, p4, t4) has the bf-annotation mb(1, 6); (2) if process Pr4 does not
start immediately after process Pr3 finishes, the bf-literal R(p3, p4, t4)
has the bf-annotation db(0, 7). Either way, we have only the information
that process Pr3 has just finished at time t4, which can be represented by
the vector annotation (0, 6) that is the greatest lower bound of the vector
annotations (1, 6) and (0, 7). Therefore, we have the bf-EVALP clauses,

R(p1, p2, t4) : [(2, 4), α],
R(p2, p3, t4) : [(3, 4), α],
R(p3, p4, t4) : [(0, 6), α].

At time (t5): process Pr1 has finished before process Pr2 finishes. Then,
the bf-literal R(p1, p2, t5) has its final bf-annotation jb(2, 5), and the bf-
literal R(p3, p4, t5) also has its final bf-annotation jb(0, 7), because process
Pr4 has not started yet. Therefore, we have the bf-EVALP clauses,

R(p1, p2, t5) : [jb(2, 5), α],
R(p2, p3, t5) : [ib(3, 4), α],
R(p3, p4, t5) : [db(0, 7), α],

and all three bf-relations have been determined at time t5 before process
Pr2 finishes and process Pr4 starts.

In Example 8, the detected process start/finish information was input to
the EVALPSN process order safety verification systembf-EVALPSN process
order safety verification system to calculate and update the vector annotations
of the bf-EVALP literals at each time ti(i = 0, 1, 2, . . . , 7). In the bf-EVALPSN
verification system, the safety of process order is verified before each process
starts. For example, if there is a safety property rule “process Pri must finish

The Paraconsistent Annotated Logic Program EVALPSN 295

�Pr0 �Pr0

�Pr1 �Pr1

Fig. 20. Bf-EVALP safety verification example

before process Prj starts”, then the safety of the process order should be
assured before process Prj starts. Details of the bf-EVALP safety verification
for process order will be introduced with a simple example in the following
Section.

4.3 Safety Verification in bf-EVALPSN

We introduce the basic idea of bf-EVALPSN safety verification for process
order. Suppose that two processes Pr0 and Pr1 are processed repeatedly, and
that process Pr1 must be processed immediately before process Pr0 starts,
as shown in Fig. 20.

In order to verify the safety of the process order, we may have the following
safety properties SP-0 and SP-1 of processes Pr0 and Pr1:

SP-0 process Pr0 must start immediately after process Pr1 finishes,
SP-1 process Pr1 must start in a while after (disjoint after) process Pr0

finishes.

Then, safety properties SP-0 and SP-1 need to be verified immediately before
processes Pr0 and Pr1 start, respectively.

In order to verify the bf-relation ‘immediate after’ in the safety property
SP-0, it should be verified whether process Pr1 has finished immediate before
process Pr0 starts or not, and the safety verification should be carried out
immediately after process Pr1 finishes. Then the bf-literal R(p0, p1, t) must
have the vector annotation (6, 0), which denotes that process Pr1 has finished
but that process Pr0 has not yet started. Therefore, the safety property SP-0
is translated to the bf-EVALPSN clauses,

SP-0

Start(p0, t) : [(0, 1), γ] ← R(p0, p1, t) : [(6, 0), α] ∧
∼ R(p0, p1, t) : [da(7, 0), α], (64)

Start(p0, t) : [(0, 1), β] ← ∼ Start(p0, t) : [(0, 1), γ], (65)

where the literal Start(pi, t) represents “process Pri starts at time t”.

On the other hand, in order to verify the bf-relation ‘disjoint after’ in
safety property SP-1, it needs to be verified whether or not there is a time
lag between the process Pr0 finish time and the process Pr1 start time. Then,

296 K. Nakamatsu

the bf-literal R(p1, p0, t) must have the vector annotation da(7, 0). Therefore,
the safety property SP-1 is translated to the bf-EVALPSN clauses,

SP-1

Start(p1, t) : [(0, 1), γ] ← R(p1, p0, t) : [da(7, 0), α], (66)
Start(p1, t) : [(0, 1), β] ← ∼ Start(p1, t) : [(0, 1), γ]. (67)

Now we show how to use the safety properties SP-0 and SP-1 in the bf-
EVALPSN clauses Eqns. (64) – (67) for verifying the process order safety. In
order to verify the safety for the process order of Fig. 20, the following safety
verification cycle is applied repeatedly:

[Safety Verification Cycle]

1st Step (safety verification before process Pr1 starts):
Suppose that process Pr1 has not yet started at time t1. If process Pr0 has
already finished at time t1, we have the bf-EVALP clause,

R(p1, p0, t1) : [(7, 0), α]. (68)

On the other hand, if process Pr0 has just finished at time t1, we have the
bf-EVALP clause

R(p1, p0, t1) : [(6, 0), α]. (69)

If the bf-EVALP clause (68) is input to the safety property SP-1 Eqns. (66),
(67), we obtain the EVALP clause Start(p1, t1) : [(0, 1), γ], and the safety of
process Pr1 starting is assured. On the other hand, if the bf-EVALP clause
Eqn. (69) is input to the same safety property SP-1, we obtain the EVALP
clause Start(p1, t1) : [(0, 1), β], and the safety of process Pr1 is not assured.

2nd Step (safety verification for process Pr0 starting):
Suppose that process Pr0 has not yet started at time t2. If process Pr1 has
just finished at time t2, we have the bf-EVALP clause,

R(p0, p1, t2) : [(6, 0), α]. (70)

On the other hand, if the process Pr1 has not finished yet at the time t2, we
have the bf-EVALP clause,

R(p0, p1, t2) : [af(4, 0), α]. (71)

If the EVALP clause Eqn. (70) is input to the safety property SP-0
Eqns. (64), (65), we obtain the EVALP clause Start(p0, t2) : [(0, 1), γ], and
the safety of process Pr0 is assured. On the other hand, if the bf-EVALP
clause Eqn. (71) is input to the same safety property SP-0, we obtain the
EVALP clause Start(p1, t) : [(0, 1), β], and the safety of process Pr0 is not
assured.

The Paraconsistent Annotated Logic Program EVALPSN 297

Example 9

In this example we show a more practical bf-EVALPSN safety verification for
process order. Let us remind ourselves that a more complicated schedule for
pipeline processes already appeared in Fig. 7. We propose the following safety
properties for the process schedule:

SPR-0 process Pr0 must start before any other process,
SPR-1 process Pr1 must start immediately after process Pr0 starts,
SPR-2 process Pr2 must start immediately after process Pr1 finishes,
SPR-3 process Pr3 must start immediately after both processes Pr0 and

Pr2 finish.

Then the safety property SPR-0 is translated to the bf-EVALPSN clauses,

SPR-0

Start(p0, t) : [(0, 1), γ] ← ∼ R(p0, p1, t) : [(4, 0), α] ∧
∼ R(p0, p2, t) : [(4, 0), α] ∧
∼ R(p0, p3, t) : [(4, 0), α],

Start(p0, t) : [(0, 1), β] ← ∼ Start(p0, t) : [(0, 1), γ]. (72)

As well as the safety property SPR-0, the other safety properties SPR-1,
SPR-2 and SPR-3 are also translated to the bf-EVALPSN clauses,

SPR-1

Start(p1, t) : [(0, 1), γ] ← R(p1, p0, t) : [(4, 0), α],
Start(p1, t) : [(0, 1), β] ← ∼ Start(p1, t) : [(0, 1), γ], (73)

SPR-2

Start(p2, t) : [(0, 1), γ] ← R(p2, p1, t) : [(6, 0), α] ∧
∼ R(p2, p1, t) : [(7, 0), α],

Start(p2, t) : [(0, 1), β] ← ∼ Start(p2, t) : [(0, 1), γ], (74)

SPR-3

Start(p3, t) : [(0, 1), γ] ← R(p3, p0, t) : [(6, 0), α] ∧
R(p3, p2, t) : [(6, 0), α] ∧
∼ R(p3, p2, t) : [(7, 0), α],

Start(p3, t) : [(0, 1), γ] ← R(p3, p0, t) : [(6, 0), α] ∧
R(p3, p2, t) : [(6, 0), α] ∧
∼ R(p3, p0, t) : [(7, 0), α],

Start(p3, t) : [(0, 1), β] ← ∼ Start(p3, t) : [(0, 1), γ]. (75)

298 K. Nakamatsu

Now, we describe the process order safety verification based on the process
schedule of Fig. 7.

[Safety Verification Process]

Initial Stage (time t1): If no process has started at time t1, we have no
information in terms of all bf-relations between processes Pr0,Pr1,Pr2 and
Pr3, thus, we have the bf-EVALP clauses,

R(p0, p1, t1) : [(0, 0), α], (76)
R(p0, p2, t1) : [(0, 0), α], (77)
R(p0, p3, t1) : [(0, 0), α]. (78)

In order to verify the safety for starting the first process Pr0, the bf-
EVALP clauses Eqns. (76) – (78) are input to the safety property SPR-0
Eqn. (72) in EVALPSN. Then we obtain the EVALP clause Start(p0, t1) :
[(0, 1), γ], and the safety for the process Pr0 start is assured at time t1; oth-
erwise, it is not assured.

2nd Stage (time t2): Suppose that only process Pr0 has already started
at time t2. Then, we have the bf-EVALP clauses,

R(p1, p0, t2) : [(4, 0), α]. (79)

In order to verify the safety of starting the second process Pr1, the bf-
EVALP clause Eqn. (79) is input to the safety property SPR-1 Eqn. (73) in
bf-EVALPSN. Then, we obtain the EVALP clause Start(p1, t2) : [(0, 1), γ],
and the safety of process Pr1 starting is assured at time t2; otherwise, it is
not assured.

3rd Stage (time t3): Suppose that processes Pr0 and Pr1 have already
started, and neither of them has finished yet at time t3. Then, we have the
bf-EVALP clauses,

R(p2, p0, t3) : [(4, 0), α], (80)
R(p2, p1, t3) : [(4, 0), α]. (81)
R(p1, p3, t3) : [(0, 4), α]. (82)

In order to verify the safety of starting the third process Pr2, if the
EVALP clause Eqn. (81) is input to the safety property SPR-2 Eqn. (74)
in bf-EVALPSN, then, we obtain the EVALP clause Start(p2, t3) : [(0, 1), β],
and the safety of process Pr2 starting is not assured at time t3. On the other
hand, if process Pr1 has just finished at time t3, then we have the bf-EVALP
clause

R(p2, p1, t3) : [(6, 0), α]. (83)

The Paraconsistent Annotated Logic Program EVALPSN 299

If the bf-EVALP clause (83) is input to the safety property SPR-2
Eqn. (74) in EVALPSN, then we obtain the EVALP clause Start(p2, t3) :
[(0, 1), γ], and the safety of process Pr2 starting is assured.

4th Stage (time t4): Suppose that processes Pr0, Pr1 and Pr2 have already
started, that processes Pr0 and Pr1 have already finished, and only process
Pr3 has not yet started at time t4. Then, we have the bf-EVALP clauses

R(p3, p0, t4) : [(7, 0), α], (84)
R(p3, p1, t4) : [(7, 0), α], (85)
R(p3, p2, t4) : [(4, 0), α]. (86)

In order to verify the safety of starting the last process Pr3, if the
bf-EVALP clauses Eqn. (84) and Eqn. (86) are input to the safety prop-
erty SPR-3 Eqn. (75) in bf-EVALPSN, then we obtain the EVALP clause
Start(p3, t4) : [(0, 1), β], and the safety of process Pr3 starting is not assured
at time t4. On the other hand, if process Pr2 has just finished at time t4, then
we have the bf-EVALP clause

R(p3, p2, t4) : [(6, 0), α]. (87)

If the bf-EVALP clause Eqn. (87) is input to the safety property SPR-3
Eqn. (75) in bf-EVALPSN, then we obtain the EVALP clause Start(p3, t4) :
[(0, 1), γ], and the safety of process Pr3 starting is assured.

5 Conclusion and Future Work

In this Chapter, we have introduced a paraconsistent annotated logic pro-
gram called EVALPSN that can deal with defeasible deontic reasoning and
contradiction as knowledge, and applied it to the formal safety verification for
pipeline valve control. Moreover we have proposed a new EVALPSN called
bf-EVALPSN that can deal with before-after relations between two processes
as paraconsistent notions represented in vector annotations, and applied it to
process order safety verification for pipeline processes.

Our formal safety verification methods based on EVALPSN/bf-EVALPSN
have the following advantages and disadvantages:

Advantages

If the safety verification EVALPSN is locally stratified, it can be easily imple-
mented in Prolog, C language, PLC (Programmable Logic Controller)
ladder program, and so forth.

It has been proved that the method can be implemented as electronic circuits
on micro chips [41]. Therefore, if real-time processing is required in the
system, the method might be very useful.

300 K. Nakamatsu

Our bf-EVALP safety verification method for process order control is an
essential application of paraconsistent annotated logic in the sense of
treating before-after relations between processes in paraconsistent vector
annotations.

Safety verification methods for both process control and process order control
can be implemented under the same environment.

Disadvantages

Since EVALPSN itself is basically not a tool for formal safety verification, it
includes complicated and redundant expressions to construct safety verifi-
cation systems. Therefore, it would be better to develop a safety verification
oriented tool or programming language based on EVALPSN if EVALPSN
is applied to formal safety verification.

It is difficult to understand how to fully utilize EVALPSN for practical
implementations due to paraconsistent annotated logic.

In the future, we are considering developing (i) a more efficient bf-
EVALPSN process order safety verification system for real-time processing,
and (ii) EVALPSN to deal with temporal reasoning and/or tense notion (such
as past and future) toward more practical applications.

Acknowledgements

First of all I would like to thank the Editors – Prof. John Fulcher and Prof.
Lakhmi C. Jain – for giving me the opportunity to contribute to this Hand-
book. Throughout the preparation of this chapter, I have benefited from the
constructive suggestions and comments of various people. Prof. Fulcher and
Dr. Patrick T. Dougherty kindly assisted me in proofreading and correcting
my English; my sincere thanks go to them both.

References

1. Apt K, et al. (1988) Towards a theory of declarative knowledge. In: Minker J
(ed) Foundation of Deductive Database and Logic Programs. Morgan Kaufmann,
San Mateo, CA: 89–148.

2. Belnap ND (1977) A useful four-valued logic. In: Reidel D (ed) Modern Uses of
Many-Valued Logic: 8–37.

3. Billington D (1993) Defeasible logic is Stable, J.Logic and Computation, (3):
379–400.

4. Billington D (1997) Conflicting literals and defeasible logic. In: Nayak A, Pag-
nucco M (eds) Proc. 2nd Australian Workshop Commonsense Reasoning, 1
December, Perth, Western Australia, The Australian Computer Society: 1–15.

5. Blair HA, Subrahmanian VS (1989) Paraconsistent logic programming.
Theoretical Computer Science, 68: 135–154.

The Paraconsistent Annotated Logic Program EVALPSN 301

6. da Costa NCA, Subrahmanian VS, Vago C (1989) The paraconsistent logics
PT . Zeitschrift für Mathematische Logic und Grundlangen der Mathematik, 37:
139–148.

7. Dressler O (1988) An extended basic ATMS. In: Reinfrank M, et al. (eds) Proc.
2nd Intl. Workshop Non-monotonic Reasoning, 13-15 June, Grassau, Germany.
Lecture Notes in Computer Science LNCS 346, Springer-Verlag, Berlin: 143–154.

8. Fitting M (1991) Bilattice and the semantics of logic programming. J. Logic
Programming, 11: 91–116.

9. Geerts P, Laenens F, Vermeir D (1998) Defeasible logics In: Gabbay DM, Smets
PH (eds) Handbook of Defeasible Reasoning and Uncertainity Management
Systems 2. Kluwer Academic Publishers, The Netherlands: 175–210.

10. Gelfond M, Lifschitz V (1989) The stable model semantics for logic program-
ming. In: Kowalsky RA, Bowen KA (eds) Proc. 5th Intl. Conf. and Symp.
Logic Programming (ICLP/SLPSS), 15–19 August, Seattle, WA, MIT Press,
Cambridge, MA: 1070–1080.

11. Gelder AV, Ross KA, Schlipf JS (1991) The well-founded semantics for general
logic programs. J. ACM, 38: 620–650.

12. Gordon MJC, Melham TF (1993) Introduction to HOL. Cambridge University
Press, UK.

13. Jaskowski S (1948) Propositional calculus for contradictory deductive system
(English translation of the original Polish paper). Studia Logica, 24: 143–157.

14. Kifer M, Subrahmanian VS (1992) Theory of generalized annotated logic
programming and its applications. J. Logic Programming, 12: 335–368.

15. Lloyd JW (1987) Foundations of Logic Programming (2nd ed). Springer-Verlag,
Berlin.

16. Meyer J-JC, Wiering RJ (eds) Deontic Logic in Computer Science. Wiley,
Chichester, UK.

17. McNamara P, Prakken H (eds) (1999) Norms, Logics and Information Systems
(New Studies in Deontic Logic and Computer Science, Frontiers in Artificial
Intelligence and Applications 49). IOS Press, The Netherlands.

18. Moore R (1985) Semantical considerations on non-monotonic logic. Artificial
Intelligence, 25: 75–94.

19. Morley JM (1996) Safety Assurance in Interlocking Design. PhD Thesis, School
of Informatics, University of Edinburgh, UK.

20. Nakamatsu K, Suzuki A (1994) Annotated semantics for default reasoning. In:
Dai R (ed) Proc. 3rd Pacific Rim Intl. Conf. Artificial Intelligence (PRICAI94),
15–18 August, Beijing, China. International Academic Publishers, China: 180–
186.

21. Nakamatsu K, Suzuki A (1998) A nonmonotonic ATMS based on annotated
logic programs. In: Wobcke W, et al. (eds) Agents and Multi-Agents Systems,
Lecture Notes in Artificial Intelligence LNAI 1441. Springer-Verlag, Berlin:
79–93.

22. Nakamatsu K, Abe JM (1999) Reasonings based on vector annotated logic pro-
grams. In: Mohammadian M (ed) Computational Intelligence for Modelling,
Control & Automation (CIMCA99) (Concurrent Systems Engineering Series
55). IOS Press, The Netherlands: 396–403.

23. Nakamatsu K, Abe JM, Suzuki A (1999) Defeasible reasoning between conflict-
ing agents based on VALPSN. In: Tessier C, Chaudron L (eds) Proc. AAAI
Workshop Agents Conflicts. 18 July, Orlando, FL. AAAI Press, Menlo Park,
CA: 20–27.

302 K. Nakamatsu

24. Nakamatsu K, Abe JM, Suzuki A (1999) Defeasible reasoning based on VALPSN
and its application. In: Nayak A, Pagnucco M (eds) Proc.3rd Australian Com-
monsense Reasoning Workshop, 7 December, Sydney, Australia, University of
Newcastle: 114–130.

25. Nakamatsu K (2001) On the relation between vector annotated logic programs
and defeasible theories. Logic and Logical Philosophy, 8: 181–205.

26. Nakamatsu K, Abe JM, Suzuki A (2001) A defeasible deontic reasoning system
based on annotated logic programming. In: Dubois DM (ed) Proc. 4th Intl. Conf.
Computing Anticipatory Systems (CASYS2000)(AIP Conference Proceedings
573), 7–12 August, Liege, Belgium. American Institute of Physics, New York,
NY: 609–620.

27. Nakamatsu K, Abe JM, uzuki A (2001) Annotated semantics for defeasible deon-
tic reasoning. In: Ziarko W, Yao Y (eds) Proc. 2nd Intl. Conf. Rough Sets and
Current Trends in Computing (RSCTC2000), 16–19 October, Banff, Canada,
(Lecture Notes in Artifiial Intelligence LNAI 2005). Springer-Verlag, Berlin:
432–440.

28. Nakamatsu K, Abe JM, Suzuki A (2002) Extended vector annotated logic
program and its application to robot action control and safety verification.
In: Abraham A, et al. (eds) Hybrid Information Systems (Advances in Soft
Computing Series). Physica-Verlag, Heidelberg, Germany: 665–680.

29. Nakamatsu K, Suito H, Abe JM, Suzuki A (2002) Paraconsistent logic program
based safety verification for air traffic control. In: El Kamel A, et al. (eds)
Proc. IEEE Intl. Conf. System, Man and Cybernetics (SMC02), 6–9 October,
Hammamet,Tunisia. IEEE SMC (CD-ROM).

30. Nakamatsu K, Abe JM, Suzuki A (2002) A railway interlocking safety verifica-
tion system based on abductive paraconsistent logic programming. In: Abraham
A, et al. (eds) Soft Computing Systems (HIS02) – Frontiers in Artificial
Intelligence and Applications 87. IOS Press, The Netherlands: 775–784.

31. Nakamatsu K, Abe JM, Suzuki A (2002) Defeasible deontic robot control based
on extended vector annotated logic programming. In: Dubois DM (ed) Proc.
5th Intl. Conf. Computing Anticipatory Systems (CASYS2001)(AIP Conference
Proceedings 627), 13–18 August, Liege, Belgium. American Institute of Physics,
New York, NY: 490–500.

32. Nakamatsu K, Mita Y, Shibata T (2003) Defeasible deontic action control based
on paraconsistent logic program and its hardware application. In: Mohamma-
dian M (ed) Proc. Intl. Conf. Computational Intelligence for Modelling Control
and Automation (CIMCA2003), 12–14 February, Vienna, Austria. IOS Press,
The Netherlands (CD-ROM).

33. Nakamatsu K, Seno T, Abe JM, Suzuki A (2003) Intelligent real-time traffic
signal control based on a paraconsistent logic program EVALPSN. In: Wang G,
et al. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
(RSFDGr2003), 26–29 May, Chongqing, China. Lecture Notes in Artificial
Intelligence LNAI 2639. Springer-Verlag, Berlin: 719–723.

34. Nakamatsu K, Komaba H, Suzuki A (2004) Defeasible deontic control for
discrete events based on EVALPSN. In: Tsumoto S, et al. (eds) Proc. 4th
Intl. Conf. Rough Sets and Current Trends in Computing (RSCTC2004), 1–5
June, Uppsala, Sweden, Lecture Notes in Artificial Intelligence LNAI 3066.
Springer-Verlag, Berlin: 310–315.

The Paraconsistent Annotated Logic Program EVALPSN 303

35. Nakamatsu K, Ishikawa R, Suzuki A (2004) A paraconsistent based control for a
discrete event cat and mouse. In: Negoita MG, et al. (eds) Proc. 8th Intl. Conf.
Knowledge-Based Intelligent Information and Engineering Systems (KES2004),
20–25 September, Wellington, NZ. Lecture Notes in Artificial Intelligence LNAI
3214, Springer-Verlag, Berlin: 954–960.

36. Nakamatsu K, Chung S-L, Komaba H, Suzuki A (2005) A discrete event control
based on EVALPSN stable model. In: Slezak D, et al. (eds) Rough Sets, Fuzzy
Sets, Data Mining and Granular Computing (RSFDGrC2005), 31 August – 3
September, Regina, Canada. Lecture Notes in Artificial Intelligence LNAI 3641.
Springer-Verlag, Berlin: 671–681.

37. Nakamatsu K, Abe JM, Akama S (2005) An intelligent safety verification based
on a paraconsistent logic program. In: Khosla R, et al. (eds) Proc. 9th Intl. Conf.
Knowledge-Based Intelligent Information and Engineering Systems (KES2005),
14–16 September, Melbourne, Australia. Lecture Notes in Artificial Intelligence
LNAI 3682, Springer-Verlag, Berlin: 708–715.

38. Nakamatsu K, Kawasumi K, Suzuki A (2005) Intelligent verification for pipeline
based on EVALPSN. In: Nakamatsu K, Abe JM (eds) Advances in Logic Based
Intelligent Systems, Frontiers in Artificial Intelligence and Applications 132. IOS
Press, The Netherlands: 63–70.

39. Nakamatsu K, Suzuki A (2005) Autoepistemic theory and paraconsistent logic
program. In: Nakamatsu K, Abe JM (eds) Advances in Logic Based Intelligent
Systems, Frontiers in Artificial Intelligence and Applications 132. IOS Press,
The Netherlands: 177–184.

40. Nakamatsu K, Suzuki A (2005) Annotated semantics for non-monotonic rea-
sonings in artificial intelligence – I, II, III, IV. In: Nakamatsu K, Abe JM (eds)
Advances in Logic Based Intelligent Systems, Frontiers in Artificial Intelligence
and Applications 132. IOS Press, The Netherlands: 185–215.

41. Nakamatsu K, Mita Y, Shibata T (2007) An intelligent action ontrol sys-
tem based on extended vector annotated logic program and its hardware
implementation. J. Intelligent Automation and Soft Computing,13(3): 289–304.

42. Nute D (1987) Defeasible reasoning. In: Stohr EA, et al. (eds) Proc. 20th Hawaii
Intl. Conf. System Science (HICSS87), 6–9 January, Kailua-Kona, Hawaii.
University of Hawaii, Hawaii: 470–477.

43. Nute D (1992) Basic defeasible logics. In: del Cerro LF, Penttonen M (eds)
Intensional Logics for Programming. Oxford University Press, UK: 125–154.

44. Nute D (1994) Defeasible logic In: Gabbay DM, et al. (eds) Handbook of Logic in
Artificial Intelligence and Logic Programming 3. Oxford University Press, UK:
353–396.

45. Nute D (1997) Apparent obligatory. In: Nute D (ed) Defeasible Deontic Logic,
Synthese Library 263, Kluwer Academic Publishers, The Netherlands: 287–316.

46. Prakken H (1997) Logical tools for modelling legal argument. Law and
Philosophy Library 32. Kluwer Academic Publishers, The Netherlands.

47. Przymusinski TC (1988) On the declarative semantics of deductive databases
and logic programs. In: Minker J (ed) Foundation of Deductive Database and
Logic Programs Morgan Kaufmann: 193–216.

48. Reiter R (1980) A logic for default reasoning. Artificial Intelligence, 13: 81–123.
49. Shepherdson JC (1998) Negation as failure, completion and stratification. In:

Gabbay DM, et al. (eds) Handbook of Logic in Artificial Intelligence and Logic
Programming 5, Oxford University Press, UK: 356–419.

304 K. Nakamatsu

50. Subrahmanian VS (1994) Amalgamating knowledge bases. ACM Trans.
Database Systems, 19: 291–331.

51. Subrahmanian VS (1987) On the semantics of qualitative logic programs. In:
Proc. 4th IEEE Symp. Logic Programming (SLP87), 31 August – 4 September,
IEEE Computer Society Press, San Francisco, CA: 178–182.

52. Visser A (1987) Four valued semantics and the liar. J. Philosophical Logic, 13:
99–112.

Resources

1 Logic Programming

Lloyd JW (1987) Foundations of Logic Programming (2nd ed).Springer-Verlag,
Berlin.

Gabbay DM et al. (eds) (1998) Logic Programming – Handbook of Logic in
Artificial Intelligence and Logic Programming Vol.5. Oxford University Press,
UK.

2 Paraconsistent Annotated Logic

da Costa NCA, Subrahmanian VS, Vago C (1989) The paraconsistent logics
PT . Zeitschrift für Mathematische Logic und Grundlangen der Mathematik
37: 139–148.

Blair HA, Subrahmanian VS (1989) Paraconsistent logic programming.
Theoretical Computer Science, 68: 135–154.

3 Defeasible Logic

Nute D (1992) Basic defeasible logics. In: del Cerro LF, Penttonen M (eds)
Intensional Logics for Programming Oxford University Press, UK: 125–154.

Geerts P, Laenens F, Vermeir D (1998) Defeasible logics. In: Gabbay DM,
Smets PH (eds) Handbook of Defeasible Reasoning and Uncertainity Manage-
ment Systems 2 Kluwer Academic Publishers, The Netherlands: 175–210.

306 K. Nakamatsu

4 Defeasible Deontic Logic

Nute D (ed) Defeasible Deontic Logic Synthese Library 263, Kluwer Academic
Publishers, The Netherlands.

5 ALPSN, VALPSN, EVALPSN

Nakamatsu K, Suzuki A (1994) Annotated semantics for default reasoning.
In: Dai R (ed) Proc. 3rd Pacific Rim Intl. Conf. Artificial Intelligence (PRI-
CAI94), 15–18 August, Beijing, China, International Academic Publishers,
China: 180–186.

Nakamatsu K (2001) On the relation between vector annotated logic programs
and defeasible theories. Logic and Logical Philosophy, 8: 181–205.

Nakamatsu K, Abe JM, Suzuki A (2001) Annotated semantics for defeasible
deontic reasoning. In: Ziarko W, Yao Y (eds) Proc. 2nd Intl. Conf. Rough
Sets and Current Trends in Computing (RSCTC2000), Banff, 16–19 October,
Banff, Canada. Lecture Notes in Artificial Intelligence LNAI 2005, Springer-
Verlag, Berlin: 432–440.

6 EVALPSN Safety Verification

Nakamatsu K (2004) Intelligent information systems based on paraconsistent
logic programs. In: Abraham A, Jain LC (eds) Innovations in Intelligent Sys-
tems and Applications (Studies in Fuzziness and Soft Computing Series 140).
Springer-Verlag, Berlin: 257–283.

Nakamatsu K (2006) Pipeline valve control based on EVALPSN safety ver-
ification. J.Advanced Computational Intelligence and Intelligent Informatics,
10: 647–656.

The Data-Oriented Parsing Approach:
Theory and Application

Rens Bod

School of Computer Science, University of St. Andrews, Scotland,
rens.bod@gmail.com

1 Introduction

Parsing models have many applications in AI, ranging from natural language
processing (NLP) and computational music analysis to logic programming and
computational learning. Broadly conceived, a parsing model seeks to uncover
the underlying structure of an input, that is, the various ways in which ele-
ments of the input combine to form phrases or constituents and how those
phrases recursively combine to form a tree structure for the whole input.
During the last fifteen years, a major shift has taken place from rule-based,
deterministic parsing to corpus-based, probabilistic parsing. A quick glance
over the NLP literature from the last ten years, for example, indicates that
virtually all natural language parsing systems are currently probabilistic. The
same development can be observed in (stochastic) logic programming and
(statistical) relational learning. This trend towards probabilistic parsing is not
surprising: the increasing availability of very large collections of text, music,
images and the like allow for inducing statistically motivated parsing systems
from actual data.

A corpus-based parsing approach that has been quite successful in various
fields of AI, is known as Data-Oriented Parsing or DOP. DOP was originally
developed as an NLP technique but has been generalized to music analysis,
problem-solving and unsupervised structure learning [7, 8, 14, 81]. The distinc-
tive feature of the DOP approach, when it was first presented, was to model
sentence structures on the basis of previously observed frequencies of sentence-
structure fragments, without imposing any constraints on the size of these
fragments. Fragments include, for instance, subtrees of depth 1 (corresponding
to context-free rules), as well as entire trees.

The DOP model was different from all other statistical parsing models
at the time. Other models typically started off with a predefined grammar
and used a corpus only for estimating the rule probabilities [5, 6, 27, 49, 80].
The DOP model, on the other hand, proposed not to train a predefined
R. Bod: The Data-Oriented Parsing Approach: Theory and Application, Studies in Computa-

tional Intelligence (SCI) 115, 307–348 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

308 R. Bod

grammar on a corpus, but to directly use corpus fragments as a grammar.
This approach has now gained wide usage, as exemplified by the work of
[29, 30, 32, 36, 37, 55, 66 and many others].

The other innovation of DOP was to take all corpus fragments, of any size,
rather than a small subset. During the last few years, we can observe a shift
towards using more and larger corpus fragments with fewer restrictions in
parsing models: while the models of [35] and [46] still restricted the fragments
to the locality of head-words, later models showed the importance of including
context from higher nodes in the tree [29, 60]. The importance of including
nonhead-words has also become accepted [for example, 30, 37]. Moreover, [38]
argues for “keeping track of counts of arbitrary fragments within parse trees”,
which has indeed been carried out in [39] and others, who use exactly the
same set of (all) subtrees from a parsed corpus as already proposed in [7].

To date, one of the most robust empirical results in natural language
parsing is that the parse accuracy increases if larger subtrees are included
in the grammar [for instance, 11, 14, 40, 56, 84]. Although the use of all sub-
trees was for a long time deemed too costly, efficient algorithms have now
been developed, ranging from compact Probabilistic Context-Free Grammar
(PCFG) reductions of DOP [53] to tree kernels for all-subtrees models [40].
Consequently, the DOP model has been employed to boost a number of con-
crete applications, such as dialog processing [9], speech understanding [84]
and machine translation [55, 57].

In the meantime, the DOP approach has been generalized to other modal-
ities, including music analysis and problem solving. It has turned out that
probabilistic corpus-based parsing outperforms deterministic rule-based pro-
cessing not only for language but also for melodic analysis [12, 13] and problem
solving [19, 20]. Our goal for this Chapter is therefore to present the DOP
approach from a multi-modal perspective. But in order to do, it is convenient
to first explain DOP for language processing, after which we discuss an inte-
grated DOP model that unifies the different modalities. We will go into the
various computational issues and show how the model can be tested against
hand-annotated corpora. Finally, we will discuss shortcomings of this super-
vised approach, and present some results of recent work that extends DOP
towards unsupervised learning.

2 A DOP Model for Language: Combining Likelihood
and Simplicity

The main motivation behind DOP is to integrate rule-based and exemplar-
based aspects of natural language. DOP is rule-based in that it proposes a
generative system of productive units; it is exemplar-based in that its produc-
tive units are concrete fragments from representations of previous input. An

The Data-Oriented Parsing Approach: Theory and Application 309

 S

NP

she

VP

VP

 V NP

PP

 P NP

 S

NP VP

 V

wanted

NP

NP PP

NP P

she

the dress

the rackon

the dog thesaw with telescope

Fig. 1. A small training set of two tree structures

example from language may illustrate the approach. Suppose that we start
with a very small corpus of only two sentences with their phrase-structure
trees that are labeled by traditional lexical-syntactic categories, as shown in
Fig. 1. Here NP = noun phrase, VP = verb phrase, and PP = prepositional
phrase. (Note that actual corpora like the Penn Treebank contain tens of
thousands of trees – see [74]).

To dispel dogmatic slumbers it is good to realize that a corpus of anno-
tated sentences need not be produced by means of a separate grammar or
parser. Instead, most existing annotated corpora or ‘treebanks’ are created
by human annotators who are only given an annotation guideline with some
example analyses of sentences. One could claim that human annotators use an
internalized grammar to annotate the sentences, but recent work by [63] and
[17, 18] has shown that a contrasting position is just as viable: humans learn
to understand and produce new sentences entirely in a statistical, item-based
way (see [87] for a psycholinguistic motivation). We will go into the unsuper-
vised learning of tree structures in Sect. 9, but for the moment we will start
out from corpora that are already annotated.

Turning back to the corpus in Fig. 1, a new sentence can be derived by
combining subtrees from the trees in the corpus. The combination operation
between subtrees used by DOP is called label substitution, indicated as ‘◦’.
The substitution operation identifies the leftmost nonterminal leaf node of one
subtree with the root node of a second subtree – that is, the second subtree is
substituted on the leftmost nonterminal leaf node of the first subtree, provided
that their categories match. Starting out with the corpus of Fig. 1, for instance,
the sentence “She saw the dress with the telescope” may be derived as shown
in Fig. 2.

In Fig. 2, the sentence “She saw the dress with the telescope” is interpreted
analogously to the corpus sentence “She saw the dog with the telescope”: both
sentences receive the same phrase structure where the prepositional phrase

310 R. Bod

NP

the dress

° = S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescopedress

 S

NP

she

VP

VP

 V NP

PP

 P NP

thesaw with telescope

Fig. 2. Analyzing a new sentence by combining subtrees from Fig. 1

 S

NP VP

 V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

= S

NP VP

 V NP

NP PP

she

the dress

saw

 P NP

thewith telescope

° °

Fig. 3. A different derivation for “She saw the dress with the telescope”

“with the telescope” is attached to “the VP saw the dress”. We can also derive
an alternative phrase structure for the test sentence, namely by combining
three (rather than two) subtrees from Fig. 1, as shown in Fig. 3. We will write
(t ◦ u) ◦ v as t ◦ u ◦ v with the convention that ◦ is left-associative. In
Fig. 3, the sentence “She saw the dress with the telescope” is analyzed in
a different way where the PP with the telescope is attached to the NP the
dress, corresponding to a different meaning than the tree in Fig. 2. Thus the
sentence is ambiguous in that it can be derived in (at least) two different ways
which is analogous either to the first or second tree in Fig. 1. Both analyses
can in principle be perceived by humans although the first analysis in Fig. 2
is generally seen as the most plausible one.

Note that subtrees can be of arbitrary size: they can range from just one
categorized word to entire sentence-analyses. This allows DOP to take into
acount both the rule-based nature of linguistic productivity and the exemplar-
based nature of idiomatic phrases, multi-word units and other idiosyncracies
in language [52]. Also note that an unlimited number of other sentences can be
derived by combining subtrees from the corpus, such as “She saw the dress on
the rack with the telescope” and “She saw the dress with the dog on the rack

The Data-Oriented Parsing Approach: Theory and Application 311

with the telescope”, and so forth. Thus we can get infinite productivity from
a finite corpus of representations (see [21] for further examples and how this
argues against [34]). Most of these sentences are highly ambiguous: many dif-
ferent analyses can be assigned to each of them due to a combinatorial explo-
sion of different prepositional-phrase attachments. Yet, most of these analyses
are not plausible: they do not correspond to the structures humans come up
with. The phenomenon that the same input can have many different structural
organizations while only one of them tends to be perceived is known as the
‘ambiguity problem’. This problem is one of the hardest problems in artificial
intelligence and cognitive science. [34: 37] estimates that almost every sen-
tence from the Wall Street Journal has many – often more than one million –
possible phrase-structure trees!

How can we select from the possible trees of a sentence the ‘best’ tree
as assigned by humans? DOP basically employs a statistical methodology:
it computes the best tree from the relative frequencies of partial trees in a
large corpus of previous trees (of sentences). Results from psycholinguistics
indeed support the idea that the frequency of occurrence of a structure is a
very important factor in language comprehension. In particular, frequencies
play a key role in disambiguation and well-formedness judgments of sentences
(refer to [62] or [72] for overview papers). [50] even argue that “knowledge of
grammar includes knowledge of probabilities of syntactic structures”.

Of course, the frequency of occurrence of a structure is not the only factor
in syntactic disambiguation. Discourse context and semantics also play an
important role. In [8, 9], we have shown how discourse and semantics can be
incorporated into DOP if we have corpora containing discourse structure and
semantic annotations. The other main disambiguation factor that we will go
into here, and that appears to be essentially different from frequency, is the
notion of ‘simplicity’ of a structure. It has often been claimed that there is
strong preference in favor of the simplest analysis consisting of the smallest
number of derivation steps (see [31, 48]). The preference for simplicity may
be in competition with the preference for likelihood. Although some accounts
propose that likelihood and simplicity are parts of the same coin [31], we
showed in [12] that the two principles appear to play a rather distinct role in
language processing.

If we indeed take the ‘simplest’ parse tree as the one that can be derived
by the smallest number of steps, which in our case is the smallest number
of subtrees, then the simplest analysis corresponds to the shortest derivation,
which differs almost always from the most likely analysis [12]. An interesting
property of the shortest derivation of a sentence is that it corresponds to the
parse tree produced by the largest possible subtrees from the corpus. This
means that the preference for simplicity can also be seen as a preference
for maximizing the structural similarity or analogy between a sentence and
the corpus, regardless of the frequencies of the subtrees. On the other hand,
the principle of likelihood favors the parse tree that can be constructed out

312 R. Bod

of the likeliest subtrees, by computing the total likelihood of the parse tree
from the relative frequencies of the subtrees – regardless of the size of these
subtrees.

In [12], we investigated a number of ways to balance these two principles.
We came up with a model that selected the tree generated by the shortest
derivation from among the top of the distribution of most likely trees for a
certain input. A drawback of this approach is that by selecting the shortest
derivation from the most likely trees, we first have to compute (the top of) the
probability distribution of trees for an input string. While this is feasible for
large corpora such as the linguistic Penn Treebank [74] or the musical Essen
Folksong Collection [82], containing tens of thousands of analyses, it is not
so for the much smaller corpora for deductive explanations or proof trees used
in modeling problem-solving (see Sect. 6). As a consequence, the probability
distribution of trees for a new input is almost flat for such corpora, resulting
in poor predictions for the ‘best’ tree. Therefore the model in [12] does not
suffice as a general disambiguation technique.

In [16, 20], we proposed an alternative combination of simplicity and like-
lihood within the DOP framework which seems to be a better candidate for
a modality-independent integration of the two principles. According to this
combination, the best tree is the one that is generated by the shortest deriva-
tion consisting of the fewest subtrees, and in case the shortest derivation is
not unique we select the most probable tree from among the shortest deriva-
tions. Since in almost all real-world situations the shortest derivation is indeed
not unique, this approach de facto takes into account both simplicity and
likelihood, and can still be described by an overall probabilistic model (see
below).

We will illustrate this integration with the linguistic example given above.
We start with the criterion of simplicity, in other words the shortest derivation.
According to this criterion the tree structure in Fig. 2 would be preferred
because it can be generated by just two subtrees from the training set. Any
other tree structure, such as in Fig. 3, would need at least three subtrees
from the training set in Fig. 1. Note that the tree generated by the shortest
derivation indeed tends to be structurally more similar to the corpus (that is,
having a larger overlap with one of the corpus trees) than the tree generated
by the longer derivation.

Had we restricted the subtrees to smaller sizes – for example to depth-1
subtrees, which makes DOP equivalent to a (stochastic) context-free grammar
– the shortest derivation would not be able to distinguish between the two
trees in Figs. 2 and 3 as they would both be generated by 9 rewrite rules.
The same is true if we used subtrees of maximal depth 2 or 3. It seems that
only if we do not restrict the subtree depth can we take into account arbitrar-
ily far-ranging dependencies and model new sentences as closely as possible
on previous sentence-analyses by the shortest derivation. It is of course an

The Data-Oriented Parsing Approach: Theory and Application 313

empirical question as to how far the inclusion of large subtrees also leads to
better predictions for the tree structure as assigned by humans (Sect. 8).

When the shortest derivation is not unique, our model selects from the
remaining derivations the one that generates the most probable tree (as com-
puted from the relative frequencies of the subtrees – see below). Why don’t we
do this the other way round – more specifically, why don’t we first compute
the most probable tree(s) of a sentence and next select the shortest derivation?
We already mentioned above that such an approach obtains poor predictions
of the best tree in domains with highly specific labels for which it is diffi-
cult to gather meaningful statistics. Instead, by first computing the shortest
derivations we constrain the set of candidates for the best tree to those that
are structurally most similar to trees in the corpus, on which next statistical
computations are applied.

We refer to this instantiation of the DOP framework as DOP+ [20] which
we will now define more formally. Let us first give the definition of an analysis
tree of an input string (see Definition 1).

Definition 1 Given a corpus C of trees T1, T2, ... , Tn, and a label
substitution operation ◦, then an analysis tree of an input string W
with respect to C is a tree T such that (i) there are subtrees t1, t2,
..., tk in T1, T2, ... , Tn for which t1 ◦ t2 ◦ ... ◦ tk = T, (ii) the root
of T is equal to the distinguished symbol S and (iii) the yield of T is
equal to W.

The tree generated by the shortest derivation Tsd according to DOP+ is
given by Definition 2.

Definition 2 Let L(d) be the length of derivation d in terms of its
number of subtrees, that is if d = t1 ◦ t2 · · · ◦ tk then L(d) = k. Let dT

be a derivation which results in tree T. Then Tsd is the tree which is
produced by a derivation of minimal length: Tsd = argminT L(dT).

If Tsd is not unique, we select from among the shortest derivations the tree
with highest probability. The probability of a tree is defined in terms of the
probabilities of the derivations that generate it, which are in turn defined in
terms of the probabilities of the subtrees these derivations consist of [8], as
given by Definition 3.

314 R. Bod

Definition 3 The probability of a subtree t, P(t), is defined as the
number of occurrences of t, | t |, divided by the total number of occur-
rences of treebank-subtrees that have the same root label as t. (For
practical purposes this simple relative frequency may be adjusted if
the frontier of t contains unknown words – see Sect. 8).

Let r(t) return the root label of t. Then we may write:

P (t) =
| t |∑

t′:r(t′)= r(t) | t′ |
(1)

Under the assumption that subtrees are stochastically independent, the
probability of a derivation t1 ◦ ... ◦ tk is defined as the product of the proba-
bilities of its subtrees ti:

P (t1 ◦ ... ◦ tk) =
∏

i

P (ti) (2)

There may be different derivations that generate the same analysis tree.
Assuming that the derivations partition the space of tree occurrences, the
probability of a tree T is defined as the sum of the probabilities of its distinct
derivations. Let tid be the i-th subtree in the derivation d that produces tree
T , then the probability of T is given by:

P (T) =
∑

d

∏
i

P (tid) (3)

The best parse tree Tbest maximizes the probability of Tsd given input
string W :

Tbest = argmaxTsd
P (Tsd | W) (4)

It should be emphasized that the DOP+ model deals exclusively with
tree structures. Several richer models, based on more sophisticated linguistic
representations, have been proposed, ranging from (Lexical-Functional Gram-
mar) LFG-annotated corpora consisting of trees enriched with attribute-value
matrices [22] to (Head-driven Phrase Structure Grammar) HPSG-annotated
databases consisting of feature structures [79] and TAG-based DOP models
that allow for richer combination operations [58]. But since these richer DOP
models all use trees as their backbone, it is convenient to base our exposition
of DOP on the use of trees. Moreover, since all international benchmarks for
NLP (and other modalities) currently consist of phrase-structure trees, we
will stick to tree-based DOP models for the scope of this review and refer to
[24] for a general overview of linguistic DOP models.

Yet, even for tree-based DOP models there exist many different versions.
For example, DOP+ uses a simple relative frequency estimator for assigning

The Data-Oriented Parsing Approach: Theory and Application 315

weights to the subtrees. While this estimator obtains good results on the Penn
Treebank, it does not maximize the likelihood of the training set (see [61]).
In [18], a DOP model was developed which does maximize the likelihood of
the corpus by using the relative frequency estimator only as an initial param-
eter which is next re-estimated by the well-known Expectation-Maximization
(EM) algorithm [43]. This model, called ML-DOP, uses cross-validation to
avoid overtraining. While ML-DOP does not improve over previous DOP mod-
els, the maximum likelihood estimator in ML-DOP does boost unsupervised
versions of DOP. We will go into these unsupervised extensions in Sect. 9.
For an overview of the various statistical estimators used in DOP and many
probabilistic grammars, we refer the reader to [95] or [96].

3 A DOP Model for Music

It is rather straightforward to apply the DOP approach to melodic analysis
of musical pieces. As in natural language, a listener segments a sequence of
notes into groups or phrases that form a grouping structure for the whole
piece [69]. For example, according to [68: 37], a listener hears the grouping
structure in Fig. 4 for the first few bars of melody in the Mozart G Minor
Symphony, K. 550.

Each group is represented by a slur beneath the musical notation. A slur
enclosed within a slur means that a group is heard as part of a larger group.
This hierarchical structure of melody can, without loss of generality, also be
represented by a phrase structure tree, as illustrated in Fig. 5.

Fig. 4. Grouping structure for the opening theme of Mozart’s G minor symphony

Fig. 5. Tree structure for the grouping structure in Fig. 4

316 R. Bod

Note the analogy with phrase structure trees in linguistics: a tree describes
how parts of the input combine into constituents, how these constituents com-
bine into larger constituents, and so on into a representation for the whole
input. Apart from this analogy, there is also a difference: while the nodes in
a linguistic tree structure are typically labeled with syntactic categories such
as S, NP, VP and the like, musical tree structures are usually unlabeled. This
is because in language there are syntactic constraints on how words can be
combined into larger constituents (for instance, in English a determiner can
be combined with a noun only if it precedes that noun), while in music there
are no such restrictions: in principle any note may be combined with any
other note. This makes the problem of ambiguity in music much harder than
in language. [70] note that “Any given sequence of note values is in principle
infinitely ambiguous, but this ambiguity is seldom apparent to the listener.”
For example, the first few bars of Mozart’s G Minor Symphony could also be
assigned the alternative grouping structure in Fig. 6 (among the many other
possible structures).

While this alternative structure is possible in that it can be perceived, it
does not correspond to the structure that is actually perceived by a human
listener. As in natural language, there is thus an important question as to how
to select the perceived tree structure from the set of possible tree structures
of a musical input. Many systems attempt to disambiguate melodic struc-
ture in an entirely rule-based way. For example, [68] and [86] use preference
rules that describe Gestalt-perceptions of the kind identified by [91]. How-
ever, similar to language, there are extremely many ‘multi-note units’ and
other idiomatic phrases and musical clichés that melodic analysis has to deal
with (see [12, 13]). Most parsing approaches to melodic analysis are nowadays
probabilistic and exemplar-based (for instance, [12, 41, 47]). These approaches
are trained on corpora such as the Essen Folksong Collection (EFC) which
contains musical trees of over 6,000 folk songs [82].

Since the encoding of note sequences is not as straightforward as in natural
language, let us briefly explain how the folk songs in the EFC are annotated
(see [82] for the full annotation scheme). The Essen folk songs are represented

Fig. 6. Alternative grouping structure for Mozart’s opening theme

The Data-Oriented Parsing Approach: Theory and Application 317

by the so-called Essen Associative Code (ESAC). The pitch encodings in
ESAC resemble ‘solfege’: scale degree numbers are used to replace the movable
syllables ‘do’, ‘re’, ‘mi’, and so forth. Thus 1 corresponds to ‘do’, 2 corresponds
to ‘re’, and so on. Chromatic alterations are represented by adding either a
‘#’ or a ‘b’ after the number. The plus (‘+’) and minus (‘−’) signs are added
before the number if a note falls respectively above or below the principle
octave (thus −1, 1 and +1 all refer to ‘do’, but on different octaves). Dura-
tion is represented by adding a period or an underscore after the number. A
period (‘.’) increases duration by 50% and an underscore (‘ ’) increases dura-
tion by 100%; more than one underscore may be added after each number. If
a number has no duration indicator, its duration corresponds to the smallest
value. A pause is represented by ‘0’, possibly followed by duration indicators,
and is also treated as an atomic symbol. No loudness or timbre indicators are
used in ESAC. Phrase boundaries are annotated by hard returns in ESAC,
which we automatically convert into bracket representations where ‘(’ indi-
cates the start and ‘)’ the end of a phrase. These phrase boundaries were
manually assigned on the basis of the pitch encodings only (the lyrics were
not taken into account – see [82]). The phrases in the EFC are unlabeled.

However, to use the DOP approach for parsing the EFC, we first need
to (automatically) add three basic labels to the phrase structures: S for the
whole song, P for each phrase and N for each note. In this way, we obtain
conventional tree structures that can directly be used by DOP+. To illustrate
this, consider the simple corpus in Fig. 7 of two musical tree structures.

This corpus contains two very simple melodies, the first consisting of two
phrases, (1 2) (2 3), and the second consisting of only one phrase, (1 2 3 1). If
we take this corpus as our training set, then a new melody, such as ‘1 2 1 2’,
can be parsed by DOP+ by combining subtrees from this corpus, again by
means of the substitution operation ◦.

But this melody can also be parsed in a different way, resulting in a
different parse tree, for example by combining the following subtrees from
Fig. 7.

Remember that this free combination of subtrees only defines the set of
possible structures of an input. To predict the best musical tree structure as

S

P P

N N N N

1 2 2 3

S

P

N N N N

1 2 3 1

Fig. 7. A simple musical corpus

318 R. Bod

° =S

P P

N N

1 2

P

N N

1 2

S

P P

N N N N

1 2 21

Fig. 8. Parsing a new melody by combining subtrees from Fig. 6

S

P

N N N N

1 2

° N =° N S

P

N N N N

1 2 2

1 2

1

Fig. 9. Generating a different tree structure for the same melody

assigned by humans, DOP+ selects the resulting tree structure in Fig. 8, as it
corresponds to the shortest derivation, and thereby recognizes that the phrase
(1 2) can be parsed as one (previously observed) pattern. Had we restricted the
subtrees to the smallest ones (which would lead to a probabilistic context-free
grammar), the resulting tree in Fig. 9 would have corresponded to the shortest
derivation since it only consists of 6 rules (or depth-1 subtrees), while the tree
in Fig. 8 would have needed 7 rules. Thus large subtrees are important, and
should not be restricted if we want to maximize similarity. In case there is
more than one shortest derivation, the most probable tree is selected, just as
with language (Definition 3).

Of course this musical example is exceedingly simple. The Essen Folksong
Collection provides a much more challenging set of melodies, and will be
used for our experiments in Sect. 8. For an in-depth discussion of the variety
and complexity of the melodies in the Essen Folksong Collection, see [59].

4 A DOP Model for Problem Solving in Physics

What counts for syntactic and melodic analysis also counts for problem solving
and reasoning: given a problem or theorem, there can be (extremely) many
different possible solutions or derivations. As in language and music, a major
challenge is to select the ‘best’ derivation among the many possibilities. As a
case study, we will concentrate on derivations for physics problems.

Let us first discuss what problem solutions or ‘derivational explanations’
in physics look like. Physics textbooks provide many examples of problem
solutions which are typically used to solve new problems. Although textbook

The Data-Oriented Parsing Approach: Theory and Application 319

problem solutions may not reflect scientific practice, they are part of the
training of every scientist and highly influence their reasoning. We will start
with a simple, idealized example. In their Physics textbook, Alonso and Finn
derive the Earth’s mass from the Earth-Moon system as follows [2: 247]:

Suppose that a satellite of mass m describes, with a period P , a circu-
lar orbit of radius r around a planet of mass M . The force of attraction
between the planet and the satellite is F = GMm

r2 . This force must be
equal to m times the centripetal acceleration v2/r = 4π2r/P 2 of the
satellite. Thus,

4π2mr/P 2 = GMm/r2

Canceling the common factor m and solving for M gives

M = 4π2r3/GP 2

This rather textual derivation can be represented by means of the proof
tree or derivation tree of Fig. 10. Proof trees are widely used data structures
in automated reasoning and theorem proving [3] and form the main repre-
sentations in Explanation-Based Learning [76], Inductive Logic Programming
[42] and Statistical Relational Learning [77].

Thus the derivation tree in Fig. 10 represents the various steps from gen-
eral laws to an equation for the mass M . In general, a derivation tree is a
labeled tree where each node is annotated with a formula (the boxes are only
convenient representations that have no additional meaning). The formulas at
the top of each ‘vee’ (in other words, each pair of connected branches) in the

F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

Fig. 10. Derivation tree for the derivation of the Earth’s mass

320 R. Bod

F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

Fig. 11. A subtree from the tree in Fig. 10

tree can be viewed as premises, and the formula at the bottom of each ‘vee’
can be viewed as a conclusion which is arrived at by simple term substitution.
The last derivation step in the tree is not formed by a ‘vee’ but consists of a
unary branch which solves the directly preceding formula for a certain vari-
able (in the tree above, for the mass M). Unary branches may also appear at
other places in a derivation tree. In general, a unary branch refers to a mathe-
matical derivation step, while a binary branch refers to a combination of laws
(or conditions) by means of simple term substitution. Note that derivation
trees are conventionally represented in an ‘upside-down’ manner with respect
to phrase-structure trees in language and music (see [3]).

Suppose that the derivation tree in Fig. 10 constitutes our training corpus,
then the regularity known as Kepler’s third law, which states that r3/P 2

is constant, can be easily derived by using the subtree in Fig. 11 which is
extracted from the tree in Fig. 10. The root of this subtree only needs to be
solved for r3/P 2, which is accomplished by a mathematical derivational step
added in Fig. 12.

We can thus already note a difference between derivations in language
and music and derivations in physics: for the latter we need an additional
mathematical component that can solve equations.

Of course, it is not the typical case that we can derive a new phenomenon
by just one subtree. Often we need to combine several smaller subtrees, as is
the case for instance in deriving the velocity of a satellite at a certain distance
from a planet. This is accomplished by using the following two subtrees in
Fig. 13 from the tree in Fig. 10, that are first combined by term substitution
(represented by the operation ‘◦’)1 and then solved for the velocity v.

1 As long as no confusion arises we will use the same symbol for label substitution
in language and music and term substitution in derivational problem solving.

The Data-Oriented Parsing Approach: Theory and Application 321

F = ma

F = GMm/r2

a = v2/r

F = mv2/r v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

Fig. 12. Deriving Kepler’s Law by the subtree in Fig. 11

F = ma a = v2/r

F = mv2/r

F = GMm/r2o = F = ma a = v2/r

F = mv2/r F = GMm/r2

mv2/r = GMm/r2

v = √(GM/r)

Fig. 13. Deriving the velocity of a satellite by combining two subtrees from Fig. 10

Note the analogy with linguistic and musical processing: new input can
be derived by combining subtrees from previously derived input, where the
subtrees may be of any size – from single laws to entire derivation trees.
But there are also some differences. Apart from the additional mathemati-
cal component, there is a difference in combining subtrees: while in music and
language the ‘combination operation’ between subtrees consists of simple (left-
most) label substitution, the term ‘substitution operation’ in problem solving
also expands the tree with a new root node (see Fig. 13). We will therefore
specify this operation more explicitly as follows:

The term ‘substitution operation ◦’ is a partial function on pairs of labeled
trees, and its range is the set of labeled trees. The combination of tree t and
tree u, written as t ◦ u, is defined iff the equation at the root node of u can
be substituted in the equation at the root node of t (that is, iff the lefthand
side of the equation at the root node of u literally appears in the equation at

322 R. Bod

the root node of t). If t ◦ u is defined, it yields a tree that expands the root
nodes of copies of t and u to a new root node where the righthand side of
the equation at the root node of u is substituted in the equation at the root
node of t. Note that the substitution operation can be iteratively applied to
a sequence of trees, with the convention that ◦ is left-associative.

The idea that new problems and phenomena can be solved by reusing
parts of previous problem solutions is reminiscent of the notion of ‘exemplar’
in Thomas Kuhn’s account of normal science. According to [67], exemplars
are “problem solutions that students encounter from the start of their scien-
tific education”, and “Scientists solve puzzles by modeling them on previous
puzzle-solutions” [67: 187–190]. In the following, we will use the terms ‘exem-
plary problem solution’ and ‘exemplar’ interchangeably. Our approach to
problem solving is also congenial to Case-Based Reasoning (for example, [28]),
where new problems are solved by modeling previous problems.

As noted above, there is a problem with derivational reasoning and prob-
lem solving which is analogous to linguistic and musical analysis: ambiguity.
To illustrate this, it is convenient to enlarge our training corpus in Fig. 10
with one other example from Alonso and Finn’s textbook. This example again
provides an exemplary problem solution for the Earth’s mass but this time
using an alternative derivation (2: 246). Both solutions are used as exemplars
on which other problems are modeled. This second exemplar computes the
Earth’s mass from the acceleration of an object near the Earth’s surface and
which, following the derivation steps in [2], can be represented by the deriva-
tion tree in Fig. 14 (where for the sake of conciseness the initial conditions
a = g and r = R are represented by one label).

By substituting the values for g (the acceleration at the Earth’s surface), R
(the Earth’s radius) and G (the gravitational constant), [2] obtain roughly the
same value for the Earth’s mass as in the previous derivation in Fig. 10. They
argue that this agreement is ‘a proof of the consistency of the theory’ [2: 247].
When we add this exemplar to our corpus, we get many different derivations
for new phenomena or problems. For example, Kepler’s regularity can now

F = ma F = GMm/r2

ma = GMm/r2

M = ar2/G
a = g
r = R

M = gR2/G

Fig. 14. An additional exemplar in the training corpus

The Data-Oriented Parsing Approach: Theory and Application 323

F = ma F = GMm/r 2

ma = GMm/r 2

M = ar 2/G

a = v2/r v = 2πr/Po o =

M = 4 π2r3/GP2

F = ma F = GMm/r 2

ma = GMm/r 2

M = ar 2/G a = v2/r

M = v r /G2 v = 2πr/P

r3/P2 = GM/4 π2

Fig. 15. An alternative derivation of Kepler’s regularity

also be derived by the following alternative derivation in Fig. 15, which uses a
large subtree from Fig. 13 in combination with two small subtrees from Fig. 10.

There is nothing wrong with this alternative derivation: there are no spu-
rious non-explanatory laws that are irrelevant to this derivation (as would be
Hooke’s or Boyle’s law). The only difference is that the derivation in Fig. 15
is modeled on a different exemplar (that is, on a planet-particle model at
rest) than the derivation in Fig. 12 (which is modeled on an orbiting planet-
satellite exemplar). In fact, the alternative derivation in Fig. 15 is insightful
as it expresses the conceptual equivalence between terrestrial and celestial
mechanics in Newtonian dynamics. However, problem-solving experiments
with physics students show that humans don’t come up with this alternative
derivation (Sect. 6). Unfortunately, the ambiguity problem is much worse: by
combining subtrees from the two exemplars in Figs. 10 and 14 in different ways,
we get a combinatorial explosion of possible derivation trees of Kepler’s law.

5 Towards a Unifying Approach

As with linguistic and musical analysis, also for problem-solving we hypoth-
esize that the best tree is the one that can be constructed by the shortest
derivation and that in case there are more shortest derivations the most prob-
able tree should be selected among them. For example, the derivation tree of
Kepler’s regularity in Fig. 12 corresponds to the shortest derivation since it
can be constructed by just one large subtree from an exemplar (modulo the
mathematical derivation step), while the derivation tree for the same regular-
ity in Fig. 15 needs at least three subtrees to be constructed. As a consequence,
the tree in Fig. 12 is more structurally similar to an exemplar in the training
corpus than is the tree in Fig. 15.

However, the use of the shortest derivation alone is not enough. It may
occur that a phenomenon can be derived by two or more shortest derivations
containing the same number of subtrees (and even the same number of labels)

324 R. Bod

but resulting in different derivation trees. In such a case we also take into
account the relative frequencies of the subtrees in a representative corpus
of exemplars, and compute the most probable tree from among the trees
generated by the shortest derivations. A higher subtree frequency expresses
a wider usability of the derivational pattern for deriving phenomena. (We
already argued in Sect. 4 why the reverse order of first computing the most
probable tree, and next selecting the shortest derivation, is problematic for
sparse corpora with highly specific labels like problem solving. We will support
this argument with computational experiments in Sect. 8.)

It should be noted that previous statistical approaches to reasoning and
problem solving were mainly based on stochastic enrichments of context-free
grammars (CFGs) or definite-clause grammars (DCUs). These approaches,
known as Stochastic Logic Programs or Statistical Relational Learning [42, 44,
78] cannot cover all possible dependencies in a derivation tree. We have
shown in [19] that, as with language and music, there may be arbitrarily
distant dependencies in problem solving, both structurally and sequentially.
The examples we discussed in [19] came from the field of fluid mechanics.
But distant dependencies already occur in derivations for much simpler sys-
tems, such as Galileo’s pendulum (between leaf nodes and formulas later in
the derivation tree). Entire subtrees must be preserved, otherwise they lose
the particular dependency. It is well-known that students of physics typically
have to go through various example-derivations before they can successfully
solve new problems by themselves, usually by modeling the new problem on
similar, previously solved problems [51, 67].

Thus it appears that DOP+ can also be employed for (equational) rea-
soning and problem solving. We only need to slightly modify the DOP+
definitions in Sect. 4. That is, we need to change ‘label substitution’ into ‘term
substitution’ (which we already defined in Sect. 4). Second, the root node of
a derivation tree must correspond to a mathematical description of a phe-
nomenon, and the leaf nodes must be laws, conditions or any knowledge that
cannot be derived from other equations (such as empirical corrections and
normalizations). This brings us to Definition 4 for a DOP+ model of problem
solving and reasoning.

Definition 4 Given a corpus C of trees T1, T2, ..., Tn representing
derivations of phenomena, and a term substitution operation ◦, a
derivation tree of a phenomenon P with respect to C is a tree T
such that (i) there are subtrees t1, t2, ..., tk in T1, T2, ..., Tn for which
t1 ◦ t2 ◦ · · · ◦ tk = T , (ii) the root of T is mathematically equivalent
to P and (iii) the yield of T consists of either laws or antecedent
conditions or any other equations that cannot be derived from higher-
level equations.

The Data-Oriented Parsing Approach: Theory and Application 325

Definitions 2 and 3 in Sect. 4 – for the tree generated by the shortest deriva-
tion Tsd and the best tree Tbest, respectively – remain the same (provided that
we substitute the word string W by the phenomenon P in the definition of
Tbest). Given this commonality between problem solving and perceptual (lin-
guistic and musical) processing, DOP+ may be a viable candidate for a general
model of these modalities.

We can also try to further integrate Definitions 1 and 4 by referring to trees
of natural phenomena, word strings and musical pieces as ‘exemplars’, and by
referring to analysis trees and derivation trees as ‘DOP+ generated trees’.
But we then need to abstract from the differences between label substitution
in language and music and term substitution in problem solving, for example,
by viewing label substitution as a special case of term substitution (in case
the entire substitutable labels are exactly equivalent no node expansion is
created). This results in Definition 5, where we use a generalized notion of
‘substitution operation’ which is left unspecified.

Definition 5 Given a corpus C of trees T1, T2, ..., Tn representing
exemplars and a substitution operation ◦, a DOP+ generated tree
with respect to C is a tree T such that there are subtrees t1, t2, ..., tk in
T1, T2, ..., Tn for which t1◦t2 ◦· · ·◦tk = T. T is said to be a derivation
tree of a phenomenon P iff the root of T is mathematically equivalent
to P and the yield of T cannot be further derived. T is said to be an
analysis tree of an input string W iff the root of T is equal to the
distinguished symbol S and the yield of T is equal to W.

Thus while there remain differences between problem solving in physics
on the one hand and syntactic and melodic analysis on the other hand, there
appears be a common level of representation and computation. This is the
level of tree structures (the common representation) that are decomposed
and recomposed to analyze new input in the shortest and most probable way
(the common computation). The labeling of the trees and details of the com-
bination operation differ across the modalities, but the formula for the best
tree of an input I is the same for all modalities: Tbest = argmaxTsd

P (Tsd | I).

6 Test Corpora for DOP+

While annotated corpora are widely available for language [1, 74] and music
[82], corpora of tree structures for physics problems are still very rare. Previous
work that deals with students’ problem solutions does not formalize these
solutions by means of trees [71, 88]. In [16, 20] we therefore developed a corpus

326 R. Bod

of physics problems whose solutions were directly converted to tree structures
by students. The following briefly describes the construction of this ‘physics
corpus’.

A total of 19 third-year physics students from the University of Amsterdam
(academic year 2005–2006) were paid to construct both a test corpus and a
training corpus. 10 students were involved in constructing the test corpus
while the remaining 9 students constructed the training corpus. As to the
test corpus, the 10 students were asked to solve 14 elementary problems from
classical mechanics and 10 elementary problems from fluid mechanics. The stu-
dents had previously followed courses in classical mechanics and more recently
an extensive course in fluid mechanics. The 24 problems given to them con-
sisted in deriving a phenomenon from law and initial conditions. Four of these
problems are given below (for more details, see [20]):

Problem nr. 1
Show that the period of the Earth’s rotation for which an object at the
equator would become weightless is given by P = 2π

√
(R/g), where

R is the Earth’s radius and g is the gravitational acceleration at the
Earth’s surface.

Problem nr. 2
Show that the theoretical velocity which an object attains in free fall
from height h is given by v =

√
(2gh) where g is the gravitational

acceleration at the Earth’s surface.

...

Problem nr. 23
When water flows through a right-angled V-notch, show that the dis-
charge is given by Q = KH5/2 in which K is a constant and H is the
height of the surface of the water above the bottom of the notch.

Problem nr. 24
Show that the theoretical rate of flow through a rectangular notch is
given by Q = (2/3)B

√
(2g)H3/2, where B is the width of the notch

and H is the height of the water level above the bottom of the notch.

After the students had solved the problems on paper, they were given
a short, ten-minute tutorial on the concept of derivation tree, especially on
the difference between binary branches in a tree (used for combining laws,
conditions and similar), and unary branches (used for mathematical derivation
steps of which the exact operations could be left implicit). The students were
told that the exact order of the laws in a tree was not important as long
as these laws could be properly combined by term substitution to solve the

The Data-Oriented Parsing Approach: Theory and Application 327

problem. After this brief tutorial, the students were asked to draw derivation
trees for their problem solutions.

There was a high agreement among the derivation trees constructed by
the students: on average 95.4% (SD= 1.5) of the derivation trees per prob-
lem matched (modulo law order). In creating a gold standard, only the most
voted tree was put in the corpus. In our case, the 24 most voted (that is,
most frequently created) derivation trees for each problem constituted the
test corpus.

As to the construction of the training corpus, the remaining 9 students were
asked – after the same brief tutorial – to draw derivation trees for 33 problem
solutions from classical and fluid mechanics that are used as exemplars in the
textbooks by [2: Chaps. 9–11] and [45: Chap. 7]. The three examples in Figs. 9,
12 and 13 were among these exemplary solutions. The agreement among the
constructed derivation trees for the exemplary solutions was very high: 98.0%
(SD= 0.6). The most voted tree for each exemplary solution was put in the
training corpus.

All 24 test problems could be solved by subtrees from the training cor-
pus of 33 exemplars but this fact was not told to any of the students.
Our total corpus of problem solutions thus consists of 57 trees including a
training set of only 33 exemplars. This stands in strong contrast with the
considerably larger linguistic and musical corpora. However, a representa-
tive corpus for elementary classical and fluid mechanics is necessarily much
smaller than a representative corpus for language or music. It has for exam-
ple been estimated by [51: 88] that the number of exemplars available to a
physics expert lies around a few hundred. For undergraduates, who have only
knowledge of elementary physics, this number is of course much lower, and
the 33 exemplary problem solutions from [2] and [45] cover the typical exem-
plars from mechanics learned by undergraduate physics students (in other
words, the planet-satellite model, the frictionless plane, the harmonic oscil-
lator, the vena contracta, and the like). Thus our physics corpus is likely to
correspond to the full set of exemplars learned by physics students in their
curriculum.

7 Computing Tbest

Before we can test DOP+ on the various corpora, we need to go into the
problem of computing Tbest for a given input. The computation of Tbest is
especially challenging for language and music where our corpora contain thou-
sands of trees which correspond to millions of subtrees. We will therefore first
go into linguistic and musical parsing and next come back to problem solving.
The way DOP+ combines subtrees into new trees is formally equivalent to a
Tree-Substitution Grammar or TSG [8]. Moreover, the way DOP+ defines the

328 R. Bod

best tree is covered by the notion of a Stochastic TSG or STSG. There are
standard algorithms that compute the tree structures (a packed parse forest)
of an input string given an STSG. These algorithms run in Gn3 time, where
G is the size of the grammar (the number of subtrees) and n is the length of
the input string (the number of words or notes).

Existing parsing algorithms for context-free grammars or CFGs, such as
the CKY algorithm [94], can be easily extended to TSGs by converting each
subtree t into a context-free rewrite rule where the root of t is rewritten by
its yield: root(t) → yield(t). Indices are used to link each rule to its original
subtree. Next, Tbest can be computed by a best-first beam search technique
known as Viterbi optimization [73]. However, the direct application of these
techniques to DOP(+) is infeasible mainly because the number of subtrees
usually grows exponentially with the corpus size [83]. The relatively small
Air Travel Information System (ATIS) corpus of 750 trees [74] contains
over 40,000 subtrees, and the Wall Street Journal (WSJ) corpus of 50,000
trees contains more than 100 million subtrees.

To make parsing with DOP feasible, several heuristics have been proposed,
ranging from randomly sampling subtrees [8] to restricting the subtrees on
linguistic grounds [84]. DOP’s ideal to parse with all, arbitrarily large subtrees
might have died an early death as being computationally prohibitive, if it were
not for an insight by [53, 54] that the unwieldy DOP grammar can be reduced
to a set of eight Probabilistic Context-Free Grammars (PCFGs) which is linear
rather than exponential in the number of nodes in the corpus.2 Goodman’s
PCFG reduction was initially developed for the probabilistic version of DOP
but it can also be applied to computing the shortest derivation. The following
briefly summarizes the method.

The key idea is to re-label the nodes in the corpus trees. Every node
in every tree is assigned a unique number which is called its ‘address’. The
notation A@k denotes the node at address k where A is the nonterminal
labeling of that node. A new nonterminal is created for each node in the
training data. This nonterminal is called Ak. Nonterminals of this form are
called ‘interior’, while the original nonterminals in the parse trees are called
‘exterior’. Let aj represent the number of subtrees headed by the node A@j.
Let a represent the number of subtrees headed by nodes with nonterminal A,
that is a =

∑
j aj .

Goodman shows that there is a PCFG with the following property: for
every subtree in the training corpus headed by A, the grammar will generate
an isomorphic subderivation with probability 1/a [53]. The construction is as
follows. For a node (A@j(B@k, C@l)), the following eight PCFG rules are
generated, where the number in parentheses following a rule is its probability:
2 [40] have used kernel methods to develop an efficient parsing algorithm for an

all-subtrees representation.

The Data-Oriented Parsing Approach: Theory and Application 329

Aj → BC(1/aj) A → BC(1/a)

Aj → BkC(bk/aj) A → BkC(bk/a)

Aj → BCl(cl/aj) A → BCl(cl/a)

Aj → BkCl(bkcl/aj) A → BkCl(bkcl/a)

(5)

Goodman next shows by simple induction that subderivations headed by
A with external nonterminals at the roots and leaves; internal nonterminals
elsewhere have probability 1/a [53]. Further, subderivations headed by Aj

with external nonterminals only at the leaves, and internal nonterminals else-
where, have probability 1/aj. This can be easily demonstrated by multiplying
the relevant probabilities of the rules, which brings Goodman to his main the-
orem, that his construction produces PCFG derivations isomorphic to DOP
derivations with equal probability [53: 130–133].

Note that the PCFG reduction can also be used to compute the shortest
derivation, since the most probable derivation is equal to the shortest deriva-
tion if each subtree is given equal probability. This can be seen as follows.
Suppose we give each subtree a probability p, then the probability of a deriva-
tion involving n subtrees is equal to pn, and since 0 < p < 1, the derivation
with the fewest subtrees has the greatest probability. For all our experiments
with linguistic and musical corpora, we employ Goodman’s reduction in com-
bination with a best-first CKY parsing algorithm [94] that computes the most
probable parse tree from among the shortest derivations.

Let us now turn to computing Tbest for problem solving. In practice the
computation of Tbest for a mathematical description of a phenomenon is less
hard, simply because a corpus of exemplary problem solutions tends to be
much smaller than corpora for language and music (as discussed in the previ-
ous section). The training set of our problem solving corpus contains only 33
trees, which correspond to 408 different subtrees. Although this number of sub-
trees is computationally tractable, the root of each subtree may be extended
with mathematical derivation steps at any point in a derivation (as we have
seen in Sect. 4). Thus there can be no a priori reduction of a problem-solving
corpus into a compact PCFG, because we do not know beforehand which
mathematical operations are needed at the subtree-roots.

In principle we could generate all possible mathematical extensions for all
subtrees (in other words, all solutions for possible variables in the equations
at the subtree-roots). But this would lead to a combinatorial explosion of pos-
sible subtree extensions. Fortunately, there are standard equational reasoning
systems that can efficiently solve an equation given a set of other equations,
such as TK Solver (http://www.uts.com/). In our experiments below, we
first convert each derivation tree from the training corpus into its subtrees.
Next, we extract the equations from the subtree-roots, which are indexed to
remember the subtrees they are extracted from. This results in a list of 408
equations. For each test problem (namely, the equation to be solved), we use

330 R. Bod

TK Solver to derive a set of solutions given the list of 408 equations. It turns
out that virtually all problems receive more than 60 different solutions, even
after abstracting from the order of the equations used in the solution, which
gives an idea of the ambiguity if we do not have any mechanism to break ties.

From the output of TK Solver we select the shortest solution(s) for each
problem that use(s) the fewest equations. Next, the equations of the short-
est solution(s) are converted back to their corresponding subtrees, which are
combined into the tree corresponding to the shortest derivation, Tsd. In case
Tsd is not unique we compute the probability for each Tsd and select the most
probable tree, which yields Tbest.

8 Experiments with DOP+

For language, we used the now standard division of the Wall Street Journal
(WSJ) corpus in the Penn Treebank, of which Sects. 2 through 21 are used as
training set (approximately 40,000 sentences), and of which Sect. 23 is used as
test set (2,416 sentences ≤ 100 words). As in other experiments with the WSJ,
all trees were stripped of their semantic tags, co-reference information and
quotation marks (see [73]). In case a word from a test sentence was unknown
in the training set, we employed the unknown word model in [11], based on
statistics on word-endings, hyphenation and capitalization. For music, we used
the same (random) division of the Essen Folksong Collection (EFC) as in
[13] into a training set of 5,251 trees and a test set of 1,000 trees. There were
no unknown notes for this division. As explained in Sect. 3, the root of each
EFC tree was labeled with the distinguished symbol ‘S’, the notes were labeled
with ‘N’ and the internal nodes with ‘P’. For problem solving, we used the
training set of 33 exemplary problem solutions and the test set of 24 problems,
as described in Sect. 7.

The training set trees for each modality are used to extract the subtrees
employed by DOP+, while the test data without the trees are used as input.
The best trees predicted by DOP+ are compared with the trees in the respec-
tive test sets. The degree to which these best trees match the test set trees
is a measure for the accuracy of the system. An evaluation metric which has
become standard in the field of NLP, and which is also used in the field of
music analysis, is the PARSEVAL metric of precision and recall [4]. This met-
ric compares a so-called ‘proposed’ parse tree P (that is, our Tbest) with the
corresponding correct test set parse tree T as follows:

Precision =
correct constituents in P

constituents in P
(6)

Recall =
correct constituents in P

constituents in T
(7)

The Data-Oriented Parsing Approach: Theory and Application 331

A constituent in P is said to be ‘correct’ if there exists a constituent in T
of the same label that spans the same sequence of leaves. Since precision and
recall can obtain rather different results (see [13]), they are typically balanced
by a single measure of performance, known as the F -score:

Fscore =
2 × Precision × Recall

Precision × Recall
(8)

We will use these definitions for evaluating Tbest in language and music.
However, they cannot be directly applied to evaluating Tbest in problem solv-
ing. This is because the exact sequence of leaves is irrelevant here. While in
language and music the sequence of leaves of a tree constitutes respectively
the sentence and the musical piece, the leaves of a problem-solving tree consti-
tute the laws and conditions in a derivation. Also, it does not matter whether
we put a law as a premise at a left daughter node or at a right daughter
node, as long as their combination results in the same conclusion (which we
also explained to the students in creating the problem solving corpus – see
Sect. 6). Thus we can only reasonably apply the metrics above to problem
solving if we substitute ‘same sequence of leaves’ by ‘same leaves’ in the defi-
nition of ‘correct’ constituent above, such that we abstract from the order of
the leaves.

It is one of the most essential features of DOP+ that arbitrarily large sub-
trees are taken into consideration. To test the usefulness of this feature, we
performed a number of experiments where we restricted the training set sub-
trees to a certain maximum size. We define the size of a subtree by its depth,
which is the length of a subtree’s longest path from root to leaf. In this way
we can test a range of other models; for example, by restricting the maximum
depth of the subtrees to one, DOP+ is equivalent to a stochastic context-
free grammar. As pointed out in [54: 134], Goodman’s reduction method can
still be applied to DOP when the training set subtrees are constrained to
a certain depth. The following Table shows the results of our experiments
where we give for increasing subtree depths the F -scores (in percentages) for
respectively language (the WSJ corpus), music (the EFC corpus) and problem
solving (the problem-solving corpus in Sect. 6). The maximum tree depth in
the Essen Folksong Collection is 3, while the maximum tree depth in the
problem solving corpus is 6.

Table 1 shows that there is a consistent increase in accuracy with increasing
subtree depth for all modalities. Note that the maximum tree depth in the
Essen Folk song Collection is 3, while the maximum tree depth in the
Problem Solving corpus is 6. We have previously observed this phenomenon
for language in [8, 11] where we called it ‘the DOP hypothesis’. This hypothesis
has been corroborated for Dutch and English [8, 11, 85], for Chinese [55] and
for Hebrew [85]. Moreover, the DOP hypothesis has been tested not only
for tree-annotations but also for LFG-annotations [25], HPSG-annotations
[79] and TAG-analyses [58]. Thus the hypothesis is robust, and seems to be

332 R. Bod

Table 1. F-scores of DOP+ for different subtree depths

Max. Subtree Language Music Problem-Solving
Depth (Wall St. Journal) (Essen Folksongs) (Physics Corpus)

1 68.5 58.4 45.8
2 77.2 77.3 62.5
3 80.9 88.9 75.0
4 82.1 83.3
6 86.0 87.5
8 88.2
10 88.8
unrestricted 91.1

independent of the nature of the annotations. Table 1 shows that the DOP
hypothesis also seems to hold for music and problem solving.

Our results are very competitive compared to other parsers for language
and music. For the WSJ, DOP+ outperforms stochastic lexicalized grammars,
such as in [36, 37] and [29, 30] – see [14] for a detailed quantitative comparison.
Yet, there is more recent work which outperforms the DOP+ model, in partic-
ular [75], who extend their parser with discriminative self-training, achieving
a 92.1% F -score on the same standard WSJ split, which is a 1% improvement
over DOP+. It would be interesting to see how DOP+ performs if extended
with self-training. Our scores on the Essen folk songs are higher than those
reported by [86: 74], but unfortunately the results are not exactly comparable,
since Temperley uses a smaller test set of only 65 folk songs [86].

There is an important question as to how other proposals for a unified DOP
model perform. For this Chapter, we therefore accomplished an additional
series of experiments with an alternative unifying DOP model which first
computes the most probable tree and next selects the shortest derivation
in case the most probable tree is not unique. Table 2 shows the results of
these experiments for different subtree depths using the same training/test
set divisions as for Table 1.

We again note that there is an increase in accuracy with increasing subtree
size, but this time the best F -scores are considerably lower than in Table 1.
For language and music the differences are a few percent only, but for problem
solving the difference is nearly 40%: while DOP+ predicts for 21 out of 24
problems the correct derivation tree, the alternative DOP model only gets 12
out of 24 correct. Thus by first computing the most probable tree instead of
the shortest derivation, the best score of the alternative DOP model is even
worse than DOP+’s score at subtree-depth 2 for problem solving. We already
explained why this may be the case: the most probable tree is a bad metric for
small corpora, especially if such corpora have very specific labels. The shortest
derivation, on the other hand, is a good metric in almost all cases, and by

The Data-Oriented Parsing Approach: Theory and Application 333

Table 2. F-scores of an alternative DOP model for different subtree depths

Max. Subtree Language Music Problem-Solving
Depth (Wall St. Journal) (Essen Folksongs) (Physics Corpus)

1 70.4 62.7 20.8
2 78.3 76.9 25.0
3 80.1 86.5 37.5
4 82.6 45.8
6 84.4 50.0
8 85.6
10 86.3
unrestricted 88.7

selecting among a few remaining shortest derivations (in case the shortest
derivation is not unique), the differences in frequency apparently do work out
well, also for the small problem-solving corpus.

To check whether these differences are statistically significant, we per-
formed a series of experiments using a 10-fold division into random training
and test sets for language and music with unrestricted subtree depth only.
It turns out that the differences in the best accuracies between DOP+ and
the alternative unifying DOP model are statistically significant, both for lan-
guage (p ≤ 0.05) and music (p ≤ 0.02) using paired t-testing. We did not
test on different training/test set divisions of the problem solving corpus,
since the training set already consists of the actual exemplars used in the
textbooks on classical and fluid dynamics. Moreover, these exemplars closely
correspond to those in other textbooks (see [51] for a comparison between
physics textbooks).

What should we learn from these experiments? While we have already
qualitatively explained why large subtrees are important for language (Sect. 2),
music (Sect. 3) and problem-solving (Sect. 4), our experiments show that this
can also be quantitatively supported. Our results show that directly apply-
ing statistical computations is inferior to first computing the space of ‘most
similar’ trees by means of the shortest derivations. The best model first maxi-
mizes similarity and next probability. The maximization of similarity may be
reminiscent of Case-Based Reasoning [28, 90], but DOP+ additionally defines
a probabilistic distribution over equally similar structures to break ties.

9 Current Developments: Unsupervised DOP

The DOP approach in this Chapter presents a fully supervised learning tech-
nique: it starts out from corpora of example-derivations for language, music
and problem-solving. A drawback of supervised learning is that it is extremely
costly to create such annotated corpora. Moreover, all supervised approaches

334 R. Bod

have reached an asymptote on annotated corpora. It has therefore become
increasingly clear that the next major step consists of generalizing these super-
vised approaches to semi-supervised or even unsupervised learning since they
can directly operate with unlabeled raw data, of which virtually unlimited
quantities are available.

In particular in NLP, there has been considerable progress in unsupervised
learning during the last few years. The performance of unsupervised parsers
has gone up from around 40% unlabeled F -score on the ATIS corpus [33, 89]
to around 78% F -score on the Wall Street Journal (WSJ) corpus [64]. Yet,
all unsupervised parsing models proposed so far limit either the lexical or the
structural context that is taken into account, or both. That is, these unsu-
pervised models operate by statistically comparing contiguous subsequences
of sentences: if substrings appear in similar lexical contexts they are likely to
form a constituent of the same category [33, 64, 65, 90]. However, for build-
ing accurate unsupervised parsers it is imperative to also take into account
non-contiguous substrings. This may be illustrated by the comparative con-
struction ‘more...than’ in the sentence “BA carried more people than cargo in
2004”. Furthermore, there exist many more lexical dependencies which may
be separated by any number of other words and which can therefore not
be described by contiguous substrings. Examples range from linguistic con-
structions such as ‘if...then’ to sentences such as “Companies in Vietnam are
small-sized”, where the subject-verb agreement is non-contiguous (it is not
Vietnam that is small-sized but Companies). What would be needed is an
‘all-subtrees’ approach to unsupervised parsing that statistically compares all
possible subtrees rather than all possible substrings.

In [17], an unsupervised generalization of DOP was proposed, termed U-
DOP. Instead of using all subtrees from a set of given parse trees, U-DOP
initially assigns all possible (binary) trees to a large data-set of initial sen-
tences and next uses the subtrees from these trees to compute the best parse
trees for new sentences. The underlying methodology of U-DOP is similar to
(supervised) DOP: since we do not know beforehand what kind of structures
are appropriate, we should not a priori restrict the set of possible structures,
but take them all and learn only those structures (and subtrees thereof) that
are useful in analyzing new data. U-DOP thus allows initially for any partial
non-contiguous string to form a syntactic group and is therefore richer than
previous unsupervised parsing methods.

To give an illustration of this U-DOP model, consider the following part-
of-speech (p-o-s) string NNS VBD JJ NNS from the Wall Street Journal which
may correspond to the sentence “Investors suffered heavy losses”, (contrary to
DOP, U-DOP currently works with p-o-s strings that are first tagged by a –
possibly unsupervised – part-of-speech tagger). U-DOP starts by assigning all
possible binary trees to this string, where each root node is labeled ‘S’ and
each internal node is labeled ‘X’. Thus NNS VBD JJ NNS has a total of five
binary trees as shown in Fig. 16 – where for readability we add words as well.

The Data-Oriented Parsing Approach: Theory and Application 335

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

XX

S

Fig. 16. All binary trees for “Investors suffered heavy losses”

New sentences can then be parsed by combining subtrees from all possible
trees for given sentences, just as with the DOP+ model. We again let the
DOP approach decide which trees – and subtrees thereof – are most useful in
analyzing fresh data. Of course, if we only had the sentence “Investors suffered
heavy losses” in our corpus, there would be no difference in probability or
derivation length between the five parse trees in Fig. 16. However if we also
have a different sentence where JJ NNS (heavy losses) appears in a different
context, such as in “Heavy losses were reported”, its covering subtree gets a
relatively higher frequency and the parse tree where ‘heavy losses’ occurs as
a constituent gets a higher total probability.

While we can efficiently represent the set of all binary trees of a string by
means of a chart, we need to unpack the chart if we want to extract subtrees
from this set of binary trees. Also, since the total number of binary trees
for the WSJ10 part (in other words, all WSJ sentences up to 10 words) is
already 12 million, it is doubtful that we can apply the unrestricted U-DOP
model to the WSJ in general. The U-DOP model in [17] therefore randomly
samples a large subset from the total number of parse trees from the chart,
and next computes the most probable parse trees for new sentences. In [18], U-
DOP was extended with maximum likelihood training, using the Expectation-
Maximization (EM) algorithm with cross-validation, called UML-DOP. It was
shown that UML-DOP obtained the best reported results on inducing tree
structures for three benchmarks: the English WSJ corpus, the German Negra
corpus and the Chinese Treebank for Mandarin [18]. Moreover, we showed
that UML-DOP even outperformed a well-known supervised parsing model,
namely the treebank grammar from the WSJ corpus. This result was surprising
since common wisdom had it that unsupervised approaches performed worse
than supervised approaches. This result brought [18] to predict that the end
of supervised parsing might be in sight.

336 R. Bod

While these recently developed unsupervised DOP models are thus very
promising, there is still much work to be done: the UML-DOP model does
not operate directly with word strings (due to data sparseness) and it neither
induces syntactic categories or verb-argument structures. Moreover, unsuper-
vised DOP models must still be developed for music and problem-solving. An
overview paper on Unsupervised Data-Oriented Parsing must therefore await
further research.

10 Conclusion

All state-of-the-art parsing systems are nowadays probabilistic and corpus-
based. In this Chapter, we discussed the details of a well-known parsing
approach, called DOP, which parses new data by probabilistically combin-
ing subtrees from a corpus of previously parsed data. DOP takes all subtrees
and lets the statistics decide which subtrees contribute to the most proba-
ble parse trees. We showed how a particular instantiation of DOP, known
as DOP+, integrates the notions of ‘simplicity’ and ‘likelihood’, and how it
can be successfully applied to three different modalities: language, music and
problem solving. We reported on experiments that show a consistent increase
in accuracy if larger corpus subtrees are taken into account. Finally, we showed
how the DOP approach can be extended to unsupervised learning by using
the same underlying principle: assign all binary trees to all sentences and let
the statistics decide which trees (and subtrees) are most useful in parsing new
sentences.

Acknowledgements

We gratefully acknowledge support by way of the NWO Incentive Scheme
Project ‘Towards a Unifying Model for Linguistic, Musical and Visual Pro-
cessing’. This research was also partially supported by the EPSRC Advanced
Research Fellowship ‘Combining Linguistic and Statistical Approaches to Spo-
ken Language Processing’. The author is particularly grateful to Professor
John Fulcher for his excellent help with editing this Chapter. As usual, all
errors and inconsistencies remain the author’s responsibility.

References

1. Abeillé A (ed.) (2003) Treebanks. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

2. Alonso M, Finn E (1996) Physics. Addison Wesley, Reading, MA.
3. Baader F, Nipkow T (1998) Term Rewriting and All That. Cambridge University

Press, UK.

The Data-Oriented Parsing Approach: Theory and Application 337

4. Black E, Abney S, Flickinger D, Gnadiec C, Grishman R, Harrison P, Hindle
D, Ingria R, Jelinek F, Klavans J, Liberman M, Marcus M, Roukos S, Santorini
B, Strzalkowski T (1991) A Procedure for quantitatively comparing the syn-
tactic coverage of English. In: Proc. 5th DARPA Speech and Natural Language
Workshop, Pacific Grove, CA, Morgan Kaufmann, San Mateo, CA: 306–311.

5. Black E, Lafferty J, Roukos S (1992) Development and evaluation of a broad-
coverage probabilistic grammar of English-language computer manuals. In:
Proc. 30th Association Computer Linguistics Conf. (ACL’92), Newark, DE,
Association for Computer Linguistics, Stroudsburg, PA: 185–192.

6. Black E, Garside R, Leech G (1993) Statistically-Driven Computer Grammars of
English: The IBM/Lancaster Approach. Rodopi, Amsterdam, The Netherlands.

7. Bod R (1992) Data-oriented parsing. In: Proc. Computational Linguistics
Conf. (COLING’92), Nantes, France, Association for Computer Linguistics,
Stroudsburg, PA: 854–859.

8. Bod R (1998) Beyond Grammar: An Experience-Based Theory of Language.
Stanford: CSLI Publications (Lecture Notes number 88), distributed by
Cambridge University Press, Cambridge, UK.

9. Bod R (1999) Context-sensitive spoken dialogue processing with the DOP
model. Natural Language Engineering, 5(4): 309–323.

10. Bod R (2000) Parsing with the shortest derivation. In: Proc. 18th ACL Compu-
tational Linguistics Conf. (COLING’2000), Saarbrücken, Germany, Association
for Computer Linguistics, Stroudsburg, PA: 69–75.

11. Bod R (2001) What is the minimal set of subtrees that achieves maximal parse
accuracy? In: Proc. 39th Association Computer Linguistics Conf. (ACL’2001),
Toulouse, France, Association for Computer Linguistics, Stroudsburg, PA:
66–73.

12. Bod R (2002) A unified model of structural organization in language and music.
J. Artificial Intelligence Research, 17: 289–308.

13. Bod R (2002) Memory-based models of melodic analysis: challenging the Gestalt
principles. J. New Music Research, 31(1): 27–37.

14. Bod R (2003) An efficient implementation of a new DOP model. In: Proc.
10th European Association Computer Linguistics Conf. (EACL’03), 12–17 April,
Budapest, Hungary, Association for Computer Linguistics, Stroudsburg, PA:
19–26.

15. Bod R (2004) Exemplar-based explanation. In: Proc. Computation and
Philosophy Conf. (ECAP04), 3–5 June, Pavia, Italy.

16. Bod R (2005) Modeling scientific problem solving by DOP. In: Proc. Cognitive
Science Conf. (CogSci’05). Stresa, Italy: 103.

17. Bod R (2006) Unsupervised parsing with U-DOP. In: Proc. 10th Computational
Natural Language Learning Conf. (CONLL’2006), 8–9 June, New York, NY,
Association for Computer Linguistics, Stroudsburg, PA: 85–92.

18. Bod R (2006) An all-subtrees approach to unsupervised parsing. In: Proc.
ACL Computational Linguistics Conf. (COLING’2006), Sydney, Australia,
Association for Computer Linguistics, Stroudsburg, PA: 865–872.

19. Bod R (2006) Towards a general model of applying science. Intl. Studies in the
Philosophy of Science, 20(1): 5–25.

20. Bod R (2006) Exemplar-based reasoning with the shortest derivation. In:
Magnani L (ed.) Model-Based Reasoning in Science and Engineering. College
Publications, London, UK: 119–140.

338 R. Bod

21. Bod R (2006) Exemplar-based syntax: how to get productivity from examples.
The Linguistic Review (Special Issue on Exemplar-Based Models in Linguistics),
23(3): 289–318.

22. Bod R, Kaplan R (1998) A probabilistic corpus-driven model for
lexical-functional analysis. In: Proc. ACL Computational Linguistics Conf.
(COLING’98), 10-14 August, Montreal, Canada, Association for Computer
Linguistics, Stroudsburg, PA: 145–152.

23. Bod R, Hay J, Jannedy S (eds.) (2003) Probabilistic Linguistics. MIT Press,
Cambridge, MA.

24. Bod R, Scha R, Sima’an K (eds.) (2003) Data-Oriented Parsing. University of
Chicago Press, Chicago, IL.

25. Bod R, Kaplan R (2003) A DOP model for lexical-functional grammar. In:
Bod R, Scha R, Sima’an K (eds.) (2003) Data-Oriented Parsing. University of
Chicago Press, Chicago, IL.

26. Bonnema R, Bod R, Scha R (1997) A DOP model for semantic interpretation.
In: Proc. 4th European Association Computer Linguistics Conf. (EACL’97),
Madrid, Spain, Association for Computer Linguistics, Stroudsburg, PA: 159–
167.

27. Briscoe T, Waegner N (1992) Robust stochastic parsing using the inside-outside
algorithm. In: Proc. AAAI Workshop Statistically-Based Techniques in Natural
Language Processing, Menlo Park, CA, AAAI Press/MIT Press, Cambridge,
MA: 39–53.

28. Carbonell J (1993) Derivational analogy: a theory of reconstructive problem
solving and expertise acquisition. In: Michalski RS, Carbonell J, Mitchell T
(eds.) Machine Learning II. Morgan Kaufmann, San Francisco, CA: 371–392.

29. Charniak E (1997) Statistical techniques for natural language parsing. AI
Magazine, Winter: 32–43.

30. Charniak E (2000) A maximum-entropy-inspired parser. In: Proc. 1st North
American ACL Chapter Conf. (ANLP-NAACL’2000), Seattle, WA, Morgan
Kaufmann, San Francisco, CA: 132–139.

31. Chater N (1999) The search for simplicity: a fundamental cognitive principle?
The Quarterly J. Experimental Psychology, 52A(2): 273–302.

32. Chiang D (2000) Statistical parsing with an automatically extracted tree
adjoining grammar. In: Proc. 38th Association Computer Linguistics Conf.
(ACL’2000), October, Hong Kong, China, Association for Computer Linguistics,
Stroudsburg, PA: 456–463.

33. Clark A (2001) Unsupervised induction of stochastic context-free gram-
mars using distributional clustering. In: Proc. Computational Natural Lan-
guage Learning Conf. (CoNLL’2001), July, Toulouse, France, Association for
Computer Linguistics, Stroudsburg, PA: 97–104.

34. Chomsky N (1965) Aspects of the Theory of Syntax. MIT Press, Cambridge MA.
35. Collins M (1996) A new statistical parser based on Bigram lexical dependen-

cies. In: Proc. 34th Association Computer Linguistics Conf. (ACL’96), 23–28
June, Santa Cruz, CA, Association for Computer Linguistics, Stroudsburg, PA:
184–191.

36. Collins M (1997) Three generative lexicalised models for statistical parsing. In:
Proc. 35th Association Computer Linguistics Conf. (ACL’97), July, Madrid,
Spain, Association for Computer Linguistics, Stroudsburg, PA: 16–23.

37. Collins M (1999) Head-Driven Statistical Models for Natural Language Parsing.
PhD Thesis, University of Pennsylvania, PA.

The Data-Oriented Parsing Approach: Theory and Application 339

38. Collins M (2000) Discriminative reranking for natural language parsing. In:
Proc. 17th Intl. Conf. Machine Learning (ICML-2000), Stanford, CA: 175–182.

39. Collins M, Duffy N (2001) Convolution kernels for natural language. In: Dietrich
TG, Becker S, Gharamani Z (eds.) Advances in NIPS 14 (Proc. NIPS’2001), 3–8
December, Vancouver, Canada, MIT Press, Cambridge, MA: 617–624.

40. Collins M, Duffy N (2002) New ranking algorithms for parsing and tagging:
kernels over discrete structures, and the voted perceptron. In: Proc. 38th Asso-
ciation Computer Linguistics Conf. (ACL’2002), Philadelphia, PA, Association
for Computer Linguistics, Stroudsburg, PA: 263–270.

41. Conklin D (2006) Melodic analysis with segment classes. Machine Learning,
65(2-3): 349–360.

42. Cussens J (2001) Parameter estimation in stochastic logic programs. Machine
Learning, 44(3): 245–271.

43. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Statistical Society, 39: 1–38.

44. De Raedt L, Kersting K (2004) Probabilistic inductive logic programming. In:
Proc. Algorithmic Learning Theory (ALT) Conf., Lecture Notes in Computer
Science 3244, Springer-Verlag, Berlin: 19–36.

45. Douglas J, Matthews R (1996) Fluid Mechanics 1 (3rd ed.). Longman, Essex,
UK.

46. Eisner J (1996) Three new probabilistic models for dependency parsing:
an exploration. In: Proc. 18th ACL Computational Linguistics Conf. (COL-
ING’96), August, Copenhagen, Denmark, Association for Computer Linguistics,
Stroudsburg, PA: 340–345.

47. Ferrand M, Nelson P, Wiggins G (2003) Unsupervised learning of melodic seg-
mentation: a memory-based approach. In: Proc. 5th European Society for the
Cognitive Sciences of Music Conf. (ESCOM’2003), 8–13 September, Hanover,
Germany.

48. Frazier L (1978) On Comprehending Sentences: Syntactic Parsing Strategies.
PhD Thesis, University of Connecticut.

49. Fujisaki T, Jelinek F, Cocke J, Black E, Nishino T (1989) A probabilistic method
for sentence disambiguation. In: Proc. 1st Intl. Workshop Parsing Technologies,
28–31 August, Pittsburgh, PA: 85–94.

50. Gahl S, Garnsey S (2004) Knowledge of grammar, knowledge of usage: syntactic
probabilities affect pronunciation variation. Language, 80(4): 748–775.

51. Giere R (1988) Explaining Science: A Cognitive Approach. University of Chicago
Press, Chicago, IL.

52. Goldberg A (2006) Constructions at Work. Oxford University Press, Oxford,
UK.

53. Goodman J (1996) Efficient algorithms for parsing the DOP model. In: Proc.
Empirical Methods in Natural Language Processing, Philadelphia, PA: 143–152.

54. Goodman J (2003) Efficient parsing of DOP with PCFG-reductions. In: Bod R,
Scha R, Sima’an K (eds.) Data-Oriented Parsing. University of Chicago Press,
Chicago, IL.

55. Hearne M, Way A (2003) Seeing the wood for the trees: data-oriented transla-
tion. In: Proc. Machine Translation Summit IX, September, New Orleans, LO:
165–172.

56. Hearne M, Way A (2004) Data-oriented parsing and the Penn Chinese Treebank.
In: Proc. 1st Intl. Joint Conf. Natural Language Processing, May, Hainan Island,
China: 406–413.

340 R. Bod

57. Hearne M, Way A (2006) Disambiguation strategies for data-oriented transla-
tion. In: Proc. 11th Intl. Conf. European Association for Machine Translation,
19–20 June, Oslo, Norway.

58. Hoogweg L (2003) Extending DOP with insertion. In: Bod R, Scha R, Sima’an
K (eds.) Data-Oriented Parsing. University of Chicago Press, Chicago, IL.

59. Huron D (1996) The melodic arch in western folksongs. Computing in
Musicology, 10: 2–23.

60. Johnson M (1998) PCFG models of linguistic tree representations.
Computational Linguistics, 24(4): 613–632.

61. Johnson M (2002) The DOP estimation method is biased and inconsistent.
Computational Linguistics, 28(1): 71–76.

62. Jurafsky D (2003) Probabilistic modeling in psycholinguistics. In: Bod R,
Scha R, Sima’an K (eds) Data-Oriented Parsing. University of Chicago Press,
Chicago, IL: 39–96.

63. Klein D (2005) The unsupervised learning of natural language structure. PhD
Thesis, Department of Computer Science, Stanford University, CA.

64. Klein D, Manning C (2002) A general constituent-context model for improved
grammar induction. In: Proc. 40th Association Computer Linguistics Conf.
(ACL’2002), July, Philadelphia, PA, Association for Computer Linguistics,
Stroudsburg, PA: 128–135.

65. Klein D, Manning C (2004) Corpus-based induction of syntactic structure:
models of dependency and constituency. Proc. 42nd Association Computer
Linguistics Conf. (ACL’2004), 21–26 July, Barcelona, Spain, Association for
Computer Linguistics, Stroudsburg, PA: 438.

66. Kudo T, Suzuki J, Isozaki H (2005) Boosting-based parse reranking with subtree
features. In: Proc. 43rd Association Computer Linguistics Conf. (ACL’2005),
June, Ann Arbor, MI, Association for Computer Linguistics, Stroudsburg, PA:
189–196.

67. Kuhn T (1970) The Structure of Scientific Revolutions (2nd ed.). University of
Chicago Press, Chicago, IL.

68. Lerdahl F, Jackendoff R (1983) A Generative Theory of Tonal Music. MIT Press,
Cambridge, MA.

69. Longuet-Higgins H (1976) Perception of melodies. Nature, 263, October 21:
646–653.

70. Longuet-Higgins H, Lee C (1987) The rhythmic interpretation of monophonic
music. In: Longuet-Higgins H (ed.) Mental Processes: Studies in Cognitive
Science, MIT Press, Cambridge, MA.

71. Makatchev M, Jordan P, VanLehn K (2004) Abductive theorem proving for
analyzing student explanations to guide feedback in intelligent tutoring systems.
J. Automated Reasoning, (Special Issue: Automated Reasoning and Theorem
Proving in Education), 32(3): 187–226.

72. Manning C (2003) Probabilistic syntax. In: Bod R, Hay J, Jannedy S (eds.)
Probabilistic Linguistics. MIT Press, Cambridge, MA: 289–342.

73. Manning C, Schuetze H (1999) Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA.

74. Marcus M, Santorini B, Marcinkiewicz M (1993) Building a large anno-
tated corpus of English: the Penn Treebank. Computational Linguistics, 19(2):
313–330.

The Data-Oriented Parsing Approach: Theory and Application 341

75. McClosky D, Charniak E, Johnson M (2006) Effective self-training for parsing.
In: Proc. North American Chapter of ACL Conf. Human Language Technol-
ogy (NAACL-HLT 2006), June, New York, NY, Association for Computer
Linguistics, Stroudsburg, PA: 152–159.

76. Mitchell T, Keller R, Kedar-Cabelli S (1986) Explanation-based learning: a
unifying view. Machine Learning, 1: 47–80.

77. Mooney J, Zelle J (1994) Integrating ILP and EBL. SIGART Bulletin, 5(1):
12–21.

78. Muggleton S (1996) Stochastic logic programs. In: De Raed L (ed.) Advances
in Inductive Logic Programming (Proc. 5th Intl. Workshop Inductive Logic
Programming), IOS Press, Amsterdam, The Netherlands: 254–264.

79. Neumann G (2003) A data-oriented approach to HPSG. In: Bod R, Scha R,
Sima’an K (eds) Data-Oriented Parsing. University of Chicago Press, Chicago,
IL.

80. Pereira F, Schabes Y (1992) Inside-outside reestimation from partially bracketed
corpora. In: In: Proc. 30th Association Computer Linguistics Conf. (ACL’92),
Newark, DL, Association for Computer Linguistics, Stroudsburg, PA: 128–135.

81. Scha R (1990) Taaltheorie en taaltechnologie; competence en performance. In: de
Kort Q, Leerdam G (eds) Computertoepassingen in de Neerlandistiek. Landelijke
Vereniging van Neerlandici (LVVN-jaarboek), Almere, The Netherlands.

82. Schaffrath H (1995) The Essen Folksong Collection in the Humdrum Kern For-
mat. In: Huron D (ed.) Probabilistic Grammars for Music. Center for Computer
Assisted Research in the Humanities, Menlo Park, CA.

83. Sima’an K (1996) Computational complexity of probabilistic disambiguation
by means of tree grammars. In: Proc. 14th Computational Linguistics Conf.
(COLING’96), 5–9 August, Copenhagen, Denmark, Association for Computer
Linguistics, Stroudsburg, PA: 1175–1180.

84. Sima’an K (1999) Learning Efficient Disambiguation. ILLC Dissertation Series
1999-02, Utrecht University, The Netherlands.

85. Sima’an K, Itai A, Winter Y, Altman A, Nativ N (2001) Building a tree-bank
of modern Hebrew text. J. Traitement Automatique des Langues (Special Issue
on Natural Language Processing and Corpus Linguistics), 42(2): 347–380.

86. Temperley D (2001) The Cognition of Basic Musical Structures. MIT Press,
Cambridge, MA.

87. Tomasello M (2003) Constructing a Language. Harvard University Press,
Harvard, MA.

88. Van Lehn K (1998) Analogy events: how examples are used during problem
solving. Cognitive Science, 22(3): 347–388.

89. van Zaanen M (2000) ABL: alignment-based learning. In: Proc. 18th Compu-
tational Linguistics Conf. (COLING’2000), 31 July – 4 August, Saarbrücken,
Germany, Association for Computer Linguistics, Stroudsburg, PA: 961–967.

90. van Zaanen M (2002) Bootstrapping Structure into Language. PhD thesis.
School of Computing, University of Leeds, UK.

91. van Zaanen M, Bod R, Honing H (2003) A memory-based approach to meter
induction. In: Proc. 5th European Society for the Cognitive Sciences of Music
Conf. (ESCOM5), September, Hanover, Germany: 250–253.

92. Veloso M, Carbonell J (1993) Derivational analogy in PRODIGY: automating
case acquisition, storage, and utilization. Machine Learning, 10(3): 249–278.

93. Wertheimer M (1923) Untersuchungen zur lehre von der gestalt. Psychologische
Forschung, 4: 301–350.

342 R. Bod

94. Younger D (1967) Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2): 189–208.

95. Zollmann A, Sima’an, K (2005) A consistent and efficient estimator for data-
oriented parsing. J. Automata, Languages and Combinatorics, 10: 367–388.

96. Zuidema W (2006) What are the productive units of natural language gram-
mar? A DOP approach to the automatic identification of constructions. In:
Proc. 10th Computational Natural Language Learning Conf. (CONLL’2006),
8–9 June, New York, NY, Association for Computer Linguistics, Stroudsburg,
PA: 29–36.

Resources

1 Key Books

Cassell J, Sullivan J, Prevost S, Churchill E (eds.) (2000) Embodied Conver-
sational Agents. MIT Press, Cambridge, MA.

Damasio A (1994) Descartes Error. Macmilliam Publishers, London, UK.

Evans D (2001) Emotion: the Science of Sentiment. Oxford University Press,
New York, NY.

LeDoux J (1996) The Emotional Brain. Simon and Schuster, New York, NY.

Oatley K, Jenkins JM (1996) Understanding Emotions. Blackwell Publishers,
Oxford, UK.

Picard R (1997) Affective Computing. MIT Press, Cambridge, MA.

Plantec P (2004) Virtual Humans. Amacon, New York, NY.

Prendinger H, Ishizuka M (2004) Life-Like Characters. Tools, Affective Func-
tions, and Applications. Springer-Verlag , Berlin.

Reeves B, Nass C (1996) The Media Equation: How People Treat Comput-
ers, Televisions, and New Media Like Real People and Places. Cambridge
University Press, New York, NY.

2 Key Survey/Review Articles

Bates J (1994) The role of emotion in believable agents. Communications
ACM, 37(7): 122–125.

344 R. Bod

Cowie R, et al. (2001) Emotion recognition in human-computer interaction.
IEEE Signal Processing Magazine, 18(1): 32–80.

Dehn D, Van Mulken S (2000) The impact of animated interface agents: a
review of empirical research. Intl. J. Human-Computer Studies, 52(1): 1–22.

Brave S, Nass C (2002) Emotion in human-computer interaction. In: Jacko
JA, Sears A (eds.) The Human-Computer Interaction Handbook: Fundamen-
tals, Evolving Technologies and Emerging Applications. Lawrence Erlbaum
Associates, Mahwah, NJ: 81–96.

Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers,
14(2): 141–169.

http://emotion-research.net/deliverables HUMAINE (Human-Machine Inter-
action Network on Emotion) deliverable Dxx: Proposed exemplar and work
towards it:

Scherer K, et al. (2005) D3e: Theory of Emotion.
Douglas-Cowie E, et al. (2005) D5e: Data and Databases.
Kollias S, et al. (2005) D4d: Signals and Signs of Emotion.
Pelachaud C, et al. (2005) D6d: Emotion in Interaction.
Canamero L, et al. (2005) D7d: Emotion in Cognition and Action.
Stock O, et al. (2005) D8d: Communication and Emotions.
Hook K, et al. (2005) D9d: Usability.
Goldie P, et al. (2005) D10b: Interim report on ethical frameworks

for emotion-oriented systems.

3 Organisations, Societies, Special Interest Groups

CHIL (Computers in the Human Loop)
http://chil.server.de/servlet/is/101/

COSY (Cognitive Systems for Cognitive Assistants)
http://www.cognitivesystems.org/

Design and Emotion Society
http://www.designandemotion.org/

Enactive Interfaces (EU Network of Excellence)
http://www.reflex.lth.se/enactive/

The Data-Oriented Parsing Approach: Theory and Application 345

HUMAINE (Human-Machine Interaction Network on Emotion)
http://emotion-research.net/

International Society for Research on Emotion
http://isre.org/prd/index.php

SIMILAR (The European taskforce creating human-machine interfaces
SIMILAR to human-human interfaces)
http://www.similar.cc/

Virtual Human (Anthropomorphic Interaction Agents)
http://www.virtual-human.org/start en.html

4 Research Groups

Affective Computing at MIT Media Lab
http://affect.media.mit.edu/

Cognition and Affect Project at University of Birmingham (UK)
http://www.cs.bham.ac.uk/research/projects/cogaff

Geneva Emotion Research Group
http://www.unige.ch/fapse/emotion/

LeDoux Lab, New York University
http://www.cns.nyu.edu/home/ledoux/

Relational Agents Group, Northeastern University
http://www.ccs.neu.edu/research/rag/

RITL (Center for Research of Innovative Technologies for Learning, Florida
State University)
http://ritl.fsu.edu/

Virtual Reality Lab, Swiss Federal Institute of Technology
http://ligwww.epfl.ch/

5 Discussion Groups, Forums

The Emotion Forum
http://homepages.feis.herts.ac.uk/ comqlc/emotion.html

Emotional Intelligence Information Website
http://www.unh.edu/emotional intelligence/

346 R. Bod

Facial Action Coding System (FACS) Manual
http://face-and-emotion.com/dataface/facs/description.jsp

Facial Expressions Resources Page
http://www.kasrl.org/facial expression.html

Socially Intelligent Agents
http://homepages.feis.herts.ac.uk/~comqkd/aaai-social.html

Stanford University Persuasive Technology Lab
http://captology.stanford.edu/

Virtual Humans
http://www.ordinarymagic.com/v-people/#

6 Key International Conferences/Workshops

ACII 2005: 1st Intl. Conf. Affective Computing and Intelligent Interaction
http://www.affectivecomputing.org/2005/

ACE 2006: Agent Construction and Emotions: Modeling the Cognitive
Antecedents and Consequences of Emotion
http://www.ofai.at/~paolo.petta/conf/ace2006/

Theories and Models of Emotion (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp3

From Signals to Signs of Emotion and Vice Versa (HUMAINE Workshop –
2004)
http://emotion-research.net/ws/wp4

Data and Databases (HUMAINE Workshop – 2004)
http://emotion-research.net/ws/wp5

Emotion in Interaction (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp6/

Emotion in Cognition and Action (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp7

Emotion in Communication (HUMAINE Workshop – 2005)
http://emotion-research.net/ws/wp8/proceedings-wswp8.pdf

The Data-Oriented Parsing Approach: Theory and Application 347

Innovative Approaches for Evaluating Affective Systems (HUMAINE Work-
shop – 2006)
http://emotion-research.net/ws/wp9/

7 (Open Source) Software

Croquet (Software for creating 3D collaborative multi-user online applications)
http://www.opencroquet.org/

Emofilt (Simulate emotional arousal with speech synthesis)
http://felix.syntheticspeech.de/publications/emofiltInterspeech05.pdf

FEELTRACE (Tool for rating the emotion expressed in audio-visual stimuli)
http://emotion-research.net/download/Feeltrace%20Package.zip

OpenAL (Cross Platform 3D Audio)
http://www.openal.org/

OpenGL (Graphics API)
http://www.opengl.org/

OpenMary (Open Source Emotional Text-to-Speech Synthesis System)
http://mary.dfki.de

TraceTools (Tools for tracing the presence of emotion)
http://emotion-research.net/download/ECatPack.zip

8 Data Bases

8.1 Multimodal Databases

Belfast Naturalistic Database
http://www.idiap.ch/mmm/corpora/emotion-corpus

ISLE project corpora
http://isle.nis.sdu.dk/

SMARTKOM
http://www.phonetik.uni-muenchen.de/Bas/
BasMultiModaleng.html#SmartKom

SALAS
http://www.image.ntua.gr/ermis/

348 R. Bod

8.2 Face Databases

AR Face Database
http://cobweb.ecn.purdue.edu/~aleix/aleix face DB.html

CMU Facial Expression Database (Cohn-Kanade)
http://vasc.ri.cmu.edu//idb/html/face/facial expression/index.html

CMU PIE (Pose, Illumination and Expression) Database
http://www.ri.cmu.edu/projects/project 418.html

CVL Face Database
http://www.lrv.fri.uni-lj.si/facedb.html

Psychological Image Collection at Stirling
http://pics.psych.stir.ac.uk/

Japanese Female Facial Expression (JAFFE) Database
http://www.kasrl.org/jaffe.html

Yale Face Database
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Yale Face Database B
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

Part V

Ontology

Graph-Based Representation and Reasoning
for Ontologies

Dan R. Corbett

Schafer Corporation, Washington, DC, USA,
dcorbett@schafertmd.com

1 Introduction

An ontology, in the Knowledge Engineering and Artificial Intelligence sense,
is a framework for the domain knowledge of an intelligent system. An ontol-
ogy structures the knowledge, and acts as a container for the knowledge. We
define knowledge conjunction as one or more agents using multiple ontologies
to perform tasks and understand the domain. Once a common ontology is
agreed upon, the agents then have a common background in which to share
knowledge. No current method exists that allows intelligent agents to agree
on a common framework for sharing knowledge, although there has been some
work in comparing semantic meanings within an ontology [44]. This means
that agents are unable to use the knowledge of another agent, as the knowl-
edge is meaningless if it isn’t presented in a proper context or a common
‘language’.

In this Chapter, we first give an overview of Conceptual Graph Theory,
including what conceptual graphs are and how they work. We then take a
different point-of-view for the representation of ontologies. Rather than con-
structing a CG to represent the ontology, we assert that the CG formalism
is better exploited by using a combination of the concept type hierarchy, the
canonical formation rules, the conformity relation and subsumption to act as
the framework for the knowledge base. An unpopulated ontology (which is
simply a framework for the knowledge) is represented by the type hierarchy
without specific individuals, while the populated ontology (the framework, as
well as the knowledge of the domain) is represented by a hierarchy and the spe-
cific conceptual graphs which instantiate individuals, constraints, situations
or concepts.

Our definition of ‘ontology’ is a functional one. We can define what an
ontology does more easily than we can define what it is. We use this definition
to show how graphs represent knowledge, and are supported by the ontology.
We then demonstrate the idea in a real-world knowledge domain.
D.R. Corbett: Graph-Based Representation and Reasoning for Ontologies, Studies in Compu-

tational Intelligence (SCI) 115, 351–379 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

352 D.R. Corbett

2 Overview of Conceptual Graphs

It has been demonstrated many times that graphs are a powerful and effi-
cient knowledge representation technique. [28] illustrate quite effectively why
labeled graphs are useful for knowledge representation in general. Among the
main advantages that they list are a solid grounding when it comes to com-
binatorial algorithms, and that a graph (as a mathematical object) allows
a natural representation and therefore permits the construction of effective
algorithms. Until recently, the major technique used in Computer Science for
representing the semantic relationships between objects in a data structure
was to use a graph technique known as Semantic Networks [22].

There have been many attempts to formalize and standardize these
graphical knowledge representation schemes, but probably none has been as
extensive and comprehensive in recent times as Conceptual Graphs. The major
use of conceptual graphs is in representing the relationships between concepts
in a system.

Conceptual Structures (or Conceptual Graphs, or ‘CGs’) are a knowledge
representation scheme, inspired by the existential graphs of Charles Sanders
Peirce and further extended and defined by John Sowa [34–36]. Informally,
CGs can be thought of as a formalization and extension of Semantic Networks,
although the origins are different. They are labeled graphs with two types of
nodes: concepts (which represent objects, entities or ideas) and relation nodes,
which represent relations between the concepts. As an example, Fig. 1 shows
a conceptual graph which represents the knowledge that “The cat Felix is
sitting on the mat which is known as mat 47”.

2.1 The Basics

Conceptual Graphs exist within a highly-structured, formal framework. This
framework helps to guarantee a uniform semantics and that operations on the
graphs are meaningful, sound and complete. Every concept or relation has an
associated type. A concept may also have a specific referent or individual. A
concept in a CG may represent a specific instance of that type (for instance,
Felix is a specific instance, or individual, of type cat) or we may choose only
to specify the type of the concept. That is to say that a concept may simply
represent a generic concept for a type, such as mammal or room, or a concept
may represent a specific object or idea, such as “my cat” or “the kitchen at
the Smith’s house”. In the former case, the concepts in Fig. 1 would be shown

cat : Felix mat : #47SIT

Fig. 1. A simple conceptual graph

Graph-Based Representation and Reasoning for Ontologies 353

man: * name word: *x

child gir l: *y name word: *x

Fig. 2. Another example of a conceptual structure

as ‘cat: * ’ and ‘mat: * ’ indicating non-specified entities of types cat and mat.
In the standard canonical formation rules for conceptual graphs, unbound
concepts are existentially quantified.

Figure 2 shows another example conceptual graph. In this case, the graph
represents the relationship between a man and his daughter. The graph can
be read as “A man has a name, which is a word, and also has a child, which
is a girl, who has the same name as the man.” Here, while the * is used to
represent any generic entity (a man or a girl - existentially quantified) the
*x is a named variable. The named variable is still generic and existentially
quantified, but any value assigned to the variable is remembered (bound) to
the variable name. This is how we can enforce a rule about a father and
daughter sharing a common name.

A relation may have zero or one incoming arcs, and one or more outgoing
arcs. The type of the relation determines the number of arcs allowed on the
relation. The arcs always connect a concept to a relation. Arcs cannot exist
between concepts, or between relations.

A canon in the sense discussed here is the set of all CGs which are well-
formed, and meaningful in their domain. Canonical formation rules specify
how CGs can be legally built and guarantee that the resulting CGs satisfy
‘sensibility constraints’. Sensibility constraints are rules in the domain which
specify how a CG can be built, for example that the concept eats must have
a theme which is food. Note that canonicity does not guarantee validity. A
CG may be well-formed in the canonical formation rules for the domain, but
still be false.

A type hierarchy is established for both the concepts and the relations
within a canon. A type hierarchy is based on the intuition that some types
subsume other types, for example, every instance of cat would also have all
the properties of mammal. This hierarchy is expressed by a subsumption or
generalization order on types. Many of these concepts are formalized later.

Conceptual Graphs are a useful and efficient knowledge representation
tool. They can be used to represent the relations between complex objects in
a system, and can represent multiple relations.

354 D.R. Corbett

2.2 Fundamental Concepts

There are a few basic definitions that the student of Conceptual Graph The-
ory needs to be concerned with. These are the fundamental building blocks of
conceptual graphs, and formally define how to build a domain theory in CGT.
We will now visit the basic definitions in Conceptual Graph Theory (CGT).
This Section draws on previous work on formal definitions for knowledge rep-
resentation as defined by [51]. In our work, however, we follow the further
formalized and refined versions of Sowa’s original ideas for CGT presented
by [46] and by [8], [28]. The following two definitions are adapted from their
work, and from [12], [14].

We first define a background universe for our ontologies to exist in, which
will give substance and order to the ontologies. A canon is the set of all valid
expressions in the domain. The canon defines all the individuals that can exist,
all possible relations between the individuals, and also imposes an ordering
on the types of individuals and relations.

Definition 1 (canon)

A canon is a tuple (T, I,≤, ::, B), where

• T is the set of types; we will further assume that T contains two
disjunctive subsets TC and TR containing types for concepts and
relations.

• I is the set of individuals.
• ≤⊆ T ×T is the subtype relation. It is assumed to be a lattice (so

there are types � and ⊥ and operations ∨ and ∧).
• ::⊂ I × T is the conformity relation. The conformity relation

relates type labels to individual markers; this is essentially the
relation which ensures that the typing of the concepts makes sense
in the domain, and helps to enforce the type hierarchy.

• B is the Canonical Basis function (also called σ in the Concep-
tual Graphs literature). This function associates each relation
type with the concept types that may be used with that relation;
this helps to guarantee well-formed graphs.

It is common in the literature to write c ∈ G instead of c ∈ C when it is
clear that c is a concept (similarly for relations r ∈ G).

Graph-Based Representation and Reasoning for Ontologies 355

Definition 2 (conceptual graph – CG)

A Conceptual Graph with respect to a canon is a tuple G =
(C, R, type, referent, arg1, ..., argm), where

• C is the set of concepts; type : C → T indicates the type of a
concept, and referent : C → I indicates the referent marker of a
concept.

• R is the set of conceptual relations, type : R → T indicates
the type of relation, and each argi : R → C is a partial func-
tion where argi(r) indicates the i-th argument of the relation
r. The argument functions are partial as they are undefined for
arguments higher than the relation’s ‘arity’. We adopt the conven-
tion that arg0 indicates the (at most) one incoming arc. If there
is no incoming arc to the relation, then arg0 is undefined. We
also define the function arity(r) which returns an integer value
representing the number of arguments that the relation r has.

2.3 Canonical Formation Rules

The following definitions are standard, classical definitions of CG formation,
which date back to Sowa’s original 1984 work on conceptual graphs [34], but
which were formalized much more recently [29], [38]. We present here rules
based on the work of [29].

Sowa (and others) also define a copy rule, which allows a new graph G′

to be created as an exact duplicate of a graph G, and a simplify rule which
allows the deletion of duplicate (and presumably redundant) relations. The
simplify rule is just the equivalent of the internal join rule, but for relations.

2.4 Types and Inheritance

The discussion of type hierarchies presented here is adapted for conceptual
graphs from [7], who discusses types and inheritance for Feature Structures.
The set of types discussed in Definition 1 is arranged into a type hierarchy,
ordered according to the specificity of each type. A type t is said to be more
specific than a type s if t subsumes all of the information from s. We write
s ≥ t, and say that s subsumes t or is more general than t (or inversely, that
t is subsumed by s, or is more specific than s). Equivalently to the above, one
can write t ≤ s. One may often read the expression that: “s is a supertype
of t”, or “t is a subtype of s”. While these expressions are in common use, it
confuses the issue of the difference between subsumption and inheritance.

A standard restriction on inheritance hierarchy specifications is that they
do not contain inheritance loops [7]. It would simply be inconsistent (and even
nonsensical) to be able to follow a chain of subtype links from a type back to
itself.

356 D.R. Corbett

Definition 3 (canonical graph)

A canonical graph is a conceptual graph which is in the closure
of the conceptual graphs in its canonical basis under the following
operations, called the canonical formation rules.

1. External join. Given two CGs G =
(C, R, type, referent, arg1, ..., argm) and G′ =
(C′, R′, type′, referent′, arg′

1, ..., arg′
m) (without loss of gen-

erality we assume C and C′ to be disjoint) ∀c ∈ C, and
∀c′ ∈ C′, where c = c′ (that is, they have identical types
and referents), the external join of C and C′ is the CG G′′ =
(C(C′−{c′}), R∪(R′

c′ :=c), type′′, referent′′, arg′′
1 , ..., arg′′

m). The
subscript c′ := c denotes the replacement of every occurrence of
c′ by c. The functions type and referent are such that: f ′′�c ≡ f
and f ′′�c′ ≡ f ′.

2. Internal join. Given a CG G =
(C, R, type, referent, arg1, ..., argm) and two nodes c, d ∈ C
with identical types and referents, the internal join is the
CG G′ = (C − {d}), (Rd:=c), type�c−{d}, referent�c−{d}). The
subscript d := c denotes the replacement of every occurrence of
d by c.

3. Restrict type. Given a CG G =
(C, R, type, referent, arg1, ..., argm) and a node c ∈ C
with type t which has a subtype s
= ⊥, the restrict type
is the CG G′ = (C, R, type′, referent, arg1, ..., argm) such that
type′(c) = s,∀d
= c : type′(d) = type(d).

4. Restrict referent. Given a CG G =
(C, R, type, referent, arg1, ..., argm) and a node c ∈ C with
referent(c) = ∗ and an individual marker i ∈ I , the restrict
referent is the CG G′ = (C, R, type, referent′, arg1, ..., argm)
with referent′(c) = i, d∀c : referent′(d) = referent(d), and
type(c) :: i.

In early pioneering work on the unification of first-order terms, [32] used
the natural lattice structure of first-order terms, which was a partial ordering
based on subsumption of terms [16]. Many terms (or types in our case) are not
in any subsumption relation, for example cat and dog, or wood and mammal.
Unification corresponds to finding the greatest lower bound of two terms in the
lattice [30]. The bottom of any lattice, which is represented with the symbol
⊥, is the type to which all types can unify, and represents inconsistency.
The top of the lattice, represented by �, is the type to which all pairs of
types can generalize, and is called the universal type. Every type is a subtype
of �. Subsumption type hierarchies can then be seen as lattices that admit
unification and generalization [30].

Graph-Based Representation and Reasoning for Ontologies 357

2.5 Specialization, Projection and Subsumption

The common specialization of two conceptual graphs, s and t, is known as a
join, and is represented as s∨ t. The common generalization of the two graphs
is known as a meet, and is represented as s ∧ t.

Our definitions of unification, consistency, and type subsumption are based
on formal concepts of projection and lower bounds. [7] defines each of these
operators (for Feature Structures) as a morphism. We start by following Car-
penter’s definitions, and then modify them to work with the properties of
conceptual graphs. A morphism is then a mapping from the set of nodes of
one conceptual graph to the set of nodes of another that preserves the order
of relation arguments and the values of those arguments. In a morphism, all
of the connections and arguments are preserved. The following definition of
projection is the standard definition used in recent conceptual graph literature
([7], [10], [11], [21], [28], [29], [46]).

Definition 4 (projection)

G = (C, R, type, referent, arg1, ..., argm) is said to have a projec-
tion into G′ = (C′, R′, type′, referent′, arg′

1, ..., arg′
m), G ≥ G′, if and

only if there is a pair of functions hC : C → C′ and hR : R → R′,
called morphisms, such that:

∀c ∈ C and ∀c′ ∈ C′, hC(c) = c′ only if type(c) ≥ type′(c′), and
referent(c) = ∗ or referent(c) = referent(c′)

∀r ∈ R and ∀r′ ∈ R′, hR(r) = r′ only if type(r) ≥ type′(r′)
∀r ∈ R,arg′

i(hR(r)) = hC(argi(r))

Willems also includes the following non-emptiness condition in his def-
inition of projection [46]: ∀c ∈ C there is a concept c′ ∈ C′, such that
hC(c) = c′.

This non-emptiness condition guarantees that all the concepts present in
the more general graph are also present in the more specific graph, although
they may be in a more specific state. Willems’ definition allows for the more
specific graph to have concepts of a more specific type, or for a generic referent
to be replaced by a specific individual. The definition that we use also admits
the non-emptiness condition.

Regarding the join and meet definitions, it is sometimes essential to obtain
the most general common specialization for a given pair of Conceptual Graphs.
In this case it is important to prove that not only is the graph obtained a con-
sistent specialization of the two graphs being considered, but also that it is

358 D.R. Corbett

the unique graph which is the most general of all possible common specializa-
tions. Such a graph is known as the Greatest Lower Bound, as it represents the
highest join which falls under the two graphs in the specialization hierarchy.

Definition 5 (greatest lower bound)

The greatest lower bound (GLB) of two CGs is the most general
common specialization of the two conceptual graphs. Let G′′ be a
specialization of G and G′. G′′ is the GLB of G and G′ if, for any
conceptual graph U where G ∨ G′ = U , either G′′ ≥ U or G′′ = U .

The GLB of two graphs s and t is written as s t. Conversely, the most
specific common generalization, known as the least upper bound (LUB), of
two graphs is written s� t. Note that it is not always possible to find a unique
GLB. In these instances, it is often the case that a greedy algorithm is used
which picks the first G′′ which matches the constraints.

Definition 6 (subsumption)

We say that a conceptual graph G subsumes another conceptual
graph G′, or G ≥ G′, iff G′ can be obtained by applying a finite
number of canonical formation rules to G.

Note that Definition 6 is actually redundant, as subsumption is simply
another form of projection. Since any application of the canonical formation
rules to a graph s will always produce a graph t which is more specific than
the original, s will necessarily have a projection into the new graph t. [28]
formalize this idea, and demonstrate that s ≥ t iff there exists a projection
from s to t.

While Definition 6 is presented here for completeness, and to give formal
substance to any discussion of subsumption, the rest of our discussion will
concern itself strictly with the use of projection. Any mention of subsumption
from this point can be construed as meaning projection.

3 Projection as an Ontology Operator

We base our formal definition of ontology on the formal definition of canon, as
defined earlier. We now treat canon in the sense of the set of all CGs which are
well-formed, and meaningful in their domain. We treat canonical formation

Graph-Based Representation and Reasoning for Ontologies 359

rules as specifying how ontologies can be legally built and guarantee that
the resulting graphs satisfy ‘sensibility constraints’, (the Canonical Basis).
The canonical basis is a set of rules in the domain which specifies how the
relations can be legally used, for example that the concept eats must have a
theme which is food.

The set of types discussed in Definition 2 is arranged into a type hierar-
chy, ordered according to the specificity of each type. Type hierarchies are
established for both the concepts and the relations within a canon. A type
hierarchy is based on the intuition that some types subsume other types, for
example, every instance of cat would also have all the properties of mammal.
This hierarchy is expressed by a subsumption or generalization order on types.
A type t is said to be more specific than a type s if t specializes some of the
concepts from s. As with all type hierarchies, the universal type is shown at
the top of the hierarchy, and is represented by �. The absurd type is shown
at the bottom of the graph, and is represented by ⊥. Type hierarchies are
discussed and illustrated in detail in [13].

The definitions for type hierarchies and for the operations on those hierar-
chies inform our definition of an ontology. We want an ontology to provide a
framework for the semantics of a domain. A canon, as defined above, provides
the background for the representation, since we can use the definitions of rela-
tions, subsumption and conformity to support our definition of an ontology.
We can now formally define an ontology as the particular set of hierarchies
that are created for a given domain, along with all of the operations on a
canon.

Definition 7 (ontology)

An ontology in a given domain M with respect to a canon is a tuple
(TCM , TRM , IM), where

TCM is the set of concept types for the domain M and TRM is the
set of relation types for the domain M.

IM is the set of individuals for the domain M.

An ontology is then a collection of types and individuals, which forms a
framework for the knowledge in a domain. The collection is arranged into a
hierarchy based on the subtype relation ≤. The canon provides the basis for
subsumption in the ontology and guarantees consistency among the relations
and in the typing of individuals.

Note that this hierarchy is not necessarily a taxonomy, in that a type may
have multiple supertypes. Further note that there is no point on the hierarchy
where we must make a distinction between a type and an instance. Every

360 D.R. Corbett

concept on the hierarchy is treated as a type. A type may have subtypes and
supertypes, but there is no need to distinguish these from instances of the
types.

This is distinct from the object-oriented objective of objects inheriting all
the properties of a class of objects. The essential difference is in, for example,
treating a kitchen as you would any generic room. The type room can be
placed, occupy space, and have specific values for color and number of doors.
A class of rooms will have attributes, but cannot be said to occupy a space or
have specific dimensions, or have a specific count or placement of doors. The
generic room can have constraints placed on its attributes, and finally can be
specialized into a kitchen. Fundamentally, a generic room can take the place
of a specialized room, unlike a class of objects.

The ontology (as a concept type hierarchy) acts as the framework, with
conceptual graphs that conform to the hierarchy used to instantiate concepts
in the domain. The ontology is populated by creating conceptual graphs which
represent actions, ideas, situations or states in the domain. Recall, though,
that a conceptual graph need not be a complete description, and will always
be treated in the same manner as any other type.

The closest approach to demonstrating an equivalence between First-Order
Logic (FOL) and Conceptual Graphs is due to [3]. They use a restrictive form
of CGs, in which each concept type is allowed only one individual to represent
it. Once the existential operator has been applied to a generic referent, all
concepts of that type must use that one individual. Clearly, this makes it much
easier to interpret Conceptual Graphs into FOL. Given that restriction, [3]
show that graph derivation through projection is sound and complete. They
discuss a method for graph deduction on these restricted graphs.

The real significance of the work by [3], and indeed of our own work,
is the proof that deduction systems over Conceptual Graphs are not only
possible, but also effective ways of handling knowledge merging, comparison
and deduction.

4 Projection of Ontology Types

The definitions of consistency and type subsumption in this Chapter are based
on formal concepts of projection and lower bounds from Conceptual Graph
Theory [35]. Projection is the operation used to determine subsumption rela-
tions, and to find similarities between parts of the knowledge base. A more
general type G is said to subsume a more specific type H if G has a projection
into H . For example, the type mammal would have a projection into the type
cat.

The following definitions of projection are modified from the standard def-
inition used in recent Conceptual Graph literature ([12], [21], [28], [30], [46]).

Graph-Based Representation and Reasoning for Ontologies 361

Rather than defining projection from one graph into another, these definitions
represent projection of types, and therefore define the subsumption operator
on type hierarchies.

Definition 8 (concept projection)

Given two concept types, s and t, s is said to have a projection into
t if and only if there is a morphism hC : C → C′, such that:

∀c ∈ s and ∀c′ ∈ t′, hC(c) = c′ only if type(c) ≥ type′(c′), and
referent(c) = ∗ or referent(c) = referent(c′)

C is the set of concepts, type : C → T indicates the type of a
concept, and referent : C → I indicates the referent marker of
a concept.

Definition 9 (relation projection)

Given two relation types, s and t, s is said to have a projection into
t if and only if there is a morphism hR : R → R′, such that:

∀r ∈ R and ∀r′ ∈ R′, hR(r) = r′ only if type(r) ≥ type′(r′)
R is the set of relations, and type : R → T indicates the type of a

relation.

The definition of type subsumption is based on notions of graph projec-
tion. Projection and subsumption are defined for individual graphs to help
determine their ordering in accordance with the type hierarchy, and to allow
unification, deduction and combination of graphs. While we concern our-
selves here with issues of type projection, the topic of graph projection and
subsumption is covered in detail in [12], [14], [30].

This definition of projection then gives us a formal definition for subtype
and supertype and for subsumption on the partial order of the types in the
hierarchy. The operations of join, meet and unify are now simply applica-
tions of the projection operator. Finding types which are compatible (in other
words, that can be unified) is now a matter of finding a common subtype (or
join) between the two types. If the only common subtype is ⊥, then there can
be no comparison.

Consistency and validity of conceptual graphs are guaranteed by adhering
to strict rules regarding the formation of new graphs. A domain is defined by
a set of basic graphs, the canonical basis and by its type hierarchies. All other
graphs must be derived from the canonical basis by the use of the canonical

362 D.R. Corbett

formation rules. Like the rest of the CG field, these rules are still evolving,
but they all involve the same basic ideas, as expressed here.

This definition of projection then gives us a formal definition for subtype
and supertype and for subsumption on the partial order of the types in the
hierarchy. All of these operations are now simply applications of the projection
operator. Finding types which are compatible is now a matter of finding a
common subtype (join) of the two types. If the only common subtype is ⊥,
then there can be no unification.

5 Knowledge Conjunction

5.1 Ontology Comparison and Conjunction

As an operator for ontology comparison, the use of the projection operator
becomes obvious. When comparing two ontologies, one need only determine
whether the two concepts under consideration (one from each ontology) are
in a subtype-supertype relation. This means that there needs to be a way
for specifying which two types to compare. As discussed for CG unification
in [15], the user will need to specify a starting node, or in this case a starting
type in each ontology. This may simply be �, but can be any node that the
user wants to specify.

Many terms (or types in our case) are not in any subsumption relation,
for example cat and dog, or wood and mammal. Inheritance hierarchies can be
seen as lattices that admit unification and generalization [30]. So, in our case,
combining two ontologies is the process of finding the common points in the
two ontologies (represented as lattices) and merging the rest of the structures
together.

An example for such an approach is Login [2], where first-order terms are
replaced by feature terms. In the ψ-terms of ([1], [2]), subterms are labeled
symbolically, rather than by argument position, and there is no fixed arity. The
novel contribution of ψ-terms is in the use of type inheritance information. At-
Kaci’s view of unification was as a filter for matching partial structures, using
functions and variables as the ‘filters’. Then, his unification technique uses
information from a taxonomic hierarchy to achieve a more gradual filtering.

An example of Aı̈t-Kaci’s ideas from [30] illustrates this gradual filtering
technique. Assume that we have the following inheritance information, as
illustrated in Fig. 3: birds and fish are animals; a fish-eater is an animal; a
trout is a fish; and a pelican is both a bird and a fish-eater. Then unifying the
following ψ-terms:

fish eater (likes → trout)
bird (color → brown; likes → fish)

Graph-Based Representation and Reasoning for Ontologies 363

animal

birdsfish fish-eater

trout pelican

Fig. 3. A type hierarchy

will yield the new ψ-term:

pelican (color → brown; likes → trout)

Unification does not fail on comparing fish-eater to bird, or trout to fish.
Instead, the conflict is resolved by finding the greatest lower bound on each
of the two pairs of items in the taxonomic hierarchy, in this case pelican and
trout, respectively. In this manner, Aı̈t-Kaci’s system naturally extends the
information merging (or knowledge conjunction) nature of unification.

The merging of two ontologies is somewhat more complicated, and also
more interesting and useful than merely an extension of the projection oper-
ation. A unification of two graphs contains neither more nor less information
than the two graphs being unified. This is the idea behind knowledge conjunc-
tion. The merging of two ontologies is a matter of finding a common starting
point on the two hierarchies (usually with the assistance of the user) and
then continuing outward from that point in a depth-first manner to find other
matching points.

The main thrust of previous research has been the unification of CGs in
terms of conjoining the knowledge contained in two different graphs [11], [15].
In our case, these pieces of partial information are represented by Conceptual
Graphs. However, our current work involves combining the knowledge of two
entire domains. We want to be able to combine the expert knowledge of two
systems, or even combine knowledge from different sources, not merely gather
additional information.

When an ontology is represented by a type hierarchy constructed in
this way, subsumption can be used to combine, refine and reuse the knowl-
edge contained in the graphs. This further allows us to perform reasoning
over the knowledge in the graphs as concepts. Reasoning is not limited to
objects, classes or libraries, but can also be applied to generic concepts in the
knowledge.

364 D.R. Corbett

5.2 Unification, Constraints and Conceptual Graphs

The standard method for representing and validating constraints has been to
use type subsumption to specify which concept types (or subsumed subtypes)
are valid in a system. One could constrain values in a knowledge representation
system by forcing the concepts to conform to a specified type, or else to be
subsumed by that type. A similar method applies to relations. To extend a
previous example, the concept eats is specified to occur only between an agent
which is an animal and a theme which is a food. Any individual used in the
animal concept must conform to the animal type, which means that it must
either be animal, or be subsumed by animal, such as cat or reptile or “Henry
the Meerkat that lives at Adelaide Zoo.”

Unification is related to constraint processing in that constraints are now
used to play the role in theorem proving and logic programming that uni-
fication of terms once played in Constraint Satisfaction Problems (CSP) [4].
The unification-based approach computes projections and general unifiers and
applies them to the terms under consideration. The constraint-based approach
uses constraints to determine which instances are valid. Constraints can be
seen as a filter that prohibits instantiations of the variables not satisfying this
constraint [4]. Further concepts in Constraint Satisfaction, Constraint Logic
Programming and related areas are discussed in detail in the next Section.

This Section discusses the current methods for unification and knowledge
combination of Conceptual Graphs. In the methods described in the current
CG literature, constraints are sometimes handled during the unification pro-
cess, but again not as a standard CG technique. In order to make a CG
programming language feasible and usable, it is essential for the user to be
able to validate a set of constraints over a system. It is also essential to be
able to combine knowledge in a way which is sensitive to the domain, and the
knowledge being represented. Unification is the likely method for doing this.

The usual abstract definition given for the unification problem is to find
an object z that fits both of the descriptions of two objects x and y [30]. We
discuss unification of Conceptual Graphs in terms of combining the knowledge
contained in two different graphs. While this may involve term substitution
and constraint solving, we are more concerned with knowledge combination
as discussed by [7]. Carpenter defines unification as a system in which two
pieces of partial information can be combined into a single unified whole. In
our case, these pieces of partial information are represented by Conceptual
Graphs. [8] refers to this idea as information conjunction, but in our work,
it is knowledge conjunction that is more important to us. Unification here is
the combining of pieces of knowledge, represented as Conceptual Graphs, in
a domain. Where information is simply a gathering and processing of data,
knowledge is the intelligent application of information in a domain. Knowledge
conjunction uses unification to combine partial or incomplete knowledge into
a single result.

Graph-Based Representation and Reasoning for Ontologies 365

5.3 Knowledge Structures, Partialness and Unification

The Relationship Between Unification and Knowledge Structures

Unification is related to Knowledge Structures through the concept of partial-
ness. Structures which are not completely specified can be merged together
through unification. In this Section, we discuss the idea of knowledge con-
junction in terms of partially-specified structures being unified. The purpose,
need and intent of unification of ontologies is clarified.

Partialness

In work on unification, partialness means that a structure need not contain
all information that is implied about it by its structure and types. A partial
representation is used here as a generalized, or higher-level description of
an object in the domain. Whether a structure is partial or not depends on
the context of the knowledge, and the domain. In domain terms, a model
might be partial against one set of knowledge but complete with respect to a
subset of the knowledge. To take an example from the Architectural Design
domain, if our current domain knowledge of a building is limited to its spatial
organization, a complete model of it would assign functions to physical spaces.
Such a model would be partial with respect to a larger set of knowledge,
containing for example, knowledge of how to construct the building.

The main thrust of the research described here is the unification of Con-
ceptual Graphs in terms of conjoining the knowledge contained in two different
graphs. While this may involve term substitution (or the Conceptual Graphs
equivalent – instantiation, subsumption, variable binding, and the like) and
constraint solving, our research is more concerned with knowledge conjunc-
tion as discussed in [7]. Unification then becomes the combining of pieces of
knowledge in a domain, represented as Conceptual Graphs. We define unifi-
cation as an operation that simultaneously determines the consistency of two
pieces of partial or incomplete knowledge, and if they are consistent, combines
them into a single result.

When an ontology is represented by the use of Conceptual Graphs con-
structed in this way, subsumption can be used to combine, refine and reuse
the knowledge contained in the graphs. This further allows us to perform rea-
soning over the knowledge in the graphs as concepts. Reasoning is not limited
to objects, classes or libraries, but can also be applied to generic concepts in
the knowledge. We demonstrate reasoning over generic concepts in the next
Section.

One major advantage that Conceptual Graphs have over other represen-
tation schemes is that they contain existentially quantified concepts that can
still be unified. In Feature Structures theory [7] for example, it is important
to know whether one is attempting to unify the intensions or the extensions

366 D.R. Corbett

of two Feature Structures (FS). Essentially, the intension of a Feature Struc-
ture is all of the attributes (or properties, or features) of a construct. The
extension of a Feature Structure is the actual object being represented, with
the attributes specified, even if only partially. In Feature Structures theory,
one must decide whether the Feature Structures being unified are of the same
intensional type, or the same extensional type, and then seek to identify the
two FSs under that type. The unification of two FSs under their extensional
type is simply the identification of all their values for their features (similar to
type labels and individual markers for the concepts in CGs). There is no way
to derive identities of intensional types of two Feature Structures, as there are
no values to be compared.

Essentially, the intension of a knowledge structure is all of the attributes
(or properties, or features) of a construct. The extension is the actual object
being represented, with the attributes specified, even if only partially ([39],
[40]).

The significance of intensionality in a representation scheme is the simple
fact that two structures can be identical in all aspects yet remain distinct
objects. In an intensional representation scheme, two structures which repre-
sent the same structure must be explicitly identified as being the same. One
major advantage that Conceptual Graphs have is that graphs which contain
existentially quantified concepts can still be unified.

Intensionality, Join and Unify

It is essential to clarify the difference between the ‘join’ operator, introduced
earlier, and the general concept of unification. The difference between these
two operators can be illustrated in the following way. In the standard canonical
formation rules for Conceptual Graphs, unbound concepts are existentially
quantified.

We take for our example the two graphs in Fig. 4, which can be inter-
preted as “Felix is on some object”, and “There is some animal sitting on
that particular mat”. Joining these two graphs is not possible under the stan-
dard canonical formation rule for external join because there is no projection
from one graph to the other. However, there are individual concepts which can
be joined, such as the concept that “Felix is a cat” and “animal.” However,
as discussed earlier, true unification is the knowledge conjunction of the two
graphs. The unification of these two Conceptual Graphs would be similar to
the unification of ψ-terms presented by [1]. The unification is therefore “Felix
sat on mat number 47”, as shown in Fig. 5. Here, the more general concepts of
‘animal’, ‘on’, and ‘object’ have been replaced by their more specific instances.
This illustrates that unification is more than an external join, and is composed
of several operations, including join.

The external join rule can be used to ‘glue together’ two graphs in Willems’
sense, in that a few compatible concepts and relations can be joined together

Graph-Based Representation and Reasoning for Ontologies 367

cat : Felix ON object

mat : #47animal SIT

Fig. 4. Is Felix on the mat?

cat : Felix mat : #47SIT

Fig. 5. Felix is on the mat

from two graphs to make a larger, joined graph. [95] then attempts to create
a truly unified graph by finding the least upper bound of the two graphs that
will validate this newly joined graph. As discussed earlier, in the true sense
of unification, simply joining a few concepts and relations does not guarantee
the conjunction of the knowledge contained in the graphs.

Unification, however, is somewhat more complicated, and also more inter-
esting and useful. The unification of two graphs contains neither more nor less
information than the two graphs being unified. Figure 5 shows that the unifi-
cation of the two graphs in Fig. 4 still retains all the information of the original
two graphs. This is the idea behind knowledge conjunction. Recall from earlier
discussions, though, that unification of graphs can guarantee canonicity, but
not validity. In other words, the graph produced by the unification is guaran-
teed to represent reasonable information in the domain (canonical), but it is
not guaranteed to preserve the truth value of the statements (valid).

6 An Architectural Design Tool

The results discussed in this Section are those recorded from the application
of the knowledge conjunction reasoning tool operating over the domain of
architectural design. The point of automated search for the designer is to use
computer media that engage designers in exploring design modifications. The
design user may want to create new designs, or index, compare or adapt exist-
ing designs. This type of user requires efficient representations for the designs
and states (of designs) in a symbol system [42]. The designer needs to be able
to represent spaces of possibilities which are both relevant to the language
and knowledge of design and lend themselves to tractable computations.

Consider a design for the kitchen of a custom-made house. In this design,
the architect has specified some of the lighting design and that the floor area

368 D.R. Corbett

rm: kit chen

area

ut il: light s

[> 20] : *

. . .

at t r at t r

ut il: plumb
locat ion

has-x

has-y

[6 , 9] : *

[9 , 15] : *

illuminat ion

wiring wr:plan6 1

illum: *

rm: kit chen

area

ut il: light s

[1 8, 2 4] : *

. . .

at t r at t r

ut il: plumb
locat ion

has-x

has-y [12 , 26]

wr: *

illum: pl28illuminat ion

wiring

: *

[3 , 7] : *

Fig. 6. Requirement for a kitchen design, together with a matching previous design

rm: kit chen

area

ut il: light s

[20 , 2 4] : *

. . .

at t r at t r

ut il: plumb
locat ion

has-x

has-y [12 , 1 5]

illuminat ion

wiring wr:plan6 1

illum: pl28

[6 , 7]

: *

: *

Fig. 7. Results of unification of the two graphs

must be greater than 20 square meters. The architect has also retrieved an
old design, which specifies the remainder of the lighting design. The graphs
specifying the partial design and the retrieved design are shown in Fig. 6.

The knowledge conjunction software discussed above combines these two
graphs into a single result which represents neither more nor less knowledge
than the original graphs (Fig. 7). In this graph, all the original knowledge of
the first two graphs has been preserved, and the values in the concepts have
been joined as specified.

The significance of these results is to demonstrate that not only can con-
ceptual graphs be used to represent designs, but they are also a dynamic
reasoning tool that can aid the designer in completing the designs. Further,
since graph matching software exists, it can be used to find, retrieve and reuse
previously stored designs.

7 An Architectural Design Tool: Results and Discussion

Conceptual Graphs can be used to efficiently represent a building design
ontology. The use of Conceptual Graphs is an efficient method for represent-
ing not only the designs, but also constraints on the designs and knowledge

Graph-Based Representation and Reasoning for Ontologies 369

conjunction of designs. The system described in this Chapter allows general
designs to be represented as concepts, and also allows values to be constrained
by specifying real-valued constraints as intervals.

The three main areas where the architects want the contribution of Knowl-
edge Conjunction are in type subsumption, knowledge-level reasoning, and
pattern matching. First, architects want to be able to use type subsumption
to make statements such as “An office (or kitchen, or corridor) is a kind of
room. All the properties which apply to one should apply to its specializa-
tions”. This is distinct from the object-oriented objective of objects inheriting
all the properties of a class of objects. The essential difference is in treating a
kitchen as you would any generic room. A generic room can be placed, occupy
space, and have attributes like color and number of doors. A class of rooms
will have attributes, but cannot be said to occupy a space or have specific
dimensions, or have a specific count or placement of doors.

The knowledge conjunction model that we developed gives this ability to
the architects. The algorithm allows the user to specialize designs by match-
ing (unifying) previous designs with the current design problem. Since all
characteristics, attributes and constraints are carried along in the unification,
the specialization represents all of the design concepts included in the more
generic design. Further, and more importantly, there is no real separation
between generic and specific, since all points in between can be represented.
Conceptual Graphs combined with the ability to specialize using unification
are the ideal tool for the knowledge conjunction approach and the constructive
nature of architectural design.

The second major concern of architectural designers was the ability to
have knowledge-level reasoning. That is, they want to be able to speak in the
language of the architect, not the language of the computer (or Computer-
Aided Design – CAD system). The user wants to be able to refer to the ‘North
Wall’ or ‘door’ without resorting to discussing geometric coordinates in space.
The user wants to depart from previous CAD-based data-level processing, and
work at the knowledge level in the architecture domain.

This is certainly another area where Conceptual Graphs and unification
combine to bring a solution to this domain. While spatial coordinates (and
their constraints) can be stored in a graphical representation of a room, there is
no need for the user to bother with using them. The graph can be manipulated
as a whole, and treated as a room, rather than a square in a diagram. The com-
pleted system will not deal with lines and boxes, but rather with specializing
entire designs for rooms (or houses, or office buildings). This approach frees the
architect from dealing with data-level concerns of numbers and coordinates,
and allows the architect instead to deal with the architectural design.

Finally, the users want to be able to start with a high-level, generic descrip-
tion of a building, and then make queries such as “Can this bay structure be
used in the support structure?”, or “Do the constraints match up adequately

370 D.R. Corbett

for a particular technology to be used? If yes, tell me the constraints under
which it is usable”.

Once again, the work presented in this Chapter meets the requirements of
the architects. A query is represented as a Conceptual Graph. The user can
specify a type of structure for support, and make the query by attempting
to unify the structure with the more generic design. If the unification fails,
then the user knows that the proposed structure does not meet the constraints
of the design problem. If the graphs unify, then the resulting graph will contain
the constraints which must be met in order to make the design work.

Overall, the system of unification over constraints on Conceptual Graphs
presented in this Chapter gives a set of tools to the designer. The ability to use
knowledge conjunction with constraints to handle objects at the knowledge
level greatly leverages the ability of the designer to work efficiently.

8 The Air Operations Officer

The results discussed in this Section are those recorded from the application of
the knowledge conjunction reasoning tool operating over the defense domain.
The domain knowledge is represented as Conceptual Graphs with constraints
on either the structure of the graph or on the values in the concepts [11].
Here, we discuss the idea behind the reasoning mechanism by employing order
sorted unification and constraints within the domain of architectural design.
The concepts discussed previously were implemented in Allegro Common Lisp
on a Sun Workstation.

An Air Operations Officer (usually known as an OPSO) is the defense offi-
cer responsible for deciding the appropriate defensive response to an air threat.
A study of the Operations Officer decision-making methods was recently con-
ducted, using a cognitive modeling technique ([26], [27]). The study was used
to show the usefulness of cognitive modeling in deriving rules from expert
knowledge. In this Section, we only make use of the rules which resulted from
the study; the cognitive modeling technique is not discussed here.

In the domain of the Operations Officer, the magnitude of the response to
an air threat is in proportion to the threat itself. So, if the opposing aircraft
are very close, or if the aircraft is of a type which can cause a great deal of
damage (known as a strike aircraft), then the response is large. If the threat
is smaller, then the response is smaller. For example, Fig. 8 shows a rule in
this domain (we have borrowed the style of [6] to express the rule, although
we do not employ Cao’s fuzzy reasoning here.) This graph expresses the rule
that if a fighter aircraft (small threat) is between 400 and 500 nautical miles
distant, then assert a threat level of ‘alert 60’ (the lowest level of alert, in
which response fighters must be ready to take off within sixty minutes), and
a single fighter is assigned to deal with this threat.

Graph-Based Representation and Reasoning for Ontologies 371

Fig. 8. An assertion and matching rule in the defense domain

The assertion shown in Fig. 8 unifies with the if portion of this rule, since
the aircraft is certainly a fighter, and there is a join on the intervals of the
distance concepts. A join exists here because we define interval concepts on an
interval type hierarchy. Informally, the lattice is ordered on interval inclusion,
such that two intervals have a join if there is some other interval which is
in the ‘overlap’ area of the two intervals. Formal definitions and discussions
on interval type hierarchies are described in [31] and [12]. The then portion
of the rule represents the response to the situation, and it is asserted into
the current world knowledge. In this manner, we can represent the decision-
making capabilities of the Operations Officer.

The rule shown in Fig. 9 is used for a bigger and more impending threat.
Any threat aircraft which is closer than 400 nautical miles is considered an
immediate threat, and a response squadron must be ready very quickly. Fur-
ther, a strike aircraft is one which can inflict a great deal of damage, and is
therefore dealt with more severely than a fighter aircraft.

The assertion shown in Fig. 9 states that a bomber is known to be between
380 and 390 nautical miles distant. Our type hierarchy indicates that a bomber
is a type of strike aircraft. Because of the proximity of the threat, the response
aircraft are put on ‘alert 10’ status. Because of the enormity of the threat,
two fighters are assigned to deal with the target aircraft. Again, the assertion
unifies with the if portion of the rule, causing the then portion of the rule to
be asserted.

372 D.R. Corbett

Fig. 9. Another assertion and rule from the same domain

9 The Air Operations Officer: Results and Discussion

Conceptual Graphs and knowledge conjunction can be used to efficiently rep-
resent a set of rules in the domain of the Air Operations Officer. The use
of Conceptual Graphs is an efficient method for representing the complete
ontology of the OPSO, not only in the rules, but also in the exploration and
use of the knowledge of types of aircraft and responses. General rules can be
represented as Conceptual Graphs, and then specialized dynamically to match
the current situation and describe an appropriate response.

10 Conclusions: Semantics for a Knowledge Web

Much of the work on the semantic web has centered around the use of
ontologies. There has been some previous work in formalizing the definitions
and operations on ontologies, but so far they have been restricted either by
structure, by limited inheritance rules, or by interoperability with ontologies
designed by another designer. For an ontology to be truly flexible and useful,
it must contain all of the following properties:

• deduction,
• relations among first-class objects,

Graph-Based Representation and Reasoning for Ontologies 373

• comparison or merging of concepts or complete ontologies, and
• subsumption (or some type of flexible inheritance).

Many researchers are working on furthering the idea of semantic annota-
tions of web pages (the work of [5], for example). Many of these projects use
XML and languages derived from XML (such as ebXML, XACML, and the
like). Others are using RDF and languages based on OWL or DAML+OIL.
The extensive work by ([25], [24], [23]) and others provides many tools for
using, manipulating and even comparing ontologies, but still fall short in being
completely expressive.

OWL [37] (and the language it was derived from, DAML+OIL) is another
ontology tool which is based on Description Logics [36]. Fundamentally,
DAML+OIL and OWL represent a set of syntax rules built on a decid-
able fragment of First Order Logic (FOL). The semantics of the language
are derived from its FOL foundations, so there are useful definitions of
properties such as deduction and soundness. However, when using the most
common ontology tools, many authors have trouble when describing the rela-
tion between a class and an object [5]. For example, DAML+OIL makes a clear
separation between object classes and data types [29]. Another major criti-
cism of DAML+OIL was that it had a ‘weak semantics’, an issue that still has
not been fully addressed in OWL (see [33] for a discussion and any resolution
of OWL-related issues). Neither language supports flexible inheritance.

While some members of the semantic web research community are pro-
claiming that XML is the answer [14], it is nevertheless widely acknowledged
that these languages fall short of what is really needed to support the seman-
tics that will be necessary for the future of the web. It is already acknowledged
that RDF and DAML+OIL still lack a serious semantics [43], and work
continues on defining this [25].

We must conclude that while there has been a large body of research work
generated around languages for the World Wide Web, many authors seem to
be converging on the idea that a formal definition of the semantics of the web
is now becoming necessary. What needs to be examined next is not whether
XML, RDF and OWL can carry that kind of semantics, but whether in fact
the type of semantics is really the problem. It is not a question of agreeing
on a common representation standard, but of finding a method for comparing
the semantics of various ontologies.

There are some very good ideas and tools contained in recent research
(UML, ebXML, DAML+OIL, RDF, and so on) but we cannot just put all
these formalisms in the same pot and stir, and expect a coherent, useful web
authoring (or knowledge retrieval) tool to emerge. We can all acknowledge
that Description Logics are useful and efficient at categorizing objects and
creating a hierarchy of types. They can classify new concepts and specify
constraints on the type hierarchy. But is this enough?

374 D.R. Corbett

[18] asserts that the assumption that an ontology language should have an
unambiguous, well-understood meaning does not hold anymore. Instead, it is
now necessary to start asking the questions that need to be answered in order
for the web to become a knowledge-based web. It is now time for the knowledge
representation community to agree to disagree about representation schemes,
and start to address the issue of how to understand an ontology constructed
by another author.

Using Conceptual Graphs to represent the underlying ontology, we have
demonstrated a method for automated reasoning on ontologies. Type hier-
archies and the canonical formation rules efficiently specialize graphs into
concrete instances. A simple unification operation, using join and type sub-
sumption, is used to perform knowledge conjunction of the concepts repre-
sented as graphs. The significance of our work is that the previously static
knowledge representation of ontology is now a dynamic, functional reasoning
system. However, many questions still remain to be answered by the ontology
research community.

References

1. Aı̈t-Kaci H (1986) An algebraic semantics approach to the effective resolution
of type quations. Theoretical Computer Science, 45(3): 293–351.

2. Aı̈t-Kaci H, Nasr R (1986) LOGIN: a logic programming language with built-in
inheritance. J. Logic Programming, 3(3): 185–215.

3. Amati G, Ounis I (2000) Conceptual graphs and first order logic. The Computer
J., 43(1): 1–12.

4. Baader F, Siekmann J (1994) Unification theory. In: Gabbay DM, Hogger
CJ, Robinson JA (eds.) Handbook of Logic in Artificial Intelligence and Logic
Programming. Clarendon Press, Oxford, UK, 2: 41–126.

5. Bechhofer S, Carr L, Goble C, Kampa S, Miles-Board T (2002) The semantics of
semantic annotation. In: Meersman R, Tari Z (eds.) Proc. Intl. Conf. Ontologies,
Databases and Semantics, 30 October – 1 November, Irvine, CA, Springer, New
York, NY: 1152–1167.

6. Cao TH, Creasy PN, Wuwongse (1997) Fuzzy unification and resolution proof
procedure for fuzzy conceptual graph programs. In: Lukose D, Delugach HS,
Keeler M, Searle L, Sowa JF (eds.) Proc. 5th Intl. Conf. Conceptual Structures,
August, Seattle, WA, Springer, New York, NY: 386–400.

7. Carpenter B (1992) The Logic of Typed Feature Structures. Cambridge
University Press, Cambridge, UK.

8. Chein M, Mugnier M-L (1992) Conceptual graphs: fundamental notions. Revue
d’Intelligence Artificielle, 6(4): 365–406.

9. Cobb EE (2002) Will web services cause the widespread adoption of the Internet
by business? In: Meersman R, Tari Z (eds.) Proc. 1st Intl. Conf. Ontologies,
Databases, and Application of Semantics, 30 October - 1 November, Irvine, CA,
IEEE Press, Piscataway, NJ.

10. Cogis O, Guinaldo O (1995) A linear descriptor for conceptual graphs and a
class for polynomial isomorphism test. In: Ellis R, Levison R, Rich W, Sowa

Graph-Based Representation and Reasoning for Ontologies 375

JF (eds.) Proc. 3rd Intl. Conf. Conceptual Structures, August, Santa Cruz, CA,
Springer-Verlag, New York, NY: 263–277.

11. Corbett DR (2001) Conceptual graphs with constrained reasoning. Revue
d’Intelligence Artificielle, 15(1): 87–116.

12. Corbett DR (2001) Reasoning with conceptual graphs. In: Stumptner M,
Corbett D, Brooks MJ (eds.) Proc. 14th Australian Joint Conf. Artificial Intelli-
gence, December, Adelaide, South Australia, Lecture Notes in Computer Science
2256, Springer-Verlag, Berlin.

13. Corbett DR (2002) Reasoning with ontologies by using knowledge conjunction
in conceptual raphs. In: Meersman R, Tari Z (eds.) Proc. Intl. Conf. Ontologies,
Databases and Applications of Semantics, October, Irvine, CA, Springer, New
York, NY: 1304–1316.

14. Corbett DR (2003) Reasoning and Unification over Conceptual Graphs. Kluwer
Academic Publishers, New York, NY.

15. Corbett DR, Woodbury RF (1999) Unification over constraints in conceptual
graphs. In: Tepfenhart WM, Cyre WR (eds.) Proc. 7th Intl. Conf. Concep-
tual Structures, July, Blacksburg, VA, Lecture Notes in Computer Science 1640,
Springer-Verlag, New York, NY: 470–479.

16. Davey BA, Priestley HA (1990) Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK.

17. Fikes R, McGuinness DL (2001) An axiomatic semantics for RDF, RDF schema,
and DAML+OIL Knowledge Systems Laboratory, Stanford University, Palo
Alto, CA.

18. Franconi E (2004) Using ontologies. IEEE Intelligent Systems, 19(1): 73–74.
19. Heymans S, Vermeir D (2002) A defeasible ontology language. In: Meersman

R, Tari Z (eds.) Proc. Intl. Conf. Ontologies, Database and Applications of
Semantics, October, Irvine, CA, Springer-Verlag, New York, NY: 1033–1046.

20. Knight K (1989) Unification: a multidisciplinary survey. ACM Computing
Surveys, 21(1): 93–124.

21. Leclère M (1997) Reasoning with type definitions. In: Lukose D, Delugach HS,
Keeler M, Searle L, Sowa JF (eds.) Proc. 5th Intl. Conf. Conceptual Structures,
August, Seattle, WA, Springer-Verlag, New York, NY: 401–414.

22. Lehmann F (1992) Semantic networks. Computers & Mathematics with
Applications, 23(2-5): 1–50.

23. McGuinness DL (2003) Ontologies come of age. In: Fensel D, Hendler J, Lieber-
man H, Wahlster W (eds.) Spinning the Semantic Web: Bringing the World
Wide Web to Its Full Potential. MIT Press, Cambridge, MA: 171–197.

24. McGuinness DL, Fikes R, Hendler J, Stein LA (2002) DAML+OIL: an ontology
language for the semantic web. IEEE Intelligent Systems, 17(5): 72–80.

25. McGuinness DL, Fikes R, Rice J, Wilder S (2000) The Chimaera ontology
environment. In: Kautz H, Porter B (eds.) Proc. 17th National Conf. Artifi-
cial Intelligence, July, Austin, TX, AAAI Press/MIT Press, Cambridge, MA:
1123–1124.

26. Mitchard H (1998) Cognitive model of an operations officer. PhD The-
sis, Department of Computer and Information Science, University of South
Australia, Adelaide.

27. Mitchard H, Winkles J, Corbett DR (2000) Development and evaluation
of a cognitive model of an Air Defence Operations Officer. In: Davis C,

376 D.R. Corbett

van der Gelder TJ, Wales R (eds.) Proc. 5th Biennial Conf. Australasian Cog-
nitive Science Society, May, Adelaide, South Australia, Springer-Verlag, Berlin:
479–492.

28. Mugnier M-L, Chein M (1996) Représenter des connaissances et raisonner avec
des graphes. Revue d’Intelligence Artificielle, 10(6): 7–56.

29. Müller T (1997) Conceptual Graphs as Terms: Prospects for Resolution The-
orem Proving. Technical Report TR97-01, Department of Computer Science,
Vrije Universiteit, Amsterdam, The Netherlands.

30. Nguyen P, Corbett D (2006) A basic mathematical framework for conceptual
graphs. IEEE Trans. Knowledge and Data Engineering, 18(2): 261–271.

31. Older WJ (1997) Involution narrowing algebra. Constraints, 2: 113–130.
32. Reynolds JC (1970) Transformational systems and the algebraic structure of

atomic ormulas. Machine Intelligence, 5: 153–163.
33. Smith MK (2002) Web Ontology Issues W3C, 5.10 (available online at

http://www.w3.org/2001/sw/WebOnt/webont-issues.html. – last accessed 9
July, 2007).

34. Sowa JF (1984) Conceptual Structures: Information Processing in Mind and
Machine. Addison Wesley, Reading, MA.

35. Sowa JF (1992) Conceptual Graphs Summary. Conceptual Structures: Current
Research and Practice. Ellis Horwood, Chichester, UK.

36. Sowa JF (1999) Conceptual graphs: draft proposed American National Stan-
dard. In: Tepfenhart WM, Cyre WR (eds.) Proc. 7th Intl. Conf. Conceptual
Structures, July, Blacksburg, VA, Springer-Verlag, New York, NY: 1–65.

37. van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF,
Stein LA (2004) OWL Web Ontology Language Reference (available online at
http://www.w3.org/TR/owl-ref/ – last accessed 9 July 2007).

38. Wermelinger M, Lopes JG (1994) Basic conceptual structures theory. In: Tepfen-
hart W, Cyre W (eds.) Proc. 2nd Intl. Conf. Conceptual Structures, August,
College Park, Maryland, Springer-Verlag, New York, NY: 144–159.

39. Wille R (1996) Conceptual structures of multicontexts. In: Eklund P, Ellis G,
Mann G (eds.) Proc. 4th Intl. Conf. Conceptual Structures, August, Sydney,
Australia, Springer-Verlag, Berlin: 23–29.

40. Wille R (1996) Short introduction to formal concept analysis. In: Eklund P,
Ellis G, Mann G (eds.) Proc. Intl. Conf. Conceptual Structures, August, Sydney,
Australia, Springer-Verlag, Berlin: 1–22.

41. Willems M (1995) Projection and unification for conceptual graphs. In: Ellis,
Levinson, Rich, Cruz (eds.) Proc. 3rd Intl. Conf. Conceptual Structures, August,
Santa Cruz, CA, Springer-Verlag, New York, NY: 278–292.

42. Woodbury R, Datta S, Burrow AL (2000) Erasure in design space exploration.
In: Gero JS (ed.) Proc. 6th Intl. Artificial Intelligence in Design Conf., June,
Worcester, MA, Kluwer, New York, NY: 521–531.

43. Yang G, Kifer M (2002) On the semantics of anonymous identity and reificaion.
In: Meersman R, Tari Z (eds.) Proc. 1st Intl. Conf. Ontologies, Databases and
Applications of Semantics, 30 October – 1 November, Irvine, CA, Springer-
Verlag, New York, NY: 1047–1966.

44. Yang G, Kifer M (2002) Well-founded optimism: inheritance in frame-based
knowledge bases. In: Meersman R, Tari Z (eds.) Proc. Intl. Conf. Ontologies,
Databases and Applications of Semantics, 30 October – 1 November, Irvine, CA,
Springer-Verlag, New York, NY: 1013–1032.

Resources

1 Key Books

Sowa JF (1984) Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading, MA.
(this is the classic text in which Sowa describes the fundamental ideas behind
the development of conceptual graphs. He also discusses his philosophy of
knowledge representation and the work of Charles Sanders Peirce, whose work
was the inspiration for CGs)

Sowa JF (2000) Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.
(this book captures some of the later research in the area and has a stronger
emphasis on logic)

Corbett DR (2003) Reasoning and Unification over Conceptual Graphs.
Kluwer Academic Publishers, New York, NY.
(this research monograph contains many detailed definitions and explanations
of conceptual structures which the senior researcher will find as useful as the
new student of knowledge representation)

2 Key Survey/Review Articles

Nguyen P, Corbett DR (2006) A basic mathematical framework for concep-
tual graphs. IEEE Trans. Knowledge and Data Engineering, 18(2): 261–271.
(this article is a good introduction to the formal side of conceptual graphs,
containing the complete theory from the basics to advanced concepts of uni-
fication and ontology)

The following three articles are each about applications of the techniques in
this Chapter to various domains. The interested reader will find descriptions
of the theory and algorithms used to implement the systems:

378 D.R. Corbett

Nguyen PHP, Corbett DR (2006) Building corporate knowledge through
ontology integration. In: Hoffmann A, Kang B-H, Richards D, Tsumoto S
(eds.) Proc. Pacific Rim Knowledge Acquisition Workshop, August, Guilin,
China. Lecture Notes in Computer Science LNCS 4303, Springer-Verlag,
Berlin: 223–229.

Morneau M, Mineau GW, Corbett DR (2006) Using an automatically gener-
ated ontology to improve information retrieval. In: de Moor A, Polovina S,
Delugach H (eds.) Conceptual Structures: Inspirations and Applications, Proc.
Conceptual Structures Tools Interoperability Workshop, 16–21 July, Aalborg,
Denmark. Lecture Notes in Computer Science 4068, Springer-Verlag, Berlin:
27–36.

Corbett DR, Rouff C (2006) Self optimization using conceptual graphs for
NASA autonomous systems. In: Sterritt R, Hinchey M, Bapty T (eds.) Proc.
3rd IEEE Workshop Engineering of Autonomic and Autonomous Systems
(EASE’06). April, Columbia, MD. IEEE Computer Society, Piscataway, NJ:
149–157.

3 Research Groups

Université Laval, Quebec City, CA
http://www.ift.ulaval.ca/~moulin
(Cognitive Informatics Laboratory)
http://www.lic.ift.ulaval.ca/Lic/Acceuil.html

Virginia Polytechnic and State University (Virginia Tech)
Automatic Design Research Group
http://www.ee.vt.edu/~adrg/

Knowledge Graphs Research Group LIRMM, Montpelier, France
http://www.lirmm.fr/~cogito/

4 Discussion Groups, Forums

There is an email list – conceptual graphs forum
see http://conceptualgraphs.org/ for instructions on how to join.

5 Key International Conferences/Workshops

There is an annual international conference on conceptual graphs that has
traditionally moved among North America, Australia and Europe – see
http://www.iccs.info/ for information on the current conference.

Graph-Based Representation and Reasoning for Ontologies 379

The annual conference on ontologies, databases and applications of semantics,
usually held in Europe, usually has several technical sessions on knowledge
representation, ontologies and conceptual semantics
see http://www.cs.rmit.edu.au/fedconf/ for information on the current confer-
ence.

6 (Open Source) Software

Amine is a multi-layer platform dedicated to the development of Intelligent
Systems and Multi-agent Systems.
http://amine-platform.sourceforge.net/

CharGer is a prototype conceptual graph editor developed the University of
Alabama in Huntsville, free to noncommercial use, and which runs under Java.
http://sourceforge.net/projects/charger/

CPE is a modular environment that provides functional modules to give func-
tionality to a user without having to take the whole environment.
http://port.semanticweb.org/CPE

WebKB is a collection of tools for information retrieval and knowledge rep-
resentation based on conceptual graph concepts.
http://www.webkb.org/

Prolog+CG is an object-oriented extension of PROLOG, based on CGs. CG
(both simple and compound) is a basic data structure, like a term. PRO-
LOG+CG is implemented with Java 2.
http://prologpluscg.sourceforge.net/

CoGITaNT is a set of several useful utilities: a set of library routines in C++
for conceptual modeling, some knowledge bases in conceptual graphs, and an
XML specification for CGXML.
http://cogitant.sourceforge.net/

See http://wiki.anykb.org/CG tools for a comparison of the many features
of various CG tools.

An Ontology-Based Intelligent Mobile System
for Tourist Guidance

Toby H.W. Lam1, Raymond S.T. Lee2, and James N.K. Liu1

1 Department of Computing, Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong, cshwlam@comp.polyu.edu.hk,
csnkliu@comp.polyu.edu.hk

2 IATopia Group Ltd., Tsim Sha Tsui, Kowloon, Hong Kong,
raymond@iatopia.com

1 Introduction

It is common for Internet search engines such as Google and Yahoo to use
keyword searching. Keyword searching employs techniques such as frequency-
inverse document frequency (TF-IDF) [21] to determine the importance of
a word in a document. These methods have several problems. Firstly, key-
word searches locate web pages using the input keywords, without reference
to semantics. The use of semantic information, perhaps in conjunction with
frequency-based search methods, can be expected to produce meaning-based
searches more relevant to users’ meaning-driven queries.

Meaning-based or semantic searches cannot be conducted without semanti-
cally oriented technologies. One such technology which may facilitate semantic
searches is the Semantic Web [2]. The Semantic Web has received substan-
tial attention from the research community recently. The Semantic Web – the
next generation World Wide Web – aims to provide a new framework that can
enable knowledge sharing and reuse. The Semantic Web uses agent technology,
ontology, and a number of standard markup languages such as RDF, OWL
and RDFS to formally model information represented in web resources. This
makes it accessible to humans and computers working together, perhaps in
conjunction with intelligent network services such as search agents. Related to
the development of the Semantic Web, new research findings have been forth-
coming in areas such as Knowledge Engineering, ontology-based Information
Retrieval and ontology-based agents.

Ontology is one of the main components used to enable knowledge inter-
operability within the Semantic Web. From a philosophical point of view,
ontology means the study of entities and their relationships. From an Arti-
ficial Intelligence (AI) point of view, ontology is the explicit specification

T.H.W. Lam et al.: An Ontology-Based Intelligent Mobile System for Tourist Guidance, Studies

in Computational Intelligence (SCI) 115, 381–406 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

382 T.H.W. Lam et al.

of concepts. In fact, ontology is usually defined as an explicit specifica-
tion of conceptualization. That is, ontology is an hierarchical relationship
between terms within a domain that specifies defined terms and the relation-
ships between those terms. A domain-specific ontology is a tool for modeling
resource structures and meanings and allows software programs (agents) to
perform automated tasks for users. These include searching, customizing and
scheduling, which have as one of their points of reference the idea of meaning.
In addition, ontology also plays a vital role in knowledge sharing and explo-
ration, particularly in multiagent-based communication where the content of
messages can be exchanged between different agents.

Given that two domains are sufficiently similar, one way to model a domain
ontology is to reuse or extend an existing ontology. It is difficult, however, to
model a domain ontology completely from scratch. The most common way to
model a new ontology is to invite an ontology expert to model the domain.
Unfortunately, few such experts exist. In this Chapter, we propose an approach
where, instead of using domain experts, we model an ontology using structural
information from a number of websites. In our case, we gathered structural
information from websites then analyzed this information to produce an ontol-
ogy for a travel website. This was motivated by our belief that structural
information is the lay person’s view of a specific domain. Instead of inviting
a professional/expert to model the ontology, we instead model the domain
ontology by using a common or lay person’s understanding. In this Chap-
ter, we describe in detail how to construct the ontology by using structural
information.

We also employed the travel ontology to develop an agent-based tourist
guiding system called – iJADE FreeWalker. There are many wireless devices
such as Portable Digital Assistants (PDAs) and mobile phones on the market;
these devices are usually small in size, lightweight and operate for a consid-
erable time. We developed a prototype tourist guidance system on a Pocket
PC, based on the modeled ontology. The main aim of this context-aware
tourist guidance system is to provide tourists with more helpful tourist infor-
mation. iJADE FreeWalker was developed under iJADE – an intelligent Java
Agent-based Development Environment (http://www.ijadk.com). The system
is integrated with a GPS (Global Positioning System) receiver to locate the
user’s position. The system is capable of gathering nearby tourist information,
such as shopping, sightseeing, entertainment, restaurants, and so forth.

The rest of this Chapter is organized as follows. In Sect. 2, we provide
an overview of the Semantic Web. In Sect. 3, we review some related work
involving the Semantic Web and guidance systems. In Sect. 4, we describe the
ontology-based tourist guidance system, including details of how we modeled
the travel ontology, as well as the iJADE FreeWalker system architecture.
Sect. 5 presents experimental results, while Sect. 6 rounds off with conclusions
and suggested avenues for future research.

An Ontology-Based Intelligent Mobile System 383

2 Background

2.1 The Semantic Web

The development of the Semantic Web proceeds in layers. The main pur-
pose of this layering approach is that it is easier to achieve consensus
in each layer. Figure 1 visualizes the Semantic Web architecture of the
World Wide Web Consortium – W3C (http://www.w3.org/2001/sw/). Start-
ing from the bottom of the ‘layer cake’, Extensible Markup Language (XML)
(http://www.w3.org/TR/xml11/) is used for self-description documents. XML
enables data exchange across the web, but it does not represent any meaning
or knowledge embedded within the data. On top of XML reside the Resource
Description Framework (http://www.w3.org/RDF) and RDF Schema (RDFS)
(http://www.w3.org/TR/rdf-schema). RDF is a metadata model for making
statements about web resources, in the form of a subject-predicate-object
expression called a RDF ‘triple’. Since RDF has an XML-based syntax, it is
located on top of the XML layer. RDFS is a language for describing vocab-
ularies in RDF; it is a semantic extension of RDF – a primitive language for
writing ontologies. The upper layer of the Semantic Web architecture con-
sists of a logic layer, a proof layer, and a trust layer. The logic layer is used to
enhance the ontology language for writing application-specific knowledge. The
proof layer executes rules and evaluates these together with the trust layer
mechanism for applications, allowing a decision to be made as to whether to

Fig. 1. Semantic web architecture

384 T.H.W. Lam et al.

trust the given proof or not. Background information on XML, RDF, RDFS
and OWL is now provided.

Extensible Markup Language (XML)

Hypertext Markup Language (HTML) is derived from Standard Generalized
Markup Language (SGML), and is one of the languages used for creating
web pages. The main uses of HTML are to format documents and display
information. HTML does not contain any structural information. This leads
to problems such as high recall and low precision in search results.

XML is a language that allows users to define tags. In HTML, all the tags
are pre-defined and users cannot make any changes or create new definitions.
The main aim of XML is to extend the markup, which ensures a uniform
data exchange format between applications and supports machine process-
ing of information. During communication between applications, application
developers are required to come to a consensus on the vocabulary (tags) used
in XML, otherwise there will be problems in communication and collabora-
tion between applications. However, under such an approach, the semantics
of XML documents is only accessible to the people who defined it; machines
are incapable of understanding the meaning of the data.

XML is useful for data exchange between applications if the involved par-
ties have already defined what the data is during communication. If a new
communication partner becomes involved, then the model and mapping must
be re-engineered [10], [16]. This is mainly because XML only structures the
document. It does not provide any semantic information about the docu-
ment [6]. Ultimately, while XML may be suitable for communication and
collaboration in a small community where there are high levels of shared
knowledge, it is not appropriate for global communications involving diverse
discourse communities. Figure 2 shows a typical XML document.

Resource Description Framework (RDF)

RDF has been proposed as one way to overcome the limitation of XML
that it does not support data semantics. RDF is a language based on XML
and used for representing information concerning the resources available on
the World Wide Web (http://www.w3.org/RDF). RDF can also be used
to represent information about resources that cannot be directly retrieved
on the Web. RDF is a framework which can be used for expressing and
exchanging information between applications without loss of meaning. By
using RDF, applications designers can use different kinds of RDF parsers
and processing tools in their development. The information in a particu-
lar application can also be used by others. This illustrates the underlying
intention of the ontology, namely knowledge reuse and sharing. RDF is a

An Ontology-Based Intelligent Mobile System 385

<?xml v e r s i on = ”1.0”?>
<book i s bn =”12312312”>

< t i t l e >Thomson&apos ; s A Guide to Orac le 8</ t i t l e >
<author>

<f i rstName >Morrison</f irstName >
<lastName>Jo l i n e l </lastName>

</author>
<chap ter s >

<pr e f a c e num = ”” pages = ”3”>
A Guide to Orac le 8</pre f ace >

<chap ter num = ”1” pages = ”22”>
I n t r oduc t i on to C l i en t / Server Database </chapter >

<chap ter num = ”2” pages = ”27”>
Create and Modify Tables </chapter >

</chap ter s >
</book>

Fig. 2. Sample XML document

http://www.comp.polyu.edu.hk/~cshwlamToby
creator

Fig. 3. Graphical representation of the example statement

form of subject-predicate-object statement which is called a triple state-
ment. The triple statement is commonly written as (s, p, o) where the sub-
ject s has an attribute p with value o, for example, “Toby is the cre-
ator of the webpage http://www.comp.polyu.edu.hk/~cshwlam”. In triple
form, then this statement becomes (‘Toby’, http://www.example.org/creator,
http://www.comp.polyu.edu.hk/~cshwlam) The property ‘creator’ is identi-
fied by the URL and the other value is a string. Figure 3 shows a graphical
representation of this triple, and Fig. 4 the RDF representation.

RDF is limited since it describes resources by using named properties
and values only. RDF Schema (RDFS) is a semantic extension of RDF.
RDFS can describe the relationships between resources and groups of related
resources such as classes, subclasses, domains and ranges. Since RDFS still
lacks some important primitives, it is necessary to have another layer on top
of RDF/RDFS.

Web Ontology Language (OWL)

Web Ontology Language (OWL) extends RDF(S) in order to make it eas-
ier to express meaning (semantics). Compared with XML, RDF and RDFS,
OWL has a better ability to represent machine interpretable content on the

386 T.H.W. Lam et al.

<?xml v e r s i on = ”1.0”?>
<r d f :RDF

xmlns : r d f=
” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : example=”h t t p : //www. example . org /my−rdf−ns”>
<r d f : De s c r i p t i on r d f : about=

” h t t p : //www. comp . po l yu . edu . hk /˜ cshwlam”>
<example : c rea tor >
Toby
</example : c rea tor >

</r d f : Descr i p t i on >
</r d f :RDF>

Fig. 4. RDF representation of the example statement

Web (http://www.w3.org/TR/owl-features). There are three different sub-
languages in OWL: OWL Lite, OWL DL and OWL Full (the latter being the
superset of OWL Lite and OWL DL). OWL DL is based on description logic,
whereas its subset OWL Lite is based on less expressive logic.

OWL Lite supports a user’s need for hierarchy classification and simple
constraints. OWL DL maximizes the expressiveness while retaining com-
putational completeness; OWL Full maximizes expressiveness but has no
computational guarantees. Figure 5 shows a typical example.

2.2 Agent

An agent is a complex software entity which is situated in an environment to
achieve goals for the user [11]. It differs from an arbitrary program in that it is
goal-orientated, persistent, reacts to the environment and is autonomous [7].
There are several different types of agents, including:

1. Autonomous agents – which can decide when action is appropriate without
the need for human intervention.

2. Cooperative agents – which can interact with other agents or with a
human by means of a communication language, such as the FIPA Agent-
based Communication Language (http://www.fipa.org/specs/fipa00061/)
or KQML (http://www.cs.umbc.edu/kqml), to solve problems collabora-
tively.

3. Intelligent agents – which have the ability to learn user preferences and to
adapt to the external environment.

Recently, researchers have attempted to build intelligent agents that can
mimic human intellectual behavior in problem solving, scheduling, data min-
ing, and to generally assist humans in all their activities. Some developers
have implemented various multi-agent systems, targeted towards planning and

An Ontology-Based Intelligent Mobile System 387

. . .
<owl : C lass r d f : ID=”Custom Tai lor”>

<r d f s : subClassOf r d f : re source=”#Shop Type”/>
</owl : Class>
<owl : C lass r d f : ID=”Usefu l Te lephone Number”>

<r d f s : subClassOf>
<owl : C las s r d f : ID=”Genera l In f ormat i on”/>

</ r d f s : subClassOf>
</owl : Class>
<owl : C lass r d f : ID=”Handbags Shoes and Leather Goods”>

<r d f s : subClassOf>
<owl : C lass r d f : ID=”Shopping”/>

</ r d f s : subClassOf>
</owl : Class>

<owl : C las s r d f : ID=”Hote l”>
<r d f s : subClassOf>

<owl : C las s r d f : ID=”Accommodation”/>
</ r d f s : subClassOf>

</owl : Class>
</owl : ObjectProper ty >

. . .

Fig. 5. RDF representation of the example statement

scheduling [18]. Compared with traditional client-server and code-on-demand
technologies, systems developed using agent technology offer the following
advantages [14]:

1. Reduced network load – Traditional distributed systems mainly rely on com-
munication protocols involving multiple interactions to perform a task.
Consequently, there is a lot of network traffic. It is possible for users
to package the sequence with an agent and dispatch it to its destina-
tion host. By using this approach, network load could be significantly
reduced.

2. Reduced network latency – Real time response is critical for control systems,
and these are impacted significantly by network latencies. By using agent
technology, we can dispatch an autonomous agent to the system controller.
This agent can execute commands directly to the external environment.

3. Asynchronous process – Agents can be dispatched onto different hosts
throughout the network. After dispatch, they become independent, and
are able to operate asynchronously and autonomously.

4. Heterogeneous – Agents work in nominated environments. This enables
them to work on different hardware and software configurations. This
provides a seamless environment for heterogeneous system integration.

388 T.H.W. Lam et al.

3 Related Work

There have been a number of research projects which have concerned them-
selves with tourist guidance systems. CRUMPET is a research project funded
by the European Union, whose main aim is to create user-friendly and per-
sonalized mobile services for tourism [19]. CRUMPET adopted multi-agent and
GPS technology to create a context-aware system. It provides tourists with
two different kinds of information: static and dynamic. Static information
is information collected according to the user’s profile and request, whereas
dynamic information is information gathered according to the user’s location.
CRUMPET also learns user preferences and interests to further filter irrelevant
information, but does not adopt reusable knowledge from other domains.

Cyberguide [1] is a personalized tourist guide for museum visitors, which
provides information relevant to the user’s position and orientation. There
are two different types of Cyberguide: indoor and outdoor. This is similar
to CRUMPET, in that it has weak support for both knowledge sharing and
reasoning.

GUIDE is a context-aware tourist guidance system for the city of Lancaster
which is publicly available to visitors [5]. The system supports the collection
of context-specific information regarding the user’s location, navigating the
city using a map, and sending messages to other visitors. Instead of using
GPS or infrared to determine location information, the user’s geographical
information is determined by receiving location messages from position base
stations.

MyCampus [20] is a research project developed at Carnegie Mellon Uni-
versity. It is a Semantic Web environment for context-aware mobile services.
The current implementation of MyCampus combines a number of technologies
such as OWL, reasoning, context-aware agents and OWL Rule Extension.
The system can provide location-based movie recommendations and weather
information. MyCampus is user-friendly, intelligent, and fully utilizes the latest
Semantic Web technologies.

A web-based virtual exhibition system (VES) based on a XML-based dig-
ital archive is reported in [15]. It incorporates a layered set of metadata of
image and text artifacts. This collection of metadata helps the development
and maintenance of the system content. The idea of a virtual exhibition sys-
tem is similar to the proposed portal described in Sect. 4. VES uses XML
for processing, and this provides syntax for structured documents but it has
no semantic constraints, such as that data can only be of integer type, for
instance. In this Chapter, we show how we integrated a tourist information
portal with the latest Semantic Web Technology.

An Ontology-Based Intelligent Mobile System 389

4 Ontology-Based Tourist Guide

In this Section, we provide details of the ontology-based tourist guidance
system iJADE FreeWalker. In Sect. 4.1, we describe the iJADE (intelligent
Java-based Agent Development Environment) framework. In Sect. 4.2, we
describe how the travel ontology is constructed. In Sect. 4.3, we describe iJADE
FreeWalker. The system architecture of iJADE FreeWalker is presented in
Sect. 4.4.

4.1 iJADE Framework

iJADE (http://ijadk.com) is an intelligent agent-based development environ-
ment capable of developing a fully integrated intelligent multi-agent based
system. It is a basic framework and development environment for intelligent
agent-based applications. iJADE consists of four layers (see Fig. 6):

1. The Application Layer: This is the uppermost layer and consists of differ-
ent intelligent agent-based applications. This layer accepts data from the
conscious layer and is connected to the external application.

2. The Conscious Layer: This intelligence layer includes a Sensory Area, a
Logic Reasoning Area and an Analytical Area.

3. The Technology Layer: This layer provides all the necessary mobile agent
implementation APIs for the development of the intelligent agent compo-
nents contained in the ‘Conscious Layer’.

4. The Supporting Layer: This layer provides a programming language and
protocols necessary to support the development of the ‘Technology Layer’.

Fig. 6. iJADE framework

390 T.H.W. Lam et al.

4.2 Construction of the Travel Ontology

In this Section, the method of collection and use of structural information for
the ontology of the travel portal is described. Instead of modeling all related
information, we define only the upper-level ontology, since travel ontology is
related to areas such as accommodation, dining and sightseeing. The upper-
level ontology provides a set of generic concepts which can be shared and
reused by future users. To model this upper-level travel ontology, a number
of travel guide related websites are collected and analyzed. This new travel
ontology is then used to develop the tourist guidance system.

Structural Data Collection

Structural information was collected from a number of travel websites. This
also included terms used in the site map and the website menu. Web devel-
opers often group related content into categories. The site structure is a
common way for people to define a domain (for instance, travel). Instead
of inviting an ontology expert to undertake the modeling, we collected
and recorded structural information from a number of websites. Websites
related to Hong Kong travel were obtained from Google Web Directory
and Open Directory (http://www.domz.org). In Google Web Directory, there
are 27 websites that relate to Hong Kong Travel (Regional>Asia>Hong
Kong>Travel and Tourism>Travel Guides). In Open Directory, there are 31
websites related to Hong Kong Travel (Regional>Asia>Hong Kong>Travel
and Tourism>Travel Guides). Since Google Web Directory integrates its
search technology, PageRank [3], with Open Directory searching, some web-
sites in Open Directory are duplicated in the Google Directory. After removing
duplicates, 32 websites remained (2 being unreachable). Table 1 shows infor-
mation about these websites. We visited each website and recorded the
structural information. There were 153 terms. After filtering and grouping
similar terms, we found the most common term to be ‘Shopping’; twelve web-
sites contained this term. Table 2 shows the top ten most commonly used
terms in Hong Kong travel-related websites. We further filtered and grouped
together terms with similar meanings (See Table 3), then used this information
to model our upper-level travel ontology.

Travel Ontology Design

To ensure that the ontology would be reusable and available to share with
others, we modeled an upper-level travel ontology. Consequently, this ontol-
ogy could be reused by different users in different parts of the world. After
collecting and analyzing the structural information, we then defined an upper-
level travel ontology. This upper-level ontology is used to provide a set of basic
concepts (if we modeled all the concepts, the ontology would be too specific
and could not be reused by others). The travel ontology contains seven main

An Ontology-Based Intelligent Mobile System 391

Table 1. Websites related to Hong Kong travel guides (†= dead link)

Website Name Web Address (URL)

1 Lonely Planet Hong Kong http://www.lonelyplanet.com/dest/nea/
hong.htm

2 Footprint Guides Hong Kong http://www.footprintguides.com/Hong–Kong/
3 Regi Tour http://www.regit.com/regitour/hongkong/

regitour.htm
4 Dr Martin Williams http://www.drmartinwilliams.com
5 Walk The Talk http://www.walkthetalk.hk/
6 Arthur Frommer’s Budget http://www.frommers.com/

Travel Online destinations/hongkong/
7 rec.travel Guide to http://www.math.toronto.edu/˜joel/

Hong Kong hongkong.html
8 Hong Kong Tourist Guide(†) http://www.yp.com.hk/yptourist e03/

en/html/tourist index.aspx
9 PassPlanet.com Hong http://www.passplanet.com/HK/index.htm

Kong(†)
10 Hong Kong Hotels Guide http://www.hong–kong–hotels–guide.com/
11 12hk: The Unofficial Guide http://www.12hk.com
12 Hong Kong Fast Facts http://www.hkfastfacts.com/
13 Hong Kong Travel http://www.hong–kong–travel.org/
14 Writing, Photography and http://martinwilliams.tripod.com/index.html

Nature Tourism in East Asia
15 Travelocity’s Destination http://dest.travelocity.com/DestGuides/

Guide geo main/0,1743,TRAVELOCITY
|2771,00.html

16 Stuie’s Hong Kong Page http://uk.geocities.com/expatbeamish/SB/HK/
17 Hong Kong Tong http://www.hongkongtong.net/
18 Hong Kong Travel Guide http://www.luketravels.com/hong–kong/
19 Hong Kong on Web http://www.hongkongonweb.net/
20 Hong Kong Help http://www.hongkonghelp.com/
21 Visiting Hong Kong http://www.visitinghongkong.co.uk/
22 Hong Kong Travellers http://home4u.hongkong.com/lifestyle/travel/

hktravellers
23 Discover Sai Kung http://www.discoversaikung.com/
24 Travallo: Hong Kong http://www.travallo.de/laender/asia/china/

hongkong.html
25 Worldsurface.com - http://www.worldsurface.com/browse/

Hong Kong Guide location–country.asp?locationid=112
26 BootsnAll http://www.BootsnAll.com/asiatravelguides/

hk/hk.shtml
27 CNN City Guides: http://www.whatsontheplanet.com/wow/ptnr/

Hong Kong cnn/page.jsp?fx=destination& loc id=147486&
xml set=wow.city

28 Asia Friends Network http://www.countries.asiafriendsnetwork.
Hong Kong Tourism com/HongKong/

29 Explore Sai Kung http://www.exploresaikung.com/
30 Hong Kong Streets http://www.hkstreet.com/
31 I Love Hong Kong http://free.hostdepartment.com/i/ihearthk/
32 UnRealHong Kong.com http://www.unrealhongkong.com/

392 T.H.W. Lam et al.

Table 2. Ten most commonly used categories in HK travel guide websites

Rank Category Term Frequency

1 Shopping 12
2 Hotel 6
3 Getting Around 6
4 Link 6
5 Food 5
6 History 5
7 Attraction 5
8 Festival 5
9 Accommodation 5

10 Transportation 4

Table 3. The ten most commonly used categories after filtering and grouping

Rank Category Term Frequency

1 See/Sightseeing/Sight/Spots/Unique 18
Sights/Interesting Places/
Attractions/Landmarks/Places to Visit/
Getting Around/Go Around

2 Food/Criuses/Restaurant/Dining/Eat/ 16
Bars and Restaurants/Eating and
Drinking/Food and Drink

3 Shopping/Shop/Shopping and Malls/Buy 15
4 General information/General/Overview/ 14

General HK Info/City facts and info/
Country info/History

5 Accommodation/Places to stay/Sleep/Hotels 13
6 News and events/News/Events/Festivals 11

and events/Festival/Festivals and holidays/
Public holidays

7 Transportation/Transport/Getting there 10
8 Others/Miscellaneous/Link 6
9 Nightlife/Night 5

10 Weather/Local weather 4

classes, each of which contains subclasses. Figure 7 shows details of the class
relationships in this travel ontology.

To allow the ontology to be reused by others, the travel ontology is marked
up using Web Ontology Language (OWL). The travel ontology is modeled
using Protégé (http://www.protege.stanford.edu). Protégé is a free, open-
source platform with a user friendly interface. It provides a set of tools for
constructing domain model and knowledge-based applications with ontologies.

An Ontology-Based Intelligent Mobile System 393

Fig. 7. Travel ontology

Figure 8 depicts a partial OWL serialization of the travel ontology. We also
created three other ontologies: Cuisine, Shopping and District information.
Figure 9 shows the class relationships of the cuisine ontology.

Travel Ontology Properties

There are seven main classes and a number of class properties in the travel
ontology. Each class has its own subclasses and class properties, such as:

hasDesc: Description of the resource.
hasName: Name of the resource.
hasTelephoneNumber: Telephone number of the resource.
hasEmailAddress: Email address of the resource.
hasFaxNumber: Fax number of the resource.
hasOpeningHours: Opening hours of the resource.
hasRoom: Number of rooms in the resource.

394 T.H.W. Lam et al.

. . .
<owl : C lass r d f : ID= ”Custom Tai lor”>

<r d f s : subClassOf r d f : re source=”#Shop Type”/>
</owl : Class>
<owl : C lass r d f : ID=”Usefu l Te lephone Number”>

<r d f s : subClassOf>
<owl : C las s r d f : ID=”Genera l In f ormat i on”/>

</ r d f s : subClassOf>
</owl : Class>
<owl : C lass r d f : ID=”Handbags Shoes and Leather Goods”>

<r d f s : subClassOf>
<owl : C lass r d f : ID=”Shopping ”/>

</ r d f s : subClassOf>
</owl : Class>

<owl : C las s r d f : ID=”Hote l”>
<r d f s : subClassOf>

<owl : C las s r d f : ID=”Accommodation”/>
</ r d f s : subClassOf>

</owl : Class>
<owl : Ob j ec tProper ty r d f : ID=”hasCui s ine”>

<r d f s : range r d f : re source=”#Cuis ine Type”/>
<r d f s : domain>

<owl : Class>
<owl : unionOf r d f : parseType=”Co l l e c t i o n ”>
<owl : C lass r d f : about=”#Chinese Food”/>
<owl : C lass r d f : about=”#Other Asian Food”/>
<owl : C lass r d f : about=”#Western Food”/>
<owl : C lass r d f : about=”#Other”/>

</owl : unionOf>
</ r d f s : domain>

</owl : ObjectProper ty >
. . .

Fig. 8. Partial OWL serialization of the travel ontology

hasStar: Rank (number of stars) of the resource.
hasURL: URL of the resource.

We used more than twenty properties to model the ontology. Some class
properties, such hasName and hasDesc, are used by several different classes.
The cuisine ontology has four subclasses, each subclass having a number of
instances. The travel ontology ‘dining’ subclass has a property called has-
Cuisine which refers to these instances. The travel ontology has around
420 instances among seven main classes for demonstration and evaluation.
Figure 10 shows an instance of the travel ontology ‘hotel’ class.

An Ontology-Based Intelligent Mobile System 395

Fig. 9. Cuisine ontology

4.3 iJADE FreeWalker

iJADE FreeWalker integrates mobile agent technology and ontology to form
an intelligent tourist guidance system. In general, location awareness means
that the execution of the service can be dynamically adapted depending
on a user’s current location. Modern location-aware mobile tourist guid-
ance systems have been designed using two major approaches. The first is a
client-server communication model that uses a remote procedure call (RPC)

396 T.H.W. Lam et al.

<Hotel r d f : ID= ‘ ‘THE MARCO POLO HONGKONG HOTEL”>
<hasTelephoneNumber rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XML. Schema#s t r i n g ”
>21130088<hasTelephoneNumber>
<hasFaxNumber rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#s t r i n g ”
>21130011</hasFaxNumber>
<hasEmailAddress rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#s t r i n g ”
>hongkong@marcopolohotels . com </hasEmailAddress>
<hasURL rd f : datatype=

‘ ‘ http ://www.3w. org /2001/XMLSchema#s t r i n g ”
>www. marcopolohote ls . com </hasURL>
<h a sD i s t r i c t r d f : r e s ou r c e=‘‘#Tim Sha Tsui”/>
<hasRoom rd f : datatype=
‘ ‘ http ://www.w3 . org /2001/XMLSchema#in t ”
>710</hasRoom>
<hasStar rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#f l o a t ”
>5.0</hasStar>
<hasSt ree t rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#s t r i n g ”
>Canton Road</hasStreet >
<hasName rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#st r ing ’ ’
>The Marco Polo Hongkong Hotel </hasName>
<hasAddress rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#s t r i n g ”
>Harbour City , 3 Canton Road , Tsimshatsui , Kowloon
</hasAddress>
<hasStandardRoomPrice rd f : datatype=

‘ ‘ http ://www.w3 . org /2001/XMLSchema#f l o a t ”
>1050.0</hasStandardRoomPrice>

</Hotel>

Fig. 10. An instance of ‘hotel’

technique to transmit the location information. The second approach is to use
mobile agent technology.

In the RPC approach, two separate computers communicate with each
other over the network by sending and receiving messages. These messages
are either requests from clients or responses from the server. By using this
approach, the network traffic is quite large [12] since the responses often
contain a large volume of data.

Mobile agents have several advantages over client-server communication
approaches. Firstly, a mobile agent can roam the Internet with a varying

An Ontology-Based Intelligent Mobile System 397

degree of autonomy. This ability to freely migrate within a network allows
the agents to perform tasks on behalf of users in heterogeneous network envi-
ronments. The second advantage is that agent technology allows clients and
servers to interact even when the user is off-line. This is more efficient for
users and can reduce network traffic. The mobile agent technique reduces net-
work traffic and communication delay significantly, since it is not necessary to
transfer a large amount of data over the network. Hence, network bandwidth
is utilized in a more effective way.

Since mobile devices such as mobile phones and PDAs have limited storage,
bandwidth and calculation power, a mobile agent is suitable for these handheld
devices. To ensure system usability, the proposed tourist guidance system
was developed using an agent platform. The location awareness mobile agent
captures geographical information by using a GPS system. An ontology-based
context model is proposed to represent tourist information. The context model
enables knowledge sharing and context reasoning in the tourist domain.

4.4 iJADE System Architecture

iJADE FreeWalker comprises three major components, these being:

1. the iJADE FreeWalker Client,
2. the GPS Agent, and
3. the iJADE Tourist Information Center.

Figure 11 shows the system diagram of iJADE FreeWalker.

iJADE FreeWalker Client

The iJADE FreeWalker Client is a Graphical User Interface (GUI) which
displays map and tourist information for the user. The client gathers the

Fig. 11. iJADE FreeWalker system architecture

398 T.H.W. Lam et al.

Fig. 12. Screen shot of iJADE FreeWalker client

user’s location information by using the GPS receiver. The GPS receiver
receives simultaneous GPS data and can ascertain the user’s location. The
GPS receiver is connected with the Pocket PC using Bluetooth. Figure 12
shows the iJADE FreeWalker screen.

GPS Agent

Mobile devices have narrow bandwidth wireless connections, and this is
a critical problem when developing a mobile information retrieval system.
To overcome this problem, we utilize mobile agent technology in iJADE
FreeWalker. For a single request, the agent may conduct multiple interactions
with several information database systems. The results are then returned to
the device to reduce network load.

The GPS Agent is a software agent which can freely migrate from one host
to another. The GPS Agent first captures user location information using the
GPS receiver. It then migrates from the client’s handheld device to a remote
iJADE Tourist Information Center through GPRS (General Packet Radio Ser-
vices) communication. When the GPS Agent reaches the information center,
it queries the server for tourist information concerning the user’s geographi-
cal location by using SPAQRL (see below). The GPS Agent returns relevant
tourist information to the client. The client assembles information from the
GPS Agent and displays it to the user.

An Ontology-Based Intelligent Mobile System 399

iJADE Tourist Information Center

The iJADE Tourist Information Centre has two components: iJADE server and
Jena Framework [4]. Jena is an open source Java framework used for building
Semantic Web applications. It offers a number of APIs for handling RDF,
RDFS and OWL. The main purpose of using Jena is to parse and query the
travel ontology. Jena searches the data from the travel ontology by using the
Simple Protocol And RDF Query Language (SPARQL). Figure 13 shows an
example of using SPARQL to obtain information about a ‘Guesthouse’. The
search returns as an RDF graph and sends it back to the tourist information
server.

In Fig. 13 (lines 2–5), we have used the PREFIX keyword to declare the
RDF name spaces. After declaring the name spaces, we can use the label (for
example, rdfs, rdf, owl, travel) directly in the query. The SELECT clause (line
6 in Fig. 14) is used to obtain the desired information (such as name, address,
district, phone number) of the Guesthouse. The WHERE clause (line 7 in
Fig. 14) is used to ensure that the accommodation type of the selected results
is ‘Guesthouse’.

Select re lated information about Guesthouse

PREFIX rdfs: <http://www.w3.org/2000/01/rdf- schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX travel: <http://www.comp.polyu.edu.hk/~cshwlam/ontology/travel.owl#>

SELECT ?URI ?NAME ?ADDRESS ?DISTRICT ?RO OM ?URL ?E MAIL ? PRICE ?FA X

?PHONE

WHERE { ?U RI rdf:type tra vel:Guesthouse .

 ?URI trave l:hasName ?NAME .

?URI trave l:hasAddress ?ADDRESS .

 ?URI trave l:hasDistrict ?DISTRICTURI .

 ?DISTRICTURI travel:districtName ?DISTRICT .

 ?URI trave l:hasRoom ?RO OM .

 OPTIONAL {? URI trav el:hasURL ?URL } .

 OPTIONAL {? URI trav el:hasEmailAddress ?EMAIL }.

 OPTIONAL {? URI trav el:hasStandardRoomP rice ?PRICE } .

 OPTIONAL {? URI trav el:hasFaxNumber ?FA X } .

 OPTIONAL {? URI trav el:hasPhoneNumber ?PHONE }

}

Fig. 13. A SPARQL example as used in iJADE FreeWalker

400 T.H.W. Lam et al.

Fig. 14. iJADE FreeWalker

The iJADE Server acts as a communication platform. It is a container
used to receive and send the GPS Agent through GPRS. When the GPS Agent
arrives at the information center, it uses a SPARQL statement to parse OWL.
The related tourist information is returned to the client. After processing, the
client shows the relevant tourist information to the user.

5 Performance Evaluation

In this Section, we describe two sets of tests which have been used to determine
the performance of iJADE FreeWalker. Our trial group comprised 30 invited
candidates who assisted in judging the ‘effectiveness’ of the system – details
are given below. We used O2 XDAII Pocket PCs with Java Virtual Machine

An Ontology-Based Intelligent Mobile System 401

as the mobile device. The GPS receiver was a Holux GR-230. The pocket
PC and GPS receiver were connected together using Bluetooth. The iJADE
platform and iJADE Tourist Guide are installed on the Pocket PC. Figure 14
shows iJADE FreeWalker running on the mobile device. In this study, the
testers were required to visit a number of places in the Tsim Sha Tusi district
of Hong Kong using iJADE FreeWalker.

5.1 Precision Test

The aim of this test was to evaluate the precision of received geographi-
cal information. In our proposed system, the GPS coordinates are used to
locate the positions of both the user and of nearby landmarks. We invited
30 candidates to use the system, and then asked them to complete a sur-
vey on system accuracy. During the test, the system is connected to the
GPS receiver to receive real time GPS location information. The system then
gathers tourist context information using mobile agents. These results are tab-
ulated in Table 4. Seventeen candidates thought the accuracy acceptable, 6
failed to receive the GPS data altogether, while 7 thought the results deviated
from the true result.

The failure cases were analyzed and it was concluded that there are errors
in receiving valid GPS data for two reasons: (i) candidates’ improper use of
the GPS receiver, and (ii) poor weather conditions. The performance of the
GPS receiver is dependent on both the weather and the outdoor environment.
A new generation of GPS receiver would most likely overcome these prob-
lems. We concluded that 57% of candidates relied on the system to provide
them with correct location and tourist information by use of GPS receivers
operating on these principles.

5.2 Usability Test

In this test, we evaluated the effectiveness of the modeled ontology. After
the previous test, we gave 30 candidates a questionnaire to ask whether
the system is potentially suitable for tourists. 17 candidates thought that

Table 4. Accuracy of the iJADE Tourist Guide system using a real GPS receiver

Is iJADE Tourist Number of
Guide accurate? Candidates

very accurate 2
accurate 10
normal 5
inaccurate 7
very inaccurate 6

402 T.H.W. Lam et al.

iJADE FreeWalker could replace guidebooks in the future for traveling,
and 13 candidates viewed iJADE FreeWalker as a subsidiary travel tool.
These results show that most candidates agreed the system can help tourists
find tourism-related information. The system was able to receive catego-
rized and location-aware tourist information according to their geographical
information. 25 candidates thought the categorization very detailed, whereas
5 thought the information was not precise enough. Five candidates sug-
gested the system should provide some preference information (for instance,
coupon/discount) for restaurants and shops. Since iJADE FreeWalker can run
on handheld devices (such as Palm Pilots, Pocket PCs), all candidates agreed
that the system has a high degree of mobility and flexibility.

6 Conclusion and Further Work

In this Chapter, we have showed how we modeled the travel ontology by
collecting and analyzing structural information from a number of travel related
websites. Using Google Directory and Open Directory, we examined 32 Hong
Kong relevant travel guide websites. Commonly used terms were collected for
subsequent analysis. After grouping and filtering terms with similar meanings,
seven main classes were defined for use in our travel ontology. Each class had
its own subclasses and properties. We had an input of around 400 instances
based on the travel ontology.

To demonstrate how the ontology works, we developed an ontology-based
tourist guidance system – iJADE FreeWalker. We showed how to integrate
mobile agent technology, GPS technology and ontology to create a tourist
guidance system. System efficiency and scalability were significantly enhanced
by use of mobile agent technology. The system can run on handheld devices
such as PDAs and Pocket PCs. We further demonstrated that the proposed
system is highly flexible and mobile. In addition, iJADE FreeWalker supports
location awareness. It can provide tourist information for sightseeing, enter-
tainment and restaurants, according to their geographical position. Such a
system is able to retrieve relevant tourist information, and furthermore filter
out irrelevant information.

Experimental results showed that most users are favorably disposed
towards iJADE FreeWalker. They thought the system innovative and use-
ful for tourists. Since we are only in the early stages of development, the
present functionalities of iJADE FreeWalker are somewhat limited. Based on
users’ comments/suggestions, we plan to incorporate the following additional
functionality in the future:

1. Voice interface – to extend system usability and interaction, incorporation
of a voice interface would be useful. Further, the system could uses Natural
Language Processing (NLP) to mimic a human tourist guide. A user could

An Ontology-Based Intelligent Mobile System 403

chat with the tourist guide and query the relevant tourist information by
using such a voice interface.

2. Learn user preferences – to further increase the usability and functionality
of the system, we would add a Neural Network (NN) module so as to learn
individual user preferences regarding tourist information.

3. Route planning & recommendation – to optimize the tourist route from a
set itinerary having time and money constraints.

4. Fuzzy searching – to provide customized tourist information based on a
user’s preferences.

In conclusion, we have proposed a new approach to model a domain ontol-
ogy. We have successfully developed both a travel ontology and a mobile
ontology-based location-aware agent-based tourist guidance system. iJADE
FreeWalker integrates GPS and agent technology to provide a location-aware
tourist information retrieval system. It provides well-organized tourist infor-
mation by using the aforementioned ontology. Tourists are able to access
nearby tourist information anywhere, anytime, using a small, handheld device
with limited computational power and network bandwidth. In the future,
we intend enhancing the system by incorporating features such as a voice
interface, the ability to learn user preferences, and a route recommendation
facility.

Acknowledgement

The authors would like to acknowledge the partial support of research grants
RGAA and 1-ZV41 from The Hong Kong Polytechnic University.

References

1. Abowd GD, Atkeson CG, Hong J, Long S, Kooper R, Pinkerton M (1997)
Cyberguide: a mobile context-aware tour guide. ACM Wireless Networks, 3(5):
421–433.

2. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Scientific
American, 284: 34–43.

3. Brin S, Page L (1998) The Anatomy of a Large-scale Hypertextual Web Ser-
arch Engine. In: Proc. 7th Intl. World Wide Web Conf. 14–18 April, Brisbane,
Australia, Elsevier, Amsterdam, The Netherlands: 107–117.

4. Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkinson K (2004)
Jena: implementing the semantic web recommendations. In: Feldman SI, et al.
(eds) Proc. 13th Intl. World Wide Web Conf. 17–20 May, New York, ACM, New
York, NY: 74–83.

5. Cheverst K, Smith G, Mitchell K, Friday A, Davies N (2001) The role of shared
context in supporting cooperation between city visitors. Computers & Graphics,
25(4): 555–562.

404 T.H.W. Lam et al.

6. Decker S, Melnik S, Van Harmelen F, Fensel D, Klein M, Broekstra J, Erdmann
M, Horrocks I (2000) The semantic web: the roles of XML and RDF. IEEE
Internet Computing, 4(5): 63–73.

7. Franklin S, Graesser A Is it an agent, or just a program?: a taxonomy for
autonomous agents. In: Muller JP, et al. (eds) Proc. Intelligent Agents III: Agent
Theories, Architectures, and Languages. 12–13 August, Budapest, Hungary.
Springer-Verlag, Berlin: 21–35.

8. Hagras H, Callaghan V, Colley M, Clarke G, Pounds-Cornish A, Duman H
(2004) Creating an ambient-intelligence environment using embedded agents.
IEEE Intelligent Systems, 19(6): 12–20.

9. Hunter J (2003) Enhancing the semantic interoperability of multimedia through
a core ontology. IEEE Trans. Circuits and Systems for Video Technology, 13(1):
49–58.

10. Jannink J, Mitra P, Neuhold E, Pichai S, Studer R, Wiederhold G (1999) An
algebra for semantic interoperation of semistructured data. In: Scheuerman
P, et al. (eds) Proc. 3rd IEEE Knowledge and Data Engineering Workshop.
November, Chicago, IL, IEEE Computer Society Press, Piscataway, NJ: 77–84.

11. Jennings NR, Sycara K, Wooldridge MJ (1998) A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, 1(1): 7–38.

12. Karnik NM, Tripathi AR (1998) Design issues in mobile-agent programming
systems. IEEE Concurrency, 6(3): 52–61.

13. Khedr M, Karmouch A (2004) Negotiating context information in context aware
systems. IEEE Intelligent Systems, 19(6): 21–29.

14. Lange DB, Oshima M (1999) Seven good reasons for mobile agents.
Communications ACM, 42(3): 88–89.

15. Lim JC, Foo S (2003) Creating virtual exhibitions from an XML-based digital
archive. J. Information Science, 29(3): 143–157.

16. McGuinness DL, Fikes R, Rice J, Wilder S (2000) The Chimaera ontology envi-
ronment. In: Proc. 17th National Conf. Artificial Intelligence – AAAI2000. 30
July – 3 August, Austin, TX, MIT Press, Cambridge, MA: 1123–1124.

17. Maedche A, Staab A (2001) Ontology learning for Semantic Web. IEEE
Intelligent Systems, 16(2): 72–79.

18. Pechoucek M et al. (2006) Agents in industry: the best from the AAMAS 2005
Industry Track. IEEE Intelligent Systems, 21(2): 86–95.

19. Poslad S, Laamanen H, Malaka R, Nick A, Buckle P, Zipf A (2001) CRUMPET:
creation of user-friendly mobile services personalized for tourism. In: Proc. 2nd
Intl. Conf. 3G Mobile Communication Technologies. 26–28 March, London, UK,
IEEE Computer Society Press, Piscataway, NJ: 28–32.

20. Sadeh N, Chan E, Shimazaki Y, Van L (2002) MyCampus: an agent-
based environment for context-aware mobile services. In: Proc. AAMAS02
Workshop Ubiquitous Agents on Embedded, Wearable, and Mobile Devices.
16 July, Bologna, Italy (available online at http://autonomousagents.org/
ubiquitousagents/2002/papers/papers/29.pdf – last accessed April 2007).

21. Salton G, Buckley C (1988) Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5): 513–523.

22. Susperregi L, Maurtua I, Tubio C, Segovia I, Perez MA, Sierra B (2005) Context
aware agents for ambient intelligence in manufacturing at Tekniker. AgentLink
Newsletter, 18: 28–30.

Resources

1 Key Books

Antoniou G, van Harmelen F (2004) A Semantic Web Primer. MIT Press,
Cambridge, MA.

Wooldridge M (2002) An Introduction to Multiagent Systems. Wiley, New
York, NY.

2 Key Survey/Review Articles

Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Scientific
American, 284: 34–43.

Fensel D, Horrocks I, van Harmelen F, McGuinness D, Patel-Schneider P
(2001) OIL: an ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2): 38–45.

3 Websites

OWL Web Ontology Language Overview:
http://www.w3.org/TR/owl-features

Resource Description Framework (RDF) – Concepts and Abstract Syntax:
http://www.w3.org/TR/rdf-concepts/

RDF Vocabulary Description Language – RDF Schema:
http://www.w3.org/TR/rdf-schema/

W3C Semantic Web:
http://www.w3.org/2001/sw/

406 T.H.W. Lam et al.

4 Key International Conferences/Workshops

Intl. Conf. Autonomous Agents and Multiagent Systems (AAMAS)
Association for Computing Machinery

Intl. Conf. Knowledge-Based and Intelligent Information & Engineering
Systems (KES)
KES International

Intl. Conf. Intelligent Agent Technology (IAT)
IEEE Computer Society; Web Intelligence Consortium (WIC); ACM

Intl. Conf. Web Intelligence (WI)
IEEE Computer Society; Web Intelligence Consortium (WIC); ACM

International Semantic Web Conference (ISWC)
Semantic Web Science Association

International World Wide Web Conference (WWW)
International World Wide Web Conference Committee

5 (Open Source) Software

iJADE – an intelligent Java Agent Development Kit
http://www.ijadk.com/

Jena – a Java framework for building Semantic Web applications
http://jena.sourceforge.net/

Protégé – an ontology editor and knowledge base framework
http://protege.stanford.edu/

6 Data Bases

DAML Ontology Library
http://www.daml.org/ontologies

Protégé Ontologies Library
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary

Part VI

Intelligent Agents

Open Source Agent-Based Modeling
Frameworks

Russell K. Standish

School of Mathematics and Statistics, University of New South Wales, NSW 2052,
Australia, R.Standish@unsw.edu.au

1 Introduction

1.1 Artificial Life (Alife)

Artificial Life as a field of study was inaugurated by Chris Langton, who
described it as the study of man-made systems exhibiting behaviors charac-
teristic of life. As such it is complementary to traditional biology, locating
‘life-as-we-know-it’ within the larger picture of ‘life-as-it-could-be’ [17].

The core of artificial life research involves putting together simple compu-
tational objects, or agents that interact to produce ‘lifelike’ behavior. The key
term is emergence1 of nontrivial, possibly even unexpected, behavior from the
interactions of the agents.

The term ‘agent’ is often used to refer to pieces of software exhibit-
ing autonomy, reactivity, goal orientation and persistence [9] running on a
computer or migrating between hosts of a computer network. Agent-based
modeling is not about these sorts of agents, per se. In an agent-based model,
the thread of execution is passed back to the simulation environment after
each agent’s method is completed, which is analogous to the way execution
control is passed between independent tasks in a multitasking operating sys-
tem. Nor do they often have goal orientation. What distinguishes agent-based
modeling from other sorts of modeling is a focus on building models ‘bot-
tom up’, constructing model systems from a large number of small interacting
software components, that in themselves model a component of the modelled
system. Thus in a model of schooling fish, each fish is individually modelled,
as opposed to aggregate concepts like ‘school of fish’.
1 The concept of emergence is a difficult one for philosophers to pin down. I can

recommend [3,10,13] for discussions of the topic, and [32] for my own take on it.
However, for the purposes of this Chapter, we can rely on our intuitive under-
standing of novel behavior emerging from the interactions between parts of a
system.

R.K. Standish: Open Source Agent-Based Modeling Frameworks, Studies in Computational

Intelligence (SCI) 115, 409–437 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

410 R.K. Standish

In artificial life the focus is on the systems themselves without reference
to external systems, except perhaps by analogy. The agents are often called
digital organisms [30] to stress this fact. In agent-based modeling (ABM), the
same methodology of constructing artificial analogues from the bottom up is
applied to modeling real world systems – forest fires, stock markets, traffic,
to name but a few. The agents in the model will correspond in some way to
physical objects in the system being modelled.

In biology, individual-based modeling (IBM) [15] has become increasingly
important, as inadequacies of traditional population-based modeling have
become apparent. Individual-based models track individual animals or plants
rather than population aggregated quantities. Individual-based models may
be constructed in an agent-based way, with computational objects represent-
ing each individual organism, or alternatively each individual is represented
by a collection of numbers, and the population of individuals is therefore a
collection of vectors. For the sake of clarity, let us call this type of model
a vector-based IBM. Conceptually, a vector-based IBM is little different from
a specialized agent-based model, where each agent consisting of a collection
of numbers, however in practice data is laid out differently in the computer’s
memory, which leads to substantially different performance characteristics.

In physics, the main form of individual-based modeling is molecular
dynamics (MD) simulations. Here, each molecule of the physical system
of interest is represented by a collection of numerical properties: position,
momentum, mass, charge, and so on, and the corresponding position and
momentum vectors are updated according to the laws of classical dynamics.
Whilst MD simulations could be implemented in an agent-based fashion, it is
rarely done due to the performance degradation experienced in doing so.

Many artificial life systems have been created over the years, of prominent
note are Tierra, Avida, Echo, and Framsticks, to name but a few of the most
well known. Each of these systems is implemented from the ground up in a
general purpose programming language like C or C++. A typical simulation
needs to implement not only the agents, but also an environment, an event
generator, a means to specify input parameters, as well as visualization and
analysis tools. In an attempt to introduce some commonality and code reuse
between these disparate artificial life models, Langton initiated the Swarm
project, which produced an agent-based modeling platform into which scien-
tists could insert their agents into an environment adapted from a library of
containers (aka ‘Swarms’), and use event generators and visualization probes
to analyze the progress of the simulation.

Over the years, a number of similar agent-based modeling platforms have
been created, each with a differing rationale for existence. Each platform spec-
ifies a particular implementation language for the agents and has a different
balance between performance, scalability, generality and usability.

Open Source Agent-Based Modeling Frameworks 411

This Chapter surveys open source (see Sect. 3), agent-based modeling plat-
forms. Being open source is important, for ensuring replicability of results
between different research groups, and also for auditing against implemen-
tation artifacts. This chapter does not examine commercial agent-based
modeling options.

2 Applications

Agent-based models (ABMs) have been used in a wide variety of application
areas, so this Section will necessarily be illustrative. ABMs are commonly used
in social science settings, to test theories for why particular customs have
arisen. Any recent issue of the J. Artificial Societies and Social Simulation
will provide a number of agent based models. Economics too uses agent-based
models to model the behavior of markets. Here, though, agent-based mod-
els compete with more traditional Monte Carlo techniques that model each
economic agent as a simple set of state variables.

Another important area of application is traffic modeling, with vehicles in a
road network being represented by software agents with intended destinations,
and differing levels of behavior (such as conservative, experimental, and so
on). Here the concern is quite pragmatic – what happens if a new road is
created here, or another road blocked? Similar considerations have motivated
research into modeling crowd behavior within restricted environments such as
a sporting venue.

Grimm [12] presents a decade health check of individual based modeling in
ecology. [15] argued that individual-based models had the potential to ‘unify
ecological theory’, yet Grimm found that a decade on from [15], this potential
had not been realized. Individual models have their place in answering par-
ticular questions inaccessible to more traditional simulation techniques, but
linking the results back to theoretical concerns has not proved easy.

Finally, to artificial life, the field that inspired Swarm and later agent-
based modeling platforms. Agent-based modeling is an important tool for
the generation of complex life-like behaviors, others being cellular automata
and boolean networks [36]. However, curiously, general purpose agent-based
modeling environments such as Swarm and Repast have rarely been used in
the artificial life literature, with researchers developing or making use of more
special purpose simulation software such as Avida [1].

The following specific models are well known classical models that illus-
trate the sorts of modeling ABM’s are applied to. They are exemplars only;
agent-based modeling as a field has grown far beyond the bounds of a single
Chapter like this one.

412 R.K. Standish

Fig. 1. Sugarscape model implemented in Repast

2.1 Sugarscape

Sugarscape [7] is a classic agent-based model of a society of agents living
on a 2D grid (Fig. 1). Each agent has properties of metabolism and vision,
inherited from their parents. Agents have separate requirements for ‘sugar’
and ‘spice’. They need both goods to survive and exhaustion of either will
lead to death by starvation. The agents therefore need to search for these
goods and accumulate them in order to survive. They do so by following a
simple set of connected instructions referred to as a rule set. For example, the
rule set for ‘gathering’ is:

Algorithm 1 gathering rule set
Evaluate personal stocks and determine which good is needed more urgently
(preferred good).
Look around as far as vision permits and identify the site with the greatest value
of the preferred good.
if the greatest value exists at multiple locations then

select one randomly.
Move to that site and harvest all resources from that site.
if no value is found within the visible grid then

the citizen randomly relocates to one of the furthest cells within its vision range.

Agent replacement is either handled randomly upon the death of any agent,
or agents will mate according to the ‘mating’ rule set, giving rise to offspring
agents. The offspring agents inherit part of their parents’ stores of sugar and
spice.

Open Source Agent-Based Modeling Frameworks 413

Agents need both sugar and spice to survive. They have independent
metabolism rates for each resource. There may arise situations where agents
starve to death due to a paucity of one resource, despite having a plentiful
supply of the other. Sugarscape allows agents to trade resources.

The ‘personality’ of the agent is an important attribute affecting their
approach to trade. Personality is randomly assigned at birth and determines
the trading strategy pursued by the citizen. A ‘bear’ (cautious) personality
seeks to minimize surplus and will only trade the surplus commodity. A ‘bull’
(aggressive) personality seeks to maximize trades even if it involves trading
the scarce commodity. The bull only trades the minimum quantity required to
receive one unit of the other commodity. By maximizing trades, the bull seeks
to hedge its exposure to unfair trades. For instance, the bear seeks trading
partners that possess a surplus of its scarce commodity. It then attempts to
trade a certain proportion of its surplus such that the quantity received in
exchange can be combined with the balance of its surplus to mitigate the risk
of depletion of any one commodity. The bear strategy is at risk of wild fluctu-
ations in the exchange price, depending on the variance in the marginal rate of
substitution (MRS) values of the trading partners. Since they attempt to sell
all available surplus immediately, bears could end up trading all their surplus
in a single unfavorable trade. The bull strategy, by trading unit amounts with
as many traders as possible, seeks to average out price fluctuations and arrive
closer to the equilibrium price.

Sugarscape has been implemented in Swarm, Repast, Mason, Cormas and
NetLogo, with the Mason version being perhaps the most complete.2

2.2 The Santa Fe Artificial Stock Market

The Santa Fe artificial stock market was developed by [2, 26]. The market
consists of a population of heterogeneous agents that buy, sell, and hold stocks
and bonds (Fig. 2). An agent’s ‘buy’, ‘sell’, and ‘hold’ decisions are made on
the basis of that agent’s beliefs about whether the stock’s dividend is likely to
go up or down, and those beliefs are determined by a set of market forecasting
rules that are continually being assessed as to accuracy. Over time an agent’s
set of market forecasting rules evolve under the action of a genetic algorithm.

The market contains a fixed number N of agents that are each initially
endowed with a certain sum of money. At each time step, each agent must
decide whether to invest her money in a risky stock or in a risk-free asset
analogous to a real-world Treasury Bill. The risk-free asset is in infinite supply
and pays a constant interest rate r. The risky stock, issued in N shares, pays
a stochastic dividend that varies over time. The stock’s dividend stream is an
exogenous stochastic process whose present value is unknown to the agents.

2 Sean Luke, private correspondence.

414 R.K. Standish

Fig. 2. A screen shot of the Artificial Stock Market

Agents apply their market forecasting rules to their knowledge of the
stock’s price and dividend history to perform a risk aversion calculation and
decide how to invest their money at each time period. The price of the stock
rises if the demand for it exceeds the supply, and falls if the supply exceeds
the demand. Each agent in the market can submit either a bid to buy shares,
or an offer to sell shares – both at the current price pt – or neither. Bids
and offers need not be integers; the stock is perfectly divisible. The aggregate
demand for the stock cannot exceed the number of shares in the market. The
agents submit their decisions and offers to the market specialist – an extra
agent in the market who controls the price so that his inventory stays within
certain bounds. The specialist announces an initial trial price, collects bids
and offers from agents at that price, from these data announces a new trial
price, and repeats this process until demand and supply are equated. The
market clearing price serves as the next period’s market price.

The agents make their investment decisions by using a set of hypotheses
or rules about how to forecast the market’s behavior. At each time period,
each agent considers a fixed number of forecasting rules. The rules determine
the values of the variables a and b which are used to make a linear forecast of
next period’s price:

E(pt+1 + dt+1) = a(pt + dt) + b (1)

Open Source Agent-Based Modeling Frameworks 415

where pt is the trial price, dt the dividend and a and b are the forecasting
parameters. The forecasting rules have the following form:

if (the market meets condition Di) then (a = kj , b = kl) (2)

where Di is a description of the state of the market and kj and kl are constants.

Market descriptors (Di) match certain states of the market by an analysis
of the price and dividend history. The descriptors have the form of a boolean
function of some number of market conditions. The set of market conditions
in each rule is represented as an array of bits in which 1 signals the presence
of a certain condition, 0 indicates its absence, and # indicates ‘don’t care’.
The breadth and generality of the market states that a rule will recognize
is proportional to the number of # symbols in its market descriptor; rules
with descriptors with more 0s and 1s recognize more narrow and specific
market states. As these strings are modified by the genetic algorithm (GA),
the number of 0s and 1s might go up, allowing them to respond to more
specific market conditions. An appropriate reflection of the complexity of the
population of forecasting rules possessed by all the agents is the number of
specific market states that the rules can distinguish, and this is measured by
the number of bits that are set in the rules’ market descriptors.

An example may help clarify the structure of market forecasting rules.
Suppose that there is a twelve bit market descriptor, the first bit of which
corresponds to the market condition in which the price has gone up over
the last fifty periods, and the second bit of which corresponds to the market
condition in which the price was 75% higher than its fundamental value. Then
the descriptor 10########### matches any market state in which the stock
price has gone up for the past fifty periods and the stock price is not 75%
higher than its fundamental value. The full decision rule

if 10########## then (a = 0.96, b = 0) (3)

can be interpreted as “If the stock’s price has risen for the past fifty periods
and is now not 75% higher than its fundamental value, then the (price +
dividend) forecast for the next period is 96% of the current period’s price.”

If the market state in a given period matches the descriptor of a forecasting
rule, the rule is said to be activated. A number of agent forecasting rules may
be activated at a given time, thus giving the agent many possible forecasts
to choose from. The agent decides which of the active forecasts to use by
measuring each rule’s accuracy and then choosing at random from among the
active forecasts with a probability proportional to accuracy. Once the agent
has chosen a specific rule to use, the rule’s a and b values determine the agent’s
investment decision.

The Artificial Stock Market website is implemented in Swarm (both Java and
Objective C versions), and available from http://artstkmkt.sourceforge.net.

416 R.K. Standish

2.3 Heatbugs

Heatbugs was originally written as a ‘demonstrator’ model for Swarm, illus-
trating the main techniques for setting up agents in a 2D grid, and having the
agents interact with the environment (Fig. 3). Because it is a fairly simple,
yet nontrivial model, and well documented, it has been ported to a number
of other agent-based modeling environments, including Repast and Mason.

An agent in Heatbugs (the ‘bug’) emits a certain quantity of heat per
time step into the environment, which then diffuses by the standard heat
equation. Each ‘heatbug’ has a preferred temperature, so by tuning the model
parameter one can see the formation of clusters of bugs that manage to heat
their environment to around the desired temperature.

Fig. 3. Snapshot of the world display of the Heatbugs model, running under Repast

Open Source Agent-Based Modeling Frameworks 417

2.4 Mousetrap

Mousetrap was again a demonstrator model for Swarm, to illustrate the use of
dynamic scheduling. It consists of a plane of loaded mousetraps. The initial
event consists of a ball dropped on the central mousetrap, which releases the
mousetrap sending two balls at random to other mousetraps, releasing them
in turn in a chain reaction. In fact, the mousetrap model was originally intro-
duced as popular means of conveying the idea of a nuclear chain reaction [29]
There is no concept of a time step, actions happen when caused by previous
actions.

Mousetrap has been implemented in Swarm, Repast and Mason.

3 Software Modeling Tools

3.1 Open Source versus Freeware

The English language has an unfortunate ambiguity with the word ‘free’,
which can mean free of restrictions or alternatively available for zero cost.
This ambiguity is not always present in other languages, for example, French
‘libre/gratuit’ or German ‘frei/kostenlos’. The Free Software Foundation3

defines free software as having freedom from restrictions on how to use or dis-
tribute the software. Think of ‘free’ as in ‘free speech’, not as in ‘free beer’ [8].
Free software need not be free as in beer, as one may still have to pay dis-
tribution costs (media, handling charges, and the like), but in practice the
modern internet means these charges are negligible.

One of the most important characteristics of free software is that of being
‘open source’, namely that the source code for the software is publicly available
for study and improvement.

In scientific modeling, open source is crucial to allow independent vali-
dation of scientific experiments. Often, when computational experiments are
replicated by a second research group, differences in behavior are observed
between the original reported results, and the reproduced experiment. It
becomes important to understand whether the problem is due to implementa-
tion bugs in either the original, or replicated code, or whether the published
model specification is inadequate [21].

If the source code of the computational experiment is openly published
along with a scientific article describing the experiment, then it becomes pos-
sible for later researchers to tease apart any anomaly that might appear.
Unfortunately, it is not yet commonplace for researchers to publish the source
code of their experiments, however the artificial life community encourages the
practice through asking reviewers to check and comment on the availability
of experimental source code.
3 http://www.fsf.org

418 R.K. Standish

What about the software components used to build the computational
experiment? To help fix the magnitude of the problem, it is worth imagining
being a researcher thirty years from now attempting to replicate a contempo-
rary experiment (as McMullin found himself attempting to replicate Varela’s
work [21]). Assume that the source code used for the original experiment was
available. To be able to re-run the original experiment, you would need a com-
piler for the language the experiment was coded in, and also a copy of any
libraries used. Since you probably do not have access to the original hardware
(how many 30-year old functional computers are you aware of?), and unless
you have a functional emulator, you will need the source code for any libraries
as well.

The language used in coding will probably no longer be used (Fortran and
C are exceptional in being languages maintaining backward compatibility over
this sort of time frame), so you may also need an open source copy of the
language compiler. At very least, with well documented language standards
(such as ANSI/ISO standard C, C++) and associated standard libraries, it
may be possible to manually translate an existing open source program into
a modern language with some sort of fidelity.

Agent-based modeling (ABM) systems fall into the ‘any libraries’ category.
Since it is unlikely for any ABM system to be perfectly documented, nor for
the scientific report to list precisely which version of the tool’s specification
is used, nor for the actual ABM system to be bug-free, it is vitally important
that the ABM system’s source code is available for perusal.

As mentioned above, it is perhaps not so important for the implementation
language and standard library to be open source, provided it is one of the well
documented standard languages. However, it is important that the language is
freely available (as in beer), to remove any barriers to independent verification
of computational models. The use of Java is a case in point. Java is developed
by Sun, with a well documented language and standard library, and a free
(as in beer) reference implementation available for most modern computing
platforms. With the GNU gcj project,4 Java will become an open source option
in the future, providing the language does not evolve too fast for the gcj
development effort to keep up.5

3.2 Programming Languages

Traditional scientific modeling has been implemented using a general purpose
high level language such as Fortran, C and more recently, C++ and Java.
Standard libraries of numerical methods are employed where relevant, but
4 http://gcc.gnu.org/java
5 As this chapter was being prepared, Sun has open-sourced the core parts of its

Java development environment, so even this is no longer an issue.

Open Source Agent-Based Modeling Frameworks 419

these tend to be oriented towards models expressible in terms of linear alge-
braic operations: vectors, matrices and so on. Much of a scientific code deals
with reading model parameters, and reporting results. If the calculation takes
more than a day or so to complete, additional code needs to be added to
allow the calculation to be paused, resumed and migrated as computational
resource availability varies. Further code will need to be added to distribute
the calculation across multiple processors to enable computations to finish in
a reasonable time. The upshot is that a sizable fraction, perhaps as much as
50% of the lines of code of a scientific application, is not directly implementing
the scientific calculation, but performs these incidental tasks.

The amount of extra effort needed to obtain a functioning scientific appli-
cation has lead in many areas to ‘application frameworks’, where for a limited
range of scientific models, users can plug in problem-specific methods. One
example of this is in the area of computational fluid dynamics, where the
leading packages Fluent and CFX allow users to supply subroutines coded in
C or Fortran to implement specific physical models not supplied in the core
functionality.

Agent-based models have not only the usual demands for scientific models,
but also need interactive modes of exploration. Many phenomena of interest
may only occur in specific scenarios, so it is useful to be able to restart the
model from a known point, and to drill down to individual agents and their
interactions, to establish what agent behavior is essential for the phenomena
to occur. The process of designing an agent-based model typically involves
an interactive ‘playing with the model’ stage, in which the modeler develops
a feel for how the agents behave, and what might be the most significant
parameters of interest, followed by a second stage of ‘parametric’ exploration
to establish in what range of model parameters the phenomenon of interest
occurs.

The first question to ask of any agent-based modeling platform is what
language is used to implement the agents. Since agents have behavior, they
cannot be represented just by numbers, as might be the case in other scientific
computations. Some simulation systems allow a limited range of agent types
to be implemented without programming knowledge (for example, StarLogo
or RepastPy), but for greatest generality, agents should be implemented in
a general-purpose programming language, preferably object-oriented as this
matches the agent-based paradigm.

The choice of ABM systems surveyed in this Chapter is organized by
this agent implementation language. I have chosen systems that use a widely
implemented object oriented programming language, as this allows program-
mers familiar with that language to become productive in a short period of
time. Also the design of a new language is a nontrivial task – using exist-
ing languages ensures that bugs have known workarounds, and that efficient
implementations are available.

420 R.K. Standish

The most popular ABM systems are based on the Java language, an object
oriented language influenced by the C/C++ language family, but from the
outset designed to be a simpler language than C++, in both usability and
functionality. Java compilers are freely available for most platforms, and the
language and its system library publicly documented. Whilst open source
Java compilers are not as mature as the closed source options; as mentioned
previously, this is not such an issue for scientific computing. Nevertheless there
are issues with Java’s floating point model one should be aware of [16].

Because Java is widespread, and is a simpler language to learn, it is often
the language of choice for learners of object-oriented programming. Its main
competitors are C#, which is still somewhat tied to the MS-Windows .NET
environment (although Mono6 is now available as an open source implemen-
tation of the .NET runtime and C# compiler), and C++, whose feature rich
capabilities typically take a couple of years to master.

Java, and its .NET cousins compile to a virtual machine. By providing
a uniform machine model for the compiler to target, it is easier to write
portable code. However, the virtual machine needs to be emulated by the
physical computer, and this introduces a performance penalty. The use of
just-in-time compilation technology substantially reduces this performance
penalty, though not completely. For full performance, which is just as impor-
tant in ABMs as in general scientific computing, a compiler that targets the
native machine is needed. For Java, there is an experimental Java front end
for the GCC family of compilers called gcj. It can not only compile Java source
code to Java byte code (replicating Sun’s Java compiler), but also compile the
byte code directly to native machine code. That said, in a direct comparison of
the same simple agent based model implemented in Java using Repast, and
C++ using EcoLab, both the Java and C++ versions executed at the same
speed (Sect. 4).

For compiling to the native machine, the main choices are Objective C (as
used in Swarm) and C++ (as used in EcoLab). Objective C was chosen by the
Swarm project as being a very minimal object-oriented extension to C that
would not impose too much of a learning curve on prospective users. Unfor-
tunately, the very simplicity of this language means that object management
is largely the responsibility of the programmer, and places a large burden on
the programmer to get the code functioning correctly. One other downside to
Objective C is that GCC is the only commonly available compiler, and GCC
tends not to produce as well optimized code as do commercially available
compilers (although on Intel x86 architectures, the reverse can often be true).

The other mainstream language is C++, which has consistently held the
3rd spot (behind Java and C) in the TIOBE Programming Language Commu-
nity Index7 over the last 5 years. Vendor-optimized compiler optimizers are
6 http://www.mono-project.com
7 http://www.tiobe.com/tiobe index/

Open Source Agent-Based Modeling Frameworks 421

available for obtaining performance, and an open source reference implemen-
tation exists (GCC). There are two main advantages of C++ over Java: more
opportunities for optimizing performance and operator overloading. Operator
overloading allows the creation of mathematical types like vectors, or complex
numbers, and express mathematical operations on them using conventional
algebraic notation (+, * and the like) instead of functional notation (add(,),
mul(,) and so forth). This is an important feature in scientific computing.

Ultimately, the choice of ABM platform should probably depend on the
programming language you are most familiar with. If you are familiar with
Java, then Repast or Mason would be a good choice. If C++ is your familiar
language, then EcoLab would make a good choice. If C was your language, then
you might consider Swarm. If programming is not your forte, then perhaps
NetLogo might make a good choice for dipping into the world of agent-based
modeling.

3.3 Reflection

As previously mentioned, a large part of a typical scientific code is involved
in reading in the model’s parameters, and in providing checkpoint-restart
functionality for long running codes. For a rapidly evolving model, as many
agent-based models are, each time the model accumulates another instance
variable, or deletes one, this ancillary code needs to be updated to keep track
of the changing model.

The notion of reflection is the ability to determine an object’s structure at
runtime, the names and types of all its instance variables, and lists of methods.
By using reflection, this ancillary code can automatically track model changes
without further burden on the programmer. Furthermore, the concept of a
‘probe’, or a dynamic visualizer of agents making up the model system, needs
to make use of reflection to understand and represent the instance variables
and methods of the object.

Unfortunately, traditional compiled languages such as C and C++ throw
away this information at compile time, whereas other popular languages such
as Java and Objective C have in-built reflection capability. Reflection was
the other main reason for the choice of Objective C over C++ in the Swarm
system.

For C++, EcoLab uses a C++ language processor called Classdesc [20], that
emits overloaded C++ function calls that walk the structure of the object.
This allows serialization of objects to a binary representation for checkpointing
and other functionality, and exposure of object internals for probing.

3.4 User Interface and Scripting

All the agent-based modeling frameworks mentioned here have a GUI inter-
active mode with the ability to attach probes to objects, and to plot basic

422 R.K. Standish

statistics and display histograms of the system behavior. Once interactive
development of the model is over, it is then usually desirable to turn off all
graphical elements and run the model from a batch script. Only EcoLab has this
capability without recompilation, as all graphical elements are implemented as
distinct script commands from those that implement the model. Other models
require distinct BatchModel and ObserverModel implementations.

EcoLab’s script interface (which uses the TCL programming language) has
the advantage that model parameters can be simply set from the script with-
out the programmer having to write a single line of I/O code. [25] eloquently
argues for the advantages of scripting interfaces to improve the plasticity of
software, particularly for the development phase. With scientific codes, the
development phase is often never finished. None of the other ABM packages
offers a script interface, however Repast does offer a simple parameter file syn-
tax, that allows just the setting of constant value parameters. Furthermore,
RepastPy integrates the Python scripting language into Repast to produce a
simple to use rapid development environment.

The TCL scripting language used by EcoLab also includes a complete plat-
form independent GUI programming environment. This technology is also
used by Swarm, but encapsulated to hide the TCL interface from the user.
Java systems have their own GUI programming environment, in fact several
are possible: AWT, Swing and SWT.

3.5 Discrete Event Scheduling

Being the first package to provide explicit support for agent-based modeling,
Swarm’s characteristics provides a benchmark for subsequent frameworks. The
most important feature of Swarm is its discrete event scheduler – this allows
for agents to register their method calls to occur at specific times during the
simulation. Frequently, but not always, these actions are registered to take
place periodically, defining the model’s time step. An asynchronous simulation
would simply consist of scheduling one event, which in turn causes further
actions to happen.

3.6 Random Number Library

Most agent-based simulations rely upon streams of random numbers. Unfor-
tunately, real sequences have notoriously low generation rates, and in any case
are not reproducible, which is a problem if you want to study an effect that
only occasionally makes its appearance. Usually, algorithmically generated,
or pseudo-random number generators are used. However, any algorithmically
generated sequence of numbers is correlated by definition, and this may or
may not be a problem for the system being studied. Many evolving artificial
life systems are known to exploit bugs unintentionally left by the program-
mer (see [35]), so it would not be surprising if evolving systems could exploit

Open Source Agent-Based Modeling Frameworks 423

a weak random generator. The choice of random number generator can also
have a significant effect over the result in Monte Carlo simulations [27]. It is
therefore desirable for an ABM framework to provide a well stocked library of
different random number implementations, and allow for different generators
to be swapped in easily.

3.7 Swarm

Swarm [22] is very much the ‘grand-daddy’ of agent-based modeling frame-
works. It was initiated by Chris Langton as a reaction to the many and various
implementations of artificial life models, complete with ‘life-support systems’
to handle I/O, initialization and visualization. The idea was to provide a
software framework into which a scientist could plug just the computational
representation of the model, rather than requiring the scientist to create all
the necessary extra parts needed to support the computation. Just as we no
longer expect scientists to grind lenses, or wire up their own custom built
particle detectors, we shouldn’t expect them to have to build the tools needed
to analyse their models.

When Swarm was originally designed, C and Fortran were the predom-
inant scientific programming languages. Neither of these languages provide
explicit object oriented programming support, and Fortran in particular was
only widely available as Fortran 77 (as f2c, and later g77 compilers) which
lacked many modern programming features (now rectified with the Fortran
90 programming language). The GNU C compiler (gcc) supported two impor-
tant object oriented extensions to C: Objective C and C++. Objective C had
the advantage of being relatively simple for programmers to learn the object
oriented syntax, and moreover had inbuilt support for reflection (see Sect. 3.3)
which C++ does not (EcoLab uses an additional C++ language processor to
implement the necessary reflection functionality). So the choice of Objective
C as an implementation language for Swarm is obvious.

At the time Swarm was developed, there was only one cross-platform GUI
technology in the form of TCL/Tk (see Sect. 3.4). So this was adopted for
the visualization components of Swarm. BLT, an add-on package for TCL/Tk
containing implementations of plotting widgets was a particularly useful
component. For similar reasons, TCL/Tk was adopted by EcoLab, whose devel-
opment also started around the same time. However, there was one key design
decision made by Swarm developers that differs from EcoLab. In Swarm, the TCL
components are wrapped by Objective C classes so users of Swarm do not see
the TCL interface. Swarm does not provide a scripting interface for the user –
users need to provide their own. By contrast, EcoLab makes a feature of the
TCL interface – users are expected to write, or adapt existing, TCL scripts
to reflect the requirements of their experiment.

To implement a Swarm model, one needs to implement three separate
Objective C components called ‘swarms’: the ModelSwarm, which implements

424 R.K. Standish

the computational model under study; the ObserverSwarm, in which the
experimenter must specify all the tools and visualization widgets to be used
for interactive model exploration; and BatchSwarm, for performing extensive
model surveys such as data collection or parametric surveys.

A Java interface to Swarm was developed, which allowed the Swarm library
to be accessed from Java, and also Java implemented agents to be executed
by a callback mechanism. Performance tends to be lacking compared with
native Objective C model implementations, and more recent pure Java-based
packages such as Repast or Mason have made Java- Swarm somewhat obsolete.

Also, an experimental DCOM interface to Swarm was tried by Daniels,8

which allowed Swarm to be used by any language supporting the DCOM inter-
face,9 but this version of Swarm was never integrated into the production
version.

Swarm’s most distinctive feature is its discrete event scheduler (Sect. 3.5),
a feature that has been copied by Repast and Mason. It also blazed the way
with dynamic object probes and plotting and histogramming widgets derived
from the BLT library. The other main feature is the Space library, which
implements a 2D grid in which agents can act.

A random number library is provided that provides the usual range of
uniform generators such as linear congruential and Mersenne twister, and a
number of nonuniform distributions such as the normal distribution, gamma
distribution and arbitrary user specified distributions.

Swarm also provides a containers library – lists, maps, sets and so on. This
is not needed in packages based on Java or C++, as containers are part of the
latter languages’ standard library.

Swarm has extensive documentation, as well as numerous well developed
pedagogical exercises.

3.8 Repast

Repast [23] is a more recent Agent-Based Modeling framework, heavily
inspired by Swarm. It comes in three different flavours: RepastJ, which is
a pure Java-based platform; Repast.Net, which is implemented in C# using
Microsoft’s .NET environment; and RepastPy, a rapid application develop-
ment environment based on Python and Java. Both RepastJ and RepastPy
run in a Java Virtual Machine (JVM), whereas Repast.Net runs in a .NET
virtual machine. It is unclear whether Repast.Net can be used in the Mono
environment – [24] note the existence of Mono, but also say they expect the

8 http://www.t10.lanl.gov/mdaniels/
9 DCOM is a Microsoft-specific remote procedure call mechanism. Open source

equivalents to it exist, such as Mozilla’s XPCOM, but these have largely fallen
out of favour in recent years in favour of web services.

Open Source Agent-Based Modeling Frameworks 425

vast majority of .NET code to only be run on the MS-Windows operating
system.

RepastPy is meant as a reduced learning curve environment situated some-
where between NetLogo and Repast in functionality. Python is an object
oriented scripting language that has received a lot interest in the last few
years for coding scientific applications. RepastPy uses the JPython inter-
preter, which implements a Python interpreter on JVM with access to the
underlying Java class libraries loaded into the JVM. RepastPy, in fact, makes
considerable reuse of the RepastJ class library.

RepastJ is perhaps the most popular agent-based modeling environment
in use today. This is in no small part because of the popularity of the Java
programming language, but also because it is a pure Java platform (so less
complex to use than Java Swarm), and also because it has a few years head
start on Mason, therefore has more comprehensive documentation, and also a
larger community of users.

Repast comes with the following functionality: discrete event scheduler;
a GUI controller which handles probing and interactively setting model vari-
ables, stepping and running the model; a parameter package for specifying
model parameters in batch mode and/or managing parametric studies; an
analysis package with plotting and histogramming, as well as some basic sta-
tistical functionality, and domain specific packages to handle 2D spatial grids,
genetic algorithms, neural networks, support for Geographical Information
System (GIS) databases and some support for network modeling (classes for
representing nodes and edges of a network).

Repast is distributed with the Colt numerical library, which includes an
impressive array of random number generators.

The documentation consists a series of ‘how-to’s, relatively informal doc-
uments describing how to do one or two specific things. There are a number
of example models which are good as starting templates for a new user. It
is relatively simple to get the example models running in a GUI interactive
mode, but not so easy to find out how to run models in a batch setting. There
is a ‘-b’ option that can be passed on the command line to disable the over-
head of the GUI simulation controller, however any visualization built into
the model will continue to display unless the model has been coded with an
explicit parameter that disables graphical output. There is no explicit sup-
port for model checkpointing, but since Java natively supports serialization,
a competent Java programmer should be able to add this functionality.

3.9 Mason

Like Repast, Mason is a 100% Java simulation platform that provides the usual
array discrete event engines, probes and plotting widgets [19]. Its claimed

426 R.K. Standish

strength lies in support from the outset for large scale modeling, with more
optimized data structures, support for checkpointing and running of mul-
tiple batch runs. In my timing experiments (Sect. 4), Mason outperformed
Repast, which at least backs up that claim. It also has extensive support for
3D calculations, something that is a little weak in Repast.

However, documentation is a weakness with Mason. It is not immediately
obvious how one performs batch experiments, for example. Presumably one
has to make specific allowances for this when coding the model, just as in
Swarm and Repast. Mason is also a newer platform than Repast, hence it
hasn’t attracted as large a community of users as Repast.

3.10 EcoLab

EcoLab originally started life as a special purpose framework for hosting a single
model written in C++, the Ecolab model [31]. Over the years it accreted
several other similar types of models until by version 4 it had the ability to
host an arbitrary C++ coded model [33]. The key feature needed for this was
the Classdesc preprocessor, which effectively adds reflection to C++ [20]. This
allows the EcoLab framework to supply probing, scripting, checkpointing and
even remote visualization of running simulations.

Whilst EcoLab has been around for while, is reasonably mature software,
and reasonably well documented, it has only been used by a small handful
of groups.10 The example models provided with the source code are actually
research models, so are not necessarily ideal for learning the system. One
of these models is a continuous space agent-based model, which illustrates a
number of important ABM techniques.

The lack of pedagogical models is currently being addressed by imple-
menting the ‘Stupid Model’ of [28] in EcoLab. The Stupid Model11 has already
been implemented in Swarm, Repast, Mason and NetLogo, so this is an ideal
way of comparing the different environments. The implementation seemed to
be about as easy as using Repast, and perhaps a little easier than Swarm.
However, it lacks a special-purpose spatial library – what it does have is
something far more powerful (which also means more complex to use) called
Graphcode [34]. Graphcode represents a network of agents (which could be
cells of a spatial grid for instance), where the agents can be distributed across
a cluster of computers enabling parallel processing. This allows for scaling
agent-based models to very large sizes. The jellyfish model provided in the
examples has been run with several million jellyfish agents on 4–8 processor
clusters.

One important aspect of agent-based modeling is the use of references.
When attaching a probe to an agent, the probe object needs to maintain a
10 http://ecolab.sourceforge.net
11 http://www.swarm.org/wiki/Software templates

Open Source Agent-Based Modeling Frameworks 427

reference to its agent. When setting up schedules, lists of references to agents
need to be maintained. C++ provides the notion of a ‘static reference’ (refer-
ence initialized at construction), and pointers, but the former is too inflexible,
and the latter too easily invalidated. EcoLab provides an experimental dynamic
reference counted reference class that ensures the target object is destroyed
once all references to it are. This problem is a non issue in garbage collected
languages like Java. Whilst garbage collection receives its share of opprobrium,
for scientific modeling its performance impact is restricted to the interactive
uses, when model performance is typically less important.

Unlike Swarm, Repast and Mason, EcoLab provides a scripting interface.
Your C++ model object is linked to a TCL interpreter [24], with the
instance variables of your model available as TCL commands. Setting model
parameters are simple TCL commands. Complicated initializations can be
computed – eg setting the random number seed to a function of the proces-
sor ID for instance to ensure independent random streams. The difference
between batch processing and interactive processing is the presence of the
GUI command, and the presence graphical visualizer commands such as plot
or histogram. The net effect is a sort of halfway house between a rapid appli-
cation development environment, and a fully compiled application, allowing
a great deal of flexibility during the experimentation phase.

EcoLab does assume competency with C++, but even though the user
needs to program in TCL, not much knowledge of TCL is needed to do
most experimental tasks. Sample scripts can be readily adapted by novice
TCL programmers. Advanced TCL knowledge is really only needed for novel
visualization tools using the Tk canvas widget, for instance.

Whilst EcoLab comes with a very elementary random number library, it
is interfaced to use the far more comprehensive UNURAN [14] or the GNU
Scientific Library [11] random number libraries. With UNURAN in particular,
the random generators can be configured by a scripting interface, and this
scripting interface is exported to EcoLab’s TCL interface.

3.11 The Logos, StarLogo and NetLogo

StarLogo12 [6] and NetLogo13 use the Logo language, which was designed as
an elementary teaching language for primary school students. The frameworks
are simple and easy to use, so are recommended for users with little or no
programming experience. However, the environments are often considered too
simple for realistic research models. That said, [29] noted that NetLogo was
sufficiently rich for them to be able to implement their pedagogical Stupid
Model and that these environments should not be discounted completely for

12 http://education.mit.edu/starlogo/
13 http://ccl.northwestern.edu/netlogo

428 R.K. Standish

scientific research applications [28]. Of the three logo environments, NetLogo
is the richest.

Both StarLogo and NetLogo are available for the Java Virtual Machine,
and StarLogo has recently been released as a Java open source code ver-
sion called OpenStarLogo. NetLogo is not open source. In reviewing the logos
for this Chapter, I was unable to build OpenStarLogo (on Linux), but both
compiled Logos (Star- & Net-) had functional shell scripts for starting the sim-
ulator from the unix command line. Nevertheless, Logo is an interpreted code,
with the interpreter running inside Java’s virtual machine, so the modeling
environments will be constrained in terms of performance.

3.12 Cormas

Cormas [5] is an agent-based modeling platform written in Smalltalk that
is mature, and has been used to implement a reasonable number of dif-
ferent models. The Smalltalk code comprising Cormas is available through
an open source license, requiring registration with the Cormas development
team. A variety of open source and freeware Smalltalk compilers are avail-
able, which typically compile to a bytecode interpreted representation. The
Cormas website recommends the use of the Visual Works Smalltalk compiler
from Cincom, which is available for MS-Windows, Mac-OS/X and Linux. It is
unclear whether Cormas is ANSI Smalltalk standards compliant, or requires
specific features of the Visual Works compiler.

To get started with Cormas requires downloading a hefty amount of soft-
ware – the Visualworks environment ISO image is around 600MB. However,
once downloaded, the installation of Visualworks, and then Cormas on top of
that on my Linux workstation was straightforward.

4 Performance Comparisons

Rarely have different agent-based modeling platforms been compared for per-
formance, or ease of use, since re-implementing an existing model is a lot of
effort, and people rarely have the cross-platform skills needed to do the task.

However, [28] recently performed a cross-platform study of Swarm, Java
Swarm, Repast, Mason, and NetLogo using a simple pedagogic model (the
‘Stupid Model’) that is in some way representative of typical agent-based
models. They structured their model in the form of a sequence of incremental
steps that starts with implementing a number of agents moving around a fea-
tureless landscape at random up to a model with predator-prey interactions,
and a renewable resource (‘grass’) that was replenished at different rates at
different locations.

Open Source Agent-Based Modeling Frameworks 429

The present author has added to this study by implementing the Stupid
Model in EcoLab. The aim of this exercise was to show how EcoLab could be used
for implementing the sorts of models one would use Repast and other similar
ABM platforms for, to gauge how difficult the task was from a programmer’s
perspective and to compare simulation performance.

In order to be as comparable with Railsback’s exercise as possible, the
current public EcoLab release (V4.D21) was used for implementing the models
from the Stupid Model specification file. For ease of use, my experience was
similar to that reported by [28], in getting the first model working within
about 4 hours, and each model after that being a much smaller increment.
The first model took as long as it did, as the best way to represent a rec-
tilinear space grid within Graphcode had not been determined. Aside from
a specialized space library, no other needed feature was obviously missing.
Table 1 compares execution times of several versions of the Stupid Model on
different platforms. Versions 10 and 11 were performed in batch mode (no
graphical output, no GUI control, Mason excepted), version 16 in GUI mode
with a plot and histogram. EcoLab’s field version uses raster rather than canvas
for display, and omits the expensive histogram widget.

The stopping criteria as specified by [28] is when the maximum bug size
reaches 100. Since bug growth depends on the availability of food, which itself
is a function of a random number generator call, and also of the grazing his-
tory, this stopping criterion is indeterministic, since the different frameworks
will perform object updates in different orderings, and hence draw different
sequences of random numbers. For the purposes of inter-framework perfor-
mance comparisons, the stopping criterion was changed to be a fixed number
of bug updates (500).

In version 10 of the Stupid Model, bugs will randomly select a cell within
their neighbourhood, and moving to it if the cell is empty, otherwise repeating
the selection process. In version 11, all cells in the neighbourhood are iterated
over, and the bug moves to the empty cell with the most food.

From version 12, bugs can reproduce and die according to random dynam-
ics, so the amount of work per update step will depend on the number of
living bugs. Even though these higher version models are more computation-
ally intensive, run times cannot be compared between different platforms due

Table 1. Execution CPU times (in seconds) for several Stupid Model versions on
different platforms

Version Repast Mason Obj-C Swarm EcoLab

10 3.5 3.4 71 3.9
11 32.7 21.3 165 14.9
16 44 40.5 402 1014
field 67

430 R.K. Standish

to differences in the order that random numbers are generated. Hence the
Stupid 16 measurements reported in Table 1 should be taken with a certain
amount of salt. Nevertheless, all models executed for 1000 steps without ter-
minating early, and that the number of Stupid Bugs was roughly the same for
each platform (approximately 800–900 after the initial population explosion).

[28] made no attempt to optimize model speed, so for comparison nor was
the EcoLab model optimized. EcoLab is the only environment that explicitly
supports a batch processing mode, and [28] did not provide batch versions of
their Stupid Model. Railsback’s model code was modified to disable graphi-
cal updates, and CPU times used for comparison which eliminates any delay
effect from having to launch the run manually with a mouse click. In com-
paring EcoLab with Repast, Mason and Objective-C Swarm, EcoLab was the
fastest, with Mason and Repast not too much slower, but Swarm was substan-
tially slower. Furthermore, in GUI mode, EcoLab was very slow, particularly
compared with the Java platforms.

All performance benchmarks were run on a 2GHz Intel Pentium M proces-
sor with 1GB memory running Slackware Linux 10.0. The Java version used
for Repast and Mason was SDK 1.4.2 standard edition. The compiler used for
Swarm and EcoLab was GCC V3.4.3. I also did a comparison EcoLab run using
the Intel C++ compiler (ICC) 9.0, but this was more than 50% slower than
the GCC compiled code. This somewhat surprising result indicates that ICC’s
strength lies in vectorizing loops that access data contiguously to exploit the
inbuilt SSE instructions, but that for more general purpose ABM code, GCC
performs better (at least on Linux!).

The source code for EcoLab Stupid Model is available from the EcoLab
website.14

This author’s observations that the Java platforms performed almost as
well as EcoLab’s C++ based one is broadly in line with other observations that
Java implementations tend to be within a factor of 2 of natively compiled
applications [4, 18]. The fact that Java code is obtaining comparable perfor-
mance with native compiled object code indicates that just in time compilation
technology has reached a comparable level of maturity compared with native
code compilers. The stereotype of virtual machines having poor performance
compared with native object code can be laid to rest, at least for the typi-
cally integer bound computations often seen in agent-based models. Models
requiring linear algebra operations will no doubt continue to perform better
with C++ implemented code. Conversely, the poor performance of the GUI
mode EcoLab is due to the graphical operations being implemented with the
TCL library, which uses byte code interpretation. There will probably be some
substantial wins in integrating EcoLab’s C++ technology with the Repast or
Mason execution engines.

14 http://ecolab.sourceforge.net

Open Source Agent-Based Modeling Frameworks 431

5 Conclusion

Agent-based modeling frameworks have matured a lot since Swarm was first
released in 1995. Frameworks supply much of the necessary model-independent
functionality needed to get a scientific code running, and assist in exploring
and debugging the model. Using a framework frees the scientific programmer
to spend more time implementing the actual model.

The most important factor discriminating the frameworks reviewed here is
the agent implementation language. Usually programmers have more experi-
ence in one language more than another, narrowing the choice to environments
supporting the language with which they’re familiar. If your language is C++,
then EcoLab is a good choice, if Java then Repast (although Mason has some
interesting additional features), if C then Objective-C Swarm, and if one is a
novice programmer, one of the Logos.

The Java frameworks (Repast, Mason and Java Swarm) are by far the
most popular, owing to the popularity of the Java language. Whilst earlier
versions of the Java Virtual Machine exhibited performance problems, the
most recent versions implementing just-in-time compilation can get close to
the performance of a well optimized C++ application.

There are very few comparative studies comparing different ABM plat-
forms, and it can be difficult to validly compare different platforms. Pro-
grammer familiarity with one programming environment will bias ease-of-use
comparisons, and indeterminacy (due to different pseudo random number
generators employed) will prohibit valid performance metrics.

The Stupid Model exercise, however, at least indicates the suitability of
all the surveyed ABM environments for typical ABM requirements.

Most of the platforms have a range of standard and pedagogical agent-
based models implemented, some of which are described in earlier Sections.
EcoLab is the odd one out, in only supplying certain research models. There
is a need for EcoLab versions of the standard models to assist newcomers in
building their own models, and to assist in cross-platform comparisons.

References

1. Adami C (1998) Introduction to Artificial Life. Springer-Verlag, Berlin.
2. Arthur WB, Holland JH, LeBaron B, Palmer R, Taylor P (1996) Asset pricing

under endogenous expectations in an artificial stock market. In: Arthur WB,
Durlauf S, Lane DA (eds.) The Economy as an Evolving, Complex System II.
Addison-Wesley, Menlo Park, CA: 15–44.

3. Bedau MA (2002) Downward causation and the autonomy of weak emergence.
Principia, 6: 5–50.

432 R.K. Standish

4. Boisvert F, Moreira J, Philippsen M, Pozo R (2001) Java and numerical com-
puting. Computing in Science & Engineering (see also IEEE Computational
Science and Engineering), 3(2): 18–24.

5. Bousquet RF, Bakam I, Proton H, Le Page C (1998) Cormas: common-pool
resources and multi-agent systems. In: del Pobil AP, Mira J, Ali M (eds.)
Tasks and Methods in Applied Artificial Intelligence, Lecture Notes in Artificial
Intelligence 1416, Springer-Verlag, Berlin: 826–838.

6. Colella VS, Klopfer E, Resnick M (2001) Adventures in Modeling. Teachers
College Press, New York, NY.

7. Epstein JM, Axtell RL (1996) Growing Artificial Societies: Social Science From
the Bottom Up. MIT Press, Cambridge, MA.

8. Free Software Foundation. The free software definition. (available online at
http://www.fsf.org/licensing/essays/free-sw.html – last accessed April 2007).

9. Franklin S, Graesser A (1997) Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Müller JP, Wooldridge MJ, Jennings NR (eds.) Intelli-
gent Agents III Agent Theories, Architectures, and Languages, Lecture Notes in
Computer Science 1193, Springer-Verlag, Berlin: 21–35.

10. Fromm J (2004) The Emergence of Complexity. Kassel University Press,
Germany.

11. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2005)
GNU Scientific Library Reference Manual (revised 2nd ed.). Network Theory
Ltd, Bristol, UK.

12. Grimm V (1999) Ten years of individual based modeling in ecology: what have
we learned and what could we learn in the future? Ecological modeling, 115:
129–148.

13. Holland JH (1997) Emergence: From Chaos to Order. Addison Wesley, Reading,
MA.

14. Hörmann W, Leydold J, Derflinger G (2004) Automatic Nonuniform Random
Variate Generation (Statistics and Computing Series). Springer-Verlag, Berlin.

15. Huston M, DeAngelis E, Post W (1988) New computer models unify ecological
theory. Bioscience, 38(1): 682–691.

16. Kahan W, Darcy JD How java’s floating-point hurts everyone. (available online
at http://www.cs.berkeley.edu/˜wkahan/JAVAhurt.pdf – last accessed April
2007).

17. Langton CG (1988) Artificial life. In: Langton C (ed.) Artificial Life. Addison-
Wesley, Reading, MA: 1.

18. Lewis JP, Neumann U (2003) Performance of Java versus C++. (available
online at http://www.idiom.com/˜zilla/Computer/javaCbenchmark.html – last
accessed April 2007).

19. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) MASON: A
multiagent simulation environment. Simulation, 81: 517–527.

20. Madina D, Standish RK (2001) A system for reflection in C++. In: Proc.
AUUG2001: Always on and Everywhere, 26–28 September, Sydney, Australian
Unix Users Group Inc., Kensington, NSW: 207.

21. McMullin B (2004) Thirty years of computational autopoiesis: A review.
Artificial Life, 10: 277–295.

22. Minar N, Burkhart R, Langton CG, Askenazi M (1996) The Swarm simulation
system: a toolkit for building multi-agent simulations. Technical Report WP96-
06-042, Santa Fe Institute. (available online at http://www.swarm.org – last
accessed April 2007).

Open Source Agent-Based Modeling Frameworks 433

23. North MJ, Collier NT, Vos JR (2006) Experiences creating three implementa-
tions of the Repast agent modeling toolkit. ACM Trans. Modeling and Computer
Simulation, 16: 1–25.

24. Ousterhout JK (1994) TCL and the Tk Toolkit. Addison Wesley, Reading, MA.
25. Ousterhout JK (1998) Scripting: Higher-level programming for the 21st century.

IEEE Computer, 31(3): 23–30.
26. Palmer RG, Arthur WB, Holland JH, LeBaron B, Tayler P (1994) Artificial

economic life: a simple model of a stock market. Physica D, 75: 264–274.
27. Parisi G, Rapuano F (1985) Effects of the random number generator on

computer simulations. Physics Letters B, 157: 301–302.
28. Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms:

Review and development recommendations. Simulation, 82: 609–623.
29. Rathgeber HD (1963) Mousetrap model of chain reactions. American J. Physics,

31: 62.
30. Ray T (1991) An approach to the synthesis of life. In: Langton CG, Taylor C,

Farmer JD, Rasmussen S (eds.) Artificial Life II. Addison Wesley, Reading, MA:
371.

31. Standish RK (1994) Population models with random embryologies as a paradigm
for evolution. Complexity International, 2.

32. Standish RK (2001) On complexity and emergence. Complexity International, 9.
33. Standish RK, Leow R (2003) EcoLab: Agent based modeling for C++ program-

mers. In: Proc. SwarmFest 2003, 13–15 April, Notre Dame, IN (available online
at http://www.nd.edu/~swarm03/Program/program.html – last accessed April
2007).

34. Standish RK, Madina D (2003) ClassdescMP: Easy MPI programming in C++.
In: Sloot PMA, Abramson D, Bogdanov AV, Dongarra JJ, Zomaya AY, Gor-
bachev YE (eds.), Computational Science, Lecture Notes in Computer Science
2660, Springer-Verlag, Berlin: 896.

35. Thearling K, Ray T (1994) Evolving multi-cellular artificial life. In: Brooks RA,
Maes P (eds) Artificial Life IV, MIT Press, Cambridge, MA: 283–288.

36. Wuensche A (1999) Discrete dynamical networks and their attractor basins.
Complexity International, 6.

Resources

1 ABM Platforms

Swarm
URL: http://www.swarm.org
Model Language: Objective C or Java
Visualizations: Plotting, Histogram, Raster
Scripting: None
Features: 2D Space, Event scheduler, Probes

Repast
URL: http://repast.sourceforge.net
Model Language: Java, Python and .Net (C#, etc.)
Visualizations: Plotting, Histogram, Raster
Scripting: Parameter files
Features: 2D Space, Event scheduler, Probes, GIS support

Cormas
URL: http://cormas.cirad.fr
Model Language: Smalltalk
Visualizations: Raster, Vector graphics, Plot, Message
Scripting: None
Features: 2D Space, Event scheduler, Probes, GIS support

Mason
URL: http://cs.gmu.edu/˜eclab/projects/mason
Model Language: Java
Visualizations: Plotting, Histogram, Raster
Scripting: java.util.Properties (parameter files)
Features: 2D & 3D continuous, discrete or network Space,

Event scheduler, Probes, Checkpointing

436 R.K. Standish

EcoLab
URL: http://ecolab.sourceforge.net
Model Language: C++
Visualizations: Plotting, Histogram, Canvas
Scripting: TCL
Features: Network Space (Graphcode), Probes,

Checkpointing, Parallel programming

NetLogo
URL: http://ccl.northwestern.edu/netlogo
Model Language: Logo
Visualizations: Plotting, Histogram, Raster
Scripting: None
Features: 2D & 3D Space, Probes

StarLogo
URL: http://education.mit.edu/starlogo
Model Language: Logo
Visualizations: Plotting, Raster
Scripting: None
Features: Space, Probes

2 Discussion Fora

The forums are not platform-specific; for platform-specific fora, such as asking
for programming help or discussing bugs or software improvements, go to the
platform-specific web site.

Swarm Modeling:
http://www.swarm.org/wiki/Swarm: Mailing lists

Grey Thumb:
http://www.greythumb.org/wiki/WikiHome

Planet Agents:
http://planetagents.org

Agent-based Computational Economics:
http://www.econ.iastate.edu/tesfatsi/ace.htm

SwarmFest (the annual Agent-Based Modeling Conference):
http://www.swarm.org/wiki/Swarm: SwarmFest

Open Source Agent-Based Modeling Frameworks 437

Complexity Science
(general complex systems discussions, occasionally ABM-related):
http://necsi.net:8100/Lists/complex-science/List.html

FRIAM (general complex systems discussions, occasionally ABM-related):
http://www.friam.org/

http://www.swarm.org/wiki/Software templates (this page contains links to
the Stupid Model specifications, and implementations in various frameworks).

Agent-Based Grid Computing

Minjie Zhang, Jia Tang, and John Fulcher

Intelligent Systems Research Centre, University of Wollongong, NSW 2522,
Australia, minjie@uow.edu.au, jt989@uow.edu.au, john@uow.edu.au

1 Introduction

Hundreds of millions of computers connected to the Internet form a computing
resource pool with tremendous computational power and storage, as well as
a great variety of services and content. For years, computer scientists have
been chasing after the vision of a worldwide computer that can utilize all this
resource. Computing Grids, as one of the emerging technologies that aim at
making the above vision a reality, have generated enormous computing power
for scientific research and have:

“incrementally scaled the deployment of relatively sophisticated ser-
vices and application, connecting small numbers of sites into collabo-
rations engaged in complex scientific applications” [20].

As the scale of systems increases, Grid computing is now facing and addressing
problems relating to high autonomy and heterogeneity, intermittent availabil-
ity, and dynamic and variable factors, which we call ‘open environments’.1

Computing Grids have emerged as a major scientific computation platform
for scientists and researchers. They have evolved from host-centric supercom-
puting and centralized cluster computing, and more recently have embraced
web services. Computing Grids can provide seamless integration for large num-
bers of interconnected computers, applications, and users, as an alternative
to centralized computing technologies. Grid computing provides Internet-scale
resource sharing, selection, and aggregation through its managed, distributed
computing resources.

The sheer number of desktop systems today makes the potential advan-
tages of inter-operability between desktops and servers into a single Grid sys-
tem quite compelling. However, such commodity systems exhibit significantly
1 http://www.objs.com/agility/tech-reports/990623-characterizing-the-agent-grid.

html

M. Zhang et al.: Agent-Based Grid Computing, Studies in Computational Intelligence (SCI) 115,

439–483 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

440 M. Zhang et al.

different properties compared with server-based Grids. They are usually highly
autonomous and heterogeneous systems, and their availability varies over
time. We refer to such environments as ‘open’.

This Chapter begins with a brief introduction to the development of com-
puting Grids, and introduces prominent Grid architectures, communication
protocols, resource allocation and scheduling algorithms. It then reviews the
service-oriented Grid computing architecture, its related standards, and high-
lights five problems associated with the deployment and application of Grids
in an open environment. The remainder of the Chapter focuses on two pro-
posed solutions to these problems. The first solution is a hybrid one, which
consolidates client-server and peer-to-peer computing architectures. This solu-
tion abandons a conventional super-local Grid architecture, and is shown to
be more efficient, flexible and robust in open environments.

The latter employs a two-commit scheduling strategy, in which the func-
tionalities of the Grid are implemented as a variety of Web Services. These
services are deployed to service containers, which normally run on high-end
workstations and servers. One of these services is the job management service,
which allows jobs to be scheduled to the back end local scheduler. Super-local
schedulers limit the use of conventional (computational) Grids on the Inter-
net due to their centralized scheduling. Our solution, by contrast, is to design
each Grid as a container which includes a number of agents. These agents can
make decisions regarding job scheduling and load balancing, based on local
information and the dynamic status of the open environment.

A multi-purpose task model is introduced to handle state persistence and
to assist with task decomposition. Furthermore, flexibility and robustness
are strengthened by employing multiple agents to construct the underlying
components of the Grid architecture.

Based on this hybrid solution, the second solution improves the task model
so that it provides additional support for task decomposition and inter-task
communication in a transparent manner. Two framework-based agent tech-
nologies are developed for message passing and routing, as well as for resource
management. These frameworks, together with various intelligent and evolving
mechanisms, promote adaptability and performance.

In summary, this Chapter shows that integrating peer-to-peer computing
and multi-agent technologies leads to improved scalability, efficiency, flexibil-
ity, and robustness in open environments, compared with conventional Grid
computing architectures.

2 Computing Grids

During the past decade, many studies have been undertaken aimed at increas-
ing the performance of parallel systems and host-centric enterprise computing
centres. However, these centralized computing technologies have not been able

Agent-Based Grid Computing 441

to fulfil the demand for computational power and distributed collaboration in
either scientific or industrial domains.

By exploiting existing centralized and distributed computing technologies
to harness distributed heterogeneous computing resources, we can increase the
computational capacity available to tackle scientific problems opens up new
avenues of feasible computational research (further, the demand for greater
computational capacity appears insatiable).

The notion of a computing Grid – ‘grid’ for short – was inspired by the
electricity power grid [8,22]. A computing Grid is

“a type of parallel and distributed system that enables the shar-
ing, selection, and aggregation of resources distributed across multiple
administrative domains based on their (resources) availability, capabil-
ity, performance, cost, and users’ quality-of-service requirements” [5].

It is “distinguished from conventional distributed computing by its focus on
large-scale resource sharing, innovative applications, and in some cases, high
performance orientation” [23].

The following three-point checklist can be used to determine whether a
computing system can be regarded as a Grid [17]:

1. Coordinates resources that are not subject to centralized control: a Grid
integrates and coordinates resources from different control domains. There
is no global centralized structure and the system is totally distributed;

2. Uses standard, open, general-purpose protocols and interfaces: a Grid must
use multi-purpose protocols and interfaces for communications and opera-
tions. These protocols and interfaces must be standard as well as open,
so that resource-sharing arrangements can be established dynamically
with any interested party. Standards are also important in providing a
general-purpose interface between the Grid and clients; and

3. Delivers a non-trivial quality-of-service: a Grid coordinates its constituent
resources to deliver various qualities-of-service. The utility of the combined
system is significantly greater than that of the simple addition of all its
parts.

2.1 Development of Computing Grids

The evolution of computer architecture is driven by major technological
advances in processors and networks. Up to the 1970s, almost everything
was done by mainframe computers. Processing in mainframes quickly became
a bottleneck in information systems. Continuous investment in mainframe
upgrades could not maintain efficiency under increased processing demands
and is thus not cost effective. With the miniaturization of computers and the

442 M. Zhang et al.

emergence of computer networks, the Client-Server (C-S) architecture [31]
was initially proposed as an alternative to conventional mainframe systems.
Such an architecture shifts the processing burden to the client computer,
and therefore improves overall efficiency [2]. Later, we saw the rise of LAN-
based cluster computing [41,46] in the 1980s, and WAN-based metacomputing
[32, 50] in the 1990s. Both of these were derived from the C-S architecture,
and aim at further sharing the workload through computer networks. Inspired
by the electricity power grid, Grid computing further exploits cluster com-
puting and metacomputing to Internet-scale resource sharing, selection, and
aggregation.

2.2 Application-Oriented Metacomputing

Metacomputing is the predecessor of Grid computing. The rise of meta-
computing stemmed from the popularity of parallel processing, which was
facilitated by two major developments: Massively Parallel Processors (MPPs)
and the widespread use of distributed computing. Common to both distributed
computing and MPP is the notion of message passing, around which the fol-
lowing two systems were developed: the Parallel Virtual Machine (PVM) [27]
and the Message Passing Interface (MPI) [35, 44, 51].

PVM aimed at exploiting a collection of networked computers of hetero-
geneous architecture, data format, computational speed, machine load, and
network load. From the beginning, it was designed to make programming
for a heterogeneous collection of machines straightforward, whereas the MPI
standard was not intended to be a complete and self-contained software infras-
tructure for distributed computing. The main purpose of MPI was to establish
a message-passing standard for portability – indeed, it provided MPP vendors
with a clearly defined set of routines that they could implement efficiently
and/or provide hardware support for [28].

The PVM-based LAN metacomputer at NCSA [50] was the earliest
example of a nationwide metacomputing system. The purpose of building
metacomputing systems was to solve computational science problems. Table 1

Table 1. Applications of Metacomputing (after [50])

Theoretical Instrument/ Data Navigation
simulation Sensor Control

Data source Scientific equations and Scientific instruments Database
mathematical model and sensors

Advantages no time or space high-speed, real-time ability to handle very
constraints processing large databases

Example molecular Virtual interactive imaging simulation of cosmic
Reality, thunderstorm of atomic surfaces structures
simulation

Agent-Based Grid Computing 443

summarizes applications of metacomputing in computational science, which
cut across three fundamental areas [50]:

1. Theoretical simulation, which can be described as using high-performance
computing to solve scientific problems numerically by using scientific
equations and mathematical models.

2. Instrument/Sensor control, in which a metacomputing system is used to
manipulate real-time and interactive visualization from raw data supplied
by scientific instruments and sensors.

3. Data Navigation, the method through which most computational science
is carried out. This involves exploring large databases, and translating
numerical data into human sensory input.

Condor [15] and Legion [33,34] are early successful general-purpose meta-
computing systems. A general-purpose metacomputing system needs to be
responsible for:

• transparently scheduling application components on processors;
• managing data migration, caching, transfer and coercion;
• detecting and managing faults; and
• providing adequate protection to users’ data and physical resources.

Other general-purpose metacomputing systems include Charlotte [4],
Javelin [10, 42], WebFlow [1], Gateway [25], CX [7], and an early version of
Globus [21]. A comprehensive description of existing metacomputing systems
is provided in [3].

2.3 Service-Oriented Grid Computing

As already observed, the inspiration for computing Grids came from elec-
tricity power grids. It evolved from cluster computing, but with one notable
distinction – namely the manner of resource management [5]. In the case
of Grid computing, there is no global (centralized) structure; the system is
totally distributed. In a cluster environment, by contrast, resource allocation
is performed in a centralized fashion; a master/slave relationship always exists,
where the master node acts as a load balance proxy or task scheduler.

The first definition of computing Grids was given in [22]. In a subsequent
article, the authors stated that

“Grid computing is concerned with coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations
(VOs)” [24].

The key concept is to exploit synergies that result from cooperation – the
ability to share and aggregate resources among these VOs, and then to use
the resulting resource pool for a specific purpose. This notion was further

444 M. Zhang et al.

developed in Open Grid Services Architecture (OGSA) [23], where a Grid
was viewed as an extensible set of Grid services that may be aggregated in
various ways to meet the needs of the VOs.

2.4 Convergence of Grids and Peer-to-Peer Computing

Today, the sheer number of desktop systems make the potential advantages
of inter-operability between desktops and servers into a single Grid system
quite compelling. Peer-to-Peer (P2P) computing [2], as another emerging com-
puting architecture, is tackling a set of problems which overlap with Grid
computing [39]. The differences between Grid computing and P2P comput-
ing originate from their usage. Computing Grids were first used for scientific
computation, while P2P computing gained prominence in the context of mul-
timedia file exchange. Globus [21] – the de facto Grid standard – was initially
an umbrella project. It was designed to federate underlying workload man-
agement systems to work for collaborations. This objective destined its role
to be that of middleware and a super-local architecture. On the other hand,
P2P computing aims at the collaboration of massive commodity computing
devices. There are no such constraints on its architecture, as with Globus,
which makes P2P computing more flexible (and scalable). In fact, it uses the
computing power at the edge of a connection rather than within a network.
The Client-Server architecture does not exist in a P2P system. Instead, peer
nodes act as both clients and servers – their roles are determined by the char-
acteristics of the tasks and the system status. This architecture minimizes the
workload of each node, and maximizes utilization of the overall computing
resources within the network.

In contrast to the application of Grid computing in a scientific research
context, P2P computing primarily offers file sharing (for example, Napster
and BitTorrent [11]), distributed computation (for instance, SETI@home [37]),
and anonymity (for example, Publius [53]). Although the two types of com-
puting architectures have both conceptual and concrete distinctions, their
convergence is significant:

“the vision that motivates both Grid and P2P computing – that of a
worldwide computer within which access to resources and services can
be negotiated as and when needed – will come to pass only if we are
successful in developing a technology that combines elements of what
we today call both P2P and Grid computing” [20].

Despite the aspirations of the scientific research community for Grid
computing to contribute to computational science compute capacity, its
server-based architecture in a local context and middleware nature in a global
context limits its application in open environments, where the computing
nodes are highly autonomous and heterogeneous, and their availability varies
from time to time. An example of an open environment is the Internet, where

Agent-Based Grid Computing 445

enormous idle resources exist, which are normally not organized in terms of
providing computing power for a certain purpose.

2.5 Research Questions of Grid Computing

Research questions concerning Grid computing in open environments include:

• What is the best way to support task decomposition, inter-task communi-
cation, and state persistence?
These three features are essential to the Grid. With task decomposition
support, a computational task – which consists of parallel subtasks – can
be decomposed automatically to achieve parallelism, and therefore leads
to better performance and efficiency than a sequential computing model.
This support of inter-task communication and state persistence will save
a great deal of time for application developers, as they will not need to
write their own frameworks to support the two features.

• What is the best strategy for resource management and task scheduling?
Open environments are markedly different from the application domain
of conventional Grids. In order to find the best way to manage resources
and schedule tasks, the properties of open environments must be care-
fully considered. The autonomy, heterogeneity, intermittent participation
and highly variable behavior of the constituents of open environments
are major concerns from the perspective of resource management and
scheduling.

• How to provide compatibility and inter-operability?
Today, hundreds of production Grids exist all over the world, on which
thousands of applications are currently running. Any new Grid system
must take into consideration compatibility and inter-operability with exist-
ing Grids, Grid clients and applications. With the standardization of Grid
computing and the embrace of Web Services standards, it is easier to
achieve compatibility and inter-operability in any new Grid, as long as it
follows these standards.

This Chapter addresses these questions by:

1. Proposing multi-purpose programming models to support task decompo-
sition, inter-task communication, and state persistence.

2. Proposing resource management and scheduling strategies to solve resource
discovery, selection, allocation (and release), load balance, task execution,
task monitoring, fault-tolerance, and the storage of data. We divide these
issues into two areas: (i) computing architecture and (ii) resource man-
agement framework. The former probes the dispatch of tasks and service
requests, while the latter works on how to record resources and match them
with service requests.

3. Keeping compatibility and inter-operability in mind. The solutions present-
ed later (Sects. 4 and 5) provide good compatibility and inter-operability
with existing Grids, Grid clients and applications.

446 M. Zhang et al.

3 Grid Computing in Open Environments

As Web Services provide a standard means for communication and object
invocation between clients and service providers, embracing Web Services
increases Grid inter-operability. The super-local scheduling strategy is also
successful in high-end computational environments, because of its flexibility
in the face of various widely accepted local schedulers, such as Condor [15].
However in order to implement and deploy a Grid in an open environment,
the autonomous, heterogeneous, and highly dynamic nature of such an envi-
ronment must be carefully considered. These properties further lead to the
following problems with conventional Grids:

1. Web Services Resource Framework (WSRF) was developed to complement
Web Services (WS) in order to make stateless Web Services stateful. How-
ever, it can result in significant overheads on network traffic and object
invocations due to transmission of WS-Resources between the client and
the service host, and conversions between internal states of a service and
their WS-Resource equivalents.

2. Current service-oriented architectures have poor adaptability in terms of
performance, availability and scalability, as no facility is provided by cur-
rent Grid systems to allow the automatic deployment of services according
to both client requests and the load currently carried by the Grid.

3. Dependence on local schedulers increases the complexity of application
programming in the Grid environment, as it is difficult to provide various
local schedulers with a uniform programming interface that supports task
decomposition, state persistence and inter-task communication.

4. The super-local resource management and scheduling strategy relies inten-
sively on the underlying local schedulers. This two-level process leads to
more complex handling of resource discovery, selection and allocation, com-
pared with a one-level process. The lack of direct management of the
computing nodes can cause unsuitable selection of resources and unbal-
anced loads, and therefore limits the overall performance. In addition, as
new computing nodes can only join local schedulers, instead of joining the
Grid directly, the scalability of local schedulers greatly affects the overall
scalability of the Grid.

5. It is not feasible to introduce local schedulers into our targeted environ-
ment, as local schedulers require a relatively static and non-autonomous
environment.

4 SmartGrid – A Hybrid Solution to Grid Computing
in Open Environments

Five problems have been outlined in Sect. 3 in relation to Grid computing
in open environments. Aiming at solving these problems, in this Section we
propose a hybrid solution using multiple intelligent agents [40] combined with

Agent-Based Grid Computing 447

server-based computing architecture and P2P computing architectures. We
call this service-oriented, microkernel, agent-based, rational, and transparent
Grid solution ‘smartGRID’.

We first present a description of the overall architecture of smartGRID
and describe the essential components and adaptive mechanisms that make
it flexible and robust (Sect. 4.1). Then we introduce the novel smartGRID
task model and proceed to demonstrate how it can not only support state
persistence, but also assist the scheduling process (Sect. 4.2).

Next, we focus on the scheduling process and evolving mechanisms of
smartGRID. Coloured Petri Nets (CPNs) [36] are extensively used to describe
agent interactions and communication protocols. All evolving mechanisms
are described in detail, followed by an explanation of how they can render
smartGRID self-contained.

Finally, in Sect. 4.4 we discuss compatibility and inter-operability issues.
We explain how smartGRID is compatible with existing Grid clients. Two
methods are described in regard to the preservation of states, as well as how
to use one of these to achieve task decomposition. Lastly, we discuss promising
approaches to the inter-operability of smartGRID and existing local schedulers.

4.1 Overall Architecture and Core Components

There are three tiers in smartGRID: clients, trackers, and computing nodes,
defined as follows:

Definition 1 A ‘client’ is a generic computing device that seeks
services from the Grid using Web Services Standards.

Definition 2 A ‘tracker’ is a computer which performs task
scheduling operations in its managed local area network (LAN).

Definition 3 A ‘computing node’ is the place where tasks are exe-
cuted and computing occurs. A client or a tracker can act as a
computing node at the same time.

Figure 1 shows the tiers in smartGRID. We assume that the tiers discussed
in the following sections are in the same LAN.

A tracker maintains the following information:

1. the available computing resources (called profile) on each of the nodes in
the tracker’s LAN;

2. all tasks submitted to the tracker (including the running tasks, and the
tasks in its waiting queue);

3. the overall load of the tracker’s LAN; and
4. the contact information of a limited number of other trackers.

448 M. Zhang et al.

Fig. 1. smartGRID tiers

Multiple trackers can exist in the same LAN for performance and/or fault-
tolerance consideration.

Details of the self-organizing process are provided in Fig. 2. This process
allows new computing nodes to join smartGRID, and enables it to expand
dynamically, which is essential for scalability. It also works as one of the evolu-
tion mechanisms that dynamically optimizes the configuration of smartGRID
by selecting the most suitable temporary tracker to handle the LAN-based
operations, so that the computing nodes can contribute their computing power
to the fullest extent. The following principles cover the basic communication
rules within smartGRID:

• A number of computers which have high availability, good connectivity,
and good performance are selected as the ‘top-level trackers’ when the
Grid is constructed.

• Any other computer becomes a tracker by registering itself to an existing
tracker; the existing tracker is called the ‘parent’ of the new tracker. Any
tracker therefore has at least one parent, except for the top-level trackers.

• Trackers such as the top-level trackers that can guarantee their availability
and serviceability are called ‘dedicated trackers’. To become a dedicated
tracker, a computer must register itself to an existing dedicated tracker,
except for the top-level trackers.

• A tracker can communicate with other trackers for scheduling purposes.

Agent-Based Grid Computing 449

<Client> <LAN Tracker><Default/Parent Tracker> <Node>

Any LAN
tracker?

Request for
best tracker

No

Client or
node?

Suitable for a
temporary
tracker?

Dedicated
tracker?

Yes

Register to the
LAN tracker

Yes

Any LAN
tracker?

Request for
best tracker

No

Client

Contact
selected
tracker

LAN tracker

Require
upgrade

Yes

Upgrade to
tracker

Lookup best
tracker

Request for
upgrade

No

Upgrade
enabled?

No

Yes

Node

Suitable for
temporary
tracker?

No

Yes

Revoke?

Yes

Best
tracker

Downgrade to
node

Announce itself
to nodes

Register new
tracker

Is there an
old temporary

tracker?

Yes

Fig. 2. The self-organizing process in smartGRID

• The clients or computing nodes only communicate with a tracker in the
same LAN, as long as such a tracker exists. In case there is no existing
tracker, a process called ‘self-organizing’ is triggered, so that the most
suitable tracker can be returned to the client or the computing nodes.

• When a new computing node joins smartGRID and no tracker exists in
its LAN, the node will be upgraded to a ‘temporary tracker’ as a result
of the self-organizing process. A new computing node can also become a
temporary tracker attributed to the self-organizing process, if the process
selects it as a replacement for an existing temporary tracker in its LAN.

450 M. Zhang et al.

Runtime Environment

Tasks/Services

Management
Agent

Profiling
Agent

Scheduling
Agent

Fig. 3. Schematic view of the smartGRID container

Resource
status

Scheduling
policy Profiling

policy

Profiling
agent

Scheduling
agent

Management
agent

Update Resource
status

Fig. 4. Agent interactions within smartGRID

A microkernel Grid container runs on every computing node and tracker.
The container serves as the runtime and managerial environment for the tasks.
The smartGRID container consists of four components: the Runtime Environ-
ment (RT), the Management Agent (MA), the Profiling Agent (PA), and the
Scheduling Agent (SA), as indicated in Fig. 3.

The Runtime Environment provides the runtime libraries and software
components for both agents and tasks. For example, the XML parsing
libraries, and implementations of the Web Services standards [57], such as
Simple Object Access Protocol (SOAP), are included in the Runtime Environ-
ment. The Management Agent provides the service and managerial interface
within the Grid and for the client. The policies and configurations are managed
by the MA as well. The Profiling Agent gathers the status of the network, the
trackers, the computing nodes and the running tasks, and provides dynamic
and optimized configurations for the Scheduling Agent. The Scheduling Agent
is responsible for the scheduling and management of tasks. It manages the
task life cycle, and provides scheduling, fault-tolerance, and load balance ser-
vices for the Grid. Figure 4 depicts agent interactions within a smartGRID
container.

Agent-Based Grid Computing 451

4.2 The Task/Service Model

smartGRID has a service-oriented architecture regarding its clients, and con-
forms to the Web Services (WS) standards [57]. The adoption of Web Services
gives smartGRID good inter-operability with WS-compatible clients and other
WS-compatible Grids. However, in order to support state persistence and task
decomposition, smartGRID incorporates a novel task model – called Task/Ser-
vice (TS) – which is a hybrid of the conventional task and service models
(Fig. 5).

A TS comprises the following five components:

• TS description (TSD)
• executables
• the data
• serialization
• checkpoints

The serialization and checkpoints are automatically generated and managed
by smartGRID when the TS is re-scheduled (in other words, when a run-
ning task is suspended). A TS without the serialization and checkpoints is
called a ‘Raw TS’ (RTS). Figure 5 shows the composition of the smartGRID
Task/Service.

The TSD has two sections: the ‘task’ section and the ‘service’ section.

Figure 6 displays the task section of the TSD, which comprises the
following three sub-sections:

• The dependencies subsection defines the runtime components and the
services that the TS depends on.

• The scheduling policies subsection defines:

1. the instance policies (the minimum number of active instances, the
maximum number of active instances, the minimum number of standby
instances, the maximum number of standby instances) (discussed in
Sect. 4.3);

Task/Service

TS Description

Executables

Data

Serialisation

Checkpoints

Fig. 5. Task/Service model of smartGRID

452 M. Zhang et al.

{Dependencies
 {Bundle dependencies
 Service dependencies}
 Scheduling policies
 {Instance policies
 Minimal hardware requirements
 Estimated computation amount
 Expected completion time
 Priority level
 Chaining policies }
 Information
 {Executables information
 Data information
 Checkpoints information}}

Fig. 6. Task section of the task/service description

2. the minimum hardware requirements for machine type, processor type,
the amount of cycles contributed, the amount of memory contributed,
and the amount of storage contributed;

3. the estimated amount of computation;
4. the expected completion time;
5. the priority level; and
6. the chaining policies (discussed in Sect. 4.3).

• The information subsection defines information about the executables, the
data, and the checkpoints.

The service section of the TSD uses the Web Service Description Lan-
guage (WSDL) [9] and WS-Resource [19] specifications to define the service
interfaces and the related stateful information.

The executables are currently Java byte code files or .NET executables.
The data is optional, and may come from multiple sources that are defined
in the data information section of the TSD. The serialization is equivalent
to the object serialization of Java [52]. It stores the runtime dynamics of any
suspended TS. smartGRID also supports checkpoints. As not all runtime states
can be preserved through the serialization process, the checkpoint mechanism
is provided to give the TS a chance to save its additional runtime states as
checkpoints when the TS is suspended. When re-scheduled, the TS is de-
serialized, and then resumed, so that the TS is able to restore its states from
previous checkpoints. Checkpoints are also useful if a TS wants to roll back
to its previous states.

Agent-Based Grid Computing 453

4.3 The smartGRID Scheduling Process

The scheduling process in smartGRIDmainly involves coordinating the agents’
actions within and between the Grid containers, and constructing a self-
organized evolving computing network. More specifically, there are two sep-
arate processes – to schedule the TSs to suitable computing nodes, and to
balance requests and schedule the corresponding TSs to the computing nodes
to serve these requests.

It has been established that Colored Petri Nets (CPNs) [36] are one of
the best ways to model agent interaction protocols [12,13,43,47]. In the CPN
model of an agent interaction protocol, the protocol structure and the interac-
tion policies are a network of components. The states of an agent interaction
are represented by CPN places. Each place has an associated type determining
what kind of data the place may contain. Data exchanged between agents are
represented by tokens, whose colours indicate the value of the representing
data. The interaction policies of a protocol are carried by CPN transitions
and their associated arcs. A transition is enabled if all of its input places have
tokens, and the colours of these tokens can satisfy the constraints that are
specified on the arcs. A transition can be fired, which means the actions of
this transition can occur when this transition is enabled. When a transition
occurs, it consumes the input tokens as the parameters, conducts the con-
versation policy and adds the new tokens into all of its output places. After
a transition occurs, the state of a protocol is changed. A protocol is in its
TERMINATED state when there is no enabled or fired transition.

Task/Service Life Cycle

Figure 7 shows the states of a TS in its life cycle. When a Raw TS is submitted
by a client via a tracker’s MA, the MA checks the TS’s validity. If the TS is
valid, it enters the SUBMITTED state. A set of pre-schedule operations are
then applied to the TS by the MA and SA of the tracker. These operations
include making a backup of the submitted TS, and allocating and initializing
the internal resources for the purpose of scheduling that TS, and so forth. If
all operations succeed, the TS enters the READY state.

The READY state means that the TS is ready to be scheduled. In this
state, the SA of the tracker uses a ‘best-match’ algorithm to determine
whether the managed computing nodes of the tracker are suitable for the
TS. If a suitable computing node is found, a schedule operation is applied.
Otherwise, the SA (called chaining source) extracts the TSD from the TS, and
passes it to the SAs of other known trackers. Every time the TSD passes by a
tracker, the TTL (Time-to-Live) specified in the chaining policies of the TSD
decreases by 1. If one of the trackers happens to be able to consume the TS
according to the best-match algorithm, it contacts the source SA to transfer
the TS to it. If the tracker is not able to consume the TS, it keeps passing
on the TSD until the TTL equals 0. The above process is called ‘chaining’.

454 M. Zhang et al.

SUBMITTED

COMPLETED READYcancel

CHECKED-IN

schedule

CHECKED-OUT

RUNNING

suspend

chaining

Explicit transition

Implicit transition

submit

cancel pre-schedule

Fig. 7. States of a task/service in smartGRID

After chaining, the TS remains in the READY state. Chaining is the core
mechanism in smartGRID to balance the loads and requests globally.

The TS enters the CHECKED-IN state after the schedule operation, which
means that the TS is scheduled to a computing node, the executables are
resolved by the runtime environment of the computing node, and the runtime
dynamics and checkpoint have been restored for a suspended TS. The TS
then automatically enters the RUNNING state until the suspend operation is
applied, where the TS is serialized and suspended, and enters the CHECKED-
OUT state. Following this, the TS is automatically transferred to the tracker,
where the computing node registers for rescheduling. A special situation is that
if the TS exits, it fires the suspend operation itself and stores the computing
result whilst suspended.

Task-related Scheduling

In the smartGRID scheduling strategy, the TSs, requests, and profiles of the
trackers and computing nodes are represented as three kinds of tokens. The

Agent-Based Grid Computing 455

transition rules of these tokens are different when the tokens are placed in
different places. The agents in smartGRID are responsible for allocating the
tokens and modifying them after the transitions are fired.

The task-related scheduling process can be described as three sub-
processes: scheduling within a tracker, scheduling between the tracker and
the computing nodes, and scheduling among the trackers.

Scheduling within a Tracker

Figure 8 demonstrates the scheduling process with a tracker modelled by a
CPN. There are four types of places defined in the CPN: Task-related places,
operation places, the profile/load place, and the simulated synapse place. They
are described as follows:

1. The Raw TS place holds the Raw TS token, which is received from the
client.

2. The Rejected TS place holds the Raw TS tokens, which are rejected by
the Check transition.

3. The Legal TS place holds the Raw TS token, which is asserted as legal by
the Check transition. The legal Raw TS token may also come from the
tracker itself, due to a re-schedule operation.

Priority
Check

Push
Operation

TS Queue

Legal TS

Copy/Update

legal

Raw TS

Check

Rejected
TS

Illegal

low pr
iority

TS
Repository

Tagged TS

ComposeHigh
priority

Extract Scheduling
Policies

TS

(1)
Internal arc

External arc

Reschedule

Chaining

(1)

(2)

Source TS
Repository

Update
Load

Scheduling
Policies

Profiles & Load

Tagged Scheduling
Policies

Best-match

matched

unmatched

Chaining Operation

Link

Simulated
Synapse

(2)

Fig. 8. Scheduling process within a tracker

456 M. Zhang et al.

4. The TS Repository place holds the backup TS tokens. A backup TS token
is removed when the corresponding TS exits or moves to another tracker
through the chaining process. A backup TS token is updated when the
corresponding TS is re-scheduled.

5. The TS place holds the TS token, which is produced by the Copy/Update
transition.

6. The Scheduling Policies place holds the scheduling policies token, which is
extracted from its corresponding TS token. The scheduling policies token
may also come from another tracker through the chaining process.

7. The Profiles and Load place holds the profile tokens and load token. Each
profile token contains the information and status (called profile) of its
corresponding computing node. The load token contains the status of the
overall load of its corresponding computing nodes. Figure 9 depicts the
scheme represented by the profile token and the load token.

8. The Chaining Operation place holds the unmatched scheduling policies
token, which is consumed by the chaining process.

9. The Tagged Scheduling Policies place holds the Tagged Scheduling Policies
token, which is produced by the best-match transition. The tagged token
has winner tags, which contain the identifiers of the best suitable nodes
‘winners’).

10. The Synapse place holds the synapse token, which represents the link
between the destination and the source of a chaining process.

11. The Source TS Repository place holds the corresponding TS token of the
scheduling policies token, which is passed through the chaining process.

12. The Tagged TS place holds the Tagged TS token, which comprises the TS
token and the Tagged Scheduling Policies token.

13. The Push Operation place holds the Tagged TS token, which will be
‘pushed’ to its corresponding computing node.

14. The TS Queue place holds the Tagged TS tokens, which will be ‘pulled’
by any of the winner nodes.

Fig. 9. Profile and Load

Agent-Based Grid Computing 457

There are eight transitions, which represent eight operations. They are:

1. The Check transition checks the syntax of the TSD of the Raw TS token. It
also checks whether the dependent bundles and services exist, and whether
the services defined by the Raw TS conflict with the existing services (for
instance, conflict due to the same service name). In addition, the Check
transition converts the Raw TS token into the TS token.

2. The Copy/Update transition either duplicates the TS token, or updates the
TS token in the TS repository place.

3. The Extract Scheduling Policies transition extracts the scheduling policies
from the TSD.

4. The Best-match transition performs the best-match algorithm. Figure 10
explains the algorithm (the Profile-Aware Eager Scheduling will be dis-
cussed later).

5. The Update Load transition converts the scheduling policies into the
computing load, and adds the load to the overall load of the tracker.

6. The Link transition connects the two end points of a chaining process.
Scheduling from one node to another node within the same LAN is a special
case, as a tracker is always linked with itself.

7. The Compose transition transfers the TS token from the source TS repos-
itory, updates the local TS repository, and composes the Tagged TS token
from the TS token and the tagged scheduling policies token.

8. The Priority Check transition compares the priority of the tagged TS token
with the current loads of the winners, to determine whether the token is
‘pushed’ to its corresponding computing node, or stored in a queue for the
‘pull’ operation.

Scheduling between a Tracker and its Nodes

smartGRID uses a scheduling algorithm called Profile-Aware Eager Scheduling
(PAES), which is derived from eager scheduling, to schedule the TSs from the
trackers to their managed computing nodes.

The eager scheduling algorithm was first introduced in Charlotte [4]. Its
basic idea is that faster computing nodes will be allocated tasks more often,
and if any task is left uncompleted by a slow node (a failed node is infinitely
slow), that task will be reassigned to a fast node. In other words, it uses a
‘keep the faster nodes busy’ strategy. It also guarantees fault tolerance by
using a redundant task cache with a time-out mechanism. The PAES algo-
rithm takes the profiles of the computing nodes provided by the profile agent
and the scheduling policies provided by the TSs into consideration when per-
forming scheduling. In contrast to eager scheduling, it allows bidirectional
scheduling operations – namely ‘pull’ and ‘push’. Figure 11 demonstrates the
two operations.

458 M. Zhang et al.

No

<Tracker PA> <Node PA><Tracker SA>

Sched-
uling

policies

Profile up-
to-date?

Create
empty

winner list

Has
Another
profile?

Iterate
profiles

Yes

No

Get profile

Return
profile

Return
winners'
profiles

Calculate
load &

compare
with profile

Suitable?

Add
winner's
profile

Yes

No

Empty?

Yes

Chaining

Yes

PAES

No

Fig. 10. The best-match algorithm

Agent-Based Grid Computing 459

Schedule
Operation

Push
Operation Push

TS Queue

Pull
Operation

matched

Pull

Fig. 11. Push and pull operations

The Schedule Operation place holds the TS token, which is scheduled to
the corresponding computing node. The Push Operation is straightforward.
The Push transition represents the push operation – that is it assigns the TS
to one of the winners. The Pull Operation place holds the requests from the
computing nodes. Whenever the scheduling agent of a node determines that it
is able to run a new task, it sends a request to the tracker. The Pull transition
represents the pull operation – in other words, the scheduling agent matches
the computing node requesting the TSs with the tagged TS tokens. If the node
is the winner, the TS is assigned to that particular node.

Scheduling among the Trackers

Trackers are linked by the chaining process, which is the core of the scheduling
process among the trackers.

Figure 12 shows the basic chaining mechanism. There are two transitions,
in the chaining mechanism, Check and Send, which check the TTL in the
scheduling policies token first. If it is greater than 0, the TTL decreases by 1,
and the scheduling policies with the new TTL is sent to all known trackers.
If the TTL equals 0, the scheduling policies token is discarded.

Recalling Fig. 8, there is a link transition, which makes two chained
trackers learn (that is, if tracker-A successfully schedules the chained TS
of tracker-B, A and B are chained), and preserve each other’s information
for future chaining processes. However, if the links exist permanently, the
performance of the chaining process will gradually decrease as time goes by
because of the explosive numbers of links. A link must therefore be able to

460 M. Zhang et al.

Scheduling
Policies

TTL>0

Discard

Chaining
Operation Check/Send

TTL = 0

Fig. 12. The basic chaining mechanism

T0

T1 T2

T0

T1 T2

Fig. 13. Formation of the simulated synapse

be strengthened and weakened. Such a link is called a ‘simulated synapse’.
Figure 13 shows the formation of the simulated synapse.

The underlying algorithm used to strengthen and weaken the link can
be defined in the chaining policies. One of the simplest algorithms is the
aging algorithm, in which every simulated synapse has an associated weight.
A weight is a numerical value between 0 and 1, which is used to evaluate
the strength of its associated chain (1 representing the strongest link, and
0 representing no link). The weight is calculated based on the frequency of
communication occurring on its associated chain. When a simulated synapse
is created, an initial weight is specified. Then for each interval I, the weight
is squared. If the resulting weight is less than the threshold θ, the simulated
synapse is removed. On the other hand, each time the Link transition is fired,
the square root of the weight is calculated. Below is a pseudo implementation
of the aging algorithm which utilizes a monitor.

Agent-Based Grid Computing 461

Valid
Scheduling

Policies

TTL>0

Discard

Chaining
Operation Check

TT
L = 0

Scheduling
PoliciesSend

Simulate Synapse

w<0.5

Fig. 14. Advanced chaining mechanism example

To take advantage of the simulated synapse, the chaining process must
take the strength of the simulated synapse into consideration. Figure 14
demonstrates an example of the advanced chaining mechanism.

Algorithm 1 Aging algorithm using a Monitor
/* Global Area */
DEFINE MONITOR M /* monitor */
DEFINE CONSTANT θ /* threshold */
DEFINE CONSTANT I /* interval */
DEFINE OBJECT synapse /* simulated synapse */

/* Link transition thread */
synchronised(M) {
if synapse.weight = 0 then

INITIALISE synapse.weight
else

synpase.weight = SQRT(synpase.weight)
NOTIFY();
}

/* Background daemon thread */
synchronised(M)
{
while synpase.weight > θ do

WAIT(I)
synpase.weight = synpase.weight*synpase.weight

synapse.weight = 0
}

462 M. Zhang et al.

Request-related Scheduling

As the TSs are allowed to register services in smartGRID, one of the func-
tions of scheduling is to balance requests and schedule the corresponding TSs
to the computing nodes to serve these requests. In fact, the only difference
between task-related scheduling and request-related scheduling is that objects
are actually scheduled. In the former, the object is the TS or the scheduling
policies extracted from the TS; in the latter, the object is the service request.
As the requests have no common characteristic in terms of the potential load
they may bring in, it is hard for the scheduling components to make rational
decisions. However, smartGRID still provides two ways to help services achieve
high throughput.

Recalling the TSD, there is a subsection called instance policies, which
defines the Minimum number of Active Instances (MINAI), the Maximum
number of Active Instances (MAXAI), the Minimum number of Standby
Instances (MINSI), and the Maximum number of Standby Instances (MAXSI).
When a service TS (a TS that defines services) is scheduled, the instance poli-
cies are used to guide the scheduling components to retain a proper number
of service instances. Then, when a client attempts to invoke these services, it
uses the Web Services standards to discover the service instances. It is at that
time that client requests are distributed to the pre-allocated service instances,
so that these requests are balanced.

Another way to balance service requests is to let the service providers
themselves manage the requests, as only they know about the internals of the
requests and the best way to handle them. The multi-agent architecture of
smartGRID allows the service TSs to use the underlying APIs to provide their
own scheduling strategies, and schedule the requests themselves.

5 A Peer-to-Peer Solution to Grid Computing
in Open Environments

In this Section, we propose our second hybrid solution by focusing solely on
a P2P architecture; we call this pure P2P solution smartGRID2.

5.1 Overall Architecture and Core Components of smartGRID2

smartGRID2 consists of three major components: an improved task model,
which derives from the task model of smartGRID; a P2P computing architec-
ture, which develops the chaining mechanism and simulated synapse into a
message passing and routing framework; and a resource management frame-
work, which uses profiles to match computing resources with requests, and
provides up-to-date information about matched resources. In this Section, we
present an overview of these components, and discuss each component in turn.

Agent-Based Grid Computing 463

S.M.A.R.T-2 Grid
Container

JVM or .Net Framework

Modules
(Jobs & Services)

Fig. 15. Components within a smartGRID2 computing node

There are two tiers in smartGRID2: clients and computing nodes (or peers).
A microkernel Grid container runs on every computing node. These containers
serve as the runtime and managerial environment for the tasks. A task (such
as a job or service) is described as a group of linked modules in smartGRID2 –
a module being the fundamental unit that can be scheduled among peers. All
modules run on peers, or more specifically, within the smartGRID2 containers.
Figure 15 shows the relationship between the modules and the container.

The smartGRID2 container allows modules to register to the service portal
as Web Services. The service portal conforms to Web Services standards [57],
and allows clients to interact with the Grid using SOAP messages. Figure 16
demonstrates the overall architecture of the smartGRID2 container.

Inside the container, there are four components: the Runtime Environ-
ment (RT), the Management Agent (MA), the Profiling Agent (PA), and
the Computing Agent (CA). The Runtime Environment provides fundamen-
tal routines and runtime libraries for both agents and modules. For example,
XML parsing libraries, and implementations of Web Services standards [57],
such as Simple Object Access Protocol (SOAP) and Web Service Descrip-
tion Language (WSDL) [9], are included in the Runtime Environment; the
service portal is also part of the Runtime Environment. The Management
Agent provides the managerial interface between the container and the Grid
Management Service. It manages the container, the policies and the configura-
tions as well. The Profiling Agent gathers the status of the network, the peers
and the running modules, and provides optimized dynamic configurations for
the Computing Agent. The Computing Agent is responsible for managing the
module life cycles, locating resources and modules, discovering services, and
scheduling modules and service invocations among peers, while providing fault
tolerance and load balancing. Figure 17 shows agent interactions within the
Grid container.

464 M. Zhang et al.

In
te

rn
al

 p
ro

ce
du

re
 c

al
l

Procedure call
Computing

Management
Service

Procedure call other modules

SOAP

Procedure call
Grid

Management
Service

In
te

rn
al

 p
ro

ce
du

re
 c

al
l

Management
Agent

Profiling Agent

Internal procedure call
Computing

Agent

Internal proce dure call

Se
rv

ic
e

Po
rta

l

runtime libraries

Internal procedure call

Client

Container

Note: Agent
i nterac ti ons
are not shown
in this figure.

Procedure call
T h e r e i s n o
interaction between
the service portal and
t he us er modul e ,
u n l e s s t h e u s e r
mo d u l e re g i s t e rs
some services to the
service portal.

Fig. 16. Schematic view of smartGRID2 container

 Profiling
 Agent

 Management
 Agent

 Computing
 Agent

Profiling
policy/configuration,
managerial instructions

Updated resource
statusResource status

Computing
policy/configuration,
managerial instructions

Fig. 17. Agent interactions in a smartGRID2 container

Besides these components, there are two predefined modules which regis-
ter as Grid Management Service (GMS) and Computing Management Service
(CMS), respectively. GMS allows users who have certain privileges to manage
the Grid – for instance, specifying the computing policy/configuration, and
monitoring the Grid status. CMS provides interfaces for clients to manage
the computing resources. In smartGRID2, all objects involved in the com-
puting process are regarded as resources. These resources include module
executables, service descriptions registered by the modules, data files, storage,
computational cycles, and similar.

Agent-Based Grid Computing 465

5.2 Module – An Improved Task Model

As mentioned in the preceding Section, smartGRID2 uses modules to describe
tasks. A module consists of the module description, executables, serialization
and any module-owned files. Figure 18 displays the module composition.

The Module Description (MD) has two sections: ‘task’ and ‘service’. Fig-
ure 19 shows the MD task section which defines the task-related information.
It consists of two subsections, these being:

• The deployment description subsection defines information about a mod-
ule’s executables (for example, what the entry point is if it is a startup
module), as well as any module dependencies. A module’s dependency is
another module or a service that the module depends on.

• The computing policy subsection defines a module’s (a) minimum hardware
requirements on a peer’s machine type, processor type, and contributed
cycle/memory/storage; (b) the estimated amount of computation; (c) the
expected completion time; (d) the priority level; and (e) relay policies (see
Section 5.3).

The MD service section is optional and is only needed if the module registers
one or more services to the Grid; it uses WSDL to define the service interfaces.

The executables are Java byte code files or .NET executables. When a
running module is suspended by a user, or if it is relocated (see Sect. 5.4),

Module

Module Description

Executables

Serialisation

Module Owned
Files

Fig. 18. smartGRID2 module

Fig. 19. Task section of the module description

466 M. Zhang et al.

it will be serialized. This process is equivalent to object serialization in Java
[52]. It allows the Grid container to store the module runtime dynamics, and
restore them when execution of the module is resumed. The module-owned
files (MOFs) are files that tightly bind to the module. These files are regarded
as part of the module, and migrate, together with the module’s description,
executables and serialization.

A group of linked modules consists of a complete task. Each module imple-
ments a fraction of the overall task. As these modules can be executed at the
same time on different peers, load balance and parallelism are achieved. Each
task has a startup module. After all the task modules have been deployed
to the Grid, the client can start the task through CMS. CMS then uses the
create method of the IModuleContext interface to create an instance of the
startup module. Once the startup module is instantiated and runs, it can start
instances of other modules by using the same interface. Figure 20 depicts the
hierarchy of module instances in smartGRID2.

When a module is instantiated, it gains access to the IModuleContext
interface, which is provided by the Computing Agent. This interface defines
three kinds of methods, which respectively allow a module’s instance (a) to
create instances of other modules, (b) to perform procedure calls (in other
words, invoke methods of other modules), and (c) to delete instances which
are not in use in order to release their occupied resources. Figure 21 lists
the IModuleContext interface. The internals of the creation process, the
subsequent procedure calls, and the deletion process are all discussed in
Sect. 5.4.

Container

Grid Management
Service

Computing
Management Service

Task Task

Startup Module
Instance

Startup Module
Instance

Module
Instance

Module
Instance

Module
Instance

Module
Instance

Fig. 20. Hierarchy of module instances in smartGRID2

Agent-Based Grid Computing 467

pub l i c i n t e r f a c e IModuleContext
{

pub l i c ModuleInstance c r e a t e (S t r ing moduleName ,
Object . . . args)

throws ModuleException ;

pub l i c Object invoke (ModuleInstance moduleInstance ,
S t r ing method ,
Object . . . args)

throws ModuleException ;

pub l i c void d e l e t e (ModuleInstance moduleInstance)
throws ModuleException ;

/∗∗
∗ For s t a t i c method only
∗∗/

pub l i c Object invoke (S t r ing moduleName ,
S t r ing method ,
Object . . . args)

throws ModuleException ;
}

Fig. 21. IModuleContext interface

5.3 Peer-to-Peer Computing Architecture

A number of interconnected peers comprise smartGRID2. The notion of
‘connection’ in smartGRID2 is defined as follows:

Definition 4 A ‘connection’ represents a message passing route
from one peer to another, and is not equivalent to a network con-
nection. A connection from peer A to peer B means peer A has the
information to send messages to peer B successfully, where A is the
source of the connection, and B is the destination of the connection.

Definition 5 A connection is ‘directional’ – that is, ‘peer A connects
to peer B’ does not presume ‘peer B connects to peer A’. ‘Peer A
connects to peer B’ is represented as A�→B. If peer B also connects to
peer A, then A and B have a two-way connection, which is represented
as A↔B.

Definition 6 A peer’s connections are the connections whose source
is the ‘peer’. When recording these connections, only the destination
peers (destinations for short) are recorded.

468 M. Zhang et al.

The peers which have a relatively large number of connections are called
hubs. When the Grid is constructed, a number of computing nodes which have
high availability, good connectivity and good performance are selected as the
‘backbone’ of the Grid. Each of them permanently has at least two two-way
connections with the others. As new nodes appear, they register to at least
one of the backbone nodes, so that a two-way connection can be established
between them.

In smartGRID2, the connections of a peer are recorded in a hash table,
where the destinations of the connections are the keys, and the objects rep-
resenting the strength of the connections (called ‘simulated synapses’) are
the values. Figure 22 shows a typical implementation of a simulated synapse
(synapse for short). Definitions of the above fields are described as follows:

pub l i c c l a s s Synapse {
pub l i c double s t r ength ;
pub l i c double deathThreshold ;
pub l i c double ac t ivat eThresho ld ;
pub l i c double permThreshold ;

pub l i c s t a t i c Synapse createPermSynapse () {
Synapse synapse = new Synapse () ;
synapse . s t r ength = 1 ;
r e turn synapse ;

}
pub l i c s t a t i c Synapse createTempSynapse () {

Synapse synapse = new Synapse () ;
synapse . deathThreshold =

SynapseManager . deathThreshold +
deathRange ∗ random . nextDouble () ;

synapse . permThreshold =
SynapseManager . permThreshold +
permRange ∗ random . nextDouble () ;

synapse . ac t ivat eThresho ld =
synapse . permThreshold −
(synapse . permThreshold −
synapse . deathThreshold) ∗ GOLDEN SECTION;

synapse . s t r ength =
Math . pow(synapse . act ivateThresho ld , 2) ;

r e tu rn synapse ;
}

}

Fig. 22. Sample implementation of a simulated synapse

Agent-Based Grid Computing 469

Definition 7 strength, whose range is (0, 1], represents the current
strength of the connection. A value ‘1’ means that the connection is
a permanent connection. A random initial value which is less than
activeThreshold is given to strength when a connection is created.

Definition 8 deathThreshold, whose value is randomly selected
from a user-configured range when a connection is created. When
strength is less than deathThreshold, the connection is removed
from the hash table, which means the connection breaks up.

Definition 9 activateThreshold – when a connection is created, a
random value is selected from a user configured range as lstinline

activateThreshold. At that stage, the connection is inactive. After-
wards, if strength grows to a value greater than activateThreshold,
the connection becomes active, and the activateThreshold is set
to 0.

Definition 10 permThreshold. If an active connection’s strength

continues growing to a value greater than permThreshold, then
strength is set to 1 and the connection becomes a permanent one.

Two operations can be applied to a synapse: grow, which increases the
strength of the connection; and decay, which decreases the connection strength.
Figure 23 shows the internals of these operations.

There are three kinds of computing operations in smartGRID2, namely for
deploying, locating, and utilizing resources. In order to achieve load balance,
and allocate the most suitable peer to perform a computing operation (or
series of operations), or to locate certain resources, various messages are gen-
erated by the peer which receives the client’s instruction, and then delivered
to other peers before performing this operation(s). These messages and the
reply messages are encapsulated into impulses, and transmitted among the
peers. This process is called relay. The definition of ‘Impulse’ is as follows:

public class Impulse {
public int type_ttl;
public long serial;
public Peer from;
public Message message;

}

Assume that O represents the peer which generates the message, and R
represents any peer which replies to O. An impulse transmitted from O to R
is called an outbound impulse; an impulse transmitted from R to O is called an
inbound impulse. For any outbound message, the value of type_ttl indicates
the Time-To-Live (TTL) of the impulse, and is set by O when O creates the

470 M. Zhang et al.

p r i v a t e s t a t i c Hashtable<Peer , Synapse> synapses ;

pub l i c s t a t i c void grow (Peer peer) {
Synapse synapse = synapses . get (peer) ;
i f (synapse == nu l l)

synapses . put (peer , Synapse . createTempSynapse ()) ;
e l s e {

i f (synapse . s t r ength == 1)
re turn ;

i f (synapse . ac t ivateThresho ld == 0) {
synapse . s t r ength =

Math . pow(synapse . st rength , 0 . 5) ;
i f (synapse . s t r ength > synapse . permThreshold)

synapse . s t r ength = 1 ;
}
e l s e {

synapse . s t r ength +=
Math . pow(synapse . act ivateThresho ld , 2) ;

i f (synapse . s t r ength >
synapse . ac t ivat eThresho ld) {
synapse . s t r ength =

synapse . deathThreshold +
(synapse . permThreshold −
synapse . deathThreshold) ∗

GOLDEN SECTION;
synapse . ac t ivat eThresho ld = 0 ;

}
}

}
}

pub l i c s t a t i c void decay (Peer peer) {
Synapse synapse = synapses . get (peer) ;
i f (synapse . s t r ength == 1)

re turn ;
i f (synapse . ac t ivateThresho ld == 0)

synapse . s t r ength=Math . pow(synapse . st rength , 2) ;
e l s e

synapse . s t r ength −=
Math . pow(synapse . act ivateThresho ld , 2) ;

i f (synapse . s t r ength < synapse . deathThreshold)
synapses . remove (peer) ;

}

Fig. 23. Operations on the simulated synapse

Agent-Based Grid Computing 471

impulse; the serial field contains a unique number generated by O; the from
field is set to O; and the message field contains the actual message carried by
the impulse. When R replies to O, it resets type_ttl to -1 to indicate that
the impulse carries a replied message; serial is not changed; from is reset to
R; and message is set to the replied message.

When a peer starts, a fixed-size queue, which is used to cache the impulses
relayed by the peer, is created. Hashtable<Long,List<Impulse>> impulses
is also created to store the inbound impulses, where the key (whose type is
Long) denotes the sequence number of the impulse, and the value (which is
a list of Impulse) denotes the inbound impulses. When a relay process starts,
an outbound impulse is created by O with its fields being set, and an empty
list created and inserted into the hash table. Next, O transmits the impulse
to all of its active connections. When any peer receives the impulse, it checks
whether the impulse is already in its queue. If it is, it discards the impulse;
otherwise it decreases the TTL by one, and then checks whether this is 0.
If it is, the impulse is discarded; otherwise the peer appends the impulse to
the end of the queue, and relays it to all its active connections. Finally, it
checks whether it is able to respond to the message carried by the impulse. If
it can, an outbound impulse will be generated and transmitted directly to O.
Figure 24 demonstrates the relay process.

After O transmits the impulse, it suspends the calling thread for a period
of time specified before the transmission or until the number of replies reaches
a threshold. Whenever a reply comes back from R to O, and there exists a
corresponding list in the hash table, it is added to the list, and the grow
operation is performed on the connection to R. When the thread is resumed,
the replies are retrieved from the corresponding list in the hash table. Then
O goes through all its connections, and performs the decay operation on the
connections without a reply. Afterwards, all replies are returned to the thread
for selection. Figure 25 shows the getReplies method, which is implemented
in CA.

With the selection process (Sect. 5.4), the relay process enables load bal-
ancing and the election of the most suitable peer for a certain payload (that
is, the message). In the long run, connections between peers are optimized
according to the payload characteristics. New hubs are also developed, so
that the Grid will gain better connectivity and a higher ratio of resource
utilization, as well as work more efficiently.

5.4 Resource Management and Scheduling Mechanisms

smartGRID2 uses resource matrices to track the status of computing resources.
Table 2 displays a sample matrix. It defines the type of resource, where the
resource resides, and the resource’s status (called ‘profile’) or the resource
description. A peer’s local resources are registered by the profiling agent

472 M. Zhang et al.

impulse = CA. rece iv e Impu l se () ;

i f (impulse . i sRep ly ()) {
List<Impulse> l i s t =

impulses . get (impulse . g e t S e r i a l ()) ;
i f (l i s t != nu l l) {

l i s t . add (impulse) ;
grow (impulse . getFrom ()) ;

}
}
e l s e i f (queue . indexOf (impulse) == −1) {

Handler handler =
Container . getHandler (impulse . getMessage ()) ;

i f (−− t y p e t t l > 0) {
appends impulse to the queue
CA. r e l ay (impulse) ;

}
i f (handler != nu l l) {

Message rep ly =
handler . handle (impulse . getMessage ()) ;

impulse . t y p e t t l = −1;
Peer dest = impulse . from ;
impulse . from = Container . ge tLoca l () ;
impulse . message = rep ly ;
CA. send (impulse , dest) ;

}
}

/∗∗
∗ e l s e
∗ Discard impulse
∗/

impulse . d e s t roy () ;

Fig. 24. Relay process

when the peer starts. The profiling agent also updates the local resource pro-
files when they change. Figure 26 shows a representative processor profile
definition.

When a module requires a resource, its container C first tries to match the
required resource with those in the resource matrix. If none of them matches
the requirement, the container starts a relay process. Alternatively, the con-
tainer may start the relay process immediately upon receiving the module’s
request. How the container behaves is determined by the resource type. For
example, local service resources have precedence over remote service resources,
but there is no such discrimination in terms of processor resources.

Agent-Based Grid Computing 473

pub l i c s t a t i c List<Impulse> ge tRep l i e s (Impulse impulse)
{

List<Impulse> l i s t =
impulses . remove (impulse . g e t S e r i a l ()) ;

ArrayList<Peer> peer s =
new ArrayList<Peer>(synapses . s i z e ()) ;

p ee r s . addAll (synapses . keySet ()) ;
f o r (Impulse i : l i s t)

pee r s . remove (i . getFrom ()) ;
f o r (Peer peer : pee r s)

decay (peer) ;
r e tu rn l i s t ;

}

Fig. 25. getReplies method

Table 2. Resource matrix of peer 192.168.2.1

Resource Type Residing Peer Resource Profile/Description References

Processor 192.168.2.1 Pentium-4; 1.8GB; fully n/a
contributed; no running module

Storage 192.168.2.1 1024MB free space; transfer n/a
speed 160(120)Mbps (R/W)

Module 192.168.2.1 name = decrypt; ID = 1234 192.168.2.7
Instance 192.168.2.8
File 192.168.2.2 /modules/decrypt.mar 192.168.2.1
Service 192.168.2.4 /unix-encrypt; Module 192.168.2.1

Description with Service Section

Fig. 26. Sample processor profile definition

474 M. Zhang et al.

During the relay process, the participating peers look up the required
resource in their resource matrices. If matching resources exist, references to
these resources are returned to C. If multiple replies exist, C starts a resource
selection process to determine which resource is most suitable. The outcome
is then returned to the module for its subsequent operations. Moreover, if the
type of resource located has local precedence, it will be cached in C’s resource
matrix. A resource matrix only caches a limited number of references. Each
time a cached reference is retrieved, it is regarded as ‘updated’. The least
updated entry will be removed if the cache is full and a new reference comes in.

Once the reference to a resource is obtained, it is accessible to the module
through smartGRID2. Each time a resource is accessed, its reference is quoted
and passed to the resource’s residing peer R. R will then perform the actual
operations and send the results back to the module. When the module finishes
using the resource, it notifies R so that the resource can be released.

A peer also keeps records of other peers which have cached references to
its local file, service, and module instance resources, so that references can be
updated when the actual resources migrate to other peers.

In smartGRID2, files can be uploaded to the backbone nodes through CMS.
Unlike other resources, local files never appear in the resource matrix. When
a file is located and used, it can be cached by the peer that uses the file, if
there is sufficient storage therein.

Module executables are regarded as files, and need to be uploaded to the
Grid before execution. smartGRID2 has a two-stage scheduling mechanism.
Once a module is uploaded, its residing peer O will trigger a relay process,
informing other peers of the potential workload. Other peers will reply to O
if they can execute the module. O then determines the suitability of these
peers (including O itself). The module will be moved to the winner if the
winner is a backbone node; otherwise it is transferred to the winner and cached
there. During the second stage, when the module is about to be created, a
relay process will be started to locate the module. Once it is located, it will
be scheduled and executed by its residing peer. The following illustrates a
reference to the instance of the module used in the procedure calls:

public class Resource
{

private Peer peer;
}
public final class ModuleInstance extends Resource
implements Serializable
{

public String name;
public String id;

}

Agent-Based Grid Computing 475

The only difference in the execution process of a service is that it has to be
discovered before its module execution process. Figure 27 demonstrates this
process.

5.5 Compatibility and Inter-Operability

Recalling the task model (Sect. 4.2), it is easy to see that the new model
enables modeling of both conventional (stateless) services and stateful tasks.
A module is allowed to register its own services to the service portal using Web
Services standards. Hence, any WS-compatible client is capable of accessing
these services through smartGRID2.

There are two means by which stateful information for a service in
smartGRID2 can be maintained. The client and the service can use agreed
methods, such as WS-Resource, to exchange stateful information. smartGRID2
supports WS-Resource standards, hence a WS-Resource based client needs no
modification to work with smartGRID2, as long as the service interface is not
changed. Another way to preserve the states throughout different service invo-
cations is to create a transaction-specific service module. In this case, a token
representing a certain transaction is passed during service invocations. When
a new transaction starts, the startup module of the service creates a new ser-
vice module to serve the transaction. Stateful information is maintained by
the service modules. The tokens act as identifiers for the startup module to
dispatch service invocations to an appropriate service module. Once the trans-
action is completed, the client implicitly notifies the service’s startup module,
so that the startup module can delete the corresponding service module and
release resources.

Since smartGRID2 conforms to Web Services and WS-Resource standards,
any module in smartGRID2 is able to operate on the services provided by
other WS-compatible Grids using these standards. However, being different
in its architecture and programming model, smartGRID2 has neither binary
nor source code compatibility with programs running on existing Grids.

6 Conclusion and Further Work

The primary objective of this Chapter was to solve fundamental issues relating
to the architecture of Grid computing in open environments.

We investigated conventional Grid computing architectures and intro-
duced two architectures, smartGRID— a client-server architecture— and
smartGRID2—a peer-to-peer (P2P) architecture— which combined intelli-
gent agent and colored Petri Net technologies in order to handle the problems
of job balance, distributed resource management and dynamic task scheduling.
As a result, we are able to provide approaches for solving some fundamental

476 M. Zhang et al.

Fig. 27. Service invocation process

Agent-Based Grid Computing 477

problems inherent in Grids, and moreover also support Grid applications in
open environments.

Our proposed architectures have various advantages over conventional
Grids, more specifically:

• Both architectures provide direct management of computing nodes, with
load balance being guaranteed by various mechanisms,

• Adaptability of services can be easily achieved by spawning subtasks to
serve increased requests,

• Both architectures are resilient to faults by keeping redundant copies of
tasks and their intermediate results, and

• The P2P architecture transparently supports inter-task communication
through its in-built interface.

More research is needed into the organization and management of phys-
ically distributed computing resources, how to solve issues of authentication
and authorization, as well as encryption of data and communications among
nodes in general-purpose Grid systems.

Acknowledgement

The authors would like to acknowledge the financial support of the Intelligent
Systems Research Centre at the University of Wollongong.

References

1. Akarsu E, Fox GC, Furmanski W, Haupt T (1998) Webflow: High-level program-
ming environment and visual authoring toolkit for high performance distributed
computing. In: Proc. 1998 ACM/IEEE Conf. Supercomputing, San Jose, CA.
IEEE Computer Society Press, Los Alamitos, CA: 1–7.

2. Alfred WL (2003) The future of peer-to-peer computing. Communications ACM,
46: 56–61.

3. Baker M, Buyya R, Laforenza D (2002) Grids and grid technologies for wide-area
distributed computing. Software: Practice and Experience, 32: 1437–1466.

4. Baratloo A, Karaul M, Kedem Z, Wyckoff P (1996) Charlotte: Metacomputing
on the web. In: Proc. 9th Conf. Parallel and Distributed Computing Systems
(PDCS-96), September, Dijon, France: 181–188.

5. Buyya R (2002) Grid Computing Info Centre: Frequently Asked Questions
(FAQ) (available online at http://www.gridcomputing.com/gridfaq.html – last
accessed May 2007).

6. Buyya R, Abramson D, Giddy J (2000) Nimrod/g: An architecture for a resource
management and scheduling system in a global computational grid. In: Proc.
4th Intl. Conf. High Performance Computing in Asia-Pacific Region (HPC
ASIA’2000), 14–17 May, Beijing, China. IEEE Computer Society Press, Los
Alamitos, CA. 1: 283–289.

478 M. Zhang et al.

7. Cappello P, Mourloukos D (2001) A scalable, robust network for parallel com-
puting. In: Proc. 2001 Joint ACM-ISCOPE Conf. Java, 2–4 June, Stanford,
CA. ACM Press, New York, NY: 78–86.

8. Chetty M, Buyya R (2002) Weaving computational grids: How analogous are
they with electrical grids. Computing in Science and Engineering, 4: 61–71.

9. Christensen E, Curbera F, Meredith G, Weerawarana S (2001) Web Services
Description Language (WSDL) 1.1. (available online at http://www.w3.org/
TR/wsdl – last accessed May 2007).

10. Christiansen BO, Cappello P, Ionescu MF, Neary MO, Schauser KE, Wu D
(1997) Javelin: Internet-based parallel computing using Java. Concurrency:
Practice and Experience, 9: 1139–1160.

11. Cohen B (2003) Incentives build robustness in BitTorrent. (available online at
http://www.bittorrent.com/bittorrentecon.pdf – last accessed May 2007).

12. Cost RS, Chen Y, Finin T, Labrov Y, Peng Y (1999) Modeling agent con-
versations with coloured petri nets. In: Proc. Workshop on Specifying and
Implementing Conversation Policies, May, Seattle, WA: 59–66.

13. Cranefield S, Purvis M, Nowostawski M, Hwang P (2002) Ontology for inter-
actison protocols. In: Proc. 2nd Intl. Workshop Ontologies in Agent Systems
(OAS’02 at AAMAS’02), 15–19 July, Bologna, Italy. ACM Press, New York,
NY: 15–19.

14. Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S,
(1998) A resource management architecture for metacomputing systems. In:
Feitelson DG, Rudolph L (eds.) Proc. IPPS/SPDP’98 Workshop on Job Schedul-
ing Strategies for Parallel Processing, 30 March, Orlando, FL. Lecture Notes in
Computer Science 1459, Springer-Verlag, Berlin: 62–82.

15. Epema DHJ, Livny M, van Dantzig R, Evers X, Pruyne J (1996) A worldwide
flock of condors: Load sharing among workstation clusters. Future Generation
Computer Systems, 12: 53–65.

16. Fitzgerald S, Foster I, Kesselman C, Laszewski GV, Smith W, Tuecke S (1997) A
directory service for configuring high-performance distributed computations. In:
Proc. 6th IEEE Symp. High Performance Distributed Computing, 5–8 August,
Portland, OR. IEEE Computer Society Press, Los Alamitos, CA: 365–375.

17. Foster I (2002) What is the grid? a three point checklist. Grid Today, 1 (available
online at http://www.gridtoday.com/02/0722/100136.html – last accessed May
2007).

18. Foster I (2005) A Globus Toolkit Primer. (available online at http://www-
unix.globus.org/toolkit/docs/4.0/key/GT4 Primer 0.6.pdf – last accessed May
2007).

19. Foster I, Czajkowski K, Ferguson D, Frey J, Graham S, Maguire T, Snelling D,
Tuecke S (2005) Modeling and managing state in distributed systems: the role
of OGSI and WSRF. Proc. IEEE, 93: 604–612.

20. Foster I, Iamnitchi A (2003) On death, taxes, and the convergence of peer-to-
peer. In: Proc. 2nd Intl. Workshop Peer-to-Peer Systems (IPTPS 2003), 20–21
February, Berkeley, CA. Lecture Notes in Computer Science 2735, Springer-
Verlag, Berlin: 118–128.

21. Foster I, Kesselman C (1997) Globus: A metacomputing infrastructure toolkit.
Intl. J. Supercomputer Applications and High Performance Computing, 11:
115–128.

22. Foster I, Kesselman C (1999) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kauffman, San Francisco, CA.

Agent-Based Grid Computing 479

23. Foster I, Kesselman C, Nick JM, Tuecke S (2002) The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. (available
online at http://www.globus.org/research/papers/ogsa.pdf – last accessed May
2007).

24. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: Enabling scal-
able virtual organizations. Intl. J. High Performance Computing Applications,
15: 200–222.

25. Fox G, Haupt T, Akarsu E, Kalinichenko A, Kim KS, Sheethalnath P, Youn CH
(1999) The gateway system: Uniform web based access to remote resources. In:
Proc. 1999 ACM Conf. Java, June, San Francisco, CA. ACM Press, New York,
NY: 1–7.

26. Frey J, Tannenbaum T, Foster I, Livny M, Tuecke S (2001) Condor-g: A com-
putation management agent for multi-institutional grids. In: Proc. 10th IEEE
Symp. High Performance Distributed Computing (HPDC10), 7–9 August, San
Francisco, CA. IEEE Computer Society Press, Los Alamitos, CA: 55–63.

27. Geist A, Beguelin A, Dongarra JJ, Jiang W, Manchek R, Sunderam V (1994)
PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA.

28. Geist GA, Kohl JA, Papadopoulos PM (1996) PVM and MPI: a comparison of
features. Calculateurs Paralleles, 8: 137–150.

29. Global Grid Forum Open grid services infrastructure (OGSI) version 1.0
(2003) available online at http://www-unix.globus.org/toolkit/draft-ggf-ogsi-
gridservice-33 2003-06-27.pdf – last accessed May 2007.

30. Globus Alliance Globus Toolkit 4.0 (GT4) (2005) available online at http://
www-unix.globus.org/toolkit/docs/4.0/GT4Facts/ – last accessed May 2007.

31. Goldman J, Rawles P, Mariga J (1999) Client/Server Information Systems.
Wiley, Hoboken, NJ.

32. Grimshaw A, Ferrari A, Lindahl G, Holcomb K (1998) Metasystems.
Communications ACM, 41: 46–55.

33. Grimshaw AS, Wulf WA (1996) Legion: Flexible support for wide-area com-
puting. In: Proc. 7th ACM SIGOPS European Workshop, 9–11 September,
Connemara, Ireland. ACM Press, New York, NY: 205–212.

34. Grimshaw AS, Wulf WA (1997) Corporate: The Legion vision of a worldwide
virtual computer. Communications ACM, 40: 39–45.

35. Gropp W, Lusk E, Skjellum A (1994) Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, Cambridge, MA.

36. Jensen K (1992) Coloured Petri Nets – Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Springer-Verlag, Berlin.

37. Koepela E (2001) Seti@home: Massively distributed computing for SETI.
Computing in Science and Engineering, 3: 78–83.

38. Laszewski GV, Gawor J, Pena CJ, Foster I (2002) Infogram: A grid service that
supports both information queries and job execution. In: Proc. 11th IEEE Intl.
Symp. High Performance Distributed Computing (HPDC’02), July, Edinburgh,
Scotland. IEEE Computer Society Press, Los Alamitos, CA: 333–342.

39. Ledlie J, Shneidman J, Seltzer M, Huth J (2003) Scooped, again. In: Proc. 2nd
Intl. Workshop Peer-to-Peer Systems (IPTPS 2003), February, Berkeley, CA.
Lecture Notes in Computer Science 2735, Springer-Verlag, Berlin: 129–138.

40. Lesser V (1999) Cooperative multiagent systems: A personal view of the state
of the art. IEEE Trans. Knowledge and Data Engineering, 11: 133–142.

480 M. Zhang et al.

41. Marcus E, Stern H (2000) Blueprints for High Availability: Designing Resilient
Distributed Systems. Wiley, New York, NY.

42. Neary MO, Christiansen BO, Cappello P (1999) Javelin: Parallel computing on
the internet. Future Generation Computer Systems, 15: 659–674.

43. Nowostawski M, Purvis M, Cranefield S (2001) A layered approach for modeling
agent conversations. In: Proc. 2nd Intl. Workshop Infrastructure for Agents,
MAS, and Scalable MAS, 28 May, Montreal, Canada: 163–170.

44. Pacheco PS (1997) Parallel Programming with MOI. Morgan Kauffman, San
Francicso, CA.

45. Peterson J (1981) Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs, NJ.

46. Pfister G (1997) In Search of Clusters (2nd ed). Prentice Hall, Englewood
Cliffs, NJ.

47. Poutakidis D, Padgham L, Winikoff M (2002) Debugging multi-agent system
using design artefacts: The case of interaction protocols. In: Proc. 1st Intl. Joint
Conf. Autonomous Agents and Multi Agent Systems, 15–19 July, Bologna, Italy:
960–967.

48. Roehrig M, Ziegler W, Wieder P (2002) Grid Scheduling Dictionary of Terms
and Keywords. Global Grid Forum, (available online at http://www.ggf.org/
documents/GWD-I-E/GFD-I.011.pdf – last accessed May 2007).

49. Schopf J (2001) The actions when superscheduling (available online at
http://www.ggf.org/documents/GFD/GFD-I.4.pdf – last accessed May 2007).

50. Smarr L, Catlett CE (1992) Metacomputing. Communications ACM, 35: 44–52.
51. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J (1996) MPI: The

Complete Reference. MIT Press, Cambridge, MA.
52. Sun Microsystems Inc. (2004) Java Object Serialization Specification. (available

online at http://java.sun.com/j2se/1.5/pdf/serial-1.5.0.pdf – last accessed May
2007).

53. Waldman M, Rubin AD, Cranor LF (2000) Publius: A robust, tamper-evident,
censorship-resistant, web publishing system. In: Proc. 9th USENIX Security
Symp, 14–17 August, Denver, CO: 59–72.

54. Welch V, Siebenlist F, Foster I, Bresnahan J, Czajkowski K, Gawor J,
Kesselman C, Meder S, Pearlman L, Tuecke S (2003) Security for grid services.
In: Proc. 12th Intl. Symp. Performance Distributed Computing (HPDC-12),
June, Seattle, WA. IEEE Computer Society Press, Los Alamitos, CA: 48–57.

55. W3C (2003) HTTP - Hypertext Transfer Protocol. (available online at http://
www.w3.org/Protocols/ – last accessed May 2007).

56. W3C (2003) Simple Object Access Protocol. (available online at http://
www.w3.org/TR/soap/ – last accessed May 2007).

57. W3C (2002) Web Services. (available online at http://www.w3.org/2002/ws/ –
last accessed May 2007).

58. W3C (2003) Web Services Architecture. (available online at http://www.w3.
org/TR/ws-arch/ – last accessed May 2007).

Resources

1 Key Books

Baraki D (20020 Peer-to-Peer Computing: Technologies for Sharing and
Collaborating on the Net. Intel Press, Palo Alto, CA.

Bradshaw J (ed.) (1997) Software Agents. AAAI/MIT Press, Cambridge, MA.

Buyya R (ed.) (1999) High Performance Cluster Computing: Architectures
and Systems (Vols.1 and 2). Prentice Hall, Englewood Cliffs, NJ.

Foster I, Kesselman C (1999) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kauffman, San Francisco, CA.

Gropp W, Lusk E, Sterling TT (2003) Beowulf Cluster Computing with Linux
(2nd ed). MIT Press, Cambridge, MA.

Jensen K (1997) Colored Petri Nets: Basic Concepts, Analysis Methods and
Practical Use (Vols.1 and 2). Springer-Verlag, Berlin.

Subrayanian R, Goodman BD (eds.) (2005) Peer-to-Peer Computing: The
Evolution of a Disruptive Technology. IGI Global, Hershey, PA.

2 Key Survey/Review Articles

Baker M, Buyya R, Laforenza D (2002) Grids and Grid Technologies for
Wide area Distributed Computing. Software: Practice and Experience, 32(15):
1437–1466.

482 M. Zhang et al.

Foster I, Kesselman C (1997) Globus: A Metacomputing Infrastructure Toolkit.
Intl. J. Supercomputer Applications and High Performance Computing, 11(2):
115–128.

Foster I (2002) What is the Grid? A Three Point Checklist. Grid Today, 1(6)
(available online at http://www.gridtoday.com/02/0722/100136.html – last
accessed July 2007).

Karnik N, Tripathi A (1998) Design issues in mobile agent programming
systems. IEEE Concurrency, 5(3): 52–61.

Shoham Y (1993) Agent-oriented programming. Artificial Intelligence, 60(1):
51–92.

3 Journal

Multiagent and Grid Systems (IOS Press)

4 Key International Conferences/Workshops

IEEE/ACM International Conference on Grid Computing (GridXY)

IEEE International Symposium on Cluster Computing and the Grid
(Agent-Based Grid Computing at)

IEEE International Conference on High-Performance Computing (HPC)

IEEE/WIC/ACM Intl. Conf. on Intelligent Agent Technology (IAT)

Intl. Joint Conf. Autonomous Agents and Multi-Agent Systems (AAMAS)

5 Web Resources

FIPA (http://fipa.org/) – the standards organization for agents and multi-
agent systems – was officially accepted by IEEE at its eleventh Standards
Committee on 8th June 2005

Agent Builder
http://agentbuilders.com/

Agent-Based Grid Computing 483

Echelon
http://www.geocities.com/echelongrid/

Globus Alliance. Globus Toolkit 4.0 (GT4)
http://www-unix.globus.org/toolkit/docs/4.0/GT4Facts/

Open Grid Services Infrastructure (OGSI)
http://www-unix.globus.org/toolkit/

Repast
http://repast.sourceforge.net/repastpy/GridAgent.html

Decentralized Multi-Agent Clustering
in Scale-free Sensor Networks

Mahendra Piraveenan, Mikhail Prokopenko, Peter Wang, and Astrid Zeman

CSIRO Information and Communication Technologies Centre, Sydney, Australia�,
Mahendra.Piraveenan@csiro.au, Mikhail.Prokopenko@csiro.au,
Peter.Wang@csiro.au, Astrid.Zeman@csiro.au

1 Introduction

1.1 Multi-Agent Systems and Self-organization

Many interaction processes in complex adaptive systems occur in groups, and
in order to organize knowledge, collaboration and a proper distribution of
functions and tasks, there is a need to analyze, model and develop computa-
tional systems in which several autonomous units interact, adapt and work
together in a common open environment, combining individual strategies into
overall behavior. The approach to engineering a desired system-level behav-
ior, adopted in this work, is based on a multi-agent system [11], in which the
preferred responses emerge as a result of inter-agent interactions.

Multi-agent systems (MAS) represent a new technology to engineer com-
plex adaptive systems. Informally, a MAS is composed of multiple interacting
units (agents). Each individual agent can have individual actions, plans, and
so on, while all agents work together towards a common goal. It is important
to distinguish between agent characteristics and MAS properties. An agent
may be described in terms of the following qualities [4, 27, 28]:

• situatedness – an agent can receive sensory input from its environment and
can perform actions which change the environment in some way; no single
agent has access to what everyone else is doing;

• autonomy – an agent has control over its own actions and internal state
without direct external intervention, and the agents are expected to self-
organize and survive on the basis of local, rather than global, information;

• temporal continuity – an agent is a continuously running process rather
than a function with fixed inputs and outputs;

� Author list is in alphabetical order.

M. Piraveenan et al.: Decentralized Multi-Agent Clustering in Scale-free Sensor Networks,

Studies in Computational Intelligence (SCI) 115, 485–515 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

486 M. Piraveenan et al.

• adaptability – an agent makes decisions in accordance with various rules
and modifies the rules on the basis of new information;

• communication – agents frequently engage in communication with users
and each other;

• multi-platform functionality – some agents run on low-end platforms, some
on high-end platforms.

Some key concepts of MAS are as follows:

• each agent has incomplete capabilities to solve the global problem
addressed by the MAS;

• there is no global system control or external coordination;
• data processed by the system is decentralized;
• computation within the system is asynchronous;
• robustness – the system is able to deal with unexpected changes in the

environment, and recover from its own and users’ errors;
• scalability – the system can be easily extended without a major redesign

of its individual parts, in other words, the effort required to extend the
system does not increase exponentially with the growth in the number of
agents;

• solutions obtained at the system level are not explicitly programmed, and
can be interpreted as emergent behavior.

Multi-agent interactions often lead to emergent patterns in overall system
behavior [for example, 28]. The emergence of system-level behavior out of
agent-level interactions is a distinguishing feature of complex multi-agent sys-
tems, making them very different from other complicated multi-component
systems, where multiple links among the components may achieve efficient
interaction and control with fairly predictable and often pre-optimized prop-
erties. However, the concept of emergence is a matter of considerable debate
[6]. In particular, emergence is an expected (but not guaranteed) property of
self-organization, while the latter is typically defined as the evolution of a sys-
tem into an organized form in the absence of external pressures. For example,
[5] described self-organization as:

“a set of dynamical mechanisms whereby structures appear at the
global level of a system from interactions among its lower-level com-
ponents. The rules specifying the interactions among the systems
constituent units are executed on the basis of purely local information,
without reference to the global pattern, which is an emergent property
of the system rather than a property imposed upon the system by an
external ordering influence.”

Despite the huge potential offered by self-organization, a solution based on
MAS technology is warranted only when the problem domain is non-trivial,
and can be characterized by the following three properties:

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 487

• dynamism – the problem itself changes concurrently with the problem-
solving processes, forcing the latter to adapt;

• decentralization – the system’s computational architecture is spatially
distributed;

• computational complexity – the dimension of the full solution search space
is exponential in the dimension of the problem representation, for example,
optimization problems such as the Travelling Salesman Problem [8] and
the Minimum Energy Broadcast Problem [45].

Informally, the problem has ‘depth’ in three dimensions: time, space, and
computation. In the absence of at least one such requirement, it is quite likely
that a more conventional approach would be more appropriate. For instance,
if a problem is NP-hard and spatially distributed, but static, then it might
make sense to establish a predefined hierarchy of problem-solvers that process
and channel data to a single point where the global solution is integrated. If a
problem is NP-hard and changes in time, but is spatially localized, then again
a powerful incremental problem-solver located in a single place is the preferred
choice. Finally, if a problem can be solved in polynomial time, but is dynamic
and spatially distributed, then a dynamic hierarchy of problem-solvers may
be considered. A study of typical trade-offs is described in [34].

1.2 Multi-Agent Networks

A well-known instance of multi-agent systems is a multi-agent network, in
particular, a sensor network. A sensor network interconnects (often, wire-
lessly) multiple spatially distributed autonomous devices (nodes or agents),
each capable of sensing, computation and communication, requiring limited
memory and power. Typically, a multi-agent network is decentralised. The
following summary proposed by [9], captures this requirement with three
constraints:

• there is no single central information fusion or coordination centre; no
node should be central to the successful operation of the network;

• there is no common communication facility; nodes cannot broadcast
results and communication must be kept on a strictly node-to-node basis
(although a broadcast medium is often a good model of real communication
networks);

• sensor nodes do not have any global knowledge of the sensor network
topology; nodes should only know about connections in their own neigh-
bourhood.

The last constraint distinguishes between decentralized systems where each
agent still has global information about the group and decentralized systems
where an agent has access only to local information from a small subset [22].

Sensor networks may be utilized in various tasks, for instance, monitoring
physical or environmental conditions at different locations, search, surveil-
lance, target tracking, mapping and exploration [22]. When networked nodes

488 M. Piraveenan et al.

are controllable and/or have actuators, one may call such network an active
sensor network [21]. Typically, control complexity of large multi-agent net-
works grows rapidly with the number of agents [37], as well as the number
of simultaneous and spatiotemporally distributed real-time events. Thus, self-
organizing networks are ideally suited to implementing large sensor networks,
being both robust to failures of individual nodes and scalable in terms of
the number of detectable events, network size, and so on. Since the overall
network behavior is spread over multiple reconfigurable communication paths
and interactions, an incremental loss of a portion of the multi-agent network
will lead to an incremental loss in quality, rather than a catastrophic failure.

In general, a self-organizing multi-agent network is expected to be:

• sentient – relying on perception through sensing (but not necessarily
conscious);

• active – interrogating/probing the environment, and self-inspecting both
locally and globally [29, 35];

• reconfigurable – reacting in real time, robust to external and internal fluc-
tuations [32], and adapting to significant change through updating sensor
layouts, communication protocols, and power consumption modes;

• coordinated – behaving coherently as a dynamical system [36]; fusing the
data of individual agents into a joint shared model [9, 30];

• symbiotic – recognizing and forming relationships of mutual benefit or
dependence among various types of agents (for example, nodes in a sensor
network monitoring environment may assist in navigation of multi-robot
teams, while being powered by the robots when required) [13].

These desiderata call for an efficient network structure or topology. It
is obvious that a fixed topology is not likely to meet such objectives as
re-configurability, symbiosis, and the like. Instead, one may consider self-
organizing formation of links between nodes, leading to adaptive topologies.

1.3 Adaptive Topologies and Dynamic Hierarchies

Dynamic creation and maintenance of optimal topologies in large dynamic net-
works is a well-recognized challenge. It appears in many different contexts, for
example, as dynamic hierarchies in Artificial Life [32, 38], coalition formation
in Agent-based Systems [40], decentralized clustering in Multi-Agent Systems
[24], dynamic cluster formation in Mobile Ad Hoc Networks [20], decentralized
sensor arrays [25, 26, 31], reconfigurable sensor networks [12, 33], and similar.
In this Chapter, we consider a sub-problem from this class: dynamic clus-
ter formation in a sensor and communication network without centralized
controllers.

There is a distinction between sensor networks and sensor grids, as pointed
out in the recent literature, for instance:

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 489

“Whereas the design of a sensor network addresses the logical and
physical connectivity of the sensors, the focus of constructing a sensor
grid is on the issues relating to the data management, computation
management, information management and knowledge discovery man-
agement associated with the sensors and the data they generate.”
[14]

Dynamic sensor-data clustering is a significant issue addressed by sensor
grids. The clustering process is aimed at grouping entities with similar charac-
teristics together so that main trends or unusual patterns may be discovered.
In the absence of centralized controllers, this process can be described as self-
organization of dynamic hierarchies, with multiple cluster-heads emerging as
a result of inter-agent communications.

Decentralized clustering algorithms deployed in multi-agent networks are
hard to evaluate precisely for the reason of the diminished predictability
brought about by self-organization. In particular, it is hard to predict when the
cluster formation will converge to a stable configuration. The results presented
by [31] identified a predictor for the convergence time of dynamic cluster for-
mation in a specific topology (a rectilinear grid), based on the traffic volume
of asynchronous inter-agent communications. The work presented here is an
extension of the method to scale-free (sensor) grids/networks. In a scale-free
network, some nodes are highly connected in comparison to the rest of the
nodes in the network. Properties of scale-free networks have been extensively
studied in recent times, since a lot of real world networks seem to fall into
this category [1, 10, 17, 46, 47]; we shall briefly introduce this important class
of networks in the next Section.

The simple predictor mentioned above is implemented at two levels:

• the global level, where full information on nodes’ states and their inter-
connections is available, and

• the local level, where only partial information is obtained within a small
selected subset of nodes.

Quantitative measures of multi-agent dynamics can be used as feedback for
evolving agent behaviors [36]. Such measures can use either full information
on agent states and their inter-connections, or work with partial information,
obtained locally: localisable measures [34]. Of course localisable measures can
be embedded in the agents themselves and be accessible to selected nodes
(for example, hubs), controlling agent behaviors during run-time via adaptive
feedback. In general, however, the communication role of a hub should not
be confused with its possible control role – in some applications, the only
information available at the hub is the number of transiting messages and not
their content, and the main decision expected from the hub is a decision on
whether to interrupt current multi-agent dynamics without knowing specific
details of the exchanged messages.

490 M. Piraveenan et al.

Our immediate goal is predicting when the cluster formation will converge
to a stable configuration. In achieving this goal, we consider an underlying
time series, the traffic volume of inter-agent communications, and relate its
irregularity during an initial interval to the eventual convergence time. Clearly,
the shorter the initial interval, the more efficient is the prediction: for instance,
when a predicted value exceeds a threshold, agents may adjust parameters and
heuristics used in the clustering process.

A simplified version of a decentralized adaptive clustering algorithm
operating within a scale-free network, developed for evaluation purposes, is
described in the next Section. The proposed predictor for the convergence
time of cluster formation is then described, followed by a discussion of the
obtained results.

2 Dynamic Cluster Formation Algorithm

The dynamic cluster formation algorithm has been implemented in a scale-
free topology. In a scale-free topology, it is not uncommon to find nodes with
a degree (the number of connections from a node) that is much higher than
the average degree of that network. These highly connected nodes are called
hubs and can play specific roles in their networks, depending on the network
domain. Hubs are often formed by a growth model that shows preferential
attachment. That is, when a new node is attached to the network, it is more
likely to be attached to a node with a higher degree. A general model of
this type of growth is that the probability of a new node being attached to
a particular existing node is proportional to the number of connections from
that existing node [3]. According to this model, starting from m0 vertices (that
are typically fully connected), at each iteration a new vertex with m ≤ m0

edges is attached to old vertices in such a way that the probability of being
connected to the existing vertex i is proportional to the degree ki, and is set
to ki∑

ki
, where the sum is computed over all nodes. If the parameter m = 1,

then the growth results in a scale-free tree graph; otherwise, if m > 1, then a
scale-free network is produced.

A degree distribution (sometimes called vertex degree distribution) is the
probability distribution function describing the total number of vertices in a
network with a given degree. The degree distribution of a scale-free network
follows a power law, in the form of p(x) ≈ k−γ , where k is the degree. The
power index γ is usually between 2.1 and 3.0 for most biological, social and
technological networks [42]. Some scale-free networks may have rapid cut-
offs after a certain degree, so that the degree distribution takes the form of
p(x) ≈ k−γφ(k/ξ), where φ(k/ξ) is the step function [42] which introduces a
cut-off at some characteristic scale ξ. When ξ is very small, p(x) ≈ k−γφ(k/ξ)
and the degree distribution is single-scaled. As ξ grows, a power law with a
sharp cut-off is obtained, while scale-free nets are observed for large ξ.

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 491

Scale-free networks generally display the small world phenomenon, in that
the average distance between any two vertices is very small, compared to a
regular or randomly connected network. Scale-free networks also tend to have
higher clustering coefficients. The clustering coefficient C can be defined as
the probability of two nodes individually connected to a particular third node
being connected to each other [23]. Formally,

C = 3
(

number of triangles in the graph

number of connected triples of vertices in the graph

)
(1)

where the multiplier 3 indicates that one triangle accounts for three individual
nodes that are each connected to two other nodes.

Scale-free networks are generally robust against random attacks, but highly
vulnerable against targeted attacks. In other words, removal of random nodes
will only slightly affect functionality of the networks, whereas removal of a
hub will drastically affect network functionality [2]. A sensor grid node within
a network communicates only with immediate neighbours: all data are pro-
cessed locally, and only information relevant to other regions of the grid is
communicated as a multi-hop message. A cluster-head may be dynamically
selected among the set of nodes and become a local coordinator of transmis-
sions within the cluster. The intersection of cluster-heads and hubs of the
scale-free network may be empty – in other words, a cluster-head does not
need to have many network connections. On the other hand, a non-hub cluster-
head would generate more intense communication traffic. Clusters may adapt,
that is, re-form when new data is obtained on the basis of local sensor signals.
Importantly, a cluster formation algorithm should be robust to such changes,
failures of individual nodes, communication losses, and the like.

As pointed out earlier, our main goal is an analysis of a representative clus-
tering technique in a dynamic and decentralized multi-agent setting, deployed
within a scale-free sensor grid, in terms of the predictability of its convergence
time. We represent a node’s sensory reading with a single aggregated value,
define ‘differences’ between cells in terms of this value, and cluster the nodes
while minimizing these ‘differences’.

The algorithm input is a series of events detected at different times and
locations, while the output is a set of non-overlapping clusters, each with
a dedicated cluster-head (network node) and a cluster map of its followers
in terms of their sensor-data and relative grid coordinates. The algorithm
is described in Appendix-A, and involves a number of inter-agent messages
notifying agents about their sensory data, together with changes in their rela-
tionships and actions. For example, an agent may send a recruit message to
another agent, delegate the role of cluster-head to another agent, or declare
‘independence’ by initiating a new cluster.

Most of these and similar decisions are based on the clustering heuristic
described by [24], and a dynamic offset range introduced by [26]. This heuristic

492 M. Piraveenan et al.

determines if a cluster should be split in two, as well as the location of this
split. Each cluster-head (initially, each agent) broadcasts its recruit message
periodically, with a broadcasting period, affecting all agents with values within
a particular dynamic offset of the sensor reading detected by this agent. Every
recruit message contains the sensor data of all current followers of the cluster-
head with their relative coordinates (a cluster map). Under certain conditions,
an agent (which is not a follower in any cluster) receiving a recruit message
becomes a follower, stops broadcasting its own recruit messages and sends
its information to its new cluster-head indicating its relative coordinates and
the sensor reading. However, there are situations when the receiving agent
is already a follower in some cluster and cannot accept a recruit message by
itself – a recruit disagreement. In this case, this agent forwards the received
recruiting request to its present cluster-head. Every cluster-head waits for a
certain period, collecting all such forward messages, at the end of which the
clustering heuristic is invoked on the union set of present followers and all
agents who forwarded their new requests [26, 31].

Firstly, all n agents in the combined list are sorted in decreasing order
according to their sensor reading value x. Then, a series of all possible divisions
in the ordered set of agents is generated. That is, the first ordering is a cluster
with all agents in it; the second ordering has the agent with the largest value
in the first cluster and all other agents in the second cluster; and so forth (the
n th division has only the last n th agent in the second cluster). For each
of these divisions, the quality of clustering is measured by the total squared
error:

E2
j =

z∑
i−1

∑
x∈Ai,j

‖ x−mi,j ‖2 (2)

where z is a number of considered clusters (z = 2 when only one split is
considered), Ai,j are the clusters resulting from a particular division, and mi,j

is the mean value of the cluster Ai,j . We divide E2 values by their maximum to
get a series of normalized values. Then we approximate the second derivative
of the normalized errors per division:

f ′′(E2
j) =

(E2
j+1 + E2

j−1 − 2E2
j)

h2
(3)

where h = 1/n.

If the peak of the second derivative is greater than some threshold for the
division j, we split the set accordingly; otherwise, the set will remain as one
cluster. When the clustering heuristic is applied, it may produce either one
or two clusters as a result. If there are two clusters, the offset of each new
cluster-head is modified. It is adjusted in such a way that the cluster-head of
the ‘smaller’ agents (henceforth, references like ‘larger’ or ‘smaller’ are relative
to the value x) can now reach up to, but not including, the ‘smallest’ agent in
the cluster of ‘larger’ agents. Similarly, the cluster-head of ‘larger’ agents can

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 493

now reach down to, but not including, the ‘largest’ agent (the cluster-head)
of the cluster of ‘smaller’ agents. These adjusted offsets are sent to the new
cluster-heads along with their cluster maps.

The cluster-head which invoked the heuristic notifies new cluster-heads
about their appointment, and sends their cluster maps to them: a cluster-
information message. There are other auxiliary messages involved in the
algorithm but importantly, the cluster formation is driven by three types:
recruit, cluster-information, and forward messages. The first two types are
periodic, while the latter type depends only on the degree of disagreements
among cluster-heads. On the one hand, if there are no disagreements in the
clustering (for instance, if a clustering heuristic resulted in optimal splits even
with incomplete data), then there is no need to forward messages. On the other
hand, when cluster-heads frequently disagree on formed clusters, the forward
messages are common. In short, it is precisely the number of forward messages
traced in time – the traffic volume of inter-agent communications – that we
hope may provide an underlying time series {v(t)} for our prognostic analysis,
as it exhibits both periodic and chaotic features.

The quality of clustering is measured by the weighted average cluster
diameter [49]. The average pair-wise distance D for a cluster C with points
{x1, x2, . . . , xm} is given by

D =

m∑
i−1

m∑
j−1

d(xi, xj)

m(m− 1)/2
(4)

where d(xi, xj) is the Euclidean distance between points xi and xj . The
weighted average cluster diameter for k clusters is given by

D̄ =

k∑
i−1

mi(mi − 1)Di

k∑
i−1

mi(mi − 1)
(5)

where mi is the number of elements in the cluster Ci with pair-wise distance
Di. This metric is known to scale well with the size of data points and number
of clusters in a particular clustering. It does not, however, account for singleton
clusters, while at the same time favouring small clusters.

As pointed out by [26], the algorithm does not guarantee a convergence
minimizing this criterion. In fact, it may give different clusterings for the same
set of agent values, depending on the relative node locations within the net-
work. The reason is a different communication flow affecting the adjustment
of the offsets. Each time the clustering heuristic is executed in an agent, its
offsets are either left alone or reduced. The scope of agents involved in the
clustering heuristic depends on the order of message passing, which in turn

494 M. Piraveenan et al.

0

50

100

150

200

250

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769
0

20

40

60

80

100

120

140

160

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769

0

20

40

60

80

100

120

140

160

180

200

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769
0

20

40

60

80

100

120

140

160

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769

Fig. 1. Varying convergence times T for different experiments tracing the whole
communication space

depends on the relative node locations. The adjusted offsets determine which
agents can be reached by a cluster-head, and this will affect the result of clus-
tering. Therefore, for any set of agent values, there are certain sequences of
events which yield better clustering results than others.

We conducted extensive simulations to determine whether the algorithm
is robust and scales well in terms of the quality of clustering and convergence,
as measured by the number of times the clustering heuristic was invoked
before stability is achieved with each data set – both for rectilinear grids [26]
and scale-free networks. While the simulation results show that the algorithm
converges and scales well in all cases, and in addition, is robust to dynam-
ics of the sensor data flux, the convergence time varies significantly (Figs. 1
and 2), without obvious indicative patterns – highlighting the need for its
better prediction.

3 Regularity of Multi-Agent Communication-Volume

In this Section, we focus on our main objective: prediction of the conver-
gence time T , based on regularity of an initial segment 0, . . . , Ω of the
‘communication-volume’ series {v(t)}, where Ω < T and v(t) is the number of
forward messages at time t. The series {v(t)} may be obtained by monitoring
the whole communication space, or by monitoring the communication mes-
sages through only selected nodes. Given the role played within the scale-free

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 495

0

1

2

3

4

5

6

7

1 291 581 871 1161 1451 1741 2031 2321 2611 2901 3191 3481 3771 4061 4351 4641 4931

0

1

2

3

4

5

1 291 581 871 1161 1451 1741 2031 2321 2611 2901 3191 3481 3771 4061 4351 4641 4931

0

1

2

3

4

5

1 291 581 871 1161 1451 1741 2031 2321 2611 2901 3191 3481 3771 4061 4351 4641 4931

0

1

2

3

4

5

6

7

1 291 581 871 1161 1451 1741 2031 2321 2611 2901 3191 3481 3771 4061 4351 4641 4931

Fig. 2. Varying convergence times T for the same experiments as shown in Fig. 1,
but tracing communication traffic through the highest-ranked hub only

network by hubs, we rank the nodes by the number of their connections, and
monitor every node, producing multiple series {vh(t)}, 1 < h < H , where H is
the total number of nodes in the network. Thus, each series {vh(t)} traces the
number of messages passed through the first h nodes ranked by the number
of connections – for instance, {v1(t)} traces the number of messages passed
through the hub with the most connections; {v2(t)} combines the number of
messages passed through the first two hubs with the highest number of con-
nections; and {vH(t)} is identical to {v(t)}, as it traces the messages through
all the nodes in the network. The idea is then to determine whether monitor-
ing only a subset of nodes, ideally with h being small, is almost as good as
monitoring the whole network.

It is known that in many experiments, time series often exhibit irregular
behavior during an initial interval before finally settling into an asymptotic
state which is non-chaotic [7] – in our case, eventually converging to a fixed-
point (v(T) = 0; henceforth, we shall drop the subscript h if it does not matter
which series is being considered). The irregular initial part of the series may,
nevertheless, contain valuable information: this is particularly true when the
underlying dynamics are deterministic and exhibit ‘transient chaos’ [7, 16]. It
was conjectured and empirically verified [31] that the described algorithm for
dynamic cluster formation creates multi-agent transient chaotic dynamics.

[31] used the Kolmogorov-Sinai entropy K, also known as metric entropy
[19, 41], and its generalization to the order-q Rényi entropy Kq [39]. The

496 M. Piraveenan et al.

entropy K or Kq is an entropy per unit time, or an ‘entropy rate’, and is
a measure of the rate at which information about the state of the system is
lost in the course of time. In particular, the predictor estimated the ‘correla-
tion entropy’ K2 using the algorithm of [15]. The predictor based on K2 uses
the initial segment of length Ω of the observed time series {v(t)} in ‘convert-
ing’ or ‘reconstructing’ the dynamical information in one-dimensional data
to spatial information in the τ -dimensional embedding space [43], and also
depends on the length Ω and the embedding dimension τ . The method for
computing the K2 predictor is described in Appendix-B.

The predictor based on K2 was used in predicting convergence of clus-
ter formation within rectilinear grids. Here we apply this method to cluster
formation in scale-free sensor networks.

For each experiment s, we

(a) select an initial segment of length Ω of the time series; and
(b) compute the regularity predictor: the correlation entropy K2(d, r, Ω) for a

range of embedded dimensions d and a suitable precision r (see Appendix-
B for details).

Then,

(c) given the estimates K2(d, r, Ω) for all the experiments, we correlate them
with the observed convergence times Ts by linear regression T = a + bK2

and the corresponding correlation coefficient ρ(d, r, Ω) between the series
Ts and K2(d, r, Ω)s;

(d) we determine the embedding dimension d̂ and the distance r̂ which provide
the best fit: the maximum of ρ(d, r, Ω).

This allows us to predict the time T of convergence to ν(T) = 0, as

T = a(d̂, r̂, Ω) + b(d̂, r̂, Ω)K2(d, r, Ω) (6)

for any real-time run that produced the predictor value K2(d, r, Ω).

4 Experimental Results

The experiments included multiple scenarios, each of which was defined by a
specific scale-free tree graph, Φ (more precisely, a specific degree distribution
in the corresponding graph); the number of nodes in the network, H ; and
the number of events sensed by network, N . For example, two different scale-
free tree graphs Φ1 and Φ2, both with 400 nodes and 100 events, may be
compared (Figs. 3 and 4). In particular, we considered different values for N
(for example, N was set to 1/8, 1/4, 1/2 of H), given the same network Φ with
fixed H . This approach evaluated the predictor with respect to the dynamics
in the communication space brought about by multiple events. In addition,

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 497

Fig. 3. A scale-free tree graph Φ1 used in experiments

Fig. 4. A scale-free tree graph Φ2 used in experiments

498 M. Piraveenan et al.

the predictor was verified by varying degree distributions Φ for a fixed number
H – in other words, by considering a different network of the same size. Again,
the number of events N was increased as a proportion of H . Finally, we verified
the results by increasing the network size H .

In order to estimate the statistical significance of the results, each scenario
(fixed Φ, H, N) included 100 runs of the clustering algorithm on a scale-free
tree graph, where every run involved N events in random network locations,
tracing the communication-volume time series {v(t)}, as well as multiple series
{vh(t)}, 1 < h < H . We then selected an initial segment Ω = 1500 (while the
longest run is 5000) and carried out the steps b), c) and d) described previously
in Sect. 3. These runs produced a 2-dimensional array K2(d, r, Ω) for varying
dimensions d and precisions r and each run s(s = 1, . . . , 100). Given the
array, the correlation coefficient ρ(d, r, Ω) between the actual convergence
time Ts (standardized series) and the auto-correlation predictor K2(d, r, Ω)
(standardized series) was determined for the ranges of d and r. The higher
the maximal correlation coefficient ρ(d, r, Ω) is, the more predictive power is
contained in the predictor K2(d, r, Ω).

The correlation coefficient ρ(d, r, Ω) is obviously decreased to ρh(d, r, Ω)
as the series {v(t)} is replaced with the series {vh(t)}, if h < H . We observed,
however, that the difference between ρ(d, r, Ω) and ρh(d, r, Ω) is insignificant
when h ≥ 1, for at least one embedding dimension. In other words, monitoring
a single highest-ranked hub (or two highest-ranked hubs) is sufficient in order
to predict the convergence of cluster formation in a scale-free tree graph. This
result holds for all the considered scenarios, and supports our conjecture that
a localisable predictor is feasible, although in general it is harder to maintain
predictability when the number of events is large.

Figure 5 plots the correlation coefficients ρ(d, r, Ω) for a range of dimen-
sions d and different precisions r in the scenario (Φ = Φ1, H = 400, N = 50).
The precision r = 10 (messages) yields the highest predictive power (shown
as the plot with squares). Evaluation of the precision r = 10 was continued
with higher dimensions d. Figures 6, 8 and 9 plot the correlation coefficients
ρ(d, r, Ω) for a range of dimensions d (and the best precision r) in the sce-
narios (Φ = Φ1, H = 400, N = 50), (Φ = Φ1, H = 400, N = 100), and
(Φ = Φ1, H = 400, N = 200), respectively – based on the series {v(t)} tracing
the whole communication-space and the series {v1(t)} at the highest-ranked
hub only. All results are statistically significant (significance levels of 0.999),
and are within reasonable confidence limits (Fig. 7). The results with the alter-
native network Φ = Φ2, as well as different network sizes H, are analogous,
and also support the localized predictor based on the series {v1(t)}.

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 499

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Embedding dimension d

Fig. 5. Correlation coefficient ρ(d, r,Ω) between series Ts and predictor K2(d, r,Ω),
for the scenario (Φ = Φ1, H = 400, N = 50), based on series {v(t)} tracing the whole
communication-space, for a range of precisions r. The precision r = 10 (messages)
yields the highest predictive power (shown as the plot with squares). Evaluation of
the precision r = 10 was continued with higher dimensions d

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Embedding dimension d

Fig. 6. Correlation coefficient ρ(d, r,Ω) between series Ts and predictor K2(d, r,Ω),
for the scenario (Φ = Φ1, H = 400, N = 50), based on series {v(t)} tracing the whole
communication-space, shown as the plot with squares (r = 10), and series {v1(t)}
traced at the highest-ranked hub (r = 2)

500 M. Piraveenan et al.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Embedding dimension d

Fig. 7. Confidence limits of the correlation coefficient ρ(d, r, Ω) between the series
Ts and predictor K2(d, r, Ω), for the scenario (Φ = Φ1, H = 400, N = 50), based
on the series {v(t)} tracing the whole communication-space, shown as the plot with
squares (r = 10)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Embedding dimension d

Fig. 8. Correlation coefficient ρ(d, r,Ω) between series Ts and predictor K2(d, r,Ω),
for the scenario (Φ = Φ1, H = 400, N = 100), based on series {v(t)} tracing the whole
communication-space (the plot with squares; precision r = 20), and series {v1(t)}
traced at the highest-ranked hub (r = 2)

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 501

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Embedding dimension d

Fig. 9. Correlation coefficient ρ(d, r,Ω) between series Ts and predictor K2(d, r,Ω),
for the scenario (Φ = Φ1, H = 400, N = 200), based on series {v(t)} (squares:
precision r = 40), the series {v1(t)} traced at the highest-ranked hub (r = 2), and
series {v2(t)} traced at two highest-ranked hubs (crosses: r = 4)

5 An Application Scenario – Distributed Energy
Management and Control

Distributed energy refers to the generation of power (for heating and cooling)
within close proximity to the point of use. CSIRO is developing a range of
small scale distributed energy technologies [18] based on both renewable and
fossil fuels (mainly natural gas). A major part of this program is identify-
ing the most efficient ways of integrating large numbers of small generation
plants (including solar and wind) into the existing power networks to deliver
maximum efficiency with minimum environmental impacts.

A decentralized approach to the problem of power load management is
described [48], using modeling of direct load management as a computa-
tional market. A load, in this context, is any device that consumes electric
energy, such as a water heater or an electric motor. Load management involves
controlling the loads at the demand side to achieve a better use of energy: bet-
ter for the utility, the customer or both. [48] define direct load management
as a process when the utility determines what loads are to be connected,
reduced, or disconnected at specific occasions, and contrast it with indirect
load management when the utility sends some signal to customers, such as
price information, and expects them to adjust to this signal. Decentralized
multi-agent algorithms become usable in power load management due to the

502 M. Piraveenan et al.

inherent parallelism of the underlying network increasing the computational
power. In addition, according to [48]:

“from the energy utility point of view it is desirable to have a sys-
tem that hides most details of the different loads while still providing
enough information for energy optimization. The system should be
able respond to high level control commands for – for example,
reduction of the current load in the distribution system by a certain
amount”.

The US Department of Energy’s recent report to Congress on demand
response [44] notes that:

“if you take a system balancing and reliability perspective, active
demand gives you another set of tools, another resource on which
you can call to enable system balancing to avoid triggering capacity
constraints and involuntary interruptions. Furthermore, double-sided
markets have important economic efficiency benefits as well as system
reliability benefits”.

Typically, an efficient demand response is provided by a multi-agent coali-
tion (a cluster of agents), comprising both generators and loads, sharing/
fusing some information while trying to cooperatively solve a distributed
decentralized problem. We believe that the efficient methods of decentral-
ized dynamic clustering deployed in scale-free power grids will increase the
efficiency of the overall solution.

6 Conclusions

We considered decentralized and dynamic cluster formation in scale-free multi-
agent sensor grids, and described and experimentally evaluated a predictor
for the convergence time of cluster formation. The new predictor estimates
regularity of the inter-agent communication space via the ‘correlation entropy’
(the order-2 Rényi entropy) K2, and was observed to be well correlated with
the time of cluster formation.

The predictor is implemented and experimentally evaluated at the global
level, where full information on nodes’ states and their inter-connections is
available, as well as at the local level, using only partial information obtained
within a small selected subset of nodes. In other words, the predictor K2

does not have to employ full information on nodes’ states and their inter-
connections – instead it may use only partial information obtained within
a small selected subset of nodes. Thus, the analysis and presented results
support the deployment of localisable predictors monitoring a small part of
the inter-agent communication space – the part contained within the most
connected hubs of the scale-free sensor network.

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 503

Efficient and reliable algorithms for cluster formation in sensor grids may
include a convergence predictor, such as predictor K2, as a feedback to the
algorithms, and this is a subject for future research. Another direction is an
evaluation of other decentralized algorithms in terms of multi-agent dynamics
within the communication spaces.

References

1. Albert R, Jeong H, Barabási A-L (1999) Diameter of the world-wide web.
Nature, 401: 130–131.

2. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex
networks. Nature, 406: 378–382.

3. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1): 47–97.

4. Butler M, Prokopenko M, Howard T (2001) Flexible synchronisation within
RoboCup environment: a comparative analysis. In: Stone P, Balch TR, Kraet-
zschmar GK (eds) RoboCup 2000: Robot Soccer World Cup IV (Proc. 4th
RoboCup-2000 Workshop, 31 August – 1 September, Melbourne, Australia),
Lecture Notes in Computer Science 2019: 119–128, Springer-Verlag, Berlin.

5. Bonabeau E, Theraulaz G, Deneubourg J-L, Camazine S (1997) Self-
organisation in social insects. Trends in Ecology and Evolution, 12(5):
188–193.

6. Boschetti F, Prokopenko M, Macreadie I, Grisogono A-M (2005) Defining and
detecting emergence in complex networks. In: Khosla R, Howlett RJ, Jain LC
(eds) Proc. 9th Intl. Conf. Knowledge-Based Intelligent Information and Engi-
neering Systems – KES 2005, 14–16 September, Melbourne, Australia, Lecture
Notes in Computer Science 3684: 573–580, Springer-Verlag, Berlin.

7. Dhamala M, Lai YC, Kostelich EJ (2001) Analyses of transient chaotic time
series. Physical Review E, 64: 1–9.

8. Dorigo M, Gambardella LM (1997) Ant colonies for the Traveling Salesman
Problem. BioSystems, 43: 73–81.

9. Durrant-Whyte, HF, Stevens M (2001) Data fusion in decentralised sensing
networks. Proc. 4th Intl. Conf. Information Fusion, 7–10 August, Montreal,
Canada, International Society of Information Fusion, Sunnyvale, CA.

10. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the
internet topology. Computer Communication Review, 29: 251–262.

11. Ferber J (1999) Multi-Agent Systems. Addison Wesley Professional, Reading,
MA.

12. Foreman M, Prokopenko M, Wang P (2003) Phase transitions in self-organising
sensor networks. In: Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler
J (eds) Advances in Artificial Life (Proc. 7th European Conf. Artificial Life –
ECAL2003), 14–17 September, Dortmund, Germany, Lecture Notes in Artificial
Intelligence 2801: 781–791, Springer-Verlag, Berlin.

13. Gerasimov V, Healy G, Prokopenko M, Wang P, Zeman A (2006) Symbiotic
sensor networks in complex underwater terrains: a simulation framework. In:
Gabrys B, Howlett RJ, Jain LC (eds) Proc. 10th Intl. Knowledge-Based Intel-
ligent Information and Engineering Systems Conf. – KES 2006, 9–11 October,

504 M. Piraveenan et al.

Bournemouth, UK, Lecture Notes in Artificial Intelligence 4253(III): 315–323,
Springer-Verlag, Berlin.

14. Ghanem M, Guo Y, Hassard J, Osmond M, Richards M (2004) Sensor grid
for air pollution monitoring. In: Cox SJ (ed) Proc. 3rd UK e-Science All-hands
Conf. – AHM 2004, 31 August – 3 September, Nottingham, UK, Engineering
and Physical Sciences Research Council (EPSRC), UK: 106–113.

15. Grassberger P, Procaccia I (1983) Estimation of the Kolmogorov entropy from
a chaotic signal. Physical Review A, 28(4): 2591–2593.

16. Jánosi IM, Tél T (1994) Time series analysis of transient chaos. Physical Review
E, 49(4): 2756–2763.

17. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási, A-L (2000) The large-scale
organization of metabolic networks. Nature, 407: 651–654.

18. Jones T, James G (2005) The management and control of distributed energy
resources (extended version). In: Proc. 18th Intl. Conf. and Exhibition on
Electricity Distribution – CIRED, June 2005, Turin, Italy, IEE, London, UK:
987–998.

19. Kolmogorov AN (1959) Entropy per unit time as a metric invariant of
automorphisms (in Russian). Doklady Akademii Nauk SSSR, 124: 754–755.

20. Lin R, Gerla M (1997) Adaptive clustering for mobile wireless networks. IEEE
J. Selected Areas in Communications, September: 1265–1275.

21. Makarenko A, Kaupp T, Grocholsky B, Durrant-Whyte HF (2003) Human-robot
interactions in active server networks. In: Computational Intelligence in Robotics
and Automation for the New Millennium (Proc. 2003 IEEE Intl. Symposium
Computational Intelligence in Robotics and Automation), 16–20 July, Kobe,
Japan, IEEE Computer Society Press, Piscataway, NJ, 1: 247–252.

22. Mathews GM, Durrant-Whyte HF, Prokopenko M (2006) Scalable decen-
tralised decision making and optimisation in heterogeneous teams. In: Proc.
IEEE Intl. Conf. Multisensor Fusion and Integration for Intelligent Systems –
MFI2006, 3–6 September, Heidelberg, Germany, IEEE Computer Society Press,
Piscataway, NJ: 383–388.

23. Newman MEJ (2002) The structure and function of networks. In: Hossfeld F,
Binder E (eds) Proc. Europhysics Conf. Computational Physics – CCP2001, 5–8
September, 2001, Aachen, Germany, Elsevier Science, Amsterdam, 147(1–2):
40–45.

24. Ogston E, Overeinder B, Van Steen M, Brazier F (2003) A Method for decentral-
ized clustering in large multi-agent systems. In: Rosenschein JS, Sandholm T,
Wooldridge M, Yokoo M (eds) Proc. 2nd Intl. Joint Conf. Autonomous Agents
and Multi-Agent Systems, 14–18 July, Melbourne, Australia, ACM Press, New
York, NY: 798–796.

25. Olsson L, Nehaniv CL, Polani D (2004) Sensory channel grouping and struc-
ture from uninterpreted sensor data. In: Zebulum RS, Gwaltney D, Hornby G,
Keymeulen D, Lohn J, Stoica A (eds) Proc. NASA/DoD Conf. Evolvable Hard-
ware – EH’04, 24–26 June, Seattle, WA, IEEE Computer Society Press, Los
Alamitos, CA: 153–160.

26. Piraveenan M, Prokopenko M, Wang P, Price DC (2005) Towards adaptive
clustering in self-monitoring multi-agent networks. In: Khosla R, Howlett RJ,
Jain LC (eds) Proc. 9th Intl. Conf. Knowledge-Based Intelligent Information
and Engineering Systems – KES’2005, 14–16 September, Melbourne, Australia.
Lecture Notes in Computer Science 3682(II), Springer-Verlag, Berlin: 796–805.

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 505

27. Prokopenko M (1999) On situated reasoning in multi-agent systems. In: Hybrid
Systems and AI: Modeling, Analysis and Control of Discrete and Continuous
Systems, AAAI Technical Report SS-99-05, March, AAAI Press, Menlo Park,
CA: 158–163.

28. Prokopenko M, Butler M, Howard T (2001) On emergence of scalable tactical
and strategic behavior. In: Stone P, Balch TR, Kraetzschmar GK (eds) RoboCup
2000: Robot Soccer World Cup IV (Proc. 4th RoboCup-2000 Workshop), 31
August – 1 September, Melbourne, Australia, Lecture Notes in Computer
Science 2019, Springer-Verlag, Berlin: 357–366.

29. Prokopenko M, Wang P (2004) On self-referential shape replication in robust
aerospace vehicles. In: Pollack J, Bedau MA, Husbands P, Ikegami T, Watson
RA (eds) Artificial Life IX (Proc. 9th Intl. Conf. Simulation and Synthesis of
Living Systems), 12–15 September, Boston, MA, MIT Press, Cambridge, MA:
27–32.

30. Prokopenko M, Wang P (2004) Evaluating team performance at the edge
of chaos. In: Polani D, Browning B, Bonarini A, Yoshida K (eds) RoboCup
2003: Robot Soccer World Cup VII (Proc. 7th RoboCup-2003 Springer-Verlag,
Berlin:Symposium), Padua, July, Lecture Notes in Computer Science 3020:
89–101.

31. Prokopenko M, Piraveenan M, Wang P (2005) On convergence of dynamic clus-
ter formation in multi-agent networks. In: Capcarrére MS, Freitas AA, Bentley
PJ, Johnson CG, Timmis J (eds) Advances in Artificial Life (Proc. 8th European
Conference – ECAL 2005), 5–9 September, Canterbury, UK. Lecture Notes in
Computer Science 3630, Springer-Verlag, Berlin: 884–894.

32. Prokopenko M, Wang P, Price DC, Valencia P, Foreman M, Farmer AJ (2005)
Self-organising hierarchies in sensor and communication networks. Artificial Life
(Special issue on Dynamic Hierarchies), 11(4): 407–426.

33. Prokopenko M, Wang P, Foreman M, Valencia P, Price DC, Poulton G (2005)
On connectivity of reconfigurable impact networks in ageless aerospace vehicles.
J. Robotics and Autonomous Systems, 53: 36–58.

34. Prokopenko M, Wang P, Price DC (2005) Complexity metrics for self-monitoring
impact sensing networks. In: Lohn J, Gwaltney D, Hornby G, Zebulum R,
Keymeulen D, Stoica A (eds) Proc. NASA/DoD Conf. Evolvable Hardware –
EH-05, 29 June – 1 July, Washington, DC, IEEE Computer Society Press, Los
Alamitos, CA: 239–246.

35. Prokopenko M, Poulton GT, Price DC, Wang P, Valencia P, Hoschke N, Farmer
AJ, Hedley M, Lewis C, Scott DA (2006) Self-organising impact sensing net-
works in robust aerospace vehicles. In: Fulcher, J (ed) Advances in Applied
Artificial Intelligence. Idea Group, Hershey, PA: 186–223.

36. Prokopenko M, Gerasimov V, Tanev I (2006) Evolving spatiotemporal coor-
dination in a modular robotic system. In: Nolfi S, Baldassarre G, Calabretta
R, Hallam JCT, Marocco D, Meyer J-A, Miglino O, Parisi D (eds) From Ani-
mals to Animats 9 (Proc. 9th Intl. Conf. Simulation of Adaptive Behavior –
SAB2006), 25–29 September, Rome, Italy, Lecture Notes in Computer Science
4095, Springer-Verlag, Berlin: 558–569.

37. Pynadath DV, Tambe M (2002) Multiagent teamwork: analyzing the optimality
and complexity of key theories and models. In: Castelfranchi C, Johnson WL
(eds) Proc. 1st Intl. Joint Conf. Autonomous Agents and Multiagent Systems –
AAMAS2002, 15–19 July, Bologna, Italy, ACM Press, New York, NY: 873–880.

506 M. Piraveenan et al.

38. Rasmussen S, Baas NA, Mayer B, Nilsson M, Olesen MW (2001) Ansatz for
dynamical hierarchies. Artificial Life, 7(4): 329–353.

39. Rényi, A (1970) Probability theory. North-Holland, Amsterdam, The
Netherlands.

40. Sandholm T, Lesser V (1995) Coalition formation among bounded rational
agents. In: Mellish C (ed) Proc. 14th Intl. Joint Conf. Artificial Intelligence –
IJCAI95, 20–25 August, Montréal, Québec, Canada, Morgan Kaufmann, San
Francisco, CA: 662–671.

41. Sinai YG (1959) On the concept of entropy of a dynamical system (in Russian).
Doklady Akademii Nauk SSSR, 124: 768–771.

42. Solé RV, Ferrer-Cancho R, Montoya JM, Valverde S (2002) Selection, tinkering
and emergence in complex networks – crossing the land of tinkering. Complexity,
8(1): 20–33.

43. Takens F (1981) Detecting strange attractors in turbulence. Dynamical systems
and Turbulence, Lecture Notes in Mathematics 898, Springer-Verlag, Berlin:
366–381.

44. US Department of Energy (2006) Benefits of Demand Response in Electricity
Markets and Recommendations for Achieving Them. A Report to the United
Stated Congress Pursuant to Section 1252 of the Energy Policy Act of 2005,
February.

45. Wieselthier JE, Nguyen GD, Ephremides A (2000) On the construction of
energy-efficient broadcast and multicast trees in wireless networks. Proc.
19th Annual Joint Conf. IEEE Computer and Communications Societies –
INFOCOM2000, 26–30 March, Tel Aviv, Israel: 585–594.

46. White JG, Southgate E, Thompson JN, Brenner S (1986) The structure of the
nervous system of the nematode C. elegans. Philosophical Transactions of the
Royal Society of London – Series B: Biological Sciences, 314(1165): 1–340.

47. Williams, RJ, Martinez ND (2000) Simple rules yield complex food webs.
Nature, 404: 180–183.

48. Ygge F, Akkermans JM (1996) Power load management as a computational mar-
ket. In: Tokoro M (ed) Proc. 2nd Intl. Conf. Multi-Agent Systems – ICMAS’96,
9–13 December, Kyoto, Japan, AAAI Press, Menlo Park, CA: 393–400.

49. Zhang T, Ramakrishnan R, Livny M (1997) BIRCH: a new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):
141–182.

Decentralised Clustering Algorithm

This Appendix reproduces the description of the clustering algorithm pro-
posed by [26].

Each agent is initially a follower to itself, and its followers’ list will contain
only itself. Each agent is also a cluster-head initially (a singleton cluster).
The communication messages (shown in italics) are ‘flooding’ broadcasts. The
algorithm involves the following steps carried out by each cell (agent) which
sensed the value x (henceforth, references like ‘larger’ or ‘smaller’ are relative
to this value):

1. It keeps broadcasting its recruit message initially (recruit messages will
always contain the followers’ list of an agent). This broadcasting is done
periodically, with a broadcasting-period P , affecting all agents with values
within a particular offset of the value x of this agent – in other words, with
values between x− ε and x+ ε. The offset ε is initially set to a proportion
α of its agent value: ε = αx;

2. If an agent in a singleton cluster receives a recruit message from a ‘smaller’
agent, it ignores it;

3. If an agent p in a singleton cluster receives a recruit message from a ‘larger’
agent q in a singleton cluster, it becomes its follower, stops broadcasting its
own recruit messages and sends its information to its new cluster-head q:
an acceptance message with its relative coordinates and the agent-value x.
It also stores details of the cluster-head q: the agent-value xq and relative
coordinates;

4. If an agent p in a singleton cluster receives a recruit message from a
‘larger’ agent q which does have other followers, it ignores the message:
simply because the ‘larger’ agent q would also receive and handle a recruit
message from p itself (see step 6);

5. If an agent receives an acceptance message from some potential follower
agent, it adds the agent involved in its followers’ list;

508 M. Piraveenan et al.

6. If a member of a non-singleton cluster, either the head or a follower,
receives a recruit message (either from a ‘larger’, ‘smaller’ or ‘equal’ agent),
it forwards it to its present cluster-head;

7. After forwarding a recruit message to its cluster-head, a follower ignores
further recruit messages until the identity of its head has been re-asserted
(as a result of the clustering heuristic being invoked somewhere);

8. The cluster-head waits for a certain period W , collecting all such for-
ward messages (the period W , called heuristic-period, should be greater
than 2P). At the end of the heuristic-period, the clustering heuristic is
invoked by the cluster-head on the union set of followers and all agents
who forwarded the messages. The ‘largest’ agent in any resulting cluster
is appointed as its cluster-head;

9. The cluster-head which invoked the heuristic notifies new cluster-heads
about their appointment, and sends their cluster maps to them: a cluster-
information message;

10. A cluster-head stops sending its recruit messages P cycles before it invokes
the clustering heuristic. If it is re-appointed as a cluster-head, it resumes
sending recruit messages;

11. If an agent receives cluster-information message it becomes a cluster-head.
If it was already a cluster-head with a cluster map, it erases that cluster
map and accepts the new cluster map. It also notifies all its new followers;

12. A follower will periodically get recruit messages from its cluster-head. If
this does not happen for a while, then it means that this follower is no
longer in the followers’ list of its cluster-head. Then it will make itself
a cluster-head and start sending its own recruit messages. The offset of
these recruit messages will be determined by the offsets it had when it
was a cluster-head the last time (not necessarily the same as ε).

Because of the unpredictable timing of the clustering heuristics being invoked
in various agents, it is possible that a cluster-head keeps a particular agent
as its follower even after its offset ε has changed and this particular agent is
now out of range. To counter this, the cluster-head checks its followers’ list
periodically and removes agents with values out of range. It is also possible
that a node detects a new sensor reading, possibly increasing the agent-value
by a large amount. If this agent was a follower, it immediately becomes a
cluster-head and updates its former cluster-head. The former cluster-head will
delete it from its followers’ list.

Depending on the nature of the set of agent values, the offset ε may be
initially too small to reach any other agent. To counter this, an agent peri-
odically (with a period δ) increases its offsets exponentially until a certain
limit: εk+1 = max(2εk, βx), where ε0 = ε initially, and β is the limit pro-
portion (for example, the initial ε0 may be 0.01x and after 5 periods the
offset would become ε5 = 0.32x). Alternatively, the increase will stop when
the offsets of an agent have been reset by the clustering heuristic. When the
clustering heuristic is applied, it may produce either one or two clusters as a

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 509

result. If there are two clusters, the offset of each new cluster-heads is modi-
fied. It is adjusted in such a way that the cluster-head of the ‘smaller’ agents
can now reach up to, but not including, the ‘smallest’ agent in the cluster
of ‘larger’ agents. Similarly, the cluster-head of ‘larger’ agents can now reach
down to, but not including, the ‘largest’ agent (the cluster-head) of the cluster
of ‘smaller’ agents. These adjusted offsets are sent to the new cluster-heads
along with their cluster maps.

Predictor K2

This Appendix describes the estimation method adopted by [34].

Suppose that the d-dimensional phase space is partitioned into boxes of
size rd. Let P10,...id−1 be the joint probability that a trajectory is in box i0
at time 0, in box i1 at time ∆t,. . . , and in box id−1 at time (d−1)∆t, where
∆t is the time interval between measurements on the state of the system (in
our case, we may assume ∆t = 1, and omit the limit∆t→0 in the following
definitions). The order-2 Rényi entropy K2 is defined as

K2 = lim
∆→0

lim
r→0

lim
d→∞

1
d∆t

ln
∑

i0···id−1

P 2
i0···id−1

(1)

It is well-known that KS Entropy K = 0 in an ordered system, K is infinite
in a random system, and K is a positive constant in a deterministic chaotic
system. Grassberger and Procaccia (1983) considered the ‘correlation entropy’
K2 in particular, and capitalised on the fact K ≥ K2 in establishing a suffi-
cient condition for chaos K2 > 0. The Grassberger and Procaccia algorithm
estimates the entropy K2 as follows

K2 = lim
r→0

lim
d→∞

lim
N→∞

ln
Cd(N, r)

Cd+1(N, r)
(2)

where Cd(N, r) is the correlation integral

Cd(N, r) =
1

N(N − 1)

N∑
i=1

N∑
j=1

θ(r− ‖ Vi − Vj ‖) (3)

Here θ is the Heaviside function (equal to 0 for negative argument and 1
otherwise), and the vectors Vi and Vj contain elements of the observed time
series {v(t)}, ‘converting’ or ‘reconstructing’ the dynamical information in
one-dimensional data to spatial information in the d-dimensional embedding
space: Vk = (vk, vk+1, vk+2, . . . , vk+d−1) [28]. The norm ‖ Vi − Vj ‖ is the

512 M. Piraveenan et al.

distance (sometimes called precision) between the vectors in the d-dimensional
space, for example, the maximum norm

‖ Vi − Vj ‖= maxd−1
τ=0(νi+τ − νj+τ) (4)

Put simply, Cd(N, r) computes the fraction of pairs of vectors in the d-
dimensional embedding space that are separated by a distance less than or
equal to r. Since we consider only an initial segment of the times series, we
simply set N = Ω, estimating the entropy as

K2(d, r, Ω) = ln

(
Cd(Ω, r)

Cd+1(Ω, r)

)
(5)

Resources

1 Key Books

Barabási A-L (2002) Linked: The New Science of Networks. Perseus Publish-
ing, Cambridge, MA

Bonabeau E (1999) Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press, New York, NY

Ferber J (1999) Multi-agent systems. Addison Wesley, Reading, MA

Rényi A (1970) Probability Theory. North-Holland, Amsterdam

2 Key Survey/Review Article

Solé RV, Ferrer-Cancho R, Montoya JM, Valverde S (2002) Selection, tin-
kering and emergence in complex networks – crossing the land of tinkering.
Complexity 8(1): 20–33

3 Organisations, Societies, Special Interest Groups

Santa Fe Institute
http://www.santafe.edu/index.php

The New England Complex Systems Institute (NECSI)
http://necsi.org/

Institute for the Study of Complex Systems (ISCS)
http://www.complexsystems.org/

514 M. Piraveenan et al.

The Society for Modeling and Simulation International (SCS)
http://www.scs.org/

The ARC Complex Open Systems Research Network (COSNet)
http://www.complexsystems.net.au/

4 Research Groups

The ARC Centre of Excellence for Autonomous Systems, Sydney, Australia
http://www.cas.edu.au/home.html

The Adaptive Systems Research Group, University of Hertfordshire, UK
http://homepages.feis.herts.ac.uk/~comqdp1/#asrg

The Intelligent Interactive Distributed Systems group, Vrije Universiteit Ams-
terdam, The Netherlands
http://www.iids.org/

The Distributed Intelligence group, CSIRO ICT Centre, Sydney, Australia
http://www.ict.csiro.au/page.php?cid=40

Center for Complex Networks Research, The University of Notre Dame
http://www.nd.edu/~networks/index.htm

The Complex Systems Lab, The Universitat Pompeu Fabra
http://complex.upf.es/~ricard/complexnets.html

Networks and Chaos: Kaneko’s Lab
http://chaos.c.u-tokyo.ac.jp/

5 Discussion Group, Forum

Complexity Digest
http://www.comdig.org

6 Key International Conferences/Workshops

International Conference on the Simulation of Adaptive Behavior (SAB)

European Conference on Artificial Life (ECAL)

Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 515

Int. Conf. on the Simulation and Synthesis of Living Systems (ALife)

Intl. Joint Conf. Autonomous Agents and Multi-Agent Systems (AAMAS)

Intl. Conf. Multisensor Fusion & Integration for Intelligent Systems (MFI)

Computational Intelligence in Agent-Based
Computational Economics

Shu-Heng Chen

AI-ECON Research Center, Department of Economics, National Chengchi
University, Taipei, Taiwan 116, chchen@nccu.edu.tw

1 Introduction

1.1 What is Agent-Based Computational Economics (ACE)?

Agent-based computational economics is the study of economics using agent-
based modeling and simulation, which, according to [21], is the third way, in
addition to deduction and induction, to undertake social sciences. An agent-
based model is a model comprising autonomous agents placed in an interactive
environment (society) or social network. Simulating this model via computers
is probably the most practical way to visualize economic dynamics.

An autonomous agent is one which is able to behave (think, learn, adapt,
make strategic plans) with a set of specifications and rules which are given
initially; they are fixed and require no further intervention. The necessity for
using autonomous agents in agent-based computational economics – or, more
broadly, agent-based social sciences – is still an issue open for discussion.
We make no attempt here to give a full account of the development of this
issue – this would deserve a Chapter on its own. For a brief account, the use
of autonomous agents is, in one way or the other, connected to the notion of
bounded rationality, popularized by Herbert Simon [138].

In order to build autonomous agents, agent-based computational eco-
nomists need to employ existing algorithms or develop new algorithms which
can enable agents to behave with a degree of autonomy. Sections 1.2, 2 and
3 of the chapter will give a thorough review of the algorithmic foundations
of ACE. We also introduce here the field known as computational intelligence
(CI) and its relevance to economics. Section 4 then reviews the use of compu-
tational intelligence in agent-based economic and financial models. Section 5
gives some general remarks on these applications, as well as pointing to future
directions. This is followed by concluding remarks in Sect. 6.

S.-H. Chen: Computational Intelligence in Agent-Based Computational Economics, Studies in

Computational Intelligence (SCI) 115, 517–594 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

518 S.-H. Chen

1.2 Algorithmic Foundations of ACE

The purpose of the next few Sections is to address a very important attribute
of autonomous agents, this being their capability to adapt to a changing
environment. The idea is to equip the artificial agents with some in-built
algorithms so that they are able to develop some degree of sophisticated cog-
nitive behavior; in particular, they are able to learn from the past, and hence
are able to anticipate the future, and develop strategic behavior accordingly.
The algorithms which can help our artificial agents achieve the above goal are
initiated from many different fields and hence are interdisciplinary. Recently,
they have been addressed together in the field known as computational intel-
ligence (CI). Therefore, the next few Sections may be read as an introduction
to CI from the perspective of agent-based computational economics.

The aim of this Chapter is to review a number of important developments
in computational intelligence, including artificial neural networks (Sect. 2) and
evolutionary computation (Sect. 3). While these tools have been introduced to
economists on numerous other occasions – for example, quantitative finance –
we have a different motivation for studying them. Mainly, these two major
CI tools allow us to discuss a number of crucial mental activities, such as
attention control, memory, and pattern discovery. Therefore, even though our
brief review will go through some important quantitative applications, we
should remind readers at different places that our scope is broader.

Section 2 describes a number of different neural network models, which
help us to understand how some algorithms, associated with the artificial
brain, are able to conduct data compression, redundancy removal, classifica-
tion, and forecasting. Let us be more specific with some of these. An important
cognitive task for human agents is that, under some degree of survival pressure
(or incentives), they are able to perform correct classification and react upon
it properly. A simple example is the salesman who needs to identify those
consumers who are willing to pay a high price for a specific new product, and
to distinguish them from general buyers. A family of neural networks, also
known as supervised learning (Sect. 2.1, 2.2, and 2.5), are able to equip agents
with this capability.

Prior to classification, one more fundamental cognitive task is concept
formation – in other words, to extract useful concepts from observations.
Then, based on these concepts, new observations can be classified so as to
facilitate decision-making. A typical example would be a stock trader who
needs to recognize some special charts to make his market timing decisions.
A family of neural networks, known as unsupervised learning (Sect. 2.6), can
help agents to acquire this kind of cognitive capability.

Sometimes, it is hard to form concepts. In this case, one may directly deal
with cases, and make decisions based on the similarity of cases. Sections 2.7
and 2.8 are devoted to the literature on lazy learning – that is, learning

Computational Intelligence in Agent-Based Computational Economics 519

by simply memorizing experiences, with little effort to develop generalized
concepts on top of these experiences.

The third important cognitive task concerns the efficient use of limited
brain space. This has something to do with data compression or redundancy
removal. Section 2.4 introduces a network which can perform this task. In
addition, Sect. 2.3 describes a device to reduce data storage space by building
in loops in the ‘brain’.

The above three cognitive tasks do not involve social interaction. They
mainly describe how an individual learns from his own experience without
interacting with other individuals’ experiences. The latter case is referred to
as social learning or population learning in the literature. Imitation (repro-
duction) is the clearest example of social learning: agents simply follow the
behavior rules of whomever they consider the most suitable. Nonetheless, imi-
tation is not enough to cover more complex patterns of social learning, such
as innovations of using inspiration from others. Through evolutionary compu-
tation (Sect. 3), both forms (imitation and innovation) of learning with social
interactions are operated with the familiar survival-of-the-fittest principle.1

Genetic programming (GP) is a one kind of evolutionary computation. It dif-
fers from others in the sense that it gives us much more expressive power to
observe changes.

2 Artificial Neural Networks

Among CI tools, the artificial neural network (ANN) is the most widely accept-
able tool for economists and finance people, even though its history is much
shorter than that of fuzzy logic so far as the application to economics and
finance is concerned. The earliest application of ANNs was [156]. Since then
we have witnessed an exponential growth in the number of applications. ANN
is probably the only CI tool which drew serious econometricians’ attention and
on which a lot of theoretical studies have been done. Both [131] and [157] gave
a rigorous mathematical/statistical treatment of ANNs, and hence have estab-
lished ANNs with a sound foundation in the econometrics field. Nowadays,
ANNs have already become an integral part of textbooks in econometrics,
and even moreso in financial econometrics and financial time-series. A great
number of textbooks or volumes especially edited for economists and finance
people are available, for example, [23,24,84,130,136,147,163], to name a few.
Its significance to finance people can also be seen from the establishment of
the Neurove$t journal (now Computational Intelligence in Finance) in 1993.

It has been shown in a great number of studies that artificial neural nets,
as representative of a more general class of nonlinear models, can outperform

1 Evolutionary computation, in a sense, is a kind of ‘bio-sociology’.

520 S.-H. Chen

many linear models, and can sometimes also outperform some other nonlinear
models.2

Three classes of artificial neural nets have been most frequently used in
economics and finance. These are multilayer perceptrons, radial basis neu-
ral networks, and recurrent neural networks. The first two classes will be
introduced in Sects. 2.1 and 2.2, whereas the last one is introduced in 2.3.

2.1 Multilayer Perceptron Neural Networks

Let us consider the following general issue. We observe a time-series of an
economic or financial variable, such as the foreign exchange rate, {xt}. We
are interested in knowing its future values, xt+1, xt+2, For that purpose,
we need to search for a function relation f(), such that when a vector xt is
input into the function, a prediction on xt+1, ... can be made. The question
then is how to construct such a function. Tools included in this Chapter
provide two directions in which to work, distinguishable by different modeling
philosophies. The first one is based on the universal modeling approach, and
the second one is based on the local modeling approach. Alternatively, we can
say that the first one aims to build the function in the time domain, whereas
the second works in the feature or trajectory domain.3 We shall start with
the first approach, and the canonical artificial neural network (ANN) can be
considered to be a representative of this paradigm.

The reason why economists can embrace the ANN without any difficulty
is due to the fact that ANN can be regarded as a generalization of their
already familiar time-series model, ARMA (autoregressive moving-average)
model. Formally, an ARMA(p,q) model is described as follows:

Φ(L)xt = Θ(L)εt (1)

where Φ(L) and Θ(L) are polynomials of order p and q,

Φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p (2)

Θ(L) = 1− θ1L− θ2L
2 − · · · − θqL

q (3)

{εt} is white noise, and L is the lag operator.

ANNs can be regarded as a non-linear generalization of these ARMA pro-
cesses. In fact, more concretely, multilayer perceptron (MLP)neural networks
are nonlinear generalizations of the so-called autoregressive process,

xt = f(xt−1, . . . , xt−p) + εt (4)

2 This is not an appropriate place to provide a long list, but interested readers can
find some examples from [7,77,90,137,153, 154] and [158].

3 There are alternate names for the local modeling approach, for example ‘guarded
experts’ – see [18].

Computational Intelligence in Agent-Based Computational Economics 521

Xt-1

Xt-2

Xt-p

…
…

…
…

Input Hidden
Layer

Output

…
…

Fig. 1. The multilayer perceptron neural network of a non-linear AR process

whereas recurrent neural networks are non-linear generalizations of the ARMA
processes,

xt = f(xt−1, . . . , xt−p, εt−1, ...εt−q) + εt (5)

In terms of a multilayer perceptron neural network, Eqn. (4) can then be
represented as:

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i)) + εt (6)

Hence Eqn. (6) is a three-layer neural net (Fig. 1). The input layer has
p inputs: xt−1, ...xt−p. The hidden layer has l hidden nodes, and there is a
single output for the output layer x̂t. Layers are fully connected by weights;
wij is the weight assigned to the ith input for the jth node in the hidden
layer, whereas wj is the weight assigned to the jth node (in the hidden layer)
for the output; w0 and w0j are constants, also called biases; h1 and h2 are
transfer functions.

There is a rich choice of transfer functions. According to [64], a multilayer
perceptron network with any Tauber-Wiener functions as transfer function
of the hidden units can be qualified as a universal approximator. Also, a
necessary and sufficient condition for being a Tauber-Wiener function is that
it is non-polynomial. In practice, a differentiable transfer function is desirable.
Commonly used transfer functions for multilayer perceptron networks are the
sigmoid function,

hs(x) =
1

1 + e−x
(7)

and hyperbolic tangent function,

ht(x) =
2

1 + e−2x
− 1 (8)

Clearly, 0 < hs(x) < 1, and −1 < ht(x) < 1.

522 S.-H. Chen

2.2 Radial Basis Network

Next to the multilayer perceptron neural network is the radial basis network
(RBN), which is also popularly used in economics and finance. Radial basis
function (RBF) networks are basically a feedforward neural networks with a
single hidden layer,

f(x) =
k∑
i

wiϕ(‖x− ci‖), (9)

where ϕ() is a radial basis function, ci is the ith center, and k is the number
of the center. Both wi, ci and k are determined by the data set of x. Typical
choices of radial basis functions are:

• the thin-plate-spline function,

ϕ(x) = x2 logx (10)

• the Gaussian function,

ϕ(x) = exp(−x2

β
) (11)

• the multi-quadratic function,

ϕ(x) = (x2 + β2)
1
2 (12)

• the inverse multi-quadratic function,

ϕ(x) =
1

(x2 + β2)
1
2

(13)

Theoretical investigation and practical results seem to show that the choice
of radial basis function is not crucial to the performance of the RBF network.

It has been proved that the RBF network can indeed approximate arbitrar-
ily well any continuous function if a sufficient number of radial-basis function
units are given (the network structure is large enough), and the network
parameters are carefully chosen. RBN also has the best approximation prop-
erty in the sense of having the minimum distance from any given function
under approximation.

2.3 Recurrent Neural Networks

In Sect. 2.1, we discussed the relation between time series models and artificial
neural networks. Information transmission in the usual multilayer perceptron
neural net is feedforward in the sense that information is transmitted forward
from the input layer to the output layer, via all hidden layers in between, as
shown in Fig. 1; transmission in the reverse direction between any two layers
is not allowed.

Computational Intelligence in Agent-Based Computational Economics 523

This specific architecture makes the multilayer perceptron neural net
unable to deal with the moving-average series, MA(q), effectively. To see this,
consider the following MA(1) series:

xt = εt − θ1εt−1 (14)

It is well-known that if |θ1| < 1, then the above MA(1) series can also be
written as an AR(∞) series.

xt = −
∞∑

i=1

θixt−i + εt (15)

In using the multilayer perceptron neural network to represent Eqn. (15),
one needs to have an input layer with an infinite number of neurons (infinite
memory of the past), namely, xt−1, xt−2, ..., which is impossible in practice.
Although from the viewpoint of approximation, an exact representation is not
required and a compromise with a finite number of neurons (finite memory)
is acceptable, in general quite a few inputs are still required. This inevitably
increases the complexity of the network, leads to an unnecessary large number
of parameters, and hence slows down the estimation and training process [116].

This explains why the multilayer perceptron neural net can only be
regarded as a nonlinear extension of autoregressive (AR) time series mod-
els Eqn. (4), but not a nonlinear extension of autoregressive moving-average
(ARMA) models Eqn. (16).

xt = f(xt−1, . . . , xt−p, εt−1, ...εt−q) + εt

= f(xt−1, . . . , xt−p, xt−p−1, ...) + εt (16)

The finite memory problem of the multilayer perceptron neural net is well
noticed by ANN researchers. In his celebrated article, Elman stated:

“...the question of how to represent time in connection models is very
important. One approach is to represent time implicitly by its effects
on processing rather than explicitly (as in a spatial representation)”.
[76]: 179 (italics added)

The multilayer perceptron neural net tries to model time by giving it a
spatial representation (that is, explicit) representation. What Elman suggests
is to let time have an effect on the network response rather than represent it by
an additional input dimension. Using an idea initiated by [95], Elman proposes
an internal representation of memory by allowing the hidden unit patterns to
be fed back to themselves. In this way, the network becomes recurrent.

The difference between the multilayer perceptron neural net (feed forward
neural net) and the recurrent neural net can be shown as follows. For a mul-
tilayer perceptron neural network, Eqn. (4) can be re-formulated as Eqn. (6)
(for a three-layer neural net – Fig. 1).

524 S.-H. Chen

Xt-1

Xt-2

Xt-p

Input Hidden
Layer

Output

Lag

Context
Layer

Lag

Lag

......

......

......

......

......

Fig. 2. The multilayer perceptron neural network model of a nonlinear AR process

A recurrent neural net – Eqn. (5) – can then be represented as:

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i +
l∑

m=1

�mjzm,t−1)) + εt (17)

where

zm,t = w0m +
p∑

i=1

wimxt−i +
l∑

k=1

�kjzk,t−1, m = 1, . . . , l (18)

Compared to the multilayer perceptron and radial basis function neural
nets, the recurrent neural net has been much less explored in the economic
and financial domains.4 This is, indeed, a little surprising, considering the
great exposure of its linear counterpart ARMA to economists.

2.4 Auto-Associative Neural Networks

While most economic and financial applications of neural networks con-
sider the development of non-linear forecasting models, another important
4 Some early applications can be found in [36] and [108].

Computational Intelligence in Agent-Based Computational Economics 525

consideration is dimensionality reduction and/or feature extraction. In this
application, ANN can provide a nonlinear generalization of the conventional
principal component analysis (PCA). The specific kind of ANN for this
application is referred to as the auto-associative neural network (AANN).

The fundamental idea of principal component analysis is dimensionality
reduction, which is a quite general problem when we are presented with a large
number of correlated attributes, and hence a large number of redundancies.
It is, therefore, a natural attempt to compress or store this original large data
set into a more economical space by getting rid of these redundancies. Thus,
on the one hand, we want to have a reduced space that is as small as possible;
on the other hand, we still want to keep the original information. These two
objectives are, however, in conflict when attributes with complicated relations
are presented. Therefore, techniques to make the least compromise between
the two become important.

To introduce AANN and its relationship to principal component analysis,
let us consider the following two mappings,

G : Rm → Rf (19)

and
H : Rf → Rm (20)

where G and H are, in general, nonlinear vector functions with their com-
ponents indicated as G = {G1, G2, . . . , Gf} and H = {H1, H2, . . . , Hm}. To
represent these functions with multilayer perceptron neural nets, let us rewrite
Eqn. (6) as follows,

yk = Gk(x1, . . . , xm)

= h2(w0k +
l1∑

j=1

wjkh1(we
0j +

m∑
i=1

we
ijxi)), k = 1, 2, . . . , f (21)

and

x̂i = Hi(y1, . . . , yf)

= h4(w0i +
l2∑

j=1

wjih3(wd
0j +

f∑
k=1

wd
kjyk)), i = 1, 2, . . . , m (22)

All the notations used in Eqns. (21) and (22) share the same interpretation
as those in Eqn. (6), except that superscripts e and d stand for the encoding
and decoding maps, respectively. By combining the two mappings, we have a
mapping from X = {x1, . . . , xm} to its own reconstruction X̂ = {x̂1, . . . , x̂m}.
Let Xn be the nth observation of X , and

Xn = {xn,1, . . . , xn,m} (23)

526 S.-H. Chen

y1

yf

y2

x1

xm

x2

X1

X2

Xm

…
…

…
…

…
…

…
…

…
…

…
…

Input

G H

Output Hidden
Layer

Hidden
Layer

Hidden
Layer

Fig. 3. The auto-associative neural network

Accordingly,
X̂n = {x̂n,1, . . . , x̂n,m} (24)

Then minimizing the difference between observation Xn and its recon-
struction X̂n over the entire set of N observations or

min E =
N∑

n=1

m∑
i=1

(xn,i − x̂n,i)2 (25)

by searching for the space of the connection weights and biases defines what is
known as ‘auto-association neural networks’. Briefly, auto-associative neural
networks are feedforward nets, with three hidden layers, as shown in Fig. 3,
trained to produce an approximation of the identity mapping between network
inputs and outputs using backpropagation or similar learning procedures.

The third hidden layer – namely the output layer of the MLPN, (Eqn. (21)) –
is also called the bottleneck layer. If the transfer functions hi (i = 1, 2, 3, 4)
are all identical mappings, and we remove all the bias terms, then Eqn. (21)
can be written as:

yk = Gk(x1, . . . , xm)

=
l1∑

j=1

wjk(
m∑

i=1

we
ijxi) =

l1∑
j=1

m∑
i=1

wjkwe
ijxi,

=
m∑

i=1

l1∑
j=1

wjkwe
ijxi, =

m∑
i=1

βi,kxi k = 1, 2, . . . , f, (26)

Computational Intelligence in Agent-Based Computational Economics 527

where

βi,k =
l1∑

j=1

wjkwe
ij (27)

In matrix notation, Eqn. (26) can be written as:⎡
⎢⎢⎢⎣

x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

β11 β12 . . . β1f

β21 β22 . . . β2f

...
...

. . .
...

βm1 βm2 . . . βmf

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y11 y12 . . . y1f

y21 y22 . . . y2f

...
...

. . .
...

yn1 yn2 . . . ynf

⎤
⎥⎥⎥⎦ , (28)

or simply
XB = Y (29)

X, B and Y correspond to the n-by-m, m-by-f , and n-by-f matrices in
Eqn. (28), respectively. Likewise, Eqn. (22) can be simplified as:

YB∗ = X̂ (30)

B∗ is the reconstruction mapping and is an f -by-m matrix, and X̂ is the
reconstruction of X, and hence is an n-by-m matrix.

Equation (29) and (30), together with the objective function (Eqn. (25)),
define the familiar linear principal component analysis. To see this, we can
decompose X as follows:

X = YB∗ + E = XBB∗ + E = XP + E (31)

where P = BB∗, and E is the reconstruction error. Then the PCA frequently
presented to us takes the form of the following minimization problem.

min
P

|| E || (32)

It is known that the optimal solution of this problem (Eqn. (32)) has the
rows of P being the eigenvectors corresponding to the f largest eigenvalues of
the covariance matrix of X. Therefore, we have shown how the self-associative
neural network can be a nonlinear generalization of the familiar linear PCA,
as well as how the linear PCA can be extended to the nonlinear PCA through
a feedforward neural network with three hidden layers.

The concept of using a neural network with a bottleneck to concentrate
information has been previously discussed in the context of encoder/decoder
problems.5 [119] indicates some directions for financial applications using
nonlinear PCA.
5 See [106] for a brief review.

528 S.-H. Chen

2.5 Support Vector Machines

In the 1990s, based on results from statistical learning theory [149], an alterna-
tive to the artificial neural network was developed, in the form of the support
vector machine (SVM). SVM was founded primarily by Vapnik, who con-
tributed to the development of a general theory for minimizing the expected
risk of losses using empirical data. Brief introductory material on the SVM
can be found in [150], whereas [67] is a textbook devoted to the SVM.6

Support vector machines map non-linearly an n-dimensional input space
into a high dimensional feature space.

φ : V n → V m (33)

where V n is an n-dimensional input vector space, and V m is an m-dimensional
feature vector space. Given a series of l historical observations:

(y1, x1), . . . , (yl, xl) (34)

where yi ∈ V 1 and xi ∈ V n.

We approximate and estimate the functional relation between yi and xi

by

y = f(x) =< w, φ(x) > +b =
m∑

i=1

wiφ(x)i + b (35)

where < . , . > denotes the inner product. The vector w and the constant b
is to be determined by following the structural risk minimization principle,
borrowed from statistical learning theory. It is interesting to note some sim-
ilarities between the RBN and SVM, namely, Eqns. (9) and (35). However,
there is also a noticeable difference. Consider an input xi as a vector of three-
dimensions: (xi,1, xi,2, xi,3). Then for each neuron in the hidden layer of the
RBN, they all share the same form as

(ϕ(xi,1, xi,2, xi,3, c1), ϕ(xi,1, xi,2, xi,3, c2), ...) (36)

while being associated with different centers. However, each neuron in the
hidden layer of the SVM may actually take different inputs. For example, the
first neuron takes the first two inputs, but the second takes the last two as

(φ1(xi,1, xi,2), φ2(xi,2, xi,3), ...) (37)

Also, notice that the transfer functions, ϕ() are the same for each neuron in
the RBN, but in general are different for the SVM as φ1, φ2,

6 Financial applications have kept on expanding; the interested reader can find
some useful references directly from the SVM website: http://www.svms.org/

Computational Intelligence in Agent-Based Computational Economics 529

In the case where the yi are categorical, such as yi ∈ {−1, 1}, the mini-
mization process also determines a subset of {xi}l

i=1, called support vectors,
and the SVM when constructed has the following form.

f(x) =
∑

s

yiα
∗
i < φ(xs), φ(x) > +b∗ (38)

where α∗
i and b∗ are the coefficients satisfying the structural risk minimization

principle, and s is the set of all support vectors.

The category assigned to the observation x, 1 or −1, will then be deter-
mined by the sign of f(x).

y =
{

1, if f(x) > 0
−1, if f(x) < 0 (39)

Eqns. (38) and (39) are the SVM for the classification problem. A central
concept of the SVM is that one does not need to consider the feature space in
explicit form; instead, based on the Hilbert-Schmidt theory, one can use the
kernel function, K(xs, x), where

K(xs, x) =< φ(xs), φ(x) > (40)

Therefore, the SVM is also called the kernel machine. Eqn. (38) can then
be rewritten as

f(x) =
∑

s

yiα
∗
i K(xs, x) + b∗ (41)

Following a similar procedure, one can construct an SVM for regression
problems as follow:

f(x) =
l∑

i=1

(α∗
i − β∗

i)K(x, xi) + b∗ (42)

where α∗
i , β∗

i and b∗ are the coefficients minimizing the corresponding objec-
tive functions.

In addition to the functional form f(x), the second important issue is
the set of variables x itself, and one has to deal naturally with the problem
known as variable selection or feature selection. The involvement of irrelevant
variables or features may lead to poor generalization capability.

2.6 Self-Organizing Maps and k-means

In the social and behavioral sciences, the ability to recognize patterns is an
essential aspect of human heuristic intelligence. Herbert Simon, a Nobel Prize
Laureate in Economics (1978), considered pattern recognition to be critical
and advocated the need to pay much more explicit attention to the teaching

530 S.-H. Chen

of pattern recognition principles. In the financial market, chartists appear to
have been good at performing pattern recognition for many decades, yet little
academic research has been devoted to a systematic study of these kinds of
activities. On the contrary, sometimes it has been treated as nothing more
than astrology, and hardly to be regarded as a rigorous science.

The Self-Organizing Map was invented by Kohonen [101]. It has been
applied with great success to many different engineering problems and to
many other technical fields. [71] was the first volume to demonstrate the use
of the SOM in finance.

Self-organizing maps (SOMs) solve the pattern recognition problem which
deals with a class of unsupervised neural networks. Basically, the SOM itself
is a two-layer neural network. The input layer is composed of p cells, one for
each system input variable. The output layer is composed of neurons which are
placed on n-dimensional lattices (the value of n is usually 1 or 2). The SOM
adopts so-called competitive learning among all neurons. Through competitive
learning, the neurons are tuned to represent a group of input vectors in an
organized manner.

k-means clustering, developed by [115], is a widely used non-hierarchical
clustering algorithm that groups data with similar characteristics or features
together. k-means and SOMs resemble each other. They both involve mini-
mizing some measure of dissimilarity, called the cost function, in the samples
within each cluster. The difference between the k-means and the SOM lies in
their associated cost function to which we now turn. Consider a series of n
observations, each of which has m numeric attributes:

Xm
1 ,Xm

2 , . . . ,Xm
n , Xm

i ∈ Rm ∀ i = 1, 2, . . . , n (43)

where
Xm

i ≡ {xi,1, xi,2, . . . , xi,m}. xi,l ∈ R, ∀ l = 1, 2, . . . , m (44)

The k-means clustering is to find a series of k clusters, the centroids of
which are denoted, respectively, by

M1,M2, . . . ,Mk, Mj ∈ Rm, ∀j = 1, 2, . . . , k (45)

such that each of the observations is assigned to one and only one of the
clusters with minimal cost, and with cost function being defined as follows:

Ck−means =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · δi,j (46)

where d(Xm
i ,Mj) is the standard Euclidean distance between Xm

i and Mj ,7

and δi,j is the delta function:
7 Standard Euclidean distance assumes that the attributes are normalized and are

of equal importance. However, this assumption may not hold in many application
domains. In fact, one of the main problems in learning is to determine which are
the important features.

Computational Intelligence in Agent-Based Computational Economics 531

δi,j =
{

1, if Xm
i ∈ Clusterj

0, if Xm
i /∈ Clusterj

(47)

To minimize the cost function (Eqn. (46)), one can begin by initializing a
set of k cluster centroids. The positions of these centroids are then adjusted
iteratively by first assigning the data samples to the nearest clusters and then
re-computing the centroids.

Corresponding to Eqn. (46), the cost function associated with SOM can
be roughly treated as follows8

CSOM =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · hw(Xm

i),j (48)

where hw(Xm
i),j is the neighborhood function or neighborhood kernel, and

wXm
i

– the winner function – outputs the cluster whose centroid is nearest to
the input Xm

i .

In practice, the neighborhood kernel is chosen to be wide at the beginning
of the learning process to guarantee global ordering of the map, and both its
width and height decrease slowly during learning. For example, the Gaussian
kernel whose variance monotonically decreases with iteration times t is fre-
quently used.9 By comparing Eqn. (46) with Eqn. (48), one can see in SOM the
distance of each input from all of the centroids weighted by the neighborhood
kernel h, instead of just the closest one being taken into account.

Despite its greater simplicity, the economic and financial applications of
k-means are surprisingly much less available than those of SOM and KNN.
k-means have occasionally been applied to classify hedge funds [68], listed
companies [128], and houses [93], but it can also be applied to the classification
of trajectories of financial time series. To see this, we rewrite Eqns. (43) and
(44) to fit the notations used in the context of time series:

Xm
1 ,Xm

2 , . . . ,Xm
T , Xm

t ∈ Rm, ∀ t = 1, 2, . . . , T (49)

Xm
t ≡ {xt, xt−1, . . . , xt−m}, xt−l ∈ R, ∀ l = 0, 1, . . . , m− 1 (50)

Xm
t is a windowed series with an immediate past of m observations,

also called the m-history. Eqn. (49), therefore, represents a sequence of T
m-histories which are derived from the original time series, {xt}T

t=−m+1, by
moving the m-long window consecutively, one step at a time. Accordingly,
the end-product of applying k-means or SOMs to these windowed series is
a number of centroids Mj , which represents a specific shape of an m-long
trajectory, also known as ‘charts’ by technical analysts.10

8 The rigorous mathematical treatment of the SOM algorithm is extremely difficult
in general – see [102].

9 For details, see [51] Chap. 8: 205.
10 For example, see the charts presented in [44]: 206–207.

532 S.-H. Chen

Then the essential question pursued here is whether we can meaningfully
cluster the windowed financial time series Xm

t by the k associated geometrical
trajectories, M1,M2, . . . ,Mk. The clustering work can be meaningful if it can
help us predict the future. In other words, conditional on a specific trajectory,
we can predict the future better than without being provided this information,
for example,

Prob(|ξt+1| > |εt+1|) > 0.5 (51)

where
ξt+1 = xt+1 − E(xt+1) (52)

and
εt+1 = xt+1 − E(xt+1|Xm

t ∈ Clusterj), t > T (53)

The conditional expectations above are made with the information of the
trajectory (the cluster).

2.7 K Nearest Neighbors

In 1998, a time-series prediction competition was held during the Intl. Work-
shop on Advanced Black-Box Techniques for Nonlinear Modeling. The data
to be predicted were available from November 1997 through April 1998 at
Leuven. The data was generated from a generalized Chua’s circuit, a well-
known chaotic dynamic system. Seventeen entries had been submitted before
the deadline. The winner of the competition turned out to be James McNames,
and the strategy he used was the nearest trajectory algorithm. By using this
algorithm to fast nearest neighbor algorithms, McNames was able to make an
accurate prediction up to 300 points in the future of the chaotic time-series.
At first sight, this result may be a surprise for some, because KNN is not
technically demanding in contrast to many other well known tools as intro-
duced in this Chapter, nevertheless it could outperform many other familiar
advanced techniques, such as neural nets, wavelets, Kohonen maps (SOM),
and Kalman filters in that competition.11

KNN can be related to decision trees. What makes them different is that
the latter have categories A1, . . . , An to host input variables Xm

t , while the
former have Xm

t itself as a center of a hosting category, which will invite its
own neighbors, Xm

s (s < t), by ranking the distance ||Xm
t − Xm

s || over all
s < t from the closest to the farthest. Then the k closest Xm

s s will constitute
the neighbors of Xm

t , N (Xm
t). Now, for the purpose of predicting xt+1, one

can first study the functional relation between xs+1 and Xm
s , ∀s ∈ N (Xm

t),
in other words,

xs+1 = ft(Xm
s), s ∈ N (Xm

t) (54)

11 For details of the competition report, see [140].

Computational Intelligence in Agent-Based Computational Economics 533

One then forecasts xt+1 based on f̂t, an estimation of ft,

x̂t+1 = f̂t(Xm
t) (55)

Let’s make a brief remark on what makes KNN different from conventional
time-series modeling techniques. Conventional time-series modeling, known
as the Box-Jenkins approach, is a global model, which is concerned with the
estimation of the function, be it linear or non-linear, in the following form:

xt+1 = f(xt, xt−1, . . . , xt−m) + εt = f(Xm
t) + εt (56)

by using all of the information up to t – that is, Xm
s ∀s ≤ t – and the estimated

function f̂ is assumed to hold for every single point in time. As a result, what
will affect xt+1 most is its immediate past xt, xt−1, ... under the law of motion
estimated by all available samples.

For KNN, while what affects xt+1 most is also its immediate past, the law
of motion is estimated only with similar samples, not all samples. The esti-
mated function f̂t is hence assumed to only hold for that specific point in time.
Both KNN and SOM challenge the conventional Box-Jenkins methodology by
characterizing the hidden patterns in a different form. In their formulation,
hidden patterns are not characterized by time location, but by topological
trajectories.

Technical issues involved here are the choice of distance function
d(Xm

t ,Xm
s), choice of functional form ft, choice of the number of neighbors

k, and choice of the embedding dimension m.

2.8 Instance-Based Learning

KNN can be regarded as a special case of a broader class of algorithms,
known as instance-based learning (IBL). To see this, let us use the nota-
tions introduced in Sect. 2.6, and use the time series prediction problem as
an illustration.

Consider Eqn. (53). We have been given information regarding a time series
up to time t, and we wish to forecast the next by using the current m-history,
Xm

t . In SOM or KNN, we will first decide which cluster Xm
t belongs by check-

ing d(Xm
t ,Mj) for all j (j = 1, 2, . . . , k), and use the forecast model associated

with that cluster to forecast xt+1. In other words, forecasting models are
tailored to each cluster, say, f̂j (j = 1, 2, . . . , k).12 Then

x̂t+1 = f̂j∗(Xm
t), if j∗ = argmin

j
d(Xm

t ,Mj) j = 1, 2, . . . , k (57)

12 The notation f̂ is used, instead of f , to reserve f for the true relation, if it exists,
and in that case, f̂ is the estimation of f . In addition, there are variations when
constructing Eqn. (57) – see [44].

534 S.-H. Chen

KNN, however, does not have such established clusters Mj . Instead, it
forms a cluster based on each Xm

t , N (Xm
t), as follows.

N (Xm
t) = {s | Rank(d(Xm

t ,Xm
s)) ≤ k, ∀s < t} (58)

In other words, Xm
t itself serves as the centroid of a cluster, called the

neighborhood of Xm
t , N (Xm

t). It then invites its k nearest neighbors to be
the members of N (Xm

t) by ranking the distance d(Xm
t ,Xm

s) over the entire
community

{Xm
s | s < t} (59)

from the closest to the farthest.

Then, by assuming a functional relation, f , between xs+1 and Xm
s and

using only the observations associated with N (Xm
t) to estimate this function

ft,13 one can construct the tailor-made forecast for each xt,

x̂t+1 = f̂t(Xm
t) (60)

In practice, the function f used in Eqn. (60) can be very simple, either
taking the unconditional mean or the conditional mean. In the case of the lat-
ter, the mean is usually assumed to be linear. In the case of the unconditional
mean, one can simply use the simple average in the forecast,

x̂t+1 =

∑
s∈N (Xm

t) xs+1

k
(61)

but one can also take the weighted average based on the distance of each
member.

The same idea can be applied to deal with the linear conditional mean
(linear regression model): we can either take the ordinal least squares or the
weighted least squares.14

From the above description, we find that KNN is different from k-means
and SOM in the sense that, not just the forecasting function, but also the
cluster for KNN is tailor-made. This style of tailor-made learning is known
as lazy learning in the literature [2]. It is called ‘lazy’ because learning takes
place when the time comes to classify a new instance, say Xm

T+t, rather than
when the training set, Eqn. (49), is processed, say T .15

13 Even though the functional form is the same, the coefficients can vary depending
on Xm

t and its resultant N (Xm
t). Accordingly, we add a subscript t as ft to make

this time-variant property clear.
14 Details can be found in [78].
15 Note that a fixed T in Eqn. (49) implies a fixed training set without increments. A

non-incremental training set can be typical for using k-means or SOM. However,
KNN learning, also known as rote learning, memorizes everything that happens
up to the present; therefore, the ‘training set’ (memory) for KNN grows with
time.

Computational Intelligence in Agent-Based Computational Economics 535

To make this clear, consider two types of agents: the k-means agent and the
KNN agent. The k-means agent learns from the history before new instances
come, and the resultant knowledge from learning is represented by a set of
clusters, which is extracted from a set of historical instances. Based on these
clusters, some generalization pictures are already produced before the advent
of new instances, say Xm

T+t. The KNN agent, however, is not eager to learn.
While he does store every instance observed, he never tries to extract knowl-
edge (general rules) from them. In other words, he has the simplest form of
‘learning’, that is, rote learning (plain memorization). When the time T + t
comes and a new instance Xm

T+t is encountered, his memory is then searched
for the historical instances that most strongly resemble Xm

T+t.

As stated previously, KNN, as a style of rote learning, stores all the histor-
ical instances, as shown in Eqn. (59). Therefore, amounts of storage increase
with time. This may make the nearest-neighbor calculation unbearably slow.
In addition, some instances may be regarded as redundant with regard to the
information gained. This can be particularly the case when KNN is applied to
classification rather than regression or time series forecasting. For example,
if we are interested not in xt+1 itself, but in whether xt+1 will be greater
than xt – namely, whether xt will go up or go down, then some regions of the
instance space may be very stable with regard to class – for instance, up (1) or
down (0) – and just a few exemplars are needed inside stable regions. In other
words, we do not have to keep all historical instances or training instances.
The storage-reduction algorithm is then used to decide which instances in
Eqn. (59) to save and which to discard. This KNN with the storage-reduction
algorithm is called instance-based learning (IBL) and was initiated by [3].16

The addition of a storage-reduction algorithm to KNN is also interesting
from the perspectives of both neural sciences and economics. Considering the
brain with its limited capacity for memory, then an essential question to ask
is how the brain deals with increasing information by not memorizing all of it
or by forgetting some of it. How does it perform pruning? This is still a non-
trivial issue pursued by neural scientists today. The same issue can interest
economists as well, because it concerns the efficient use of limited space. A
recent study on reward-motivated memory formation by neural scientists may
provide an economic foundation for the memory formation [1].17

In this vein, the marginal productivity of the new instance in IBL can
be considered as the reward. The marginal productivity of an instance can

16 As a matter of fact, the storage-reduction algorithms are not just to deal with
the redundancy issue, but also the noise-tolerance issue. [3] distinguish the two
by calling the former memory updating functions, and the latter noise-tolerant
algorithms.

17 [1] report brain-scanning studies in humans that reveal how specific reward-related
brain regions trigger the brain’s learning and memory regions to promote memory
formation.

536 S.-H. Chen

be defined by its contribution to enhance the capability to perform a correct
classification. For those instances which have low marginal productivity, it will
be discarded (not remembered), and for those already stored instances, if their
classification performances are poor, they will be discarded, too (forgotten).
In this way, one can interpret the mechanism of the pruning algorithms or the
storage-reduction algorithms used in computational intelligence in the fashion
of neural economics.

3 Evolutionary Computation

The second important pillar of computational intelligence is so called evolu-
tionary computation (EC). EC uses Nature as an inspiration. While it also has
a long history of utilization in economics and finance, it is, relatively speaking,
the ‘new kid on the block’, as compared with neural networks, and even more
so with fuzzy logic. It has also drawn less attention from economists and finan-
cial analysts than the other two approaches. By comparison, there are already
about a dozen books or volumes on the economic and financial applications
using fuzzy logic and neural nets. In the area of EC, there are only three
volumes edited for economists and financiers [25,39,40]. Evolutionary compu-
tation is generally considered to be a consortium of genetic algorithms (GA),
genetic programming (GP), evolutionary programming (EP) and evolutionary
strategies (ES).

The history of evolutionary computation can be traced back to the mid-
1960s, where evolutionary strategies were originated by Rechenberg [129],
Schwefel [134] and Bienert at the Technical University of Berlin. The develop-
ment of genetic algorithms started with Holland at the University of Michigan,
and evolutionary programming was originated by Fogel [80] at the University
of California at Los Angeles.18 Despite their non-trivial differences, they share
the common structure shown in Fig. 4.

Evolutionary computation starts with an initialization of a population of
individuals (solution candidates), called P (0), with a population size to be
supplied by the users. These solutions will then be evaluated based on an
objective function or a fitness function determined by the problem of interest.
Continuation of the procedure will hinge on the termination criteria supplied
by the users. If these criteria are not met, then we move to the next stage or
generation by adding 1 to the time counter (t → t + 1). Two major opera-
tors are conducted to form the new generation, which can be regarded as a
correspondence, as follows,

Fs2 ◦ Fa ◦ Fs1(P (t)) = P ((t + 1)) (62)

where Fs1 and Fs2 denotes selection, and Fa denotes alteration.
18 For a description of the birth of EC, see [75], [79], and [135].

Computational Intelligence in Agent-Based Computational Economics 537

begin

 t := 0;

 Initialize P(t);

 evaluate P(t);

while not terminating do

begin

M(t) := select-mates(P(t));

O(t) := alternation(M(t));

 evaluate(O(t));

 P(t+1) := select(O(t) P(t));

 t := t+1;

end

end

Fig. 4. Evolutionary computation (EC) pseudo-algorithm

The main purpose of the first-stage selection, Fs1 , is to form a mating pool
(a collection of parents), M(t), which can in turn be used to breed the new
generation:

Fs1(P (t)) = M(t). (63)

Once the mating pool is formed, Fa is applied to generate offspring, O(t),
from these parents. Two major steps (genetic operators) are involved here,
namely, recombination (crossover), denoted by Fr, and mutation, denoted by
Fm, which shall be described in detail later.

Fa(M(t)) = Fm ◦ Fr(M(t)) = O(t). (64)

These offspring will be first evaluated, then enter the second-stage selection
with or without their parents P (t). Finally, the new generation P (t + 1) is
formed as a result of the second-stage selection.

Fs2 (O(t) ∪ P (t)) = P ((t + 1)). (65)

After that, we go back to the beginning of the loop, and then check the
termination criteria to see whether to stop or to start another generation of
runs – see Fig. 5 for the evolution loop.

Based on the description above, it is perhaps beneficial to have the
seven major components of evolutionary algorithms listed as follows for quick
reference:

1. individuals and their representations,
2. initialization,
3. fitness evaluation,
4. selection,

538 S.-H. Chen

loop

select mating partners

recombinate

mutate

evaluate

 select

(terminate)

evaluate

initialize population

Fig. 5. The evolutionary loop

5. mutation,
6. recombination,
7. replacement.

3.1 Evolutionary Strategies

We shall illustrate each of these components mainly within the context of evo-
lutionary strategies. Individuals are also called chromosomes. The individual
in ES is represented as a pair of real-valued vectors v = (x, σ), where the x
represent a point in the solution space, and σ is a standard deviation vector
that determines the mutation step size. Generally, σ is also called the strategy
parameter in ES, and x is called the object variable.

The ES population size of is usually characterized by two parameters µ
and λ. The former is the population size of P (t), whereas the later is the
population size of O(t). Selection of Fs1 is much more straightforward in ES
than in GA. Usually, it takes the whole P (t) as the mating pool and parents
are randomly selected therein. However, selection of Fs2 in ES can be more
intriguing. There are two Fs2 schemes in ES, known as the (µ + λ) (Plus)
scheme and the (µ, λ) (Comma) scheme. In the (µ + λ) scheme, µ individuals
produce λ offspring, and a new population is formed by selecting µ individuals
from µ+λ. In the (µ, λ) scheme, µ individuals produce λ offspring, and a new
population is formed by selecting µ individuals from the λ offspring. There
is generally no constraint for µ and λ for the (µ + λ) scheme, but for the

Computational Intelligence in Agent-Based Computational Economics 539

(µ, λ) scheme, to make selection meaningful, µ has to be strictly less than λ;
moreover, λ/µ ≈ 7 is an ideal ratio.

Mutation is considered the major ES operator for altering chromosomes.
Mutation is applied to this individual to perturb real-valued parameters. If
we let v be the parent randomly selected from P (t), then mutation on v can
be described as follows:

v′ = (x′, σ′) = (fmx(x), fmσ (σ)) (66)

where

fmx(x) = x + N(0, (σ′)2) (67)

and

fmσ (σ) = σ exp(τN(0, 1)) (68)

N(0, σ2) denotes the normal distribution with mean 0 and variance σ2.19

Notice that in implementation, Eqn. (68) has to be computed before Eqn. (67).
This is because x′ is obtained by mutating x with the new standard deviation
σ′.20

Recombination operators compose new chromosomes from corresponding
parts of two or more chromosomes. For the binary case, two chromosomes
v1 = (x1, σ

2
1) and v2 = (x2, σ

2
2) are to be recombined by an operator fr. We

can describe the composition of a new chromosome v′ as follows:

v′ = (x′, σ′) = (frx(x1, x2), frσ(σ2
1 , σ2

2 ,)) (69)

Each element of the object and strategy parameter is a recombination of
the respective entries v1 and v2. There is great variation of frx and frσ . In the
ES literature, they are differentiated by the terms discrete or intermediate,
dual (sexual) or global (panmictic). With a discrete recombination function,
one of the corresponding components is chosen at random and declared the
new entry. With an intermediate recombination, a linear combination of the
corresponding components is declared the new entry. More formally, consider
x′ as an example:

x′ =
{

x1 or x2 discrete
χx1 + (1− χ)x2 intermediate

(70)

where χ ∈ [0, 1] denotes a uniform random variable.
19 Here, for simplicity, we assume that x is a real-valued number. In a more general

setting, the variable x can be a vector; in that case, σ should be replaced by the
variance-covariance matrix Σ.

20 In Eqn. (67), (σ′)2 is determined randomly. There is, however, some way to make
it adaptive. For example, in the (1 + 1)-ES case, one has the famous 1/5-success
rule. (σ′)2 can also be determined in a self-adaptive way. In that case, the learning
rate τ can be set as a function of time. For details, see [135].

540 S.-H. Chen

So far we have only considered a one-dimensional x. An n-dimensional
x can further complicate the recombination function, and that is where the
terms dual and global come from. Dual means that two parents are chosen
at random for the creation of the offspring. Global means that one parent is
chosen anew for each component of the offspring.

x′
i =

⎧⎪⎪⎨
⎪⎪⎩

x1,i or x2,i discrete, dual
x1,i or x(2),i discrete, global
χx1,i + (1− χ)x2,i intermediate, dual
χx1,i + (1− χ)x(2),i intermediate, global

(71)

where x(2),i indicates that parent 2 is chosen anew for each vector component
i, (i = 1, 2, . . . , n).

3.2 Evolutionary Programming

While evolutionary programming (EP) was proposed about the same time as
evolutionary algorithms, their initial motives were quite different. Evolution-
ary strategies were developed as a method to solve parametric optimization
problems, whereas evolutionary programming was developed as a method
to simulate intelligent behavior. Lacking a capability to predict, an agent
cannot adapt its behavior to meet the desired goals, and success in pre-
dicting an environment is a prerequisite for intelligent behavior. As Fogel
puts it:

“Intelligent behavior is a composite ability to predict one’s environ-
ment coupled with a translation of each prediction into a suitable
response in the light of some objective”. ([82]: 11)

During the early stage, the prediction experiment can be illustrated with
a sequence of symbols taken from a finite alphabet, say, a repeating sequence
‘(101110011101)∗’ from the alphabet {0, 1}. The task then is to create an
algorithm that would operate on the observed indexed set of symbols and
produce an output symbol that agrees with the next symbol to emerge from
the environment. Fogel took finite state automata (FSA) as the machine to
predict the sequence. A FSA is a device which begins in one state and upon
receiving an input symbol, changes to another state according to its current
state and the input symbol. EP was first proposed to evolve a population of
finite state machines that provides successively better predictions.

3.3 Genetic Programming and Genetic Algorithms

While genetic programming has been applied to economic modeling for more
than half a decade, its relevance to the nature of economics has not been fully
acknowledged. In the most sympathetic situations, it is regarded as nothing

Computational Intelligence in Agent-Based Computational Economics 541

but alchemy. In unsympathetic situations, it is notorious for its black-box oper-
ation. Sometimes, the process and results are so complicated that economists
can hardly consider it relevant and interesting. This Section is intended to
deliver a simple but strong message: genetic programming is not just another
fancy technique exploited by the unorthodox, but could be a faithful language
to express the essence of economics. In particular, it provides evolutionary
economists with a way to substantiate some features which distinguish them
from mainstream economists.

An Evolving Population of Decision Rules

Let’s start from the most fundamental issue: why is genetic programming
relevant? Lucas provided a notion of an economic agent.

“In general terms, we view or model an individual as a collection
of decision rules (rules that dictate the action to be taken in given
situations) and a set of preferences used to evaluate the outcomes aris-
ing from particular situation-action combinations”. [114]: 217 (italics
added)

Immediately after this static description of an economic agent, Lucas
described an adaptive (evolutionary) version:

“These decision rules are continuously under review and revision: new
decision rules are tried and tested against experience, and rules that
produce desirable outcomes supplant those that do not”. (Ibid: 217).

So, according to Lucas, the essence of an economic agent is a collection of
decision rules which are adapting (evolving) based on a set of preferences. In
short, it is the idea of an ‘evolving population’.

Suppose that an evolving population is the essence of the economic agent,
then it seems important to know whether we economists know any operational
procedure to substantiate this essence. Back in 1986, the answer was abso-
lutely ‘no’. That certainly does not mean that we did not know anything about
evolving decision rules. On the contrary, since the late 1970s, the literature
known as ‘bounded rationality in macroeconomics’ has introduced a number of
techniques to evolve a single decision rule (a single equation or a single system
of equations): recursive regression, Kalman filtering, and Bayesian updating,
to name a few; [132] made an extensive survey of this subject. However, these
techniques shed little light on how to build a Lucasian agent, especially since
what we wanted to evolve was not a single decision rule but a population of
decision rules.

In fact, it may sound a little surprising that economists in those days rarely
considered an individual as a population of decision rules, not to mention
attending to the details of its evolution. Therefore, all the basic issues per-
taining to models of the evolving population received little, if any, attention.

542 S.-H. Chen

For example, how does the agent initialize a population of decision rules?
Once the agent has a population of decision rules, which one should they fol-
low? Furthermore, in what ways should this population of decision rules ‘be
continuously under review and revision’? Should we review and revise them
one by one because they are independent, or modify them together because
they may correlate with each other? Moreover, if there are some ‘new decision
rules to be tried’, how do we generate (or find) these new rules? What are
the relations between these new rules and the old ones? Finally, it is also not
clear how ‘rules that produce desirable outcomes should supplant those that
do not.’

There is one way to explain why economists are not interested in, and hence
not good at, dealing with a population of decision rules: economists used to
derive the decision rule for the agent deductively, and the deductive approach
usually leads to only one solution (decision rule), which is the optimal one.
There was simply no need for a population of decision rules.

Genetic Algorithms and Classifier Systems

We do not know exactly when or how the idea of the evolving population
of decision rules began to attract economists, but Holland’s contribution to
genetic algorithms definitely exerted a great influence. Genetic algorithms
simulate the biological evolution of a society of computer programs, each of
which is represented by a chromosome or, normally, a string of binary ones
and zeros. Each of these computer programs can be matched to a solution to
a problem. This structure provides us with an operational procedure of the
Lucasian agent. First, a collection of decision rules are now represented by a
society of computer programs (a society of strings of binary ones and zeros).
Second, the review and revision process is implemented as a process of natural
selection.

While genetic algorithms have had a great impact on computer science,
mathematics, and engineering since the early 1980s, their implications for
social sciences were not acknowledged until the late 1980s. In 1987, Axelrod, a
political scientist at the University of Michigan, published the first application
of the GA to the social sciences [21]. A year later, the first PhD dissertation
that applied GAs to the social sciences was completed by John Miller from,
not surprisingly, the University of Michigan. The issue addressed by Axelrod
and Miller is the well-known repeated prisoner’s dilemma. In addition to these
two early publications, perhaps the most notable event that brought GAs
into economics was the invited speech by John Holland at an economic con-
ference at the Santa Fe Institute in the autumn of 1987. Among the audience
were some of the most prestigious contemporary economists, including Ken-
neth Arrow, Thomas Sargent, Hollis Chenery, Jose Scheinkman, and Brian
Arthur. In his lecture entitled ‘The global economy as an adaptive process’,

Computational Intelligence in Agent-Based Computational Economics 543

Holland introduced to the economics circle the essence of genetic algorithms
as ‘building blocks’.

A building block refers to the specific pattern of a chromosome – that is, an
essential characteristic of a decision rule. There is a formal word for this in the
genetic algorithm; it is called a schema. In the genetic algorithm, a schema
is regarded as the basic unit of learning, evolution, and adaptation. Each
decision rule can be defined as a combination of some schemata. The review
and revision process of decision rules is nothing more than a search for the
right combination of those, possibly infinite, schemata. To rephrase Lucas’s
description in Holland’s words, “economic agents are constantly revising and
rearranging their building blocks as they gain experience”. Not only do genetic
algorithms make the Lucasian economic agent implementable, but they also
enrich its details.

After a gradual spread and accumulation of knowledge about GA among
economists, modeling economic agents with an evolving population of deci-
sion rules finally began to increase in the 1990s. To the best of this author’s
knowledge, the first refereed journal article was [117]. This paper is follow-up
research to that of [100]. In a simple barter economy, Kiyotaki and Wright
found that low storage costs are not the only reason why individuals use
money. The other one is that money makes it easier to find a suitable partner.
Replacing the rational agents in the Kiyotaki-Wright environment with arti-
ficially intelligent agents, [117], however, found that goods with low storage
costs play the dominating role as a medium of exchange.

The population of decision rules used to model each agent is a classifier
system, another contribution made by Holland in the late 1970s. A classifier
system is similar to the Newell-Simon type expert system, which is a popula-
tion of if..then or condition-action rules. However, the classical expert system
is not adaptive. What Holland did with the classifier system was to apply
the idea of competition in the market economy to a society of if..then rules.
Market-like competition is implemented by way of a formal algorithm known
as the bucket-brigade algorithm, credit rules generating good outcomes and
debit rules generating bad outcomes. This accounting system is further used
to resolve conflicts among rules. The shortcoming of the classifier system is
that it cannot automatically generate or delete rules. Nonetheless, by adding a
genetic algorithm on top of the bucket brigade and rule-based system, one can
come up with something similar to a Lucasian agent, which not only learns
from experience, but can be spontaneous and creative.

While Holland’s version of the adaptive agent is much richer and more
implementable than the Lucasian economic agent, and the work was already
completed before the publication of [91], its formal introduction to economists
came five years after the publication of [114]. In 1991, Holland and Miller
published a sketch of the artificial adaptive agent in the highly influential
journal American Economic Review. The first technique to implement the

544 S.-H. Chen

Lucasian economic agent was finally ‘registered’ in economics, and genetic
algorithms and classifier systems were formally added to economic analysts’
toolkits. Is five years too long? Maybe not, given that ‘Economic analysis
has largely avoided questions about the way in which economic agents make
choices when confronted by a perpetually novel and evolving world’ ([92]: 365).

What’s next? If the Lucasian economic agent is a desirable incarnation
of the economic agent in economic theory, and if Holland’s artificial adaptive
agent is indeed an effective implementation of it, then follow-up research can
proceed in three directions: first, novel applications of this new technology,
second, theoretical justifications, and finally, technical improvements to it.
That is exactly what we experienced during the 1990s.

For the first line of research, Jasmina Arifovic, a student of Sargent’s,
finished the first PhD dissertation that applied GAs to macroeconomics in
1991. It was not until 1994, however, that she published her work as a journal
article. [10] replaced the rational representative firm in the cobweb model
with Holland’s adaptive firms, and demonstrated how the adaptation of firms,
driven by market forces (natural selection), collectively make the market price
converge to the rational-expectations equilibrium price. Since then, a series
of her papers has been published in various journals with a range of new
application areas, including inflation [11], exchange rates [12] and coordination
games [15].

Santa Fe Institute (SFI) Economics

Although Holland introduced this powerful toolkit to economists, he did not
conduct any economic research with this toolkit himself, except for some joint
work with Brian Arthur. Holland and Arthur met in September 1987 at a
physics and economics Workshop hosted by the Santa Fe Institute. They had
a great conversation on the nature of economics. The chess analogy proposed
by Arthur led Holland to believe that the real problem with economics is “how
do we make a science out of imperfectly smart agents exploring their way into
an essentially infinite space of possibilities?” [152]: 151. On the other hand,
Arthur was impressed by Holland’s approach to complex adaptive systems.
Holland’s ideas of adaptation, emergence, and perpetual novelty, along with
other notions, offered illuminating revelations to Arthur – insights he could
never have had gained if he had confined himself to theorizing on equilibria.

This new vision of economics turned out to be the approach of the Santa
Fe Institute when it established its economics program in 1988. The essence of
the SFI economics was well documented by [19]. Instead of explaining genetic
algorithms and classifier systems, which [92] had already done, this paper put
a great emphasis on motivation. Arthur eloquently argued why the deductive
approach should give way to the inductive approach when we are dealing with
a model of heterogeneous agents. His paper thus built the microfoundation

Computational Intelligence in Agent-Based Computational Economics 545

of economics upon agents’ cognitive processes, such as pattern recognition,
concept formation, and hypothesis formulation and refutation. Arthur then
showed how the dynamics of these cognitive processes can be amenable to
analysis with Holland’s toolkit.

Maybe the best project to exemplify the SFI approach to economics is the
artificial stock market. This research project started in 1988. Despite progress
made in 1989, journal articles documenting this research were not available
until 1994. [127] first built their stock market from a standard asset pricing
model [89]. They then replaced the rational representative agent in the model
with Holland’s artificial adaptive agents, and then simulated the market.

For Arthur, the relevance of genetic algorithms to economics is much more
than just strengthening the rational expectations equilibrium. He would like
to see how one can use this tool to simulate the evolution of a real economy,
such as the emergence of barter trading, money, a central bank, labor unions,
and even Communism. However, he understood that one should start with a
more modest problem than building a whole artificial economy, and this led
to the artificial stock market.

Given this different motive, it is also interesting to see how SFI economists
programmed agents in their models, and, given their coding or programming,
how complex their agents can evolve to be. [127] also used the standard ternary
string to code different types of trading rules frequently used by financial
market traders. Each bit of a string was randomly drawn from the ternary
alphabet {0, 1, ∗}. Each bit corresponds to the condition part of a single trad-
ing rule. For example, the condition part of a double moving average rule
could be ‘The 20-period moving average of price is above the 100-period mov-
ing average.’ The appropriate bit is 1 if the condition is true, and 0 if it is
false. They typically used strings of 70-80 symbols – that is, the same as the
number of trading rules. This defines a search space of between 370 and 380

possible non-redundant classifiers. However, each artificial trader has only 60
classifiers in their own classifier system. Consider a case with 100 comput-
erized traders: there are at most 6000 different rules being evaluated in one
single trading run. Compared with the size of the search space, the number
of rules is infinitesimal.

This rather large search space is certainly beyond what [19] called the
problem complex boundary, a boundary beyond which arriving at the deductive
solution and calculating it are unlikely or impossible for human agents, and
this is where the SFI stock market comes into play. It provides the right place
to use genetic algorithms and a great opportunity to watch evolution. As
depicted by [19]: 24

“We find no evidence that market behavior ever settles down; the
population of predictors continually co-evolves. One way to test this
is to take agents out of the system and inject them in again later on.

546 S.-H. Chen

If market behavior is stationary they should be able to do as well in
the future as they are doing today. But we find that when we ‘freeze’
a successful agent’s predictors early on and inject the agent into the
system much later, the formerly successful agent is now a dinosaur.
His predictions are unadapted and perform poorly. The system has
changed. From our vantage point looking in, the market – the ‘only
game in town’ on our computer – looks much the same. But internally
it co-evolves and changes and transforms. It never settles.”

Maybe the real issue is not whether GAs are used to strengthen the idea of
REE, or to simulate artificial life, but how we program adaptive agents. This is
crucial because different programming schemes may lead to different results.
As Hahn pointed out, while there is only one way to be perfectly rational,
there are an infinite number of ways to be partially rational ([152]: 250–251).
This unlimited ‘degree of freedom’ of programming adaptive agents was also
noticed by [132]: 2

“This area is wilderness because the researcher faces so many choices
after he decides to forgo the discipline provided by equilibrium
theorizing.”

Arthur would consider letting the agents start off ‘perfectly stupid’, and
become smarter and smarter as they learn from experience. Now comes the
core of the issue: how to program agents so that they can be initialized as
perfectly stupid individuals, but can potentially get very smart. To answer
this question, let us go back to the origin of genetic algorithms.

List Programming (LISP)

It is interesting to note that the binary strings initiated by Holland were orig-
inally motivated by an analogy to machine codes. After decoding, they can be
computer programs written in a specific language, say, LISP or FORTRAN.
Therefore, when a GA is used to evolve a population of binary strings, it
behaves as if it is used to evolve a population of computer programs. If a
decision rule is explicit enough not to cause any confusion in implementation,
then one should be able to write it in a computer program. It is the popula-
tion of computer programs (or their machine codes) which provides the most
general representation of the population of decision rules. However, the equiva-
lence between computer programs and machine codes breaks down when what
is coded is the parameters of decision rules rather than decision rules (pro-
grams) themselves, as we often see in economic applications with GAs. The
original meaning of evolving binary strings as evolving computer programs is
lost.

The gradual loss of the original function of GAs has finally been noticed
by Koza [104]. He chose the language LISP as the medium for the programs

Computational Intelligence in Agent-Based Computational Economics 547

created by genetic programming (GP) because the syntax of LISP allows
computer programs to be manipulated easily like the bit strings in GAs, so
that the same genetic operations used on bit strings in GAs can also be applied
to GP.

LISP S-expressions consist of either atoms or lists. Atoms are either mem-
bers of a terminal set, that comprise the data (for example, constants and
variables) to be used in the computer programs, or members of a function
set that consists of a number of pre-specified functions or operators that are
capable of processing any data value from the terminal set and any data value
that results from the application of any function or operator in the function
set. Lists are collections of atoms or lists, grouped within parentheses. In the
LISP language, everything is expressed in terms of operators operating on
some operands. The operator appears as the leftmost element in the paren-
theses and is followed by its operands and a closing (right) parenthesis. For
example, the S-expression (+X 3) consists of three atoms: from the left-most
to right-most they are the function ‘+’, the variable X and the constant 3.
As another example, (×X (−Y 3)) consists of two atoms and a list. The two
atoms are the function ‘×’ and the variable ‘X ,’ which is then followed by the
list (−Y 3).

LISP was invented in the late 1950s by John McCarthy at MIT as a formal-
ism for reasoning about the use of certain kinds of logical expressions, called
recursion equations. LISP possesses unique features that make it an excel-
lent medium for complex compositions of functions of various types, handling
hierarchies, recursion, logical functions, self-modifying computer programs,
self-executing computer programs, iterations, and structures whose size and
shapes are dynamically determined. The most significant of these features is
the fact that LISP descriptions of processes (routines) can themselves be repre-
sented and manipulated as LISP data (subroutines). As Koza demonstrated,
LISP’s flexibility in handling procedures as data makes it one of the most
convenient languages in existence for exploring the idea of evolving computer
programs genetically [104]. However, Koza and others have noted that the
use of LISP is not necessary for genetic programming; what is important for
genetic programming is the implementation of a LISP-like environment, where
individual expressions can be manipulated like data, and are immediately
executable.

Symbolic Regression

The distinguishing feature of GP is manifested by its first type of applica-
tion in economics, known as symbolic regression. In symbolic regression, GP
is used to discover the underlying data-generation process of a series of obser-
vations. While this type of application is well known to econometricians, the
perspective from GP is novel. As Koza stated,

548 S.-H. Chen

“An important problem in economics is finding the mathematical
relationship between the empirically observed variables measuring a
system. In many conventional modeling techniques, one necessarily
begins by selecting the size and shape of the model. After making this
choice, one usually then tries to find the values of certain coefficients
required by the particular model so as to achieve the best fit between
the observed data and the model. But, in many cases, the most impor-
tant issue is the size and shape of the model itself.” [105]: 57 (italics
added)

Econometricians offer no general solution to the determination of size and
shape (the functional form), but for Koza, finding the functional form of the
model can be viewed as searching a space of possible computer programs for
the particular computer program which produces the desired output for given
inputs.

Koza employed GP to rediscover some basic physical laws from experimen-
tal data, for example, Kepler’s third law and Ohm’s law [104]. He then also
applied it to eliciting a very fundamental economic law, namely, the quantity
theory of money or the exchange equation [105]. Genetic programming was
thus formally demonstrated as a knowledge discovery tool. This was probably
the closest step ever made toward the original motivation of Holland’s inven-
tion: ‘Instead of trying to write your programs to perform a task you don’t
quite know how to do, evolve them.’ Indeed, Koza did not evolve the param-
eters of an arbitrary chosen equation; instead, he evolved the whole equation
from scratch. This style of application provides an evolutionary determination
of bounded rationality.

Koza motivated a series of economic applications of genetic programming
in the mid-1990s [105]. Chen and Yeh applied genetic programming to redis-
covering the efficient market hypothesis in a financial time series [52]. They
then moved one step forward to propose an alternative formulation of the
efficient market hypothesis in the spirit of the Kolmogorov complexity of
algorithms for pattern extraction from asset price data [54]. [54] and [141]
employed GP to discover the underlying chaotic laws of motion of time series
data. [6] and [123] also adopted a GP approach to discover profitable tech-
nical trading rules for the foreign exchange market and the stock market,
respectively. Another area in which GP was actively applied is option pric-
ing. [61] used GP for hedging derivative securities. [98] showed that genetically
determined formulas outperformed most frequently quoted analytical approx-
imations in calculating the implied volatility based on the Black-Scholes
model. [65] and [99] derived approximations for calculating option prices and
showed that GP-models outperformed various other models presented in the
literature.

Needless to say, one can expect many more applications of GP to the auto-
matic discovery of economic and financial knowledge (automatic generation

Computational Intelligence in Agent-Based Computational Economics 549

of economic and financial knowledge in terms of their computer-programmed
representations). However, its significant contribution to economics should
not be mistaken for a perfect solution to knowledge discovery, data mining,
or, more generally, function optimization. In a nutshell, genetic programming
should be used to grow evolving hierarchies of building blocks (subroutines) –
the basic units of learning and information, from an immense space of subrou-
tines. All evolution can do is look for improvements, not perfection. Holland
believed that these evolving hierarchies are generic in adaptation, and can
play a key role in understanding human learning and adaptive processes.

4 Agent-Based Economic Simulations with CI

In this Section, we shall review the applications of CI to ACE. Given the
size limitations, it is impossible to give an exhaustive survey here. We can
therefore only review a few selected areas which we consider most represen-
tative and characterize the early development of the literature. We shall give
a macroscopic view of the literature in Sects. 5.1 and 5.2, and introduce some
most recent developments, which point to the future research, in Sect. 5.3.

4.1 The Cobweb Model

The cobweb model is a familiar playground in which to investigate the effects
of production decisions on price dynamics. In this model consumers base their
decisions on the current market price, but producers decide how much to
produce based on the past prices. Agricultural commodities serve as a good
example of the cobweb model. This model plays an important role in macroe-
conomics, because it is the place in which the concept ‘rational expectations’
originated [121]. Moreover, it is also the first neo-classical macroeconomic
prototype to which an agent-based computational approach was applied [10].
This Section will first briefly formulate the cobweb model and then review the
work on agent-based modeling of the cobweb model.

Consider a competitive market composed of n firms which produce the
same goods by employing the same technology and which face the same cost
function described in Eqn. (72):

ci,t = xqi,t +
1
2
ynq2

i,t (72)

where qi,t is the quantity supplied by firm i at time t, and x and y are the
parameters of the cost function. Since at time t− 1, the price of the goods at
time t, Pt, is not available, the decision about optimal qi,t must be based on
the expectation (forecast) of Pt – that is, P e

i,t. Given P e
i,t and the cost function

ci,t, the expected profit of firm i at time t can be expressed as follows:

πe
i,t = P e

i,tqi,t − ci,t (73)

550 S.-H. Chen

Given P e
i,t, qi,t is chosen at a level such that πe

i,t can be maximized and,
according to the first-order condition, is given by

qi,t =
1
yn

(P e
i,t − x) (74)

Once qi,t is decided, the aggregate supply of the goods at time t is fixed
and Pt, which sets demand equal to supply, is determined by the demand
function:

Pt = A−B

n∑
i=1

qi,t (75)

where A and B are parameters of the demand function.

Given Pt, the actual profit of firm i at time t is:

πi,t = Ptqi,t − ci,t (76)

The neo-classical analysis simplifies the cobweb model by assuming the
homogeneity of market participants – in other words, a representative agent.
In such a setting, it can be shown that the homogeneous rational expectations
equilibrium price (P ∗) and quantity (Q∗) are ([53]: 449):

P ∗
t =

Ay + Bx

B + y
; Q∗

t =
A− x

B + y
(77)

CI in the Agent-Based Cobweb Model

The neo-classical analysis based on homogeneous agents provides us with
a limited understanding of the price dynamics or price instability in a real
market, since firms’ expectations of the prices and the resultant production
decisions in general must be heterogeneous. Using genetic algorithms to model
the adaptive behavior of firms’ production, Arifovic gave the first agent-based
model of the cobweb model [10] . She applied two versions of GAs to this
model. The basic GA involves three genetic operators: reproduction, crossover,
and mutation. Arifovic found that in each simulation of the basic GA, indi-
vidual quantities and prices exhibited fluctuations for its entire duration and
did not result in convergence to the rational expectations equilibrium values,
which is quite inconsistent with experimental results with human subjects.

Arifovic’s second GA version – the augmented GA – includes the election
operator in addition to reproduction, crossover, and mutation. The election
operator involves two steps. First, crossover is performed. Second, the poten-
tial fitness of the newly-generated offspring is compared with the actual fitness
values of its parents. Among the two offspring and two parents, the two high-
est fitness individuals are then chosen. The purpose of this operator is to
overcome difficulties related to the way mutation influences the convergence

Computational Intelligence in Agent-Based Computational Economics 551

process, because the election operator can bring the variance of the population
rules to zero as the algorithm converges to the equilibrium values.

The results of the simulations show that the augmented GA converges
to the rational expectations equilibrium values for all sets of cobweb model
parameter values, including both stable and unstable cases, and can cap-
ture several features of the experimental behavior of human subjects better
than other simple learning algorithms. To avoid the arbitrariness of choice
of an adaptive scheme, [114] suggested that comparison of the behavior of
adaptive schemes with behavior observed in laboratory experiments with
human subjects can facilitate the choice of a particular adaptive scheme. From
this suggestion, the GA could be considered an appropriate choice to model
learning agents in a complex system.

The application of genetic programming to the cobweb model started
from [53], who compared the learning performance of GP-based learning
agents with that of GA-based learning agents. They found that, like GA-based
learning agents, GP-based learning agents also can learn the homogeneous
rational expectations equilibrium price under both the stable and unstable
cobweb case. However, the phenomenon of ‘price euphoria’, which did not
happen in [10], does show up quite often at the early stages of the GP experi-
ments. This is mainly because agents in their setup were initially endowed with
very limited information as compared to [10]. Nevertheless, GP-based learning
can quickly coordinate agents’ beliefs so that the emergence of price euphoria
is only temporary. Furthermore, unlike [10], Chen and Yeh did not use the
election operator. Without the election operator, the rational expectations
equilibrium is exposed to potentially persistent perturbations due to agents’
adoption of the new, but untested, rules. However, what shows up in [53] is
that the market can still bring any price deviation back to equilibrium. There-
fore, the self-stabilizing feature of the market, known as the ‘invisible hand’,
is more powerfully replicated in their GP-based artificial market.

The self-stabilizing feature of the market demonstrated in [53] was fur-
thered tested with two complications. In the first case, [55] introduced a
population of speculators to the market and examined the effect of specu-
lations on market stability. In the second case, the market was perturbed
with a structural change characterized by a shift in the demand curve; [57]
then tested whether the market could restore the rational expectations equi-
librium. The answer to the first experiment is generally negative, namely that
speculators do not enhance the stability of the market; on the contrary, they
destabilize the market. Only in special cases when trading regulations – such
as the transaction cost and position limit – were tightly imposed could spec-
ulators enhance the market stability. The answer for the second experiment
is, however, positive. Chen and Yeh showed that GP-based adaptive agents
could detect the shift in the demand curve and adapt to it [57]. Nonetheless,
the transition phase was non-linear and non-smooth; one can observe slumps,

552 S.-H. Chen

crashes, and bursts in the transition phase. In addition, the transition speed
is uncertain. It could be fast, but could be slow as well.

This series of studies on the cobweb model enriches our understanding of
the self-stabilizing feature of the market. The market has its limit, beyond
which it can become unstable with crazy fluctuations. However, imposing
trading regulations may relax the limit and enhance market stability. One is
still curious to know where the self-stabilizing capability comes from in the
first place. Economists have known for a long time that it comes from the
free competition principle, or the survival-of-the-fittest principle. In GA or
GP, this principle is implemented through selection pressure. Chen studied
the role of selection pressure by replacing the usual proportionate selection
scheme with the one based on the approximate uniform distribution, showing
that if selection pressure is removed or alleviated, then the self-stabilizing
feature is lost [37]. In a word, selection pressure plays the role of the invisible
hand in economics.

It is interesting to know whether the time series data generated by the
artificial market can replicate some dynamic properties observed in the real
market. [46] and [57] started the analysis of the time series data generated
from the artificial market. The time series data employed was generated by
simulating the agent-based cobweb model with the presence of speculators.
It was found that many stylized features well documented in financial econo-
metrics can in principle be replicated from GP-based artificial markets, which
include leptokutosis, non-IIDness, and volatility clustering. Furthermore, [57]
performed a CUSUMSQ test, a statistical test for structural change, on the
data. The test indicated the presence of structural changes in the data, which
suggested that the complex interaction process of these GP-based producers
and speculators can even generate endogenous structural changes.

4.2 Overlapping Generations Models

While there are several approaches to introducing dynamic general equilibrium
structures to economics, the overlapping generations model (hereafter, OLG)
may be regarded as the most popular one in current macroeconomics. Over
the last two decades, the OLG model has been extensively applied to studies
of savings, bequests, demand for assets, prices of assets, inflation, business
cycles, economic growth, and the effects of taxes, social security, and budget
deficits. In the following, we shall first give a brief illustration of a simple OLG
model of inflation, a two-period OLG model.

Two-Period OLG Model

A simple OLG model can be described as follows. It consists of overlapping
generations of two-period-lived agents. At time t, N young agents are born.
Each of them lives for two periods (t, t+1). At time t, each of them is endowed

Computational Intelligence in Agent-Based Computational Economics 553

with e1 units of a perishable consumption good, and with e2 units at time
t + 1 (e1 > e2 > 0). Presumably e1 is assumed to be greater than e2 in order
to increase the likelihood (but not ensure) that agents will choose to hold
money from period 1 to 2 so as to push value forward. An agent born at time
t consumes in both periods. Term c1

t is the consumption in the first period (t),
and c2

t the second period (t+1). All agents have identical preference given by

U(c1
t , c

2
t) = ln(c1

t) + ln(c2
t) (78)

In addition to perishable consumption goods, there is an asset called money
circulating in the society. The nominal money supply at time t, denoted by
Ht, is exogenously determined by the government and is held distributively
by the old generation at time t. For convenience, we shall define ht to be Ht

N –
in other words, the nominal per capita money supply.

This simple OLG gives rise to the following agent’s maximization problem
at time t:

max
(c1

i,t,c2
i,t)

ln(c1
i,t) + ln(c2

i,t)

such that c1
i,t +

mi,t

Pt
= e1, c2

i,t = e2 +
mi,t

Pt+1
(79)

where mi,t represents the nominal money balances that agent i acquires at
time period t and spends in time period t + 1, and Pt denotes the nominal
price level at time period t. Since Pt+1 is not available at period t, what agents
actually can do is to maximize their expected utility E(U(c1

t , c
2
t)) by regarding

Pt+1 as a random variable, where E(.) is the expectation operator. Because
of the special nature of the utility function and budget constraints, the first-
order conditions for this expected utility maximization problem reduce to the
certainty equivalence form:

c1
i,t =

1
2
(e1 + e2πe

i,t+1) (80)

where πe
i,t+1 is agent i’s expectation of the inflation rate πt+1(≡Pt+1

Pt
). This

solution tells us the optimal decision of savings for agent i given her expecta-
tion of the inflation rate, πe

i,t+1.

Suppose the government deficit Gt is all financed through seignorage and
is constant over time (Gt = G). We can then derive the dynamics (time series)
of nominal price {Pt} and inflation rate {πt} from Eqn. (80). To see this, let
us denote the savings of agent i at time t by si,t. Clearly,

si,t = e1 − c1
i,t (81)

From Eqn.(79), we know that

mi,t = si,tPt, ∀i, t (82)

554 S.-H. Chen

In equilibrium, the nominal aggregate money demand must equal nominal
money supply, namely,

N∑
i=1

mi,t = Ht = Ht−1 + GPt, ∀t (83)

The second equality says that the money supply at period t is the sum of the
money supply at period t− 1 and the nominal deficit at period t, GPt. This
equality holds, because we assume the government deficits are all financed by
seignorage.

Summarizing Eqns. (82) and (83), we get

N∑
i=1

si,tPt =
N∑

i=1

si,t−1Pt−1 + GPt (84)

The price dynamics are hence governed by the following equation:

πt =
Pt

Pt−1
=
∑N

i=1 si,t−1∑N
i=1 si,t −G

(85)

Now suppose that each agent has perfect foresight, that is,

πe
i,t = πt, ∀i, t (86)

By substituting the first-order condition Eqn. (80) into Eqn. (84), the paths
of equilibrium inflation rates under perfect foresight dynamics are then

πt+1 =
e1

e2
+ 1− 2g

e2
− (

e1

e2
)(

1
πt

) (87)

where g = G
N is the real per capita deficit.

At steady state (πt+1 = πt), Eqn. (87) has two real stationary solutions
(fixed points), a low-inflation stationary equilibrium, π∗

L, and a high-inflation
one, π∗

H , given by

π∗
L =

1 + e1

e2 − 2g
e2 −

√
(1 + e1

e2 − 2g
e2)− 4 e1

e2

2
(88)

π∗
H =

1 + e1

e2 − 2g
e2 +

√
(1 + e1

e2 − 2g
e2)− 4 e1

e2

2
(89)

Despite its popularity, the OLG models are well known for their multi-
plicity of equilibria, in our case, the coexistence of two inflation equilibria:
Eqns. (88) and (89). Things can be even more intriguing if these equilibria
have different welfare implications. In our case, the one with a higher inflation
rate is the Pareto-inferior equilibrium, whereas the one with a lower inflation
rate is the Pareto-superior equilibrium.

Computational Intelligence in Agent-Based Computational Economics 555

CI in Agent-Based OLG Models of Inflation

To see whether decentralized agents are able to coordinate intelligently to
single out a Pareto-superior equilibrium rather than be trapped in a Pareto-
inferior equilibrium, [11] proposed the first agent-based modification of an
OLG model of inflation. She applied genetic algorithms (GAs) towards mod-
eling the learning and adaptive behavior of households. In her study, GA-based
agents were shown to be able to select the Pareto-superior equilibrium. She
further compared the simulation results based on GAs with those from lab-
oratories with human subjects, concluding that GAs were superior to other
learning schemes, such as the recursive least squares.

This line of research was further carried out in [27,31–33] and [69]. Bullard
and Duffy made the distinction between two implementations of GA learn-
ing: depending on what to encode, GA learning can be implemented in two
different ways, namely, learning how to optimize [11] and learning how to
forecast [33]. It was found that these two implementations lead to the same
result: agents can indeed learn the Pareto-superior equilibrium. The only dif-
ference is the speed of convergence. The ‘learning how to forecast’ version of
genetic algorithm learning converges faster than the ‘learning how to optimize’
implementation studied by [11]. Nevertheless, a robust analysis showed that
coordination was more difficult when the number of inflation values consid-
ered (search space) by agents was higher, when government deficits increased,
and when agents entertained inflation rate forecasts outside the bounds of
possible stationary equilibria.

Chen and Yeh generalized Bullard and Duffy’s ‘learning how to fore-
cast’ version of GA learning with GP [56]. In [33], what agents learn is just
a the inflation rate per se, rather than regularity about its motion, which
is a function. Chen and Yeh considered it too restrictive to learn just a
number. From [86], if the equilibrium of an OLG is characterized by limit
cycles or strange attractors rather than by fixed points, then what agents
need to learn is not just a number, but a functional relationship, such as
xt = f(xt−1, xt−2, ...). Chen and Yeh therefore generalized Bullard and Duffy’s
evolution of beliefs from a sequence of populations of numbers to a sequence
of populations of functions. Genetic programming serves as a convenient tool
to make this extension.

The basic result observed in [56] is largely consistent with [10] and
[33], namely, agents being able to coordinate their actions to achieve the
Pareto-superior equilibrium. Furthermore, their experiments showed that the
convergence is not sensitive to the initial rates of inflation. Hence, the Pareto-
superior equilibrium has a large domain of attraction. A test on a structural
change (a change in deficit regime) was also conducted. It was found that GP-
based agents were capable of converging very fast to the new low-inflationary
stationary equilibrium after the new deficit regime was imposed. However,

556 S.-H. Chen

the basic result was not insensitive to the dropping of the survival-of-the-
fittest principle. When that golden principle was not enforced, we experienced
dramatic fluctuations of inflation and occasionally the appearance of super
inflation. The agents were generally worse off.

Birchenhall and Lin provided perhaps the most extensive coverage of
robustness checks ever seen in agent-based macroeconomic models [27]. Their
work covers two different levels of GA designs: one is genetic operators, and the
other is architecture. For the former, they consider different implementations
of the four main GA operators – namely, selection, crossover, mutation, and
election. For the latter, they consider a single-population GA (social learning)
versus a multi-population GA (individual learning). They found that Bullard
and Duffy’s results are sensitive to two main factors: the election operator and
architecture. Their experimental results in fact lend support to some early
findings – for example, the significance of the election operator [10] and the
different consequences of social learning and individual learning [151]. What
is particularly interesting is that individual learning reduces the rate of con-
vergence to the same belief. This is certainly an important finding, because
most studies on the convergence of GAs to Pareto optimality are based on
the social learning version.

Ballard and Duffy studied a more complicated version of the two-period
OLG model, based on [86]. They consider the following utility function for
the households [32],

U(c1
t , c

2
t) =

ln(c1
t)

1−ρ1

1− ρ1
+

ln(c2
t)

1−ρ2

1− ρ2
(90)

Under time-separable preferences and provided that the value of the coef-
ficient of relative risk aversion for the old agent (ρ2) is high enough and
that of the young agents is low enough (ρ1), [86] showed that stationary
perfect-foresight equilibria also may exist in which the equilibrium dynam-
ics are characterized either as periodic or chaotic trajectories for the inflation
rate, and these complicated stationary equilibria are also Pareto optimal. To
have these possibilities, they set ρ2 equal to 2 and then increased the value of
this preference parameter up to 16 by increments of 0.1, while fixed ρ1 at 0.5
in all cases.

The forecast rule considered by Bullard and Duffy is to use the price level
that was realized k + 1 periods in the past as the forecast of next period’s
price level, namely,

P e
i,t = Pt−k−1, k ∈ [0, k̄] (91)

In their case, k̄ was set to 256, which allows the agents to take actions
consistent with a periodic equilibrium of an order as high as 256. Alternatively,

Computational Intelligence in Agent-Based Computational Economics 557

agent i’s forecast of the gross inflation factor between dates t and t + 1 is
given by

πe
i,t =

Pt−k−1

Pt−1
(92)

As usual, the lifetime utility function was chosen as the fitness function to
evaluate the performance of a particular forecast rule. Instead of roulette wheel
selection, tournament selection was applied to create the next generation.

It was found that the stationary equilibria on which agents coordinate
were always relatively simple – either a steady state or a low-order cycle.
For low values of ρ2 (in particular, those below 4.2), they observed conver-
gence to the monetary steady state in every experiment, which is the same
prediction made by the limited backward perfect-foresight dynamics. As ρ2

was increased further, the limiting backward perfect foresight dynamics dis-
played a bifurcation, with the monetary steady state losing stability and never
regaining it for values of ρ2 ≥ 4.2. However, in their system with learning,
the monetary steady state was always a limit point in at least 1 of the 10
experiments conducted for each different value of ρ2. Also, for ρ2 ≥ 4.2, their
system often converged, in at least one experiment, to a period-2 stationary
equilibrium, even in cases in which that equilibrium, too, had lost its stability
in the backward perfect-foresight dynamics.

It is difficult, however, for an economy comprised of optimizing agents with
initial heterogeneous beliefs to coordinate on especially complicated stationary
equilibria, such as the period-k cycles where k ≥ 3. In particular, the period-
3 cycle that is stable in the backward perfect-foresight dynamics for values
ρ2 ≥ 13 was never observed in their computational experiments. Interesting
enough, three is the last entry of Sarkovskii’s ordering, whereas one, two and
four are first few entries.

They also found that the time it took agents to achieve coordination tended
to increase with the relative risk aversion of the old agents over a large portion
of the parameter space. Usually, it was the case when the system converged to
the period-2 cycle. Moreover, when cycles exist, the transient dynamics of their
systems could display qualitatively complication dynamics for long periods of
time before eventually to relatively simple, low-periodicity equilibria.

A related phenomenon to cyclical equilibria is sunspot equilibria. The
sunspot variable is the variable which has no intrinsic influence on an econ-
omy – in other words, it has nothing to do with an economy’s fundamentals.
Sunspot equilibria exist if the sunspot variable can impact the economy simply
because a proportion of agents believe so and act accordingly to their belief.
[22] showed that the connection between cyclical and sunspot equilibria is very
close. They proved that a two-state stationary sunspot equilibrium exists if
and only if a period-2 equilibrium exists. [69] started with an OLG model of

558 S.-H. Chen

inflation comparable to [32]. He studied an economy whose households have
the following utility function,

U(c1
t , c

2
t) = 0.1[c1

t]
0.9 + 10− [

10
1 + c2

t

]2 (93)

This utility function has the property that the concavity with respect to
c1
t is much smaller than the concavity with respect to c2

t , which is necessary
for the existence of a periodic equilibrium [86].

He first found that in cases where periodic equilibria exist, households’
beliefs were successfully coordinated to the period-2 cycle rather than the
steady state. He then assumed all households to be sunspot believers and
showed that households’ beliefs converged to the sunspot equilibrium. In that
case, the observed values of the price levels are completely governed by some-
thing which has nothing to do with the economy’s fundamentals. Finally, he
relaxed the assumption by simulating an explicit contest between ‘sunspot
believers’ and ‘sunspot agnostics’. The simulation showed that in most cases,
the population consisted, after a rather short period, only of households whose
actions depended on the value of the sunspot variable.

4.3 Foreign Exchange Rate Fluctuations

Another popular class of OLG models to which an agent-based approach is
applied is the the OLG model of foreign exchange rates, which is a version of
the two-country OLG model with fiat money [96].

The OLG Model of Exchange Rate

There are two countries in the model. The residents of both countries are
identical in terms of their preferences and lifetime endowments. The basic
description of each country is the same as the single-country OLG model.
Each household of generation t is is endowed with e1 units of a perishable
consumption good at time t, and e2 of the good at time t + 1, and consumes
c1
t of the consumption good when young and c2

t when old. Households in both
countries have common preferences given by

U(c1
t , c

2
t) = ln(c1

t) + ln(c2
t). (94)

The government of each country issues its own unbacked currency, H1,t and
H2,t. Households can save only through acquiring these two currencies. There
are no legal restrictions on holdings of foreign currency. Thus, the residents of
both countries can freely hold both currencies in their portfolios. A household
at generation t solves the following optimization problem at time t:

max
(c1

i,t,mi,1,t)
ln(c1

i,t) + ln(c2
i,t)

such that c1
i,t +

mi,1,t

P1,t
+

mi,2,t

P2,t
= e1, c2

i,t = e2 +
mi,1,t

P1,t+1
+

mi,2,t

P2,t+1

(95)

Computational Intelligence in Agent-Based Computational Economics 559

where mi,1,t is household i’ nominal holdings of currency 1 acquired at time t,
mi,2,t is household i’ nominal holdings of currency 2 acquired at time t, P1,t

is the nominal price of the good in terms of currency 1 at time t, and P2,t is
the nominal price of the good in terms of currency 2 at time t. The savings of
household i at time t by si,t is

si,t = e1 − c1
i,t =

mi,1,t

P1,t
+

mi,2,t

P2,t
(96)

The exchange rate et between the two currencies is defined as et =
P1,t/P2,t. When there is no uncertainty, the return on the two currencies
must be equal,

Rt = R1,t = R2,t =
P1,t

P1,t+1
=

P2,t

P2,t+1
, t ≥ 1 (97)

where R1,t and R2,t are the gross real rate of return between t and t + 1,
respectively. Rearranging Eqn. (97), we obtain

P1,t+1

P2,t+1
=

P1,t

P2,t
t ≥ 1 (98)

From Eqn. (98) it follows that the exchange rate is constant over time:

et+1 = et = e, t ≥ 1 (99)

Savings demand derived from household’s maximization problem is given by

si,t =
mi,1,t

p1,t
+

mi,2,t

p2,t
=

1
2
[e1 − e2 1

Rt
] (100)

Aggregate savings of the world at time period t, St, are equal to the sum
of their savings in terms of currency 1, S1,t, and in terms of currency 2, S2,t.
With the homogeneity assumption, we have

S1,t =
2N∑
i=1

mi,1,t

P1,t
=

2Nm1,t

P1,t
(101)

and

S2,t =
2N∑
i=1

mi,2,t

P2,t
=

2Nm2,t

P2,t
(102)

The equilibrium condition in the loan market requires

St = S1,t + S2,t = N [e1 − e2 P1,t+1

P1,t
] =

H1,t + H2,te

P1,t
(103)

Eqn. (103) only informs us of the real saving in terms of the real world
money demand. This equation alone cannot determine the household real

560 S.-H. Chen

demands for each currency. Hence, this equation cannot uniquely determine
a set of price (P1,t, P2,t), and leave the exchange rate indeterminate as well.
This is known as the famous indeterminacy of exchange rate proposition. The
proposition says that if there exists a monetary equilibrium in which both
currencies are valued at some exchange rate e, then there exists a monetary
equilibrium at any exchange rate ê ∈ (0,∞) associated with a different price
sequence {P̂1,t, P̂2,t} such that

Rt =
P1,t

P1,t+1
=

P2,t

P2,t+1
=

P̂1,t

P̂1,t+1

=
P̂2,t

P̂2,t+1

(104)

and
St =

H1,t + H2,te

P1,t
=

H1,t + H2,tê

P̂1,t

(105)

where

P̂1,t =
H1,t + êH2,tP1,t

H1,t + eH2,t
, P̂2,t =

P̂1,t

ê
. (106)

Rearranging Eqn. (103), one can derive the law of motion of P1,t

P1,t+1 =
e1

e2
P1,t −

H1,t + eH2,t

Ne2
(107)

For any given exchange rate e, this economy with constant supplies of both
currencies, H1 and H2, has a steady-state equilibrium, namely,

P1,t+1 = P1,t = P ∗
1 =

H1 + eH2

N(e1 − e2)
(108)

Like e, the level of P ∗
1 is also indeterminate. In addition, since households

are indifferent between the currencies that have the same rates of return in
the homogeneous-expectations equilibrium, the OLG model in which agents
are rational does not provide a way to determine the portfolio λi,t, which is
the fraction of the savings placed into currency 1.

CI in Agent-Based OLG Models of the Exchange Rate

In order to examine the behavior of the exchange rate and the associated price
dynamics, Arifovic initiated the agent-based modeling of the exchange rate in
the context of the OLG model [12]. In the OLG model of the exchange rate,
households have two decisions to make when they are young, namely, saving
(si,t) and portfolio (λi,t). These two decisions were encoded by concatenation
of two binary strings, the first of which encoded si,t, whereas the second of
which encoded λi,t. The single-population augmented genetic algorithm was
then applied to evolve these decision rules. The length of a binary string, l,
is 30: The first 20 elements of a string encode the first-period consumption

Computational Intelligence in Agent-Based Computational Economics 561

of agent i of generation t; the remaining 10 elements encode the portfolio
fraction of agent i:

010100...110︸ ︷︷ ︸
20 bits:si,t

101..001︸ ︷︷ ︸
10 bits:λi,t

While Eqn. (99) predicts the constancy of the exchange rate, genetic algo-
rithm simulations conducted by [12] indicated no sign of the setting of the
exchange rate to a constant value. Instead, they showed persistent fluctua-
tions of the exchange rate. Adaptive economic agents in this model can, in
effect, endogenously generate self-fulfilling arbitrage opportunities, which in
turn make exchange rates continuously fluctuate.

The fluctuating exchange rate was further examined using formal statisti-
cal tests in both [12] and [16]. First, in [12], the stationarity (Dickey-Fuller)
test was applied to examine whether the exchange rate series is non-stationary.
The result of the test did not indicate non-stationarity. Second, [16] analyzed
the statistical properties of the exchange rate returns, namely, the logarithm of
et/ee−1. The independence tests (Ljung-BOx-Pierce and BDS) clearly rule out
the lack of persistence (dependence) in the return series. Third, they plotted
the phase diagrams of the return series and found that there is a well-defined
attractor for all series. The shapes of the attractor are robust to the changes
in the OLG model parameters as well as to the changes in the GA parame-
ters. Fourth, to verify that this attractor is chaotic, the largest two Lyapunov
exponents were calculated. The largest Lyapnov exponent is positive in all
series, which supports that attractors under investigation are chaotic. Finally,
volatility clustering was also found to be significant in the return series. This
series of econometric examinations confirms that agent-based modeling is able
to replicate some stylized facts known in financial markets.

Arifovic considered a different application of GAs to modeling the adap-
tive behavior of households [14]. Instead of savings and portfolio decision rules,
she turned to the forecasting behavior of households. The forecasting mod-
els of exchange rates employed by agents are simple moving-average models.
They differ in the rolling window size, which are endogenously determined and
can be time-variant. What is encoded by GAs is the size of the rolling win-
dow rather than the usual savings and portfolio decision. Simulations with
this new coding scheme resulted in the convergence of the economies to a
single-currency equilibrium – that is, the collapse of one of the two currencies.
This result was not found in [12]. This study therefore shows that different
implementations of GA learning may have non-trivial effects on the simula-
tion results. In one implementation, one can have persistent fluctuation of the
exchange rate [12]; in another case, one can have a single-currency equilibrium.

Following the design of [81], Arifovic combined two different applications
of GA learning. In addition to the original population of agents, who are
learning how to forecast, she added another population of agents, who are
learning how to optimize [14]. Nevertheless, unlike [81], these two populations

562 S.-H. Chen

of agents did not compete with each other. Instead, they underwent separate
genetic algorithm updating. Simulations with these two separate evolving pop-
ulations did not have the convergence to single currency equilibrium, but were
characterized instead by persistent fluctuation.

A different scenario of the currency collapse is also shown in [13], which
is an integration of the OLG model of exchange rate with the OLG model
of inflation. In this model, the governments of both countries have constant
deficits (Gi, i = 1, 2) which were financed via seignorage,

Gi =
Hi,t −Hi,t−1

Pi,t
, i = 1, 2 (109)

Combining Eqns. (103) and (109) gives the condition for the monetary
equilibrium in which both governments finance their deficits via seignorage:

G1 + G2 = St − St−1Rt−1 (110)

This integrated model inherits the indeterminacy of the exchange rate
from the OLG model of the exchange rate and the indeterminacy of the infla-
tion rate from the OLG model of inflation. Any constant exchange rate e
(e ∈ (0,∞)) is an equilibrium that supports the same stream of government
deficits (G1, G2), and the same equilibrium gross rate of return (and thus the
same equilibrium savings). The existence of these equilibrium exchange rates
indicates that the currencies of both countries are valued despite the difference
of the two countries’ deficits. In fact, in equilibrium the high-deficit country
and the low-deficit county experience the same inflation rate, and hence so
do their currencies’ rates of return. Nonetheless, since the high-deficit country
has a higher money supply, if both currencies are valued, then the currency
of the high-deficit country will eventually drive the currency of the low-deficit
country out of households’ portfolios. Given this result, it might be in the
interest of a country with lower deficits to impose a degree of capital control.

Arifovic showed that agent-based dynamics behave quite different from
the above homogeneous rational expectations equilibrium analysis [13]. In her
agent-based environment, the evolution of households’ decision rules of savings
and portfolio results in a flight away from the currency used to finance the
larger of the two deficits. In the end, households hold all of their savings in
the currency used to finance the lower of the deficits. Thus, the economy
converges to the equilibrium in which only the low-deficit currency is valued.
The currency of the country that finances the larger of the two deficits become
valueless, and we have a single-currency equilibrium again.

4.4 Artificial Stock Markets

Among all applications of the agent-based approach to macroeconomic mod-
eling, the most exciting one is the artificial stock market. By all standards,
the stock market is qualified to be a complex adaptive system. However,

Computational Intelligence in Agent-Based Computational Economics 563

conventional financial models are not capable of demonstrating this feature.
On the contrary, the famous no-trade theorem shows how inactive this market
can be in equilibrium [146]. It was therefore invigorating when Holland and
Arthur established an economics program at the Santa Fe Institute in 1988
and chose artificial stock markets as their initial research project. The SFI
artificial stock market is built upon the standard asset pricing model [88,89].
What one can possibly learn from this novel approach was well summarized
in [127], which is in fact the first journal publication on an agent-based arti-
ficial stock market. A series of follow-up studies materialized the content of
this new fascinating frontier in finance.

Agent Engineering and Trading Mechanisms

Agent-based artificial stock markets have two mainstays: agent engineering
and institution (trading mechanism) designs. Agent engineering mainly con-
cerns the construction of financial agents. [144] showed how to use genetic
algorithms to encode trading strategies of traders. A genetic fuzzy approach
to modeling trader’s behavior was shown in [143], whereas the genetic neural
approach was taken by [110]. To simulate the agent-based artificial stock mar-
ket based on the standard asset pricing model, the AI-ECON Research Center
at the National Chengchi University, Taiwan developed software known as
the AI-ECON Artificial Stock Market (AIE-ASM). The AIE Artificial Stock
Market differs from the SFI Artificial Stock Market in the computational tool
that is employed. The former applies genetic programming, while the latter
has genetic algorithms. In AIE-ASM, genetic programming is used to model
agents’ expectations of the price and dividends. A menu-like introduction to
AIE-ASM Ver. 2 can be found in [63].

In [35] and [160] we see a perfect example of bringing different learn-
ing schemes into the model. The learning schemes incorporated into [35]
include empirical Bayesian traders, momentum traders, and nearest-neighbor
traders, whereas those included in [160] are neural network and momentum
traders. [109] gave a more thorough and general discussion of the construction
of artificial financial agents. In addition to models, data is another dimension
of agent engineering. What can be addressed here is the issue of stationarity
that the series traders are looking at. Is the entire time series representa-
tive of the same dynamic process, or have things changed in the recent past?
LeBaron studied traders who are initially heterogeneous in perception with
different time horizons, which characterize their interpretation of how much
of the past is relevant to the current decision making [110].

Chen and Yeh contributed to agent engineering by proposing a modified
version of social learning [58]. The idea is to include a mechanism, called the
business school. Knowledge in the business school is open for everyone. Traders
can visit the business school when they are under great survival pressure.
The social learning version of genetic programming is applied to model the

564 S.-H. Chen

evolution of the business school rather than directly on traders. Doing it this
way, one can avoid making an implausible assumption that trading strategies,
as business secrets, are directly imitable. [161] further combined this modi-
fied social learning scheme with the conventional individual learning scheme
in an integrated model. In this integrated model a more realistic description
of traders’ learning behavior is accomplished: the traders can choose to visit
the business school (learning socially), to learn exclusively from their expe-
rience (learning individually), or both. In their experiments, based on the
effectiveness of different learning schemes, traders will switch between social
learning and individual learning. Allowing such a competition between these
two learning styles, their experiment showed that it is the individual learn-
ing style which won the trust of the majority. To the best of our knowledge,
this is the only study which leaves the choice of the two learning styles to be
endogenously determined.

The second component of agent-based stock markets is the institutional
design. An institutional design should answer the following five questions: (i)
who can trade, (ii) when and how can orders be submitted, (iii) who may
see or handle the orders, (iv) how are orders processed, and (v) how are
prices eventually set. Trading institutional designs in the conventional SFI
artificial stock market either follow the Walrasian ‘tatonnement’ scheme or
the rationing scheme. This scheme describes a market operation procedure.
Basically, there is an auctioneer who serves as a market coordinator. In each
market period, the auctioneer announces a price to all market participants.
Based on this market price, participants submit their transaction plans, for
instance how much to buy or how much to sell. The auctioneer will then
collect all submissions. If there is an imbalance between demand and supply,
the auctioneer will then announce a new price, and the market participants
will submit new plans accordingly. This process continues until the auctioneer
finds a price which can equate demand to supply, and all transaction plans
will be carried out with this price, also called the ‘equilibrium price’. The
essence of tatonnement is that no single transaction can be allowed unless the
equilibrium price is found. This highly centralized trading system needs to be
distinguished from other less centralized or distributed trading systems.

[35] and [160], however, considered a double auction mechanism. This
design narrows the gap between artificial markets and the real market, and
hence makes it possible to compare the simulation results with the behavior
of real data, such as tick-by-tick data. Since stock market experiments with
human subjects were also conducted within the double auction framework
[139], this also facilitates conversation between the experimental stock market
and the agent-based artificial stock market.

Based on agent engineering and trading mechanism designs, agent-based
artificial stock markets can generate various market dynamics, including price,
trading volumes, the heterogeneity and complexity of traders’ behavior, and
wealth distribution. Among them, price dynamics is the one under the most

Computational Intelligence in Agent-Based Computational Economics 565

intensive study. This is not surprising, because ever since the 1960s price
dynamics has been the focus of studies on random walks, the efficient mar-
ket hypothesis, and market rationality (the rational expectations hypothesis).
With the advancement of econometrics, it further became the focus of the
study of non-linear dynamics in the 1980s.

Mis-Pricing

Agent-based artificial stock markets make two important contributions to our
understanding of the behavior of stock prices. First, they enable us to under-
stand what may cause the price to deviate from rational equilibrium price or
the so-called ‘fundamental value’.

Both [35] and [160] discussed the effect of momentum traders on price
deviation. Yang found that the presence of momentum traders can drive the
market price away from the homogeneous rational equilibrium price [160].
Chan reported a similar finding: adding momentum traders to a population
of empirical Bayesian traders has an adverse impact on market performance,
although price deviation decreased as time went on [35]. Empirical Bayesian
basically behaves like a Bayesian, except that the posterior distribution is
built upon the empirical rather upon a subjective distribution. For example,
in this context, the empirical Bayesian trader forms its posterior distribution
of the dividends by using the empirical distributions of both dividends and
prices.

LeBaron inquired whether agents with a long-horizon perception can learn
to effectively use their information to generate a relatively stable trading envi-
ronment [110]. The experimental results indicated that while the simple model
structure with fixed long horizon agents replicates the usual efficient market
results, the route to evolving a population of short horizon agents to long
horizons may be difficult. [20] and [111] found that when the speed of learn-
ing (the length of a genetic updating cycle) decreased (which forces agents to
look at longer horizon features), the market approached the REE.

[47] is another study devoted to price deviation. They examined how well a
population of financial agents can track the equilibrium price. By simulating
the artificial stock market with different dividend processes, interest rates,
risk attitudes, and market sizes, they found that the market price is not an
unbiased estimator of the equilibrium price. Except in a few extremely bad
cases, the market price deviates from the equilibrium price moderately from
−4% to +16%. The pricing errors are in fact not patternless. They are actually
negatively related to market sizes: a thinner market size tends to have a larger
pricing error, and a thicker market tends to have a smaller one. For the thickest
market which they have simulated, the mean pricing error is only 2.17%. This
figure suggests that the new classical simplification of a complex world may
still provide a useful approximation if some conditions are met, such as in this
case, the market size.

566 S.-H. Chen

Complex Dynamics

As to the second contribution, agent-based artificial stock markets also
enhance our understanding of several stylized features well documented in
financial econometrics, such as fat tails, volatility clusters, and non-linear
dependence. [111] showed that the appearance of the ARCH effect and the
non-linear dependence can be related to the speed of learning. [160] found that
the inclusion of momentum traders generates a lot of stylized features, such
as excess volatility, excess kurtosis (leptokurtotic), lack of serial independence
of return, and high trading volume.

Another interesting line is the study of emergent properties within the
context of artificial stock markets. Emergence is about “how large interacting
ensembles exhibit a collective behavior that is very different from anything
one may have expected from simply scaling up the behavior of the individ-
ual units” ([107]: 3). Consider the efficient market hypothesis (EMH) as an
example. If none of the traders believe in the EMH, then this property will
not be expected to be a feature of their collective behavior. Thus, if the
collective behavior of these traders indeed satisfies the EMH as tested by
standard econometric procedures, then we would consider the EMH as an
emergent property. As another example, consider the rational expectations
hypothesis (REH). It would be an emergent property if all our traders are
boundedly rational, with their collective behavior satisfying the REH as tested
by econometrics.

Chen and Yeh applied a series of econometric tests to show that the
EMH and the REH can be satisfied with some portions of the artificial time
series [59]. However, by analyzing traders’ behavior, they showed that these
aggregate results cannot be interpreted as a simple scaling-up of individ-
ual behavior. The main feature that produces the emergent results may be
attributed to the use of genetic programming, which allows us to generate a
very large search space. This large space can potentially support many fore-
casting models in capturing short-term predictability, which makes simple
beliefs (such as that where the dividend is an iid (independent and identically
distributed) series, or that when the price follows a random walk) difficult to
be accepted by traders. In addition to preventing traders from easily accepting
simple beliefs, another consequence of a huge search space is the generation of
sunspot-like signals through mutually-reinforcing expectations. Traders pro-
vided with a huge search space may look for something which is originally
irrelevant to price forecasts. However, there is a chance that such kinds of
attempts may mutually become reinforced and validated. The generation of
sunspot-like signals will then drive traders further away from accepting simple
beliefs.

Using Granger causality tests, [59] found that dividends indeed can help
forecast returns. By their experimental design, the dividend does not con-
tain the information of future returns. What happens is a typical case of

Computational Intelligence in Agent-Based Computational Economics 567

mutually-supportive expectations that make the dividend eventually contain
the information of future returns.

As demonstrated in [58] and [59], one of the advantages of agent-based
computational economics (the bottom-up approach) is that it allows us to
observe what traders are actually thinking and doing. Are they martingale
believers? Are they sunspot believers? Do they believe that trading volume
can help predict returns? By counting the number of traders who actually
use sunspots or trading volumes to forecast returns, one can examine whether
sunspot effects and the causal relation between stock returns and trading
volume can be two other emergent properties [49, 62].

Market Diversity and Market Efficiency

Yeh and Chen examined another important aspect of agent engineering, this
being market size (number of market participants) [162]. Few studies have
addressed the significance of market size on the performance of agent-based
artificial markets. One good exception is [26], whose simulation results showed
that the simple tradable emission permit scheme (an auction scheme) can be
the most effective means for pollution control when the number of participants
is small. However, as the number of participants increases, its performance
declines dramatically and becomes inferior to that of the uniform tax scheme.
Another exception is [33]. In most studies, the number of market participants
is usually determined in an arbitrary way, mainly constrained by the com-
putational load. [10], however, justified the number of participants from the
viewpoint of search efficiency. She mentioned that the minimal number of
strings (agents) for an effective search is usually taken to be 30 according to
the artificial intelligence literature. Nonetheless, agent-based artificial markets
have different purposes and concerns.

Related to market size is population size. In the case of social learning
(single-population GA or GP), market size is the same as population size.
However, in the case of individual learning (multi-population GA or GP),
population size refers to something different, namely, the number of solution
candidates each trader has. Like market size, population size is also arbitrarily
determined in practice.

Yeh and Chen studied the effect of market size and population size upon
market efficiency and market diversity under social and individual learning
styles [162] . Their experimental results can be summarized as two effects
on market efficiency (price predictability), namely, the size effect and the
learning effect. The size effect says that the market will become efficient when
the number of traders (market size) and/or the number of models (GP trees)
processed by each trader (population size) increases. The learning effect says
that the price will become more efficient if traders’ adaptive behavior becomes
more independent and private. Taking a look at market diversity, we observe

568 S.-H. Chen

very similar effects except for population size: market diversity does not go
up with population size. These findings motivate us to search for a linkage
between market diversity and market efficiency. A ‘theorem’ may go as follows:
a larger market size and a more independent learning style will increase the
diversity of traders’ expectations, which in turn make the market become more
active (high trading volume), and hence more efficient (less predictable). Their
simulation results on trading volumes also supported this ‘theorem’. They
further applied this ‘theorem’ to explain why the US stock market behaves
more efficiently than Taiwan’s stock market.

4.5 Market/Policy Design

One of the research areas in which agent-based computational economics and
experimental economics are closely intertwined is the double-auction market
(DA market), or the agent-based DA market. The agent-based market serves
as a good starting point for applying agent-based simulation to market/policy
design. One important application of agent-based computational models to
market/policy design is the electricity supply market [29, 125, 126]. In this
application area, we are convinced that agent engineering (learning schemes)
plays a crucial role in simulating the consequences of various market designs.

By agent engineering, [73] categorized agent-based models which have been
developed to characterize or understand data from human subject experiments
into three classes, namely, zero intelligent (ZI) agents, reinforcement and belief
learning, and evolutionary algorithms. Among the three, ZI agents were con-
sidered to be a useful benchmark or a good building block for developing more
advanced agent-based models. Zero-intelligent agents are introduced by [85],
which is the earliest ACE work motivated by the double-auction market exper-
iment.21 However, as far as market efficiency is concerned, ZI traders are not
sufficient for the market to converge to the social-welfare maximization price,
or the equilibrium price. The necessary condition, therefore, requires agents
to learn. Among all learning agents studied in the agent-based DA models,
the simplest one is the ZI Plus (ZIP) agents, introduced by [66].

Wu and Bhattacharyya continued this line of research and studied the
boundary beyond which ZIP traders may fail the market mechanism [159].
They introduced speculators into standard DA markets. They found that
ZIP traders can no longer guarantee market efficiency when there is a large
number of speculators, as compared to the number of normal traders. In some
scenarios, the efficiency losses about 25% of the social welfare.

The purpose in studying the agent-based double auction (DA) market is
to adequately equip ourselves to tackle the much more complex agent-based
electricity market. [124] gave a splendid review of the well-known Electric-
ity Market Complex Adaptive System (EMCAS) developed by the Argonne
21 For a survey of later developments, see [38].

Computational Intelligence in Agent-Based Computational Economics 569

National Laboratory. EMCAS is an agent-based electricity supply market
model written using the Recursive Agent Simulation Toolkit (Repast), a
special-purpose agent-based simulation tool. The research on the agent-based
electricity market is motivated by the undergoing transition from centrally
regulated electricity markets to decentralized markets. These transitions intro-
duce a highly intricate web of interactions of a large number of heterogeneous
companies and players, which causes the consequences of new regulatory struc-
tures largely unknown and leaves policy design in a state of high stakes.22

Given this uncertainty, agent-based models can help construct suitable labo-
ratories that can provide ranges of possibilities and test regulatory structures
before they are actually implemented. EMCAS now serves as the basis for
evaluating Illinois’ deregulation of the market.

Boyle presented an ambitious project on the agent-based model of the
whole criminal justice system in the UK, which was funded by the Home Office
in the UK [30]. The criminal justice system in England is delivered by three
diverse government bodies, the Home Office, the Department of Constitutional
Affairs, and the Crown Prosecution Service. Within the criminal justice system
as a whole, there must be some dependencies among the functions of the
three agencies. Nonetheless, the three constituents might not have been ‘joined
up’ sufficiently well to encourage the best use of resources, and this caught
the attention of the Treasury in their biennial spending review. Therefore,
the purpose of this project is to build an agent-based model to help diverse
operating groups engage in strategic policy making and take into account the
complex interactions within the criminal justice system so as to better observe
the impacts of policy.

To make the model fulfill this objective, [30] introduced a new thinking
regarding agent-based models, called the mirror function, which is equivalent
to producing a model of the whole criminal justice system in which all actors in
the system acknowledge that the model was really ‘them’. The work entailed
gathering evidence of links between the behavior and actions of one person or
group of people, and those of another, and through this making arguments for
the best use of resources, while also reaching agreement between each group
of people regarding all of this. This is essentially to do with encouraging
a change in the style of working of these core government agencies. Boyle
therefore demonstrates a very distinctive class of agent-based models, which
integrates a vein of social work into model-building [30].23

22 This is exemplified by the extremely unsatisfactory experience of California.
While, according to economic theory, deregulation and free competition will lead
to increased economic efficiency expressed in higher quality services and products
at lower prices, the reality of today’s emerging electricity markets does not fit
this straightforward economic model.

23 At present, there are very few agent-based models of this sort; [120] is the only
case known to this author.

570 S.-H. Chen

5 Pushing the Research Frontier with CI

5.1 Developments in Agent Engineering

An essential element of the agent-based modeling is agent engineering. Over
the last decade, the progress made in modeling adaptive behavior has been
particularly noticeable. There seems to have been a general tendency to enrich
agents’ adaptive behavior from several different perspectives. This enrichment
has been made possible mainly due to extensive applications of computational
intelligence to economics.

First, simple adaptive behavior has been extended to complex adaptive
behavior. Initially, agents’ decisions were simply characterized by parametric
models; usually, there were just numbers over a bounded real space. [10]–[12]
are typical examples (see Sect. 4 for details). All important decisions such as
quantity supply, labor supply, savings, financial portfolios, and investment in
human capital were characterized by numbers rather than rules. As a result,
the things revealed by the adaptive processes were best viewed as a series of
number crunching exercises. Sophisticated learning or adaptive behavior were
not able to appear in these simple adaptive models.

Later on, the notion of using rules instead of numbers to character-
ize agents’ decisions was brought in by [31]– [33], [81], and many others.
These series of efforts brought about discernible progress: they formally intro-
duced agents which are able to forecast with rules (models). Nonetheless, their
forecasting behavior was largely confined to linear regression models. This
restriction was unavoidable because at that stage economists did not know
much about dealing with non-parametric adaptive behavior, and linear regres-
sion models seemed to be the natural starting point. However, there is neither
sound theoretic nor empirical support for the assumption that agents’ adaptive
behavior may be parameterized.

A breakthrough was made by [9], [53] and [112] via genetic programming
(GP). The use of genetic programming not only makes agents able to engage
in non-linear and non-parametric forecasting, but it also makes them able to
think and reason. This last virtue is crucial because it helps us to represent
a larger class of cognitive capabilities, such as making plans and strategies.
This development contributes to the advancement of the agent-based models
which are full of the non-trivial strategic behavior of agents, for instance,
games, auctions, and financial markets. The AI-ECON Research Center in
Taipei has now launched a research project – referred to as the Functional-
Modularity Foundation of Economics – that has further enlarged the adaptive
behavior to encompass preferences, commodities, technology, human capital,
and organizations [41, 42].

By manipulating a set of primitives with genetic operators, one can grow
a great variety of human cognitive processes. In principle, there is no limit to

Computational Intelligence in Agent-Based Computational Economics 571

those growing processes. It is the survival pressure endogenously generated via
agent interactions that determines their size. In this case, neither do we need to
assume that the agents follow simple rules, as the KISS (keep it simple, stupid)
principle suggests, nor do we assume that they are sophisticated. Simplicity or
complexity is not a matter of an assumption but a matter of emergence. For
example, in a simple deterministic agent-based cobweb model, the literature
shows that all surviving firms have indeed followed simple and myopic rules
to forecast price. However, their behavior became more complicated when
speculators were introduced into the markets. In addition, when turning to
the stock market, agents’ behavior could switch between simple rules and
sophisticated rules.24 In a nutshell, in ACE, what determines the survivability
of a type of agent is not the model designers, but the natural law of the models;
we shall see more on this in Sect. 5.2.

The second development is concerned with the behavioral foundations of
agent engineering. While CI tools have been extensively applied to agent
engineering, their ability to represent sensible adaptive behavior has been
questioned since agent-based economic models became popular. Since 1999, a
series of efforts have been made in an attempt to justify the use of genetic algo-
rithms in agent-based modeling. However, most of these studies are mainly
built upon theoretical arguments. [94] were the first to use evidence from
interviews and questionnaires to justify the use of genetic algorithms in their
agent-based foreign exchange markets. Their study highlights the significance
of the field study – an approach frequently used by sociologists – to agent engi-
neering. Duffy’s agent-based model of a medium of exchange applied the data
from laboratory experiments with human subjects to justify the use of rein-
forcement learning [72]. His study showed how agent-based economic models
can benefit from experimental economics.

Another related development has occurred in the use of natural language.
People frequently and routinely use natural language or linguistic values, such
as ‘high’, ‘low’, and so on, to describe their perception, demands, expectations,
and decisions. Some psychologists have argued that our ability to process
information efficiently is the outcome of applying fuzzy logic as part of our
thought process. Evidence on human reasoning and human thought processes
supports the hypothesis that at least some categories of human thought are
definitely fuzzy. Yet, early agent-based economic models have assumed that
an agent’s adaptive behavior is crisp. Tay and Linn made progress in this
direction by using a genetic-fuzzy classifier system (GFCS) to model traders’
adaptive behavior in an artificial stock market [143].

[143] provided a good illustration of the non-equivalence between the
acknowledgement of the cognitive constraint and the assumption of simple
agents. It is well-known that the human mind is notoriously bad at intuitively
24 In plain English parlance, they sometimes regarded George Soros as their hero,

while at other times they developed a great admiration for Warren Buffett.

572 S.-H. Chen

comprehending exponential growth. However, there is no evidence that traders
on Wall Street are simple-minded. Tay and Linn’s work recognized the dif-
ference, and appropriately applied the GFCS to lessen agents’ reasoning load
via the use of natural language.

[72], [94], and [143] can all be regarded as a starting point for a more
remarkable development in agent engineering: the CI tools employed to model
agents’ adaptive behavior are grounded in strong evidence within the cognitive
sciences. It is at this point that agent-based modeling should have closer inter-
actions with the field and panel study, experimental economics and behavioral
economics (See more below in Sect. 5.3).

5.2 Distinguishing Features

While the progress made in agent engineering is evident, a more subtle issue
of ACE is: “does agent-based computational economics have anything worth-
while to offer economists in general, or is it only of interest to practitioners
of its own paradigm?” In this Section, we shall argue that the development of
ACE has already demonstrated some distinguishing features with insightful
lessons which are generally not available from neoclassical macroeconomics.
The distinguishing features, which may interest economists in general, are
two-fold. First, ACE helps build a true micro-foundation of macroeconomics
by enabling us to study the micro-macro relation. This relation is not just
a linear scaling-up, but can have a complex ‘chemical’ effect, known as the
emergent property. Consequently, economics becomes a part of the Sciences of
Emergence. Second, ACE is able to demonstrate a lively co-evolution process,
which provides a new platform for testing economic theories. Moreover, what
comes with the co-evolution process is a novelty-generation process. The latter
is, in particular, the weakest area of neoclassical economics.

Micro-Macro Relation and Emergent Properties

Agent-based modeling provides us with a rich opportunity to study the so-
called ‘micro-macro relation’, which is beyond the feasibility of the neoclassical
economics that consists of only a few representative agents. The first type of
micro-macro study involves laying the foundation for the aggregate behav-
ior upon the agents’ interacting adaptive schemes. A series of efforts were
made by [17] and [70] to attribute, in an analytical way, the appearance of
some interesting macroeconomic phenomena, such as fluctuations in foreign
exchange rates, the bid-ask spread, hyperinflation and economic take-off, to
the adaptive behavior driven by GA. Elements, such as self-reinforcement and
critical mass, upon which the conventional arguments are built, are actually
encapsulated into GAs. [53], [56] and [60], on the other hand, showed the sig-
nificance of the survival-of-the-fittest principle to the convergence to Pareto

Computational Intelligence in Agent-Based Computational Economics 573

optimality. In their agent-based cobweb model, OLG model of saving and infla-
tion, and coordination games, it was shown that the property of converging
to Pareto optimality will break down if survival pressure is removed.

The second type of micro-macro study is concerned with the consistency
between the micro behavior and the macro behavior. A particularly interesting
thing is that the micro behavior can sometimes be quite different from the
macro behavior. Both the work done by [81] on the cobweb model and [58] and
[59] on the asset pricing model showed that the time series of the market price
(an aggregate variable) followed a simple stochastic process. However, there is
no simple description of the population dynamics of individual behavior. The
simple stochastic price behavior was, in effect, generated by a great diversity
of agents whose behavior was constantly changing. [58] proposed a measure
for the complexity of an agent’s behavior and a measure of the diversity of
an agent’s complexity, and it was found that both measures can vary quite
widely, regardless of the simple aggregate price behavior.

In addition, using the micro-structure data, [49], [58], [59], and [62] ini-
tiated an approach to study what is called the emergent property. By that
definition, they found that a series of aggregate properties, such as the efficient
market hypothesis, the rational expectations hypothesis, the price-volume
relation and the sunspot effect, which were proved by rigorous economet-
ric tests, were generated by a majority of agents who did not believe in these
properties. Once again, our understanding of the micro behavior does not
lead to a consistent prediction of the macro behavior. The latter is simply
not just the linear scaling-up of the former. Conventional economics tends to
defend the policy issues concerned with the individual’s welfare (for instance
the national annuity program), based on macroeconometric tests such as the
permanent income hypothesis. Agent-based macroeconomics may invalidate
this approach due to emergent properties.

Co-Evolution

Briefly, co-evolution means that everything depends on everything else. The
performance of one strategy depends on the composition of the strategies with
which it interacts, and the fundamental push for agents to adapt arises because
other agents are adapting as well. This idea is by no means new to economists.
Actually, it is the main subject of evolutionary game theory. However, what
has not been shown explicitly in the evolutionary game theory or mainstream
economics is that it is the force of co-evolution which generates novelties. We
shall say a few words concerning their relation here, but more on novelty in
the next Section.

Novelties-generation, from its general characteristics to its formation pro-
cess, is little known in mainstream economics. For example, there is no
formal (mathematical) description of how the MS-DOS system eventually led

574 S.-H. Chen

to the MS-Windows system. Neither is there an abstract description show-
ing how commodities A1, A2, . . . , An in the early days lead to commodities
B1, B2, . . . , Bm at a later stage, or how a population of behavior years ago
leads to a different population of behavior at present. Quite ironically, the
vision of the ‘Father of Neoclassical Economics’, Alfred Marshall, namely,
“Economics, like biology, deals with a matter, of which the inner nature and
constitution, as well as outer form, are constantly changing,” was virtually
not carried out at all by his offspring (neoclassical economists) [118].

ACE attempts to recast economics along biological and evolutionary lines.
Within the co-evolutionary framework, the system which an agent faces is
essentially open and incomplete. The optimal kinds of behavior or strategies
which interest most economists may not necessarily exist in this system. In
his agent-based cobweb model, [81] used the survival distribution function of
firms to show waves of evolutionary activity. In each wave, one witnesses the
sudden collapse of a strongly dominating strategy, the ‘optimal’ strategy. Very
typically, the co-evolution demonstrated in the agent-based model is not a
peaceful state of co-existence, but is an incessant struggle for survival where no
strategy can be safe from being replaced in the near future. Novel strategies are
spontaneously developed and old ‘optimal’ strategies are continually replaced.

This feature casts doubt on the ‘optimal’ economic behavior which is not
derived from the agent-based co-evolutionary context. In this way, Chen and
Huang’s agent-based model of investment lent support to the non-optimality
of the capital asset pricing model (CAPM) [45]. The optimality of the CAPM
was originally derived from a general equilibrium setting. However, they sim-
ulated an agent-based multi-asset market, and showed that, in most of their
simulations, the fund managers who followed the CAPM did not survive when
investors with the constant relative risk aversion presented.

In [45], the CAPM traders and many different types of traders were all
introduced to the market right at the beginning (at the initialization stage).
They were competing with other agents whose portfolio strategies were evolv-
ing over time and which were characterized by GA. The annihilation of the
CAPM traders was the result of this setting. This kind of test is referred to
as the formula-agent approach. Formula agents are agents whose behavior or
decision rules are inspired by economic theory. Based on this approach, the
economic behavior predicted by economic theory is tested by directly adding
formula agents to the initial population. Doing so may be biased because
the resultant co-evolution process may be determined by these initial hints,
a common phenomenon known as path dependence.25 Therefore, the formula-
agent approach is relatively weak as opposed to an alternative approach to
25 Path dependence is ubiquitous in ABM. For example, in Dawid’s agent-based

model of double auctions, the distribution of competitive prices is sensitively
dependent on the distribution of initial bids and asks [69], [70].

Computational Intelligence in Agent-Based Computational Economics 575

the co-evolution test, and Lensberg’s agent-based model of investment is an
illustration of this alternative [112].

Lensberg’s model tested Bayesian rational investment behavior. However,
unlike [45], [112] did not initialize the market with any Bayesian rational
investor. In other words, all agents’ investment rules were generated from
scratch (by GP). It was then shown that, in later periods of evolution, what
dominated the populations (the surviving firms) were the behavioral rules as if
they were expected utility maximizers with Bayesian learning rules. Therefore,
the Bayesian rational investment rule was validated as a behavior emerging
from the bottom.

However, not all cases have lent support to what economic theory pre-
dicts. [110]’s version of the SFI (Santa Fe Institute) artificial stock market is
a case in point. Stationarity associated with the asymptotic theory plays an
important role in current developments in econometrics. In the mainstream
rational-expectations econometrics, agents are assumed to be able to learn
from this stationary environment by using the so-called Kolmogorov-Wiener
filter. The use of this filter can make sense only if agents believe that the entire
time series is stationary, and never doubt that things may have changed in
the recent past. Agents with this belief are called ‘long-horizon agents’ in
LeBaron’s ABM. In a similar way to [112], LeBaron questioned whether these
long-horizon agents can eventually emerge from the evolution of a population
of short-horizon agents, given that the true dividends-generation process is
indeed stationary [110]. Interestingly, he found that while long-horizon agents
are able to replicate usual efficient market results, evolving a population of
short-horizon agents into long-horizon agents is difficult. This study, there-
fore, presents a typical coordination failure problem frequently addressed in
macroeconomics.

Within this co-evolution test framework, the maximizing-expected-utility
(MEU) behavior of investors, known as the principle of maximizing certainty
equivalence, was also rejected by [34], [113], and [142]. In their agent-based
models of investment under uncertainty, they all came up with the same con-
clusion: those who survive were not the most efficient in a normative sense –
in other words, the MEU agents were not able to survive. Hence, in a sense,
the equivalence between efficiency and survival broke down. What happened
instead was that the surviving investors either took too much risk [113] or
were too cautious [34, 142].

Novelties

As mentioned earlier, in ACE, what may come with a co-evolutionary process
is a novelties-generation process. This feature is similar to Hayek’s evolu-
tionary concept of ‘competition as a discovery procedure.’ The neoclassical
economic models are completely silent on the novelties-generation process,

576 S.-H. Chen

from their general characteristics to their formation process. One basically
cannot anticipate anything unanticipated from the neoclassical model. All
types of economic behavior are determined exogenously and can only be
renewed manually by the model designers in a top-down manner. This makes
it very hard for neoclassical economics to give a constructive notion of pref-
erences, commodities, technology, human capital, and organization, concepts
that are fundamentally related to the theory of economic change.

Back in the late 1980s, Holland and Arthur had already sketched a research
idea, known as ‘growing artificial economy’, which was basically to simulate
the evolution of an economy from its primitive state to the advanced state.
This big plan, however, was never carried out. Instead, what was actually
implemented was found in Epstein and Axtell’s famous book, ‘growing artifi-
cial societies.’ In a model of cellular automata, they evolved many interesting
kinds of economic and social behavior, including trade, migration, disease, dis-
tribution of wealth, social networks, sexual reproduction, cultural processes,
and combat. In addition to this major piece of work, [132] studied how money
as a medium of exchange can emerge from a bartering economy, and [17] also
simulated the appearance of an economic take-off (the industrial revolution).

Despite these studies, one has to say that the novelties-generation process
has not been well exploited given the current state of ABM. There should be
more left for the researchers to do. In their research project, the functional-
modularity foundation of economics, [41, 42] proposed an agent-based model
of preference changes and technology formation to grow both technology and
preferences. In their model, consumers’ current preferences will determine the
direction of technology advancement. However, the technology developed will
in turn evolve the preferences as well. GP is applied here to give size-free and
shape-free representation of technology and preferences.

The use of genetic programming in economics provides economists a great
opportunity to rethink some hundred-year-old ideas. In particular, it enables
economists to implement the ideas of economic evolution or progress by incor-
porating and hence acknowledging the importance of modularity. Simulating
economic evolution with functional modularity is not restricted to technol-
ogy or product innovation. More challenging tasks are its application to labor
markets and organizations. While the idea that labor as capital (known as
‘human capital’), has been studied for almost 40 years, the process of accu-
mulating human capital – and hence the role of education, as well as on-job
training – is yet to be established.

5.3 Future Directions

Before ending this Section, we would like point out some directions for fur-
ther research so as to see more opportunities and challenges opening for
applications of computational intelligence tools.

Computational Intelligence in Agent-Based Computational Economics 577

Experimental Economics and Behavioral Economics

It becomes gradually clear that agent-based computational economics should
be able to interact with experimental and behavioral economics in a more inte-
grated framework. A series of papers published recently motivated the need
for an integrated framework and sketched how this work can be done. First,
the behavioral approach and the agent-based approach can collaboratively
work together in a bi-directional manner. On the one hand, experimental and
behavioral approaches can help answer some modeling issues related to agent
engineering, while, on the other hand, agent-based computational finance can
help test the robustness or the generality of some behavioral rules observed
from psychological laboratory experiments.

[43] serves as an example of the first direction. While the essence of agent-
based computing is agents, not so much has been said as to how to model or
program these agents. Disputes still prevail on the issue like the simple/naive
agents versus the sophisticated/smart agents.26 A proposed solution to this
problem is to work with real human behavior, in particular, when the respec-
tive fields or an experimental study are available. For example, there are
already some empirical observations regarding gamblers’ behavior; hence, one
may get some ideas on how a gambling agent should be programmed in light
of the empirical evidence. Chen and Chie’s work on the agent-based modeling
of lottery markets serves as a demonstration of this idea [43].

[48] serves as an example of the other direction. Psychologists have been
long distinct from economists in the rational assumption of human behav-
ior. The gap between the two has, however, been narrowed in recent years,
thanks to a series of celebrated works by Tverskey, Kahneman, and their
followers. Findings based on a series of psychological experiments concerning
decision-making under risk and uncertainty are now applied to address a num-
ber of financial anomalies, which fosters the growing field currently known as
behavioral finance.

Chen and Liao, however, questioned the legitimacy of financial models
directly built upon psychological experiments [48]. Their main concern is that
psychological experiments which lend support to various cognitive biases seem
to focus only on independent individual behavior in a rather static environ-
ment. This setting is, therefore, distant from financial markets, where agents
are able to learn and adapt in an interactively dynamic environment. As
a result, various cognitive biases observed from the psychological experi-
ments may be corrected via learning and may not be exogenously fixed as
in most behavioral financial models. [48] proposed an alternative: instead of
exogenously imposing a specific kind of behavioral bias (for example overcon-
fidence or conservatism) on the agents, we can canvass the emergence and/or

26 See [50] for an in-depth discussion of this issue.

578 S.-H. Chen

the survivorship of this behavioral bias in the highly dynamic and complex
environment through computer simulations.

Second, when software agents are commonly used to replace human agents
in making decisions and taking action in an era of electronic commerce, human
agents and software agents can quite often be placed in a common arena and
their interaction becomes more intense than ever. Questions pertaining to the
consequences of this interaction, therefore, become crucial. [87] pioneered such
a research direction, and raised two fundamental issues which define this line
of research. First, will artificial agents in markets influence human behavior?
Second, will the interaction between human and artificial agents have a posi-
tive or negative effect on the market’s efficiency? They designed a continuous
double auction market in the style of the Iowa electronic market, and intro-
duced software agents with a passive arbitrage seeking strategy to the market
experiment with human agents. Whether or not the human agents are well
informed of the presence of the software agents can have significant impacts
upon market efficiency (in the form of price deviations from the fundamental
price). They found that if human agents are well informed, then the presence
of software agents triggers more efficient market prices when compared to the
baseline treatment without software agents. Otherwise, the introduction of
software agents results in lower market efficiency.27

Agent-Based Econometric Modeling

We now have seen some progress regarding how agent-based models can be
built upon laboratory experiments with human subjects, field studies, and
social work, but not directly with the data themselves. This is concerned with
agent-based econometric models. The complexity of the agent-based models
makes their empirical estimation a daunting task, if not an impossible one.
Therefore, few attempts have been made to conduct an econometric analysis of
an agent-based model. However, recently, we have started to see some progress
in the estimation of some relatively simple agent-based models; [122] was one
of the pioneering efforts.

[122] can be regarded as an outcome of the new research trend that embeds
conventional discrete choice models, also known as the qualitative response
models, in a social network, and examines the impact of the social interaction
upon individuals’ discrete choices. Other similar works can be found in [28]
and [74]. With moderate degrees of simplifying assumptions on individuals’
decision models as well as interaction mechanisms, this network-based agent-
based model can be parameterized and estimated as an econometric model.
This is basically what was done in [122], which estimated the interaction
mechanism among young people in relation to smoking behavior by using the
27 These two issues have been further pursued in the recent development of the

U-Mart platform [103,133,145].

Computational Intelligence in Agent-Based Computational Economics 579

result of [8].28 Its empirical results strongly support the presence of positive
peer effects in smoking behavior among young people.

Certainly, not all agent-based econometric models are network-based.
There are a series of agent-based financial econometric models which do not
explicitly refer to a network or a graph [4, 5, 155].

Agent-Based Social Networks

Having noticed that agent-based econometric models were first successfully
developed in the area of the network-based discrete choice models, we noticed
that the social network plays an increasingly important role in ACE models.
In fact, the network should be an essential ingredient of agent-based mod-
els, while most agent-based simulation models do not explicitly include this
element.

Network externalities may be viewed as one of the best places to see the use
of agent-based social networks. The celebrated work [97] was demonstrated in
an agent-based manner by [148], who built an agent-based model and evalu-
ated it by verifying the simulation results with conventional Beta and VHS
systems. [83] enhances our understanding of the significance of network effects
by creating agent-based computational simulations of such markets. Insights
into the dominance of the inferior technologies are further explored within a
model called ‘Standard-Scape’.

6 Concluding Remarks

Unlike most tutorials on the economic and financial applications of compu-
tational intelligence, this Chapter is not about how CI tools are applied to
economics and finance as merely an optimization numerical tool. Instead,
we have a broader scope, namely to use CI tools to build economic agents
with some reasonable and realistic degree of autonomy, and then study the
emergent phenomena resulting from a society of these autonomous agents.
In this sense, CI is introduced to economics as an algorithmic foundation of
autonomous agents. We review two major algorithmic foundations, namely,
neural networks and evolutionary computation. While the review is not
exhaustive, the essential idea of using other tools to build autonomous agents
and hence evolve the economy is largely the same. A well-motivated reader
should be able to see room for other alternative algorithmic foundations, such
28 [8] can be read as one of the earliest available econometric results of agent-based

models. Given the profile of individual attributes and the social interaction mech-
anism, [8] provides an analytical solution for the equilibrium distribution of the
collection of individuals’ behavior. Hence, it is possible to describe the macro
equilibrium from the micro level.

580 S.-H. Chen

as fuzzy logic, decision trees, Bayesian networks, and reinforcement learn-
ing. The general question left for further study is how these different CI
tools, under what specific environment, can successfully characterize human
decision-making process.

In the second part of this Chapter, we reviewed the early applications of
CI to agent-based computational economics. We saw how CI can help relax
the stringent assumptions frequently used in old-fashion economics, and bring
back some missing processes due to the learning or bounded rational behav-
ior of agents. While making economic predictions using ACE models is still
difficult, the use of CI certainly enhance some of our flexibility to simulate
possible futures. In this review, we have witnessed how CI can help build more
realistic ACE models such that they can be useful in policy design.

The nature of economics is change and evolution, and what makes it change
and evolve is humans. CI provides alternative hypotheses or modeling of the
microscopic details of human behavior. So long as these details are not trivial,
CI can help economists to establish quality models as illustrated in the many
works reviewed in this Chapter.

Acknowledgements

The author is grateful to one of the anonymous referees for their helpful
suggestions. The author is also grateful to Professor John Fulcher for his
painstaking efforts made in editing the Chapter. Research support in the form
of NSC grant No. NSC. 95-2415-H-004-002-MY3 is gratefully acknowledged.

References

1. Adcock A, Thangavel1 A, Whitfield-Gabrieli S, Knutson B, Gabrieli J
(2006) Reward-motivated learning: Mesolimbic activation precedes memory
formation. Neuron, 50(3): 507–517.

2. Aha D (1997) Lazy Learning. Kluwer, Boston, MA.
3. Aha D, Kibler D, Marc K (1991) Instance-based learning algorithms. Machine

Learning, 6(1): 37–66.
4. Alfarano S, Lux T, Wagner F (2005) Estimation of agent-based models: the

case of an asymmetric herding model. Computational Economics, 26(1): 19–49.
5. Alfarano S, Lux T, Wagner F (2007) Empirical validation of stochastic mod-

els of interacting agents: a ‘maximally skewed’ noise trader model. European
Physics J. B, 55: 183–187.

6. Allen F, Karjalainen R (1999) Using genetic algorithms to find technical
trading rules. J. Financial Economics, 51(2): 245–71.

7. Alvarez-Diaz M, Alvarez A (2005) Genetic multi-model composite forecast for
nonlinear prediction of exchange rates. Empirical Economics, 30: 643–663.

8. Amemiya T (1975), Qualitative response models. Annals Economics and Social
Management, 4: 363–372.

Computational Intelligence in Agent-Based Computational Economics 581

9. Andrew M, Prager R (1994) Genetic programming for the acquisition of dou-
ble auction market strategies. In: Kinnear K Jr. (ed.), Advances in Genetic
Programming. MIT Press, Cambridge, MA: 355–368.

10. Arifovic J (1994) Genetic algorithms learning and the cobweb model. J.
Economic Dynamics and Control, 18(1): 3–28.

11. Arifovic J (1995) Genetic algorithms and inflationary economies. J. Monetary
Economics, 36(1): 219–43.

12. Arifovic J (1996) The behavior of the exchange rate in the genetic algorithm
and experimental economies. J. Political Economy, 104(3): 510–541.

13. Arifovic J (2001) Evolutionary dynamics of currency substitution. J. Economic
Dynamics and Control, 25: 395–417.

14. Arifovic J (2002) Exchange rate volatility in the artificial foreign exchange mar-
ket. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin: 125–136.

15. Arifovic J, Eaton B (1995) Coordination via genetic learning. Computational
Economics, 8(3): 181–203.

16. Arifovic J, Gencay R (2000) Statistical properties of genetic learning in a model
of exchange rate. J. Economic Dynamics and Control, 24: 981–1005.

17. Arifovic J, Bullard J, Duffy J (1997) The transition from stagnation to growth:
an adaptive learning approach. J. Economic Growth, 2(2): 185–209.

18. Armano G, Murru A, Marchesi M (2002) NXCS – A hybrid approach to
stock indexes forecasting. In: Chen, S-H (ed.) Genetic Algorithms and Genetic
Programming in Computational Finance. Kluwer, Boston, MA.

19. Arthur B (1992) On learning and adaptation in the economy. SFI Economics
Research Program, 92-07-038.

20. Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset pricing
under endogenous expectations in an artificial stock market. In: Arthur W,
Durlauf S, Lane D (eds.) The Economy as an Evolving Complex System II.
Addison-Wesley, Reading, MA: 15–44.

21. Axelrod R (1997) Advancing the art of simulation in the social sciences.
In: Conte R, Hegselmann R, Terna P (eds.) Simulating Social Phenomena.
Springer-Verlag, Berlin: 21–40.

22. Azariadis C, Guesnerie R (1986) Sunspots and cycle. Review Economic Studies
LIII: 725–737.

23. Azoff M (1994) Neural Network Time Series: Forecasting of Financial Markets.
Wiley, New York, NY.

24. Baestaens D, Van Den Bergh W, Wood D (1994) Neural Network Solutions for
Trading in Financial Markets. Pitman, London, UK.

25. Bauer R. Jr (1994) Genetic Algorithms and Investment Strategies. Wiley, New
York, NY.

26. Bell R, Beare S (2002) Emulating trade in emissions permits: An application of
genetic algorithms. In: Chen S-H (ed.) Evolutionary Computation in Economics
and Finance. Physica-Verlag, Heidelberg, Germany: 161–175.

27. Birchenhall C, Lin J-S (2002) Learning and convergence to Pareto optimal-
ity. In: Chen S-H. (ed.) Genetic Algorithms and Genetic Programming in
Computational Finance. Kluwer, Boston, MA: 419–440.

28. Bonabeau E (2003) Econometrics of agent-based models. Proc. 2nd Lake
Arrowhead Conf. Human Complex Systems (Keynote Speech), 19–22 March,
Lake Arrowhead, CA.

582 S.-H. Chen

29. Bower J, Bunn D (2001) Experimental analysis of the efficiency of uniform-
price versus discriminatory auctions in the England and Wales electricity
market. J. Economic Dynamics and Control, 25: 561–592.

30. Boyle S, Guerin S, Kunkle D (2005) An application of multi-agent simulation
to policy appraisal in the criminal justice system. In: Chen S-H, Jain LC,
Tai C-C (eds.) Computational Economics: A Perspective from Computational
Intelligence. Idea Group, Hershey, PA: 228–234.

31. Bullard J, Duffy J (1998) A model of learning and emulation with artificial
adaptive agents. J. Economic Dynamics and Control, 22: 179–207.

32. Bullard J, Duffy J (1998) Learning and the stability of cycles. Macroeconomic
Dynamics, 2(1): 22–48.

33. Bullard J, Duffy J (1999) Using genetic algorithms to model the evolution of
heterogeneous beliefs. Computational Economics, 13(1): 41–60.

34. Cacho O, Simmons P (1999) A genetic algorithm approach to farm investment.
Australian J. Agricultural and Resource Economics, 43(3): 305–322.

35. Chan N, LeBaron B, Lo A, Poggio T (1999). Agent-based models of finan-
cial markets: a comparison with experimental markets. Unpublished Working
Paper, MIT Artificial Markets Project, MIT, MA.

36. Chen J, Xu D (1998) An economic forecasting system based on recurrent neural
networks. In: Proc. IEEE Intl. Conf. Systems, Man, and Cybernetics, 14–18
October, San Diego, CA. IEEE Press, New York, NY, 2: 1762–1767.

37. Chen S-H (1997) On the artificial life of the general economic system (I): the
role of selection pressure. In: Hara F, Yoshida K (eds.) Proc. Intl. Symp. System
Life, 21–22 July, Tokyo, Japan: 233–240.

38. Chen S-H (2000) Toward an agent-based computational modeling of bar-
gaining strategies in double auction markets with genetic programming. In:
Leung K-S, Chan L-W, Meng H (eds.) Intelligent Data Engineering and Auto-
mated Learning – IDEAL 2000: Data Mining, Financial Engineering, and
Intelligent Agents, Lecture Notes in Computer Science 1983. Springer-Verlag,
Berlin: 517–531.

39. Chen S-H (ed.) (2002) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin.

40. Chen S-H (ed.) (2002) Genetic Algorithms and Genetic Programming in
Computational Finance. Kluwer, Boston, MA.

41. Chen S-H, Chie B-T (2004) Agent-based economic modeling of the evolution of
technology: the relevance of functional modularity and genetic programming.
Intl. J. Modern Physics B, 18(17–19): 2376–2386.

42. Chen S-H, Chie B-T (2005) A functional modularity approach to agent-based
modeling of the evolution of technology. In: Namatame A, Kaizouji T, Aruka Y
(eds.) The Complex Networks of Economic Interactions: Essays in Agent-Based
Economics and Econophysics, Lecture Notes in Economics and Mathematical
Systems 567, Springer-Verlag, 165–178.

43. Chen S-H, Chie B-T (2007) Lottery markets design, micro-structure, and
macro-behavior: An ACE approach. J. Economic Behavior and Organization,
(in press).

44. Chen S-H, He H (2003) Searching financial patterns with self-organizing maps.
In: Chen S-H, Wang P (eds.) Computational Intelligence in Economics and
Finance. Springer-Verlag, Berlin: 203–216.

Computational Intelligence in Agent-Based Computational Economics 583

45. Chen S-H, Huang Y-C (2007) Risk preference, forecasting accuracy and sur-
vival dynamics: simulations based on a multi-asset agent-based artificial stock
market. J. Economic Behavior and Organization. (in press).

46. Chen S-H, Kuo T-W (1999) Towards an agent-based foundation of financial
econometrics: an approach based on genetic-programming artificial markets.
In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M, Smith R
(eds.) Proc. Genetic and Evolutionary Computation Conf., Morgan Kaufmann,
San Mateo, CA, 2: 966–973.

47. Chen S-H, Liao C-C (2002) Price discovery in agent-based computational
modeling of artificial stock markets. In: Chen S-H (ed.) Genetic Algorithms
and Genetic Programming in Computational Finance. Kluwer, Boston, MA:
333–354.

48. Chen, S-H, Liao C-C (2004) Behavior finance and agent-based computational
finance: toward an integrating framework. J. Management and Economics, 8.

49. Chen S-H, Liao C-C (2005) Agent-based computational modeling of the stock
price-volume relation. Information Sciences, 170: 75–100.

50. Chen S-H, Tai C-C (2006) On the selection of adaptive algorithms in ABM: a
computational-equivalence approach. Computational Economics, 28(1): 51–69.

51. Chen S-H, Wang P (eds.) (2003) Computational Intelligence in Economics and
Finance. Springer-Verlag, Berlin.

52. Chen S-H, Yeh C.-H (1996) Genetic programming and the efficient mar-
ket hypothesis. In: Koza J, Goldberg D, Fogel D, Riolo R (eds.) Genetic
programming 1996: Proc. 1st Annual Conf. MIT Press, Cambridge, MA: 45–53.

53. Chen S-H, Yeh C-H (1996) Genetic programming learning and the cobweb
model. In: Angeline P (ed.) Advances in Genetic Programming 2. MIT Press,
Cambridge, MA: 443–466.

54. Chen S-H, Yeh C-H (1997) Toward a computable approach to the efficient mar-
ket hypothesis: an application of genetic programming. J. Economic Dynamics
and Control, 21: 1043–1063.

55. Chen S-H, Yeh C-H (1997) Modeling speculators with genetic programming.
In: Angeline P, Reynolds R, McDonnell J, Eberhart R (eds.) Evolutionary
Programming VI, Lecture Notes in Computer Science 1213. Springer-Verlag,
Berlin: 137–147.

56. Chen S-H, Yeh C-H (1999) Modeling the expectations of inflation in the OLG
model with genetic programming. Soft Computing, 3(2): 53–62.

57. Chen S-H, Yeh C-H (2000) Simulating economic transition processes by genetic
programming. Annals Operation Research, 97: 265–286.

58. Chen S-H, Yeh C-H (2001) Evolving traders and the business school with
genetic programming: a new architecture of the agent-based artificial stock
market. J. Economic Dynamics and Control, 25: 363–393.

59. Chen S-H, Yeh C-H (2002) On the emergent properties of artificial stock mar-
kets: the efficient market hypothesis and the rational expectations hypothesis.
J. Economic Behavior and Organization, 49(2): 217–239.

60. Chen S-H, Duffy J, Yeh C-H (2001) Equilibrium selection via adaptation: using
genetic programming to model learning in a co-ordination game. Electronic J.
Evolutionary Modeling and Economic Dynamics. 1: 1002.

61. Chen, S-H, Lee W-C, Yeh C-H (1999) Hedging derivative securities with
genetic programming. Intl. J. Intelligent Systems in Accounting, Finance and
Management, 8(4): 237–251.

584 S.-H. Chen

62. Chen S-H, Liao C-C, Chou P-J (2007) On the plausibility of sunspot equi-
libria: simulations based on agent-based artificial stock markets. J. Economic
Interaction and Coordination, (in press).

63. Chen S-H, Yeh C-H, Liao C-C (2002) On AIE-ASM: Software to simulate
artificial stock markets with genetic programming. In: Chen S-H (ed.) Evolu-
tionary Computation in Economics and Finance. Physica-Verlag, Heidelberg,
Germany: 107–122.

64. Chen T, Chen H (1995) Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Trans. Neural Networks, 6: 911–917.

65. Chidambaran N, Lee C, Trigueros J (2000) Option pricing via genetic program-
ming. In: Abu–Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational
Finance – Proc. 6th Intl. Conf. MIT Press, Cambridge, MA: 583–598.

66. Cliff D, Bruten J (1997) Minimal-intelligence agents for bargaining behaviors
in market-based environments. Technical Report 97-91, Hewlett-Packet Lab.

67. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector
Machines – and Other Kernel-Based Learning Methods. Cambridge University
Press, UK.

68. Das N (2003) Hedge fund classification using k-means method. EconPapers,
204: 284.

69. Dawid H (1996) Learning of cycles and sunspot equilibria by genetic
algorithms. J. Evolutionary Economics, 6(4): 361–373.

70. Dawid H (1999) On the convergence of genetic learning in a double auction
market. J. Economic Dynamics and Control, 23: 1544–1567.

71. Deboeck G, Kohonen T (1998) Visual Explorations in Finance with
Self-Organizing Maps. Springer-Verlag, Berlin.

72. Duffy J (2001) Learning to speculate: experiments with artificial and real
agents. J. Economic Dynamics and Control, 25: 295–319.

73. Duffy J (2006) Agent-based models and human-subject experiments. In: Tesfat-
sion L, Judd K (eds.) Handbook of Computational Economics 2. North Holland,
Amsterdam, The Netherlands.

74. Dugundji E, Gulyas L (2003) Empirical estimation and multi-agent-based sim-
ulation of a discrete choice model with network interaction effects. In: Macal C,
North M, Sallach D (eds.) Proc. Agent 2003 Conf. on Challenges in Social Sim-
ulation, 2–4 October, University of Chicago. Argonne National Laboratory,
Chichago, IL: 437–453.

75. Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

76. Elman J (1990) Finding structure in time. Cognitive Science, 14: 179–211.
77. Episcopos A, Davis J (1996). Predicting returns on Canadian exchange rates

with artificial neural networks and EGARCHM-M model. Neural Computing
and Applications, 4:168–174.

78. Fernández-Rodŕıguez F, Sosvilla-Rivero S, Andrada-Félix J (2003) Nearest-
neighbour predictions in foreign exchange markets. In: Chen S-H, Wang P
(eds.) Computational Intelligence in Economics and Finance. Springer-Verlag,
Berlin: 297–325.

79. Fogel D (1995) Evolutionary Computation – Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscatawy NJ.

80. Fogel L (1964) On the Organization of Intellect. PhD Thesis, University of
California at Los Angeles, CA.

Computational Intelligence in Agent-Based Computational Economics 585

81. Franke R (1998) Coevolution and stable adjustments in the cobweb model. J.
Evolutionary Economics, 8(4): 383–406.

82. Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY.

83. Frels J, Heisler D, Reggia J (2003) Standard-scape: An agent-based model of
adoption with incomplete information and network externalities. In: Chen K,
Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E,
Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc.
7th Joint Conf. Information Sciences, 26–30 September, Cary, NC: 1219–1222.

84. Gately E (1996) Neural Networks for Financial Forecasting. Wiley, New York,
NY.

85. Gode D, Sunder S (1993) Allocative efficiency of markets with zero-intelligence
traders: market as a partial substitute for indiviudal rationality. J. Political
Economy, 101(1): 119–137.

86. Grandmont J-M (1985) On endogeneous competitive business cycles.
Econometrica, 53: 995–1045.

87. Grossklags J, Schmidt C (2006) Software agents and market (in)efficiency: a
human trader experiment. IEEE Trans. Systems, Man, and Cybernetics, Part
C, 36(1): 56–67.

88. Grossman S (1976) On the efficiency of competitive stock markets where
traders have diverse information. J. Finance, 31: 573–585.

89. Grossman S, Stiglitz J (1980) On the impossibility of informationally efficient
markets. American Economic Review, 70: 393–408.

90. Hann T, Steurer E (1996). Much ado about nothing? Exchange rate fore-
casting: Neural networks vs. linear models using monthly and weekly data.
Neurocomputing, 10: 323–339.

91. Holland J, Holyoak K, Nisbett R (1986) Induction: Processes of inference,
learning and discovery (computational models of cognition and perception).
MIT Press, Cambridge, MA.

92. Holland J, Miller J (1991) Artificial adaptive agents in economic theory.
American Economic Review, 81(2): 365–370.

93. Hollans H, Munneke H. (2003) Housing markets and house price appreciation:
An Interacity Analysis. Working paper. University of Georgia.

94. Izumi K, Ueda K (1999) Analysis of dealers’ processing financial news based
on an artificial market approach. J. Computational Intelligence in Finance, 7:
23–33.

95. Jordan M (1986) Serial order: A parallel distributed processing approach.
Technical Report 8604. Institute for Cognitive Science, University of California.

96. Kareken J, Wallace N (1981) On the indeterminacy of equilibrium exchange
rate. Quarterly J. Economics, 96: 207–222.

97. Katz M, Shapiro C (1985) Network externalities, competition, and
compatibility. American Economic Review, 75: 424–440.

98. Keber C (1999) Genetically derived approximations for determining the implied
volatility. OR Spektrum, 21: 205–238.

99. Keber C (2000) Option valuation with the genetic programming approach. In:
Abu-Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational Finance –
Proc. 6th Intl. Conf. MIT Press, Cambridge MA.

100. Kiyotaki N, Wright R (1989) On money as a medium of exchange. J. Political
Economy, 97: 927–954.

586 S.-H. Chen

101. Kohonen T (1982) Self-organized foundation of topologically correct feature
maps. Biological Cybernetics, 43: 59–69.

102. Kohonen T (1995) Self-Organizing Maps. Springer-Verlag, Berlin.
103. Koyama Y, Sato H, Matusi H, Nakajima Y (2005) Report on UMIE 2004

and summary of U-Mart experiments based on the classification of submitted
machine agents. In: Terano T, Kita H, Kaneda T, Arai K, Deghchi H (eds.)
Agent-Based Simulation: From Modeling Methodologies to Real-World Appli-
cations, (Springer Series on Agent-Based Social Systems 1), Springer-Verlag,
Tokyo: 158–166.

104. Koza J (1992) Genetic programming: on the programming of computers by
means of natural selection. MIT Press, Cambridge, MA.

105. Koza J (1992) A Genetic approach to econometric modeling. In: Bourgine P,
Walliser B (eds.) Economics and Cognitive Science. Pergamon Press, Oxford,
UK: 57–75.

106. Kramer M (1990) Nonlinear principal analysis using autoassociative neural
networks. AIChE J., 37(2): 233–243.

107. Krugman P (1996) The Self-Organizing Economy. Blackwell, Cambridge, MA.
108. Kuan C-M, Liu T (1995) Forecasting exchange rates using feedforward and

recurrent neural networks. J. Applied Econometrics, 10: 347–364.
109. LeBaron B (1999) Building financial markets with artificial agents: Desired

goals and present techniques. In: Karakoulas G (ed.) Computational Markets.
MIT Press, Cambridge, MA.

110. LeBaron B (2001) Evolution and time horizons in an agent based stock market.
Macroeconomic Dynamics, 5: 225–254.

111. LeBaron B, Arthur W, Palmer R (1999) Time series properties of an artificial
stock market. J. Economic Dynamics and Control, 23: 1487–1516.

112. Lensberg T (1999) Investment behavior under Knightian uncertainty – an
evolutionary approach. J. Economic Dynamics and Control, 23: 1587–1604.

113. Lettau M (1997) Explaining the facts with adaptive agents: the case of mutual
fund flows. J. Economic Dynamics and Control, 21(7): 1117–1147.

114. Lucas R (1986) Adaptive behavior and economic theory. In: Hogarth R,
Reder M (eds.) Rational choice: The contrast between economics and
psychology. University of Chicago Press, IL: 217–242.

115. MacQueen J (1967) Some methods for classification and analysis of multi-
variate observations. In: LeCam LM, Neyman N (eds.) Proc. 5th Berkeley
Symp. Mathematical Statistics and Probability. University of California Press,
Berkeley, CA, 1: 281–297.

116. Mandic D, Chambers J (2001). Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures, and Stability. Wiley, New York, NY.

117. Marimon R, McGrattan E, Sargent T (1990) Money as Medium of Exchange
in an Economy with Artificially Intelligent Agents. J. Economic Dynamics and
Control, 14: 329–373.

118. Marshall A (1961) Principles of Economics (9th (variorum) ed., with
annotations by CW Guillebaud). Macmillan, London, UK.

119. McNelis P (2005). Neural Networks in Finance: Gaining Predictive Edge in the
Market. Elesvier, Burlington, MA.

120. Midgley G (2005) Systemic intervention for community involvement in complex
policy. In: Proc. 1st Intl. Workshop Complexity and Policy Analysis, 22–24
June, Cork, Ireland.

Computational Intelligence in Agent-Based Computational Economics 587

121. Muth J (1961) Rational expectations and the theory of price movements.
Econometrics, 29: 315–335.

122. Nakajima R (2003) Measuring peer effects in youth smoking behavior. In:
Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov
N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu
J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary,
NC: 1206–1210.

123. Neely C, Weller P, Ditmar R (1997) Is technical analysis in the foreign
exchange market profitable? A genetic programming approach. J. Financial
and Quantitative Analysis, 32(4): 405–427.

124. North M (2003) Applying computational Intelligence to economic policy. In:
Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N,
Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J
(eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC:
1231–1234.

125. Nicolaisen J, Smith M, Petrov V, Tesfatsion L (2000) Concentration and capac-
ity effects on electricity market power. In: Alzala A (ed.) Proc. 2000 Congress
Evolutionary Computation, IEEE Society Press, Piscataway, NJ: 1041–1047.

126. Nicolaisen J, Petrov V, Tesfatsion L (2001) Market power and efficiency in a
computational electricity market with discriminatory double-auction pricing.
IEEE Trans. Evolutionary Computation, 5(5): 504–523.

127. Palmer R, Arthur W, Holland J, LeBaron B, and Tayler P (1994). Artificial
economic life: a simple model of a stock market. Physica D, 75: 264–274.

128. Qian Y (2006) k-means algorithm and its application for clustering compa-
nies listed in Zhejiang province. WIT Trans Information and Communication
Technologies, 37: 35–44.

129. Rechenberg I (1965) Cybernetic Solution Path of an Experimental Problem.
Royal Aircraft Establishment, Library Translation 1122, August.

130. Refenes A (1995) Neural Networks in the Capital Markets. Wiley, New York,
NY.

131. Refenes A, Zapranis A (1999) Principles of Neural Model Identification,
Selection and Adequacy: With Applications in Financial Econometrics.
Springer-Verlag, Berlin.

132. Sargent T (1993) Bounded Rationality in Macroeconomics. Oxford University
Press, UK.

133. Sato H, Kawachi S, Namatame A (2003) The statistical properties of price
fluctuations by computer agents in a U-Mart virtual future market simulator.
In: Terano T, Dehuchi H, Takadama K (eds.) Meeting the Challenge of Social
Problems via Agent-Based Simulation. Springer-Verlag, Tokyo: 67–76.

134. Schwefel H (1965) Kybernetische Evolution als Strategies der Experimentellen
Forschung in der Strömungstechnik. Diploma Thesis, Technical University of
Berlin.

135. Schewfel H (1995) Evolution and Optimum Seeking. Wiley, New York, NY.
136. Shadbolt J, Taylor J (2002) Neural Networks and the Financial

Markets-Predicting, Combining, and Portfolio Optimisation. Springer-Verlag,
Berlin.

137. Shi S, Xu L, Liu B (1999) Improving the acuracy of nonlinear combined
forecasting using neural networks. Expert Systems with Applications, 16: 49–54.

138. Simon HA (1997) Models of Bounded Rationality, Vol. 3. MIT Press,
Cambridge, MA.

588 S.-H. Chen

139. Smith V, Suchanek G, Williams A (1988) Bubbles, crashes, and endogenous
expectations in experimental spot asset markets. Econometrica, 56(6): 1119–
1152.

140. Suykens J, Vandewalle J (1998) The K.U. Leuven time series prediction com-
petition. In: Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced
Black-Box Techniques. Kluwer, Boston, MA: 241–253.

141. Szpiro G (1997) Forecasting chaotic time series with genetic algorithms.
Physical Review E, 55: 2557–2568.

142. Szpiro G (1997) The emergence of risk aversion. Complexity, 2: 31–39.
143. Tay N, Linn S (2001) Fuzzy inductive reasoning, expectation formation and the

behavior of security prices. J. Economic Dynamics and Control, 25: 321–361.
144. Tayler P (1995) Modeling artificial stock markets using genetic algorithms.

In: Goonatilake S, Treleaven P (eds.) Intelligent Systems for Finance and
Business. Wiley, New York, NY: 271–287.

145. Terano T, Shiozawa Y, Deguchi H, Kita H, Matsui H, Sato H, Ono I,
Kakajima Y (2003), U-Mart: An artificial market testbed for economics and
multiagent systems. In: Terano T, Dehuchi H, Takadama K (eds.) Meeting
the Challenge of Social Problems via Agent-Based Simulation. Springer-Verlag,
Tokyo: 53–66.

146. Tirole J. (1982) On the possibility of speculation under rational expectations.
Econometrica, 50: 1163–1182.

147. Trippi R, Turban E. (1993) Neural Networks in Finance and Investing. Irwin
148. Tsuji M, Kawamura H, Ohuchi A (2003) Measuring the effect of indirect net-

work externality in VCR standardization process. In: Chen K, Chen S-H,
Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V,
Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint
Conf. Information Sciences, 26–30 September, Cary, NC: 1215–1218.

149. Vapnik V (1998) Statistical Learning Theory. Wiley, New York, NY.
150. Vapnik V (1998) The support vector method of function estimation. In:

Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced Black-Box
Techniques. Kluwer, Boston, MA: 55–85.

151. Vriend N (2001) On two types of GA-Learning. In: Chen S-H (ed.) Evolu-
tionary Computation in Economics and Finance. Physica-Verlag, Heidelberg,
Germany: 233–243.

152. Waldrop M (1992) Complexity: The Emerging Science at the Edge of Order
and Chaos. Simon and Schuster, New York, NY.

153. Wei W-X, Jiang Z-H (1995) Artificial neural network forecasting model for
exchange rate and empirical analysis. Forecasting, 2: 67–69.

154. Weigend A, Huberman B, Rumelhart D (1992) Predicting sunspots and
exchange rates with connectionist networks. In: Casdagli M, Eubank S (eds.)
Nonlinear Modeling and Forecasting. Addison-Wesley, Reading, MA: 395–432.

155. Westerhoff F, Reitz S (2003) Nonlinearities and cyclical behavior: The
role of chartists and fundamentalists. Studies in Nonlinear Dynamics and
Econometrics, 7(4): Article 3.

156. White H (1988) Economic prediction using neural networks: The case of IBM
daily stock returns. In: Proc. IEEE Intl. Conf. Neural Networks 2, 24–27 July,
San Diego, CA. IEEE Press, New York, NY: 451–458.

157. White H (1992) Artificial Neural Networks–Approximation Theory and
Learning Theory. Blackwell, Cambridge, MA.

Computational Intelligence in Agent-Based Computational Economics 589

158. Wu B (1995) Model-free forecasting for nonlinear time series (with application
to exchange rates). Computational Statistics and Data Analysis, 19: 433–459.

159. Wu S, Bhattacharyya S (2005) Minimal intelligence Agents in double auction
markets with speculators. In: Chen S-H, Jain LC, Tai C-C (eds.) Computa-
tional Economics: A Perspective from Computationl Intelligence. Idea Group,
Hershey, PA: Chapter IV.

160. Yang J. (2002) The efficiency of an artificial double auction stock market
with neural learning agents. In: Chen S-H. (ed.) Evolutionary Computation
in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 87–107.

161. Yeh C-H, Chen S-H (2001) Toward an integration of social learning and indi-
vidual learning in agent-based computational stock markets: The approach
based on population genetic programming. J. Management and Economics, 5.

162. Yeh C-H, Chen S-H (2001) Market diversity and market efficiency: The
approach based on genetic programming. J. Artificial Simulation of Adaptive
Behavior, 1(1): 147–167.

163. Zirilli J (1996) Financial Prediction Using Neural Networks. Thomson, London,
UK.

Resources

1 Key Books

Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset pricing
under endogenous expectations in an artificial stock market. In: Arthur W,
Durlauf S, Lane D (eds.) The Economy as an Evolving Complex System II.
Addison-Wesley, Reading, MA: 15–44.

Axelrod R (1997) Advancing the art of simulation in the social sciences.
In: Conte R, Hegselmann R, Terna P (eds.) Simulating Social Phenomena.
Springer-Verlag, Berlin: 21–40.

Chen S-H (ed.) (2002) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin.

Chen S-H (ed.) (2002) Genetic Algorithms and Genetic Programming in Com-
putational Finance. Kluwer, Boston, MA.

Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY.

Koza J (1992) A Genetic approach to econometric modeling. In: Bourgine P,
Walliser B (eds.) Economics and Cognitive Science. Pergamon Press, Oxford,
UK: 57–75.

LeBaron B (1999) Building financial markets with artificial agents: Desired
goals and present techniques. In: Karakoulas G (ed.) Computational Markets.
MIT Press, Cambridge, MA.

Lucas R (1986) Adaptive behavior and economic theory. In: Hogarth R, Reder
M (eds.) Rational choice: The contrast between economics and psychology.
University of Chicago Press, IL: 217–242.

592 S.-H. Chen

2 Key Survey/Review Articles

Arifovic J (1994) Genetic algorithms learning and the cobweb model. J. Eco-
nomic Dynamics and Control, 18(1): 3–28.

Bullard J, Duffy J (1998) A model of learning and emulation with artifi-
cial adaptive agents. J. Economic Dynamics and Control, 22: 179–207.

Holland J, Miller J (1991) Artificial adaptive agents in economic theory. Amer-
ican Economic Review, 81(2): 365–370.

LeBaron B (2001) Evolution and time horizons in an agent based stock mar-
ket. Macroeconomic Dynamics, 5: 225–254.

LeBaron B, Arthur W, Palmer R (1999) Time series properties of an arti-
ficial stock market. J. Economic Dynamics and Control, 23: 1487–1516.

3 Journals

Computational Economics

Intl. J. Intelligent Systems in Accounting, Finance and Management

J. Computational Intelligence in Finance

J. Economic Dynamics and Control

J. Evolutionary Economics

J. Financial Economics

J. Monetary Economics

4 Key International Conferences/Workshops

4.1 Economics

Computational Intelligence in Economics and Finance (CIEF)

Intl. Conf. Computing in Economics and Finance (CEF)

Computational Intelligence in Agent-Based Computational Economics 593

Intl. Conf. Economic Science with Heterogeneous Interacting Agents (ESHIA)

World Conference on Social Simulation (WCSS)

4.2 Agents

Annual Conference on Neuroeconomics

Intl. ESA Conf. Experimental Economics (Economic Science Association)

International Workshop on Agent-Based Approaches in Economic and Social
Complex Systems (AESCS)

North American Association for Computational Social and Organizational
Sciences (NAACSOS)

5 (Open Source) Software

MASON: Multi-Agent Simulator
http://cs.gmu.edu/ eclab/projects/mason/

MATLAB
http://www.mathworks.com/

NetLogo
http://ccl.northwestern.edu/netlogo/

Repast
http://repast.sourceforge.net/

Sociodynamica
http://atta.labb.usb.ve/Klaus/Programas.htm

StarLogo
http://education.mit.edu/starlogo/

Swarm
http://www.swarm.org/wiki/Main Page

594 S.-H. Chen

6 Data Bases

COMPUSTAT
https://www.compustatresources.com/support/index.html

CRSP
http://www.crsp.com/products/stocks.htm

DatAnalysis
http://www.deakin.edu.au/library/search/title/datanalysis.php

Datastream
http://www.datastream.com/

Global Financial Data
http://www.globalfinancialdata.com/

Yahoo! Finance
http://finance.yahoo.com/

Part VII

Fuzzy Systems

Semantics and Perception of Fuzzy Sets
and Fuzzy Mappings

Witold Pedrycz

Department of Electrical and Computer Engineering, University of Alberta,
Edmonton, Canada, pedrycz@ece.ualberta.ca
Systems Research Institute, Polish Academy of Science, u1. Newelska 6,
01-447 Warszawa, Poland

1 Semantics of Fuzzy Sets: Some General Observations

Fuzzy sets are constructs that come with a well defined meaning [36–38]. They
capture the semantics of the framework they intend to operate within. Fuzzy
sets are the building conceptual blocks (generic constructs) that are used in
problem description, modeling, control, pattern classification tasks and the
like. Their estimation and interpretation are of paramount relevance. Before
discussing specific techniques of membership function estimation, it is worth
casting the overall presentation in a certain context by emphasizing the aspect
of the use of a finite number of fuzzy sets leading to some essential vocabulary
reflective of the underlying domain knowledge. In particular, we are concerned
with the related semantics, calibration capabilities of membership functions,
and the locality of fuzzy sets.

The limited capacity of a short-term memory, as lucidly identified by [16],
implies that we could easily and comfortably handle and process 7± 2 items.
This implies that the number of fuzzy sets to be considered as meaningful con-
ceptual entities should be kept more or less at the same level. The observation
sounds very convincing, and we can witness a lot of commonly encountered
situations in which this condition holds. For instance, when describing linguis-
tically quantified variables – say error or change of error – we may use seven
generic concepts (descriptors) labeling them as positive(negative) large, posi-
tive(negative) medium, and positive(negative) small, and around zero. When
characterizing speed, we may talk about its quite intuitive descriptors, such as
low, medium and high. In the description of an approximation error, we may
typically use the concept of a small error around a point of linearization (in all
these examples, the terms are indicated in italics to emphasize the granular
character of the constructs and the role being played there by fuzzy sets).
While embracing very different tasks, all these descriptors exhibit a striking

W. Pedrycz: Semantics and Perception of Fuzzy Sets and Fuzzy Mappings, Studies in Compu-

tational Intelligence (SCI) 115, 597–639 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

598 W. Pedrycz

similarity. They are information granules, not numbers (whose descriptive
power is very much limited). In modular software development when dealing
with a collection of modules (procedures, functions and alike), the list of their
parameters is always limited to a few items, which is again a reflection of the
limited capacity of the short-term memory. An excessively long parameter
list is strongly discouraged due to possible programming errors and rapidly
increasing difficulties of an effective comprehension of the software structure
and ensuing flow of control.

In general, the use of an excessive number of terms does not offer any
advantage. On the contrary, it remarkably clutters our description of the phe-
nomenon and hampers further effective usage of such concepts we intend to
establish to capture the essence of the domain knowledge. With the increase
in the number of fuzzy sets, their semantics also become negatively impacted.
Obviously, fuzzy sets may be built into a hierarchy of terms (descriptors) but
at each level of this hierarchy (when moving down towards higher specificity
in increasing level of detail), the number of fuzzy sets is kept at a certain
limited level.

While fuzzy sets capture concept semantics, they may require some cal-
ibration depending upon the specification of the problem at hand [5–9,
12–14,25, 28, 33, 35]. This flexibility of fuzzy sets should not be treated as
a shortcoming but rather we should regard it as a definite and fully exploited
advantage. For instance, a term low temperature comes with a clear meaning
yet it requires a certain calibration depending upon the environment and the
context it was put into. The concept of low temperature is used in different
climate zones and is of relevance in any communication between people yet
for each community the meaning of the term is different thereby requiring
some calibration. This could be realized, for example, by shifting the mem-
bership function along the universe of discourse of temperature, affecting the
universe of discourse by some translation, dilation and the like. As a means of
communication, linguistic terms are fully legitimate and as such they appear
in different settings. They require some refinement so that their meaning is
fully understood and shared by the community of users.

When discussing methods aimed at the determination of membership func-
tions or membership grades, it is worthwhile to underline the existence of the
three main categories of approaches being reflective of the origin of the numeric
values of membership. The first one is reflective of the domain knowledge and
opinions of experts. In the second one, we consider experimental data whose
global characteristics become reflected in the form and parameters of the mem-
bership functions. In the first group we can refer to the pairwise comparison
[29, 30] as one representative example, while fuzzy clustering is usually pre-
sented as a typical example of the data-driven method of membership function
estimation. There are also some hybrid approaches that tend to build upon
the experimental data while taking advantage of the domain knowledge.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 599

The key objectives of this study revolve around the fundamental concept of
membership function estimation, calibration, perception, and reconciliation of
views at information granules. Being fully cognizant of the semantics of fuzzy
sets, it becomes essential to come up with a suite of effective mechanisms
for the development of fuzzy sets and offer a comprehensive view of their
interpretation.

Given the main objectives of the study, its organization is reflective of
them. We start with a discussion on the use of domain knowledge and the
problem-oriented formation of fuzzy sets (Sect. 2). In Sect. 3, we focus on user-
centric estimation of membership functions (including horizontal, vertical and
pairwise comparison). In the following Section, we focus on the construction
of fuzzy sets regarded as granular representatives of numeric data. Fuzzy clus-
tering is covered in Sect. 5. Several design guidelines are presented in Sect. 6.
Fuzzy sets are typically cast in some context, and in this regard we discuss
the issue of nonlinear mappings (transformations) that provide a constructive
view of the calibration of fuzzy sets. The crux of the calibration deals with
a series of contractions and expansions of selected regions of the universe of
discourse. Further on we discuss several ways of reconciliation of fuzzy sets
and fuzzy mappings being a direct result of various views (perspectives) of
the same fuzzy set/fuzzy mapping.

The main points are augmented by some illustrative examples. Throughout
the study we adhere to the standard notation of fuzzy sets [1, 21, 36].

2 Domain Knowledge and Problem-Oriented
Formation of Fuzzy Sets

Fuzzy sets are often reflective of the nature of the problem and serve as its
concise descriptors. In this sense the domain knowledge is encapsulated in
some form in the corresponding membership functions. We discuss several
major categories of the estimation methods.

2.1 Fuzzy Set as a Descriptor of Feasible Solutions

The underlying idea is to relate membership function with the level of feasi-
bility of individual elements of a family of solutions to the problem at hand.
Let us consider a certain function F(x) defined in some domain Ω, that is
F: Ω → R, where Ω ⊂ R. Our intent is to determine its maximum – namely
x0 = arg maxx F(x). On the basis of the values of F(x), we construct a fuzzy
set A which describes a collection of feasible solutions that could be labeled as
‘optimal’ or ‘near-optimal’. More specifically, we use the fuzzy set to represent
the extent (degree) to which some specific values of ‘x’ could be regarded as
potential (optimal) solutions to the problem. Taking this into consideration,
we relate the membership function of A with the corresponding value of F(x)

600 W. Pedrycz

cast in the context of the boundary values assumed by F. For instance, the
membership function of A could be formed as follows:

A(x) =
F (x) − Fmin

Fmax − Fmin
(1)

The higher the membership grade A(x), the higher the feasibility of ‘x’
as a possible solution to the maximization problem. The interpretation of the
boundary conditions is also straightforward: Fmin = minF (x) and Fmax =
maxF (x), where the minimum and the maximum are computed over Ω. For
other values of ‘x’ where F attains is maximal value, A(x) is equal to 1 and
around this point the membership values are reduced when ‘x’ is likely to be a
solution to the problem F (x) < Fmax. The form of the membership function
depends upon the character of the problem under consideration. The following
example illustrates the essence of the construction of membership functions
carried out in this manner.

Example

Let us consider a problem of determining a maximum of the function
2sin(0.5x), defined in [0, 2π]. The minimum and maximum of F in the range
of the arguments between 0 and 2π is equal to 0 and 2, respectively. The maxi-
mal value of F is reached at x = π. The membership function of the solution to
the optimization problem is computed, using Eqn. (1) to be A(x) = sin(0.5x)
(Fig. 1).

0 2 4 6
0

1

2

2π0 x

F

A

Fig. 1. Function-F and the induced membership function-A

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 601

Linearization, its quality and description of quality falls under the same
banner as the optimization problem. The quality of linearization is not a
binary concept. When linearizing a function around some given point, the
quality of such linearization can be represented in the form of some fuzzy set.
Its membership function attains the value 1 for all these points where the
linearization error is equal to 0 (in particular, this holds at the point around
which the linearization is carried out). The following example illustrates this
idea.

Example

We are interested in the linearization of the function y = f(x) = e−x around
xo = 1, and assessing the quality of this linearization in the range [–1, 7]. The
linearization formula reads as y − y0 = f ′(x0)(x− x0). Given the form of the
function f(x) = exp (−x), the linearized version of the function around x0

reads as exp(−1)(2 − x). Next let us define the quality of this linearization
by taking the absolute value of the difference between the original function
and its linearization, F (x) = |f(x) − exp(−1)(2 − x)|. As the fuzzy set A
describes the quality of linearization, its membership function has to take
into consideration the expression

A(x) = 1− F (x)− Fmin

Fmax − Fmin
(2)

where Fmax = F (7) = 1.84, and Fmin = 0.0. Obviously, when at some z we
have F (z) = Fmin, this means that A(z) = 1, which in the sequel indicates
that the linearization at this point is perfect; no linearlization error has been
generated.

The plot of the fuzzy set A is shown in Fig. 2. We note that a higher quality
of approximation is achieved for arguments higher than the point at which
linearization has been completed. Furthermore, the membership function is
highly asymmetric, which sheds light on the character of the linearization
process.

2.2 Fuzzy set as a Descriptor of the Notion of Typicality

Fuzzy sets address an issue of gradual typicality of elements when being eval-
uated with respect to a certain concept. They stress the fact that there are
elements that fully satisfy the concept (are typical for it), and there are various
elements that are allowed to belong to the concept only with some member-
ship degrees below 1. The form of the membership function is reflective of
the semantics of the concept. Its details could be captured by adjusting the
parameters of the membership function, or by choosing its form depending
upon experimental data. For instance, consider a fuzzy set of circles. For-
mally, an ellipse includes a circle shape as its special example when the axes

602 W. Pedrycz

0 5
0

0.5

1

x

A

Fig. 2. Fuzzy set-A representing the quality of linearization of the function exp(−x)
around the point x0 = 1

a

b

|a-b|

m em bership

1

Fig. 3. Perception of the geometry of a circle, and its quantification in the form of
membership function of the concept ‘fuzzy circle’

are equal a = b (Fig. 3). What if a = b + ε, where ε is a very small positive
number? Could this figure come with the membership value of the corre-
sponding membership function equal to 0.99. Our perception, which comes
with some level of tolerance to imprecision, does not allow us to tell apart
this figure from the ideal circle, Fig. 3.

Higher differences between axes of the ellipses – in other words, ‘a’ and
‘b’, could result in lower values of the membership function. The definition of
the fuzzy set of circle could be expressed in a number of ways. Prior to the
definition or even visualization of the membership function, it is important
to formulate a space over which it will be defined. There are several quite
intuitive alternatives worth considering:

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 603

(a) for each pair of values of the axes (a and b), collect an experimental
assessment of membership of the ellipse to the category of circles. Here
the membership function is defined over a Cartesian space of the spaces of
lengths of axes of the ellipses. While selecting a form of the membership
we require that it assumes values at a = b and is gradually reduced when
the arguments start getting more distinct;

(b) we can define an absolute distance between a and b, |a – b|, and form a
fuzzy set over this space X; X = {x | x =|a – b|} X ∈ R+. The semantic
constraints translate into the condition of A(0) = 1. For higher values of
x we may consider monotonically decreasing values of A;

(c) we can envision ratios of a and b, say x = a/b, and construct a fuzzy set
over the subset of space of positive reals R+ such that X = {x | x =
a/b}. Here we require that A(1) = 1. We also anticipate lower values of
membership grades when moving to the left and to the right from x = 1.
Note that the membership function could be asymmetric as we allow for
different membership values for the same length of the axes, say a = 6,
b = 5 and a = 5 and b = 6 (the phenomenon of asymmetry could be quite
apparent due to the visual effects when perceiving geometric phenomena).
The previous model of X as outlined in (a) cannot capture this effect;

Once the form of the membership function has been defined, it could be
further adjusted by modifying the values of its parameters, which is done on
the basis of experimental findings. The parameters come in the form of ordered
triples or pairs, say (a, b, m), (a/b, m) or (|a – b|, µ), depending on the
previously accepted definition of the universe of discourse. The membership
values µ are those available from the expert offering an assessment of the
likeness (resemblance) of the corresponding geometric figure.

2.3 Membership Functions in the Visualization
of Preferences of Solutions

Fuzzy sets could be used as an effective vehicle to use membership functions
to visualize and quantify levels of preference of a family of possible solutions
to a given problem. A simple electrical circuit – Fig. 4 – helps us illustrate the
underlying idea. Consider the problem of power maximization in the external
resistance in the circuit.

The voltage source E is characterized by some internal resistance equal
to r. The external resistance R is the one on which we want to maximize
power dissipation. By straightforward calculations we determine that the
power dissipated on R is given as

P = i2R =
(

E

R + r

)2

R (3)

where E is the voltage of the source. The maximization of P with respect
to R is determined by zeroing the derivative of P (dP/dR) = 0, which leads

604 W. Pedrycz

E

Rr

+

Fig. 4. A simple electrical circuit and the problem of maximization of power
dissipation in the external resistance-R

5
0

0.5

1

R

Fig. 5. Membership function of the optimal power dissipation in external resistance
R; the maximal value is achieved for R = 1 (the internal resistance r is equal to 1)

to determination of the optimal value of the resistance Ropt. Through simple
derivations we obtain Ropt = r.

It becomes evident that while the condition R = r produces the maximum
of P , this solution is not technically feasible as there is a substantial level of
power dissipation on the internal resistance. If we plot the relationship of P
versus R (Fig. 5), and treat it as a membership function of R (which requires
a simple normalization of P by dividing it by the maximal value obtained
for R = r), we note that the shape of this relationship is highly asymmetric:
when increasing the value of resistance over the optimal value (Ropt), the
values of the membership function change quite smoothly and the reduction
of the membership grades becomes quite limited.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 605

On the other hand, when moving towards lower values of R such that
R < Ropt, the reduction in the membership grades is quite substantial. We
can say that the membership function of the optimal resistance offers a highly
visible and very much intuitive quantification of the notion of optimality.
The asymmetric shape of the resulting fuzzy set delivers some guidance in the
selection of possible suboptimal solutions, while the membership degree serves
as an indicator of the suitability (degree of optimality) of the individual value
of R.

3 User-Centric Estimation of Membership Functions

Experts, human observers, users, and designers can provide an important
insight into the quantification of membership grades. Several systematic ways
of estimation of fuzzy sets have been proposed in this regard. The vertical
and horizontal modes of membership estimation are two standard approaches
used in the determination of fuzzy sets. They reflect distinct ways of looking
at fuzzy sets whose membership functions at some finite number of points
are quantified by experts. The pairwise method of membership estimation is
another interesting alternative.

3.1 Horizontal Membership Function Estimation Scheme

In the horizontal approach we identify a collection of elements in the universe
of discourse X and request that an expert answers the question: “Does x
belong to concept-A?”

The answers are allowed to be in a binary (yes-no) format. The concept A
defined in X could be any linguistic notion, say high speed, low temperature,
or similar. Given a group of ‘n’ experts whose answers for a given point of
X form a mix of yes-no replies, we count the number of affirmative answers
and compute the ratio of the positive answers (p) versus the total number of
replies (n) – that is p/n. This ratio (likelihood) is treated as a membership
degree of the concept at the given point of the universe of discourse. When all
experts accept that the element belongs to the concept, then its membership
degree is equal to 1. Higher disagreement between the experts (quite divided
opinions) results in lower membership degrees. The concept A defined in X
requires collecting results for some other elements of X and determining the
corresponding ratios, as outlined in Fig. 6.

As the replies follow some binomial distribution, we could easily deter-
mine a confidence interval of the individual membership grade. The standard
deviation of the estimate of the positive answers associated with the point x,
denoted here by σ is given in the form

σ =

√
p(1− p)

n
(4)

606 W. Pedrycz

p/n

Fig. 6. Horizontal method of the estimation of the membership function: observe a
series of estimates determined for selected elements of X (note also that the elements
of X need not to be evenly distributed)

The associated confidence interval which describes a range of membership
values is then determined as

[p− σ, p + σ] (5)

In essence, when the confidence intervals are taken into consideration, the
membership estimates become intervals of possible membership values and
this leads to the concept of so-called ‘interval-valued’ fuzzy sets. By assessing
the width of the estimates, we could control the execution of the experiment:
when the ranges are too wide, one could re-design the experiment and monitor
closely the consistency of the responses collected.

The advantage of the method comes with its simplicity, as the technique
relies explicitly upon a direct counting of responses. The concept is also intu-
itively appealing. The probabilistic nature of the replies is useful in forming
build confidence intervals that are essential to the assessment of the speci-
ficity of the membership quantification. However one drawback is related to
the local character of the construct: as the estimates of the membership func-
tion are completed separately for each element of the universe of discourse,
they could exhibit a lack of continuity when moving from a specific point to
its neighbor. Obviously, this concern is particularly valid in the case when X
is a subset of real numbers.

3.2 Vertical Membership Function Estimation Scheme

The vertical mode of membership estimation is concerned with the estimation
of the membership function by focusing on the determination of successive α-
cuts. The experiment focuses on the unit interval of membership grades. The
experts involved in the experiment are asked questions of the form:

“what are the elements of X which belong to fuzzy set A at degree
not lower than α?”

where α is a certain level (threshold) of membership grades in [0,1].

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 607

α1

αp

Fig. 7. Vertical approach of membership estimation through the reconstruction of
a fuzzy set through its estimated α-cuts

The essence of the method is illustrated in Fig. 7. Note that the satisfaction
of the inclusion constraint has a straightforward interpretation: we envision
that for higher values of α, the expert is going to provide more limited subsets
of X. In a nutshell, the vertical approach leads to the fuzzy set by combining
the estimates of the corresponding α-cuts. Given the nature of this method,
we are referring to the collection of random sets as these estimates appear in
succeeding stages of the estimation process.

The elements are identified by the expert as they form the corresponding
α-cuts of A. By repeating the process for several selected values of α we end
up with the α-cuts, and using them we reconstruct the fuzzy set. This could
be done by solving the corresponding approximation problem. The simplicity
of the method is its genuine advantage. As with the horizontal method of
membership estimation, a possible lack of continuity is a particular disadvan-
tage one has to be aware of. Here the selection of suitable levels of needs to
be carefully investigated. Similarly, the order in which different levels of α are
used in the experiment could impact the estimate of the membership function.

3.3 Pairwise Membership Function Estimation Scheme

The priority method introduced by [29, 30] forms another interesting alterna-
tive used to estimate the membership function. To explain the essence of the
method, let us consider a collection of elements x1, x2, . . . , xn (which could
be, for instance, some alternatives whose allocation to a certain fuzzy set is
sought), with corresponding membership grades A(x1), A(x2), . . . , A(xn). Let
us organize them into a so-called reciprocal matrix of the following form:

R = [rij] =

⎡
⎢⎢⎢⎣

A(x1)
A(x1)

A(x1)
A(x2)

· · · A(x1)
A(xn)

A(x2)
A(x1)

A(x2)
A(x2)

· · · A(x2)
A(xn)

· · · · · · · · · · · ·
A(xn)
A(x1)

A(xn)
A(x2)

· · · A(xn)
A(xn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 A(x1)
A(x2)

· · · A(x1)
A(xn)

A(x2)
A(x1)

1 · · · A(x2)
A(xn)

· · · · · · · · · · · ·
A(xn)
A(x1)

A(xn)
A(x2)

· · · 1

⎤
⎥⎥⎥⎦ (6)

608 W. Pedrycz

Noticeably, the diagonal values of R are equal to 1. The entries that are
symmetrically positioned with respect to the diagonal satisfy the condition of
reciprocality, namely that rij = 1

rji
. Furthermore an important transitivity

property holds – rikrkj = rij – for all indexes i, j, and k. This property is
obvious. By plugging in the ratios one gets rikrkj = A(xi)

A(xk)
A(xk)
A(xj)

= A(xi)
A(xj)

= rij .
Let us now multiply the matrix by the vector of the membership grades A =
[A(x1)A(x2) . . . A(xn)]T . For the i-th row of R (that is, the i-th entry of the
resulting vector of results) we obtain

R = [rij] =
[

A(xi)
A(x1)

A(xi)
A(x2)

· · · A(xi)
A(xn)

]⎡⎢⎢⎣
A(x1)
A(x2)

. . .
A(xn)

⎤
⎥⎥⎦ (7)

i = 1, 2, . . . , n. Thus the i-th element of the vector is equal to ‘n’. Overall, once
completing the calculations for all ‘i’ this leads us to the expression RA = nA.
In other words, we conclude that A is the eigenvector of R associated with the
largest eigenvalue of R, which is equal to ‘n’. Obviously in the above scenario,
we have assumed that the membership values A(xi) are given and then showed
what form of results could they lead to. In practice the membership grades
are not given and have to be determined.

The starting point of the estimation process are entries of the reciprocal
matrix which are obtained through collecting results of pairwise evaluations
offered by an expert, designer or user (depending on the character of the task
at hand). Prior to making any assessment, the expert is provided with a finite
scale with values spread in between 1 and 7. Alternatively, scales involving 5
(1–5) or 9 (1–9) levels could be sought. If xi is strongly preferred over xj when
being considered in the context of the fuzzy set whose membership function
we would like to estimate, then this judgment is expressed by assigning high
values of the available scale, say 6 or 7. If we still sense that xi is preferred over
xj yet the strength of this preference is lower in comparison with the previous
case, then this is quantified using some intermediate values of the scale, say 3
or 4. If no difference is sensed, values close to 1 are the preferred choice, say 2
or 1. The value of 1 indicates that xi and xj are equally preferred. On the
other hand, if xj is preferred over xi, the corresponding entry assumes values
below one.

Given the reciprocal character of the assessment, once the preference of xi

over xj has been quantified, the inverse of this number is plugged into the entry
of the matrix that is located at the (j, i)-th coordinate. As indicated earlier, the
elements on the main diagonal are equal to 1. Next the maximal eigenvalue is
computed along with its corresponding eigenvector. The normalized version of
the eigenvector is then the membership function of the fuzzy set we considered
when doing all pairwise assessments of the elements of its universe of discourse.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 609

The pairwise evaluations are far more convenient and manageable in com-
parison to any effort we make when assigning membership grades to all
elements of the universe in a single step. Practically, pairwise comparison
helps the expert focus only on two elements one at a time, thus reducing
uncertainty and hesitation while leading to a higher level of consistency. The
assessments are not free of bias and could exhibit some inconsistent evalua-
tions. In particular, we cannot expect that the transitivity requirement could
be fully satisfied. Fortunately, the lack of consistency could be quantified and
monitored. The largest eigenvalue computed for R is always greater than
the dimensionality of the reciprocal matrix, λmax > n, where the equality
λmax = n occurs only if the results are fully consistent. The ratio

ν = (λmax − n)/(n− 1) (8)

can be treated as an index of inconsistency of the data; the higher its value,
the less consistent are the collected experimental results. This expression can
be sought as the indicator of the quality of the pairwise assessments provided
by the expert. If the value of ν is too high (exceeding a certain superimposed
threshold), the experiment may need to be repeated. Typically if ν is less than
0.1 the assessment is sought to be consistent, while higher values of ν call for
re-examination of the experimental data and the experiment to be re-run.
To quantify how much the experimental data deviates from the transitivity
requirement, we calculate the absolute differences between the correspond-
ing experimentally obtained entries of the reciprocal matrix, namely rik and
rijrjk. The sum expressed in the form

V (i, k) =
n∑

j=1

| rijrjk − rik | (9)

serves as a useful indicator of the lack of transitivity of the experimental data
for the given pair of elements (i, k). If required, we may repeat the experiment
if the above sum takes high values. The overall sum

∑n
j=1 V (i, k) then becomes

a global evaluation of the lack of transitivity of the experimental assessment.
There have been a number of generalizations of the generic method – see, for
example [3, 11, 15, 28, 34].

4 Fuzzy Sets as Granular Representatives
of Numeric Data

In general, a fuzzy set is reflective of some numeric data that are put together
in some context. Using its membership function we attempt to embrace them
in some concise manner. The development of the fuzzy set is supported by

610 W. Pedrycz

the following experiment-driven and intuitively appealing rationale [2, 27]:

(a) we expect that A ‘reflects’ (or matches) the available experimental data
to the highest extent, and

(b) the fuzzy set is kept specific enough so that it comes with a well-defined
semantics. Furthermore, which is quite legitimate, we assume that the
fuzzy set to be constructed has a unimodal membership function or its
maximal membership grades occupy a contiguous region in the universe
of discourse in which this fuzzy set has been defined. This helps us build
a membership function separately for its rising and decreasing sections.
The core of the fuzzy set is determined first. Next, assuming the simplest
scenario when using the linear type of membership functions, the essence
of the optimization is such that we rotate the linear section of the mem-
bership function around the point of the core of A, as indicated in Fig. 8.
Note that the core of A is built on the basis of two data points. The point
of rotation of the linear segment of the membership function is marked
by an empty circle

Before moving on with the determination of the membership function,
we concentrate on the location of its numeric representative. Typically, one
could view an average of the experimental data x1, x2, . . . , xn to be its sound
representative. While its usage is quite common in practice, a better repre-
sentative of the numeric data is a median value. There is a compelling reason
behind this choice. The median is a robust statistic meaning that it allows for
a high level of tolerance to potential noise existing in the data. Its important
ability is to ignore outliers. Given that the fuzzy set is sought to be a granular
and ‘stable’ representation of the numeric data, our interest is in the robust

x

M ax Σ A (xk)

M in Supp(A)

data

a

Fig. 8. Optimization of the linear increasing section of the membership function
of A; highlighted are the positions of the membership function originating from the
realization of the two conflicting criteria (that is, a maximization of the experimental
evidence behind the fuzzy set and a minimization of its spread)

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 611

development not being affected by noise. Undoubtedly, the use of the median
is a good starting point. Let us recall that the median is an order statistic
and is formed on the basis of an ordered set of numeric values. In the case
of an odd number of data in the data set, the point located in the middle of
this ordered sequence is the median. When we encounter an even number of
data in the granulation window, instead of picking up an average of the two
points located in the middle, we consider these two points to form a core of
the fuzzy set. Thus, depending upon the number of data points, we either end
up with a triangular or trapezoidal membership function.

Having fixed the modal value of A (that could be a single numeric value,
‘m’ or a certain interval [m, n]), the optimization of the spreads of the lin-
ear portions of the membership functions are carried out separately for their
increasing and decreasing portions. We consider the increasing part of the
membership function (the decreasing part is handled in an analogous man-
ner). Referring to Fig. 8, the two requirements guiding the design of the fuzzy
set are transformed into the corresponding optimization problem:

(a) maximize the experimental evidence of the fuzzy set; this implies that
we tend to ‘cover’ as many numeric data as possible – in other words,
the coverage has to be made as high as possible. Graphically, in the
optimization of this requirement, we rotate the linear segment up (clock-
wise), as illustrated in Fig. 8. Formally, the sum of the membership
grades A(xk)

∑
k A(xk) (where A is the linear membership function to

be optimized and xk is located to the left to the modal value) has to be
maximized.

(b) Simultaneously, we would like to make the fuzzy set as specific as possible
so that is comes with some well defined semantics. This requirement is
met by making the support of A as small as possible, that is mina|m−a|.
To accommodate these two conflicting requirements, we combine (a) and

(b) in the form of the ratio that is maximized with respect to the unknown
parameter of the linear section of the membership function

Maxa =
∑

k A(xk)
|m− a| (10)

The linearly decreasing portion of the membership function is optimized
in the same manner. The overall optimization returns the parameters of the
fuzzy number in the form of the lower and upper bound (a and b, respectively)
and its support (m or [m, n]). We can write down the resulting fuzzy number
in the form A(a, m, n, b), which underlines the parameters determining this
fuzzy set.

Example

As an illustration, let us consider a scenario where experimental numeric data
are governed by some uniform probability density function defined over the

612 W. Pedrycz

1 2 3
2

1

0

0.7

30.4 a

V

b= 0.8 1.0 1.5

Fig. 9. Plots of V versus ‘a’ for selected values of ‘b’

range [0, b], b > 0 – that is p(x) = 1/b over [0, b], and 0 otherwise. The linear
membership function of A is of the form A(x) = max(0, 1− x/a). The modal
value of A is equal to zero. The above optimization criterion Eqn. (10) now
reads as

V (a) =

∫ a

0 A(x)p(x)dx

a
=

1
ab

∫ a

0

(
1− x

a

)
dx =

1
ab

(
b− b2

2a

)
=

2a− b

2a2
(11)

The plot of V regarded as a function of the optimized slope of A is shown in
Fig. 9; here we use different values of ‘b’ to visualize the effect of this parameter
on the behavior of V .

The optimal value of ‘a’ results from the relationship dV/da = 0 and this
leads to the intuitively appealing result of a = b. The form of the relationship
V = V (a) is highly asymmetric; while values of ‘a’ higher than the opti-
mal value (aopt) lead to a very slow degradation of performance (V changing
slowly). Rapid changes in V are noted for the values of ‘a’ which are lower
than the optimal value.

Example

We show the details on how the data-driven triangular fuzzy set is being
formed. The data set under discussion consists of the following numeric data

{−2.00 0.80 0.90 1.00 1.30 1.70 2.10 2.60 3.30}

The values of the performance index obtained during optimization of the
left and right part of the slope of the triangular membership function and

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 613

−0.5

0

0.5

1

1.5

2

−6 −4 −2 0 2

V

a

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

V

b

Fig. 10. Values of the performance index V optimized for the linear sections of the
membership function; in both cases we note a clearly visible maximum occurring at
both sides of the modal value of the fuzzy set that determine the location of the
bounds of the membership function (a = 0.51 and b = 2.96)

being viewed as a function of the intercept are shown in Fig. 10. The perfor-
mance index shows a clear maximum for both linear parts of the membership
function. The final result coming in the form of the triangular fuzzy set (fuzzy
number) is uniquely described by its bounds and the modal value – altogether
described as A(0.51 1.30 2.96). This shows us how a sound compromise has
been reached between the spread of the fuzzy set that helps us assure a solid
coverage of the data while retaining its high specificity (limited spread). The
result is quite appealing as the fuzzy set formed in this way nicely captures
the core part of the numeric data.

So far we have discussed only linear types of membership functions (in
other words, those with linearly increasing or decreasing sections) however any

614 W. Pedrycz

monotonically increasing or decreasing function could be sought as a viable
alternative. In particular, a polynomial (monomial, to be more precise) type
of relationships, say xp with ‘p’ being a positive integer could be of interest.
The values of ‘p’ impact the shape and more importantly, the spread of the
resulting fuzzy set.

5 From Multidimensional Numeric Data to Fuzzy Sets:
Membership Estimation via Fuzzy Clustering

Fuzzy sets can be formed on the basis of numeric data through their clustering
(groupings). These groups of data give rise to membership functions that
convey a global, more abstract view of the available data. In this regard,
Fuzzy C-Means (FCM, for short) is one of the commonly used mechanisms
for fuzzy clustering [1, 17, 21, 24].

Let us review its formulation, develop the algorithm, and highlight the
main properties of fuzzy clusters. Given a collection of n-dimensional data
xk, k = 1, 2, . . . , N , the task of determining its structure – a collection of ‘c’
clusters – is expressed as a minimization of the following objective function
(performance index), Q being regarded as a sum of the weighted squared
distances

Q =
c∑

i=1

N∑
k=1

um
ik ‖ xk − vi ‖2 (12)

where vi are the prototypes of the clusters, i = 1, 2, .., c and U = [uik] stands
for a partition matrix expressing a way of allocating the data to the cor-
responding clusters. The distance between the data xk and prototype vi is
denoted by ‖ . ‖. The fuzzification coefficient m(>1.0) quantifies the impact
of the membership grades on the individual clusters.

A partition matrix satisfies two important and intuitively appealing prop-
erties

0 <
N∑

k=1

uik < N, i = 1, 2, ..., c (13)

and
c∑

i=1

uik = 1, k = 1, 2, ..., N (14)

Let us denote by U a family of matrices satisfying Eqns. (13) and (14). The
first requirement states that each cluster has to be nonempty and different
from the entire set (which is straightforward). The second requirement states
that the sum of the membership grades should be confined to 1.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 615

The minimization of Q is completed with respect to U ∈ U and the proto-
types of the clusters. More explicitly, we write it down as follows: min Q with
respect to U ∈ U,v1,v2, . . .vc.

From the optimization standpoint, there are two individual optimization
tasks to be carried out separately for the partition matrix and the prototypes.
The first one concerns the minimization with respect to the constraints given
the requirement of the form Eqn. (14), which holds for each data point xk.
The use of Lagrange multipliers converts the problem into its constraint-free
version. The augmented objective function formulated for each data point,
k = 1, 2, . . . , N , reads as

V =
c∑

i=1

um
ikd2

ik + λ(
c∑

i=1

uik − 1) (15)

where d2
ik =‖ xk − vi ‖2. Proceeding with the necessary conditions for the

minimum of V for k = 1, 2, . . .N , one has

∂V

∂ust
= 0;

∂V

∂λ
= 0; and ust =

1∑c
j=1

(
d2

st

d2
jt

) 1
m−1

(16)

Optimization of the prototypes vi is carried out assuming the Euclidean
distance between the data and the prototypes that is ‖ xk−vi ‖2=

∑n
j=1(xkj−

vij)2. The objective function reads now as follows Q =
∑c

i=1

∑N
k=1 um

ik

∑n
j=1

(xkj − vij)2, and its gradient with respect to vi – ∇viQ – made equal to zero
yields the system of linear equations

N∑
j=1

um
ik(xkt − vst) = 0 (17)

s = 1, 2, .., c; t = 1, 2, . . . , n.

Thus

vst =

N∑
k=1

um
ikxkt

N∑
k=1

um
ik

(18)

Overall, the FCM clustering is completed through a sequence of iterations
where we start from some random allocation of data (a certain randomly
initialized partition matrix) and carry out the following updates by adjusting
the values of the partition matrix and the prototypes:

616 W. Pedrycz

Algorithm 1
repeat

(i) update the prototypes

vi =

N∑
k=1

um
ikxk

N∑
k=1

um
ik

; i = 1, 2, ..., c (19)

(ii) update the partition matrix

uik =
1

c∑
j=1

(
‖xk−vi‖
‖xk−vj‖

)2/(m−1)
; i = 1, 2, ...c; k = 1, 2, ..., N (20)

until some termination criterion has been satisfied

The iteration loop (i)–(ii) is repeated until a certain termination criterion
has been satisfied. Typically, the termination condition is quantified by looking
at the changes in the membership values of the successive partition matrices.
Denote by U(iter) and U(iter + 1) the two partition matrices produced in
two consecutive iterations of the algorithm. If the distance ‖ U(iter + 1) −
U(iter) ‖ is less than a small predefined threshold ε, then we terminate the
algorithm. Typically, one considers the Tchebyschev distance between the
partition matrices meaning that the termination criterion reads as follows

maxi,k | uik(iter + 1)− uik(iter) |≤ ε (21)

The key components of the FCM and a quantification of their impact on
the form of the produced results are summarized in Table 1.

The fuzzification coefficient exhibits a direct impact on the geometry of
fuzzy sets generated by the algorithm. Typically, the value of ‘m’ is assumed
to be equal to 2.0. Lower values of m (that are closer to 1) yield member-
ship functions that start resembling characteristic functions of sets; most of
the membership values become localized around 1 or 0. An increase of the
fuzzification coefficient (m = 3, 4, and so on) produces ‘spiky’ membership
functions with membership grades equal to 1 at the prototypes and a fast
decline of the values when moving away from the prototypes. Several illustra-
tive examples of membership functions are included in Fig. 11. The prototypes
here are equal to 1, 3.5 and 5, while the fuzzification coefficient assumes val-
ues of 1.2 (top), 2.0 (middle) and 3.5 (bottom), respectively. The intensity of
the rippling effect is affected by ‘m’, increasing with higher values of ‘m’. In
addition to the varying shape of the membership functions, observe that the
requirement put on the sum of membership grades imposed on the fuzzy sets
yields some rippling effect; the membership functions are not unimodal but

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 617

Table 1. Main features of the Fuzzy C-Means (FCM) clustering algorithm

FCM algorithm feature Representation and optimization aspects

Number of clusters (c) Structure in the data set and the number of
fuzzy sets estimated by the method; an increase
in the number of clusters produces lower values
of the objective function, however given the
semantics of fuzzy sets one should maintain
this number quite low (5–9 information granules)

Objective function Q Develops a structure aimed at the minimization
of Q; iterative process supports the determination
of the local minimum of Q

Distance function ‖ . ‖ Reflects (or imposes) a geometry of the clusters
one is looking for – an essential design parameter
affecting the shape of the membership functions

Fuzzification coefficient (m) Implies a certain shape of membership functions
present in the partition matrix; essential design
parameter. Low values of ‘m’ (being close to
1.0) induce characteristic function. Values
higher than 2.0 yield spiky membership functions

Termination criterion The distance between partition matrices in two
successive iterations; the algorithm terminates
once the distance falls below some assumed positive
threshold (ε), in other words,
‖ U(iter + 1) − U(iter) ‖< ε

may exhibit some ripples whose intensity depends upon the distribution of
the prototypes and the values of the fuzzification coefficient.

These membership functions offer an interesting feature of evaluating the
extent to which a certain data point is ‘shared’ between different clusters, and
in this sense become difficult to allocate to a single cluster (fuzzy set). Let us
introduce the following index which serves as a certain separation measure

ϕ(u1, u2, ..., uc) = 1− cc
c∏

i=1

ui (22)

where u1, u2, ..., uc are the membership degrees for some data point. If one
of membership degrees, say ui = 1, then the separation index attains its
maximum equal to 1. At the other extreme, when the data point is shared by
all clusters to the same degree (equal to 1/c), then the value of the index drops
down to zero. This means that there is no separation between the clusters for
this specific point.

For instance, if c = 2, Eqn. (22) relates directly to the entropy of fuzzy sets.
We have ϕ(u) = 1− 4u(1− u). The term H(u) = 4u(1− u) is one version of
the entropy function (recall that in the general form this function satisfies the

618 W. Pedrycz

1 2 3
0

0.5

1

3.50.5 x

1 2 3
0

0.5

1

3.50.5 x

1 2 3
0

0.5

1

3.50.5 x

Fig. 11. Examples of membership functions of fuzzy sets; the prototypes are equal
to 1, 3.5 and 5, while the fuzzification coefficient assumes values of 1.2 (a), 2.0 (b)
and 3.5 (c), respectively (the intensity of the rippling effect increases as a function
of ‘m’)

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 619

set of requirements: (a) boundary conditions H(0) = H(1) = 0, H is mono-
tonically increasing over [0,1/2] and monotonically decreasing over [1/2, 1]).

While the number of clusters is typically limited to a few information
granules, we can easily proceed with successive refinements of fuzzy sets. This
can be done by splitting fuzzy clusters of the highest heterogeneity [18]. Let
us assume that we have already constructed ‘c’ fuzzy clusters. Each of them
can be characterized by the performance index

Vi =
N∑

k=1

um
ik ‖ xk − vi ‖2 (23)

i = 1, 2, ..., c. The higher the value of Vi, the more heterogeneous the i-th
cluster. The one with the highest value of Vi – that is, the one for which we
have i0 = arg maxiVi – is refined by being split into two clusters. Denote the
set of data associated with the i0-th cluster by X(i0),

X(i0) = {xk ∈ X | ui0k = maxiuik} (24)

We cluster the elements in X(i0) by forming two clusters which leads
to two more specific (detailed) fuzzy sets. This gives rise to a hierarchical
structure of the family of fuzzy sets, as illustrated in Fig. 12. The relevance
of this construct in the setting of fuzzy sets is that it emphasizes the essence
of forming a hierarchy of fuzzy sets rather than working with a single-level
structure of a large number of components whose semantics could not be
retained.

The process of further refinement is realized in the same way by picking
up the cluster of highest heterogeneity and splitting it into two consecutive
clusters.

1

2

3

Fig. 12. Successive refinements of fuzzy sets through fuzzy clustering applied to the
clusters of the highest heterogeneity (the numbers indicate the order of the splits)

620 W. Pedrycz

It is worth emphasizing that the FCM algorithm is a highly representative
method of membership estimation that profoundly relies on the use of exper-
imental data. In contrast to some other data-driven techniques presented so
far, FCM can easily cope with multivariable experimental data.

6 Main Design Guidelines

The considerations presented above give rise to a number of general guidelines
supporting the development of fuzzy sets.

• Highly visible and well-defined semantics of information granules. No mat-
ter what the determination technique is, one has to become cognizant of
the semantics of the resulting fuzzy sets. Fuzzy sets are interpretable infor-
mation granules of a well-defined meaning and this aspect needs to be fully
captured. Given this, the number of information granules has to be kept
quite small with their number being restricted to 7± 2 fuzzy sets;

• There are several fundamental views of fuzzy sets, and depending upon
them we could consider the use of various estimation techniques (for exam-
ple, by accepting a horizontal or vertical view of fuzzy sets and adopting
a pertinent technique);

• Fuzzy sets are context-sensitive constructs and as such require careful cal-
ibration. This feature of fuzzy sets should be treated as their genuine
advantage. The semantics of fuzzy sets can be adjusted through shifting
and/or adjusting their membership functions. The nonlinear transforma-
tion we introduced previously helps complete an effective adjustment by
making use of some ‘standard’ membership functions. The calibration
mechanisms being used in the design of the membership function are
reflective of the human-centricity of fuzzy sets.

• We have delineated between the two major categories of approaches sup-
porting the design of membership functions, that is data-driven and expert
(user)-based. There are very different in the sense of the origin of the
supporting evidence. Fuzzy clustering is a fundamental mechanism of the
development of fuzzy sets. It is important in the sense that the method is
equally suitable for one-dimensional and multivariable cases. The expert or
simply user-based methods of membership estimation are important in the
sense they offer some systematic and coherent mechanisms of elicitation of
membership grades. With regard to consistency of the elicited membership
grades, the pairwise estimation technique is of particular interest in that
it provides well quantifiable mechanisms for the assessment of the con-
sistency of the resulting membership grades. The estimation procedures
underline some need for further development of higher types of constructs,
such as fuzzy sets of type-2 or higher, and fuzzy sets of higher order that
may be ultimately associated with constructs such as type-2 fuzzy sets or
interval-valued fuzzy sets (this particular construct is visible when dealing

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 621

with the horizontal method of membership estimation, which comes with
associated confidence intervals).

• User-driven membership estimation uses the statistics of data yet in an
implicit manner. The granular terms – that is, fuzzy sets – come into
existence once there is some experimental evidence behind them (otherwise
there is no point forming such fuzzy sets).

• The development of fuzzy sets can be carried out in a stepwise manner.
For instance, a certain fuzzy set can be further refined, if required by the
problem at hand. This could lead to several more specific fuzzy sets that
are associated with the fuzzy set formed at the higher level. Being aware of
the complexity of the granular descriptors, we should resist the temptation
of forming an excessive number of fuzzy sets at a single level, as such fuzzy
sets could be easily lacking any sound interpretation.

7 Nonlinear Transformation of Fuzzy Sets

In many problems, we encounter a family of fuzzy sets defined in the same
space. The family of fuzzy sets {A1, A2, ..., Ac} is referred to as referential
fuzzy sets. To form a family of semantically meaningful descriptors of the
variable at hand, we usually require that these fuzzy sets satisfy the require-
ments of unimodality, limited overlap, and coverage. Technically, all of these
features are reflective of our intention to endow this family of fuzzy sets
with some semantics. These fuzzy sets could be sought as generic descrip-
tors (say, small, medium, high, and so forth) being described by some typical
membership functions. For instance, those could be uniformly distributed tri-
angular or Gaussian fuzzy sets with some ‘standard’ level of overlap between
the successive terms (descriptors).

As mentioned, fuzzy sets are usually subject to some calibration depend-
ing upon the character of the problem at hand. We may use the same terms of
small, medium, and large in various contexts yet their detailed meaning (that
is, membership degrees) has to be adjusted (calibrated). For the given family
of referential fuzzy sets, their calibration could be accomplished by taking the
space X = [a, b] over which they are originally defined and transforming it into
[a, b] through some nondecreasing monotonic and continuous function Φ(x, p)
where p is a vector of some adjustable parameters bringing the required flexi-
bility of the mapping [24]. The nonlinearity of the mapping is such that some
regions of X are contracted and some of them are stretched (expanded), and
in this manner capture the required local context of the problem. This affects
the membership functions of the referential fuzzy sets {A1, A2, ..., Ac} whose
membership functions are expressed now as Ai(Φ(x)). The construction of the
mapping Φ is optimized, taking into account some experimental data con-
cerning membership grades given at some points of X. More specifically, the
experimental data come in the form of the input–output pairs

622 W. Pedrycz

x1 − µ1(1), µ2(1), ..., µc(1)
x2 − µ1(2), µ2(2), ..., µc(2)

... (25)
xN − µ1(N), µ2(N), ..., µc(N)

where the k-th input–output pair consists of xk which denotes some point in
X, while µ1(1), µ2(1), ..., µc(k) are the numeric values of the corresponding
membership degrees. The objective is to construct a nonlinear mapping that
is optimizing it with respect to the available parameters p. More formally,
we could translate the problem into the minimization of the following sum of
squared errors

c∑
i=1

(Ai(Φ(x1;p)− µi(1))2 +
c∑

i=1

(Ai(Φ(x2;p)− µi(2))2 +

· · ·+
c∑

i=1

(Ai(Φ(xN ;p)− µi(N))2 (26)

One feasible mapping comes in the form of the piecewise linear function
shown in Fig. 13. Here the vector of the adjustable parameters p involves
a collection of the split points r1, r2, ..., rL and the associated differences
D1, D2, ..., DL; hence p = [r1, r2, ..., rL, D1, D2, ..., DL]. The regions of expan-
sion (or compression) are used to affect the referential membership functions
and adjust their values given the experimental data.

r1 r2 r 3

D3

D2

D1

Fig. 13. A Piecewise linear transformation function Φ; also shown is a linear map-
ping not affecting the universe of discourse and not exhibiting any impact on the
referential fuzzy sets (the proposed piece-wise linear mapping is fully invertible)

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 623

Example

We consider some examples of nonlinear transformations of Gaussian fuzzy
sets, Fig. 15(a), through the piecewise linear transformations (here L = 3)
shown in Fig. 14.

Note that, as indicated in Fig. 15, some fuzzy sets or their segments become
more specific, while the others are made more general and expanded over some
regions of the universe of discourse.

Considering the same nonlinear mapping as before, two triangular fuzzy
sets are converted into fuzzy sets described by piecewise membership func-
tions, as illustrated in Fig. 16.

0 5 10
0

5

10

Fig. 14. An example of the piecewise linear transformation

0 5 10
0

0.5

1

0 5 10
0

0.5

1

Fig. 15. Examples of original membership functions (a) and the resulting fuzzy sets
(b) after the piecewise linear transformation

624 W. Pedrycz

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
0

0.5

1

Fig. 16. Two triangular fuzzy sets along with their piecewise linear transformation

0 5 10
0

0.5

1

0 5 10
0

5

10

Fig. 17. The piecewise linear mapping (a) and the transformed Gaussian fuzzy
set (b)

Some other examples of the transformation of fuzzy sets through piecewise
mapping are shown in Fig. 17.

Information granules – and fuzzy sets in particular – capture pieces of
domain knowledge and represent them in a formal setting of membership
functions. The same concept – fuzzy set – can be perceived in many different
ways, thus leading to the development of several specific membership func-
tions of the same fuzzy set. For instance, the concept of high inflation treated
as a fuzzy set and coming with its underlying membership function can be per-
ceived by different human observers quite differently, and subsequently lead
to several fuzzy sets. The corresponding membership functions could then
be viewed as some modified or distorted versions of the original membership
function.

Our objective is to reconcile these various perception views by forming
some common view of the concept resulting in the form of some fuzzy set. In
a nutshell, this leads to the formation of some optimal fuzzy set that takes
into consideration the variety of perceptions. This reconciliation of perceptions
is achieved through the formation of a certain optimization problem involv-
ing the individual fuzzy sets. The reconciliation of various perceptions could
also involve fuzzy mappings. More specifically, some relationships between
two spaces can be described by a family of fuzzy relations representing the

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 625

way in which they are perceived by various observers. Reconciliation of these
relationships produces an optimal fuzzy relation being reflective of some essen-
tial commonalities of existing relationships. This optimal relation is a result
of solution to the pertinent optimization problem.

8 Reconciliation of Information Granule Perception

Consider a certain fuzzy set A defined in some space (universe) X. It is per-
ceived from different standpoints where each of these perceptions is quantified
by ‘c’ human observers. In this regard, the observers provide some numeric
confidence levels z1, z2, ..., zc where zi ∈ [0, 1]. These specific confidence levels
are translated into a form in which A becomes effectively perceived by these
observers. Let us introduce the complements of zi, wi = 1−zi. The conjecture
is that our perception transforms A into a less specific construct where a lack
of confidence translates into a reduced level of specificity of A. This leads to
the disjunctive model of perception in which the perceived information gran-
ule A comes with a membership function of the form Ai(x) = A(x) s wi, where
‘s’ denotes a certain t-conorm (s-norm) [10] [32]. This model exhibits several
interesting properties. As mentioned, the perceived granule cannot gain in
its specificity but rather, depending upon the confidence, may exhibit some
reduction of detail (lack of specificity). If the confidence about A is high –
say zi = 1 – then wi = 0 and Ai(x) = A(x) so the original fuzzy set is left
unaffected. Conversely, if zi = 0 then wi = 1 and subsequently Ai(x) = 1.
This new membership function demonstrates that the perceived information
granule A is modeled as ‘unknown’ (being effectively the entire universe of
discourse). In other words, the complete lack of confidence transforms A into
the information granule which does not bear any specific meaning. The way
of perceiving A from different standpoints (quantified by different values of
the confidence values) is illustrated in Fig. 18. Note the collection of perceived
information granules Ai resulting from A being affected by the associated lev-
els of confidence zi(wi). The result of the reconciliation comes through the
optimization of the confidence level z(z; where z = 1− w).

Given a family of fuzzy sets Ai, we are interested in reconciling the variety
of the perception standpoints and on this basis construct a certain general
(reconciled) viewpoint at A, say Ã whose membership function is expressed
in the form

Ã = A(x)sw (27)

where the weight w ∈ [0, 1] is reflective of the reconciliation process. By adjust-
ing the values of ‘w’ we can effectively capture the contributing components of
the process. Graphically, we can envision the overall process described above
as illustrated in Fig. 18.

626 W. Pedrycz

A

Asw 1

Asw

Asw c

Asw 2

w1

wc

w

Fig. 18. Reconciliation of perceptions of information granule A

9 The Optimization Process

The above reconciliation can be transformed into the following optimization
problem in which we are looking for the most suitable realization of perception
so that all the individual views are taken into consideration. We introduce the
following performance index

Q =
c∑

i=1

∫
X

[A(x)swi −A(x)sw]2dx (28)

The minimization of Q is carried out with respect to the values of ‘w’;
MinwQ. The necessary condition of the minimum is set as dQ

dw = 0. Proceeding
with the detailed computation, we obtain

d

dw

c∑
i=1

∫
X

[A(x)swi −A(x)sw]2dx =

−2
c∑

i=1

∫
X

[A(x)swi −A(x)sw]
d(A(x)sw)

dw
dx = 0 (29)

Let us denote by Φ(x, w) the derivative in the above expression, namely
Φ(x, w) = dA(x)sw

dw . Then we have

c∑
i=1

∫
X

[A(x)swi −A(x)sw]Φ(x, w)dx = 0 (30)

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 627

and
c∑

i=1

∫
X

A(x)swi =
c∑

i=1

∫
X

[A(x)sw]Φ(x, w)dx (31)

Further calculations are possible once we have accepted a certain form of
the t-conorm. For instance, let it be a probabilistic sum (a s b = a + b− ab).
This implies that the above expression for Φ(x, w) reads as

dA(x)sw
dw

=
d

dw
(A(x) + w −A(x)w) = 1−A(x) (32)

Next we obtain
c∑

i=1

∫
X

A(x)swi =
c∑

i=1

∫
X

A(x)(1 −A(x))dx + w
c∑

i=1

∫
X

(1 −A(x))2dx (33)

Let us rewrite the above expression by re-arranging and grouping terms
and setting up its value to zero. We obtain∫

X

(1−A(x))2
c∑

i=1

(wi − w)dx = 0 (34)

As the function under the integral is nonnegative, to make the value of
A(x) equal to zero, we require that the term

∑c
i=1(wi−w) becomes zero, and

this happens when ‘w’ is the average of the weights, w = 1
c

∑c
i=1 wi.

10 An Application of the Perception Mechanism
to Rule-Based Systems

In a nutshell, fuzzy rule-based systems can be represented as a network of
logic relationships (dependencies) between fuzzy sets existing in some input
and output spaces. These fuzzy sets form the corresponding conditions and
conclusions of the rules. As an illustration, let us consider the rule of the form

if (input#1 is A1 and input#2 is B1)
or (input#1 is A2 and input#2 is B2)
or (input#1 is A3 and input#2 is B3)

then conclusion is D (35)

Such a rule is directly mapped onto a network of AND and OR computing
nodes. Furthermore, the nodes are equipped with some weights (connections)
whose role is to calibrate the impact of the individual fuzzy sets standing
in the rules and thus affect the results of the rule-based computation. The

628 W. Pedrycz

A1

A 2

A 3

D

B 1

B 2

B 3

A ND

O R
0 . 2

0. 3

0 .7

0 . 5

0 .1

0 . 2

Fig. 19. A logic network realizing the rule presented by Eqn. (35) (note that the
AND- and OR-nodes are endowed with some numeric connections)

network used to realize the above part of the rule-based system is illustrated
in Fig. 19.

Alluding to the realization of the network illustrated in Fig. 19 composed of
a collection of the fuzzy neurons with some specific numeric connection values
[18, 19], we can write down the following detailed and numerically quantified
if...then compound expression

if
{[(A1 or 0.7) and (B1or 0.3)] and 0.9} or

{[(A2 or 0.2) and (B2or 0.5)] and 0.7} or
{[(A3 or 0.1) and (B3or 0.2)] and 1.0} or

then D (36)

Each input fuzzy set (A1, B1, ...) is ‘perceived’ by the corresponding AND-
nodes through their weights (connections). There is an obvious analogy

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 629

A 1

A 2

A 3

D

B 1

B2

B 3

AND

OR

A 1

A 2

A 3

D

B 1

B 2

B3

AND

OR

w 21

w22

w 23

Fig. 20. Reconciliation of the impact of the input on individual AND-nodes through
optimization of the corresponding conenctions

between the problem we formulated in Sect. 9 and the formal description of
the network formed by the logic neurons. By solving Eqn. (28) we arrive at
a single value of the connection between a certain input and all the AND
neurons, as displayed in Fig. 20.

By repeating the same reconciliation process for all input fuzzy sets, we
arrive at the collection of optimized weights w[1], w[2], w[3] (where w[1] comes
as a solution of the optimization task in which A1 is involved, and so forth).
They serve as a direct mechanism of establishing importance of the input
information granule: the one of the lowest value of w[ii] points at the most
relevant input (ii).

11 Reconciliation of Granular Mappings

So far we have discussed a way of reconciliating perceptions of the same fuzzy
set viewed from different standpoints. The problem under consideration is
concerned with the reconciliation of relational mappings. The problem is for-
mulated as follows: given relational mappings (fuzzy relations) R1, R2, ..., Rc

from space X to Y. More specifically, for given A in X, the result of mapping
comes in the form A ◦ R1, A ◦ R2,... A ◦ Rc, where ◦ is a certain composition
operator (in particular, it could be the one such as the sup-min, sup-t, inf-s,
inf-min, or similar). Determine R such that it forms a reconciliation of the
individual fuzzy relations. The reconciliation involves a certain fuzzy set in X,
denote it by A or may deal with a family of fuzzy sets in X, say A1, A2, ..., AN .
Formally speaking, we are looking for R defined in X×Y such that it results
from a minimization of the following expression

Q =
c∑

i=1

‖ A ◦Ri −A ◦R ‖2 (37)

630 W. Pedrycz

A R2

R1

Rc

R

Fig. 21. Reconciliation of the relational mappings from X to Y (the result of this
process is a certain fuzzy relation R)

for a given A in X or

Q =
N∑

l=1

c∑
i=1

‖ Al ◦Rk −Al ◦R ‖2 (38)

for a family of Als. ‖ . ‖ denotes a certain distance function (in particular, it
could come as the Euclidean one).

The essence of the reconciliation process of Eqn. (37) is visualized in
Fig. 21. The optimization problem presented earlier in the form of Eqn. (11)
can also be regarded as the reconciliation of relational models (expressed by
fuzzy relations R1, R2, ..., Rc) being completed in the context of some granular
probes (fuzzy sets).

There is an interesting interpretation of this reconciliation process. Let
X and Y denote a space of symptoms and diagnoses, respectively. The same
fuzzy set of symptoms A leads to different interpretations (diagnoses) depend-
ing upon the fuzzy relations R1, R2, ..., Rc. modeling the relational mappings
expressed by different experts. Reconciliation is concerned with the develop-
ment of the fuzzy relation that expresses the relationships between symptoms
and diagnoses.

Minimization of Eqns. (37) and (38) can be realized for a given A once
we have agreed upon the form of the composition operator. Similarly the
optimization of the fuzzy relation depends upon the fuzzy set(s) available in X.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 631

In what follows, we consider finite spaces X and Y, X = {x1, x2, ..., xn},
Y = {y1, y2, ..., ym}. These cases make sense from a practical standpoint as
quite often the spaces of symptoms and diagnoses are of finite dimensionality.
Then the fuzzy sets and fuzzy relations can be represented in vector and
matrix form. Considering the general case – Eqn. (38) – accepting a certain
s− t composition of A and R that is

∑n
i=1(A(xi)tR(xi, yj)), and adopting a

Euclidean distance ‖ . ‖, we rewrite the performance index in the following
format

Q =
N∑

l=1

c∑
k=1

‖ A1 ◦Rk −A1 ◦R ‖2

=
N∑

l=1

c∑
k=1

m∑
j=1

(
n∑

i=1

(A1(xi)tRk(xi, yj))−
n∑

i=1

(A1(xi)tR(xi, yj)))2 (39)

Minimization of Q is performed through a gradient-based optimization
of R – in other words, a series of iterations (updates) of the values of R
undertaken in successive iterations (iter, iter +1) of form

R(iter + 1) = R(iter)− α∇RQ (40)

where α is a positive learning rate and ∇ denotes a gradient of Q computed
with respect to the fuzzy relation. Proceeding with the details, we carry out
computations for all elements of the fuzzy relation which leads us to the
expression

R(xs, yt)(iter + 1) = R(xs, yt)(iter)− α
∂Q

∂R(xs, yt)(iter)
(41)

s = 1, 2, ..., n; t = 1, 2, ..., m.

Realization of the learning scheme can be completed once the triangular
norm and co-norm have been specified. In what follows, we consider the prod-
uct and probabilistic sum. Then the derivative in Eqn. (38) can be expressed
as follows

∂Q

∂R(xs, yt)
=

N∑
l=1

m∑
j=1

(
n∑

i=1

(Al(xi)tRk(xi, yj))−
n∑

i=1

(A1(xi)tR(xi, yj)) (42)

The derivative in the above expression can be written down in more
detailed form

∂

∂R(xs, yt)
(Bl,s,t + Al(xs)R(xs, yt)−Bl,s,tAl(xs)R(xs, yt) (43)

where Bl,s,t =
∑n

i=1;i�=s(Al(xi)tR(xi, yj).

632 W. Pedrycz

Finally after some rearrangements we obtain

∂Q

∂R(xs, yt)
= (Bl,s,t + Al(xs)R(xs, yt)−Bl,s,tAl(xs)R(xs, yt))

= Al(xs)(1−B(l, s, t) (44)

Example

As a numeric illustration, let us consider three fuzzy relations representing
several mappings between X and Y; here card(X) = card(Y) = 4,

R1 =

⎡
⎢⎢⎣

1.0 0.7 0.3 0.0
0.9 1.0 0.4 0.1
0.4 0.8 1.0 0.6
0.0 0.2 0.7 1.0

⎤
⎥⎥⎦ R2 =

⎡
⎢⎢⎣

1.0 0.7 0.8 0.0
0.9 1.0 0.4 0.1
0.4 0.8 1.0 1.0
0.0 0.5 0.2 0.3

⎤
⎥⎥⎦ R3 =

⎡
⎢⎢⎣

0.5 0.7 0.1 1.0
0.9 1.0 0.4 0.1
0.4 0.8 1.0 0.6
1.0 0.9 0.6 0.0

⎤
⎥⎥⎦

(45)
The fuzzy sets Al, l = 1, 2, 3, 4 defined in X have the following membership

functions

A1 = [1.0 0.1 0.3 0.2]
A2 = [0.2 1.0 0.2 0.0]
A3 = [0.0 0.2 0.9 0.1]
A4 = [0.1 0.3 0.2 1.0] (46)

We consider the s-t composition realized using the product and proba-
bilistic sum, respectively. The learning rate α is equal to 0.05. Starting with
random entries of the fuzzy relation R, the learning converged after about 30
learning steps (iterations) (Fig. 22).

The resulting fuzzy relation has the following entries

R =

⎡
⎢⎢⎣

0.85 0.7 0.41 0.38
0.9 1.0 0.4 0.09
0.4 0.8 1.0 0.74
0.34 0.53 0.51 0.45

⎤
⎥⎥⎦ (47)

By direct inspection, we note that R forms a certain compromise between
the individual mappings between the spaces.

Let us now consider a different family of fuzzy sets {Al} that are used in
the construction of the fuzzy relation

A1 = [1.0 0.7 0.5 0.3]
A2 = [0.8 1.0 0.6 0.0]
A3 = [0.4 0.5 0.9 0.1]
A4 = [0.1 0.6 0.8 1.0] (48)

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 633

0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

0 10 20 30 40 50 60

Fig. 22. Performance index Q in successive learning epochs

These fuzzy sets are far less specific than those used previously. They
exhibit a substantial level of overlap (expressed in the values of the possibility
measure computed for these pairs of fuzzy sets). The resulting fuzzy relation
now has the form

R =

⎡
⎢⎢⎣

0.88 0.75 0.36 0.44
0.88 0.97 0.46 0.0
0.4 0.8 0.98 0.75
0.35 0.53 0.53 0.5

⎤
⎥⎥⎦ (49)

where Q = 0.482. The use of the more specific fuzzy sets Al produces the
fuzzy relation

R =

⎡
⎢⎢⎣

0.83 0.7 0.4 0.33
0.9 1.0 0.4 0.1
0.4 0.8 1.0 0.73
0.33 0.53 0.5 0.43

⎤
⎥⎥⎦ (50)

which comes with a higher value of the performance index, Q = 1.92. The
input fuzzy sets with the singleton form of membership functions, that is

A1 = [1.0 0.0 0.0 0.0]
A2 = [0.0 1.0 0.0 0.0]
A3 = [0.0 0.0 1.0 0.0]
A4 = [0.0 0.0 0.0 1.0] (51)

give rise to the same fuzzy relation as before, however the performance index
assumes a higher value (Q = 2.78).

634 W. Pedrycz

We can conclude that the granular probes (input fuzzy sets) Al play an
important role in the reconciliation process and the formation of the fuzzy rela-
tion, however the results are not affected once the probes become sufficiently
specific.

12 Conclusions

We have presented various approaches and algorithmic aspects of the design of
fuzzy sets. The estimation of membership functions is a multifaceted problem
and the selection of a suitable method relies on the choice of available exper-
imental data and domain knowledge. For the user-driven approaches, it is
essential to evaluate and flag the consistency of the results. This becomes well
supported by the pairwise comparison method. Furthermore, we have intro-
duced the idea of reconciliation of fuzzy set perception and granular mappings.
It is shown how such reconciliation is expressed in the form of a certain opti-
mization problem leading to the minimization of the connection (in the case
of fuzzy sets) and the fuzzy relation (when we are concerned with the granular
mapping formed by some fuzzy relations). We demonstrated the application
of the approach to rule-based systems by demonstrating how it could be used
in the assessment of relevance of input information granules in the rules. The
role of reconciliation of the granular mappings is illustrated using problems
of expressing fuzzy mappings between symptoms and diagnoses.

References

1. Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, NY.

2. Bortolan G, Pedrycz W (2002) An interactive framework for an analysis of ECG
signals. Artificial Intelligence in Medicine, 24(2): 109–132.

3. Buckley JJ, Feuring T, Hayashi Y (2001) Fuzzy hierarchical analysis revisited.
European J. Operational Research, 129(1): 48–64.

4. Ciaramella A, Tagliaferri R, Pedrycz W, Di Nola A (2006) A Fuzzy relational
neural network. Intl. J. Approximate Reasoning, 41(2): 146–163.

5. Civanlar MR, Trussell HJ (1986) Constructing membership functions using
statistical data. Fuzzy Sets and Systems, 18(1): 1–13.

6. Chen MS, Wang SW (1999) Fuzzy clustering analysis for optimizing fuzzy
membership functions. Fuzzy Sets and Systems, 103(2): 239–254.

7. Dishkant CH (1981) About membership functions estimation. Fuzzy Sets and
Systems, 5(2): 141–147.

8. Dombi J (1990) Membership function as an evaluation. Fuzzy Sets and Systems,
35(1): 1–21.

9. Hong TP, Lee CY (1996) Induction of fuzzy rules and membership functions
from training examples. Fuzzy Sets and Systems, 84(1): 389–404.

10. Klement E, Mesiar R, Pap E (2000) Triangular Norms. Kluwer Academic
Publishers Dordrecht, The Netherlands.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 635

11. Kulak O, Kahraman C (2005) Fuzzy multi-attribute selection among trans-
portation companies using axiomatic design and analytic hierarchy process.
Information Sciences, 170(2–4): 191–210.

12. Masson MH, Denoeux T (2006) Inferring a possibility distribution from
empirical data. Fuzzy Sets and Systems, 157(3): 319–340.

13. Medaglia AL, Fang SC, Nuttle HLW, Wilson JR (2002) An efficient and flexi-
ble mechanism for constructing membership functions. European J. Operational
Research, 139(1): 84–95.

14. Medasani S, Kim J, Krishnapuram R (1998) An overview of membership
function generation techniques for pattern recognition. Intl. J. Approximate
Reasoning, 19(3–4): 391–417.

15. Mikhailov L, Tsvetinov P (2004) Evaluation of services using a fuzzy analytic
hierarchy process. Applied Soft Computing, 5(1): 23–33.

16. Miller GA (1956) The magical number seven plus or minus two: some limits of
our capacity for processing information. Psychological Review, 63: 81–97.

17. Pedrycz W, Rocha A (1993) Hierarchical FCM in a stepwise discovery of
structure in data. Soft Computing, 10: 244–256.

18. Pedrycz A, Reformat M (2006) Knowledge-based neural networks. IEEE Trans.
Fuzzy Systems, 1: 254–266.

19. Pedrycz W (1993) Fuzzy neural networks and neurocomputations. Fuzzy Sets
and Systems, 56: 1–28.

20. Pedrycz W (1994) Why triangular membership functions? Fuzzy Sets and
Systems, 64: 21–30.

21. Pedrycz W (1995) Fuzzy Sets Engineering. CRC Press, Boca Raton, FL.
22. Pedrycz W, Valente de Oliveira J (1996) An algorithmic framework for

development and optimization of fuzzy models. Fuzzy Sets and Systems, 80:
37–55.

23. Pedrycz W, Gudwin R, Gomide F (1997) Nonlinear context adaptation in the
calibration of fuzzy sets. Fuzzy Sets and Systems, 88: 91–97.

24. Pedrycz W, Gomide F (1998) An Introduction to Fuzzy Sets: Analysis and
Design. MIT Press, Cambridge, MA.

25. Pedrycz W (2001) Fuzzy equalization in the construction of fuzzy sets. Fuzzy
Sets and Systems 119: 329–335 of fuzzy sets. Fuzzy Sets and Systems, 88: 91–97.

26. Pedrycz W (ed) (2001) Granular Computing: An Emerging Paradigm. Physica
Verlag, Heidelberg, Germany.

27. Pedrycz W, Vukovich G (2002) On elicitation of membership functions. IEEE
Trans. Systems, Man, and Cybernetics – Part A, 32(6): 761–767.

28. Pendharkar PC (2003) Characterization of aggregate fuzzy membership func-
tions using Saaty’s eigenvalue approach. Computers and Operations Research,
30(2): 199–212.

29. Saaty TL (1980) The Analytic Hierarchy Process. McGraw Hill, New York, NY.
30. Saaty TL (1986) Scaling the membership functions. European J. Operational

Research, 25(3): 320–329.
31. Schweizer B, Sklar A (1983) Probabilistic Metric Spaces North-Holland, New

York, NY.
32. Simon D (2005) H∞ Estimation for fuzzy membership function optimization.

Intl. J. Approximate Reasoning 40(3): 224–242.
33. Turksen IB (1991) Measurement of membership functions and their acquisition.

Fuzzy Sets and Systems, 40(1): 5–138.

636 W. Pedrycz

34. van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority
theory. Fuzzy Sets and Systems, 11(1–3): 199–227.

35. Yang CC, Bose NK (2006) Generating fuzzy membership function with self-
organizing feature map. Pattern Recognition Letters, 27(5): 356–365.

36. Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans. Fuzzy
Systems, 4: 103–111.

37. Zadeh LA (1997) Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90:
111–117.

38. Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU) – an
outline. Information Sciences, 172: 1–40.

Resources

1 Key Books

Pedrycz W, Gomide F (2007) Fuzzy Systems Engineering: Toward Human-
Centric Computing. Wiley, New York, NY.

Pedrycz W, Gomide F (1998) An Introduction to Fuzzy Sets: Analysis and
Design. MIT Press, Cambridge, MA.

Ross TJ (2004) Fuzzy Logic with Engineering Applications (2nd ed). Wiley,
New York, NY.

Zimmermann HJ (2005) Fuzzy Set Theory and its Applications (4th ed).
Springer-Verlag, Berlin.

2 Key Survey/Review Articles

Ekel P Y (2002) Fuzzy sets and models of decision making. Computers &
Mathematics with Applications, 44(7): 863–875.

Frattale Mascioli FM, Rizzi A, Panella M, Martinelli G (2000) Scale-based
approach to hierarchical fuzzy clustering. Signal Processing, 80(6): 1001–1016.

Kacprzyk J, Zadrozny S (2001) Computing with words in intelligent database
querying: standalone and Internet-based applications. Information Sciences,
134(1–4): 71–109.

Guo P, Tanaka H (2001) Fuzzy DEA: a perceptual evaluation method. Fuzzy
Sets and Systems, 119(1): 149–160.

638 W. Pedrycz

Pei Z, Resconi G, Van Der Wal AJ, Qin K, Xu Y (2006) Interpreting and
extracting fuzzy decision rules from fuzzy information systems and their infer-
ence. Information Sciences, 176(13): 1869–1897.

Wolff KE (2002) Concepts in fuzzy scaling theory: order and granularity. Fuzzy
Sets and Systems, 132(1): 63–75.

Zadeh LA (2006) Generalized theory of uncertainty (GTU)-principal concepts
and ideas. Computational Statistics & Data Analysis, 51(1) 15–46.

Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU)–an out-
line. Information Sciences, 172(1–2): 1–40.

Zadeh LA (2004) A note on web intelligence, world knowledge and fuzzy logic.
Data & Knowledge Engineering, 50(3): 291–304.

3 Organisations, Societies, Special Interest Groups

IEEE Computational Intelligence Society:
http://ieee-cis.org/

International Fuzzy Systems Association (IFSA):
http://www.cmplx.cse.nagoya-u.ac.jp/~ifsa/

North American Fuzzy Information Processing Society (NAFIPS):
http://www.cmplx.cse.nagoya-u.ac.jp/~ifsa/

Japan Society for Fuzzy Theory and intelligent Informatics (SOFT):
http://www.cmplx.cse.nagoya-u.ac.jp/~ifsa/

European Society for Fuzzy Logic and Technology (EUSFLAT):
http://www.cmplx.cse.nagoya-u.ac.jp/~ifsa/

4 Research Groups

Refer to http://cswww.essex.ac.uk/staff/hhu/fuzzy neural.html for a compre-
hensive list of research groups in fuzzy sets.

Semantics and Perception of Fuzzy Sets and Fuzzy Mappings 639

5 Key International Conferences/Workshops

IFSA Congress:
http://www.cmplx.cse.nagoya-u.ac.jp/~ifsa/

NAFIPS conferences:
http://nafips.ece.ualberta.ca/nafips07/call.htm

IEEE-Fuzz:
http://fuzzieee2007.org/

IEEE World Congress on Computational Intelligence:
http://www.wcci2008.org/

Evolutionary Multiobjective Design
of Fuzzy Rule-Based Classifiers

Hisao Ishibuchi, Yusuke Nojima, and Isao Kuwajima

Department of Computer Science and Intelligent Systems, Graduate School
of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan,
hisaoi@cs.osakafu-u.ac.jp, nojima@cs.osakafu-u.ac.jp,
kuwajima@ci.cs.osakafu-u.ac.jp

1 Introduction

The main goal in classifier design has been accuracy maximization on unseen
patterns [23]. A number of learning algorithms have been proposed to min-
imize the classification errors on training patterns in various fields such
as neural networks [84], fuzzy systems [76] and machine learning [81]. It
is well-known that neural networks are universal approximators of nonlin-
ear functions [34, 35]. Since fuzzy systems are also universal approximators
[70, 73, 92], we can design fuzzy rule-based classifiers that can correctly clas-
sify all training patterns. Such a fuzzy rule-based classifier, however, does
not usually have high accuracy on test patterns, as shown in Fig. 1, where a
typical accuracy-complexity tradeoff relation is depicted. We can decrease the
error rate of classifiers on training patterns by increasing their complexity (for
example, by increasing the number of fuzzy rules in fuzzy rule-based classi-
fiers), as shown by the dotted curve in Fig. 1. The classification accuracy on
test patterns is, however, degraded by increasing the complexity too much,
as shown by the solid curve in Fig. 1. Such an undesirable deterioration in
the classification accuracy on test patterns is known as ‘overfitting to training
patterns’ [23]. Finding the optimal complexity with the maximum accuracy
on test patterns (that is, S∗ in Fig. 1) is one of the main research issues in
machine learning, especially in the field of statistical learning theory [10].

The main advantage of fuzzy rule-based systems over other nonlinear sys-
tems such as neural networks is their linguistic interpretability [48]. That
is, each fuzzy rule is easily understood by human users through linguistic
interpretation. In this sense, fuzzy rule-based systems can be viewed as being
transparent models (that is, ‘white-box’ models) whereas other nonlinear sys-
tems such as neural networks are usually ‘black-box’ models. Examples of
fuzzy rules for function approximation problems are “If x1 is small and x2

is small then y is large” and “If x1 is large and x2 is large then y is small ”.

H. Ishibuchi et al.: Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers, Studies

in Computational Intelligence (SCI) 115, 641–685 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

642 H. Ishibuchi et al.

Complexity

C
la

ss
ifi

ca
tio

n
Er

ro
r

Test Pattern
Accuracy

S*0

Training Pattern
Accuracy

Fig. 1. A typical relation between the classification accuracy of classifiers and their
complexity

Height [cm]

M
em

be
rs

hi
p

0

1

140 150 160 170 180 190 200

short medium tall

Fig. 2. Examples of membership functions of short, medium and tall

In these fuzzy rules, small and large are linguistic values. The meaning of
each linguistic value is mathematically defined by its membership function in
fuzzy logic. The membership function of each linguistic value is specified so
that its meaning coincides with our intuition. For pattern classification prob-
lems, examples of fuzzy rules are “If x1 is small and x2 is small then Class 1”
and “If x1 is large and x2 is large then Class 2”.

An example of fuzzy discretization is shown in Fig. 2, where membership
functions of three linguistic values for the height (namely, short, medium
and tall) are depicted. Of course, the definition of each membership func-
tion depends on the situation. When we talk about basketball players, we
may have totally different membership functions from Fig. 2. Moreover we do
not have the same set of membership functions even when the situation is
clearly specified (for instance, the height of an NBA basketball player). Each

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 643

of us may have a different set of membership functions. Nevertheless we can
usually communicate with each other using linguistic values in everyday situ-
ations without causing any serious inconvenience. These observations suggest
that we may be able to easily understand fuzzy rules with linguistic values.
That is, fuzzy rule-based systems have high interpretability. Of course, fuzzy
rules with linguistic values are not always appropriate for knowledge repre-
sentation. In some cases, interval discretization is much more appropriate. For
example, consider the following knowledge: “People under 20 are not allowed
to smoke”. In this case, interval discretization is appropriate since no fuzziness
is involved in this knowledge.

A large number of learning algorithms were proposed during the 1990s to
improve the accuracy of fuzzy rule-based systems by adjusting the membership
function of each linguistic value. Some techniques use neural network learning
algorithms [84] to fine-tune the membership function of each linguistic value
[1, 33, 60, 76]. Others use genetic algorithms [26, 31] to optimize fuzzy rule-
based systems [15, 16, 67]. Whereas the accuracy of fuzzy rule-based systems
is significantly improved by such a learning algorithm, their interpretability
is often degraded. This is mainly because we cannot simultaneously perform
accuracy maximization and complexity minimization, due to the existence of
the accuracy-complexity tradeoff relation in the design of fuzzy rule-based
systems as shown in Fig. 1. In the field of fuzzy rule-based systems, accuracy-
complexity tradeoff is often referred to as ‘interpretability-accuracy tradeoff’
[7, 8]. In this Chapter, we use these two terms interchangeably.

In order to find interpretable fuzzy rule-based systems with high accu-
racy, some approaches in the late 1990s took into account the existence
of the accuracy-complexity tradeoff relation [52, 64, 66, 83, 86, 87]. In these
approaches, an accuracy measure and a complexity measure are combined into
a single scalar objective function to be optimized. A single fuzzy rule-based
system, which can be viewed as a good tradeoff (that is, a good compromise)
between accuracy and complexity, is obtained by these approaches on the
accuracy-complexity tradeoff curve. Recently the existence of the accuracy-
complexity tradeoff relation in the design of fuzzy rule-based systems has been
widely recognized [7, 8, 48].

As is well-known in the field of multiobjective optimization [18, 74], it is
very difficult to combine multiple objectives into a single scalar objective
function. That is, an appropriate specification of a scalar objective func-
tion using multiple objectives is very difficult, whereas the finally obtained
fuzzy rule-based system strongly depends on its specification. In order to
avoid this difficulty, a multiobjective approach was proposed where vari-
ous Pareto-optimal fuzzy rule-based systems were searched for along the
accuracy-complexity tradeoff curve by an evolutionary multiobjective opti-
mization (EMO) algorithm [42]. Since this study, a number of multiobjective
approaches have been proposed to search for Pareto-optimal fuzzy rule-based
systems [47, 50, 55, 63, 90, 91]. It is usually assumed in these approaches that a

644 H. Ishibuchi et al.

single fuzzy rule-based system is chosen by a human user based on his/her pref-
erence from the obtained non-dominated alternatives. Recently multiobjective
approaches have been used in various areas in machine learning [65].

In this Chapter, we explain EMO-based approaches to the multiobjective
design of fuzzy rule-based classifiers. First we briefly explain fuzzy rules, their
heuristic extraction from numerical data, and fuzzy reasoning for pattern clas-
sification problems. We also compare fuzzy and interval rules using illustrative
numerical examples. Next we briefly explain multiobjective optimization
and EMO algorithms. Then we explain two approaches to the multiobjec-
tive design of fuzzy rule-based classifiers. One is evolutionary multiobjective
fuzzy rule selection and the other is multiobjective fuzzy genetics-based
machine learning (GBML). Through computational experiments on data sets
in the UCI Machine Learning repository (http://www.ics.uci.edu/~mlearn/
MLSummary.html), we demonstrate the effectiveness of our multiobjective
approaches to the design of fuzzy rule-based classifiers. Finally we indicate
some future research directions and conclude the Chapter.

2 Fuzzy Rule-Based Classifiers

In this Section, we explain fuzzy rules, fuzzy rule extraction and fuzzy
reasoning for pattern classification problems. We also show some character-
istic features of fuzzy rule-based classifiers by comparing them with interval
rule-based classifiers.

2.1 Pattern Classification Problems

Let us assume that we have m training patterns xp = (xp1, xp2, . . . , xpn), p =
1, 2, . . . , m from M classes in an n-dimensional pattern space. The classifica-
tion of each training pattern is known (in other words, we have m labeled
patterns). For simplicity of explanation, we assume that all attribute values
have already been normalized into real numbers in the unit interval [0, 1].
Thus the pattern space of our classification problem is an n-dimensional unit
hypercube [0, 1]n. An example of such a pattern classification problem is shown
in Fig. 3, where m = 30 (30 patterns), n = 2 (2 attributes), and M = 3 (3
classes).

2.2 Fuzzy Rules

Fuzzy rules for an n-dimensional pattern classification problem are written as

Rule Rq : If x1 is Aq1 and · · · and xn is Aqn then Class Cq (1)

where Rq is the label of the qth fuzzy rule, x = (x1, x2, . . . , xn) is an n-
dimensional pattern vector, Aqi is an antecedent fuzzy set associated with a

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 645

Class 1 Class 2 Class 3l

0.0 0.5 1.0

0.5

1.0

x2

x1

Fig. 3. Example pattern classification problem in the 2D pattern space [0, 1]2

M
em

be
rs

hi
p

0.0

1.0

0.0 1.0

small medium large

Attribute Value

Fig. 4. Fuzzy partition of the unit interval into three linguistic terms small, medium,
and large

linguistic term (in other words, Aqi is a linguistic value), and Cq is a conse-
quent class. An example of such a fuzzy rule is “If x1 is small and x2 is small
then Class 1”.

In some studies (for instance, [27]), a disjunctive combination of multi-
ple linguistic terms is used as an antecedent fuzzy set Aqi, such as “If x1

is small or medium and x2 is medium or large then Class 1”. The disjunc-
tive combination of all linguistic terms can be interpreted as don’t care. For
example, “small or medium or large” can be interpreted as don’t care when
the corresponding attribute is divided into the three linguistic terms small,
medium and large, as shown in Fig. 4. In this case, the disjunctive combination
“small or medium” can be interpreted as the negation of large (in other words,

646 H. Ishibuchi et al.

“not large”). It should be noted that don’t care can also be directly used as a
special antecedent fuzzy set. We will further examine the use of don’t care as
a special antecedent fuzzy set in Sect. 4.

Fuzzy rules in Eqn. (1) have high interpretability because their antecedent
part is specified by linguistic values such as small and large. Whereas fuzzy
rules in Eqn. (1) have a single-dimensional fuzzy set Aqi for each attribute in
their antecedent part, it is also possible to use a multi-dimensional antecedent
fuzzy set as follows:

Rule Rq : If x is Aq then Class Cq (2)

where x is an n-dimensional pattern vector, and Aq is an n-dimensional
antecedent fuzzy set. Fuzzy rules of this type have often been used in
clustering-based rule generation methods (for instance, [2, 3]). A typical exam-
ple of a multi-dimensional fuzzy set Aq is the ellipsoidal membership function
illustrated in Fig. 5(b). When the multi-dimensional fuzzy set Aq can be rep-
resented by a fuzzy vector as Aq = (Aq1, Aq2, . . . , Aqn), there is no difference
between fuzzy rules in Eqn. (1) and Eqn. (2). This situation is illustrated
in Fig. 5(a) where the two-dimensional fuzzy set Aq can be represented as
Aq = (Aq1, Aq2). On the other hand, the ellipsoidal fuzzy set Aq in Fig. 5(b)
cannot be represented as a fuzzy vector.

Fuzzy rules in Eqn. (2) with multi-dimensional antecedent fuzzy sets such
as Fig. 5(b) usually have high classification accuracy. Their interpretability,
however, is usually low due to the difficulty in linguistic interpretation of
multi-dimensional antecedent fuzzy sets. One common approach for improv-
ing their interpretability is to project multi-dimensional antecedent fuzzy sets
onto each axis of the pattern space [77, 79, 83, 86, 87]. Fuzzy rules in Eqn. (1)
with single-dimensional antecedent fuzzy sets are derived from fuzzy rules

Aq

Aq2

Aq1

0.0 1.0
0.0

1.0

x1

x2

Aq2

Aq1

0.0 1.0
0.0

1.0

x1

x2 Aq

(a) (b)

Fig. 5. Two-dimensional antecedent fuzzy sets: (a) 2D fuzzy vector; (b) ellipsoidal
antecedent fuzzy set

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 647

in Eqn. (2) by the projection of their multi-dimensional antecedent fuzzy
sets. Whereas such projection improves the interpretability of fuzzy rules,
it degrades their classification accuracy. This is because information loss is
involved in the projection, as we can see from Fig. 5(b). The information loss
accompanying the projection of multi-dimensional antecedent fuzzy sets was
discussed in [79].

Since the early 1990s [51], fuzzy rules of the following type have often been
used for the design of fuzzy rule-based classifiers [48]:

Rule Rq : If x1 is Aq1 and · · · and xn is Aqn then Class Cq with wq (3)

where wq is a rule weight (that is, certainty grade). Usually wq is a real num-
ber in the unit interval [0, 1]. As we will show later, rule weights have a large
effect on the accuracy of fuzzy rule-based classifiers [44]. In other words, we
can improve the accuracy of fuzzy rule-based classifiers by modifying only the
rule weight of each fuzzy rule (without modifying the membership function
of each antecedent fuzzy set). The use of rule weights, however, degrades the
interpretability of fuzzy rule-based classifiers [78]. Several rule weight speci-
fication methods have been proposed [56, 89]. Their appropriate specification
strongly depends on the choice of a fuzzy reasoning method for classifying
new patterns. For the specification of rule weights, see [56]; their adjustment
was discussed in [80].

It is also possible to use fuzzy rules with M consequent classes for an
M -class pattern classification problem as follows:

Rule Rq : If x1 is Aq1 and · · · and xn is Aqn then Class 1 with wq1

and · · · and Class M with wqM (4)

where wqh is a weight of Class h (h = 1, 2, · · · , M). Usually wqh is a real
number in the unit interval [0, 1]. Fuzzy rules of this type are actually the
same as those for a function approximation problem of an n-input and M -
output function. More specifically, fuzzy rules in Eqn. (4) can be viewed as
being the same as the following fuzzy rules with no rule weights for function
approximation:

Rule Rq : If x1 is Aq1 and · · · and xn is Aqn then y1 is bq1

and · · · and yM is bqM (5)

where yh is the hth output variable and bqh is a consequent real number
(h = 1, 2, . . . , M). Fuzzy rules in Eqn. (4) were examined in [13], together
with those in Eqns. (1) and (3). The fuzzy rules in Eqn. (4) have more clas-
sification capability and less interpretability than those in Eqns. (1) and (3).
In this Chapter, we use fuzzy rules in Eqn. (3), since they seem to be a good
compromise between interpretability and accuracy.

648 H. Ishibuchi et al.

2.3 Fuzzy Reasoning

Let S be a set of fuzzy rules – in other words, S is a fuzzy rule-based classifier.
When an input pattern xp = (xp1, xp2, . . . , xpn) is presented to the fuzzy rule-
based classifier S, its compatibility grade with each fuzzy rule in S needs to
be calculated. The following product and minimum operators are often used
to calculate the compatibility grade:

Aq(xp) = Aq1(xp1) · Aq2(xp2) · · · · ·Aqn(xpn) (6)

Aq(xp) = min{Aq1(xp1), Aq2(xp2), . . . , Aqn(xpn)} (7)

where Aq(xp) is the compatibility of xp with the antecedent part Aq =
(Aq1, Aq2, . . . , Aqn) of the fuzzy rule Rq, and Aqi(·) is the membership function
of the antecedent fuzzy set Aqi. In this Chapter, we use the product operator
because it is more popular than the minimum operator in recently developed
fuzzy rule-based systems.

First we explain fuzzy reasoning for pattern classification using fuzzy rules
with no rule weights in Eqn. (1). When we use a winner-take-all scheme,
the maximum compatibility grade of the input pattern xp for each class is
calculated, as follows [51]:

αh(xp) = max{Aq(xp) | Cq = h; Rq ∈ S}, h = 1, 2, . . . , M (8)

The input pattern xp is assigned to the class with the maximum value of
αh(xp) over the M classes. In this case, xp can be viewed as being classified
by the following winner rule RW in the fuzzy rule-based classifier S:

AW (xp) = max{Aq(xp) | Rq ∈ S} (9)

When multiple classes have the same maximum value (that is, when mul-
tiple fuzzy rules with different consequent classes have the same maximum
value in Eqn. (9)), the classification of xp is rejected. Of course, it is possible
to randomly assign xp to one of those classes with the maximum value of
αh(xp) in Eqn. (8).

Instead of the maximum compatibility in Eqn. (8), we can also define
αh(xp) by the total compatibility grade as follows [45]:

αh(xp) =
∑

Rq∈S;Cq=h

Aq(xp), h = 1, 2, . . . , M (10)

As in the case of Eqn. (8), xp is assigned to the class with the maximum
value of αh(xp) over the M classes. Whereas only the winner rule with the
maximum compatibility grade is responsible for the classification result in
the case of Eqn. (8), all compatible rules vote for their consequent classes in
Eqn. (10).

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 649

small large

sm
all

large

Class 1 Class 1

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

small large

sm
all

large

Class 1 Class 1

Class 1
Class 2

0.0 x1 1.0

0.0

x2

1.0

(a) (b)

Fig. 6. Classification results by the four fuzzy rules with no rule weights: (a) the
winner-take-all scheme in Eqn. (8); (b) the voting-based scheme in Eqn. (10)

For illustration, let us assume that we have the following four fuzzy rules:

If x1 is small and x2 is small then Class 1
If x1 is small and x2 is large then Class 1
If x1 is large and x2 is small then Class 1
If x1 is large and x2 is large then Class 2

where small and large are linguistic terms of antecedent fuzzy sets. These
fuzzy rules are shown in Fig. 6. The bold lines in Fig. 6 show the classification
boundaries between the two classes by the winner-take-all scheme in Eqn. (8)
in Fig. 6(a) and by the voting-based scheme in Eqn. (10) in Fig. 6(b).

As we can see from Fig. 6(a), the classification boundary by the winner-
take-all scheme is the same as the result by the lookup table approach with
interval rules, as was pointed out by [71, 72]. On the other hand, we observe
a nonlinear boundary in Fig. 6(b) when we use the voting-based scheme. One
advantage of the winner-take-all scheme over the voting-based one is its high
explanation capability for classification results. That is, we can easily explain
why an input pattern is classified as a particular class since only a single fuzzy
rule is responsible for the classification of each input pattern in the case of
the winner-take-all scheme. In this Chapter, we use the winner-take-all scheme
due to its high explanation capability for classification results.

For fuzzy rules with rule weights in Eqn. (3), the maximum weighted
compatibility grade for each class is calculated as follows:

αh(xp) = max{Aq(xp) · wq | Cq = h; Rq ∈ S}, h = 1, 2, . . . , M (11)

In this case, the winning rule RW for xp is identified as

AW (xp) · wW = max{Aq(xp) · wq | Rq ∈ S} (12)

650 H. Ishibuchi et al.

small large

sm
all

large

Class 1

Class 2

0.0 x1 1.0

0.0

x2

1.0

small large

sm
all

large

Class 1

Class 2

0.0 x1 1.0

0.0

x2

1.0

(a) (b)

Fig. 7. Classification results by the four fuzzy rules with rule weights: (a)
(w1, w2, w3, w4) = (0.1, 0.1, 0.5, 1.0); (b) (w1, w2, w3, w4) = (1.0, 0.5, 0.1, 1.0)

Let us consider the following four fuzzy rules with rule weights:

If x1 is small and x2 is small then Class 1 with w1

If x1 is small and x2 is large then Class 1 with w2

If x1 is large and x2 is small then Class 1 with w3

If x1 is large and x2 is large then Class 2 with w4

Figure 7 shows two examples of classification boundaries obtained from
these fuzzy rules by the winner-take-all scheme. We can see from a comparison
between Fig. 6(a) and Fig. 7 that rule weights have a large effect on the classi-
fication results by a fuzzy rule-based classifier. Totally different classification
boundaries were obtained in Fig. 7 using different values of rule weights.

2.4 Fuzzy Rule Extraction

Let us assume that the ith attribute is divided into Ki antecedent fuzzy sets
(i = 1, 2, . . . , n). This means that the n-dimensional pattern space is divided
into K1×K2×· · ·×Kn fuzzy subspaces. [51] proposed the idea of determining
the consequent class of a fuzzy rule by the majority class in the corresponding
fuzzy subspace. First the total compatibility grade with the antecedent vector
Aq is calculated for each class using the given training patterns x1,x2, . . . ,xm

as follows:
βh(Aq) =

∑
xp ∈ Class h

Aq(xp), h = 1, 2, . . . , M (13)

Then the consequent class Cq is specified as the class with the maximum
value of βh(Aq) over the M classes for the antecedent vector Aq. In this
manner, we have a fuzzy rule “Aq ⇒ Cq”. When multiple classes have the
same maximum value, we do not generate any fuzzy rules with the antecedent
vector Aq. When no training patterns are compatible with Aq (that is, when

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 651

the right-hand side of Eqn. (13) is zero for all classes), neither do we generate
any fuzzy rules with the antecedent vector Aq.

This specification method can be explained as choosing the class with
the maximum fuzzy conditional probability [58, 89]. The fuzzy conditional
probability is specified for each class as follows:

Pr(Class h | Aq) =

∑
xp ∈ Class h

Aq(xp)

∑m
p=1 Aq(xp)

(14)

This fuzzy conditional probability is referred to as the confidence of the
fuzzy rule “Aq ⇒ Class h” in the field of fuzzy data mining [32, 48, 57]. The
confidence of “Aq ⇒ Class h” is written as

c(Aq ⇒ Class h) =

∑
xp ∈ Class h

Aq(xp)

∑m
p=1 Aq(xp)

(15)

This formulation of the fuzzy confidence has often been used to evaluate
a fuzzy rule together with the fuzzy support:

s(Aq ⇒ Class h) =

∑
xp ∈ Class h

Aq(xp)

m
(16)

It should be noted that the same consequent class is obtained even when
we use the fuzzy conditional probability in Eqn. (14), the fuzzy confidence in
Eqn. (15) and the fuzzy support in Eqn. (16) instead of βh(Aq) in Eqn. (13).

One of the most popular fuzzy rule extraction methods is that of [93].
Whereas this method was originally proposed for function approximation, it
is also applicable to pattern classification with minor modifications. The basic
idea of this method is to generate the most compatible fuzzy rule with each
training pattern. Let q(xp) be the index of the most compatible antecedent
vector Aq with the training pattern xp. Using q(xp), we define A∗

q(xp) as
follows:

A∗
q(xp) =

{
Aq(xp), if q = q(xp), q = 1, 2, . . . , K1 ×K2 × · · · ×Kn

0 otherwise
(17)

That is, A∗
q(xp) is the same as the compatibility grade Aq(xp) only when Aq

is the most compatible antecedent vector with xp among all K1×K2×· · ·×Kn

combinations of the antecedent fuzzy sets (it is assumed that Ki antecedent
fuzzy sets are given for the ith attribute). The rule generation method of [93]
can be used for pattern classification by specifying βh(Aq) as follows:

βh(Aq) = max{A∗
q(xp) | xp ∈ Class h}, h = 1, 2, . . . , M (18)

652 H. Ishibuchi et al.

LS

0.0 1.0

M

0.5

0.0 1.00.5

0.0

1.0
M

em
be

rs
hi

p Class 1 Class 2

LS

0.0 1.0

M

0.5

0.0 1.00.5

0.0

1.0

M
em

be
rs

hi
p Class 1 Class 2

(a) (b)

Fig. 8. Two data sets in the single-dimensional pattern space [0, 1]; the three
antecedent fuzzy sets small, medium and large are denoted by S, M and L,
respectively

The consequent class Cq is specified as the class with the maximum value of
βh(Aq) over the M classes.

We explain these two methods – namely the total compatibility method
of [51] and the maximum compatibility method of [93] – using Fig. 8 with a
single-dimensional pattern space [0, 1]. In Fig. 8, both methods choose Class
1 as the consequent class for the antecedent part “If x is small”. Class 1 is
also chosen by both methods for “If x is medium” in Fig. 8(a). In Fig. 8(b),
Class 1 is still chosen by the maximum compatibility method for “If x is
medium”, while Class 2 is chosen by the total compatibility method for the
same antecedent. In Fig. 8, no fuzzy rules with the antecedent part “x is large”
are generated by the maximum compatibility method while “If x is large then
Class 2” is generated by the total compatibility method. As shown in Fig. 8,
the maximum compatibility method is sensitive to a single training pattern
with a high compatibility grade while the total compatibility method depends
on all compatible patterns. In this Chapter, we use the total compatibility
method in Eqn. (13) due to its robustness with noisy patterns.

It should be noted that we can generate “If x is large then Class 2” if we
modify Eqn. (18) in the maximum compatibility method of [93] as follows:

βh(Aq) = max{Aq(xp) | xp ∈ Class h}, h = 1, 2, . . . , M (19)

In this case, the consequent class of each fuzzy rule is specified by the most
compatible training pattern with its antecedent part. On the other hand,
the consequent class has the largest sum of compatibility grades with its
antecedent part in the total compatibility method of [51].

As we have already shown in Fig. 7, rule weights have a large effect on the
classification performance of a fuzzy rule-based classifier. It has been reported
that good results were obtained from the following specification of rule weights
when we used the winner-take-all scheme [48, 56].

wq = c(Aq ⇒ ClassCq)−
M∑

h=1;h �=Cq

c(Aq ⇒ Classh) (20)

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 653

LS

0.0 1.0

M

0.5

0.0 1.00.5

0.0

1.0

M
em

be
rs

hi
p Class 1 Class 2

Fig. 9. Training patterns in the single-dimensional pattern space [0, 1]

For example, we can generate the following fuzzy rules from the training
patterns in Fig. 9 using this specification method:

If x is small then Class 1 with 1.00
If x is medium then Class 1 with 0.05
If x is large then Class 2 with 1.00

The classification boundary is calculated as x = 0.524 from the generated fuzzy
rules using the winner-take-all scheme. This classification boundary seems
to be acceptable in Fig. 9. On the other hand, the following fuzzy rules are
obtained from the same training patterns if we use the confidence of each
fuzzy rule directly as its rule weight:

If x is small then Class 1 with 1.00
If x is medium then Class 1 with 0.55
If x is large then Class 2 with 1.00

In this case, the classification boundary is calculated as x = 0.677. This
classification boundary seems to be inappropriate in Fig. 9.

2.5 Comparison Between Fuzzy and Interval Rules

In this Section, we explain some characteristic features of fuzzy rule-based
classifiers by comparing them with interval rule-based classifiers. The main
difference between fuzzy and interval rules is that each axis of the pattern
space is divided into overlapping regions in the case of fuzzy rules as shown in
Fig. 9. Thus an input pattern is covered by multiple fuzzy rules, whereas it is
usually covered by a single interval rule. This is illustrated in Fig. 10, where
an input pattern is covered by a single interval rule in Fig. 10(a), and by four
fuzzy rules in Fig. 10(b).

654 H. Ishibuchi et al.

S L

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

M

S
L

M

S L

S
L

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

M

M

(a) (b)

Fig. 10. A single interval rule (a), and four fuzzy rules (b), that cover an input
pattern

For illustrative purposes, let us assume a very special situation where
only a single Class 1 pattern in Fig. 10 is given as a training pattern. In this
situation, a single interval rule with Class 1 consequent at the lower left corner
is generated in Fig. 10(a). This interval rule classifies new patterns in the lower
left cell as Class 1. The classification of new patterns in the other eight cells
is rejected because there are no compatible rules with those patterns in the
eight non-shaded cells in Fig. 10(a). On the other hand, four fuzzy rules with
Class 1 consequent are generated from the same training pattern in Fig. 10(b).
Almost all new patterns – except for those on the top and left edges of the
pattern space – are classified as Class 1 by the four generated fuzzy rules.
That is, more fuzzy rules are generated from the same training data than
interval rules. As a result, a larger region of the pattern space is covered by
the generated fuzzy rules than the case of interval rules.

The above-mentioned difference in the number of generated rules between
interval and fuzzy rules is also illustrated in Fig. 11. In Fig. 11(a), six interval
rules are generated from the 30 given training patterns. Classification of new
patterns in the three shaded cells around the top-right corner is rejected in
Fig. 11(a). On the other hand, nine fuzzy rules are generated from the same
30 training patterns in Fig. 11(b); all the pattern space is covered by at least
one of the generated fuzzy rules in Fig. 11(b).

In Figure 11, we can also observe the difference in the shape of classification
boundaries between interval and fuzzy rules. In the case of interval rules, clas-
sification boundaries are always piece-wise linear and axis-parallel, as shown
in Fig. 11(a). The location of classification boundaries totally depends on the
choice of threshold values for interval discretization of each axis of the pattern
space. On the other hand, classification boundaries are not always axis-parallel
in the case of fuzzy rules, as shown in Fig. 11(b). The location of classifica-
tion boundaries depends on rule weights as well as fuzzy discretization of each

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 655

S L

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

M

S
L

M

S L
S

L

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

M
M

(a) (b)

Fig. 11. Classification boundaries generated from the given training patterns: (a)
interval rules; (b) fuzzy rules

axis of the pattern space. That is, the location of classification boundaries can
be adjusted by rule weights as we have already illustrated in Fig. 7. For the
learning of rule weights, see [48, 80]. Of course, the location of classification
boundaries can also be adjusted by the tuning of the membership function of
each antecedent fuzzy set [76, 77].

Better results were reported using fuzzy rules than interval rules when
each axis of the pattern space was uniformly divided into antecedent intervals
and antecedent fuzzy sets [48, 54]. Better results were also reported by fuzzy
rules when training patterns were very sparse. Interval rules outperformed
fuzzy rules only when the threshold values for interval discretization of each
axis were carefully specified using a large number of training patterns in the
computational experiments reported in [48, 54].

3 Evolutionary Multiobjective Optimization (EMO)

Before discussing evolutionary multiobjective design of fuzzy rule-based classi-
fiers, we briefly explain genetic algorithms (GAs), multiobjective optimization
(MO), and evolutionary multiobjective optimization (EMO) algorithms in this
Section.

3.1 Genetic Algorithms (GAs)

A general outline of evolutionary algorithms, including genetic algorithms
[26, 31], can be written as follows:

656 H. Ishibuchi et al.

Algorithm 1 Generic Evolutionary Algorithm (EA)
Step 1. P := Initialize (P)
Step 2.
while stopping condition not satisfied do

(a) P ′ := Parent Selection (P)
(b) P ′′ := Genetic Operations (P ′)
(c) P := Replace (P ∪ P ′′)

In Step 1, an initial population P is randomly generated in many cases.
Whereas a binary string is often used in genetic algorithms to represent an
individual (that is, to represent a solution of an optimization problem), other
types of strings such as an integer string and a real number string are also
used in evolutionary algorithms.

In Step 2(a), a set of pairs of strings (namely, a parent population P ′) is
constructed from the current population P . One of the most popular selec-
tion schemes is binary tournament selection where two strings are randomly
generated from the current population with replacement and the better one
is chosen as a parent. A pair of parents is chosen by iterating this procedure
twice. A pre-specified number of pairs of parents are chosen from the current
population P in Step 2(a) to construct a parent population P ′.

An offspring is generated from each pair of parents by crossover and muta-
tion to construct an offspring population P ′′ in Step 2(b). Crossover is a
genetic operation to generate an offspring from a pair of parents. One-point
crossover and uniform crossover in Fig. 12 are often used in genetic algorithms
with binary strings. In one-point crossover – Fig. 12(a) – a crossover point is
randomly chosen to divide each parent into two substrings. A substring in
one part of the offspring comes from one parent while the remaining part of
the offspring comes from the other parent. On the other hand, one of the two
parents is randomly chosen for each site (in other words, for each locus) of
the offspring in uniform crossover. In Fig. 12(b), genes at the marked sites are
inherited from Parent A to the offspring. Crossover is applied to each pair of
parents with a pre-specified crossover probability. The crossover probability
is usually specified as a real number in the interval [0.5, 1.0]. When crossover

Parent B

Parent A

Offspring

1 0 1 0 0 1 0 1 0 1

0 1 1 0 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1 0

Parent B

Parent A

Offspring

1 0 1 0 0 1 0 1 0 1

0 1 1 0 1 0 0 0 1 0

0 0 1 0 0 0 0 0 1 1

* * * *

(a) (b)

Fig. 12. Typical crossover operations in genetic algorithms with binary strings: (a)
one-point crossover; (b) uniform crossover

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 657

0 0 1 0 0 0 1 0 1 1
* *

0 1 1 0 0 0 0 0 1 1
* *

Fig. 13. Bit-flip mutation

is not applied, one of the two parents is randomly chosen and handled as an
offspring in the next operation (that is, mutation).

Mutation is another genetic operation, and is used to partially and ran-
domly modify each offspring after crossover. Bit-flip mutation in Fig. 13 is
usually used in genetic algorithms with binary strings. A bit value in each site
is changed with a pre-specified mutation probability. A typical value of the
mutation probability for binary strings is 1/N , where N is the string length.

In Step 2(c), the next population is constructed from the current popula-
tion P and the offspring population P ′′. Various generation update schemes
have been proposed in the literature. Usually a pre-specified number of elite
strings (that is, the best strings) are inherited from the current population to
the next population with no modifications. The remaining slots in the next
population are filled with newly generated offspring. One extreme implemen-
tation is to use the offspring population P ′′ as the next population (namely,
P := P ′′). In this case, all the strings in the current population are replaced
with the newly generated offspring – in other words, the number of elite strings
is zero. Thus the generation gap between the current and next populations is
largest. Another extreme implementation is to replace the worst string in the
current population with a single offspring (namely, |P ′′| = 1). In this case,
the number of elite strings is the population size minus one (|P |−1); thus the
generation gap is smallest.

Steps 2(a)–(c) are iterated until a pre-specified termination condition is
satisfied. Since better strings are selected in the parent selection phase in Step
2(a) and the generation update phase in Step 2(c), we can expect that the
current population is gradually improved by iterating Steps 2(a)–(c).

3.2 Multiobjective Optimization (MO)

In general, a k-objective maximization problem can be written as:

Maximize f(y) = (f1(y), f2(y), . . . , fk(y)) subject to y ∈ Y (21)

where f(y) is a k-dimensional objective vector, fi(y) is the ith objective to be
maximized, y is a decision vector, and Y is a feasible region in the decision
space.

If there exists a solution y∗ that optimizes all objectives, y∗ is said to be
the absolutely optimal solution. In the case of the k-objective maximization
problem in Eqn. (21), y∗ is the absolutely optimal solution if the following
relations hold:

fi(y∗) = max{fi(y) | y ∈ Y} for i = 1, 2, . . . , k (22)

658 H. Ishibuchi et al.

In general, multiobjective optimization problems do not have such an abso-
lutely optimal solution that is optimal with respect to all objectives. This is
because some objectives usually conflict with each other. Thus a different
concept of optimal solutions, which is defined based on a dominance relation
between two solutions, is often used in the field of multiobjective optimization.

Let y and z be two feasible solutions of the multiobjective maximization
problem in Eqn. (21). The solution z is said to dominate the solution y (that
is, z is better than y) when the following relations hold:

∀i, fi(y) ≤ fi(z) and ∃i, fi(y) < fi(z) (23)

If there exists no feasible solution z that dominates y, y is said to be a Pareto-
optimal solution. In this case, y is optimal in the sense that y is not dominated
by any other feasible solutions. The set of all Pareto-optimal solutions is the
Pareto-optimal solution set. The image of the Pareto-optimal solution set onto
the objective space is called the Pareto front. That is, the Pareto front is the
Pareto-optimal solution set in the objective space.

3.3 Evolutionary Multiobjective Optimization (EMO)

Evolutionary multiobjective optimization (EMO) algorithms try to find a
good solution set that well approximates the Pareto-optimal solution set. In
Figure 14, we show an example of the search for the Pareto-optimal solu-
tion set by an EMO algorithm in a two-dimensional objective space. An
important issue in the implementation of good EMO algorithms is to find
a good balance between convergence improvement (that is, search direction

100000th generation
20th generation
1st generation

Maximize f1

M
ax

im
iz

e
f 2

Pareto front

Fig. 14. An example search for the Pareto-optimal solution set by an EMO
algorithm

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 659

f1(x)

f 2(
x)

0

Pareto front

B

B A

f1(x)

f 2(
x)

0

Pareto front

(a) (b)

Fig. 15. (a) search direction A for convergence improvement, and search direction
B for diversity improvement; (b) the search for uniformity improvement

A in Fig. 15(a)) and diversity improvement (that is, search direction B in
Fig. 15(a)). High convergence ability is necessary for EMO algorithms to effi-
ciently find Pareto-optimal or near Pareto-optimal solutions. On the other
hand, diversity improvement mechanisms are necessary for EMO algorithms
to find various solutions with a wide range of values of each objective. For
details of the balance between convergence and diversity in EMO algorithms,
see [53]. It is also desired to find a set of uniformly distributed solutions along
the Pareto front (see Fig. 15(b)).

Since Schaffer’s pioneering work in the mid 1980s [85], a large number of
EMO algorithms have been proposed in the literature [11, 12, 18]. Currently
EMO is one of the most active research areas in the field of evolutionary com-
putation. Most EMO algorithms are based on the Pareto dominance relation in
Eqn. (23) according to Goldberg’s suggestion [26]. Pareto dominance relation
is used to drive the population to the Pareto front (that is, search direc-
tion A in Fig. 15(a)). Most EMO algorithms also have some sort of diversity
improvement mechanism to find a set of uniformly distributed solutions with
a wide range of values of each objective. Diversity improvement mechanisms
are used to widen the population (that is, search direction B in Fig. 15(a))
and uniformly distribute each solution (see Fig. 15(b)). Elitism has been used
in recently developed EMO algorithms because its importance was clearly
demonstrated by [94]. SPEA [94], PAES [69] and NSGA-II [19] are well-known
and frequently-used elitist EMO algorithms. In some studies, local search
has been incorporated into EMO algorithms in order to improve their search
ability especially for combinatorial optimization problems [41, 59, 61].

In this Chapter, we use NSGA-II (fast elitist non-dominated sorting genetic
algorithm) [19] due to its simplicity, popularity and high search ability.
NSGA-II may be the most frequently-used and well-known EMO algorithm in

660 H. Ishibuchi et al.

the literature. NSGA-II has the same basic framework as the genetic algorithms
in Sect. 3.1. That is, NSGA-II iterates selection, genetic operations and genera-
tion update until a pre-specified termination condition is satisfied. Whereas a
scalar fitness function is used in standard single-objective genetic algorithms,
multiple objectives are used to evaluate each solution in EMO algorithms. For
example, NSGA-II uses non-dominated sorting as the primary criterion and a
crowding distance as the secondary criterion in binary tournament selection
and generation update.

Non-dominated sorting in NSGA-II is performed in the following manner
to evaluate each solution in the current population using multiple objectives.
First, Rank 1 is assigned to those solutions that are not dominated by any
other solutions in the current population (more specifically, Rank 1 is assigned
to all non-dominated solutions in the current population). Rank 2 is assigned
to all non-dominated solutions among solutions with no ranks. This ranking
procedure is iterated until ranks are assigned to all solutions in the current
population. This procedure is illustrated in Fig. 16(a). Solutions with higher
ranks are viewed as better solutions (that is, Rank 1 is the best, Rank 2 is
the second, and so forth).

When two solutions have the same rank, a crowding distance is used as the
secondary criterion to compare them with each other in NSGA-II. When we
calculate the crowding distance of a solution, all solutions with the same rank
as that solution are projected to each axis of the objective space. Then the
distance between two adjacent solutions of the solution is calculated on each
axis. The crowding distance is the sum of the distances between two adja-
cent solutions over all objectives (see Fig. 16(b), where a + b is assigned to a
solution with Rank 1). An infinitely large value is assigned to extreme solu-
tions with the minimum or maximum objective value of at least one objective
among solutions with the same rank as shown in Fig. 16(b).

Maximize f1

M
ax

im
iz

e
f 2

0

Rank 1

Rank 2

Rank 3

Maximize f1

M
ax

im
iz

e
f 2

0

Infinitely
large value

a

ba + b

(a) (b)

Fig. 16. Two important mechanisms in NSGA-II: (a) non-dominated sorting and
(b) calculation of the crowding distance

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 661

In the parent selection phase of NSGA-II, two solutions are randomly
drawn from the current population to choose a parent by binary tourna-
ment selection. If the two solutions have different ranks, the better solution
with the higher rank is chosen as a parent. If they have the same rank, the
better solution with a larger value of crowding distance is chosen as a par-
ent. By iterating this binary tournament selection procedure, a pre-specified
number of pairs of parents is selected. An offspring is generated from each
pair of parents by genetic operations in our implementation of NSGA-II (it
is also possible to generate two offsprings from each pair of parents). The
number of newly generated offspring is the same as the population size in
NSGA-II.

In the generation update phase of NSGA-II, the current and offspring popu-
lations are merged to generate an enlarged population. Non-dominated sorting
is applied to the enlarged population. Then the crowding distance is calcu-
lated for each solution in the enlarged population. A pre-specified number of
the best solutions is chosen from the enlarged population using the assigned
rank of each solution as the primary criterion and the crowding distance as
the secondary criterion. Since the number of offspring is the same as the pop-
ulation size, NSGA-II can be viewed as an elitist EMO algorithm with the
(µ +λ) ES generation update mechanism, where µ = λ.

The convergence of solutions to the Pareto front is realized in NSGA-II by
choosing better solutions with respect to their ranks in the parent selection
phase and the generation update phase. The diversity of solutions is main-
tained by choosing better solutions with respect to the crowding distance
among solutions with the same rank. Elitism, which is realized by the (µ + λ)
ES generation update mechanism, has positive effects on both the convergence
and the diversity. For more details of each step of NSGA-II, see [18] and [19].

4 Two Approaches to Evolutionary Multiobjective
Design of Fuzzy Rule-Based Classifiers

In this Section, we explain evolutionary multiobjective design of fuzzy rule-
based classifiers. We assume that we have m training patterns xp = (xp1, xp2,
. . . , xpn), p = 1, 2, . . . , m from M classes in an n-dimensional pattern space,
which is an n-dimensional unit hypercube [0, 1]n. Since we usually have no
a priori information about an appropriate granularity (that is, the number
of antecedent fuzzy sets) of fuzzy discretization for each attribute, we simul-
taneously use multiple fuzzy partitions with different granularities, as shown
in Fig. 17, where S, MS, M, ML and L mean small, medium small, medium,
medium large and large, respectively. The superscript of each fuzzy set shows
the granularity of the fuzzy partition. Each of the 14 fuzzy sets is denoted by
one of the 14 symbols: 1, 2,. . . , 9, a, b,. . . , e.

662 H. Ishibuchi et al.

1.0

0.0
0.0 1.0

1 2

S2 L2

1.0

0.0
0.0 1.0

3 54

S3 M3 L3

1.0

0.0
0.0 1.0

6 97

S4 MS4 L4ML4

8 1.0

0.0
0.0 1.0

a eb

S5 MS5 L5ML5

c d

M5

Fig. 17. The four fuzzy partitions used in our computational experiments

In addition to the 14 fuzzy sets of Fig. 17, we also use the domain interval
[0, 1] itself as an antecedent fuzzy set in order to represent a don’t care con-
dition. Thus we have the 15 possible fuzzy sets as the antecedent fuzzy set
for each attribute. As a result, the total number of possible combinations of
the antecedent fuzzy sets (namely, the total number of possible fuzzy rules)
is 15n for an n-dimensional pattern classification problem.

Of course, we can use other antecedent fuzzy sets with different types
of membership functions (for instance, asymmetric, trapezoidal, Gaussian,
and so forth) if they are appropriate for the particular pattern classification
problem at hand. We can also use tailored antecedent fuzzy sets, tuned for
each attribute, if they are available.

4.1 Problem Formulation

Let S be a set of fuzzy rules (S being a fuzzy rule-based classifier). We measure
its accuracy by the number of correctly classified training patterns. On the
other hand, we measure its complexity by the number of fuzzy rules in S and
the total number of antecedent conditions of fuzzy rules in S. Thus we use
the following three objectives in the formulation of the multiobjective design
of fuzzy rule-based classifiers:

f1(S): The number of training patterns correctly classified by S,
f2(S): The number of fuzzy rules in S,
f3(S): The total number of antecedent conditions of fuzzy rules in S

(that is, the total rule length).

The number of antecedent conditions in each rule is often referred to as
the rule length. Thus f3(S) is also viewed as the total rule length. It should

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 663

be noted that don’t care conditions are not counted among the number of
antecedent conditions (in other words, rule length) in the calculation of f3(S).
For example, the rule length of the following fuzzy rule is not three but one:
“If x1 is don’t care and x2 is small and x3 is don’t care then Class 1 with
0.95”. This rule can be written as “If x2 is small then Class 1 with 0.95” by
omitting the two don’t care conditions.

Multiobjective design of fuzzy rule-based classifiers is formulated as follows:

Maximize f1(S), minimize f2(S), and minimize f3(S) (24)

Our task in this Section is to find Pareto-optimal (or near Pareto-optimal)
fuzzy rule-based classifiers of this three-objective optimization problem.

When the Pareto dominance relation – Eqn. (23) in Sect. 3 – is applied to
this three-objective optimization problem, it is modified as follows: A rule set
Sy is said to be dominated by another rule set Sz (that is, Sz dominates Sy:
Sz is better than Sy) when all the following inequalities hold:

f1(Sy) ≤ f1(Sz), f2(Sy) ≥ f2(Sz), f3(Sy) ≥ f3(Sz) (25)

and at least one of the following inequalities holds:

f1(Sy) < f1(Sz), f2(Sy) > f2(Sz), f3(Sy) > f3(Sz) (26)

Roughly speaking, when a rule set Sy has lower classification accuracy and
higher complexity than another rule set Sz, Sy is said to be dominated by Sz.

4.2 Multiobjective Fuzzy Rule Selection

Fuzzy rule selection for the design of fuzzy rule-based classifiers was first
formulated in [52] as the following maximization problem:

Maximize w1 · f1(S)− w2 · f2(S) (27)

where w1 and w2 are pre-specified non-negative weights (which have nothing to
do with rule weights, despite our using the same symbol w). This formulation
was generalized as the following two-objective optimization problem by [42]:

Maximize f1(S) and minimize f2(S) (28)

This may be the first formulation of evolutionary multiobjective design of
fuzzy rule-based systems. The two-objective formulation in Eqn. (28) was
further generalized to the three-objective one in Eqn. (24) in [47], where
an EMO-based rule selection algorithm and an EMO-based genetics-based
machine learning (GBML) algorithm were compared with each other. A
memetic EMO algorithm – a hybrid of EMO and local search – was used
for multiobjective fuzzy rule selection in [55]. The three-objective formulation
in Eqn. (24) was also used for non-fuzzy rule selection [49].

664 H. Ishibuchi et al.

Evolutionary multiobjective fuzzy rule selection involves the following two-
step method:

Phase 1: Candidate rule extraction,
Phase 2: Evolutionary multiobjective rule selection.

In the first phase, a large number of candidate fuzzy rules are extracted
from training patterns using the heuristic rule extraction method explained in
Sect. 2. The total number of possible fuzzy rules is 15n for an n-dimensional
pattern classification problem when we use the 14 fuzzy sets in Fig. 17 and
don’t care as antecedent fuzzy sets for each of the n attributes. For low-
dimensional pattern classification problems with only a few attributes, we
can examine all 15n combinations of the antecedent fuzzy sets. Then all the
generated fuzzy rules can be used as candidate rules. On the other hand, we
cannot examine all 15n combinations in the case of high-dimensional pattern
classification problems (that is, when n is large). Thus a heuristic rule evalu-
ation criterion has been used to choose only a tractable number of fuzzy rules
as candidate rules [47, 55].

Let us assume that N candidate rules are extracted in the first phase.
In the second phase, a subset S of the N candidate rules is represented by
a binary string of length N as S = s1s2 · · · sN , where sj = 1 and sj = 0
mean the inclusion and exclusion from S of the jth candidate rule, respec-
tively. NSGA-II with such a binary string is used to search for Pareto-optimal
rule sets of the three-objective optimization problem in Eqn. (24). Since rule
sets are coded as binary strings, we can directly apply NSGA-II to the three-
objective optimization problem using standard genetic operations, such as
uniform crossover and bit-flip mutation.

Two tricks have been used to improve the search ability of NSGA-II for
evolutionary multiobjective rule selection [47, 55]. One is the use of biased
mutation where different mutation probabilities are assigned to the mutation
from a 1 to a 0 and that from a 0 to a 1. For example, mutation from a 1
to a 0 may have a probability 0.1, whereas the mutation probability from a
0 to a 1 is 0.001. A larger probability is assigned to the mutation from a 1
to a 0 than that from a 0 to a 1 to efficiently decrease the number of fuzzy
rules in each rule set (namely, to efficiently decrease the number of 1’s in each
string). The use of biased mutation is motivated by the fact that the number
of selected fuzzy rules is much smaller than the number of candidate rules.
For example, the number of 1’s in a string S may be 10, whereas that of 0’s
is 1000. Suppose that standard non-biased mutation is applied to this string
with probability 0.001. In this case, the average number of 1’s mutated to a
0 is 0.01 (that is, 10 × 0.001), while that of 0’s mutated to a 1 is 1 (that
is, 1000 × 0.001). In other words, the 0.01 rule is removed from S and one
rule included in S, on average. This means that standard non-biased mutation
tends to increase the number of 1’s in each string (more specifically, increase

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 665

the number of fuzzy rules in each rule set). If we use biased mutation with
mutation probabilities 0.1 and 0.001, the average number of removed rules
from S is the same as that of newly included rules in S on average (that
is, 10 × 0.1 = 1000 × 0.001). This means that one rule is removed from S
and one rule is included in S on average. In this manner, biased mutation
works as local search with no tendency toward larger rule sets, while standard
non-biased mutation just increases the number of fuzzy rules. Advantages of
biased mutation over standard non-biased mutation have been demonstrated
in [52, 55].

The other trick is the removal of unnecessary fuzzy rules. Since we use the
winner-take-all scheme, each training pattern is classified by a single winning
rule. Thus some fuzzy rules may be chosen as winner rules for no training
patterns. We can remove those fuzzy rules from a rule set S without degrading
its classification accuracy (that is, without degrading the first objective f1(S)).
At the same time, the second objective f2(S) and third objective f3(S) are
improved by removing unnecessary fuzzy rules. Thus we remove all fuzzy rules
that are selected as winner rules for no training patterns from the rule set S.
Removal of unnecessary fuzzy rules is performed for each string of the current
population by changing the corresponding 1’s to 0’s. From the combinatorial
nature of rule selection, some fuzzy rules with no contribution to pattern
classification in one rule set may have a large contribution in another rule set.
Thus the removal of unnecessary fuzzy rules is performed locally for each string
in the current population (not globally, by removing those fuzzy rules from the
set of candidate rules). The second and third objectives are calculated for each
string after unnecessary fuzzy rules are removed. The removal of unnecessary
fuzzy rules has a large effect on the decrease in the number of fuzzy rules. This
leads to a decrease in the computation time for evolutionary multiobjective
fuzzy rule selection [55].

We explain evolutionary multiobjective fuzzy rule selection using a sim-
ple numerical example. Let us assume that 20 training patterns are given in
Fig. 18. Figure 18(a) shows the classification boundary by a fuzzy rule-based
classifier with a 5×5 fuzzy grid. That is, we examined 5× 5 combinations of
the five antecedent fuzzy sets in the bottom-right fuzzy partition in Fig. 17
using the heuristic rule extraction method of Sect. 2. Then 23 fuzzy rules were
generated, but which cannot correctly classify all the 20 training patterns as
shown in Fig. 18(a). We also applied evolutionary multiobjective fuzzy rule
selection to the same classification problem. First we examined 15×15 com-
binations of the 15 antecedent fuzzy sets using all the four fuzzy partitions
in Fig. 17 as well as don’t care. Using the heuristic rule extraction method
in Sect. 2, 220 fuzzy rules were generated. All the generated fuzzy rules were
used as candidate rules in evolutionary multiobjective fuzzy rule selection.
We applied NSGA-II to the candidate rules using the following parameter
specifications:

666 H. Ishibuchi et al.

Class 1 Class 2

0.0 x1 1.

0.0

x2

1.0

0

Class 1 Class 2

0.0 x1 1.0

0.0

x2

1.0

(a) (b)

Fig. 18. Training patterns and classification results of two fuzzy rule-based
classifiers: (a) 23 fuzzy rules in the 5× 5 grid; (b) the 5 fuzzy rules of Fig. 19

Table 1. The obtained non-dominated rule sets

Number of Total rule Classification
rules length rates (%)

0 0 0
1 1 50
2 2 85
3 3 90
4 4 95
5 6 100

Population size: Npop = 200,
Crossover probability: PC = 0.9,
Mutation probability: PM(1 → 0) = 0.1 and PM(0 → 1) = 1/N ,
Stopping (termination) condition: 2,000 generations.

The six non-dominated rule sets of Table 1 were obtained by NSGA-II.
We can observe a clear tradeoff between the number of fuzzy rules and the
accuracy of fuzzy rule-based classifiers in Table 1. All 20 training patterns
can be correctly classified as shown in Fig. 18(b) by the obtained rule set with
five fuzzy rules, which are shown in Fig. 19. Real numbers in parentheses in
the last column of Fig. 19 show rule weights. Some fuzzy rules have don’t care
conditions denoted by DC in Fig. 19, which have a large effect on the decrease
in the number of fuzzy rules. We can see from these experimental results that
evolutionary multiobjective fuzzy rule selection is capable of finding a number
of non-dominated rule sets with respect to complexity and accuracy.

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 667

Fig. 19. The selected five fuzzy rules that can correctly classify all the 20 given
training patterns

4.3 Multiobjective Fuzzy Genetics-Based Machine Learning

Multiobjective design of fuzzy rule-based classifiers can also be handled within
the framework of genetics-based machine learning (GBML). Whereas binary
strings were used in rule selection in Sect. 4.2, each fuzzy rule is represented
by an integer string of length n using its n antecedent fuzzy sets in fuzzy
GBML algorithms. An integer is assigned to each of the 15 antecedent fuzzy
sets, as shown in Fig. 17. A rule set is represented by a concatenated integer
string, where each substring of length n represents a single fuzzy rule.

GBML algorithms can be roughly classified into one of two approaches:
One is the ‘chromosome = rule’ approach, and the other is the ‘chromosome =
rule set’ approach. The former includes the Michigan approach [26, 31] and
the iterative rule learning approach [9, 14, 27, 30]. The Michigan approach is
often called classifier systems [4]. The ‘chromosome = rule set’ approach is
often referred to as the Pittsburgh approach [88]. For details of fuzzy versions
of these approaches, see [16, 29, 48].

Our multiobjective fuzzy GBML algorithm [50], which is implemented
within the framework of NSGA-II, is basically the Pittsburgh approach. In
other words, each rule set is represented by an integer string where each
substring of length n denotes a single fuzzy rule.

The first step in our multiobjective fuzzy GBML algorithm is the gen-
eration of an initial population, as in many evolutionary algorithms. More
specifically, Npop integer strings are generated to construct an initial pop-
ulation. It was shown in [43, 46] that the search ability of a Michigan-style
fuzzy GBML algorithm was drastically improved by generating initial fuzzy
rules from training patterns in a heuristic manner. We use a similar heuristic

668 H. Ishibuchi et al.

method to generate an initial population. First we randomly draw a pre-
specified number of training patterns (say, Nrule patterns). Next we generate
a fuzzy rule Rq from each training pattern xp = (xp1, . . . , xpn) by probabilis-
tically choosing an antecedent fuzzy set Aqi for each attribute value xpi from
the 14 candidate fuzzy sets Bk (k = 1, 2,. . . , 9, a, b,. . . , e) in Fig. 17. Each
candidate fuzzy set Bk has the following selection probability for the attribute
value xpi:

P (Bk) =
Bk(xpi)∑e

j=1 Bj(xpi)
, k = 1, 2, . . . , 9, a, b, . . . , e (29)

where Bk(·) denotes the membership function of the antecedent fuzzy set
Bk. In Eqn. (29), the selection probability of each antecedent fuzzy set is
proportional to its compatibility grade with the attribute value xpi. All the
n antecedent fuzzy sets of a fuzzy rule Rq are specified from the training
pattern xp using Eqn. (29) for i = 1, 2,. . . , n. Then each antecedent fuzzy set
of the generated fuzzy rule is replaced with don’t care using a pre-specified
probability Pdon′t care. In this manner, Nrule fuzzy rules are generated. An
initial rule set consists of these fuzzy rules. By iterating this procedure, we
generate Npop initial rule sets (in other words, an initial population).

Parent selection is performed in the same manner as in NSGA-II. Crossover
is applied to each pair of parents in the following manner. Since we try to
decrease the number of fuzzy rules, string length is not constant. The number
of fuzzy rules is adjusted by crossover. Let the selected rule sets for crossover
be S1 and S2 (that is, S1 and S2 are a pair of parents). Some fuzzy rules are
randomly selected from each parent to construct an offspring by crossover.
The number of fuzzy rules to be inherited from each parent to the offspring
is randomly specified. Let N1 and N2 be the number of fuzzy rules to be
inherited from S1 and S2, respectively. We randomly specify N1 and N2 in
the intervals [1, |S1|] and [1, |S2|], respectively, where |Si| is the number of
fuzzy rules in the rule set Si. In order to generate an offspring, N1 and N2

fuzzy rules are randomly drawn from S1 and S2, respectively. The generated
offspring has (N1+N2) fuzzy rules. This crossover operation is applied to each
pair of parents using a pre-specified crossover probability PC. In this manner,
the number of fuzzy rules in each rule set is varied by the crossover operation.
In mutation, each antecedent fuzzy set is randomly replaced with a different
one using a pre-specified mutation probability PM.

The next population is constructed from the current and offspring pop-
ulations in the same manner as NSGA-II. Our multiobjective fuzzy GBML
algorithm searches for Pareto-optimal rule sets of the three-objective opti-
mization problem in Eqn. (24) by iterating selection, crossover, mutation and
generation update until a prespecified termination condition is satisfied.

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 669

It was demonstrated in [58] that the search ability of a Pittsburgh-style
fuzzy GBML algorithm can be improved by combining it with a Michigan-
style fuzzy GBML algorithm. Such a hybridization method was used in our
multiobjective fuzzy GBML algorithm [50].

4.4 Computational Experiments on Test Problems

In this Section, we explain evolutionary multiobjective design of fuzzy rule-
based classifiers through computational experiments on some well-known
data sets in the UCI machine learning repository (http://www.ics.uci.edu/
~mlearn/MLSummary.html). We show experimental results by evolutionary
multiobjective fuzzy rule selection. We do not compare evolutionary multi-
objective fuzzy rule selection and multiobjective fuzzy GBML, because their
performance usually depends on parameter specifications and heuristic tricks
incorporated therein; see [47] for a comparison of these two approaches.

We applied multiobjective fuzzy rule selection to the five data sets in
Table 2. Computational experiments were performed in the following manner
for each data set. First each data set was randomly divided into two subsets
of the same size: training patterns and test patterns. Next we extracted 300
fuzzy rules as candidate rules for each class from training patterns using the
following rule evaluation criterion, which was originally used in the SLAVE
iterative rule learning algorithm [27]:

f(Rq) = s(Aq ⇒ ClassCq)−
M∑

h=1;h �=Cq

s(Aq ⇒ Classh) (30)

where s(·) is the support of a fuzzy rule. We only examined short fuzzy rules
with three or less antecedent conditions for candidate rule extraction. That is,
the best 300 fuzzy rules among those with three or less antecedent conditions
were chosen as candidate rules for each class using the SLAVE criterion in
Eqn. (30). Then we applied evolutionary multiobjective fuzzy rule selection
to the extracted candidate rules using the same parameter specifications as
in Sect. 4.2. A number of non-dominated rule sets were obtained by NSGA-II

Table 2. The five data sets used in our computational experiments

Data set Attributes Patterns Classes

Breast W 9 683† 2
Glass 9 214 6
Heart C 13 297† 5
Iris 4 150 3
Wine 13 178 3

† = incomplete patterns with missing values are
not included

670 H. Ishibuchi et al.

for each data set. Finally we calculated the classification rates of each non-
dominated rule set for training patterns and test patterns.

Experimental results are summarized in Figs. 20–24. In each figure, the
left and right plots show classification rates of obtained non-dominated rule
sets on training and test patterns, respectively. Some rule sets (for example,
those with only a single fuzzy rule) are not shown in these figures because
their classification rates are out of the range of the vertical axis of each plot.
It should be noted that all the non-dominated rule sets in each plot were
obtained from a single run of evolutionary multiobjective fuzzy rule selection.

We can observe similar tradeoff relations between accuracy and complexity
for training patterns in the lefthand plots of Figs. 20–24 for all five data sets.
That is, higher classification rates were obtained using more fuzzy rules. On
the other hand, a different accuracy-complexity tradeoff relation is observed

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

2 3 4 594

95

96

97

98

99

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

2 3 4 593

94

95

96

97

98

(a) (b)

Fig. 20. Obtained non-dominated rule sets for the Wisconsin breast cancer data
(Breast W): (a) training data accuracy; (b) test data accuracy

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

3 4 5 6 7 8 9 160

70

80

90

Number of rules
3 4 5 6 7 8 9 10 1140

50

60

70

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

(a) (b)

Fig. 21. Obtained non-dominated rule sets for the glass data (Glass): (a) training
data accuracy; (b) test data accuracy

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 671

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

2 4 6 8 10 12 14 1650

60

70

80

90

18
Number of rules

2 4 6 8 10 12 14 16 1840

50

60

70

80

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

(a) (b)

Fig. 22. Obtained non-dominated rule sets for the Cleveland heart disease data
(Heart C): (a) training data accuracy; (b) test data accuracy

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

2 3 450

60

70

80

90

100

Number of rules
2 3 450

60

70

80

90

100
C

la
ss

ifi
ca

tio
n

ra
te

 (%
)

(b)(a)

Fig. 23. Obtained non-dominated rule sets for the iris data (Iris): (a) training data
accuracy; (b) test data accuracy

Number of rules

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

2 360

70

80

90

100

Number of rules
2 350

60

70

80

90

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

(a) (b)

Fig. 24. Obtained non-dominated rule sets for the wine data (Wine): (a) training
data accuracy; (b) test data accuracy

672 H. Ishibuchi et al.

for test patterns of each data set in the righthand plots of Figs. 20–24. No over-
fitting to training patterns is observed in some data sets (for instance, the wine
data in Fig. 24), while too many fuzzy rules seem to decrease the classification
rates on test patterns in other data sets (for example, the Wisconsin breast
cancer data in Fig. 20 and the glass data in Fig. 21). Evolutionary multiobjec-
tive fuzzy rule selection can be used to find fuzzy rule-based classifiers with
high generalization ability by examining various rule sets obtained during its
single run.

Evolutionary multiobjective fuzzy rule selection can also be used to visu-
ally show relations to human users, as in Figs. 20–24. Such a visualized tradeoff
relation helps human users to choose a single fuzzy rule-based classifier based
on their preference with respect to interpretability and accuracy. All human
users do not necessarily choose the best fuzzy rule-based classifier with respect
to the generalization ability; some human users may prefer simple fuzzy rule-
based classifiers with high interpretability (such as Fig. 25 for the Wine data)
to complicated ones with high accuracy (for instance, Fig. 26).

Since we use the total rule length as well as the number of fuzzy rules as
complexity measures in evolutionary multiobjective fuzzy rule selection, it is
also possible to examine the dependency of the accuracy of rule sets on the rule
length of each fuzzy rule. In Fig. 27, we show the relation between classification

Consequentx1 x11

R1

R2

R3

Class 1
(0.82)

Class 2
(0.77)

Class 3
(0.43)

x13

Fig. 25. A simple rule set obtained for the Wine data with a 94.4% classification
rate on training patterns and an 83.1% classification rate on test patterns

Consequentx1 x7

R1

R2

R3

Class 1
(0.44)

Class 2
(0.73)

Class 3
(0.76)

x10 x11

Fig. 26. A complicated rule set obtained for the Wine data with a 100%
classification rate on training patterns and an 86.5% classification rate on test
patterns

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 673

Average rule length

C
la

ss
ifi

ca
tio

n
ra

te
 (%

) 3 rules
5 rules
7 rules

1.2 1.6 2 2.455

60

65

70

75

Average rule length

C
la

ss
ifi

ca
tio

n
ra

te
 (%

) 3 rules
5 rules
7 rules

1.2 1.6 2 2.445

50

55

60

65

(a) (b)

Fig. 27. Relation between classification rates and average rule length in the obtained
non-dominated rule sets for the Cleveland heart disease data (Heart C): (a) training
data accuracy; (b) test data accuracy

rates and average rule length for some rule sets obtained in Fig. 22 for the
Cleveland heart disease data. Among the obtained non-dominated rule sets
in Fig. 22, those with three, five and seven fuzzy rules are depicted in Fig. 27
using different horizontal axes (namely, average rule length). We can observe a
clear accuracy-complexity tradeoff relation in Fig. 27(a) for training patterns.
More specifically, classification rates on training patterns were improved by
increasing the average rule length. On the other hand, classification rates on
test patterns were not always improved by increasing the average rule length
in Fig. 27(b).

5 Future Research Directions

A number of research issues are left for future studies in order to fully uti-
lize the potential advantages of evolutionary multiobjective approaches to the
design of fuzzy rule-based systems over single-objective ones. One issue is
the mathematical formulation of the interpretability of fuzzy rule-based sys-
tems. In this Chapter, we use the number of fuzzy rules and the total rule
length as complexity measures. Those complexity measures are minimized
in order to maximize the interpretability of fuzzy rule-based systems. There
are, however, many other aspects related to the interpretability of fuzzy rule-
based systems. Among them are the number of input variables, the number
of antecedent fuzzy sets for each input variable, the shape of each antecedent
fuzzy set, and the overlapping grade of adjacent antecedent fuzzy sets – see
[7, 8, 28, 75] for further discussions on the interpretability of fuzzy rule-based
systems. An important research issue is to formulate a tractable multiobjec-
tive optimization problem using those aspects related to the interpretability
of fuzzy rule-based systems. We cannot simply include all the related aspects

674 H. Ishibuchi et al.

as separate objectives because the increase in the number of objectives makes
it very difficult for EMO algorithms to efficiently search for Pareto-optimal
solutions of multiobjective optimization problems [38, 39, 62].

Another issue is a theoretical discussion of the accuracy-complexity (or
interpretability-accuracy) tradeoff relation of fuzzy rule-based systems. Many
studies on multiobjective design of fuzzy rule-based systems do not discuss
such theoretical aspects. Theoretical studies will provide us with much clearer
insights about the advantages of multiobjective design over single-objective
one. They may also give us a sound guideline to the design of an accurate and
interpretable fuzzy rule-based system.

Handling of large data sets is also an important research issue. We believe
that evolutionary multiobjective design of fuzzy rule-based systems can sig-
nificantly contribute to the field of data mining (DM). A number of fuzzy
data mining approaches have already been proposed [32, 36, 37]. Evolutionary
multiobjective fuzzy data mining has also been proposed in some studies (for
example, [68]). Whereas we discussed multiobjective optimization of rule sets
in this Chapter, [68] discussed multiobjective optimization of fuzzy rules. In
the field of data mining, EMO algorithms have been mainly used to search for
Pareto-optimal rules [20–22, 25, 68, 82], rather than Pareto-optimal rule sets
as in this Chapter. It may be an interesting topic to examine the relation
between Pareto-optimal rules and Pareto-optimal rule sets [40].

Whereas a large number of evolutionary approaches to data mining have
already been proposed [24], a large computational cost for iterative genera-
tion update with many individuals seems to be the main difficulty in applying
evolutionary approaches to large data sets. Several tricks have already been
proposed to increase the applicability of evolutionary approaches to large data
sets [5, 6, 17]. Efficient tricks for decreasing the computational cost of evolu-
tionary multiobjective approaches to the design of fuzzy rule-based systems
may be needed in its application to large data sets.

6 Concluding Remarks

As we have already demonstrated in this Chapter, applying evolutionary mul-
tiobjective approaches to the design of fuzzy rule-based classifiers has several
potential advantages over single-objective ones. The main advantage is that a
number of non-dominated classifiers are obtained by a single run of a multiob-
jective approach. The obtained classifiers can be used for accuracy-complexity
tradeoff analysis to find the best classifier with respect to generalization
ability. They are also used for visualization of the interpretability-accuracy
tradeoff relation, which may help human users to choose a fuzzy rule-based
classifier according to their preference with respect to interpretability and
accuracy. In this manner, evolutionary multiobjective approaches make it

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 675

possible to design an accurate and interpretable fuzzy rule-based classifier
according to the human users’ preference. It is usually much easier for human
users to choose a fuzzy rule-based classifier from several alternatives along
the interpretability-accuracy tradeoff surface than to represent their prefer-
ence with respect to interpretability and accuracy as a scalar fitness function
for single-objective approaches.

Whereas we concentrate on the design of fuzzy rule-based classifiers in
this Chapter, the basic ideas of evolutionary multiobjective design can be
applied to the design of fuzzy rule-based systems for other application areas
such as modeling, function approximation and data mining. We believe that
evolutionary multiobjective approaches will become much more popular in
the near future not only in the field of fuzzy rule-based systems but also other
research areas such as machine learning and data mining.

References

1. Abe S (2001) Pattern Classification: Neuro-fuzzy Methods and Their Compari-
son. Springer-Verlag, Berlin.

2. Abe S, Lan M-S (1995) A method for fuzzy rules extraction directly from
numerical data and its application to pattern classification. IEEE Trans. Fuzzy
Systems, 3(1): 18–28.

3. Abe S, Thawonmas R (1997) A fuzzy classifier with ellipsoidal regions. IEEE
Trans. Fuzzy Systems, 5(3): 358–368.

4. Booker LB, Goldberg DE, Holland JH (1989) Classifier systems and genetic
algorithms. Artificial Intelligence, 40(1–3): 235–282.

5. Cano JR, Herrera F, Lozano M (2005) Stratification for scaling up evolutionary
prototype selection. Pattern Recognition Letters, 26(7): 953–963.

6. Cano JR, Herrera F, Lozano M (2006) On the combination of evolutionary
algorithms and stratified strategies for training set selection in data mining.
Applied Soft Computing, 6(3): 323–332.

7. Casillas J, Cordon O, Herrera F, Magdalena L (eds.) (2003) Interpretability
Issues in Fuzzy Modeling. Springer-Verlag, Berlin.

8. Casillas J, Cordon O, Herrera F, Magdalena L (eds.) (2003) Accuracy
Improvements in Linguistic Fuzzy Modeling. Springer-Verlag, Berlin.

9. Castillo L, Gonzalez A, Perez R (2001) Including a simplicity criterion in the
selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets and
Systems, 120(2): 309–321.

10. Cherkassky V, Mulier F (1998) Learning from Data: Concepts, Theory, and
Methods. Wiley, New York, NY.

11. Coello CAC, Lamont GB (2004) Applications of Multi-Objective Evolutionary
Algorithms. World Scientific, Singapore.

12. Coello CAC, van Veldhuizen DA, Lamont GB (2002) Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston,
MA.

13. Cordon O, del Jesus MJ, Herrera F (1999) A Proposal on reasoning methods in
fuzzy rule-based classification systems. Intl. J. Approximate Reasoning, 20(1):
21–45.

676 H. Ishibuchi et al.

14. Cordon O, del Jesus MJ, Herrera F, Lozano M (1999) MOGUL: a methodology
to obtain genetic fuzzy rule-based systems under the iterative rule learning
approach. Intl. J Intelligent Systems, 14(11): 1123–1153.

15. Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years
of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and
Systems, 141(1): 5–31.

16. Cordon O, Herrera F, Hoffman F, Magdalena L (2001) Genetic Fuzzy Systems.
World Scientific, Singapore.

17. Curry R, Heywood MI (2004) Towards efficient training on large datasets for
genetic programming. Lecture Notes in Artificial Intelligence 3060: Advances in
Artificial Intelligence – Canadian AI 2004. Springer-Verlag, Berlin: 161–174.

18. Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, Chichester, UK.

19. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6(2):
182–197.

20. de la Iglesia B, Philpott MS, Bagnall AJ, Rayward-Smith VJ (2003) Data mining
rules using multi-objective evolutionary algorithms. In: Sarker R, Reynolds R,
Abbass H, Tan KC, McKay R, Essam D, Gedeon T (eds.) Proc. 2003 Congress
Evolutionary Computation. 8–12 December, Canberra, Australia. IEEE Press,
Piscataway, NJ: 1552–1559.

21. de la Iglesia B, Reynolds A, Rayward-Smith VJ (2005) Developments on a
multi-objective metaheuristic (MOMH) algorithm for finding interesting sets
of classification rules. Lecture Notes in Computer Science 3410: Evolutionary
Multi-Criterion Optimization – EMO 2005. Springer-Verlag, Berlin: 826–840.

22. de la Iglesia B, Richards G, Philpott MS, Rayward-Smith VJ (2006) The appli-
cation and effectiveness of a multi-objective metaheuristic algorithm for partial
classification. European J. Operational Research, 169(3): 898–917.

23. Duda O, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York,
NY.

24. Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag, Berlin.

25. Ghosh A, Nath BT (2004) Multi-objective rule mining using genetic algorithms.
Information Sciences, 163(1–3): 123–133.

26. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA.

27. Gonzalez A, Perez R (1999) SLAVE: A genetic learning system based on an
iterative approach. IEEE Trans. Fuzzy Systems, 7(2): 176–191.

28. Guillaume S (2001) Designing fuzzy inference systems from data: an
interpretability-oriented review. IEEE Trans. Fuzzy Systems, 9(3): 426–443.

29. Herrera F (2005) Genetic fuzzy systems: status, critical considerations and
future directions. Intl. J. Computational Intelligence Research, 1(1): 59–67.

30. Herrera F, Lozano M, Verdegay JL (1998) A learning process for fuzzy control
rules using genetic algorithms. Fuzzy Sets and Systems, 100(1–3): 143–158.

31. Holland JH (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

32. Hong T-P, Kuo C-S, Chi S-C (2001) Trade-off between computation time and
number of rules for fuzzy mining from quantitative data. Intl. J. Uncertainty,
Fuzziness and Knowledge-Based Systems, 9(5): 587–604.

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 677

33. Horikawa S, Furuhashi T, Uchikawa Y (1992) On fuzzy modeling using fuzzy
neural networks with the back-propagation algorithm. IEEE Trans. Neural
Networks, 3(5): 801–806.

34. Hornik K (1991) Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2): 251–257.

35. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5): 359–366.

36. Hu YC, Chen RS, Tzeng GH (2002) Mining fuzzy association rules for
classification problems. Computers & Industrial Engineering 43(4): 735–750.

37. Hu YC, Chen RS, Tzeng GH (2003) Finding fuzzy classification rules using data
mining techniques. Pattern Recognition Letters, 24(1–3): 509–519.

38. Hughes EJ, (2005) Evolutionary many-objective optimization: many once or one
many? In: Corne D (ed.) Proc. 2005 Congress Evolutionary Computation 2–5
September, Edinburgh, UK. IEEE Press, Piscataway, NJ: 222–227.

39. Ishibuchi H, Doi T, Nojima Y (2006) Incorporation of scalarizing fitness func-
tions into evolutionary multiobjective optimization algorithms. Lecture Notes in
Computer Science 4193: PPSN IX. Springer-Verlag, Berlin: 493–502.

40. Ishibuchi H, Kuwajima I, Nojima Y (2007) Relation between Pareto-optimal
fuzzy rules and Pareto-optimal fuzzy rule sets. In: Bonissone P, Coello CAC,
Jin Y (eds.) Proc. 1st IEEE Symp. Computational Intelligence in Multicriteria
Decision Making 1–5 April, 2007, Honolulu, HI. IEEE Press, Piscataway, NJ:
42–49.

41. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm
and its application to flowshop scheduling. IEEE Trans. Systems, Man, and
Cybernetics – Part C: Applications and Reviews, 28(3): 392–403.

42. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern classification
problems. Fuzzy Sets and Systems, 89(2): 135–150.

43. Ishibuchi H, Nakashima T (1999) Improving the performance of fuzzy classifier
systems for pattern classification problems with continuous attributes. IEEE
Trans. Industrial Electronics 46(6): 157–168.

44. Ishibuchi H, Nakashima T (2001) Effect of rule weights in fuzzy rule-based
classification systems. IEEE Trans. Fuzzy Systems, 9(4): 506–515.

45. Ishibuchi H, Nakashima T, Morisawa T (1999) Voting in fuzzy rule-based
systems for pattern classification problems. Fuzzy Sets and Systems, 103(2):
223–238.

46. Ishibuchi H, Nakashima T, Murata T (1999) Performance evaluation of fuzzy
classifier systems for multi-dimensional pattern classification problems. IEEE
Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, 29(5): 601–618.

47. Ishibuchi H, Nakashima T, Murata T (2001) Three-objective genetics-based
machine learning for linguistic rule extraction. Information Sciences, 136(1–4):
109–133.

48. Ishibuchi H, Nakashima T, Nii M (2004) Classification and Modeling with Lin-
guistic Information Granules: Advanced Approaches to Linguistic Data Mining.
Springer-Verlag, Berlin.

49. Ishibuchi H, Namba S (2004) Evolutionary Multiobjective Knowledge Extrac-
tion for High-dimensional Pattern Classification Problems. Lecture Notes in
Computer Science 3242: Parallel Problem Solving from Nature - PPSN VIII
Springer, Berlin: 1123–1132.

678 H. Ishibuchi et al.

50. Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of
fuzzy systems by multiobjective fuzzy genetics-based machine learning. Intl. J.
Approximate Reasoning, 44(1): 4–31.

51. Ishibuchi H, Nozaki K, Tanaka H (1992) Distributed representation of fuzzy
rules and its application to pattern classification. Fuzzy Sets and Systems, 52(1):
21–32.

52. Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1995) Selecting fuzzy if-then
rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy
Systems, 3(3): 260–270.

53. Ishibuchi H, Shibata Y (2004) Mating scheme for controlling the diversity-
convergence balance for multiobjective optimization. Lecture Notes in Com-
puter Science 3102: Genetic and Evolutionary Computation – GECCO 2004.
Springer-Verlag, Berlin: 1259–1271.

54. Ishibuchi H, Yamamoto T (2002) Effect of fuzzy discretization in fuzzy rule-
based systems for classification problems with continuous attributes. Archives
of Control Sciences, 12(4): 351–378.

55. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining. Fuzzy Sets
and Systems, 141(1): 59–88.

56. Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based
classification systems. IEEE Trans. Fuzzy Systems, 13(4): 428–435.

57. Ishibuchi H, Yamamoto T, Nakashima T (2001) Fuzzy data mining: effect of
fuzzy discretization. In: Cercone N, Lin TY, Wu X (eds.) Proc. 1st IEEE Intl.
Conf. Data Mining 29 November - 2 December, San Jose, CA. IEEE Computer
Society, Los Alamitos, CA: 241–248.

58. Ishibuchi H, Yamamoto T, Nakashima T (2005) Hybridization of fuzzy GBML
approaches for pattern classification problems. IEEE Trans. Systems, Man, and
Cybernetics – Part B: Cybernetics, 35(2): 359–365.

59. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flowshop
scheduling. IEEE Trans. Evolutionary Computation, 7(2): 204–223.

60. Jang J-S R (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE
Trans. Systems, Man, and Cybernetics, 23(3): 665–685.

61. Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial
optimization. European J. Operational Research, 137(1): 50–71.

62. Jaszkiewicz A (2004) On the computational efficiency of multiple objective
metaheuristics: the knapsack problem case study. European J. Operational
Research, 158(2): 418–433.

63. Jimenez F, Gomez-Skarmeta AF, Sanchez G, Roubos H, Babuska R (2001)
Accurate, transparent and compact fuzzy models for function approxima-
tion and dynamic modeling through multi-objective evolutionary optimiza-
tion. Lecture Notes in Computer Science 1993: Evolutionary Multi-Criterion
Optimization – EMO 2001. Springer-Verlag, Berlin: 653–667.

64. Jin Y (2000) Fuzzy modeling of high-dimensional systems: complexity reduction
and interpretability improvement. IEEE Trans. Fuzzy Systems, 8(2): 212–221.

65. Jin Y (ed.) (2006) Multi-Objective Machine Learning. Springer-Verlag, Berlin.
66. Jin Y, von Seelen W, Sendhoff B (1999) On generating FC3 fuzzy rule sys-

tems from data using evolution strategies. IEEE Trans. Systems, Man, and
Cybernetics – Part B: Cybernetics, 29(6): 829–845.

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 679

67. Karr CL, Gentry EJ (1993) Fuzzy control of pH using genetic algorithms. IEEE
Trans. Fuzzy Systems, 1(1): 46–53.

68. Kaya M (2006) Multi-objective genetic algorithm based approaches for mining
optimized fuzzy association rules. Soft Computing, 10(7): 578–586.

69. Knowles JD, Corne DW (2000) Approximating the nondominated front using
Pareto archived evolution strategy Evolutionary Computation, 8(2): 149–172.

70. Kosko B (1992) Fuzzy systems as universal approximators. In: Bezdek J (ed.)
Proc. IEEE Intl. Conf. Fuzzy Systems. 8–12 March, San Diego, CA. IEEE Press,
Piscataway, NJ: 1153–1162.

71. Kuncheva LI (2000) Fuzzy Classifier Design. Physica-Verlag, Heidelberg.
72. Kuncheva LI (2000) How good are fuzzy if-then classifiers? IEEE Trans.

Systems, Man, and Cybernetics – Part B: Cybernetics, 30(4): 501–509.
73. Mendel JM (1995) Fuzzy-logic systems for engineering – a tutorial. Proc. IEEE,

83(3): 345–377.
74. Miettinen K (1998) Nonlinear Multiobjective Optimization. Kluwer, Boston,

MA.
75. Mikut R, Jakel J, Groll L (2005) Interpretability issues in data-based learning

of fuzzy systems. Fuzzy Sets and Systems, 150(2): 179–197.
76. Nauck D, Klawonn F, Kruse R (1997) Foundations of Neuro-Fuzzy Systems.

Wiley, Chichester, UK.
77. Nauck D, Kruse R (1997) A neuro-fuzzy method to learn fuzzy classification

rules from data. Fuzzy Sets and Systems, 89(3): 277–288.
78. Nauck D, Kruse R (1998) How the learning of rule weights affects the inter-

pretability of fuzzy systems. In: Keller J (ed.) Proc. 7th IEEE Intl. Conf. Fuzzy
Systems 4–9 May, Anchorage, AK. IEEE Press, Piscataway, NJ: 1235–1240.

79. Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from
medical data. Artificial Intelligence in Medicine, 16(2): 149–169.

80. Nozaki K, Ishibuchi H, Tanaka H (1996) Adaptive fuzzy rule-based classification
systems. IEEE Trans. Fuzzy Systems, 4(3): 238–250.

81. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA.

82. Reynolds A, de la Iglesia B (2006) Rule induction using multi-objective meta-
heuristics: encouraging rule diversity. In: Wang L (ed.) Proc. 2006 Intl. Joint
Conf. Neural Networks 16–21 July, British Columbia, Canada. IEEE Press,
Piscataway, NJ: 6375–6382.

83. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classi-
fiers through iterative complexity reduction. IEEE Trans. Fuzzy Systems, 9(4):
516–524.

84. Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel
Distributed Processing. MIT Press, Cambridge, MA.

85. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic
algorithms. In: Grefenstette J (ed.) Proc. 1st Intl. Conf. Genetic Algorithms and
Their Applications. 24–26 July, Pittsburgh, PA. Lawrence Erlbaum Associates,
Hillsdale, NJ: 93–100.

86. Setnes M, Babuska R, Verbruggen B (1998) Rule-based modeling: precision
and transparency. IEEE Trans. Systems, Man, and Cybernetics – Part C:
Applications and Reviews, 28(1): 165–169.

87. Setnes M, Roubos H (2000) GA-based modeling and classification: complexity
and performance. IEEE Trans. Fuzzy Systems, 8(5): 509–522.

680 H. Ishibuchi et al.

88. Smith SF (1980) A Learning System based on Genetic Algorithms. PhD
Dissertation Department of Computer Science, University of Pittsburgh, PA.

89. van den Berg J, Kaymak U, van den Bergh WM (2002) Fuzzy classification
using probability based rule weighting. In: Fogel DB (ed.) Proc. 11th IEEE Intl.
Conf. Fuzzy Systems 12–17 May, Honolulu, HI. IEEE Press, Piscataway, NJ:
991–996.

90. Wang H, Kwong S, Jin Y, Wei W, Man KF (2005) Agent-based evolution-
ary approach for interpretable rule-based knowledge extraction. IEEE Trans.
Systems, Man, and Cybernetics – Part C: Applications and Reviews, 35(2):
143–155.

91. Wang H, Kwong S, Jin Y, Wei W, Man KF (2005) Multi-objective hierarchical
genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets and Systems, 149(1): 149–186.

92. Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation,
and orthogonal least-squares learning. IEEE Trans. Neural Networks, 3(5):
807–814.

93. Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples.
IEEE Trans. Systems, Man, and Cybernetics 22(6): 1414–1427.

94. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a compara-
tive case study and the strength Pareto approach. IEEE Trans. Evolutionary
Computation, 3(4): 257–271.

Resources

1 Key Books

1.1 Fuzzy Rule-Based Classification Systems

Abe S (2001) Pattern Classification: Neuro-Fuzzy Methods and Their Com-
parison. Springer-Verlag, Berlin.

Bezdek JC, Pal SK (eds.) (1992) Fuzzy Models for Pattern Recognition:
Methods That Search for Structures in Data. IEEE Press, Piscataway, NJ.

Ishibuchi H, Nakashima T, Nii M (2004) Classification and Modeling with
Linguistic Information Granules: Advanced Approaches to Linguistic Data
Mining. Springer-Verlag, Berlin.

Kuncheva LI (2000) Fuzzy Classifier Design. Physica-Verlag, Heidelberg.

1.2 Genetic Algorithms

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Mac-
hine Learning. Addison Wesley, Reading, MA.

Goldberg DE (2002) The Design of Innovation: Lessons from and for Com-
petent Genetic Algorithms. Springer-Verlag, Berlin.

Holland JH (1975) Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI.

682 H. Ishibuchi et al.

1.3 Genetic Fuzzy Systems

Casillas J, Cordon O, Herrera F, Magdalena L (eds.) (2003) Accuracy Improve-
ments in Linguistic Fuzzy Modeling. Springer-Verlag, Berlin.

Cordon O, Herrera F, Hoffman F, Magdalena L (2001) Genetic Fuzzy Systems.
World Scientific, Singapore.

1.4 Evolutionary Multiobjective Optimization

Abraham A, Jain LC, Goldberg R (eds.) (2005) Evolutionary Multiobjective
Optimization: Theoretical Advances and Applications. Springer-Verlag, Berlin.

Coello CAC, Lamont GB (2004) Applications of Multi-Objective Evolutionary
Algorithms. World Scientific, Singapore.

Coello CAC, van Veldhuizen DA, Lamont GB (2002) Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston,
MA.

Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK.

1.5 Evolutionary Multiobjective Machine Learning
and Knowledge Extraction

Ghosh A, Dehuri S, Ghosh S (eds.) Multi-Objective Evolutionary Algorithms
for Knowledge Discovery from Data Bases. Springer-Verlag, Berlin (in press).

Jin Y (ed.) (2001) Multi-Objective Machine Learning. Springer-Verlag, Berlin.

2 Conferences

2.1 Fuzzy Systems

Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT)

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

International Fuzzy Systems Association World Congress (IFSA World
Congress)

Intl. Conf. North American Fuzzy Information Processing Society (NAFIPS)

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 683

2.2 Genetic Algorithms

Foundations of Genetic Algorithms (FOGA)

Genetic and Evolutionary Computation Conference (GECCO)

IEEE Congress on Evolutionary Computation (CEC)

International Conference on Parallel Problem Solving from Nature (PPSN)

2.3 Genetic Fuzzy Systems

International Workshop on Genetic and Evolving Fuzzy Systems (GEFS)

2.4 Evolutionary Multiobjective Optimization

IEEE Symposium on Computational Intelligence in Multicriteria Decision
Making (MCDM)

International Conference on Evolutionary Multi-Criterion Optimization
(EMO)

2.5 Hybrid Systems

International Conference on Hybrid Intelligent Systems (HIS)

2.6 Broader Areas, Including Fuzzy Systems
and Genetic Algorithms

IEEE International Conference on Systems, Man, and Cybernetics (SMC)

3 Journals

3.1 Fuzzy Systems

Fuzzy Sets and Systems (Elsevier)

IEEE Transactions on Fuzzy Systems

International Journal of Approximate Reasoning (Elsevier)

Intl. J. Uncertainty Fuzziness and Knowledge-Based Systems (World
Scientific)

684 H. Ishibuchi et al.

3.2 Genetic Algorithms

Evolutionary Computation (MIT Press)

IEEE Transactions on Evolutionary Computation

3.3 Broader Areas, Including Fuzzy Systems and Genetic
Algorithms

IEEE Computational Intelligence Magazine

IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics

Intl. J. Computational Intelligence Research (Research India Publications)

Soft Computing (Springer)

4 Websites

ACM Special Interest Group on Genetic and Evolutionary Computation
(SIGEVO) http://www.sigevo.org/

BICS: The Berkeley Initiative in Soft Computing
http://www.cs.berkeley.edu/˜zadeh/

European Society for Fuzzy Logic and Technology (EUSFLAT)
http://www.eusflat.org/

Evolutionary Multiobjective Optimization Web Page
http://www.lania.mx/˜ccoello/EMOO/

IEEE Computational Intelligence Society
http://www.ieee-cis.org/

IEEE Systems, Man, and Cybernetics Society
http://www.ieee-smc.org/

International Fuzzy Systems Association (IFSA)
http://www.cmplx.cse.nagoya-u.ac.jp/˜ifsa/

KEEL: Knowledge Extraction based on Evolutionary Learning
http://sci2s.ugr.es/keel/

Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers 685

5 (Open Source) Software

Fuzzy Sets and Systems Software Repository
http://www.fuzzysoftware.org/

PISA: A Platform and Programming Language Independent Interface for
Search Algorithms
http://www.tik.ee.ethz.ch/pisa/

6 Data Bases

UCI Machine Learning Repository
http://www.ics.uci.edu/˜mlearn/MLRepository.html

Part VIII

Artificial Neural Networks

Data Mining in QoS-Aware Media Grids

Xiuju Fu1, Xiaorong Li1, Lipo Wang2, David Ong3,
and Stephen John Turner3

1 Institute of High Performance Computing, Singapore 117528,
fuxj@ihpc.a-star.edu.sg, lixr@ihpc.a-star.edu.sg

2 School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore 639798, elpwang@ntu.edu.sg

3 School of Computing, Nanyang Technological University, Singapore 639798,
david@ntu.edu.sg, ASSJTurner@ntu.edu.sg

1 Introduction

With the advent of high-speed networking technology and multimedia com-
pression, various network-based multimedia services have become available
[29]. Clients can download music, send/receive multimedia emails, browse mul-
timedia material in eLibraries and enjoy high quality movies on-line. Media
streaming [24] is one of the most popular real-time multimedia services. It
enables clients to view multimedia content online without completely down-
loading it. In addition, it can support complete flexibility in presentation by
controlling playback – in other words, clients can alter the presentation by
using Video Cassette Recorder (VCR)-like control facilities, such as ‘rewind’,
‘fast-forward’, ‘pause’, and the like. However, rendering high quality media
streaming via networks is still a challenging task, not only due to the large
size of video files, but also because of the critical requirements to guarantee
Quality-of-Service (QoS) – these being delay, loss rate, jitter, and so forth –
for distributing real-time media streams over networks.

Grid computing [8] is a recently developed technology which aggregates
heterogeneous network resources (CPU, storage, bandwidth, software, infor-
mation, and similar) through the networks. It has the features of loosely
coupled distributed architecture, service-oriented structure, as well as self-
organization and decentralized methods of resource management. Grid mid-
dleware provides a firm foundation to support large-scale streaming services.
Recent developments in media grids involve using industry standard streaming
protocols (RTP, RTSP, and RTCP) and integrating various grid technolo-
gies (for instance, information service, data management service and resource
management service) into media grid to support a large population of Internet
streaming users.

X. Fu et al.: Data Mining in QoS-Aware Media Grids, Studies in Computational Intelligence

(SCI) 115, 689–714 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

690 X. Fu et al.

A QoS-aware media grid [35] aims at presenting scalable, robust and secure
media access over grid environments [13]. An ever-increasing demand in com-
putational resources has prompted the growth of grid techniques, and has
increased the heterogeneity of network services and connections. QoS-aware
media streaming [24] is considered a critical part of a media grid, and involves
the access of text, graphics, audio and video content. As the main components
of multimedia services, audio and video streaming require qualified network
resources, such as high bandwidth and low latency. Since media streaming
servers operate in a shared network environment, an efficient traffic predic-
tion mechanism on available bandwidth is important for choosing appropriate
servers and resolutions of media content to provide Quality-of-Service (QoS)
of media streaming in distributed heterogeneous grid environments. To sup-
port QoS-aware streaming services, multiple versions of media content with
different resolutions are provided for adapting to variations in network condi-
tions. If prediction of available bandwidth can be made beforehand, a suitable
version of media content can be chosen based on this prediction, which could
help decrease degradation, such as lost packets and jitter caused by insufficient
in bandwidth.

Typical data mining (DM) tasks include prediction, classification, clus-
tering, and discovery of association rules. With the objective of discovering
unknown patterns from data, DM methodologies have been derived from the
fields of machine learning (ML), artificial intelligence (AI), and statistics. Data
mining techniques have begun to serve fields outside of computer science, sci-
entific research and artificial intelligence, such as the financial area and factory
assembly lines. DM has been shown to lead to improved efficiency in manu-
facturing, prompting marketing campaigns, detecting fraud, and predicting
diseases based on medical records. With ever increasing demands on com-
puting resources, DM applications have become desirable in grid computing
environments.

Being an integrated environment, Grids are autonomous, share resources,
heterogenous and distributed in nature. A Media Grid shares these charac-
teristics, but as well emphasizes media streaming functions. Many techniques
have been applied to media streaming for improving QoS through predicting
the following:

1. bandwidth – in order to adapt to dynamic media content streaming;
2. media streaming service request patterns – in order to automatically dupli-

cate media content;
3. workload and resource availability of media servers – to determine intelli-

gent scheduling strategies;
4. usage patterns of grid computing environments;
5. user request patterns in the media grid.

Data are accumulated from heterogeneous resources in media grids, but
there is currently a lack of an efficient data mining framework and appropriate

Data Mining in QoS-Aware Media Grids 691

techniques for analyzing data generated in such grids. The quality of media
streaming is mainly affected by network capacity, bandwidth, and through-
put. Capacity is the maximum possible bandwidth over a network path. There
are two types of bandwidth: (i) available bandwidth is the maximum allow-
able bandwidth, and (ii) consumption bandwidth is the amount of bandwidth
consumed. With bandwidth prediction, we could avoid congestion caused by
heavy network loads and reduce overestimation (underestimation) of the band-
width requirements of clients. In this Chapter, we focus on applying neural
networks for predicting bandwidth, which facilitates QoS in media streaming.

The Chapter is organized as follows. Section 2 describes related work.
Section 3 presents a media grid framework. Section 4 describes the data mining
strategy for bandwidth prediction in media grids. Experiments of bandwidth
prediction are presented in Sect. 5. Sect. 6 concludes the Chapter.

2 Related Work

Grid computing is a relatively recent technology that aggregates large amounts
of geographically distributed resources – such as PC clusters, supercomput-
ers, network storages/caches – to make applications which are impossible for
a local machine/cluster to be possible over networks. During the last decade,
grid technologies have been applied to computationally intensive applications
in the field of high energy physics, and projects like GriPhyN [17], PPDG [27],
BIRN [5], EuroGrid [12] have achieved much success in data processing and
distribution. While most current research focuses on providing high capacity
computational services on grids, there is increasing interest in exploring the
deployment of grid technologies for providing multimedia services over net-
works. Recent developments of media grids involve using industry standard
streaming protocols [3] (for instance, RTP, RTSP, and RTCP) and integrat-
ing various grid technologies (for example, information, data management and
resource management services) into media grids [35] to support a large pop-
ulation of internet streaming users. In this Section, we review previous work
on network bandwidth prediction over media grid environments, and briefly
introduce neural networks.

2.1 Network Bandwidth Prediction

Prediction techniques have been widely applied in media streaming processes.
One such application is to predict variable bit rate (VBR) video traffic to
improve the network utilization efficiency while supporting QoS of VBR video.
The prediction aims at forecasting real-time VBR video traffic for dynamic
bandwidth allocation. A number of algorithms both in the time domain and
wavelet domain for video traffic prediction have been proposed in the litera-
ture [25]. Another application of prediction models is to predict the network

692 X. Fu et al.

traffic directly. In this Chapter, we focus on predicting network traffic in the
time domain instead of looking into VBR video traffic.

In [33] and [34], the bandwidth of outgoing network node links is modelled
according to wavelet transformation coefficients. Neural networks are applied
as well to predict these coefficients. However, it is difficult to determine the
coefficients in the wavelet modeling method. The network traffic is dynamic
and might vary dramatically under different conditions or during different
time periods. It is therefore inappropriate to fix the coefficients for predicting
the dynamic bandwidth in wavelet modeling.

The Network Weather Service (NWS) [41] is a well-known network per-
formance measurement and has been used to predict network traffic in grid
computing. Besides probes which are used to record network performance,
NWS uses prediction methods such as mean-based, median-based and autore-
gression to forecast the network traffic. Despite its strengths, this approach
does have disadvantages similar to the wavelet modeling method – in other
words, it is difficult to adapt to the dynamic network conditions of grid
environments.

As a popular data mining tool, neural networks have been employed to
predict network bandwidth. For example, [11] used neural networks to predict
available network bandwidth. In their work, the recorded network traffic is
divided into non-overlapped and continuous bins. The time stamp, minimum
packet rate, maximum packet rate, average packet rate, minimum bit rate,
maximum bit rate, and average bit rate are derived from each bin data and
used as the inputs to neural networks. The outputs of the neural network
predictor are the bandwidth of later K-step bins, with K being defined by
the user. This method holds promise for predicting network bandwidth. Our
network bandwidth prediction method is similar to this method. However,
we propose a new performance metric to better evaluate the performance of
neural network predictors.

2.2 Brief Overviews on Neural Networks

There are many different types of artificial neural networks (ANNs) in use
today. ANNs can be categorized according to different aspects, such as learning
algorithm, the number of network layers, the direction of signal flow, the
activation function, and so on.

Based on the learning algorithm, neural networks can be classified into
three major categories:

• In supervised learning, pairs of input and target vectors are required to
train networks, so that appropriate outputs corresponding to input signals
are generated accordingly. With an input vector applied, the error between
the output of the neural network and its target output is calculated, which

Data Mining in QoS-Aware Media Grids 693

is then used to tune weights in order to minimize this error. The delta
or least mean square (LMS) learning rule is a well-known method for
minimizing errors. Supervised learning includes error-correction learning,
reinforcement learning and stochastic learning.

• Unsupervised learning does not require target vectors for the outputs.
Without input-output training pairs as external teachers, unsupervised
learning is self-organized to produce consistent output vectors by modi-
fying weights. Paradigms of unsupervised learning include Hebbian learn-
ing and competitive learning. Kohonen’s self-organizing map (SOM)is a
typical neural network whose learning is unsupervised.

• Some neural networks employ hybrid learning. For example, counterprop-
agation networks and radial basis function (RBF) networks use both
supervised (at the output layer) and unsupervised (at the hidden layer)
learning. Counterpropagation neural networks combine network paradigms
of SOM and Grossberg’s outstar [40]. The counterpropagation neural net-
work can be used to produce corresponding outputs when an input vector
is incomplete, noisy or partially in error.

According to the direction of signal flow, neural networks can be categorized as
feedforward – in which weight connections are fed forward from inputs through
hidden neurons to output neurons – and recurrent – in which feedback con-
nections are present. Compared with feedforward neural networks, recurrent
neural networks can be unstable and dynamic. Hopfield neural networks [40]
are well-known recurrent neural networks. Recurrent neural networks have
been studied as examples of chaotic systems [37,38]. The bidirectional associa-
tive memory (BAM) network is another type of neural network which employs
feedback. The BAM is heteroassociative. Both BAM and Hopfield neural net-
works are able to produce correct outputs when inputs are partially missing
or incorrect.

Adaptive resonance theory (ART) networks [40] deal well with the stability-
plasticity dilemma, namely “How can a learning system be designed to remain
plastic, or adaptive, in response to significant events and yet remain stable
in response to irrelevant events”? [40] ART classifies an input vector into its
class according to the stored pattern with which it is most similar. The stored
pattern is tuned to make it closer to (align with) the input vector. Without
finding its matching pattern – it is within a predefined tolerance for matching
purposes – a new category is generated by storing a pattern which is similar
to the input vector.

Although there are neural networks without hidden layers [26], their appli-
cations are few due to their limited ability to approximate data in a global
view. Focusing on neural networks with hidden layers, we can categorize them
based on how the activation of a hidden unit is determined. In multi-layer per-
ceptron (MLP) neural networks, the activation of a hidden unit is determined
by the scalar product of the input vector and its corresponding weight vector.

694 X. Fu et al.

In radial basis function (RBF) neural networks the activation is determined
by the distance between the input vector and a prototype vector.

In this Chapter, we employ MLPs exclusively.

3 System Model of Data Analysis over Media Grid

In this Section, we describe our data analysis system model in which data
mining techniques are employed.

3.1 Architecture

Our media grid multi-agent data analysis system adopts distributed anal-
ysis agents to provide on-line monitoring services for heterogeneous Internet
users. Figure 1 shows the layout of the agent-based data analysis system where
media servers, clients, and analysis agents are geographically distributed over
the network. Each analysis agent can work independently or cooperatively to
monitor and predict the resource usage of media servers over a certain area
so as to improve the global resource utilization. Distributed analysis agents
reduce the processing burden of streaming servers and are sufficiently flexible

Analysis
Agent

Client

Media
Server

Fig. 1. Topology layout of a multi-agent based data analysis system

Data Mining in QoS-Aware Media Grids 695

to deal with various streaming applications. Such a system is highly scal-
able and can ameliorate the effects of failure and overloading in a centralized
monitoring system.

A Media Grid is a distributed infrastructure which brings together vari-
ous distributed resources into a virtual environment and provides customized
streaming services in a cost-effective way. It accumulates various types of
abundant resources on the Internet (such as network storage, Personal Com-
puters, or PC clusters) to improve the system computation and storage
capacity. Figure 2 shows the hierarchical layered architecture of a media grid.
The lowest layer is the resource layer which manipulates distributed phys-
ical resources – media servers, storage, camera, and the like – to support
higher level grid services. Above the resource layer is the grid middleware
layer which includes the grid component services – for example, information
service [21], data management service [16], and so on. The grid middle-
ware provides a firm foundation to support large-scale streaming services. It
inherits such features of grids generally as the integration of loosely-coupled
network resources, a service-oriented structure, self-organization and decen-
tralized methods of resource management. Media grid components are built
above the grid component layer to provide multimedia-related services for
Internet users. The media grid portal serves as an abstraction layer for the

Resource Layer

Grid Middleware
Execution

Management

Execution

Management

Data

Management

Data

Management
Information

Service
Information

Service
SecuritySecurity

Media Grid
Components

Media Grid Portal

Streaming
Service

Streaming
Service

Media Content
Management

Media Content
Management

Video
Processing

Video
Processing

Monitoring
Service

Monitoring
Service

QoS
SLA
QoS
SLA

Data
Analysis

Data
Analysis

Clients

Media server Storage Camera /mic Media content PC Cluster

Mainframe

Fig. 2. Layered architecture of media grid

696 X. Fu et al.

various media grid components. Through this portal, clients can subscribe to
access media content with their QoS requirements such as playback time, bit
rate, resolution, and so forth.

3.2 System Components

A media grid multi-agent data analysis system monitors and predicts network
resource usage over distributed media grid environments. It consists of four
main components: an analysis agent, a web portal, data storage, and a grid
information service.

• Analysis Agent: The analysis Agent collects QoS information from a
streaming server/client or (both), analyzes it, provide feedback to the user,
and stores the data into a database.

• Web Portal: The web portal is a web service based interface which allows
users to customize the quality monitoring by specifying their quality
metrics or measurement conditions.

• Data Storage: QoS information and results are stored in a distributed
database for archiving or long-term analysis.

• Grid Information Service [21]: When the user submits requests to the
web portal, the system needs to find a suitable analysis agent. The Grid
Information Service will help to provide information on the available
resources.

Figure 3 demonstrates a working scenario of the multi-agent data analy-
sis service, including the interaction between each component. Each analysis
agent will register itself to the grid information service as a computational
resource over the network. The data analysis time sequence includes:

Analysis
Agent

Web
Service
Portal

User
12

3

45 6

Database

Media
Server

Streaming
Client

Grid
Information
Service

Fig. 3. Architecture and component interaction

Data Mining in QoS-Aware Media Grids 697

1. clients submit requests via the web service portal;
2. data are collected from the streaming servers and are passed to the analysis

agent for analysis;
3. the analysis agent performs data processing and predicts bandwidth con-

sumption;
4. results are stored into the database for archiving or future analysis;
5. the results of the analysis or quality reports are sent back to the service

providers to assist with resource management.

For a large-scale network with multiple media servers distributed over different
domains, it is not practical to use only one centralized server to monitor
and analyze the system information, due to the limited CPU and bandwidth
resources. Such a system connects multiple agents and improves capacity by
utilizing distributed computation power – such as CPUs and workstations –
over the Internet.

4 Data Mining Strategy for Bandwidth Prediction

In this Section, we briefly introduce MLPs as neural network predictors for
predicting network traffic in media grids. A data mining strategy for training
these neural networks is presented later (Sect. 4.2).

4.1 Multi-Layer Perceptron Neural Network

A typical multi-layer perceptron (MLP) neural network classifier is shown in
Fig. 4.

A hidden layer is required for MLPs to classify linearly inseparable data
sets and make prediction. The input nodes do not carry out any processing.
A hidden neuron in the hidden layer is shown in Fig. 5.

The jth output of a feedforward MLP neural network is [6]:

yj = f

(
K∑

i=1

W
(2)
ij ∗ φi(x) + b

(2)
j

)
(1)

where W
(2)
ij is the weight connecting hidden neuron i with output neuron j,

K is the number of hidden neurons, b
(2)
j is the bias of output neuron j, φi(x)

is the output of hidden neuron i, and x is the input vector.

φi(x) = f(W(1)
i · x + b

(1)
i) (2)

where W(1)
i is the weight vector connecting the input vector with hidden

neuron i, and b
(1)
i is the bias of hidden neuron i.

698 X. Fu et al.

... ...

... ...

1

xx

y y
k y

M

. . .

21 i
x

im
x

i 1m,i

Fig. 4. A three-layer MLP neural network with one hidden layer

1i
x

2i
x

1,mi
x

im

. . .

m
w

1m
w

2
w

1w

inputs neurons the output neuron

x

Fig. 5. An MLP hidden neuron

A common activation function f is the sigmoid (or logistic) function:

f(z) =
1

1 + e−βz
(3)

where β is the gain.

Data Mining in QoS-Aware Media Grids 699

Another activation function often used in MLP neural networks is the
hyperbolic tangent, which takes on values between −1 and +1 (instead of 0.1,
as with the sigmoid) [40]:

f(z) =
eβz − e−βz

eβz + e−βz
(4)

There are many training algorithms for MLP neural networks reported
in the literature, for example: gradient descent error backpropagation (BP),
backpropagation with adaptive learning rate, backpropagation with momen-
tum, Quasi-Newton backpropagation, Bayesian regularization backpropaga-
tion, conjugate gradient backpropagation, and the Levenberg-Marquardt
algorithm [20].

The backpropagation technique [30] is commonly used to train MLPs. This
technique could learn more than two layers of a network. The key idea of the
back-propagation technique is that the error obtained from the output layer
is propagated backwards to the hidden layer and is used to guide training of
the weights between the hidden layer and the input layer.

[22] showed that the BP algorithm is very sensitive to initial weight selec-
tion. Prototype patterns [9] and the orthogonal least square algorithm [23] can
be used to initialize the weights. The initialization of weights and biases has
a great impact on both the network training (convergence) time and general-
ization performance. Usually, the weights and biases are initialized to small
random values. If the random initial weights happen to be far from a good
solution or they are near a poor local minimum, training may take a long
time or become trapped there [15]. Proper weight initialization will place the
weights close to a good solution, which reduces training time and increases
the possibility of reaching a good solution.

[15] proposed initialization of weights using a clustering algorithm based
on mean local density (MLD). This method easily leads to good performance,
whereas random weight initialization leads to a wide variety of different
results, many of which are poor. However, it is noted that the best result
from random weight initialization was much better than the result obtained
from the MLD initialization method.

4.2 Data Mining Strategy

Assume media content is available in multiple formats with different reso-
lutions. Rather than streaming high resolution media content which suffers
jitter or long delays due to insufficient bandwidth, smooth streaming of con-
tent using a relatively lower resolution might be preferable. Media content is
available in multiple formats with different resolutions. By having knowledge
of bandwidth in advance, our strategy could be to automatically switch to an
appropriate resolution of media content in order to adapt to changing network

700 X. Fu et al.

traffic conditions. Another reason for predicting network traffic is to better
allocate the job load to different media servers distributed in different physical
locations.

The Data mining model is as follows:

1. Raw data collection – Data are collected for training neural networks in
order to predict future network traffic;

2. Data cleaning and transformation – The collected raw data are in the
form of a time-series, and therefore need to be transformed into multi-
dimensional format prior to inputting to the neural network. Moreover,
when noise is present in the data, de-noising (filtering) is usually required;

3. Neural networks are trained according to historical data – The performance
of neural network predictors is evaluated to meet the needs of media grid
QoS;

4. The trained neural network predictors are used for predicting network
traffic, and for determining an adaptive streaming media strategy.

Data Collection for Network Bandwidth

In order to predict network traffic, it is important to collect historical data.
Future trends can then be discovered (predicted) using various techniques,
based on this historical data. In general, if the network varies dramatically
day-by-day, at least two weeks of data are preferred. In order to collect histor-
ical network traffic data for training and testing purposes, a C-based program
– InfoDaemon – is used to capture the server incoming and outgoing band-
width every 2 seconds. The captured data are then passed to the analysis
agent for processing and analysis. In this Chapter, we focus on the analysis
and prediction of the outgoing bandwidth consumption, since most traffic is
caused by streams transmitted from media servers.

Data Preprocessing

Data preprocessing is critical due to its significant influence on the per-
formance of data mining models. Data preprocessing usually includes noise
elimination, feature selection, data partition, data transformation, data inte-
gration, and missing data processing.

The time-series data representing the network bandwidth can be written as:

Y = {y(t)|t = 1, 2, . . . , N} (5)

where N is the number of data records. The data are transformed into
the format which is used for inputs to the neural network predictors. The

Data Mining in QoS-Aware Media Grids 701

one-dimensional (1D) data are transformed into multi-dimensional data, as
follows:

Y1 =

⎛
⎜⎜⎝

y(1) y(m + 1) y(2m + 1) · · ·
y(2) y(m + 2) y(2m + 2) · · ·
. .
y(m) y(2m) y(3m) · · ·

⎞
⎟⎟⎠ (6)

where m is the size of the window which divides the 1D time series data
into m-dimensional data, m being determined by the user according to media
streaming strategy. If a longer period of bandwidth prediction is needed, m is
set as a larger number.

Including the m bandwidth rates in one vector, we need to add additional
variables which are significant for prediction, and these are transformed from
the m variables. They include time stamp, minimum bandwidth rate, maxi-
mum bandwidth rate, and average bandwidth of the m bandwidth rates. Thus
a new datum X with m + 4 dimensions is generated accordingly:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1) y(m + 1) y(2m + 1) · · ·
y(2) y(m + 2) y(2m + 2) · · ·
. .
y(m) y(2m) y(3m) · · ·
t t + 1 t + 3 · · ·
a(1) a(2) a(3) · · ·
mi(1) mi(2) mi(3) · · ·
ma(1) ma(2) ma(3) · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where a(i), mi(i) and ma(i) are the average, minimum and maximum band-
width of the vector Y1(i) = {y(i ∗ m + 1), y(i ∗ m + 2), · · · , y((i + 1) ∗ m)},
respectively; t is the initial time stamp, which can be set as t = 1.

4.3 Performance Metrics

Several performance metrics for measuring the accuracy of a predictor exist
in the literature. For instance, the coefficient of determination which is the
mean squared error (MSE) normalized by the variance of the actual data is
used as the performance metric in [19]. The disadvantage of the coefficient of
determination lies in that the performance evaluation is inappropriate when
the actual data only vary around the mean value. In [28], the maximum and
mean error are used as the measurement of performance. In [11], the relative
prediction error is used as the metric to evaluate predictor performance:

err =
PredictedV alue−ActualV alue

ActualV alue
(8)

The mean error and relative mean error suffer the same problem in which
the performance values produced are affected significantly if there are isolated
errors with a large magnitude in value.

702 X. Fu et al.

In order to overcome the aforementioned disadvantages, we propose a new
multi-level performance metric represented by the vector P = {p1, p2, . . . , pl},
where l is determined empirically by the user, and reflects the level of perfor-
mance metric needed. The relative prediction errors from Eqn. (8) are sorted
in ascending order. Assume l = 6. p1, p2, . . . , p6 are the mean relative errors
of the first 20%, 40%, 60%, 80%, 90%, 100% of sorted relative errors, respec-
tively. This multi-level performance metric is represented by a multi-level
relative mean error vector. l can be set empirically; in this Chapter, we set
l = 6.

The network traffic data is recorded every day. The neural network is
trained according to one day’s data, and then used to predict the next day’s
network traffic. The data are transformed into a (m+4)-dimensional data set
according to Eqn. (6) and Eqn. (7). For example, if m = 5, the neural network
is trained to predict the average bandwidth of the next 10 seconds according
to the preceding 10-second traffic (recall that the original data are recorded
every two seconds).

5 Experimental System and Performance Evaluation

5.1 System Hardware and Software

Figure 6 illustrates the prototype system which consists of analysis agents,
a web service portal, media servers, and clients. The media servers are
Linux PCs with Fedora Core 4, running Darwin Streaming Server (ver-
sion 5.5.1); Darwin Server – an open source server developed by Apple
Computer Inc. – streams media to clients over industry standard proto-
cols (such as RTP, RTSP, RTCP). To monitor certain streaming sessions,
users (either the service provider or streaming clients) can query the web
server and customize their measurement metrics for quality measurement and
assessment. The web portal runs on the web server, which is in charge of
accepting/rejecting requests for quality measurement and assessment. Once a
request has been accepted by the web portal, it will be allocated to an analy-
sis agent. In our experimental system, each analysis agent is a Java program
located on a Linux machine; however, it is suitable for both MS-Windows and
Linux platforms. Table 1 summarizes the hardware and software used in the
prototype system.

5.2 Request Arrival Pattern

We consider a request rate reported in [2], where a client submits requests
to media servers with various probabilities at different time in a 24-hour
period. Requests arrive in Poisson distribution according to the probability
described in Fig. 7. There are three media servers, and 1500 users are ran-
domly generated to stream videos from any server according to the request
arrival pattern.

Data Mining in QoS-Aware Media Grids 703

Internet

Client

Client

Client

Media Server 0

Data sensor
Info Daemon

Streaming Server

Media Server 1

Media Server n

WAN
Emulator

WAN
Emulator

WAN
Emulator

Client

Web Server

Apache + php QoS analysis
Data listener

Analysis Agent 0

Analysis Agent 1
Analysis Agent m

Client

Database

Fig. 6. Experimental system setup

Table 1. Hardware and Software

Function OS Memory Number Software

Media server Linux 1GB 3 Darwin server, Data Sensor,
Info Daemon

WAN emulator Linux 1GB 3 Iproute2

Analysis agent Linux 512 2 Data Collector, QoS Analyzer

Clients WinXP 256 n QuickTime, RealPlayer,
IBMToolkitForMPEG4

5.3 Results and Analysis

The data files are generated by Info Daemon located at each media server
(Fig. 6), which records the bandwidth incoming and outgoing traffic every
two seconds. Simple noise detection is carried out by detecting those samples
with the extreme values and isolating them.

The neural networks are used to predict the network bandwidth of media
streaming in a grid environment. In this work, 20 neurons are used in the
first layer, and 10 neurons are used in the second layer of the neural network
predictor. The activation function is a sigmoid. The weights of the neural
network predictors are determined automatically during the training process.

Figures 8 through 13 show the target and predicted values with m =
5, 10, 15, 20, 25, 30, which correspond to bandwidth record sizes of 10s,
20s, 30s, 40s, 50s and 60s, respectively. For one-day data, there are originally

704 X. Fu et al.

0 5 10 15 20
0

0.005

0.01

0.015

R
eq

ue
st

 r
at

e
pe

r
us

er
 (

re
q.

/m
in

)

Time (hours)

Real
Simulation

Fig. 7. Request rate per user over 24 hours

24× 60× 60÷ 2 = 43,200 samples. The horizontal axis shows the number of
data samples following transformation. A different number of training samples
is generated with m. For example, when m = 5, there are 43,200÷ 5 = 8,640
samples with m + 4 = 9 dimensions.

From Figs. 8 through 13, it is clear that a bigger window size of bandwidth
records leads to a lower prediction accuracy of the mean bandwidth value. The
multi-level relative mean error vectors for different values of m are shown in
Table 2 and Fig. 14. In the relative mean error vector, there is a sharp increase
from 90% sorted relative errors to the whole relative mean error (100%). This
means there are isolated relative errors of very large magnitude. This also
shows that bigger window size corresponds to lower prediction accuracy.

6 Conclusions

In this Chapter, we presented a practical multi-agent based data analysis sys-
tem which employs MLP neural networks to predict network traffic over media
grids. Instead of using the mean square error and relative mean error as the
performance metric for evaluating neural network predictor performance, we
proposed a multi-level performance metric which represents the relative mean
errors of predictors with a vector. Each item of the vector represents a certain
percentage of the relative mean error of the relative prediction errors, sorted in
ascending order. The metric can reflect overall performance of the predictors
in a multi-level way, at the same time revealing isolated large errors. There is

Data Mining in QoS-Aware Media Grids 705

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Targets

E
rr

or
 r

at
es

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Predicted

E
rr

or
 r

at
es

Fig. 8. Target and predicted values with m = 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Targets

E
rr

or
 r

at
es

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Predicted

E
rr

or
 r

at
es

Fig. 9. Target and predicted values with m = 10

706 X. Fu et al.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Targets

E
rr

or
 r

at
es

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5
Predicted

E
rr

or
 r

at
es

Fig. 10. Target and predicted values with m = 15

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Targets

E
rr

or
 r

at
es

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5
Predicted

E
rr

or
 r

at
es

Fig. 11. Target and predicted values with m = 20

Data Mining in QoS-Aware Media Grids 707

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Targets

E
rr

or
 r

at
es

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5
Predicted

E
rr

or
 r

at
es

Fig. 12. Target and predicted values with m = 25

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5
Targets

E
rr

or
 r

at
es

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Predicted

E
rr

or
 r

at
es

Fig. 13. Target and predicted values with m = 30

708 X. Fu et al.

Table 2. Multi-level mean relative prediction errors

m 20% 40% 60% 80% 90% 100%

5 1.54 3.51 5.69 8.726 11.302 16.231

10 2.302 5.055 8.021 11.928 14.786 20.936

15 2.622 5.852 9.484 14.027 17.143 24.059

20 3.464 7.407 11.567 16.654 19.848 27.282

25 3.771 8.383 13.017 18.577 22.198 31.932

30 4.632 9.95 15.336 21.471 26.068 36.931

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

or
 r

at
es

Percentage rates

m = 5
m = 10
m = 15
m = 20
m = 25
m = 30

Fig. 14. Multi-level prediction errors with different m

a lot of scope for applying data mining techniques in media grid environments.
In our future work, DM techniques will be applied in real time to other media
streaming tasks, such as job scheduling and user request pattern analysis.

Acknowledgment

This research is supported by Project IHPC/AC/06-001, and funded by the
Institute of High Performance Computing, Singapore.

Data Mining in QoS-Aware Media Grids 709

References

1. Agrawal R, Imielinski T, Swami A (1993) Database mining: a performance
perspective. IEEE Trans. Knowledge and Data Engineering, 5: 914–925.

2. An de Haar PG, Schoenmakers AF, Eilley ES, Tedd DN, Tickell SA, Lloyd PR,
Badham M, O’brien S, Poole R, Sampson P, Harding J, Simula T, Varonen
T, Sauvala S (1997) DIAMOND project: video-on-demand system and trials.
European Trans. Telecommunications, 8(4): 337–244.

3. Apostolopoulos JG, Tan W-T, Wee SJ (2002) Video Streaming: Concepts,
Algorithms, and Systems. Hewlett-Packard White paper (available online at
http://www.hpl.hp.com/techreports/2002/HPL-2002-260.html – last accessed
6 September, 2006).

4. Berry MJA, Gordon SL (2000) Mastering Data Mining: The Art and Science of
Customer Relationship Management. Wiley, New York, NY.

5. Biomedical Informatics Research Network (BIRN) (available online at
http://www.birn.net – last accessed 6 September, 2006).

6. Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University
Press, New York, NY.

7. Carpenter GA and Grossberg S (1988) The ART of adaptive pattern recognition
by a self-organizing neural network. Computer, 21(3): 77–88.

8. Cunha JC and Rana OF (2006) Grid Computing: Software Environments and
Tools. Springer-Verlag, London, UK.

9. Denoeux T, Lengelle R (1993) Initializing back propagation network with
prototypes. Neural Computation, 6: 351–363.

10. Deutsch JM (2003) Evolutionary algorithms for finding optimal gene sets in
microarray prediction. Bioinformatics, 19: 45–52.

11. Eswaradass A, Sun X-H, Wu M (2005) A neural network based predictive
mechanism for available bandwidth. Proc. 19th IEEE Intl. Parallel and Dis-
tributed Processing Symp., 4–8 April, Denver, CO. IEEE Computer Society
Press, Piscataway, NJ.

12. EuroGrid (available online at http://www.eurogrid.org/ – last accessed 6
September, 2006).

13. Foster I, Kesselman C (1998) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, CA.

14. Fu XJ, Wang LP (2001) Linguistic rule extraction from a simplified RBF neural
network. Computational Statistics (special issue on Data Mining and Statistics),
16(3): 361–372.

15. Geva S, Wong MT, Orlowski M (1997) Rule extraction from trained artificial
neural network with functional dependency preprocessing. Proc. 1st Intl. Conf.
Knowledge-Based Intelligent Engineering Systems, 21–23 May, Adelaide, South
Australia, 2: 559–564.

16. Globus Toolkit (available online at http://www.globus.org/toolkit/docs/4.0/
data/ – last accessed 6 September, 2006).

17. Grid Physics Network (GriPhyn) (available online at http://www.griphyn.org
– last accessed 6 September, 2006).

18. Halgamuge S, Wang LP (eds.) (2005) Computational Intelligence for Modeling
and Prediction. Springer-Verlag, Berlin.

710 X. Fu et al.

19. Hall J, Mars P (1998) The limitations of artificial neural networks for traffic
prediction. Proc. 3rd IEEE Symp. Computers and Communications, 30 June –
2 July, Athens, Greece. IEEE Computer Society Press, Piscataway, NJ: 147(2):
8–12.

20. Haykin S (1999) Neural Networks: A Comprehensive Foundation (2nd ed).
Prentice Hall, Englewood Cliffs, NJ.

21. Jie W, Hung T, Wentong C (2005) An information service for grid virtual organi-
zation: architecture, implementation and evaluation. J. Supercomputing, 34(3):
273–290.

22. Kolen JF, Pollack JB (1990) Back Propagation is sensitive to initial conditions.
Advances in Neural Information Processing Systems 3 Morgan Kaufmann, San
Franciscso, CA: 860–867.

23. Lehtokangas M, Saarinen J, Kaski K, Huuhtanen P (1995) Initialization weights
of a multiplayer perceptron by using the orthogonal least squares algorithm.
Neural Computation, 7: 982–999.

24. Li X, Hung T, Veeravalli B (2006) Design and implementation of a multi-
media personalized service over large scale networks. Proc. IEEE Intl. Conf.
Multimedia & Expo (ICME). Toronto, Canada.

25. Liu HB, Mao GQ (2005) Prediction algorithms for real-time variable-bit-rate
video. Proc. Asia-Pacific Conf. Communications, 3–5 October, Perth, Western
Australia: 664–668.

26. Moreau Y, Vandewalle J (1997) When Do Dynamical Neural Networks with
and without Hidden Layer Have Identical Behavior? Technical Report ESAT-
SISTA TR97-51, Dept. Electrical Engineering, Katholieke Universiteit Leuven,
Belgium.

27. Partical Physics Data Grid (PPDG) (available online at http://www.ppdg.net
– last accessed 6 September, 2006).

28. Ramaswamy S, Gburzynski P (1998) A neural network approach to effective
bandwidth characterization in ATM networks. In: Kouvatsos D (ed.) Modeling
and Evaluation of ATM Networks Kluwer Academic Publishers, Boston, MA:
431–450.

29. Rao KR, Bojkovic ZS, Milovanovic DA (2002) Multimedia Communication Sys-
tems: Techniques, Standards, and Networks. Prentice Hall, Upper Saddle River,
NJ.

30. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
back-propagating errors. Nature, 323: 533–536.

31. Sun J, Li HB (2004) 3-D physical motion-based bandwidth prediction for video
conferencing IEEE Trans. Circuits and Systems for Video Technology, 14(5):
584–594.

32. Teo KK, Wang LP, Lin ZP (2000) Wavelet multi-layer perceptron neural network
for time-series prediction. Proc. 10th Intl. Conf. Computing and Information,
18–21 November, Kuwait.

33. Ting R (1998) A multiscale Analysis and Analysis Technique for Management of
Resources in ATM Networks. PhD Thesis School of Engineering, City University
of New York, NY.

34. Turner CF, Jeremiah RM (2002) The independent wavelet bandwidth alloca-
tion algorithm. Proc. IEEE Global Telecommunications Conf. 17–21 November,
Taipei, Taiwan, IEEE Computer Society Press, Piscataway, NJ, 1: 107–111.

35. Walsh AE (2005) The media grid: a public utility for digital media. Dr. Dobb’s
J. Distributed Computing (Distributed Computing issue), November: 16–23.

Data Mining in QoS-Aware Media Grids 711

36. Wang LP, Fu, XJ (2005) Data Mining with Computational Intelligence. Springer-
Verlag, Berlin.

37. Wang LP, Li S, Tian FY, Fu XJ (2004) A noisy chaotic neural network for solving
combinatorial optimization problems: Stochastic chaotic simulated annealing.
IEEE Trans. System, Man, Cybernetics, Part B – Cybernetics, 34(5): 2119–2125.

38. Wang LP, Smith K (1998) On chaotic simulated annealing. IEEE Trans. Neural
Networks, 9: 716–718.

39. Wang LP, Teo KK, Lin Z (2001) Predicting time series using wavelet packet neu-
ral networks. Proc. Intl. Joint Conf. Neural Networks, 15–19 July, Washington,
DC. IEEE Computer Society Press, Piscataway, NJ: 1593–1597.

40. Wasserman PD (1989) Neural Computing: Theory and Practice. Van Nostrand
Reinhold, New York, NY.

41. Wolski R, Spring NT, Hayes J (1999) The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. J. Future
Generation Computing Systems, 15(5–6): 757–768.

Resources

1 Key Books

Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, New York

Cunha JC, Rana OF (2006) Grid Computing: Software Environments and
Tools. Springer, London

Haykin S (1999) Neural Networks: a Comprehensive Foundation (2nd ed).
Prentice Hall, Upper Saddle River, NJ

Rao KR, Bojkovic ZS, Milovanovic DA (2002) Multimedia Communication
Systems: Techniques, Standards, and Networks. Prentice Hall, Upper Saddle
River, NJ

Wang LP, Fu, XJ (2005) Data Mining with Computational Intelligence.
Springer-Verlag, Berlin

Wasserman PD (1989) Neural Computing: Theory and Practice. Van Nostrand
Reinhold, New York, NY

2 Key Survey/Review Articles

Apostolopoulos JG, Tan W-T, Wee SJ (2002) Video Streaming: Concepts,
Algorithms, and Systems. Hewlett-Packard White Paper, available online at
http://www.hpl.hp.com/techreports/2002/HPL-2002-260.html (last accessed
6 September, 2006)

714 X. Fu et al.

3 Organisations, Societies, Special Interest Groups

IEEE Neural Network Society (publisher of IEEE Trans. Neural Networks)

International Neural Network Society (publisher of Neural Networks Elsevier)

MIT Press (publisher of Neural Computation)

IEEE computer society (publisher of IEEE Trans. Computers)

http://mediagrid.org (Boston College)

4 Key International Conferences/Workshops

Neural Information Processing Symposium – NIPS (published as Advances in
Neural Information Processing Systems, Morgan Kaufmann, San Franscisco,
CA)

International Joint Conference on Neural Networks (IEEE)

International Conference on Multimedia and Expo (IEEE)

IEEE Consumer Communications & Networking Conference

5 (Open Source) Software

Globus Toolkit, available online at http://www.globus.org/toolkit/docs/4.0/
data/ (last accessed 6 September, 2006)

The Self-Organizing Maps: Background,
Theories, Extensions and Applications

Hujun Yin

School of Electrical and Electronic Engineering, The University of Manchester,
M60 1QD, UK, hujun.yin@manchester.ac.uk

1 Introduction

For many years, artificial neural networks (ANNs) have been studied and
used to model information processing systems based on or inspired by bio-
logical neural structures. They not only can provide solutions with improved
performance when compared with traditional problem-solving methods, but
also give a deeper understanding of human cognitive abilities. Among various
existing neural network architectures and learning algorithms, Kohonen’s self-
organizing map (SOM) [46] is one of the most popular neural network models.
Developed for an associative memory model, it is an unsupervised learning
algorithm with a simple structure and computational form, and is motivated
by the retina-cortex mapping. Self-organization in general is a fundamental
pattern recognition process, in which intrinsic inter- and intra-pattern rela-
tionships among the stimuli and responses are learnt without the presence
of a potentially biased or subjective external influence. The SOM can pro-
vide topologically preserved mapping from input to output spaces. Although
the computational form of the SOM is very simple, numerous researchers
have already examined the algorithm and many of its problems, nevertheless
research in this area goes deeper and deeper – there are still many aspects to
be exploited.

In this Chapter, we review the background, theories and statistical proper-
ties of this important learning model and present recent advances from various
pattern recognition aspects through a number of case studies and applications.
The SOM is optimal for vector quantization. Its topographical ordering pro-
vides the mapping with enhanced fault- and noise-tolerant abilities. It is also
applicable to many other applications, such as dimensionality reduction, data
visualization, clustering and classification. Various extensions of the SOM
have been devised since its introduction to extend the mapping as effective
solutions for a wide range of applications. Its connections with other learning
paradigms and application aspects are also exploited. The Chapter is intended

H. Yin: The Self-Organizing Maps: Background, Theories, Extensions and Applications,

Studies in Computational Intelligence (SCI) 115, 715–762 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

716 H. Yin

to serve as an updated, extended tutorial, a review, as well as a reference for
advanced topics in the subject.

2 Background

Kohonen’s self-organizing map (SOM) is an abstract mathematical model of
topographic mapping from the (visual) sensors to the cerebral cortex. Model-
ing and analyzing the mapping are important to understanding how the brain
perceives, encodes, recognizes and processes the patterns it receives and thus,
if somewhat indirectly, are beneficial to machine-based pattern recognition.
This Section looks into the relevant biological models, from two fundamental
phenomena involved – lateral inhibition and Hebbian learning – to Willshaw
and von der Malsburg’s self-organization retinotopic model, and then subse-
quently to Kohonen’s simplified and abstracted SOM model. Basic operations
and the SOM algorithm, as well as methods for choosing model parameters,
are also given.

2.1 Biological Background: Lateral Inhibition
and Hebbian Learning

Human visual perception and the brain make up the most complex cognition
system and the most complex of all biological organs. Visual inputs contribute
to over 90% of the total information (from all sensors) entering the brain.
Nature and our living environment are constantly shaping our perception and
cognition systems. Physiologically, human and indeed other animal visual (and
other perception) systems have been evolved to so many different types of
eyes and mammalian visual pathways for different purposes and conditions.
For example, many insects have compound eyes, which have good temporal
resolution and are more directionally sensitive and at the same time make
them smaller and group them into a single structure – giving insects a bet-
ter ability to detect spatial patterns and movement in order to escape from
predators. Compound eyes have good time resolving power. Human eyes need
0.05 second to identify objects, while compound eyes need only 0.01 second.
That is, they are good at recognizing (fast) moving objects. Eyes of large
animals including humans have evolved to single-chambered ‘camera lens’
eyes, which have excellent angle resolution and are capable of seeing distant
objects. Camera eyes have great space resolving power: high spatial resolu-
tion for good details of objects and patterns, and long depth resolution for
both very near and very far objects. They also have brilliant sensitivities for
light intensity – over 20 billion times (that is, 206 dB) range (the brightest to
the darkest) – compared with most digital cameras, which are below 16-bit
resolution (30 dB).

What information do eyes extract from the retina or sensory cells? Visual
information is processed in both the retina and brain, but it is widely believed

Self-Organizing Maps 717

Fig. 1. A cross-sectional diagram of the retina, drawn by Santiago Ramón y Cajal
(1853–1934)

and verified that most processing is done in the retina, such as extracting lines,
angles, curves, contrasts, colours, and motion. The retina then encodes the
information and sends through optic nerves and optic chiasma, where some
left and right nerves are crossed, to the brain cortex in the left and/or right
hemispheres. The retina is a complex neural network. Figure 1 shows a drawing
of the cross section of the retina. The human retina has over 100 million
photosensitive cells (combining rods and cones), processing in parallel the
raw images, codes and renders to just over one million optic nerves, to be
transmitted in turn to the brain cortex.

The Perceptron models some cells in the retina, especially the bipolar
and ganglion cells. These cells take inputs from the outputs of cells in the
previous layer. To put many units together and connect them into layers,
one may hope the resulting network – the Multi-Layer Perceptron – will have
some functionality similar to the retina (despite neglecting some horizontal
interconnections). Indeed, such a structure has been demonstrated as being
capable of certain cognitive and information processing tasks.

Cells in neural networks (either in the retina or brain) also connect and
interact horizontally. The experiment on limulus, or the horseshoe crab, by
Haldan K. Hartline (1967 Nobel Prize Laureate) and his colleagues in the
1960s, has confirmed such processing on the limulus retina (the surface of
the compound eye is shown in Fig. 2(a)). They revealed the so-called ‘lateral
inhibition’ activity among the retina cells. In other words, there exist both
short-range excitatory interaction between nearby cells, as well as long-range
inhibitory interaction between distant neighbours. This consequently explains
the so-called ‘Mach band’ phenomenon on the edges or sharp changes of light
intensity [87] – see Fig. 2(b).

718 H. Yin

Fig. 2. (a) Surface of the Limulus eye and simuli: small spot light and rectangular
lighter/darker pattern; (b) recordings of spike rate in the ommatidium axon (the
upper curve is the response to the small spot light at high and low intensities cor-
responding to those of the test pattern in the insert; the lower curve is the response
to the rectangular lighter/darker test pattern (from [87]; also see [99])

Fig. 3. Artistic drawing of a woman (left), and applying Pearson and Ronbinson’s
edge detector – an improved Marr and Hildreth mask – on the photo of the same
woman (right) ([86], reprinted by permission of Cambridge University Press; also
cited in [9])

Lateral inhibition tells us that neurons in the retina do not just feed the
information to upper levels, but also perform an important visual processing
task: edge detection and enhancement. Figure 3 demonstrates a psycholog-
ical experiment that also confirms such fundamental processing in visual
perception.

Neural networks present completely different approaches to computing and
machine intelligence from traditional symbolic AI. The goal is to emulate the
way that natural systems, especially brains, perform on various cognitive or
recognition tasks. When a network of simple processing units interconnect
with each other, there are potentially a massive number of synaptic weights
available to be configured and modified such that the network will suit a

Self-Organizing Maps 719

particular task. This configuration and modification process is carried out
by a learning procedure, that is, learning or training algorithm. The way
these simple units connect together is called the neural architecture. There
are two basic types: feed-forward, in which layers of neurons are concatenated,
and recurrent, in which neurons have feedback from themselves and others.
Examples of these two architectures are the Multi-Layer Perceptron (MLP),
and the Hopfield network, respectively.

The Oxford English Dictionary defines learning as “the process which leads
to the modification of behavior”.1 Learning in general intelligent systems is
often referred to as a process of the systems’ adaptation to their experience
or environment – a key feature of intelligence. According to Hebb, learning
occurs when “some growth process or metabolic change takes place” [30].
Learning in the context of neural networks can be defined as [29]:

“Learning is a process by which the free parameters of neural networks
are adapted through a process of simulation by the environment in
which the network is embedded. The type of learning is determined
by the manner in which the parameter changes take place.”

Neural networks also differ from traditional pattern recognition approaches,
which usually require solving some well-defined functions or models, such as
feature extraction, transformation, and discriminant analysis by a series of
processing steps. Neural networks can simply learn from examples. Presented
repeatedly with known examples of raw patterns and with an appropriate
learning or training algorithm, they are able to extract the most intrinsic
nature of the patterns and perform recognition tasks. They will also have the
ability to carry out similar recognition tasks, not only on trained examples
but also on unseen patterns. Learning methods and algorithms undoubtedly
play an important role in building successful neural networks.

Although many learning methods have been proposed, there are two fun-
damental kinds of learning paradigms: supervised learning and unsupervised
learning. The former is commonly used in most feed-forward neural networks,
in which the input-output (or input-target) functions or relationships are built
from a set of examples, while the latter resembles a self-organization process
in the cortex and seeks inter-relationships and associations among the input.

The most representative supervised learning rule is error-correction learn-
ing. When presented with an input-output pair, learning takes place when an
error exists between a desired response or target output and the actual output
of the network. This learning rule applies an adjustment, proportional to this
error, to the weights of the neuron concerned. Derivation of such a rule can
be often traced backed to minimizing the mean-square error function – more
details can be found in [29]. A derivative of supervised learning is so-called

1 Simpson JA, Weiner ESC (eds.) (1988) Oxford English Dictionary (2nd ed).
Clarendon Press, Oxford, UK.

720 H. Yin

reinforcement learning, based on trail-and-error (and reward). The following
definition has been given by [101]:

“If an action taken by a learning system is followed by a satisfactory
state of affairs, then the tendency of the system to produce that par-
ticular action is strengthened or reinforced. Otherwise, the tendency
of the system to produce that action is weakened”.

In contrast to supervised learning, there is no direct teacher to provide
how much output error a particular action has produced. Instead, the output
has been quantified into either ‘positive’ or ‘negative’ corresponding to closer
to or further from the goal. Reinforcement learning has popular backing from
psychology.

Self-organization often involves both competition and correlative learning.
When presented with a stimulus, neurons compete among themselves for pos-
session or ownership of this input. The winners then strengthen their weights
or their relationships with this input. Hebbian learning is the most common
rule for unsupervised or self-organized learning. As stated in [30]:

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth pro-
cess or metabolic changes take place in one or both cells such that As
efficiency as one of the cells firing B, is increased.”

Mathematically, the Hebbian learning rule can be directly interpreted as,

∂wij(t)
∂t

= αxi(t)yi(t) (1)

where α is a positive learning rate (0 < α < 1), and x and y are the input
and output of the neural system, respectively (or can also be regarded as the
outputs of the two neurons). That is, the change of the synaptic weight is
proportional to the correlation between an input and its associated output. If
the input and output are coherent, the weight connecting them is strengthened
(xy is positive), otherwise, weakened (xy is either negative or zero).

Hebbian learning requires some modification before it can be used in prac-
tice, otherwise the weight will easily become saturated or unlimited (positive
or negative). One solution is to add a ‘forgetting term’ to prevent weights
from increasing/decreasing monotonically as in the SOM (see the next Sec-
tion). Alternatively, we can normalize the weights. For instance, Oja proposed
a weight normalization scheme on all weights. This naturally introduces a
forgetting term to the Hebbian rule [81],

wi(t + 1) =
wi(t) + αxi(t)y(t)

{
∑n

j=1[wj(t) + αxj(t)y(t)]2}1/2
(2)

≈ wi(t) + α(t)[xi(t)− y(t)wi(t)] + O(α2)

Self-Organizing Maps 721

where O(α2) represents second- and high-order terms in α, and can be ignored
when a small learning rate is used.

The resulting Oja learning algorithm is a so-called principal component
network, which learns to extract the most variant directions among the data
set. Other variants of Hebbian learning include many algorithms used for
Independent Component Analysis ([36, 82]).

2.2 From Von Marsburg and Willshaw’s Self-Organization
Model to Kohonen’s SOM

External stimuli are received by various sensors or receptive fields (for exam-
ple, visual-, auditory-, motor-, or somato-sensory), coded or abstracted by the
living neural networks, and projected through axons onto the cerebral cortex,
often to distinct parts of the cortex. In other words, the different areas of the
cortex (cortical maps) often correspond to different sensory inputs, though
some brain functions require collective responses. Topographically ordered
maps are widely observed in the cortex. The main structures (primary sensory
areas) of the cortical maps are established before birth ([47], [115], and similar)
in a predetermined topographically ordered fashion. Other more detailed areas
(associative areas), however, are developed through self-organization gradually
during life and in a topographically meaningful order. Therefore studying such
topographically ordered projections, which had been ignored during the early
period of neural information processing research [48], is undoubtedly impor-
tant for understanding and constructing dimension-reduction mapping and
for the effective representation of sensory information and feature extraction.

The self-organized learning behavior of brains has been studied for a long
time by many people. Pioneering works include for example, Hebb’s learning
law (1949) [30], Marr’s theory of the cerebellar cortex (1969) [72], Will-
shaw, Buneman and Longnet-Higgins’s non-holographic associative memory
(1969) [114], Gaze’s studies on nerve connections (1970), von der Mals-
burg and Willshaw’s self-organizing model of retina-cortex mapping ([111],
[115]), Amari’s mathematical analysis of self-organization in the cortex (1980),
Kohonen’s self-organizing map (1982), and Cottrell and Fort’s self-organizing
model of retinotopy (1986). Many still have immense influence on today’s
research. Von der Malsburg (1973) and Willshaw (1976) first developed, in
mathematical form, the self-organizing topographical mapping, mainly from
two-dimensional presynaptic sheets to two-dimensional postsynaptic sheets,
based on retinatopic mapping: the ordered projection of visual retina to the
visual cortex (see Fig. 4). Their basic idea was:

“......the geometrical proximity of presynaptic cells is coded in the
form of correlations in their electrical activity. These correlations can
be used in the postsynaptic sheet to recognize axons of neighbouring
presynaptic cells and to connect them to neighbouring postsynaptic
cells, hence producing a continuous mapping......”

722 H. Yin

Fig. 4. von der Malsburg’s self-organizing map model: local clusters in a presynap-
tic sheet are connected to local clusters in a postsynaptic sheet; there are lateral
interconnections within the postsynaptic sheet (solid lines are used to indicate such
connections)

The model uses short-range excitatory connections between cells so that
activity in neighbouring cells becomes mutually reinforced, and uses long-
range inhibitory interconnections to prevent activity from spreading too far.
The postsynaptic activities {yj(t), j = 1, 2, ... Ny}, at time t, are expressed by

∂yi(t)
∂t

+ cyi(t) =
∑

j

wij(t)xi(t) +
∑

k

eiky∗
k(t)−

∑
k′

bik′y∗
k′(t) (3)

where c is the membrane constant, wij(t) is the synaptic strength between
cell i and cell j in pre- and post-synaptic sheets respectively, {xi(t), i =
1, 2, ... Nx}, the state of the presynaptic cells, equal to 1 if cell i is active
or 0 otherwise, ekj and bkj are short-range excitation and long-range inhibi-
tion constants respectively, and y∗

j (t) is an active cell in postsynaptic sheet at
time t. The postsynaptic cells fire if their activity is above a threshold, say,

y∗
i (t) =

{
y∗

j (t)− θ, if y∗
j (t) > θ

0 otherwise
(4)

The modifiable synaptic weights between pre- and post-synaptic sheets are
then facilitated in proportion to the product of activities in the appropriate
pre- and postsynaptic cells (Hebbian learning):

∂wij(t)
∂t

= αxi(t)y∗
j (t), subject to

1
Nx

∑
i

wij = constant (5)

Self-Organizing Maps 723

where α is a small constant representing the learning rate. To prevent the
synaptic strengths becoming unstable, the total strength associated with each
postsynaptic cell is limited by normalization to a constant value after each
iteration.

Kohonen (1982) abstracted the above self-organizing learning principle and
function and proposed a much simplified learning mechanism which cleverly
incorporates the Hebbian learning rule and lateral interconnection rules and
can emulate the self-organizing learning effect. Although the resulting SOM
algorithm was more or less proposed in a heuristic manner ([54]), it is a
simplified and generalized model of the above self-organization process. As
commented in [91]:

“Kohonen’s model of self-organizing maps represented an important
abstraction of the earlier model of von der Malsburg and Willshaw; the
model combines biological plausibility with proven applicability in a
broad range of difficult data processing and optimization problems...”

In Kohonen’s model, the postsynaptic activities are similar to Eqn. (3). To
find the solutions of this equation and ensure they are non-negative properties,
a sigmoid type of nonlinear function is applied to each postsynaptic activity:

yj(t + 1) = ϕ

[
wT

j x(t) +
∑

i

hijyi(t)

]
(6)

where hkj is similar to ekj and bkj , and the input is described as a vector
as the map can be extended to any dimensional input. A typical structure is
shown in Fig. 5.

A spatially-bounded cluster or bubble will then be formed among the post-
synaptic activities and will stabilize at a maximum (without loss of generality
which is assumed to be unity) when within the bubble, or a minimum (that
is, zero) otherwise,

yj(t + 1) =
{

1, if neuron j is inside the bubble
0, otherwise (7)

The bubble is centred on a postsynaptic cell whose synaptic connection
with the presynaptic cells is mostly matched with the input or presynaptic
state, that is the first term in the function in Eqn. (6) is the highest. The
range or size, denoted by η(t), of the bubble depends on the ratio of the
lateral excitation and inhibition. To modify the Hebbian learning rule, in other
words Eqn. (5), instead of using normalization, a forgetting term, βyj(t)wij(t),
is added. Let α = β, and apply Eqn. (7), the synaptic learning rule can then
be formulated as,

∂wij(t)
∂t

= αyj(t)xi(t)− βyj(t)wij(t) = α[xi(t)− wij(t)]yj(t)

=
{

α[xi(t)− wij(t)], if j ∈ η(t)
0 if j /∈ η(t) (8)

724 H. Yin

Fig. 5. Kohonen’s self-organizing map model. The input is connected to every cell
in the postsynaptic sheet (the map). The learning makes the map localized, in other
words different local fields will respond to different ranges of inputs. The lateral
excitation and inhibition connections are emulated by a mathematical modification,
namely local sharing, to the learning mechanism (so there are no actual connections
between cells – grey lines are used to indicate these virtual connections)

At each time step the best matching postsynaptic cell is chosen accord-
ing to the first term of the function in Eqn. (6), which is the inner product,
or correlation, of the presynaptic input and synaptic weight vectors. When
normalization is applied to the postsynaptic vectors, as it usually is, this
matching criterion is similar to the Euclidean distance measure between the
weight and input vectors. Therefore the model provides a very simple com-
putational form. The lateral interconnection between neighbouring neurons
and the ‘Mexican-hat’ excitatory or inhibitory rules are simulated (mathe-
matically) by a simple local neighbourhood excitation centred on the winner.
Thus the neuron’s lateral interconnections (both excitatory and inhibitory)
have been replaced by neighbourhood function adjustment. The neighbour-
hood function’s width can emulate the control of the exciting and inhibiting
scalars. The constrained (with a decaying or forgetting term) Hebbian learning
rule has been simplified and becomes a competitive learning model.

Most of Kohonen’s work has been in associative memories ([43]–[48], and
so on). In his studies, he has found that the spatially ordered representation of
sensory information in the brain is highly related to the memory mechanism,
and that the inter-representation and information storage can be implemented
simultaneously by an adaptive, massively parallel, and self-organizing network
[48]. This simulated cortex map, on the one hand can perform a self-organized
search for important features among the inputs, and on the other hand can

Self-Organizing Maps 725

arrange these features in a topographically meaningful order. This is why the
map is also sometimes termed the ‘self-organizing feature map’, or SOFM. In
this Chapter, however, it will be referred to by its commonly used term, the
‘self-organizing map’ (SOM), which comes from Kohonen’s original definition
and purpose, namely associative memory.

2.3 The SOM Algorithm

The SOM uses a set of neurons, often arranged in a 2-D rectangular or hexag-
onal grid, to form a discrete topological mapping of an input space, X ∈ Rn.
At the start of the learning, all the weights {w1,w2, ...,wM} are initialized
to small random numbers. wi is the weight vector associated to neuron i and
is a vector of the same dimension – n – of the input, M is the total number
of neurons, and let ri be the location vector of neuron i on the grid. Then
the algorithm repeats the steps shown in Algorithm 1, where η(ν, k, t) is the
neighbourhood function, and Ω is the set of neuron indexes. Although one can
use the original stepped or top-hat type of neighbourhood function (one when
the neuron is within the neighbourhood; zero otherwise), a Gaussian form is
often used in practice – more specifically η(ν, k, t) = exp[− ‖rν−rk‖2

2σ(t)2], with σ

representing the effective range of the neighbourhood, and is often decreasing
with time.

Algorithm 1 Self-Organizing Map algorithm
repeat

1. At each time t, present an input x(t), and select the winner,

ν(t) = arg min
k∈Ω

‖ x(t) − wk(t) ‖ (9)

2. Update the weights of the winner and its neighbours,

∆wk(t) = α(t)η(ν, k, t)[x(t) − wν(t)] (10)

until the map converges

The coefficients {α(t), t ≥ 0}, termed the ‘adaptation gain’, or ‘learning
rate’, are scalar-valued, decrease monotonically, and satisfy [47]:

(i) 0 < α(t) < 1; (ii) lim
t→∞

∑
α(t) →∞; (iii) lim

t→∞

∑
α2(t) < ∞; (11)

They are the same as to those used in stochastic approximation ([92,94]). The
third condition in Eqn. (11) has been relaxed by Ritter and Schulten to a less
restrictive one, namely, limt→∞ α(t) → 0 [90].

726 H. Yin

If the inner product similarity measure is adopted as the best matching
rule,

ν(t) = arg min
k∈Ω

[wT
k x(t)] (12)

then the corresponding weight updating will become [53]:

wk(t + 1) =

{
wk(t)+α(t)x(t)

‖wk(t)+α(t)x(t)‖ k ∈ ην

wk(t) k /∈ ην

(13)

Such a form is often used in text/document mining applications (for exam-
ple, [23]).

The SOM algorithm vector-quantizes or clusters the input space and pro-
duces a map which preserves topology. It can also be and has been used for
classification. In this case, the map is trained on examples of known cat-
egories. The nodes are then classified or labelled so that the map can be
used to classify unseen samples. Various methods for labelling nodes can be
found in [59]. The classification performance can be further improved by the
Learning Vector Quantization (LVQ) algorithm [53].

3 Theories

3.1 Convergence and Cost Functions

Although the SOM algorithm has a simple computational form, a formal anal-
ysis of it and the associated learning processes and mathematical properties
is not easily realized. Some important issues still remain unanswered. Self-
organization, or more specifically the ordering process, has been studied in
some depth; however a universal conclusion has been difficult, if not impossi-
ble, to obtain. This Section reviews and clarifies the statistical and convergence
properties of the SOM and associated cost functions, the issue that still causes
confusions to many even today. Various topology preservation measures will
be analyzed and explained.

The SOM was proposed to model the sensory-to-cortex mapping thus
the unsupervised associative memory mechanism. Such a mechanism is also
related to vector quantization (VQ) [63] in coding terms. The SOM has been
shown to be an asymptotically optimal VQ [117, 126]. More importantly,
with its neighbourhood learning, the SOM is both an error tolerant VQ and
Bayesian VQ [66,68].

Convergence and ordering has only been formally proven in the trivial
one-dimensional case. A full proof of both convergence and ordering in mul-
tidimensional systems is still outstanding, although there have been several
attempts (for instance, [19,20,62,64,90,126]). [19] and [20] especially showed
that there was no cost function that the SOM will follow exactly. Such an issue

Self-Organizing Maps 727

is also linked to the claimed lack of an exact cost function that the algorithm
follows. Recent work by various researchers has already shed light on this
intriguing issue surrounding the SOM. Yin and Allison extended the Central
Limit Theorem and used it to show that when the neighbourhood reduces
to just the winner, the weight vectors (code references) are asymptotically
Gaussian distributed and will converge in a mean squares sense to the means
of the Voronoi cells – in other words, an optimal VQ (with the SOM’s nearest
distance winning rule) [126],

wk →
1

P (Xk)

∫
Vk

xp(x)dx (14)

where Vk is the Voronoi cell (the data region) for which the weight vector
wk is responsible, and p(x) is the probability density function of the data. In
general cases with the effect of the neighbourhood function, the weight vector
is a kernel smoothed mean [119],

wk →
∑T

t=1 η(ν, k, t)x(t)∑T
t=1 η(ν, k, t)

(15)

Yin and Allison have also proved that the initial state has a diminishing
effect on the final weights when the learning parameters follow the convergence
conditions [126]. Such an effect has been recently verified by [15] using Monte-
Carlo bootstrap cross validation; the ordering was not considered. In practice,
as only limited data samples are used and training is performed in finite time,
good initialization can help guide to a faster or even better convergence. For
example, initializing the map to a principal linear sub-manifold can reduce
the ordering time, if the ordering process is not a key requirement.

Luttrell first related hierarchical noise tolerant coding theory to the SOM.
When the transmission channel noise is considered, a two-stage optimization
has to be done, not only to minimize the representation distortion (as in
VQ) but also to minimize the distortion caused by the channel noise. He
revealed that the SOM can be interpreted as such a coding algorithm. The
neighbourhood function acts as the model for the channel noise distribution
and should not go to zero as in the original SOM. Such a noise tolerant VQ
has the following objective function ([66, 67]),

D2 =
∫

dxp(x)
∫

dnπ ‖ x−wk ‖2 (16)

where n is the noise variable and π(n) is the noise distribution. [18] and [78]
have also linked the SOM and this noise tolerant VQ with minimal wiring of
cortex-like maps.

When the code book (the map) is finite, the noise can be considered as
discrete, then the cost function can be re-expressed as,

728 H. Yin

D2 =
∑

i

∫
Vi

∑
k

π(i, k) ‖ x−wk ‖2 p(x)dx (17)

where Vi is the Voronoi region of cell i. When the channel noise distribution is
replaced by a neighbourhood function (analogous to inter-symbol dispersion),
it becomes the cost function of the SOM algorithm. The neighbourhood func-
tion can be interpreted as a channel noise model. Such a cost function has
been discussed in the SOM community (for example, [32], [50], [58], [117]).
The cost function is therefore,

E(w1, · · · ,wN) =
∑

i

∫
Vi

∑
k

η(i, k) ‖ x−wk ‖2 p(x)dx (18)

This leads naturally to the SOM update algorithm using the sample or
stochastic gradient descent method [92] – that is, for each Voronoi region, the
sample cost function is,

Êi(w1, · · · ,wN) =
∫

Vi

∑
k

η(i, k) ‖ x−wk ‖2 p(x)dx (19)

The optimization for all weights {w1,w2, · · · ,wN} can be sought using
the sample gradients. The sample gradient for wj is,

∂Êi(w1, · · · ,wN)
∂wj

=
∂
∑

k η(i, k) ‖ x−wk ‖2

∂wj
= 2η(i, k) ‖ x−wj ‖ (20)

which leads to the SOM update rule – Eqn. (10). Note that although the
neighbourhood function ηi,k is only implicitly related to wj , it does not con-
tribute to the weight optimization, nor does the weight optimization lead to its
adaptation (neighbourhood adaptation is often controlled by a pre-specified
scheme, unrelated to the weight adaptation); thus the neighbourhood can be
omitted from the partial differentiation. This point has caused problems in
interpreting the SOM cost function in the past.

It has however been argued that this energy function is violated at bound-
aries of Voronoi cells where input has exactly the same smallest distance to
two neighbouring neurons. Thus this energy function holds mainly for the
discrete case where the probability of such boundary input points is close to
zero or the local (sample) cost function Êi should be used in deciding the
winner [32]. When a spatial-invariant neighbourhood function is used (as is
often the case), assigning the boundary input to either cell will lead to the
same local sample cost (or error), therefore any input data on the boundary
can be assigned to either Voronoi cells that have the same smallest distance
to it, just as in the ordinary manner (on a first-come-first-served fashion, for
example). Only when the neurons lie on the map borders does such violation
occur, due to unbalanced neighbourhood neurons. The result is slightly more
contraction towards to the centre (inside) of the map for the border neurons,

Self-Organizing Maps 729

compared to the common SOM algorithm, as shown in [50]. Using either the
simple distance or local distortion measure as the winning rule will result in
border neurons being contracted towards the centre of the map, especially
when the map is not fully converged or when the effective range of the neigh-
bourhood function is large. With the local distortion rule, this boundary effect
is heavier as greater local error is incurred at the border neurons due to their
few neighbouring neurons compared with any inside neurons.

To follow the cost function exactly, the winning rule should be modified
to follow the local sample cost function Êi (or the local distortion measure)
instead of the simplest nearest distance, that is,

ν = arg min
i

∑
k

η(i, k) ‖ x−wk ‖2 (21)

When the neighbourhood function is symmetric (as is often the case),
and when the data density function is smooth, this local distortion winning
rule is the same as the simplest nearest distance rule for most non-boundary
nodes, especially if the number of nodes is large. On the map borders, however,
differences exist due to the imbalance of nodes present in the neighbourhoods.
Such differences become negligible to the majority of the neurons, especially
when a large map is used, and when the neighbourhood function shrinks to
its minimum scale.

3.2 Topological Ordering

The ordering to a large extent is still an outstanding and subtle issue, largely
due to the fact that there is no clear (or agreed) definition of ‘order’ [25]. This
is the very reason why a full self-organization convergence theorem includ-
ing both statistical convergence, ordering, and the exact cost function, is still
subject to debate – which has prompted many alternatives, such as [8], [26],
and [100]. The ordering and ordered map are clearly defined only in the 1-D
trivial case. Extension to higher dimensions proves difficult, if not impos-
sible. [7] have proposed a measure called topology product to measure the
topological ordering of the map,

P =
1

N2 −N

∑
i

∑
j

log

(
j∏

l=1

dD(wi,wηo(l,i))dO(i, ηo(l, i))
dD(wi,wηD(l,i))dO(i, ηD(l, i))

) 1
2k

(22)

where dD and dO represent the distance measures in the input (or data) space,
and output (or map) space, respectively; η(l, i) represents the lth neighbour
of node i in either data (D) or map (O) space.

The first ratio in the product measures the ratio or match of weight dis-
tance sequences of a neighbourhood (up to j) on the map and in the data

730 H. Yin

space. The second ratio is the index distance sequences of the neighbourhood
on the map and in the data space. The topographic product measures the
product of the two ratios of all possible neighbourhoods.

[109] proposed a topographic function to measure the ‘neighbourhood-
ness’ of weight vectors in data space as well as on the lattice. The neighbour-
hood-ness of the weight vectors is defined by the adjacent Voronoi cells of the
weights. The function measures the degree to which the weight vectors are
ordered in the data space as to their indexes on the lattice, as well as how
well the indexes are preserved when their weight vectors are neighbours.

Defining a fully ordered map can be straightforward using the distance
relations [117]. For example, if all the nearest neighbour nodes (on the lattice)
have their nearest neighbour nodes’ weights in their nearest neighbourhood in
the data space, we can call the map a 1st-order (ordered) map [117], that is,

d(wi,wj) ≤ d(wi,wk), ∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i (23)

where Ω is the map, and η1
i denotes the 1st-order neighbourhood of node i.

Similarly if the map is a 1st-order ordered map, and all the 2nd nearest
neighbouring nodes (on the lattice) have their 2nd nearest neighbouring nodes’
weights in their 2nd nearest neighbourhood, we can call the map is a 2nd-order
(ordered) map. For the 2nd ordered map, the distance relations to be satisfied
are,

d(wi,wj) ≤ d(wi,wk), ∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i &k ∈ η2
i ; l /∈ η2

i (24)

and so forth to define higher ordered maps with interneuron distance hierar-
chies [117].

An mth order map is optimal for tolerating channel noise spreading up
to the mth neighbouring node. Such fully ordered maps however may not be
always achievable, especially when the mapping is a dimensional reduction
one. Then the degree (percentage) of nodes with their weights being ordered
can be measured, together with the probabilities of the nodes being utilized,
can be used to determine the topology preservation and that to what degree
and to what order the map can tolerate the channel noise.

[25] proposed the C measure – a correlation between the similarity of
stimuli in the data space and the similarity of their prototypes in the map
space – to quantify the topological preservation,

C =
∑

i

∑
j

F (i, j)G[M(i), M(j)] (25)

where F and G are symmetric similarity measures in the input and map spaces
respectively, and can be problem specific, and M(i) and M(j) are the mapped
points or weight vectors of node i and j, respectively.

Self-Organizing Maps 731

The C measure directly evaluates the correlation between distance relations
between two spaces. Various other topographic mapping objectives can be uni-
fied under the C measure, such as multidimensional scaling, minimal wiring,
the travelling salesperson problem (TSP), and noise tolerant VQ. It has also
been shown that if a mapping that preserves ordering exists then maximiz-
ing C will find it. Thus the C measure is also the objective function of the
mapping, an important property different from other topology preservation
measures and definitions.

One can always use the underlying cost function Eqn. (18) to measure the
goodness of the resulting map including the topology preservation, at least
one can use a temporal window to take a sample of it as suggested in [50].
The (final) neighbourhood function specifies the level of topology (ordering)
the mapping is likely to achieve or is required. To draw an analogy to the
above C measure, the neighbourhood function can be interpreted as the G
measure used in Eqn. (25) and the ‖ x−wk ‖2 term represents the F measure.
Indeed, the input x and weight wj are mapped on the map as node index
i and j, and their G measure is the neighbourhood function (for example,
exponentials). Such an analogy also sheds light on the scaling effect of the
SOM. Multidimensional scaling also aims to preserve local similarities on a
mapped space (see the next Section for more details).

4 Extensions and Links with Other Learning Paradigms

The SOM has been a popular model for unsupervised learning as well as
pattern organization and association. Since its introduction, various exten-
sions have been reported to enhance its performance and scope. For instance,
‘Neural Gas’ was developed to map data onto arbitrary or hierarchical map
structures rather than confined to rectangular grids for improved VQ perfor-
mance [74, 75]. The adaptive subspace SOM (ASSOM) has been proposed to
combine principal component learning and the SOM to map data with reduced
feature space, in order to form translation-, rotation- and scale-invariant fil-
ters [51, 52]. The parameterized SOM (PSOM) has been proposed to extend
SOM for continuous mapping using basis functions on the grid to interpo-
late the map [112]. The stochastic SOM [26] defines a topographic mapping
from a Bayesian framework and a Markov chain encoder, and further explains
the stochastic annealing effect in SOM. The Dislex [76, 77] applies hierar-
chical topographical maps to associate cross-modal patterns such as images
with audio or symbols. The U-matrix was proposed to imprint the distance
information on the map for visualization [105]. The visualization induce SOM
(ViSOM) has been proposed to directly preserve distance information on the
map so as to visualize data structures and distributions [118, 119].

The Temporal Kohonen map [11] and its improved version, the Recurrent
SOM [108], as well as the Recursive SOM [110] have extended the SOM for

732 H. Yin

mapping temporal data such as time series, or sequential data such as protein
sequences. Extensions along this direction continue to be a focus of research.
Extension on probabilistic approaches which enhances the scope and capa-
bility of SOM include the Self-Organizing Mixture Network (SOMN) [128],
Kernel-based topographic maps [106,107]; and the generic topographic map-
ping (GTM) [8]. There are many extensions developed in recent years – too
many to completely list here. Recent extensions are also proposed for handling
non-vectorial [55] and qualitative data [35]. For more comprehensive lists and
recent developments, please refer to [1, 13, 38, 40, 53, 83].

The remainder of this Section covers extensions of SOM and their associa-
tions with data visualization, manifold mapping, density modeling and kernel
methods.

4.1 SOM, Multidimensional Scaling and Principal Manifolds

The SOM is often associated with VQ and clustering. However it is also
associated with data visualization, dimensionality reduction, nonlinear data
projection, and manifold mapping. A brief review on various data projection
methods and their relationships has been given before [121].

Multidimensional Scaling

Multidimensional scaling (MDS) is a traditional study related to dimension-
ality reduction and data projection. MDS tries to project data points onto an
(often two-dimensional) sheet by preserving as closely as possible the inter-
point metrics [14]. The projection is generally nonlinear and can reveal the
overall structure of the data. A general fitness function or the so-called stress
function is defined as,

S =

∑
i,j(dij −Dij)2∑

i,j D2
ij

(26)

where dij represents the proximity of data points i and j in the original data
space, and Dij represents the dissimilarity or distance (usually Euclidean)
between mapped points i and j in the projected space. Note, that global
Euclidean distance is usually used to calculate the inter-point distances.
Recently, Isomap was proposed to use geodesic (curvature) distance instead
for better nonlinear scaling [102].

MDS relies on an optimization algorithm to search for a configuration
that gives as low a stress as possible. A gradient method is commonly used
for this purpose. Inevitably, various computational problems – such as local
minima and divergence – may occur due to the optimization process itself. The
methods are also often computationally intensive. The final solution depends
on the starting configuration and parameters used in the algorithm.

Self-Organizing Maps 733

Sammon mapping is a widely-known example of MDS [95]. The objective
is to minimize the differences between inter-point (Euclidean) distances in
the original space and those in the projected plane. In Sammon mapping
intermediate normalization (of the original space) is used to preserve good
local distributions and at the same time maintain a global structure. The
Sammon stress is expressed as,

SSammon =
1∑

i<j dij

∑
i<j

(dij −Dij)2

dij
(27)

A second order Newton optimization method is used to recursively solve
the optimal configuration. It converges faster than the simple gradient method,
but the computational complexity is even higher. It still has local minima
and inconsistency problems. Sammon mapping has been shown to be useful
for data structure analysis. However, like other MDS methods, the Sammon
algorithm is a point-to-point mapping, which does not provide an explicit
mapping function and cannot naturally accommodate new data points. It
also requires the computation and storage of all the inter-point distances.
This proves difficult or even impossible for many practical applications where
data arrives sequentially, the quantity of data is large, and/or memory space
for the data is limited.

In addition to being computationally expensive, especially for large data
sets, and not being adaptive, another major drawback of MDS is lack of an
explicit projection function. Thus for any new input data, the mapping has
to be recalculated based on all available data. Although some methods have
been proposed to accommodate the new arrivals using triangulation [16, 61],
the methods are generally not adaptive. However, such drawbacks can be
overcome by implementing or parameterizing MDS using neural networks –
for example, [65, 71].

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a classic linear projection method
aiming at finding orthogonal principal directions from a set of data, along
which the data exhibiting the largest variances. By discarding the minor com-
ponents, PCA can effectively reduce data variables and display the dominant
ones in a linear, low dimensional subspace. It is an optimal linear projection
in the sense of the mean-square error between original points and projected
ones, in other words,

min
∑
x

⎡
⎣x− m∑

j=1

(qT
j x)qj

⎤
⎦2

(28)

where {q, j = 1, 2, · · · , m, m ≤ n} are orthogonal eigenvectors represent-
ing principal directions. They are the first m principal eigenvectors of the

734 H. Yin

covariance matrix of the input. The second term in the above bracket is
the reconstruction or projection of x onto these eigenvectors. The term qT

j x
represents the projection of x onto the jth principal dimension.

Traditional methods for solving the eigenvector problem involve numerical
methods. Though fairly efficient and robust, they are not usually adaptive and
often require presentation of the entire data set. Several Hebbian-based learn-
ing algorithms and neural networks have been proposed for performing PCA,
such as the subspace network [81] and the generalized Hebbian algorithm [96].
The limitation of linear PCA is obvious, as it cannot capture nonlinear rela-
tionships defined by higher than second-order statistics. If the input dimension
is much higher than two, the projection onto the linear principal plane will
provide limited visualization power.

Nonlinear PCA and Principal Manifolds

Extension to nonlinear PCA (NLPCA) is not unique, due to the lack of a
unified mathematical structure and an efficient and reliable algorithm, and in
some cases due to excessive freedom in selection of representative basis func-
tions [39,70]. Several methods have been proposed for nonlinear PCA, such as
the five-layer feedforward associative network [56] and the kernel PCA [97].
The first three layers of the associative network project the original data onto
a curve or surface, providing an activation value for the bottleneck node. The
last three layers define the curve and surface. The weights of the associa-
tive NLPCA network are determined by minimizing the following objective
function,

min
∑
x

‖ x− f{sf (x)} ‖2 (29)

where f : R1 → Rn (or R2 → Rn). The function modelled by the last three
layers defines a curve (or a surface), sf : Rn → R1 (or Rn → R2); the function
modelled by the first three layers defines the projection index.

The kernel-based PCA uses nonlinear mapping and kernel functions to
generalize PCA to NLPCA and has been used for various pattern recognition
tasks. The nonlinear function Φ(x) maps data onto high-dimensional feature
space, where the standard linear PCA can be performed via kernel functions:
k(x,y) = (Φ(x) · Φ(y)). The projected covariance matrix is then,

Cov =
1
N

N∑
i=1

Φ(xi)Φ(xi)T (30)

The standard linear eigenvalue problem can now be written as λV = KV,
where the columns of V are the eigenvectors, and K is a N ×N matrix with
elements as kernels kij := k(xi,xj) = (Φ(xi) · Φ(xi)).

The principal curves and principal surfaces [28, 60] are the principal non-
linear extensions of PCA. The principal curve is defined as a smooth and

Self-Organizing Maps 735

self-consistency curve, which does not intersect itself. Denote x as a random
vector in Rn with density p and finite second moment. Let f(·) be a smooth
unit-speed curve in Rn, parameterized by the arc length (from one end of the
curve) over Λ ∈ R, a closed interval.

For a data point x its projection index on f is defined as

ρf (x) = sup
ρ∈Λ

{ρ :‖ x− f(ρ) ‖= inf
θ
‖ x− f(θ) ‖} (31)

The curve is called self-consistent or a principal curve of ρ if

f(ρ) = E[X | ρf (X) = ρ] (32)

The principal component is a special case of the principal curves if the dis-
tribution is ellipsoidal. Although principal curves have been mainly studied,
extension to higher dimensions – for example principal surfaces or manifolds –
is feasible in principle. However, in practice, a good implementation of princi-
pal curves/surfaces relies on an effective and efficient algorithm. The principal
curves/surfaces are more of a concept that invites practical implementations.
The HS algorithm is a nonparametric method [28], which directly iterates
the two steps of the above definition. It is similar to the standard LGB VQ
algorithm [63], combined with some smoothing techniques.

Algorithm 2 The Hastie and Stuetzle (HS) algorithm
Initialization: choose the first linear principal component as the initial curve,
f (0)(x).
repeat

Projection: project the data points onto the current curve and calculate the
projections index – that is ρ(t)(x) = ρf(t)(x).
Expectation: for each index, take the mean of the data points projected onto it
as the new curve point – in other words, f t+1(ρ) = E[X | ρf(t)X = ρ].

until a convergence criterion is met (for example, when the change of the curve
between iterations falls below a threshold).

For a finite data set, the density p is often unknown, and the above expecta-
tion is replaced by a smoothing method such as the locally weighted running-
line smoother or smoothing splines. For kernel regression, the smoother is,

f(ρ) =
∑N

i=1 xiK(ρ, ρi)∑N
i=1K(ρ, ρi)

(33)

The arc length is simply computed from the line segments. There are no
proofs of convergence for the algorithm, but no convergence problems have
been reported, although the algorithm is biased in some cases [28]. Banfield
and Reftery have modified the HS algorithm by taking the expectation of the

736 H. Yin

residual of the projections in order to reduce the bias [5]. [42] have proposed an
incremental – for example, segment-by-segment – and arc length constrained
method for practical construction of principal curves.

Tibshirani has introduced a semi-parametric model for the principal curve
[103]. A mixture model was used to estimate the noise along the curve; and the
expectation-maximization (EM) method was employed to estimate the param-
eters. Other options for finding the nonlinear manifold include the Generic
Topographic Map [8] and probabilistic principal surfaces [10]. These methods
model the data by a means of a latent space. They belong to the semi-
parameterized mixture model, although types and orientations of the local
distributions vary from method to method.

Visualization induced SOM (ViSOM)

For scaling and data visualization, a direct and faithful display of data struc-
ture and distribution is highly desirable. ViSOM has been proposed to extend
the SOM for direct distance preservation on the map [118, 119], instead of
using a colouring scheme such as U-matrix [105], which imprints qualitatively
the inter-neuron distances as colours or grey levels on the map. For the map
to capture the data structure naturally and directly, (local) distance quanti-
ties must be preserved on the map, along with the topology. The map can
be seen as a smooth and graded mesh, or manifold embedded into the data
space onto which the data points are mapped and the inter-point distances
are approximately preserved.

In order to achieve that, the updating force, x(t)−wk(t), of the SOM algo-
rithm is decomposed into two elements [x(t)−wν(t)] + [wν(t)−wk(t)]. The
first term represents the updating force from the winner ν to the input x(t),
and is the same to the updating force used by the winner. The second force is
a lateral contraction force bringing neighbouring neuron k to the winner ν. In
the ViSOM, this lateral contraction force is constrained or regulated in order
to help maintain unified local inter-neuron distances ‖ wν(t)−wk(t) ‖ on the
map.

wk(t + 1) = wk(t) + α(t)η(v, k, t)[x(t) −wν(t)] + β[wν(t)−wk(t)] (34)

where the simplest constraint can be β = dνk

(Dνkλ)−1 , with dνk being the dis-
tance of neuron weights in the input space, Dνk the distance of neuron indexes
on the map, and λ a (required) resolution constant.

ViSOM regularizes the contraction force so that the distances between
nodes on the map are analogous to the distances of their weights in the data
space. The aim is to adjust inter-neuron distances on the map in proportion
to those in the data space, in other words Dvk ∝ dvk. When the data points
are eventually projected onto a trained map, the distance between point i
and j on the map is proportional to that of the original space, subject to the

Self-Organizing Maps 737

quantization error (the distance between a data point and its neural represen-
tative). This has a similar effect to MDS, which also aims at achieving this
proportionality, Dij ∝ dij .

The SOM is shown to be a qualitative scaling, while the ViSOM is a met-
ric scaling [124]. The key feature of ViSOM is that the distances between the
neurons (which data are mapped to) on the map (in a neighbourhood) reflect
the corresponding distances in the data space. When the map is trained and
data points mapped, the distances between mapped data points will resem-
ble approximately those in the original space (subject to the resolution of
the map). This makes visualization more direct, quantitatively measurable,
and visually appealing. The map resolution can be enhanced (and the compu-
tational cost reduced) by interpolating a trained map or incorporating local
linear projections [122]. The size or covering range of the neighbourhood func-
tion can also be decreased from an initially large value to a final smaller one.
The final neighbourhood, however, should not contain just the winner. The
rigidity or curvature of the map is controlled by the ultimate size of the neigh-
bourhood. The larger this size, the flatter the final map is in the data space.
Guidelines for setting these parameters have been given in [120]. An example
on data visualization will be shown in the next Section.

Several authors have since introduced improvements and extensions to
ViSOM. For example, in [116], a probabilistic data assignment [26] is used in
both the input assignment and the neighbourhood function; also an improved
second order constraint is adopted. The resulting SOM has a clearer connec-
tion to an MDS cost function. Estévez and Figueora extend the ViSOM to
an arbitrary, neural gas type of map structure [21]. Various other variants of
SOM, such as hierarchical, growing, and hierarchical and growing structures
are readily extendable to the ViSOM for various application needs.

The SOM has been related to the discrete principal curve/surface algo-
rithm [91]. However differences remain in both the projection and smoothing
processes. In the SOM the data are projected onto the nodes rather than
onto the curve. The principal curves perform the smoothing entirely in the
data space – see Eqn. (33). The smoothing process in SOM and ViSOM, as a
convergence criterion, is [120],

wk =
∑L

i=1 xiη(ν, k, i)∑L
i=1 η(ν, k, i)

(35)

Smoothing is governed by the indexes of the neurons in the map space.
The kernel regression uses the arc length parameters (ρ, ρi) or ‖ ρ − ρi ‖
exactly, while the neighbourhood function uses the node indexes (ν, k) or
‖ rν − rk ‖. Arc lengths reflect the curve distances between the data points.
However, node indexes are integer numbers denoting the nodes or positions
on the map grid, not the positions in the input space. So ‖ rν − rk ‖ does

738 H. Yin

not resemble ‖ wν − wk ‖ in the common SOM. In the ViSOM, however,
as the local inter-neuron distances on the map represent those in the data
space (subject to the map resolution), the distances of nodes on the map are
in proportion to the difference of their positions in the data space, that is
‖ rν − rk ‖ ∼ ‖ wν −wk ‖. The smoothing process in the ViSOM resembles
that of the principal curves as shown below,

wk =
∑L

i=1 xiη(ν, k, i)∑L
i=1 η(ν, k, i)

≈
∑L

i=1 xiη(wν ,wk, i)∑L
i=1 η(wν ,wk, i)

(36)

This shows that ViSOM is a better approximation to the principal curves/
surfaces than the SOM. SOM and ViSOM are similar only when the data
are uniformly distributed, or when the number of nodes becomes very large,
in which case both SOM and ViSOM will closely approximate the principal
curves/surfaces.

4.2 SOM and Mixture Models

The SOM has been linked with density matching models and the point density
that the SOM produces is related to the density of the data. However the SOM
does not exactly follow the data density. Such properties have been studied
and treated under the VQ framework [17, 54, 67, 89, 117].

The self-organizing mixture network (SOMN) [128] extends and adapts
the SOM to a mixture density model, in which each node characterizes a
conditional probability distribution. The joint probability density of the data
or the network output is described by a mixture distribution,

p(x | Θ) =
K∑

i=1

pi(x | θi)Pi (37)

where pi(x | θi) is the ith component-conditional density, and θi is the parame-
ter for the ith conditional density, i = 1, 2, · · · , K; Θ = (θ1, θ2, · · · , θK)T , and
Pi is the prior probability of the ith component or node and is also called
the mixing weights. For example, a Gaussian mixture has the following the
conditional densities respectively,

pi(x | θi) =
1

(2π)d/2 |
∑

i |1/2
exp

[
−1

2
(x−mi)T

∑
i

−1
(x−mi)

]
(38)

where θi = {mi,
∑

i} are the mean vector and covariance matrix, respectively.

Suppose that the true environmental data density function and the esti-
mated one are p(x) and p̂(x), respectively. The Kullback-Leibler information
distance measures the divergence between these two, and is defined as,

Self-Organizing Maps 739

I = −
∫

log
p̂(x)
p(x)

p(x)dx (39)

It is always positive and is equal to zero only when two densities are
identical.

When the estimated density is modelled as a mixture distribution, one
can seek the optimal estimate of the parameters by minimizing the Kullback-
Leibler divergence via its partial differentials in respect to model parameters,
more specifically,

∂I
∂θi

= −
∫ [

1
p̂(x | Θ̂)

∂p̂(x | Θ̂)
∂θi

]
p(x)dx, i = 1, 2, · · · , K (40)

As the true data density is not known, the stochastic gradient is used
for solving these non-directly solvable equations. This results in the following
adaptive update rules for the parameters and priors [129],2

θ̂i(t + 1) = θ̂i(t) + α(t)η(ν(x), i)

[
1

p̂(x | Θ̂)
∂p̂(x | Θ̂)

∂θi

]

= θ̂i(t) + α(t)η(ν(x), i)

[
P̂i(t)∑

j P̂i(t)p̂j(x | θj)
∂p̂i(x | Θ̂i)

∂θi

]
(41)

and

P̂i(t + 1) = P̂i(t) + α(t)

[
p̂i(x | θ̂i)P̂i(t)

p̂(x | Θ̂)
− P̂i(t)

]

= P̂i(t)− α(t)η(ν(x), i)
[
P̂ (i | x)− P̂i(t)

]
(42)

where α(t) is the learning coefficient or rate at time step t (0 < α(t) < 1),
and decreases monotonically. The winner is found via the maximum posterior
probability of the node,

P̂ (i | x) =
P̂ip̂i(x | θ̂i)∑

j p̂(x | Θ̂)
(43)

When the SOMN is limited to the homoscedastic case – namely equal
variances and equal priors (non-informative priors) for all components – only
the means are the learning variables. The above winner rule becomes,

v = argmax
i

p̂i(x | θ̂i)∑
j p̂j(x | θ̂j)

(44)

2 A common neighbourhood function, η(ν(x), i), can be added as in the SOM, but
is optional.

740 H. Yin

When the conditional density function is isotropic or symmetric or is a
function of ‖ x−m ‖, the above winning rule is a function of commonly used
Euclidean norm ‖ x−m ‖. The corresponding weight updating rule is,

mi(t + 1) = mi(t) + α(t)η(ν(x), i)
1∑

j pj(x | θj)
∂pi(x | θi)

∂mi
(45)

For example, for a Gaussian mixture with equal variance and prior for all
nodes, it is easy to show that the winning and mean update rules become,

v = arg max
i

[
exp

(
−‖ x−mi ‖2

2σ2

)]
(46)

and

mi(t + 1)

= mi(t) + α(t)η(ν(x), i)
1

2σ2

1∑
j pj(x | θj)

exp

(
−‖ x−mi ‖2

2σ2

)
(x−mi)

(47)

The winning rule becomes equivalent to the simple distance measure. The
update formula bear a similarity to that of the original SOM. The term
exp
(
− ‖x−mi‖2

2σ2

)
is playing a similar role as the neighbourhood function,

defined by the distances between weights and input instead of node indexes.
The SOM approximates it by quantizing it using node indexes. The SOMN
is also termed a ‘Bayesian SOM’, as it applies the Bayesian learning principle
to the SOM learning rule [129].

4.3 SOM and Kernel Method

A kernel is a function K : X × X → R, where X is the input space. This
function is a dot product of the mapping function φ(x) – in other words
K(x;y) = [φ(x), φ(y)], where φ : X → F, F being a high dimensional inner
product feature space. The mapping function φ(x) is often nonlinear and
not known. All the operations are defined in terms of the kernel function
instead of the mapping function. The kernel methodology has become increas-
ingly popular within supervised learning paradigms, with the Support Vector
Machine (SVM) being a widely known example. When nonlinearly mapping
data or patterns to high dimensional space, the patterns often become linearly
separable.

The kernel method has also been applied to the SOM. Following the kernel
PCA [97], a k-means based kernel SOM has been proposed [69]. Each data
point x is mapped to the feature space via a (unknown or imaginary) nonlinear
function φ(x). In principle each mean can be described as a weighted sum of
the observations in the feature space mi =

∑
n γi,nφ(xn), where {γi,n} are

Self-Organizing Maps 741

the constructing coefficients. The algorithm then selects a mean or assigns a
data point with the minimum distance between the mapped point and the
mean,

‖ φ(x−mi ‖2 = ‖ φ(x −
∑

n

γi,nφ(xn) ‖2

= K(x,x) − 2
∑

n

γi,nK(x,xn) +
∑
n,m

γm,nK(xn,xm) (48)

The update of the mean is based on a soft learning algorithm,

mi(t + 1) = mi(t) + Λ[φ(x −mi(t)] (49)

where Λ is the normalized winning frequency of the ith mean and is defined as,

Λ =
ζi(x),j∑t+1
n=1 ζi,n

(50)

where ζ is the winning counter and is often defined as a Gaussian function
between the indexes of the two neurons.

As the mapping function φ(x) is not known, the update rule (Eqn. (49))
is further elaborated and leads to the following updating rules for the
constructing coefficients of the means [69],

γi,n(t + 1) =
{

γi,n(t)(1 − ζ), for n
= t + 1
ζ, for n = t + 1 (51)

Note that these constructing coefficients, {γi,n}, together with the ker-
nel function, effectively define the kernel SOM in feature space. The winner
selection – that is, Eqn. (48) – operates on these coefficients and the kernel
function. No explicit mapping function φ(x) is required. The exact means or
neurons’ weights – {mi} – are not required.

There is another, direct way to kernelize the SOM by mapping the data
points and neuron weights, both defined in the input space, to a feature space,
then applying the SOM in the mapped dot product space. The winning rules
of this second type of kernel SOM have been proposed as follows, either in
the input space [85],

v = arg min
i
‖ x−mi ‖ (52)

or in the feature space [4],

v = arg min
i
‖ φ(x)− φ(mi) ‖ (53)

It will soon become clear that these two rules are equivalent for certain
kernels, such as the Gaussian. The weight update rule proposed by [4] is,

742 H. Yin

mi(t + 1) = mi(t) + α(t)η(v(x), i)∆J(x,mi) (54)

where J(x,mi) = ‖ φ(x) − φ(mi) ‖2 is the distance function in the feature
space or the proposed instantaneous or sample objective function. and are the
learning rate and neighbourhood function, respectively.

Note that,

J(x,mi) = ‖ φ(x) − φ(mi) ‖2 = K(x,x) +K(mi,mi)− 2K(x,mi) (55)

and,

∇J(x,mi) =
∂K(mi,mi)

∂mi
− 2

∂K(x,mi)
∂mi

(56)

Therefore this kernel SOM can also be operated entirely in the feature
space with the kernel function. As the weights of the neurons are defined in
the input space, they can be explicitly resolved.

These two kernel SOMs have been proved equivalent ([59], [123]); they can
all be derived from applying the energy function (Eqn. (18)) on the mapped
feature space,

EF =
∑

i

∫
vi

∑
j

η(i, j) ‖ φ(x) − φ(mj) ‖2 p(x)dx (57)

The kernel SOM can be seen as a result of directly minimizing this trans-
formed energy stochastically, in other words, by using the sample gradient on∑

j η(v(x), j) ‖ φ(x) − φ(mj) ‖2,

∂ÊF

mi
=

∂

mi

∑
j

η(ν(x), j) ‖ φ(x) − φ(mj) ‖2 = −2η(ν(x), i)∇J(x,mj) (58)

This leads to the same weight update rule of the kernel SOM as Eqn. (54).

Various kernel functions such as Gaussian (or radial basis function),
Cauchy and polynomial, are readily applicable to the kernel SOM [59]. For
example, for Gaussian kernel, the winning and weight update rules are,

v = argmin
i

J(x,mi) = arg min
i

[−2K(x−mi)] (59)

= argmin
i

[
−exp

(
−‖ x−mi ‖2

2σ2

)]
and,

mi(t + 1) = mi(t) + α(t)η(ν(x), i)
1

2σ2
exp

(
−‖ x−mi ‖2

2σ2

)
(x−mi) (60)

respectively. Please note for Gaussian kernel functions, although the winning
rule (Eqn. (59)) is derived from the feature space, it is equivalent to that of
the original SOM and is conducted in the input space.

Self-Organizing Maps 743

Comparing the kernel SOM algorithm (Eqns. (59) and (60)) with those of
the SOMN (Eqns. (46) and (47)), it can be easily seen that the two methods are
the same [123]. That is, the kernel SOM (with Gaussian kernels) is implicitly
applying a Gaussian mixture to model the data. In other words, the SOMN is
a kind of kernel method. As the SOM is seen as a special case of the SOMN,
the original SOM has a certain effect of the kernel method.

5 Applications and Case Studies

Thousands of applications of the SOM and its variants have been reported
since its introduction [40,53,83] – too many to list here. There is a dedicated
international Workshop on SOMs (WSOM), as well as focused sessions in
many neural network conferences. There have also been several special journal
issues dedicated to advances in SOM and related topics [1, 13, 38]. Moreover,
many new applications are being reported in many relevant journals today.
SOMs will remain an active topic in their continued extension, combination
and applications in the years to come.

In this Section, several typical applications are provided as case stud-
ies. They include image and video processing; density or spectrum profile
modeling; text/document mining and management systems; gene expres-
sion data analysis and discovery; and high dimensional data visualizations.
Other typical applications not discussed here include image/video retrieval
systems – for instance, PicSOM [57]; nonlinear ICA (Nonlinear PCA and
ICA) [27,31,37,82,84]; classification (LVQ) [53]; cross-modal information pro-
cessing and associations [76,77]; novelty detection [73]; robotics [6]; hardware
implementation [98]; and computer animation [113].

5.1 Vector Quantization and Image Compression

The SOM is an optimal VQ when the neighbourhood eventually shrinks to
just the winner, as it will satisfy the two necessary conditions for VQ (Voronoi
partition and centroid condition). The use of the neighbourhood function
makes the SOM superior to common VQs in two main respects. Firstly, the
SOM is better at overcoming the under- or over-utilization and local minima
problem. The second is that the SOM will produce a map (codebook) with
some ordering (even when the neighbourhood eventually vanishes) among the
code vectors, and this gives the map an ability to tolerate noise in the input
or retrieval patterns. An example is provided in Fig. 6, in which (b) shows the
16× 16 codebook trained on the Lena test image of 512× 512 pixels by SOM
with distinctive ordering found among the code vectors; and (a) shows the
quantized Lena image by the trained codebook. The code vectors are of 4× 4
pixel blocks.

744 H. Yin

(a) (b)

Fig. 6. (a) Quantized Lena image; (b) the SOM codebook (map)

It has been found that SOMs generally perform better than other VQs
especially in situations where local optima are present [117]. The robustness
of SOM has been further improved by introducing a constraint on the learning
extent of a neuron based on the input space variance it covers. The algorithm
is aiming to achieve global optimal VQ by limiting and unifying the distortions
from all nodes to approximately equal amounts – the asymptotic property of
the global optimal VQ (in other words, for a smooth underlying probability
density and large number of code vectors as all regions in an optimal Voronoi
partition have the same within region variance). The constraint is applied to
the scope of the neighbourhood function so that the node covering a large
region (thus having a large variance) has a large neighbourhood. The results
show that the resulting quantization error is smaller. Such a SOM-based VQ
has also been applied to video compression [2, 22] for improved performance
at low bit rates.

5.2 Image Segmentation

The SOM has been used in a hierarchical structure, together with the Markov
random field (MRF) model, for the unsupervised segmentation of textured
images [125]. The MRF is used as a measure of homogeneous texture features
from a randomly placed local region window on the image. Such features
are noisy and poorly known. They are input to a first SOM layer, which
learns to classify and filter them. The second local-voting layer – a simplified
SOM – produces an estimate of the texture type or label for the region. The
hierarchical network learns to progressively estimate the texture model, and
classify the various textured regions of similar type. Randomly positioning
the local window at each iteration ensures that the consecutive inputs to the
SOMs are uncorrelated. The size of the window is large at the beginning to
capture patch-like texture homogeneities and shrinks with time to reduce the

Self-Organizing Maps 745

(a) (b)

Fig. 7. (a) An aerial image; (b) segmented image using the SOM and Markov
random field

estimation parameter noise at texture boundaries. The weights of the neurons
in the first layer will converge to the MRF model parameters of various texture
types, whilst the weights of the second layer will be the prototypes of these
types – that is, the segmented image. The computational form of the entire
algorithm is simple and efficient. The theoretical analysis of the algorithm
shows that it will converge to the maximum likelihood segmentation. Figure 7
shows a typical example of such applications. The number of texture types was
subjectively assumed as four. Interestingly, the algorithm has segmented the
image into four meaningful categories: ‘trees’, ‘grass’, ‘buildings’, and ‘roads’.

5.3 Density Modeling

Some function profiles (such as spectra) can be considered as density
histograms. If a spectrum consists of many components, then the SOMN
described in Sect. 4.2 can be used to estimate the component profiles of the
spectrum [128, 129]. Re-sampling the observed spectrum will provide distri-
bution data for training. The x-ray diffraction patterns of crystalline complex
organic molecules (such as proteins) consist of a large number of Bragg diffrac-
tion spots. These patterns represent the intensity Fourier transform of the
molecular structure (actually the electron density maps); the crystallogra-
phers need to determine the precise position of each spot together with its
magnitude (namely, integrated spot intensity). The patterns exhibit relatively
high background noise together with spot spreading (due to shortcomings in
the experiments or limitations in the detection processes), which results in
overlapping spots. Automatic analysis of these patterns is a non-trivial task.
An example of such a pattern image is shown in Fig. 8(a), which is an 8-bit
greyscale and of size 88×71 pixels. In order for the SOMN to learn the profiles
of these diffraction spots, the image (diffraction intensity function) has to be

746 H. Yin

Fig. 8. (a) X-ray diffraction pattern (part); (b) modelled profiles by a 20 × 20
SOMN (from [129])

re-sampled to provide distribution data. A set of training data (10,647 points
in total) was obtained by double sampling this image. A 400-neuron SOMN,
arranged in a 20 × 20 grid, was used to learn this density. In this case, the
number of spots (peaks or components) in a pattern (a mixture) will not gen-
erally be known a priori. The initial positions of the neurons were regularly
placed inside the data space – in other words, a [1, 88] × [1, 71] rectangular
grid. The initial variances were assigned equally to a diagonal matrix with the

Self-Organizing Maps 747

diagonal values equal to a fraction of the grid size, and the initial mixing priors
were assigned equally to 1/400. The grid was pre-ordered to save unnecessary
computational cost as this is a mapping with the same dimension.

After a few learning cycles, the SOMN allocated the spots to the Gaus-
sian kernels and decomposed the overlapping ones. Individual neurons and
their parameters provide centre (mean vectors) and width (covariance matri-
ces) information for relevant spots. The total intensity of each peak is readily
obtainable and is simply related to its mixing weight. The result of the esti-
mation after five epochs is shown in Fig. 8(b). The number of active nodes
(that is, surviving ones) is much less than the initial guess of 400. The SOMN
has dynamically fitted to the correct mixture number and suppressed others.
As the updating at each input was limited to a small area (3× 3 – the winner
and its first order neighbourhood, in this example), the SOMN required a
much lighter computational effort than updating the entire network at each
input (as the EM algorithm would). This becomes particularly advantageous
when the number of the nodes is large. In this example, The EM algorithm
of the same size would require approximately 400/(3 × 3) ≈ 44 times more
computing effort than the SOMN.

5.4 Gene Expression Analysis

The SOM has been applied as a valid and useful tool for clustering gene expres-
sions [80,104]. Several attempts have been made to deal with ordered sequence
or temporal sequences using SOM. A common approach is to use the trajec-
tories of consecutive winning nodes on the SOM. Other methods are based on
modification of the learning topology by introducing recurrent connections,
for example the Temporal Kohonen Maps (TKM) or Recurrent SOM (RSOM)
mentioned in Sect. 4. In TKM the participation of earlier input vectors in each
unit is represented by using a recursive difference equation which defines the
current unit activity as a function of the previous activations and the current
input vector. In the RSOM, which is a modification of the TKM, the scalar
node activities of the TKM are replaced by difference vectors defined as a
recursive difference equation of the new input, the previous difference vectors,
and the weight vectors of the units. One potential problem with recurrent
models is stability. In the case of temporal gene expression clustering, the
data items presented to the map are not a spatial vector, but a sequence with
time order in itself. They are time-series corresponding to the expression levels
over time of a particular gene. Therefore, if a common 2-D SOM is used, the
trained map can then be used to mark the trajectories of the expressions of
the genes for comparison purposes.

We approach the temporal extension of SOM from another perspective,
this being the similarity metric. If the similarity metric takes into account tem-
poral properties, then the neurons in the resultant map will exhibit temporal
relationships. As time is one dimensional, a 1-D SOM is more appropriate.

748 H. Yin

In addition, a circular (that is, a closed 1-D SOM), can further detect
cyclic temporal characteristics [80]. A novel temporal metric termed the
co-expression coefficient has been defined as [79],

ce(x, y) =
∫

x′y′dt√∫
x′2dt

∫
y′2dt

(61)

where x and y are two (often modelled, thus smoothed) gene expression pro-
files; x′ and y′ are their derivatives. It can be seen that the co-expression
coefficient is the correlation coefficient of the derivatives of the profiles. Com-
paring the derivatives of the two better profiles rather than directly on the
two profiles captures their temporal properties.

Two yeast cell cycle datasets (208 and 511 genes) were modelled using
RBFs and then the modelled profiles were differentiated [80]. The Bayesian
information criterion was used to validate the number of clusters obtained by
the circular SOM. Each node presents the smaller distance only to its two
neighbouring nodes in a chain-ordered fashion, this implies that characteristic
traits are split or merged with larger or fewer number of clusters without
changing the order or relation between them. Figure 9 presents the resulting
SOMs and prototype profiles of the clusters. It can be easily seen that topology
exists among the profiles. The topological order here refers to the time shift.
This demonstrates that the proposed method is able to group profiles based on
their temporal characteristics and can automatically order the groups based
on their periodical properties.

Genes identified as cell-cycle-regulated by traditional biological methods
have been used to evaluate the performance of the proposed technique. The
result shows that the obtained clusters have high relevance to the distribution
of these genes among the cell cycle phases identified by biological methods,
compared with other clustering methods [80].

Neuron 8
G2

43.5 min,
107 min.

Neuron 6
M/G1

11.4 min,
66.5 min.

Neuron 3
G1

21.4 min, 81.0.

Neuron 2
G1/S

27.1 min, 90.8 min.

Neuron 4
G1

17.8 min,
78.2 min.

Neuron 7
M

56.0 min.

Neuron 5
M/G1

11.4 min,
78.8 min.

Neuron 1
S

37.8 min,
101.6 min.

Neuron 1
G1

17.2 min,
74.6 min.

Neuron 2
M/G1

11.2 min, 69.5 min.

Neuron 3
M

58 min.

Neuron 4
G2

48.8 min,
109.5 min.

Neuron 5
S/G2

42.3 min,
105.9 min.

Neuron 6
S

33.4 min,
96.0 min.

Neuron 7
G1

24.0 min,
82.3 min.

uron 8
G1

19.9 min,
78.4 min.

Fig. 9. Circular SOMs for clustering temporal gene expressions (yeast cell cycle
dataset): (a) 208-gene dataset; (b) 511-gene dataset (from [80])

Self-Organizing Maps 749

5.5 Data Visualization

Data projection and visualization has become a major application area for
neural networks, in particular for the SOMs [53], as its topology preserving
property is unique among other neural models. Good projection and visual-
ization methods help to identify clustering tendency, to reveal the underlying
functions and patterns, and to facilitate decision support. A great deal of
research has been devoted to this subject, and a number of methods have
been proposed. A recent review on this subject can be found in [121].

The SOM has been widely used as a visualization tool for dimensionality
reduction (for instance, [34,41,53,105]). The SOM’s unique topology preserv-
ing property can be used to visualize the relative mutual relationships among
the data. However, the SOM does not directly apply to scaling, which aims to
reproduce proximity in (Euclidean) distance on a low visualization space, as it
has to rely on a colouring scheme (for example, the U-matrix method [105]) to
imprint the distances crudely on the map. Often the distributions of the data
points are distorted on the map. The recently proposed ViSOM [118–120],
described in Sect. 4.1, constrains the lateral contraction force between the
neurons in the SOM and hence regularizes the inter-neuron distances with
respect to a scalable parameter that defines and controls the resolution of
the map. It preserves the data structure as well as the topology as faithfully
as possible. ViSOM provides a direct visualization of both the structure and
distribution of the data. An example is shown in Fig. 10, where a 100 × 100

Fig. 10. Mapping and visualization of the iris data set: (top left) PCA, (top right)
Sammon mapping; (bottom left) SOM with U matrix Colouring, (bottom right)
ViSOM

750 H. Yin

-2
-1

0
1

2

0

2

4

6
-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Two-dimensional Isomap embedding (with neighborhood graph).

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

Fig. 11. Manifold mapping by various methods: (top left) original S-shape data
and ViSOM embedding, (top right) Isomap projection; (bottom left) LLE projection,
(bottom right) ViSOM projection

(hexagonal) ViSOM was used to map the 4-D Iris data set; it gives direct
visualization of data distribution, similar to Sammon mapping. Although, the
SOM with colouring can show the gap between iris setosa and the rest, it is
impossible to capture the data structure and represent the data proximity on
the map.

Usually for a fine mapping, the resolution parameter needs to be set to a
small value. Moreover, a large number of nodes, that is a large map, is required,
as for all discrete mappings. However such a computational burden can be
greatly reduced by interpolating a trained map [127], or by incorporating a
local linear projection on the trained low resolution map [122].

A comparison with other mapping methods, such as PCA, Sammon map-
ping, Isomap and Local Linear Embedding (LLE) [93] on a highly nonlinear
‘S’ shape manifold is also shown in Fig. 11. In this example, the resolution of
the ViSOM is enhanced [122].

5.6 Text Mining and Information Management

With drastically increasing amounts of unstructured content available elec-
tronically within an enterprise or on the web, it is becoming inefficient if
not impossible to rely on human operators to manually annotate electronic

Self-Organizing Maps 751

documents. (Web) content management systems have become an important
area of research for many applications, such as e-libraries, enterprise por-
tals, e-commerce, software content management, document management, and
knowledge discovery. The documents, generated in an enterprise either cen-
trally or locally by employees, are often unstructured or arranged in ad hoc
manner (for example, emails, reports, web pages, presentations). Document
management addresses many issues, such as storage, indexing, security, revi-
sion control, retrieval and organization of documents. Many existing full-text
search engines return a large ranked list of documents, many of which are irrel-
evant. This is especially true when queries are short and very general words
are used. Hence document organization has become important in information
retrieval and content management.

The SOM has been applied to organize and visualize vast amounts of tex-
tual information. Typical examples include the Welfaremap [41] and WEBSOM
[34]. Many SOM variants have been proposed and applied to document
organization, for instance, TreeGCS [33] and the growing hierarchical-SOM
(GH-SOM) [88]. The main advantage of SOM is the topology preservation
of input space, which makes similar topics appear closely on the map. Most
of these applications however are based on 2-D maps and grids, which are
intuitive for the concept of a digital library. However such a presentation of
information (mainly document files) is counter to all existing computer file
organizers and explorers, such as MS Windows Explorer.

We present a new way of utilizing the SOM as a topology-preserving man-
ifold tree-structure for content management and knowledge discovery [23].
The method can generate a taxonomy of topics from a set of unannotated,
unstructured documents. It consists of a hierarchy of self-organizing grow-
ing chains, each of which can develop independently in terms of size and
topics. The dynamic development process is validated continuously using a
proposed entropy-based Bayesian information criterion. Each chain meeting
the criterion spawns child chains, with reduced vocabularies and increased spe-
cializations. This results in a topological tree hierarchy, which can be browsed
like a table of contents directory or web portal. A typical tree is shown in
Fig. 12. The approach has been tested and compared with several existing
methods on real world web page datasets. The results have clearly demon-
strated the advantages and efficiency in content organization of the proposed
method in terms of computational cost and representation. The preserved
topology provides a unique, additional feature for retrieving related topics
and confining the search space.

An application prototype developed based this method is shown in Fig. 13.
The left panel displays the generated content tree with various levels and
preserved topology on these levels. The right panel shows the details of a
selected level or branch or a particular document. The method bears a similar
interface to many computer file managers, especially the most popular MS
Windows Explorer style.

752 H. Yin

Fig. 12. A typical result of using a topological tree structure for organizing
documents

Self-Organizing Maps 753

Fig. 13. Screen shot of a document management system developed using a
topological tree structure

6 Summary and Future Directions

This Chapter provides an overview and review on the self-organizing map
(SOM). First, it reviewed the biological background of SOM and showed that
it is a simplified and abstract mathematical model of the retina-cortex map-
ping based on Hebbian learning and the lateral inhibition phenomena. Then
from the mathematics of the algorithm, we discussed and explained its under-
lying cost function and various measures for mapping quality. Then its variant,
the visualization induced SOM (ViSOM), was proposed for preserving local
metrics on the map, and reviewed for use in data visualization and nonlinear
manifold mapping. The relationships between SOM, ViSOM, multidimen-
sional scaling, principal curve/surface, kernel PCA and several other nonlinear
projection methods were analyzed and discussed. Both the SOM and ViSOM
are multidimensional scaling methods and produce nonlinear dimension-
reduction mapping or manifold of the input space. The SOM was shown to
be a qualitative scaling method, while the ViSOM is a metric scaling method

754 H. Yin

and approximates a discrete principal curve/surface. The SOM has also been
extended to a probabilistic model and the resulting self-organizing mixture
model also reveals that self-organization is an entropy-related optimization
process. Furthermore, such a self-organizing model naturally approximates
the kernel method. Examples and typical applications of SOM and ViSOM in
the context of pattern recognition, clustering, classification, data visualization
and mining, and nonlinear manifolds were presented.

Future challenges lie in several areas. First, although the SOM-related
methods are finding wide application in more and more fields, to make the
methods more efficient, robust and consistent is a key challenge, especially for
large-scale, real-world applications. To adapt the methods for various input
formats and conditions, such as temporal sequences and qualitative inputs, is
also an on-going research focus. For general pattern recognition, the SOM may
have more potential than implied by current practice, which often limits the
SOM to a 2-D map and empirically chosen model parameters. Ways of apply-
ing and extending SOM for optimal clustering and classification also need to be
investigated further. Last but not the least, to make this biologically inspired
model more biologically relevant is also a key challenge. The model may have
to be further extended in order to deal with complex biological signals and
networks, for example in handling spikes and more importantly multiple,
perhaps inhomogeneous and population spike trains. A synergy with other
biologically relevant models seems necessary for modeling large-scale complex
biological systems, especially the brain. Neural coding is widely studied under
information theory. Probabilistic extensions of the SOM may provide useful
tools in deciphering and interpreting the information content and relationships
conveyed among stimuli and responses.

References

1. Allinson NM, Obermayer K, Yin H (2002) Neural Networks (Special Issue on
New Developments in Self-Organising Maps), 15: 937–1155.

2. Allinson NM, Yin H (1999) Self-organising maps for pattern recognition. In:
Oja E, Kaski S (eds.) Kohonen Maps, Elsevier, Amsterdam, The Netherlands:
111–120.

3. Ameri S-I (1980) Topographic organisation of nerve fields. Bulletin
Mathematical Biology, 42: 339–364.

4. Andras P (2002) Kernel-Kohonen networks. Intl. J. Neural Systems, 12: 117–
135.

5. Banfield JD, Raftery AE (1992) Ice floe identification in satellite images using
mathematical morphology and clustering about principal curves. J. American
Statistical Association, 87: 7–16.

6. Barreto GA, Araujo AFR, Ducker C, Ritter H (2002) A distributed robotic con-
trol system based on a temporal self-organizing neural network. IEEE Trans.
Systems, Man and Cybernetics – C, 32: 347–357.

Self-Organizing Maps 755

7. Bauer H-U, Pawelzik KR (1992) Quantifying the neighborhood preservation of
self-organizing feature maps. IEEE Trans. Neural Networks, 3: 570–579.

8. Bishop CM, Svensén M, Williams CKI (1998) GTM: the generative
topographic mapping. Neural Computation, 10: 215–235.

9. Bruce V, Green PR (1990) Visual Perception: Physiology, Psychology and
Ecology (2nd ed.), Lawerence Erlbraum Associates, East Essex, UK.

10. Chang K-Y, Ghosh J (2001) A unified model for probabilistic principal surfaces.
IEEE Trans. Pattern Analysis and Machine Intelligence, 23: 22–41.

11. Chappell GJ, Taylor JG (1993) The temporal Kohonen map. Neural Networks,
6: 441–445.

12. Cottrell M, Fort JC (1986) A stochastic model of retinotopy: a self-organising
process. Biological Cybernetics, 53: 405–411.

13. Cottrell M, Verleysen M (2006) Neural Networks (Special Issue on Advances
in Self-Organizing Maps), 19: 721–976.

14. Cox TF, Cox MAA (1994) Multidimensional Scaling, Chapman & Hall,
London, UK.

15. de Bolt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the
reliability of self-organising maps. Neural Networks, 15: 967–978.

16. De Ridder D, Duin RPW (1997) Sammon mapping using neural networks: a
comparison. Pattern Recognition Letters, 18: 1307–1316.

17. Dersch DR, Tavan P (1995) Asymptotic level density in topological feature
maps. IEEE Trans. Neural Networks, 6: 230–236.

18. Durbin R, Mitchison G (1990) A dimension reduction framework for
understanding cortical maps. Nature, 343: 644–647.

19. Erwin E, Obermayer K, Schulten K (1992) Self-organising maps: ordering,
convergence properties and energy functions. Biological Cybernetics, 67: 47–55.

20. Erwin E, Obermayer K, Schulten K (1992) Self-organising maps: stationary
states, metastability and convergence rate. Biological Cybernetics, 67: 35–45.

21. Estévez PA, Figueroa CJ (2006) Online data visualization using the neural gas
network. Neural Networks, 19: 923–934.

22. Ferguson KL, Allinson NM (2004) Efficient video compression codebooks
using SOM-based vector quantisation. Proc. IEE – Vision, Image and Signal
Processing, 151: 102–108.

23. Freeman R, Yin H (2004) Adaptive topological tree structure (ATTS) for
document organisation and visualisation. Neural Networks, 17: 1255–1271.

24. Gaze RM (1970) The Information of Nerve Connections, Academic Press,
London, UK.

25. Goodhill GJ, Sejnowski T (1997) A unifying objective function for topographic
mappings. Neural Computation, 9: 1291–1303.

26. Graepel T, Burger M, Obermayer K (1997) Phase transitions in stochastic
self-organizing maps. Physics Reviews E, 56: 3876–3890.

27. Haritopoulos M, Yin H, Allinson NM (2002) Image denoising using self-
organising map-based nonlinear independent component analysis. Neural
Networks, 15: 1085–1098.

28. Hastie T, Stuetzle W (1989) Principal curves. J. American Statistical
Association, 84: 502–516.

29. Haykin S (1998) Neural Networks: A Comprehensive Foundation (2nd ed.),
Prentice Hall, Englewood Cliffs, NJ.

30. Hebb D (1949) Organisation of behavior, Wiley, New York, NY.

756 H. Yin

31. Herrmann M, Yang H (1996) Perspectives and limitations of self-organising
maps in blind separation of source signals. In: Amari S-I, Xu L, Chan
L-W, KIng I, Leung K-S (eds.) Proc. Intl. Conf. Neural Information Process-
ing (ICONIP’96), 24–27 September, Hong Kong. Springer-Verlag, Singapore:
1211–1216.

32. Heskes T (1999) Energy functions for self-organizing maps, In: Oja E, Kaski S
(eds.) Kohonen Maps, Elsevier, Amsterdam: 303–315.

33. Hodge VJ, Austin J (2001) Hierarchical growing cell structures: TreeGCS.
IEEE Trans. Knowledge and Data Engineering, 13: 207–218.

34. Honkela T, Kaski S, Lagus K, Kohonen T (1997) WEBSOM-self-organizing
maps of document collections. In: Proc. Workshop on Self-Organizing Maps
(WSOM’97), 4–6 June, Helsinki, Finland. Helsinkis University of Technology:
310–315.

35. Hsu C-C (2006) Generalising self-organising map for categorical data. IEEE
Trans. Neural Networks, 17: 294–304.

36. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis.
Wiley, New York, NY.

37. Hyvärinen A, Pajunen P (1999) Nonlinear independent component analysis:
Existence and uniqueness results. Neural Networks, 12: 429–439.

38. Ishikawa M, Miikkulainen R, Ritter H (2004) Neural Networks (Special Issue
on New Developments in Self-Organizing Systems), 17: 1037–1389.

39. Karhunen J, Joutsensalo J (1995) Generalisation of principal component
analysis, optimisation problems, and neural networks. Neural Networks, 8:
549–562.

40. Kaski S, Kangas J, Kohonen T (1998) Bibliography of self-organizing map
(SOM) papers: 1981–1997. Neural Computing Surveys, 1: 1–176.

41. Kaski S, Kohonen T (1996) Exploratory data analysis by the self-organizing
map: Structures of welfare and poverty in the world. In: Refenes A-PN,
Abu-Mostafa Y, Moody J, Weigend A (eds.) Neural Networks in Financial
Engineering, World Scientific, Singapore: 498–507.

42. Kegl B, Krzyzak A, Linder T, Zeger K (1998) A polygonal line algorithm
for constructing principal curves. Neural Information Processing Systems
(NIPS’98), 11: 501–507.

43. Kohonen T (1972) Correlation matrix memory. IEEE Trans. Computers, 21:
353–359.

44. Kohonen T (1973) A new model for randomly organised associative memory.
Intl. J. Neuroscience, 5: 27–29.

45. Kohonen T (1974) An adaptive associative memory principle. IEEE Trans.
Computers, 23: 444–445.

46. Kohonen T (1982) Self-organised formation of topologically correct feature
map. Biological Cybernetics, 43: 56–69.

47. Kohonen T (1984) Self-organization and Associative Memory, Springer-Verlag,
Berlin.

48. Kohonen T (1986) Representation of sensory information in self-organising
feature maps, and relation of these maps to distributed memory networks.
Proc. SPIE, 634: 248–259.

49. Kohonen T (1987) Adaptive, associative, and self-organizing functions in neural
computing, Applied Optics, 26: 4910–4918.

Self-Organizing Maps 757

50. Kohonen T (1991) Self-organizing maps: optimization approaches. In: Kohonen
T, Makisara K, Simula O, Kangas J (eds.) Artificial Neural Networks 2, North-
Holland, Amsterdam, The Netherlands: 981–990.

51. Kohonen T (1995) The adaptive-subspace SOM (ASSOM) and its use for the
implementation of invariant feature detection. In: Fogelman-Soulié, Gallinari P
(eds.) Proc. Intl. Conf. Artificial Neural Systems (ICANN’95), 9–13 October,
Paris, France. EC2 Nanterre, France, 1: 3–10.

52. Kohonen T (1996) Emergence of invariant-feature detectors in the adaptive-
subspace self-organizing map. Biological Cybernetics, 75: 281–291.

53. Kohonen T (1997) Self-Organising Maps (2nd ed.). Springer-Verlag, Berlin.
54. Kohonen T (1999) Comparison of SOM point densities based on different

criteria. Neural Computation, 11: 2081–2095.
55. Kohonen T, Somervuo P (2002) How to make a large self-organising maps for

nonvectorial data. Neural Networks, 15: 945–952.
56. Kramer MA (1991) Nonlinear principal component analysis using autoas-

sociative neural networks. American Institute Chemical Engineers J., 37:
233–243.

57. Laaksonen J, Koskela M, Laakso S, Oja E (2000) PicSOM - content-based
image retrieval with self-organizing maps. Pattern Recognition Letters, 21:
1199–1207.

58. Lampinen J, Oja E (1992) Clustering properties of hierarchical self-organizing
maps. J. Mathematical Imaging and Vision, 2: 261–272.

59. Lau KW, Yin H, Hubbard S (2006) Kernel self-organising maps for
classification. Neurocomputing, 69: 2033–2040.

60. LeBlanc M, Tibshirani RJ (1994) Adaptive principal surfaces. J. American
Statistical Association, 89: 53–64.

61. Lee RCT, Slagle JR, Blum H (1977) A triangulation method for the sequential
mapping of points from n-space to two-space. IEEE Trans. Computers, 27:
288–292.

62. Lin S, Si J (1998) Weight-value convergence of the SOM algorithm for discrete
input. Neural Computation, 10: 807–814.

63. Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design.
IEEE Trans. Communications, 28: 84–95.

64. Lo ZP, Bavarian B (1991) On the rate of convergence in topology preserving
neural networks. Biological Cybernetics, 65: 55–63.

65. Lowe D, Tipping ME (1996) Feed-forward neural networks and topographic
mappings for exploratory data analysis. Neural Computing and Applications,
4: 83–95.

66. Luttrell SP (1990) Derivation of a class of training algorithms. IEEE Trans.
Neural Networks, 1: 229–232.

67. Luttrell SP (1991) Code vector density in topographic mappings: Scalar case,
IEEE Trans. Neural Networks, 2: 427–436.

68. Luttrell SP (1994) A Bayesian analysis of self-organising maps. Neural
Computation, 6: 767–794.

69. MacDonald D, Fyfe C (2000) The kernel self organising map. In: Proc. 4th Intl.
Conf. Knowledge-based Intelligence Engineering Systems and Applied Tech-
nologies, 30 August – 1 September, Brighton, UK, IEEE Press, Piscataway,
NJ: 317–320.

70. Malthouse EC (1998) Limitations of nonlinear PCA as performed with generic
neural networks. IEEE Trans. Neural Networks, 9: 165–173.

758 H. Yin

71. Mao J, Jain AK (1995) Artificial Neural Networks for Feature Extraction and
Multivariate Data Projection. IEEE Trans. Neural Networks, 6: 296–317.

72. Marr D (1969) A theory of cerebellar cortex. J. Physiology, 202: 437–70.
73. Marsland S, Shapiron J, Nehmzow U (2002) A self-organising network that

grows when required. Neural Networks, 15: 1041–1058.
74. Martinetz TM, Schulten KJ (1991) A “neuralgas” network learns topologies. In:

Kohonen T, Mäkisara K, Simula O, Kangas J (eds.) Artificial Neural Networks,
NorthHolland, Amsterdam, The Netherlands: 397–402.

75. Martinetz TM, Schulten KJ (1994) Topology representing networks. Neural
Networks, 7: 507–522.

76. Miikkulainen R (1990) Script recognition with hierarchical feature maps.
Connection Science, 2: 83–101.

77. Miikkulainen R (1997) Dyslexic and category-specific aphasic impairments in
a self-organizing feature map model of the lexicon. Brain and Language, 59:
334–366.

78. Mitchison G (1995) A type of duality between self-organising maps and minimal
wiring. Neural Computation, 7: 25–35.

79. Möller-Levet CS, Yin H (2005) Modeling and analysis of gene expression
time-series based on co-expression. Intl. J. Neural Systems, (Special Issue on
Bioinformatics), 15: 311–322.

80. Möller-Levet CS, Yin H (2005) Circular SOM for temporal characterisation
of modelled gene expressions. In: Gallagher M, Hogan J, Maire F (eds.) Proc.
Intl. Conf. Intelligent Engineering Data Engineering and Automated Learning
Conf. (IDEAL’05), 6–8 July, Brisbane, Australia. Lecture Notes in Computer
Science 3578, Springer-Verlag, Berlin: 319–326.

81. Oja E (1989) Neural networks, principal components, and subspaces. Intl. J.
Neural Systems, 1: 61–68.

82. Oja E (1995) PCA, ICA, and nonlinear Hebbian learning. In: Fogelman-Soulié
F, Gallinari P (eds.) Proc. Intl. Conf. Artificial Neural Networks (ICANN’95),
9–13 October, Paris, France. EC2, Nanterre, France: 89–94.

83. Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM)
papers: 1998–2001 addendum. Neural Computing Surveys, 3: 1–156.

84. Pajunen P, Hyvärinen A, Karhunen J (1996) Nonlinear blind source separation
by self-organising maps. In: Amari S-I, Xu L, Chan L-W, King I, Leung K-S
(eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP’96), 24–27
September, Hong Kong. Springer-Verlag, Singapore: 1207–1210.

85. Pan ZS, Chen SC, Zhang DQ (2004) A kernel-base SOM classifier in input
space. Acta Electronica Sinica, 32: 227–231 (in Chinese).

86. Pearson D, Hanna E, Martinez K (1990) Computer-generated cartoons. In: .
Barlow H, Blakemore C, Weston-Smith M (eds.) Images and Understandings,
Cambridge University Press, Cambridge, UK.

87. Ratcliff F (1965) Mach Bands: Quantitative Studies on Neural Networks in the
Retina. Holden-Day, Inc., San Francisco, CA.

88. Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-
organizing map: exploratory analysis of high-dimensional data. IEEE Trans.
Neural Networks, 13: 1331–1341.

89. Ritter H (1991) Asymptotical level density for class of vector quantisation
processes. IEEE Trans. Neural Networks, 2: 173–175.

Self-Organizing Maps 759

90. Ritter H, Schulten K (1988) Convergence properties of Kohonen’s topology
conserving maps: fluctuations, stability, and dimension selection. Biological
Cybernetics, 60: 59–71.

91. Ritter H, Martinetz T, Schulten K (1992) Neural Computation and
Self-organising Maps: An Introduction. Addison-Wesley, Reading, MA.

92. Robbins H, Monro S (1952) A stochastic approximation method. Annals
Mathematical Statistics, 22: 400–407.

93. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear
embedding. Science, 290: 2323–2326.

94. Sakrison DJ (1966) Stochastic approximation: A recursive method for solving
regression problems. In: Balakrishnan V (ed.) Advances in Communication
Systems: Theory and Applications 2, Academic Press, New York, NY: 51–100.

95. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE
Trans. Computers, 18: 401–409.

96. Sanger TD (1991) Optimal unsupervised learning in a single-layer linear
feedforward network. Neural Networks, 2: 459–473.

97. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10: 1299–131.

98. Seiffert U, Michaelis B (2001) Multi-dimensional self-organizing maps on mas-
sively parallel hardware. In: Allinson N, Yin H, Allinson L, Slack J (eds.)
Advances in Self-Organising Maps, Springer-Verlag, London: 160–166.

99. Shepherd GM (1988) Neurobiology (2nd ed.), Oxford University Press, Oxford,
UK.

100. Sum J, Leung C-S, Chan L-W, Xu L (1997) Yet another algorithm which can
generate topography map. IEEE Trans. Neural Networks, 8: 1204–1207.

101. Sutton RS, Barto AG, Williams RJ (1991) Reinforcement learning is direct
adaptive optimal control. In: Proc. American Control Conf., 26–28 June,
Boston, MA. IEEE Press, Piscataway, NJ: 2143–2146.

102. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework
for nonlinear dimensionality reduction. Science, 290: 2319–2323.

103. Tibshirani R (1992) Principal curves revisited. Statistics and Computation, 2:
183–190.

104. Törönen P, Kolehmainen K, Wong G, Castrén E (1999) Analysis of gene expres-
sion data using self-organising maps. Federation European Biochemical Socities
Letters, 451: 142–146.

105. Ultsch A (1993) Self-organising neural networks for visualisation and classifi-
cation. In: Opitz O, Lausen B, Klar R (eds.) Information and Classification,
Springer-Verlag, Berlin: 864–867.

106. Van Hulle MM (1998) Kernel-based equiprobabilitic topographic map
formation. Neural Computation, 10: 1847–1871.

107. Van Hulle MM (2002) Kernel-based equiprobabilitic topographic map forma-
tion achieved with an information-theoretic approach. Neural Networks, 15:
1029–1040.

108. Varsta M, del Ruiz Millän J, Heikkonen J (1997) A recurrent self-
organizing map for temporal sequence processing. Proc. ICANN’97, Lausanne,
Switzerland. Springer-Verlag, Berlin: 197–202.

109. Villmann T, Der R, Herrmann M, Martinetz TM (1997) Topology preserva-
tion in self-organizing feature maps: exactdefinition and measurement. IEEE
Trans. Neural Networks, 8: 256–266.

760 H. Yin

110. Voegtlin T (2002) Recursive self-organizing maps. Neural Networks, 15:
979–992.

111. von der Malsburg C, Willshaw DJ (1973) Self-organization of orientation
sensitive cells in the striate cortex. Kybernetik, 4: 85–100.

112. Walter J, Ritter H (1996) Rapid learning with parametrized self-organizing
maps. Neurocomputing, 12: 131–153.

113. Wang Y, Yin H, Zhou L-Z, Liu Z-Q (2006) Real-time synthesis of 3D
animations by learning parametric gaussians using self-organizing mixture
networks. In: King I, Wang J, Chan L, Wang D (eds.) Proc. Intl. Conf. Neural
Information Processing (ICONIP’06), 2–6 October, Hong Kong. Lecture
Notes in Computer Science 4233, Springer-Verlag, Berlin, II: 671–678.

114. Willshaw DJ, Buneman OP, Longnet-Higgins HC (1969) Non-holographic
associative memory. Nature, 222: 960–962.

115. Willshaw DJ, von der Malsburg C (1976) How patterned neural connections
can be set up by self-organization. Proc. Royal Society of London – Series B,
194: 431–445.

116. Wu S, Chow TWS (2005) PRSOM: A new visualization method by hybridiz-
ing multidimensional scaling and self-organizing map. IEEE Trans. Neural
Networks, 16: 1362–1380.

117. Yin H (1996) Self-Organising Maps: Statistical Analysis, Treatment and
Applications, PhD Thesis, Department of Electronics, University of York, UK.

118. Yin H (2001) Visualisation induced SOM (ViSOM). In: Allinson N, Yin H,
Allinson L, Slack J (eds.) Advances in Self-Organising Maps, Springer-Verlag,
London, UK: 81–88.

119. Yin H (2002) ViSOM-A novel method for multivariate data projection and
structure visualisation. IEEE Trans. Neural Networks, 13: 237–243.

120. Yin H (2002) Data visualisation and manifold mapping using the ViSOM.
Neural Networks, 15: 1005–1016.

121. Yin H (2003) Nonlinear multidimensional data projection and visualisation. In:
Liu J, Cheung Y, Yin H (eds.) Proc. Intl. Conf. Intelligent Data Engineering
and Automated Learning (IDEAL’03), 21–23 March, Hong Kong. Lecture
Notes in Computer Science 2690, Springer-Verlag, Berlin: 377–388.

122. Yin H (2003) Resolution enhancement for the ViSOM. In: Proc. Workshop on
Self-Organizing Maps, 11–14 September, Kitakyushu, Japan. Kyushu Institute
of Technology: 208–212.

123. Yin H (2006). On the equivalence between kernel self-organising maps and
self-organising mixture density networks. Neural Networks, 19: 780–784.

124. Yin H (2007) Connection between self-organising maps and metric multidi-
mensional scaling. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN2007),
12–17 August, Orlando, FL. IEEE Press, Piscataway, NJ: (in press).

125. Yin H, Allinson NM (1994) Unsupervised segmentation of textured images
using a hierarchical neural structure. Electronics Letters, 30: 1842–1843.

126. Yin H, Allinson NM (1995) On the distribution and convergence of the feature
space in self-organising maps. Neural Computation, 7: 1178–1187.

127. Yin H, Allinson NM (1999) Interpolating self-organising map (iSOM).
Electronics Letters, 35: 1649–1650.

128. Yin H, Allinson NM (2001) Self-organising mixture networks for probability
density estimation. IEEE Trans. Neural Networks, 12: 405–411.

129. Yin H, Allinson NM (2001) Bayesian self-organising map for Gaussian
mixtures. Proc. IEE – Vision, Image and Signal Processing, 148: 234–240.

Resources

1 Key Books

Kohonen T (1995, 1997, 2001) Self-Organizing Maps (1st, 2nd and 3rd
editions). Springer-Verlag, Berlin.

Haykin S (1994) Neural Networks: A Comprehensive Foundation. Macmil-
lian, New York, NY.

Haykin S (1999) Neural Networks: A Comprehensive Foundation (2nd ed.).
Prentice Hall, Englewood Cliffs, NJ.

Oja E, Kaski S (eds.) (1999) Kohonen Maps. Elsevier, Amsterdam, The
Netherlands.

Allinson N, Yin H, Allinson L, Slack J (eds.) (2001) Advances in Self-
Organising Maps. Springer-Verlag, London, UK.

Ritter H, Martinetz T, Schulten K (1992) Neural Computation and Self-
organising Maps: An Introduction. Addison Wesley, Reading, MA.

Van Hulle MM (2000) Faithful Representations and Topographic Maps: From
Distortion to Information Based Self-Organization. Wiley, New York, NY.

2 Key Survey/Review Articles

Allinson NM, Obermayer K, Yin H (eds.) (2002) Special Issue on New
Developments in Self-Organising Maps, Neural Networks, 15(8–9): 937–1155.

762 H. Yin

Ishikawa M, Miikkulainen R, Ritter H (eds.) (2004) Special Issue on New
Developments in Self-Organizing Systems, Neural Networks, 17(8-9): 1037–
1389.

Cottrell M, Verleysen M (eds.) (2006) Special Issue on Advances in Self-
Organizing Maps, Neural Networks, 19(5–6): 721–976.

3 Key International Conferences/Workshops

WSOM – Intl. Workshop on Self-Organizing Maps (biennial, since 1997).

IJCNN – Intl. Joint Conference on Neural Networks (annual, since 1987).

ICANN – Intl. Conference on Artificial Neural Networks (annual, since 1991).

ESANN – European Symp. Artificial Neural Networks (annual, since 1993).

ICONIP – Intl. Conf. Neural Information Processing (annual, since 1994).

IDEAL – International Conference on Intelligent Data Engineering and Auto-
mated Learning (annual, since 1998).

ISNN – Intl. Symposium on Artificial Neural Networks (annual, since 2004).

4 (Open Source) Software

SOM Toolbox
http://www.cis.hut.fi/projects/somtoolbox/

Neural Systems Engineering

Steve Furber and Steve Temple

School of Computer Science, University of Manchester, Oxford Road,
Manchester M13 9PL, UK�, steve.furber@manchester.ac.uk,
steven.temple@manchester.ac.uk

1 Introduction

Biological brains and engineered electronic computers fall into different cat-
egories. Both are examples of complex information processing systems, but
beyond this point their differences outweigh their similarities. Brains are
flexible, imprecise, error-prone and slow; computers are inflexible, precise,
deterministic and fast. The sets of functions at which each excels are largely
non-intersecting. They simply seem to be different types of system. Yet
throughout the (admittedly still rather short) history of computing, scientists
and engineers have made attempts to cross-fertilize ideas from neurobiology
into computing in order to build machines that operate in a manner more
akin to the brain. Why is this?

Part of the answer is that brains display very high levels of concurrency and
fault-tolerance in their operation, both of which are properties that we struggle
to deliver in engineered systems. Understanding how the brain achieves these
properties may help us discover ways to transfer them to our machines. In
addition, despite their impressive ability to process numbers at ever-increasing
rates, computers continue to be depressingly dumb, hard to use and totally
lacking in empathy for their hapless users. If we could make interacting with
a computer just a bit more like interacting with another person, life would be
so much easier for so many people.

More fundamentally, understanding how the brain functions is one of the
last great frontiers of science. ‘Wet’ neuroscience has revealed a great deal
about the structure and operation of individual neurons, and medical instru-
ments such as functional magnetic resonance imaging machines reveal a great
deal about how neural activity in the various regions of the brain follows a
� This Chapter originally appeared as an article in J. Royal Society Interface, 2007,

4: 193–206; permission by the Royal Society to reprint it in the current Handbook
is gratefully acknowledged.

S. Furber and S. Temple: Neural Systems Engineering, Studies in Computational Intelligence

(SCI) 115, 763–796 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

764 S. Furber and S. Temple

sensory stimulus. But there is a wide gulf between these micro- and macro-
level perspectives on brain function. Somewhere in this gulf are issues such
as neural codes: how do populations of neurons jointly encode sensory and
high-level information, modularity, temporal behavior, memory (short- and
long-term), attention and, of course, consciousness?

The objective of understanding the architecture of brain and mind is
recognized as one of the grand challenges in computing research [43] and
is a long-term multi-disciplinary project pursued at many different levels of
abstraction.

The computer engineer brings a constructionist approach to these issues.
Given the various different models that have been offered to describe the
information processing function of an individual neuron, how do we go about
selecting an appropriate model and constructing useful computational func-
tions using it (instead of logic gates) as the basic component part? Can we
build a library of such functions as a kit of parts from which to construct
higher-level systems? Will the results of this enterprise deliver new and bet-
ter ways to build computers, and/or will it tell us anything at all about the
biological systems that are the source of inspiration for this approach?

Therefore, we have two goals in this work: (i) to develop a ‘neural toolkit’
that can be used to build computers that share some of the properties of the
brain, such as high levels of concurrency and fault-tolerance, and (ii) to build
a machine that will allow realistic simulation and study of the brain itself. In
this review, we present a framework for this field of inquiry, suggest promising
lines of attack, and indicate when and where answers may emerge, so far as
this can be foreseen.

1.1 The Neuron

The basic biological control component is the neuron. A full understanding
of the ‘architecture of brain and mind’ [43] must, ultimately, involve finding
an explanation of the phenomenological observations that can be expressed
in terms of the interactions between neurons.

Neurons appear to be very flexible components whose utility scales over
systems covering a vast range of complexities. Very simple creatures find a
small number of neurons useful. Honeybees find it economic to support brains
comprising around 850,000 neurons, which give them exceptional navigational
capabilities while travelling several miles from their hive. Humans have evolved
to carry brains comprising 1011 neurons or so and use these to support excep-
tional motor control and complex societal interactions. Figure 1 illustrates
a very small part of the cortex and gives an indication of the extent of the
interconnections between neurons.

The basic logic gate used in digital circuits can be considered to be ‘uni-
versal’, in the sense that any digital circuit can be built using the same basic

Neural Systems Engineering 765

Fig. 1. A view of the neuron cells and connections from a very small area of the
cortex (photo courtesy of the Brain Mind Institute, EPFL, Lausanne, Switzerland)

gate provided that a sufficient number of these gates are available - one struc-
ture can support all the functions within a class. The component neuron used
across the range of biological brains is basically the same in its principles of
operation, so in some sense it enjoys a universality similar to that of the logic
gate in digital engineering, though the family of neurons employed in bio-
logical systems displays considerably more diversity in its members’ physical
characteristics.

There is a further similarity between neurons and logic gates: both are
multiple-input single-output components. However, while the typical fan-in
(the number of inputs to a component) and fan-out (the number of other
components the output of a particular component connects to) of a logic gate
are in the range 2–4, neurons typically have a fan-in and fan-out in the range
1,000–10,000.

766 S. Furber and S. Temple

A more subtle difference between a logic gate and a neuron is in their
internal dynamics. Whereas a logic gate implements a process that is essen-
tially static and defined by Boolean logic, so that at any time (from a short
time after the last input change) the output is a well-defined stable function
of the inputs, a neuron has complex dynamics that includes several time con-
stants, maintains a more complex internal state, and its output is a time-series
of action potentials or ‘spikes’. The information conveyed by the neuron’s out-
put is encoded in the timing of the spikes in a way that is not yet fully un-
derstood, although rate codes, population codes and firing-order codes all
seem to offer valid interpretations.

Accurate computer models of biological neurons exist, but they are very
complex (for example, the Hodgkin-Huxley model [16]). Various simpler mod-
els have been proposed that capture some of the features of the biology but
omit others. The difficulty lies in determining which of the features are essen-
tial to the information processing functions of the neuron and which are
artefacts resulting from the way the cell developed, its need to sustain itself,
and the complex evolutionary processes that led to its current form.

1.2 Neural Microarchitecture

The universality of the neuron as a component is also reflected in certain
higher-level structures of the brain. For example, the cortex displays a six-
layer structure and a regularity of interconnect between the neurons in the
various layers [33] that suggest the use here of a neural ‘micro-architecture’.
The same regular laminar cortical micro-architecture is in evidence across the
cortex in regions implementing low-level vision processes such as edge detec-
tion and in regions involved in high-level functions such as speech and language
processing. This apparent ‘universality’ (used here as defined earlier) of the
cortical micro-architecture suggests that there are principles being applied,
the understanding of which could offer a breakthrough in our understanding
of brain function.

In contrast to the regularity and uniformity of the micro-architecture, the
particular connectivity patterns that underpin these structures appear to be
stochastic, guided by statistical principles rather than specific connectivity
plans. The connectivity is also locally adaptive, so the system can be refined
through tuning to improve its performance, a process termed ‘neuroplasticity’
[41].

1.3 Engineering with Neurons

As computer engineers we find the neuron’s universality across wide ranges of
biological complexity to be intriguing, and there is a real challenge in un-
derstanding how this component can be used to build useful information

Neural Systems Engineering 767

processing systems. There is an existence proof that this is indeed possible,
but few pointers to how the resulting systems might work.

There are other ‘engineering’ aspects of biological neurons that are inter-
esting, too. We have already mentioned the regularity of neural micro-
architecture. Neurons are physically much larger than transistors, having cell
bodies with dimensions typically less than 30 µm whereas today’s transistors
have dimensions below 0.1 µm. The power efficiency of neurons (measured as
the energy required to perform a given computation) exceeds that of computer
technology, possibly because the neuron itself is a relatively slow component.
While computer engineers measure gate speeds in picoseconds, neurons have
time constants measured in milliseconds. While computer engineers worry
about speed-of-light limitations and the number of clock cycles it takes to get
a signal across a chip, neurons communicate at a few metres per second. This
very relaxed performance at the technology level is, of course, compensated by
the very high levels of parallelism and connectivity of the biological system.
Finally, neural systems display levels of fault-tolerance and adaptive learning
that artificial systems have yet to approach.

1.4 Scoping the Problem

The scale of the problem of modeling the human brain has been scoped by,
among others, Mead [30]. The hundred billion neurons have of the order of
1015 connections, each coupling an action potential at a mean rate of not
more than a few hertz. This amounts to a total computational rate of around
1016 complex operations per second. No computer has yet been built that
can deliver this performance in real-time, though this gap will be closed in
the near future. Current supercomputer developments are aimed at deliver-
ing petaFLOP (1015 floating-point operations per second) performance levels,
perhaps only one order of magnitude short of the performance required to
model the human brain.

Perhaps more challenging is the issue of power efficiency. Moore observed
that the number of transistors on a micro-chip doubled every year, and he pre-
dicted that this trend would continue for another 10 years [32]. The doubling
period was subsequently modified to 18 months, but has continued at this
rate to this day and is expected to continue for at least another decade. The
observation is widely referred to as ‘Moore’s Law’. In fact, Moore’s Law ceased
to be merely an observation a long time ago, becoming instead a semicon-
ductor industry boardroom planning tool; therefore, it is now a self-fulfilling
prophecy for as long as physics, engineering and industry economics allow.
Although Moore’s paper referred only to the increasing number of transis-
tors on a microchip, the process of component miniaturization that makes
this possible has also led to the spectacular improvements in performance,
power efficiency and cost-per-function that underpins the pervasive digital
technology that we enjoy today.

768 S. Furber and S. Temple

Mead argued that current computer technology will still be 10 million
times less power efficient than biology even when Moore’s Law has run its
full course, so a real-time digital model of the brain will consume tens of
megawatts of power. He argued that analogue electronics can close much of
that gap, and he has built several silicon implementations of analogue neural
systems that support this argument [29]. The very high power efficiency of
the biological system has been emphasized more recently by Laughlin and
Sejnowski [23], and presents a real challenge to the computer engineer to find
ways to build artificial systems that come anywhere close to matching it.

Delivering the necessary level of computational power is a pre-requisite to
building a real-time model of the human brain, but it is far from being the
only problem facing researchers in this area. One daunting challenge is the
need to obtain the neural netlist, a term that we borrow here from electronic
engineering where it is used to refer to a formalized description of an electronic
circuit in terms of the type and parameters of each of the components (here
neurons) and their connectivity patterns. A second challenge is to understand
the developmental aspects of the brain’s structure: the netlist is not static,
but neurons grow and die and their interconnections extend and contract
in response to activity and other biological factors. Thirdly, a brain needs a
sensory system to provide its inputs and actuators to respond to its outputs; it
needs to be embodied in some way in order to have a purpose for its activities.
Fourthly, embodied brains do not live in isolation, they form societies and
cultures that define and constrain their actions.

1.5 The Research Agenda

We use the term neural systems engineering to describe the construction-
ist approach to exploring the potential of the neuron as a component in an
information processing system (in the widest sense of this term).

This approach could be pursued entirely through software modeling;
though because the computational demands of large-scale neural modeling
are high, there have been many projects where special-purpose hardware has
been constructed to accelerate the computation. Building the system in hard-
ware also ensures that real-world issues such as noise are addressed. The
special-purpose hardware may be aimed at modeling the low-level details of
the neuronal processes in analogue electronic circuitry (an approach known as
neuromorphic computing), or at the other extreme, building massively parallel
digital supercomputers with special features to support neural modeling.

The key issues at present are the following:

• To identify the simplest models that capture the information processing
functions of a neuron. Neurons are very complex cells, but how much of
this complexity is functionally relevant and how much is an artefact of the
cell’s evolutionary heritage, its need to grow, find energy, self-repair, and
so on?

Neural Systems Engineering 769

• To represent the heterogeneous nature of biological neural systems. There
are many different types of neurons in the brain, and each instance of a
particular type has unique parameters.

• To identify and implement the necessary connectivity patterns of the
natural system.

• To identify the neural ‘codes’ whereby populations of neurons represent
complex information and through which the continuous sensory inputs can
influence discrete actions and decisions.

• To identify the mechanisms of neural adaptation that enable the system to
self-organize and learn, continually tuning and optimizing its performance.

Ultimately, it would be extremely useful to be able to raise the level
of abstraction at which neural networks are modelled. If, for example, the
functionality of the cortical micro-column could be encapsulated in a set of
mathematical equations, then the computational (and consequently power)
demands of modeling the brain might come down by one or two orders of
magnitude.

Among all these is the hope that some understanding will be gained of
the emergent properties of complex dynamical systems, together with some
insights into the fault-tolerant capabilities of biological systems and how these
capabilities might be better emulated by engineered systems.

1.6 Chapter Structure

In Sect. 2, we look at the basic principles at work in neural computation. In
Sect. 3, we look in detail at the problem we are addressing – what is known
about the neuron’s function and connectivity in its role as a component in
complex biological systems – and we look at some of the models that are
used to capture its function. In Sect. 4, we discuss the issues that arise in
constructing large-scale artificial neural systems, and in Sect. 5, we look at
how these issues have been addressed by various teams around the world,
including our own work in this area. Section 6 concludes the paper with some
speculation about the prospects for progress and potential breakthroughs in
our understanding of brain function and our capability for engineering more
intelligent systems in the future.

2 Neural Computation

In this Section, we begin to look at the neuron as an information processing
device. Any computational system must achieve a balance between its pro-
cessing, storage, and communication functions. It is useful to consider how
these three functions are achieved in neural systems.

In discussing neurons, it is useful to use some biological terminology
albeit, perhaps, with an engineer’s interpretation of what this terminology

770 S. Furber and S. Temple

dendrites

soma

axon

synapses

Fig. 2. The four primary structures of a neuron. Inputs are collected via the den-
drites and passed to the soma, the main body of the cell. The action potential (spike)
generated in the soma propagates along the axon, where it passes through synapses
to the dendrites of other neurons

signifies. A neuron may be viewed as comprising the following four structures
(see Fig. 2):

• Dendrites are the tree-like structures that gather the inputs to the neuron
from other neurons or sensory inputs and couple them to the soma.

• The soma is the central body of the neuron where the inputs are processed
and the output is generated.

• The axon carries the output of the neuron through another tree-like
structure to couple it to other neurons or physical actuators, incurring
a signal-propagation delay that depends on the length of the axon.

• Synapses form the coupling between neurons. These can develop wherever
the axon from one neuron is physically proximate to a dendrite of another.
The coupling process incurs some time delay, but this can generally be
added into the axonal delay for modeling purposes.

The synapse is the primary location of adaptation in the neural system:
the strength of the coupling between two neurons self-adjusts over time in
response to factors such as the correlation between the activities of the two
neurons that are coupled through the synapse.

We can now look at how these structures contribute to the three aspects
of computation that must be kept in balance: processing, communication and
storage of information.

2.1 Processing

The processing function is performed within the neuron. The inputs are
combined in the dendrites in some way and passed to the soma which pro-
duces output events in response to input events through a non-linear transfer

Neural Systems Engineering 771

function, which we will model using suitable differential equations whose com-
plexity is limited only by the available computing power. In some models the
dendrites simply sum the inputs, whereas in others they interact in more
complex ways.

2.2 Communication

Communication in neural systems is predominantly through the propagation
of spike ‘events’ from one neuron to the next. The output from the neuron’s
body (its soma) passes along its axon which conveys the spike to its many
target synapses. Each synapse uses chemical processes to couple the spike to
the input network (the dendritic tree) of another neuron.

Since the spike carries no information in its shape or size, the only in-
formation conveyed is in which neuron fired and when it fired.

2.3 Storage

It is in the storage of information that the neuron’s story becomes most com-
plex. There are many processes that can be seen as storing information, some
operating over short time-scales and some very long-term. Examples of these
processes are as follows:

• the neural dynamics include multiple time constants, each of which serves
to preserve input information for some period of time;

• the dynamical state of the network may preserve information for some
time;

• the axons carry spikes at low speeds and therefore act as delay lines, storing
information as it propagates for up to 20ms; and

• the coupling strength of a synapse is, in many cases, adaptive, with dif-
ferent time constants applying to different synapses.

In a neural modeling system, we expect the model to capture the neural
and network dynamics, and hence the contributions these mechanisms make
to information storage. The axon delay-line storage does not come so easily
as the high speeds of electronic signalling make spike communication effec-
tively instantaneous. It is likely that the axon delay is functionally important,
for example, enabling networks to learn complex spatio-temporal patterns as
exhibited in polychronization [19], so we must put these delays back in, either
by delaying the issue of the spike or by delaying its effect at the destination.

The primary long-term storage mechanism is synaptic modification (within
which we include the growth of new synapses). This is the most fundamental
storage mechanism; here, we require long-term stability and support for a
range of adaptive mechanisms.

772 S. Furber and S. Temple

3 The Neuron as a Component

We take the neuron to be a device that, like a logic gate, has several inputs
and a single output. The number of inputs will, however, typically be in the
thousands rather than the two or three inputs that a logic gate normally has.
The general scheme of the component neuron is illustrated in Fig. 3, which
may be compared with Fig. 2 to see how it captures the major functional
components of the biological neuron.

3.1 Communicating with Spikes

Although for most of its history the field of artificial neural networks has
taken the output of a neuron to be a real value that varies from one discrete
time-step to the next in a highly synchronous way, we will take the more
biologically realistic model of the output as a time-series of action potentials
(spikes) which, since the form of the spike is largely invariant, can be viewed
as a time-series of asynchronous events. The output of neuron i is then simply

yi =
∑

n

δ(t− ti,n) (1)

where δ(t) is the Dirac delta function representing a unit impulse at time t
and ti,n, n = 0, Ni, are the times of the spikes on neuron i.

In this model, information is conveyed solely in the times at which the
events occur, perhaps in the rate of spiking, but there are other possibilities
such as the relative timing of spikes from different neurons.

w1

×

w3

×

w2

×

w4

×

Σ ∫dt ∆t

Fig. 3. The neuron as a component. In the leaky integrate-and-fire model, input
spikes are multiplied by their respective synaptic weights, summed, and integrated
over time. If the integral exceeds a threshold, the neuron fires and the integration
restarts. The output spike may be delayed to model the propagation time along the
axon

Neural Systems Engineering 773

Although spikes appear to represent the primary means of propagating
information in mammalian brains, they are clearly not the only means. Spe-
cialized neurons cause the emission of chemicals that have a broad effect on
adjacent regions of neurons, and these are likely to be important in learning
mechanisms. There is also evidence for direct analogue information exchange
between neurons whose dendritic trees make contact.

We will proceed on the assumption that Eqn. (1) captures the most impor-
tant neural information exchange process, but remain aware that there may
be other important processes in addition to spiking communication.

3.2 Point-Neuron Models

There are many different models that describe the internal operation of a
neuron at different levels of detail. The simplest of these are point-neuron
models, which ignore the spatial characteristics of the neuron. The inputs are
combined through a weighted summing process to give a single driving force

Ii =
∑

j

wijyj (2)

where wij represents the strength of the synapse coupling neuron j into neuron
i, and the sum is taken over all of the inputs yj to neuron i.

This driving force is then applied to some form of non-linear function to
generate the output spikes from the neuron. A simple first-order differential
equation is used in the leaky integrate-and-fire (LIF) model,

Ȧi = Ii −
Ai

τ
(3)

if Ai ≥ Θ, fire neuron i and reset Ai = 0 (4)

Here, the activation Ai of neuron i decays to its zero rest state with time
constant τ . It is increased by an amount wij every time input neuron j fires,
and if at any time it exceeds the threshold Θ it fires and its activation is reset
to zero.

The LIF model captures some of the essential behavior of a biological neu-
ron, but is often adapted to greater realism through the addition of features,
such as:

• Habituation. When presented with a step function in its input stimulus,
a biological neuron tends to fire rapidly for a short period but does not
sustain this firing rate for long, whereas the LIF model will fire at a steady
high rate. Habituation can be added to the LIF model by making the
threshold a leaky integrator of the neuron’s own output,

Θ̇i = yi −
(Θi −Θ0)

τΘ
(5)

774 S. Furber and S. Temple

so each spike from the neuron increases its threshold above its rest state
Θ0 but this effect decays with time constant τΘ.

• Refractory period. Immediately after a neuron fires, it is insensitive to
further inputs. The LIF neuron can be extended to model this in a number
of ways, including simply causing it to ignore inputs for a fixed period after
a spike, or resetting its activation after firing (Eqn. (4)) to a negative level.

Adding these ‘bells and whistles’ to the LIF model increases both its bio-
logical accuracy and computational complexity. The tradeoff between accu-
racy and computational complexity is a recurring theme in large-scale neural
modeling.

3.3 The Spike Response Model

The spike response model generalizes the LIF model and can describe the
behavior of any neuron that responds linearly to its inputs [13]. Each input
causes a perturbation to the neuron’s potential, which follows a characteristic
course over time (which may depend on when this neuron last spiked). This
can be captured by a kernel function η(t), and the activation potential of the
neuron is then formed from a linear sum of these kernel functions, each scaled
by its respective synaptic weight.

Similarly, when this neuron fires, its potential follows a characteristic time
course that can be represented by another kernel function ν(t),

Ai(t) = ν(t− ti,Ni) +
∑

j

wij

∑
n

η(t− tj,n) (6)

As with the LIF model, the neuron fires when the threshold is reached,
and the threshold can be dynamic to model habituation. For computational
efficiency, the kernel functions can be stored as look-up tables.

3.4 The Izhikevich Model

A rather different approach to the primary function of a point-neuron model
is offered by Izhikevich [17]. His approach is to observe that the biological
mechanism that gives rise to the neuron’s spike output must have its basis in
an instability in the electrochemical process that generates and sustains the
spike as it propagates along the axon. He therefore turns to the mathematics
of bifurcating processes to identify equations that capture the nature of this
bifurcation at the lowest computational cost.

His investigations yielded the following pair of coupled differential equations:

ν̇ = 0.04ν2 + 5ν + 140− u + I, (7)
u̇ = a(bν − u), (8)

if ν ≥ 30 then ν = c; u = u + d (9)

Neural Systems Engineering 775

where ν is a ‘fast’ variable corresponding to the neuron’s activation (A in
Eqn. (3), scaled to correspond to the activation of a biological neuron mea-
sured in millivolts); u is a ‘slow’ variable that adapts the neuron’s dynamics
over time; I is the weighted sum of inputs as in Eqn. (2); and a, b, c and
d are parameters that define the characteristic spiking patterns the neuron
produces.

The test for ν reaching 30 mV in Eqn. (9) is not a firing threshold, as was
the test in Eqn. (4), since Eqns. (7) and (8) generate the spike directly. This
test is detecting the peak of the spike itself.

An example of the behavior of these equations is shown in Fig. 4, where
the input I undergoes a step-function change at time 20ms. The neuron
spikes repeatedly, twice in quick succession and then at a slower, stable
rate, displaying habituation. This figure was produced using a 10-bit fixed-
point implementation of the equations, showing that relatively simple digital
hardware is sufficient for this purpose.

The Izhikevich model is comparable in terms of computational complexity
with the LIF model when the latter includes habituation and a refractory
period, but it is able to model a much wider range of neural behaviors.
As such, it is a very promising basis for large-scale neural modeling at the
point-neuron level of complexity. Izhikevich has himself used it for simulating
cortical activity with very large numbers of neurons [18].

0 20 40 60 80 100 120 140 160 180 200
-100

-80

-60

-40

-20

0

20

40

time (ms)

u-
80

, v
 (m

V
)

Fig. 4. A solution to Izhikevich’s equations, driven by an input step function at
20ms. The slow variable, u (lower curve), has been offset by −80 mV for clarity (this
solution was obtained using a 10-bit fixed-point approximation to the equations, but
is very close to the real-valued solution)

776 S. Furber and S. Temple

3.5 Axons: The Hodgkin-Huxley Model

Ground-breaking experiments on the giant axon of the squid (chosen because
its size minimized the still-considerable experimental difficulties) culminated
in the publication in 1952 of a seminal paper that presented equations de-
scribing the electrical behavior of a nerve fibre [16].

The equation for the axon membrane potential V is:

CmV̇ = −gL(V − VL)− ḡNam3h(V − VNa)− ḡkn4h(V − VK) (10)

where Cm is the membrane capacitance per unit area; gL, ḡNam3h, and ḡkn4

are the conductances per unit area of the membrane for various ions that
are involved in the axon processes; and VL, VNa, and VK are the associ-
ated equilibrium potentials. The dimensionless quantities m, h and n represent
voltage-dependent channel variables which obey equations of the form:

ċ = α(V)(1 − c)− β(V)c (11)

where each channel variable has different α(V) and β(V) functions that involve
negative exponentials of the membrane voltage V .

The Hodgkin-Huxley equations offer a very detailed model of the propaga-
tion of action potentials along neuronal fibres, but they are computationally
demanding. Since the solution is characterized by a sharp transition between
a continuous fluctuation for a weak input and a distinct action potential for
a stronger input, spiking behavior is often taken to be a good approximation,
and the axon process is modelled as a simple delay, or possibly multiple delays
to allow for the different lengths of axon to different target synapses.

3.6 Dendritic Trees and Compartmental Models

The dendritic networks that capture the inputs to a neuron are complex trees
and may include nonlinear interactions between inputs on different branches.
Point-neurons generally ignore such effects and simply sum all the inputs.
A more accurate model is to view the dendrites as similar to electrical cables
and use transmission line models to compute the dynamics of input propa-
gation towards the soma. As the dendritic trees are non-uniform and include
branch points, ‘compartmental’ models split the trees into small cylindrical
sections where each section has a uniform physical property [6]. These models
can be simple or highly detailed and can incorporate non-linearities for greater
accuracy.

As with the Hodgkin-Huxley model, great accuracy is achievable at the
cost of considerable computational effort.

Neural Systems Engineering 777

3.7 The Synapse

The functional effect of a synapse is to transfer a spike from the axon at
its input to the dendrite at its output. The biological synapse does this by
releasing a number of packets of chemicals across the synaptic gap in response
to the incoming spike, and these packets then affect the membrane properties
of the receiving dendrite. The effect is quantized [8] and probabilistic in nature.
It is often approximated by a multiplicative ‘weight’ as in Eqn. (2).

Of much greater subtlety is the adaptive nature of the synapse. The ability
of the synapse to adjust its effectiveness as a connection (in which we include
the ability of the neuron to grow new connections) is believed to be the major
long-term memory mechanism in the brain. Precisely how and when these
changes take place is not fully understood, but there are a number of theories
and explanations on offer.

Hebb postulated that when one neuron was close to another and repeatedly
played a causal role in its firing, the coupling between them would strengthen
[14]. This postulate has since been validated experimentally, and the term
‘Hebbian learning’ is widely applied to mechanisms that modify the strength
of a synapse as a result of correlations of various sorts between the spiking
patterns of the two neurons that it connects. Long-term potentiation (LTP) is
a term used to describe the most direct experimental confirmation of Hebb’s
principle [25]. The opposite effect has also been observed in some areas of
the brain: long-term depression (LTD), also known as ‘anti-Hebbian learning’,
which describes a circumstance where correlations between two neurons result
in a weakening of the synaptic strength.

Investigations into the detailed mechanisms of LTP and LTD have led to
the observation of spike-time-dependent plasticity (STDP), where the scale of
the synaptic modification has a well-defined dependency on the precise relative
timing of the spikes from the input and output neurons, including changing
sign if the order is not consistent with causality. Quite subtle models of the
biophysical processes involved in STDP have been developed [39].

STDP is unlikely to be the whole story, however. There are reward mecha-
nisms in the brain that release chemicals that may modulate synaptic plastic-
ity in some way, and mechanisms that lead to the growth of new connections
(where causality cannot be involved, since before the growth there was no
causal connection).

4 Engineering Neural Systems

Now that we appreciate the behavior of an individual neuron as a component
and have a choice of models that we can use to represent its functionality, we
can begin to consider the construction of systems of neurons. A number of

778 S. Furber and S. Temple

questions arise in the development of any system of neurons, which reflect the
issues listed previously in Sect. 1.5:

• At what level of detail should each neuron be modelled?
• How do populations of neurons jointly encode information?
• How is the connectivity of the network determined?
• How is the connectivity of the network implemented?
• How does the network learn, adapt or tune itself?
• How is the network embodied and the body placed into an environment

with which it interacts?

We will address each of these issues in the following Sections, and then
offer some examples of neural systems to illustrate how everything can come
together.

4.1 Neural Models

Much of the past work on building artificial neural networks has adopted the
rate-coding view of neural output, where the only significant information that
a neuron conveys about its inputs is in its firing rate [1]. The firing rate can be
represented by a real-valued variable, and the spiking behavior of the biological
neuron is abstracted entirely into this variable. Eqn. (2) is still used to compute
the neuron’s activation, but the variables yj are real valued and no longer
a time-series of spikes. The activation is modulated by a nonlinear transfer
function to produce the real-valued output. The nonlinear transfer function is
often a sigmoid function, which gives a smooth differentiable transition from
0 to 1 as the activation increases from its minimum to its maximum value.

In the most abstract models, the nonlinear transfer function is a simple
threshold and all neural states are represented by binary values: 0 when the
neuron is not firing and 1 when it is firing [28].

Recently, there has been a return to interest in more biologically accu-
rate models that incorporate spiking behavior. All of the models described
in Sect. 3 have been explored, and others too. There is no consensus on the
correct level of trade-off between complexity and biological realism, and none
is likely to arise until many more questions have been answered about which
features of the biological component are essential to its information processing
function and which are simply artefacts of its biological origins.

4.2 Population Encoding

The representation of sensory information by populations of neurons has been
the subject of study. Eliasmith and Anderson offer detailed analytical tools
for understanding how the combined spike firing rates of a heterogeneous
population of neurons can represent a continuous physical parameter with

Neural Systems Engineering 779

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

fir
in

g
ra

te

parameter

Fig. 5. Representation of a physical parameter (x-axis) by the spike firing rates
(y-axis) of a heterogeneous population of 50 neurons. Each curve shows the firing
rate of one neuron (after [7])

arbitrary accuracy, and how successive layers of such populations can perform
computations on those parameters [7].

An illustration of the representation of a continuously variable physical
parameter is shown in Fig. 5. Here, a population of 50 LIF neurons, each with
randomly selected sensitivity and offset (but all having the same maximum
firing rate), together give an accurate estimate of the parameter even in the
presence of noise. The error in the estimate is inversely proportional to the
square root of the population size.

In these population codes, each neuron is firing independently and the
information is encoded across the individual firing rates of the neurons that
form the population. This is not the only way in which a population of neu-
rons can represent information, but the other encoding mechanisms described
below all require that it is not only the firing rate of the neuron that is sig-
nificant but also the timing of the individual spikes. Evidence that precise
spike timing is important in biological systems is sparse, but one can point to
O’Keefe and Recce’s work on rat hippocampal place cells, where individual
neurons fire in a well-defined phase relationship to the theta wave cycle [35].

Van Rullen and Thorpe take observations of the speed with which humans
can respond to visual images, which does not allow enough time for any indi-
vidual neuron to emit more than one spike, as evidence that individual firing
rates are an insufficient explanation of the performance of the system [44].

780 S. Furber and S. Temple

They have postulated rank-order codes as an alternative description. With
rank-order codes, a population of neurons – in this case the ganglion cells in
the retina – spike in an order determined by their tuning to the current sen-
sory stimulus. The information is carried in the order of firing of the neurons
in the population.

It is not necessary for the entire population to fire in a rank-order code,
in which case information can be conveyed both in the order of firing of the
subset that does fire and in the choice of that subset.

In a final simplifying step, it is possible to use just the subset choice to
convey information and to ignore the order of firing altogether. In this case,
the result is an N -of-M code, where all of the information is conveyed in the
choice of the N neurons that fire from a total population of M neurons. Time
has now been abstracted out of the model, and the system can be described
and analysed in terms of pure binary patterns.

4.3 Spatio-Temporal Spike Neurons

While unordered N -of-M codes are purely spatial and rely on approximate
spike synchrony across the active sub-population, rank-order codes represent
a first step towards exploiting the temporal properties of spiking patterns to
convey information. This can be taken further and generalized to polychro-
nizaton [19]. Here, the ability of an individual neuron to detect coincident
inputs is combined with the intrinsic delays in the axons of the neurons that
connect into its synapses to tune the neuron to respond to a very particular
spatio-temporal pattern of activity on those input neurons. These spatio-
temporal patterns can be very difficult to identify in neural firing traces, but
have considerable information-bearing capacity and may play an important
role in biological neural systems.

4.4 Defining ‘Connectivity’

Abstract neural networks have a connectivity that can be defined algorith-
mically. Full connectivity is commonly used, where every neuron in one layer
connects to every neuron in the next layer. In recursive networks, every neuron
may connect to all of its peers in the same layer. Such networks have readily
defined connectivity and are generally conceived in terms of this connectivity,
which often has little to do with biological realism.

The availability of accurate, detailed network connectivity data for biolog-
ical neural systems is fundamental to the task of building computer models of
biologically realistic neural networks. Techniques for producing this connec-
tivity information are improving, and recently Binzegger et al. have developed
an approach based upon a statistical analysis of the proximity of the dendritic
and axonal processes of different neuron populations in a three-dimensional

Neural Systems Engineering 781

reconstruction of the cat neocortex [4]. This approach leads to highly detailed
connectivity data that have been used to build computer models of large-scale
biological neural systems (for example, [18]).

4.5 Implementing Connectivity

Biology employs massive numbers of low-speed channels to communicate neu-
ral spike events from their sources to their destinations. Despite the major
advances in the density of microelectronic components, artificial neural sys-
tems cannot approach the physical connectivity of natural systems.

However, electronic systems do have one advantage here: electronic com-
munication is about five orders of magnitude faster than biology. An axon
may carry tens to hundreds of spikes per second; a computer bus can oper-
ate at tens of MHz [5]. Therefore, it is reasonable to seek ways to multiplex
events from many neurons along the same bus or channel. A neural spike is an
asynchronous event which carries information only in its timing, so the mul-
tiplexed information need simply identify the neuron that has fired. This led
Sivilotti [42] and Mahowald [26] to propose the address-event representation
of spikes, where each neuron in a system is given a unique number (address),
and when the neuron fires this number is propagated through the interconnect
to (at least) all neurons to which the firing neuron is connected.

A problem with multiplexing multiple asynchronous events through the
same channel is that of collisions; when two events coincide closely in time,
either one event must be dropped or they must be serialized, incurring some
timing error. Boahen argues that asynchronous arbitration can be used to
serialize the events with low timing error, even when 95% of the channel
capacity is being used, and this approach scales well to faster technologies [5].

4.6 Learning, Adapting, and Tuning

A key feature of any neural network, biological or engineered, is its ability
to (i) learn new responses, (ii) adapt to new stimuli, and (iii) tune itself to
improve its performance at the task in hand. These processes are generally
achieved through the adjustment of synaptic weights in accordance with some
sort of learning rule.

The long-standing way of optimizing artificial neural networks to a par-
ticular task is through the use of error back-propagation [45]. Error back-
propagation compares the outputs of a neural network with the desired output
and then reduces the error in the output by adjusting weights and propagating
errors backwards through the entire network. There are two problems with
this approach for biological or large-scale engineered systems: (i) it assumes
that the desired output state is known and (ii) it assumes the existence of
an agent external to the system with global control of it. Neither of these is

782 S. Furber and S. Temple

generally true for the systems of interest here. It is worth noting, however,
that with suitable network topologies and local learning rules, biologically
plausible systems have been shown to operate in ways that effectively deliver
error back-propagation [36].

We will look for local learning rules that are based on Hebbian principles,
adjusting weights according to local spike activity along the lines of STDP. In
some cases this can be reduced to a simple rule, as in the case of the binary
associative memories described in Sect. 4.7. In more general applications this
remains an uncertain aspect of the system engineering, where new insights
and approaches are likely to lead to significant progress.

4.7 Example Neural Systems

Many applied neural systems are based on abstract neural models and do
not depend directly on spike generation or communication. Examples that
demonstrate principles of operation that could be employed in spiking systems
with local learning rules include Willshaw et al.’s non-holographic memory
[46], and its close relative the correlation matrix memory (CMM) [22]. CMMs
employ binary output neurons with binary synaptic weights and often use
N -of-M population codes. They have proved very effective for building large-
scale associative search systems such as the AURA system at the University of
York [2], which has found a wide range of industrial applications.

Similar abstract models are employed in sparse distributed memories
(SDMs) [21]. Although Kanerva’s original SDM was not directly compatible
with standard spiking neuron models, our variants of Kanerva’s SDM employ-
ing N -of-M codes [9] or rank-order codes [12] can readily be implemented with
such models.

4.8 Neuromorphic Systems

An approach to engineering artificial neural systems that have been explored
in certain application domains is to implement neural models in analogue
hardware. Some functions such as multiplication are very much cheaper and
less power hungry when implemented in analogue rather than digital electron-
ics, and analogue systems also offer intriguing nonlinearities that offer elegant
solutions to certain tricky aspects of neural modeling.

The analogue approach has been applied to vision systems [24,29,47] and
similar early-stage sensory input processing. The combination of analogue
neural models with digital spike communications models the biological solu-
tion closely and is probably the most promising microelectronic approach to
building large-scale neural networks in the long term. In the shorter term,
the uncertainties over the optimal neural model make the inflexibility of
the analogue implementation (compared to a programmable digital system)
unattractive for the general-purpose neural processor.

Neural Systems Engineering 783

5 Large-Scale Projects

It seems reasonable to assume that some of the most challenging and interest-
ing aspects of neural function will be manifest only in systems of considerable
scale where, for example, there is scope for very high-dimensional repre-
sentation and processing of sensory input. This makes the construction of
large-scale systems an important component of neural systems engineering
research. There have been several projects in recent times aimed at building
large-scale computer models of neural systems, using different complexities of
model and different techniques to accelerate the computation:

• Software systems run on conventional machines are highly flexible but can
be slow, unless run on very powerful computers such as Blue Brain [27].
Izhikevich ran a simulation of one second of activity in a thalamocortical
model comprising 1011 neurons and 1015 synapses, a scale comparable
with the human brain [18]. The simulation took 50 days on a 27-processor
Beowulf cluster machine.

• Field-programmable gate arrays (FPGAs) have the potential to accelerate
key software routines [48], though it can be difficult to get the correct
system balance between processing and memory. FPGAs are very flexible
but somewhat harder to program than software, and high-performance
computer manufacturers are very interested in the possibility of integrating
FPGAs into their parallel machines. This may result in software tools that
deliver the acceleration transparently to the programmer.

• Building bespoke hardware to support neural modeling is an approach
that has been tried from time to time with limited lasting success. The
fundamental problem is the same as for other areas of application-specific
hardware - the commercial momentum behind the progress of the general-
purpose computer renders any benefit of special-purpose hardware hard-
won and short-lived. In the neural modeling area there is also the issue
of deciding how much the neural model should be cast into hardware,
optimizing performance but losing flexibility, against making the system
as soft and general-purpose as possible.

Here, we give brief descriptions of three projects aimed at large-scale neu-
ral modeling: Blue Brain, at EPFL, Switzerland; SPINN, at the Technical
University of Berlin; and our own plans for the SpiNNaker machine.

5.1 Blue Brain

By far, the largest-scale project aimed at building computer simulations of
sections of the brain is the Blue Brain project at EPFL in Switzerland [27].
This work is based upon one of the worlds most powerful supercomputers, the
IBM Blue Gene/L. This machine delivers up to 360 teraFLOPS of computing
power from 8192 PowerPC CPUs each running at 700 MHz and arranged in

784 S. Furber and S. Temple

a toroidal mesh. Alongside the IBM supercomputer is a sophisticated stereo
visualization system based upon SGI graphics computers.

The Blue Brain project simulates biological neural networks using de-
tailed compartmental neuron models and aims to deliver biologically accurate
models of neural microcircuits such as the neocortical microcolumn. The com-
putations are based upon the Hodgkin and Huxley [16] equations and Rall’s
[38] cable models of the dendritic and axonal trees, and use the NEURON [34]
simulator codes extended to use a message-passing interface to communicate
action potentials between neurons modelled on different processors.

In addition to exploiting their computational resources, the Blue Brain
team is also assembling a major database of biological neural data upon which
to base their computer models.

The Blue Brain project as currently configured has a machine capable of
simulating up to 100,000 very complex neurons or 100 million simple neurons.
The emphasis is on maximally accurate models of biological neural systems.

5.2 SPINN

The Spiking Neural Network activity at the Technical University of Berlin
has yielded a series of hardware systems for the acceleration of neural net-
work modeling over more than a decade of related research projects: BIONIC,
NESPINN, MASPINN, SP2INN and, most recently, SPINN emulation engine
(SEE).

The Biological Neuron IC (BIONIC) project yielded a chip capable of
modeling up to 16 neurons each with 16 synapses [37]. The NESPINN (Neuro-
computer for Spiking Neural Networks) project aimed to model 16,000 neurons
each with 83 synapses [20], with the possibility of handling larger systems with
multiple accelerator boards.

The Memory Optimized Accelerator for Spiking Neural Networks (MASPINN
[40]) was a hardware accelerator that connects to a host PC via a standard
PCI bus. The neural model treated the dendritic tree as a set of independent
leaky integrators, each receiving a number of inputs. The outputs of these
integrators then interact in a programmable way to form the driving current
for a soma model with a dynamic threshold (again generated by a leaky inte-
grator). Axonal delays are modelled at the neuron’s output, so a neuron that
connects with different delays to other neurons has multiple outputs, one for
each delay value. MASPINN employs a number of optimizations to reduce the
computational demands. It caches synaptic weights that are used heavily, and
it tags inactive components so that they do not consume resource comput-
ing the leaky integrator function. The MASPINN project aimed to simulate a
million relatively simple neurons and had a specific application area (image
processing) as its target.

Neural Systems Engineering 785

The Synaptic Plasticity in Spiking Neural Networks (SP2INN) project [31]
aimed at building hardware to model a million neurons with several million
synaptic connections but, at the end of the paper, the authors contemplate
the difficulties of designing special-purpose hardware to compete with the
relentless advances in the performance of general-purpose computers.

The SEE project abandons custom hardware in favour of FPGAs and
exploits the embedded general-purpose processing power incorporated in some
of today’s FPGA architectures [15]. The system can model half a million
neurons each with 1,500 synaptic connections.

Taken together, these projects represent a considerable body of experience
in designing hardware to support spiking neural network modeling, and it is
instructive to see how each project has built on the ideas displayed in its
predecessors but how little the hardware components, presumably designed
with considerable effort, have carried forward. This illustrates the difficulty of
making bespoke hardware flexible enough to solve more than the problem of
the moment.

5.3 SpiNNaker

The SpiNNaker project at the University of Manchester [11] has as its goal
the development of a massively parallel computer based on chip multipro-
cessor technology and a self-timed Network-on-Chip (NoC) communications
system [3]. The system is aimed at modeling large-scale systems of up to a
billion spiking neurons in real-time and is optimized for point-neurons such
as the LIF and Izhikevich models. It is not intended to run models with high
biological accuracy, but is much more aimed at exploring the potential of the
spiking neuron as a component from which useful systems may be engineered.
Biological data are taken as a very useful source of inspiration, but not as a
constraint, and useful ideas for novel computation systems will be seen as a
positive outcome irrespective of their biological relevance.

The philosophy behind the system architecture is based on the observation
that modeling large systems of spiking neurons falls into the ‘embarrassingly
parallel’ class of applications, where the problem can be split into as many
independent processing tasks as is useful. The performance of an individ-
ual processor in the system is not an important parameter. What matters is
the cost-effectiveness of the implementation, which can be broken down into
the capital cost and the running cost, which can be assessed, respectively, in
terms of:

• MIPS (millions of instructions per second) per mm2: how much processing
power can we get on a given area of silicon? and,

• MIPS per watt: how energy-efficiently can this processing power be deliv-
ered?

786 S. Furber and S. Temple

The choice for this system is between employing a small number of high-
end processors or a larger number of lower-performance embedded processors
on each chip. The performance density (MIPS per mm2) of both classes of
microprocessor is similar, but the embedded processors are an order of magni-
tude more energy efficient. Hence, the decision is to use embedded processors
in large numbers, and the SpiNNaker chip will incorporate up to 20 ARM
processor cores to execute the neural modeling code.

The organization of the SpiNNaker multiprocessor chip is illustrated in
Fig. 6. One of the processors on the chip is selected to act as monitor pro-
cessor, and runs the operating system functions on the chip. The remaining
processors act as fascicle processors, each modeling a group of up to a thousand
individual neurons where that group is selected to have as much commonal-
ity as possible in the neurons that connect into its member neurons and the
neurons elsewhere that its member neurons connect to.

Each fascicle processor receives spike events from, and issues spike events
into, a packet-switching communications system, with each spike event encoded
as a single packet. Within a chip, these spike events converge through the Com-
munications NoC to an arbiter, where they are selected and sent in sequence
to a router [10]. The router uses internal tables to identify which fascicle
processors should receive each event (which can be determined from the con-
nectivity netlist of the neural network that is being modelled) and passes the
event on accordingly; this mapping may include none, one or several of the
fascicle processors, so a full multi-cast routing mechanism is required that is
based on address-event communication as described in Sect. 4.5.

The Communications NoC also extends between chips, so the system can
be enlarged by connecting multiple chips together, as illustrated in Fig. 7. Each
chip has six transmit interfaces (‘Tx i/f’ in Fig. 6) and six receive interfaces
(‘Rx i/f’) that effectively extend the Communications NoC to six neighbouring
chips through bi-directional links. The Router can direct packets from any on-
or off-chip source to any on- or off-chip destination, and has sufficient capacity
to support systems comprising very large numbers (up to tens of thousands)
of chips.

5.4 Virtual Communication

The SpiNNaker architecture illustrates one of the important principles of engi-
neering large-scale neural modeling systems: the need to decouple the physical
organization of the engineered system from the physical organization of the
biological system it is designed to model.

Biological neural systems develop in three dimensions, though the way the
three-dimensional space is used is quite variable. The cortex, for example, is
often described as a thin sheet of neurons, where the third dimension is used
largely for long-range connections and to enable the large two-dimensional

Neural Systems Engineering 787

fascicle
processor

fascicle
processor

fascicle
processor

fascicle
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

monitor
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

system
NoC

arbiter

router

Fig. 6. Organization of a SpiNNaker chip multiprocessor node, illustrating the Com-
munications Network-on-Chip (NoC) that is used to carry spike event packets around
the system. Each fascicle processor models many neurons. Packets from other nodes
arrive through the receiver interfaces (‘Rx i/f’) and are merged with packets issued
by the fascicle processors into a sequential stream by the arbiter. Each packet is then
routed to one or several destinations, which may include other processing nodes (via
the transmit interfaces ‘Tx i/f’) and/or local fascicle processors. The monitor pro-
cessor carries out operating system functions and provides visibility to the user of
on-chip activity

788 S. Furber and S. Temple

Fig. 7. SpiNNaker system architecture. Each of the chip multiprocessor nodes is
connected to its six nearest neighbours by bi-directional links. The left and right
sides of the mesh are connected, as are the top and bottom edges, to form a two-
dimensional toroidal surface

area to be folded into a convoluted shape in order to fit into a small three-
dimensional volume. On a small scale, the sheet does have a thickness which
is divided into a characteristic six-layer structure.

The SpiNNaker system architecture, as illustrated in Fig. 7, has a strongly
two-dimensional structure. However, this does not imply in any way that it can
only model two-dimensional neural structures. Indeed, SpiNNaker can model
neural networks that are formed in two, three or even more dimensions. The
key to this flexibility is to map each neuron into a virtual address space,
which means that each neuron is assigned a unique number. The assignment
can be arbitrary, though an assignment related to physical structure is likely
to improve the modeling efficiency. Then neurons are allocated to processors;
again in principle the allocation can be arbitrary, but a well-chosen allocation
will lead to improved efficiency. Finally, the routing tables must be config-
ured to send spike events from each neuron to all of the neurons to which it
connects, and this can be achieved using the neurons’ addresses.

The dissociation between the physical organization of the computer system
and the physical organization of the biological system it is being used to model
is possible owing to the very high speed of electronic communications relative
to the speed of propagation of biological signals. This means that the delays

Neural Systems Engineering 789

inherent in getting a spike event across many chips in the SpiNNaker system
are negligible on the time-scales of neuronal processes. There is a drawback to
the high speed of electronics, however. The physical delays in the biological
system are likely to be functionally important; therefore, they must be re-
instated in the electronic model. This is one of the more difficult and expensive
aspects of the computational task.

5.5 Diverse Approaches

Blue Brain and SpiNNaker are both highly parallel systems employing large
numbers of general-purpose processors to deliver flexibility (through pro-
grammability) in the neuron models that they support. Beyond this apparent
similarity, however, there are marked differences in the way these two machines
will be used to investigate neural computation.

The Blue Brain project emphasizes biological fidelity, and as a result uses
high-performance processors with support for high-precision real-valued arith-
metic which allows complex equations to be solved efficiently. The SpiNNaker
design emphasizes the real-time modeling of very large numbers of much sim-
pler equations; therefore, it uses simpler processors which support only integer
arithmetic, which can still yield accurate solutions to differential equations as
illustrated in Fig. 4, though considerable care must be taken over operand
scaling.

There are many other differences between the two machines, with Blue
Brain using an ‘off-the-shelf’ supercomputer while SpiNNaker is a bespoke
design, the latter therefore having a lightweight communications architecture
highly tuned to the neural modeling application.

While there remains so much uncertainty about the fundamental prin-
ciples of biological neural processing, the diversity of approach reflected in
the differences between Blue Brain and SpiNNaker (and neuromorphic and
FPGA-based systems) is to be welcomed. No one knows which of these
approaches is the most promising. It is our belief, based upon our experi-
ence as computer engineers, that large-scale complex systems are unlikely to
be robust if they depend critically on the fine detail of the components from
which they are constructed, so we are looking for explanations and insights at
the network level and ignoring much of the biological detail. Whether or not
this belief is justified only time will tell, but this is the belief that is driving
the current direction of the SpiNNaker project.

6 Future Prospects

A great deal is known about the function and behavior of the neuron, but a
great deal more remains to be revealed. If estimates of the computing power
required to model a neural system of the complexity of the human brain are

790 S. Furber and S. Temple

not grossly misconceived, computers fast enough to do the job are not far
away. But computing power alone will not solve the problem.

It is not predictable when or where a breakthrough in our understanding
of brain function will emerge, so there is considerable merit in the diversity
of approaches that are now in evidence. The core activities will remain for
some time the painstaking bottom-up laboratory work of the neuroscientist
and the top-down human-centric approach of the psychologist. But along-
side these, there are challenges for computational neuroscientists, computer
scientists, and electronic and computer engineers, all of whom can find oppor-
tunities to explore the potential of the neuron as inspiration for novel ideas
in computation.

There are many possible approaches within the constructionist territory,
some of which we have indicated in this paper. The spectacularly well-
resourced Blue Brain project has the computing power to build highly
accurate models of biological systems, and we can expect dramatic insights
into the operation of complex neural systems to arise from that work, to
complement the exotic images and visualization facilities they have already
demonstrated. With our own work, we are leaving a lot of the biological
complexity behind and working with more abstract neural models, with the
expectation that the world of complex event-driven dynamical systems will
yield insights both into the biology that we employ loosely as inspiration for
our work and into novel models of computation.

Acknowledgements

Steve Temple is supported by the EPSRC Advanced Processor Technologies
Portfolio Partnership at the University of Manchester. Steve Furber holds
a Royal Society-Wolfson Research Merit Award. The SpiNNaker research is
supported by EPSRC, and by ARM Ltd. and Silistix Ltd. The support of these
sponsors and industrial partners is gratefully acknowledged. This Chapter
originally appeared as an article in J. Royal Society Interface, 2007, 4: 193–
206; permission by the Royal Society to reprint it in the current Handbook is
gratefully acknowledged.

References

1. Adrian ED (1964) Basis of sensation. Haffner, London, UK.
2. Austin J, Kennedy J, Lees K (1995) The Advanced Uncertain Reasoning Archi-

tecture, AURA. In: Proc. Weightless Neural Network Workshop (WNNW’95),
26–27 September, University of Kent, UK.

3. Bainbridge WJ, Furber SB (2002) CHAIN: a delay-insensitive chip area
interconnect. IEEE Micro, 22: 16–23.

4. Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit
of cat primary visual cortex. J. Neuroscience, 24(39): 8441–8453.

Neural Systems Engineering 791

5. Boahen KA (2000) Point-to-point connectivity between neuromorphic chips
using address events. IEEE Trans. Circuits and Systems, 47(5): 416–434.

6. Bower JM, Beeman D (1995) The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural SImulation System. Springer-Verlag, New York,
NY.

7. Eliasmith C, Anderson CH (2003) Neural Engineering. MIT Press, Cambridge,
MA.

8. Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve
endings. J. Physiology, 117: 109–128.

9. Furber SB, Bainbridge WJ, Cumpstey JM, Temple S (2004) A sparse distributed
memory based upon N-of-M codes. Neural Networks, 17(10): 1437–1451.

10. Furber SB, Temple S, Brown AD (2006) On-chip and inter-chip networks for
modeling large-scale neural systems. In: Proc. Intl. Symp. Circuits and Systems
(ISCAS’06), 21-24 May, Kos, Greece. IEEE Press, Piscataway, NJ: 1945–1948.

11. Furber SB, Temple S, Brown AD (2006) High-performance computing for sys-
tems of spiking neurons. In: Kovacs T, Marshall JAR (eds.) Proc. Adaptation
in Artificial and Biological Systems Workshop (AISB’06) – GC5: Architecture
of Brain and Mind 2, 3-6 April, Bristol, UK. Society for Aartificial Intelligence
and the Simulaiton of behavior: 29–36.

12. Furber SB, Brown G, Bose J, Cumpstey MJ, Marshall P, Shapiro JL (2007)
Sparse distributed memory using rank-order neural codes. IEEE Trans. Neural
Networks, 18(3): 648–659.

13. Gerstner W (1995) Time structure of the activity in neural network models.
Physics Reviews E, 51: 738–758.

14. Hebb DO (1949) The Organization of Behavior: A Neuropsychological Theory.
Wiley, New York, NY.

15. Hellmich HH, Geike M, Griep P, Mahr P, Rafanelli M, Klar H (2005) Emulation
engine for spiking neurons and adaptive synaptic weights. In: Proc. Intl. Joint
Conf. Neural Networks (IJCNN’05), 31 July - 4 August, Montreal, Canada. 5:
3261–3266.

16. Hodgkin A, Huxley AF (1952) A quantitative description of membrane current
and its application to conduction and excitation in nerve. J. Physiology, 117:
500–544.

17. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE
Trans. Neural Networks, 15: 1063–1070.

18. Izhikevich EM (2005) Simulation of large-scale brain models. (available online
at:http://vesicle.nsi.edu/users/izhikevich/human brain simulation/Blue Brain.
htm#Simulation of Large-Scale Brain Models – last accessed October 2007)

19. Izhikevich EM (2006) Polychronization: computation with spikes. Neural
Computation, 18: 245–282.

20. Jahnke A, Roth U, Klar H (1996) A SIMD/dataflow architecture for a neu-
rocomputer for spike-processing neural networks (NESPINN). MicroNeuro, 96:
232–237.

21. Kanerva P (1988) Sparse Distributed Memory. MIT Press, Cambridge, MA.
22. Kohonen T (1972) Correlation matrix memories. IEEE Trans. Computers C,

21: 353–359.
23. Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks.

Science, 301: 1870–1874.

792 S. Furber and S. Temple

24. Lichtsteiner P, Posch C, Delbruck T (2006) A 128 × 128 120 dB 30 mW asyn-
chronous vision sensor that responds to relative intensity change. In: Proc.
Intl. Solid State Circuits Conf. (ISSCC’06), 4-9 February, San Francisco, CA:
508–509.

25. Lømo T (2003) The discovery of long-term potentiation. Philosophical Trans.
Royal Soc. B, 358: 617–620.

26. Mahowald M (1992) VLSI analogs of neuronal visual processing: a synthesis
of form and function. PhD Dissertation, California Institute of Technology,
Pasadena, CA.

27. Markram H (2006) The blue brain project. Nature Reviews Neuroscience, 7:
153–160.

28. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in
nervous activity. Bulletin Mathematical Biophysiology, 5: 115–133.

29. Mead CA (1989) Analog VLSI and Neural Systems. Addison Wesley, Reading,
MA.

30. Mead CA (1990) Neuromorphic electronic systems. Proc. IEEE, 78(10): 1629–
1636.

31. Mehrtash N, Jung D, Hellmich HH, Schoenauer T, Lu VT, Klar H (2003) Synap-
tic plasticity in spiking neural networks (SP2INN): a system approach. IEEE
Trans. Neural Networks, 14(5): 980–992.

32. Moore GE (1965) Cramming more components onto integrated circuits.
Electronics, 38(8): 114–117.

33. Mountcastle V (1978) An organizing principle for cerebral function: the unit
module and the distributed system. In: Edelman GM, Mountcastle VB (eds.)
The Mindful Brain. MIT Press, Cambridge, MA: 7–50.

34. NEURON (available online at: http://www.neuron.yale.edu/neuron – last
accessed October 2007).

35. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place
units and the EEG theta rhythm. Hippocampus, 3(3): 317–330.

36. OReilly RC (1996) Biologically plausible error-driven learning using local acti-
vation differences: the generalized recirculation algorithm. Neural Computation,
8(5): 895–938.

37. Prange SJ, Klar H (1993) Cascadable digital emulator IC for 16 biological neu-
rons. In: Proc. 40th Intl. Solid State Cicruits Conf. (ISSCC’93), 24-26 February,
San Francisco, CA: 234–235, 294.

38. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity.
Experimental Neurology, 1: 491–527.

39. Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and post-
synaptic signals can influence STDP: a biophysical model. Neural Computation,
16: 595–625.

40. Schoenauer T, Mehrtash N, Jahnke A, Klar H (1998) MASPINN: novel concepts
for a neuro-accelerator for spiking neural networks. In: Lindblad T, Padgett ML,
Kinser JM (eds.) Proc. Workshop on Virtual Intelligence and Dynamic Neural
Networks (VIDYNN’98), 26–28 June, Stockholm, Sweden: 87–97.

41. Schwartz J, Begley S (2003) The Mind and the Brain: Neuroplasticity and the
Power of Mental Force. Regan Books, New York, NY.

42. Sivilotti M (1991) Wiring considerations in analog VLSI systems, with applica-
tion to field-programmable networks. PhD Dissertation, California Institute of
Techology, Pasadena, CA.

Neural Systems Engineering 793

43. Sloman A (2004) GC5: The architecture of brain and mind. In: Hoare CAR,
Milner R (eds.) UKCRC Grand Challenges in Computing - Research. British
Computer Society, Edinburgh, UK: 21–24.

44. Van Rullen R, Thorpe S (2001) Rate coding versus temporal order coding:
what the retinal ganglion cells tell the visual cortex. Neural Computation, 13(6):
1255–1283.

45. Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting. Wiley, New York, NY.

46. Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic
associative memory. Nature, 222: 960–962.

47. Yang Z, Murray AF, Wörgötter F, Cameron KL, Boonsobhak V (2006) A neuro-
morphic depth-from-motion vision model with STDP adaptation. IEEE Trans.
Neural Networks, 17(2): 482–495.

48. Zhu J, Sutton P (2003) FPGA Implementations of neural networks - a survey of
a decade of progress. In: Cheung PYK, Constantinides GA, de Sousa JT (eds.)
Proc. 13th Annual Conf. Field Programmable Logic and Applications (FPL’03),
1–3 September, Lisbon, Portugal. Springer-Verlag, Berlin: 1062–1066.

Resources

1 Key Books

Adrian ED (1964) Basis of Sensation. Haffner, London, UK.

Bower JM, Beeman D (1995) The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System. Springer-Verlag,
New York, NY.

Eliasmith C, Anderson CH (2003) Neural Engineering. MIT Press, Cambridge,
MA.

Hebb DO (1949) The Organization of Behavior: A Neuropsychological Theory.
Wiley, New York, NY.

Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting. MIT Press, Cambridge, MA.

Kanerva P (1988) Sparse Distributed Memory. MIT Press, Cambridge, MA.

Mead CA (1989) Analog VLSI and Neural Systems. Addison-Wesley, Reading,
MA.

Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. Wiley, New York, NY.

2 Key Reference Source

Encyclopedia of Computational Neuroscience
http://www.scholarpedia.org/article/Encyclopedia of Computational
Neuroscience

796 S. Furber and S. Temple

3 Research Groups

Advanced Computer Architecture Group at the University of York (UK)
http://www.cs.york.ac.uk/arch/

Advanced Processor Technologies Group at the University of Manchester
(UK)
http://www.cs.manchester.ac.uk/apt

Brains in Silicon at Stanford University (USA)
http://www.stanford.edu/group/brainsinsilicon/

Brain-Mind Institute at EPFL (Switzerland)
http://bmi.epfl.ch/

Institute of Neuroinformatics at the University of Zurich and ETH Zurich
(Switzerland)
http://www.ini.uzh.ch

Microelectronics Division at the Technical University of Berlin (Germany)
http://mikro.ee.tu-berlin.de/spinn

Neural Networks Group at the University of Edinburgh (UK)
http://www.see.ed.ac.uk/research/IMNS/neural/

The Neurosciences Institute, San Diego (USA)
http://www.nsi.edu/
http://www.izhikevich.com

4 Key International Workshop

Telluride Workshop on Neuromorphic Engineering
http://www.ine-web.org/

5 (Open Source) Software

NEURON
www.neuron.yale.edu/neuron

GENESIS
http://www.genesis-sim.org/GENESIS/

Neural Engineering Simulator
http://compneuro.uwaterloo.ca/codelibrary/codelibrary.html

Artificial Brains: An Evolved Neural Net
Module Approach

Hugo de Garis

Director, Artificial Brain Lab, Institute of Artificial Intelligence, Cognitive Science
Department, School of Information Science and Technology, Xiamen University,
Xiamen, Fujian Province, China, profhugodegaris@yahoo.com

1 Introduction

This Chapter shows how the first author and his research team build artificial
brains [9]. An artificial brain is defined to be a collection of interconnected
neural network modules (10,000–50,000 of them), each of which is evolved
quickly in special electronic programmable hardware, downloaded into a PC,
and interconnected according to the designs of human ‘BAs’ (‘Brain Archi-
tects’). The neural signaling of the artificial brain (A-Brain) is performed by
the PC in real time (defined to be 25Hz per neuron). Such artificial brains can
be used for many purposes, such as controlling the behaviors of autonomous
robots.

If one uses only a PC to perform the evolution of the neural net modules,
there will be a problem, and that is that the PC evolution speed is often too
slow. Typically, it can take many hours to even an entire day to evolve a single
neural net module on a PC. Obviously, evolving several tens of thousands of
such modules using only a PC to build an artificial brain will not be practical.
Before such A-Brain s can be built using this approach, it will be necessary
to find ways to accelerate the evolution of such a large number of neural net
(NN) modules. This we have done, so that it is now possible for us to execute
the evolution of neural net modules in hardware, and thus achieve a speedup
factor (relative to ordinary PC evolution speeds) of about 50 times.

We use a Celoxica field programmable gate array (FPGA) electronic
accelerator board (containing a 3-megagate FPGA, namely a Xilinx Virtex
II programmable chip) to accelerate the evolution of neural network mod-
ules. One of the aims of this Chapter is to report on the measurement of
the speedup factor when using this Celoxica board to evolve neural network
modules, compared to using a PC, as performed on the same set of evolution
tasks. In the later parts of this Chapter we provide a more general description

H. de Garis: Artificial Brains: An Evolved Neural Net Module Approach, Studies in Computa-

tional Intelligence (SCI) 115, 797–848 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

798 H. de Garis

of how we build artificial brains (using the accelerator board – an essential
component of our method).

The experiments reported in this Chapter involved the evolution of fairly
simple neural nets. The tasks chosen to serve as the basis for comparison are
described in detail in Sects. 2.1 and 4.

The evolutionary tasks used two different approaches and technologies, namely:

1. a standard GA (Genetic Algorithm) on a PC, and
2. using the Celoxica board and the high level language Handel-C [1] to

program the evolution (http://www.celoxica.com).

Once the two execution time measurements were obtained, the speedup factor
can be calculated. Final results are given in Sect. 4.

The remaining contents of this Chapter are as follows. Section 2 places the
current Chapter in context by describing related work. Section 3 provides an
overview of how we evolved our neural network modules. Section 3.1 describes
briefly the evolution tasks we used to calculate the speedup factor using the
Celoxica board compared with a PC; Sect. 3.2 provides some details on how
we performed the evolution on the Celoxica board; Sect. 3.3 gives a brief
description of the ordinary genetic algorithm we used to perform the evolu-
tion. Section 4 briefly describes the characteristics of the Celoxica board.
Section 5 presents the experimental results. Section 5.1 explains the so-called
‘IMSI’ (Inter Module Signaling Interface) – that is, the software used to allow
modules to send and receive signals between each other. Section 5.2 answers
the question “How Many Modules?” – in other words how many modules can
an ordinary PC handle in an artificial brain?

The UXO Robot and its Brain-Robot interface is described in Sect. 6.
Section 7 makes some general remarks about artificial brain architectures,
before passing on to a long Sect. 7.1, which presents details of a simple A-
Brain architecture. Section 7.2 shows how one can increment the design of
an artificial brain; Sect. 7.3 answers a basic question “Why Not Just Program
Everything?”; Sect. 7.4 gives some (4) concrete examples of how one can evolve
individual neural net modules. Section 8 raises a ‘routing time’ problem with
the Celoxica board and presents a solution we found for this, called Generic
Evolution. Section 8.1 discusses some limitations of our approach. Section
8.2 talks about what one can do when modules fail to evolve, this being the
topic of evolvability, which is a key issue in evolutionary engineering. Section
8.3 presents ideas on the imminent need for ‘book keeping of modules and
circuits’ as their number grows. Section 9 talks about future work, and Sect. 10
concludes.

Artificial Brains 799

2 Related Work

This Section describes work related to that of this Chapter. As far as we know,
there is no other project on the planet that attempts to build an artificial brain
by connecting large numbers of evolved neural net modules. Hence we cannot
describe closely similar work, but there are other ‘brain building’ projects. We
describe some of them in this Section.

It is only recently, thanks to Moore’s Law, that computing capacity has
become large enough to make brain building realistic, so not surprisingly,
several ambitious research projects have arisen during the past few years to
attempt to build artificial brains. The topic of Brain Building has become
popular recently as evidenced by the number of hits one obtains (November
2007) by a Google search on the term artificial brain – namely, about 55,000.

However, in the decades before Moore’s Law made brain building feasible
(at least in terms of the very large number of artificial neurons involved –
that is, billions) there was nothing to stop people from theorizing about how
the human brain works, or how to create cognitive architectures. There is
a section in the Resources Appendix devoted to a sample of these attempts,
divided into the following topics:

1. A-brain Architectures
2. Brain Theory
3. Cognitive Modeling
4. Ethology

The author has several thousand books in his private library devoted to the
brain (for instance neuro-anatomy, neural networks, neuroscience, brain the-
ory, cognitive science, computational neuroscience, neurophysiology, ethology,
and so forth). Very few of these books attempt explicitly to provide architec-
tural designs for artificial brains; most of those that do are in the Resources
Appendix.

The above number (namely 55,000 Google hits on the term ‘artificial
brain’) is greatly exceeded by the number of hits achieved for the term ‘brain
theory’ (about 200,000). There have been numerous authors over the past few
decades who have attempted to find theoretical principles that are applica-
ble to the functioning of the brain. A sample of such authors is listed in the
Resources Appendix. The term ‘cognitive modeling’, when Googled, returns
around 230,000 hits. So there has been a comparable interest in inventing sys-
tems that have artificial cognition, which need not imitate closely the human
brain.

Ethology (the study of animal behavior) has provided some fairly detailed
models as to how animal or insect brains make decisions amongst their
behavioral repertoire.

800 H. de Garis

The above four topics (artificial brain architectures, brain theory, cognitive
modeling, ethology) are thought by the author to provide essential knowledge
and guidance to any potential brain builder. It is therefore hoped that other
brain builders will read such literature before they attempt to construct their
own artificial brains. The author advises his research team to read widely in
these areas for ideas, for inspiration.

2.1 Some Recent Artificial Brain Projects

This sub-Section describes some of the most interesting (in the view of the
author) ‘artificial brain’ like research projects currently underway.

Markram’s Blue Brain Project

Henry Markram is a neuro- and computer scientist working at Switzerland’s
Ecole Polytechnique Federale de Lausanne (EPFL) in collaboration with IBM.
He is currently conducting one of the most interesting artificial brain projects
in the world, and attracting huge attention from the world’s media. He uses his
neuroscience expertise to simulate the behavior at the synaptic level of detail
of a neural cortical column. He inserts a micro electrode into the individual
neurons of a cortical column of a rat’s brain, electrocutes the neuron, and
thereby extracts information about the connectivity of that neuron with other
neighboring neurons in the column and the respective synaptic strengths.
Painstakingly, this procedure is repeated for the tens of thousands of neurons
in the cortical column, and all the detailed connectivity and synaptic strength
data is fed into an IBM Blue Gene (8000-processor node) supercomputer, one
of the most powerful in the world.

Markram hopes to capture the detailed knowledge of how a single cor-
tical column is structured, and then to simulate its behavior in the Blue
Gene supercomputer, hence the title of his research project, the ‘Blue Brain’
Project. In 15 years he hopes, thanks to Moore’s Law, to be able to use more
powerful IBM supercomputers to simulate all million or so cortical columns in
the human brain. This extremely ambitious and fascinating project obviously
deserves the description of being an artificial brain project.

It differs from the author’s project in at least one major respect, this
being cost. Markram’s project is based on its use of an IBM Blue Gene
supercomputer costing many millions of dollars, thus making it out of reach
to virtually all university research labs. The author’s project, on the other
hand, is explicitly intended to be cheap, so that many different brain building
groups can use its approach. Admittedly, Markram’s project can simulate the
human brain at a far greater level of detail than could the author’s, but he
will have few disciples, due to the expense of his hardware. Nevertheless, the
author (and the world at large) are following Markram’s progress with avid

Artificial Brains 801

interest. His project has been described as “the sexiest artificial brain project
on the planet”. For links to Markram’s work, see the Resources Appendix at
the end of this Chapter.

Artificial Developments ‘CCortex’ Model

Artificial Development (AD) is a San Francisco-based multi-national company
with a Spanish CEO, and collaborators mainly from Europe, the US and
India. The company employs a 1000-processor node cluster of PCs to model
the behavior of 20 billion artificial neurons and trillions of synapses. AD is
building what it calls its CCortex Model, which quoting their web site (see
the Resources Appendix at the end of this Chapter for links to AD.com),

“AD is creating a bio-realistic simulation of the whole human brain
to enable highly functional computational systems. Our technologies
will impact everything from medical research and security to advanced
autonomous systems”.

AD’s goal is “to achieve a realistic whole-brain simulation for the purpose
of creating new cognitive computational products”, which will be capable
of performing such tasks as “pattern recognition, verbal and visual commu-
nication, knowledge acquisition, and conscious-approximate decision-making
capabilities”.

“AD is currently working on three research projects: CCortex, Corti-
cal DB, and NanoAtlas. CCortex is a massive spiking neural network
simulation running on a high-performance parallel supercomputer. It
accurately represents the billions of neurons and trillions of connec-
tions in the human brain with a layered distribution of neural nets.
The primary focus of these neural nets is to emulate the 6-layered neo-
cortex and important subcortical structures, such as the thalamus,
basal ganglia, hippocampus and amygdala. It achieves this simula-
tion by dynamically employing the vast amounts of neurological data
derived from the Cortical DB and NanoAtlas projects.

The Cortical DB is a comprehensive database of neurological struc-
tures that represents multiple levels of the brain, ranging from data
on neurotransmitters, synapses, neuron morphologies, and axon and
dendrite branching, to connectivity patterns and gross structures.
The database contains billions of neurons with trillions of connec-
tions, including data on neuron cell types, morphology, connectivity,
chemistry, physiology and functionality. The database results from
extensive data mining of the neuroscience literature. The NanoAtlas
is a 100-nm resolution digital atlas of an entire human brain that is
built using innovative whole brain histology, imaging and modeling
techniques”.

AD’s project is similar in nature to that of Markram’s. Both use a cluster
of 1000s of microprocessors to simulate the brain. Both use data bases on the

802 H. de Garis

brain to inform their simulations. One obvious difference between the two is
that Markram’s project is based at a university, whereas AD is a company
(but which collaborates with universities).

The Blue Brain and the CCortex projects differ from the author’s project
in that both the former are costly. It costs millions of dollars to build a cluster
of PCs with thousands of processors. If one wishes to establish a community
of research colleagues working on the same broad brain building approach to
create a critical mass of people who can attend workshops and conferences to
discuss common research efforts, then that approach will have to be cheap, so
that many people can afford it. Cheapness is not a trait of either of these two
projects.

Edelman’s ‘Darwin IV’ Robot Brain

Gerald Edelman is a Nobel Prize winning neurophysiologist, Director of the
Neurosciences Institute in San Diego and the author of several well known
books on the brain, embryogenesis, and consciousness (see the Resources
Appendix for details). His Institute studies “memory, learning, consciousness,
attention, sleep”, and is “dedicated to understanding how the human brain
‘works’ at the most fundamental level”.

For the past few decades he has been building a series of computer-
controlled robots called Darwin i, where i represents version number, for
example Darwin IV). Edelman is famous for suggesting the concept of ‘Neural
Darwinism’, which places the concept of Darwinian evolution inside the brains
of individuals. Broadly speaking, Edelman is suggesting that groups of closely
associated neurons compete with each other to respond to incoming stimuli.
The winning group is (synaptically) reinforced, so that it is more likely to
‘win’ the next time a similar stimulus enters.

One of the issues that Edelman has taken to heart is his brain models is
that of ‘categorization’, in other words how does an artificial brain go about
creating categories to classify incoming stimuli (such as sights and sounds)
that are useful for its life. This categorization needs to be spontaneous, that
is, unsupervised. Edelman has implemented his ideas in a series of increas-
ingly sophisticated software programs to control the behaviors of robots. A
fairly recent such concoction was labeled Darwin IV, which learned to create
‘appropriate’ categories concerning the texture of real world wooden blocks
and getting positive and negative ‘rewards’ on touching them.

There are many research projects similar to Edelman’s so this one is really
only representative of a general category, and is much closer in its goals to
the author’s. Since Edelman (actually his research assistants) used a PC to
control the robot, the Darwin IV project was not so expensive. Its primary
aim was to confirm Edelman’s theories on how the brain works, rather than
to build an artificial brain per se.

Artificial Brains 803

2.2 Some Other Recent Artificial Brain Projects

The remaining topics in this Section on related work, are not explicitly con-
nected to building artificial brains, but are relevant to the tools that this
project uses, more specifically, VLSI and evolvable hardware (EHW).

Implementing Neural Networks in Hardware (VLSI)

There have been many attempts over the years to implement neural networks
in (digital and analog) hardware, to speed up the signaling speeds of the
neural nets. For example, see [13] for a thorough review of neural networks
implemented in hardware. A similar logic applies to the author’s research
project, with one major difference. The hardware is not used to accelerate the
signaling speed of the neural nets; the signaling is done in the PC. But special
hardware (the Celoxica board) is used to accelerate the speed of the neural
network’s evolution.

Many earlier hardware implementations of neural networks were truly
‘hard’ in the sense that the designs were ‘frozen in silicon’, so that changing
the design would imply an expensive and slow re-creation of the hardware.
Now that FPGAs are large and powerful (thanks to Moore’s Law) they allow
quick re-programming of the electronic design. In fact, the Celoxica company
has caused a revolution in allowing non electronic engineers to program the
FPGAs without the use of a hardware description language (HDL) such as
Verilog or VHDL. Celoxica board users can use a C-like language (Handel-C)
to configure the FPGA via a Celoxica-provided hardware compiler that trans-
lates Handel-C code into configuring bits for the FPGA. If we want to change
our neural net model for example, then we simply change the Handel-C code,
and re- (hardware) compile.

Evolvable Hardware (EHW)

In the Summer of 1992, the author (who was working in Japan in the 1990s),
happened to be in the US talking with an American electronic engineering col-
league about ideas on how to speed up the evolution of neural networks, using
hardware. This conversation led the author to the idea of ‘evolving hardware’
by conceiving the configuring bit string of a programmable chip (FPGA) as
a random chromosome in a Genetic Algorithm. The random configuring bit
string would create a random circuit in the FPGA, whose performance could
be measured by a conventionally programmed FPGA to determine the quality
of the performance of the random circuit, in other words, its ‘fitness’ [3,6,10].
See the Resources Appendix below for lists of Evolvable Hardware (EHW)
books, conference proceedings, journals, and the like.

The research field of EHW had it first workshop in Switzerland in 1995, its
first conference in 1996 in Japan, and then every year or two since. The first

804 H. de Garis

American EHW conference was held in 1999, under the sponsorship of NASA
and the American Department of Defense (DoD). The NASA/DoD sponsored
conferences have dominated the field ever since. Research efforts in the field
of EHW have covered such topics as fault-tolerant electronic circuits, embry-
onic (that is, self constructing) hardware, the evolution of digital and analog
circuits, and so on.

The author uses evolvable hardware techniques in his current research
project only in an indirect sense, which differs from his original conception
of 1992. By using a Celoxica board to accelerate the execution of a Genetic
Algorithm (GA), one is not strictly speaking evolving hardware. The gates
of the FPGAs are not directly under the control of evolving configuring bits.
Instead the gates are controlled by a non-evolving hardware compiler provided
by Celoxica.

3 The Evolution of Neural Network Modules

This Section gives a brief description of the approach that we normally use to
evolve our neural network (NN) modules that become components for building
artificial brains (For a list of books, conference proceedings, and journals on
Genetic Algorithms, or more generally ‘Evolutionary Computation’, see the
Resources Appendix at the end of this Chapter.) We use a particular neural
net model called GenNet.1 A GenNet neural network consists of N (typically
N = 12–20) fully connected artificial neurons. Each of the N2 connections
has a weight, represented as a signed, binary fraction, real number, with p
(typically p = 6–10) bits per weight. The bit string chromosome used to
evolve the N2 weights will have a length of N2(p + 1) bits. Each neuron j
receives input signals from the N neurons (including a signal from itself).
Each input signal Sij is multiplied by the corresponding connection weight
Wij and summed. To this sum is added an external signal value Ej . This final
sum is called the activation signal Aj to the neuron j.

Aj =
N∑

i=1

WijSij + Ej (1)

This activation value is fed into a sigmoid g that acts as a ‘squashing’ func-
tion, limiting the output value Sj to have a maximum absolute value of 1.0.

Sj = g(Aj) =
Aj

|Aj |+ 1.0
(2)

1 http://www.iss.whu.edu.cn/degaris/coursestaught.htm (CS7910).

Artificial Brains 805

3.1 The Evolutionary Tasks

In order to compare the evolution times for the two different approaches (that
is, using an ordinary GA on a PC, and using the Celoxica board), two simple
neural net evolutionary tasks were evolved. The first was very simple, namely
to output a constant signal value of 0.8 over 100 clock ticks (where a ‘tick’ is
defined to be one loop in the neural network signaling software, in which all
neurons in the artificial brain calculate their output signals once). The second
task is described in Sect. 4.

Each neuron of a neural network module has a weighted connection to
(usually) a single output neuron, whose output signal is considered to be the
output signal for the whole module. This output signal S(t) is compared to
a target (desired) signal value T (t) for some number (say 100) of ‘ticks’. The
fitness function used in the genetic algorithm (GA) to perform the evolution
of the neural net module is usually defined as follows:

f =
1

100∑
t=1

(T (t)− S(t))2
(3)

In our evolutionary task, the target value T (t) is constant, namely T (t) = 0.8.

In order to compare the evolution times of the above task, a concrete
‘cutoff’ (or threshold) fitness value was used. This was found empirically,
by evolving the standard GA version of what we felt was a reasonably ‘satu-
rated’ fitness value. This fitness value was then used in the Celoxica evolution
experiments. Once the evolution, as specified by the Handel-C program (see
the following Section) executed on the Celoxica board reached the same fit-
ness value, its evolution time (in seconds) was recorded. The task was evolved
10 times and the average value calculated.

3.2 Our Evolutionary Approach

The approach our group uses to increase the evolution speed of neural network
modules is to perform the evolution in special hardware, for instance using a
Celoxica board.2 In this approach, a high-level language, called Handel-C is
used. The Handel-C code used to program the genetic algorithm to evolve a
neural net module is ‘hardware-compiled’ (‘silicon-compiled’) into the FPGA
(Xilinx’s Virtex II chip).

The main reason for using an electronic programmable accelerator board
was to accelerate the slow evolution speed of neural networks on a PC, which
can take from many hours to over a day. Evolving 10,000s of modules is
obviously not practical at such slow speeds, hence the need to speed up the
evolution.
2 http://www.celoxica.com

806 H. de Garis

As the early Sections of this Chapter will show, by using the Celoxica
board we get a typical speedup factor of about 50, which is important. This
speedup factor makes brain building as we define it (namely by interconnecting
large numbers of individually evolved neural net modules) practical.

3.3 The Standard Genetic Algorithm

The standard GA (Genetic Algorithm) used to help calculate the speedup
factor consists of the following steps:

Algorithm 1 Standard Genetic Algorithm (GA)
(a) Randomly generate 100 bit string chromosomes of length N2 × (p + 1) (over
the years we have used values N = 16, p = 8, so our chromosomes (bit strings)
were 2304 bits long).
repeat

(b) Decode the chromosome into the N2 signed binary fraction weights, and
build the neural network for each chromosome.
(c) Perform the fitness measurements for the task concerned (for details, see
the next Section).
(d) Rank the fitnesses from ‘best’ to ‘worst’.
(e) Throw out the inferior half of the chromosomes; replace with the superior
half.
(f) Mutate all the chromosomes except the top one. No crossover was performed
in these experiments.
(g) Go to (b).

until the evolution saturates at the target (desired) fitness value (of the elite
chromosome).

4 The Celoxica Board

The aims of lowering the price of high-speed evolution, and achieving higher
performance in evolving hardware led us to use FPGAs (Field Programmable
Gate Arrays). FPGAs are specially made digital semiconductor circuits that
are often used for prototyping. The several million logic gates in modern
FPGAs (for instance, the Xilinx Virtex II chip) make it possible to have
multiple copies of the same electronic sub-circuit running simultaneously on
different areas of the FPGA. This parallelism is very useful for a genetic algo-
rithm. It allows the program to process the most computationally expensive
weight calculations in parallel, and this can speed up the overall evolution by
a factor of about 50 times.

We chose the CeloxicaFPGA board for our project (Fig. 1). Our Celoxica
board (an RC203) cost about $1500. With such a board, a design engineer
is able to program electrical connections on site for a specific application,
without paying thousands of dollars to have the chip manufactured in mass
quantities.

Artificial Brains 807

Fig. 1. The Author’s Celoxica board with central FPGA (photographed by the
author)

The RC Series Platforms of Celoxica are complete solutions for FPGA
design and ASIC/SoC (system-on-a-chip) verification and prototyping. The
boards combine very high-density FPGA devices with soft-core and hard-core
processors, together with an extensive array of peripherals. They provide easy
access to programmable SoC’s from the Electronic System Level (ESL) and
consistently deliver fast and efficient access to very high-density reconfigurable
silicon.

The RC203 FPGA board is a desktop platform for the evaluation and
development of high performance applications. The main FPGA chip is a Xil-
inx Virtex II that can be configured without using an HDL (Hardware Descrip-
tion Language). Instead, as mentioned earlier, it uses a much easier high-level
‘C-like’ language called Handel-C (after the composer Handel). This language
is very similar to standard C (there being an overlap of approximately 80%
between the two languages), with a few extra features, particularly those
involved with specifying which functions ought to be executed in parallel.

A Celoxica board attaches to a PC, with two-way communication, so
that instructions to the board come from the PC, and results coming from
the board can be displayed on the PC screen.

The main aim of the earlier Sections of this Chapter is to show that using
the Celoxica board makes brain building practical, due to the considerable
speedup factor in the evolution of the individual neural network modules

808 H. de Garis

used to make artificial brains. These early sections report on experiments we
undertook to determine how much faster the evolution of neural net modules
on the Celoxica board can be, compared to using a software approach in
a PC. The value of this speedup factor is critical to this whole approach. If
a substantial speedup factor can be achieved, then it becomes practical to
evolve large numbers of neural net modules in a reasonable time, and connect
them together to build artificial brains inside a PC.

5 Experimental Results

In this Section we report on results concerning two experiments. The first
was to see how many neurons N we could fit into the FPGA chip, using a
more compact GA (in other words the cGA [12]. By using fewer lines of code
to specify the GA, as is the case in a cGA, there would a lot more room on
the FPGA for more neurons N in the neural network. (One simple variant of
a compact genetic algorithm is that there are only two chromosomes in the
population, these being the ‘elite’ chromosome and the ‘test’ chromosome.
The test chromosome is mutated and if it has a higher fitness than the elite
chromosome, it becomes the elite chromosome.) This can be expressed in
pseudo-code as follows:

Algorithm 2 Compact Genetic Algorithm (CGA) (after [12])
Initialize and store two chromosomes Ce (‘elite’) and Ct (‘test’) randomly;
Measure the fitnesses of Ce and Ct, giving values Fe and Ft;
Store Fe and Ft;
while evolution has not stagnated do

if Ft > Fe then
replace Ce by Ct;
replace Fe by Ft;

Mutate Ct;
Measure Ft.

For the first experiment mentioned in Sect. 3 (namely evolving a constant
output neural signal value), using the cGA, we were able to place N = 28
neurons on the chip. This is far more than we needed, so we undertook a second
and slightly more demanding experiment. The aim this time was to evolve
(using the cGA mentioned above) a sine curve output for half a wavelength.
The number of ticks of the clock used for the curve (one ‘tick’ being one
calculation cycle of the output signal for each neuron in the network) was 45.
The number of bits in the weights was increased to 8 (1 for the sign, and 7
for the weight value).

The fitness definition (function) was the sum of the squares of the errors
between the target sine half curve (in other words, y(t) = sin(π t

45), and the

Artificial Brains 809

actual output signals over the 45 ticks t. The number of neurons was 12,
population size was 256, and bit string chromosome length was 12× 12× 8 =
1152 bits. The number of generations used was 128,000. This half sine curve
evolved well, showing that a non-trivial neural net could be evolved in the 3
mega-gates available in the FPGA of the Celoxica board. The speedup factor
was about 57 times, compared to evolving the same task on the same PC used
to control the Celoxica board.

We felt that the success of this initial experiment was important because
it showed us that it would be possible to evolve many other single neural
network modules using our Celoxica board. (More on this in later Sections.)

5.1 IMSI (Inter Module Signaling Interface)

In order that each neural net module can calculate the strength of its output
signal, it needs to know the strengths of all its input signals, including not
only from intra-module connections, but also from inter-module connections –
in other words, either from the ‘external world’ (for example, from sensors), or
from the output of other modules. Each module therefore needs a lookup table
(LUT) which lists the sources of its external input signals (from sensors), and
the integer IDs of the modules from which it receives their output signals. A
similar lookup table is needed to specify to which other modules each module
sends its output signal to.

One of the jobs of the BAs (Brain Architects) is then to specify the
interconnections between the modules, and then enter them into these LUTs.

Special software was written for the PC, called IMSI (‘Inter Module Sig-
naling Interface’) which calculates the neural signaling of each neuron in each
module of the artificial brain. An ordinary PC is used to run the IMSI pro-
gram, which calculates sequentially the output signal value of each module,
for all modules in the artificial brain.

The IMSI loops through each module sequentially, using its input LUT
to find the signal values of its external inputs, as well as its internal signal
values. As was mentioned briefly in an earlier Section, but is presented here
in more detail, an intermediate activation function A is calculated according
to Eqn. (4):

Ai =
∑

j=1,N

Wij × Sj +
∑

j=1,P

Ei (4)

where Wij is the weight value of the connection between neurons i and j in
the module, Sj is the value of the signal strength on that connection, Ei is the
value of an external neural signal, N is the number of neurons in the module,
and P is the number of external input signals for that module. The convention
used above is that a signal travels ‘from’ neuron j ‘to’ neuron i.

810 H. de Garis

The output signal Si is calculated using the activation function Ai above,
together with a squashing function f , according to:

Si = f(Ai) (5)

This non-linear function is used to prevent runaway positive feedback of
the signaling. The function f creates an output signal value S which has a
maximum absolute value of 1.0, found from the following simple equation,
and which is also calculated quickly by the computer:

f(X) =
x

1.0 + |x| (6)

Each module has a table of its weight values Wij (in other words, N2 of
them), together with a list of its external input signals (namely P of them,
where P usually varies from module to module).

The IMSI software calculates the Si signal value for each module and stores
it in its output signal register (OSR). This is done sequentially for all modules
in the artificial brain. The IMSI then places the output signal value of each
module into the input signal registers of those modules that the outputting
module signals to. For example, let us assume that module M1432 sends its
output signal value (0.328) to two other modules M3729 and M3606. Then the
IMSI would use the ‘Output Modules LUT’ of M1432 to place the value 0.328
into one of the input signal registers (ISRs) in each of the modules M3729 and
M3606.

Thus the output signals of a given clock cycle (that is, the time taken for
all modules to calculate their output signal values) become the input values
at the next clock cycle.

Each module also has a table of its internal neural signal values Sj, where
j ranges from 1 to N , the number of neurons in the module. These N values
are calculated in each clock cycle, to be used in the following clock cycle. In
the IMSI code, two such ‘S tables’ are used, in a ‘ping-ponging’ style. For
example, table St (calculated in clock cycle t) is used to calculate table St+1

(in clock cycle t + 1), which in turn is used to calculate table St+2, which
actually overwrites table St (hence the term ‘ping-ponging’).

Within each clock cycle t, the IMSI calculates for each module m, its
output signal value Sm, and updates its S table. The value Sm is transferred
to m’s connecting modules. Thus all the data is in place for calculating the
Sm values in the next clock cycle. Performing all these calculations is the job
of the IMSI software.

Some outputs of modules are not sent to other modules but to external
effectors, such as to the motors of a robot, or to a transducer that generates
a radio signal, and so on. The IMSI treats these special external outputs (not
other modules).

Artificial Brains 811

Actually, the IMSI has two roles. Certainly its main role is as described
above, in other words performing the neural signaling in the PC. Another, sec-
ondary role is to allow the BAs (Brain Architects) to specify the connections
between the modules. Thus for example when BAs want to add a new module
to the artificial brain, they will need to use IMSI to specify the module’s

• external inputs (from sensors)
• inputs from other modules (that is, their integer IDs)
• outputs to other modules (that is, their integer IDs)
• external outputs (to effectors)

As the size of the artificial brain grows, special book-keeping software is
used to describe each module, for example its function, its fitness definition,
its size (the number of neurons), its evolutionary strategy, its connections with
other modules, its position in the whole artificial brain design, and so on. (For
more on this ‘book-keeping’, see Sect. 6.3). This software has links with the
IMSI software.

5.2 How Many Modules?

The sequential calculation of the output signal value for each module led to the
following interesting question: “Just how many modules can an ordinary PC
handle in real time?” More specifically, if one specifies that real-time means
that each artificial neuron in the whole brain signals at least 25 times a second
(thought to be a reasonable lower limit, since it is a high enough signaling rate
to control mechanical robots, or to generate a ‘movie effect’ with 25 images or
frames of a movie per second), just how many interconnected modules could
the PC process at that minimum speed?

We called this number the ‘magic number’ because it is critical to our
whole approach. We wanted to use an ordinary PC to perform the neural
signaling of the artificial brain, so that the approach is cheap. So we wrote
the IMSI code and loaded it up with random inter-module connections, and
random weights for each module. We then measured the frequency of signaling
(namely the number of output signal value calculations per neuron per second)
of each neuron for various magic numbers M .

Prior to actually performing experiments to determine M , we thought
that this number would be in the hundreds to maybe over a thousand. We
were surprised to find that it is in fact in the tens of thousands. For example,
with a very modest 1.6GHz processor laptop computer, M was in the range
10,000–20,000 modules. The computer was several years old, so that a modern
dual-processor laptop could probably process 40,000–50,000 modules in real-
time. Such a large number will allow an artificial brain to be built with a
large number of behaviors and behavioral switching circuits, depending on
incoming information from its sensors, and its internal state and memory. A
50,000 module artificial brain is quite substantial.

812 H. de Garis

6 The Robot and Brain-Robot Interface

The following practical A-Brain research project is inherited from the author’s
years in the US. It is called the ‘UXO Problem’, where UXO means ‘unex-
ploded ordnance (for example, unexploded cluster bomblets). A cluster bomb
releases smaller bombs that when falling release yet smaller bombs, so that
at the ground, thousands of bomblets explode simultaneously, creating a fire
storm that cooks anything or anyone trapped in its range. It is a formidable
and controversial weapon.

However, cluster bomblets have a problem, namely that a small percentage
of them don’t explode, so that later, when the ‘friendly troops’ march over
the bombed terrain, they may step on unseen UXO and trigger explosions,
losing legs. Defense departments around the world would love to have a robot
capable of detecting this UXO, picking it up and depositing it at some safe
central point. In order to be able to do something as sophisticated as that,
the robot would need quite a high level of artificial intelligence. It would need
an artificial brain.

Such a task would provide a focus for the design of the A-Brain. The very
nature of the task would concentrate the design effort. Obviously such a task
would be predominantly visual and motion control oriented. Figure 2 shows a
photo of our robot that will detect, collect and deposit UXO (actually orange
ping pong balls) at some central position. It is controlled by a 2-way antenna

Fig. 2. UXO robot

Artificial Brains 813

at the back of the robot, having four wheels, a gripper at the front, and is
fitted with a CMU-CAM2 programmable CCD camera.

Visual (and other) data from the robot is transmitted via radio signals
to the A-Brain in the PC, and vice versa. This robot costs less than $1000
to build, so is not expensive. Its length is about 20 cms. This robot will be
designed to perform the UXO task. It will be controlled by an artificial brain
consisting of at least 10,000-15,000 evolved neural net modules that will allow
the A-Brain to have many hundreds of pattern recognition circuits, and a
similar number of decision circuits.

With any publicly funded research project, one needs to show results. An
artificial brain ‘hidden’ inside a PC is not visible. Even a large wall chart,
consisting of thousands of interconnected neural net modules, may impress
people with its complexity, but would not have the visual impact of a moving
robot that displays hundreds of behaviors, switching from one to another
depending on circumstances both external and internal. If the average person
can remain intrigued for half an hour by such a robot and the A-Brain that
controls it, then we state that the A-Brain has passed the ‘China Test’.

Our research team has a robotics/mechatronics/electronic/engineering
expert, who is working on the interface problem between the robot and the
artificial brain in the PC. The CMU-CAM2 camera on the robot is programmable,
using an assembler-like language which can be used to process the mega-pixel
image that the camera generates. This language contains about 100 different
statements. The ‘robot guy’ of our team has the task of becoming an expert
in this ‘camera language’, and then to provide the rest of the team, who are
mostly BAs (Brain Architects) and EEs (Evolutionary Engineers) who design
and evolve the many neural net modules for the A-Brain, with a summary
of what the camera outputs, as well as ideas on how these outputs can be
translated (interfaced) with possible inputs to neural net modules.

This mapping from mega-pixel camera images to single digit inputs to
modules is what we call the robot-brain interface. This mapping, which we
have yet to specify in detail, will be executed using normal computer code, in
the PC (as will the IMSI), so our A-Brain is actually a ‘hybrid’ system, con-
sisting of evolved neural network modules, and standard high-level computer
code. Having a clearer idea of the robot-brain interface will give the research
team a better idea of what ‘first-layer’ neural net modules to suggest, that
take as their inputs the outputs from the interface mapping.

A type of reverse mapping, from the A-Brain’s output modules to the
motors of the wheels, the camera motor, and the gripper motor, is also needed.
Numerical output signal values from neural net modules need to be translated
into a form that is suitable for the various motors. Signals between the robot
and PC are sent via 2-way radio antenna, so another level of interfacing is
needed – namely between the antenna and to the motors – and between the
effectors (wheels, camera, and gripper) and the antenna that sends signals

814 H. de Garis

to the PC. Once our roboticist has finished his work, it will be easier for
the BAs defining the modules to design them to interface appropriately with
the hardware aspects of the project. Of course, the major part of the effort
involved in the project remains the specification and evolution of the 10,000s
of modules used in the A-Brain.

7 Artificial Brain Architectures

This number of modules (several 10,000s) is more than adequate to build
quite a sophisticated artificial brain, that could contain several thousand pat-
tern recognition modules, hundreds of decision modules and many dozens of
behavior control modules. Our research project has shown that the above is
quite ‘do-able’. All the necessary ingredients are in place. Now all that needs
to be done is to ‘bite the bullet’ and actually build the brain.

Since building a 50,000-module A-Brain is a major undertaking, our
research team (comprising usually around 10 people) intends taking an incre-
mental approach, starting with a very modest artificial brain consisting of
about 30 modules, as described in reasonable detail below.

Once this ‘mini’ artificial brain has been well tested, the experience gained
can be carried over to design larger artificial brains with 100, 200, 500, 1000,
2000, 5000, 10,000, 15,000 modules. At each stage, more people – that is, Brain
Architects – will be needed. To save effort, each brain could be incorporated
as a component in the next bigger brain.

To get a feel for the size of the brain building team needed at each stage,
let us make some reasonable (‘back-of-the-envelope’) assumptions. Assume a
BA can conceive and evolve 2 modules per day. How many BAs (N) would
be needed to build an A-Brain of 20,000 modules (all different) over a period
of four years?

We can calculate N using the following equation (namely, 4 years, 50
working weeks per year, 5 working days per week):

N × 4× 50× 5× 2 = 20,000 (7)

So N equals roughly 10, which means that our current research team could
build a 20,000 module artificial brain in four years, with the basic assumption
that on average about two modules can be evolved per day per BA (with each
Brain Architect working full time).

Once each module is conceived, its actual evolution time is fairly quick,
thanks to the use of the Celoxica board. What may take more time will be the
conception of the modules themselves, depending on the modules. With expe-
rience, it is expected that BAs will become more efficient at ‘dreaming up’ new
modules, their functions, their fitness definitions, and their training examples.

Artificial Brains 815

Once large numbers of different modules are evolved and documented,
then these can be re-used in multiple copies. The above assumption of 20,000
different modules is quite unrealistic. In practice, many modules would be
copies of a single module type. Therefore, the brain size could probably be
about five times larger for the same time period (assuming the average number
of copies of each different module is about five).

Once the number of modules grows larger than the magic number M of
a single laptop computer, then several PCs can be formed into a cluster. If
there are P computers in the cluster, the speedup would be almost linear (that
is, P times faster), since the artificial brain is readily parallelizable. This is
because most of the effort in the neural signaling calculations is devoted to
the internal signaling of each module; only a small fraction of signals (under
10%) are sent between modules.

7.1 A Simple Artificial Brain Architecture

This Section describes a simple artificial brain architecture of several dozen
modules, to illustrate the types of issues that arise when trying to design an
A-Brain using our approach.

For this simple brain (for the illustrative purposes of this Chapter) we do
not use a real robot, but rather a computer simulation of a ‘toy’ robot model,
which has a horizontal rectangular body, with four wheels, and a V-shaped
antenna, as shown in Fig. 3.

Fig. 3. The simulated robot ‘vehicle’

816 H. de Garis

When designing an artificial brain, certain common sense factors come into
play. For example, one needs to answer certain basic questions, such as

1. What is the artificial brain to control? In other words, what is the ‘vehicle’
that the A-Brain controls? (In our case, the vehicle is the (simulated) robot
of Fig. 3)

2. What environment does the vehicle operate in?
3. What are the behaviors of the vehicle that the A-Brain needs to control?
4. What are the inputs and outputs of the vehicle?

Once these basic questions are answered, the more detailed A-Brain design
work can begin.

In our simple case, the answers we give to the above questions are as follows:

The environment in this simple simulation model is a flat surface that
contains small and large triangles and squares, that project onto the camera
eye (the ‘cone’ in Fig. 3). Sounds are also emitted from the environment at
two different frequencies (‘high’ and ‘low’).

The behaviors of the robot are simple. It can turn left slowly or quickly; it
can turn right slowly or quickly; it can move straight ahead slowly or quickly,
and it can stop. Thus there are seven behaviors to be controlled by the A-
Brain.

The inputs to the robot are a triangle or square on the retinal grid of the
eye (in other words, 2 possibilities), and a high- or low-frequency sound.

The next set of questions asks how input stimuli map to output behaviors
for the vehicle. In our case we place the robot in the context of a ‘story’ – that
is, a description of the behaviors of the robot in a ‘coherent’ context. This is
rather vague, so will be illustrated twice with concrete examples to clarify the
concept.

The first ‘story’ we provide is that the robot uses its detectors to see what
the visual image is, namely is it a triangle or a square? It also detects whether
the sound has a high or low frequency.

To the robot brain, these input signals are interpreted as follows. If the
sound has a low frequency, then that means that the source of the sound
(assumed to be some object in the environment) comes from far away, so the
robot need not react quickly – in other words, its motions can be slow. If
the frequency of the sound is high, then the robot interprets this to mean
the object creating the sound is close, so it has to react quickly – therefore
its motions are fast, not slow. Implicit in these interpretations is that a near
object (high frequency sound) could be a ‘threat’ (such as a predator), so the
robot needs to react quickly.

If the image is a triangle, then the robot interprets this as ‘positive’ (such
as prey), as food, as something to be approached. If the image is a square,

Artificial Brains 817

then the robot interprets this as ‘negative’ (for example, as a predator), as
dangerous, as something to be avoided. So the ‘story’ in this case is if the
object detected in the retinal grid of the eye is dangerous, then flee. If it is
prey, then approach it.

This mapping of sensor input to behavioral output makes sense in the
context of the ‘story’ – namely “eat but don’t be eaten” – which also makes
biological sense.

The robot has two other detectors (the black circles at the top of Fig. 3)
on the tips of its V-antenna. These are Signal Strength Detectors (SSDs). If
the sound strength drops off as a function of the distance between the robot
and the source, then by having two such SSDs one can use them to locate
the position of the source of the sound. For example, if the sound source lies
to the front-left of the robot (that is, as the robot faces the object), then the
object lies closer to the SSD on the left branch of the antenna than to the
SSD on the right branch. Thus the signal strength will be stronger than that
detected by the SSD on the tip of the right branch of the antenna.

One can use this signal strength difference in the decision making as to
which behavior (of the seven) the robot ‘chooses’ to perform.

To give a concrete example, take the case of the sound having a high fre-
quency, that the image is a triangle, and that the left SSD has a stronger
signal than the right SSD (abbreviated to ‘L > R’). Then this combination of
inputs maps to a given output in the form of a rule:

if (freq = high) and (image = triangle) and (L > R)
then turn left fast (abbreviated to LF)

In light of the above story, this rule makes sense. The frequency is high,
so the sound source is close. Therefore the reaction of the robot should be
fast, hence the ‘F’ in the behavioral selection (on the right hand side of the
above rule). Since the image is a triangle, that means the object is a prey, to
be approached. Since L > R, the object lies to the front-left of the robot, so
to approach it, the robot should turn left, and quickly – in other words, the
behavior selected is LF.

Once one understands this simple rule, then the rest of the rules listed in
Table 1 are easily interpreted. In Table 1, in the Action column, an L means
‘left’, an R means ‘right’, an A means ‘approach’, an F means ‘fast’, an S
means ‘slow’. For example, AS means ‘approach slowly’; LF means (turn)
‘left fast’.

Most of the actions in Table 1 are turning behaviors. Once the robot has
turned sufficiently, so that the signal strength difference between the two SSDs
on the V-antenna is effectively zero, the robot then moves straight ahead, in
other words it approaches the source of the sound (or flees from it).

818 H. de Garis

Table 1. Results for action selection

Frequency Image Position Action

high triangle L > R LF
high triangle L < R RF
high triangle L = R AF
high square L > R RF
high square L < R LF
high square L = R LF
low triangle L > R LS
low triangle L < R RS
low triangle L = R AS
low square L > R RS
low square L < R LS
low square L = R LS

The stop behavior creates complications, so we will ignore it in this simple
explanatory model. So effectively there are six behaviors.

Now that we understand the ‘story’ (in other words, the general behavior
of the robot), we can now turn to a more detailed discussion of neural net
modules that can implement these behaviors.

These modules are now listed. We need:

1. 2 detectors for the image – these being a ‘triangle detector’ and a ‘square
detector’

2. 1 SSD (signal strength detector) – 2 copies, for each branch of the V-
antenna

3. 2 frequency detectors (one for the high frequency, one for the low frequency)
4. 3 difference detectors (namely L > R, L < R, L = R)
5. 2 logic gates (‘and’, ‘or’)

There are only ten different modules, but this is enough for the purposes
of this Section.

These modules can be combined (interconnected) to form networks of mod-
ules (in other words, a form of network of (neural) networks), called ‘circuits’
(or ‘sub-systems’), where the output(s) of some modules become the inputs
of other modules.

For example, to implement the above rule, the following circuit could be
used (Fig. 4):

Similar circuits can be constructed for the other 11 cases, however we do
not need to make 12 separate circuits similar to that of Fig. 3 – that would
be wasted effort. Instead we can use OR-gates to aggregate several cases. For
example, Table 1 shows that there are three cases that give an LF output.

Artificial Brains 819

FFrreeqq ==

hhiigghh??

&&

TTrriiaannggllee??

&&

ssoouunndd

iimmaaggee

SSSSDD ((LL)) SSSSDD ((RR))

ssoouunndd ((LL))

ssoouunndd ((RR))

LL >> RR

LLFF

Fig. 4. Circuit for LF rule

Table 2. Control signals to wheels for robot turning

Left wheel Right wheel
signal signal

LF 0.2 0.4
LS 0.2 0.8
AF 0.4 0.2
AS 0.8 0.2
RF 0.4 0.4
RS 0.8 0.8

So make those three LF outputs become the inputs to a 3-input OR-gate, and
similarly for LS (three cases), RF (two cases), and RS (two cases). AF and
AS only have single cases, so they don’t need an OR-gate.

One need not replicate SSDs, nor difference detectors (L > R), (L < R),
(L = R). One can simply have the outputs of these detectors branch to become
inputs to multiple other circuits.

Putting all these 12 (non redundant) circuits together would generate quite
a complex circuit, and is not given in this Section.

How can we implement LF, LS, AF, AS, RF, RS? Common sense says
that to get a 4-wheeled vehicle to turn left, one needs to make the right side
wheels turn faster than the left side wheels. Therefore use three more modules
that output a constant signal of a low value (say 0.2) and a constant signal
of a middling value (for instance 0.4), and a constant signal of a high value
(such as 0.8). These different output signal values can be used to turn the
wheels at different speeds. A high signal (0.8) will turn the wheel it controls
quickly. A middling signal (0.4) will turn its wheel at a middling speed, and
so on. Table 2 gives the combination of input signals to make the robot turn
appropriately.

This brings the total of different modules now to 13.

820 H. de Garis

00..22

00..88

&&

LLFF

LLFF

00..22 ttoo lleefftt wwhheeeellss

00..88 ttoo rriigghhtt wwhheeeellss

Fig. 5. Control signals to wheels for LF

If the behavior LF is activated, it can then send two output signals which
become the inputs to modules that generate the two control signals for the
wheels (namely 0.2 and 0.8). This simple circuit is shown in Fig. 5.

There are six different behaviors (LF, LS, AF, AS, RF, RS), with different
combinations of control signal strengths to the wheels, so how do we solve the
problem that only one set of signals should be sent to the wheels at a time?
With six circuits functioning simultaneously, it is possible to have several
of these have non negligible output values at the same time. This creates a
conceptual problem. We want to have only one of these six to be active (for
example, a strong output value of 0.8) and the rest to be inactive (that is,
with weak output values of 0.2).

Before proceeding further, it is interesting to note that the problem we
are now discussing is fairly typical of the role of a brain builder or a BA. It
is analogous to an electronic engineer who designs digital electronic circuits.
There is a lot of creativity involved, and there may be ‘many ways to skin a
cat’ (in other words, many alternatives to solving a problem, some of them
being more intelligent and/or efficient than others).

Returning to the problem: how can only one of the six signals be strong
and the other five weak? This sounds like a ‘winner-takes-all (WTA)’ problem.
So we suggest creating a circuit that has six inputs, and six outputs. If the
ith input signal is the strongest of the six input signals, then the ith output
signal is strong (say 0.8) and all the other output signals are weak (say 0.2),
as shown in Fig. 6. How do we design such a circuit using evolvable neural net
modules? (You see the scope for creativity?!)

The very idea of using a WTA circuit may not be the best way to solve the
‘unique signal problem’ (that is, ensuring that only one set of signals is sent to
the wheel motors). An alternative might be to add the output signals of the six
behaviors (LF+LS+AS+AF+RF+RS). This will generate some inaccuracies
for a time, but so long as the behaviors don’t change very fast from one to
another, there will probably be time for the contributions of the five non
active behaviors to drop to low values, leaving only the active behavior. (On
the other hand a weak signal is about 0.2, so the sum of five weak signals is

Artificial Brains 821

““WWiinnnneerr TTaakkeess AAllll”” cciirrccuuiitt

00..33 00..44 00..22 00..66 00..55 00..44

00..8800..22 00..22 00..22 00..22 00..22

Fig. 6. Winner-takes-all (WTA) circuit

DDoommiinnaattoorr

OO

AA
BB

CC

Fig. 7. Dominator circuit

roughly equal to one strong one, so we still have a problem). So let us pursue
the WTA approach. How to implement such a circuit?

Trying to evolve a 6-input, 6-output circuit is probably too difficult, so
our instinct is to ‘divide-and-conquer’, in other words, evolve simpler modules
and then connect them to create the WTA circuit.

Consider a ‘dominator’ circuit, which has three inputs A, B, C, and one
output O, as shown in Fig. 7.

If the input signal A (on the left) is the largest of the three input signals,
then the output O takes the input value A; otherwise O takes a very low value

822 H. de Garis

DDoommiinnaattoorr

DD
EE

FF

DDoommiinnaattoorr

AA
BB

CC

>>

AA DD

00..88

Fig. 8. Winner-takes-all (WTA) circuit component

(say 0.1 or 0.05). With two such circuits we can combine them with a ‘greater
than’ circuit to create a WTA circuit (component), provided that the leftmost
of the six inputs is the largest, as shown in Fig. 8.

It should now not be too difficult to see that with six such components, we
can construct a winner-takes-all (WTA) circuit. For example, if the input-B
has the largest input signal strength, then if we swap the inputs A and B, then
using the circuit of Fig. 8, we should get a strong output (say 0.8), indicating
that B was the strongest input. Similarly, if we swap A and C, then if C is
the strongest, again the output O will be strong (else weak), and so on for the
remaining three cases.

With six such circuits, we can construct a full WTA. The six outputs from
the WTA circuit (one of which will be strong, say 0.8), and the other five
very weak (say 0.05) are fed into six circuits of the form shown in Fig. 9. The
six ‘left wheel’ output signals and the six ‘right wheel’ output signals can be
paired – in other words, two of the left wheel outputs have a value of 0.1, two
have a value of 0.4, and two have a value of 0.8 (similarly with the right wheel
outputs). However instead of having six circuits as in Fig. 6, we can simplify
things a little, as indicated in Fig. 9.

Using the data of Table 2, an LS output needs to send a 0.2 signal to the
left motor and a 0.4 signal to the right motor. An LF output sends signals
0.2 and 0.8 respectively to the left and right motors. Hence LS and LF both
send a 0.2 signal to the left motor. By connecting the two left motor signals

Artificial Brains 823

OORR OORR OORR OORR OORR OORR

MMUULLTTIIGGEENN MMUULLTTIIGGEENN

LLSS LLFF RRSS RRFF AASS AAFF

ttoo lleefftt mmoottoorr ttoo rriigghhtt mmoottoorr

((00..22)) ((00..44)) ((00..88)) ((00..22)) ((00..44)) ((00..88))

Fig. 9. Motor control circuit

to an OR-gate as shown in Fig. 9, if one of LS or LF is active from the WTA
circuit the OR-gate will output a strong signal.

In the case of the LS/LF OR-gate, if one of LS or LF is active, then the
output of the OR-gate is strong. This output connects to a new module called
‘Multigen’, which generates a multiple of outputs depending on which input
has a strong signal. If the left input is strong (0.8) the output is a constant
signal of 0.2; if the middle input is strong, the output is a constant signal of
0.4; if the right input is strong, the output is a constant of 0.8. Outputs go to
the motors.

7.2 Incrementing the Design

The 14 different modules mentioned earlier are (presumably) sufficient to
explain the behaviors of the robot as specified. But so far there are only 14
different modules involved, yet (as we have already shown) today’s technology
allows tens of thousands of modules in an A-Brain. So how does one go about
incrementing the number of modules? There are several possibilities.

One can throw out the previously evolved modules, and start a new larger
design from scratch. This seems to be rather inefficient and when one is talking
of a large number of modules is totally impractical. This is because each time

824 H. de Garis

when starting from scratch, it will be impossible not to use previously evolved
modules, especially once one is familiar with them and know that they work
and how useful they are.

One can evolve modules incrementally – in other words, start with a rel-
atively small number (say 20) – then add on a few more, to take the total to
30 say. After a bit more thinking, one could fairly quickly reach 100 modules.
With a small team of people, one could then reach 200, 500, even 1000 with
quite a bit of effort. Over 1000, one needs project management and a team
of BAs. This logic becomes even more applicable as one reaches numbers like
2000, 5000, 10000.

Over the 50,000 threshold one may be talking of ‘national’ brain building
projects, with teams of dozens of BAs (brain architects, brain builders). But
up to the 10,000 module size only a small number of BAs are actually needed,
as can be shown by making another quick ‘back-of-the-envelope’ calculation.
We now repeat the same type of calculation previously performed in Sect. 5
(but on a smaller scale – that is, with fewer total modules). How many BAs
would one need to build a 10,000 module A-Brain in three years, making
reasonable assumptions? Assume a single BA can conceive, evolve and test
three modules in a working day. Let N be the number of BAs in the team. In
three years, these N people can create N ×3×48×5×3 (= 10,000) modules.
Hence N is around five, in other words a small team.

This Section shows an example of the incremental addition of modules to
an already existing A-Brain, namely the one explained already, with its 14
different modules.

As usual, one begins with a ‘story’. The story chosen for this addition was
related to ‘boredom control’. The story is that if ‘nothing happens’ for a given
time, then the robot becomes ‘bored’ and then makes a random selection of
one of its behaviors to stop the boredom. This story translates into the fol-
lowing boredom control circuit (or subsystem), containing the modules shown
in Fig. 10.

Figure 10 requires some explanation. The multiple OR-gate is fairly self
explanatory. If any of the behavioral signals of (say LF, LS, and so on) are
high, then the OR-gate will output a high signal. The inputs to the OR-gate
(namely B1, B2, · · · , Bn) are the behaviors (LF, LS, and similar). The OR-
gate is checking to see if anything is ‘happening’, that is if any behavior is
occurring. If ‘yes’, and if the output of the OR-gate is high, then a new module,
the Impulse Generator module, will output a short duration high value signal
pulse for say 20 ‘ticks’. This pulse is formed when the output of the OR-gate
goes high.

The pulse inputs to a Boredom Meter module, whose output is triggered
by its input pulse. This output signal starts off at a low value (0.2) and climbs
linearly in time to a high value (0.8) and saturates at that value, unless a new

Artificial Brains 825

MMuullttiippllee
OORR ggaattee

IImmppuullssee
GGeenneerraattoorr

BB11

BB22

BB33

BBnn

BBoorreeddoomm
MMeetteerr

TThhrreesshhoolldd
DDeetteeccttoorrRRaannddoommiizzeerr

BB’’11

BB’’22BB’’33
BB’’nn

Fig. 10. Boredom control circuit

impulse arrives, which causes the Boredom Meter module to ‘reset’ its output
– in other words become low again (0.2). Thus the size of the output signal
of this module measures how ‘bored’ the robot is, namely how long it has
been since any activity has occurred. The boredom tolerance is the number
of ‘ticks’ taken for the Boredom Meter module’s output to rise from the low
value (0.2) to the (saturated) high value (0.8).

This output value is then input to a Threshold Detector module, which
outputs a high value when the signal value of its input from the Boredom
Meter module is 0.8 (that is, a ‘high boredom level’). When that happens
the Threshold Detector module outputs a strong signal (0.8) which is fed to a
Randomizer module, which outputs a high signal on only one of its outputs,
and low signals on all the others. It is called a ‘randomizer’, because the
output on which the high signal value appears to be random. (At one time
the high output will appear on one output, and then at another time at a
different output.) On average, the distribution of the high outputs is even.
The outputs (B1, B2, · · · , Bn), one of which is high (0.8) are the (LF, LS, and
so forth) of Fig. 8.

The aim of the Randomizer module is to randomly select one behavior
to be generated so as to overcome the robot’s boredom. Once a (random)
behavior has been selected, the fact that that behavior has been generated,
due to the boredom control circuit, the Boredom Meter module will output a
low signal value. The robot is no longer bored (for a while at least).

It is easy to see that this (boredom control) circuit can be added to a pre-
existing A-Brain, to help construct a more elaborate one. This incremental
process can be continued indefinitely, creating larger and larger A-Brains, up

826 H. de Garis

to the limit of what an ordinary PC can handle in real-time (namely, several
10,000s of modules).

7.3 Why Not Just Program Everything?

A question which may have occurred to some readers is that a lot of the
modules discussed so far seem rather simple in their function and could be
readily programmed in conventional high level computer software code. That
being the case, why not just program everything, instead of evolving modules
for everything? What is the point?

The answer is that it may be true for certain simple modules that they can
be quickly and easily programmed, but that is not true for many modules,
especially pattern recognition modules. One of the advantages of evolutionary
engineering is that ‘EEs’ (evolutionary engineers), BAs, can often evolve a
function without understanding at all how the evolved neural net module
does what it does.

To a large extent BAs usually don’t care much how a particular evolved
neural net module performs its function. For a start, there are too many of
them. An ordinary PC can perform the neural signaling in real time of an
A-Brain containing several tens of thousands of modules, so why would an
EE take a particular interest in a particular module when it is only one of
10,000s? Even if a complete dynamical analysis of the signaling of that single
module were undertaken, of what use would such knowledge be to the EE?

If a module can be evolved quickly, using evolvable hardware (EHW)
techniques, and in a time comparable to using traditional programming tech-
niques, then the objection that it might be quicker and easier to just program
a function that a module performs, loses some of its sting. (For a list of books,
conference proceedings, journals, and the like on Evolvable Hardware, see the
Resources Appendix at the end of this Chapter.)

In practice, evolving a simple function module will usually take longer than
just programming it, but this is largely irrelevant to the whole evolutionary
engineering approach. In an A-Brain with 10,000s of modules, a non negligible
proportion of them will be more or less ‘non-programmable’, that is it will
not be obvious how to program their functions. For example, if a function is
to detect triangles on a grid and output a strong signal, but to output a weak
signal on seeing a square, and the figures can be placed anywhere on the grid,
how would you program that, and quickly? There are many such examples.

One could use a hybrid approach, namely conventional programming and
evolved modules, but that would be a different research project. This project
uses a uniform approach, that is where all functions are performed with
evolved neural net modules. This uniformity allows a single piece of software
(the IMSI described in Sect. 4.1) to process all modules in the same uniform
manner, which is conceptually simpler than a hybrid system.

Artificial Brains 827

7.4 Evolving Individual Modules

This Section describes how a selection (a subset) of the modules discussed
in the previous Section can be evolved. The author is currently writing a
book [11], in which will be descriptions of actual successful evolutions of many
modules (probably many dozens), to give readers and potential brain builders
a fairly thorough introduction as to how to evolve individual neural net mod-
ules, that is so critical to this approach of building artificial brains. In this
Section we give only a few, because describing each one takes quite a bit of
time, and there are already nearly 20 different modules introduced in this
Chapter.

We start with a rather simple example, this being the Multigen module of
Fig. 8. Remember its specification. It has three inputs and one output. If the
leftmost input is high, and the others low, it outputs a constant signal of 0.2;
if the middle input is high, it outputs a constant signal of 0.4; if the rightmost
input is high, it outputs a constant signal of 0.8.

How can one evolve such a module? We use a ‘multi-test’ approach, which
is a technique commonly used in our work. In this case there are three tests
(or experiments) – that is, the three cases of input combinations (left high,
middle high, right high). Let us run each test (namely, arrange to have the
appropriate input signal values) for a given number of ‘ticks’, say 33, for each
experiment. Thus the total number of ticks for the ‘multi-test’ experiment will
be 100 ticks. Figure 11 shows the target output signal values for the ‘multi-test
evolution’.

To evolve this module three experiments or tests are carried out on the
same module, hence the word ‘multi-test’. For the first 33 ticks, three inputs

tt ((ttiicckkss))

OOuuttppuutt
SSiiggnnaall
SSttrreennggtthh

3333 6666 110000

00..22

00..44

00..88

Fig. 11. Target output values for the Multigen module

828 H. de Garis

(left to right) of value (0.8, 0.2, 0.2, respectively) are presented. For the second
33 ticks, the three inputs are (0.2, 0.8, 0.2), and for the third 33 ticks, they are
(0.2, 0.2, 0.8). At the junctions of 33, 66 ticks, the internal neuronal signals
are reset to zero, so that a ‘fresh’ experiment can begin. The fitness definition
(function) of this module is as follows:

f =
1

100∑
t=1

(T (t)− S(t))2
(8)

The T (t) is the target (desired) output signal value. It takes the value 0.2 for
the first 33 ticks, then 0.4 for the second 33 ticks, and 0.8 for the third 33
ticks. S(t) are the actual output signal values from the evolving module. The
closer the S(t) values are to the target values T (t), the higher the fitness score
f . The fitness is a simple inverse of the sum of the squares of the differences
between the T and S values for each tick t.

As another example of evolving a module, take the case of the domina-
tor circuit of Fig. 6. How to evolve this module? Recall its functionality: if
the input signal A (on the left) is the largest of the three input signals, then
the output O takes its input value A; else, O takes a very low value (say
0.1 or 0.05). Again we use a multi-test evolutionary approach. (It is diffi-
cult to overemphasize the importance of multi-test evolution to evolutionary
engineering).

To evolve this module, we create a test set of cases, and divide them
into two classes, called ‘positive’ and ‘negative’ (or ‘positive’ and ‘negative
examples’, to use Machine Learning terminology). The positive examples are
those for which A is indeed the largest of the three input values in which case
the target output should be A. Negative examples are those for which A is
not the largest input value of the three inputs, in which case the target output
should be low (say 0.1).

We now prepare the training set (the positive and negative examples) to
be used to evolve the module. Let the input signal values to A be one of 0.1,
0.3, 0.5, 0.7, 0.9, to B be one of 0.15, 0.35, 0.55, 0.75, 0.95, and to C be one
of 0.2, 0.4, 0.6, 0.8, 1.0. There are thus 53 = 125 possible input combinations.
Of these 125, P are positive examples (where P can be readily calculated).
Therefore there are (125 – P) negative examples. We input the 125 cases
sequentially, each for say 30 ticks. At the end of each block of 30 ticks, the
internal neuronal signals of the modules are reset to zero, to begin another
fresh evolutionary test.

The fitness definition of this module is similar to that just above, except
that the target output signals T (t) are now Ai(t) for the ith positive example,
and 0.1 for the (125 – P) negative examples. Note that in general there are
a different number of positive and negative examples, so integer ‘balancing

Artificial Brains 829

factors’ are used in the fitness definition, to balance the tendency of the evo-
lution to favor the bigger of the sum ((125−P)

∑
(ai(t)−S(t))2 +P

∑
(0.1−

S(t))2).

There are P positive cases, and (125 – P) negative cases, so multiply the
sum of the squares of the differences of the positive cases by the number of
negative cases, (that is, 125 – P), and multiply the sum of the squares of the
differences of the negative cases by the number of positive cases (namely P).
This should then force the evolution to favor the two sets of cases evenly. This
‘balancing the evolution’ between positive and negative cases in multi-test
evolution, is a commonly used trick in evolutionary engineering.

This second example is more demanding than the first, so its evolvability
may be lower. If so, then one may be forced to redesign the module or even the
subsystem that the module belongs to. Such problems are a daily occurrence
to brain architects.

For a third example, take the case of the frequency detector in Fig. 3. Again
we create a training set of positive and negative examples. Let us assume that
the environmental model in which the robot is situated contains only two
frequencies, these being ‘high’ and ‘low’ – for example, a high frequency with
period of 20 ticks, and a low frequency with period 40 ticks. Assume the
strengths of the sound signals received by the robot take the following form:

S(t) = Ai × sin(2πt/T) (9)

Let the amplitude of the signal (Ai) have three different values: 0.2, 0.5, 0.8.
Hence there are six cases, namely three different possibilities for the ampli-
tude, and two cases for the period T . There will be thus three positive and
three negative examples, corresponding to whether the period is small (high
frequency) or large (low frequency).

Use a six case multi-test evolution, in which the cases are each presented
for 80 ticks. For the positive cases the target output is high (0.8), and for the
negative cases the target output is low (0.2).

A similar fitness definition could be used to evolve a signal strength detec-
tor, our fourth and final example. If the input signal takes the same form as in
Eqn. (9), then the target output signal value should be Ai√

(2)
, in other words,

independent of the period T . By having Ai take values 0.2, 0.3, 0.4, · · · , 0.8,
0.9, we have eight training examples. Each is input for 40 ticks in a multi-test
fashion. The fitness would be simply the inverse of the sum of the squares of
the differences of the actual output values and the corresponding target values.

For more examples of single neural net module evolution, readers will have
to wait until publication of [11].

830 H. de Garis

8 The Need for Generic Evolution

The main reason for using the Celoxica board is to speed up the evolution
of individual neural net modules. If an A-Brain contains several 10,000s of
modules then common sense says that building such an A-Brain will be totally
impractical if it takes many hours or even a day to evolve each module. Hence
the accelerator board is an essential component of brain building.

However there is a problem. After having written the Handel-C code to
evolve an individual module, that code needs to be ‘hardware compiled’ into
the FPGA. However the programmed routing process of the wiring between
the programmable gates of the FPGA can take a full 40 minutes to be com-
pleted. This is not quick. If the evolution of every module needs this 40
minutes, then it rather destroys the rationale behind the use of the Celoxica
board. If the actual evolution time using the Celoxica board (once the rout-
ing has been completed) is a minute or two, then the 40 minute routing time
dominates the evolution time and makes the use of the board less competitive
relative to evolving modules using an ordinary PC.

For example, imagine that a module takes one minute to evolve on the
Celoxica board, and 50 minutes on a PC. So if the routing takes 40+ minutes
to perform, then the total evolution time (routing time + genetic algorithm
execution time) = 41+ minutes, which is almost equal to the PC evolution
time, making the use of the board almost pointless. One may as well just
use the PC and not bother with the expense of buying the Celoxica board
(about $1500).

What can be done to overcome this problem? As a result of thinking about
how to solve this problem we came up with the concept of generic evolution.
The idea is as follows. It is possible to feed the programmed FPGA with
external data. One can then use different data as input, but still use the same
programmed (and already routed) FPGA circuit.

This opens up the possibility of creating a general or generic circuit that
can be fed different data to evolve different modules. The data that is fed in
takes the form of various parameters that specify the nature of the neural net
module that is to be evolved. These parameters include such things as the
number of input signals, the number of output signals, the number of positive
and negative cases in a multi-test evolution, and so on. Also input is the target
output signal as a function of time.

Typically in a multi-test pattern recognition evolution, there will be a list
of positive examples and negative examples. Typically the positive examples
when presented as input should result in a strong output signal from the
pattern detector module, and negative examples should output weak signals.

For the evolution of a pattern detector module, usually the positive exam-
ples are fed in as input first, then the negative examples. The internal signals

Artificial Brains 831

LLiigghhtt
SSoouurrccee

PPaatttteerrnn
MMaasskk

22DD PPiixxeell
GGrriidd

NNeeuurraall
NNeett

Fig. 12. Evolving a pattern detector

between the neurons are reset to zero whenever a new example is input. This
input is usually a pattern of some object (such as a triangle or square) on a
2D grid of pixels (say 8 × 8 = 64 pixels). Some of these pixel elements will
have strong output values, others weak, depending on how much light falls on
the pixel, as shown in Fig. 12. Each pixel output signal is fed to each neuron
in the neural net, with each such connection having its own evolvable weight.

The generic input parameters will also include the number of ‘ticks’ (where
a tick is one loop in the neural signaling code in which every neuron calculates
its output signal value) for the presentation of each example on the pixel
grid (say 50 ticks). Let us assume that there are P positive examples and
N negative examples (say P triangles, and N squares), and that the target
(desired) outputs of the evolving module are high (say 0.8) for triangles, and
low (say 0.2) for squares.

Then we can code the target outputs as a binary string where a ‘1’ rep-
resents a high desired output (0.8), and a ‘0’ represents a low desired output
(0.2). Such a target binary string can be fed into the Celoxica board as a
parameter string.

The inputs to the neural net – namely the set of positive and negative
pattern examples – can be fed into the FPGA in the form of a set of con-
catenated binary strings, where a ‘1’ represents that light has fallen on that
pixel, and a ‘0’ that light has not fallen on that pixel. The 2D pixel grid is
mapped (or scanned) left to right, line by line from top to bottom, into a
long binary string and input to the FPGA. The parameters P and N tell the
genetic algorithm in the FPGA, how many positive and negative input strings
(encoded 2D grid patterns) there are.

832 H. de Garis

In this way it is possible to evolve a large number of pattern detector
circuits, without having to re-route the FPGA. The same Handel-C program
that is used to evolve the module can be used for many different sets of
parameters. The program is thus ‘generic’, hence the term generic evolution.
If, occasionally, the generic (Handel-C) program needs to be changed and
re-routed, then that can be done, but not for every module.

Using generic evolution, the evolution time of a module can then be a mere
minute or so, using the speed of the Celoxica board (some 50 times faster
than a PC).

8.1 Limitations of Our Approach

What are some possible limitations of our approach to building A-Brains? At
the time of writing, we do not yet have concrete experience of limitations, but
we can anticipate these. The immediate problem we anticipate is something we
call ‘unwanted synergy’, namely a kind of interference that occurs when adding
new modules to those already existing in a given A-Brain architecture. By
adding these new modules, the signals that they send out may cause unwanted
interference with the signals amongst the pre-existing modules, especially if
there are feedback loops created by the addition of the new modules to the
previous modules.

At the time of writing we have not yet assembled a sufficient number of
modules in an A-Brain to have noticed such a problem, but we will not be
surprised if it does occur in the near future.

Another obvious limit is the total number of modules that can be evolved
in a reasonable amount of time (several years, say). By evolving one module
at a time and only several per BA per day, there is an obvious limit to how
big an A-Brain can become.

Evolvability considerations imply that only fairly simple functionalities
can be evolved in a module. Hence all the modules will be fairly simple. The
complexity of the multi-module circuits must therefore emerge from the inter-
connectivity of the modules into more complex circuits, analogous to the way
simple electronic components can be combined to produce complex electronic
devices, such as a computer chip or a TV set. Hence a lot of work is needed
to achieve complex behaviors from simple modular components.

8.2 Evolvability – A Key Issue

When one is an evolutionary engineer (EE), of which a brain architect is an
example, the concept of ‘evolvability’ is critical. By definition, the term evolv-
ability expresses the idea whether a certain function can be evolved – namely,
is it evolvable? There is almost no theory on the concept of evolvability, but in

Artificial Brains 833

practice, for working BAs, the concept is critical, because all too often a par-
ticular module will just not evolve. From my own experience and that of my
team (of about 10 people) I would say that about 10% – 20% of our attempts
to evolve modules do not work, in other words they fail to evolve. Just why
this is the case, we don’t know. As I said, there is very little theory on evolv-
ability to guide us, so we are forced to take an empirical ‘hit-or-miss‘ approach,
namely, if a particular function fails to evolve then change the function, the
model or the architecture of the subsystem in which the module concerned is
a part.

This can be a frustrating business. Sometimes several attempts are needed
to get a module, or a subsystem of modules to work. Since there is no effective
theory to guide good evolvability, if a particular function fails to evolve, all one
can do is hope that by changing the function to some other, using a different
approach, that the new function will evolve, and if it doesn’t, then try again,
and again, if necessary, until it does evolve.

8.3 Book-Keeping of Modules and Circuits

Eventually, over time, a whole library of successfully evolved modules can be
accumulated, each properly documented, with such obvious attributes as, the
module’s name, the module’s integer ID, a brief description of its function,
its fitness definition, its training set (positive and negative examples), number
of neurons, number of input neurons, number of output neurons, a list of its
inputs (from the external world, or from other modules), a list of outputs (to
the external world, or to other modules), and so on. With several 10,000s of
such modules that can be used build an A-Brain with today’s technology, this
‘book-keeping’ needs to be thorough, comprehensive and readily accessible.

A systematic approach needs to be used with the classification of modules.
Hence such classification criteria need to be developed. It is expected that
this will emerge with practice, as the number of modules being placed in
the module library (data base) increases beyond the number of names and
functions that anyone can readily remember.

Not only must individual modules be placed in the library, but a record
has to be kept of the circuitry, that is the module inter-connectivity. If one
makes an analogy with a very complex electronic circuit – for example, the
latest computer processor chips – then the techniques used to describe the
architecture and function of such chips ought to carry over to some extent to
brain building.

For example, a computer chip will have its subsystems, and its sub-
sub-systems, right the way down to single transistors. A similar top-down
approach can be taken for brain building, for example the ‘boredom’ sub-
system described earlier. As brain builder teams grow larger, in terms of the

834 H. de Garis

number of BAs working on a particular brain building project, the need to spe-
cialize becomes obvious. For example, there could be a vision team, a motion
control team, a memory management team, and so on.

Large brain building teams with dozens or more of BAs will need to be
controlled by project managers. Perhaps the brighter, more creative members
of the team could be the actual brain architects, and the rest be the people who
actually evolve the modules, according to the specifications of the BAs (fitness
definitions, training set, and so forth). When things fail to evolve, the BAs
and the MEs (module evolvers, or let’s just call them the EEs (evolutionary
engineers) in the same way as an ordinary software programmer is given the
fancy label of a ‘software engineer’) will need to consult.

The EE can inform the BA who conceived the module, that it did not
evolve. The BA can then try again, or the EE, can try a different approach
that achieves the same broader goal. In practice, in the author’s team (of about
10–12 people, mostly graduate students, it is the author who tends to be the
main BA, handing out assignments of modules to be evolved. The brighter
ones will report back sometimes that their module(s) did not evolve, so they
changed the model themselves and got it to work, or they made repeated
attempts and still failed to get it to work. The author then either assigns the
module to someone else, or rethinks it himself, or tries a whole new approach
with a quite different model. Brain building is an art, there is no doubt about
that.

9 Future Work

The 50-fold speedup of neural net module evolution enabled by the use of
the Celoxica board, compared with that of an ordinary PC will revolutionize
brain building. It is now a lot more practical to evolve 10,000s of neural
net modules within human patience limits. As mentioned earlier, a relatively
small brain building team (say 5 people) could then build an artificial brain
(of 10,000 modules) in three years, at a rate of three evolved modules per
working day per person.

If somehow the total speedup factor could be made as high as 1000, then
it is conceivable that new multi-module evolutionary algorithms could be cre-
ated, that would make use of this speedup to evolve not only the intra-module
weights of several modules, but their inter-module connections as well.

One of the weaknesses with our current brain building approach is that the
modules are evolved individually, irrespective of how they will interact with
other modules in a network of modules. Very rapid evolution of individual
modules would allow new approaches to multi-module evolution.

But, for the moment, we are stuck with single module evolution, so a huge
amount of work remains to be done, even when the goal is a rather modest

Artificial Brains 835

one of building an A-Brain of only 10,000 modules – that is, an A-Brain
that an ordinary PC (personal computer) can handle – that any Computer
Science/Engineering department could undertake (even without a Celoxica
board). Hopefully, several such research groups will be set up in the near
future to build their own A-Brains. If enough of them are formed, workshops
on the topic could be held. Later, conferences could be organized and journals
created (with titles such as Brain Builder, or Artificial Brains).

For the author’s group, we need more PhD students who can work on this
project full time, and fewer Masters students who are busy with their courses,
and just don’t have the time to devote hours every day to the brain building
task.

One thing is clear, however. Everything is now ready to proceed with the
task. The costs involved are modest, totaling only about $2500 ($1500 for
the Celoxica board, and $1000 for a robot to control, plus a PC which any
laboratory will have). So the total cost is fairly minimal.

The method works. The author’s and his group’s experience over the years
have shown that evolving individual neural net modules is readily doable. Sim-
ulation experiments on a PC have shown that several 10,000s of interconnected
evolved neural net modules can have their neural signaling performed by a
PC in real-time.

For a small team of BAs, several 10,000s of modules is still a lot, and will
allow an A-Brain to be constructed with probably many hundreds of pattern
recognition circuits. One wonders what fraction of the whole brain will consist
of logic control modules. Since no one on the planet has yet built a 10,000
module A-Brain using this approach, we have little idea what such an A-Brain
could actually do.

Section 6 described the UXO (unexploded ordnance) task. Implementing
this task has yet to be done, so is an obvious task for the future. Figure 2 is a
photo of our robot (that costs less than $1000) that can be used to implement
this task. Such a task would provide a focus for the design of the A-Brain.
The very nature of the task would concentrate the design effort. Obviously
such a task would be predominantly visual and motion control oriented.

Looking a bit further into the future, one can imagine larger A-Brain
projects, even national scale projects – for example, the ‘C-Brain Project’
(that is, the China Brain Project); similarly for A-Brain, E-Brain, J-Brain,
I-Brain and other Projects (where the letters stand for America, Europe,
Japan, India, and so forth).

Moore’s Law (the doubling of the number of transistors placed on a chip
every 18 months) will soon allow a PC to be able to handle the real-time neural
signaling of 100,000 modules. This is only a few doublings from now. How
could a brain building team cope with 100,000 modules? There are probably
two approaches that could be used. One is simply to scale up the number

836 H. de Garis

of BAs/EEs used in the team. For example, if five BAs can build a 10,000
module A-Brain in three years, then 50 people could probably build a 100,000
A-Brain in the same time. With a few more doublings in speed, one would be
soon into the ‘million module’ range A-Brain. That would take 500 BAs/EEs.
Such a large scale A-Brain project would be beyond what a university could
do (especially in salary terms), so it would need to be undertaken by a national
government, and hence could be classified as a national brain building project.

The second approach would be to do more research on the concept of
‘simultaneous multi-module evolution’, namely attempting to evolve several
(many) modules at once. By around the year 2020, Computer Science will
have an Avogadro number (a trillion trillion or 1024) of components in its
systems – the number of molecules in a human-scale object. With such large
numbers, it will be possible to build artificial brains with ‘zillions’ of modules,
so simultaneous multi-module evolution will become obligatory.

The above extrapolations into the future are assuming one continues to use
an evolutionary engineering approach. Is this valid? One could argue that as
the number of components in a computing system grows, so does the complex-
ity, hence an evolutionary engineering approach may be even more essential,
to cope with that complexity.

Another factor one should take into account when discussing the future
of brain building is the impact of superior neuroscience. Any self respecting
brain builder ought to be reading neuroscience for inspiration. As new prin-
ciples are discovered as to how mammalian brains function, these principles
can be incorporated into the designs of the BAs. One can thus expect that
a marriage between the two fields of Brain Building (or Artificial Brains)
and Neuroscience will become inevitable. Such a marriage should allow the
creation of increasingly intelligent artificial brains, since their designs will be
based evermore on how our own biological brains function.

9.1 The ‘China Brain’ Project

By 2008, the author will have changed professorial jobs and moved to Xia-
men University, in the south of China, where he has been given a four-year
3,000,000 RMB research grant to build China’s ‘First Artificial Brain’, hence
the title of the project, namely the ‘China-Brain Project’. The aim will be
to build an artificial brain consisting of 15,000 evolved neural net modules,
following the design principles outlined in this Chapter. It is planned that
five PhD students will work full time for four years, designing, evolving and
testing three neural net modules per day, 5 days per week, 50 weeks per year,
for 4 years (in other words, 5 × 4 × 50 × 5 × 3 = 15,000) to build an arti-
ficial brain to control the hundreds of behaviors and thousands of pattern
recognition modules of an autonomous robot.

Artificial Brains 837

10 Conclusion

The early Sections of this Chapter presented results showing that a Celoxica
FPGA board is capable of speeding up the evolution of neural network mod-
ules (relative to that on a PC) by a factor of about 50 times, depending on
the size of the neural net being evolved. We believe this to be an impor-
tant advance and an essential step when artificial brains – comprising 10,000s
of such modules – are to be evolved in a reasonable time, and then run in
real-time in interconnected form in an ordinary PC. Prior to the use of the
Celoxica board, the evolution of a single neural network could take many
hours on an ordinary PC, a fact that made brain building according to our
PC-based approach quite impractical.

Most of the gates (flip flops) on the Xilinx chip on the Celoxica board,
were taken up to implement the code of the genetic algorithm. Fortunately,
there are smaller GAs in the literature, called ‘Compact Genetic Algorithms’
(cGAs) that by definition are very simple (taking less code) and hence need
fewer logic gates for their electronic implementation. We were able to evolve
larger NN modules with smaller GAs (with a 50-fold speedup).

Another factor assisting the growth in the size of modules is of course
Moore’s Law. For example, the next generation Celoxica board, beyond the
RC203 that we are currently using, has a Xilinx FPGA chip that contains 6
million logic gates, that is a doubling compared to our RC203 Celoxica board.
Celoxica does indeed have a new board based on the new Xilinx Virtex 4
chip.

Accordingly, our next research project may be to see how large our neu-
ral net modules can become, in other words just how many fully connected
neurons can be evolved electronically on the Celoxica board. The underlying
technology (the electronic evolution of large numbers of neural net modules)
will make the production of 10,000s of evolved modules needed to build an
artificial brain, practical.

Then the real challenge of designing an artificial brain can begin (as the
latter part of this Chapter illustrates), and will result hopefully in the creation
of a new research field, namely ‘Brain Building’ or ‘Artificial Brains’.

As mentioned in Sect. 8, one other research challenge we overcame was
to design a generic evolution approach to overcome the ‘slow routing of the
wiring of the FPGA’ problem. We resolved this problem by programming a
‘generic FPGA circuit’ once, and then sending in different fitness definitions
as external data from the PC to the circuit. To change the fitness definition
one needs only to change the values of the parameters in the data that are
input to the ‘changeless’ generic circuit. When one does need to change the
generic model, this can be done by re-routing the Celoxica board, but it will
take 40 minutes. Fortunately, this need not be done very often.

838 H. de Garis

The above paragraphs in this summary were concerned primarily with
issues arising in the context of creating the tools to allow brain building using
our method. However, the majority of this Chapter introduced our research
group’s approach to building artificial brains using these tools.

An artificial brain was defined to be a network of evolved neural net
modules, where the outputs of modules usually become the inputs of other
modules. Each module is evolved quickly using a (Celoxica) electronic accel-
erator board (about 50 times faster than using a PC). The evolved weights
of each neural net module are downloaded into the PC’s RAM. This is done
thousands of times, one by one – a lot of work – up to a maximum of several
10,000s, which is the limit with which the PC can perform the neural signaling
of all the (interconnected) modules sequentially in real-time. Here ‘real-time’
means the PC calculates the output signal value of every neuron in the whole
A-Brain 25 times per second (25 Hz).

Once all the modules are downloaded into the PC’s memory, they are inter-
connected according to the designs of human Brain Architects, for example
the output of module M1593 connects to the second input of module M4295.
The interconnected network of neural networks is the A-Brain.

Special software, called IMSI (Inter Module Signaling Interface) is used to
specify the connections. The data structures of the IMSI software are largely
LUTs (lookup tables) which contain such data as the list of modules a partic-
ular module receives its input from, and sends its outputs to. When the PC
is calculating each neuron’s output signal, it uses the IMSI’s LUTs to know
where its inputs come from, and to where it is to send its output signals.

Each neural net module performs some small function, and is evolved using
a genetic algorithm in the Celoxica board according to the module’s fitness
function (a mathematical measure of the quality of the performance of its
function). The art of brain building is to design ‘brain circuits’ that consist
of interconnected evolved neural net modules. Today’s PCs allow the real
time neural signaling of A-Brains with up to a maximum of several 10,000s
of modules. With an A-Brain of such size it will be possible to give it many
hundreds of pattern detector circuits, and a similar number of decision and
behavior switching circuits, and so on. To observe a 10,000 module A-Brain
controlling the hundreds of behaviors of a robot should give the impression to
human observers that the robot ‘has a brain behind it’.

Longer term, the research field of Artificial Brains should grow in size to
generate big budget national projects equivalent to the national space agencies
(NASA, ESA, and similar). Large national brain building projects would have
the potential for building artificial brains comprising a million modules.

Artificial Brains 839

10.1 Final Word

We believe that the major point of this chapter is that it describes a new tool
to build artificial brains. The tool is cheap (less than $3000), quick (using the
Celoxica board, one can evolve neural net modules 50 times faster than using
a PC), and the tool works. We therefore hope that in a few years, dozens of
brain builder groups will be established to build their own artificial brains
using this tool. If there are dozens of groups, there will be dozens of different
artificial brain architectures. A particular artificial brain architecture is not
so significant in itself, especially if there are many of them. What is more
significant is the tool that allows many different artificial brain architectures
to be built. To make an historical analogy, which is more important, dozens
of astronomical observations, or the invention of the telescope that enabled
those observations?

Acknowledgements

The author would like to thank the members of his research team during
the year and a half that he was at Wuhan University, Hubei Province, China.
These people were: TANG Jian Yu (Brain Builder Group, International School
of Software, Wuhan University, and the Computer Science School, Hubei Uni-
versity of Economics, Wuhan, Hubei Province) and HUANG Di (Computer
Science School, University of Geosciences, Wuhan), who were the Handel-C
and Celoxica board experts; HUANG Zhiyong (Computer Science School,
Wuhan University) who was the robot (mechatronics) expert; and BAI Lu,
CHEN Cong, CHEN Shuo, GUO Junfei, TAN Xianjin, TIAN Hao, TIAN
Xiaohan, WU Xianjian, XIONG Ye, YU Xiangqian (all of the Brain Builder
Group, International School of Software, Wuhan University), all of whom
helped conceive neural net modules and evolved them. Finally, the author
would like to thank Prof. John Fulcher for his assistance in preparing this
Chapter.

References

1. Celoxia (2006) The ‘Handel-C’ High Level Language for Programming the
Celoxica board. (available online at http://www.celoxica.com – last accessed
November 2007).

2. de Garis H, Gers F, Korkin M, Agah A, Nawa N (1998) ‘CAM-Brain’: ATR’s
Billion Neuron Artificial Brain Project: A Three Year Progress Report. Artificial
Life and Robotics J., 2: 56–61.

3. de Garis H (1999) Review of Proc. 1st NASA/DoD Workshop on Evolvable
Hardware. IEEE Trans. Evolutionary Computation, 3(4): 304–306.

4. de Garis H, Korkin M (2000) The CAM-Brain Machine (CBM): Real Time
Evolution and Update of a 75 Million Neuron FPGA-Based Artificial Brain. J.
VLSI Signal Processing Systems (Special Issue on VLSI on Custom Computing
Technology), 24(2-3): 241–262.

840 H. de Garis

5. de Garis H, Korkin M, Gers F, Nawa E, Hough M (2000) Building an Artificial
Brain Using an FPGA Based CAM-Brain Machine. Applied Mathematics and
Computation J. (Special Issue on Artificial Life and Robotics, Artificial Brain,
Brain Computing and Brainware), 111: 163–192.

6. de Garis H (2001) The Second NASA/DoD Workshop on Evolvable Hardware.
IEEE Trans. Evolutionary Computation, 5(3): 298–302.

7. de Garis H, Korkin M, Fehr G (2001) The CAM-Brain Machine (CBM): An
FPGA Based Tool for Evolving a 75 Million Neuron Artificial Brain to Control
a Lifesized Kitten Robot. J. Autonomous Robots, 10(3): 235–249.

8. de Garis H (2002) Guest Editorial. Neurocomputing (Special Issue on
Evolutionary Neural Systems: Prof. Hugo de Garis, Guest Editor), 42(1–4): 1–8.

9. de Garis H, Korkin M (2002) The CAM-Brain Machine (CBM): an FPGA-
based hardware tool which evolves a 1000 neuron net circuit module in seconds
and updates a 75 million neuron artificial brain for real-time robot control.
Neurocomputing, 42(1–4): 35–68.

10. de Garis H (2004) Evolvable Hardware 2004. Evolutionary Computation, 12(3):
397–402.

11. de Garis H (2009) Artificial Brains: An Evolved Neural Net Approach. World
Scientific, Singapore (in press).

12. Harik GR, Lobo FG, Goldberg DE (1999) The Compact Genetic Algorithm.
IEEE Trans. Evolutionary Computation, 3(4): 287–297.

13. Lindsey C, Lindblad T (1998) Review of Hardware Neural Networks: A
User’s Perspective. (available online at: http://www.particle.kth.se/∼lindsey/
elba2html/elba2html.html – last accessed November 2007)

Resources

1 Key Books

1.1 Artificial Brain Architectures

Albus JS (1981) Brains, Behavior, and Robotics. McGraw Hill, New York, NY.

Ashby WR (1966) Design for a Brain. Chapman and Hall, London, UK.

Coward LA (2005) A System Architecture Approach to the Brain: From Neu-
rons to Consciousness. Nova Science Publishers, New York, NY.

de Callatay AM (1986) Natural and Artificial Intelligence: Processor Systems
Compared to the Human Brain. North Holland, Amsterdam, The Netherlands.

Edelman GM (1992) Bright Air, Brilliant Fire. Basic Books, New York, NY.

Kent EW (1981) The Brains of Men and Machines. Byte/McGraw Hill, New
York, NY.

Pollock JL (1989) How to Build a Person: A Prolegomenon. MIT Press, Cam-
bridge, MA.

Pollock JL (1995) Cognitive Carpentry: A Blueprint for How to Build a Per-
son. MIT Press, Cambridge, MA.

Young JZ (1964) A Model of the Brain. Oxford University Press, Oxford, UK.

Young JZ (1978) Programs of the Brain. Oxford University Press, Oxford,
UK.

842 H. de Garis

1.2 Brain Theory

Calvin WH (1996) How Brains Think: Evolving Intelligence, Then and Now.
Basic Books, New York, NY.

Calvin WH (1996) The Cerebral Code: Thinking a Thought in the Mosaics
of the Mind. MIT Press, Cambridge, MA.

Freeman WJ (1999) How Brains Make Up Their Minds. Weidenfeld and
Nicholson, London, UK.

Minsky M (1986) The Society of Mind. Simon and Schuster, New York, NY.

Minsky M (2006) The Emotion Machine: Commonsense Thinking, Artificial
Intelligence, and the Future of the Human Mind. Simon and Schuster, New
York, NY.

Palm G, Aertsen A (1986) Brain Theory. Springer-Verlag, Berlin.

Shaw GL, Palm G (eds.) (1988) Brain Theory. World Scientific, Singapore.

Sporns O, Tononi G (1994) Selectionism and the Brain. Academic Press, New
York, NY.

Valiant LG (1994) Circuits of the Mind. Oxford University Press, Oxford,
UK.

1.3 Cognitive Modeling

Anderson JR (1983) The Architecture of Cognition. Harvard University Press,
Cambridge, MA.

Green HS, Triffet T (1997) Sources of Consciousness: The Biophysical and
Computational Basis of Thought. World Scientific, Singapore.

Hecht-Nielsen R, McKenna T (eds.) (2003) Computational Models for Neuro-
science: Human Cortical Information Processing. Springer-Verlag, Berlin.

Kanerva P (1988) Sparse Distributed Memory. MIT Press, Cambridge, MA.

Lloyd D (1989) Simple Minds. MIT Press, Cambridge MA.

Newell A (1990) Unified Theories of Cognition. Harvard University Press,
Cambridge, MA.

Artificial Brains 843

Palm G (1982) Neural Assemblies: An Alternative Approach to Artificial Intel-
ligence. Springer-Verlag, Berlin.

Trehub A (1991) The Cognitive Brain. MIT Press, Cambridge, MA.

1.4 Evolvable Hardware (EHW)

Greenwood GW, Tyrrell AM (2006) Introduction to Evolvable Hardware:
A Practical Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press,
Piscataway, NJ.

Higuchi T, et al. (2006) Evolvable Hardware. Springer-Verlag, Berlin.

Sanchez E, Tomassini M (1996) Towards Evolvable Hardware: The Evolu-
tionary Engineering Approach. Springer-Verlag, Berlin.

Sekanina L (2004) Evolvable Components: From Theory to Hardware Imple-
mentations. Springer-Verlag, Berlin.

1.5 Gerald Edelman

Edelman G, Mountcastle VB (1982) Mindful Brain: Cortical Organization and
the Group-Selective Theory of Higher Brain Function. MIT Press, Cambridge,
MA.

Edelman G (1989) The Remembered Present: A Biological Theory of Con-
sciousness. Basic Books, New York, NY.

Edelman G (1990) Neural Darwinism. Oxford Paperbacks, Oxford, UK.

Edelman G (1993) Bright Air, Brilliant Fire: On the Matter of the Mind.
Basic Books, New York, NY.

Edelman G (1993) Topobiology: An Introduction to Molecular Embryology.
Basic Books, New York, NY.

Edelman G, Changeux J-P (2000) The Brain. Transaction Publishers, Edison,
NJ.

Edelman G, Tononi G (2001) A Universe of Consciousness: How Matter
Becomes Imagination. Basic Books, New York, NY.

Edelman G (2005) Wider Than the Sky: The Phenomenal Gift of Conscious-
ness. Yale University Press, CT.

844 H. de Garis

Edelman G (2007) Second Nature: Brain Science and Human Knowledge. Yale
University Press, CT.

1.6 Ethology

Borrows M (1996) The Neurobiology of an Insect Brain. Oxford University
Press, Oxford, UK.

Ewert J-P (1980) Neuro-ethology: An Introduction to the Neurophysiological
Fundamentals of Behavior. Springer-Verlag, Berlin.

Heiligenberg WF (1991) Neural Nets in Electric Fish. MIT Press, Cambridge,
MA.

Tinbergen N (1989) The Study of Instinct. Oxford University Press, UK.

1.7 Genetic Algorithms (GA)

Back T (1995) Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Univer-
sity Press, Oxford, UK.

Chambers LD (2000) The Practical Handbook of Genetic Algorithms: Appli-
cations (2nd ed). Chapman and Hall, London, UK.

Coello CA, et al. (2002) Evolutionary Algorithms for Solving Multi-Objective
Problems. Springer-Verlag, Berlin.

Coley DA (1997) An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific, Singapore.

Davidor Y (1991) Genetic Algorithms and Robots: A Heuristic Strategy for
Optimization. World Scientific, Singapore.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA.

Goldberg DE (2002) The Design of Innovation. Springer-Verlag, Berlin.

Haupt RL, Haupt HE (2004) Practical Genetic Algorithms. Wiley, New York,
NY.

Michalewicz Z (1998) Genetic Alorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin.

Artificial Brains 845

Mitchell M (1998) An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA.

Sivanandam SN, Deepa SN (2007) Introduction to Genetic Algorithms.
Springer-Verlag, Berlin.

2 Key Journals

Evolutionary Computation (MIT Press)

IEEE Trans. Evolutionary Computation

Genetic Programming and Evolvable Hardware (Kluwer)

3 Artificial Brain Research Groups

3.1 Markram’s ‘Blue Brain’ Project

Website: http://bluebrain.epfl.ch/

Wikipedia article: http://en.wikipedia.org/wiki/Blue Brain

IBM article: http://www-03.ibm.com/industries/education/doc/content/news/
pressrelease/1334727110.html?g type=rssfeed leaf

3.2 Adaptive Development’s ‘CCortex’

Website: http://www.ad.com

AD Presentation to ‘Accelerating Change’ Meeting, 2005:
http://findarticles.com/p/articles/mi m0EIN/is 2005 Sept 16/ai n15393907

3.3 Edelman’s ‘Darwin IV’ Robot Brain

Wikipedia biography on Edelman:
http://en.wikipedia.org/wiki/Gerald Edelman

Edelman’s Neurosciences Institute: http://www.nsi.edu/

On Darwin IV: http://www.pnas.org/cgi/content/abstract/89/15/7267

Neurosciences Institute research report:
http://www.nsi.edu/uploads/pdf/ScientificReport.pdf

846 H. de Garis

4 Key International Conferences/Workshops

4.1 Congress on Evolutionary Computation – CEC (IEEE)

Proc. 1999 IEEE Congress on Evolutionary Computation, Washington DC,
IEEE Computer Society Press, Los Alamitos, CA.

Proc. 2000 IEEE Congress on Evolutionary Computation, La Jolla, CA, IEEE
Computer Society Press, Los Alamitos, CA.

Proc. 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, IEEE
Computer Society Press, Los Alamitos, CA.

Proc. 2002 IEEE Congress on Evolutionary Computation, Honolulu, HI, IEEE
Computer Society Press, Los Alamitos, CA.

Proc. 2003 IEEE Congress on Evolutionary Computation, Canberra, Australia,
IEEE Computer Society Press, Los Alamitos, CA.

Proc. 2004 IEEE Congress on Evolutionary Computation, Portland, OR,
IEEE Computer Society Press, Los Alamitos, CA.

4.2 GECCO – Genetic and Evolutionary Computation Conference

Banzhaf W, et al. (1999) GECCO’99: Proc. Genetic and Evolutional Compu-
tation Conf., Morgan Kaufmann, San Francisco, CA.

Whitley D, et al. (2000) GECCO 2000: Proc. Genetic and Evolutionary Com-
putation Conf., Morgan Kaufmann, San Francisco, CA.

GECCO (2001) GECCO 2001: Proc. Genetic and Evolutionary Computa-
tion Conf., Morgan Kaufmann, San Francisco, CA.

GECCO (2002) GECCO 2002: Proc. Genetic and Evolutionary Computa-
tion Conf., Morgan Kaufmann, San Francisco, CA.

Cantu-Paz E, et al. (2003) Genetic and Evolutionary Computation – GECCO
2003: Proc. Genetic and Evolutionary Computation Conf., Chicago, IL. Lec-
ture Notes in Computer Science 2723(4), Springer-Verlag, Berlin.

Deb K, et al. (2004) Genetic and Evolutionary Computation – GECCO2004:
Proc. Genetic and Evolutionary Computation Conf., Seattle, WA,. Lecture
Notes in Computer Science 3103, Springer-Verlag, Berlin.

Artificial Brains 847

ACM Sigevo (2005) Proc. Genetic and Evolutionary Computation Confer-
ence – GECCO2005, Washington, DC. ACM Press, New York, NY.

Keijzer M (2006) Proc. GECCO 2006: Genetic and Evolutionary Computation
Conf., Seattle, WA. ACM Press, New York, NY.

4.3 ICES – International Conference on Evolvable Systems

Hichuci T, et al. (1996) Evolvable Systems: From Biology to Hardware – Proc.
1st Intl. Conf. (ICES1996), Tsukuba, Japan, Lecture Notes in Computer
Science 1259, Springer-Verlag, Berlin.

Sipper M, Mange D, Perez-Uribe A (1998) Evolvable Systems: From Biol-
ogy to Hardware – Proc. 2nd Intl. Conf. (ICES1998), Lausanne, Switzerland,
Lecture Notes in Computer Science 1478, Springer-Verlag, Berlin.

Miller J, et al. (2000) Evolvable Systems: From Biology to Hardware – Proc.
3rd Intl. Conf. (ICES2000), Edinburgh, Scotland, Lecture Notes in Computer
Science 1801, Springer-Verlag, Berlin.

Liu Y, Tanaka K, Iwata M, Higuchi T, Yasunaga M (2001) Evolvable Sys-
tems: From Biology to Hardware – Proc. 4th Intl. Conf. (ICES2001), Tokyo,
Japan, Lecture Notes in Computer Science 2210, Springer-Verlag, Berlin.

Tyrrell AM, et al. (2003) Evolvable Systems: From Biology to Hardware –
Proc. 5th Intl. Conf. (ICES2003), March, Trondheim, Norway, Lecture Notes
in Computer Science 2606, Springer-Verlag, Berlin.

Moreno M, et al. (2005) Evolvable Systems: From Biology to Hardware – Proc.
6th Intl. Conf. (ICES2005), Sitges, Spain, Lecture Notes in Computer Science
3637, Springer-Verlag, Berlin.

Kang L, Liu Y, Zeng S (2007) Evolvable Systems: From Biology to Hard-
ware – Proc. 7th Intl. Conf. (ICES2007), Wuhan, China, Lecture Notes in
Computer Science 4684, Springer-Verlag, Berlin.

4.4 NASA/DoD Conferences on Evolvable Hardware

Stoica A, et al. (1999) Proc. 1st NASA/DoD Workshop on Evolvable Hard-
ware, Pasadena, CA. IEEE Computer Society Press, Los Alamitos, CA.

Lohn J, et al. (2000) Proc. 2nd NASA/DoD Workshop on Evolvable Hard-
ware, Palo Alto, CA. IEEE Computer Society Press, Los Alamitos, CA.

848 H. de Garis

NASA (2001) Proc. 3rd NASA/DoD Workshop on Evolvable Hardware, Long
Beach, CA. IEEE Computer Society Press, Los Alamitos, CA.

Stoica A, et al. (2002) Proc. NASA/DoD Conference on Evolvable Hardware,
Alexandria, VA. IEEE Computer Society Press, Los Alamitos, CA.

IEEE (2003) Proc. 2003 NASA/DoD Conf. Evolvable Hardware, Chicago, IL.
IEEE Computer Society Press, Los Alamitos, CA.

NASA (2005) Proc. NASA/DoD Conf. Evolvable Hardware (EH-2005), Wash-
ington DC. IEEE Computer Society Press, Los Alamitos, CA.

Part IX

Evolutionary Approaches

Evolving Artificial Neural Network Ensembles

Md. Monirul Islam1 and Xin Yao2

1 Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh�,
mdmonirulislam@cse.buet.ac.bd

2 Centre of Excellence for Research in Computational Intelligence
and Applications (CERCIA), School of Computer Science, University
of Birmingham, Edgbaston, Birmingham B15 2TT, UK, x.yao@cs.bham.ac.uk

1 Introduction

Artificial neural networks (ANNs) and evolutionary algorithms (EAs) are both
abstractions of natural processes. In the mid 1990s, they were combined into
a computational model in order to utilize the learning power of ANNs and
adaptive capabilities of EAs. Evolutionary ANNs (EANNs) is the outcome
of such a model. They refer to a special class of ANNs in which evolution is
another fundamental form of adaptation in addition to learning [52–57]. The
essence of EANNs is their adaptability to a dynamic environment. The two
forms of adaptation in EANNs – namely evolution and learning – make their
adaptation to a dynamic environment much more effective and efficient. In a
broader sense, EANNs can be regarded as a general framework for adaptive
systems – in other words, systems that can change their architectures and
learning rules appropriately without human intervention.

EAs have been introduced into ANNs at roughly three different levels:
(i) connection weights, (ii) architectures, and (iii) learning rules. The evolution
of connection weights introduces an adaptive and global approach to train-
ing, especially in the reinforcement learning and recurrent network learning
paradigms, where gradient-based training algorithms often experience great
difficulties. Architecture evolution enables ANNs to adapt their topologies to
different tasks without human intervention. The evolution of learning rules can
be regarded as a process of ‘learning to learn’ in ANNs, where the adaptation
of learning rules is achieved through evolution.

There is strong biological and engineering evidence to support the assertion
that the information processing capability of ANNs is determined by their
� Portions reprinted with permission, from X. Yao and M.M. Islam, “Evolving

artificial neural network ensembles,” IEEE Computational Intelligence Magazine,
3(1):31–42, February 2008. Copyright IEEE.

M.M. Islam and X. Yao: Evolving Artificial Neural Network Ensembles, Studies in Computa-

tional Intelligence (SCI) 115, 851–880 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

852 M.M. Islam and X. Yao

architecture. A large amount of the literature is therefore devoted to finding
optimal or near optimal ANN architectures by using EAs (see review papers
[48,54,59]). However, many real-world problems are too large and too complex
for a single ANN alone to solve. There are ample examples from both natural
and artificial systems that show that an integrated system consisting of several
subsystems can reduce the total system complexity while satisfactorily solving
a difficult problem. Many successes in evolutionary computation have already
demonstrated this. A typical example of the success of ANN ensembles in
improving classifier generalization is [62].

ANN ensembles adopt the divide-and-conquer strategy. Instead of using a
single network to solve a task, an ANN ensemble combines a set of ANNs that
learn to subdivide the task and thereby solve it more efficiently and elegantly.
It offers several advantages over a monolithic ANN [47]. First, it can perform
more complex tasks than any of its components (that is, individual ANNs in
the ensemble). Second, it can make an overall system easier to understand
and modify. Finally, it is more robust than a monolithic ANN, and can show
graceful performance degradation in situations where only a subset of ANNs
in the ensemble performs correctly.

There have been many studies in statistics and ANNs which show that
ensembles, if designed appropriately, usually perform (generalize) better than
any single member system. A theoretical account of why ensembles perform
better than single learners is presented in [12]. Although ensembles perform
better than their members in many cases, constructing them is not an easy
task. As mentioned in [16], the key to successful ensemble methods is to con-
struct individual predictors which perform better than random guessing and
produce uncorrelated outputs. This means individual ANNs in the ensemble
need to be accurate as well as diverse (also mentioned in one of the seminal
works by Hansen and Salamon [23]). Krogh and Sollich formally show that
an ideal ensemble is one that consists of highly correct (accurate) predictors
which at the same time disagree – in other words, uncorrelate as much as pos-
sible (that is, substantial diversity amongst members is exhibited) [28]. This
has also been tested and empirically verified [40,41]. Given that ANN ensem-
bles generalize better as compared with a single ANN, ensemble research has
become an active research area and has seen an influx of researchers devising
myriad algorithms trying to improve the prediction ability of such aggregate
systems in recent years.

2 Evolutionary Ensembles

Although there have been many studies on how to evolve ANNs more effec-
tively and efficiently [48, 54, 59] the issue of how to form the final result from
an evolutionary process has been overlooked [60]. The best individual in the
last generation or among all the generations is generally considered as the final

Evolving Artificial Neural Network Ensembles 853

result. However, the best individual (that is, ANN) with respect to training
or validation data may not be the best for unseen testing data. The remaining
individuals in the population may contain some useful information that may
improve the generalization performance of ANNs.

The aim of this Section is to present an approach proposed by [62] to
form the final result of an evolutionary process. Unlike most previous work,
the approach utilizes the population information, rather than an individual’s
information, to form the final result. It considers each individual in a popula-
tion as a module. Thus different individuals in the last generation are linearly
combined by regarding a population of ANNs as an ensemble. The reason
for using a linear combination is its simplicity, although non-linear combina-
tion methods could be used. The idea of combining different modules is not
new and has been studied in both the ANN field and statistics [24, 42]. How-
ever, few attempts have been made in evolutionary learning to use population
information in forming the final system.

The proposed approach was applied on three real-world problems to
demonstrate the effectiveness of using the population information in form-
ing the final result of an evolutionary process. EPNet [61] was used to evolve
a population of ANNs. Four linear combination methods were used to form
the final result. They were majority voting, the rank-based linear combina-
tion method, the recursive least-square (RLS) algorithm [38], and the subset
method.

2.1 An Evolutionary Design System for ANNs – EPNet

EPNet [61] is an automatic ANN design algorithm based on evolutionary
programming (EP) [18, 20]. It uses an EP algorithm for evolving ANN archi-
tectures and a hybrid training scheme for learning their connection weights.
It puts the emphasis on evolving ANN behaviors, which is the main reason
for using EP in its evolutionary scheme. Since EPNet evolves architectures
and learns connection weights of ANNs simultaneously, it reduces the noise
in fitness evaluation [61] unlike some previous studies (for instance, [58]). The
main structure of EPNet is shown in Fig. 1; a detailed description can be found
in [61].

EPNet relies on novel mutations and a rank-based selection scheme [53].
It does not use recombination operators in order to avoid the permutation
problem (that is, competing conventions) [6, 9, 22]. This not only makes the
evolution inefficient, but also makes crossover operators more difficult to
produce highly fit offspring. To determine an ANN architecture for a given
problem, an algorithm needs to select the number of hidden nodes and con-
nections required for the ANN in solving the problem. In addition, it needs to
assign weights for the architecture. EPNet uses five mutations one after another
to achieve these goals. If one mutation is successful then other mutations are

854 M.M. Islam and X. Yao

Hybrid training
Random initialisation

of ANNs

Initial partial training

Rank-based selection

Obtain the new
generation

yes

yes

yes

no

no

no

no

 Mutations

Further training

yes

Stop?

addition

deletion
Hidden node

Connetion deletion

Connection/node

Successful?

Successful?

Successful?

Fig. 1. The major steps of EPNet [61] c© 1997

not applied. The mutations used in EPNet are hybrid training, node deletion,
connection deletion, connection addition, and node addition. Each mutation
operator in EPNet produces one offspring that can replace at most one indi-
vidual in any generation of a population. This replacement strategy is very
similar to the one used in a steady-state GA [51], or in a continuous EP [19].
The advantage of such replacement has been demonstrated in [19, 51].

The hybrid training scheme consists of modified back propagation (BP)
[46] and simulated annealing. The modified BP can adapt its learning rate for
each individual in a population. Simulated annealing is used to avoid the local
minima problem of the BP algorithm. A distinct feature of hybrid training
is that it is partial. This means that EPNet does not train each individual
until it converges rather it trains the individual for a fixed number of epochs
in each generation. The number of epochs is a user specified parameter. The
main reason behind partial training is to increase the computational efficiency
in fitness evaluation. Hybrid training is always attempted before any archi-
tectural mutations (namely, node/connection deletion/addition) because the
latter cause larger changes in ANN behavior.

Node deletion in EPNet is done totally at random – in other words, a
node is selected uniformly at random for deletion. However, the other three

Evolving Artificial Neural Network Ensembles 855

architectural mutations are not uniformly random. Connection deletion and
addition use a nonuniform probability distribution to decide which connection
to delete or add based on the importance of the connection [17,61]. Node addi-
tion is achieved by splitting an existing node [39], rather than by introducing
a random one. The two nodes obtained by splitting an existing node have the
same connections as the existing node. The weights of these new nodes have
the following values:

w1
ij = w2

ij = wij , i ≥ j

w1
ki = (1 + α)wki i < k (1)

w2
ki = −αwki i < k

where w is the weight vector of the existing node i, w1 and w2 are the weight
vectors of the new nodes, α is a mutation parameter which may take either a
fixed or random value, and j and k indicate nodes which have a connection
to/from node i. This method helps greatly in maintaining the behavioral link
between the parent and its offspring. It also reduces blindness caused by a
random node.

To improve the generalization ability of evolved ANNs, validation sets are
used in EPNet. Each individual (that is, ANN) is trained on a training set,
but it is evaluated on a validation set. All fitness values are calculated based
on the validation, not the training set. After the simulated evolution, all the
individuals in the last generation are trained further by the modified BP on
the combined training and validation set. A second validation set is used to
stop this training and select the best individual as the output of EPNet.

2.2 Combination Methods

The four combining methods used in EPNet are all linear. The simplest linear
combination method is majority voting. That is, the output of the most num-
ber of EANNs will be the output of the ensemble. If there is a tie, the output
of the EANN (among those in the tie) with the lowest error rate on the vali-
dation set will be selected as the ensemble output. The ensemble in this case
is the whole population. All individuals in the last generation participate in
voting. The greatest advantage of majority voting is its simplicity. However,
the problem of majority voting is that it treats all individuals equally though
they are not equally good.

One way to consider differences among individuals without involving much
extra computational cost is to use the fitness information to compute a weight
for each individual. The rank-based linear combination method is such a
scheme that puts weight on each ANN in the population based on their fit-
ness values. More specifically, we can use rankings to generate weights for each
EANN in combining the ensemble output. That is, given N sorted EANNs

856 M.M. Islam and X. Yao

with an increasing error rate, where N is the population size, and their outputs
o1, o2, · · · , oN , then the weight for the ith EANN is:

wi =
exp(β(N + 1− i))∑N

j=1 exp(βj)
(2)

where β is a scaling factor. The ensemble output is:

O =
N∑

j=1

wjoj . (3)

One of the well-known algorithms for learning linear combination weights
(that is, one-layer linear networks) is the RLS algorithm [38]. The idea behind
RLS is to minimize a weighted least squares error. The benefit of using the
RLS algorithm is that it is computationally efficient due to its recursive nature.
The detailed description of the RLS algorithm implemented here can be found
in [38].

In the above three combination methods, all the individuals in the last
generation were used in forming ensembles. It is interesting to investigate
whether one can reduce the size of the ensembles without too much increase
in testing error rates. Such investigation can provide some hints on whether all
the individuals in the last generation will contain some useful information and
shed some light on the importance of a population in evolutionary learning.
As the space of possible subsets is very large (2N – 1) for a population of
size N , it is impractical to use exhaustive search to find an optimal subset.
Instead, a genetic algorithm (GA) [21] is used to search for a near-optimal
subset [62]. The weights for each EANN in each subset were determined by
the same RLS algorithm [38] as used in the previous scheme.

2.3 Experimental Studies

EPNet was applied on three real-world problems. They were Australian credit
card, diabetes and heart disease. The data sets for these problems were
obtained from the UCI machine learning repository [8]. There are 690 exam-
ples in the Australian credit card data set. The problem is to assess appli-
cations for a credit card based on a number of attributes; the 14 attributes
include six numeric values and eight discrete ones. The output has two classes.

The diabetes data is also a two class problem. It has 500 examples of
class 1 and 268 of class 2. There are eight attributes for each example. The
data set is one of the most difficult problems in machine learning due to many
missing attributes. The aim of the heart problem is to predict the presence
or absence of heart disease given the results of various medical tests carried
out on a patient. The data set of the heart problem has 13 attributes, which

Evolving Artificial Neural Network Ensembles 857

have been extracted from a larger set of 75. The description of the extraction
process can be found in [62].

Two validation sets were used in all experiments. One validation set,
V-set 1, was used in the fitness evaluation. The other validation set, V-set 2,
was used in further training of EPNet. The best individual with the minimum
error rate on V-set 2 was chosen as the final result. If there was a tie, the indi-
vidual with the minimum error rate on the combined training set and V-set 1
was the final result. If a tie still existed, the individual with the minimum
error on the combined training set and V-set 1 would be the final result. The
final individual was then tested on an unseen testing set.

Experimental Setup

For all experiments, each data set was randomly partitioned into four subsets,
a training set, V-set 1, V-set 2, and a testing set. According to suggestions
provided in [43, 44] to produce results for ANNs, the size of the training set,
V-set 1, V-set 2, and testing set were chosen to be 50, 12.5, 12.5, and 25%
of all examples, respectively, in a data set. The input attributes used for all
problems were re-scaled to between 0.0 and 1.0 by a linear function. The out-
put attributes were encoded using a 1-of-c output representation for c classes.
The winner-takes-all method was used to determine the output of the ANNs.
In this method, the output with the highest activation designates the class.

The same parameters were used for all data sets. These were as follows:
population size (20); maximum number of generations (100); initial number
of hidden nodes (2–8, which means the number of hidden nodes in any ini-
tial individual was generated at random between 2 and 8); initial connection
density (0.75, which means the probability of having a connection between
two nodes is 75%; the constraint of feedforward ANNs cannot be violated
of course); initial learning rate (0.2); the number of mutated hidden nodes
(1, which means only one node would be deleted/added in each mutation);
and the number of mutated connections (1–3, which means the number of
mutated connections is between 1 and 3). These parameters were selected
after a very modest search. It was found that EPNet was not very sensitive to
these parameters.

Results

Table 1 summarizes the results of [62]. The best individual in the last gener-
ation and the ensemble formed by the four combining methods are presented
in the table. The majority voting method outperformed the single best indi-
vidual on two out of three problems. This is rather surprising since majority
voting did not consider the differences among individuals. It performed worse
than the best individual on the heart disease problem probably because it
treated all individuals in the population equally. The t-test comparing the

858 M.M. Islam and X. Yao

Table 1. Testing accuracies of the best individual in a population and ensemble
formed from individuals in the population by using majority voting, the RLS algo-
rithm [38] and optimal subset. The results were averaged over 30 independent runs.
Mean, SD, Min, and Max indicate the mean value, standard deviation, minimum
and maximum value, respectively (Note that the results in this table have been
summarized from [62])

Problem Best Rank- Error rate RLS Optimal
individual based majority voting algorithm subset

Credit Mean 0.100 0.095 0.095 0.093 0.095
card SD 0.013 0.012 0.012 0.011 0.012

Min 0.081 0.070 0.076 0.076 0.070
Max 0.128 0.116 0.122 0.116 0.116

Diabetes Mean 0.232 0.225 0.222 0.226 0.222
SD 0.018 0.023 0.022 0.021 0.023
Min 0.198 0.172 0.172 0.193 0.182
Max 0.271 0.271 0.255 0.260 0.260

Heart Mean 0.154 0.154 0.167 0.151 0.164
SD 0.028 0.031 0.024 0.033 0.030
Min 0.103 0.088 0.132 0.088 0.118
Max 0.235 0.235 0.235 0.221 0.221

best individual to the ensemble formed by majority voting indicates that the
ensemble is better than the best individual for the credit card and diabetes
problems and worse for the heart disease problem at 0.05 level of significance.

It is clear from Table 1 that the results of the ensemble formed by the rank-
based linear method are either better than or as good as those produced by
the best individual. The t-test comparing the best individual to the ensemble
indicates that the ensemble is better than the best individual for the credit
card and diabetes problems at the 0.05 level of significance. The ensemble also
outperforms the best individual for the heart disease problem (no statistical
significance, however).

The ensemble formed by the RLS algorithm [38] is better than the best
individual for all three problems (Table 1). The results also indicate that a
better combination method can produce better ensembles. In fact, the RLS
algorithm is one of the recommended algorithms for performing linear com-
binations [24, 42]. However, other algorithms [7] can also be used. The t-test
comparing the best individual to the ensemble formed by the RLS algorithm
indicates that the ensemble is better than the best individual at the 0.05 level
of significance for the credit card and diabetes problems, and better at the
0.25 level of significance for the heart disease problem.

The ensemble formed by the subset method is also better than the best
individual for the credit card and diabetes problems at the 0.10 and 0.005
levels of significance, respectively. It is worse than the best individual for

Evolving Artificial Neural Network Ensembles 859

the heart disease problem at the 0.05 level of significance. This worse result
might be caused by the small number of generations (only 50) used in the
experiments. A large number could probably produce better results, but would
increase the search time.

All the above results indicate that a population contains more informa-
tion than any individual in it. Such information can be used effectively to
improve generalization of the learning systems. In a sense, the use of popu-
lation information provides a natural way of evolving modular ANNs, where
each module is an individual in the population. However, no special consider-
ations were made in the evolution of ANNs about modularization in EPNet.
If the evolution of modular ANNs could be encouraged in the evolutionary
process, one can expect to improve the results further. One way to encour-
age modularization is by speciation. That is, we can use techniques like fitness
sharing [14,21] to automatically form species in a population. Each species will
be a specialist in dealing with part of a complex problem and will be treated
as a module of the final system. In this case, modules are evolved specifically
for an integrated system. Co-evolutionary learning is usually used in evolv-
ing modular systems. This idea has been tested successfully in a rule-based
system [15] and described in the next Section.

3 Automatic Modularization

Many problems are too large and too complex to be solved by a monolithic
system. Divide-and-conquer has often been used to tackle such problems. The
key issue here is how to divide a large problem into smaller sub-problems.
Tedious trial-and-error processes have often been used by human experts in
coming up with a good method for breaking up a large problem into smaller
components that are easier to solve. However, it is possible to make use of
evolutionary computation techniques to divide a large problem into simpler
sub-problems automatically.

Darwen and Yao proposed a novel approach to automatic divide-and-
conquer, known as automatic modularization, in evolving a rule-based system
for playing iterated prisoner’s dilemma games without any human interven-
tion [15]. Their results have shown clearly that automatic modularization
can be used to evolve an integrated rule-based system consisting of several
sub-systems, each of which is specialized in dealing with certain aspects of
a complex problem (for instance, iterated prisoner’s dilemma games). Such
sub-systems can be regarded as modules of the integrated system (hence
‘automatic modularization’).

The main idea behind automatic modularization is a speciated evolution-
ary algorithm. In the case of evolving game-playing strategies for the iterated
prisoner’s dilemma games, each individual in the population is a rule-based
system representing a strategy. The implicit fitness sharing scheme used in

860 M.M. Islam and X. Yao

the speciated evolutionary algorithm will encourage the evolution of species
automatically in a population [15]. Each species can be regarded as a sub-
system (module) in the integrated system, which is represented by the entire
population. The experimental results have shown that automatic modular-
ization can lead to substantial performance gain in evolving game-playing
strategies for iterated prisoner’s dilemma games [15].

Although the original work on automatic modularization was done using
rule-based systems, the idea is equally applicable to neural networks, decision
trees and other classifiers. [26] described the most recent work related to
automatic modularization using neural networks.

4 Negative Correlation Learning

Although ANN ensembles perform better than single ANN in many cases, a
number of issues need to be addressed when using ensembles. Two such impor-
tant issues are the determination of an ensemble size and the maintenance
of diversity among different ANNs in the ensemble. Both theoretical [27, 28]
and empirical studies [40,41] have shown that when individual ANNs are accu-
rate and their errors are negatively correlated, improved performance can be
obtained by combining the outputs of several ANNs. There is little to be
gained by combining ANNs whose errors are positively correlated and are not
accurate.

Liu and Yao proposed a new learning paradigm, called negative correla-
tion learning (NCL), for training ANN ensembles. The essence of NCL is that
it can produce negatively correlated ANNs for ensembles [33]. A number of
works (for example, [13, 34, 37]) have utilized this feature in training ensem-
bles. Unlike previous learning approaches for ANN ensembles, NCL attempts
to train individual ANNs in an ensemble and combine them in the same learn-
ing process. In NCL, all the individual ANNs in the ensemble are trained
simultaneously and interactively through the correlation penalty terms in
their error functions. Rather than producing unbiased ANNs whose errors
are uncorrelated, NCL can create negatively correlated networks to encourage
specialization and cooperation among the individual ANNs.

Suppose that we have a training set

D = {(x(1), d(1)), · · · , (x(N), d(N))} (4)

where x ∈ Rp, d is a scalar, and N is the size of the training set. The assump-
tion that the output d is a scalar has been made merely to simplify exposition
of ideas without loss of generality. This Section considers estimating d by
forming an ensemble whose output is a simple averaging of outputs of a set
of ANNs

F (n) =
1
M

ΣM
i=1Fi(n) (5)

Evolving Artificial Neural Network Ensembles 861

where M is the number of the individual ANNs in the ensemble, Fi(n) is the
output of ANN i on the nth training pattern, and F (n) is the output of the
ensemble on the nth training pattern.

NCL introduces a correlation penalty term into the error function of each
individual network in the ensemble so that all the networks can be trained
simultaneously and interactively on the same training data set D. The error
function Ei for network i in negative correlation learning is defined by

Ei =
1
N

ΣN
n=1Ei(n)

=
1
N

ΣN
n=1

1
2
(Fi(n)− d(n))2 +

1
N

ΣN
n=1λpi(n) (6)

where Ei(n) is the value of the error function of network i at presentation
of the nth training pattern. The first term in the right side of Eqn. (6) is
the empirical risk function of network i. The second term, pi, is a correlation
penalty function. The purpose of minimizing pi is to negatively correlate each
network’s error with errors for the rest of the ensemble. The parameter 0 ≤
λ ≤ 1 is used to adjust the strength of the penalty. The penalty function pi

has the form:

pi(n) = (Fi(n)− F (n))Σj �=i (Fj(n)− F (n)) (7)

The partial derivative of Ei(n) with respect to the output of network i on the
nth training pattern is

∂Ei(n)
∂Fi(n)

= Fi(n)− d(n) + λ
∂pi(n)
∂Fi(n)

= Fi(n)− d(n) + λΣj �=i (Fj(n)− F (n))
= Fi(n)− d(n)− λ(Fi(n)− F (n))
= (1− λ)(Fi(n)− d(n)) + λ(F (n) − d(n)) (8)

where we have made use of the assumption that F (n) has constant value with
respect to Fi(n). The standard BP algorithm [46] has been used for weight
adjustments in the mode of pattern-by-pattern updating. That is, weight
updating of all the individual networks is performed simultaneously using
Eqn. (8) after the presentation of each training pattern. One complete pre-
sentation of the entire training set during the learning process is called an
‘epoch’.

NCL from Eqn. (8) is a simple extension to the standard BP algorithm. In
fact, the only modification that is needed is to calculate an extra term of the
form λ(Fi(n)− F (n)) for the ith network. From Eqns. (6)–(8), we may make
the following observations:

1. During the training process, all the individual ANNs interact with each
other through their penalty terms in the error functions. Each ANN i

862 M.M. Islam and X. Yao

minimizes not only the difference between Fi(n) and d(n), but also the
difference between F (n) and d(n). That is, NCL considers errors that all
other ANNs have learned while training an ANN.

2. For λ = 0.0, there are no correlation penalty terms in the error functions
of the individual ANNs, and the individual ANNs are just trained indepen-
dently. That is, independent training for the individual ANNs is a special
case of NCL.

3. For λ = 1, from Eqn. (8) we get

∂Ei(n)
∂Fi(n)

= F (n)− d(n) (9)

Note that the empirical risk function of the ensemble for the nth training
pattern is defined by

Eens(n) =
1
2

(
1
M

ΣM
i=1Fi(n)− d(n)

)2

(10)

The partial derivative of Eens(n) with respect to Fi on the nth training
pattern is

∂Eens(n)
∂Fi(n)

=
1
M

(
1
M

ΣM
i=1Fi(n)− d(n)

)
=

1
M

(F (n)− d(n)) (11)

In this case, we get
∂Ei(n)
∂Fi(n)

∝ ∂Eens(n)
∂Fi(n)

(12)

The minimization of the empirical risk function of the ensemble is achieved
by minimizing the error functions of the individual ANNs. From this point
of view, NCL provides a novel way to decompose the learning task of the
ensemble into a number of subtasks for different individual ANNs.

4.1 Evolutionary Ensembles with Negative Correlation Learning

Based on NCL [33] and evolutionary learning, Liu and Yao proposed evolution-
ary ensembles with NCL (EENCL) to determine automatically the number
of individual ANNs in an ensemble and to exploit the interaction between
individual ANN design and their combination [34]. In EENCL, an evolution-
ary algorithm based on EP [18, 20] was used to search for a population of
diverse individual ANNs for constructing ensembles. This means an evolu-
tionary algorithm is used here for determining automatically the number of
ANNs required for constructing an ensemble.

Two schemes are used in EENCL to maintain diversity in different indi-
viduals (that is, ANNs) of the population. They are fitness sharing [63] and

Evolving Artificial Neural Network Ensembles 863

NCL [33]. The fitness sharing accomplishes speciation by degrading the raw
fitness (in other words, the unshared fitness) of an individual according to the
presence of similar individuals. If one training example is learned correctly by
n individuals in a population, each of these n individuals receives fitness 1/n,
and the remaining individuals in the population receive fitness zero. Other-
wise, all the individuals in the population receive fitness zero. This procedure
is repeated for all examples in the training set. The fitness of an individual is
then determined by summing its fitness over all training examples.

EENCL uses Gaussian mutation to produce offspring from parents, al-
though non-Gaussian mutation such as Cauchy mutation [64] and Lévy
mutation [32] can also be used. The mutation is carried out in two steps:
(i) weight mutation, and (ii) further weight training. In the first step, nb par-
ent networks are selected at random to create nb offspring. The parameter
nb is a parameter specified by a user. The probability for selecting a parent
network is same. The following is used for weight mutation [34]:

w
′
ij = wij + N(0, 1) (13)

where w
′
ij and wij denote the weights of offspring i and parent i, respectively,

i = 1, · · · , nb, j is the index number of weights. N(0, 1) denotes a Gaussian
random variable with mean zero and standard deviation one.

In the second step, the nb offspring ANNs are further trained by NCL [33].
EENCL selects the fittest M ANNs from the union of M parents ANN and
nb offspring ANN. Here M is the number of individuals in the population.
EENCL repeats the process of offspring generation and selection process for
the g generation specified by a user.

A population of ANNs is found after the evolutionary process has finished.
Now a question arises as to how to form the ensemble from a population of
ANNs. The most convenient way is to use all ANNs – that is, the whole
population in the last generation. The other way is to use a subset of popula-
tion by selecting one representative from each species in the last generation.
The species in the population can be obtained by clustering the individuals
in the population using any clustering algorithm (such as the k-means algo-
rithm) [35]. The latter may reduce the size of an ensemble without worsening
its performance too much. In EENCL, these two approaches were used to form
ensembles.

Three combination methods were used to determine the output of an en-
semble from different ANNs used for forming the ensemble, these being simple
averaging, majority voting and winner-takes-all. In simple averaging, the out-
put of the ensemble is obtained by averaging the output of individual ANNs
in the ensemble. In majority voting, the output of the greatest number of
individual ANNs will be the output of the ensemble. If there is a tie, the

864 M.M. Islam and X. Yao

output of the ensemble is rejected. In winner-takes-all, the output of the
ensemble is only decided by the individual ANN whose output has the highest
activation.

4.2 Experimental Studies

EENCL was applied on two benchmark problems: the Australian credit card
assessment problem and the diabetes problem. The n-fold cross-validation
technique was used to divide the data randomly into n mutually exclusive
data groups of equal size. In each train-and-test process, one data group is
selected as the testing set, and the other (n− 1) groups become the training
set. The estimated error rate is the average error rate from these n groups. In
this way, the error rate is estimated efficiently and in an unbiased way. The
parameter n was set to be 10 for the Australian credit card data set, and 12
for the diabetes data set.

The same parameters were used for both problems. They are as follows:
population size 25, number of generations 200, reproduction block size nb 2,
strength parameter λ for NCL [33] 0.75, number of training epochs 5, mini-
mum number of cluster sets 3, and the maximum number of cluster sets 25.
The ANNs used in the population are multilayer perceptrons with one hidden
layer and five hidden nodes.

Results

All the results presented in this Section are summarized from results presented
in [34]. Table 2 shows the results of EENCL for the two data sets, where the

Table 2. Accuracy rates of EENCL for the Australian credit card and the diabetes
data sets. The results are averaged on 10-fold cross-validation for the Australian
credit card data set, and 12-fold cross-validation for the diabetes data set. The
Mean, SD, Min, and Max indicate the mean value, standard deviation, minimum,
and maximum value, respectively (Note that the results presented in this table have
been summarized from [34])

Accuracy
rate

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Credit Mean 0.910 0.855 0.917 0.857 0.887 0.865
card SD 0.010 0.039 0.010 0.039 0.007 0.028

Min 0.897 0.797 0.900 0.812 0.874 0.812
Max 0.924 0.913 0.928 0.913 0.895 0.913

Diabetes Mean 0.795 0.766 0.802 0.764 0.783 0.779
SD 0.007 0.039 0.007 0.042 0.007 0.045
Min 0.783 0.703 0.786 0.688 0.774 0.703
Max 0.805 0.828 0.810 0.828 0.794 0.844

Evolving Artificial Neural Network Ensembles 865

Table 3. Accuracy rates of the ensemble formed by the representatives from species.
The results are averaged on 10-fold cross-validation for the Australian credit card
data set, and 12-fold cross-validation for the diabetes data set. Mean, SD, Min, and
Max indicate the mean value, standard deviation, minimum, and maximum value,
respectively (Note that the results presented in this table have been summarized
from [34])

Accuracy
rate

Credit card Diabetes

Training Testing Training Testing

Mean 0.887 0.868 0.783 0.777
SD 0.004 0.030 0.009 0.042
Min 0.881 0.812 0.770 0.719
Max 0.890 0.913 0.798 0.844

ensembles were formed using the whole population in the last generation.
The accuracy rate refers to the percentage of correct classifications produced
by EENCL. Comparing the accuracy rates obtained by the three combina-
tion methods, winner-takes-all outperformed simple averaging and majority
voting on both problems. In simple averaging and majority voting, all individ-
uals are treated equally. However, not all individuals are equally important.
Because different individuals created by EENCL were able to specialize to dif-
ferent parts of the testing set, only the outputs of these specialists should be
considered to make the final decision of the ensemble for this part of the test-
ing set. The winner-takes-all combination method performed better because
there are good and poor individuals for each pattern in the testing set, and
winner-takes-all selects the best individual.

The results of the ensemble formed by the representatives from species
are given in Table 3. The combination method used is winner-takes-all. The
t-test statistics comparing the accuracies of the ensembles using the represen-
tatives from species to the ensembles using the whole population are 0.80 for
the Australian credit card data set, and −0.36 for the diabetes data set. No
statistically significant difference was observed between them for both data
sets (p > 0.05), which implies that the ensemble does not have to use the
whole population to achieve good performance. The size of the ensemble can
be substantially smaller than the population size. The reduction in the size of
the ensembles can be seen from Table 4, which gives the sizes of the ensembles
using the representatives from species.

5 Constructive Approaches to Ensemble Learning

Determination of ensemble size by an evolutionary approach was presented in
Sect. 4.1. The problem with ENNCL [34] is that it only determines the number
of individual ANNs in the ensemble automatically, but the sizes of the ANNs

866 M.M. Islam and X. Yao

Table 4. Sizes of the ensembles using the representatives from species. The results
are averaged on 10-fold cross-validation for the Australian credit card data set, and
12-fold cross-validation for the diabetes data set. Mean, SD, Min, and Max indicate
the mean value, standard deviation, minimum, and maximum value, respectively
(Note that the results presented in this table have been summarized from [34])

Ensemble size

Mean SD Min Max

Credit card 13.2 7.8 5 25
Diabetes 16.3 6.4 5 25

need to be specified by the user. It is well known that the accuracy of ANNs
is greatly dependent on their size. This means random selection of the ANN
sizes may hurt the ensemble performance. This is because the performance of
ensembles not only depends on the diversity of individual ANNs but also on
ANN accuracy. The aim of this Section is to present a constructive algorithm
for training cooperative neural-network ensembles (CNNEs) [37].

Unlike most previous studies on training ensembles, CNNE puts empha-
sis on both accuracy and diversity among individual ANNs in an ensemble. It
uses a constructive approach to determine automatically the number of ANNs
in an ensemble and of hidden neurons in the ANNs. The automatic determi-
nation of hidden neurons ensures accuracy of individual ANNs in designing
the ensemble. CNNE trains each individual ANN with a different number of
training epochs, which is determined automatically by its training process.
Like ENNCL [34], it also uses NCL [33] to train individual ANNs so that
they can learn different aspects or parts of the training data. The use of NCL
and different training epochs reflects CNNE’s emphasis on diversity among
individual ANNs in the ensemble.

A number of issues – such as the number of individual ANNs in an ensem-
ble, the number of hidden nodes in the ANNs, and the number of epochs
required for training ANNs – need to be addressed when designing ensem-
bles. This means the design of ANN ensembles could be formulated as a
multi-objective optimization problem. CNNE uses a simple approach based on
incremental training in designing ensembles. It tries to minimize the ensemble
error first by training a minimal ensemble architecture, then by adding several
hidden nodes one by one to existing ANNs, and lastly by adding new ANNs
one by one. The minimal ensemble architecture consists of two ANNs with
one hidden layer in each ANN and one node in the hidden layer.

The main structure of CNNE is shown in Fig. 2, and a detailed description
can be found in [37]. It is not clear from the figure when and how to add
hidden nodes and individual ANNs to the ensemble architecture. CNNE uses

Evolving Artificial Neural Network Ensembles 867

Final enseble
Yes

No

Yes

Yes

Create a minimal ANN
ensemble architecture

Replace the labels of ANNs

Stop ANN
construction or add

nodes to ANNs

Ensemble error
E acceptable

?

Add a new
ANN to the
ensemble

Train all individual ANNs
in the ensemble

Add nodes to ANNs

No

Fig. 2. The major steps of CNNE [37] c© 2003

868 M.M. Islam and X. Yao

a simple criteria for adding hidden nodes and ANNs, based on the contribution
of ANNs to the ensemble. The following is used to determine the contribution:

Ci = 100
(

1
E
− 1

Ei

)
(14)

where E is the ensemble error including individual ANN i, and Ei is the
ensemble error excluding individual ANN i. CNNE adds hidden nodes to an
individual ANN when its contribution to the ensemble does not improve much
after a certain amount of training. An individual ANN is added to the ensem-
ble when adding several hidden nodes to the previously added ANN have failed
to reduce the ensemble error significantly. When a new ANN is added to the
ensemble, CNNE stops the construction process of the previously added ANN.
This means that no hidden node will be added to the previously added ANN
in future.

5.1 Experimental Studies

CNEE was applied to seven benchmark problems: the Australian credit card
assessment problem, the breast cancer problem, the diabetes problem, the
glass problem, the heart disease problem, the letter recognition problem, and
the soybean problem. The data sets representing these problems were obtained
from the UCI machine learning benchmark repository. For all our experiments,
each data set was partitioned into three subsets: a training set, a validation
set and a testing set. The size of the training set, validation set, and testing
set was 50, 25, and 25% of all examples, respectively. The only exception is
the letter data set, where 16,000 and 2,000 examples were randomly selected
from 20,000 examples for the training and validation sets, and the remaining
2,000 examples were used for the testing set.

Initial connection weights for individual ANNs in an ensemble were ran-
domly chosen in the range −0.5 to 0.5. The learning rate and momentum
for training individual ANNs were chosen in the range 0.10–0.50 and 0.5–0.9,
respectively. The number of training epochs for partial training of individual
ANNs was chosen between 5 and 25. The number of hidden nodes used for
halting the construction of individual ANNs was chosen between one and five.
The threshold value ε was chosen between 0.10 and 0.20. These parameters
were chosen after some preliminary experiments; they were not meant to be
optimal. The parameter λ used to adjust the strength of the penalty term was
set to 1.0.

Results

Table 5 show the results of CNNE over 30 independent runs on the seven
different problems. The results presented in this table are summarized from
[37]. The error rates in the table refer to the percentage of wrong classifications

Evolving Artificial Neural Network Ensembles 869

Table 5. Architectures and accuracies of ensembles produced by CNNE for seven
different classification problems. The results were averaged over 30 independent
runs. M and N indicate the number of ANNs in an ensemble and of hidden nodes
in an ANN, respectively (Note that the results presented in this table have been
summarized from [37])

τ = 10, mh = 4 τ = 10, mh = 2 τ = 15, mh = 2

M N Error M N Error M N Error
rate rate rate

Credit card 6.5 5.3 0.090 7.8 4.7 0.092 7.4 4.3 0.091
Breast cancer 3.9 3.6 0.015 4.8 2.9 0.013 4.5 2.5 0.012
Diabetes 4.7 4.5 0.201 6.5 3.4 0.198 6.2 3.2 0.196
Glass 4.9 4.6 0.261 6.2 3.8 0.268 6.0 3.5 0.258
Heart 4.6 6.5 0.140 5.5 4.9 0.134 5.8 4.2 0.138
Letter 11.6 10.6 0.067 15.3 8.5 0.062 13.9 8.1 0.060
Soybean 5.3 5.5 0.081 7.1 4.2 0.076 6.8 3.8 0.078

produced by the trained ensemble on the testing set. M and N represent the
number of ANNs in an ensemble and of hidden nodes in an ANN, respectively.

It can be observed from Table 5 that the ensemble architectures learned by
CNNE were influenced by the values of user specified parameters τ and mh.
For example, for the credit card problem, when τ = 10 and mh = 4 the average
number of individual ANNs and hidden nodes were 6.5 and 5.3, respectively,
and the average number of individual ANNs and hidden nodes were 7.8 and
4.7, respectively, when τ = 10 and mh = 2. This indicates that for the same
value of τ the number of individual ANNs in an ensemble increases when the
number of hidden nodes in the ANNs decreases. This is reasonable because
a small ANN has only a limited processing power. CNNE added more ANNs
to the ensemble when the size of individual ANNs was small. However, it
is worth noting that the testing error rate remained roughly the same for
different parameter settings and different ensemble architectures. The choice
of different parameters did not affect the performance of the learned ensembles
much, which is a highly desirable feature for any ANN training algorithm.

The ability of CNNEs to automatically construct different ensembles for
different problems can be clearly seen from Table 5. CNNE produced large
ensembles for the letter problem, which is large in comparison with the other
problems here, and smaller ensembles for other problems. However, there are
other factors in addition to the size of training sets – for example the com-
plexity of the given problem and noise in the training set – that influence the
ensemble architecture. For instance, the number of training examples for the
diabetes problem was 384, while it was 342 for the soybean problem. In terms
of average results, CNNE produced ensembles that had 4.7 individual ANNs
with 4.5 hidden nodes for the diabetes problem, while it produced ensembles

870 M.M. Islam and X. Yao

that had 5.3 individual ANNs with 5.5 hidden nodes for the soybean problem.
In general, all the above examples illustrated the same point, namely CNNEs
ability to determine the ensemble automatically for different problems without
human intervention.

6 Multi-Objective Approaches to Ensemble Learning

As mentioned previously, ensemble learning could be formulated as a multi-
objective optimization problem. The aim of this Section is to introduce multi-
objective evolutionary approaches to ensemble learning. The idea of designing
ANNs using a multi-objective evolutionary approach was first considered
by [3], in which a new algorithm, called memetic Pareto artificial neural net-
work (MPANN) is proposed for training ANNs. It combines a multi-objective
evolutionary algorithm and a gradient-based local search in reducing network
complexity and training error. MPANN was later applied for learning and
formation of ANN ensembles with a different multi-objective formulation [4,5].

When a population of ANNs is evolved using a multi-objective evolution-
ary approach different ANNs in the population may be good for different
objectives. This means we are getting a set of near optimal ANNs that can
easily be used for constructing ensembles. In addition, the use of an evolu-
tionary approach would speed up finding a set of near optimal solutions. This
is because the evolutionary approach uses a multi-directional search scheme
instead of a unidirectional search scheme as used by conventional approaches.

Recently Chandra and Yao proposed an algorithm, called diverse and
accurate ensemble learning algorithm (DIVACE), that a uses multi-objective
evolutionary approach to ensemble learning [13]. DIVACE tries to find an
optimum tradeoff between diversity and accuracy by treating them explicitly
as multi-evolutionary pressures. [12] give a good account of why diversity is
necessary in ANN ensembles, and present a taxonomy of methods that enforce
it and which are used in practice. The evolutionary process of DIVACE is quite
similar to the one used in pareto differential evolution [1] and in MPANN [4,5].
It also has three main components – namely fitness evaluation, selection and
genetic operations, as with conventional EAs.

Fitness evaluation in DIVACE is not straightforward and is based on the
non-dominated sorting procedure proposed by [49]. This sorting procedure
can be described as follows: Let there are two solutions S1 and S2 for a given
problem. A solution is considered optimal if it satisfies all n objective of the
problem. According to [49], the solution S1 is said to ‘dominate’ solution S2

if S1 is not worse than S2 in all n objectives and S1 is strictly better than S2

in at least one objective. This is the concept of non-domination. After non-
dominated sorting, a set of individuals is found which is better than the rest
of the individuals in the population.

Evolving Artificial Neural Network Ensembles 871

Since the evolutionary process of DIVACE is similar to one used in Pareto
differential evolution [1] – a variant of differential evolution [50] – three parents
are randomly selected from the non-dominated set for the crossover and muta-
tion genetic operations. DIVACE incorporates the idea of simulated annealing,
which makes the variance of the Gaussian distribution used for crossover
adaptive. The following equations are used to produce offspring by crossover:

whi = wα1
hi + N

(
0, σ2

)
(wα2

hi − wα3
hi) (15)

woh = wα1
oh + N

(
0, σ2

)
(wα2

oh − wα3
oh) (16)

where whi and woh are the weights (input to hidden layer and hidden to out-
put layer, respectively) of the child generated; α1, α2 and α3 indicate three
parents. Mutation is applied on an offspring generated by crossover with prob-
ability 1/N , where N is the size of the population. The following equations
are used for mutation.

whi = whi + N (0, 0.1) (17)
woh = woh + N (0, 0.1) (18)

6.1 Experimental Studies

This Section presents some results obtained on testing DIVACE on the
Australian credit card assessment and diabetes problems. The experimental
setup is similar to that in [4, 5], in order to facilitate comparison with pre-
vious work and for consistency. We used 10-fold and 12-fold cross validation
for the card and diabetes problems, respectively. Three combining methods
– namely simple averaging, majority voting and winner-takes-all are used in
the experiments.

Results

During the course of the evolutionary process, it was expected that each mem-
ber in the Pareto (non-dominated) set (after every generation) would perform
well on different parts of the training set. Table 6 shows the performance

Table 6. Performance (accuracy rates) of the ensemble formed using DIVACE on the
Australian credit card assessment data set (the results in this table are summarized
from [13])

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Mean 0.872 0.862 0.867 0.857 0.855 0.849
SD 0.007 0.049 0.007 0.049 0.007 0.053
Max 0.884 0.927 0.879 0.927 0.864 0.927
Min 0.859 0.753 0.856 0.768 0.842 0.753

872 M.M. Islam and X. Yao

Table 7. Performance (accuracy rates) of the ensemble formed using DIVACE on
the Diabetes data set (the results in this table are summarized from [13])

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Mean 0.780 0.773 0.783 0.766 0.766 0.766
SD 0.006 0.050 0.005 0.057 0.017 0.049
Max 0.791 0.859 0.791 0.875 0.796 0.843
Min 0.768 0.687 0.772 0.671 0.730 0.671

accuracy of the formed ensemble on the Australian credit card assessment
data set. Table 7 shows the same for the Diabetes data set. Good performance
can be observed for the DIVACE algorithm.

7 Conclusions

Combining ANNs with evolutionary computation has been a popular topic
since the late 1980s. While the early work tended to focus on evolving single
ANNs, at the level of weights, architectures and learning rules, recent work
has moved towards evolving ANN ensembles. This is a natural trend because
it is often impractical to evolve or design a monolithic ANN when the problem
to be solved becomes larger and more complex; a divide-and-conquer strat-
egy must be used in practice. ANN ensembles can be regarded as an effective
approach to implement the divide-and-conquer strategy in practice. Evolu-
tionary computation provides a powerful method for evolving such ensembles
automatically, including automatic determination of weights, individual ANN
architectures and the ensemble structure. This Chapter has reviewed some of
the latest developments in the area of evolving ANN ensembles.

Acknowledgements

Portions of this chapter originally appeared in X. Yao and Md. M. Islam,
Evolving artificial neural network ensembles, IEEE Computational Intel-
ligence Magazine, 3(1): 31–42, February 2008. Permission to reprint this
material in the current Compendium is gratefully acknowledged.

References

1. Abbass HA, Sarker R, Newton C (2001) PDE: A Pareto-frontier differential
evolution approach for multi-objective optimization problems. In: Kim J-H (ed.)
Proc. IEEE Conf. Evolutionary Computation (CEC2001), 27–30 May, Seoul,
South Korea. IEEE Press, Piscataway, NJ: 971–978.

Evolving Artificial Neural Network Ensembles 873

2. Abbass HA (2002) The self-adaptive Pareto differential evolution algorithm. In:
Fogel DB, El-Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton
M (eds.) Proc. IEEE Conf. Evolutionary Computation (CEC2002), 12–17 May,
Honolulu, HI. IEEE Press, Piscataway, NJ: 831–836.

3. Abbass HA (2003) Speeding up backpropagation using multiobjective evolu-
tionary algorithms. Neural Computation, 15(11): 2705–2726.

4. Abbass HA (2003) Pareto neuro-evolution: constructing ensemble of neural net-
works using multi-objective optimization. In: Sarker R, Reynolds R, Abbass H,
Tan KC, McKay B, Essam D, Gedeon T (eds.) Proc. IEEE Conf. Evolutionary
Computation (CEC2003), 8–12 December, Canberra, Australia. IEEE Press,
Pisctaway, NJ: 2074–2080.

5. Abbass HA (2003) Pareto neuro-ensemble. In: Gedeon TD, Chun L, Fung C
(eds.) Proc. 16th Australian Joint Conf. Artificial Intelligence, 3–5 December,
Perth, Australia. Springer-Verlag, Berlin: 554–566.

6. Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary algorithm that
constructs recurrent neural networks. IEEE Trans. Neural Networks, 5(1): 54-65.

7. Baldi PF, Hornik K (1995) Learning in linear neural networks: a survey. IEEE
Trans. Neural Networks, 6(4): 837–858.

8. Blake C, Merz C UCI repository of machine learning databases. (available
online at http://www.ics.uci.edu/m̃learn/MLRepository.html – last accessed
September 2007).

9. Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: using
genetic algorithm with connectionist learning. Technical Report CS90- 174
(revised), Computer Science and Engineering Department (C-014), University
of California, San Diego, February.

10. Bollé D, Dominguez DRC, Amari S (2000) Mutual information of sparsely coded
associative memory with self-control and tenary neurons. Neural Networks, 1:
452–462.

11. Brown G, Wyatt JL (2003) Negative correlation learning and the ambiguity
family of ensemble methods. In: Windeatt T, Roli F (eds.) Proc. Intl. Workshop
Multiple Classifier Systems, 11–13 June, Guildford, UK. Springer-Verlag, Berlin:
266–275.

12. Brown G, Wyatt JL, Harris R, Yao X (2005) Diversity creation methods: a
survey and categorisation. J. Information Fusion, 6: 5–20.

13. Chandra A, Yao X (2006) Ensemble learning using multi-objective evolutionary
algorithms. J. Mathematical Modeling and Algorithms, 5(4): 417–445.

14. Darwen PJ, Yao X (1996) Every niching method has its niche: fitness sharing and
implicit sharing compared. In: Ebeling W, Rechenberg I, Schwefel H-P, Voight
H-M (eds.) Parallel Problem Solving from Nature (PPSN) IV, 22–26 September,
Berlin, Germany. Lecture Notes in Computer Science 1141. Springer-Verlag,
Berlin: 398–407.

15. Darwen PJ, Yao X (1997) Speciation as automatic categorical modularization.
IEEE Trans. Evolutionary Computation, 1: 101–108.

16. Dietterich TG (1998) Machine-learning research: four current directions. AI
Magazine, 18(4): 97–136.

17. Finnoff W, Hergent F, Zimmermann HG (1993) Improving model selection by
nonconvergent methods. Neural Networks, 6: 771–783.

18. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence Through Simulated
Evolution. Wiley, New York, NY.

874 M.M. Islam and X. Yao

19. Fogel GB, Fogel DB (1995) Continuous evolutionary programming: analysis and
experiments. Cybernetic Systems, 26: 79–90.

20. Fogel DB (1995) Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press, Piscataway, NJ.

21. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

22. Hancock PJB (1992) Genetic algorithms and permutation problems: a com-
parison of recombination operators for neural net structure specification. In:
Whitley D, and Schaffer JD (eds.) in Proc. Intl. Workshop Combinations
Genetic Algorithms Neural Networks (COGANN-92), 6 June, Maryland, IEEE
Computer Society Press, Los Alamitos, CA: 108–122.

23. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(10): 993–1001.

24. Hashem S (1993) Optimal linear combinations of neural networks. PhD disser-
tation. School of Industrial Engineering, Purdue University, West Lafayette, IN,
December.

25. Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, Chichester, UK.

26. Khare V, Yao X, and B. Sendhoff B (2006) Multi-network evolutionary systems
and automatic problem decomposition. Intl. J. General Systems, 35(3): 259–274.

27. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and
active learning. Neural Information Processing Systems, 7: 231–238.

28. Krogh A, Sollich P (1997) Statistical mechanics of ensemble learning. Physics
Reviews E, 55: 811–825.

29. Kwok TY, Yeung DY (1997) Constructive algorithms for structure learning
in feedforward neural networks for regression problems. IEEE Trans. Neural
Networks, 8: 630–645.

30. Kwok TY, Yeung DY (1997) Objective functions for training new hidden units
in constructive neural networks. IEEE Trans. Neural Networks, 8: 1131–1148.

31. Lehtokangas M (1999) Modeling with constructive backpropagation,” Neural
Networks, 12: 707–716.

32. Lee CY, Yao X (2004) Evolutionary programming using the mutations based
on the Lévy probability distribution. IEEE Trans. Evolutionary Computation,
8(1): 1–13.

33. Liu Y, Yao X (1999) Ensemble learning via negative correlation,” Neural
Networks, 12: 1399–1404.

34. Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative corre-
lation learning. IEEE Trans. Evolutionary Computation, 4(4): 380–387.

35. MacQueen J (1967) Some methods for classification and analysis of multi-
variate observation. In: Proc. 5th Berkely Symp. Mathematical Statistics and
Probability, Berkely, CA, University of California Press, 1: 281–297.

36. Mahfoud SW (1995) Niching methods for genetic algorithms. PhD Thesis, Dep-
tartment of General Engineering, University of Illinois, Urbana-Champaign,
IL.

37. Monirul Islam M, Yao X, Murase K (2003) A constructive algorithm for training
cooperative neural network ensembles. IEEE Trans. Neural Networks, 14: 820–
834.

38. Mulgrew B, Cowan CFN (1988) Adaptive Filters and Equalizers. Kluwer,
Boston, MA.

Evolving Artificial Neural Network Ensembles 875

39. Odri SV, Petrovacki DP, Krstonosic GA (1993) Evolutional development of a
multilevel neural network. Neural Networks, 6(4): 583–595.

40. Opitz DW, Shavlik JW (1996) Generating accurate and diverse members of a
neural-network ensemble. Neural Information Processing Systems, 8: 535–541.

41. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study.
J. Artificial Intelligence Research, 11: 169–198.

42. Perrone MP (1993) Improving regression estimation: averaging methods for vari-
ance reduction with extensions to general convex measure optimization. PhD
Dissertation, Department of Physics, Brown University, Providence, RI, May.

43. Prechelt L (1994) Proben1-A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, Fakultät für Informatik, University
of Karlsruhe, Germany, September.

44. Prechelt L (1995) Some notes on neural learning algorithm benchmarking. Neu-
rocomputing, 9(3): 343–347.

45. Rissanen J (1978) Modeling by shortest data description. Automatica, 14: 465–
471.

46. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal represen-
tations by error propagation. In: Rumelhart DE, McClelland JL (eds.) Parallel
Distributed Processing: Explorations in the Microstructures of Cognition, I. MIT
Press, Cambridge, MA: 318–362.

47. Sharkey AJC (1996) On combining artificial neural nets. Connection Science,
8(3/4): 299–313.

48. Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms
and neural networks: a survey of the state of the art. In: Whitley D, Schaffer
JD (eds.) Proc. Intl. Workshop Combinations Genetic Algorithms Neural Net-
works (COGANN-92), 6 June, Maryland. IEEE Computer Society Press, Los
Alamitos, CA: 1–37.

49. Srinivas N, Deb K (1994) Multi-objective function optimization using non-
dominated sorting genetic algorithms. Evolutionary Computation, 2(3): 221–248.

50. Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 con-
test by differential evolution. In: Fukuda T, Furuhashi T, Back T, Kitano H,
Michalewicz (eds.) Proc. IEEE Intl. Conf. Evolutionary Computation, 20–22
May, Nagoya, Japan. IEEE Computer Society Press, Los Alamitos, CA: 842–844.

51. Syswerda G (1991) A study of reproduction in generational and steady state
genetic algorithms. In: Rawlins GJE (ed.) Foundations of Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA: 94–101.

52. Yao X (1991) Evolution of connectionist networks. In: Proc. Intl. Symp. AI,
Reasoning & Creativity, Griffith University, Queensland, Australia, 49–52.

53. Yao X (1993) An empirical study of genetic operators in genetic algorithms.
Microprocessors and Microprogramming, 38: 707–714.

54. Yao X (1993) A review of evolutionary artificial neural networks. Int. J. Intelli-
gent Systems, 8(4): 539–567.

55. Yao X (1993) Evolutionary artificial neural networks. Int. J. Neural Systems,
4(3): 203–222.

56. Yao X (1994) The evolution of connectionist networks. In: Dartnall T. (ed.)
Artificial Intelligence and Creativity. Kluwer, Dordrecht, The Netherlands: 233–
243.

57. Yao X (1995) Evolutionary artificial neural networks. In: Kent A, Williams JG
(eds.) Encyclopedia of Computer Science and Technology 33, Marcel Dekker,
New York, NY: 137–170.

876 M.M. Islam and X. Yao

58. Yao X, Shi Y (1995) A preliminary study on designing artificial neural net-
works using co-evolution. In: Toumodge S, Lee TH, Sundarajan N (eds.) Proc.
IEEE Intl. Conf. Intelligent Control Instrumentation, 2–8 July, Singapore. IEEE
Computer Society Press, Los Alamitos, CA: 149–154.

59. Yao X (1999) Evolving artificial neural networks. Proc. IEEE, 87: 1423–1447.
60. Yao X, Liu Y (1996) Ensemble structure of evolutionary artificial neural net-

works. In: Fukuda T, Furuhashi T, Back T, Kitano H, Michalewicz (eds.)
Proc. 1996 IEEE Intl. Conf. Evolutionary Computation (ICEC96), 20–22 May,
Nagoya, Japan. IEEE Computer Society Press, Los Alamitos, CA: 659–664.

61. Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural
networks. IEEE Trans. Neural Networks, 8(3): 694–713.

62. Yao X, Liu Y (1998) Making use of population information in evolutionary arti-
ficial neural networks. IEEE Trans. Systems, Man, and Cybernetics B, 28(3):
417–425.

63. Yao X, Liu Y, Darwen P (1996) ‘How to make best use of evolutionary learn-
ing’. In: Stocker R, Jelinek H, Durnota B (eds.) Complex Systems: From Local
Interactions to Global Phenomena. IOS Press, Amsterdam, The Netherlands:
229–242.

64. Yao X, Liu Y, Lin G (1999) Evolutionary Programming Made Faster. IEEE
Trans. Evolutionary Computation, 3(2): 82–102.

65. Yao X, Islam MM (2008) Evolving artificial neural network ensembles. IEEE
Computational Intelligence Magazine, 3(1) (in press).

Resources

1 Key Books

Fogel DB (1995) Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ.

Haykin SY (1998) Neural Networks: A Comprehensive Foundation (2nd ed).
Prentice Hall, Englewood Cliffs, NJ.

Yao X (ed.) (1999) Evolutionary Computation: Theory and Applications.
World Scientific, Singapore.

Sharkey AJC (ed.) (1999) Combining Artificial Neural Nets: Ensemble and
Modular Multi-Net Systems. Springer-Verlag, London, UK.

Kuncheva LI (2004) Combining Pattern Classifiers Methods and Algorithms.
Wiley, Hoboken, NJ.

2 Key Survey/Review Articles

Kohonen T (1988) An introduction to neural computing. Neural Networks,
1(1): 3–16.

Yao X (1999) Evolving artificial neural networks. Proc. IEEE, 87(9): 1423–
1447.

Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a
survey and categorization. J. Information Fusion, 6: 5–20.

878 M.M. Islam and X. Yao

3 Organizations, Societies, Special Interest Groups

IEEE Computational Intelligence Society
http://www.ieee-cis.org/

International Neural Network Society
http://www.inns.org/

European Neural Network Society
http://www.snn.ru.nl/enns/

4 Research Groups

Natural Computation Group at the University of Birmingham, UK
http://www.cs.bham.ac.uk/research/labs/natural computation/

Machine Learning Research Group (MLRG) at the University of Wisconsin –
Madison, USA.
http://pages.cs.wisc.edu/∼shavlik/mlrg/

Neural Networks Research Group at the University of Texas, Austin
http://nn.cs.utexas.edu/

Computer Science and Artificial Intelligence Laboratory, MIT
http://www.csail.mit.edu/index.php

Centre of Excellence for Research in Computational Intelligence and Appli-
cations (CERCIA), UK
http://www.cercia.ac.uk/

5 Discussion Groups, Forums

Neural Network Forums
http://www.makhfi.com/cgi-bin/teemz/teemz.cgi

Neural Network Discussion Group
http://itmanagement.webopedia.com/TERM/N/neural network.html

6 Key International Conferences and Workshops

Congress on Evolutionary Computation (CEC)

International Conference on Parallel Problem Solving from Nature (PPSN)

Evolving Artificial Neural Network Ensembles 879

Neural Information Processing Systems (NIPS)

International Joint Conference on Neural Networks (IJCNN)

International Conference on Artificial Neural Networks (ICANN)

European Symposium on Artificial Neural Networks (ESANN)

International Conference on Neural Information Processing (ICONIP)

7 (Open Source) Software

Emergent Neural Network Simulation Software
http://neurobot.bio.auth.gr/archives/000116emergent neural network
simulation software formerly pdp.php

Forecasting with artificial neural networks
http://www.neural-forecasting.com/

NeuroDimension
http://www.nd.com/

Neural archive at FuNet
http://www.nic.funet.fi/

The PDP++ Software
http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.html

Amygdala for simulating spiking neural networks
http://amygdala.sourceforge.net/

8 Data Bases

Birmingham Repository: Evolutionary Computation Benchmarking Reposi-
tory (EvoCoBR)
http://www.cs.bham.ac.uk/research/projects/ecb/

UCI repository of machine learning databases
http://www.ics.uci.edu/m̃learn/MLRepository.html

Neural Networks Databases – Benchmarks
http://www.fizyka.umk.pl/neural/node12.html

880 M.M. Islam and X. Yao

UCI KDD Archive
http://kdd.ics.uci.edu/

Netlib Repository
http://www.netlib.org/

Statlib
http://lib.stat.cmu.edu/

An Order Based Memetic Evolutionary
Algorithm for Set Partitioning Problems

Christine L. Mumford

School of Computer Science, Cardiff University, 5 The Parade, Cardiff CF24 3AA,
United Kingdom, C.L.Mumford@cs.cardiff.ac.uk

1 Introduction

Metaheuristic algorithms, such as simulated annealing, tabu search and evolu-
tionary algorithms, are popular techniques for solving optimization problems
when exact methods are not practical. For example, the run times required to
obtain exact solutions to many common combinatorial problems grow expo-
nentially (or worse) with the problem size, and as a result, solving even a
relatively modest sized problem of this type may require many centuries of
computation time, even on the fastest computer of the day. Such problems are
known collectively as NP-Hard, and include the travelling salesman problem
(TSP), which is probably the best known problem in the class. The present
study will concentrate on a type of NP-Hard combinatorial problem known
as the set partitioning problem. If we have n objects to partition into m sets,
in such a way that each object must be assigned to exactly one set, it follows
that there are mn different ways that the n objects can be assigned to the
m sets, for a straightforward unconstrained problem. It is instructive to note
that every time the problem size of the set partitioning problem is increased
by one object, the corresponding run time for an exhaustive search algorithm
will increase by a factor of m, and thus the run time grows exponentially
as the number of objects – n – increases. While it is true that much better
exact methods than exhaustive search have been developed for most NP-Hard
problems, the ‘growth factor’ remains exponential for the run time, and no
one in history has so far managed to change that.

The main focus of the current Chapter is a new hybrid (or memetic) evo-
lutionary algorithm specifically developed to solve set partitioning problems.
This technique incorporates useful solution improvement heuristics into an
evolutionary framework. New genetic operators have been devised to ensure
that parent solutions are able to contribute useful features to their offspring,
and a simulated annealing schedule has been adopted to help maintain a
balance between quality and diversity within the population of candidate

C.L. Mumford: An Order Based Memetic Evolutionary Algorithm for Set Partitioning Prob-

lems, Studies in Computational Intelligence (SCI) 115, 881–925 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

882 C.L. Mumford

solutions. The effectiveness and versatility of the new hybrid algorithm will
be demonstrated by applying variations of the technique to hard literature
benchmarks taken from three different set partitioning applications: graph
coloring, bin packing and examination timetabling.

It is well known among researchers that effective evolutionary algorithms
are notoriously difficult to devise for many types of problems, and set par-
titioning is particularly challenging, for reasons we will address later. At its
best, an evolutionary algorithm will exploit its population structure to explore
different parts of the search space for a problem simultaneously, combining
useful features from different individuals during reproduction and producing
new offspring solutions that may be better, on occasions, than either of that
offspring’s parents. At its worse, an evolutionary algorithm will take a lot
longer than competitive methods to achieve very little. For most other meth-
ods the search is propagated through a single focal point. On the other hand,
evolutionary algorithms progress from a population of points. The population
has to ‘earn its living’, otherwise it becomes a burden rather than a bonus.

With the limitations and idiosyncrasies of evolutionary algorithms in mind,
we will critically evaluate the various components of the new hybrid approach
in the present study. In particular, we will endeavor to ensure that every part
of the algorithm is making a useful contribution to its overall performance. The
main goal is to present a new, and reasonably generic, order based framework
that can be applied, with minimum adaptation, to a wide range of set parti-
tioning problems. Although the exact choice of objective or fitness function
will very likely depend on the specific problem, it is envisaged that problem-
specific heuristics and costly backtracking will largely be avoided. Throughout
the Chapter a tutorial approach is adopted, to aid newcomers to the field, and
the main aspects of the algorithms and operators are illustrated using simple
examples and carefully designed diagrams. However, it is hoped that the more
experienced researcher will also find the Chapter of interest.

The remainder of the Chapter is organized as follows. We begin with intro-
ductory Sections on evolutionary algorithms, some of which may be safely
skipped by the more knowledgeable reader. Section 2 outlines the historical
development of evolutionary computing, and Sect. 3 introduces the main ele-
ments of a ‘standard’ genetic approach to problem solving. Section 4 describes
the general features of an order based genetic algorithm and, together with
Sect. 5 – on steady-state GAs – lays the foundations for the approach used
for set partitioning in the present Chapter. Section 6 introduces the three test
problems: graph coloring, bin packing, and timetabling, and this is followed
by Sect. 7 which presents the reader with the main points that motivated the
present study. The next Section covers the grouping and reordering heuristics
of [9]. These heuristics are used in the present study to improve the effec-
tiveness of the new crossover operators, and also provide useful local search
capability in their own right. Section 9 details the main features of the new
memetic approach, covering all the main aspects of the new genetic simulated

An Order Based Memetic Evolutionary Algorithm 883

annealing algorithm (GSA). The Section also describes new crossover opera-
tors and defines the fitness functions that are used, as well as introducing the
simulated annealing cooling schedule. Results for the literature benchmarks
are presented in Sect. 10 and this is followed by a Chapter summary. Finally,
URL links are provided to all the test data in the Resources Appendix.

2 A Brief History of Genetic Algorithms

Several groups of researchers, working independently in the 1950s and 60s,
developed optimization techniques inspired by evolution and natural selec-
tion. [37] introduced evolution strategies and used the method to optimize
real-valued parameters for designing aerofoils. [17] developed evolutionary pro-
gramming, a technique that they used to evolve finite state machines. Most
of these early techniques were developed with specific applications in mind,
however. In contrast, John Holland made an extensive study of adaptation in
the natural world and used his insight to create a sound theoretical frame-
work from which his genetic algorithms (GAs) emerged [22]. Since these early
days, interest in evolutionary-inspired algorithms has grown year by year, and
numerous variants have appeared on the scene, some of them very different
from anything conceived by Rechenberg, Fogel or Holland. For example, in the
early 1990s, John Koza proposed genetic programming, an evolutionary style
technique for evolving effective computer programs to undertake particular
tasks.

Other popular paradigms to have been derived from the more generic
approach include artificial life [28], evolvable hardware [21], ant systems [12]
and particle swarms [26], to name but a few. In addition, there are many
examples of hybrid (or memetic) approaches where problem-specific heuristics,
or other techniques such as neural networks or simulated annealing, have been
incorporated into a GA framework. Indeed, we shall make use of specialized
heuristics and also simulated annealing to improve our results in the present
Chapter. Thus, due to the growth in popularity of search and optimization
techniques inspired by natural evolution during the last few decades, it is
now common practice to refer to the field as evolutionary computing and to
the various techniques as evolutionary algorithms. Inevitably, though, due to
the overwhelming influence of John Holland, the term ‘genetic algorithm’ is
frequently used interchangeably with the more generic term.

3 A Generic Genetic Algorithm

As suggested above, there is no rigorous definition of the term ‘genetic algo-
rithm’ that everyone working in the field would agree on. There are, however,
certain elements that GAs tend to have in common:

1. a population of chromosomes encoding (in string form) candidate solutions
to the problem in hand,

884 C.L. Mumford

2. a mechanism for reproduction,
3. selection according to fitness, and
4. genetic operators.

The chromosomes in the population of a GA usually take the form of
strings, which may be encoded in binary, denary (that is, base-10), or in some
other way. As an example, let us consider a simple optimization problem.
Suppose we wish to maximize the following function:

f(x1, x2) = x1
2 − x2

2 + x1x2 (1)

where x1 and x2 are both integers that can vary between 0 and 31. If we use
a 5-bit binary representation for x1 and x2, our GA strings would need to
be 10 bits long. Thus, using this representation the string 0010111101 would
encode x1 = 00101, and x2 = 11101, or 5 and 29 respectively in denary.

The mechanism for reproduction may consist simply of duplicating strings
from the population. However, the choice of strings for reproduction is usu-
ally biased by some measure of fitness associated with each member of the
population. The term ‘fitness’ refers to some estimate of quality allocated to
each population member whereby ‘better’ individuals are assigned higher val-
ues than poorer individuals. In the above optimization problem the objective
function – f(x1, x2) – may be used directly as a fitness function. In other
situations the allocation of fitness values may not be so straightforward: when
solving a minimization problem, for example, or when dealing with qualitative
data.

An essential feature of a successful GA implementation is that the average
fitness value of a population should increase over time, reflecting an improving
trend in the population. To facilitate this improvement we must somehow
ensure that superior individuals have a better chance to contribute to future
generations than do individuals with poorer fitness values. Probably the most
popular way to drive this improvement is to use selection probabilities to bias
the choice of parents for the next generation. Converting fitness values into
probabilities for selection is usually a straightforward matter involving some
simple arithmetic. Random numbers can then be generated and the parents
of the next generation selected in accordance with a probability distribution
derived from the individual fitness values of the population members. Due to
the obvious analogy with a popular casino game, this process is widely known
as roulette wheel selection.

Evolution cannot proceed by selection and reproduction alone, of course.
It is essential that a GA is capable of occasionally producing new individuals
that are better than their parents. In order to achieve this a mechanism to
effect change is needed, and this is the role of genetic operators. Holland

An Order Based Memetic Evolutionary Algorithm 885

Fig. 1. Examples of genetic operators

describes three types of genetic operators: crossover, mutation and inversion.
Examples to illustrate all of these are given in Fig. 1.

One point crossover, shown in Fig. 1(a), is a process involving two parental
strings and begins with an alignment of the strings. A cut point is then
chosen at random, and the parental material following the cut point is
exchanged between the parents, giving rise to two children. Variants of simple
crossover include two point and multi-point crossover where more cut points
are selected. Point mutation is illustrated in Fig. 1(b). For a binary string a
randomly selected bit is simply flipped. For denary or other encodings suitable
mutation operators are chosen that produce very small changes. An example
of inversion can be seen in Fig. 1(c). Here two cut points are selected at random
on a single string, and the sub-string between the cut points is then inverted
and replaced. Inversion, however, is not used in practice for simple bit strings

886 C.L. Mumford

and denary chromosomes. Following reproduction, each genetic operator is
applied with its own predetermined probability.

A simple generic GA is outlined in Algorithm 1. Adapting the generic
model to make it effective for a particular problem, however, usually requires
considerable effort, as well as a large measure of good luck! First, it is nec-
essary to devise a suitable representation so that candidate solutions can be
satisfactorily encoded as chromosomes. For many applications it is not imme-
diately obvious how this can be done, and simple bit- or denary-valued strings
may not be appropriate. Second, when deviating from a standard bit string or
denary representation, special genetic operators may be needed, to avoid the
production of infeasible offspring, say. Another potential difficulty is choosing
a suitable fitness function for a given problem. Selection bias towards the bet-
ter individuals needs to be strong enough to encourage ‘survival of the fittest’,
but not so strong that all variability is quickly lost from the population (note:
loss of diversity early on in the execution of a GA is often referred to as
premature convergence). Without variability, nothing new can evolve. Finally,
tuning the GA and determining the best values for various parameters – such
as crossover and mutation rates – population size and stopping criteria, can
be a very time consuming process.

Algorithm 1 A Generic Genetic Algorithm (GA)
Generate N random strings {N is the population size}
Evaluate and store the fitness of each string
repeat

for i = 1 to N/2 do
Select a pair of parents at random {The selection probability is in direct
proportion to the fitness}
Apply crossover with probability pc to produce two offspring
if No crossover takes place then

Form two offspring that are exact copies of their parents
Mutate the two offspring at a rate of pm at each locus
Evaluate and store the fitness for the two offspring

Replace the current population with the new population
until stopping condition satisfied

For further reading on genetic algorithms, I recommend the following
introductory texts: [19], [32] or [33].

4 Order Based GAs

In Sect. 3 we saw how chromosomes can be encoded, as bit strings or decimal
coded lists, and used to directly represent the variables of a problem. For many
combinatorial problems, however, the random processes involved in assigning

An Order Based Memetic Evolutionary Algorithm 887

values to the variables make direct representations rather prone to constraint
violations, and as a result a GA can waste a vast amount of time evaluating
infeasible solutions. Consider a set partitioning problem, which involves the
assignment of each available item to exactly one set whilst strictly adhering to
any problem-specific constraints. For example, with the bin packing problem
various sized items are placed in a minimum number of equal sized bins. How-
ever, it is likely that assigning items to bins at random may result in some bins
becoming overfull. The use of heavy penalty values to discourage the survival
of illegal solutions is an approach favored by some researchers, while others
prefer to use an heuristic repair mechanism to reduce or eliminate constraint
conflicts, following the initial assignment of the GA. Yet another alternative
is to use an order based approach with a greedy decoder. This approach will
entirely avoid the issue of infeasibility. Starting with an arbitrary permutation
of items, a greedy decoder will sequentially assign legal values to all the items
in the list. Consider the graph coloring problem (GCP). This involves finding
a minimum set of colors for the vertices of a given graph, so that no two
adjacent vertices have the same color. If, for example, a GCP instance has n
vertices, then order based chromosomes representing potential solutions will
consist of permuted lists of the integers {1, 2, 3, · · · , n}. A decoder will start
with the first vertex on the list and work through assigning, to each vertex in
turn, the first available color from an ordered set (in other words, each color
is identified by an integer label, 0, 1, 2, 3, ...), that is possible without causing
conflicts.

Figure 2 illustrates possible encodings for a legally colored 12 node graph,
with Fig. 2(b) and (c) showing direct and order based representations, respec-
tively, for the example coloring in Fig. 2(a). It is easy to visualize how
disruptive genetic operators could be if applied to a direct representation
such as that shown in Fig. 2(b). An order based representation, on the other
hand, will always produce a legal coloring when used in conjunction with a
greedy decoder.

Unfortunately, standard crossover and mutation operators are not appro-
priate for order based representations, because such operators tend to destroy
the permutation property and produce infeasible solutions. The problem with
crossover is illustrated in the example below, which shows the production of
infeasible offspring with duplicated and deleted values, following application
of a two point crossover.

A = 8 7 6 | 4 1 2 | 5 3
B = 2 5 1 | 7 3 8 | 4 6

Producing:

A′ = 8 7 6 | 7 3 8 | 5 3
B′ = 2 5 1 | 4 1 2 | 4 6

888 C.L. Mumford

Fig. 2. A direct and order based representation of a coloring for a 12 node graph

Point mutation also produces duplications and deletions. On the other hand,
Holland’s inversion operator respects the permutation property, and can
indeed prove useful as a reordering operator.

The best known crossovers designed for permutations are probably par-
tially matched crossover (PMX) [20], order crossover (OX) [10] and cycle
crossover (CX) [35]. OX and CX are explained below along with another more
recent example – merging crossover (MOX) [1]; a description of PMX is omit-
ted because it is less relevant to the present study than the other examples.
We will discuss the shortcomings of applying the simple order based approach
to set partitioning problems in Sect. 6.

An Order Based Memetic Evolutionary Algorithm 889

Order Crossover (OX)

This operation always produces legal permutations. It starts by selecting two
crossing sites at random:

A = 8 7 6 | 4 1 2 | 5 3
B = 2 5 1 | 7 3 8 | 4 6

Values from the middle segment of one parent are then deleted from the other
to leave holes. For example values 4, 1 and 2 will leave holes, marked by ‘H ’
in string B:

B′ = H 5 H | 7 3 8 | H 6

In one version of OX, the holes are filled with a sliding motion that starts
from the beginning of the string.

B′ = 5 7 3 | H H H | 8 6

The substring from string A is then inserted into string B. The final result of
this cross and the complementary cross is:

A′ = 6 4 1 | 7 3 8 | 2 5
B′ = 5 7 3 | 4 1 2 | 8 6

Cycle Crossover (CX)

The cycle crossover operator ensures that each position in the resulting off-
spring is populated with a value occupying the same position in one or other
of the parents. As an example, suppose we have strings A and B below as our
two parents:

A = 8 7 6 4 1 2 5 3 9 10
B = 2 5 1 7 3 8 4 6 10 9

We now start from the left and randomly select an item from string A. Sup-
pose we choose item 6 from position 3, this is then copied to position 3 of the
offspring we shall call A′:

A′ = – – 6 – – – – – – –

890 C.L. Mumford

In order to ensure that each value in the offspring occupies the same position
as it does in either one or other parent, we now look in position 3 of string B
and copy item 1 from string A to the offspring:

A′ = – – 6 – 1 – – – – –

Next we look in position 5 of string B and copy item 3 from string A:

A′ = – – 6 – 1 – – 3 – –

Examining position 8 in string B we find item 6. This completes the cycle.
We now fill the remaining positions in A′ from string B thus:

A′ = 2 5 6 7 1 8 4 3 10 9
B′ = 8 7 1 4 3 2 5 6 9 10

The offspring B′ is obtained by performing the complementary operations.

Merging Crossover (MOX)

Merging crossover (MOX) was presented by [1] for use on graph coloring
problems. Initially two n element parents are randomly merged into a single
2n element list. The first occurrence of each value in the merged list gives
the ordering of elements in the first child, and the second occurrence in the
second child. MOX is illustrated in Fig. 3. [1] point out the following property
of MOX: if an element, a precedes another element b in both parents, then it
follows that a will precede b in both children.

Mutation Operators for Permutations

As happens with crossover, standard mutation will produce duplications and
deletions in a chromosome, if an order based representation is used. Fortu-
nately, a number of alternatives have been devised. The simplest of these was
named ‘position based mutation’ [11]. This operation, also known as ‘insertion
mutation’, simply involves selecting two values at random from a permutation
list, and placing the second before the first. Another straightforward muta-
tion suitable for order based representations is ‘order based mutation’ [11] or
‘swap mutation’, which selects two values at random and swaps their posi-
tions. Davis also promotes an idea he calls ‘scramble sublist’ [11], in which
a substring is selected stochastically and its contents randomly shuffled. In
the present work, however, Holland’s inversion operator is used extensively

An Order Based Memetic Evolutionary Algorithm 891

Fig. 3. MOX crossover [1], used as a basis for the new MIS crossover

as a mutation. This operator seems to be particularly effective for certain set
partitioning problems. As we shall see later when we look at the grouping and
reordering heuristics of [9], the act of reversing a list (or sublist) can have a
positive effect on the result, following the application of the greedy decoder.

5 A Simple Steady-State GA

For convenience we will use a simple steady-state GA as a framework for our
present study. There are few parameters to set using this approach: no global
fitness function is used, for example, thus roulette wheel selection is avoided,
and so is the need to manipulate and scale the fitness values. Tuning the fitness
function to get the selective pressure just right can be very difficult, and get-
ting it wrong can prove a disaster. The present author favors simple pairwise
comparisons to identify whether one individual is better than another, using
the result to determine who shall live and who shall die. With this approach
we are only concerned with whether one individual is better than another, and
not with how much. The crossover rate in this simple GA is always applied at
100%, and mutation (when used) at one per individual. This one-size-fits-all
approach will allow us to concentrate our efforts on representational issues,
genetic operators and performance measures (fitness values), substantially
reducing the tuning requirements. Other parameters are not quite so easy to
standardize as selection, crossover, and mutation rates, however. For example,

892 C.L. Mumford

the population size and stopping criterion are best adjusted to suit the type
and size of problem. The simple steady-state GA is outlined in Algorithm 2.

Algorithm 2 A Simple GA
Generate N random strings {N is the population size}
Evaluate the performance measure for each string and store it
Apply local search to the offspring {optional}
repeat

for all strings in the population do
Each string, in turn, becomes the first parent
Select a second parent at random
Apply crossover to produce a single offspring
Apply mutation {optional}
Apply local search to the offspring {optional}
Evaluate the performance measure for the offspring
if the offspring passes its performance test then

Then it replaces its weaker parent in the population
else

the offspring dies
until stopping condition satisfied

At the start of the procedure a population of N random strings is gen-
erated. Once the initial population is created, the individual members are
evaluated, according to some performance measure (or fitness value). Within
the main generation loop, each member of the population is selected in turn
and paired in crossover with a second individual, selected (uniformly) at
random. The performance measure of the resulting single offspring is then
compared to that of its weaker parent. In the simplest version of this algo-
rithm, the new offspring replaces its weaker parent if it is better, otherwise it
dies. Later on in the Chapter, when the simulated annealing cooling schedule
is introduced, the conditions upon which a new offspring is accepted will be
relaxed, in an attempt to maintain diversity within the population. A simple
stopping condition is applied throughout the present work whereby the GA
runs for a fixed number of generations specified in advance, a generation being
defined as N trials of crossover, one led by each member of the population
in turn.

6 Set Partitioning Problems

Set partitioning problems (also known as grouping problems [15]) were first
introduced in Sect. 1, and two examples – graph coloring and bin packing –
have been referred to briefly as examples in Sect. 4. Recall that the generic

An Order Based Memetic Evolutionary Algorithm 893

version involves partitioning n objects into m sets, without violating problem
specific constraints, so that each object is assigned to exactly one set and
the objective function is optimized. The precise nature of the constraints and
objective function will vary depending on the variant concerned. In the fol-
lowing Sections we shall look at some examples of set partitioning problems.
First of all we will cover the three problems addressed in the current Chapter:
graph coloring, bin packing and examination timetabling. This Section will
then conclude with a brief overview of some other important set partitioning
problems.

6.1 The Graph Coloring Problem

As mentioned in Sect. 4, the graph coloring problem (GCP) involves finding a
minimum set of colors for the vertices of a given graph, so that no two adjacent
vertices have the same color. The optimum set of colors for a particular graph
coloring instance is often referred to in the literature as its chromatic number.
A legal coloring for a graph with 12 nodes is illustrated in Fig. 4. Thus, we aim
to partition a set of vertices into the minimum number of color classes, so that
each vertex belongs to exactly one color class. The restriction that imposes
different colors on adjacent vertices is an example of a hard constraint, because
no coloring where this condition is violated is allowed.

Fig. 4. A legal coloring for a graph with 12 nodes; color labels appear inside the
vertices and vertex labels outside

894 C.L. Mumford

In many ways the GCP is the archetypal set partitioning problem, because
it has probably attracted more interest than any other problem of its type.
Indeed, the field is highly competitive and in 1993 the problem was the sub-
ject of a Discrete Mathematics and Theoretical Computer Science (DIMACS)
implementation challenge [24]. This involved pitting the best algorithms of the
day against each other on a collection of large and specially devised difficult
benchmark instances. The GCP provides a useful test bed for techniques appli-
cable more widely to real world problems such as timetabling [4], frequency
assignment [42], and many others.

6.2 The Bin Packing Problem

Bin packing problems are concerned with packing a given number of items,
having different sizes, into a minimum number of equal-sized bins. In this
Chapter we shall consider only the simplest of these problems, known as the
one-dimensional bin packing problem [30]. In this version of the problem we
are concerned only with weights of the items, and not with their areas, volumes
or shapes. The goal is to partition a set of items, of differing weights, into a
minimum number of bins with equal weight capacity. Like graph coloring,
the bin packing problem imposes a hard constraint: the total weight of items
occupying any bin must not exceed its weight capacity.

6.3 The Examination Timetabling Problem

The examination timetabling problem involves scheduling a set of examina-
tions into a number of time slots in such a way that the schedule obeys any
given constraints and also gives due consideration to any other issues con-
ducive to producing a ‘good’ timetable. Many different variants exist for this
important real-world problem, and the choice of practical solution method
will depend on the types of constraints involved and also on the objectives
that need to be optimized (see [4] and [40] for more details). In its most basic
version, the examination timetabling problem is identical to the graph color-
ing problem, with the colors representing time slots and vertices representing
examinations. In this model, an undirected edge between vertices indicates
that at least one student is taking both exams. The goal of this basic version
is to schedule all the examinations in the minimum number of time slots, so
that there are no clashes – that is, no student is scheduled to take more than
one exam in any time slot.

In practice available resources are finite and additional hard constraints
are usually imposed, over and above the need to schedule examinations with
no clashes. A university has an upper limit on the number of candidates it
can seat in a time slot, for instance. It is instructive to note that the seating
capacity limitation is identical to the bin packing constraint: items of various
sizes being replaced with examinations with various numbers of candidates.

An Order Based Memetic Evolutionary Algorithm 895

Thus, a feasible solution to the timetabling problem that seats all students
and avoids all clashes requires the simultaneous solution to the underlying
graph coloring and bin packing problems. Other common constraints include:

• Candidates taking a particular exam must not be split across rooms.
• Exam A must be scheduled before exam B.
• Exam A must be scheduled at the same time as exam B (because they

contain similar material).
• Exam A must take place in a particular room (because special resources

are needed).

In addition to the various hard constraints imposed by different insti-
tutions, universities have different views as to what constitutes a ‘good’
timetable, as opposed to simply a feasible one. Most commonly these desirable
but not essential properties (sometimes called ‘soft constraints’) include some
measure of a ‘fair spread’ of examinations for the students taking them. For
example, scheduling students to take two examinations in consecutive time
slots is usually avoided if possible. Indeed, some institutions will go much fur-
ther than this to ensure that as many students as possible have good revision
gaps between their examinations. Other desirable properties may consider effi-
ciency or convenience related to the staff involved in marking the papers. For
example, examinations with large numbers of candidates may be scheduled
early to give more time for marking the scripts. The present study is confined
to two hard constraints:

1. avoiding clashes, and
2. keeping within the total seating capacity.

Thus, the version of the examination timetabling problem addressed here is
a simple combination of graph coloring and bin packing, our other two test
problems.

6.4 Other Set Partitioning Problems

There are many set partitioning problems with great practical application.
Here are a few examples:

• Equal piles and assembly line balancing.
• Frequency assignment problem.
• Vehicle scheduling problem.

The equal piles problem was first studied by [25] and involves partitioning
N numbers into K subsets, such that the sums of the subsets are as near equal
as possible. When applied to assembly lines [38], the equal piles problem seeks
to assign assembly tasks to a fixed number of workstations in such a way that
the workload on each workstation is nearly equal.

896 C.L. Mumford

The frequency assignment problem can be derived from the graph coloring
problem, but the level of conflict (that is, interference) between the nodes is
related to their distance apart rather than a simple adjacency conflict [23,
42]. Vehicle scheduling involves assigning customers to vehicles for the pickup
and/or delivery of goods [36].

7 Motivation for the Present Study

Set partitioning problems are very challenging for genetic algorithms, and
designing effective crossover operators is notoriously difficult. We have already
explored some of these issues in Sect. 4. There are two main challenges:

1. solution infeasibility, and
2. representational redundancy.

Solution infeasibility occurs when candidate set partitions violate problem
constraints. As an example, consider the twelve node graph coloring problem
illustrated in Fig. 2(a) and a direct representation of a legal coloring as shown
in Fig. 2(b). It is easy to imagine a simple one point (or multi-point) crossover
producing an illegal coloring, with some adjacent nodes having the same color.
Infeasible solutions to the bin packing problem are easily produced in a sim-
ilar way, producing overfull bins. Representational redundancy can also be a
serious problem in set partitioning problems in which the class labels are inter-
changeable. The arbitrary allocation of color labels for the GCP and bin labels
for the BPP establish these two problems in this category. Representational
redundancy can artificially inflate the size of the search space and also reduce
the effectiveness of crossover operators. Given these difficulties, it is probably
not surprising that, despite the predominance of population-based methods,
crossover plays a very minor role in many state-of-the-art approaches to solv-
ing set partitioning problems. Standard crossover operators are just not very
effective at propagating meaningful properties about set membership from
parents to offspring.

Of special note, however, are two evolutionary techniques that have
recently appeared in the literature. These, unlike their predecessors, include
crossover operators that appear to contribute significantly to the overall suc-
cess of the algorithms. Furthermore, both of these techniques have produced
world-beating results for hard literature benchmarks in their respective fields
of application. The first of these, known as the grouping genetic algorithm
(GGA) was developed by [16] for the bin packing problem. The second algo-
rithm, the hybrid coloring algorithm (HCA) [18] was written for the graph
coloring problem.

A common feature shared by the two novel crossover operators used in each
of these methods, is the focus on propagating complete partitions, or sets, from
parents to offspring. Essentially, both algorithms rely on a direct encoding

An Order Based Memetic Evolutionary Algorithm 897

scheme to assign set membership to items in the manner of Fig. 2(b). However
with the GGA this direct representation is augmented with a grouping part,
which encodes each group (that is, set) with a single gene, and it is to the
grouping part only that the genetic operators are applied. In the GGA, the
standard part of the chromosomes merely serve to identify which items belong
to which group. On the other hand, the greedy partition crossover (GPX) used
in HCA works on the direct encoding explicitly. The parents take it in turns to
contribute a complete color class to the offspring. GPX will always select the
largest remaining color class from the chosen parent (hence the term ‘greedy’
in GPX), and following its transfer to the offspring, all copied vertices will be
removed from both of the parents to avoid any duplication of vertices in the
offspring.

A disadvantage shared by both the above techniques is their need to repair
the infeasible solutions that are inevitably produced by the genetic operators.
In addition, successful implementations of these methods also make extensive
use of local search to further improve the quality of the solutions. The GGA,
for example, uses a powerful backtracking technique adapted from [30] to
unpack items from some bins and attempt to repack them more favorably
in others. The HCA algorithm of [18] relies on small populations of just five
or ten individuals and typically applies several thousand iterations of their
tabu search algorithm to each new offspring produced by the evolutionary
algorithm (one could speculate on the relative contribution evolutionary part
to the methods as a whole). Nevertheless, the researchers in each case present
convincing evidence to support the inclusion of their evolutionary components.

Interestingly, the GGA has been adapted by various authors to several
other set partitioning problems, including the graph coloring problem [13,14],
the equal piles problem [15], and the course timetabling problem [29]. For each
application the choice of problem-specific repair and local search heuristics
has probably had a major influence on its level of success. To the best of this
author’s knowledge the HCA algorithm has not yet been adapted for other
applications.

Having now introduced the reader to arguably the best known and most
successful evolutionary approaches to set partitioning for which crossover
plays a significant role, I will now move on to outline the motivation for the
present work. It is clear that a major weakness is shared by all evolutionary
techniques that rely on direct encoding for set partitioning problems – this
being their need to repair infeasible solutions. In addition, we have also noted
an extensive use of problem-specific local search heuristics in the algorithms
we have reviewed above. These are not only time consuming, but they also
call into question the relative contribution of the evolutionary algorithm. Fur-
thermore, the repair and local search heuristics used by these methods are
not very portable from one set partitioning problem to another, and success
seems to be quite variable, depending heavily on the quality of supporting
heuristics.

898 C.L. Mumford

The main aim of the present Chapter is to present a new, and reason-
ably generic, order based framework suitable for application, with minimum
adaptation, to a wide range of set partitioning problems. The clear advantage
of using an order based approach is that every permutation is decoded as a
feasible solution, meaning no costly repair mechanisms are required follow-
ing a crossover event, however heavily constrained the problem. On the other
hand, it is conceivable that techniques that employ direct encoding will find
it increasingly difficult to repair the result of a crossover, the more heavily
(or multiply) constrained a problem becomes. Historically the downside of
order based genetic algorithms is that, to the best of this author’s knowl-
edge, nobody has so far been able to come up with a really effective crossover
capable of transmitting useful features from parents to offspring for set par-
titioning problems. It is hoped that the new crossover operators presented in
the present work do something to redress the balance and make order based
approaches more competitive. Indeed, the new operators share a key prop-
erty inspired by the GGA and GPX crossovers: they tend to propagate whole
partitions or sets from parents to their offspring.

Perhaps the most innovative feature of the new order based approach is the
inclusion of some simple grouping and reordering heuristics to preprocess the
chromosomes prior to crossover. The idea is to encourage the transmission of
whole set partitions, when a suitably designed crossover is used, in a way that
is normally not possible with order based crossovers. We shall see in the next
Section that the grouping and reordering heuristics of [9], used in the present
study to preprocess the chromosomes prior to crossover, can be applied readily
to a range of different set partitioning problems and, unlike many of the repair
mechanisms used by direct encoding methods are not restricted to one type.
Furthermore, no lengthy local search procedures are required and only a very
few iterations of Culberson and Luo’s heuristics are needed for preprocessing,
Thus, although the exact choice of objective or fitness function will very likely
depend on the specific set partitioning application, it is envisaged that the
complicated problem-specific heuristics and costly backtracking, typical of
many other approaches, can largely be avoided. The next Section introduces
the heuristics of [9], and explains their power and versatility. It is the opinion
of the present author that these very elegant techniques have been rather
neglected by researchers.

8 Culberson and Luo’s Grouping and Reordering
Heuristics

Culberson and Luo’s (CL) heuristics were originally devised to solve the graph
coloring problem and belong to a family of methods that use simple rules
to produce orderings of vertices (or items). Once created, the orderings are
presented to a greedy decoder for transformation into legal colorings (or set

An Order Based Memetic Evolutionary Algorithm 899

partitions). Successful ordering heuristics are distinguished by the produc-
tion of high quality solutions. The simplest and fastest ordering heuristics,
unlike the CL heuristics, generate a solution in one go. For the graph color-
ing problem the best known one-shot techniques determine the orderings by
placing the most heavily constrained vertices (namely, those with many edges
connecting them to other vertices) before those that are less constrained.
While most of these techniques can be described as static, because the order-
ings remain unchanged during the greedy color assignment process [31, 43], a
somewhat more sophisticated technique, known as DSatur [2] operates dynam-
ically. Starting with a list ordered in non-ascending sequence of vertex degree,
DSatur assigns the first vertex to the smallest color label, then it reorders the
remainder of the list to favor vertices adjacent to the newly assigned vertex.
The algorithm continues in this way, sequentially assigning the lowest avail-
able color label to the next vertex on the list, then reordering the remainder,
until every vertex has received a color. Thus, DSatur assigns colors to unas-
signed vertices, giving priority to the vertices with the most neighbors already
colored, using vertex degree to break the ties.

One-shot ordering heuristics have also been developed for other set parti-
tioning problems, and they operate in a similar fashion to the graph coloring
heuristics discussed above. Ordering heuristics for the frequency assignment
problem (the assignment of radio frequencies to reduce interference between
transmitters), for example, are almost identical to those used for graph color-
ing (see [23] for a survey). This is probably not surprising, given that frequency
assignment is a derivative of the graph coloring problem. Simple versions of
the examination timetabling problem also make use of graph coloring heuris-
tics [4]. A popular method for ordering items for the bin packing problem is
to place them in non-ascending sequence of their weights. A simple greedy
algorithm can then be used to assign the items to the first available bin, bins
being identified by consecutive integer labels. This scheme for bin packing is
know as the first fit decreasing weight (FFD) algorithm [7].

Despite their attractiveness in terms of speed and simplicity, however,
one-shot ordering heuristics do not always perform very well in practice,
although there are exceptions. FFD can solve many large benchmark bin
packing instances to optimality, for example, and DSatur works well on certain
graph coloring instances. In other cases though, such algorithms are only use-
ful to supply upper bounds or provide a starting point for a more sophisticated
method.

In a different category are the ordering heuristics of Culberson and Luo
(CL) [9]. These methods group and rearrange whole color classes (or sets of
items), rather than sequencing the vertices individually. Unlike the one-shot
methods discussed above, the CL heuristics can be applied repeatedly, leading
to a gradual improvement to a solution. Of particular significance is a rare
property of the CL heuristics which ensures that it is impossible to get a worse
coloring by applying any of their reordering techniques to the GCP, and it

900 C.L. Mumford

is possible that a better coloring (using fewer colors) may result (see [9] for
details). They apply a random mix of various reordering heuristics and call
the composite algorithm ‘iterated greedy’ (IG).

Two main stages of IG can be identified:

1. grouping, and
2. reordering.

Figure 5 illustrates some key operations from IG applied to a small graph with
12 vertices and 14 edges. Figure 5(b) gives a typical random permutation of
the vertices from Fig. 5(a) and also the resulting greedy coloring. Figure 5(c)
shows the grouping operation used to sort the list in non-descending sequence
of color label, and 5(d) gives the arrangement following the application of one
of the CL reordering heuristics called ‘largest first’. The largest first heuristic
rearranges the color classes in non-ascending sequence of their size. Note that
the positions of color classes 1 and 2 have been reversed in Fig. 5(d). This
follows advice in [9] to interchange positions of equal sized color classes. In
Fig. 5(f) vertices are randomly ‘shuffled’ within (but not between) the color
classes. (Note: shuffle, although mentioned, does not appear to have been
extensively used by [9] in the IG algorithm. However it is included here because
of its value in the present study). Finally, the greedy algorithm is applied to
the new arrangement – Fig. 5(f) – and the result is shown in Fig. 5(g). Note
that vertices 4 and 1 are reassigned lower color labels, leading to a reduction
in the size of color class 2. Thus, given an initial permutation of vertices, the
IG algorithm can be defined by the following repeating sequence:

1. greedy assignment,
2. grouping of color classes,
3. reordering of complete color classes,
4. shuffle within each color class (optional).

Various properties of the color classes were assessed by [9] as criteria for
reordering:

1. Reverse: reverse the order of the color classes
2. Random: place the groups in random order
3. Largest first: place the groups in order of decreasing size (Fig. 5(d))
4. Smallest first: place the groups in order of increasing size
5. Increasing total degree: place the groups in increasing order by the total

degree of the group
6. Decreasing total degree: place the groups in decreasing order by the total

degree of the group

The favored combination turned out to be largest first, reverse and random,
used in the ratio 50:50:30. Although [9] applied their IG algorithm to the GCP,
many of the reordering heuristics are equally applicable to other set partition-
ing problems. Reverse, random, largest first and smallest first, for instance,

An Order Based Memetic Evolutionary Algorithm 901

Fig. 5. Various operations by [9] used in the local search procedure

902 C.L. Mumford

can be used for the bin packing problem. Note though that heuristics based
on vertex/item degrees have no meaning in this context, so the increasing and
decreasing total degree heuristics are not appropriate for bin packing. Never-
theless, an alternative measure can be used: the total weight of items in each
bin. In this way the two CL heuristics that sequence on the total degrees for
each group can be replaced with heuristics that do their ordering on the basis
of the total weights of items in each bin. CL heuristics can also be applied to a
simple version of the examination timetabling problem where the only consid-
erations are to avoid clashes and/or seating capacity violations. As mentioned
in Sect. 6.3, clash avoidance and seating capacity compliance simply represent
underlying graph coloring and bin packing problems, respectively.

The crucial feature that determines the applicability of the CL reordering
heuristics to a particular set partitioning problem is whether a solution is
changed if the groups are simply re-labelled. For convenience, groups are usu-
ally identified by integer labels, to represent their color class, bin ID or time
slot, and so forth. With graph coloring and bin packing it does not matter
which integer label is assigned to which group – it will not change the total
number of colors or bins required. On the other hand, if revision gaps are
required in examination timetables, the sequence of integer labels will be rel-
evant, and will correspond to a sequence of time slots; by contrast, time slots
can be shuffled into any sequence to avoid clashes and comply with seating
arrangements. Interestingly, the reverse heuristic maintains the relative posi-
tions of time slots. The frequency assignment problem has similar limitations,
and the applicability of reverse has been proven in [42].

We will now look at some new crossover variations that attempt to pre-
serve color classes, when used in conjunction with the grouping and sorting
heuristics described above.

9 Modifications to a Standard Order Based GA
for Set Partitioning

Genetic algorithms require crossover techniques that preserve building blocks
[19] appropriate to the problem at hand. A building block can be viewed as a
group of elements on a chromosome that ‘work together’ to produce or influ-
ence some identifiable feature in the solution. For example, the ‘sets’ in set
partitioning problems come into this category, and thus it makes sense to use a
crossover that preserves them. In the present work CL grouping and reordering
heuristics are used to preprocess the order based chromosomes to make it eas-
ier to preserve the set groupings. Two new crossover operators, POP and MIS
(first described in [34]), seem to be particulary effective in maintaining this
group integrity when used in conjunction with CL heuristics. Indeed, results
for these operators are impressive when compared to those obtained using
other order based crossovers for the graph coloring problem [34]. Further evi-
dence in support of these operators is presented later in the Chapter. Note that

An Order Based Memetic Evolutionary Algorithm 903

no special modifications were necessary for order based mutations, and that
inversion and insertion mutations proved the most useful in the present study.

The new crossover operators are compared with three selected order based
operators of historical importance: cycle crossover (CX) [35], uniform order
based crossover (UOBX) [11], and merging crossover (MOX) [1]. CX, OX and
MOX have already been described in Sect. 4. UOBX was developed from OX
by [11] with the GCP in mind and is good at preserving relative positions
and orderings. CX is good at preserving absolute positions of vertices, and
every vertex in the offspring list will occur in exactly the same position in
one or other of its parents. CX has proven effective in the related frequency
assignment problem [42]. As mentioned previously, MOX is good at preserving
relative positions. I will now outline the two new crossover operators, POP
and MIS.

Permutation Order Based Crossover (POP)

Permutation order based (POP) crossover uses ideas from the well known
order crossover (OX) [35], described earlier, but at the same time it tries to
emulate the basic one point crossover of the ‘standard’ bit string GA, which
simply selects two parents and a cut point. The first portion of parent 1 up to
the cut point becomes the first portion of offspring 2. However, the remainder
of offspring 2 is obtained by copying the elements absent from the first portion
of the offspring in the same sequence as they occur in parent 2 (see Fig. 6).

Fig. 6. POP crossover

904 C.L. Mumford

Fig. 7. Merge independent sets crossover, MIS

The same idea was used in [8], although the crossover was not given a specific
name. However, the present implementation relies on the CL heuristics for
preprocessing the chromosomes, without which it did not work very well, as
demonstrated in [34]. We will identify two variants of POP: POP1 and POP2.
These differ slightly in the way the cut point is selected: for POP1 it is chosen
at random and can appear anywhere in the list, but for POP2 the cut point
is restricted to a boundary between two set groupings. Of course application
of POP2 is dependent on having previously sorted the color classes.

Merging Independent Sets Crossover (MIS)

Merging independent sets (MIS) is a new crossover, adapted from MOX. It
requires that the color sets are first grouped together in both of the parents, as
illustrated in Fig. 7(a). MIS then proceeds in the same way as MOX, but whole
color sets are copied from the parents to the merged list in one go (Fig. 7(b)),
rather than individual vertices. The merged list is split in exactly the same
way as for MOX, with the first occurrence of each vertex appearing in the
first offspring and the second occurrence in the second offspring, reapplying
the greedy decoder to the new offspring (Fig. 7(c)). The idea of MIS is to
better preserve the parents’ color classes than MOX.

9.1 Performance Measures/Fitness Values

The objective function (namely, the value we are trying to optimize) is not
always the best measure of progress for an optimization algorithm to use.
For example, a common objective function for set partitioning problems is
to count the number of classes – for instance, the number of colors and bins

An Order Based Memetic Evolutionary Algorithm 905

respectively – for graph coloring and bin packing. Unfortunately, as previously
mentioned, representational redundancy can mean that for a given number of
classes, a very large number of different assignments (of vertices to colors, or
items to bins) is possible. For this reason we will use progress measures that
attempt to distinguish between ‘good assignments’ and ‘bad assignments’,
for a given class count. We will start by looking at a performance measure
that is generally applicable to most set partitioning problems, and then we will
examine some more specific measures that can be used for particular problems.

General Set Partitioning

The performance measure in Eqn. (2) was introduced by [9] for the GCP.
However, it is equally applicable to other set partitioning problems.

P1 =
n∑
1

ci + nc (2)

Interpreting this formula for the GCP, Eqn. (2) shows the coloring sum
(that is,

∑n
1 ci, where ci is the color assigned to vertex i) added to the term

nc, where n is the number of vertices and c the number of colors. For bin
packing,

∑n
1 ci represents the ‘bin sum’, with the bins numbered consecu-

tively, {1, 2, 3, . . . , c}, and item i assigned to bin number ci. The other term in
Eqn. (2), nc, is simply the number of items multiplied by the number of bins.
A disadvantage of this performance measure is that it is sensitive to color (or
bin) class labelling, and color classes or bin assignments need be sequenced so
that the smallest integer label is assigned to the largest class, and the second
smallest integer to the second largest class, and so on, for the measure P1 to
work effectively. This performance measure was used in an earlier study by
the present author [34].

Graph Coloring

The following equation was devised by [14].

P2 =
1
c

c∑
1

D2
j (3)

In Eqn. (3) Dj =
∑

i∈Sj
di represents the ‘total degree’ for group j with di

denoting the vertex degree of the ith node. Unlike P1, P2 is insensitive to class
labelling, and in Eqn. (3) color classes having a high total degree are favored.

Bin Packing

The final formula we will consider is due to [16].

P3 =
∑c

1(Wj/C)2

c
(4)

906 C.L. Mumford

Eqn. (4) has a similar structure to Eqn. (3), but the important class measure-
ment is total weight of items in bin j,

∑
i∈Sj

wi, where wi is the weight of
item i in bin j. The bin capacity is denoted by C.

9.2 Comparing Order Based Crossovers

Experiments were conducted to assess the viability of the various crossover
operators for the GCP and the BPP. The simple steady-state GA outlined
in Algorithm 2 was used as a framework for this, omitting mutation. Two
DIMACS (Discrete Mathematics and Theoretical Computer Science Imple-
mentation Challenge) benchmarks – DSJC500.5 and le450 25c – were used
to demonstrate the performance of the crossovers on the GCP, and N4C3w2 A
and N4C3W4 A from Scholl and Klein were used for the BPP (see Appendix-
A for the data sets). The fitness function devised by Erben (Eqn. (3)) was
used for the GCP and Falkenauer’s fitness function was chosen for the BPP.
A population size of 300 was used for each experiment, and the GA run for
250 generations. A single iteration of local search steps, similar to those illus-
trated in Fig. 5, immediately followed each application of crossover. Recall
that local search is based on the CL heuristics and consists of a ‘grouping’
and a reordering phase. However, the ‘largest first’ heuristic was changed to
reflect features of the different fitness functions that were used for the GCP
and the BPP. In the case of the GCP, the classes were sequenced according to
the sum of vertex degrees in each color class (that is, decreasing total degree),
rather than just counting the number of vertices belonging to each group. For
the BPP the classes (which correspond to the contents of the various bins)
were sequenced in non-ascending order of bin weights.

Results for all the experiments are displayed graphically as ‘best-so-far’
curves averaged over 10 replicate runs (see Figs. 8 and 9). Clearly the best
results are obtained with MIS on the GCP and POP1 on the BPP. Analysis
of variance tests show highly significant differences in the performance of the
various crossover operators at the 0.01% level.

The reader is referred to [34] for a more rigorous set of comparisons. Results
presented in this earlier paper also demonstrate the important contribution
of the grouping (or sorting) and reordering heuristics.

9.3 The Genetic Simulated Annealing (GSA) Algorithm

Having assessed the relative performance of the various crossover operators,
the next stage is to apply a suitably adapted GA to literature benchmark
instances for various set partitioning problems, to see how the approach will
compete with other published algorithms. In order to obtain really good solu-
tions, it is necessary to balance population diversity with GA convergence,
and consider larger populations and/or longer runs than were needed for
comparing the crossovers. Clearly, the addition of a mutation operator will

An Order Based Memetic Evolutionary Algorithm 907

0 50 100 150 200 250
52

54

56

58

60

62

64

66

68

Number of Generations

N
um

be
r

of
 C

ol
or

s
CX
UOBX
MOX
POP1
POP2
MIS

(a) DSJC500.5

0 50 100 150 200 250 300
30.5

31

31.5

32

32.5

33

33.5

Number of Generations

N
um

be
r

of
 C

ol
or

s

CX
UOBX
MOX
POP1
POP2
MIS

(b) le450 25

Fig. 8. Comparing order based crossovers with sorting of independent sets and
largest total degree first

908 C.L. Mumford

0 50 100 150 200 250
205

206

207

208

209

210

211

212

213

Number of Generations

N
um

be
r

of
 B

in
s

CX
UOBX
MOX
POP1
POP2
MIS

(a) N4C3W2 A

0 50 100 150 200 250
218

220

222

224

226

228

230

Number of Generations

N
um

be
r

of
 B

in
s

CX
UOBX
MOX
POP1
POP2
MIS

(b) [N4C3W4 A]

Fig. 9. Comparing order based crossovers with sorting of independent sets and
largest total weight first

An Order Based Memetic Evolutionary Algorithm 909

probably help maintain diversity within the population, giving a better oppor-
tunity to explore the search space and helping to avoid premature convergence.
Mutation was deliberately left out of the previous experiments when we were
assessing the crossovers.

Several of the mutation operators discussed in Sect. 4 were tried in some
pilot studies: insertion and swap mutation, as well as scramble sublist. Of
these, insertion produced the best results with the successful crossovers, pro-
ducing good solutions quickly. Unfortunately these results were not quite
world class, and despite the useful contribution of the mutation operator,
the population tended to lose its variability towards the end of the run. In an
attempt to improve matters, different ways of injecting extra variability into
the population were explored.

Periodic restarts was the first of these ideas to be tried. This involved
temporarily halting the GA, once it stagnated. Various ‘super-mutation’
operations were then selected stochastically and applied to the individual
permutations in the population, in an attempt to inject some new variabil-
ity. Operations that were tried include Davis’ ‘scramble sublist’ and Holland’s
inversion (see Sect. 4) as well as a simple ‘delete-and-append’ operation, which
deletes part of a string and then appends this deleted section to the end
of the string. Once this super-mutation stage had been completed, the GA
was restarted. Although this approach proved to be very successful on some
instances, it required unacceptably long run times on others. A more effi-
cient approach was subsequently found which involves making a small change
to the replacement criterion in Algorithm 2: instead of simply replacing the
weaker parent by its offspring when offspring is better than its parent, a sim-
ulated annealing cooling schedule was introduced, which allows a parent to be
replaced occasionally by a poorer offspring. The main features of a simulated
annealing cooling schedule are outlined below.

What is Simulated Annealing?

In physics the term ‘annealing’ refers to the very slow cooling of a gas into a
crystalline solid of minimum energy configuration. Simulated annealing algo-
rithms (SAs) [27] attempt to emulate this physical phenomenon. The process
usually begins with the generation of a random solution, and this will act as
the initial focus of the search. The SA will then make a very small change to
a copy of this solution, generating a neighborhood solution, in an attempt to
produce an improvement. If a better solution is found, then the improved solu-
tion will replace the original as the focus. However, it is well known amongst
researchers that a simple hill climbing search such as this (accepting only ‘for-
ward’ moves and never ‘backward’ ones) can easily become trapped in a local
optimum. The main strength of an SA algorithm is its potential to escape from
such traps. This is achieved by the occasional acceptance of a neighborhood
solution that is somewhat worse than the current focus. The rate at which this

910 C.L. Mumford

is allowed to occur is carefully controlled using an ‘acceptance probability’,
and this is used to determine whether or not a newly generated neighborhood
solution will replace the current focus solution. In general, the poorer the
new solution, the less likely it is to be accepted. However, the analogy with
the physical situation requires that inferior solutions should be less likely to
be accepted as the search progresses. Initially the algorithm will probably
accept almost anything, but towards the end of the search, the algorithm will
behave more like hill climbing, accepting inferior solutions only on very rare
occasions. Values for the acceptance probability – prob – for a minimization
problem, are evaluated using Eqns. (5) and (6). ∆ represents the difference
between the objective functions (or costs) of the new solution, C(S′), and the
focus solutions, C(S). Note that the value of prob depends on the value of ∆
and also on T , the current temperature, which is determined by the cooling
schedule.

∆ = C(S′)− C(S) (5)
prob = min(1, e−∆/T) (6)

The new solution is accepted with probability 1 if ∆ ≤ 0 (in other words,
if the neighborhood solution is better than S) and with probability e−∆/T if
∆ > 0 (that is, if the neighborhood solution is worse than S). Throughout the
execution of an SA algorithm, the temperature T is progressively lowered.

The Genetic Simulated Annealing (GSA) Implementation

For the present GSA implementation for set partitioning problems, the precise
annealing schedule is determined from user-specified values for the number of
cooling steps and the initial and final solution acceptance probabilities. We
use n cooling steps to correspond to the number of generations, so that the
temperature is decreased between each generation. Thus, knowing n and the
initial and final acceptance probabilities, P0 and Pn, as well as an additional
parameter M that signifies an initial number of random trials, the starting
temperature T0, the final temperature Tn, and the cooling factor α can be
calculated, as indicated below.

∆i = Perform(offspring) − Perform(weaker) (7)

∆ave =
∑i=M

i=1 | ∆i |
M

(8)

T0 = − ∆ave

log P0
(9)

Tn = − ∆ave

log Pn
(10)

α = exp
log Tn−log T0

n (11)

An Order Based Memetic Evolutionary Algorithm 911

Please note that ∆ave (Eqn. (8)) is obtained by applying the genetic oper-
ators and also local search, if appropriate, to M randomly selected pairs of
individuals from the initial population. In this way the performance measures
of M offspring are compared with those of their weaker parents to obtain an
estimate of ∆ave. This estimate is then used to determine the starting temper-
ature, the final temperature and the cooling schedule. The offspring generated
during this initialization phase are discarded.

Algorithm 3 provides an outline of the GSA. Although the exact implemen-
tation details for the GSA, such as choice of crossover and mutation operators,
and type of local search, vary according to the nature of the problem, the basic
framework remains the same. Worthy of note is the simple adjustment made
to the calculation of ∆i, necessary because all the fitness functions (in other
words, objective functions) used for the problems in the present study involve
maximization, yet simulated annealing requires that the objective functions
are minimized. We simply set ∆i = Perform(weaker) − Perform(offspring)
instead of itPerform(offspring)− Perform(weaker).

10 Results on Literature Benchmarks

The versatility of the new techniques will now be demonstrated on some lit-
erature benchmarks for graph coloring, bin packing and timetabling. Except
where otherwise stated, the following parameter settings were used for the

Algorithm 3 Genetic Simulated Annealing (GSA)
Generate N random strings {N is the population size}
Evaluate the performance measure for each string and store it
Apply local search to the offspring {optional}
Initialize data, {obtaining T0, Tn and α}
S = S0

T = T0

for n generations do
for all strings in the population do

Each string, in turn, becomes the first parent
Select a second parent at random
Apply crossover to produce a single offspring
Apply mutation to the offspring
Apply local search to the offspring {optional}
Evaluate the performance measure for the offspring,
∆ = Perform(weaker)− Perform(off)
Pt = min(1, exp−∆/T)
if random(0, 1) ≤ Pt then

offspring replaces weaker parent
else

the offspring dies
T = α × T

912 C.L. Mumford

GSA: M = 100 (the number of preliminary trials to help establish the start-
ing temperature), P0 = 0.999 and Pn = 0.0001 (the starting and ending
probabilities, respectively, of accepting an inferior offspring with an average
magnitude of deviation in value from its weaker parent). Population sizes of
200 were used and ten replicate runs carried out on each benchmark instance,
with average and best values quoted for the solutions in the results tables.
Values of n, the number of generations, vary with different problem instances,
as do precise details of the genetic operators and CL heuristics used.

10.1 Graph Coloring

The previously mentioned DIMACS benchmarks [24] provided most of the test
instances for the present study, and are dealt with first. Further experiments
are then reported on two special types of graphs, based around cliques. All
test instances were chosen because they have been reported as ‘difficult’ by
previous researchers.

The DIMACS Benchmarks

Seven benchmark instances were taken from the DIMACS challenge bench-
mark set, [24]. D250.5, D500.5 and D1000.5 are random graphs with edge
density 0.5 and unknown chromatic number. Le450 15c and le450 25c are
Leighton graphs with 450 vertices, and flat300 28 and flat1000 76 are
flat graphs with 300 and 1000 vertices, respectively. The flat and Leighton
graphs are structured with known chromatic numbers of 15, 25, 28 and 76, as
indicated.

MIS crossover was selected because it worked well in the GSA for most of
the instances. However, POP1 proved better for le450 25 so this crossover
was used for this instance only. ‘Inversion’ was the selected mutation, which
involved inverting the substring between two randomly selected cut points.
Erben’s fitness function (Eqn. (3)) provided the performance measure, and
three iterations of the local search, based on Fig. 5, seemed to be sufficient
for the GCP. Increasing the number of iterations slowed the algorithm down
considerably without improving the results. The local search was modified a
little from Fig. 5 however (as was the case when comparing the crossovers),
with the ‘decreasing total degree’ heuristic replacing the ‘largest first’. This
was done to make the reordering criterion tie in better with Erben’s fitness
function: both encourage the formation of classes with high values for total
vertex degree. Results for the seven DIMACS benchmarks are presented in
Table 1.

In Table 1 results for the GSA (columns 4 and 5) are compared with
those obtained running a mutation only version (columns 6 and 7), which
incorporates all the same parameters and features of the GSA but does not
have the crossover. The iterated greedy algorithm was also tried, and the

An Order Based Memetic Evolutionary Algorithm 913

Table 1. Results for genetic simulated annealing on graph coloring instances

Instance Order based GSA Mut GSA It greed DSat Best
Gens Time Mean Min Mean Min Mean Min known

DSJC250.5 2000 314 29.1 29 31.6 31 30.0 30 37 28
DSJC500.5 3000 1895 49.9 49 56.4 56 53.8 53 65 48
DSJC1000.5 5000 11706 87.2 87 101.0 100 98.0 97 115 83

le450 15c 500 190 15 15 24.9 24 24.0 24 23 15
le450 25c 2000 854 29.3 29 29.9 29 29.0 29 29 26

flat300 28 1000 205 32.6 32 36.0 36 34.3 34 42 31
flat1000 76 5000 11711 86.3 85 100.0 99 97.4 96 114 83

results for this can be found in columns 8 and 9. The penultimate column
contains the Desatur result for each instance and the best known results are
listed, for comparison purposes, in the final column. The best known results
were obtained by [18] using their hybrid evolutionary algorithm for graph
coloring (HEA). Ten replicate runs were carried out for the GSA, mutation
only GSA and also iterated greedy on each benchmark instance.

In more detail, column 2 gives the number of generations for the GSA (and
also the mutation only version), and column 3 the average run time in seconds.
The average and best results for the GSA and the mutation only version are
presented in columns 4, 5, 6 and 7. The results for iterated greedy in columns
8 and 9 are produced by running this algorithm for the same length of time
as the GSA, namely 314 seconds for DSJC250.5, 1895 seconds for DSJC500.5,
and so forth. Bold font is used to highlight where the best results have been
obtained for the current set of experiments, and italic font indicates the best
known results.

Clearly, the GSA outperforms Desatur and iterated greedy on most
instances, and the version with crossover works much better than the one
without. However, the GSA results do not match the results obtained by
the HEA algorithm, which is clearly state-of-the-art. Nevertheless, the bench-
marks are tough and the results are generally good. The HEA algorithm uses
many thousands of tabu search iterations following the creation of each new
offspring in the population, thus it is a very different type of algorithm from
the current order based GSA. The new order based approach introduced in the
present Chapter is presented largely for its generic qualities, and its potential
for a wide range of set partitioning problems.

Some Further Experiments

In addition to the DIMACs benchmarks, further experiments were undertaken
on two special types of graphs first presented by [39] and used by [14] to test
his version of the grouping genetic algorithm. These instances are all arranged

914 C.L. Mumford

around cliques – that is, complete subgraphs present within each instance. The
two types are called the ‘pyramidal chain’ and the ‘sequences of cliques’. In all
cases the chromatic number c is known beforehand. A simple order based GA
(in other words, without the GSA cooling schedule) easily solved all instances
tried: one pyramidal chain instance with c = 6, 20 cliques, 60 nodes and
200 edges; seven instances of sequences of cliques with c = 6, 20 cliques and
120 nodes. All the instances that could be found were kindly supplied by
Erben, using email attachment. The pyramidal chain example needed about
1,300 evaluation steps of the order based GA, a similar number to that was
reported by [14] for the grouping genetic algorithm. For the 7 sequence of
cliques examples, however, the order based approach needed a maximum of
10,000 evaluations, which is less than the 150,000 reported in [14].

10.2 Bin Packing

Two sources of data provide the benchmark instances for the bin packing
tests. Once again, an order based GSA is used with inversion providing the
mutation operator. POP1 is chosen as the crossover operator for bin packing,
because it produced better results than MIS in some preliminary tests. The
fitness function adopted for bin packing is the one devised by Falkenauer (see
Eqn. (4)) which favors bins that are as full as possible. A single iteration of
local search, following each crossover, seems to be sufficient for bin packing.
This time the ‘largest first’ reordering heuristic in Fig. 5 is replaced by a
reordering scheme based on largest total bin weight (or fullest bin).

Many authors have noted the efficiency of the simple bin packing heuristic
algorithm, first fit decreasing weight, FFD, (briefly discussed earlier in Sect. 8).
For large numbers of items the worst case solution is 11

9 × OPT , [7], where
‘OPT ’ refers to the optimum solution. However, best case and average case
behavior tend to be very much better than this, with FFD easily solving
many problems to optimality. [41] coined the phrases ‘FFD-easy’, ‘FFD-hard’
and ‘extremely FFD-hard’ to help classify problems with different properties
according to the proportion solved by FFD:

• FFD-easy: 80 - 100 % solved
• FFD-hard: 20 - 80 % solved
• extremely FFD-hard: 0 - 20 % solved

The Data Sets of Scholl and Klein (SK)

Scholl and Klein provide three data sets with a total of 1,010 of bin packing
instances on their web site, with optimum solutions (that is, minimum number
of bins) given for each (see the Resources Appendix). All these instances
have been generated in groups of either 10 or 20, so that instances within
groups have the same properties regarding bin capacities, numbers of items
and ranges of weights for the items. The majority of these instances are easily

An Order Based Memetic Evolutionary Algorithm 915

solved, however. Indeed the present author found optimum solutions to 781
of the 1,010 instances using FFD. All the test data selected for this Chapter
belong to classes where FFD has solved zero instances. The first two instances,
N4C3W2 A and N4C3W4 A, are taken from SK’s first data set. N4C3W2 A has N =
500 items, bin capacity C = 150, and item weights varying uniformly between
20 and 100. N4C3W4 A has the same values for N and C, but the item weights
are between 30 and 100. The next six instances are all taken from the second
SK data set. All these instances have N = 500 items and bin capacity = 1,000.
The average weight per item varies according to W, with W1 = 1000/3, W2
= 1000/5, W3 = 1000/7, and W4 = 1000/9. Thus, for N4W1B1R0 we would
expect to find a maximum of 3 items in each bin, and for N4W2B1R0 about 5
items per bin, and so on. The value of B indicates the maximum deviation
of single weight values from the average weight. B1 = 20%, B2 = 50%, and
B3 = 90%. For the remaining instances (HARD0 - HARD9 from data set 3)
the parameters are: N = 200 items, capacity C = 100,000, and weights range
from 20,000 to 35,000. The number of items per bin lies between 3 and 5.

Results presented in Table 2 show that both the GSA and mutation only
GSA are able to solve most of the instances to optimality, and get very close for
the others. For the SK data, crossover does not appear to make a significant
contribution however, although the GSA clearly produces better solutions
than FFD and iterated greedy. Bold font is used as previously to highlight the
best results for current experiments, and the best known results, respectively.

Table 2. GSA results on Scholl and Klein’s Bin packing instances

Instance Order based GSA Mut GSA It greed FFD Optimum
Gens Time Mean Min Mean Min Mean Min

N4C3W2 A 2000 324 204 204 204 204 204.6 204 206 203
N4C3W4 A 2000 340 217 217 217 217 219 219 220 216

N4W1B1R0 1000 134 167 167 167 167 184 184 184 167
N4W2B1R0 1000 89 102 102 102 102 107.3 105 109 101
N4W3B1R0 1000 73 71 71 71 71 73 73 74 71
N4W3B2R0 1000 73 71 71 71 71 71 71 72 71
N4W4B1R0 1000 63 56 56 56 56 56.8 56 58 56

HARD0 1000 30 56 56 56 56 59 59 59 56
HARD1 1000 30 57 57 57 57 58.7 57 60 57
HARD2 1000 30 57 57 57 57 59 59 60 56
HARD3 1000 30 56 56 56 56 57.7 57 59 55
HARD4 1000 30 57 57 57 57 58.9 58 60 57
HARD5 1000 30 56 56 56 56 57.8 57 59 56
HARD6 1000 30 57 57 57 57 58.6 57 60 57
HARD7 1000 30 55 55 55 55 58 58 59 55
HARD8 1000 30 57 57 57 57 58.8 58 60 57
HARD9 1000 30 56 56 56 56 58.7 58 60 56

916 C.L. Mumford

Falkenauer’s Data Sets

Falkenauer’s data sets are also included here to make comparisons possible
with state-of-the-art algorithms, such as the MTP algorithm by [30] and the
hybrid grouping genetic algorithm (HGGA) of [16]. Falkenauer generated two
types of data:

1. uniform item size distribution, and
2. triplets.

Both types were produced along similar lines to the hard instances in the SK
data sets. For the first set of data, items are uniformly distributed between 20
and 100, with bin capacity 150. Falkenauer generated instances with varying
numbers of items (120, 250, 500 and 1,000), producing 20 examples of each,
making 80 instances of this type in total.

With the second set of data, item weights were drawn from the range
0.25 to 0.5 to be packed in bins of capacity 1. Given the improbability of
finding four items of weight exactly 0.25, it follows that a well-filled bin will
normally contain one big item (larger than a third of the bin capacity) and
two small ones (each smaller than a third of the bin capacity), which is why
the instances are referred to as ‘triplets’. What makes this class difficult is that
putting two big items or three small items into a bin is possible but inevitably
leads to wasted space, because the remaining space is less than 0.25, and thus
cannot be filled. Falkenauer generated instances with known optima, based
on a bin capacity of 1,000, as follows. An item was first generated with a
size drawn uniformly from the range [380, 490], leaving space s of between
510 and 620 in the bin. The size of the second item was drawn uniformly
from [250, s/2]. The weight of the third item was then chosen to completely
fill the bin. This process was repeated until the required number of items
had been generated. The number of bins needed was subsequently recorded.
Triplets were generated with 60, 120, 249 and 501 items – 20 instances of each.
Optimum solutions are 20, 40, 83 and 167 bins, respectively.

Table 3 compares the results obtained by running the GSA with those
published in [16]. Results for FFD and iterated greedy are also included. Each
algorithm was run only once on each instance, and population sizes for the
GSA were set at 100, the same as was used for HGGA. The GSA was run for
the same number of generations as the HGGA, 2,000 for the first two data
sets, 5,000 for the next two, 1,000 for the first two triplet groups, and 2,000
for the last two.

Once again the GSA clearly outperforms FFD and iterated greedy (run
for the same length of time as the GSA), and it would appear that POP1
crossover makes a useful contribution because the GSA with crossover does
slightly better than the GSA without it. The GSA clearly performs better
than MTP in all columns. However, apart from the uniform instances with
120 items, the HGGA performs slightly better than the GSA. It is worth

An Order Based Memetic Evolutionary Algorithm 917

Table 3. Results for Falkenauer’s data sets

Type # items FFD MTP HGGA GSA Mut GSA IG

Uniform 120 49.75 49.15 49.15 49.1 49.45 49.4
Uniform 250 103.1 102.15 101.7 101.9 102.5 102.3
Uniform 500 203.9 203.4 201.2 201.5 202.5 202.65
Uniform 1000 405.4 404.45 400.55 401.3 402.7 403.7

Triplets 60 23.2 21.55 20.1 21 21 22.25
Triplets 120 45.8 44.1 40 41 41 44.95
Triplets 249 95 90.45 83 84 84.15 93.7
Triplets 501 190.15 181.85 167 168 169.1 188.6

noting, however, that the HGGA employs specialized backtracking in its local
search, that will unpack up to 3 items per bin and try to repack. On the
other hand the order based GSA does not use backtracking and runs very
fast – requiring one or two seconds for the smaller problems and up to a
maximum of about 22 minutes for some of the uniform problems with 1,000
items. Furthermore, the representation, operators and CL heuristics used in
the GSA are more generic, and can equally be applied to other set partitioning
problems, as previously mentioned.

10.3 Timetabling

Recall the version of the timetabling problem addressed here combines bin
packing with graph coloring. The maximum number of seats per time slot
corresponds to the BPP constraint, and the avoidance of clashes to the GCP
constraint. Given a set of students to be examined for different courses, we
wish to schedule the examinations so that all clashes are avoided and the
seating capacity is not exceeded in any time period. A selection of real world
instances from Carter’s benchmarks [6] was thought to provide a suitable
challenge for the new order based approach (see the Resources Appendix).
Only those instances for which maximum seating capacity has been specified
have been chosen, and the main characteristics of these six problems are sum-
marized in Table 4. The first five columns of this table are self explanatory,
and column 6 lists the best known solutions to the underlying graph coloring
instances. The uta-s-92 best GCP is taken from [5], pur-s-92 from [3], and
the other four graph coloring solutions from [6]. Column 7 presents solutions
to the underlying bin packing instances, as calculated with a simple FFD
algorithm by the present author. Interestingly, every one of the BPP solu-
tions obtained by FFD match the so called ‘ideal solutions’, found simply by
counting the total number of student-examination events and filling up the
seats in consecutive time slots, ignoring any clashes, until all the events are
used up. Thus, all the solutions in column 7 are optimal for the underlying
bin packing problem. Assuming that the graph coloring solutions in column 6

918 C.L. Mumford

Table 4. Characteristics of timetabling problems

Instance # exams # students # edges s̃eats GCP slots BPP slots

car-f-92 543 18419 20305 2000 28* 28*
car-s-91 682 16926 29814 1550 28 37*
kfu-s-93 461 5349 5893 1955 19* 13
pur-s-93 2419 30032 86261 5000 30* 25
tre-s-92 261 4362 6131 655 20 23*
uta-s-92 622 21266 24249 2800 30* 22

Table 5. Results for timetabling problems

Instance Order Based GSA Mut GSA It Greed
Gens Time Mean Min Mean Min Mean Min

car-f-92 2000 1513 30.5 30 30.7 30 30.9 30
car-s-91 2000 2254 38.0 38 38.0 38 38.0 38
kfu-s-93 2000 1130 19.0 19 19.0 19 19.0 19
pur-s-93 2000 22527 33.6 33 33.3 33 33.7 33
tre-s-92 2000 376 23.8 23 23.4 23 23.8 23
ta-s-92 2000 2277 30.8 30 30.8 30 30.8 30

are also optimal, we can say that the larger solutions of GCP and BPP gives
a lower bound for the corresponding timetabling problem (indicated with a
‘*’, in Table 4).

Results for the GSA on Carter’s instances are presented in Table 5. The
table also shows results for a mutation-only version of the GSA and a pure
iterated greedy algorithm. As before, the same run time was used for the
GSA and iterated greedy algorithm. A population size of 200 was used for
both versions of the GSA, and each experiment was run for 2000 generations.
The form of local search used for the previous experiments in graph coloring
and bin packing was altered slightly for the timetabling problem. Recall that
we used one to three iterations of a local search based on reordering the
classes according to some form of ‘largest first’ criterion – either decreasing
total degree (for the GCP) or the ‘fullest bin first’ (for the BPP). Preliminary
experiments with the timetabling instances showed that better results could
be obtained if 5 iterations of iterated greedy were used, instead of the usual
local search, with largest:reverse:random set at 50:50:30. The ‘fullest bin first’
approach, as used for the BPP replaced the ‘largest first’ reordering heuristic
in the iterated greedy routine, for the GSA and the iterated greedy proper.
Here the fullest bin corresponds to the time slot with the largest number of
students taking examinations. Additionally, Falkenauer’s bin packing fitness
function of (see Eqn. (4)) was used for the timetabling instances, which favored
full time slots. POP1 crossover was used, together with insertion mutation.

An Order Based Memetic Evolutionary Algorithm 919

It is clear examining Table 5 that the results are very similar for both
versions of the GSA and also iterated greedy. The values highlighted in italics
denote optimum solutions. It would appear that these particular instances
may be easy for all three algorithms.

11 Summary

This Chapter has introduced a new and generic order based framework
suitable for application, with minimum adaptation, to a wide range of set
partitioning problems. The approach contrasts with other state-of-the-art
techniques that rely mostly on direct representations. A clear advantage of
using an order based approach is that every permutation is decoded as a fea-
sible solution, meaning no costly repair mechanisms are required, following a
crossover event, however heavily constrained the problem. Perhaps the most
innovative feature of the new order based approach is the inclusion of some
simple grouping and reordering heuristics to preprocess the chromosomes and
make them more amenable to crossover. The idea is to encourage the trans-
mission of whole set partitions, from parent to offspring, in a way that is not
usually possible with an order based approach. Results presented herein indi-
cate that the new memetic algorithm is highly competitive, yet no lengthy
problem-specific local search procedure is required. All that is needed are a
very few iterations of Culberson and Luo’s heuristics for preprocessing the
chromosomes prior to crossover. Thus, although the exact choice of objective
or fitness function will vary according to the specific set partitioning appli-
cation, problem-specific heuristics and costly backtracking – so common in
other approaches – can largely be avoided.

A detailed examination of the results reveals that different components of
the GSA framework are more or less effective, depending on the nature of the
test instances. The six timetabling instances, for example, seem to be rather
easy for the iterated greedy algorithm to solve, making it difficult to assess
the potential of the GSA – it is possible that more challenging instances are
needed here. On the other hand, the GSA with crossover proved very effective
on the DIMACS graph coloring instances and also on the bin packing instances
supplied by Falkenauer. Yet the need for crossover was not particulary well
established for the bin packing data sets of Scholl and Klein.

Future work will concentrate on improving results for set partitioning
benchmarks, and undertaking further investigations into the relative contri-
butions of genetic operators versus simple reordering heuristics. The challenge
will be to make improvements to the approach, while keeping the techniques
as generic as possible, avoiding time-consuming backtracking and repair wher-
ever possible. The present author also plans to extend the new approach to
more realistic timetabling problems, incorporating additional hard constraints
as well as a range of soft constraints. Order based approaches have a distinct

920 C.L. Mumford

advantage over techniques that use a direct representation when dealing with
multiply constrained problems: a suitable greedy decoder can ensure that
only feasible solutions are generated. On the other hand, a directly encoded
method may struggle to find any feasible solution in similar circumstances.
Multi-objective optimization is of particular interest when several soft con-
straints conflict. For example, a favorable spread of examinations to allow
students revision gaps may conflict with the interests of the teaching staff
who may prefer examinations with many students to be held early on, to give
sufficient time for marking. Extending the order based techniques to other set
partitioning problems is another interesting priority for the future.

References

1. Anderson PG, Ashlock D (2004) Advances in ordered greed. (available online at
http://www.cs.rit.edu/∼pga/abstracts.php – last accessed: 28 February 2007)

2. Brélaz D (1979) New methods to color the vertices of graphs. Communications
ACM, 24(4): 251–256.

3. Burke E, Newell J (1999) A multi-stage evolutionary algorithm for the
timetabling problem. IEEE Trans. Evolutionary Computation, 3(1): 63–74.

4. Burke E, Petrovic S (2002) Recent research directions in automated timetabling.
European J. Operational Research, 140(2): 266–280.

5. Caramia M, Dell’Olmo P, Italiano G (2000) New algorithms for examina-
tion timetabling. In: Proc. 4th Intl. Workshop Algorithm Engineering, 5–8
September, Lecture Notes in Computer Science 1982, Springer, London, UK:
230–240.

6. Carter MW, Laporte G, Lee SY (1996) Examination timetabling: algorithms,
strategies and applications. European J. Operational Research, 47: 373–383.

7. Coffman EG, Garey MR, Johnson DS (1984) Approximation algorithms for
bin packing – an updated survey. In: Ausiello G, Lucertini M, Serafini P (eds)
Algorithm Design for Computer System Design: Springer-Verlag, Berlin: 49–106.

8. Croitoru C, Luchian H, Gheorghieş O, Apetrei A (2002) A new genetic graph
coloring heuristic. In: Proc. Computational Symp. Graph Coloring and its
Generalizations, Ithaca, NY: 63–74.

9. Culberson J, Luo F (1996) Exploring the k-colorable landscape with iterated
greedy. In: Johnson DS, Trick MA (eds) (1996) DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 26. American Mathematical
Society, Providence, RI: 499–520.

10. Davis L (1985) Applying adaptive algorithms to epistatic domains. In: Proc.
Intl. Joint Conf. Artificial Intelligence, Los Angeles, CA: 162–164

11. Davis L (1991) Order based genetic algorithms and the graph coloring problem.
In: Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY:
72–90.

12. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a
colony of cooperating agents. IEEE Trans. System Man Cybernetics – Part B,
(26): 29–41.

13. Eiben A, der Hauw JV, Hemert JV (1998) Graph coloring with adaptive
evolutionary algorithms. J. Heuristics, 4: 25–46.

An Order Based Memetic Evolutionary Algorithm 921

14. Erben W (2001) A grouping genetic algorithm for graph colouring and exam
timetabling. In: Practice and Theory of Auttomated Timetabling – Proc.
PATAT2000, Lecture Notes in Computer Science 2079, Springer-Verlag, Berlin:
132–156.

15. Falkenauer E (1995) Solving equal piles with the grouping genetic algorithm.
In: Eshelman LJ (ed) Proc. 6th Intl. Conf. Genetic Algorithms – ICGA, 15–19
July, San Francisco, CA, Morgan Kaufmann: 492–497.

16. Falkerauer E (1996) A hybrid grouping genetic algorithm for bin packing. J.
Heuristics, 2: 5–30.

17. Fogel L, Owens A, Walsh M (1966) Artificial Intelligence Through Simulated
Evolution. Wiley, New York, NY.

18. Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring.
J. Combinatorial Optimization, 3(4): 379–397.

19. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Boston, MA.

20. Goldberg DE, Lingle R (1985) Alleles, loci and the traveling salesman prob-
lem. In: Proc. Intl. Conf. Genetic Algorithms and their Applications, Lawrence
Erlbaum Associates, Mahwah, NJ: 154–159.

21. Greenwood GW, Tyrrell AM (2006) Introduction to Evolvable Hardware: a Prac-
tical Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, Chichester,
UK.

22. Holland JH (1975) Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, MI.

23. Hurley S, Smith D, Thiel S (1997) Fasoft: a system for discrete channel frequency
assignment. Radio Science, 32(5): 1921–1940.

24. Johnson DS, Trick MA (eds) (1996) DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science 26. American Mathematical Society,
Providence, RI.

25. Jones D, Beltramo M (1991) Solving partitioning problems with genetic algo-
rithms. In: Belew RK, Booker LB (eds) Proc. 4th Intl. Conf. Genetic Algorithms,
July, San Diego, CA, Morgan Kaufmann: 442–449.

26. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. IEEE
Intl. Conf. Neural Networks, IEEE Computer Society Press, Piscataway, NJ:
1942–1948.

27. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing.
Science, 220(4598): 671–680.

28. Langton C (ed) (1995) Artificial Life: an Overview. MIT Press, Cambridge, MA.
29. Lewis R, Paechter B (2005) Application of the grouping genetic algorithm to

university course timetabling. In: Raidl GR, Gottlieb J (eds) Evolutionary Com-
putation in Combinatorial Optimization (Proc. 5th European Conf. – EvoCOP
2005), 30 March – 1 April, Lausanne, Switzerland. Lecture Notes in Computer
Science 3448, Springer-Verlag, Berlin: 144–153.

30. Martello S, Toth P (1990) Knapsack Problems: Algorithms and Computer
Implementations. Wiley, Chichester, UK.

31. Matula D, Marble G, Isaacson J (1972) Graph coloring algorithms. In: Read R
(ed) Graph Theory and Computing, Academic Press, New York, NY: 104–122.

32. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolutionary
Programs 3rd ed. Springer-Verlag, London, UK.

33. Mitchell M (1996) An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA.

922 C.L. Mumford

34. Mumford C (2006) New order based crossovers for the graph coloring prob-
lem. In: Runarsson TP, Beyer H-G, Burke EK, Guervós JJM, Whitley LD, Yao
X (eds) Parallel Problem Solving from nature (Proc. 9th Intl. Conf. Parallel
Problem Solving from Nature Conf. – PPSN IX), 9–13 September, Reykjavik,
Iceland. Lecture Notes in Computer Science 4193, Springer-Verlag, Berlin:
880–889.

35. Oliver IM, Smith DJ, Holland JH (1987) A study of permutation crossover
operators on the traveling salesman problem. In: Grefenstette JJ (ed) Genetic
Algorithms and their Applications (Proc. 2nd Intl. Conf. Genetic Algorithms),
July, Cambridge, MA, Lawrence Erlbaum Associates, Mahwah, NJ: 224–230.

36. Pankratzl G (2005) A grouping genetic algorithm for the pickup and delivery
problem with time windows. OR Spectrum, 27(1): 21–41.

37. Rechenberg I (1965) Cybernetic solution path of an experimental problem.
Technical Report 1122, Ministry of Aviation, Royal Aircraft Establishment,
Farnborough, Hants, UK, August.

38. Rekiek B, Lit PD, Pellichero F, Falkenauer E, Delchambre A (1999) Applying
the equal piles problem to balance assembly lines. In: Proc. 1999 IEEE Intl.
Symp. Assembly and Task Planning – ISATP’99, Portugal, IEEE Computer
Society Press, Piscataway, NJ: 399–404.

39. Ross P, Hart E, Corne D (1998) Some observations about ga-based exam
timetabling. In: Selected Papers from Practice and Theory of Automated
Timetabling II – PATAT 1997, Lecture Notes in Computer Science 1408,
Springer-Verlag, London, UK: 115–129.

40. Schaerf A (1999) A survey of automated timetabling. Artificial Intelligence
Review, 13: 87–127.

41. Schwerin P, Wäscher G (1997) The bin-packing problem: a problem genera-
tor and some numerical experiments with ffd packing and mtp. Intl. Trans.
Operational Research, 4(5-6): 377–389.

42. Valenzuela CL (2001) A study of permutation operators for minimum span
frequency assignment using an order based representation. J. Heuristics, 7(1):
5–22. (CL Valenzuela is now known as CL Mumford).

43. Welsh D, Powell M (1967) An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10: 85–86.

Resources

1 Key Books

De Jong KA (2006) Evolutionary Computation: a Unified Approach. MIT
Press, Cambridge, MA.

Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer-
Verlag, New York, NY.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Boston, MA.

Holland JH (1992) Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA.

Mitchell M (1998) An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA.

Zbigniew M (1996) Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, New York, NY.

2 Key International Conferences

EvoCOP 2006: 6th European Conference on Evolutionary Computation in
Combinatorial Optimization.
http://evonet.lri.fr/eurogp2006/

GECCO 2006: Genetic and Evolutionary Computation Conference.
http://www.sigevo.org/gecco-2006/

924 C.L. Mumford

IEEE WCCI 2006: World Congress on Computational Intelligence.
http://www.compsys.ia.ac.cn/wcci2006/

PATAT 2006: The 6th International Conference for the Practice and Theory
of Automated Timetabling.
http://www.asap.cs.nott.ac.uk/patat/patat06/patat06.shtml

PPSN IX 2006: Parallel Problem Solving from Nature.
http://ppsn2006.raunvis.hi.is/

3 Interest Groups/Web sites

SIGEVO: ACM Special Interest Group on Genetic and Evolutionary Compu-
tation.
http://www.sigevo.org/

IEEE CIS: IEEE Computational Intelligence Society.
http://ieee-cis.org/pubs/tec/

4 (Open Source) Software

GAGS: A genetic algorithm C++ class library
http://kal-el.ugr.es/GAGS/

GAlib: A C++ Library of Genetic Algorithm Components
http://lancet.mit.edu/ga/

GAJIT: A Simple Java Genetic Algorithms Package
http://www.micropraxis.com/gajit/index.html

GA Playground (Genetic Algorithms Toolkit): Java genetic algorithms toolkit.
http://www.aridolan.com/ga/gaa/gaa.html

JAGA: Java API for genetic algorithms
http://jaga.sourceforge.net/

Java genetic algorithms package
http://jgap.sourceforge.net/

GATbx: Genetic Algorithm Toolbox for use with MATLAB.
http://www.shef.ac.uk/acse/research/ecrg/gat.html

GAOT: Genetic Algorithm Optimization Toolbox for use with MATLAB.
http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/

An Order Based Memetic Evolutionary Algorithm 925

5 Data Sets used in the Chapter

Timetabling:
http://www.cs.nott.ac.uk/∼rxq/data.htm

Bin Packing – Scholl and Klein:
http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

Bin Packing – Falkenauer:
http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/binpackinfo.html

DIMACS Challenge GCP:
ftp://dimacs.rutgers.edu/pub/challenge/graph/

Genetic Programming: An Introduction
and Tutorial, with a Survey of Techniques
and Applications

William B. Langdon1, Riccardo Poli2, Nicholas F. McPhee3,
and John R. Koza4

1 Departments of Biological and Mathematical Sciences, University of Essex, UK,
wlangdon@essex.ac.uk

2 Department of Computing and Electronic Systems, University of Essex, UK,
rpoli@essex.ac.uk

3 Division of Science and Mathematics, University of Minnesota, Morris, USA,
mcphee@morris.umn.edu

4 Stanford University, Stanford, CA, USA, john@johnkoza.com

1 Introduction

The goal of having computers automatically solve problems is central to arti-
ficial intelligence, machine learning, and the broad area encompassed by what
Turing called ‘machine intelligence’ [384]. Machine learning pioneer Arthur
Samuel, in his 1983 talk entitled ‘AI: Where It Has Been and Where It Is
Going’ [337], stated that the main goal of the fields of machine learning and
artificial intelligence is:

“to get machines to exhibit behavior, which if done by humans, would
be assumed to involve the use of intelligence.”

Genetic programming (GP) is an evolutionary computation (EC) tech-
nique that automatically solves problems without having to tell the computer
explicitly how to do it. At the most abstract level GP is a systematic, domain-
independent method for getting computers to automatically solve problems
starting from a high-level statement of what needs to be done.

Over the last decade, GP has attracted the interest of streams of researchers
around the globe. This Chapter is intended to give an overview of the basics of
GP, to summarize important work that gave direction and impetus to research
in GP as well as to discuss some interesting new directions and applications.
Things change fast in this field, as investigators discover new ways of doing
things, and new things to do with GP. It is impossible to cover all aspects
of this area, even within the generous page limits of this chapter. Thus this

W.B. Langdon et al.: Genetic Programming: An Introduction and Tutorial, with a Survey of

Techniques and Applications, Studies in Computational Intelligence (SCI) 115, 927–1028 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

928 W.B. Langdon et al.

Algorithm 1 Abstract GP algorithm
1: Randomly create an initial population of programs from the available primitives

(see Sect. 2.2).
2: repeat
3: Execute each program and ascertain its fitness.
4: Select one or two program(s) from the population with a probability based

on fitness to participate in genetic operations (see Sect. 2.3).
5: Create new individual program(s) by applying genetic operations with

specified probabilities (see Sect. 2.4).
6: until an acceptable solution is found or some other stopping condition is met

(for example, reaching a maximum number of generations).
7: return the best-so-far individual.

Chapter should be seen as a snapshot of the view we, the authors, have at the
time of writing.

1.1 GP in a Nutshell

Technically, GP is a special evolutionary algorithm (EA) where the individ-
uals in the population are computer programs. So, generation by generation
GP iteratively transforms populations of programs into other populations of
programs as illustrated in Fig. 1. During the process, GP constructs new pro-
grams by applying genetic operations which are specialized to act on computer
programs.

Algorithmically, GP comprises the steps shown in Algorithm 1. The main
genetic operations involved in GP (line 5 of Algorithm 1) are the following:

• Crossover: the creation of one or two offspring programs by recombining
randomly chosen parts from two selected programs.

• Mutation: the creation of one new offspring program by randomly
altering a randomly chosen part of one selected program.

Some GP systems also support structured solutions (see, for example,
Sect. 5.1), and some of these then include architecture-altering operations

Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Solution

(* (SIN (- y x))
 (IF (> x 15.43)
 (+ 2.3787 x)
 (* (SQRT y)
 (/ x 7.54))))

Fig. 1. GP main loop

Genetic Programming: An Introduction and Tutorial 929

which randomly alter the architecture (for example, the number of subrou-
tines) of a program to create a new offspring program. Also, often, in addition
of crossover, mutation and the architecture-altering operations, an operation
which simply copies selected individuals in the next generation is used. This
operation, called reproduction, is typically applied only to produce a fraction
of the new generation.

1.2 Overview of the Chapter

This Chapter starts with an overview of the key representations and opera-
tions in GP (Sect. 2), a discussion of the decisions that need to be made before
running GP (Sect. 3), and an example of a GP run (Sect. 4).

This is followed by descriptions of some more advanced GP techniques
including: automatically defined functions (Sect. 5.1) and architecture-altering
operations (Sect. 5.2), the GP problem solver (Sect. 5.3), systems that con-
strain the syntax of evolved programs in some way (for instance, using
grammars or type systems; Sect. 5.4) and developmental GP (Sect. 5.5). Alter-
native program representations, namely linear GP (Sect. 6.1) and graph-based
GP (Sect. 6.2) are then discussed.

After this survey of representations, we provide a review of the enor-
mous variety of applications of GP, including curve fitting and data modeling
(Sect. 7.1), human competitive results (Sect. 7.2) and much more, and a sub-
stantial collection of ‘tricks of the trade’ used by experienced GP practitioners
(Sect. 8). We also give an overview of some of the considerable work that has
been done on the theory of GP (Sect. 9).

After concluding the Chapter (Sect. 10), we provide a resources appendix
that reviews the many sources of further information on GP, its applications,
and related problem solving systems.

2 Representation, Initialization and Operators
in Tree-Based GP

In this Section we will introduce the basic tools and terms used in genetic
programming. In particular, we will look at how solutions are represented in
most GP systems (Sect. 2.1), how one might construct the initial, random
population (Sect. 2.2), and how selection (Sect. 2.3) as well as recombination
and mutation (Sect. 2.4) are used to construct new individuals.

2.1 Representation

In GP programs are usually expressed as syntax trees rather than as lines
of code. Figure 2 shows, for example, the tree representation of the pro-
gram max(x*x,x+3*y). Note how the variables and constants in the program

930 W.B. Langdon et al.

x x

+ +

max

x

y3

∗

Fig. 2. GP syntax tree representing max(x*x,x+3y)

ROOT

...

Component
1

Component
2

Component
N

Branches

Fig. 3. Multi-component program representation

(x, y, and 3), called terminals in GP, are leaves of the tree, while the arith-
metic operations (+, *, and max) are internal nodes (typically called functions
in the GP literature). The sets of allowed functions and terminals together
form the primitive set of a GP system.

In more advanced forms of GP, programs can be composed of multiple
components (say, subroutines). In this case the representation used in GP is
a set of trees (one for each component) grouped together under a special root
node that acts as glue, as illustrated in Fig. 3. We will call these (sub)trees
branches. The number and type of the branches in a program, together with
certain other features of the structure of the branches, form the architecture
of the program.

It is common in the GP literature to represent expressions in a prefix nota-
tion similar to that used in Lisp or Scheme. For example, max(x*x,x+3*y)
becomes (max (* x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding

Genetic Programming: An Introduction and Tutorial 931

(sub)trees. Therefore, in the following, we will use trees and their correspond-
ing prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on the
programming languages and libraries being used. Most traditional languages
used in AI research (such as Lisp and Prolog), many recent languages (say
Ruby and Python), and the languages associated with several scientific pro-
gramming tools (namely, MATLAB� and Mathemtica�) provide automatic
garbage collection and dynamic lists as fundamental data types making it
easy to directly implement expression trees and the necessary GP operations.
In other languages one may have to implement lists/trees or use libraries that
provide such data structures.

In high performance environments, however, the tree-based representation
may be too memory-inefficient since it requires the storage and management of
numerous pointers. If all functions have a fixed arity (which is extremely com-
mon in GP applications) the brackets become redundant in prefix-notation
expressions, and the tree can be represented as a simple linear sequence.
For example, the expression (max (* x x) (+ x (* 3 y))) could be written
unambiguously as the sequence max * x x + x * 3 y. The choice of whether
to use such a linear representation or an explicit tree representation is typically
guided by questions of convenience, efficiency, the genetic operations being
used (some may be more easily or more efficiently implemented in one repre-
sentation), and other data one may wish to collect during runs (for instance,
it is sometimes useful to attach additional information to nodes, which may
require that they be explicitly represented). There are also numerous high-
quality, freely available GP implementations (see the resources in the appendix
at the end of this chapter for more information).

While these tree representations are the most common in GP, there are
other important representations, some of which are discussed in Sect. 6.

2.2 Initializing the Population

Similar to other evolutionary algorithms, in GP the individuals in the ini-
tial population are randomly generated. There are a number of different
approaches to generating this random initial population. Here we will describe
two of the simplest (and earliest) methods (the Full and Grow methods), and
a widely used combination of the two known as Ramped half-and-half.

In both the Full and Grow methods, the initial individuals are generated
subject to a pre-established maximum depth. In the Full method (so named
because it generates full trees) nodes are taken at random from the function
set until this maximum tree depth is reached, and beyond that depth only
terminals can be chosen. Figure 4 shows snapshots of this process in the
construction of a full tree of depth 2. The children of the * node, for example,

932 W.B. Langdon et al.

+
t=1

+

∗

t=2 t=3

x

+

∗

+
t=4

x

∗

y

+
t=6

x

∗

y

/

+
t=7

x

∗

y 01

/

+
t=5

x

∗

y

/

1

Fig. 4. Creation of a full tree having maximum depth 2 (and therefore a total of
seven nodes) using the Full initialization method (t=time)

+
t=1

+
t=2

x

t=3

+

−x

t=4

+

−x

2

t=5

+

−x

2 y

Fig. 5. Creation of a five node tree using the Grow initialization method with a
maximum depth of 2 (t=time). A terminal is chosen at t = 2, causing the left branch
of the root to be closed at that point even though the maximum depth had not been
reached

must be leaves, or the resulting tree would be too deep; thus at time t = 3
and time t = 4 terminals must be chosen (x and y in this case).

Where the Full method generates trees of a specific size and shape, the
Grow method allows for the creation of trees of varying size and shape. Here
nodes are selected from the whole primitive set (functions and terminals)
until the depth limit is reached, below which only terminals may be chosen
(as is the case in the Full method). Figure 5 illustrates this process for the
construction of a tree with depth limit 2. Here the first child of the root +
node happens to be a terminal, thus closing off that branch before actually
reaching the depth limit. The other child, however, is a function (-), but its
children are forced to be terminals to ensure that the resulting tree does not
exceed the depth limit.

Pseudo code for a recursive implementation of both the Full and Grow
methods is given in Algorithm 2.

Genetic Programming: An Introduction and Tutorial 933

Algorithm 2 Pseudo code for recursive program generation with the Full
and Grow methods
procedure: gen rnd expr(func set, term set, max d, method)

1: if max d = 0 or
(
method = grow and rand() < |term set|

|term set|+|func set|

)
then

2: expr = choose random element(term set)
3: else
4: func = choose random element(func set)
5: for i = 1 to arity(func) do
6: arg i = gen rnd expr(func set, term set, max d - 1, method);
7: expr = (func, arg 1, arg 2, ...);
8: return expr

Notes: func set is a function set, term set is a terminal set, max d is the maximum
allowed depth for expressions, method is either Full or Grow and expr is the
generated expression in prefix notation.

Note here that the size and shapes of the trees generated via the Grow
method are highly sensitive to the sizes of the function and terminal sets. If,
for example, one has significantly more terminals than functions, the Grow
method will almost always generate very short trees regardless of the depth
limit. Similarly, if the number of functions is considerably greater than the
number of terminals, then the Grow method will behave quite similarly to
the Full method. While this is a particular problem for the Grow method, it
illustrates a general issue where small (and often apparently inconsequential)
changes such as the addition or removal of a few functions from the function
set can in fact have significant implications for the GP system, and potentially
introduce important unintended biases.

Because neither the Grow or Full method provide a very wide array of sizes
or shapes on their own, Koza proposed a combination called ramped half-and-
half [188]. Here half the initial population is constructed using Full and half
is constructed using Grow. This is done using a range of depth limits (hence
the term ‘ramped’) to help ensure that we generate trees having a variety of
sizes and shapes.

While these methods are easy to implement and use, they often make it
difficult to control the statistical distributions of important properties such as
the sizes and shapes of the generated trees. Other initialization mechanisms,
however, have been developed (such as [239]) that do allow for closer control
of these properties in instances where such control is important.

It is also worth noting that the initial population need not be entirely
random. If something is known about likely properties of the desired solution,
trees having these properties can be used to seed the initial population. Such
seeds might be created by humans based on knowledge of the problem domain,
or they could be the results of previous GP runs. However, one needs to be
careful not to create a situation where the second generation is dominated

934 W.B. Langdon et al.

by offspring of a single or very small number of seeds. Diversity preserving
techniques, such as multi-objective GP [287,344], demes [203] (see Sect. 8.6),
fitness sharing [115] and the use of multiple seed trees, might be used. In any
case, the diversity of the population should be monitored to ensure that there
is significant mixing of different initial trees.

2.3 Selection

Like in most other EAs, genetic operators in GP are applied to individuals that
are probabilistically selected based on fitness. That is, better individuals are
more likely to have more child programs than inferior individuals. The most
commonly employed method for selecting individuals in GP is tournament
selection, followed by fitness-proportionate selection, but any standard EA
selection mechanism can be used. Since selection has been described elsewhere
in this book (in the Chapters on EAs), we will not provide any additional
details.

2.4 Recombination and Mutation

Where GP departs significantly from other EAs is in the implementation of
the operators of crossover and mutation. The most commonly used form of
crossover is subtree crossover. Given two parents, subtree crossover randomly
selects a crossover point in each parent tree. Then, it creates the offspring
by replacing the sub-tree rooted at the crossover point in a copy of the first
parent with a copy of the sub-tree rooted at the crossover point in the second
parent, as illustrated in Fig. 6.

Fig. 6. Example of subtree crossover

Genetic Programming: An Introduction and Tutorial 935

Except in technical studies on the behavior of GP, crossover points are
usually not selected with uniform probability. Typical GP primitive sets lead
to trees with an average branching factor of at least two, so the majority
of the nodes will be leaves. Consequently the uniform selection of crossover
points leads to crossover operations frequently exchanging only very small
amounts of genetic material (that is, small subtrees); many crossovers may in
fact reduce to simply swapping two leaves. To counter this, Koza suggested
the widely used approach of choosing functions 90% of the time, while leaves
are selected 10% of the time.

While subtree crossover is the most common version of crossover in tree-
based GP, other forms have been defined and used. For example, one-point
crossover [222, 298, 300] works by selecting a common crossover point in the
parent programs and then swapping the corresponding subtrees. To account
for the possible structural diversity of the two parents, one-point crossover
analyzes the two trees from the root nodes and considers for the selection of
the crossover point only the parts of the two trees, called the common region,
which have the same topology (that is, the same arity in the nodes encountered
traversing the trees from the root node). In context-preserving crossover [79],
the crossover points are constrained to have the same coordinates, like in one-
point crossover. However, in this case no other constraint is imposed on their
selection (in other words, they are not limited to the common region).

In size-fair crossover [205, 206] the first crossover point is selected ran-
domly like in standard crossover. Then the size of the subtree to be excised
from the first parent is calculated. This is used to constrain the choice of the
second crossover point so as to guarantee that the subtree excised from the
second parent will not be ‘unfairly’ big. Finally, it is worth mentioning that
the notion of common region is related to the notion of homology, in the sense
that the common region represents the result of a matching process between
parent trees. It is then possible to imagine that within such a region transfer of
homologous primitives can happen in very much like the same way as it hap-
pens in GAs operating on linear chromosomes. An example of recombination
operator that implements this idea is uniform crossover for GP [299].

The most commonly used form of mutation in GP (which we will call sub-
tree mutation) randomly selects a mutation point in a tree and substitutes the
sub-tree rooted there with a randomly generated sub-tree. This is illustrated
in Fig. 7. Subtree mutation is sometimes implemented as crossover between a
program and a newly generated random program; this operation is also known
as ‘headless chicken’ crossover [10].

Another common form of mutation is point mutation, which is the rough
equivalent for GP of the bit-flip mutation used in GAs. In point mutation
a random node is selected and the primitive stored there is replaced with a
different random primitive of the same arity taken from the primitive set. If no
other primitives with that arity exist, nothing happens to that node (but other

936 W.B. Langdon et al.

3

yx

+

+

Mutation
Point

Randomly Generated
Sub-tree

y

∗

2x

/

yx

+

+

Mutation
Point

y

∗

2x

/

Fig. 7. Example of subtree mutation

nodes may still be mutated). Note that, when subtree mutation is applied, this
involves the modification of exactly one subtree. Point mutation, on the other
hand, is typically applied with a given mutation rate on a per-node basis,
allowing multiple nodes to be mutated independently.

There are a number of mutation operators which treat constants in the
program as special cases. [341] mutates constants by adding Gaussianly dis-
tributed random noise to them. However, others use a variety of potentially
expensive optimization tools to try and fine tune an existing program by find-
ing the ‘best’ value for constants within it. For instance, [340] uses ‘a numerical
partial gradient ascent . . . to reach the nearest local optimum’ to modify all
constants in a program, while [348] uses simulated annealing to stochastically
update numerical values within individuals.

While mutation is not necessary for GP to solve many problems, [281]
argues that, in some cases, GP with mutation alone can perform as well as
GP using crossover. While mutation was often used sparsely in early GP work,
it is more widely used in GP today, especially in modeling applications.

3 Getting Ready to Run Genetic Programming

To run a GP system to solve a problem a small number of ingredients, often
termed preparatory steps, need to be specified:

1. the terminal set,
2. the function set,
3. the fitness measure,
4. certain parameters for controlling the run, and
5. the termination criterion and method for designating the result of the run.

In this Section we consider these ingredients in more detail.

Genetic Programming: An Introduction and Tutorial 937

3.1 Step 1: Terminal Set

While it is common to describe GP as evolving programs, GP is not typ-
ically used to evolve programs in the familiar, Turing-complete languages
humans normally use for software development. It is instead more common to
evolve programs (or expressions or formulae) in a more constrained and often
domain-specific language. The first two preparatory steps, the definition of the
terminal and function sets, specify such a language – that is, the ingredients
that are available to GP to create computer programs.

The terminal set may consist of:

• the program’s external inputs, typically taking the form of named variables
(say x, y);

• functions with no arguments, which are, therefore, interesting either be-
cause they return different values in different invocations (for exam-
ple, the function rand() that returns random numbers, or a function
dist to wall() that returns the distance from the robot we are controlling
to an obstacle) or because the produce side effects (such as go left());
and

• constants, which can either be pre-specified or randomly generated as part
of the tree creation process.

Note that using a primitive such as rand can cause the behavior of an
individual program to vary every time it is called, even if it is given the
same inputs. What we often want instead is a set of fixed random constants
that are generated as part of the process of initializing the population. This is
typically accomplished by introducing a terminal that represents an ephemeral
random constant. Every time this terminal is chosen in the construction of an
initial tree (or a new subtree to use in an operation like mutation), a different
random value is generated which is then used for that particular terminal, and
which will remain fixed for the rest of the run. The use of ephemeral random
constants is typically denoted by including the symbol $ in the terminal set;
see Sect. 4 for an example.

3.2 Step 2: Function Set

The function set used in GP is typically driven by the nature of the problem
domain. In a simple numeric problem, for example, the function set may
consist of merely the arithmetic functions (+, -, *, /). However, all sorts of
other functions and constructs typically encountered in computer programs
can be used. Table 1 shows a sample of some of the functions one sees in the
GP literature. Also for many problems, the primitive set includes specialised
functions and terminals which are expressly designed to solve problems in a
specific domain of application. For example, if the goal is to program a robot
to mop the floor, then the function set might include such actions as move,
turn, and swish-the-mop.

938 W.B. Langdon et al.

Table 1. Examples of primitives allowed in the GP function and terminal sets

Function Set

Kind of Primitive Example(s)

Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT
...

...

Terminal Set

Kind of Primitive Example(s)

Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

Closure

For GP to work effectively, most function sets are required to have an impor-
tant property known as closure [188], which can in turn be broken down into
the properties of type consistency and evaluation safety.

Type consistency is necessitated by the fact that subtree crossover (as
described in Sect. 2.4) can mix and join nodes quite arbitrarily during the
evolutionary process. As a result it is necessary that any subtree can be used
in any of the argument positions for every function in the function set, because
it is always possible that sub-tree crossover will generate that combination. For
functions that return a value (such as +, -, *, /), it is then common to require
that all the functions be type consistent, namely that they all return values of
the same type, and that all their arguments be of that type as well. In some
cases this requirement can be weakened somewhat by providing an automatic
conversion mechanism between types – for example, converting numbers to
Booleans by treating all negative values as false, and non-negative values as
true. Conversion mechanisms like this can, however, introduce unexpected
biases into the search process, so they should be used thoughtfully.

The requirement of type consistency can seem quite limiting, but often
simple restructuring of the functions can resolve apparent problems. An if
function, for example, would often be defined as taking three arguments: The
test, the value to return if the test evaluates to true, and the value to return
if the test evaluates to false. The first of these three arguments is clearly
Boolean, which would suggest that if can’t be used with numeric functions
like +. This can easily be worked around however by providing a mecha-
nism to automatically convert a numeric value into a Boolean as discussed
above. Alternatively, one can replace the traditional if with a function of
four (numeric) arguments a, b, c, d with the semantics ‘If a < b then return
value c, otherwise return value d’. These are obviously just specific examples
of general techniques; the details are likely to depend on the particulars of
your problem domain.

Genetic Programming: An Introduction and Tutorial 939

An alternative to requiring type consistency is to extend the GP system
to, for example, explicitly include type information, and constrain operations
like crossover so they do not perform ‘illegal’ (from the standpoint of the type
system) operations. This is discussed further in Sect. 5.4.

The other component of closure is evaluation safety, necessitated by the
fact that many commonly used functions can fail in various ways. An evolved
expression might, for example, divide by 0, or call MOVE FORWARD when facing
a wall or precipice. This is typically dealt with by appropriately modifying the
standard behavior of primitives. It is common, for example, to use protected
versions of numeric functions that can throw exceptions, such as division,
logarithm, and square root. The protected version of such a function first tests
for potential problems with its input(s) before executing the corresponding
instruction, and if a problem is spotted some pre-fixed value is returned.
Protected division (often notated with %), for example, checks for the case
that its second argument is 0, and typically returns 1 if it is (regardless of
the value of the first argument).1 Similarly, MOVE AHEAD can be modified to do
nothing if a forward move is illegal for some reason or, if there are no other
obstacles, the edges can simply be eliminated by making the world toroidal.

An alternative to protected functions is to trap run-time exceptions and
strongly reduce the fitness of programs that generate such errors. If the like-
lihood of generating invalid expressions is very high, however, this method
can lead to all the individuals in the population having nearly the same (very
poor) fitness, leaving selection with very little discriminatory power.

One type of run-time error that is somewhat more difficult to check for
is numeric overflow. If the underlying implementation system throws some
sort of exception, then this can be handled either by protection or by penal-
izing as discussed above. If, however, the implementation language quietly
ignores the overflow (for instance, the common practice of wrapping around
on integer overflow), and if this behavior is seen as unacceptable, then the
implementation will need to include appropriate checks to catch and handle
such overflows.

Sufficiency

There is one more property that, ideally, primitives sets should have: suffi-
ciency. Sufficiency requires that the primitives in the primitive set are capable
of expressing the solutions to the problem, in other words that the set of all
the possible recursive compositions of such primitives includes at least one

1 The decision to return 1 here provides the GP system with a simple and reliable
way to generate the constant 1, via an expression of the form (/ x x). This,
combined with a similar mechanism for generating 0 via (- x x) ensures that
GP can easily construct these two important constant.

940 W.B. Langdon et al.

solution. Unfortunately, sufficiency can be guaranteed only for some prob-
lems, when theory or experience with other methods tells us that a solution
can be obtained by combining the elements of the primitive set.

As an example of a sufficient primitive set let us consider the set {AND, OR,
NOT, x1, x2, ..., xN}, which is always sufficient for Boolean function induction
problems, since it can produce all Boolean functions of the variables x1, x2,
..., xN. An example of insufficient set is the set {+, -, *, /, x, 0, 1, 2}, which is
insufficient whenever, for example, the target function is transcendental – for
example, exp(x) – and therefore cannot be expressed as a rational function
(basically, a ratio of polynomials). When a primitive set is insufficient for a
particular application, GP can only develop programs that approximate the
desired one, although perhaps very closely.

Evolving Structures other than Programs

There are many problems in the real world where solutions cannot be directly
cast as computer programs. For example, in many design problems the solution
is an artifact of some type (a bridge, a circuit, or similar). GP has been applied
to problems of this kind by using a trick: the primitive set is designed in
such a way that, through their execution, programs construct solutions to the
problem. This has been viewed as analogous to the development by which an
egg grows into an adult. For example, if the goal is the automatic creation of
an electronic controller for a plant, the function set might include common
components such as integrator, differentiator, lead, lag, and gain, and
the terminal set might contain reference, signal, and plant output. Each
of these operations, when executed, then insert the corresponding device into
the controller being built. If, on the other hand, the goal is the synthesis of
analogue electrical circuits the function set might include components such
as transistors, capacitors, resistors, and so on. This is further discussed in
Sect. 5.5.

3.3 Step 3: Fitness Function

The first two preparatory steps define the primitive set for GP, and there-
fore, indirectly define the search space GP will explore. This includes all the
programs that can be constructed by composing the primitives in all possible
ways. However, at this stage we still do not know which elements or regions
of this search space are good (that is, include programs that solve or approx-
imately solve the problem). This is the task of the fitness measure, which
effectively (albeit implicitly) specifies the desired goal of the search process.
The fitness measure is our primary (and often sole) mechanism for giving a
high-level statement of the problem’s requirements to the GP system. For
example, if the goal is to get GP to automatically synthesize an amplifier, the
fitness function is the mechanism for telling GP to synthesize a circuit that

Genetic Programming: An Introduction and Tutorial 941

amplifies an incoming signal (as opposed to, say, a circuit that suppresses the
low frequencies of an incoming signal or computes its square root).

Depending on the problem at hand, fitness can be measured in terms of the
amount of error between its output and the desired output, the amount of time
(fuel, money, and the like) required to bring a system to a desired target state,
the accuracy of the program in recognizing patterns or classifying objects into
classes, the payoff that a game-playing program produces, the compliance of
a structure with user-specified design criteria, and so on.

There is something unusual about the fitness functions used in GP that
differentiates them from those used in most other EAs. Because the struc-
tures being evolved in GP are computer programs, fitness evaluation normally
requires executing all the programs in the population, typically multiple
times. While one can compile the GP programs that make up the popula-
tion, the overhead is usually substantial, so it is much more common to use
an interpreter to evaluate the evolved programs.

Interpreting a program tree means executing the nodes in the tree in an
order that guarantees that nodes are not executed before the value of their
arguments (if any) is known. This is usually done by traversing the tree recur-
sively starting from the root node, and postponing the evaluation of each
node until the value of its children (arguments) is known. This process is
illustrated in Fig. 8, where the number to the right of each internal node rep-
resents the result of evaluating the subtree root at that node. In this example,
the independent variable X evaluates to -1. Algorithm 3 gives a pseudo-code
implementation of the interpretation procedure. The code assumes that pro-
grams are represented as prefix-notation expressions and that such expressions
can be treated as lists of components.

-

+ /

x3 0 1 2

- - - -

x 03

3

x=-1

-2

1

3 -3

-1

2

Fig. 8. Example interpretation of a syntax tree (the terminal x is a variable has a
value of −1). The number to the right of each internal node represents the result of
evaluating the subtree root at that node

942 W.B. Langdon et al.

Algorithm 3 Typical interpreter for GP

procedure: eval(expr)

1: if expr is a list then
2: proc = expr(1) {Non-terminal: extract root}
3: if proc is a function then
4: value = proc(eval(expr(2)), eval(expr(3)), ...) {Function: evaluate

arguments}
5: else
6: value = proc(expr(2), expr(3), ...) {Macro: don’t evaluate arguments}
7: else
8: if expr is a variable or expr is a constant then
9: value = expr {Terminal variable or constant: just read the value}

10: else
11: value = expr() {Terminal 0-arity function: execute}
12: return value

Notes: expr is an expression in prefix notation, expr(1) represents the primitive at
the root of the expression, expr(2) represents the first argument of that primitive,
expr(3) represents the second argument, and so forth.

In some problems we are interested in the output produced by a program,
namely the value returned when we evaluate starting at the root node. In
other problems, however, we are interested in the actions performed by a pro-
gram. In this case the primitive set will include functions with side effects –
that is, functions that do more than just return a value – but say change
some global data structures, print or draw something on the screen or control
the motors of a robot. Irrespective of whether we are interested in program
outputs or side effects, quite often the fitness of a program depends on the
results produced by its execution on many different inputs or under a variety
of different conditions. These different test cases typically incrementally con-
tribute to the fitness value of a program, and for this reason are called fitness
cases.

Another common feature of GP fitness measures is that, for many practical
problems, they are multi-objective, in other words they combine two or more
different elements that are often in competition with one another. The area of
multi-objective optimization is a complex and active area of research in GP
and machine learning in general; see [73], for example, for more.

3.4 Steps 4 and 5: Parameters and Termination

The fourth and fifth preparatory steps are administrative. The fourth prepara-
tory step entails specifying the control parameters for the run. The most
important control parameter is the population size. Other control parameters
include the probabilities of performing the genetic operations, the maximum
size for programs, and other details of the run.

Genetic Programming: An Introduction and Tutorial 943

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination criterion
may include a maximum number of generations to be run as well as a problem-
specific success predicate. Typically the single best-so-far individual is then
harvested and designated as the result of the run, although one might wish
to return additional individuals and data as necessary or appropriate for your
problem domain.

4 Example Genetic Programming Run

This Section provides a concrete, illustrative run of GP in which the goal is to
automatically evolve an expression whose values match those of the quadratic
polynomial x2 + x+ 1 in the range [−1, +1]. That is, the goal is to automat-
ically create a computer program that matches certain numerical data. This
process is sometimes called system identification or symbolic regression (see
Sect. 7.1 for more).

We begin with the five preparatory steps from the previous section, and
then describe in detail the events in one possible run.

4.1 Preparatory Steps

The purpose of the first two preparatory steps is to specify the ingredients
the evolutionary process can use to construct potential solutions. Because the
problem is to find a mathematical function of one independent variable, x,
the terminal set (the inputs to the to-be-evolved programs) must include this
variable. The terminal set also includes ephemeral random constants, drawn
from some reasonable range, say from −5.0 to +5.0, as described in Sect. 3.1.
Thus the terminal set, T , is

T = {x,$} (1)

The statement of the problem is somewhat flexible in that it does not
specify what functions may be employed in the to-be-evolved program. One
simple choice for the function set consists of the four ordinary arithmetic
functions: addition, subtraction, multiplication, and division. Most numeric
regression will include at least these operations, often in conjunction with
additional functions such as sin and log. In our example, however, we will
restrict ourselves to the simple function set

F = {+, -, *, %} (2)

where % is protected division as discussed in Sect. 3.2.

The third preparatory step involves constructing the fitness measure that
specifies what the human wants. The high-level goal of this problem is to

944 W.B. Langdon et al.

find a program whose output is equal to the values of the quadratic poly-
nomial x2 +x+ 1. Therefore, the fitness assigned to a particular individual
in the population for this problem must reflect how closely the output of an
individual program comes to the target polynomial x2 +x+ 1.

The fitness measure could be defined as the integral of the absolute
value of the differences (errors) between the individual mathematical expres-
sion and the target quadratic polynomial x2 +x+ 1, taken over the range
[−1, +1]. However, for most symbolic regression problems, it is not practical
or possible to analytically compute the value of the integral of the abso-
lute error. Thus it is common to instead define the fitness to be the sum
of absolute errors measured at different values of the independent variable
x in the range [−1.0, +1.0]. In particular, we will measure the errors for
x = −1.0,−0.9, · · · , 0.9, 1.0. A smaller value of fitness (error) is better; a
fitness (error) of zero would indicate a perfect fit. Note that with this def-
inition, our fitness is (approximately) proportional to the area between the
parabola x2 +x+ 1 and the curve representing the candidate individual (see
Fig. 10 for examples).

The fourth step is where we set our run parameters. The population size
in this small illustrative example will be just four. In actual practice, the
population size for a run of GP typically consists of thousands or millions
of individuals, but we will use this tiny population size to keep the example
manageable. In practice, the crossover operation is commonly used to generate
about 90% of the individuals in the population; the reproduction operation
(where a fit individual is simply copied from one generation to the next) is
used to generate about 8% of the population; the mutation operation is used to
generate about 1% of the population; and the architecture-altering operations
(see Sect. 5.2) are used to generate perhaps 1% of the population. Because this
example involves an abnormally small population of only four individuals, the
crossover operation will be used to generate two individuals, and the mutation
and reproduction operations will each be used to generate one individual. For
simplicity, the architecture-altering operations are not used for this problem.

In the fifth and final step we need to specify a termination condition. A
reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness (or error) of some individual
is less than 0.1. In this contrived example, our example run will (atypically)
yield an algebraically perfect solution (with a fitness of zero) after merely one
generation.

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can be
launched.

Genetic Programming: An Introduction and Tutorial 945

(a) (b) (c) (d)

- + + *

+ 0 1 * 2 0 x

x 1 x x -1 -2

x+1 x +1
2 2 x

-

Fig. 9. Initial population of four randomly created individuals of generation 0

Initialization

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Fig. 9 in the form of trees.

The first randomly constructed program tree (Fig. 9a), and is equivalent to
the expression x+1. The second program (Fig. 9b) adds the constant terminal
1 to the result of multiplying x by x and is equivalent to x2 + 1. The third
program (Fig. 9c) adds the constant terminal 2 to the constant terminal 0
and is equivalent to the constant value 2. The fourth program (Fig. 9d) is
equivalent to x.

Fitness Evaluation

Randomly created computer programs will, of course, typically be very poor
at solving the problem at hand. However, even in a population of randomly
created programs, some programs are better than others. Here, for exam-
ple, the four random individuals from generation 0 in Fig. 9 produce outputs
that deviate by different amounts from the target function x2 +x+ 1. Fig. 10
compares the plots of each of the four individuals in Fig. 9 and the target
quadratic function x2 +x+ 1. The sum of absolute errors for the straight line
x+1 (the first individual) is 7.7 (Fig. 10a). The sum of absolute errors for the
parabola x2 +1 (the second individual) is 11.0 (Fig. 10b). The sums of the
absolute errors for the remaining two individuals are 17.98 (Fig. 10c) and 28.7
(Fig. 10d), respectively.

As can be seen in Fig. 10, the straight line x+ 1 (Fig. 10a) is closer to
the parabola x2 +x+ 1 in the range from –1 to +1 than any of three other
programs in the population. This straight line is, of course, not equivalent to
the parabola x2 +x+ 1; it is not even a quadratic function. It is merely the
best candidate that happened to emerge from the blind (and very limited)
random search of generation 0. In the valley of the blind, the one-eyed man
is king.

946 W.B. Langdon et al.

(a) (b)

(c) (d)

-2

-1 1

-2

-1

-2

-1 1

-2

-1

4

1

4

4 4

1

Fig. 10. Graphs of the evolved functions from generation 0. The heavy line in each
plot is the target function x2 +x+1, with the other line being the evolved functions
from the first generation (see Fig. 9). The fitness of each of the four randomly created
individuals of generation 0 is approximately proportional to the area between two
curves, with the actual fitness values being 7.7, 11.0, 17.98 and 28.7 for individuals
(a) through (d), respectively

Selection, Crossover and Mutation

After the fitness of each individual in the population is ascertained, GP then
probabilistically selects relatively more fit programs from the population to
act as the parents of the next generation. The genetic operations are applied
to the selected individuals to create offspring programs. The important point
for our example is that our selection process is not greedy. Individuals that are
known to be inferior will be selected to a certain degree. The best individual
in the population is not guaranteed to be selected and the worst individual in
the population will not necessarily be excluded.

In this example, we will start with the reproduction operation. Because
the first individual (Fig. 9a) is the most fit individual in the population, it is
very likely to be selected to participate in a genetic operation. Let us suppose
that this particular individual is, in fact, selected for reproduction. If so, it is
copied, without alteration, into the next generation (generation 1). It is shown
in Fig. 11a as part of the population of the new generation.

We next perform the mutation operation. Because selection is probabilis-
tic, it is possible that the third best individual in the population (Fig. 9c) is
selected. One of the three nodes of this individual is then randomly picked as
the site for the mutation. In this example, the constant terminal 2 is picked

Genetic Programming: An Introduction and Tutorial 947

(a) (b) (c) (d)

- + - +

+ 0 % 0 x 0 1 *

x 1 x x x

x+1 1 x

x 1

+

x + x + 1
2

Fig. 11. Population of generation 1 (after one reproduction, one mutation, and one
two-offspring crossover operation)

as the mutation site. This program is then randomly mutated by deleting
the entire subtree rooted at the picked point (in this case, just the constant
terminal 2) and inserting a subtree that is randomly constructed in the same
way that the individuals of the initial random population were originally cre-
ated. In this particular instance, the randomly grown subtree computes the
quotient of x and x using the protected division operation %. The resulting
individual is shown in Fig. 11b. This particular mutation changes the original
individual from one having a constant value of 2 into one having a constant
value of 1, improving its fitness from 17.98 to 11.0.

Finally, we use the crossover operation to generate our final two individuals
for the next generation. Because the first and second individuals in genera-
tion 0 are both relatively fit, they are likely to be selected to participate in
crossover. However, selection can always pick suboptimal individuals. So, let
us assume that in our first application of crossover the pair of selected parents
is composed of the above-average tree in Figs. 9a and the below-average tree
in Fig. 9d. One point of the first parent, namely the + function in Fig. 9a, is
randomly picked as the crossover point for the first parent. One point of the
second parent, namely the leftmost terminal x in Fig. 9d, is randomly picked
as the crossover point for the second parent. The crossover operation is then
performed on the two parents. The offspring (Fig. 11c) is equivalent to x and
is not particularly noteworthy.

Let us now assume, that in our second application of crossover, selection
chooses the two most fit individuals as parents: the individual in Fig. 9b as
the first parent, and the individual in Fig. 9a as the second. Let us further
imagine that crossover picks the leftmost terminal x in Fig. 9b as a crossover
point for the first parent, and the + function in Fig. 9a as the crossover point
for the second parent. Now the offspring (Fig. 11d) is equivalent to x2 + x + 1
and has a fitness (sum of absolute errors) of zero. Because the fitness of this

948 W.B. Langdon et al.

individual is below 0.1, the termination criterion for the run is satisfied and
the run is automatically terminated. This best-so-far individual (Fig. 11d) is
then designated as the result of the run.

Note that the best-of-run individual (Fig. 11d) incorporates a good trait
(the quadratic term x 2) from the first parent (Fig. 9b) with two other good
traits (the linear term x and constant term of 1) from the second parent
(Fig. 9a). The crossover operation thus produced a solution to this problem
by recombining good traits from these two relatively fit parents into a superior
(indeed, perfect) offspring.

This is, obviously, a highly simplified example, and the dynamics of a real
GP run are typically far more complex than what is presented here. Also, in
general there is no guarantee that an exact solution like this will be found
by GP.

5 Advanced Tree-Based GP Techniques

5.1 Automatically Defined Functions

Human programmers organize sequences of repeated steps into reusable com-
ponents such as subroutines, functions, and classes. They then repeatedly
invoke these components — typically with different inputs. Reuse eliminates
the need to ‘reinvent the wheel’ every time a particular sequence of steps is
needed. Reuse makes it possible to exploit a problem’s modularities, symme-
tries, and regularities (and thereby potentially accelerate the problem-solving
process). This can be taken further, as programmers typically organize these
components into hierarchies in which top level components call lower level
ones, which call still lower levels, and so forth.

While several different mechanisms for evolving reusable components have
been proposed (for instance, [13, 331]), Koza’s Automatically Defined Func-
tions (ADFs) [189] have been the most successful way of evolving reusable
components.

When ADFs are used, a program consists of one (or more) function-
defining trees (that is, ADFs) as well as one or more main result-producing
trees (see Fig. 3). An ADF may have none, one, or more inputs. The body of
an ADF contains its work-performing steps. Each ADF belongs to a particular
program in the population. An ADF may be called by the program’s main
result-producing tree, by another ADF, or by another type of tree (such as the
other types of automatically evolved program components described below).
Recursion is sometimes allowed. Typically, the ADFs are called with different
inputs. The work-performing steps of the program’s main result-producing
tree and the work-performing steps of each ADF are automatically and simul-
taneously created by GP. The program’s main result-producing tree and its

Genetic Programming: An Introduction and Tutorial 949

ADFs typically have different function and terminal sets. ADFs are the focus
of [189] and [190].

Koza also proposed other types of automatically evolved program compo-
nents. Automatically defined iterations (ADIs), automatically defined loops
(ADLs) and automatically defined recursions (ADRs) provide means (in addi-
tion to ADFs) to reuse code. Automatically defined stores (ADSs) provide
means to reuse the result of executing code. These automatically defined
components are described in [195].

5.2 Program Architecture and Architecture-Altering Operations

The architecture of a program consists of the total number of trees, the type
of each tree (for example, result-producing tree, ADF, ADI, ADL, ADR, or
ADS), the number of arguments (if any) possessed by each tree, and, finally,
if there is more than one tree, the nature of the hierarchical references (if any)
allowed among the tree.

There are three ways to determine the architecture of the computer
programs that will be evolved:

1. The human user may specify in advance the architecture of the overall
program, in other words perform an architecture-defining preparatory step
in addition to the five itemized in Sect. 2.

2. The run may employ evolutionary selection of the architecture (as described
in [189]), thereby enabling the architecture of the overall program to emerge
from a competitive process during the run of GP.

3. The run may employ a set of architecture-altering operations which can
create new ADFs, remove ADFs, and increase or decrease the number of
inputs an ADF has. Note initially, many architecture changes (such as those
define in [189]) are designed not to change the semantics of the program
and, so, the altered program often has exactly the same fitness as its parent.
However, the new arrangement of ADFs may make it easier for subsequent
changes to evolve better programs later.

5.3 Genetic Programming Problem Solver

The Genetic Programming Problem Solver (GPPS) is described in part 4
of [195]. It is a very powerful AI approach, but typically it requires considerable
computational time.

When GPPS is used, the user does not need to chose either the terminal
set or the function set (the first and second preparatory steps – Sect. 2).
The function set for GPPS is the four basic arithmetic functions (addition,
subtraction, multiplication, and division) and a conditional operator IF. The
terminal set for GPPS consists of numerical constants and a set of input
terminals that are presented in the form of a vector. By employing this generic

950 W.B. Langdon et al.

function set and terminal set, GPPS reduces the number of preparatory steps
from five to three.

GPPS relies on the architecture-altering operations described in Sect. 5.2
to dynamically create, duplicate, and delete subroutines and loops during
the run of GP. Additionally, in version 2.0 of GPPS [195, Chapter 22], the
architecture-altering operations are used to dynamically create, duplicate, and
delete recursions and internal storage. Because the architecture of the evolv-
ing program is automatically determined during the run, GPPS eliminates
the need for the user to specify in advance whether to employ subroutines,
loops, recursions and internal storage in solving a given problem. It similarly
eliminates the need for the user to specify the number of arguments possessed
by each subroutine. Further, GPPS eliminates the need for the user to specify
the hierarchical arrangement of the invocations of the subroutines, loops, and
recursions.

5.4 Constraining Syntactic Structures

As discussed in Sect. 3, most GP systems require type consistency where all
sub-trees return data of the same type, ensuring that the output of any subtree
can be used as one of the inputs to any other node. This ensures that the
shuffling caused by sub-tree crossover, and so on, doesn’t lead to incompatible
connections between nodes. Many problem domains, however, have multiple
types and do not naturally satisfy the type consistency requirement. This can
often be addressed through creative definitions of functions and implicit type
conversion, but this may not always be desirable. For example, if a key goal
is that the evolved solutions should be easily understood or analyzed, then
removing type concepts and other common constraints may lead to solutions
that are unacceptable because they are quite difficult to interpret. GP systems
that are constrained structurally or via a type system often generate results
that are easier for humans to understand and analyze [137], [203, p. 126].

In this Section we will look at three different approaches to constraining
the syntax of the evolved expression trees in GP: simple structure enforcement,
strongly typed GP and grammar-based constraints.

Enforcing Particular Structures

If a particular structure is believed or known to be important then one can
modify the GP system to require all individuals to have that structure [188].
A periodic function, for example, might be believed to be of the form a sin(bt)
and so the GP is restricted to evolving expressions having that structure.
(in other words, a and b are allowed to evolve freely, but the rest of the
structure is fixed). Syntax restriction can also be used to make GP follow
sensible engineering practices. For example, we might want to ensure that
loop control variables appear in the correct parts of FOR loops and nowhere
else [203, p.126].

Genetic Programming: An Introduction and Tutorial 951

This can be implemented in a number of ways. One could, for example,
ensure that all the initial individuals have that structure (for example, gener-
ating random sub-trees for a and b while fixing the rest), and then constrain
operations like crossover so that they do not alter any of the fixed regions.
An alternative approach would be to evolve the various (sub)components sep-
arately in any of several ways. One could, for example, evolve pairs of trees
(a, b), or one could have two separate populations, one of which is being used
to evolve candidates for a while the other is evolving candidates for b.

Strongly Typed GP

Since constraints are often driven by or expressed using a type system, a
natural approach is to incorporate types and their constraints into the GP
system [259]. In strongly typed GP, every terminal has a type, and every
function has types for each of its arguments and a type for its return value.
The process that generates the initial, random expressions, and all the genetic
operators are then constrained to not violate the type system’s constraints.

Returning to the if example from Sect. 3, we might have a domain
with both numeric and Boolean terminals (for instance, get speed and
is food ahead). We might then have an if function that takes three argu-
ments: A test (Boolean), the value to return if the test is true, and the value to
return if the test is false. Assuming that the second and third values are con-
strained to be numeric, then the output of the if is also going to be numeric.
If we choose the test argument as a root parent crossover point, then the
sub-tree to insert must have a Boolean output; if we choose either the second
or third argument as a root parent crossover point, then the inserted sub-tree
must be numeric.

This basic approach to types can be extended to more complex type sys-
tems including simple generics [259], multi-level type systems [138], and fully
polymorphic, higher-order type systems with generics [413].

Grammar-Based Constraints

Another natural way to express constraints is via grammars, and these have
been used in GP in a variety of ways [123,143,279,395,404]. Many of these sim-
ply use a grammar as a means of expressing the kinds of constraints discussed
above in Sect. 5.4. One could enforce the structure for the period function
using a grammar such as the following:

tree ::= E × sin(E × t)
E ::= var | E op E

op ::= + | − | × | ÷ (3)
var ::= x | y | z

952 W.B. Langdon et al.

Genetic operators are restricted to only swapping sub-trees deriving from
a common non-terminal symbol in the grammar. So, for example, an E could
be replaced by another E, but an E could not be replaced by an op. This
can be extended to, for example, context-sensitive grammars by incorporating
various related concepts from computational linguistics. The TAG3P+ system
[143,144], for example, uses tree-adjoining grammars (TAGs) to constrain the
evolved structures.

Another major area is grammatical evolution (GE) [279, 336]. In GE a
grammar is used as in the example above. However instead of representing
individuals directly using either expression or derivation trees, grammatical
evolution represents individuals using a variable length sequence of integers.
For each production rule, the set of options on the right hand side are num-
bered from 0 upwards. In the example above the first rule only has one option
on the right hand side; this would both be numbered 0. The second rule has
two options, which would be numbered 0 and 1, the third rule has four options
which would be numbered 0 to 3, and the fourth rule has three options num-
bered 0 to 2. An expression tree is then generated by using the values in the
individual to ‘choose’ which option to take in the production rules, rewriting
the left-most non-terminal is the current expression.

If, for example, an individual is represented by the sequence:

39, 7, 2, 83, 66, 92, 57, 80, 47, 94

then the translation process would proceed as follows (with the non-terminal
to be rewritten underlined in each case):

tree

→ 〈 39 mod 1 = 0, that is, there is only one option 〉
E × sin(E × t)

→ 〈 7 mod 2 = 1, in other words, choose second option 〉
(E op E) × sin(E × t)

→ 〈 2 mod 2 = 0, namely, take the first option 〉
(const op E) × sin(E × t)

→ 〈 83 mod 3 = 2, again, only one option, generate an ephemeral constant 〉
(z op E) × sin(E × t)

→ 〈 66 mod 4 = 2, take the third option 〉
(z × E) × sin(E × t)

. . .

(z × x) × sin(z × t)

In this example we didn’t need to use all the numbers in the sequence
to generate a complete expression free of non-terminals; 94 was in fact never
used. In general ‘extra’ genetic material is simply ignored. Alternatively, some-
times a sequence can be ‘too short’ in the sense that the end of the sequence

Genetic Programming: An Introduction and Tutorial 953

is reached before the translation process is complete. There are a variety of
options in this case, including failure (assigning this individual the worst pos-
sible fitness) and wrapping (continuing the translation process, moving back
to the front of the numeric sequence). See [279] for further details on this and
other aspects of grammatical evolution.

Constraints and Bias

While increasing the expressive power of a type system or other constraint
mechanism may indeed limit the search space by restricting the kinds of struc-
tures that can be constructed, this often comes at a price. An expressive
type system typically requires more complex machinery to support it. It often
makes it more difficult to generate type-correct individuals in the initial popu-
lation, and more difficult to find genetic operations that do not violate the type
system. In an extreme case like constructive type theory, the type system is
so powerful that it can completely express the formal specification of the pro-
gram, so any program/expression having this type is guaranteed to meet that
specification. In the GP context this would mean that all the members of the
initial population (assuming that they are required to have the desired type)
would in fact be solutions to the problem, thus removing the need for any evo-
lution at all! Even without such extreme constraints, it has often been found
necessary to develop additional machinery in order to efficiently generate an
initial population that satisfies the necessary constraints [259, 318, 339, 413].

As a rule, systems that focus on syntactic constraints (such as grammar
based systems) require less machinery than those that focus on semantic
constraints (such as type systems), since it’s typically easier to satisfy the
syntactic constraints in a mechanistic fashion. Grammar based systems such
as GE and TAG, for example, are typically simple to initialize, and require
few if any constraints to be honored by the mutation and recombination oper-
ators. The work (and the bias) in these systems is much more in the design of
the grammar; once that is in place there is often little additional work required
of either the practitioner or the GP system to enforce the constraints implied
by the grammar.

While a constraint system may limit the search space in valuable ways [318]
and can improve performance on interesting problems [144], there is no general
guarantee that constraint systems will make the evolutionary search process
easier. There is no broad assurance, for example, that constraint systems will
significantly increase the density of solutions or (perhaps more importantly)
approximate solutions. While there are cases where constraint systems smooth
the search landscape [144], it is also possible for constraint systems to make the
search landscape more rugged by preventing genetic operations from creating
intermediate forms on potentially valuable evolutionary paths. It might be
useful to extend solution density studies such as those summarised in [222] to

954 W.B. Langdon et al.

the landscapes generated by constraint systems in order to better understand
the impact of these constraints on the underlying search spaces.

In summary, while types, grammars, and other constraint systems can
be powerful tools, all such systems carry biases. One, therefore, needs to be
careful to explore the biases introduced by the constraints and not simply
assume that they are beneficial to the search process.

5.5 Developmental Genetic Programming

When appropriate terminals, functions and/or interpreters are defined, stan-
dard GP can go beyond the production of computer programs. For example,
in a technique called cellular encoding, programs are interpreted as sequences
of instructions which modify (grow) a simple initial structure (embryo). Once
the program terminates, the quality of the resulting structure is taken to be
the fitness of the program. Naturally, the primitives of the language must be
appropriate to grow structures in the domain of interest. Typical instructions
involve the insertion and/or sizing of components, topological modifications of
the structure, etc. Cellular encoding GP has successfully been used to evolve
neural networks [121, 122, 124] and electronic circuits [193–195], as well as in
numerous other domains.

One of the advantages of indirect representations such as cellular encoding
is that the standard GP operators can be used to manipulate structures (such
as circuits) which may have nothing in common with standard GP trees. A
disadvantage is that they require an additional genotype-to-phenotype decod-
ing step. However, when the fitness function involves complex calculations
with many fitness cases the relative cost of the decoding step is often small.

5.6 Strongly Typed Autoconstructive GP – PushGP

In some ways Spector’s PushGP [183,328,357,364] is also a move away from
constraining evolution. Push is a strongly typed tree based language which
does not enforce syntactic constraints. Essentially PushGP uses evolution (i.e.
genetic programming) to automatically create programs written in the Push
programming language. Each of Push’s types has its own stack. In addition to
stacks for integers, floats, Booleans and so on, there is a stack for objects of
type program. Using this code stack, Push naturally supports both recursion
and program modules (see Sect. 5.1) without human pre-specification. The
code stack allows an evolved program to push itself or fragments of itself onto
the stack for subsequent manipulation.

Somewhat like ‘core wars’, PushGP can use the code stack and other
operations to allow programs to construct their own crossover and other
genetic operations and create their own offspring. (Spector prevents programs
from simply duplicating themselves to prevent catastrophic loss of population
diversity.)

Genetic Programming: An Introduction and Tutorial 955

6 Linear and Graph-Based GP

Until now we have been talking about the evolution of programs expressed as
one or more trees which are evaluated by a suitable interpreter. This is the
original and most widespread type of GP, but there are other types of GP
where programs are represented in different ways. This Section will look at
linear programs and graph-like (parallel) programs.

6.1 Linear Genetic Programming

There are two different reasons for trying linear GP. Basic computer architec-
tures are fundamentally the same now as they were twenty years ago, when GP
began. Almost all architectures represent computer programs in a linear fash-
ion (albeit with control structures, jumps and loops). So, why not evolve linear
programs [24,280,288]. Also, computers do not naturally run tree-shaped pro-
grams. So, slow interpreters have to be used as part of tree-based GP. On the
contrary, by evolving the binary bit patterns actually obeyed by the computer,
the use of an expensive interpreter (or compiler) is avoided and GP can run
several orders of magnitude faster [65, 88, 272,275].

The typical crossover and mutation operators for linear GP ignore the
details of the machine code of the computer being used. For example, crossover
typically chooses randomly two crossover points in each parent and swaps the
code lying between them. Since the crossed over fragments are typically of
different lengths, such a crossover may change the programs’ lengths (see
Fig. 12). Since computer machine code is organised into 32- or 64-bit words,
the crossover points occur only at the boundaries between words. Therefore,
a whole number of words, containing a whole number of instructions are typ-
ically swapped over. Similarly, mutation operations normally respect word
boundaries and generate legal machine code. However, linear GP lends itself to
a variety of other genetic operations. For example, Fig. 13 shows homologous
crossover. Many other crossover and mutation operations are possible [215].

Fig. 12. Typical linear GP crossover. Two instructions are randomly chosen in each
parent (top two genomes) as cut points. If the code fragment excised from the first
parent is replaced with the code fragment excised form the second to give the child
(lower chromosome)

956 W.B. Langdon et al.

Fig. 13. Discipulus’ ‘homologous’ crossover [99,101,275]. Two parents (top two pro-
grams) crossover to yield two child programs (bottom). The two crossover cut points
are the same in both parents. Note code does not change its position relative to the
start of the program (left edge) and the child programs are the same lengths as their
parents. Homologous crossover is often combined with a small amount of normal
two point crossover (Fig. 12) to introduce length changes into the GP population

If the goal is execution speed, then the evolved code should be machine
code for a real computer rather than some higher level language or virtual-
machine code. For example, [272] started by evolving machine code for SUN
computers; [65] targeted the Z80. The linear GP of [226] was firmly targeted at
novel hardware but much of the GP development had to be run in simulation
whilst the hardware itself was under development.

The Sun SPARC has a simple 32-bit RISC architecture which eases design-
ing genetic operation which manipulate its machine code. Nordin wrapped
each machine code GP individual inside a C function [273]. Each of the GP
program’s inputs were copied from one of the C function’s arguments into one
of the machine registers. Note that typically there are only a small number of
inputs. Linear GP should be set up to write-protect these registers, so that
inputs cannot be overwritten, since if an input is overwritten and its value is
lost, the evolved code cannot be a function of it. As well as the registers used
for inputs, a small number (say 2–4) of other registers are used for scratch
memory to store partial results of intermediate calculations. Finally, the GP
simply leaves its answer in one of the registers. The external framework uses
this as the C function’s return value.

Note that execution speed is not the only reason for using linear GP.
Linear programs can be interpreted, just as trees can be. Indeed a linear
interpreter can be readily implemented. A simple linear structure lends itself
to rapid analysis, which can be used for ‘dead code’ removal [33]. In some
ways the search space of linear GP is easier to analyse than that of trees
[204, 207–209, 215]. For example, we have used the T7 and T8 architectures
(in simulation) for several large scale experimental and mathematical analysis
of Turing complete GP [214,220,223,224]. For these reasons, it makes sense to
consider linear ‘machine’ code GP, for example, in Java. Since Java is usually

Genetic Programming: An Introduction and Tutorial 957

Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Fig. 14. Format of a linear GP engine instruction. To avoid the overhead of packing
and unpacking data in the interpreter (written in a high level language such as C++),
virtual machine instructions, unlike real machine instructions, are not packed into
bit fields. In linear GP, instructions are laid from the start of the program to its
end. In machine code GP, these are real machine code instructions. In interpreted
linear GP, machine code is replaced with virtual machine code

run on a virtual machine, almost by definition this requires a virtual machine
(like [226]) to interpret the evolved byte code [133,240].

Since Unix was ported onto the x86, Intel’s complex instruction set has had
almost complete dominance. Seeing this, Nordin ported his Sun RISC linear
GP onto Intel’s CISC. Various changes were made to the genetic operations
which ensure that the initial random programs are made only of legal Intel
machine code and that mutation operations, which act inside the x86’s 32-bit
word, respect the x86’s complex sub-fields. Since the x86 has instructions of
different lengths, special care was taken when altering them. Typically several
short instructions are packed into the 4-byte words. If there are any bytes left
over, they are filled with no-operation codes. In this way best use is made of
the available space, without instructions crossing 32-bit boundaries. Nordin’s
work led to Discipulus [99], which has been used from applications ranging
from Bioinformatics [390] to robotics [219] and bomb disposal [78]. Generally,
in linear GP instructions take the form shown in Fig. 14.

6.2 Graph-Based Genetic Programming

Trees are special types of graphs. So, it is natural to ask what would happen
if one extended GP so as to be able to evolve graph-like programs. Starting
from the mid 1990s researchers have proposed several extensions of GP that
do just that, albeit in different ways.

For example, Poli proposed Parallel Distributed GP (PDGP) [290, 292].
PDGP is a form of GP which is suitable for the evolution of efficient highly
parallel programs which effectively reuse partial results. Programs are repre-
sented in PDGP as graphs with nodes representing functions and terminals.
Edges represent the flow of control and results. In the simplest form of PDGP
edges are directed and unlabeled, in which case PDGP can be considered a
generalization of standard GP. However, more complex representations can
be used, which allow the exploration of a large space of possible programs
including standard tree-like programs, logic networks, neural networks, recur-
rent transition networks and finite state automata. In PDGP, programs are

958 W.B. Langdon et al.

manipulated by special crossover and mutation operators which guarantee
the syntactic correctness of the offspring. For this reason PDGP search is
very efficient. PDGP programs can be executed in different ways, depending
on whether nodes with side effects are used or not.

In a system called PADO (Parallel Algorithm Discovery and Orchestra-
tion), Teller and Veloso used a combination of GP and linear discrimination
to obtain parallel classification programs for signals and images [375] The
programs in PADO are represented as graphs, although their semantics and
execution strategy are very different from those of PDGP.

In Miller’s Cartesian GP [256, 257], programs are represented by linear
chromosomes containing integers. These are divided into groups of three or
four. Each group is associated to a position in a 2-D array. An element of
the group prescribes which primitive is stored at that location in the array,
while the remaining elements indicate from which other locations the inputs
for that primitive should be read. So, the chromosome represents a graph-like
program, which is very similar to PDGP. The main difference between the two
systems is that Cartesian GP operators (mainly mutation) act at the level of
the linear chromosome, while in PDGP they act directly on the graph.

It is also possible to use non-graph-based GP to evolve parallel programs.
For example, Bennett used a parallel virtual machine in which several standard
tree-like programs (called ‘agents’) would have their nodes executed in paral-
lel with a two stage mechanism simulating parallelism of sensing actions and
simple conflict resolution (prioritization) for actions with side effects [28]. [8]
used GP to discover rules for cellular automata, a highly parallel computa-
tional architecture, which could solve large majority classification problems.
In conjunction with an interpreter implementing a parallel virtual machine,
GP can also be used to translate sequential programs into parallel ones [392],
or to develop parallel programs.

7 Applications

Since its early beginnings, GP has produced a cornucopia of results. The liter-
ature, which covers more than 5000 recorded uses of GP, reports an enormous
number of applications where GP has been successfully used as an auto-
matic programming tool, a machine learner or an automatic problem-solving
machine. It is impossible to list all such applications here. In the following Sec-
tions we mention a representative subset for each of the main application areas
of GP (Sects. 7.1–7.10), devoting particular attention to the important areas
of symbolic regression (Sect. 7.1) and human-competitive results (Sect. 7.2).
We conclude the section with guidelines for the choice of application areas
(Sect. 7.11).

Genetic Programming: An Introduction and Tutorial 959

7.1 Curve Fitting, Data Modeling, and Symbolic Regression

In principle, the possible applications of GP are as many as the applications
for programs (virtually infinite). However, before one can try to solve a new
problem with GP, one needs to define an appropriate fitness function. In
problems where only the side effects of the program are of interest, the fitness
function usually compares the effects of the execution of a program in some
suitable environments with a desired behavior, often in a very application-
dependent manner. In many problems, however, the goal is finding a function
whose output has some desired property – for example, it matches some target
values (as in the example given in Sect. 4), or it is optimum against some other
criteria. This type of problem is generally known as a symbolic regression
problem.

Many people are familiar with the notion of regression, which is a technique
used to interpret experimental data. It consists in finding the coefficients of
a predefined function such that the function best fits the data. A problem
with regression analysis is that, if the fit is not good, the experimenter has
to keep trying different functions until a good model for the data is found.
Also, in many domains thestrong tradition of only using linear or quadratic
models, even though it is possible that the data would be better fit by some
other model. The problem of symbolic regression, instead, consists in finding
a general function (with its coefficients) that fits the given data points. Since
GP does not assume a priori a particular structure for the resulting function,
it is well suited to this sort of discovery task. Symbolic regression was one
of the earliest applications of GP [188], and continues to be a widely studied
domain [45, 126,167,227].

The steps necessary to solve symbolic regression problems include the five
preparatory steps mentioned in Sect. 2. However, while in the example in
Sect. 4 the data points were computed using a simple formula, in most realistic
situations the collection of an appropriate set of data points is an important
and sometimes complex task. Often, for example, each point represents the
(measured) values taken by some variables at a certain time in some dynamic
process or in a certain repetition of an experiment.

Consider, for example, the case of using GP to evolve a soft sensor [161].
The intent is to evolve a function that will provide a reasonable estimate of
what a sensor (in, say, a production facility) would report, based on data
from other actual sensors in the system. This is typically done in cases where
placing an actual sensor in that location would be difficult or expensive for
some reason. It is necessary, however, to place at least one instance of such a
sensor in a working system in order to collect the data needed to train and
test the GP system. Once such a sensor is placed, one would collect the values
reported by that sensor, and by all the other hard sensors that are available
to the evolved function, at various times, presumably covering the various
conditions the evolved system will be expected to act under.

960 W.B. Langdon et al.

Such experimental data typically come in large tables where numerous
quantities are reported. In many case which quantity is the dependent variable,
that is the thing that we want to predict (for example, the soft sensor value),
and which other quantities are the independent variables – in other words,
the information we want to use to make the prediction (say the hard sensor
values), is pre-determined. If it is not, then the experimenter needs to make
this decision before GP can be applied. Finally, in some practical situations,
the data tables include hundreds or even thousands of variables. It is well-
known, that in these cases the efficiency and effectiveness of any machine
learning or program induction method, including GP, can dramatically drop
as most of the variables are typically redundant or irrelevant, forcing the
system to focus considerable energy on isolating the key features. It is then
necessary to perform some form of feature selection – that is, we need to
decide which independent variables to keep and which to leave out.

There are problems where more than one output (prediction) is required.
For example, Table 2 shows a data set with four independent variables (left)
and six dependent variables (right). The data were collected for the purpose
of solving an inverse kinematics problem in the Elvis robot [219] (the robot
is shown in Fig. 15 during the acquisition of a data sample). In situations like
this, one can use GP individuals including multiple trees (as in Fig. 3), graph-
based GP with multiple output nodes (see Sect. 6.2), linear GP with multiple

Table 2. Samples showing apparent size and location to both of Elvis’ eyes of his
finger tip, given various right arm actuator set points (4 degrees of freedom) – see
Fig. 15. When the data are used for training, GP is asked to invert the mapping and
evolve functions from data collected by both cameras showing a target location to
instructions to give to Elvis’ four arm motors so that his arm moves to the target

Arm actuator Left eye Right eye

x y size x y size

−376 −626 1000 −360 44 10 29 −9 12 25
−372 −622 1000 −380 43 7 29 −9 12 29
−377 −627 899 −359 43 9 33 −20 14 26
−385 −635 799 −319 38 16 27 −17 22 30
−393 −643 699 −279 36 24 26 −21 25 20
−401 −651 599 −239 32 32 25 −26 28 18
−409 −659 500 −200 32 35 24 −27 31 19
−417 −667 399 −159 31 41 17 −28 36 13
−425 −675 299 −119 30 45 25 −27 39 8
−433 −683 199 −79 31 47 20 −27 43 9
−441 −691 99 −39 31 49 16 −26 45 13

...
...

...
...

...
...

...
...

...
...

continues for a total of 691 lines

Genetic Programming: An Introduction and Tutorial 961

Fig. 15. Elvis sitting with right hand outstretched. The apparent position and size
of the bright red laser attached to his finger tip is recorded (see Table 2). The data
are then used to train a GP to move the robot’s arm to a spot in three dimensions
using only its eyes

output registers (see Sect. 6.1), a single GP tree with primitives operating on
vectors, and so on.

Once a suitable data set is available, its dependent variables must all be
represented in the primitive set. What other terminals and functions this
will include depends very much on the type of the data being processed (are
they numeric? strings?) and is often guided by information available to the
experimenter on the process that generated the data. If something is known
(or strongly suspected) about the desired structure of the evolved function (for
example, the data is known to be periodic, so the function should probably
be based on a something like sine), then applying some sort of constraint, like
those discussed in Sect. 5.4, may be beneficial.

What is common to virtually all symbolic regression problems is that the
fitness function must measure the ability of each program to predict the value
of the dependent variable given the values of the independent ones (for each
data point). So, most symbolic regression fitness functions tend to include
sums over the (usually absolute or squared) errors measured for each record
in the data set, as we did in Sect. 4.2.

962 W.B. Langdon et al.

The fourth preparatory step typically involves choosing a size for the pop-
ulation (which is often done initially based on the perceived difficulty of the
problem, and is then refined based on the actual results of preliminary runs)
and the balance between the selection strength (normally tuned via the tour-
nament size) and the intensity of variation (which can be varied by varying
the mutation and crossover rates, but many researchers tend to keep these
fixed to some standard values).

7.2 Human Competitive Results – The Humies

Getting machines to produce human-like results is the reason for the exis-
tence of the fields of artificial intelligence and machine learning. However, it
has always been very difficult to assess how much progress these fields have
made towards their ultimate goal. Alan Turing understood that, to avoid
human biases when assessing machines’ intelligence, there is a need to evalu-
ate their behavior objectively. This led him to propose an imitation game, now
known as the Turing test [385]. Unfortunately, the Turing test is not usable in
practice, and so, there is a need for more workable objective tests of machine
intelligence.

Koza recently proposed to shift the attention from the notion of intelligence
to the notion of human competitiveness [196]. A result cannot acquire the
rating of ‘human competitive’ merely because it is endorsed by researchers
inside the specialized fields that are attempting to create machine intelligence.
A result produced by an automated method must earn the rating of ‘human
competitive’ independently of the fact that it was generated by an automated
method.

Koza proposed that an automatically-created result should be considered
‘human-competitive’ if it satisfies at least one of these eight criteria:

1. The result was patented as an invention in the past, is an improvement over
a patented invention, or would qualify today as a patentable new invention.

2. The result is equal to or better than a result that was accepted as a new sci-
entific result at the time when it was published in a peer-reviewed scientific
journal.

3. The result is equal to or better than a result that was placed into a database
or archive of results maintained by an internationally recognized panel of
scientific experts.

4. The result is publishable in its own right as a new scientific result,
independent of the fact that the result was mechanically created.

5. The result is equal to or better than the most recent human-created solu-
tion to a long-standing problem for which there has been a succession of
increasingly better human-created solutions.

6. The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

Genetic Programming: An Introduction and Tutorial 963

7. The result solves a problem of indisputable difficulty in its field.
8. The result holds its own or wins a regulated competition involving human

contestants (in the form of either live human players or human-written
computer programs).

These criteria are independent of and at arms-length from the fields of artificial
intelligence, machine learning, and GP.

Over the years, tens of results have passed the human-competitiveness test.
Some pre-2004 human-competitive results include (see [192] for a complete
list):

• Creation of quantum algorithms including: a better-than-classical algo-
rithm for a database search problem and a solution to an AND/OR query
problem [361,362].

• Creation of a competitive soccer-playing program for the RoboCup 1997
competition [238].

• Creation of algorithms for the transmembrane segment identification prob-
lem for proteins [189, Sects. 18.8 and 18.10] and [195, Sects. 16.5 and
17.2].

• Creation of a sorting network for seven items using only 16 steps [195,
Sects. 21.4.4, 23.6, and 57.8.1].

• Synthesis of analogue circuits (with placement and routing, in some
cases), including: 60- and 96-decibel amplifiers [195, Sect. 45.3]; circuits for
squaring, cubing, square root, cube root, logarithm, and Gaussian func-
tions [195, Sect. 47.5.3]; a circuit for time-optimal control of a robot [195,
Sect. 48.3]; an electronic thermometer [195, Sect. 49.3]; a voltage-current
conversion circuit [197, Sect. 15.4.4].

• Creation of a cellular automata rule for the majority classification problem
that is better than all known rules written by humans [8].

• Synthesis of topology for controllers, including: a PID (proportional, inte-
grative, and derivative) [197, Sect. 9.2] and a PID-D2 (proportional, inte-
grative, derivative, and second derivative) [197, Sect. 3.7] controllers; PID
tuning rules that outperform the Ziegler-Nichols and Astrom-Hagglund
tuning rules [197, Chapter 12]; three non-PID controllers that outperform
a PID controller that uses the Ziegler-Nichols or Astrom-Hagglund tuning
rules [197, Chapter 13].

In total [192] lists 36 human-competitive results. These include 23 cases
where GP has duplicated the functionality of a previously patented inven-
tion, infringed a previously patented invention, or created a patentable new
invention. Specifically, there are fifteen examples where GP has created an
entity that either infringes or duplicates the functionality of a previously
patented 20th Century invention, six instances where GP has done the same
with respect to an invention patented after January 1, 2000, and two cases
where GP has created a patentable new invention. The two new inventions are

964 W.B. Langdon et al.

Fig. 16. Award winning human-competitive antenna design produced by GP

general-purpose controllers that outperform controllers employing tuning rules
that have been in widespread use in industry for most of the 20th Century.

Many of the pre-2004 results were obtained by Koza. However, since
2004, a competition is held annually at ACM’s Genetic and Evolution-
ary Computation Conference (termed the ‘Human-Competitive awards – the
‘Humies’). The $10,000 prize is awarded to applications that have produced
automatically-created results which are equivalent to human achievements or,
better.

The Humies Prizes have typically been awarded to applications of EC to
high-tech fields. Many used GP. For example, the 2004 gold medals were given
for the design, via GP, of an antenna for deployment on NASA’s Space Tech-
nology 5 Mission (see Fig. 16) [233] and for evolutionary quantum computer
programming [358]. There were three silver medals in 2004: one for evolving
local search heuristics for SAT using GP [104], one for the application of GP to
the synthesis of complex kinematic mechanisms [231], and one for organization
design optimization using GP [175, 176]. Also, four of the 2005 medals were
awarded for GP applications: the invention of optical lens systems [1, 198],
the evolution of quantum Fourier transform algorithm [247], evolving assem-
bly programs for Core War [61], and various high-performance game players
for Backgammon, Robocode and Chess endgame [16, 17, 135, 350]. In 2006
GP again scored a gold medal with the synthesis of interest point detec-
tors for image analysis [381, 382], while it scored a silver medal in 2007 with

Genetic Programming: An Introduction and Tutorial 965

Fig. 17. Example mate-in-2 problem

the evolution of an efficient search algorithm for the Mate-in-N problem in
Chess [136] (see Fig. 17).

Note that many human competitive results were presented at the Humies
2004–2007 competitions (for instance, 11 of the 2004 entries were judged to
be human competitive). However, only the very best were awarded medals.
So, at the time of writing we estimate that there are at least something of
the order of 60 human competitive results obtained by GP. This shows GP’s
potential as a powerful invention machine.

7.3 Image and Signal Processing

Hampo was one of the first people from industry to consider using GP for
signal processing. He evolved algorithms for preprocessing electronic motor
vehicle signals for possible use in engine monitoring and control [127]. Sev-
eral applications of GP for image processing have been for military uses – for
example, Tackett evolved algorithms to find tanks in infrared images [370].
Howard evolved program to pick out ships from SAR radar mounted on
satellites in space [149] and to locate ground vehicles from airborne photo
reconnaissance [150]. He also used GP to process surveillance data for civil-
ian purposes, such as predicting motorway traffic jams from subsurface traffic
speed measurements [148]. Using satellite SAR radar, [67] evolved algorithms
to find features in polar sea ice. Optical satellite images can also be used for
environmental studies [47], and for prospecting for valuable minerals [332].

Alcazar used GP to find recurrent filters (including artificial neural net-
works – ANN [92]) for one dimensional electronic signals [347]. Local search
(simulated annealing or gradient descent) can be used to adjust or fine-tune
‘constant’ values within the structure created by genetic search [354]. [411]

966 W.B. Langdon et al.

have used GP to preprocess images, particularly of human faces, to find regions
of interest, for subsequent analysis. (See also [382].) A particular strength of
GP is its ability to take data from disparate sources [43, 369].

Zhang has been particularly active at evolving programs with GP to visu-
ally classify objects (typically coins) [419]. He has also applied GP to human
speech [409]. ‘Parisian GP’ is a system in which the image processing task is
split across a swarm of evolving agents (‘flies’). In [235, 236] the flies recon-
struct three-dimensions from pairs of stereo images. In [235] as the flies buzz
around in three-dimensions their position is projected onto the left and right
of a pair of stereo images. The fitness function tries to minimize the discrep-
ancy between the two images, thus encouraging the flies to settle on visible
surfaces in the 3-D space. So, the true 3–D space is inferred from pairs of 2-D
image taken from slightly different positions.

While the likes of Google have effectively indexed the written word. For
speech and in particular pictures, it has been much less effective. One area
where GP might be applied is in automatically indexing images. Some initial
steps in this direction are given in [378].

To some extent extracting text from images (OCR) is almost a solved
problem. With well formed letters and digits this is now done with near 100%
accuracy as a matter of routine. However, many interesting cases remain [58]
such as Arabic [182] and oriental languages, handwriting [72, 107, 200, 377]
(such as the MNIST examples), other texts [327], and musical scores [317].

The scope for applications of GP to image and signal processing is almost
unbounded. A promising area is medical imaging [291]. GP image techniques
can also be used with sonar signals [245]. Off-line work on images, includes
security and verification. For example, [386] have used GP to detect image
watermarks which have been tampered with. Whilst recent work by Zhang
has incorporated multi-objective fitness into GP image processing [420].

In 1999 Poli, Cagnoni and others founded the annual European Work-
shop on Evolutionary Computation in Image Analysis and Signal Processing
(EvoIASP). EvoIASP is held every year along with the EuroGP. Whilst
not solely dedicated to GP, many GP applications have been presented at
EvoIASP.

7.4 Financial Trading, Time Series Prediction
and Economic Modeling

GP is very widely used in these areas and it is impossible to describe all its
applications. It this Section we will hint at just a few areas.

Chen has written more than 60 papers on using GP in finance and eco-
nomics. Recent papers include modeling of agents in stock markets [52], game

Genetic Programming: An Introduction and Tutorial 967

theory [54], evolving trading rules for the S&P 500 [414] and forecasting the
Heng-Sheng index [53] (see Chapter 13 of this Compendium).

The efficient markets hypothesis is a tenet of economics. It is founded
on the idea that everyone in a market has ‘perfect information’ and acts
‘rationally’. If the efficient markets hypothesis held, then everyone would see
the same value for items in the market and so agree the same price. Without
price differentials, there would be no money to be made from the market
itself. Whether it is trading potatoes in northern France or dollars for yen
it is clear that traders are not all equal and considerable doubt has been
cast on the efficient markets hypothesis. So, people continue to play the stock
market. Game theory has been a standard tool used by economists to try
to understand markets but is increasingly supplemented by simulations with
both human and computerized agents. GP in increasingly being used as part
of these simulations of social systems.

Neely and Weller of the US Federal Reserve Bank used GP to study intra-
day technical trading of foreign exchange to suggest the market is ‘efficient’
and found no evidence of excess returns [263, 264, 266, 267]. This negative
result was criticized by [244]. Later work by [268] suggested that data after
1995 are consistent with Lo’s adaptive markets hypothesis rather than the
efficient markets hypothesis. Note that here GP and computer tools are being
used in a novel data-driven approach to try and resolve issues which were
previously a matter of dogma.

From a more pragmatic viewpoint, Kaboudan shows GP can forecast inter-
national currency exchange rates [164], stocks [165] and stock returns [163].
[383] continue to apply GP to a variety of financial arenas, including: bet-
ting, forecasting stock prices [109], studying markets [158] and arbitrage [243].
[15,74,75] and HSBC also use GP in foreign exchange trading. Pillay has used
GP in social studies and teaching aids in education, for instance, [289]. As well
as trees [187], other types of GP have been used in finance, for example [270].

The Intl. Conf. on Computing in Economics and Finance (CEF) has been
held every year since 1995. It regularly attracts GP papers, many of which are
on-line. In 2007 Brabazon and O’Neill established the European Workshop on
Evolutionary Computation in Finance and Economics (EvoFIN); EvoFIN is
held with EuroGP.

7.5 Industrial Process Control

Of course most industrialists have little time to spend on academic reporting.
A notable exception is Dow Chemical, where Kordon’s group has been very
active [46,185,254]. [184] describes where industrial GP stands now and how it
will progress. Another active collaboration is that between Kovacic and Balic,
who have used GP in the computer numerical control of industrial milling and
cutting machinery [186]. The partnership of Deschaine and Francone [100] is

968 W.B. Langdon et al.

most famous for their use of Discipulus [99] for detecting bomb fragments
and unexploded ordnance UXO [76]. Discipulus has been used as an aid in
the development of control systems for rubbish incinerators [77].

One of the earliest users of GP in control was Willis’ Chemical Engi-
neering group at Newcastle, which used GP to model flow in a plasticating
extruder [399]. They also modelled extruding food [251] and control of chemi-
cal reactions in continuous stirred tank reactors [342]. Marenbach investigated
GP in the control of biotech reactors [242]. [398] surveyed GP applications,
including to control. Other GP applications to plastic include [38]. Lewin has
applied GP to the control of an integrated circuit fabrication plant [68, 228].
Domingos worked on simulations of nuclear reactors (PWRs to be exact) to
devise better ways of preventing xenon oscillations [83]. GP has also been used
to identify which state a plant to be controlled is in (in order to decide which
of various alternative control laws to apply). For example, Fleming’s group
in Sheffield used multi-objective GP [141, 329] to reduce the cost of running
aircraft jet engines [14,93]. [4] surveys GP and other AI techniques applied in
the electrical power industry.

7.6 Medicine, Biology and Bioinformatics

GP has long been applied to medicine, biology and bioinformatics. Early work
by Handley [128] and Koza [191] used GP to make predictions about the
behavior and properties of biological systems, principally proteins. Oakley, a
practising medical doctor, used GP to model blood flow in toes [276] as part
of his long term interests in frostbite.

In 2002 Banzhaf and Foster organized BioGEC, the first GECCO Work-
shop on Biological Applications of Genetic and Evolutionary Computation.
BioGEC has become a bi-annual feature of the annual GECCO conference.
Half a year later Marchiori and Corne organized EvoBio, the European Conf.
on Evolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics. EvoBio is held every year alongside EuroGP; GP figures heavily in
both BioGEC and EvoBIO.

GP is often used in data mining. Of particular medical interest are very
wide data sets, with many inputs per sample. Examples include infrared
spectra [89, 90, 117, 119, 131, 159, 250, 373, 387], single nuclear polymorphisms
[26, 320, 345] and Affymetrix GeneChip microarray data [71, 91, 139, 142, 147,
217,229,230,412].

Kell and his colleagues in Aberystwyth have had great success in applying
GP widely in bioinformatics (see infrared spectra above and [2, 70, 113, 118,
160, 168–171, 349, 407]). Another very active group is that of Moore and his
colleagues at Vanderbilt [261, 262,325,326].

Computational chemistry is widely used in the drug industry. The proper-
ties of simple molecules can be calculated. However, the interactions between

Genetic Programming: An Introduction and Tutorial 969

chemicals which might be used as drugs and medicinal targets within the body
are beyond exact calculation. Therefore, there is great interest in the phar-
maceutical industry in approximate in silico models which attempt to predict
either favourable or adverse interactions between proto-drugs and biochemi-
cal molecules. Since these are computational models, they can be applied very
cheaply in advance of manufacture of chemicals, to decide which of the myriad
of chemicals might be worth further study. Potentially such models can make
a huge impact both in terms of money and time without being anywhere near
100% correct. Machine learning and GP have both been tried. GP approaches
include [21, 27, 43, 95, 114,120,131,134,199,351,388,393].

7.7 Mixing GP with Other Techniques

GP can be hybridised with other techniques. Iba [152], Nikolaev [269], and
Zhang [417] have incorporated information theoretic and minimum description
length ideas into GP fitness functions to provide a degree of regularization
and so avoid over-fitting (and bloat, see Sect. 9.3). As mentioned in Sect. 5.4
computer language grammars can be incorporated into GP. Indeed Wong
[401–403,405] has had success integrating these with GP. The use of simulated
annealing and hill climbing to locally fine tune parts of solutions found by GP
was described in Sect. 2.

7.8 GP to Create Searchers and Solvers – Hyper-Heuristics

Hyper-heuristics could simply be defined as ‘heuristics to choose other heuris-
tics’ [40]. A heuristic is considered as a rule-of-thumb or ‘educated guess’
that reduces the search required to find a solution. The difference between
meta-heuristics and hyper-heuristics is that the former operate directly on
the problem search space with the goal of finding optimal or near-optimal
solutions. The latter, instead, operate on the heuristics search space (which
consists of the heuristics used to solve the target problem). The goal then is
finding or generating high-quality heuristics for a problem, for a certain class
of instances of a problem, or even for a particular instance.

GP has been very successfully used as a hyper-heuristic. For example,
GP has evolved competitive SAT solvers [19, 20, 103, 177], state-of-the-art or
better than state-of-the-art bin packing algorithms [41,42,313], particle swarm
optimizers [310, 311], evolutionary algorithms [277], and travelling salesman
problem solvers [172–174,278].

7.9 Artistic

Computers have long been used to create purely aesthetic artifacts. Much of
today’s computer art tends to ape traditional drawing and painting, producing
static pictures on a computer monitor. However, the immediate advantage

970 W.B. Langdon et al.

of the computer screen – movement – can also exploited. In both cases EC
can and has been exploited. Indeed with evolution’s capacity for unlimited
variation, EC offers the artist the scope to produce ever changing works.
Some artists have also worked with sound.

The use of GP in computer art can be traced back at least to the work of
Sims [353] and Latham. Jacob provides many examples [155,156]. Since 2003,
EvoMUSART has been held every year with EuroGP. McCormack considers
the recent state of play in evolutionary art and music [249]. Many recent
techniques are described in [241].

Evolutionary music [379] has been dominated by Jazz [359], which is not to
everyone’s taste; an exception is Bach [94]. Most approaches to evolving music
have made at least some use of interactive evolution [371] in which the fitness
of programs is provided by users, often via the Internet [5,49]. The limitation is
almost always finding enough people willing to participate [211]. Funes reports
experiments which attracted thousands of people via the Internet who were
entertained by evolved Tron players [105]. Costelloe tried to reduce the human
burden in [62]; algorithmic approaches are also possible [59, 153].

One of the sorrows of AI is that as soon as it works it stops being AI (and
celebrated as such) and becomes computer engineering. For example, the use
of computer generated images has recently become cost effective and is widely
used in Hollywood. One of the standard state-of-the-art techniques is the use
of Reynold’s swarming ‘boids’ [321] to create animations of large numbers of
rapidly moving animals. This was first used in Cliffhanger (1993) to animate
a cloud of bats. Its use is now common place (herds of wildebeest, schooling
fish, and the like); in 1997 Craig was awarded an Oscar.

7.10 Entertainment and Computer Games

Today the major usage of computers is interactive games [315]. There has been
a little work on incorporating artificial intelligence into mainstream commer-
cial games. The software owners are not keen on explaining exactly how much
AI they use or giving away sensitive information on how they use AI. Work
on GP and games includes [16, 389]. Since 2004 the annual CEC Conference
has included sessions on EC in games. After chairing the IEEE Symposium
on Computational Intelligence and Games 2005 at Essex University, Lucas
founded the IEEE Computational Intelligence Society’s Technical Commit-
tee on Games. GP features heavily in the Games TC’s activities, for example
Othello, Poker, Backgammon, Draughts, Chess, Ms Pac-Man, robotic football
and radio controlled model car racing.

7.11 Where can we Expect GP to Do Well?

GP and other EC methods have been especially productive in areas having
some or all of the following properties:

Genetic Programming: An Introduction and Tutorial 971

• The interrelationships among the relevant variables is unknown or poorly
understood (or where it is suspected that the current understanding may
possibly be wrong).

• Finding the size and shape of the ultimate solution to the problem is a
major part of the problem.

• Large amounts of primary data requiring examination, classification, and
integration is available in computer-readable form.

• There are good simulators to test the performance of tentative solutions
to a problem, but poor methods to directly obtain good solutions.

• Conventional mathematical analysis does not, or cannot, provide analytic
solutions.

• An approximate solution is acceptable (or is the only result that is ever
likely to be obtained).

• Small improvements in performance are routinely measured (or easily
measurable) and highly prized.

The best predictor of future performance is the past. So, we should expect
GP to continue to be successful in application domains with these features.

8 Tricks of the Trade

8.1 Getting Started

Newcomers to the field of GP often ask themselves (and/or other more
experienced genetic programmers) questions such as:

1. What is the best way to get started with GP? Which papers should I read?
2. Should I implement my own GP system or should I use an existing package?

If so, what package should I use?

Let us start from question 1. A variety of sources of information about
GP are available (many of which are listed in the Resources Appendix).
Consulting information available on the Web is certainly a good way to get
quick answers for a ‘newbie’ who wants to know what GP is. These answers,
however, will often be too shallow for someone who really wants to then
apply GP to solve practical problems. People in this position should probably
invest some time going through more detailed accounts, such [25, 188, 222]
or some of the other books in the Resources Appendix. Technical papers
may be the next stage. The literature on GP is now quite extensive. So,
although this is easily accessible thanks to the complete online bibliography
(http://www.cs.bham.ac.uk/∼wbl/biblio/), newcomers will often need to be
selective in what they read. The objective here may be different for different
types of readers. Practitioners should probably identify and read only papers
which deal with the same problem they are interested in. Researchers and
PhD students interested in developing a deeper understanding of GP should
also make sure they identify and read as many seminal papers as possible,

972 W.B. Langdon et al.

including papers or books on empirical and theoretical studies on the inner
mechanisms and behavior of GP. These are frequently cited in other papers
and so can easily be identified.

The answer to question 2 depends on the particular experience and back-
ground of the questioner. Implementing a simple GP system from scratch is
certainly an excellent way to make sure one really understands the mechanics
of GP. In addition to being an exceptionally useful exercise, this will always
result in programmers knowing their systems so well that they will have no
problems customizing them for specific purposes (for example, adding new,
application specific genetic operators or implementing unusual, knowledge-
based initialization strategies). All of this, however, requires reasonable pro-
gramming skills and the will to thoroughly test the resulting system until
it fully behaves as expected. If the skills or the time are not available, then
the best way to get a working GP application is to retrieve one of the many
public-domain GP implementations and adapt this for the user’s purposes.
This process is faster, and good implementations are often quite robust, effi-
cient, well-documented and comprehensive. The small price to pay is the need
to study the available documentation and examples. These often explain also
how to modify the GP system to some extent. However, deeper modifica-
tions (such as the introduction of new or unusual operators) will often require
studying the actual source code of the system and a substantial amount of
trial and error. Good, publicly-available GP implementations include: Lil-GP,
ECJ, and DGPC.

While perhaps to some not as exciting as coding or running GP, a through
search of the literature can avoid ‘re-inventing the wheel’.

8.2 Presenting Results

It is so obvious that it is easy to forget one major advantage of GP: we
create visible programs. That is, the way they work is accessible. This need
not be the case with other approaches. So, when presenting GP results, as a
matter of routine one should perhaps always make a comprehensible slide or
figure which contains the whole evolved program,2 trimming unneeded details
(such as removing excess significant digits) and combining constant terms.
Naturally, after cleaning up the answer, one should make sure the program
still works.

If one’s goal is to find a comprehensible model, in practice it must be small.
A large model will not only be difficult to understand but also may over-fit
the training data [112]. For this reason (and possibly others), one should use
one of the anti-bloat mechanisms described in Sect. 9.3.

There are methods to automatically simplify expressions (for example, in
Mathematica and Emacs). However, since in general there is an exponentially
2 The program Lisp2dot can be of help in this.

Genetic Programming: An Introduction and Tutorial 973

large number of equivalent expressions, automatic simplification is hard.
Another way is to use GP. After GP has found a suitable but large model,
one can continue evolution changing the fitness function to include a second
objective: that the model be as small as possible [203]. GP can then trim the
trees but ensure the evolved program still fits the training data.

It is important to use the language that one’s customers, audience or
readers use. For example, if the fact that GP discovers a particular chemical
is important, one should make this fact standout, say by using colours. Also,
GP’s answer may have evolved as a tree but, if the customers use Microsoft
Excel, it may be worthwhile translating the tree into a spreadsheet formula.

Also, one should try to discover how the customers intend to validate GP’s
answer. Do not let them invent some totally new data which has nothing to
do with the data they supplied for training (‘just to see how well it does...’).
Avoid customers with contrived data. GP is not god, it knows nothing about
things it has not seen. At the same time users should be scrupulous about their
own use of holdout data. GP is a very powerful machine learning technique.
With this comes the ever present danger of over-fitting. One should never
allow performance on data reserved for validation to be be used to choose
which answer to present to the customer.

8.3 Reducing Fitness Evaluations/Increasing their Effectiveness

While admirers of linear GP will suggest that machine code GP is the ulti-
mate in speed, tree GP can be made faster in a number of ways. The first
is to reduce the number of times a tree is evaluated. Many applications find
the fitness of trees by running them on multiple training examples. However,
ultimately the point of fitness evaluation is to make a binary decision: does
this individual get a child or not. Indeed usually a noisy selection technique
is used such as roulette wheel, SUS [22], or tournament selection. Stochas-
tic selection is an essential part of genetic search but it necessarily injects
noise into the vital decision of which points in the search to proceed from and
which to abandon. The overwhelming proportion of GP effort (or indeed any
EC technique) goes into adjusting the probability of the binary decision as
to whether each individual in the population should be allowed to reproduce
or not. If a program has already demonstrated it works very badly compared
to the rest of the population on a fraction of the available training data, it is
likely not to have children. Conversely, if it has already exceeded many pro-
grams in the population after being tested on only a fraction of the training
set, it is likely to have a child [203]. In either case, it is apparent that we
do not need to run it on the remaining training examples. Teller and Andre
developed this idea into an effective algorithm [376].

As well as the computational cost, there are other aspects of using all the
training data all the time. It gives rise to a static fitness function. Arguably

974 W.B. Langdon et al.

this tends to evolve the population into a cul-de-sac where the population
is dominated by offspring of a single initial program which did well of some
fraction of the training data but was unable to fit others. A static fitness
function can easily have the effect that the other good programs which perhaps
did well on other parts of the training data get lower fitness scores and fewer
children.

With high selection pressure, it takes surprisingly little time for the best
individual to dominate the whole population. Goldberg calls this the ‘take over
time’ [115]. This can be made quite formal [31, 85]. However, for tournament
selection, a simple rule of thumb is often sufficient. If T is the tournament
size, about logT (Pop size) generations are needed for the whole population
to become descendants of a single individual. For example, if we use binary
tournaments (T = 2), then ‘take over’ will require about ten generations for
a population of 1,024. Alternatively, if we have a population of one million
(106) and use ten individuals in each tournament (T = 10), then after about
six generations more or less everyone will have the same great6 great5 great4
great3 grand2 mother1.

Gathercole investigated a number of ways of changing which training
examples to use as the GP progressed [110,111]. (Siegel proposed a rather dif-
ferent implementation in [352].) This juggles a number of interacting effects.
Firstly, by using only a subset of the available data, the GP fitness evaluation
takes less time. Secondly, by changing which examples are being used, the
evolving population sees more of the training data and, so, is less liable to
over fit a fraction of it. Thirdly, by randomly changing the fitness function,
it becomes more difficult for evolution to produce an over specialized indi-
vidual which takes over the population at the expense of solutions which
are viable on other parts of the training data. Dynamic Subset Selection
(DSS) appears to have been the most successful of Gathercole’s suggested
algorithms. It has been incorporated into Discipulus. Indeed a huge data
mining application [66] recently used DSS.

Where each fitness evaluation may take a long time, it may be attractive
to interrupt a long running program in order to let others run. In GP systems
which allow recursion or contain iterative elements [36,203,400,404] it is com-
mon to enforce a time limit, a limit on the number of instructions executed, or
a bound on the number of times a loop is executed. Maxwell proposed [248] a
solution to the question of what fitness to we give to a program we have inter-
rupted. He allowed each program in the population a quantum of CPU time.
When the program uses up its quantum it is check-pointed. When the program
is check-pointed, sufficient information (principally the program counter and
stack) is saved so that it can be restarted from where it got to later. (Many
multi-tasking operating systems do something similar.) In Maxwell’s system,
he assumed the program gained fitness as it ran. For example, each time is
correctly processes a fitness case, its fitness is incremented. So the fitness of

Genetic Programming: An Introduction and Tutorial 975

a program is defined while it is running. Tournament selection is then per-
formed. If all members of the tournament have used the same number of CPU
quanta, then the program which is fitter is the winner. However, if a program
has used less CPU than the others (and has a lower fitness) then it is restarted
from where it was and is run until it has used as much CPU as the others.
Then fitnesses are compared in the normal way.

Teller had a similar but slightly simpler approach: everyone in the popula-
tion was run for the same amount of time. When the allotted time elapses the
program is aborted and an answer extracted from it, regardless of whether it
was ready or not; he called this an ‘any time’ approach [374]. This suits graph
or linear GP, where it is easy to designate a register as the output register.
The answer can be extracted from this register or from an indexed memory
cell at any point (including whilst the programming is running). Other any
time approaches include [220,360].

A simple technique to speed up the evaluation of complex fitness func-
tions is to organize the fitness function into stages of progressively increasing
computational cost. Individuals are evaluated stage by stage. Each stage con-
tributes to the overall fitness of a program. However, individuals need to
reach a minimum fitness value in each stage in order for them to be allowed
to progress to the next stage and acquire further fitness. Often different stages
represent different requirements and constraints imposed on solution.

Recently, a sophisticated technique, called backward chaining GP, has been
proposed [297,301–303] that can radically reduce the number of fitness evalu-
ations in runs of GP (and other EAs) using tournament selection with small
tournament sizes. Tournament selection randomly draws programs from the
population to construct tournaments, the winners of which are then selected.
Although this process is repeated many times in each generation, when the
tournaments are small there is a significant probability that an individual
in the current generation is never chosen to become a member of any tour-
nament. By reordering the way operations are performed in GP, backward
chaining GP exploits this not only to avoid the calculation of individuals that
are never sampled, but also to achieve higher fitness sooner.

8.4 Co-Evolution

One way of viewing DSS is as automated co-evolution. In co-evolution there
are multiple evolving species (typically two) whose fitness depends upon the
other species. (Of course, like DSS, co-evolution can be applied to linear and
other types of GP as well as tree GP.) One attraction of co-evolution is that
it effectively produces the fitness function for us. There have been many suc-
cessful applications of co-evolution [16, 35, 39, 48, 82, 108, 140, 338, 346, 400],
however it complicates the already complex phenomena taking place in the
presence of dynamic fitness functions still further. Therefore, somewhat reluc-
tantly, at present it appears to be beneficial to use co-evolution only if an

976 W.B. Langdon et al.

application really requires it. Co-evolution may suffer from unstable popula-
tions. This can occur in nature, oscillations in Canadian Lynx and Snowshoe
Hare populations being a famous example. There are various ‘hall of fame’
techniques [106], which try to damp down oscillations and prevent evolution
driving competing species in circles.

8.5 Reducing Cost of Fitness with Caches

In computer hardware it is common to use data caches which automatically
hold copies of data locally in order to avoid the delays associated with fetching
it from disk or over a network every time it is needed. This can work well where
a small amount of data is needed many times over a short interval. Caches
can also be used to store results of calculations, thereby avoiding the re-
calculation of data [129]. GP populations have enormous amounts of common
code [203,215,220]. This is after all how genetic search works: it promotes the
genetic material of fit individuals. So, typically in each generation we see many
copies of successful code. In a typical GP system, but by no means all GP
systems, each subtree has no side-effects. This means its results pass through
its root node in a well organized and easy to understand fashion. Thus, if
we remember a subtree’s inputs and output when it was run before, we can
avoid re-executing code whenever we are required to run the subtree again.
Note that this is true irrespective of whether we need to run the same subtree
inside a different individual or at a different time (namely, a later generation).
Thus, if we stored the output with the root node, we need only run the subtree
once, for a given set of inputs. Whenever the interpreter comes to evaluate the
subtree, it needs only to check if the root contains a cache of the values the
interpreter calculated last time, thus saving considerable computation time.
However, there is a problem: not only must the answer be stored, but the
interpreter needs to know that the subtree’s inputs are the same too.

The common practices of GP come to our aid here. Usually every tree in
the population is run on exactly the same inputs for each of the fitness cases.
Thus, for a cache to work, the interpreter does not need to know in detail
which inputs the subtree has or their exact values corresponding to every
value calculated by the subtree. It need only know which of the fixed set of
test cases was used.

A simple cache implementation is to store a vector of values returned by
each subtree. The vector is as long as the number of test cases. Whenever
a subtree is created (namely, in the initial generation, by crossover or by
mutations) the interpreter is run and the cache of values for its root node
is set. Note this is recursive, so caches can also be calculated for subtrees
within it at the same time. Now when the interpreter is run and comes to a
subtree’s root node, it will know which test case it is running and instead of
interpreting the subtree it simply retrieves the value it calculated using the

Genetic Programming: An Introduction and Tutorial 977

test case’s number as an index into the cache vector. This could be many
generations after the subtree was originally created.

If a subtree is created by mutation, then its cache of values will be ini-
tially empty and will have to be calculated. However, this costs no more than
without caches.

When subtrees are crossed over the subtree’s cache remains valid and so
cache values can be crossed over like the code.

When code is inserted into an existing tree, be it by mutation or crossover,
the chance that the new code behaves identically to the old code is normally
very small. This means the caches of every node between the new code and
the root node may be invalid. The simplest thing is to re-evaluate them all.
This sounds expensive, but remember the caches in all the other parts of the
individual remain valid and so can be used when the cache above them is
re-evaluated. Thus, in effect, if the crossed over code is inserted at level-d,
only d nodes need to be evaluated. Recent analysis [57,81,222,312] has shown
that GP trees tend not to have symmetric shapes, and many leafs are very
close to the root. Thus in theory (and in practice) considerable computational
saving can be made by using fitness caches. Sutherland is perhaps the best
known GP system which has implemented fitness caches [253]. As well as the
original DAG implementation [129]; other work includes [57, 166, 410].

In [203] we used fitness caches in evolved trees with side effects by exploit-
ing syntax rules about where in the code the side-effects could lie. The whole
question of monitoring how effective individual caches are, what their hit-
rates are, and so on, has been little explored. In practice, in many common
GP systems, impressive savings have been made by simple implementations,
with little monitoring and rudimentary garbage collection. While it is possible
to use hashing schemes to efficiently find common code, in practice assuming
that common code only arises because it was inherited from the same location
(for instance, by crossing over) is sufficient.

8.6 GP Running in Parallel

In contrast to much of computer science, EC can be readily run on parallel
computer hardware; indeed it is ‘embarrassingly parallel’ [7]. For example,
when Turton ran GP on a Cray supercomputer he obtained about 30% of
its theoretical peak performance, embarrassing his ‘supercomputer savvy’
colleagues who rarely got better than a few percent out of it [280].

There are two important aspects of parallel evolutionary algorithms. These
are equally important but often confused. The first is the traditional aspect
of parallel computing. We port an existing algorithm onto a supercomputer
so that it runs faster. The second aspect comes from the biological inspiration
for EC.

978 W.B. Langdon et al.

In Nature everything happens in parallel. Individuals succeed or not in
producing and raising children at the same time as other members of their
species. The individuals are spread across oceans, lakes, rivers, plains, forests,
mountain chains, and the like. It was this geographic spread that led Wright
to propose that geography and changes to it are of great importance to the
formation of new species and so to natural evolution as a whole [408].

While in Nature geographically distributed populations are a necessity, in
EC we have a choice. We can run GP on parallel hardware so as to speed up
runs, or we can distribute GP populations over geographies so as obtain some
of the benefits it brings to natural evolution. In the following we will discuss
both ideas. It is important to note, however, that one does not need to use
parallel hardware to use geographically distributed GP populations. Although
parallel hardware naturally lends itself to realize physically-distributed popula-
tions, one can obtain similar benefits by using logically-distributed populations
in a single machine.

Master-Slave GP

If the objective is purely to speed up runs, we may want our GP to work
exactly the same as it did on a single computer. This is possible, but to
achieve it we have to be very careful to ensure that even if some parts of the
population are evaluated quicker, that parallelization does not change how we
do selection and which GP individual crosses over with the other. Probably
the easiest way to implement this is the master-slave model.

In the master-slave model [285], breeding, selection, crossover, mutation
and so on are exactly as on a single computer, and only fitness evaluation
is spread across a network of computers. Each GP individual and its fitness
cases are sent across the network to a compute node. The central node waits
for it to return the individual’s fitness. Since individuals and fitness values are
small, this can be quite efficient. The central node is an obvious bottleneck.
Also, a slow compute node or a lengthy fitness case will slow down the whole
GP population, since eventually its result will be needed before moving onto
the next generation.

Geographically Distributed GP

As we have seen, unless some type of synchronization or check pointing is
imposed, say at the end of each generation, the parallel GP will not be running
the same algorithm as the single node version, and, so, it will almost certainly
produce different answers. If the population is divided up into sub-populations
(known as demes [60, 80, 203]) and the exchange of individuals among pop-
ulations is limited (both in terms of how many individuals are allowed to
migrate per generation and a geography that constraints which populations
can communicate with which), then parallelization can bring benefits similar

Genetic Programming: An Introduction and Tutorial 979

(a) (b)

Fig. 18. Spatially structured GP populations. (a) Toroidal grid of demes, where each
deme (node) contains a sub-population, and demes periodically exchange a small
group of high-fitness individuals using a grid of communication channels. (b) Fine-
grained distributed GP, where each grid cell contains one individual and where
the selection of a mating partner for the individual in the centre cell is performed
by executing a tournament among randomly selected individuals (for instance, the
individuals shaded) in its 3 × 3 neighbourhood

to those found in Nature by [408]. For example, it may be that with limited
migration between compute nodes, the evolved populations on adjacent nodes
will diverge and that this increased diversity may lead to better solutions.

When Koza first started using GP on a network of Transputers [6], Andre
experimentally determined the best immigration rate for their problem. He
suggested Transputers arranged in an asynchronous 2-D toroidal square grid
(such as the one in Fig. 18a) should exchange 2% of their population with
their four neighbours.

Densely connected grids have been widely adopted in parallel GP. Usually
they allow innovative partial solutions to quickly spread. However, the GA
community reported better results from less connected topologies, such as
arranging the compute node’s populations in a ring, so that they could trans-
port genes only between between themselves and their two neighbours [365].
Potter argues in favour of spatial separation in populations (see Fig. 18b) [314].
Goldberg also suggests low migration rates [116]. In [396], Whitley includes
some guidance on parallel GAs.

While many have glanced enviously at Koza’s 1000 node Beowulf [368], a
supercomputer [29, 162] is often not necessary. Many businesses and research
centres leave computers permanently switched on. During the night their com-
putational resources tend to be wasted. This computing power can easily and
efficiently be used to execute distributed GP runs overnight. Typically GP
does not demand a high performance bus to interconnect the compute nodes,
and, so, existing office Ethernet LANs are often sufficient. Whilst parallel

980 W.B. Langdon et al.

Fig. 19. A global population [213].; the straight lines show connections between
major sites in a continuously evolving L-System

GP systems can be implemented using MPI [391] or PVM [96], the use of such
tools is not necessary: simple Unix commands and port-to-port HTTP is suf-
ficient [307]. The population can be split and stored on modest computers.
With only infrequent interchange of parts of the population or fitness values
little bandwidth is needed. Indeed a global population spread via the Inter-
net [213], á la seti@home, is perfectly feasible [56]. (See Fig. 19). Other parallel
GPs include [6, 44, 50, 63, 97, 98, 125,183,232,246,334,335,372].

GP Running on GPUs

Modern PC graphics cards contain powerful Graphics Processing Units
(GPUs) including a large number of computing components. For example,
it is not atypical to have 128 streaming processors on a single PCI graphics
card. In the last few years there has been an explosion of interest in porting
scientific or general purpose computation to mass market graphics cards [286].

Indeed, the principal manufactures (nVidia and ATI) claim faster than
Moore’s Law increase in performance, suggesting that GPU floating point
performance will continue to double every twelve months, rather than the
18–24 months observed [260] for electronic circuits in general and personal
computer CPUs in particular. In fact, the apparent failure of PC CPUs to keep
up with Moore’s law in the last few years makes GPU computing even more
attractive. Even today’s bottom of the range GPUs greatly exceed the floating
point performance of their hosts’ CPU. However, this speed comes at a price,
since GPUs provide a restricted type of parallel processing, often referred to
a single instruction multiple data (SIMD) or single program multiple data

Genetic Programming: An Introduction and Tutorial 981

(SPMD). Each of the many processors simultaneously runs the same program
on different data items.

There have been a few GP experiments with GPUs [55, 86, 130, 216, 218,
237,255,319]. So far, in GP, GPUs have just been used for fitness evaluation.
Harding used the Microsoft research GPU development Direct X tools to
allow him to compile a whole population of Cartesian GP network programs
into a GPU program [132] which was loaded onto his Laptop’s GPU in order
to run fitness cases. We used [216, 218] a SIMD interpreter [162] written in
C++ using RapidMind’s GCC OpenGL framework to simultaneously run up to
a quarter of a million GP trees on an nVidia GPU. A conventional tree GP
S-expression can be linearized. We used used reverse polish notation (RPN)
– that is, post fix notation – rather than pre-fix notation. RPN avoids recur-
sive calls in the interpreter [216]. Only small modifications are needed to do
crossover and mutation so that they act directly on the RPN expressions.
This means the same representation is used on both the host and the GPU.
In both Cartesian and tree GP the genetic operations are done by the host
CPU. Wong showed, for a genetic algorithm, these too can be done by the
GPU [406].

Although each of the GPU’s processors may be individually quite fast
and the manufacturers claim huge aggregate FLOP ratings, the GPUs are
optimized for graphics work. In practice it is hard to keep all the processors
fully loaded. Nevertheless 30 GFLOPS has been achieved [218]. Given the
differences in CPU and GPU architectures and clock speeds, often the speedup
from using a GPU rather than the host CPU is the most useful statistic. This
is obviously determined by many factors, including the relative importance of
amount of computation and size of data. The measured RPN tree speedups
were 7.6 [218] and 12.6 [216].

8.7 GP Trouble-Shooting

A number of practical recommendations for GP work can be made. To a large
extent the advice in [181] and [188] remains sound. However, we also suggest:

• GP populations should be closely studied as they evolve. There are several
properties that can be easily measured which give indications of problems:
– Frequency of primitives. Recognizing when a primitive has been com-

pletely lost from the population (or its frequency has fallen to a
low level, consistent with the mutation rate) may help to diagnose
problems.

– Population variety. If the variety – the number of distinct individuals
in the population – falls below 90% of the population size, this indi-
cates there may be a problem. However, a high variety does not mean
the reverse. GP populations often contain introns, and so programs
which are not identical may behave identically. Being different, these

982 W.B. Langdon et al.

individuals contribute to a high variety, that is a high variety need not
indicate all is well. Measuring phenotypic variation (that is, diversity
of behavior) may also be useful.

• Measures should be taken to encourage population diversity. Panmic-
tic steady-state populations with tournament selection, reproduction and
crossover may converge too readily.3 The above-mentioned metrics may
indicate if this is happening in a particular case. Possible solutions include:
– Not using the reproduction operator.
– Addition of one or more mutation operators.
– Smaller tournament sizes and/or using uniform random selection (in-

stead of the standard negative tournaments) to decide which individ-
uals to remove from the population. Naturally, the latter means the
selection scheme is no longer elitist; it may be worthwhile forcing it to
be elitist.

– Splitting large populations into semi-isolated demes.4

– Using fitness sharing to encourage the formation of many fitness niches.
• Use of fitness caches (either when executing an individual or between

ancestors and children) can reduce run time and may repay the additional
work involved with using them.

• Where GP run time is long, it is important to periodically save the current
state of the run. Should the system crash, the run can be restarted from
part way through rather than at the start. Care should be taken to save the
entire state, so restarting a run does not introduce any unknown variation.
The bulk of the state to be saved is the current population. This can be
compressed, for example by using gzip. While compression can add a few
percent to run time, reductions in disk space to less than one bit per
primitive in the population have been achieved.

9 Genetic Programming Theory

Most of this Chapter is about the mechanics of GP and its practical use for
solving problems. We have looked at GP from a problem-solving and engi-
neering point of view. However, GP is a non-deterministic searcher and, so,
its behavior varies from run to run. It is also a complex adaptive system which
sometimes shows complex and unexpected behaviors (such as bloat). So, it

3 In a panmictic population no mating restrictions are imposed as to which
individual mates with which.

4 What is meant by a ‘large population’ has changed over time. In the early days of
GP populations of 1,000 or more could be considered large. However, CPU speeds
and computer memory have increased exponentially over time. So, at the time of
writing it is not unusual to see populations of hundred of thousands or millions
of individuals being used in the solution of hard problems. Research indicates
that there are benefits in splitting populations into demes even for much smaller
populations.

Genetic Programming: An Introduction and Tutorial 983

is only natural to be interested in GP also from the scientific point of view.
That is, we want to understand why can GP solve problems, how it does it,
what goes wrong when it cannot, what are the reasons for certain undesirable
behaviors, what can we do to get rid of them without introducing new (and
perhaps even less desirable) problems, and so on.

GP is a search technique that explores the space of computer programs.
The search for solutions to a problem starts from a group of points (random
programs) in this search space. Those points that are above average qual-
ity are then used to generate a new generation of points through crossover,
mutation, reproduction and possibly other genetic operations. This process
is repeated over and over again until a stopping criterion is satisfied. If we
could visualize this search, we would often find that initially the population
looks like a cloud of randomly scattered points, but that, generation after
generation, this cloud changes shape and moves in the search space. Because
GP is a stochastic search technique, in different runs we would observe differ-
ent trajectories. These, however, would show clear regularities which would
provide us with a deep understanding of how the algorithm is searching the
program space for the solutions. We would probably readily see, for example,
why GP is successful in finding solutions in certain runs, and unsuccessful in
others. Unfortunately, it is normally impossible to exactly visualize the pro-
gram search space due to its high dimensionality and complexity, and so we
cannot just use our senses to understand GP.

9.1 Mathematical Models

In this situation, in order to gain an understanding of the behavior of a GP
system one can perform many real runs and record the variations of certain
numerical descriptors (like the average fitness or the average size of the pro-
grams in the population at each generation, the average number of inactive
nodes, the average difference between parent and offspring fitness, and so on).
Then, one can try to suggest explanations about the behavior of the system
which are compatible with (and could explain) the empirical observations.
This exercise is very error prone, though, because a genetic programming sys-
tem is a complex adaptive system with ‘zillions’ of degrees-of-freedom. So,
any small number of statistical descriptors is likely to be able to capture only
a tiny fraction of the complexities of such a system. This is why in order
to understand and predict the behavior of GP (and indeed of most other
evolutionary algorithms) in precise terms we need to define and then study
mathematical models of evolutionary search.

Schema theories are among the oldest and the best known models of evo-
lutionary algorithms [145, 397]. Schema theories are based on the idea of
partitioning the search space into subsets, called schemata. They are con-
cerned with modeling and explaining the dynamics of the distribution of the
population over the schemata. Modern GA schema theory [366,367] provides

984 W.B. Langdon et al.

exact information about the distribution of the population at the next gen-
eration in terms of quantities measured at the current generation, without
having to actually run the algorithm.5

The theory of schemata in GP has had a difficult childhood. Some excel-
lent early efforts led to different worst-case-scenario schema theorems [3,188,
283, 298, 330, 394]. Only very recently have the first exact schema theories
become available [293–295] which give exact formulations (rather than lower
bounds) for the expected number of individuals sampling a schema at the
next generation. Initially [293, 295], these exact theories were only applica-
ble to GP with one-point crossover (see Sect. 2.4). However, more recently
they have been extended to the class of homologous crossovers [309] and to
virtually all types of crossovers that swap subtrees [305,306], including stan-
dard GP crossover with and without uniform selection of the crossover points,
one-point crossover, context-preserving crossover and size-fair crossover which
have been described in Sect. 2.4, as well as more constrained forms of crossover
such as strongly-typed GP crossover (see Sect. 5.4), and many others.

9.2 Search Spaces

Exact schema-based models of GP are probabilistic descriptions of the opera-
tions of selection, reproduction, crossover, and mutation. They make it explicit
how these operations determine the areas of the program space that will be
sampled by GP and with which probability. However, these models treat the
fitness function as a black box. That is, there is no notion of the fact that
in GP, unlike other evolutionary techniques, the fitness function involves the
execution of computer programs with different input data. In other words,
schema theories do not tell us how fitness is distributed in the search space.

The characterization of the space of computer programs explored by GP
has been another main topic of theoretical research [222].6 In this category are
theoretical results showing that the distribution of functionality of non Turing-
complete programs approaches a limit as program length increases. That is,
although the number of programs of a particular length grows exponentially
with length, beyond a certain threshold the fraction of programs implementing
any particular functionality is effectively constant. For example, in Fig. 20 we
plot the proportion of binary program trees composed of NAND gates which
implement each of the 223

= 256 Boolean functions of three inputs.
5 Other models of evolutionary algorithms exist, such those based on Markov chain

theory (for example [69, 271]) or on statistical mechanics (for instance, [316]).
Only Markov models [258,308,309] have been applied to GP, but they are not as
developed as schema theory.

6 Of course results describing the space of all possible programs are widely applica-
ble, not only to GP and other search-based automatic programming techniques,
but also to many other areas ranging from software engineering to theoretical
computer science.

Genetic Programming: An Introduction and Tutorial 985

0 10 20 30 40 50 60 70 80Three-Input Boolean equivalence class
1

31
63

91
127

151

201

255

Size

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

Fig. 20. Proportion of NAND-trees that yield each three-input functions; as circuit
size increases the distribution approaches a limit

Notice how, as the length of programs increases, the proportion of pro-
grams implementing each function approaches a limit. This does not happen
by accident. There is a very substantial body of empirical evidence indicat-
ing that this happens in a variety of other systems. In fact, we have also
been able to prove mathematically these convergence results for two impor-
tant forms of programs: Lisp (tree-like) S-expressions (without side effects)
and machine code programs without loops [207–210, 212, 222]. Also, similar
results were derived for: (a) cyclic (increment, decrement and NOP), (b) bit
flip computer, (flip bit and NOP), (c) any non-reversible computer, (d) any
reversible computer, (e) CCNOT (Toffoli gate) computer, (f) quantum com-
puters, (g) the ‘average’ computer and h) AND, NAND, OR, NOR expressions
(however, these are not Turing complete).

Recently, we started extending our results to Turing complete machine
code programs [304]. We considered a simple but realistic Turing complete
machine code language, T7. It includes: directly accessed bit addressable mem-
ory, an addition operator, an unconditional jump, a conditional branch and
four copy instructions. We performed a mathematical analysis of the halting
process based on a Markov chain model of program execution and halting.
The model can be used to estimate, for any given program length, impor-
tant quantities, such as the halting probability and the run time of halting
programs. This showed a scaling law indicating that the halting probabil-
ity for programs of length L is of order 1/

√
L, while the expected number of

instructions executed by halting programs is of order
√

L. In contrast to many
proposed Markov models, this can be done very efficiently, making it possible
to compute these quantities for programs of tens of million instructions in a
few minutes. Experimental results confirmed the theory.

986 W.B. Langdon et al.

9.3 Bloat

There are a certain number of limits in GP: bloat, limited modularity of
evolved solutions and limited scalability of GP as the problem size increases.
We briefly discuss the main one, bloat, below.

Starting in the early 1990s, researchers began to notice that in addition
to progressively increasing their mean and best fitness, GP populations also
showed certain other dynamics. In particular, it was noted that very often
the average size (number of nodes) of the programs in a population, after a
certain number of generations in which it was largely static, at some point
would start growing at a rapid pace. Typically the increase in program size
was not accompanied by any corresponding increase in fitness. The origin of
this phenomenon, which is know as bloat, has effectively been a mystery for
over a decade.

Note that there are situations where one would expect to see program
growth as part of the process of solving a problem. For example, GP runs
typically start from populations of small random programs, and it may be
necessary for the programs to grow in complexity for them to be able to
comply with all the fitness cases (a situation which often arises in continuous
symbolic regression problems). So, we should not equate bloat with growth.
We should only talk of bloat when there is growth without (significant) return
in terms of fitness.

Because of its surprising nature and of its practical effects (large programs
are hard to interpret, may have poor generalization and are computationally
expensive to evolve and later use), bloat has been a subject of intense study in
GP. As a result, many theories have been proposed to explain bloat: replication
accuracy theory, removal bias theory, nature of program search spaces theory,
and so on. Unfortunately, only recently we have started understanding the
deep reasons for bloat. So, there is a great deal of confusion in the field as to
the reasons of (and the remedies for) bloat. For many people bloat is still a
puzzle.

Let us briefly review these theories:

Replication accuracy theory [252]: This theory states that the success of a GP
individual depends on its ability to have offspring that are functionally
similar to the parent. So, GP evolves towards (bloated) representations
that increase replication accuracy.

Removal bias theory [356]: ‘Inactive code’ (code that is not executed, or is
executed but its output is then discarded) in a GP tree is low in the
tree, forming smaller-than-average-size subtrees. Crossover events excising
inactive subtrees produce offspring with the same fitness as their parents.
On average the inserted subtree is bigger than the excised one, so such
offspring are bigger than average.

Genetic Programming: An Introduction and Tutorial 987

Nature of program search spaces theory [221, 225]: Above a certain size, the
distribution of fitnesses does not vary with size. Since there are more long
programs, the number of long programs of a given fitness is greater than
the number of short programs of the same fitness. Over time GP samples
longer and longer programs simply because there are more of them.

Crossover bias theory [81, 312]: On average, each application of subtree
crossover removes as much genetic material as it inserts. So, crossover
in itself does not produce growth or shrinkage. However, while the mean
program size is unaffected, other moments of the distribution are. In par-
ticular, we know that crossover pushes the population towards a particular
distribution of program sizes (a Lagrange distribution of the second kind),
where small programs have a much higher frequency than longer ones.
For example, crossover generates is a very high proportion of single-node
individuals. In virtually all problems of practical interest, very small pro-
grams have no chance of solving the problem. As a result, programs of
above average length have a selective advantage over programs of below
average length. Consequently, the mean program size increases.

Several effective techniques to control bloat have been proposed [225,355].
For example, size fair crossover or size fair mutation [64,206], Tarpeian bloat
control [296], parsimony pressure [416–418], or using many runs each lasting
only a few generations. Generally the use of multiple genetic operations, each
making a small change, seems to help [11, 281]. There are also several muta-
tion operators that may help control the average tree size in the population
while still introducing new genetic material. [178] proposes a mutation opera-
tor which prevents the offspring’s depth being more then 15% larger than its
parent. [202] proposes two mutation operators in which the new random sub-
tree is on average the same size as the code it replaces. In Hoist mutation [180]
the new subtree is selected from the subtree being removed from the parent,
guaranteeing that the new program will be smaller than its parent. Shrink
mutation [9] is a special case of subtree mutation where the randomly chosen
subtree is replaced by a randomly chosen terminal.

10 Conclusions

In his seminal 1948 paper entitled ‘Intelligent Machinery’, Turing identi-
fied three ways by which human-competitive machine intelligence might be
achieved. In connection with one of those ways, Turing said:

“There is the genetical or evolutionary search by which a combination
of genes is looked for, the criterion being the survival value.” [384]

Turing did not specify how to conduct the ‘genetical or evolutionary search’
for machine intelligence. In particular, he did not mention the idea of a
population-based parallel search in conjunction with sexual recombination

988 W.B. Langdon et al.

(crossover) as described in John Holland’s 1975 book [146]. However, in his
1950 paper ‘Computing Machinery and Intelligence’, he did point out:

“We cannot expect to find a good child-machine at the first attempt.
One must experiment with teaching one such machine and see how well
it learns. One can then try another and see if it is better or worse.
There is an obvious connection between this process and evolution:

‘Structure of the child machine’ = Hereditary material
‘Changes of the child machine’ = Mutations

‘Natural selection’ = Judgement of the experimenter” [385]

In other words, Turing perceived that one possibly productive approach to
machine intelligence would involve an evolutionary process in which a descrip-
tion of a computer program (the hereditary material) undergoes progressive
modification (mutation) under the guidance of natural selection (that is,
selective pressure in the form of what we now call ‘fitness’).

Today, many decades later, we can see that indeed Turing was right.
GP has started fulfilling Turing’s dream by providing us with a systematic
method, based on Darwinian evolution, for getting computers to automati-
cally solve hard real-life problems. To do so, it simply requires a high-level
statement of what needs to be done (and enough computing power).

Turing also understood the need to evaluate objectively the behavior
exhibited by machines, to avoid human biases when assessing their intel-
ligence. This led him to propose an imitation game, now known as the
Turing test for machine intelligence, whose goals are wonderfully summarized
by Samuel’s position statement quoted in the introduction of this chapter.
The eight criteria for human competitiveness we discussed in Sect. 7.2 are
motivated by the same goals.

At present GP is unable to produce computer programs that would pass
the full Turing test for machine intelligence, and it might not be ready for this
immense task for centuries. Nonetheless, thanks to the constant improvements
in GP technology, in its theoretical foundations and in computing power,
GP has been able to solve tens of difficult problems with human-competitive
results (see Sect. 7.2). These are a small step towards fulfilling Turing and
Samuel’s dreams, but they are also early signs of things to come. It is, indeed,
arguable that in a few years’ time GP will be able to routinely and competently
solve important problems for us in a variety of application domains with
human-competitive performance. Genetic programming will then become an
essential collaborator for many human activities. This, we believe, will be a
remarkable step forward towards achieving true, human-competitive machine
intelligence.

Genetic Programming: An Introduction and Tutorial 989

Acknowledgements

Some of the material in this book chapter has previously appeared in a more
extended form in R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to
Genetic Programming, lulu.com, 2008. Permission to reproduce it here has
been granted by the copyright holders. We would like to thank Rick Riolo,
Matthew Walker, Christian Gagne, Bob McKay, Giovanni Pazienza and Lee
Spector for their timely assistance.

References

1. Al-Sakran SH, Koza JR, Jones LW (2005) Automated re-invention of a pre-
viously patented optical lens system using genetic programming. In: Keijzer
M, Tettamanzi A, Collet P, van Hemert JI, Tomassini M (eds) Proceed-
ings of the 8th European Conference on Genetic Programming, Springer,
Lausanne, Switzerland, Lecture Notes in Computer Science, vol 3447, pp
25–37, URL http://springerlink.metapress.com/openurl.asp?genre=article&
i%ssn=0302-9743&volume=3447&spage=25

2. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB
(2003) High-throughput classification of yeast mutants for functional genomics
using metabolic footprinting. Nature Biotechnology 21(6):692–696, DOI doi:10.
1038/nbt823, URL http://dbkgroup.org/Papers/NatureBiotechnology21(692-
696).pdf

3. Altenberg L (1994) Emergent phenomena in genetic programming. In: Sebald
AV, Fogel LJ (eds) Evolutionary Programming—Proceedings of the Third
Annual Conference, World Scientific Publishing, San Diego, CA, USA,
pp 233–241, URL http://dynamics.org/˜altenber/PAPERS/EPIGP/

4. Alves da Silva AP, Abrao PJ (2002) Applications of evolutionary computation
in electric power systems. In: Fogel DB, El-Sharkawi MA, Yao X, Greenwood
G, Iba H, Marrow P, Shackleton M (eds) Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002, IEEE Press, pp 1057–1062, DOI doi:
10.1109/CEC.2002.1004389

5. Ando D, Dahlsted P, Nordahl M, Iba H (2007) Interactive GP with tree rep-
resentation of classical music pieces. In: Giacobini M, Brabazon A, Cagnoni
S, Di Caro GA, Drechsler R, Farooq M, Fink A, Lutton E, Machado P,
Minner S, O’Neill M, Romero J, Rothlauf F, Squillero G, Takagi H, Uyar AS,
Yang S (eds) Applications of Evolutionary Computing, EvoWorkshops 2007:
EvoCOMNET, EvoFIN, EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC,
EvoTransLog, Springer Verlag, Valencia, Spain, LNCS, vol 4448, pp 577–584,
DOI doi:10.1007/978-3-540-71805-5 63

6. Andre D, Koza JR (1996) Parallel genetic programming: A scalable implemen-
tation using the transputer network architecture. In: Angeline PJ, Kinnear, Jr
KE (eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 16, pp 317–338

7. Andre D, Koza JR (1998) A parallel implementation of genetic programming
that achieves super-linear performance. Information Sciences 106(3–4):201–
218, URL http://www.sciencedirect.com/science/article/B6V0C-3TKS65B-
21/2/22b9842f820b08883990bbae1d889c03

990 W.B. Langdon et al.

8. Andre D, Bennett III FH, Koza JR (1996) Discovery by genetic program-
ming of a cellular automata rule that is better than any known rule for
the majority classification problem. In: Koza JR, Goldberg DE, Fogel DB,
Riolo RL (eds) Genetic Programming 1996: Proceedings of the First Annual
Conference, MIT Press, Stanford University, CA, USA, pp 3–11, URL http://
www.genetic-programming.com/jkpdf/gp1996gkl.pdf

9. Angeline PJ (1996) An investigation into the sensitivity of genetic program-
ming to the frequency of leaf selection during subtree crossover. In: Koza JR,
Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceed-
ings of the First Annual Conference, MIT Press, Stanford University, CA, USA,
pp 21–29, URL http://www.natural-selection.com/Library/1996/gp96.zip

10. Angeline PJ (1997) Subtree crossover: Building block engine or macromuta-
tion? In: Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo
RL (eds) Genetic Programming 1997: Proceedings of the Second Annual
Conference, Morgan Kaufmann, Stanford University, CA, USA, pp 9–17

11. Angeline PJ (1998) Multiple interacting programs: A representation for
evolving complex behaviors. Cybernetics and Systems 29(8):779–806, URL
http://www.natural-selection.com/Library/1998/mips3.pdf

12. Angeline PJ, Kinnear, Jr KE (eds) (1996) Advances in Genetic Programming
2. MIT Press, Cambridge, MA, USA, URL http://www.cs.bham.ac.uk/˜wbl/
aigp2.html

13. Angeline PJ, Pollack JB (1992) The evolutionary induction of subroutines.
In: Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, Lawrence Erlbaum, Bloomington, Indiana, USA, pp 236–241, URL
http://www.demo.cs.brandeis.edu/papers/glib92.pdf

14. Arkov V, Evans C, Fleming PJ, Hill DC, Norton JP, Pratt I, Rees
D, Rodriguez-Vazquez K (2000) System identification strategies applied
to aircraft gas turbine engines. Annual Reviews in Control 24(1):67–81,
URL http://www.sciencedirect.com/science/article/B6V0H-482MDPD-8/2/
dd470648e2228c84efe7e14ca3841b7e

15. Austin MP, Bates G, Dempster MAH, Leemans V, Williams SN (2004)
Adaptive systems for foreign exchange trading. Quantitative Finance 4(4):37–
45, DOI doi:10.1080/14697680400008593, URL http://www-cfr.jbs.cam.ac.
uk/archive/PRESENTATIONS/seminars/2006/dempster2.pdf

16. Azaria Y, Sipper M (2005a) GP-gammon: Genetically programming backgam-
mon players. Genetic Programming and Evolvable Machines 6(3):283–300,
DOI doi:10.1007/s10710-005-2990-0, URL http://www.cs.bgu.ac.il/˜sipper/
papabs/gpgammon.pdf, published online: 12 August 2005

17. Azaria Y, Sipper M (2005b) Using GP-gammon: Using genetic programming
to evolve backgammon players. In: Keijzer M, Tettamanzi A, Collet P, van
Hemert JI, Tomassini M (eds) Proceedings of the 8th European Conference
on Genetic Programming, Springer, Lausanne, Switzerland, Lecture Notes in
Computer Science, vol 3447, pp 132–142, URL http://springerlink.metapress.
com/openurl.asp?genre=article&issn=0302-9743&volume=3447&spage=132

18. Babovic V (1996) Emergence, evolution, intelligence; Hydroinformatics - A
study of distributed and decentralised computing using intelligent agents. A.
A. Balkema Publishers, Rotterdam, Holland

19. Bader-El-Den M, Poli R (2007a) Generating sat local-search heuristics using a
gp hyper-heuristic framework. In: Proceedings of Evolution Artificielle

Genetic Programming: An Introduction and Tutorial 991

20. Bader-El-Den MB, Poli R (2007b) A GP-based hyper-heuristic framework for
evolving 3-SAT heuristics. In: Thierens D, Beyer HG, Bongard J, Branke J,
Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller
JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley KO, Stut-
zle T, Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, ACM Press,
London, vol 2, pp 1749–1749, URL http://www.cs.bham.ac.uk/˜wbl/biblio/
gecco2007/docs/p1749.pdf

21. Bains W, Gilbert R, Sviridenko L, Gascon JM, Scoffin R, Birchall K, Har-
vey I, Caldwell J (2002) Evolutionary computational methods to predict oral
bioavailability QSPRs. Current Opinion in Drug Discovery and Development
5(1):44–51

22. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm.
In: Grefenstette JJ (ed) Proceedings of the Second International Conference
on Genetic Algorithms and their Application, Lawrence Erlbaum Associates,
Cambridge, MA, USA, pp 14–21

23. Balic J (1999) Flexible Manufacturing Systems; Development - Structure
- Operation - Handling - Tooling. Manufacturing technology, DAAAM
International, Vienna

24. Banzhaf W (1993) Genetic programming for pedestrians. In: Forrest S (ed) Pro-
ceedings of the 5th International Conference on Genetic Algorithms, ICGA-93,
Morgan Kaufmann, University of Illinois at Urbana-Champaign, p 628, URL
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GenProg
forPed.ps.Z

25. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann, San Francisco, CA, USA

26. Barrett SJ (2003) Recurring analytical problems within drug discovery and
development. In: Scheffer T, Leser U (eds) Data Mining and Text Mining
for Bioinformatics: Proceedings of the European Workshop, Dubrovnik, Croa-
tia, pp 6–7, URL http://www2.informatik.hu-berlin.de/˜scheffer/publications/
ProceedingsWS2003.pdf, invited talk

27. Barrett SJ, Langdon WB (2006) Advances in the application of machine
learning techniques in drug discovery, design and development. In: Tiwari A,
Knowles J, Avineri E, Dahal K, Roy R (eds) Applications of Soft Computing:
Recent Trends, Springer, On the World Wide Web, Advances in Soft Comput-
ing, pp 99–110, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
barrett 2005 WSC.pdf

28. Bennett III FH (1996) Automatic creation of an efficient multi-agent archi-
tecture using genetic programming with architecture-altering operations.
In: Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Program-
ming 1996: Proceedings of the First Annual Conference, MIT Press, Stan-
ford University, CA, USA, pp 30–38, URL http://cognet.mit.edu/library/
books/view?isbn=0262611279

29. Bennett III FH, Koza JR, Shipman J, Stiffelman O (1999) Building a par-
allel computer system for $18,000 that performs a half peta-flop per day. In:
Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, pp 1484–1490, URL
http://www.genetic-programming.com/jkpdf/gecco1999beowulf.pdf

992 W.B. Langdon et al.

30. Bhanu B, Lin Y, Krawiec K (2005) Evolutionary Synthesis of Pattern Recog-
nition Systems. Monographs in Computer Science, Springer-Verlag, New York,
URL http://www.springer.com/west/home/computer/imaging?SGWID=4-
14%9-22-39144807-detailsPage=ppmmedia—aboutThisBook

31. Blickle T (1996) Theory of evolutionary algorithms and application to sys-
tem synthesis. PhD thesis, Swiss Federal Institute of Technology, Zurich, URL
http://www.handshake.de/user/blickle/publications/diss.pdf

32. Brabazon A, O’Neill M (2006) Biologically Inspired Algorithms for Financial
Modeling. Natural Computing Series, Springer

33. Brameier M, Banzhaf W (2001) A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions on
Evolutionary Computation 5(1):17–26, URL http://web.cs.mun.ca/˜banzhaf/
papers/ieee taec.pdf

34. Brameier M, Banzhaf W (2007) Linear Genetic Programming. No. XVI in
Genetic and Evolutionary Computation, Springer, URL http://www.springer.
com/west/home/default?SGWID=4-40356-22-173660820-0

35. Brameier M, Haan J, Krings A, MacCallum RM (2006) Automatic discovery
of cross-family sequence features associated with protein function. BMC bioin-
formatics [electronic resource] 7(16), DOI doi:10.1186/1471-2105-7-16, URL
http://www.biomedcentral.com/content/pdf/1471-2105-7-16.pdf

36. Brave S (1996) Evolving recursive programs for tree search. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap 10, pp 203–220

37. Brezocnik M (2000) Uporaba genetskega programiranja v inteligentnih
proizvodnih sistemih. University of Maribor, Faculty of mechanical engineer-
ing, Maribor, Slovenia, URL http://maja.uni-mb.si/slo/Knjige/2000-03-mon/
index.htm

38. Brezocnik M, Balic J, Gusel L (2000) Artificial intelligence approach to
determination of flow curve. Journal for technology of plasticity 25(1–2):1–7

39. Buason G, Bergfeldt N, Ziemke T (2005) Brains, bodies, and beyond: Com-
petitive co-evolution of robot controllers, morphologies and environments.
Genetic Programming and Evolvable Machines 6(1):25–51, DOI doi:10.1007/
s10710-005-7618-x

40. Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-
heuristics: an emerging direction in modern search technology. In: Glover
F, Kochenberger G (eds) Handbook of Metaheuristics, Kluwer Academic
Publishers, pp 457–474

41. Burke EK, Hyde MR, Kendall G (2006) Evolving bin packing heuristics with
genetic programming. In: Runarsson TP, Beyer HG, Burke E, Merelo-Guervos
JJ, Whitley LD, Yao X (eds) Parallel Problem Solving from Nature - PPSN
IX, Springer-Verlag, Reykjavik, Iceland, LNCS, vol 4193, pp 860–869, DOI doi:
10.1007/11844297 87, URL http://www.cs.nott.ac.uk/˜mvh/ppsn2006.pdf

42. Burke EK, Hyde MR, Kendall G, Woodward J (2007) Automatic heuristic gen-
eration with genetic programming: evolving a jack-of-all-trades or a master of
one. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Con-
gdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann
F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1559–1565, URL
http://www.cs.bham.ac.uk/ wbl/biblio/gecco2007/docs/p1559.pdf

Genetic Programming: An Introduction and Tutorial 993

43. Buxton BF, Langdon WB, Barrett SJ (2001) Data fusion by intelligent clas-
sifier combination. Measurement and Control 34(8):229–234, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/mc/

44. Cagnoni S, Bergenti F, Mordonini M, Adorni G (2005) Evolving binary
classifiers through parallel computation of multiple fitness cases. IEEE Trans-
actions on Systems, Man and Cybernetics - Part B 35(3):548–555, DOI doi:
10.1109/TSMCB.2005.846671

45. Cai W, Pacheco-Vega A, Sen M, Yang KT (2006) Heat transfer correlations by
symbolic regression. International Journal of Heat and Mass Transfer 49(23-
24):4352–4359, DOI doi:10.1016/j.ijheatmasstransfer.2006.04.029

46. Castillo F, Kordon A, Smits G (2006) Robust pareto front genetic programming
parameter selection based on design of experiments and industrial data. In:
Riolo RL, Soule T, Worzel B (eds) Genetic Programming Theory and Practice
IV, Genetic and Evolutionary Computation, vol 5, Springer, Ann Arbor

47. Chami M, Robilliard D (2002) Inversion of oceanic constituents in case I and
II waters with genetic programming algorithms. Applied Optics 41(30):6260–
6275, URL http://ao.osa.org/ViewMedia.cfm?id=70258&seq=0

48. Channon A (2006) Unbounded evolutionary dynamics in a system of agents
that actively process and transform their environment. Genetic Programming
and Evolvable Machines 7(3):253–281, DOI doi:10.1007/s10710-006-9009-3

49. Chao DL, Forrest S (2003) Information immune systems. Genetic Programming
and Evolvable Machines 4(4):311–331, DOI doi:10.1023/A:1026139027539

50. Cheang SM, Leung KS, Lee KH (2006) Genetic parallel programming: Design
and implementation. Evolutionary Computation 14(2):129–156, DOI doi:10.
1162/evco.2006.14.2.129

51. Chen SH (ed) (2002) Genetic Algorithms and Genetic Programming
in Computational Finance. Kluwer Academic Publishers, Dordrecht,
URL http://www.springer.com/west/home/business?SGWID=4-40517-22-3%
3195998-detailsPage=ppmmedia|toc

52. Chen SH, Liao CC (2005) Agent-based computational modeling of the stock
price-volume relation. Information Sciences 170(1):75–100, DOI doi:10.1016/
j.ins.2003.03.026, URL http://www.sciencedirect.com/science/article/B6V0C-
4B3JHTS-6/2/9e023835b1c70f176d1903dd3a8b638e

53. Chen SH, Wang HS, Zhang BT (1999) Forecasting high-frequency finan-
cial time series with evolutionary neural trees: The case of heng-sheng
stock index. In: Arabnia HR (ed) Proceedings of the International Confer-
ence on Artificial Intelligence, IC-AI ’99, CSREA Press, Las Vegas, Nevada,
USA, vol 2, pp 437–443, URL http://bi.snu.ac.kr/Publications/Conferences/
International/ICAI99.ps

54. Chen SH, Duffy J, Yeh CH (2002) Equilibrium selection via adaptation: Using
genetic programming to model learning in a coordination game. The Electronic
Journal of Evolutionary Modeling and Economic Dynamics

55. Chitty DM (2007) A data parallel approach to genetic programming using
programmable graphics hardware. In: Thierens D, Beyer HG, Bongard J,
Branke J, Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T,
Kumar S, Miller JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K,
Stanley KO, Stutzle T, Watson RA, Wegener I (eds) GECCO ’07: Proceed-
ings of the 9th annual conference on Genetic and evolutionary computation,
ACM Press, London, vol 2, pp 1566–1573, URL http://www.cs.bham.ac.
uk/˜wbl/biblio/gecco2007/docs/p1566.pdf

994 W.B. Langdon et al.

56. Chong FS, Langdon WB (1999) Java based distributed genetic programming
on the internet. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar
V, Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolution-
ary Computation Conference, Morgan Kaufmann, Orlando, Florida, USA,
vol 2, p 1229, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
p.chong/DGPposter.pdf, full text in technical report CSRP-99-7

57. Ciesielski V, Li X (2004) Analysis of genetic programming runs. In: Mckay
RI, Cho SB (eds) Proceedings of The Second Asian-Pacific Workshop
on Genetic Programming, Cairns, Australia, URL http://goanna.cs.rmit.
edu.au/˜xiali/pub/ai04.vc.pdf

58. Cilibrasi R, Vitanyi PMB (2005) Clustering by compression. IEEE Trans-
actions on Information Theory 51(4):1523–1545, URL http://homepages.
cwi.nl/˜paulv/papers/cluster.pdf

59. Cilibrasi R, Vitanyi P, de Wolf R (2004) Algorithmic clustering of music
based on string compression. Computer Music Journal 28(4):49–67, URL
http://homepages.cwi.nl/˜paulv/papers/music.pdf

60. Collins RJ (1992) Studies in artificial evolution. PhD thesis, UCLA, Artificial
Life Laboratory, Department of Computer Science, University of California,
Los Angeles, LA CA 90024, USA

61. Corno F, Sanchez E, Squillero G (2005) Evolving assembly programs: how
games help microprocessor validation. Evolutionary Computation, IEEE
Transactions on 9(6):695–706

62. Costelloe D, Ryan C (2007) Towards models of user preferences in interac-
tive musical evolution. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark
JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF,
Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T,
Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, ACM Press, London,
vol 2, pp 2254–2254, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/
docs/p2254.pdf

63. Cranmer K, Bowman RS (2005) PhysicsGP: A genetic programming approach
to event selection. Computer Physics Communications 167(3):165–176, DOI
doi:10.1016/j.cpc.2004.12.006

64. Crawford-Marks R, Spector L (2002) Size control via size fair genetic operators
in the PushGP genetic programming system. In: Langdon WB, Cantú-Paz E,
Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G,
Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N
(eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Morgan Kaufmann Publishers, New York, pp 733–739, URL
http://alum.hampshire.edu/˜rpc01/gp234.pdf

65. Crepeau RL (1995) Genetic evolution of machine language software. In: Rosca
JP (ed) Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications, Tahoe City, California, USA, pp 121–134, URL
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS Article.pdf

66. Curry R, Lichodzijewski P, Heywood MI (2007) Scaling genetic program-
ming to large datasets using hierarchical dynamic subset selection. IEEE
Transactions on Systems, Man, and Cybernetics: Part B - Cybernetics
37(4):1065–1073, DOI doi:10.1109/TSMCB.2007.896406, URL http://www.cs.
dal.ca/˜mheywood/X-files/GradPubs.html#curry

Genetic Programming: An Introduction and Tutorial 995

67. Daida JM, Hommes JD, Bersano-Begey TF, Ross SJ, Vesecky JF (1996)
Algorithm discovery using the genetic programming paradigm: Extracting
low-contrast curvilinear features from SAR images of arctic ice. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap 21, pp 417–442, URL http://sitemaker.umich.
edu/daida/files/GP2 cha21.pdf

68. Dassau E, Grosman B, Lewin DR (2006) Modeling and temperature con-
trol of rapid thermal processing. Computers and Chemical Engineering
30(4):686–697, DOI doi:10.1016/j.compchemeng.2005.11.007, URL http://
tx.technion.ac.il/˜dlewin/publications/rtp paper v9.pdf

69. Davis TE, Principe JC (1993) A Markov chain framework for the simple genetic
algorithm. Evolutionary Computation 1(3):269–288

70. Day JP, Kell DB, Griffith GW (2002) Differentiation of phytophthora infes-
tans sporangia from other airborne biological particles by flow cytometry.
Applied and Environmental Microbiology 68(1):37–45, DOI doi:10.1128/AEM.
68.1.37-45.2002, URL http://intl-aem.asm.org/cgi/reprint/68/1/37.pdf

71. de Sousa JS, de CT Gomes L, Bezerra GB, de Castro LN, Von Zuben FJ
(2004) An immune-evolutionary algorithm for multiple rearrangements of gene
expression data. Genetic Programming and Evolvable Machines 5(2):157–179,
DOI doi:10.1023/B:GENP.0000023686.59617.57

72. De Stefano C, Cioppa AD, Marcelli A (2002) Character preclassification
based on genetic programming. Pattern Recognition Letters 23(12):1439–1448,
DOI doi:10.1016/S0167-8655(02)00104-6, URL http://www.sciencedirect.
com/science/article/B6V15-45J91MV-4/2/3e5c2ac0c51428d0f7ea9fc0142f6790

73. Deb K (2001) Multi-objective optimization using evolutionary algorithms.
Wiley

74. Dempster MAH, Jones CM (2000) A real-time adaptive trading system
using genetic programming. Quantitative Finance 1:397–413, URL http://
mahd-pc.jbs.cam.ac.uk/archive/PAPERS/2000/geneticprogramming.pdf

75. Dempster MAH, Payne TW, Romahi Y, Thompson GWP (2001) Com-
putational learning techniques for intraday FX trading using popular
technical indicators. IEEE Transactions on Neural Networks 12(4):744–
754, DOI doi:10.1109/72.935088, URL http://mahd-pc.jbs.cam.ac.uk/archive/
PAPERS/2000/ieeetrading.pdf

76. Deschaine L (2006) Using information fusion, machine learning, and global
optimisation to increase the accuracy of finding and understanding items
interest in the subsurface. GeoDrilling International (122):30–32, URL http://
www.mining-journal.com/gdi magazine/pdf/GDI0605scr.pdf

77. Deschaine LM, Patel JJ, Guthrie RD, Grimski JT, Ades MJ (2001) Using
linear genetic programming to develop a C/C++ simulation model of a waste
incinerator. In: Ades M (ed) Advanced Technology Simulation Conference,
Seattle, URL http://www.aimlearning.com/Environmental.Engineering.pdf

78. Deschaine LM, Hoover RA, Skibinski JN, Patel JJ, Francone F, Nordin
P, Ades MJ (2002) Using machine learning to compliment and extend the
accuracy of UXO discrimination beyond the best reported results of the
jefferson proving ground technology demonstration. In: 2002 Advanced
Technology Simulation Conference, San Diego, CA, USA, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/deschaine/ASTC 2002 UXO
Finder Invention Paper.pdf

996 W.B. Langdon et al.

79. D’haeseleer P (1994) Context preserving crossover in genetic programming. In:
Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
IEEE Press, Orlando, Florida, USA, vol 1, pp 256–261, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WCCI94 CPC.ps.Z

80. D’haeseleer P, Bluming J (1994) Effects of locality in individual and pop-
ulation evolution. In: Kinnear, Jr KE (ed) Advances in Genetic Program-
ming, MIT Press, chap 8, pp 177–198, URL http://cognet.mit.edu/library/
books/view?isbn=0262111888

81. Dignum S, Poli R (2007) Generalisation of the limiting distribution of program
sizes in tree-based genetic programming and analysis of its effects on bloat. In:
Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon
CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann F,
Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener I
(eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1588–1595, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1588.pdf

82. Dolinsky JU, Jenkinson ID, Colquhoun GJ (2007) Application of genetic
programming to the calibration of industrial robots. Computers in Industry
58(3):255–264, DOI doi:10.1016/j.compind.2006.06.003

83. Domingos RP, Schirru R, Martinez AS (2005) Soft computing systems applied
to PWR’s xenon. Progress in Nuclear Energy 46(3–4):297–308, DOI doi:10.
1016/j.pnucene.2005.03.011

84. Dracopoulos DC (1997) Evolutionary Learning Algorithms for Neural Adap-
tive Control. Perspectives in Neural Computing, Springer Verlag, P.O. Box
31 13 40, D-10643 Berlin, Germany, URL http://www.springer.de/catalog/
html-files/deutsch/comp/3540761616.html

85. Droste S, Jansen T, Rudolph G, Schwefel HP, Tinnefeld K, Wegener I (2003)
Theory of evolutionary algorithms and genetic programming. In: Schwefel HP,
Wegener I, Weinert K (eds) Advances in Computational Intelligence: Theory
and Practice, Natural Computing Series, Springer, chap 5, pp 107–144

86. Ebner M, Reinhardt M, Albert J (2005) Evolution of vertex and pixel
shaders. In: Keijzer M, Tettamanzi A, Collet P, van Hemert JI, Tomassini M
(eds) Proceedings of the 8th European Conference on Genetic Programming,
Springer, Lausanne, Switzerland, Lecture Notes in Computer Science, vol 3447,
pp 261–270, DOI doi:10.1007/b107383, URL http://springerlink.metapress.
com/openurl.asp?genre=article&issn=0302-9743&volume=3447&spage=261

87. Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Springer,
URL http://www.cs.vu.nl/˜gusz/ecbook/ecbook.html

88. Eklund SE (2002) A massively parallel GP engine in VLSI. In: Fogel DB, El-
Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton M (eds)
Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,
IEEE Press, pp 629–633

89. Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid
and quantitative detection of the microbial spoilage of meat by fourier trans-
form infrared spectroscopy and machine learning. Applied and Environmental
Microbiology 68(6):2822–2828, DOI doi:10.1128/AEM.68.6.2822?2828.2002,
URL http://dbkgroup.org/Papers/app %20env microbiol 68 (2822).pdf

90. Ellis DI, Broadhurst D, Goodacre R (2004) Rapid and quantitative detection
of the microbial spoilage of beef by fourier transform infrared spectroscopy and

Genetic Programming: An Introduction and Tutorial 997

machine learning. Analytica Chimica Acta 514(2):193–201, DOI doi:10.1016/
j.aca.2004.03.060, URL http://dbkgroup.org/dave files/ACAbeef04.pdf

91. Eriksson R, Olsson B (2004) Adapting genetic regulatory models by
genetic programming. Biosystems 76(1–3):217–227, DOI doi:10.1016/j.
biosystems.2004.05.014, URL http://www.sciencedirect.com/science/article/
B6T2K-4D09KY2-7/2/1abfe196bb4afc60afc3311cadb75d66

92. Esparcia-Alcazar AI, Sharman KC (1996) Genetic programming techniques
that evolve recurrent neural networks architectures for signal processing. In:
IEEE Workshop on Neural Networks for Signal Processing, Seiko, Kyoto, Japan

93. Evans C, Fleming PJ, Hill DC, Norton JP, Pratt I, Rees D, Rodriguez-
Vazquez K (2001) Application of system identification techniques to
aircraft gas turbine engines. Control Engineering Practice 9(2):135–148,
URL http://www.sciencedirect.com/science/article/B6V2H-4280YP2-3/1/
24d44180070f91dea854032d98f9187a

94. Federman F, Sparkman G, Watt S (1999) Representation of music in a learn-
ing classifier system utilizing bach chorales. In: Banzhaf W, Daida J, Eiben
AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of
the Genetic and Evolutionary Computation Conference, Morgan Kaufmann,
Orlando, Florida, USA, vol 1, p 785

95. Felton MJ (2000) Survival of the fittest in drug design. Modern Drug
Discovery 3(9):49–50, URL http://pubs.acs.org/subscribe/journals/mdd/v03/
i09/html/felton.html

96. Fernandez F, Sanchez JM, Tomassini M, Gomez JA (1999) A parallel genetic
programming tool based on PVM. In: Dongarra J, Luque E, Margalef T (eds)
Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Proceedings of the 6th European PVM/MPI Users’ Group Meeting, Springer-
Verlag, Barcelona, Spain, Lecture Notes in Computer Science, vol 1697, pp 241–
248

97. Fernandez F, Tomassini M, Vanneschi L (2003) An empirical study of multipop-
ulation genetic programming. Genetic Programming and Evolvable Machines
4(1):21–51, DOI doi:10.1023/A:1021873026259

98. Folino G, Pizzuti C, Spezzano G (2003) A scalable cellular implementa-
tion of parallel genetic programming. IEEE Transactions on Evolutionary
Computation 7(1):37–53

99. Foster JA (2001) Review: Discipulus: A commercial genetic programming sys-
tem. Genetic Programming and Evolvable Machines 2(2):201–203, DOI doi:
10.1023/A:1011516717456

100. Francone FD, Deschaine LM (2004) Getting it right at the very start – build-
ing project models where data is expensive by combining human expertise,
machine learning and information theory. In: 2004 Business and Industry Sym-
posium, Washington, DC, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/deschaine/ASTC 2004 Getting It Right from the Very Start.pdf

101. Francone FD, Conrads M, Banzhaf W, Nordin P (1999) Homologous crossover
in genetic programming. In: Banzhaf W, Daida J, Eiben AE, Garzon MH,
Honavar V, Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann, Orlando, Florida, USA,
vol 2, pp 1021–1026, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco1999/
GP-463.pdf

998 W.B. Langdon et al.

102. Francone FD, Deschaine LM, Warren JJ (2007) Discrimination of munitions
and explosives of concern at F.E. warren AFB using linear genetic program-
ming. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Con-
gdon CB, Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann
F, Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1999–2006, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1999.pdf

103. Fukunaga A (2002) Automated discovery of composite SAT variable selection
heuristics. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI), pp 641–648

104. Fukunaga AS (2004) Evolving local search heuristics for SAT using genetic
programming. In: Deb K, Poli R, Banzhaf W, Beyer HG, Burke E, Darwen P,
Dasgupta D, Floreano D, Foster J, Harman M, Holland O, Lanzi PL, Spector
L, Tettamanzi A, Thierens D, Tyrrell A (eds) Genetic and Evolutionary Com-
putation – GECCO-2004, Part II, Springer-Verlag, Seattle, WA, USA, Lecture
Notes in Computer Science, vol 3103, pp 483–494, DOI doi:10.1007/b98645,
URL http://alexf04.maclisp.org/gecco2004.pdf

105. Funes P, Sklar E, Juille H, Pollack J (1998a) Animal-animat coevolution:
Using the animal population as fitness function. In: Pfeifer R, Blumberg B,
Meyer JA, Wilson SW (eds) From Animals to Animats 5: Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior., MIT
Press, Zurich, Switzerland, pp 525–533, URL http://www.demo.cs.brandeis.
edu/papers/tronsab98.html

106. Funes P, Sklar E, Juille H, Pollack J (1998b) Animal-animat coevolution:
Using the animal population as fitness function. In: Pfeifer R, Blumberg B,
Meyer JA, Wilson SW (eds) From Animals to Animats 5: Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior, MIT
Press, Zurich, Switzerland, pp 525–533, URL http://www.demo.cs.brandeis.
edu/papers/tronsab98.pdf

107. Gagne C, Parizeau M (2006) Genetic engineering of hierarchical fuzzy
regional representations for handwritten character recognition. International
Journal on Document Analysis and Recognition 8(4):223–231, DOI doi:
10.1007/s10032-005-0005-6, URL http://vision.gel.ulaval.ca/fr/publications/
Id 607/PublDetails.php

108. Gagné C, Parizeau M (2007) Co-evolution of nearest neighbor classifiers.
International Journal of Pattern Recognition and Artificial Intelligence
21(5):921–946, DOI doi:10.1142/S0218001407005752, URL http://vision.gel.
ulaval.ca/en/publications/Id 692/PublDetails.php

109. Garcia-Almanza AL, Tsang EPK (2006) Forecasting stock prices using
genetic programming and chance discovery. In: 12th International Confer-
ence On Computing In Economics And Finance, p number 489, URL http://
repec.org/sce2006/up.13879.1141401469.pdf

110. Gathercole C, Ross P (1994) Dynamic training subset selection for super-
vised learning in genetic programming. In: Davidor Y, Schwefel HP,
Männer R (eds) Parallel Problem Solving from Nature III, Springer-Verlag,
Jerusalem, LNCS, vol 866, pp 312–321, URL http://citeseer.ist.psu.edu/
gathercole94dynamic.html

111. Gathercole C, Ross P (1997) Tackling the boolean even N parity problem with
genetic programming and limited-error fitness. In: Koza JR, Deb K, Dorigo

Genetic Programming: An Introduction and Tutorial 999

M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997:
Proceedings of the Second Annual Conference, Morgan Kaufmann, Stanford
University, CA, USA, pp 119–127, URL http://citeseer.ist.psu.edu/79389.html

112. Gelly S, Teytaud O, Bredeche N, Schoenauer M (2006) Universal consistency
and bloat in GP. Revue d’Intelligence Artificielle 20(6):805–827, URL http://
hal.inria.fr/docs/00/11/28/40/PDF/riabloat.pdf, issue on New Methods in
Machine Learning. Theory and Applications

113. Gilbert RJ, Goodacre R, Woodward AM, Kell DB (1997) Genetic pro-
gramming: A novel method for the quantitative analysis of pyrolysis mass
spectral data. ANALYTICAL CHEMISTRY 69(21):4381–4389, DOI doi:
10.1021/ac970460j, URL http://pubs.acs.org/journals/ancham/article.cgi/
ancham/1997/69/i21/pdf/ac970460j.pdf

114. Globus A, Lawton J, Wipke T (1998) Automatic molecular design using
evolutionary techniques. In: Globus A, Srivastava D (eds) The Sixth Fore-
sight Conference on Molecular Nanotechnology, Westin Hotel in Santa
Clara, CA, USA, URL http://www.foresight.org/Conferences/MNT6/Papers/
Globus/index.html

115. Goldberg DE (1989) Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley

116. Goldberg DE, Kargupta H, Horn J, Cantu-Paz E (1995) Critical deme size
for serial and parallel genetic algorithms. Tech. rep., Illinois Genetic Algo-
rithms Laboratory, Department of General Engineering, University of Illinois
at Urbana-Champaign, Il 61801, USA, illiGAL Report no 95002

117. Goodacre R (2003) Explanatory analysis of spectroscopic data using machine
learning of simple, interpretable rules. Vibrational Spectroscopy 32(1):33–
45, DOI doi:10.1016/S0924-2031(03)00045-6, URL http://www.biospec.net/
learning/Metab06/Goodacre-FTIRmaps.pdf, a collection of Papers Presented
at Shedding New Light on Disease: Optical Diagnostics for the New Millennium
(SPEC 2002) Reims, France 23–27 June 2002

118. Goodacre R, Gilbert RJ (1999) The detection of caffeine in a variety of bever-
ages using curie-point pyrolysis mass spectrometry and genetic programming.
The Analyst 124:1069–1074

119. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK,
Kell DB, Logan NA (2000) The detection of the dipicolinic acid biomarker
in bacillus spores using curie-point pyrolysis mass spectrometry and fourier-
transform infrared spectroscopy. Analytical Chemistry 72(1):119–127, DOI
doi:10.1021/ac990661i, URL http://pubs.acs.org/cgi-bin/article.cgi/ancham/
2000/72/i01/html/ac990661i.html

120. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004)
Metabolomics by numbers: acquiring and understanding global metabolite
data. Trends in Biotechnology 22(5):245–252, DOI doi:10.1016/j.tibtech.2004.
03.007, URL http://dbkgroup.org/Papers/trends%20in%20biotechnology 22
(24%5).pdf

121. Gruau F (1994a) Genetic micro programming of neural networks. In: Kinnear,
Jr KE (ed) Advances in Genetic Programming, MIT Press, chap 24, pp 495–
518, URL http://cognet.mit.edu/library/books/view?isbn=0262111888

122. Gruau F (1994b) Neural network synthesis using cellular encoding and the
genetic algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme,
Ecole Normale Supirieure de Lyon, France, URL ftp://ftp.ens-lyon.fr/pub/
LIP/Rapports/PhD/PhD1994/PhD1994-01-E.ps.Z

1000 W.B. Langdon et al.

123. Gruau F (1996) On using syntactic constraints with genetic programming. In:
Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 19, pp 377–394

124. Gruau F, Whitley D (1993) Adding learning to the cellular development
process: a comparative study. Evolutionary Computation 1(3):213–233

125. Gustafson S, Burke EK (2006) The speciating island model: An alternative
parallel evolutionary algorithm. Journal of Parallel and Distributed Comput-
ing 66(8):1025–1036, DOI doi:10.1016/j.jpdc.2006.04.017, parallel Bioinspired
Algorithms

126. Gustafson S, Burke EK, Krasnogor N (2005) On improving genetic program-
ming for symbolic regression. In: Corne D, Michalewicz Z, Dorigo M, Eiben
G, Fogel D, Fonseca C, Greenwood G, Chen TK, Raidl G, Zalzala A, Lucas
S, Paechter B, Willies J, Guervos JJM, Eberbach E, McKay B, Channon A,
Tiwari A, Volkert LG, Ashlock D, Schoenauer M (eds) Proceedings of the 2005
IEEE Congress on Evolutionary Computation, IEEE Press, Edinburgh, UK,
vol 1, pp 912–919

127. Hampo RJ, Marko KA (1992) Application of genetic programming to control
of vehicle systems. In: Proceedings of the Intelligent Vehicles ’92 Symposium,
june 29 July 1, 1992, Detroit, Mi, USA

128. Handley S (1993) Automatic learning of a detector for alpha-helices in pro-
tein sequences via genetic programming. In: Forrest S (ed) Proceedings of
the 5th International Conference on Genetic Algorithms, ICGA-93, Morgan
Kaufmann, University of Illinois at Urbana-Champaign, pp 271–278

129. Handley S (1994) On the use of a directed acyclic graph to represent a popula-
tion of computer programs. In: Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, IEEE Press, Orlando, Florida, USA, vol 1,
pp 154–159, DOI doi:10.1109/ICEC.1994.350024

130. Harding S, Banzhaf W (2007) Fast genetic programming on GPUs. In: Ebner
M, O’Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of
the 10th European Conference on Genetic Programming, Springer, Valencia,
Spain, Lecture Notes in Computer Science, vol 4445, pp 90–101, DOI doi:
10.1007/978-3-540-71605-1 9

131. Harrigan GG, LaPlante RH, Cosma GN, Cockerell G, Goodacre R, Maddox
JF, Luyendyk JP, Ganey PE, Roth RA (2004) Application of high-throughput
fourier-transform infrared spectroscopy in toxicology studies: contribution to
a study on the development of an animal model for idiosyncratic toxicity.
Toxicology Letters 146(3):197–205, DOI doi:10.1016/j.toxlet.2003.09.011

132. Harris C, Buxton B (1996) GP-COM: A distributed, component-based genetic
programming system in C++. In: Koza JR, Goldberg DE, Fogel DB, Riolo
RL (eds) Genetic Programming 1996: Proceedings of the First Annual Con-
ference, MIT Press, Stanford University, CA, USA, p 425, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp96com.ps.gz

133. Harvey B, Foster J, Frincke D (1999) Towards byte code genetic programming.
In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, p 1234, URL http://
citeseer.ist.psu.edu/468509.html

134. Hasan S, Daugelat S, Rao PSS, Schreiber M (2006) Prioritizing genomic
drug targets in pathogens: Application to mycobacterium tuberculosis. PLoS
Computational Biology 2(6):e61, DOI doi:10.1371/journal.pcbi.0020061

Genetic Programming: An Introduction and Tutorial 1001

135. Hauptman A, Sipper M (2005) GP-endchess: Using genetic programming
to evolve chess endgame players. In: Keijzer M, Tettamanzi A, Collet P,
van Hemert JI, Tomassini M (eds) Proceedings of the 8th European Con-
ference on Genetic Programming, Springer, Lausanne, Switzerland, Lecture
Notes in Computer Science, vol 3447, pp 120–131, URL http://www.cs.bgu.
ac.il/˜sipper/papabs/eurogpchess-final.pdf

136. Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for
the mate-in-N problem in chess. In: Ebner M, O’Neill M, Ekárt A, Vanneschi
L, Esparcia-Alcázar AI (eds) Proceedings of the 10th European Conference on
Genetic Programming, Springer, Valencia, Spain, Lecture Notes in Computer
Science, vol 4445, pp 78–89, DOI doi:10.1007/978-3-540-71605-1 8

137. Haynes T, Wainwright R, Sen S, Schoenefeld D (1995) Strongly typed
genetic programming in evolving cooperation strategies. In: Eshelman L
(ed) Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), Morgan Kaufmann, Pittsburgh, PA, USA, pp 271–278, URL http://
www.mcs.utulsa.edu/˜rogerw/papers/Haynes-icga95.pdf

138. Haynes TD, Schoenefeld DA, Wainwright RL (1996) Type inheritance in
strongly typed genetic programming. In: Angeline PJ, Kinnear, Jr KE
(eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 18, pp 359–376, URL http://www.mcs.utulsa.edu/˜rogerw/papers/
Haynes-hier.pdf

139. Heidema AG, Boer JMA, Nagelkerke N, Mariman ECM, van der A DL,
Feskens EJM (2006) The challenge for genetic epidemiologists: how to ana-
lyze large numbers of SNPs in relation to complex diseases. BMC Genet-
ics 7(23), DOI doi:10.1186/1471-2156-7-23, URL http://www.biomedcentral.
com/content/pdf/1471-2156-7-23.pdf

140. Hillis WD (1992) Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In: Langton CG, Taylor CE, Farmer JD, Rasmussen S
(eds) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity,
vol X, Addison-Wesley, Santa Fe Institute, New Mexico, USA, pp 313–324

141. Hinchliffe MP, Willis MJ (2003) Dynamic systems modeling using
genetic programming. Computers & Chemical Engineering 27(12):1841–1854,
URL http://www.sciencedirect.com/science/article/B6TFT-49MDYGW-2/2/
742bcc7f22240c7a0381027aa5ff7e73

142. Ho SY, Hsieh CH, Chen HM, Huang HL (2006) Interpretable gene expression
classifier with an accurate and compact fuzzy rule base for microarray data
analysis. Biosystems 85(3):165–176, DOI doi:10.1016/j.biosystems.2006.01.002

143. Hoai NX, McKay RI, Abbass HA (2003) Tree adjoining grammars, language
bias, and genetic programming. In: Ryan C, Soule T, Keijzer M, Tsang E,
Poli R, Costa E (eds) Genetic Programming, Proceedings of EuroGP’2003,
Springer-Verlag, Essex, LNCS, vol 2610, pp 335–344, URL http://www.cs.adfa.
edu.au/˜abbass/publications/hardcopies/TAG3P-EuroGp-03.pdf

144. Hoai NX, McKay RIB, Essam D (2006) Representation and structural dif-
ficulty in genetic programming. IEEE Transactions on Evolutionary Com-
putation 10(2):157–166, DOI doi:10.1109/TEVC.2006.871252, URL http://
sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf

145. Holland J (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, USA

1002 W.B. Langdon et al.

146. Holland JH (1992) Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence.
MIT Press, first Published by University of Michigan Press 1975

147. Hong JH, Cho SB (2006) The classification of cancer based on DNA microarray
data that uses diverse ensemble genetic programming. Artificial Intelligence In
Medicine 36(1):43–58, DOI doi:10.1016/j.artmed.2005.06.002

148. Howard D, Roberts SC (2004) Incident detection on highways. In: O’Reilly UM,
Yu T, Riolo RL, Worzel B (eds) Genetic Programming Theory and Practice
II, Springer, Ann Arbor, chap 16, pp 263–282

149. Howard D, Roberts SC, Brankin R (1999) Target detection in imagery
by genetic programming. Advances in Engineering Software 30(5):303–
311, URL http://www.sciencedirect.com/science/article/B6V1P-3W1XV4H-
1/1/6e7aee809f33757d0326c62a21824411

150. Howard D, Roberts SC, Ryan C (2006) Pragmatic genetic programming strat-
egy for the problem of vehicle detection in airborne reconnaissance. Pattern
Recognition Letters 27(11):1275–1288, DOI doi:10.1016/j.patrec.2005.07.025,
evolutionary Computer Vision and Image Understanding

151. Iba H (1996) Genetic Programming. Tokyo Denki University Press
152. Iba H, de Garis H, Sato T (1994) Genetic programming using a minimum

description length principle. In: Kinnear, Jr KE (ed) Advances in Genetic Pro-
gramming, MIT Press, chap 12, pp 265–284, URL http://citeseer.ist.psu.edu/
327857.html

153. Inagaki Y (2002) On synchronized evolution of the network of automata.
IEEE Transactions on Evolutionary Computation 6(2):147–158, URL http://
ieeexplore.ieee.org/iel5/4235/21497/00996014.pdf?tp=&arnumber=996014&
isnumber=21497&arSt=147&ared=158&arAuthor=Inagaki%2C+Y.%3B

154. Jacob C (1997) Principia Evolvica – Simulierte Evolution mit Mathematica.
dpunkt.verlag, Heidelberg, Germany

155. Jacob C (2000) The art of genetic programming. IEEE Intelligent Systems
15(3):83–84, URL http://ieeexplore.ieee.org/iel5/5254/18363/00846288.pdf

156. Jacob C (2001) Illustrating Evolutionary Computation with Mathemat-
ica. Morgan Kaufmann, URL http://www.mkp.com/books catalog/catalog.
asp?ISBN=1-55860-637-8

157. Jeong KS, Kim DK, Whigham P, Joo GJ (2003) Modeling microcystis aerugi-
nosa bloom dynamics in the nakdong river by means of evolutionary computa-
tion and statistical approach. Ecological Modeling 161(1–2):67–78, DOI doi:10.
1016/S0304-3800(02)00280-6, URL http://www.business.otago.ac.nz/infosci/
SIRC/PeterW/Publications/Jeong EcolMod V161 Is 1 2 pg67 78.pdf

158. Jin N, Tsang E (2006) Co-adaptive strategies for sequential bargaining
problems with discount factors and outside options. In: Proceedings of the
2006 IEEE Congress on Evolutionary Computation, IEEE Press, Vancouver,
pp 7913–7920

159. Johnson HE, Gilbert RJ, Winson MK, Goodacre R, Smith AR, Rowland
JJ, Hall MA, Kell DB (2000) Explanatory analysis of the metabolome using
genetic programming of simple, interpretable rules. Genetic Programming and
Evolvable Machines 1(3):243–258, DOI doi:10.1023/A:1010014314078

160. Jones A, Young D, Taylor J, Kell DB, Rowland JJ (1998) Quantification of
microbial productivity via multi-angle light scattering and supervised learning.
Biotechnology and Bioengineering 59(2):131–143

Genetic Programming: An Introduction and Tutorial 1003

161. Jordaan E, Kordon A, Chiang L, Smits G (2004) Robust inferential sensors
based on ensemble of predictors generated by genetic programming. In: Yao
X, Burke E, Lozano JA, Smith J, Merelo-Guervós JJ, Bullinaria JA, Rowe J,
Kabán PTA, Schwefel HP (eds) Parallel Problem Solving from Nature - PPSN
VIII, Springer-Verlag, Birmingham, UK, LNCS, vol 3242, pp 522–531, DOI
doi:10.1007/b100601, URL http://www.springerlink.com/openurl.asp?genre=
article&issn=0302-9743&volume=3242&spage=522

162. Juille H, Pollack JB (1996) Massively parallel genetic programming. In: Ange-
line PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 17, pp 339–358, URL http://www.demo.
cs.brandeis.edu/papers/gp2.pdf

163. Kaboudan M (1999) A measure of time series predictability using genetic
programming applied to stock returns. Journal of Forecasting 18:345–357

164. Kaboudan M (2005) Extended daily exchange rates forecasts using wavelet
temporal resolutions. New Mathematics and Natural Computing 1:79–107

165. Kaboudan MA (2000) Genetic programming prediction of stock prices.
Computational Economics 6(3):207–236

166. Keijzer M (1996) Efficiently representing populations in genetic programming.
In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2,
MIT Press, Cambridge, MA, USA, chap 13, pp 259–278

167. Keijzer M (2004) Scaled symbolic regression. Genetic Programming and Evolv-
able Machines 5(3):259–269, DOI doi:10.1023/B:GENP.0000030195.77571.f9

168. Kell D (2002a) Defence against the flood. Bioinformatics World pp 16–18, URL
http://dbkgroup.org/Papers/biwpp16-18 as publ.pdf

169. Kell DB (2002b) Genotype-phenotype mapping: genes as computer programs.
Trends in Genetics 18(11):555–559, DOI doi:10.1016/S0168-9525(02)02765-8,
URL http://dbkgroup.org/Papers/trends genet 18 (555).pdf

170. Kell DB (2002c) Metabolomics and machine learning: Explanatory analysis
of complex metabolome data using genetic programming to produce simple,
robust rules. Molecular Biology Reports 29(1–2):237–241, DOI doi:10.1023/A:
1020342216314, URL http://dbkgroup.org/Papers/btk2002 dbk.pdf

171. Kell DB, Darby RM, Draper J (2001) Genomic computing. explanatory analy-
sis of plant expression profiling data using machine learning. Plant Physiology
126(3):943–951

172. Keller RE, Poli R (2007a) Cost-benefit investigation of a genetic-programming
hyperheuristic. In: Proceedings of Evolution Artificielle

173. Keller RE, Poli R (2007b) Linear genetic programming of metaheuristics. In:
Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon CB,
Deb K, Doerr B, Kovacs T, Kumar S, Miller JF, Moore J, Neumann F,
Pelikan M, Poli R, Sastry K, Stanley KO, Stutzle T, Watson RA, Wegener
I (eds) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM Press, London, vol 2, pp 1753–1753, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2007/docs/p1753.pdf

174. Keller RE, Poli R (2007c) Linear genetic programming of parsimonious meta-
heuristics. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC)

175. KHosraviani B (2003) Organization design optimization using genetic pro-
gramming. In: Koza JR (ed) Genetic Algorithms and Genetic Programming at
Stanford 2003, Stanford Bookstore, Stanford, California, 94305-3079 USA, pp
109–117, URL http://www.genetic-programming.org/sp2003/KHosraviani.pdf

1004 W.B. Langdon et al.

176. KHosraviani B, Levitt RE, Koza JR (2004) Organization design optimization
using genetic programming. In: Keijzer M (ed) Late Breaking Papers at the
2004 Genetic and Evolutionary Computation Conference, Seattle, Washington,
USA, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2004/LBP056.pdf

177. Kibria RH, Li Y (2006) Optimizing the initialization of dynamic decision
heuristics in DPLL SAT solvers using genetic programming. In: Collet P,
Tomassini M, Ebner M, Gustafson S, Ekárt A (eds) Proceedings of the 9th
European Conference on Genetic Programming, Springer, Budapest, Hungary,
Lecture Notes in Computer Science, vol 3905, pp 331–340, URL http://link.
springer.de/link/service/series/0558/papers/3905/39050331.pdf

178. Kinnear, Jr KE (1993) Evolving a sort: Lessons in genetic programming.
In: Proceedings of the 1993 International Conference on Neural Networks,
IEEE Press, San Francisco, USA, vol 2, pp 881–888, DOI doi:10.1109/ICNN.
1993.298674, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/
papers/kinnear.icnn93.ps.Z

179. Kinnear, Jr KE (ed) (1994a) Advances in Genetic Programming. MIT
Press, Cambridge, MA, URL http://mitpress.mit.edu/book-home.tcl?isbn=
0262111888

180. Kinnear, Jr KE (1994b) Fitness landscapes and difficulty in genetic program-
ming. In: Proceedings of the 1994 IEEE World Conference on Computational
Intelligence, IEEE Press, Orlando, Florida, USA, vol 1, pp 142–147, DOI doi:
10.1109/ICEC.1994.350026, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/ftp.io.com/papers/kinnear.wcci.ps.Z

181. Kinnear, Jr KE (1994c) A perspective on the work in this book. In: Kinnear,
Jr KE (ed) Advances in Genetic Programming, MIT Press, chap 1, pp 3–19,
URL http://cognet.mit.edu/library/books/view?isbn=0262111888

182. Klassen TJ, Heywood MI (2002) Towards the on-line recognition of arabic
characters. In: Proceedings of the 2002 International Joint Conference on
Neural Networks IJCNN’02, IEEE Press, Hilton Hawaiian Village Hotel, Hon-
olulu, Hawaii, pp 1900–1905, URL http://users.cs.dal.ca/˜mheywood/X-files/
Publications/IEEEarabic.pdf

183. Klein J, Spector L (2007) Unwitting distributed genetic programming via
asynchronous javascript and XML. In: Thierens D, Beyer HG, Bongard J,
Branke J, Clark JA, Cliff D, Congdon CB, Deb K, Doerr B, Kovacs T, Kumar
S, Miller JF, Moore J, Neumann F, Pelikan M, Poli R, Sastry K, Stanley
KO, Stutzle T, Watson RA, Wegener I (eds) GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, ACM Press,
London, vol 2, pp 1628–1635, URL http://www.cs.bham.ac.uk/˜wbl/biblio/
gecco2007/docs/p1628.pdf

184. Kordon A (2006) Evolutionary computation at dow chemical. SIGEVOlution
1(3):4–9, URL http://www.sigevolution.org/2006/03/issue.pdf

185. Kordon A, Castillo F, Smits G, Kotanchek M (2005) Application issues of
genetic programming in industry. In: Yu T, Riolo RL, Worzel B (eds) Genetic
Programming Theory and Practice III, Genetic Programming, vol 9, Springer,
Ann Arbor, chap 16, pp 241–258

186. Kovacic M, Balic J (2003) Evolutionary programming of a CNC cutting
machine. International journal for advanced manufacturing technology
22(1–2):118–124, DOI doi:10.1007/s00170-002-1450-8, URL http://www.
springerlink.com/openurl.asp?genre=article&eissn=1433-3015&volume=22&
issue=1&spage=118

Genetic Programming: An Introduction and Tutorial 1005

187. Koza JR (1990) A genetic approach to econometric modeling. In: Sixth
World Congress of the Econometric Society, Barcelona, Spain, URL http://
www.genetic-programming.com/jkpdf/wces1990.pdf

188. Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA

189. Koza JR (1994a) Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts

190. Koza JR (1994b) Genetic Programming II Videotape: The next generation.
MIT Press, 55 Hayward Street, Cambridge, MA, USA

191. Koza JR, Andre D (1996) Classifying protein segments as transmembrane
domains using architecture-altering operations in genetic programming. In:
Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, USA, chap 8, pp 155–176, URL http://www.genetic-
programming.com/jkpdf/aigp2aatmjk1996.pdf

192. Koza JR, Poli R (2005) Genetic programming. In: Burke EK, Kendall G (eds)
Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, Springer, chap 5, URL http://www.springer.com/sgw/
cda/frontpage/0,11855,4-10045-22-67933962-0,00.html

193. Koza JR, Andre D, Bennett III FH, Keane MA (1996a) Use of automatically
defined functions and architecture-altering operations in automated circuit syn-
thesis using genetic programming. In: Koza JR, Goldberg DE, Fogel DB, Riolo
RL (eds) Genetic Programming 1996: Proceedings of the First Annual Con-
ference, MIT Press, Stanford University, CA, USA, pp 132–149, URL http://
www.genetic-programming.com/jkpdf/gp1996adfaa.pdf

194. Koza JR, Bennett III FH, Andre D, Keane MA (1996b) Automated WYWI-
WYG design of both the topology and component values of electrical circuits
using genetic programming. In: Koza JR, Goldberg DE, Fogel DB, Riolo RL
(eds) Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, MIT Press, Stanford University, CA, USA, pp 123–131, URL http://
www.genetic-programming.com/jkpdf/gp1996nielsen.pdf

195. Koza JR, Andre D, Bennett III FH, Keane M (1999a) Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufman, URL http://
www.genetic-programming.org/gpbook3toc.html

196. Koza JR, Bennett III FH, Stiffelman O (1999b) Genetic programming as a
Darwinian invention machine. In: Poli R, Nordin P, Langdon WB, Fogarty
TC (eds) Genetic Programming, Proceedings of EuroGP’99, Springer-Verlag,
Goteborg, Sweden, LNCS, vol 1598, pp 93–108, URL http://www.genetic-
programming.com/jkpdf/eurogp1999.pdf

197. Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003)
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, URL http://www.genetic-programming.org/
gpbook4toc.html

198. Koza JR, Al-Sakran SH, Jones LW (2005) Automated re-invention of six
patented optical lens systems using genetic programming. In: Beyer HG,
O’Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz
E, Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H, Llora X, Man-
coridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson JP, Zitzler E
(eds) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, ACM Press, Washington DC, USA, vol 2, pp 1953–1960,
URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/docs/p1953.pdf

1006 W.B. Langdon et al.

199. Krasnogor N (2004) Self generating metaheuristics in bioinformatics: The pro-
teins structure comparison case. Genetic Programming and Evolvable Machines
5(2):181–201, DOI doi:10.1023/B:GENP.0000023687.41210.d7

200. Krawiec K (2004) Evolutionary Feature Programming: Cooperative learning
for knowledge discovery and computer vision. 385, Wydawnictwo Politechniki
Poznanskiej, Poznan University of Technology, Poznan, Poland, URL http://
idss.cs.put.poznan.pl/˜krawiec/pubs/hab/krawiec hab.pdf

201. Langdon WB (1996) A bibliography for genetic programming. In: Angeline
PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming 2, MIT Press,
Cambridge, MA, USA, chap B, pp 507–532, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/WBL.aigp2.appx.ps.gz

202. Langdon WB (1998a) The evolution of size in variable length representa-
tions. In: 1998 IEEE International Conference on Evolutionary Computa-
tion, IEEE Press, Anchorage, Alaska, USA, pp 633–638, DOI doi:10.1109/
ICEC.1998.700102, URL http://www.cs.bham.ac.uk/˜wbl/ftp/papers/WBL.
wcci98 bloat.pdf

203. Langdon WB (1998b) Genetic Programming and Data Structures: Genetic Pro-
gramming + Data Structures = Automatic Programming!, Genetic Program-
ming, vol 1. Kluwer, Boston, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
gpdata

204. Langdon WB (1999a) Scaling of program tree fitness spaces. Evolu-
tionary Computation 7(4):399–428, URL http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/WBL.fitnessspaces.pdf

205. Langdon WB (1999b) Size fair and homologous tree genetic programming
crossovers. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V,
Jakiela M, Smith RE (eds) Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, Orlando, Florida, USA, vol 2,
pp 1092–1097, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
WBL.gecco99.fairxo.ps.gz

206. Langdon WB (2000) Size fair and homologous tree genetic program-
ming crossovers. Genetic Programming and Evolvable Machines 1(1/2):95–
119, DOI doi:10.1023/A:1010024515191, URL http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/WBL fairxo.pdf

207. Langdon WB (2002a) Convergence rates for the distribution of program out-
puts. In: Langdon WB, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R,
Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA,
Schultz AC, Miller JF, Burke E, Jonoska N (eds) GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, Morgan Kauf-
mann Publishers, New York, pp 812–819, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/wbl gecco2002.pdf

208. Langdon WB (2002b) How many good programs are there? How long are they?
In: De Jong KA, Poli R, Rowe JE (eds) Foundations of Genetic Algorithms
VII, Morgan Kaufmann, Torremolinos, Spain, pp 183–202, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl foga2002.pdf, published 2003

209. Langdon WB (2003a) Convergence of program fitness landscapes. In: Cantú-
Paz E, Foster JA, Deb K, Davis D, Roy R, O’Reilly UM, Beyer HG,
Standish R, Kendall G, Wilson S, Harman M, Wegener J, Dasgupta D, Pot-
ter MA, Schultz AC, Dowsland K, Jonoska N, Miller J (eds) Genetic and
Evolutionary Computation – GECCO-2003, Springer-Verlag, Chicago, LNCS,

Genetic Programming: An Introduction and Tutorial 1007

vol 2724, pp 1702–1714, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/wbl gecco2003.pdf

210. Langdon WB (2003b) The distribution of reversible functions is Normal.
In: Riolo RL, Worzel B (eds) Genetic Programming Theory and Practise,
Kluwer, chap 11, pp 173–188, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/wbl reversible.pdf

211. Langdon WB (2004) Global distributed evolution of L-systems fractals. In:
Keijzer M, O’Reilly UM, Lucas SM, Costa E, Soule T (eds) Genetic Pro-
gramming, Proceedings of EuroGP’2004, Springer-Verlag, Coimbra, Portugal,
LNCS, vol 3003, pp 349–358, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/egp2004 pfeiffer.pdf

212. Langdon WB (2005a) The distribution of amorphous computer outputs. In:
Stepney S, Emmott S (eds) The Grand Challenge in Non-Classical Com-
putation: International Workshop, York, UK, URL http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/grand 2005.pdf

213. Langdon WB (2005b) Pfeiffer – A distributed open-ended evolutionary system.
In: Edmonds B, Gilbert N, Gustafson S, Hales D, Krasnogor N (eds) AISB’05:
Proceedings of the Joint Symposium on Socially Inspired Computing (METAS
2005), University of Hertfordshire, Hatfield, UK, pp 7–13, URL http://www.
cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl metas2005.pdf, sSAISB 2005
Convention

214. Langdon WB (2006) Mapping non-conventional extensions of genetic program-
ming. In: Calude CS, Dinneen MJ, Paun G, Rozenberg G, Stepney S (eds)
Unconventional Computing 2006, Springer-Verlag, York, LNCS, vol 4135, pp
166–180, DOI doi:10.1007/11839132 14, URL http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/wbl uc2002.pdf

215. Langdon WB, Banzhaf W (2005) Repeated sequences in linear genetic pro-
gramming genomes. Complex Systems 15(4):285–306, URL http://www.cs.ucl.
ac.uk/staff/rW.Langdon/ftp/papers/wbl repeat linear.pdf

216. Langdon WB, Banzhaf W (2007) A SIMD interpreter for genetic programming
on GPU graphics cards. In preparation

217. Langdon WB, Buxton BF (2004) Genetic programming for mining DNA chip
data from cancer patients. Genetic Programming and Evolvable Machines
5(3):251–257, DOI doi:10.1023/B:GENP.0000030196.55525.f7, URL http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl dnachip.pdf

218. Langdon WB, Harrison AP (2008) GP on SPMD parallel graphics hardware
for mega bioinformatics data mining, To appear

219. Langdon WB, Nordin P (2001) Evolving hand-eye coordination for a humanoid
robot with machine code genetic programming. In: Miller JF, Tomassini M,
Lanzi PL, Ryan C, Tettamanzi AGB, Langdon WB (eds) Genetic Program-
ming, Proceedings of EuroGP’2001, Springer-Verlag, Lake Como, Italy, LNCS,
vol 2038, pp 313–324, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
papers/wbl handeye.ps.gz

220. Langdon WB, Poli R (2008) Mapping non-conventional extensions of genet-
icprogramming. Natural Computing 7:21–43. Invited contribution to special
issue on Unconventional computing

221. Langdon WB, Poli R (1997) Fitness causes bloat. In: Chawdhry PK, Roy R,
Pant RK (eds) Soft Computing in Engineering Design and Manufacturing,
Springer-Verlag London, pp 13–22, URL http://www.rcs.bham.ac.uk/˜wbl/
ftp/papers/WBL.bloat wsc2.ps.gz

1008 W.B. Langdon et al.

222. Langdon WB, Poli R (2002) Foundations of Genetic Programming. Springer-
Verlag, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/

223. Langdon WB, Poli R (2006a) The halting probability in von Neumann archi-
tectures. In: Collet P, Tomassini M, Ebner M, Gustafson S, Ekárt A (eds) Pro-
ceedings of the 9th European Conference on Genetic Programming, Springer,
Budapest, Hungary, Lecture Notes in Computer Science, vol 3905, pp 225–237,
URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl egp2006.pdf

224. Langdon WB, Poli R (2006b) On turing complete T7 and MISC F–4
program fitness landscapes. In: Arnold DV, Jansen T, Vose MD, Rowe
JE (eds) Theory of Evolutionary Algorithms, Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, Dagstuhl, Germany, no. 06061 in Dagstuhl Seminar Proceed-
ings, URL http://drops.dagstuhl.de/opus/volltexte/2006/595, <http://drops.
dagstuhl.de/opus/volltexte/2006/595> [date of citation: 2006-01-01]

225. Langdon WB, Soule T, Poli R, Foster JA (1999) The evolution of size and
shape. In: Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) Advances
in Genetic Programming 3, MIT Press, Cambridge, MA, USA, chap 8, pp 163–
190, URL http://www.cs.bham.ac.uk/˜wbl/aigp3/ch08.pdf

226. Leung KS, Lee KH, Cheang SM (2002) Genetic parallel programming - evolving
linear machine codes on a multiple-ALU processor. In: Yaacob S, Nagarajan R,
Chekima A (eds) Proceedings of International Conference on Artificial Intel-
ligence in Engineering and Technology - ICAIET 2002, Universiti Malaysia
Sabah, pp 207–213

227. Lew TL, Spencer AB, Scarpa F, Worden K, Rutherford A, Hemez F (2006)
Identification of response surface models using genetic programming. Mechani-
cal Systems and Signal Processing 20(8):1819–1831, DOI doi:10.1016/j.ymssp.
2005.12.003

228. Lewin DR, Lachman-Shalem S, Grosman B (2006) The role of process system
engineering (PSE) in integrated circuit (IC) manufacturing. Control Engineer-
ing Practice 15(7):793–802, DOI doi:10.1016/j.conengprac.2006.04.003, special
Issue on Award Winning Applications, 2005 IFAC World Congress

229. Li L, Jiang W, Li X, Moser KL, Guo Z, Du L, Wang Q, Topol EJ, Wang Q,
Rao S (2005) A robust hybrid between genetic algorithm and support vector
machine for extracting an optimal feature gene subset. Genomics 85(1):16–23,
DOI doi:10.1016/j.ygeno.2004.09.007

230. Linden R, Bhaya A (2007) Evolving fuzzy rules to model gene expression.
Biosystems 88(1-2):76–91, DOI doi:10.1016/j.biosystems.2006.04.006

231. Lipson H (2004) How to draw a straight line using a GP: Benchmarking
evolutionary design against 19th century kinematic synthesis. In: Keijzer M
(ed) Late Breaking Papers at the 2004 Genetic and Evolutionary Compu-
tation Conference, Seattle, Washington, USA, URL http://www.cs.bham.ac.
uk/˜wbl/biblio/gecco2004/LBP063.pdf

232. Liu W, Schmidt B (2006) Mapping of hierarchical parallel genetic algo-
rithms for protein folding onto computational grids. IEICE Transactions on
Information and Systems E89-D(2):589–596, DOI doi:10.1093/ietisy/e89-d.2.
589

233. Lohn J, Hornby G, Linden D (2004) Evolutionary antenna design for a
NASA spacecraft. In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds)
Genetic Programming Theory and Practice II, Springer, Ann Arbor, chap 18,
pp 301–315

Genetic Programming: An Introduction and Tutorial 1009

234. Lohn JD, Hornby GS, Linden DS (2005) Rapid re-evolution of an X-band
antenna for NASA’s space technology 5 mission. In: Yu T, Riolo RL, Worzel B
(eds) Genetic Programming Theory and Practice III, Genetic Programming,
vol 9, Springer, Ann Arbor, chap 5, pp 65–78

235. Louchet J (2001) Using an individual evolution strategy for stereovision.
Genetic Programming and Evolvable Machines 2(2):101–109, DOI doi:10.1023/
A:1011544128842

236. Louchet J, Guyon M, Lesot MJ, Boumaza A (2002) Dynamic flies: a
new pattern recognition tool applied to stereo sequence processing. Pattern
Recognition Letters 23(1–3):335–345, DOI doi:10.1016/S0167-8655(01)00129-5

237. Loviscach J, Meyer-Spradow J (2003) Genetic programming of vertex shaders.
In: Chover M, Hagen H, Tost D (eds) Proceedings of EuroMedia 2003, pp 29–31

238. Luke S (1998) Evolving soccerbots: A retrospective. In: Proceedings of the
12th Annual Conference of the Japanese Society for Artificial Intelligence, URL
http://www.cs.gmu.edu/˜sean/papers/robocupShort.pdf

239. Luke S (2000) Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation 4(3):274–283, URL http://
ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf

240. Lukschandl E, Borgvall H, Nohle L, Nordahl M, Nordin P (2000) Distributed
java bytecode genetic programming. In: Poli R, Banzhaf W, Langdon WB,
Miller JF, Nordin P, Fogarty TC (eds) Genetic Programming, Proceedings of
EuroGP’2000, Springer-Verlag, Edinburgh, LNCS, vol 1802, pp 316–325, URL
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&
volume=1802&spage=316

241. Machado P, Romero J (eds) (2008) The Art of Artificial Evolution. Springer
242. Marenbach P (1998) Using prior knowledge and obtaining process insight in

data based modeling of bioprocesses. System Analysis Modeling Simulation
31:39–59

243. Markose S, Tsang E, Er H, Salhi A (2001) Evolutionary arbitrage for FTSE-
100 index options and futures. In: Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, IEEE Press, COEX, World Trade Cen-
ter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, pp 275–282, DOI doi:
10.1109/CEC.2001.934401, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/TsangCEE2001.pdf

244. Marney JP, Miller D, Fyfe C, Tarbert HFE (2001) Risk adjusted returns to
technical trading rules: a genetic programming approach. In: 7th International
Conference of Society of Computational Economics, Yale

245. Martin MC (2006) Evolving visual sonar: Depth from monocular images.
Pattern Recognition Letters 27(11):1174–1180, DOI doi:10.1016/j.patrec.
2005.07.015, URL http://martincmartin.com/papers/EvolvingVisualSonar-
PatternRecognitionLetters2006.pdf, evolutionary Computer Vision and Image
Understanding

246. Martin P (2001) A hardware implementation of a genetic programming
system using FPGAs and Handel-C. Genetic Programming and Evolvable
Machines 2(4):317–343, DOI doi:10.1023/A:1012942304464, URL http://www.
naiadhome.com/gpem-d.pdf

247. Massey P, Clark JA, Stepney S (2005) Evolution of a human-competitive quan-
tum fourier transform algorithm using genetic programming. In: Beyer HG,
O’Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E,

1010 W.B. Langdon et al.

Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H, Llora X, Mancoridis S,
Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson JP, Zitzler E (eds) GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, ACM Press, Washington DC, USA, vol 2, pp 1657–1663, URL http://
www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/docs/p1657.pdf

248. Maxwell III SR (1994) Experiments with a coroutine model for genetic
programming. In: Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, IEEE Press, Orlando, Florida, USA, vol 1,
pp 413–417a, URL http://ieeexplore.ieee.org/iel2/1125/8059/00349915.pdf?
isNumber=8059

249. McCormack J (2006) New challenges for evolutionary music and art.
SIGEvolution 1(1):5–11, URL http://www.sigevolution.org/2006/01/issue.pdf

250. McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA,
Rowland JJ, Kell DB, Goodacre R (2002) Monitoring of complex industrial
bioprocesses for metabolite concentrations using modern spectroscopies and
machine learning: Application to gibberellic acid production. Biotechnology
and Bioengineering 78(5):527–538, DOI doi:10.1002/bit.10226, URL http://
dbkgroup.org/Papers/biotechnol bioeng 78 (527).pdf

251. McKay B, Willis M, Searson D, Montague G (2000) Nonlinear continuum
regression: an evolutionary approach. Transactions of the Institute of Mea-
surement and Control 22(2):125–140, doi:10.1177/014233120002200202, URL
http://www.ingentaconnect.com/content/arn/tm/2000/00000022/00000002/
art00007

252. McPhee NF, Miller JD (1995) Accurate replication in genetic programming. In:
Eshelman L (ed) Genetic Algorithms: Proceedings of the Sixth International
Conference (ICGA95), Morgan Kaufmann, Pittsburgh, PA, USA, pp 303–309,
URL http://www.mrs.umn.edu/˜mcphee/Research/Accurate replication.ps

253. McPhee NF, Hopper NJ, Reierson ML (1998) Sutherland: An extensible
object-oriented software framework for evolutionary computation. In: Koza
JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon MH,
Goldberg DE, Iba H, Riolo R (eds) Genetic Programming 1998: Proceedings
of the Third Annual Conference, Morgan Kaufmann, University of Wisconsin,
Madison, Wisconsin, USA, p 241, URL http://www.mrs.umn.edu/˜mcphee/
Research/Sutherland/rsutherland gp98 announcement.ps.gz

254. Mercure PK, Smits GF, Kordon A (2001) Empirical emulators for first
principle models. In: AIChE Fall Annual Meeting, Reno Hilton, URL http://
www.aiche.org/conferences/techprogram/paperdetail.asp?PaperID=2373&
DSN=annual01

255. Meyer-Spradow J, Loviscach J (2003) Evolutionary design of BRDFs. In:
Chover M, Hagen H, Tost D (eds) Eurographics 2003 Short Paper Pro-
ceedings, pp 301–306, URL http://viscg.uni-muenster.de/publications/2003/
ML03/evolutionary web.pdf

256. Miller JF (1999) An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach. In: Banzhaf W,
Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Pro-
ceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufmann, Orlando, Florida, USA, vol 2, pp 1135–1142, URL http://citeseer.
ist.psu.edu/153431.html

Genetic Programming: An Introduction and Tutorial 1011

257. Miller JF, Smith SL (2006) Redundancy and computational efficiency in carte-
sian genetic programming. IEEE Transactions on Evolutionary Computation
10(2):167–174, DOI doi:10.1109/TEVC.2006.871253

258. Mitavskiy B, Rowe J (2006) Some results about the markov chains associated
to GPs and to general EAs. Theoretical Computer Science 361(1):72–110, DOI
doi:10.1016/j.tcs.2006.04.006

259. Montana DJ (1995) Strongly typed genetic programming. Evolutionary
Computation 3(2):199–230, URL http://vishnu.bbn.com/papers/stgp.pdf

260. Moore GE (1965) Cramming more components onto integrated circuits.
Electronics 38(8):114–117

261. Moore JH, Parker JS, Olsen NJ, Aune TM (2002) Symbolic discriminant
analysis of microarray data in automimmune disease. Genetic Epidemiology
23:57–69

262. Motsinger AA, Lee SL, Mellick G, Ritchie MD (2006) GPNN: Power stud-
ies and applications of a neural network method for detecting gene-gene
interactions in studies of human disease. BMC bioinformatics [electronic
resource] 7(1):39–39, DOI doi:10.1186/1471-2105-7-39, URL http://www.
biomedcentral.com/1471-2105/7/39

263. Neely CJ (2003) Risk-adjusted, ex ante, optimal technical trading rules in
equity markets. International Review of Economics and Finance 12(1):69–87,
DOI doi:10.1016/S1059-0560(02)00129-6, URL http://research.stlouisfed.org/
wp/1999/1999-015.pdf

264. Neely CJ, Weller PA (1999) Technical trading rules in the european mon-
etary system. Journal of International Money and Finance 18(3):429–458,
DOI doi:10.1016/S0261-5606(99)85005-0, URL http://research.stlouisfed.org/
wp/1997/97-015.pdf

265. Neely CJ, Weller PA (2001a) Predicting exchange rate volatility: Genetic pro-
gramming vs. GARCH and risk metrics. Working Paper 2001-009B, Economic,
Research, Federal Reserve Bank of St. Louis, 411 Locust Street, St. Louis, MO
63102-0442, USA, URL http://research.stlouisfed.org/wp/2001/2001-009.pdf

266. Neely CJ, Weller PA (2001b) Technical analysis and central bank inter-
vention. Journal of International Money and Finance 20(7):949–970, DOI
doi:10.1016/S0261-5606(01)00033-X, URL http://research.stlouisfed.org/wp/
1997/97-002.pdf

267. Neely CJ, Weller PA, Dittmar R (1997) Is technical analysis in the foreign
exchange market profitable? A genetic programming approach. The Journal
of Financial and Quantitative Analysis 32(4):405–426, URL http://links.
jstor.org/sici?sici=0022-1090%28199712%2932%3A4%3C405%3AITAITF%3
E2.0.CO%3B2-T

268. Neely CJ, Weller PA, Ulrich JM (2006) The adaptive markets hypothesis:
evidence from the foreign exchange market. Working Paper 2006-046B, Fed-
eral Reserve Bank of St. Louis, Research Division, P.O. Box 442, St. Louis,
MO 63166, USA, URL http://research.stlouisfed.org/wp/2006/2006-046.pdf,
revised March 2007

269. Nikolaev N, Iba H (2006) Adaptive Learning of Polynomial Networks Genetic
Programming, Backpropagation and Bayesian Methods. No. 4 in Genetic and
Evolutionary Computation, Springer, june

270. Nikolaev NY, Iba H (2002) Genetic programming of polynomial models for
financial forecasting. In: Chen SH (ed) Genetic Algorithms and Genetic

1012 W.B. Langdon et al.

Programming in Computational Finance, Kluwer Academic Press, chap 5,
pp 103–123

271. Nix AE, Vose MD (1992) Modeling genetic algorithms with Markov chains.
Annals of Mathematics and Artificial Intelligence 5:79–88

272. Nordin P (1994) A compiling genetic programming system that directly
manipulates the machine code. In: Kinnear, Jr KE (ed) Advances in Genetic
Programming, MIT Press, chap 14, pp 311–331, URL http://cognet.mit.edu/
library/books/view?isbn=0262111888

273. Nordin P (1997) Evolutionary program induction of binary machine code
and its applications. PhD thesis, der Universitat Dortmund am Fachereich
Informatik

274. Nordin P, Johanna W (2003) Humanoider: Sjavlarande robotar och artificiell
intelligens. Liber

275. Nordin P, Banzhaf W, Francone FD (1999) Efficient evolution of machine code
for CISC architectures using instruction blocks and homologous crossover. In:
Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) Advances in Genetic
Programming 3, MIT Press, Cambridge, MA, USA, chap 12, pp 275–299, URL
http://www.aimlearning.com/aigp31.pdf

276. Oakley H (1994) Two scientific applications of genetic programming: Stack
filters and non-linear equation fitting to chaotic data. In: Kinnear, Jr KE (ed)
Advances in Genetic Programming, MIT Press, chap 17, pp 369–389, URL
http://cognet.mit.edu/library/books/view?isbn=0262111888

277. Oltean M (2005) Evolving evolutionary algorithms using linear genetic
programming. Evolutionary Computation 13(3):387–410, DOI doi:10.1162/
1063656054794815, URL http://www.ingentaconnect.com/content/mitpress/
evco/2005/00000013/00000003/art00006

278. Oltean M, Dumitrescu D (2004) Evolving TSP heuristics using multi
expression programming. In: Bubak M, van Albada GD, Sloot PMA,
Dongarra J (eds) Computational Science - ICCS 2004: 4th Interna-
tional Conference, Part II, Springer-Verlag, Krakow, Poland, Lecture
Notes in Computer Science, vol 3037, pp 670–673, DOI doi:10.1007/
b97988, URL http://springerlink.metapress.com/openurl.asp?genre=article&
issn=0302-9743&volume=3037&spage=670

279. O’Neill M, Ryan C (2003) Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, Genetic programming, vol 4. Kluwer
Academic Publishers, URL http://www.wkap.nl/prod/b/1-4020-7444-1

280. Openshaw S, Turton I (1994) Building new spatial interaction models
using genetic programming. In: Fogarty TC (ed) Evolutionary Computing,
Springer-Verlag, Leeds, UK, Lecture Notes in Computer Science, URL http://
www.geog.leeds.ac.uk/papers/94-1/94-1.pdf

281. O’Reilly UM (1995) An analysis of genetic programming. PhD thesis, Carleton
University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario,
Canada, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/oreilly/
abstract.ps.gz

282. O’Reilly UM, Hemberg M (2007) Integrating generative growth and evolution-
ary computation for form exploration. Genetic Programming and Evolvable
Machines 8(2):163–186, DOI doi:10.1007/s10710-007-9025-y, special issue on
developmental systems

283. O’Reilly UM, Oppacher F (1994) The troubling aspects of a building
block hypothesis for genetic programming. In: Whitley LD, Vose MD (eds)

Genetic Programming: An Introduction and Tutorial 1013

Foundations of Genetic Algorithms 3, Morgan Kaufmann, Estes Park,
Colorado, USA, pp 73–88, URL http://citeseer.ist.psu.edu/cache/papers/cs/
163/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzunamayzSzpaperszSzfoga.pdf/
oreilly92troubling.pdf, published 1995

284. O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) (2004) Genetic Programming
Theory and Practice II, Genetic Programming, vol 8, Springer, Ann Arbor,
MI, USA, URL http://www.springeronline.com/sgw/cda/frontpage/0,11855,
5-40356-22-34954683-0,00.html

285. Oussaidène M, Chopard B, Pictet OV, Tomassini M (1997) Parallel genetic pro-
gramming and its application to trading model induction. Parallel Computing
23(8):1183–1198, URL http://citeseer.ist.psu.edu/cache/papers/cs/166/http:
zSzzSzlslwww.epfl.chzSz marcozSzparcomp.pdf/oussaidene97parallel.pdf

286. Owens JD, David, Govindaraju N, Harris M, Kruger J, Lefohn AE, Purcell
TJ (2007) A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1):80–113, DOI doi:10.1111/j.1467-8659.2007.
01012.x

287. Parrott D, Li X, Ciesielski V (2005) Multi-objective techniques in genetic pro-
gramming for evolving classifiers. In: Corne D, Michalewicz Z, Dorigo M,
Eiben G, Fogel D, Fonseca C, Greenwood G, Chen TK, Raidl G, Zalzala
A, Lucas S, Paechter B, Willies J, Guervos JJM, Eberbach E, McKay B,
Channon A, Tiwari A, Volkert LG, Ashlock D, Schoenauer M (eds) Pro-
ceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE
Press, Edinburgh, UK, vol 2, pp 1141–1148, URL http://goanna.cs.rmit.edu.
au/˜xiaodong/publications/183.pdf

288. Perkis T (1994) Stack-based genetic programming. In: Proceedings of the 1994
IEEE World Congress on Computational Intelligence, IEEE Press, Orlando,
Florida, USA, vol 1, pp 148–153, URL http://citeseer.ist.psu.edu/432690.html

289. Pillay N (2003) Evolving solutions to ASCII graphics programming problems in
intelligent programming tutors. In: Akerkar R (ed) International Conference on
Applied Artificial Intelligence (ICAAI’2003), TMRF, Fort Panhala, Kolhapur,
India, pp 236–243

290. Poli R (1996a) Discovery of symbolic, neuro-symbolic and neural networks
with parallel distributed genetic programming. Tech. Rep. CSRP-96-14,
University of Birmingham, School of Computer Science, URL ftp://ftp.cs.
bham.ac.uk/pub/tech-reports/1996/CSRP-96-14.ps.gz, presented at 3rd Inter-
national Conference on Artificial Neural Networks and Genetic Algorithms,
ICANNGA’97

291. Poli R (1996b) Genetic programming for image analysis. In: Koza JR, Goldberg
DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceedings of the
First Annual Conference, MIT Press, Stanford University, CA, USA, pp 363–
368, URL http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-GP1996.pdf

292. Poli R (1999) Parallel distributed genetic programming. In: Corne D, Dorigo
M, Glover F (eds) New Ideas in Optimization, Advanced Topics in Computer
Science, McGraw-Hill, Maidenhead, Berkshire, England, chap 27, pp 403–431,
URL http://citeseer.ist.psu.edu/328504.html

293. Poli R (2000a) Exact schema theorem and effective fitness for GP with one-
point crossover. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee
I, Beyer HG (eds) Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, Las Vegas, pp 469–476

1014 W.B. Langdon et al.

294. Poli R (2000b) Hyperschema theory for GP with one-point crossover, build-
ing blocks, and some new results in GA theory. In: Poli R, Banzhaf W,
Langdon WB, Miller JF, Nordin P, Fogarty TC (eds) Genetic Programming,
Proceedings of EuroGP’2000, Springer-Verlag, Edinburgh, LNCS, vol 1802,
pp 163–180, URL http://www.springerlink.com/openurl.asp?genre=article&
issn=0302-9743&volume=1802&spage=163

295. Poli R (2001) Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genetic Programming and
Evolvable Machines 2(2):123–163

296. Poli R (2003) A simple but theoretically-motivated method to control bloat
in genetic programming. In: Ryan C, Soule T, Keijzer M, Tsang E, Poli R,
Costa E (eds) Genetic Programming, Proceedings of EuroGP’2003, Springer-
Verlag, Essex, LNCS, vol 2610, pp 204–217, URL http://www.springerlink.
com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204

297. Poli R (2005) Tournament selection, iterated coupon-collection problem, and
backward-chaining evolutionary algorithms. In: Wright AH, Vose MD, De
Jong KA, Schmitt LM (eds) Foundations of Genetic Algorithms 8, Springer-
Verlag, Aizu-Wakamatsu City, Japan, Lecture Notes in Computer Science,
vol 3469, pp 132–155, URL http://www.cs.essex.ac.uk/staff/rpoli/papers/
foga2005 Poli.pdf

298. Poli R, Langdon WB (1997) A new schema theory for genetic programming
with one-point crossover and point mutation. In: Koza JR, Deb K, Dorigo
M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997:
Proceedings of the Second Annual Conference, Morgan Kaufmann, Stanford
University, CA, USA, pp 278–285, URL http://citeseer.ist.psu.edu/327495.
html

299. Poli R, Langdon WB (1998a) On the search properties of different crossover
operators in genetic programming. In: Koza JR, Banzhaf W, Chellapilla K,
Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds)
Genetic Programming 1998: Proceedings of the Third Annual Conference,
Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, pp
293–301, URL http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf

300. Poli R, Langdon WB (1998b) Schema theory for genetic programming with
one-point crossover and point mutation. Evolutionary Computation 6(3):231–
252, URL http://cswww.essex.ac.uk/staff/poli/papers/Poli-ECJ1998.pdf

301. Poli R, Langdon WB (2005a) Running genetic programming backward. In:
Riolo RL, Worzel B, Yu T (eds) Genetic Programming Theory and Practice,
Kluwer

302. Poli R, Langdon WB (2005b) Running genetic programming backward. In: Yu
T, Riolo RL, Worzel B (eds) Genetic Programming Theory and Practice III,
Genetic Programming, vol 9, Springer, Ann Arbor, chap 9, pp 125–140, URL
http://www.cs.essex.ac.uk/staff/poli/papers/GPTP2005.pdf

303. Poli R, Langdon WB (2006a) Backward-chaining evolutionary algorithms.
Artificial Intelligence 170(11):953–982, DOI doi:10.1016/j.artint.2006.04.003,
URL http://www.cs.essex.ac.uk/staff/poli/papers/aijournal2006.pdf

304. Poli R, Langdon WB (2006b) Efficient markov chain model of machine code
program execution and halting. In: Riolo RL, Soule T, Worzel B (eds) Genetic
Programming Theory and Practice IV, Genetic and Evolutionary Computa-
tion, vol 5, Springer, Ann Arbor, chap 13, URL http://www.cs.essex.ac.uk/
staff/poli/papers/GPTP2006.pdf

Genetic Programming: An Introduction and Tutorial 1015

305. Poli R, McPhee NF (2003a) General schema theory for genetic programming
with subtree-swapping crossover: Part I. Evolutionary Computation 11(1):53–
66, DOI doi:10.1162/106365603321829005, URL http://cswww.essex.ac.uk/
staff/rpoli/papers/ecj2003partI.pdf

306. Poli R, McPhee NF (2003b) General schema theory for genetic program-
ming with subtree-swapping crossover: Part II. Evolutionary Computation
11(2):169–206, DOI doi:10.1162/106365603766646825, URL http://cswww.
essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf

307. Poli R, Page J, Langdon WB (1999) Smooth uniform crossover, sub-machine
code GP and demes: A recipe for solving high-order boolean parity problems.
In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith
RE (eds) Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Morgan Kaufmann, Orlando, Florida, USA, vol 2, pp 1162–1169, URL
http://www.cs.bham.ac.uk/˜wbl/biblio/gecco1999/GP-466.pdf

308. Poli R, Rowe JE, McPhee NF (2001) Markov chain models for GP and variable-
length GAs with homologous crossover. In: Spector L, Goodman ED, Wu A,
Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH,
Burke E (eds) Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), Morgan Kaufmann, San Francisco, California, USA,
pp 112–119, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2001/d01.pdf

309. Poli R, McPhee NF, Rowe JE (2004) Exact schema theory and markov chain
models for genetic programming and variable-length genetic algorithms with
homologous crossover. Genetic Programming and Evolvable Machines 5(1):31–
70, DOI doi:10.1023/B:GENP.0000017010.41337.a7, URL http://cswww.essex.
ac.uk/staff/rpoli/papers/GPEM2004.pdf

310. Poli R, Di Chio C, Langdon WB (2005a) Exploring extended particle swarms:
a genetic programming approach. In: Beyer HG, O’Reilly UM, Arnold DV,
Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster
JA, de Jong ED, Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR,
Soule T, Tyrrell AM, Watson JP, Zitzler E (eds) GECCO 2005: Proceedings
of the 2005 conference on Genetic and evolutionary computation, ACM Press,
Washington DC, USA, vol 1, pp 169–176, URL http://www.cs.essex.ac.uk/
staff/poli/papers/geccopso2005.pdf

311. Poli R, Langdon WB, Holland O (2005b) Extending particle swarm optimi-
sation via genetic programming. In: Keijzer M, Tettamanzi A, Collet P, van
Hemert JI, Tomassini M (eds) Proceedings of the 8th European Conference
on Genetic Programming, Springer, Lausanne, Switzerland, Lecture Notes in
Computer Science, vol 3447, pp 291–300, URL http://www.cs.essex.ac.uk/
staff/poli/papers/eurogpPSO2005.pdf

312. Poli R, Langdon WB, Dignum S (2007a) On the limiting distribution of
program sizes in tree-based genetic programming. In: Ebner M, O’Neill M,
Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of the 10th
European Conference on Genetic Programming, Springer, Valencia, Spain,
Lecture Notes in Computer Science, vol 4445, pp 193–204, DOI doi:10.1007/
978-3-540-71605-1 18

313. Poli R, Woodward J, Burke E (2007b) A histogram-matching approach to the
evolution of bin-packing strategies. In: Proceedings of the IEEE Congress on
Evolutionary Computation, Singapore, accepted

1016 W.B. Langdon et al.

314. Potter MA (1997) The design and analysis of a computational model of coop-
erative coevolution. PhD thesis, George Mason University, Washington, DC,
URL http://www.cs.gmu.edu/˜mpotter/dissertation.html

315. Priesterjahn S, Kramer O, Weimer A, Goebels A (2006) Evolution of human-
competitive agents in modern computer games. In: Yen GG, Lucas SM, Fogel
G, Kendall G, Salomon R, Zhang BT, Coello CAC, Runarsson TP (eds) Pro-
ceedings of the 2006 IEEE Congress on Evolutionary Computation, IEEE
Press, Vancouver, BC, Canada, pp 777–784, URL http://ieeexplore.ieee.org/
servlet/opac?punumber=11108

316. Prügel-Bennett A, Shapiro JL (1994) An analysis of genetic algorithms using
statistical mechanics. Physical Review Letters 72:1305–1309

317. Quintana MI, Poli R, Claridge E (2006) Morphological algorithm design for
binary images using genetic programming. Genetic Programming and Evolv-
able Machines 7(1):81–102, DOI doi:10.1007/s10710-006-7012-3, URL http://
cswww.essex.ac.uk/staff/rpoli/papers/gpem2005.pdf

318. Ratle A, Sebag M (2000) Genetic programming and domain knowledge: Beyond
the limitations of grammar-guided machine discovery. In: Schoenauer M, Deb
K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel Problem
Solving from Nature - PPSN VI 6th International Conference, Springer Verlag,
Paris, France, LNCS, vol 1917, pp 211–220, URL http://www.lri.fr/˜sebag/
REF/PPSN00.ps

319. Reggia J, Tagamets M, Contreras-Vidal J, Jacobs D, Weems S, Naqvi W,
Winder R, Chabuk T, Jung J, Yang C (2006) Development of a large-scale
integrated neurocognitive architecture - part 2: Design and architecture. Tech.
Rep. TR-CS-4827, UMIACS-TR-2006-43, University of Maryland, USA, URL
https://drum.umd.edu/dspace/bitstream/1903/3957/1/MarylandPart2.pdf

320. Reif DM, White BC, Moore JH (2004) Integrated analysis of genetic, genomic,
and proteomic data. Expert Review of Proteomics 1(1):67–75, DOI doi:10.
1586/14789450.1.1.67, URL http://www.future-drugs.com/doi/abs/10.1586/
14789450.1.1.67

321. Reynolds CW (1987) Flocks, herds, and schools: A distributed behavioral
model. SIGGRAPH Computer Graphics 21(4):25–34, URL http://www.red3d.
com/cwr/papers/1987/boids.html

322. Riolo RL, Worzel B (2003) Genetic Programming Theory and Practice, Genetic
Programming, vol 6. Kluwer, Boston, MA, USA, URL http://www.wkap.nl/
prod/b/1-4020-7581-2, series Editor - John Koza

323. Riolo RL, Soule T, Worzel B (eds) (2007a) Genetic Programming The-
ory and Practice IV, Genetic and Evolutionary Computation, vol 5,
Springer, Ann Arbor, URL http://www.springer.com/west/home/computer/
foundations?SGWID=%4-156-22-173660377-0

324. Riolo RL, Soule T, Worzel B (eds) (2007b) Genetic Programming Theory and
Practice V, Genetic and Evolutionary Computation, Springer, Ann Arbor

325. Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH (2003) Optimization
of neural network architecture using genetic programming improves detec-
tion and modeling of gene-gene interactions in studies of human diseases.
BMC Bioinformatics 4(28), DOI doi:10.1186/1471-2105-4-28, URL http://
www.biomedcentral.com/1471-2105/4/28

326. Ritchie MD, Motsinger AA, Bush WS, Coffey CS, Moore JH (2007) Genetic
programming neural networks: A powerful bioinformatics tool for human

Genetic Programming: An Introduction and Tutorial 1017

genetics. Applied Soft Computing 7(1):471–479, DOI doi:10.1016/j.asoc.2006.
01.013

327. Rivero D, nal JRR, Dorado J, Pazos A (2004) Using genetic programming
for character discrimination in damaged documents. In: Raidl GR, Cagnoni
S, Branke J, Corne DW, Drechsler R, Jin Y, Johnson CR, Machado P,
Marchiori E, Rothlauf F, Smith GD, Squillero G (eds) Applications of Evolu-
tionary Computing, EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT,
EvoIASP, EvoMUSART, EvoSTOC, Springer Verlag, Coimbra, Portugal,
LNCS, vol 3005, pp 349–358

328. Robinson A, Spector L (2002) Using genetic programming with multiple data
types and automatic modularization to evolve decentralized and coordinated
navigation in multi-agent systems. In: Cantú-Paz E (ed) Late Breaking Papers
at the Genetic and Evolutionary Computation Conference (GECCO-2002),
AAAI, New York, NY, pp 391–396

329. Rodriguez-Vazquez K, Fonseca CM, Fleming PJ (2004) Identifying the struc-
ture of nonlinear dynamic systems using multiobjective genetic programming.
IEEE Transactions on Systems, Man and Cybernetics, Part A 34(4):531–545

330. Rosca JP (1997) Analysis of complexity drift in genetic programming. In:
Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo RL (eds)
Genetic Programming 1997: Proceedings of the Second Annual Conference,
Morgan Kaufmann, Stanford University, CA, USA, pp 286–294, URL ftp://
ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz

331. Rosca JP, Ballard DH (1996) Discovery of subroutines in genetic programming.
In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic Programming
2, MIT Press, Cambridge, MA, USA, chap 9, pp 177–202, URL ftp://ftp.cs.
rochester.edu/pub/u/rosca/gp/96.aigp2.dsgp.ps.gz

332. Ross BJ, Gualtieri AG, Fueten F, Budkewitsch P (2005) Hyperspectral image
analysis using genetic programming. Applied Soft Computing 5(2):147–156,
DOI doi:10.1016/j.asoc.2004.06.003, URL http://www.cosc.brocku.ca/˜bross/
research/gp hyper.pdf

333. Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd
edn. Springer-Verlag, pub-SV:adr, URL http://download-ebook.org/index.
php?target=desc&ebookid=5771, first published 2002, 2nd edition available
electronically

334. Ryan C (1999) Automatic Re-engineering of Software Using Genetic Program-
ming, Genetic Programming, vol 2. Kluwer Academic Publishers, URL http://
www.wkap.nl/book.htm/0-7923-8653-1

335. Ryan C, Ivan L (1999) An automatice software re-engineering tool based on
genetic programming. In: Spector L, Langdon WB, O’Reilly UM, Angeline PJ
(eds) Advances in Genetic Programming 3, MIT Press, Cambridge, MA, USA,
Ann Arbor, URL http://www.cs.bham.ac.uk/˜wbl/aigp3/ch02.pdf

336. Ryan C, Collins JJ, O’Neill M (1998) Grammatical evolution: Evolving pro-
grams for an arbitrary language. In: Banzhaf W, Poli R, Schoenauer M, Fogarty
TC (eds) Proceedings of the First European Workshop on Genetic Program-
ming, Springer-Verlag, Paris, LNCS, vol 1391, pp 83–95, URL http://www.
lania.mx/˜ccoello/eurogp98.ps.gz

337. Samuel AL (1983) AI, where it has been and where it is going. In: IJCAI,
pp 1152–1157

1018 W.B. Langdon et al.

338. Schmidt MD, Lipson H (2006) Co-evolving fitness predictors for accelerating
and reducing evaluations. In: Riolo RL, Soule T, Worzel B (eds) Genetic Pro-
gramming Theory and Practice IV, Genetic and Evolutionary Computation,
vol 5, Springer, Ann Arbor

339. Schoenauer M, Sebag M (2001) Using domain knowledge in evolutionary sys-
tem identification. In: Giannakoglou KC, Tsahalis D, Periaux J, Papailiou K,
Fogarty TC (eds) Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems, Athens

340. Schoenauer M, Lamy B, Jouve F (1995) Identification of mechanical behav-
ior by genetic programming part II: Energy formulation. Tech. rep., Ecole
Polytechnique, 91128 Palaiseau, France

341. Schoenauer M, Sebag M, Jouve F, Lamy B, Maitournam H (1996) Evolution-
ary identification of macro-mechanical models. In: Angeline PJ, Kinnear, Jr
KE (eds) Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chap 23, pp 467–488, URL http://citeseer.ist.psu.edu/cache/papers/cs/
902/http:zSzzSzwww.eeaax.polytechnique.frzSzpaperszSzmarczSzAGP2.pdf/
schoenauer96evolutionary.pdf

342. Searson DP, Montague GA, Willis MJ (1998) Evolutionary design of process
controllers. In: In Proceedings of the 1998 United Kingdom Automatic Control
Council International Conference on Control (UKACC International Confer-
ence on Control ’98), Institution of Electrical Engineers (IEE), University of
Wales, Swansea, UK, IEE Conference Publications, vol 455, URL http://www.
staff.ncl.ac.uk/d.p.searson/docs/Searsoncontrol98.pdf

343. Sekanina L (2003) Evolvable Components: From Theory to Hardware Imple-
mentations. Natural Computing, Springer-Verlag, URL http://www.fit.vutbr.
cz/˜sekanina/rehw/books.html.en

344. Setzkorn C (2005) On the use of multi-objective evolutionary algorithms for
classification rule induction. PhD thesis, University of Liverpool, UK

345. Shah SC, Kusiak A (2004) Data mining and genetic algorithm based gene/SNP
selection. Artificial Intelligence in Medicine 31(3):183–196, DOI doi:10.1016/
j.artmed.2004.04.002, URL http://www.icaen.uiowa.edu/˜ankusiak/Journal-
papers/Gen Shital.pdf

346. Sharabi S, Sipper M (2006) GP-sumo: Using genetic programming to evolve
sumobots. Genetic Programming and Evolvable Machines 7(3):211–230, DOI
doi:10.1007/s10710-006-9006-6

347. Sharman KC, Esparcia-Alcazar AI (1993) Genetic evolution of symbolic signal
models. In: Proceedings of the Second International Conference on Natural
Algorithms in Signal Processing, NASP’93, Essex University, UK, URL http://
www.iti.upv.es/˜anna/papers/natalg93.ps

348. Sharman KC, Esparcia Alcazar AI, Li Y (1995) Evolving signal processing
algorithms by genetic programming. In: Zalzala AMS (ed) First International
Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, GALESIA, IEE, Sheffield, UK, vol 414, pp 473–480, URL http://
www.iti.upv.es/˜anna/papers/galesi95.ps

349. Shaw AD, Winson MK, Woodward AM, McGovern AC, Davey HM, Kaderb-
hai N, Broadhurst D, Gilbert RJ, Taylor J, Timmins EM, Goodacre R, Kell
DB, Alsberg BK, Rowland JJ (2000) Bioanalysis and biosensors for bioprocess
monitoring rapid analysis of high-dimensional bioprocesses using multivari-
ate spectroscopies and advanced chemometrics. Advances in Biochemical

Genetic Programming: An Introduction and Tutorial 1019

Engineering/Biotechnology 66:83–113, URL http://www.springerlink.com/
link.asp?id=t8b4ya0bl42jnjj3

350. Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: Using genetic pro-
gramming to evolve robocode players. In: Keijzer M, Tettamanzi A, Collet
P, van Hemert JI, Tomassini M (eds) Proceedings of the 8th European Con-
ference on Genetic Programming, Springer, Lausanne, Switzerland, Lecture
Notes in Computer Science, vol 3447, pp 143–154, URL http://www.cs.bgu.
ac.il/˜sipper/papabs/eurogprobo-final.pdf

351. Si HZ, Wang T, Zhang KJ, Hu ZD, Fan BT (2006) QSAR study of 1,4-
dihydropyridine calcium channel antagonists based on gene expression pro-
gramming. Bioorganic & Medicinal Chemistry 14(14):4834–4841, DOI doi:
10.1016/j.bmc.2006.03.019

352. Siegel EV (1994) Competitively evolving decision trees against fixed training
cases for natural language processing. In: Kinnear, Jr KE (ed) Advances in
Genetic Programming, MIT Press, chap 19, pp 409–423, URL http://www1.
cs.columbia.edu/nlp/papers/1994/siegel 94.pdf

353. Sims K (1991) Artificial evolution for computer graphics. ACM Com-
puter Graphics 25(4):319–328, URL http://delivery.acm.org/10.1145/130000/
122752/p319-sims.pdf, sIGGRAPH ’91 Proceedings

354. Smart W, Zhang M (2004) Applying online gradient descent search to genetic
programming for object recognition. In: Hogan J, Montague P, Purvis M, Steke-
tee C (eds) CRPIT ’04: Proceedings of the second workshop on Australasian
information security, Data Mining and Web Intelligence, and Software Interna-
tionalisation, Australian Computer Society, Inc., Dunedin, New Zealand, vol 32
no. 7, pp 133–138, URL http://crpit.com/confpapers/CRPITV32Smart.pdf

355. Soule T, Foster JA (1998a) Effects of code growth and parsimony pressure on
populations in genetic programming. Evolutionary Computation 6(4):293–309,
URL http://mitpress.mit.edu/journals/EVCO/Soule.pdf

356. Soule T, Foster JA (1998b) Removal bias: a new cause of code growth in tree
based evolutionary programming. In: 1998 IEEE International Conference on
Evolutionary Computation, IEEE Press, Anchorage, Alaska, USA, pp 781–186,
URL http://citeseer.ist.psu.edu/313655.html

357. Spector L (2001) Autoconstructive evolution: Push, pushGP, and pushpop.
In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S,
Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), Morgan Kauf-
mann, San Francisco, California, USA, pp 137–146, URL http://hampshire.
edu/lspector/pubs/ace.pdf

358. Spector L (2004) Automatic Quantum Computer Programming: A Genetic
Programming Approach, Genetic Programming, vol 7. Kluwer Academic
Publishers, Boston/Dordrecht/New York/London, URL http://www.wkap.nl/
prod/b/1-4020-7894-3

359. Spector L, Alpern A (1994) Criticism, culture, and the automatic genera-
tion of artworks. In: Proceedings of Twelfth National Conference on Artificial
Intelligence, AAAI Press/MIT Press, Seattle, Washington, USA, pp 3–8

360. Spector L, Alpern A (1995) Induction and recapitulation of deep musical
structure. In: Proceedings of International Joint Conference on Artificial Intel-
ligence, IJCAI’95 Workshop on Music and AI, Montreal, Quebec, Canada, URL
http://hampshire.edu/lspector/pubs/IJCAI95mus-toappear.ps

1020 W.B. Langdon et al.

361. Spector L, Barnum H, Bernstein HJ (1998) Genetic programming for quan-
tum computers. In: Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M,
Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds) Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann,
University of Wisconsin, Madison, Wisconsin, USA, pp 365–373

362. Spector L, Barnum H, Bernstein HJ, Swamy N (1999a) Finding a better-
than-classical quantum AND/OR algorithm using genetic programming. In:
Angeline PJ, Michalewicz Z, Schoenauer M, Yao X, Zalzala A (eds) Proceed-
ings of the Congress on Evolutionary Computation, IEEE Press, Mayflower
Hotel, Washington D.C., USA, vol 3, pp 2239–2246, URL http://hampshire.
edu/˜lasCCS/pubs/spector-cec99.ps

363. Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) (1999b) Advances
in Genetic Programming 3. MIT Press, Cambridge, MA, USA, URL http://
www.cs.bham.ac.uk/˜wbl/aigp3

364. Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evo-
lution of control. In: Beyer HG, O’Reilly UM, Arnold DV, Banzhaf W, Blum
C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster JA, de Jong ED,
Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM,
Watson JP, Zitzler E (eds) GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation, ACM Press, Washington DC, USA,
vol 2, pp 1689–1696, URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2005/
docs/p1689.pdf

365. Stender J (ed) (1993) Parallel Genetic Algorithms: Theory and Applications.
IOS press

366. Stephens CR, Waelbroeck H (1997) Effective degrees of freedom in genetic
algorithms and the block hypothesis. In: Bäck T (ed) Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97), Morgan
Kaufmann, East Lansing, pp 34–40

367. Stephens CR, Waelbroeck H (1999) Schemata evolution and building blocks.
Evolutionary Computation 7(2):109–124

368. Sterling T (1998) Beowulf-class clustered computing: Harnessing the power
of parallelism in a pile of PCs. In: Koza JR, Banzhaf W, Chellapilla K, Deb
K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds)
Genetic Programming 1998: Proceedings of the Third Annual Conference, Mor-
gan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, p 883,
invited talk

369. Szymanski JJ, Brumby SP, Pope P, Eads D, Esch-Mosher D, Galassi M,
Harvey NR, McCulloch HDW, Perkins SJ, Porter R, Theiler J, Young AC,
Bloch JJ, David N (2002) Feature extraction from multiple data sources using
genetic programming. In: Shen SS, Lewis PE (eds) Algorithms and Tech-
nologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII,
SPIE, vol 4725, pp 338–345, URL http://www.cs.rit.edu/˜dre9227/papers/
szymanskiSPIE4725.pdf

370. Tackett WA (1993) Genetic generation of “dendritic” trees for image
classification. In: Proceedings of WCNN93, IEEE Press, pp IV 646–
649, URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/
GP.feature.discovery.ps.Z

371. Takagi H (2001) Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation. Proceedings of the IEEE
89(9):1275–1296, invited Paper

Genetic Programming: An Introduction and Tutorial 1021

372. Tanev I, Uozumi T, Akhmetov D (2004) Component object based single
system image for dependable implementation of genetic programming on
clusters. Cluster Computing Journal 7(4):347–356, DOI doi:10.1023/B:CLUS.
0000039494.39217.c1, URL http://www.kluweronline.com/issn/1386-7857

373. Taylor J, Goodacre R, Wade WG, Rowland JJ, Kell DB (1998) The decon-
volution of pyrolysis mass spectra using genetic programming: application to
the identification of some eubacterium species. FEMS Microbiology Letters
160:237–246, DOI doi:10.1016/S0378-1097(98)00038-X

374. Teller A (1994) Genetic programming, indexed memory, the halting problem,
and other curiosities. In: Proceedings of the 7th annual Florida Artificial Intelli-
gence Research Symposium, IEEE Press, Pensacola, Florida, USA, pp 270–274,
URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps

375. Teller A (1996) Evolving programmers: The co-evolution of intelligent recombi-
nation operators. In: Angeline PJ, Kinnear, Jr KE (eds) Advances in Genetic
Programming 2, MIT Press, Cambridge, MA, USA, chap 3, pp 45–68, URL
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/AiGPII.ps

376. Teller A, Andre D (1997) Automatically choosing the number of fitness cases:
The rational allocation of trials. In: Koza JR, Deb K, Dorigo M, Fogel DB,
Garzon M, Iba H, Riolo RL (eds) Genetic Programming 1997: Proceedings
of the Second Annual Conference, Morgan Kaufmann, Stanford University,
CA, USA, pp 321–328, URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/
papers/GR.ps

377. Teredesai A, Govindaraju V (2005) GP-based secondary classifiers. Pattern
Recognition 38(4):505–512, DOI doi:10.1016/j.patcog.2004.06.010

378. Theiler JP, Harvey NR, Brumby SP, Szymanski JJ, Alferink S, Perkins SJ,
Porter RB, Bloch JJ (1999) Evolving retrieval algorithms with a genetic pro-
gramming scheme. In: Descour MR, Shen SS (eds) Proceedings of SPIE 3753
Imaging Spectrometry V, pp 416–425, URL http://public.lanl.gov/jt/Papers/
ga-spie.ps

379. Todd PM, Werner GM (1999) Frankensteinian approaches to evo-
lutionary music composition. In: Griffith N, Todd PM (eds) Musi-
cal Networks: Parallel Distributed Perception and Performance, MIT
Press, pp 313–340, URL http://www-abc.mpib-berlin.mpg.de/users/ptodd/
publications/99evmus/99evmus.pdf

380. Tomassini M, Luthi L, Giacobini M, Langdon WB (2007) The structure of
the genetic programming collaboration network. Genetic Programming and
Evolvable Machines 8(1):97–103, DOI doi:10.1007/s10710-006-9018-2

381. Trujillo L, Olague G (2006a) Synthesis of interest point detectors through
genetic programming. In: Keijzer M, Cattolico M, Arnold D, Babovic V, Blum
C, Bosman P, Butz MV, Coello Coello C, Dasgupta D, Ficici SG, Foster J,
Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G,
Rothlauf F, Ryan C, Thierens D (eds) GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, ACM Press, Seat-
tle, Washington, USA, vol 1, pp 887–894, DOI doi:10.1145/1143997.1144151,
URL http://www.cs.bham.ac.uk/˜wbl/biblio/gecco2006/docs/p887.pdf

382. Trujillo L, Olague G (2006b) Using evolution to learn how to perform interest
point detection. In: et al XYT (ed) ICPR 2006 18th International Conference
on Pattern Recognition, IEEE, vol 1, pp 211–214, DOI doi:10.1109/ICPR.
2006.1153, URL http://www.genetic-programming.org/hc2006/Olague-Paper-
2-ICPR%-2006.pdf

1022 W.B. Langdon et al.

383. Tsang EPK, Li J, Butler JM (1998) EDDIE beats the bookies.
Software: Practice and Experience 28(10):1033–1043, DOI doi:10.1002/
(SICI)1097-024X(199808)28:10〈1033::AID-SPE198〉3.0.CO;2--1, URL http://
cswww.essex.ac.uk/CSP/finance/papers/TsBuLi-Eddie-Software98.pdf

384. Turing AM (1948) Intelligent machinery, report for National Physical Labora-
tory. Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected
Works of A. M. Turing. Amsterdam: North Holland. Pages 107127. Also
reprinted in Meltzer, B. and Michie, D. (editors). 1969. Machine Intelligence r5.
Edinburgh: Edinburgh University Press

385. Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460,
URL http://www.cs.umbc.edu/471/papers/turing.pdf

386. Usman I, Khan A, Chamlawi R, Majid A (2007) Image authenticity and
perceptual optimization via genetic algorithm and a dependence neighbor-
hood. International Journal of Applied Mathematics and Computer Sciences
4(1):615–620, URL http://www.waset.org/ijamcs/v4/v4-1-7.pdf

387. Vaidyanathan S, Broadhurst DI, Kell DB, Goodacre R (2003) Explana-
tory optimization of protein mass spectrometry via genetic search. Analyt-
ical Chemistry 75(23):6679–6686, DOI doi:10.1021/ac034669a, URL http://
dbkgroup.org/Papers/AnalChem75(6679-6686).pdf

388. Venkatraman V, Dalby AR, Yang ZR (2004) Evaluation of mutual information
and genetic programming for feature selection in QSAR. Journal of Chemical
Information and Modeling 44(5):1686–1692, DOI doi:10.1021/ci049933v

389. Vowk B, Wait AS, Schmidt C (2004) An evolutionary approach generates
human competitive coreware programs. In: Bedau M, Husbands P, Hutton
T, Kumar S, Sizuki H (eds) Workshop and Tutorial Proceedings Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems(Alife
XI), Boston, Massachusetts, pp 33–36, artificial Chemistry and its applications
workshop

390. Vukusic I, Grellscheid SN, Wiehe T (2007) Applying genetic programming to
the prediction of alternative mRNA splice variants. Genomics 89(4):471–479,
DOI doi:10.1016/j.ygeno.2007.01.001

391. Walker RL (2001) Search engine case study: searching the web using genetic
programming and MPI. Parallel Computing 27(1–2):71–89, URL http://www.
sciencedirect.com/science/article/B6V12-42K5HNX-4/1/57eb870c72fb7768
bb7d824557444b72

392. Walsh P, Ryan C (1996) Paragen: A novel technique for the autoparallelisation
of sequential programs using genetic programming. In: Koza JR, Goldberg DE,
Fogel DB, Riolo RL (eds) Genetic Programming 1996: Proceedings of the First
Annual Conference, MIT Press, Stanford University, CA, USA, pp 406–409,
URL http://cognet.mit.edu/library/books/view?isbn=0262611279

393. Weaver DC (2004) Applying data mining techniques to library design, lead gen-
eration and lead optimization. Current Opinion in Chemical Biology 8(3):264–
270, DOI doi:10.1016/j.cbpa.2004.04.005, URL http://www.sciencedirect.com/
science/article/B6VRX-4CB69R1-2/2/84a354cec9064ed07baab6a07998c942

394. Whigham PA (1995) A schema theorem for context-free grammars. In: 1995
IEEE Conference on Evolutionary Computation, IEEE Press, Perth, Australia,
vol 1, pp 178–181

395. Whigham PA (1996) Search bias, language bias, and genetic programming. In:
Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Genetic Programming 1996:

Genetic Programming: An Introduction and Tutorial 1023

Proceedings of the First Annual Conference, MIT Press, Stanford University,
CA, USA, pp 230–237

396. Whitley D (2001) An overview of evolutionary algorithms: practical issues
and common pitfalls. Information and Software Technology 43(14):817–
831, DOI doi:10.1016/S0950-5849(01)00188-4, URL http://www.cs.colostate.
edu/˜genitor/2001/overview.pdf

397. Whitley LD (1994) A Genetic Algorithm Tutorial. Statistics and Computing
4:65–85

398. Willis M, Hiden H, Marenbach P, McKay B, Montague GA (1997a) Genetic
programming: An introduction and survey of applications. In: Zalzala A
(ed) Second International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, GALESIA, Institution of Electrical
Engineers, University of Strathclyde, Glasgow, UK, URL http://www.staff.
ncl.ac.uk/d.p.searson/docs/galesia97surveyofGP.pdf

399. Willis MJ, Hiden HG, Montague GA (1997b) Developing inferential estima-
tion algorithms using genetic programming. In: IFAC/ADCHEM International
Symposium on Advanced Control of Chemical Processes, Banaff, Canada,
pp 219–224

400. Wilson G, Heywood M (2007) Introducing probabilistic adaptive map-
ping developmental genetic programming with redundant mappings. Genetic
Programming and Evolvable Machines 8(2):187–220, DOI doi:10.1007/
s10710-007-9027-9, special issue on developmental systems

401. Wong ML (1998) An adaptive knowledge-acquisition system using generic
genetic programming. Expert Systems with Applications 15(1):47–58, URL
http://cptra.ln.edu.hk/˜mlwong/journal/esa1998.pdf

402. Wong ML (2005) Evolving recursive programs by using adaptive grammar
based genetic programming. Genetic Programming and Evolvable Machines
6(4):421–455, DOI doi:10.1007/s10710-005-4805-8, URL http://cptra.ln.edu.
hk/˜mlwong/journal/gpem2005.pdf

403. Wong ML, Leung KS (1995) Inducing logic programs with genetic algo-
rithms: the genetic logicprogramming system genetic logic programming and
applications. IEEE Expert 10(5):68–76, DOI doi:10.1109/64.464935

404. Wong ML, Leung KS (1996) Evolving recursive functions for the even-parity
problem using genetic programming. In: Angeline PJ, Kinnear, Jr KE (eds)
Advances in Genetic Programming 2, MIT Press, Cambridge, MA, USA,
chap 11, pp 221–240

405. Wong ML, Leung KS (2000) Data Mining Using Grammar Based Genetic Pro-
gramming and Applications, Genetic Programming, vol 3. Kluwer Academic
Publishers

406. Wong ML, Wong TT, Fok KL (2005) Parallel evolutionary algorithms on
graphics processing unit. In: Corne D, Michalewicz Z, McKay B, Eiben G,
Fogel D, Fonseca C, Greenwood G, Raidl G, Tan KC, Zalzala A (eds) Proceed-
ings of the 2005 IEEE Congress on Evolutionary Computation, IEEE Press,
Edinburgh, Scotland, UK, vol 3, pp 2286–2293, URL http://ieeexplore.ieee.
org/servlet/opac?punumber=10417&isvol=3

407. Woodward AM, Gilbert RJ, Kell DB (1999) Genetic programming as an
analytical tool for non-linear dielectric spectroscopy. Bioelectrochemistry and
Bioenergetics 48(2):389–396, DOI doi:doi:10.1016/S0302-4598(99)00022-7,
URL http://www.sciencedirect.com/science/article/B6TF7-3WJ72RJ-T/2/
19fd01a6eb6ae0b8e12b2bb2218fb6e9

1024 W.B. Langdon et al.

408. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection
in evolution. In: Jones DF (ed) Proceedings of the Sixth International Congress
on Genetics, vol 1, pp 356–366

409. Xie H, Zhang M, Andreae P (2006) Genetic programming for automatic stress
detection in spoken english. In: Rothlauf F, Branke J, Cagnoni S, Costa E,
Cotta C, Drechsler R, Lutton E, Machado P, Moore JH, Romero J, Smith
GD, Squillero G, Takagi H (eds) Applications of Evolutionary Computing,
EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInter-
action, EvoMUSART, EvoSTOC, Springer Verlag, Budapest, LNCS, vol 3907,
pp 460–471, DOI doi:10.1007/11732242 41, URL http://www.springerlink.
com/openurl.asp?genre=article&issn=0302-9743&volume=3907&spage=460

410. Yangiya M (1995) Efficient genetic programming based on binary decision dia-
grams. In: 1995 IEEE Conference on Evolutionary Computation, IEEE Press,
Perth, Australia, vol 1, pp 234–239

411. Yu J, Bhanu B (2006) Evolutionary feature synthesis for facial expression
recognition. Pattern Recognition Letters 27(11):1289–1298, DOI doi:10.1016/
j.patrec.2005.07.026, evolutionary Computer Vision and Image Understanding

412. Yu J, Yu J, Almal AA, Dhanasekaran SM, Ghosh D, Worzel WP, Chinnaiyan
AM (2007) Feature selection and molecular classification of cancer using genetic
programming. Neoplasia 9(4):292–303, DOI doi:10.1593/neo.07121

413. Yu T (2001) Hierachical processing for evolving recursive and modular
programs using higher order functions and lambda abstractions. Genetic
Programming and Evolvable Machines 2(4):345–380, DOI doi:10.1023/A:
1012926821302

414. Yu T, Chen SH (2004) Using genetic programming with lambda abstraction
to find technical trading rules. In: Computing in Economics and Finance,
University of Amsterdam

415. Yu T, Riolo RL, Worzel B (eds) (2005) Genetic Programming Theory and
Practice III, Genetic Programming, vol 9, Springer, Ann Arbor

416. Zhang BT, Mühlenbein H (1993) Evolving optimal neural networks using
genetic algorithms with Occam’s razor. Complex Systems 7:199–220, URL
http://citeseer.ist.psu.edu/zhang93evolving.html

417. Zhang BT, Mühlenbein H (1995) Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation 3(1):17–38, URL http://
www.ais.fraunhofer.de/˜muehlen/publications/gmd as ga-94 09.ps

418. Zhang BT, Ohm P, Mühlenbein H (1997) Evolutionary induction of
sparse neural trees. Evolutionary Computation 5(2):213–236, URL http://
bi.snu.ac.kr/Publications/Journals/International/EC5-2.ps

419. Zhang M, Smart W (2006) Using gaussian distribution to construct fitness
functions in genetic programming for multiclass object classification. Pattern
Recognition Letters 27(11):1266–1274, DOI doi:10.1016/j.patrec.2005.07.024,
evolutionary Computer Vision and Image Understanding

420. Zhang Y, Rockett PI (2006) Feature extraction using multi-objective genetic
programming. In: Jin Y (ed) Multi-Objective Machine Learning, Studies in
Computational Intelligence, vol 16, Springer, chap 4, pp 79–106, invited chapter

Resources

Following the publication of [188], the field of GP took off in about 1990
with a period of exponential growth common in the initial stages of successful
technologies. Many influential initial papers from that period can be found in
the proceedings of the Intl. Conf. Genetic Algorithms (ICGA-93, ICGA-95),
the IEEE Confs. on Evolutionary Computation (EC-1994), and the Evolu-
tionary Programming Conference. A surprisingly large number of these are
now available online. After almost twenty years, GP has matured and is used
in a wondrous array of applications. From banking [265] to betting [383],
from bomb detection [102] to architecture [282], from the steel industry to the
environment [157], from space [234] to biology [159], and many others (as we
have seen in Sect. 7). In 1996 it was possible to list (almost all) GP applica-
tions [201], but today the range is far too great, so here we simply list some
GP resources, which, we hope, will guide readers towards their goals.

1 Key Books

There are today more than 31 books written in English principally on GP
or its applications, with more being written. These start with John Koza’s
1992 Genetic Programming (often referred to as ‘Jaws’). Koza has published
four books on GP: Genetic Programming II: Automatic Discovery of Reusable
Programs (1994) deals with ADFs; Genetic Programming 3 (1999) covers, in
particular, the evolution of analogue circuits; Genetic Programming 4 (2003)
uses GP for automatic invention.

MIT Press published three volumes in the series Advances in Genetic Pro-
gramming (1994, 1996, 1999).

The joint GP/genetic algorithms Kluwer book series edited by Koza and
Goldberg now contains 14 books, starting with Genetic Programming and

1026 W.B. Langdon et al.

Data Structures [203]. Apart from ‘Jaws’, these tend to be for the GP special-
ist.

1997 saw the introduction of the first textbook dedicated to GP [25].

Eiben [87] and Goldberg [115] provide general treatment on evolutionary algo-
rithms.

Other titles include: Principia Evolvica – Simulierte Evolution mit Mathemat-
ica (in German) [154] (English version [156]), Data Mining Using Grammar
Based Genetic Programming and Applications [405], Genetic Programming (in
Japanese) [151], and Humanoider: Sjavlarande robotar och artificiell intelli-
gens (in Swedish) [274].

Readers interested in mathematical and empirical analyses of GP behavior
may find Foundations of Genetic Programming [222] useful.

2 Videos

Each of Koza’s four books has an accompanying illustrative video. These are
now available in DVD format. Furthermore, a small set of videos on specific
GP techniques and applications is available from Google Video and YouTube.

3 Key Journals

In addition to GP’s own Genetic Programming and Evolvable Machines
journal (Kluwer), Evolutionary Computation, the IEEE Trans. Evolutionary
Computation, Complex Systems (Complex Systems Publication, Inc.), and
many others publish GP articles. The GP bibliography (http://www.cs.bham.
ac.uk/˜wbl/biblio/) lists a further 375 different journals worldwide that have
published articles related to GP.

4 Key International Conferences/Workshops

EuroGP has been held every year since 1998. All EuroGP papers are available
on line as part of Springer’s LNCS series. The original annual Genetic Pro-
gramming conference was hosted by Koza in 1996 at Stanford. Since 1999 it has
been combined with the Intl. Conf. Genetic Algorithms to form GECCO; 98%
of GECCO papers are available online. The Michigan-based Genetic Program-
ming Theory and Practice Workshop [284,322,323,415] will shortly publish its
fifth proceedings [324]. Other EC conferences, such as CEC, PPSN, Evolution
Artificielle, and WSC, also regularly contain GP papers.

Genetic Programming: An Introduction and Tutorial 1027

5 Online Resources

One of the reasons behind the success of GP is that it is easy to implement
your own version. People have coded GP in a huge range of different languages,
such as Lisp, C, C++, Java, JavaScript, Perl, Prolog, Mathematica, Pop-11,
MATLAB, Fortran, Occam and Haskell. Typically these evolve code which
looks like a very cut down version of Lisp. However, admirers of grammars
claim the evolved language can be arbitrarily complex, and certainly programs
in functional and other high level languages have been automatically evolved.
Conversely, many successful programs in machine code or low-level languages
have also climbed from the primordial ooze of initial randomness.

Many GP implementations can be freely downloaded. Two that have been
available for a long time and remain popular are: Sean Luke’s ECJ (in Java),
and Douglas Zonger’s ‘little GP’ lilGP (in C). A number of older (unsup-
ported) tools can be found at ftp://cs.ucl.ac.uk/genetic/ftp.io.com/. The most
prominent commercial implementation remains Discipulus [99].

There is a lot of information available on the the world wide web, although,
unfortunately, Internet addresses (URLs) change rapidly. Therefore we sim-
ply name useful pages here (rather than give their URL). A web search will
usually quickly locate them.

At the time of writing, the GP bibliography contains about 5000 GP entries.
About half the entries can be downloaded immediately. There are a variety of
interfaces including a graphical representation of GP’s collaborative network
(see Fig. 1). The HTML pages are perhaps the easiest to use. They allow quick
jumps between papers linked by authors, show paper concentrations and in
many cases direct paper downloads. The collection of computer sciences bibli-
ographies provides a comprehensive Lucene syntax search engine. Bibtex and
Refer files can also be searched but are primarily intended for direct inclusion
of bibliographic references in papers written in LaTeX and Microsoft Word,
respectively.

Almost since the beginning there has been an open active email discussion
list: the GP discussion group, which is hosted by Yahoo! For more reflective
discussions, the EC-Digest comes out once a fortnight and often contains GP
related announcements, while the organization behind GECCO also runs a
quarterly SIGEvolution newsletter.

Koza’s http://www.genetic-programming.org/ contains a ton of useful infor-
mation for the novice, including a short tutorial on ‘What is Genetic Pro-
gramming’, as well as LISP code for implementing GP, as in [188].

1028 W.B. Langdon et al.

Fig. 1. Co-author connections within GP. Each of the 1141 dots indicates an author.
The lines link people who have co-authored one or more papers. (To reduce clutter
only links to first authors are shown.) The online version is annotated by JavaScript
and contains hyperlinks to authors and their GP papers. The graph was created by
GraphViz twopi, which tries to place strongly connected people close together. It is
the ‘centrally connected component’ [380] and contains approximately half of all GP
papers. The remaining papers are not linked by co-authorship to this graph. Several
of the larger unconnected graphs are also available online via the gp-bibliography
web pages

The Particle Swarm Algorithm

Tim Hendtlass

Centre for Information Technology Research, Swinburne University of Technology,
Hawthorn VIC 3125, Australia, thendtlass@swin.edu.au

1 Introduction

Many algorithms are the result of biological inspiration and particle swarm
optimization (PSO) is no exception. However, the PSO algorithm has slightly
different end goals to the biological behavior that provides its inspiration
and so needs to differ from its biological inspiration in some, perhaps non-
biological, ways. PSO takes its inspiration from the flocking of birds and
fish. In the real world, the flock needs to be compact for protection, and
once food is found the flock should settle to feed. In the artificial particle
swarm optimization the aim of the algorithm is to find an optimum solution
to some problem, rather than the protection or food sought in the natural
environment. For PSO the correct behavior once an optimum is found is not
for all the particles in the swarm to converge on this, possibly local, optimum
as the goal is to check many optima in the hope of finding the global optimum.
Instead of converging, once an optimum has been found, it should be noted
and the particles should immediately disperse to look for another, perhaps
better, optimum. In Nature the time will come when a swarm that is feeding
has consumed the food so that the place is no longer optimal: if swarming
for protection the threat may change or even disappear completely. Then the
swarm will again set out. Such extended periods of convergence serve no useful
purpose so far as an artificial swarm is concerned.

If we model our PSO algorithm too closely on the behavior of birds and fish
we run the risk that we will achieve those aspects of the natural behavior that
we don’t want at the expense of the artificial behavior that we do want. While
retaining (possibly modified versions of) components that give the natural
swarm its efficient search capability, we should be prepared to add such non-
biological components as necessary so as to modify the natural behavior into
the type of behavior we desire. This Chapter is concerned with developing
the ideas behind a range of PSO algorithms, ranging from the simple (which

T. Hendtlass: The Particle Swarm Algorithm, Studies in Computational Intelligence (SCI) 115,

1029–1062 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

1030 T. Hendtlass

loosely models real life and so has substantially real life behavior) through
a series of progressively less biologically plausible algorithms that enable us
to achieve useful and practical, but un-biological, aims. The basics are the
same for all these algorithms. Since the extra abilities generally come at extra
computational cost, this Chapter will describe the strengths and limitations
of each so that the reader can make an informed choice as to which might be
best for any particular problem.

2 The Basic Particle Swarm Optimization Algorithm

In all particle swarm algorithms the position of a particular particle in some
way encodes a possible solution to the problem for which we seek, ideally an
optimal, but at least a very good solution. Particles move under the com-
bined influence of a number of factors in such a way that they tend to
converge towards an optimum. A number of slight variants of the particle
swarm algorithm have been proposed since the original algorithm was intro-
duced by [19]. All of these try to balance several aspects of the behavior. See,
for example, [5, 15, 23]

For an optimization algorithm to be more efficient than a random search
the choice of the next position to be searched must be guided by the positions
previously tested, and how good a solution those positions represented. Some
way must be found that allows this previous knowledge to be exploited so
that, on average, the next positions explored represent better solutions than
would have been found if the next positions had just been picked randomly.
Obviously storing all positions previously explored would rapidly produce an
unsupportable demand for memory, and manipulating them in any way an
insupportable computational load. So in the PSO only a few – often only two
– kinds of good positions are kept by each particle, and probably some (and
possibly all) the information about a particular particle’s stored positions is
shared with some or all of the other members of the swarm. There are a
number of candidates for the types of position to keep:

1. All particles try to exploit (are influenced to move towards) at least one
good position already found by some particle in the swarm. Often the
position that is exploited is the best position yet found by any member
of the swarm, a position known as the ‘global best’ or gbest position. This
obviously requires communication between the members of the swarm shar-
ing the best position each has found and forms a sort of social collective
memory of the current global best gbest position.

2. Rather than using all the members of the swarm, sometimes each particle
uses the best position – lbest – found by some subset of the swarm, the sub-
set to which this particle belongs. Often this is defined as the N physically
closest particles (in problem space) to this particle, but also the N closest
in terms of index can be used. For example, if this particle has index 7 in

The Particle Swarm Algorithm 1031

the list of particles, particles 5, 6, 8 and 9 might be the other members of
its subset. Although for this latter option the particles may be far apart
in problem space initially, attraction between the subset members has the
effect of moving them closer together over time so that the net effect is
quite similar to that of using the N physically closest particles. Not having
to calculate the distance between each pair of particles can be a significant
saving in time. Either the best current or the best position ever found by all
the particles that make up the subset can be used. While this information
is only directly shared among members of the subset, each particle can be
a member of many subsets and so information in time is spread across the
swarm.

3. The last position commonly used by a particle is the best position yet found
by this particle – pbest. Since each particle is attracted to its own personal
best position this does not depend on any inter-particle communication at
all (although of course this is the same information that is shared as part
of the calculation of whichever of gbest or lbest is also being used).

All particles are assumed to have mass so that they cannot change direc-
tion instantaneously. Furthermore, each time their velocity is updated it must
contain a component that is in the same direction as their previously cal-
culated velocity. This effectively provides a low pass filter to any change in
their velocity, and smooths the track the particle follows through the problem
space. The fraction of the previous component that is retained is called the
‘momentum’ and is a number greater than zero but less than one.

With only the use of momentum and gbest, particles would engage in a
headlong rush toward the first reasonable position found by any particle, only
changing this if some particle happens upon a better position during this
rush. Eventually all particles would reach the same best-known position and
exploration would stop. The particles would in time come to rest as, once a
particle overshot a position, it would be attracted back to it and, with the
momentum term being less than one, the velocity would drop with each rever-
sal. This behavior would mimic real life birds settling at the best-known food
source, but little exploration would occur during the headlong convergence
and this would represent the balance between exploration and exploitation
being tipped firmly towards exploitation.

With only the use of momentum and lbest, the behavior would depend on
whether each particle is sharing the current best or the best ever position it has
found. If the best ever is being kept the swarm could tend to divide and small
groups of particles converge on a number of different positions. Particularly
in the early stages the exact membership of the subsets would change, quite
possibly changing the position towards which the current subgroup’s particles
are being attracted. This is less social than using gbest and more exploration
will occur as the sub-swarms move towards their (generally) individual con-
vergence positions. The balance between exploration and exploitation is still
tipped strongly towards exploitation, but not as strongly as using momentum
and gbest.

1032 T. Hendtlass

If using momentum and lbest and the position recorded is the current best,
then the position that the particles in the sub-swarm are converging on is likely
to change often, but can as easily change to a lesser fitness as to a greater
fitness. With no collective memory of good positions found, the final position
where the swarm members end up is largely a matter of chance. The balance
between exploration and exploitation is now tipped quite strongly towards
exploration, but some small exploitation occurs as the particles that make up
a sub swarm share their current but not their historic information.

With only the use of momentum and pbest, each particle will end up on the
best position it has happened across during its travels. While this obviously
means that there will be some, probably many, positions explored by the swarm
with poorer fitness than those positions on which the swarm members finally
end up, there is no guarantee that the final positions will be good in a global
sense. This is pure exploration with very little attempt at exploitation at all.

It is when momentum is combined with an attraction to two of these
positions that the performance of the swarm improves sufficiently to make
it attractive as a practical optimization algorithm. Which two you choose
determines how greedy the algorithm would be.1 A very greedy algorithm will
converge fast, but not necessarily to a good position: a less greedy algorithm
will converge more slowly, possibly much more slowly, but the probability that
it will converge to a good position is enhanced.

The general form of the equation that governs the updating of each
particle’s velocity is given as:

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t

)
(1)

+
(

L×R2 × (Lbest−XT)
t

))

or

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t× | Gbest−XT |

)
(2)

+
(

L×R2 × (Lbest−XT)
t× | Lbest−XT |

))

In both of these equations, the parameter M is the momentum of the
particle [0..1] and controls how fast the particle is able to respond to the

1 A very greedy algorithm is one which attempts to optimize each step without
regard to the final result; a less greedy algorithm is prepared to make one or
more less optimal steps for now in the hope that these would set it up to make a
‘killer’ move later on.

The Particle Swarm Algorithm 1033

two positions of attraction. A high momentum will make the particle slow to
respond, which encourages exploration (and may enable the particle to move
through small local optima entirely); conversely a low momentum makes the
particle very quick to respond. Each of the two points of attraction has a
constant that sets its maximum importance (G and L, respectively) but the
two random numbers (R1 and R2 both in the range 0..1) introduce a stochas-
tic element into the actual attraction at any time. The introduction of the
1/t terms is to ensure that the dimensions of each part of the equation are
the same, namely the dimensions of velocity. The units of time are usually
arbitrary, allowing t to be set to one and so saving it having to be writ-
ten, but this time (whatever its value) is of great significance and has been
included in Eqn. (1) deliberately so it is not overlooked. It must be remem-
bered that, unlike real life, the algorithm assumes that a particle’s velocity
remains unchanged between fitness evaluations. A particle may travel a con-
siderable distance, and even pass through several possible optima, between
evaluations if t is large. Further implications of using a finite value for t will
be discussed below.

Commonly the attraction to each position is also made dependent on the
distance the particle is from the point of attraction: the further the particle is
away, the higher the attraction. This is the form of the above update equations.
While this can work well in simple problem spaces it may become unhelpful in
more complex problem spaces. When a particle is far from a point of attrac-
tion, the acceleration of the particle towards that point of attraction would
be high. By the time the particle reaches the point of attraction the particle’s
speed would be very high and so the distance it travels between evaluations
is also large. An alternate approach (as expressed in Eqn. (1)/(2)) is to make
the attraction to a point independent of the distance it is from that point.
Although a particle will still accelerate as a result of the continued attraction
to a point, this approach has the effect of limiting the maximum velocity par-
ticles can have and thus the maximum distance it can travel between fitness
evaluations.

A limiting speed may be introduced for use with either version of the
update equation. No particle is permitted to go faster than this limiting speed,
if the magnitude of the right hand side of Eqns. (1) or (2) is greater than this
limiting speed, the new speed of the particle is set to this limiting value but
with the direction calculated from the equation. However the initial accelera-
tion will be faster than if Eqn. (1)(Eqn. (2)) as stated above is used, and more
of the journey will tend to occur at this limiting velocity, reducing the number
of fitness evaluations along the journey.

To complete the description of Eqn. (1)(Eqn. (2)) it only remains to dis-
cuss which pair of attraction points to use. Originally, gbest and pbest were
used, the former providing the social exploitation and the latter the personal
exploration. Replacing pbest with lbest is a viable alternative as long as the
size of the neighbourhood remains a modest fraction (say 10%) of the total

1034 T. Hendtlass

swarm. If this is done the algorithm is made slightly greedier but a significant
amount of exploration is still undertaken. Using lbest and pbest is the least
greedy version of all and provides the least exploitation and the most explo-
ration. The swarm may finally converge owing to the overlap between the
sub-swarms of each of the particles.

Having calculated the new velocity for each particle the only other step
in the algorithm is to move each particle ready for the next iteration. As
mentioned above, it is assumed that the velocity of the particle does not
change during the time t between updates (and evaluations). The position
update equation is given as Eqn. (3), again with the inter-evaluation time t
explicitly shown so as to make the equation dimensionally consistent.

XT+t = XT + t× V T+t (3)

2.1 Pseudo Code Algorithm for the Basic PSO

Algorithm 4 Basic Particle Swarm Optimization Algorithm

1. Randomly assign each particle to some point in problem space with some (small)
random velocity and evaluate the fitness of each particle at its current position.
while no stopping condition is met do

2. Update gbest for the swarm, pbest for each particle (if these are to be used).
if lbest is to be used then

find the other particles that make up the sub-swarm of each particle, and
update lbest for each particle from either the current best or the personal
best fitness of it and its neighbours.

3. Calculate the new velocity of each particle using Eqn. (1)/(2) (if not using
either gbest or lbest, replace then with the position you are using).
4. Move each particle using Eqn. (3) and evaluate its fitness at this new position.

The stopping condition could be achieving acceptable performance OR the
swarm having converged without achieving adequate performance OR some
maximum number of fitness evaluations having been made without either
of the first two conditions being met. A swarm has converged when all the
particles are (eventually) at the same position and the velocity of each particle
is approaching zero.

3 Enhancements to the Basic Particle Swarm Algorithm

3.1 Constriction Factors

The whole right side of Eqns. (1) and (2) can be multiplied by a constriction
factor. The purpose of this factor is to drop the average speed of the particles
as time goes on. By doing this one of the problems with using a finite time
between updates (t) can be addressed. If a particle is travelling fast it can

The Particle Swarm Algorithm 1035

cover a considerable distance in problem space in this time and may well pass
over a point of interest without observing it, as no evaluation was made. This
risk may be acceptable when the swarm is dispersed as the aim is to find
regions of interest and there are probably other reasonably interesting points
in the vicinity of this unobserved one. However, this is not so acceptable when
the swarm is settling and trying to find the best point in a more restricted
region as it will result in many unnecessary crossings and re-crossings of the
best point thus increasing the time taken to find the best point.

The constriction factor could be just a fixed number less than one, but
finding a suitable value for this number a priori is not easy. A better approach
[8,9,11] takes into account the current behavior of the swarm and adjusts the
constriction factor accordingly.

3.2 Adding Controlled Diversification

The tendency of a swarm to converge is beneficial when the swarm is exploring
in the vicinity of an optimum but may well be counter productive if the
swarm as a whole is still in transit searching for a suitable point to explore.
Then it would be desirable for the swarm to diverge so as to explore more
territory. Comparing the average velocity and the average speed of the swarm
can help identify these two situations; if the average speed is significantly
higher than the average velocity then it is reasonable to assume that the
swarm particles are around a region of interest but approaching it in different
directions. However, if the average speed and the average velocity have similar
non-zero magnitudes then the swarm is probably sweeping through problem
space. In this latter case deliberate measures can be taken to counter the
natural tendency of the swarm to converge so as to more efficiently search the
problem space – for more details see [17].

3.3 Handling Problem Constraints

Problem constraints can take many forms, for example possibly limited ranges
of values for one or more variables or regions of problem space that correspond
to non-viable solutions.

The first of these can be addressed by only allowing problem space to be
of finite duration in the direction that corresponds to that particular vari-
able. Any movement past the limit results in the particle re-appearing at the
beginning. Effectively the axis is no longer an infinite straight line but a circle.
This ensures that only permitted values of this variable are ever explored. The
formula to update the position is no longer complete in itself; it has to have
two conditional clauses added. For example, if the range of values is from 2
to 8, the clauses would be:

• if position ≥ 8 then position = position – 6
• if position is < 2 then position = position + 6

1036 T. Hendtlass

It might be necessary to apply these conditional clauses repeatedly until
the position was within the meaningful range. The calculation of the distance
between two particles would now have to take into account the fact that, for
this dimension at least, the shortest distance (the one that should be used)
could be in either direction around the circular axis. Should the acceptable
values for this variable form a series of discontinuous ranges (say, 2 – 5 and
8 – 12) the range of the axis should be set to be the sum of these ranges (3 +
4 = 7 in this example). A mapping needs to be made between the position of
the axis and the value this represents before the fitness is evaluated. For the
example given here this would be:

• if position ≥ 0 and < 3 then value = position + 2
• if position is ≥ 3 and < 7 then value = position + 5

The distance between two particles would be calculated as described above,
that is without taking into account the mapping.

The second constraint can be accommodated by a small change to the
rule to update the global best and local best positions. A particle can only
update these if its value is better AND it is in a region of problem space that
the fitness function reports as being feasible. A particle can only include in
its neighbourhood other particles that are currently in feasible space. It is
possible that a particle itself and all other particles in infeasible space, in this
case there is no local best and the contribution of the term involving the local
best to the velocity update (Eqn. (1) or (2)) is set to zero. The momentum
of the particles, useful in helping them sweep through local optima, will also
help them sweep through regions of non-feasible space. Should there be no
particle in valid problem space at the first fitness evaluation there will be
no global best position and that term in Eqns. (1) and (2) will also be zero,
and all particles will move in straight lines. However as soon as some particle
finds a region of feasible space it can update and the convergence process will
start. A problem space that is mostly infeasible would probably form quite
a challenge, but more feasible problem spaces can be handled, as described
above.

4 Particle Swarm Optimization of Multiple Optima

The performance of the basic particle swarm algorithm is good for problems
with one best global optimum as long as the total number of optima does not
get too high; ‘good’ in this context means both in terms of the quality of the
results obtained and in the speed with which they are found. The quality of
the solutions found for a given problem is comparable with those found by
a Genetic Algorithm (GA), but the time take to find them is typically one
tenth of that required.

The Particle Swarm Algorithm 1037

However, not all problems fit into this simple category. Modifications can
be made to the basic swarm algorithm to produce variations that are suited
to at least some more complex classes of problem.

4.1 Exploring Multiple Optima

Many problems may have a number of optima whose fitness is similar. Allow-
ing the swarm to converge to just one may not be the best move. Firstly there
is no guarantee that convergence will occur to the global best optimum, indeed
practical considerations may make the choice as to which is the best require
considerations that are over and above just the numeric fitness value. Under
these conditions we would like the algorithm to find several good optima and
allow someone (or something) with knowledge of the broader picture to make
the final choice.

An example might help. Suppose that the problem being solved is to find
a good manufacturing schedule. When selecting the schedule for Thursday
(say), the manager may know that certain members of their workforce would
have attended a lively social occasion on Wednesday night. As a result it might
be better to give them a lighter load on Thursday morning while they over-
came the effects of the previous night. Given a range of possible schedules they
might choose one that was likely to have the best practical outcome (given
the extraneous factors) rather than chose the one with the best theoretical
outcome. There could be many possible outside factors occurring too infre-
quently to be worth building into the fitness calculation for possible schedules.
Better to give a range of good possibilities and let the human use their extra
knowledge when making the final choice.

There are two basic approaches: if the number of good optima is small
we might like to quickly perform a parallel exploration of these, with sub-
sections of the total swarm each exploring a different optimum. Of course the
absolute (and impractical) limit to the number of optima that can be explored
in parallel is the number of particles in the swarm. This is impractical as a
sub-swarm of one particle cannot use any social exploitation at all. If the
number of potential optima that should be explored is large, then rather than
exploring them all at once we would explore them in turn (serial exploration).
Both of these approaches will be considered in this Section.

4.2 Achieving Parallel Exploration of Several Positions
of Interest (niching)

The aim here is for the swarm to break automatically into sub-swarms and
for these sub-swarms to converge onto different optima. While easy to state,
achieving a practical realization presents many problems. If gbest is used the
swarm will tend to converge all to one point. If gbest is replaced by lbest how
many optima the swarm finds depends on the degree of overlap between the

1038 T. Hendtlass

local regions from which best is derived. This degree of overlap has proved
hard to control.

An alternate, and more successful, approach has been to develop a niching
PSO [13: 67–69] that starts with a single main swarm and finishes with a
number of smaller independent swarms. The particles in each of the smaller
swarms communicate only with other members of its own swarm; there is no
communication between swarms. The main swarm is generally trained using
only the pbest position. Once some member of the main swarm is deemed to
be in the vicinity of an optimum, a sub-swarm is formed by grouping together
a number of particles in close proximity to the potential optimum. These
communicate only with each other so as to further explore the optimum –
now also using gbest attraction. These chosen particles refine the absolute best
position, never leaving the vicinity of the optimum. Meanwhile the members of
the main swarm that were not chosen for this sub-swarm continue using only
pbest and look for another optimum (or at least a place that seems worthy of
closer study).

Ideally the sub-swarms would never come close and no member of the main
swarm would wander into a region being explored by a sub-swarm. In reality,
of course, both things do happen. In the first case the two sub-swarms are
merged (become aware of the performance of each other’s members), which
at the cost of using more particles may provide a more thorough exploration
of the local space. In the second case the particle is just recruited to (joins)
the sub-swarm it is moving through.

The niching PSO can explore a few different regions but since the particles
that form a sub-swarm never leave the region they are exploring, the maximum
number of regions that can be explored is set by the size of the original main
swarm and by how many particles are recruited to form each sub-swarm. As
the number of potential regions that require investigation increases, parallel
exploration will obviously become quite inefficient.

4.3 Achieving Serial Exploration of Many Positions
of Interest (WoSP)

An alternate approach that uses Waves of Swarm Particles (WoSP), intro-
duced by [14], achieves serial exploration of an, in principle, infinite number
of positions of interest. Actually it is not strictly serial as at any given time
a small number of regions of interest are typically being explored in paral-
lel. This behavior is achieved by reinforcing the tendency to totally converge
rather than trying to slow or even inhibit total convergence, but once they
have converged forcing particles to be ejected with significant velocities so
that they carry on searching for other optima. This behavior is achieved by
adding an extra short-range force of attraction to the basic swarm equation

The Particle Swarm Algorithm 1039

(as shown in Eqn. (4)) and making use of the finite time between velocity
updates for particles.

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t× | Gbest−XT |

)

+
(

L×R2 × (Lbest−XT)
t× | Lbest−XT |

))
+ SRF (4)

where SRF is the net short range force acting on this particle. The ith
component of the short range force exerted on particle x by particle y is
given by

SRFxyi − SRF factor × Vxyi

D
SRFpower
xy

(5)

where Vxyi is the ith component of the velocity of particle x with respect to
particle y, Dxy is the distance from particle x to particle y, SRFfactor is the
magnitude of the short range force at unit distance, and SRFpower sets how
fast this force decreases with distance.

As a result of the discrete way in which fitness evaluations and updates to
the velocity of the particles is done, an aliasing effect causes pairs of particles
to approach, pass each other and then continue at very high velocities. The
closer particles approach each other the higher the probability of this happen-
ing. There is no longer a need to try to stop the particles fully converging;
once converged this aliasing effect will cause particles to be ‘ejected’. As the
velocity with which the particles leave the swarm is variable, exploration can
continue both locally and at a distance.

The way in which this aliasing effect works is as follows. As particles
approach each other the magnitude of the short-range force will increase sig-
nificantly, producing a substantial increase in the velocity of the particles
towards each other. For discrete evaluation, by the time of the next evalua-
tion, particles may have passed each other and be at such a distance apart
that the short-range attraction that might bring them back together is far too
weak to do this. As a result, the particles will continue to move rapidly apart
with almost undiminished velocity, exploring beyond their previous positions.
This process is shown in Fig. 1. The ‘snapshots’ are taken starting at some
arbitrary time T (at the top), with the lower ‘snapshots’ being taken progres-
sively later. The time interval between ‘snapshots’ is the basic time interval
for the PSO and is represented by t.

At time T , the separation between the particles is moving into the region
in which the magnitude of the short-range attraction (shown by broad arrows)
is becoming significant. This augments the effect of their velocities (shown by
thin arrows) so that the particles move close together. By time T + t the
particles are close and the short-range effect is large. As a result, the velocity

1040 T. Hendtlass

Fig. 1. A series of ‘snapshots’ showing the two particles (shown as circles), their
velocities (thin arrows), and forces (thick arrows)

of the particles increases substantially, almost entirely as a consequence of the
short-range attraction. By time T + 2t when the next evaluation is made the
particles have passed each other, and are so far apart the short-range force
is weak. Consequently, the particles continue to diverge, retaining at T + 2t
much of the velocity obtained as a result of the short-range forces acting at
time T + t. The short-range forces will continue to decrease as the particles
move apart, leaving only the normal swarm factors to influence their future
movement in the absence of other close encounters.

The total swarm automatically becomes broken into a number of sub-
swarms called ‘waves’, each with its own gbest value. Particles that leave a
converging swarm as a result of this aliasing effect leave the wave they were
in and are ‘promoted’ to join the highest numbered (most recently created)
wave. Should the particle already be part of the highest numbered wave,
the particle becomes the founder member of a new ‘most recently created’
wave. Importantly, a form of evolution is introduced by making all particles
from some lower performing wave be compulsorily recruited into a better
performing higher numbered wave. Waves that run out of particles (owing to
promotion or recruitment) die out. In this way there is a continual automatic
updating of best position information available to the successive waves.

For static problems2 each particle keeps a tabu list of places that it has
already explored and is repelled from any place on its tabu list. In this
way re-exploration of any point in problem space is largely (but not totally)
eliminated and much pointless computation saved.

2 The minor changes to suit WoSP to dynamic problems, ones that change even
whilst the optimization algorithm is running, will be discussed later.

The Particle Swarm Algorithm 1041

5 Controlling the Computational Expense

Whichever version of PSO is used, every time a particle moves to a new posi-
tion the fitness of this particle at this position has to be calculated. For real
life complex problems this fitness calculation may well dominate the compu-
tational load of the algorithm. Although the PSO lends itself to being run on
a number of computers in parallel (for example each particle’s current fitness
being evaluated simultaneously by a different computer), for really complex
problems even this approach is not adequate and it behoves us considering
ways to improve the computational efficiency of the PSO algorithm. Two
possible computational enhancement possibilities will be mentioned here.

5.1 Using a Dynamic Swarm Size

Since the fitness of each particle has to be evaluated for every iteration of the
algorithm, one possible approach is to limit the number of particles. While
swarms do not need to be large, too few swarm members will limit the search
capability and thus the average quality of the results obtained. However, the
number of particles does not need to be constant. When the swarm is converg-
ing and the particles get very close together it may be a waste of resources to
support so many particles. Some particles could simply be ‘switched off’ and
take no further part in the swarm thus saving their evaluations. Of course, the
monitoring required and deciding when such action should be taken, must not
add so much computational cost as to negate the computational advantage we
seek to gain. In addition, knowing precisely when and which particles should
be switched off is in itself a non-trivial matter.

5.2 Fitness Estimation

It is possible to avoid having to measure the fitness at every position if you can
instead estimate it. This has been shown to work for genetic algorithms [23]
and a variation has been shown to work for PSO for a range of problems [12].
The idea is to estimate the fitness of a particle at a new position using the
fitness of this particle last time it was estimated or evaluated together with
the fitness of the particle that last iteration was closest to this new position.
These fitnesses may be estimates themselves and may have been estimated
from other fitnesses that were themselves estimates. Obviously a fitness based
on estimates that were based on estimates, and so forth, would not be very
accurate and so a new parameter is associated with a particle’s fitness – its
‘reliability’. This is set to one if the fitness was found as a result of a true
evaluation, and this figure is decreased every time an estimation of the fitness
is made. When a fitness drops below a threshold, the estimation is discarded
and a true evaluation done, returning the reliability to one.

The formulae for estimating the fitness and reliability of the particle in
the new position (Fnew and Rnew) in terms of the fitness and reliability of the

1042 T. Hendtlass

two closest positions to its new position during the last iteration (F1, R1 and
F2, R2) are:

Fnew =
W1F1R1 + W2F2R2

W1R1 + W2R2
(6)

and

Rnew =
(W1R1)2 + (W2R2)2

W1R1 + W2R2
(7)

where W1 and W2 are the relative weightings to be placed on the two closest
positions. These weightings are derived from the Cartesian distances between
the new position and each of the two closest positions last iteration (D1 and
D2):

W1 = 1− D1

D1 + D2
(8)

and
W2 = 1− D2

D1 + D2
(9)

Figure 2 shows the fitness values (and their reliabilities) that would be
calculated for a simple one-dimensional case, where the values are derived
from a fitness of 1 (reliability 0.8) at position 15 and another fitness of 2
(reliability 0.6) at position 25. Notice how the fitness and reliability matches
at each known point. The fitness is linearly interpolated between the two
known points and moves asymptotically to the average of the two fitnesses at
points far from them. The reliability however falls away the further we move

Fig. 2. An example fitness and reliability calculation in one dimension

The Particle Swarm Algorithm 1043

from a known point – note how the value is influenced by the reliability of the
closest known point.

The only new parameter introduced to the algorithm is the reliability
threshold T [0..1] that is used to determine when a true fitness evaluation
is required (a threshold of 1 would result in true evaluations every time as in
a conventional PSO). The initial positions of all particles must be truly evalu-
ated and their reliability set to 1. However, after this the following algorithm
is used whenever a particle’s fitness is required. Note that it only requires
a list to be kept of the positions, fitness and reliability of all particles’ last
iteration. It would, of course, be possible to keep a list of positions, fitness
and reliability triads derived from more than just the last iteration, but expe-
rience so far suggests that any modest increase in performance is not worth
the computational cost.

Algorithm 5 PSO position, fitness and reliability algorithm
1. Record the distance this particle has moved since last iteration and this
particle’s fitness and reliability last iteration.
2. Find the particle whose position last iteration was closest to this particle’s
current position and record its fitness and reliability, together with the distance
from this particle’s current position.
3. Using Eqns. (8) and (9) calculate the relevant weighing factors for each of these
two positions.
4. Using Eqns. (6) and (7) estimate the fitness and reliability of the fitness estimate
for this particle’s current position.
if this reliability is greater than the threshold then

keep these fitness and reliability estimates.
else

discard the fitness estimate and perform a true fitness evaluation;
set reliability of this fitness to 1.

Experiments have shown that there is no significant difference in the aver-
age performance at any number of iterations of the algorithm with or without
fitness estimation. However, using fitness estimation would have required far
fewer real fitness evaluations, a saving in time if the time for a true fitness
evaluation is greater than the time required to find the closest particle and
calculate the fitness estimate. This condition will be met for many real life
practical problems, and so for these problems using fitness estimation will
allow you to obtain essentially the same result in a shorter time.

6 Dynamic Optimization Problems

Dynamic optimization problems are problems in which the objective function
being optimized changes in some way while the optimization is taking place.
Obviously there will be some limit to the rate of change that can be tracked,

1044 T. Hendtlass

but swarms are able to adapt to changing conditions as long as they are not
too rapid. The changes can be divided into three groups [22]:

1. The actual problem being changes alters as time passes. For example, when
scheduling the delivery of goods to multiple places the original aim of
minimizing fuel usage is replaced by an overwhelming need to minimize
the number of late deliveries.

2. The components available to use in building the solution change. To con-
tinue the same example used above, some delivery trucks break down and
others are returned from repair and become available.

3. There is a change to the constraints on the problem. Still continuing the
same example, some of the roads that might be used now have altered
speed restrictions.

In practice however, much of the work in the area of dynamic problems
has been done on function optimization problems in which the position and/or
magnitude of peaks in the function vary with time.

When attempting to find and track optima in dynamic problems, the
swarm behavior must become even more un-biological. It is a more biolog-
ically plausible scenario to have to track an optimum that slowly changes
position (while remaining a good optimum) than to have to find the global
optimum from a number of local optima that change their relative quality
ranking (and possibly position). It is not surprising therefore that, provided
the swarm is not allowed to fully converge so that the velocity of each particle
is reduced to zero, a slowly moving peak can expect to be followed in the
sense of there being a high probability that one or more particles will tra-
verse sufficiently close to the moving peak at the time of a fitness evaluation
that the new position of the optimum is discovered. A number of methods to
ensure incomplete convergence will be described below but on their own none
of these is a complete solution as some mechanism also has to be introduced
to update the best fitness known based on a combination of the value found
and the time at which it was found.

To observe the emerging eminence of a local optimum far from the position
towards which the swarm was just converging requires some swarm particles
to be exploring in the vicinity of this distant position. Various methods to
achieve this will also be described below. Again the maintenance of a number
of explorer particles is not a complete solution. The social factors (the best
position found by each particle and by the swarm) must also be updated as
the old information goes out of date.

6.1 Ways to Achieve these Adaptations

As suggested above there are a number of non-biological adaptations that need
to be made to the classical swarm algorithm to suit it for dynamic problems.
These can be summarized as:

The Particle Swarm Algorithm 1045

• preventing the complete convergence of the swarm,
• keeping personal and social reference points up-to-date, and
• maintaining or generating explorer particles far from any current point of

convergence.

Approaches that achieve at leat one of these aims will be considered.

6.2 Preventing Total Convergence

Social influences between particles – attractions to gbest and lbest – will clearly
tend to result in total convergence. In order to change this it is necessary to
introduce some counter influence.

One method, introduced by [1] is to give at least some particles a charge so
that, by analogy with electrostatics, two particles would experience a repul-
sion force as they approached and the swarm would then not be able to fully
converge. The particles would in time reach some (possibly dynamic) equilib-
rium between the convergence and divergence effects, but this does not mean
that they are actively exploring.

A second method, introduced by [5], is to divide the swarm into sub-swarms
so that not all particles are converging on the same point. As well as the main
swarm, a particle and its closest neighbours may form a sub-swarm if the
variance in the fitness of the particles is less than some threshold. Any particle
that is not a member of a sub-swarm belongs to the main swarm. These
sub-swarms may merge or acquire extra particles from the main swarm or
collapse back into the main swarm. While developed for multi-modal functions
this niching behavior could also be used, in principle, to limit total swarm
convergence. However the algorithm depends on a uniform distribution of
particles in the search space, a condition that may be able to be met after
initialization but which is not met after convergence into the sub-swarms has
taken place.

6.3 Refreshing the Best Positions

If an attraction to pbest is being used these best positions may be updated
by allowing particles to replace their previous best position with the current
position periodically [6]. Choosing a suitable period without knowledge of the
problem being optimized can be problematic. If an attraction to gbest is being
used then the fitness at this position may be periodically re-evaluated [2]. As
the fitness at that point deteriorates, the probability that it will be replaced
by another position as a result of the current fitness at that position increases.
Again a suitable re-calculation frequency has to be chosen.

1046 T. Hendtlass

6.4 Forcing Explorer Particles

The simplest approach just requires that a number of particles be periodi-
cally moved to randomly chosen points and have their fitness re-evaluated
[16]. Another approach organizes particles in a tree with each particle being
influenced by the particle above it (social) and itself (best position and
momentum). A particle swaps with the one above it if it out performs it.
This gives a dynamic neighbourhood that does require extensive calculation.
This has been adapted to dynamic problems by [17,18]. After the value of the
best-known position (gbest) changes (it is re-evaluated every cycle) a few sub-
swarms are re-initialized while the rest are reset (have their old personal best
information erased and replaced with the current position). The sub-swarms
then search for the new optimum.

[1] introduce a more elaborate approach using quantum particles. Using an
analogy to quantum mechanics, a particle on measurement is placed randomly
within a given radius of its net current point of attraction. A uniform (and
very un-physical) distribution is used, but this could be changed so that there
was not a uniform probability of the particle being at every distance, and a
function chosen so that a finite probability exists of a movement to a distance
far from the point of attraction.

6.5 Adapting WoSP to Dynamic Problems

WoSP, because of the sequential way it explores optima, is inherent suited
to dynamic problems. All that needs to be changed is the removal of the
tabu list that each particle keeps, recording the positions from which it has
been promoted. While for static problems repulsion for these points makes
sense, for dynamic problems a particular point in problem space may be a
good optimum at several disjoined times and a poor optimum in between
these times. Completely removing the list may be inefficient, it may be better
to periodically review the entries on each particle’s list. Extending the idea
from [18], each of the previously explored optima on all the lists could be
periodically re-examined and all points for which significant changes were
found to have occurred in the fitness would be removed from the tabu lists of
the particles. This would need to be done frequently and whether the reduced
re-exploration would be worth the computational expense of this housekeeping
is not clear.

7 Particle Swarm and Quantized Problem Spaces

So far all the descriptions of the PSO have been in terms of continuous prob-
lem spaces, indeed all the swarm update equations presented in this Chapter
explicitly require a continuous problem space. However, this does not mean

The Particle Swarm Algorithm 1047

Fig. 3. An axis in PSO space suitable for a five value quantized parameter in
problem space

that the PSO cannot handle other types of problems with other types of prob-
lem spaces. All that is required is the ability to map the continuously variable
positions in the PSO particle space to the problem space. There are many
problem spaces that are not continuous problem spaces and there is not room
to describe possible mappings for more than one. The one problem space cho-
sen is the quantized problem space, a space in which the values associated with
some parameter are constant for a while and then change instantaneously to a
new value. The values of this parameter are discrete (quantized) values. As an
example of the mapping required, consider the case where a certain parameter
can only have one of five values, it does not matter what the actual values
are, we will refer to then as V1, V2, V3, V4 and V5.3 Let the length of the axis
in PSO space be L. Figure 3 shows this axis.

Note that the axis wraps around, a particle reaching the end of the axis
at L immediately reappears at position zero. Effectively, Eqn. (3) becomes:

XT+t = (XT+t × V T+t)mod(L) (10)

If L is made equal to the number of categories, the value that a particle’s
position corresponds to can be found by applying Eqn. (10) and then taking
the integer part of the answer. However, there is obviously a length of L/N
on an axis that will correspond to the same quantized value (where N is the
number of values – five in this example). The fitness function is required to
be continuous in the sense that adjacent positions should in general return
different fitness values so as to provide guidance to the swarm as it converges.
For this reason the distance of a particle from the closest cell centre may
also be recorded (expressed as a fraction of L/N). The fitness function now
becomes comprised of two parts, the ‘normal’ fitness function (F) and the
average of these fractional distances across all axes in the problem (f). When
deciding if one position is fitter than another the ‘normal’ fitness function
parts of the total fitness (the two F values) are consulted first. If these differ,

3 Each quantum value has been allocated an equal length on the axis in this exam-
ple. This is not essential and different lengths could be allocated, each length
being set proportional to the relative probability of this quantized value occurring,
perhaps.

1048 T. Hendtlass

the answer is clear. However, should they be the same then the position with
the better value of f is chosen.

8 Some Sample Results

8.1 Problems used as Examples in this Chapter

This Chapter has described a number of variants of the PSO algorithm and
a number of problem domains to which they may be applied. Space will not
allow results to be presented for every variant and every domain; indeed the
limitations of fixed type do not readily allow the presentation of dynamic
problem results in a simple and clear way. The results from four problems
have been chosen in order to show the behavior of the basic and WoSP vari-
ants of PSO both with and without fitness estimation and on continuous and
quantized problem spaces. These problems are described below.

Finding the Origin

The first of these is the apparently trivial problem of finding the origin, the
fitness of each particle being its distance from the origin, as shown in Eqn. (11).

f =
100∑
i=1

√
(xi)2 (11)

where f is the fitness and xi is the ith component of the position of the
particle.

This becomes quite hard as the number of dimensions increases for any
algorithm that makes simultaneous updates to all dimensions (as the PSO
does). For a new position to be more successful than the old position the net
effect of all the changes in all the dimensions must be a decrease. As the num-
ber of dimensions increases this becomes harder, especially approaching the
origin. Results will be presented for PSO seeking the origin in 100 dimensions.

Rastrigin’s Function

The second problem is Rastrigin’s Function Eqn. (12).

f = ((xi)2 − 10cos(2πxi)− 10) xi ∈ [−5.12 · · ·5.12] (12)

where f is the fitness and xi is the ith component of the position of the
particle.

This is a well known function commonly used as a test problem for
optimization algorithms. This can be readily solved by a traditional PSO
algorithm.

The Particle Swarm Algorithm 1049

Schwefel’s Function

The third problem is Schwefel’s function [24] in 30 dimensions. This is another
well known function commonly used as a test problem for optimization algo-
rithms. It has a large number of local optima but one unique global optimum.
No matter the number of dimensions, the position and size of this global opti-
mum can be readily calculated, as can the positions and sizes of any local
optimum.4

f =
30∑

i=1

xisin(
√
| xi |) xi ∈ [−512.03 · · ·511.97] (13)

where f is the fitness and xi is the ith component of the position of the
particle.

This problem is included as the chance of the conventional PSO algorithm
finding the global optimum position is very low. This is because in 30 dimen-
sions there are 1.2 ×1027 local optima that need to be explored. Sequentially
exploring optima using the WoSP PSO variant gives an approximately 40%
chance of finding the one global optimum [4]. Like many real life problems that
also have many local optima, fitness evaluation now constitutes a significant
fraction of the total computational load.

A Timetabling Problem

Finally a simple quantized problem space is used to illustrate how the PSO
may solve this type of problem. The problem used is a simple timetabling
problem involving scheduling nineteen classes for four groups of students in
three rooms for one day of six time periods. While all classes can occur in any
of the six available time periods there are various constraints as to the rooms
each class may occur in and the group(s) of students that will be involved.
The aim is to timetable the classes so that these constraints are met and no
student is required to undertake two classes at once and no room is required
to contain more than one class at a time. The constraint details are shown in
Table 1, with the classes, room and groups identified by numbers.

There are approximately 1.7 × 1026 ways in which these classes can be
arranged but only slightly more than 2,500 that meet all constraints. While
this is a trivial problem as far as timetabling is concerned, it is more than
adequate to explore the behavior of PSO particles in quantized problem spaces
as it is easy to comprehend and has the advantage of fast fitness evaluation.

4 The version of Schwefel’s function given here is the form in which the value of
the fitness function can be negative at some places in problem space. If it is
more convenient for the fitness to always be positive (for example if in a GA
with the breeding probability directly proportional to the fitness) this can be
achieved by adding 418.9829 times the number of dimensions to the result given
by equation 13.

1050 T. Hendtlass

Table 1. Timetable problem constraints

Class Possible Groups
rooms involved

1, 2, 3 1, 2, 3 1
4 4 1

5, 6, 7 1, 2, 3, 2
8 4 2

9, 10, 11 1, 2, 3 3
12 4 3

13, 14, 15 1, 2, 3 4
16 4 4
17 1, 2, 3 1, 2
18 1, 2, 3 3, 4
19 1 1, 2, 3, 4

Table 2. Parameter values used for each of the four problems

Parameter Origin Rastringin’s Schewefel’s Timetable
problem function function problem

Particle count 30 30 30 30
M 0.5 0.9 0.9 0.9
G 0.5 0.9 0.9 0.3
L 0.5 0.5 0.5 0.7
Neighbourhood Particle & Particle & Particle & Particle &

3 closest 3 closest 3 closest 3 closest
Search scale – – 500 2

SRF factor – – 5000 500
SRF power – – 3.5 3.5

Two quantized variables were associated with each class, the time it is to
be scheduled and the room it is to occur in. Each of these is mapped to a
different axis in problem space. A total of 38 axes were therefore required to
schedule these 19 classes. The number of possible quantized values these axes
contain varies from 1 to 6.

8.2 Experimental Details

The values used for the parameters for each of these four problems are shown
in Table 2.

9 Sample Results

All the figures below contain multiple plots, each corresponding to a different
threshold. The concept of a threshold is really only meaningful when using
some fitness estimation, but setting the threshold to one has the effect of not

The Particle Swarm Algorithm 1051

allowing any fitness estimation – the ‘traditional’ PSO. For thresholds below
one, the lower the threshold value the higher the ratio of fitness estimations
to true fitness evaluations.

9.1 Minimizing the Distance to the Origin in 100 Dimensions

The fitness values reported at a particular iteration are the average distance
from the origin of all 30 particles in 100 independent repeats of the experiment.

There is some evidence on all the plots in Fig. 4 of two phases of activity, in
the first of which fast progress is made. In the second phase (from about 1000
iterations onwards) progress is slower as the algorithm finds it harder to make
a move that has a net beneficial effect on the fitness over all 100 dimensions. It
could be argued that PSO (like other algorithms that simultaneously update
all dimensions) is not a very suitable algorithm for this second phase.

Having a threshold of either 0.75 or 0.5 has little effect on the average
best fitness per iteration compared to a threshold of one, despite the fact that
the first two thresholds correspond to a mixture of fitness estimation and true
fitness evaluation, and the last to only using true fitness evaluation. When the
threshold is as low as 0.25, the average fitness falls more slowly. The fact that
the estimated fitness can never be lower (or higher) than the lowest (highest)
fitness of the two reference points from which it is derived makes it even
harder for the algorithm to find points whose estimated fitness is better than
the current Gbest and Lbest. This may, at first sight, suggest that the fitness

0 2000 4000 6000 8000 10000
Iteration

0

200

400

600

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 4. Finding the distance to the origin in 100 dimensions as a function of the
iteration

1052 T. Hendtlass

0.1 10 1000 100000
Number of evaluations

0

200

400

600

A
ve

ra
ge

fit
ne

ss

Threshold
1
0.75
0.5
0.25

Fig. 5. Finding the distance to the origin in 100 dimensions as a function of the
number of true evaluations as opposed to fitness estimates made (the fitness values
reported at a particular iteration are the average)

estimation PSO algorithm is not particularly suited to problems containing
regions of problem space that are smooth changes.

However, when the average fitness is plotted against the number of true
evaluations as in Fig. 5, it becomes clear that for this problem it will take less
true evaluations to achieve a given performance using fitness estimation than
when not using it (if only marginally for a threshold of 0.25). The quality
of the final solution is comparable in all cases. Had the time taken to do
a true evaluation been significantly greater than the time taken to estimate
the fitness (which is not the case for this particular simple demonstration
problem), the overall result would have been less computing for results of
comparable quality.

9.2 Rastrigin’s Function in 100 Dimensions

Consider the bold line in Fig. 6 which shows the average best known fitness
(averaged over 100 independent repeats) for a PSO solving Rastrigin’s Func-
tion in 100 dimensions using only true fitness evaluation. While the gradient
of the graph varies, progress is almost continuous, with only short periods
of apparent stagnation. A genetic algorithm would be likely to show longer
periods of apparent stagnation. Like a GA, the solid curve tends to plateau
out in the vicinity of, but not actually at, the global optimum of zero. Once

The Particle Swarm Algorithm 1053

10 100 1000 10000
Iteration

0

2000000

4000000

6000000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 6. Best known fitness per iteration (averaged over 100 independent repeats)
for Rastrigin’s function in 100 dimensions

Table 3. Final statistics for Rastrigin’s function (averaged over 100 independent
repeats)

Threshold 1 0.75 0.5 0.25

Average fitness 1553 1511 1525 1619
Standard deviation 221 180 121 153
Maximum 2544 2510 1899 2074
Minimum 1241 1166 1262 1314

in the vicinity of an optimum it is often better to switch to using a simple
gradient descent algorithm for the local search.

Figure 6 shows that it would be hard to pick whether fitness estimation
was being used (and, if it were, what value was being used for the threshold)
if one just has the average best known fitness at each iteration (an iteration
is all particles making one position update). The values presented here are for
30 particles and the average is over 100 independent repeats.

However, Fig. 7 once again shows that the performance as a function of
the number of true evaluations differs substantially with the four threshold
values. The performance with a threshold of one (no fitness estimation) is
poorer than any of those that do allow fitness estimation.

Table 3 shows the average final fitness and the standard deviation for the
four tested threshold values, along with the maximum and minimum final
values found (a total of 100 independent repeats were done for each threshold

1054 T. Hendtlass

10 100 1000 10000 100000
Number of evaluations

0

2000000

4000000

6000000
A

ve
ra

ge
 fi

tn
es

s
Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 7. The best known fitness per true evaluation (averaged over 100 independent
repeats) for Rastrigin’s function in 100 dimensions

value). As Rastrigin’s Function is a minimization function (with a global best
value of zero) the final values show that the exact optimum had not been
located, although compared to the initial values of over 6,000,000 the parti-
cles had made significant progress in the number of iterations that they had
been allowed (20,000). Again PSO, with or without fitness estimation, is not
efficient in the final stages of converging to an optimum. Table 3 also shows
that the threshold in use could not be identified from these end results in a
blind test.

Figure 8 shows the ratio of the cumulative totals of the number of fitness
evaluations to the number of fitness estimations for Rastrigin’s function as
a function of the iteration number. Note that whenever fitness estimation is
being used this ratio is asymptotic to a number less than one. This means
that the number of true fitness evaluations is always less, often significantly
less, than one half of the number of true fitness evaluations that would be
required by a PSO algorithm that does not use fitness estimation.

9.3 Schwefel’s Function in 30 Dimensions

This function, with its many local optima, is highly problematic for a tradi-
tional PSO algorithm. However, it can be solved by successive exploration of
optima using the WoSP variant of the PSO algorithm [14] The results pre-
sented here only show relatively early stages of this exploration (only the first
10,000 iterations, by which stage the best known result is well within the top
thousandth of one percent of all results). However, given 200,000 iterations,
WoSP has a 41% chance of finding the global optimum [14].

The Particle Swarm Algorithm 1055

0 4000 8000 12000 16000 20000
Iteration

0

0.2

0.4

0.6

0.8

R
at

io
of

 e
va

lu
at

io
ns

 to
es

tim
at

io
ns

Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 8. The ratio of the total number of true fitness evaluations to total number of
fitness estimations for Ratrigin’s function plotted per iteration

10 100 1000 10000 100000
Iteration

2000

4000

6000

8000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 9. The best known fitness per iteration (averaged over 100 independent repeats)
for Schwefel’s function in 30 dimensions

Although there is some difference in the early stages and a slight difference
in the late stages, the plots of the average best known fitness versus iteration
shown in Fig. 9 are very similar, especially during the time that the swarm is
making good progress. Since this is a plot of the best optimum known, many

1056 T. Hendtlass

1 100 10000 1000000
True evaluation count

2000

4000

6000

8000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 10. Best known fitness per true evaluation (averaged over 100 independent
repeats) for Schwefel’s function in 30 dimensions

optima are explored without affecting the plot. Nevertheless progress is fairly
continuous with few regions of apparent stagnation.

When plotted as the average best known fitness versus the number of true
evaluations (Fig. 10), the advantage of using fitness estimation becomes clear.
If there was only enough time to perform 10,000 true fitness evaluations, the
best location found by the conventional WoSP PSO (threshold=1) would have,
on average, a fitness of some 3500. Using a threshold of 0.25, the best location
the WoSP PSO with fitness estimation would have found, on average, would
have a fitness of about twice this.

The particular significance of this result is that it is achieved in a system
that frequently moves particles far from the region(s) of problem space that
have been explored. This underlies the importance of the reliability value
associated with the fitness, and the way that this decreases, not only with
the reliability associated with the two reference positions in use, but also
with the distance of the new position from these two reference positions. This
clearly demonstrates that the fitness estimation algorithm not only decreases
the number of fitness evaluations required but also is reasonably efficient at
deciding when true evaluation is really required.

Results from a Simple Quantized Problem Space

Because of the large number of ways that the classes can be arranged, attempts
to solve it with the traditional PSO algorithm were, as expected, highly inef-
fectual (as will be seen from Table 5). However, the WoSP variant of the PSO

The Particle Swarm Algorithm 1057

was able to solve the problem. Details of the basic parameter values used are
shown in Table 2. It is not claimed that the values used were optimal but they
do follow the general guidelines given in [15]. Each swarm was randomly ini-
tialized and then allowed 1,500,000 evaluations after which the best solutions
found were recorded.

A simple problem specific local heuristic was used that took a solution
with one or more constraint violations and repeated the following set of steps
until either the number of constraint violations was reduced to zero or a user
specified number of attempts had been made. A list of all classes that were
involved in these violations was made. One class was chosen at random from
this list and a second list made of all the other room time combinations to
which it could be moved. One possible move was chosen from this second
list and the change this possible move would make in the constraint violation
count was calculated. Only if this was positive was the move actually made.
A new list of clashing classes was then made and the process repeated until
either no clash occurred or a total of fifty tries had been made. The algorithm
described in the above paragraph is very greedy and can easily result in a
local optimum being reached that does not meet all constraints. As a result
the original quantized position passed to the local heuristic was saved and the
algorithm described above was tried twenty times, with the original quantized
position being restored at the start of each time. The best result found in any
of these twenty tries was the result actually used. The extra computational
load was insignificant as the local heuristic was only run when a wave died –
typically a few hundred times per run. The results of running the conventional
and WoSP variant of the PSO on this problem are shown in Table 4.

Table 4 shows that in terms of the best performing repeat out of each group
of 100 there is a steady improvement as progressive enhancements are made to
the classical particle swarm algorithm (from left to right in the table). Inter-
estingly, adding waves alone produces a greater positive effect than adding

Table 4. An overview of the performance of 100 independent repeat runs for each
of the four possible combinations of waves and local heuristic

Using waves No No Yes Yes
Local heuristic No Yes No Yes

Number of times one or more solutions 0 0 8 80
found that satisfied all constraints

Average number of constraint 5.72 3.81 2.25 0.2
violations per run

Number of constraint violations 1 1 0 0
in best solution found

Number of constraint violations 8 8 3 1
in worst solution found

1058 T. Hendtlass

Table 5. The number of constraint violations for 100 repeats of each of all
combinations of waves and local heuristic

Number of constraint Waves No No Yes Yes
violations in best solutions Local heuristic No Yes No Yes
found

0 8 80
1 6 26 20
2 1 10 32
3 1 32 17
4 15 22 10
5 24 13 5
6 29 14
7 27 2 2
8 3 1

Table 6. The average reduction in constraint violations obtained using the local
heuristic for 100 repeats with and without waves

Average Minimum Maximum

Without waves 1.9 0 5
With waves 2.1 0 7

the local heuristic alone but the best results are obtained when both of these
are used. While Table 4 shows only the best result for each repeat, Tables 5
and 6 show statistics derived from all the repeats for all combinations.

Comparing the columns in Table 5 that do not involve the local heuristic,
it is clear that the addition of waves consistently and substantially improves
the performance. Again it can be observed that the performance with waves
alone is better than the performance with the local heuristic alone.

Table 6 shows that the improvement made by the use of the local heuristic
was essentially independent of the use of waves.

The best performing combination by far is when both waves and the local
heuristic are used and these results have been examined in more detail.

During the 100 independent repeats, each run reported on average 653
(max 671, min 634) candidate solutions that were passed to the local heuris-
tic. A candidate solution corresponds to the best position found by a wave
during its existence and subsequently refined using the local heuristic. The
range of the number of constraint violations in all these candidate solutions is
from 0 to 12. During the runs a grand total of 1242 solutions that satisfied all
constraints (absolute solutions) were found. Twenty runs produced no abso-
lute solutions; the other 80 runs produced between 1 and 51 solutions each,
with an average of 15.7 absolute solutions per run. However, even though each
particle maintained an individual list of promotion points, some optima were

The Particle Swarm Algorithm 1059

explored by more than one wave during a run. On average, the runs that found
absolute solutions found 5.8 different absolute solutions each (the maximum
for any wave being 21, the minimum 1). Overall, the 100 repeats found a
grand total of 446 different absolute solutions out of the approximately 2500
that exist.

10 Concluding Remarks

The particle swarm optimization algorithm has proved to be efficient, fast
and flexible. It shows promise as an effective algorithm for a wide range of
optimization problems. A number of variations have been suggested to better
suit it to particular classes of problems and some of these, together with the
basic algorithm, have been discussed in this Chapter. No algorithm is ideal for
all situations and it has been noted the PSO, like other algorithms such as the
genetic algorithm, is really a coarse search algorithm that becomes inefficient
in the final stages of homing in on an optimum. But, when coupled with
an appropriate local search technique, PSO and its many variants deserve a
prominent place in the armory of everyone seriously involves with optimization
in the real world.

References

1. Blackwell T, Branke J (2004) Multi-swarms optimization in dynamic environ-
ments. In: Lecture Notes in Computer Science, 3005. Springer-Verlag, Berlin:
489–500.

2. Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. In:
Langdon WB et al. (eds.) Proc. Genetic and Evolutionary Computation Conf.
– GECCO-2002 , 9–13 July, New York, NY. Morgan Kaufmann, San Francisco,
CA: 19–26.

3. Braendler D, Hendtlass T (2002) The suitability of particle swarm optimisation
for training neural hardware. In: Hendtlass T, Ali M (eds.) Lecture Notes in
Artificial Intelligence, 2358, Springer-Verlag, Berlin: 190–199.

4. Brits R (2002) Niching strategies for particle swarm optimization. Master’s
Thesis. Department of Computer Science, University of Pretoria, South Africa.

5. Brits R, Englebrecht A, van der Bergh F (2002) A niching particle swarm
optimiser. In: Proc. 4th Asia-Pacific Conf. Simulated Evolution and Learning
(SEAL’2002), 18–22 November, Singapore: 692–696.

6. Carlisle A, Dozier G (2000) Adapting particle swarm optimization to dynamic
environments. In: Arabnia HR (ed.) Proc. Intl. Conf. Artificial Intelligence,
26–29 June, Las Vegas, NV: 429–433.

7. Carlisle A, Dozier G (2002) Tracking changing extrema with adaptive particle
swarm optimizer. In: Jamshidi M, Hata Y, Fathi M, Homalfar A, Jamshidi
JS (eds.) Proc. World Automation Congress (Intl. Symp. Soft Computing in
Industry – ISSCI’2002) 9–13 June, Orlando FL, TSI Press, Albuquerque, NM:
265–270.

8. Clerc M (1998) Some math about particle swarm optimization. (available
online at http://clerc.maurice.free.fr/PSO/PSOmathstuff/PSOmathstuff.htm –
last accessed January 2007).

1060 T. Hendtlass

9. Clerc M (1999) The swarm and the queen: towards a deterministic and adap-
tive particle swarm optimization. Proc. Congress Evolutionary Computation
(CEC1999), 6–9 July, Washington, DC. IEEE Press, Piscataway, NJ, 3: 1957.

10. Digalakis J, Margaritis K (2000) An experimental study of benchmarking
functions for genetic algorithms. Intl. J. Computer Mathematics, 79: 403–416.

11. Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in
particle swarm optimisation. Proc. 2000 Congress Evolutionary Computation,
16–19 July, La Jolla, CA. IEEE Press, Piscataway, NJ: 84–88.

12. Hendtlass T, (2007) Fitness Estimation and the Particle Swarm Optimisa-
tion Algorithm, Proc Congress on Evolutionary Computing (CEC2007). IEEE
Computer Society Press, Piscataway, NJ: 4266–4272.

13. Hendtlass T (2006) A particle swarm algorithm for complex quantised prob-
lem spaces. Proc. Congress Evolutionary Computation (CEC2006), 16–21 July,
Vancouver, Canada. IEEE Computer Society Press, New York, NY: 3760–3765.

14. Hendtlass T (2005) WoSP: a multi-optima particle swarm algorithm. Proc.
Congress Evolutionary Computing (CEC2005) 2–5 September, Edinburgh, UK.
IEEE Press, Piscataway, NJ: 727–734.

15. Hendtlass T (2004) A particle swarm algorithm for high dimensional
problem spaces. Proc. IEEE Swarm Workshop, 9–11 May, Ann Arbor,
MI (available online at http://www.cscs.umich.edu/swarmfest04/Program/
Abstracts/abstracts.html #HendtlassT – last accessed 22 May 2007).

16. Hu X, Eberhart R (2002) Adaptive particle swarm optimisation: detection and
response to dynamic systems. In: Proc. Congress Evolutionary Computation
(CEC2002), 12–17 May, Honolulu, Hawaii. IEEE Press, Piscataway, NJ:
1666–1670.

17. Janson S, Middendorf M (2003) A hierarchical particle swarm optimizer. Proc.
Congress Evolutionary Computing (CEC2003), 9–12 December, Canberra,
Australia. IEEE Press, Piscataway, NJ: 1666–1670.

18. Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for
dynamic optimization problems. In: Raidl GR, Cagnoni S, Branke J, Corne DW,
Drechsler R, Jin Y, Johnson CG, Machado P, Marchiori E, Rothlauf F, Smith
GD, Squillero G (eds.) Proc. EvoWorkshop 2004, 20–24 June, Toulouse, France.
Lecture Notes in Computer Science 3005, Springer-Verlag, Berlin: 513–524.

19. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc. IEEE
Conf. Neural Networks (ICNN95), November, Perth, West Australia. IEEE
Press, Piscataway, NJ: 1942–1947.

20. Paquet U, Engelbrecht AP (2006) Particle swarms for equality-constrained
optimization. Fundamenta Informaticae, 76: 1–24.

21. Parrot D, Li X (2004) A particle swarm model for tracking multiple peaks in
a dynamic environment using speciation. In: Proc. 2004 Congress Evolutionary
Computation (CEC2004), 20–23 June, Portland, OR. IEEE Press, Piscataway,
NJ: 98–103.

22. Randall M (2005) A dynamic optimisation approach for ant colony optimisation
using the multidimensional knapsack problem: recent advances in artificial life.
Advances in Natural Computation, 3: 215–226.

23. Salami M, Hendtlass T (2002) A fast evaluation strategy for evolutionary
algorithms. J. Soft Computing, 2(3): 156–173.

24. Schwefel HP (1981) Numerical Optimization of Computer Models. Wiley,
Chichester, UK.

Resources

1 Key Books

Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, London, UK.

Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA.

Bonabeau M, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, UK.

2 Organisations, Societies, Special Interest Groups,
Journals

IEEE Computational Intelligence Society
http://www.ieee-cis.org

3 Key International Conferences/Workshops

IEEE Congress on Evolutionary Computing – CEC (IEEE)

Genetic and Evolutionary Computation Conference – GECCO
(ACM SIGEVO)

Swarmfest
http://www.swarm.org

1062 T. Hendtlass

4 (Open Source) Software

CIlib – a public domain framework and library for CI algorithms
http://cilib.sourceforge.net

Optimization Algorithm Toolkit (OAT) ‘A workbench and toolkit for devel-
oping, evaluating, and playing with classical and state-of-the-art optimization
algorithms on standard benchmark problem domains; including reference algo-
rithm implementations, graphing, visualizations and much more.’
http://optalgtoolkit.sourceforge.net/

Part X

DNA and Immunity-Based Computing

DNA Computing and its Application

Junzo Watada

Graduate School of Information, Production and Systems, Waseda University,
Kitakyushu, Japan 808-0135, junzow@osb.att.ne.jp

1 Introduction

The objectives of this Chapter are twofold: firstly to introduce DNA compu-
tation, and secondly to demonstrate how DNA computing can be applied to
solve large, complex combinatorial problems, such as the optimal scheduling
of a group of elevators servicing a number of floors in a multi-storey building.

Recently, molecular (or wet) computing has been widely researched not
only within the context of solving NP-complete/NP-hard problems – which
are the most difficult problems in NP – but also implementation by way of
digital (silicon-based) computers [23]. We commence with a description of
the basic concepts of ‘wet computation’, then present recent results for the
efficient management of a group of elevators.

2 DNA Computing

The main idea behind DNA computing is to adopt a biological (wet) technique
as an efficient computing vehicle, where data are represented using strands of
DNA. Even though a DNA reaction is much slower than the cycle time of a
silicon-based computer, the inherently parallel processing offered by the DNA
process plays an important role. This massive parallelism of DNA processing
is of particular interest in solving NP-complete or NP-hard problems.

It is not uncommon to encounter molecular biological experiments which
involve 6×1016/ml of DNA molecules. This means that we can effectively real-
ize 60,000 TeraBytes of memory, assuming that each string of a DNA molecule
expresses one character. The total execution speed of a DNA computer can
outshine that of a conventional electronic computer, even though the execution
time of a single DNA molecule reaction is relatively slow. A DNA computer is
thus suited to problems such as the analysis of genome information, and the
functional design of molecules (where molecules constitute the input data).

J. Watada: DNA Computing and its Application, Studies in Computational Intelligence (SCI)

115, 1065–1089 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

1066 J. Watada

DNA consists of four bases of molecular structure, named adenine (A),
guanine (G), cytosine (C) and thymine (T). Furthermore, constraints apply
to connections between these bases: more specifically, A can connect only with
T , and G only with C – this connecting rule is referred to as ‘Watson-Crick
complementarity’. This property is essential to realize the separate operation
(discussed later). In other words, it is possible to separate a partial string of
characters ‘ad’ so that a DNA sequence complementary to the DNA denoting
‘ad’ is marked, input into a test tube, hybridized to form a double-strand
helix of DNA, then abstracted. Further, this property enables us to randomly
create a set of character strings according to some rule.

Since Adleman described a method for solving a directed Hamiltonian path
problem with seven cities using DNA molecules [1], researchers have pursued
theoretical studies to realize general computation using DNA molecules –
for example, [31]. Adleman has developed a computational model to realize,
via experimental treatment of DNA molecules, operations on multiple sets
of character strings, following the encoding of finite alphabet characters onto
DNA molecules [2].

As previously mentioned, DNA molecules can be used as information stor-
age media. Usually, DNA sequences of around 8–20 base-pairs are used to
represent bits, and numerous methods have been developed to manipulate
and evaluate these. In order to manipulate a wet technology to perform com-
putations, one or more of the following techniques are used as computational
operators for copying, sorting, splitting or concatenating the information
contained within DNA molecules:

• ligation,
• hybridization,
• polymerase chain reaction (PCR),
• gel electrophoresis, and
• enzyme reaction.

In the following Section we briefly describe the specific bio-chemical
process which serves as the basis of our DNA computing approach.

A DNA computer performs wet computation based on the high ability
of special molecule recognition executed in reactions among DNA molecules.
Molecular computation was first reported in [1], where it was found that a
DNA polymerase – which incorporates an enzyme function for copying DNA –
is very similar in function to that of a Turing Machine. DNA polymerase
composes its complementary DNA molecule using a single-strand helix of
a DNA molecule as a mold. On the basis of this characteristic, if a large
amount of DNA molecules is mixed in a test tube, then reactions among
them occur simultaneously. Therefore, when a DNA molecule representing
data or code reacts with other DNA molecules, this corresponds to super-
parallel processing and/or a huge amount of memory in comparison with a
conventional (electronic) computer.

DNA Computing and its Application 1067

2.1 Encoding Scheme

In any DNA computational procedure, the main challenge is to encode each
object of interest into a DNA sequence. A correct design is essential in order
to ensure optimal results; an incorrect design could result in wrong sequences
following the ligation process.

Ligation and Hybridization

When DNA sequences are dropped in a test tube using a micro pipet-
tor (Fig. 1), the DNA sequences recombine with each other by means of
some enzyme reaction, this process being referred to as ‘ligation’. All DNA
sequences to be used in the experiment – along with their complements –
are mixed together in a single test tube. Normally the oligonucleotide or
DNA mixture is heated to 95o centigrade (celsius) and cooled to 20oC at
1oC per minute for hybridization, as indicated in Fig. 1. The reaction is then
subjected to a ligation. At the end of this process, a certain DNA sequence
will ligate together with another DNA sequence in order to produce a new
sequence.

Polymerase Chain Reaction (PCR)

Polymerases perform several functions, including the repair and duplication
of DNA. Polymerase Chain Reaction (PCR) is a process that quickly ampli-
fies the amount of specific DNA molecules in a given solution, using primer
extension by polymerase. Each cycle of the reaction doubles the quantity of

Fig. 1. Droppers for spoiding and hybridizing

1068 J. Watada

this molecule, leading to an exponential growth in the number of sequences.
It consists of the following key processes:

1. Initialization: a mix solution of template, primer, deoxynucleotide- triphos-
phate (dNTP) and enzyme is heated to 94–98◦C for 1−9 minutes to ensure
that most of the DNA template and primers are denatured;

2. Denaturation: heat the solution to 94–98◦C for 20–30 seconds for separation
of DNA duplexes;

3. Annealing: lower the temperature enough (usually between 50–64◦C) for
20–40 seconds for primers to anneal specifically to the single-strand DNA
(ssDNA) template;

4. Elongation/Extension: raise temperature to optimal elongation tempera-
ture of Taq or similar DNA polymerase (70–74◦C) for the polymerase
adds dNTP’s from the direction of 5′ to 3′ that are complementary to
the template;

5. Final Elongation/Extension: after the last cycle, a 5–15 minute elongation
may be performed to ensure that any remaining ssDNA is fully extended.

Steps 2 through 4 are repeated 20–35 times; less cycles result in less prod-
uct, too many cycles increases the proportion of incomplete and erroneous
products. PCR is a routine job in the laboratory that can be performed by
an apparatus called a thermal cycler.

Denaturation Temperature Gradient PCR

Denaturation temperature gradient PCR (DTG-PCR) is a modified PCR
method in which the denaturation temperature changes with cycle [22]. In
DTG-PCR, conventional PCR is performed where the temperature of the
denaturation step (step 2 of the aforementioned PCR procedure) is gradually
increased.

Quantitative PCR

Quantitative PCR (Q-PCR) is a modification of the PCR used to rapidly
measure the quantity of DNA, complementary DNA (cDNA) or Ribonucleic
Acid (RNA) present in a sample. It may be used to determine if a DNA
sequence is present in a sample, as well as the number of copies produced
in PCR.

Affinity Separation

The objective of the affinity separation process is to verify whether each datum
includes a certain sequence. This process permits single strands containing
a given subsequence v to be filtered out from a heterogeneous pool of other
sequences. After synthesizing strands complementary to v and attaching them

DNA Computing and its Application 1069

Fig. 2. Electrophoresis

to magnetic beads, the heterogeneous solution is passed over the latter. Those
strands containing v anneal to the complementary sequence and are retained;
those strands not containing v pass through and are discarded.

Normally, in this process a double-stranded DNA is incubated with the
Watson-Crick complement of data that is conjugated to magnetic beads. A
bead is attached to a fragment complementary to a sub-string, then a magnetic
field used to extract all the DNA fragments containing such a sequence. The
process is then repeated.

Gel Electrophoresis

Gel electrophoresis is an important technique for sorting DNA strands by
their size [4]. Electrophoresis enables charged molecules to move in an electric
field, as illustrated in Fig. 2. Basically, DNA molecules carry negative charge.
Thus, when we place them in an electrical field, they tend to migrate towards
a positive pole. Since DNA molecules have the same charge per unit length,
they all migrate with the same force in an electrophoresis process. Smaller
molecules therefore migrate faster through the gel, and can be sorted according
to size (usually agarose gel is used as the medium here). At the end of this
process the resultant DNA is photographed, as indicated in Fig. 3.

3 Comparison with Conventional Computing

Now DNA computing employs completely different tactics when allocating an
independent letter code (such as ATCG, GTAC or CAAC) to each sample.
Next, DNA sequences corresponding to the number of possible combinations
are prepared. After they are hybridized in super-parallel fashion, the remain-
ing DNA fragments are amplified to obtain an answer sequence – note that
this procedure is carried out only once [17].

1070 J. Watada

Fig. 3. Camera

The main benefit of using DNA computation to solve complex problems
is that all possible solutions are created concurrently – in other words, it
offers massively parallel processing. By contrast, humans – as well as most
electronic computers – solve problems in a step-by-step manner (in other
words, sequentially). DNA provides other benefits, including low cost, and
energy efficiency [2].

The main steps in DNA computing are:

1. Separate (T, s): this operation separates a given set T into the set +(T, s)
of characters, including character string s and the set −(T, s) of character
strings that do not contain character string s. This operation corresponds
to abstract experimentation on DNA molecules in a test tube.

DNA Computing and its Application 1071

2. Mix: this operation mixes sets T1 and T2 into the union set T1 ∪ T2. This
operation corresponds to mixing test tubes T1 and T2.

3. Detect (T): this operation returns ‘YES’ if the test tube T is not empty,
and ‘NO’ if it is empty. The operation corresponds to an experimental
treatment procedure that detects the existence of DNA molecules by the
electrophoretical fluorescent method.

4. Amplify (T): this operation corresponds to creating multiple sets T1 and T2

with the same contents as the given set T . This corresponds to an experi-
mental treatment that amplifies the amount of molecules using polymerase
chain reaction (PCR).

Now from the perspective of DNA computing, the most important char-
acteristic of a DNA molecule is its Watson-Crick complementarity.

In Adleman’s model, a set of character strings – computed using hybridiza-
tion – is computed according to the four steps described above. Using this
computation, an NP-complete problem can be solved using an algorithm based
on production-detection PCR. DNA computers can be used to solve real-world
problems using this method.

4 Applications of DNA Computing

The theory of DNA computing is discussed in [2, 27, 29]. DNA computing
has been applied to various fields, including nanotechnology, combinatorial
optimization [25,26], Boolean logic circuit development [27], and of particular
relevance to the present Chapter, scheduling [18, 20, 23, 29, 33].

5 Approaches to Optimization and Scheduling

We have a long history of mathematical approaches for solving optimization
problems. However there are limitations with such methods, resulting in many
problems remaining unsolved. Beyond such mathematical methods, ‘problem
solving’ in general attempts to mimic human or empirical approaches as a
‘rule-of-thumb’. This became prevalent after the von Neuman computer was
invented in 1945. Subsequently, this led to a ‘golden era’ in artificial intelli-
gence (AI) during the late 1970s and early 1980s, even though logic approaches
(including production systems, predicate logic, semantic networks, and frame
systems), present their own challenges, and can lead to combinatorial explo-
sion. On the other hand, in order to mimic human thinking, many other
methods have been proposed, including fuzzy systems, genetic algorithms
(GAs), chaotic systems, artificial neural networks (ANNs), and so on – which
are collectively referred to as ‘soft computing’. If we intend to solve large-
scale, real-world problems, we need to overcome this issue of combinatorial
explosion. In short, NP-complete problems cannot be solved using present-day
silicon-based computers.

1072 J. Watada

Genetic Algorithm (GA)

A genetic algorithm (GA) is a soft computing technique modeled on genetic
mechanisms within biological organisms, and which searches for optimal val-
ues, obeying a number of simple constraints in each successive generation.
GAs have been successfully applied to elevator group management [8, 15].
The setting of parameters in such elevator group control systems is difficult
to achieve manually; [10] demonstrated that GAs are able to provide good
parameter settings.

Artificial Neural Network (ANN)

In articial neural networks (ANNs), optimization of an evaluation function
can be implemented using backpropagation (BP) learning based on past
transactions [28, 32].

Fuzzy Logic and Other Soft Computing Approaches

In the fuzzy logic approach, the ease of update rules comes as a welcome relief
in comparison with GAs and/or ANNs [16,19]. Other soft computing methods
that have been successfully applied to elevator group control optimization
include reinforcement learning agents [11], evolutionary strategies [7], and
genetic network programming [12–14].

New Demands

Recently, new generation elevator systems – such as the elevator group super-
visory control system (EGSCS) [5, 6] – have been developed to satisfy the
various needs of users and to enable the ‘verticalization’ of buildings [3].
These new types of elevator system place additional constraints on group
management. When searching a large number of alternatives, they require
fast processing and large computer overhead. Accordingly, group management
systems have been intensively studied in order to improve elevator transporta-
tion efficiency and convenience. Usage conditions of an elevator system are
changed depending on time and customers. Business people don’t like to wait
very long, whereas hotel guests do not like crowded elevators, even if it they
are transported quickly. Elevator systems are required to fulfill passengers’
different preferences.

6 Elevator Management System

Multiple elevators are commonly used in high-rise buildings (‘skyscrapers’).
Effective control of such multiple elevators is essential. The overall aim in con-
trolling a group of elevators is to satisfy the time constraints of all passengers,

DNA Computing and its Application 1073

at the same time providing the most efficient system. The basic problem is to
decide which elevator should stop at a particular floor where passengers are
waiting to go up(down).

Even in peak (rush) hours, it is possible to find all elevators moving in
the same direction, or alternatively all elevators arriving simultaneously at
the same floor. In order to resolve such situations, all elevators need to be
optimally assigned to passengers, regardless of the latter’s changing arrival
times at the various floors in the multi-storey building.

The group control system selects elevator movement patterns according
to random changes in traffic volumes and/or driving management, or in the
eventuality of an accident. Such group control realizes comfortable, safe and
economical management of elevators.

Suppose that a building has N floors and m elevators. Table 1 shows the
current position of each elevator and the destinations of passengers in each
elevator, together with the intended travel direction of passengers waiting on
each floor. Figure 4 illustrates this situation graphically: the left-hand graph
shows an upward movement, and the graph on the right-hand side a downward
movement, respectively. Elevators A, B and M stop at floors 2, N − 1, and
3, respectively. On the other hand, there are people on floor 1 who desire to
go up, and people on floors N − 1 and N who desire to go down. At time t,
Elevator A at floor 2 has passengers who are going to floors 3, 4 and N − 1.
Furthermore, there are passengers on floors N , N − 1 and 1 who are going
down, down, and up, respectively.

Accordingly, in this research, the input information to the elevator man-
agement system is as follows:

1. The present position of each elevator;
2. The destination floors of each elevator (the required floor numbers where

passengers in each elevator are going are input to the system);
3. The floors from which each elevator have been called (people on each floor

can indicate their direction but they cannot input their destination floor).

Table 1. Elevator information at time-t

Floor Queuing Elevator-A Elevator-B · · · Elevator-m

N ↓
N − 1 ↓ (1,3,5)

...
3 (4, N − 1,N)
2 (3,4,N − 1)
1 ↑

1074 J. Watada

Elevator M

.

Elevator B

Elevator A

DOWNWARD

UPWARD

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .. .

 .
. .

 .

. .
 .

. .
 .

. .
 .

. .
 .

MN-1

MN

. . .

M3

M2

M1

M'N

M'N-1

M'1

M'2

M'3

. . .

B1

B2

B3

. . .

. . .

B'3

B'2

B'1
BN

BN-1

B'N-1

B'N

A'N

A'N-1

AN-1

AN

A'1

A'2

A'3

. . .

. . .

A3

A2

A1

Fig. 4. Whole paths of M elevators

As previously mentioned, Table 1 shows that Elevator-A is at Floor 2 and
has passengers who are going to floors 3, 4 and N − 1; likewise Elevator-B is
at Floor N −1 and has passengers travelling down to Floors 1, 3 and 5. There
are people who are going up on Floor 1, down on Floor N − 1, and down on
Floor N . Based on this information, the challenge is to efficiently manage all
elevators.

6.1 Restrictions on Elevator Movements

The problem is to determine the optimal scheduling of all m elevators – in
other words to provide the shortest overall wait time – given the wait queue

DNA Computing and its Application 1075

and the initial position of each elevator at any time t. Let us denote the
following variables:

|d(m)− o(m)| is the total number of floors moved
Ct is the time cost of an elevator traveling between adjacent floors
Cs is the time cost of an elevator stopping at a floor

The elevator moves between floors – denoted by m – must be consecutive,
in other words,

d(mi) = o(mi+1) ∨ 1 ≤ i < N (1)

where o(m) is the original floor, and d(m) is the destination floor

The traveling time T between floors can be represented as

T (|d(m)− o(m)|) =
{

[|d(m)− o(m)|]Ct + Cs m = destination,
0 otherwise. (2)

The output of the graph G given by the sum of the costs thus represents
the total travel time of elevator-E, that is

G(E) =
N∑

m=1

T (|d(m)− o(m)|) (3)

For a building with M elevators, the graph of single elevator movements
shown in Table 2 can be duplicated M times in representing the whole paths of
elevator travel. The total traveling time of M elevators can thus be calculated
by summing the traveling time of each single elevator as

G(E1, E2, . . . , EM−1, EM) =
M∑

k=1

G(Ek) (4)

The optimal travel route – denoted O – is thus given by the minimum
total traveling time of all elevators with all initial conditions and requirements
satisfied, namely

O = min{G(E1E1, E2, . . . , EM−1, EM)} (5)

Table 2. Elevator management information

Floor Calling Elevator-A Elevator-B

6 (2,3)
5 ↓
4 ↑
3 ↓
2
1 (3,5)

1076 J. Watada

6.2 Elevator Scheduling

Now since we have m elevators, we can duplicate m graphs and connect
between all vertices in the one graph. Figure 5 shows the case where m = 2.

The left-hand side of Fig. 5 illustrates all paths which are going up, and
the right-hand side all paths going down. Elevator-A at floor 1 can move to
all floors from 2 to n. However when Elevator-A is at floor j, it can move
to all floors from j + 1 to n, but cannot move down, for example to floors 1
through i. The right-hand side graph shows the same situation concerning the
downward movement of the same Elevator-i. The connections between both
graphs show the changing of direction from down to up (or from up to down).
These changes of direction happen on all floors. The connections between
elevators on the same floor show that passengers can move from one elevator
to another (but these movements are not considered in the computations
because they depend on passenger preferences).

It is therefore sufficient that one of the m elevators may reach the calling
floor on the line of graph A, B, · · · , m. Let us construct a graph for each case
where elevator-A or elevator-B, · · · , and elevator-m reach a floor where the
button has been pushed.

Elevator B

B'6

B'5

B'4

B6

B5

B4

A'6

A'5

A'4

A6

A5

A4

Elevator A

DOWNWARD

UPWARD

B1

B2

B3

B'3

B'2

B'1

A'1

A'2

A'3

A3

A2

A1

Fig. 5. Whole paths of two elevators

DNA Computing and its Application 1077

Considering all combinations, let us calculate the shortest path of each
graph A, B, · · · , m. Suppose that f(1, 2, · · · , m) denotes the largest value of
graphs A, B, · · · , m. By calculating all combinations fx(A, B, · · · , m), we can
obtain the optimal allocation of elevators by selecting the minimum value of
fx(A, B, · · · , m), where x denotes the number of combinations. For example,
when the number of elevators is 2 and the number of calling floors is 3, the
number of combinations is 23.

It is possible to represent elevator-B by a graph, just as we did in the case
of elevator-A. Figure 5 illustrates the graph of all paths of the two elevators
A and B.

Now, elevator-A is currently at floor-1 and its destination floors are 3 and
5. The destination floors of elevator-B at floor-6 are 2 and 3. There are also
upward calls. Figure 5 shows the floors with a symbol where one or both
elevators should stop.

In this case, if the destination floor has been decided for elevator A or B,
then the other one is automatically assigned to the other destination floor. As
a result, it is necessary to calculate the optimal paths for two kinds of graphs
for elevators A and B. The larger value for both elevators A and B is denoted
by fx(A, B).

The problem here is to select the smallest value – min(f(A, B), (x =
1, 2, · · · , 8)). The obtained schedule which gives the smallest value is the opti-
mal solution for elevators A and B. There are 16 kinds of graph which can
be obtained from 8 combinations, as shown in Figs. 4 and 5. The next Section
shows how to calculate the shortest path schedule for both elevators.

7 Bio-Soft Computing Based on DNA Length

In DNA computation, each base sequence is assigned to a floor, as shown in
Table 3.

Let us denote the connection between two base sequences corresponding
to each floor as the movement between two floors. Further, let us assign an

Table 3. Correspondence between floors and base sequences

1 2 3 4 5 6
AAAA CCCC TTTT ATAT GAGA GGGG

1’ 2’ 3’ 4’ 5’ 6’
CACA TCTC TGTG GCGC CAGT GATC

1078 J. Watada

appropriate length of DNA sequence to the edge weight:

rllψk = f(k) + TE

ψ1 = f(1) + TE string of two random characters(ZZ)
...

ψ5 = f(5) + TE string of ten random characters

(Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y) (6)

f(A, B) = max(4 + 4 + 4 + 4 + 4, 4 + 2 + 4 + 4 + 4 + 2 + 4 + 4 + 4 + 4)
= max{20, 36} = 36 (7)

These values show the time spent moving between two floors, which are
combined in the base sequence.

In this problem all movements between floors comprise 40 roots. Let us
produce DNA sequences corresponding to these roots in Table 4.

Let us produce DNA fragments corresponding to a floor in Table 3 and
DNA fragments corresponding to a root in Table 4. Next, place these DNA
fragments and combining polymerase in the same test tube and store the test
tube at an appropriate temperature; all combinations will be automatically
created.

Various DNA sequences are automatically created by combining fragments
shown as each floor, and filaments shown as each movement root, respectively,
in Table 4. These DNA sequences correspond to combinations of feasible solu-
tions. In order to solve the graph shown in Fig. 5, DNA sequences which
have ‘AA’ (the former two characters upward at the first floor) at the start,
and ‘GA’ (the latter two characters upward at the fifth floor) at the end are
detected, out of the many DNA sequences, using various polymerase.

As we know the floors where elevators should stop, only DNA sequences
with AA ∗ TTTT ∗ GA are selected – in other words those where the DNA
sequences start with ‘AA’, pass through ‘TTTT ’, and terminate at ‘GA’.
Then, the shortest DNA sequence shows the optimal solution which starts at
the 1st floor, stops at the 3rd floor, and reaches the 6th floor. This procedure
can be abstracted by the weight of a DNA sequence, since long DNA sequences
are ‘heavy’ and short DNA sequences are ‘light’. At the end we check the DNA
sequence and convert it to a floor number. The shortest roots for graphs 5
through 12 contain the following DNA sequences, and the length of these DNA
sequences can be calculated.

The shortest sequence is the schedule where elevator-A stops at the 4th
floor, and elevator-B stops at the 3rd and 5th floors. Therefore, the optimal
schedule for elevators-A and B is obtained for the present state of elevators and
calling floors. If this computation is pursued to obtain the optimal schedule
whenever buttons are pushed at a calling floor, the schedule with the shortest
wait time will always be obtained.

DNA Computing and its Application 1079

Table 4. Representation of roots by DNA sequence (edge DNA oligonucleotides)

1 → 2 AAZZCC 6’ → 5’ GAZZGT
TTEEGG CTEECA

1 → 3 AAWWWWTT 6’ → 4’ GAWWWWCG
TTFFFFAA CTFFFFGC

1 → 4 AAV V V V V V AT 6’ → 3’ GAV V V V V V TG
TTHHHHHHTA CTHHHHHHAG

1 → 5 AAXXXXXXXXGA 6’ → 2’ GAXXXXXXXXTC
TTIIIIIIIICT CTIIIIIIIIAG

1 → 6 AAY Y Y Y Y Y Y Y Y Y GG 6’ → 1’ GAY Y Y Y Y Y Y Y Y Y CA
TTJJJJJJJJJJCC CTJJJJJJJJJJGT

2 → 2’ CCTC 5’ → 5 CAZZGA
GGAG GTEECT

2 → 3 CCZZTT 5’ → 4’ CAZZCG
GGEEAA GTEEGC

2 → 4 CCWWWWAT 5’ → 3’ CAWWWWTG
GGFFFFTA GTFFFFAC

2 → 5 CCV V V V V V GA 5’ → 2’ CAV V V V V V TC
GGHHHHHHCT GTHHHHHHAG

2 → 6 CCXXXXXXXXGG 5’ → 1’ CAXXXXXXXXCA
GGIIIIIIIICC GTIIIIIIIIGT

3 → 3’ TTTG 4’ → 4 GCAT
AAAC CGTA

3 → 4 TTZZAT 4’ → 3’ GCZZTG
AAEETA CGEEAC

3 → 5 TTWWWWGA 4’ → 2’ GCWWWWTC
AAFFFFCT CGFFFFAG

3 → 6 TTV V V V V V GG 4’ → 1’ GCV V V V V V CA
AAHHHHHHCC CGHHHHHHGT

4 → 4’ ATCG 3’ → 3 TGTT
TAGC ACAA

4 → 5 ATZZGA 3’ → 2’ TGZZTC
TAEECT ACEEAG

4 → 6 ATWWWWGG 3’ → 1’ TGWWWWCA
TAFFFFCC ACFFFFGT

5 → 5’ GACA 2’ → 2 TGCC
CTGT CTGG

5 → 6 ATZZGG 2’ → 1’ TGZZCA
TAEECC CTEEGT

6 → 6’ GGGA 1’ → 1 CAAA
CCCT GTTT

8 Bio-Soft Computing with Fixed-Length DNA

For the elevator dispatching problem, an N -story building equipped with M
identical elevator cars given by up calls, down calls, and car calls. The optimal
route is given by min{G(1, 2, · · · , N)}.

1080 J. Watada

The key factor to cost sequence design is the Tm of a DNA strand. The
concept is to design the DNA sequences that have heavier weights with higher
Tm then those lighter weights. DNA amplification and detection techniques
often depend on oligonucleotide Tm. The Tm of a DNA duplex is defined
as the temperature where one-half of the nucleotides are paired and one-
half are unpaired [34]. The Tm indicates the transition from double helical
to random coil formation and is related to the DNA GC base content [24].
Usually expressed as a percentage, it is the proportion of GC-base pairs in
the DNA molecule or genome sequence being investigated. GC-pairs in the
DNA are connected with three hydrogen bonds instead of two in the AT-pairs,
which makes the GC-pair stronger and more resistant to denaturation by high
temperatures. In our encoding scheme, the DNA sequences that represent
floor nodes are fixed length, and costs are distinguished by Tm of the given
DNA strands. This design makes an oligonucleotide with lighter weight, which
means that more economical path tend to have a lower Tm.

All the possible solutions are randomly generated by DNA hybridization
and ligation with the oligonucleotides representing floors, edges, and costs. To
satisfy the conditions of an elevator dispatching problem, the route must begin
and end at a specified node, and the route must pass by each consecutive floor
until it reaches the final destination.

The PCR can be applied to test the former requirement, which is a tech-
nique for amplifying DNA that rapidly synthesizes many copies of a specific
DNA segment by providing specific complementary sequences (primers) and
enzymes (DNA polymerases – for example, Pfu and Taq). The DNA strands
corresponding to the original floor and the complement of the final destination
floor are used as two primers in two successive PCRs to reproduce the routes.

To test the latter requirement, agarose gel electrophoresis is applied.
Agarose gel electrophoresis is a method to separate DNA strands by size, and
to determine the size of the separated strands by comparison with strands
of known length. All PCR products are sieved by agarose gel electrophoresis,
and unreasonable lengths are excluded. To verify the DNA strands pass by
every consecutive floor, the product from the above step is affinity-purified
with a biotin-avidin magnetic bead system.

To solve the elevator routing problem with our molecular algorithm, note
that all possible end paths of elevator-i are joined with the start path of
elevator-(i + 1), so that the total output of the graph G(1, 2, · · · , N) –
representing the travel route of all elevators – can be calculated.

DTG-PCR is a specified PCR protocol that modifies the denaturation
temperature profile. If the denaturation temperature is decreased to a certain
level in PCR, the DNA strands with denaturation temperatures lower than
that temperature will be denatured and amplified. As the denaturation tem-
perature is increased cycle-by-cycle in PCR, other DNA strands with higher
denaturation temperature will also be amplified. However, the economical

DNA Computing and its Application 1081

paths that have lighter weights will be amplified more and will occupy the
major part of the solution and hence can be easily detected [22]. Based on the
electrophoretic mobility of DNA strands in different Tm, the temperature gra-
dient gel electrophoresis (TGGE) is applied to detect the the most economical
route among other possibilities resulting from DTG-PCR.

The proposed bio-soft computing algorithm for solving the elevator dis-
patching problem is summarized as follows:

Algorithm 1 Bio-soft Elevator Dispatch Algorithm

0. Design the fixed-length DNA sequences with thermodynamic control of weight;
1. Generate a random pool of solutions by hybridization and ligation;
2. Retrieve the strand that satisfies the conditions of the elevator dispatching
problem by PCR and gel electrophoresis;
3. Verify that the strands pass by every consecutive floor by affinity purification;
4. Join the strands of elevators by ligation;
5. Sieve the economical path by DTG-PCR;
6. Detect the most economical path by TGGE;
7. Read out the most optimal route by DNA sequencing.

8.1 Empirical Study

A six-story building equipped with two identical elevator cars, A and B, is
considered in this empirical study. As illustrated in Table 2, elevator-A is
currently at the 1st floor, moving upwards to answer calls on the 3rd and 5th
floors; elevator-B is at the 6th floor, moving down to answer calls on the 2nd
and 3rd floors. In addition, calls have been requested on the 3rd, 4th, and
5th floors to go down, up, and down, respectively. The objective is to find the
optimal route for all elevators that fulfills all initial conditions and subsequent
requirements. The optimal route will be given by min{G(A, B)}.

As shown in Table 5, each floor node is randomly associated with a 20-mer
sequence of ssDNA, denoted by Fi, which has a similar melting temperature
due to node sequences contributing equally to the thermal stability of the
paths. Weight sequences are designed to have different Tm depending on the
weights; the lighter the weight, the lower the Tm. In other words, a more eco-
nomical path has lower Tm. The edge between consecutive floors is generated
by a partial beginning node, a cost sequence, and a partial ending node. For
each floor movement (edge) i → j in the graph, an oligonucleotide Fi→j is
created that is the 3′ 10-mer complement of Fi followed by the cost sequence
of path length, and then the 5′ 10-mer complement of Fj . The edge from floor
1 to floor 2, for example, the 3′ 10-mer complement of F1: ‘CATGACAACG’ is
followed by the cost sequence of Ct: ‘ATCTTGGATTTATTACCAAG’, then the 5′

10-mer complement of F2: ‘TGGCTACATG’, as illustrated in Fig. 6.

1082 J. Watada

Table 5. DNA sequences associated with each floor node and cost for the six-floor
elevator routing problem

DNA Sequence (5′ → 3′) Tm (◦C) GC Content (%)

Floor Nodes

F1 TCCTCGTTAGGTACTGTTGC 46.02 50
F2 ACCGATGTACCTCTCAATGC 46.40 50
F3 TGGTCAGCTAATGACGTGAG 46.42 50
F4 GCGGTTCTAAATTCCGTCAC 46.51 50
F5 ATTGGACCCAGATGCAAAGG 46.92 50
F6 GTTAGACCTCGCGTTGCTAT 46.97 50
F ′

1 GCGTAATCGTATCCGTGAGA 46.58 50
F ′

2 TAGCCTTACGTACCGGCTTA 46.84 50
F ′

3 CCGTAACGTATAGCGATGGA 46.22 50
F ′

4 GACGGTATTGCGTAATTCGG 46.48 50
F ′

5 ATCGGAATCGATCCGTATGC 46.88 50
F ′

6 AGCTGGGATAAGGCATACCA 46.76 50

Costs

Ct ATCTTGGATTTATTACCAAG 36.98 30
Cs GAGCCGACCAGCGACACCCA 55.84 70

Fig. 6. Encoding scheme example: an oligonucleotide V1→2 is created that is the
3′ 10-mer of V1, followed by the weight sequence of path length, and then the 5′

10-mer of V2

In this study, the nearest-neighbor (N-N) model is applied to calculate
the Tm, which is the most accurate method for predicting the Tm of oligonu-
cleotide DNA through interactions between neighboring bases. The enthalpy
(%H) and entropy (%S) of adjacent bases is considered in the formula [30].
The Tm in this study was calculated with the initial concentration of 1nM
oligonucleotide and 50mM salt.

The proposed fixed-length DNA-based algorithm for solving the elevator
dispatching problem began from generating a random pool of possible routes
by the hybridization of DNA strands that represent the floors and edges. All
possible paths of the elevator dispatching problem were generated simulta-
neously under the massive parallelism of DNA molecules. Each Fi and edge
i → j were mixed in a single ligation reaction. As per [22], the added amount
of an edge was varied according to weight – namely the weight increased, the
amount was decreased. The oligonucleotide mixture was heated to 95◦C and

DNA Computing and its Application 1083

cooled to 20◦C at 2◦C/min for hybridization. The reaction mixture was then
subjected to a ligation.

Conventional gel electrophoresis excluded the unreasonable length of DNA
strands from the candidate pool. Then, the DNA strands that did not pass
by every floor nodes between origin and destination were excluded by affinity
separation. The complement of F1 was conjugated to magnetic beads so that
only those ssDNA molecules which contained the sequence F1 annealed to
the bound were retained. This process was repeated until each floor node was
verified.

In DTG-PCR, the denaturation temperature started low (70◦C) in the
beginning cycles of PCR, lower than the Tm of the template strands. Then,
the denaturation temperature was gradually increased until it reached 95◦C
and maintained at the same temperature for the remaining cycle. After this
process, one main band was observed in the gel which contained two different
DNA strands of the possible routes, as shown in Table 6. These strands,
however, were of the same length and cannot be separated by conventional
gel electrophoresis.

Nevertheless, from the algorithm design, the weights have distinct behav-
iors in Tm and thus the more economical path would have a lower Tm. Thus,

Table 6. Result from DTG-PCR; two different DNA strands represent the pos-
sible routes of the same length which cannot be separated by conventional gel
electrophoresis

DNA Sequence (5′ → 3′) Oligo Length (Bases)

TCCTCGTTAGGTACTGTTGCATCTTGGATTTATTACCAAG

ACCGATGTACCTCTCAATGCGAGCCGACCAGCGACACCCA

TGGTCAGCTAATGACGTGAGGAGCCGACCAGCGACACCCA

GCGGTTCTAAATTCCGTCACGAGCCGACCAGCGACACCCA

ATTGGACCCAGATGCAAAGGAGCTGGGATAAGGCATACCA 360
GAGCCGACCAGCGACACCCAATCGGAATCGATCCGTATGC

ATCTTGGATTTATTACCAAGGACGGTATTGCGTAATTCGG

GAGCCGACCAGCGACACCCACCGTAACGTATAGCGATGGA

GAGCCGACCAGCGACACCCATAGCCTTACGTACCGGCTTA

TCCTCGTTAGGTACTGTTGCATCTTGGATTTATTACCAAG

ACCGATGTACCTCTCAATGCGAGCCGACCAGCGACACCCA

TGGTCAGCTAATGACGTGAGGAGCCGACCAGCGACACCCA

GCGGTTCTAAATTCCGTCACGAGCCGACCAGCGACACCCA

ATTGGACCCAGATGCAAAGGAGCTGGGATAAGGCATACCA 360
ATCTTGGATTTATTACCAAGATCGGAATCGATCCGTATGC

ATCTTGGATTTATTACCAAGGACGGTATTGCGTAATTCGG

GAGCCGACCAGCGACACCCACCGTAACGTATAGCGATGGA

GAGCCGACCAGCGACACCCATAGCCTTACGTACCGGCTTA

1084 J. Watada

Fig. 7. The distinct behavior in melting temperature among possible optimal
solutions. ©: car call; !: up hall call; ": down hall call

TGGE can be used to filter the DNA strands that have lowest Tm from other
strands of the same length. Based on the correlation of the melting charac-
teristic of a DNA strand to its electromigration, the DNA strand of the most
economical route would travel fastest in gel; hence, it can be distinguished
from other possible routes. The Tm and its GC content among those possible
routes are shown in Fig. 7. More specifically, the DNA strands corresponding
to the route for elevator A: ‘1 → 2 → 3 → 4 → 5’ that answers the hall call
at the 4th floor and 5th floor for up and down, respectively, and elevator B:
‘6 → 5 → 4 → 3 → 2’ that answers the hall call at the 3rd floor for down – in
other words, the optimal solution.

9 Conclusion

The following is the famous uncertainty principle discovered by Heisenberg in
1927:

“It is not the world that attracts attention now and that a usual
physical law sways in the minute (nano) world but the world of a
quantum-mechanics-law.”

At present computers are built on the Deterministic Turing Machine
(DTM) model; they have yet to be realized modeled on the newer Quan-
tum Turing Machine (QTM) concept. Although this type of computer has yet
to be produced in the real world, present-day (von Neumann, semiconductor
type) face a wall of combinatorial problems.

There remain several problems with DNA computing however, these being:

• ‘Preparation’ and ‘extraction’ take too much time, and
• errors occur in copying DNA.

Despite such problems, we fully expect that at some time in the future,
DNA computers will replace present-day (silicon-based) ones.

Acknowledgement

The author would like to express his gratitude to Professor John Fulcher for
his assistance in preparing this Chapter.

DNA Computing and its Application 1085

References

1. Adleman LM (1994) Molecular computation of solutions to combinatorial
problems. Science, 266: 1021–1024.

2. Adleman LM (1998) Computing with DNA. Scientific American, 279(2): 54–61.
3. Amano M, Yamasaki M, Ikejima H (1995) The latest elevator group control sys-

tem. In: Barary GC (ed.) Elevator Technology 6 – Proc. ELEVCON’95, March,
Hong Kong. Intl. Association Elevator Engineers, Essex, UK: 88–95.

4. Amos M, Paun G, Rozenberg G, Salomaa A (2002) Topics in the Theory of
DNA Computing. J. Theoretical Computer Science, 287: 3–38.

5. Barney G, dos Santos S (1985) Elevator Traffic Analysis, Design and Control
(2nd ed). Peter Peregrinus, London, UK.

6. Barney G (2003) Elevator Traffic Handbook, Spon Press, London, UK.
7. Beielstein T, Ewald C-P, Markon S (2003) Optimal elevator group control

by evolution strategies. In: Cantú-Paz E et al. (eds.) Proc. Genetic and
Evolutionary Computation Conf. (GECCO’03), 12–16 Julu, Chichago, IL:
1963–1974.

8. Bi X, Zhu C, Ye Q (2004) A GA-based approach to the multi-objective opti-
mization problem in elevator group control system. Elevator World, June:
58–63.

9. Binti R, Bakar A, Watada J, Pedrycz W (2006) A DNA computing approach
to data clustering based on mutual distance order. In: Watada J (ed.) Proc.
9th Czech-Japan Seminar on Data Analysis and Decision Making Under
Uncertainty, 18–22 August, Kitakyusyu and Nagasakidate, Japan: 139–145.

10. Cortes P, Larraneta J, Onieva L (2004) Genetic algorithm for controllers in
elevator groups: analysis and simulation during lunchpeak traffic. Applied Soft
Computing, 4: 159–174.

11. Crites R, Barto A (1998) Elevator group control using multiple reinforcement
learning agents. Machine Learning, 33: 235–262.

12. Eguchi T, Hirasawas K, Hu J, Markon S (2004) Elevator group supervisory
control system using genetic network programming. In: Proc. IEEE Congress
Evolutionary Computation (CEC’04), 19–23 June, Portland, OR. IEEE Press,
Piscataway, NJ. 2: 1661–1667.

13. Eguchi T, Hirasawas K, Hu J, Markon S (2006) Elevator group supervisory
control system using genetic network programming with functional localization.
J. Advanced Computational Intelligence and Intelligent Informatics, 10(3): 243–
244.

14. Eguchi T (2006) Study on optimization of elevator group supervisory control sys-
tem using genetic network programming, PhD Dissertation, Graduate School of
Information, Production and Systems, Waseda University, Kitakyushu, Japan.

15. Fujino A, Tobita T, Segawa K, Yoneda K, Togawa A (1997) An elevator group
control system with floor-attribute control method and systems optimization
using genetic algorithms. IEEE Trans. Industrial Electronics, 44(4): 546–552.

16. Gudwin R, Gomide F, Netto M (1998) A fuzzy elevator group controller with
linear context adaptation. In: Proc. Fuzzy-IEEE98, WCCI’98-IEEE – World
Congress Computational Intelligence, 4–9 May, Anchorage, AL. IEEE Press,
Piscataway, NJ: 481–486.

17. Ito Y, Fukusaki E (2004) DNA as a ‘nanomaterial’. J. Molecular Catalysis B:
Enzymatic, 28: 155–166.

1086 J. Watada

18. Jeng D J-F, Watada J, Kim I (2007) Solving a real time scheduling problem
based on DNA computing. Soft Computing J. (in press).

19. Kim C, Seong K, Lee-Kwang H, Kim JO (1998) Design and implementation of a
fuzzy elevator group control system. IEEE Trans. System, Man and Cybernetics
– PART-A, 28(3): 277–287.

20. Kim I, Jeng D J-F, Watada J (2006) Redesigning subgroups in a personnel
network based on DNA computing. Int. J. Innovative Computing, Information
and Control, 2(4): 885–896.

21. Lee JY, Zhang B-T, Park TH (2003) Effectiveness of denaturation temperature
gradient-polymerase chain reaction for biased DNA algorithms. Pre-Proc. 9th
Intl. Meeting on DNA Based Computers, Madison: 208.

22. Lee JY, Shin S-Y, Park TH, Zhang B-T (2004) Solving traveling salesman
problems with DNA molecules encoding numerical values. Biosystems, 78(1):
39–47.

23. Lipton RJ (1995) DNA Solution of Hard Computational Problems. Science, 268:
542–545.

24. Marmur J, Doty P (1962) Determination of the base composition of deoxyri-
bonucleic acid from its thermal denaturation temperature. J. Molecular Biology,
5: 109–118.

25. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal
clique problem. Science 278: 446–449.

26. Owenson GG, Amos M, Hodgson DA, Gibbsons A (2001) DNA-based logic. Soft
Computing, 5(2): 102–105.

27. Paun GH, Rozenberg G, Salomaa A (1999) DNA Computing: New Computing
Paradigms. Translated by Yokomori T (Japanese ed.) Springer-Verlag, Tokyo,
Japan.

28. Powell BA, Sirag DJ, Witehall BL (2000) Artificial neural networks in elevator
dispatching. Lift Report, 27(2): 44–57.

29. Rohani BAB, Watada J, Pedrycz W (2006) A DNA computing approach to data
clustering based on mutual distance order. In: Watada J (ed.) Proc. 9th Czech-
Japan Seminar on Data Analysis and Decision Making Under Uncertainty, 18–
22 August, Kitakyusyu and Nagasakidate, Japan: 139–145.

30. SantaLucia JJr (1998) A unified view of plymer, dumbbell, and olygonucleotide
DNA nearest-neighbor thermodynamics. Proc. National Academy of Sciences,
95: 1460–1465.

31. van Noort D (2004) Towards a re-programmable DNA computer. In: Chen
J, Reif JH (eds.) Proc. 9th Intl. Workshop DNA Based Computers (DNA9),
Lecture Notes in Computer Science 2943, Springer-Verlag, Berlin: 190–196.

32. Wan H, Liu C, Liu H (2003) NN elevator group-control method. Elevator World,
2: 148–154.

33. Watada J, Kojima S, Ueda S, Ono O (2006) A DNA computing approach to opti-
mal decision problem. Int. J. Innovative Computing, Information and Control,
2(1): 273–282.

34. Wetmur JG (1991) DNA probes: applications of the principles of nucleic acid
hybridization. Critical Reviews in Biochemistry and Molecular BIology, 26(3):
227–259.

35. Winfree OE, Lin F, Wenzler LA, Seeman NC (1998) Design and self-assembly
of two-dimensional DNA crystals. Nature, 394(6693): 539–549.

Resources

1 Key Books

1.1 DNA Computing

Amos M (2005) Theoretical and Experimental DNA Computation. Springer-
Verlag, Berlin.

Calude CA, Paun G (2001) Computing With Cells and Atoms: An Intro-
duction to Quantum, DNA and Membrane Computing. Taylor and Francis,
London, UK.

Deng Z, Chen Y, Tian Y, Mao C (2006) A fresh look as DNA nanotech-
nology. In: Chen J, Jonoska N, Rozenberg G (eds.) Nanotechnology: Science
and Computation. Springer-Verlag, Berlin.

Madrona E (2000) Global Distributed Applications With Windows DNA.
Artech House, Norwood, MA.

Paun GH, Rozenberg G, Salomaa A (1999) DNA Computing: New Computing
Paradigms. Springer-Verlag, Berlin.

1.2 Elevator Management

Barney G, dos Santos SM (1985) Elevator Traffic Analysis, Design and
Control (2nd ed). IEEE Computer Society Press, Los Alamitos.

Barney G (2003) Elevator Traffic Handbook, Spon Press, London, UK.

1088 J. Watada

2 Key Survey/Review Articles

Adleman LM (1998) Computing with DNA. Scientific American, 279(2):
54–61.

Lipton RJ (1995) DNA Solution of Hard Computational Problems. Science,
268: 542–545.

Mao C, LaBean TH, Reif JH (2000) Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules. Nature, 407: 493–495.

Reif JH, LaBean TH (2007) Autonomous programmable biomolecular devices
using self-assembled DNA nanostructures: Surveying recent developments in
bio-DNA computing. Communications ACM, 50(9): 46–53.

Shapiro E, Benenson Y (2006) Bringing DNA computers to life. Scientific
American, May: 45–51.

Bibliography of Molecular and Splicing Systems
http://www.dcs.ex.ac.uk/˜pf201/dna.html

3 International Organization

International Society for Nanoscale Science, Computation and Engineering
http://www.isnsce.org/

4 Discussion Groups, Forums

P System Internet Forum
http://www.cs.us.es/gcn/foro.htm

5 Research Groups

EMCC European Molecular Computing Consortium
http://openit.disco.unimib.it/emcc/?screen=1024x768x7

Computational Biomodelling Laboratory, Finland
http://combio.abo.fi/

Japanese Molecular Project
http://hagi.is.s.u-tokyo.ac.jp/MCP/

DNA Computing and its Application 1089

Leiden Center for Natural Computation
http://www.wi.leidenuniv.nl/home/lcnc/

The P Systems Molecular Computing Consortium
http://psystems.disco.unimib.it/European

Hardware Implementation of P Systems
http://www.teuscher.ch/psystems*

The Molecular X-Machines Project (Deptartment of Computer Science,
University of Sheffield, UK)
http://www.dcs.shef.ac.uk/˜bernardf/molxm/index.htm

6 Key International Conferences and Workshops

http://www.liacs.nl/home/pier/webPagesDNA/index.html

7 Web Resource

Institute of Electronics, Information and Communication Engineers, Japan
elevator scheduling competition (in Japanese):
Multiple cars in multiple shafts (therefore each car can become an obstacle
for others, leading to potential deadlock). The challenge is to minimize the
sum of times from persons calling cars to persons reaching destination floors.
http://www.ieice.org/˜cst/compe07/

The Next Generation of Immunity-Based
Systems: From Specific Recognition
to Computational Intelligence

Yoshiteru Ishida

Department of Knowledge-Based Information Engineering, Intelligent Sensing
System Research Center, Research Center for Future Vehicle, Toyohashi University
of Technology, Tempaku, Toyohashi 441-8580, Japan, ishida@tutkie.tut.ac.jp

1 Introduction

The post-genome era proved that DNA sequence data [11, 26] with structural
and functional analysis on genes archived in many data bases can support in
developing new bio-engineering technologies and can drive systemic views for
biological systems. However, the post-genome era also proved that sequence
data alone is not sufficient, but revealed that higher knowledge of the function
of proteins is indispensable. Personalized medicine required not only sequence
data, but further knowledge such as SNP (single nucleotide polymorphism)
and of functioning of proteins and its deployment to interacting systems such
as gene networks, giving birth of a new territory called proteome.

Considering such trends in the post-genome era, we propose possible
directions for immunity-based systems (IMBS). One such approach is a con-
structive systems approach, taking fundamental properties of the component
and trying to construct a fundamental function. The synthetic approach has
been extensively studied [3, 5, 18, 24], to mention but a few). A constructive
approach that assumes an intrinsic character of the components (such as anti-
bodies), and constructs the fundamental function of the immune system from
the component. Although it should not be limited to two, another possible
direction of next generation immunity-based systems is to extend and enhance
models and simulations to be operational: that is, involving medications as
a control to the systems with the immune system and pathogen interactions.
This would be made possible by using post-genome genetic data. The oper-
ational models and simulations allow, for example, involving the immune
system in personalized medicine. Information of disease agents, medicine, and
host agents are required for personalized medicine.

When functions are focused and more pathways are revealed, biological
systems will be studied as a system of interacting components and processes.

Y. Ishida: The Next Generation of Immunity-Based Systems: From Specific Recognition to

Computational Intelligence, Studies in Computational Intelligence (SCI) 115, 1091–1121 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

1092 Y. Ishida

Restricting discussions on immunity-based systems, the post-genome era nat-
urally proceeds to study immune systems focusing not only on discovery of
genes related to the immune system such as MHC (major histocompatibil-
ity complex), but also its systemic organization and the knowledge of the
organism [9]. While on the other hand, studies on the immune system are
indispensable for personalized medicine, since the immune systems is one
important component for personalization of medicine, and such personal dif-
ferences are integrated in the immune system. The other two components for
personalized medicine are: pathogens and medications.

Too close mimicking and superficial analogy could be misleading, not only
for biologically inspired systems but also for computing (circuits) that use
biological system components. Biological systems can be neither simple nor
optimal. One reason for apparently complex and roundabout implementations
is that biological systems have large-scale interactions in a spatio-temporal
sense. In space, they interact with an environment that includes not only
nonself but self. In time, they undergo an adaptation within an individual
time scale, as well as evolution in a species time scale. Thus, it is suggested
that a superficial analogy could be misleading in mimicking biological systems;
biological mimicking should not be done at a phenomenological level, but
instead on a principle level.

Another reason for the complexity and intangibility of biological systems
seems largely due to the feature of the material they comprise – namely, pro-
teins. This would suggest that a constructive systems approach to biological
mimicking systems can be not only an alternative to modeling and simula-
tions but also a complementary tool supporting and guiding the modeling
and simulation. The huge information available in post genome era allows
a systems approach to biology, and this trend is accelerated for immunol-
ogy as well. Next generation immunity-based systems may depend not only
on a modeling/simulation approach, but also on a constructive approach that
might bridge between the material and experimentally-based immunology and
model/simulation-based informatics on bio-systems.

In summary, next generation immunity-based systems should focus on the
following:

• A constructive systems approach to computational intelligence and artifi-
cial systems by assuming material similar to the real biological systems

• Extension and enhancement of models and simulations so that several
operations are possible, involving genome data in the post-genome era,
and targeting bioinformatics incorporating the immune system (such as
personalized medicine involving the immune system).

This Chapter explores the first issue – that is, we consider next genera-
tion immunity-based systems by first revisiting conventional immunity-based
systems (focusing on recognition capability), and next by extending them by

The Next Generation of Immunity-Based Systems 1093

restricting antibodies (or peptides in general) as a base material for a con-
structive systems approach to immunity-based systems. Another Chapter in
this volume explores the models without recognition – that is, all the agents
mounting only effectors but without sensors (see Chap. 4). In this Chapter,
each agent is assumed to be capable of recognizing the state of other agents.

This Chapter is organized as follows: Sect. 2 focuses on the preliminary
problem of whether recognition is indeed needed, focusing on the specific
task of abnormal state eradication on a simple network. Section 3 addresses
the problem of networked recognition that involve action counterpart, hence
agents can not only recognize but also be recognized. Section 4 further intro-
duces adaptation by assuming agents can not only reproduce but also mutate
in the receptor counterpart. Section 5 considers arrayed recognition, which
is the very first step, even before networked recognition; however, it assumes
specific recognition capability of antibody-antigen recognition.

2 Impact of Recognition

It is still controversial whether the immune system actually needs to discrimi-
nate ‘self’ and ‘nonself’ in order to eliminate nonself [20], however, elimination
is actually done, and hence the double-sided property that elimination could
be directed not only towards nonself, but also to self. Thus, the immune system
is a double-edged sword.

This Section considers the impact of recognition in a simple model. To
observe the impact, a simplified problem of network cleaning is considered. In
information systems, the repairing units can repair others simply by copying
their content, but could have spread contamination when the repairing units
themselves are contaminated. We consider the possibility of cleaning up the
network by mutual copying. However repair by copying in information systems
is also a ‘double-edged sword’, and it needs to be identified when the network
can really eradicate abnormal elements from the system.

The self-repairing network consists of units capable of repairing other con-
nected units. We call the connected units as neighbor units based on the
terminology of cellular automata (CA). Although mutual repair and other
interactions involved may be done in an asynchronous manner, our model
considers synchronous interactions for simplicity. Each unit tries to repair the
units in its neighborhood, however whether it can really repair or not depends
on several factors: the state of the repairing unit and the success rate of the
repair.

In a mathematical formulation, the model consists of three elements
(U,T,R) where U is a set of units, T is a topology connecting the units,
and R is a set of rules of the interaction among units. In the simulations to
come, a set of units is a finite set with N units, and the topology is restricted

1094 Y. Ishida

Fig. 1. One-dimensional lattice with the neighborhood radius r; the next state of
the cell will be determined by 2r + 1 nodes in the neighborhood

to the one-dimensional lattice as shown in Fig. 1. The network structure could
be an n-dimensional array, complete graph, random graph, or even a scale-
free network. In our one- or two-dimensional lattice, each unit has S neighbors
and the lattice with a boundary condition – in other words, the structure of
the lattice is a ring with unit 1 adjacent to the unit N in the case of a one-
dimensional lattice. Also, we restrict our discussion to cases where each unit
has a binary state: normal (0), and abnormal (1).

2.1 An Impact of Recognition is a Double-Edged Sword

Our model also involves recognition of the states (normal or abnormal) of a
target node before trying to repair it. For simplicity, frequency of recognition
is controlled by a recognition rate γ. When recognition is undertaken (with
a probability γ), successful recognition occurs with a recognition success rate
γ0 when performed by normal nodes, and γ1 by abnormal nodes. If the target
node is identified as ‘abnormal’, repair action take place. When recognition
does not occur (with a probability 1− γ), the repair action takes place with
the probability µ. Thus, if recognition is completely suppressed (γ = 0), this
new model reverts to the original model. Figure 2 shows the procedure of
recognition and repair.

Computer simulations are conducted in a one-dimensional array with a
ring structure (periodic boundary condition). The parameters listed in Table 1
are fixed throughout the simulations. Other parameters: γ, γ1, µ, andα1 are
varied to observe the impact of recognition.

We are concerned with the problem: “Is recognition really necessary?”
Moreover, if ‘yes’, then when and how should the recognition should be incor-
porated? In the following simulations, we pursue the problem of identifying
an appropriate level of recognition (namely, γ) when the adverse effect of
abnormal units (that is, γ1 and α1) is given.

When the rate of successful repair by abnormal nodes (that is, α1) is given,
what is the minimum level of recognition (namely, γ) required for abnormal
node eradication? Figure 3 plots the minimum level of γ. As observed and
already reported, we do not care about the level of repair and/or recognition
when α1 exceeds a threshold (0.4 in this simulation). However, when α1 is less

The Next Generation of Immunity-Based Systems 1095

recognition trial

recognition

START

repair trial

repairno action

NoYes

YesNoTarget Node
 is Normal

Target Node
 is Abnormal

Fig. 2. Recognition carried out prior to repair

Table 1. Parameter list for the simulations

Description Value

N number of nodes 500
Nf (0) initial number of failure nodes 250
r neighborhood radius 1
T number of time steps for each trial 5000
NT average number of trials 10
α0 repair success rate by normal nodes 1
γ0 recognition success rate by normal nodes 1

than the threshold, recognition is needed (γ is positive) to eradicate abnormal
nodes. Furthermore, the smaller the level of repair (µ), the smaller the level
of recognition (γ) can be.

In this simulation (and with the specific model parameters as indicated),
only repair by copying suffices for abnormal node eradication when the rate of
successful repair by abnormal nodes exceeds some level. However, recognition
before repair is required when the rate does not exceed this level.

3 Immunity-Based Systems: Evolved Recognitions

3.1 Definition of Immunity-Based Systems

Although recognition may not be needed under an optimistic situation in
a simple network model, as in the previous Section, immunity-based systems
(IMBS) [13] assume each agent mounts receptor counterpart. IBMS as a design

1096 Y. Ishida

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

og
nt

io
n

tr
ia

l r
at

e

Repair success rate by abnormal nodes

Repair rate=0.0
Repair rate=0.3
Repair rate=0.5
Repair rate=0.8
Repair rate=1.0

Fig. 3. Minimum level of γ to eradicate abnormal nodes when α1 is given

paradigm has the following three properties:

1. a self-maintenance system with monitoring not only of the nonself but also
of the self

2. a distributed system with autonomous components capable of mutual
evaluation

3. an adaptive system with diversity and selection

In the following Sections, networked recognition focuses on the first two,
while adaptive recognition involves the third one of these.

3.2 Networked Recognition

[17] proposed the immune network. In network theory, the immune system
is not merely a ‘firewall’ but a network of antigen-antibody reactions. That
is, when an antigen is administered, it stimulates the related cells and causes
them to generate antibodies. However, the generated antibodies themselves
are antigens to other cells, and consequently result in another antibody gen-
eration. The antigen-antibody reaction percolates like a chain reaction and
hence requires a regulation mechanism. An analogy of this problem in engi-
neering design is the ‘alarm problem’ of placing mutually activating and
non-activating alarms whose sensitivity must be appropriately set to avoid
false negative and false positive.

There is a variety among immune system models, even if we restrict our-
selves to those by differential equations. If they were to be described by a single

The Next Generation of Immunity-Based Systems 1097

equation with xi: the number of recognizing (or recognized) sets (T -cells, B-
cells, antibodies, and antigens) and aij : interactions between type i and type j
(positive for stimulation and negative for suppression), the equation would be:

dxi(t)
dt

= F ({xi(t)}, {aij(si(t), sj(t), affij(t))}) (1)

where si denotes the state of the type i entity (for example, activated/inac-
tivated, virgin/immune, and so on); and affij the affinity between these two
types. The dimension of xi (the number of types) can vary, since a new type
can be born, mutated from other types, or just injected in the case of antigens.

So far, this is not much different from the population dynamics of gen-
eral ecological systems described by the Lotka-Volterra equation, for example.
What makes this equation peculiar to the immune system is that interactions
aij vary depending on the states of type i and type j entities, as well as the
affinity between them. It is this affinity that models of the immune system
devised by several techniques, such as the ‘shape-space’ model [23], where
antigens and antibodies are expressed as points in the space, which allows the
affinity between them to be measured as a distance between the points. Sev-
eral spaces such as continuous and discrete ones are considered, hence several
distances too (such as Euclidean and Hamming distance).

In such dynamical models, immunological concepts such as immune mem-
ory and tolerance are mapped to attractors of the dynamical systems. Within
the context of problem solving, attractors of the system are mapped to solu-
tions, thus the perturbed state (nonself) will be attracted to the solution
(self), and hence nonself will be eliminated and self will be preserved. Positive
and negative regulation will be interpreted as reinforcement and elimination.

Let us consider a credit assignment problem where high credit should be
assigned to the self and low credit to nonself. Weighting the vote and propa-
gating the information correctly identifies the abnormal agents. A continuous
dynamic network is constructed by associating the time derivative of the state
variable with the state variables of other agents connected by the evaluation
chain. Further, considering not only the effect from evaluating agents, but also
that from evaluated agents leads to the following dynamic network:

dri(t)
dt

=
∑

j

TjiRj +
∑

j

TijRj − 1/2
∑

j∈{k:Tik �=0}(Tij+1)

(2)

where Ri(t) = 1
1+exp (−rj(t))

and

Tij =

⎧⎪⎪⎨
⎪⎪⎩

−1 if evaluating agent i is normal and evaluated agent j is faulty

1 if both agents i and j are normal

±1 if evaluating agent i itself is faulty

0 if there is no evaluation from agent i to agent j
(3)

1098 Y. Ishida

In evaluating agents, agent j will stimulate (inhibit) agent i when Tji = 1(−1).
We call this model the black-and-white model, meaning that the network tries
to separate an abnormal agent clearly from a normal agent; namely, the cred-
ibility (which differs from the probabilistic concept of reliability) of an agent
tends to be 1 (fully credible) or 0 (not credible), not an intermediate value.
Moreover, we have proposed several variants of this dynamic network, such as
the skeptical model and the gray model for different engineering needs. The
results presented in this Chapter are generated only from the black-and-white
model.

Figure 3 shows an example of the evaluation chain of mutual voting. The
pattern associated with the evaluation arc shows a case when agents 4 and 5
are faulty. A positive arc from agent i to agent j indicates that agent i voted
positively for agent j (in other words, considered ‘normal’), and a negative
arc negatively (that is, considered ‘abnormal’). Formally, evaluation results
are assumed to give the following pattern:

Tij =

⎧⎪⎪⎨
⎪⎪⎩
−1 if evaluating agent i is normal and evaluated agent j is faulty
1 if both agents i and j are normal
∓1 if evaluating agent i itself is faulty
0 if there is no evaluation from agent i to agent j

(4)
Simple voting at each agent does not work, since three agents (2, 3, and 5)

are all evaluated as ‘faulty’ by two other agents, and hence cannot be ranked
in terms of credibility. Since an abnormal agent may give faulty results, these
votes should be weighted. Next, let us introduce a binary weight for each agent:
0 (inactive or abnormal) when the sum of votes for the agent is negative, and
1 (active or normal) when the sum of votes for the agent is zero or positive.
Starting with all agents active, evaluating the weight would synchronously
result in the sequence of credibility vector (R1R2R3R4R5), as shown on the
right of Fig. 4.

-

-
- -

-

+

32 4

1

5

+

+

(R1, R2, R3, R4, R5)
(1, 1, 1, 1, 1)
(1, 0, 0, 0, 0)
(1, 1, 1, 0, 0)

Fig. 4. An example evaluation chain of mutual voting (left), and the credibility
vector sequence (right)

The Next Generation of Immunity-Based Systems 1099

Example: Application to Automobile Engine Sensor Diagnosis [12]

A dynamic relational network can be built in roughly two steps:

1. Line up candidates of relational arcs: find causally related sensors by inves-
tigating correlation by checking indices such as coefficient of correlation.

2. Narrow down the above candidates: remove those arcs from sensor A to B
if the test from sensor A to B generates false positives or false negatives.

A time series analysis is carried out for step 1 (using mutual correlation
matrix), and/or for step 2 (prediction by the models of time series analysis).
As reported below in the case of both the combustion control system of an
automobile engine and for a particular fault in an air-flow sensor, a statisti-
cal analysis of up to step 1 for building the network suffices. However, time
series analysis (with the VAR model) is used to determine the sign of an arc
(evaluation from node i to node j) in online diagnosis.

In this Section, a case study with statistical analysis for building the rela-
tional network is reported. Sa indicates the data from sensor A. In step 1,
arcs between A and B are added if | coefficient of correlation between Sa and
Sb |≥ 0. Figure 5 shows a network built when θ = 0.4 and only step 1 in the
algorithm is used. The network turned out to be complete. Signs are a snap-
shot of evaluation based on the sensor data. Gray level in the nodes indicates
credibility. Dark nodes correspond to high credibility, while light nodes to low
credibility (that is, evaluated as ‘faulty’) [14]. The signs of arcs in the network

Fig. 5. A network with arcs added when | coefficient of correlation |≥ 0.4 in cruise
phase (EngRev: engine revolutions; Battery: battery voltage) [14]

1100 Y. Ishida

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Time

credibility: -15%error (monochrome-model)

EngRev Battery AirFlow Spped Throttle

Fig. 6. Diagnosis by the evaluations calculated from the VAR model when the air
flow sensor is faulty

change dynamically in online diagnosis; Fig. 5 shows only a snapshot of signs.
The network structure does not change during the diagnosis.

It should be noted that the above calculation is done using only normal
sensor data. Figure 6 shows the time evolution of credibility calculated by
the time series analysis stated above. The dotted line shows the time evolu-
tion of sensor credibility. Only the credibility of the faulty sensor (Air Flow)
becomes 0, hence the diagnosis is successful.

As heuristics for solving problems by the networked recognition, the
following remarks apply:

• Signals from different agents should be related by signal processing mod-
els and statistical analysis [14] to map from the signals to evaluations
(positive/negative sign of the network as in Fig. 5).

• Interactions among agents should be designed so that attractors of the
entire network correspond to solutions to be obtained

Compared with the Bayesian Network [22], the above networked recogni-
tion is not able to obtain probabilities of events, however the problem solving
mechanism can be directly embedded in the system where many agents are
able to relate with each other. When applied to the signal processing domain,
as in the above example, networked recognition is able to utilize the informa-
tion embedded in the relations between the signals, as well as the information
embedded in each signal itself – that is, both absolute and relative informa-
tion in multiple signals can be involved. Networked recognition can be applied

The Next Generation of Immunity-Based Systems 1101

not only to signal processing domain but also to other domains, such as data
mining, and search engines, if distributed agents are involved and mutually
related.

3.3 Adaptive Recognition

[4] speculated on clonal selection theory based on antibody production. An
immune algorithm for a population of agents is proposed based on the clonal
selection concept [16]. The most naive immune algorithm has the following
three steps carried out in parallel by agents distributed over the system. In the
algorithm, agents (corresponding to the immune cells) have not only recog-
nition and communication capabilities, but also reproduction capability with
possible mutation.

1. Generation of diversity: diverse agents with distinct specificity of the
receptor and the effector are generated;

2. Establishment of self-tolerance: agents are adjusted to be insensitive to
‘known patterns’ (self) during the developmental phase;

3. Memory of nonself: agents are adjusted to be more sensitive to ‘unknown
patterns’ (nonself) during the working phase.

Figure 7 shows a process which basically mimics the affinity maturation;
affinity will increase by exploring diverse agents with slightly varied receptors.
Diversity is generated by recombination of genetic counterpart, which is due to

DDiivveerrssiittyy GGeenneerraattiioonn

SSeellffSSSSeeeellllffffEEssttaabblliisshhmmeenntt ooff SSeellff

SSeennssiittiizzaattiioonn bbyy NNoonnsseellff

RReepplliiccaattiioonn wwiitthh MMuuttaattiioonn

NNoonnsseellffNNNNoooonnnnsssseeeellllffff
RReeffeerreennccee

RReeffeerreennccee

Fig. 7. Utilizing diversity for affinity maturation by agent filtering and agent
sensitization [13]

1102 Y. Ishida

the finding by [25]. In using diversity for exploring further possibility of affinity
increase, slight variations of not only structure but also function (affinity)
can contribute. For the immune system, the environment with which it must
interact is not only the nonself from the outer world, but also the self from
the internal world.

Immune algorithms are meant for specific problems where self-nonself dis-
crimination and openness to the environment are critical. Further, the immune
algorithm assumes ‘agents’ as a primitive to build immunity-based systems.
In summary, the significance of the immune system used by the immune
algorithm is:

• indirect information transfer from the environment by ‘selection’, as oppos-
ed to ‘instruction’;

• adaptive character driven by continuous diversity generation;
• involvement of self-reference as well as nonself-reference.

An outline of the immune algorithm is depicted in Fig. 7. The algorithm is
described in a general context – it is for any adaptive system for self-nonself.

This action part formalized as an immune algorithm has been used for noise
cancelation, where noise corresponds to the nonself and the control signal to
the self. Since the signal is not labeled beforehand, agents must discriminate
the self signal from the nonself one by the specific features of these signals.
Further, the cancelation signal from agents must be discriminated for other
agents. Although the noise cancelation can apply even to the unknown noise,
it must deal with self-reactive agents (that try to cancel the control signal) as
if auto-immune disease could happen to the immune system.

Example: Noise Neutralization by Agents

Agents with diverse receptors are first needed. As a set of gene data for initial
agents, primitive ones such as shown in Fig. 8 can be used. Diversity may be
provided by genetic operations such as recombination. In the simulation, how-
ever, ten different gene data with different base lengths but identical heights
are used. Since genes will change by adaptation to the noise in the immune
algorithm, the initial set of genes may be arbitrary as long as they have vari-
ations. However, primitive genes are required so they can approximate many
shapes of disturbance signal. During adaptation in the memory of nonself step,
genes mutate and higher affinity is attained.

To observe immunologic memory, a noise is first imposed, then the different
noise imposed at 15,000 step. Finally, the first noise is again imposed at 30,000
step. Figure 9 shows the response (output from the system) to this noise
imposition. It is known that the neutralizer more efficiently neutralizes the
noise in the second encounter, if we compare the responses at the initial and
second (after 30,000 step imposition of other disturbances) encounter. This

The Next Generation of Immunity-Based Systems 1103

1

base length

Fig. 8. Initial gene data; ten different base lengths are prepared initially [15]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

O
ut

pu
t(

y)

Time(step)

y

Fig. 9. Time evolution of error when first encounter with the disturbance of a type
at step 0 and again at step 30,000, after imposition of a different disturbance from
step 15,000 to 30,000 [9]

comes from the adaptation of the agent: memory attained by elongation of
the lifespan in this case.

For observing the step of ‘Establishment of Self-Tolerance’ in the immune
algorithm, a sine wave is imposed to the reference input, then agents can-
not discriminate whether the signal is disturbance or the reference input.

1104 Y. Ishida

-4

-2

 0

 2

 4

 9700 9720 9740 9760 9780 9800

In
pu

t a
nd

 O
ut

pu
t

Time(Steps)

Interference with Control Signal

Output
Input(Target Control Signal)

-4

-2

 0

 2

 4

 29700 29720 29740 29760 29780 29800

In
pu

t a
nd

 O
ut

pu
t

Time(Steps)

Interference with Control Signal

Output
Input(Target Control Signal)

Fig. 10. Response from the system during 100 steps in the early phase (left) and
the final phase (right) in a 30,000-step simulation when the self-reactive agents are
not filtered

-4

-2

 0

 2

 4

 9700 9720 9740 9760 9780 9800

In
pu

t a
nd

 O
ut

pu
t

Time(Steps)

Interference with Control Signal

Output
Input(Target Control Signal)

-4

-2

 0

 2

 4

 29700 29720 29740 29760 29780 29800

In
pu

t a
nd

 O
ut

pu
t

Time(Steps)

Interference with Control Signal

Output
Input(Target Control Signal)

Fig. 11. Response from the system during 100 steps in the early phase (left) and
the final phase (right) in a 30,000-step simulation when the self-reactive agents are
filtered

In this and the next simulation, a training phase is added before the noise
neutralization.

During the training phase, only the reference input is imposed without
noise. In this simulation, agents are not filtered in the training phase. Figure 10
shows the response during 100 steps in the early phase (left: from 9,700 to
9,800 steps) and that in the final phase (right: from 29,700 to 29,800 steps)
in a 30,000-step simulation in the noise neutralization phase after training.
Noise is not well neutralized due to the self-reactive agents.

In another simulation, the self-reactive agents are removed at the training
phase. After this training phase, the neutralizer is placed at the same envi-
ronment as the previous simulation. Figure 11 shows responses both in the
early and final 100, as in Fig. 10. In the final phase (righthand plot of Fig. 11),
it is observed that the noise is well canceled while preserving the self (that
is, the target signal). We also observe, however, that the self-reactive agents
will appear after long time steps, due to the affinity increasing by mutation
of existing agents. This would suggest that the self-reactive agents should
not only be removed during the training phase, but also memorized at this

The Next Generation of Immunity-Based Systems 1105

phase so that agents similar to the memorized one (hence self-reactive) will
be removed whenever they appear by mutation.

In this simulation, one extreme of the IMBS is used – that is an adaptive
system (open to the environment) where agents will evolve by adapting to the
exogenous nonself. However, agents could form a network by communication
and cooperation both in elimination of the disturbance and in memorizing the
disturbance pattern.

For example, if the neutralizing signal can affect the other agents, then it
would be close to the network model (networked recognition). Further, if the
neutralizing signal from agents can be an error signal to other agents, then
agents may be connected by signal similarly to Jerne’s network [17].

As heuristics for solving problems by adaptive recognition, the following
remarks apply:

• Signals (phenotype) should be mapped to gene data (genotype) by decom-
posing and expressing signals as a primitive signal such as a triangular
(Fig. 8) or any other form (such as those found in wavelets), allowing
coding of signals where genetic operations are possible;

• Reference to the self as well as nonself should be carefully designed,
allowing for the possibility of either or both changing.

Compared with other population-based methods, adaptive recognition can
handle not only changing nonself but changing self. This feature also leads to
the risk of ‘auto-immune disease’. As an application to intrusion detection,
adaptive recognition can handle intrusion from both inside as well as outside,
by preparing and diversifying profiles for legitimate users as well as illegitimate
ones. That is, profiles of legitimate users within the firewall can be taken and
processed not only to identify legitimate users (the self) but also to identify
illegitimate masqueraders, by diversifying the profiles and even synthesizing
the profiles of non-legitimate users (by mutating and recombining available
profiles). Here, profiles are any signature that can be obtained by monitoring
activities during login. This would provide the possibility of trade-off between
internal masqueraders and external masqueraders, other than that between
false positive and false negative. Intrusion detection (or equivalently legiti-
mate user identification) becomes more important in the era of ubiquitous
computing.

4 Antibody-Based Computing: Arrayed Recognition

[1] demonstrated that Hamiltonian circuits can be achieved by DNA-based
computing. Many researchers established that not only DNA but also other
macro molecules could have computational capability comparable to DNA. For
example, protein-based computing had been proposed by [10] and extended
by [2].

1106 Y. Ishida

Antibody-based computing has a possibility of extension to an immunity-
based problem solver that incorporates not only specific recognition of anti-
bodies but adaptive nature supported by diversity generation, selection, and
reinforcement of the selected antibodies.

4.1 Definition of Antibody-Based Computing

The immune system is capable of recognizing even artificially synthesized
substances. Also, it can further classify substances into the self (those derived
from the individual) and oneself. Among those bearing recognition capabili-
ties, antibody is no doubt bearing important component and has been studied
in great detail.

Similarly to the DNA-based computing, antibody-based computing uti-
lizes affinity between macro molecules: antibodies. Since the computational
capabilities that DNA-based computing could be inherited to antibody-based
computing, we rather focused on the difference between them.

Affinity between antigens and antibodies can be measured and their
intensities can be ordered (as formatted in an affinity matrix). That is,
in contrast to Matching(DNAi,DNAj) = 1 (matched) 0 (not matched),
Affinity(Antigeni,Antibodyj) can vary from 0 (no agglutination) to 1 (highest
agglutination). This difference would suggest that antibody-based comput-
ing could be more general in expressing and solving problems. Also, error
tolerance that could be implemented more directly than the DNA-based
computing.

4.2 Solving a Combinatorial Problem: The Stable Marriage
Problem

The stable marriage problem (SMP) [8] assumes n men and n women, with
each member having preference lists of members of the opposite sex. A pair of
a man Mi and a woman Wj is called a blocking pair if they are not pair in the
current solution, but Mi prefers Wj to their current partner, and Wj prefers
Mi to their current partner as well. A matching between men and women with
no such blocking pair is called stable.

Let us consider the stable marriage problem by antibody-based computing.
The stable marriage problem can be mapped to antigen-antibody reaction so
that preference order of each person in SMP will be reflected in the affinity
level between an antibody and an antigen. It should be remarked that aggluti-
nation process could be any agglutination (not necessarily between antibodies
and antigens) if their affinity levels are measurable and ordered. After agglu-
tinogen and agglutinin are adequately arranged, the solution of SMP will
emerge by observing concentration of the agglutination.

The Next Generation of Immunity-Based Systems 1107

Although obtaining a stable matching shows some computational power, it
can be solved in O(N2) time, where N is the size of men (and women). A well-
known algorithm exists for giving stable matching for man-oriented matching
or woman-oriented one [7, 12]. By further assuming that the concentration
observed at a cross-point can reflect the amount of antibodies imposed, the
array is capable of obtaining any stable matching in the array from the man-
oriented (man optimal and woman pessimal) matching to the woman-oriented
(woman optimal and man pessimal) one. By regulating the quantities of all
the antibodies AbMi(i = 1...n) (or equivalently antigens AgWj(j = 1...n),
from a unit to α, the matching would become close to the man-oriented one.
Similarly, increase of AbWi(i = 1...n) will bias the matching towards the one
of woman-oriented one.

4.3 Mapping the Stable Marriage Problem to Antibody-Based
Computing

Mapping a combinatorial problem to antibody-based computing can be done
by composing antigen-antibody compounds corresponding to a problem entity.
As for the stable marriage problem, the entity is an individual corresponding
to a man or a woman. Antibodies and antigens for a compound corresponding
to a particular individual will be determined by considering her(his) preference
list over men(women).

Let us consider a scheme for synthesizing antigen-antibody compounds
that realize mapping from given preference lists to the compounds. If the
woman Wi prefers the man Mj to other men, the compound corresponding
to Wi must contain antibody AbWi and the compound corresponding to Mj

contains antigen AgMj that satisfies Aff(AbWi,AgMj) being highest among
other AgMj(j = 1...n). If Mj is second in the preference list of Wi, then
Aff(AbWi,AgMj) must be second highest, and so on. AgMj must realize the
order from women Wk other than Wi, hence the affinity Aff(AbWk,AgMj)
must realize the order accordingly (if AgMj alone cannot realize the order,
then new antigen realizing the order must be added to the corresponding
compound). Constraints for selecting antibodies and antigens for a compound
corresponding to a person can be summed up as follows:

• Aff(AbWi,AgMj) > Aff(AbWi,AgMk) if the woman Wi prefers Mj

to Mk in her preference list; and
• Aff(AbMi,AgWj) > Aff(AbMi,AgWk) if the man Mi prefers Wj to

Wk in his preference list.

Let us next consider how to solve SMP with an array format. In the array
shown in Table 2, row i and column j correspond to the compound for man i
(namely, AbMi and AgMi), and that for woman j (that is, AbWj and AgWj).
In other words, at the cross-point ij, two antigen-antibody reactions between
AbMi and AgWj (reflecting man i’s preference), and between AbWj and AgMi

(reflecting woman j’s preference) will take place.

1108 Y. Ishida

Table 2. Arrayed compounds to solve the stable marriage problem: Mi(Wi) stands
for the compound for a man i (woman j), the symbol * at the ij cross-point indicates
that Mi and Wi is selected as a stable pair due to a high affinity (each row and each
column has only one pair [15])

Compounds M1 M2 · · · Mi · · · Mn

W1

W2

...
Wj *
...
Wn

Table 3. Landsteiner’s ABO blood group system [15]

Blood Type A B AB O

Antigen A B A,B none
(agglutinogen)

Antibody β α none α, β
(agglutinin)

Under the assumption that the concentration observed at each cross-
point is proportional to both Aff(AbMi,AgWj) and Aff(AbWj,AgMi),
the array can find a stable matching by selecting one cross-point with
highest concentration from each row and column. This matching is cer-
tainly stable one, for suppose otherwise there must be a blocking pair Mk

and Wl such that Aff(AbMk,AgWl) > Aff(AbMk,AgWp(Mk)) and
Aff(AbWl,AgMk) > Aff(AbWl,AgMp(Wl)), where p(Mk) denotes a
partner of Mk in the current matching. Then both concentration at the cross-
point kl is higher than those of kp(Mk), and those of p(Wl)l reflecting the
affinity level.

Example: A Trivial two-by-two Stable Marriage Problem

Landshteiner’s ABO blood group system [19] may be used as an example of
antibody-based computing. His blood type system is based on antigens (as
agglutinogen) on red blood cells and antibodies (as agglutinin) in the blood
serum. Table 3 shows agglutinogen and agglutinin of each blood type. Affinity
between antibody and antigen is shown in Table 4. Table 5 indicates the
well-known incompatible transfusion among the blood type A, B, AB, and O.

The Next Generation of Immunity-Based Systems 1109

Table 4. Affinity matrix: a circle indicates that the antibody-antigen reaction would
occur if the antibodies in the column meet with antigens in the row

Antigen; A B
Antibody

α(anti-A) O
β(anti-B) O

Table 5. Agglutination when the blood type in the column is transfused with the
blood type to the row: a circle indicates that the blood type of the column when
transfused to that of the column would agglutinate (a double circle indicates an
agglutination higher than circles)

Blood A B AB O
Type

A O O
B O O
AB O O �
O

Table 6. A trivial preference list for the two-by-two stable marriage problem

M1 M2 W1 W2

W1 1 2 M1 1 2
W2 2 1 M2 2 1

In this example, we map the relation the woman Wi (the man Mi) prefers
the man Mj (the woman Wj) to other to the relation that if the blood of
Wi (Mi) would be agglutinate when the blood of Mj (Wj) were transfused.
That is, if the woman Wi prefers the man Mj most, the blood type should
be so assigned that the type for Wi comprises of antibody AbWi and antigen
AgWi; and that for Mj of antibody AbMj and antigen AgMj and the affinity
Aff(AbWi,AgMj) are highest.

For the trivial case when the preference lists of men and women are as per
Table 6, simple assignment would suffice: a man to type A and another man
to type B; for the woman who prefers a man with type A to type B, and for
another woman type A (Fig. 11). It should be noted that assignment to A for
two men and to B for two women would not work, since the assignment does
not reflect the preference of men and women.

In the nontrivial preference list shown in Table 7, one assignment would
be type O to both M1 and W1, type A to M2, and type B to W2 (Fig. 13).

1110 Y. Ishida

Table 7. A non-trivial preference list for the two-by-two stable marriage problem
[23]

M1 M2 W1 W2

W1 2 1 M1 2 1
W2 2 1 M2 2 1

M1 A B W1

M2 W2B A

Fig. 12. A blood type assignment reflecting the preference [15]

M1 O O W1

B W2M2 A

Fig. 13. A blood type assignment reflecting the preference of Table 7 [23]

For other two preference lists (with a different graph topology than that of
Figs. 12 and 13), it is not possible to map the blood type with the above
correspondence, and other compounds should be synthesized for realizing the
preference lists.

We have shown that antibodies, a macro molecule of the immune sys-
tem, with specific recognition capability could be used for computation as
DNA are used for DNA computing. We suggest a possibility of extending
antibody-based computation to the solver, rather than showing its computa-
tional capability or universality. The application aims not at replacing current
electronic computers, but rather at being a supportive tool for bioinformatics.

5 Toward a General Problem Solver: Immunity-Based
Problem Solver

Problem solving by Means-Ends Analysis (MEA) [21] organizes a search in a
dynamically constructed search space of problem-subproblem decomposition.
It embodies and simulates human problem solving by the recognition-action
cycle shown in Fig. 14, where solid arcs are recognitions and white arcs are
actions. An important feature of MEA is that application of operators is not

The Next Generation of Immunity-Based Systems 1111

Current State

Goal State

-

difference

Operation

Association of difference s

and operator

Fig. 14. Problem solving by Means-Ends Analysis (MEA) [15]

very rigid: if an operator selected in the heuristics part is not directly appli-
cable to the current problem, the problem will be divided into subproblems.
This flexibility allows a certain degree of freedom in identifying the heuristics,
and further contributes to generality in the problems that MEA can handle.
In fact, MEA had been implemented as General Problem Solver (GPS) that
can deal with many well-known puzzles [6].

As an intermediate stepping stone from general problem solving by MEA
to immunity-based problem solving, let us briefly investigate more general
biological problem solving. It should be first emphasized that the following
discussions and Fig. 15 is for bridging purposes between MEA and immunity-
based problem solving, and hence may be rough and approximate. Here solid
arcs are recognitions, and white arcs actions; recognition action cycles are
iterated until there is no difference between the goal state and the current
state. One difficulty is that a unit of biological system such as DNA, cells,
individuals, and species do not constitute a usual hierarchical system under-
stood in component-system relation found in most artificial systems. Another
difficulty, hence making the biological problem solving remarkable, is that
biological systems use concepts distinct from those used in artificial systems
to realize robustness (robustness is a solution implemented and embedded in
the system by a biological problem solving to challenges to system survival).
Biological problem solving utilizes the variations for implementing robustness,
although artificial problem solving considers the variations as disturbance and
trying to prevent them from occurring and minimizing the effect. Thus, the
‘difference’ in Fig. 15 of biological problem solving can be quite different from
that shown in Fig. 14.

The third difficulty that makes biological problem solving more compli-
cated and entangled is that the given problem is a challenge to the survival
of the problem solver (the biological system) itself. This self-referential aspect
must be paid attention in capturing the immunity-based problem solving
shown in Fig. 16.

1112 Y. Ishida

-

difference

Genotype

Phenotype

Individual

Cell

Species

Environment

Selection Pressure

Fig. 15. Problem solving by Means-Ends Analysis (MEA)

Selection

Amplification

Inhibition

Nonself

-

difference

Heuristics for

Appropriate Actions
Antibodies

Self

Fig. 16. The immune system as a problem solver: only antibodies are focused

Throughout Fig. 14 (MEA), Fig. 15 (biological problem solving) and Fig. 16,
the framework for problem solving is to recognize differences and deploy
actions based on these differences. However, actions are oriented toward the
system itself for both biological and current immunity-based problem solv-

The Next Generation of Immunity-Based Systems 1113

ing, hence the process is intrinsically adaptation (or in Fig. 15, evolution).
Figure 16 and the following discussion focuses only on the immune system,
involving antibodies, hence that of adaptive immunity.

In means-ends analysis on the one hand, the problem solving process con-
stitutes an intrinsic part of the solution. That is, the order of operator applied
is a critical part of the solution of a given puzzle. Thus, the problem is fixed
throughout the problem solving; hence, the solver deals with a static problem.

On the other hand, in immunity-based problem solving, the problem itself
undergoes changes, because the environment, including the nonself, is chang-
ing and the solver involving the self must change accordingly. Therefore, there
is no complete solution and there will always be a gap between the current
solution and the current problem. However, the current solution can be used
for the next problem when the next problem (the change) also evolved from
the current problem. Problem solving does not have a beginning and an end.
The current solution is not good for the current environment because the
latter is ever changing; therefore the gap between these two must be com-
pensated for the next solution. However, the next solution is not built from
scratch but rather from the current solution. The solution must always chase
the environment, which is an online and dynamical adaptation to the dynami-
cal environment. In immunity-based solving, the typical environmental change
is either a challenge from the outside (for example, bacteria and viruses) or
from inside (say, cancer). To deal with these challenges, the solver (a collec-
tion of agents) must prepare a diverse set for being selected by these problems
(challenges) and the selected agents must be further increased. Since there is
always a difference from the current solution and the current environment,
there must be a diversification of agents.

6 Conclusion

This Chapter has explored the possibility of antibody-based computing that
use antibodies or peptides in general. We first investigate several types of
recognitions by revisiting immunity-based systems. The very primitive form
of arrayed recognition is shown to have a computational capability compa-
rable of DNA based computation by taking an example of a combinatorial
problem: the Stable Marriage Problem. This would suggest that more sophis-
ticated forms of recognition such as networked or selected recognition will
have computational capabilities not only in a static context but in a more
dynamic context as seen in the environments which the immune systems face.
Thus, main feature of the antibody-based computing is that allows extension
to a problem solver, since the immune system is a problem solver embedded
in individuals, taking care of challenges to the individuals.

1114 Y. Ishida

Acknowledgements

I am grateful to Prof. Fulcher, not only for giving me the opportunity for
presenting this work, but also for his great assistance in editing and clarifying
the chapter. I am also grateful to the anonymous reviewers, whose com-
ments were quite helpful in improving the chapter. Mr. Sasajima, Mr. Mori,
Mr. Oohashi, Mr. Sugawara, and Mr. Hiraizumi assisted with the numerical
simulations. This work was supported in part by a Grant-in-Aid for Scien-
tific Research (B) 16300067, 2004. This work was also partly supported by
the 21st Century COE Program ‘Intelligent Human Sensing’ of the Ministry
of Education, Culture, Sports, Science and Technology of Japan. I am also
grateful to Mr. Abe, Mr. Hattori, and Mr. Toyofuku of Design Department
No. 21, Electronics Engineering Division II, Vehicle Engineering Group, Toy-
ota Motor Corporation, for incisive discussions on this project. Lastly, I am
indebted to Dr. Watanabe who supported the project launch.

References

1. Adleman LM (2004) Molecular computation of solutions to combinatorial
problems. Science, 266(11): 1021–1024.

2. Balan MS, Krithivasan K (2004) Parallel computation of simple arithmetic using
peptide-antibody interactions. Biosystems, 76(1–3): 30–307.

3. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic
multicellular system for programmed pattern formation. Nature, 434: 1130–
1134.

4. Burnet FM (1957) A modification of Jerne’s theory of antibody production using
the concept of clonal selection. Australian J. Science, 20: 67–69.

5. Elowitz MB, Leibler SA (2000) Synthetic oscillatory network of transcriptional
regulators. Nature, 403: 335–338.

6. Ernst G, Newell A (1969) GPS: A Case Study in Generality and Problem
Solving. Academic Press, New York, NY.

7. Gale D, Shapley L (1962) College admissions and the stability of marriage.
American Mathematical Monthly, 69: 9–15.

8. Gusfield D, Irving RW (1989) The Stable Marriage Problem: Structure and
Algorithms. MIT Press, Cambridge, MA.

9. Hood L, Galas D (2003) The digital code of DNA. Nature, 421: 444–448.
10. Hug H, Schuler R (2001) Strategies for the development of a peptide computer.

Bioinformatics, 17(4): 364–368.
11. International Human Genome Sequencing Consortium (2001) Initial sequencing

and analysis of the human genome. Nature, 409: 860–921.
12. Irving RW, Leather P, Gusfield D (1987) An efficient algorithm for the optimal

stable marriage. J. ACM, 34(3): 532–543.
13. Ishida Y (2004) Immunity-Based Systems: a Design Perspective Springer-Verlag,

Berlin.
14. Ishida Y (2006) Designing an immunity-based sensor network for sensor-based

diagnosis of automobile engines. In: Gabrys B, Howlett RJ, Jain LC (eds.)
Proc. Knowledge-Based Intelligent Informaiton and Engineering Systems Conf.

The Next Generation of Immunity-Based Systems 1115

(KES’2006). Lecture Notes in Computer Science LNCS 4252. Springer-Verlag,
Berlin: 146–153.

15. Ishida Y (2007) A constructive systems approach to understanding the immune
system as a biological problem solver. In: Proc. 1st IEEE Symp. Founda-
tions of Computational Intelligence (FOCI’07), 1–5 April, Honolulu, Hawaii.
IEEE/Omnipress, Madison, WI: 646–650 (CD-ROM).

16. Ishida Y, Adachi N (1996) Active noise control by an immune algorithm:
adaptation in immune system as an evolution. In: Proc. 3rd IEEE Intl. Conf.
Evolutionary Computation (ICEC’96), 20–22 May, Nagoya, Japan. IEEE Press,
Piscataway, NJ: 150–153.

17. Jerne NK (1973) The immune system. Scientific American, 229(1): 52–60.
18. Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V (2005) Design

principles of a bacterial signalling network. Nature, 438(24): 504–507.
19. Landsteiner K (1900) Zur kenntnis der antifermentativen, lytischen und

agglutinierenden wirkungen des blutserums und der lymphe. Zentralblatt
Bakteriologie, 27: 357–362.

20. Langman RE, Cohn M (eds.) Seminars in Immunology (available online
at: http://www.ingentaconnect.com/content/ap/si/2000/00000012/00000003 –
last accessed: April 2007).

21. Newell A, Simon H (1972) Human Problem Solving. Prentice Hall, Englewood
Cliffs, NJ.

22. Pearl JJ (1988) Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference (Revised 2nd Printing). Morgan Kaufmann, San Mateo, CA.

23. Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: min-
imal antibody repertoire size and reliability of self-non-self discrimination.
J. Theoretical Biology, 81: 645–670.

24. Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature,
438(7067): 438–424.

25. Tonegawa S (1983) Somatic generation of antibody diversity. Nature, 302: 575–
581.

26. Venter JC, Adams MD, Myers EW, et al. (2001) The sequence of the human
genome. Science, 291: 1304–1351.

27. Volterra V (1931) Variations and fluctuations of the number of individuals in
animal species living together. In: Chapman RN (ed.) Animal Ecology. McGraw-
Hill, New York, NY.

Resources

1 Key Books

Burnet FM (1959) The Clonal Selection Theory of Immunity. Cambridge
University Press, London, UK.

Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford, UK.

Dennett DC (1995) Darwin’s Dangerous Idea: Evolution and the Meaning
of Life. Simon & Schuster, New York, NY.

Edelman GM (1992) Bright Air Brilliant Fire: On the Matter of the Mind.
Basic Books, New York, NY.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA.

Holland J (1975) Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI.

Ishida Y (2004) Immunity-Based Systems: A Design Perspective. Springer-
Verlag, Berlin.

Janeway CA, Travers P, Walport M, Shlomichik M (2002) Immunobiology:
The Immune System in Health and Disease. (5th ed.). Garland Publishing,
New York, NY.

Maturana H, Varela F (1980) Autopoiesis and Cognition: The Realization of
The Living. D. Reidel, Dordrecht, Germany.

Paul WE, et al. (1999) Fundamental Immunology (4th ed.). Lippincott-Raven,
Philadelphia, PA.

1118 Y. Ishida

Perelson AS (ed.) (1988) Theoretical Immunology, Part I and II. Addison
Wesley, Reading MA.

Segel LA, Cohen IR (eds.) (2001) Design Principles for the Immune System
and Other Distributed Autonomous Systems. Oxford University Press, New
York, NY.

Tauber AI (1997) The Immune Self. Cambridge University Press, Cambridge,
UK.

Varela FJ (1979) Principles of Biological Autonomy. Elsevier/North-Holland,
New York, NY.

von Neumann JJ (1966) Theory of Self-Reproducing Automata. In: Burks AW
(ed.) University of Illinois Press, Urbana, IL.

von Neumann JJ (1956) Probabilistic logics and the synthesis of reliable
organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.)
Automata Studies. Princeton University Press, Princeton, NJ: 43–98.

2 Key Survey/Review Articles

Farmer JD, Packard NH, Perelson AS (1986) The immune systems: adapta-
tion and machine learning, Physica D, 22: 187–204.

Forrest S (1993) Genetic algorithm: principles of natural selection applied
to computation. Science, 261: 872–878.

Jerne NK (1973) The immune system. Scientific American, 229(1): 52–60.

Jerne NK (1974) Clonal selection in a lymphocyte network. Society General
Physiologists Services, 29: 39–48.

Jerne NK (1985) The generative grammar of the immune system. The EMBO
J., 4(4): 847–852.

Perelson AS, Weisbuch G (1997) Immunology for Physicists. Review of Mod-
ern Physics, 69: 1219–1267.

Tonegawa S (1985) The molecules of the immune system. Scientific Amer-
ican, 253(4): 122–131.

The Next Generation of Immunity-Based Systems 1119

3 Organisations, Societies, Special Interest Groups

Santa Fe Institute
http://www.santafe.edu/

4 Research Groups

Artificial Immune Systems at University of York
http://www-users.cs.york.ac.uk/jtimmis/

Artificial Immune Systems at the Center for Information Assurance and Intel-
ligent Security Systems Research Lab
http://www.cs.memphis.edu/~dasgupta/

Immunity-Based Systems at TUT Systems Sciences Lab
http://www.sys.tutkie.tut.ac.jp/~ishida/en/index.html

5 Key International Conferences/Workshops

FOCI 2007: The 1st IEEE Symposium on the Foundations of Computational
Intelligence
http://events.cs.bham.ac.uk/foci07/index.php

ICARIS 2007: International Conference on Artificial Immune Systems
http://lsin.unisantos.br/icaris2007/

IMBS-KES 2007: Special Session on Immunity-Based Systems
http://www.sys.tutkie.tut.ac.jp/~ishida/IMBS-KES07CFP.php.htm

Knowledge-Based and Intelligent Engineering Systems Conf. (KES2007)/
XVIIth Italian Workshop on Neural Networks (WIRN2007)
http://ra.crema.unimi.it/AIS2007/

Index

α-cuts, 606, 607
λ-calculus, 9
k-Nearest Neighbour rule, 99
.NET, 420, 424

abnormal agent, 164, 168, 169, 1097,
1098

abnormal node, 1094, 1095
abnormal node eradication, 1095
absurd type, 359
acceleration, swarm particle, 1033
accuracy, classifier, 641, 646, 662, 663,

666, 672
accuracy-complexity tradeoff, 641, 643,

670, 672–674
action potential, 766, 767, 772, 776
action, agent, 158
activation function, 698, 804, 809
activation, neuron, 804
active sensor network, 488
adaptation, 719, 1113
adaptation gain, 725
adaptation, neural system, 769, 770
adaptive agent, 546
adaptive agent, artificial, 545
adaptive clustering algorithm, 490
adaptive economic agent, 561
adaptive immunity, 1113
adaptive learning, 767
adaptive linear element (ADALINE), 27
adaptive market hypothesis, 967
adaptive model, 570
adaptive recognition, 1096, 1105

adaptive resonance theory (ART), 46,
114, 693

adaptive subspace self-organizing map
(ASSOM), 731

adaptive system, 851, 1105

adaptive system, complex, 485

adaptive-network fuzzy inference system
(ANFIS), 45

address-event communication, 781, 786

adenine, 1066

affect support agent, 201
affective computing, 187, 206, 216

affective embodied agent, 207, 210–212

affinity, 1097, 1101, 1102, 1104, 1106,
1108

affinity matrix, 1106, 1109

affinity purification, 1081

affinity separation, 1083
affinity separation process, 1068

agarose gel, 1069, 1080

agent, 156, 351, 364, 381, 386, 397, 440,
453, 485, 1102, 1113

computerized, 967

evolving, 966

agent action, 158

agent behavior, 489
agent boundary formation, 163

agent cluster, 502

agent communication, 486

agent communication language, 42
agent credibility, 1098, 1100

agent diversification, 1113

agent emotion, 216

1122 Index

agent engineering, 563, 564, 567, 568,
570–572, 577

agent forecasting rule, 415
agent implementation language, 419,

431
agent interaction, 409, 447, 450, 1100
agent interaction protocol, 453
agent network, 158, 426
agent population, 156, 1101
agent probe, 426
agent reliability, 1098
agent society, 412
agent state, 158
agent technology, 387, 403
agent, abnormal, 164, 168, 169, 1097,

1098
agent, adaptive, 546
agent, adaptive economic, 561
agent, affect support, 201
agent, affective embodied, 207, 210–212
agent, analysis, 696
agent, animated, 209
agent, artificial, 518, 578
agent, artificial adaptive, 543, 545
agent, autonomous, 387, 517, 579
agent, beliefs-desires-intentions (BDI),

10, 23, 42
agent, computational, 212
agent, computing, 463
agent, context-aware, 388
agent, cooperative, 156
agent, cooperative selfish, 175
agent, disease, 1091
agent, distributed, 1101
agent, distributed analysis, 694
agent, economic, 411, 541–544, 579
agent, embodied, 206, 211
agent, empathic, 210
agent, financial, 563, 565
agent, formula, 574
agent, gambling, 577
agent, global positioning system (GPS),

398, 400
agent, GP-based, 555
agent, heterogeneous, 158, 413
agent, host, 1091
agent, human, 518, 545, 578
agent, independent, 156
agent, intelligent, 21, 42, 386, 446, 543

agent, interface, 201, 206

agent, jellyfish, 426

agent, k-means, 535

agent, KNN, 535

agent, long-horizon, 575

agent, Lucasian economic, 541–544

agent, management, 450, 463

agent, mobile, 389, 395, 397, 398, 401,
402

agent, multi-, 382

agent, negotiation, 159

agent, neighbor, 156, 158, 164, 170, 173

agent, networked, 156

agent, networked selfish, 158

agent, normal, 164, 166, 168, 170, 172,
1098

agent, offspring, 412

agent, ontology-based, 381

agent, profiling, 450, 463, 471

agent, real estate (REA), 203, 207

agent, repaired, 164, 168

agent, scheduling, 450, 459

agent, search, 381

agent, self-reactive, 1102, 1104

agent, selfish, 155, 156, 162, 163, 167,
168, 173, 175

agent, software, 41, 386, 398, 409, 411,
578

agent, task allocation, 156

agent, teaching, 204

agent, text-based, 210

agent, zero intelligent (ZI), 568

agent, ZI Plus (ZIP), 568

agent-based artificial stock market, 563,
565–567

agent-based computational economics
(ACE), 517, 518, 549, 567, 568,
572, 574, 577, 579, 580

agent-based economic model, 571

agent-based macroeconomic model, 556

agent-based macroeconomics, 573

agent-based model (ABM), 409, 411,
418, 419, 421, 422, 426, 428, 431,
517, 549, 550, 560, 561, 568–572,
574–579

environment, 416, 431

agent-based modeling (ABM)
framework, 421, 423, 424, 431

Index 1123

agent-based modeling (ABM) platform,
410, 419, 428, 429, 431

agent-based modeling (ABM) system,
420, 421

agent-based paradigm, 419
agent-based social sciences, 517
agent-based stock market, 564
agent-based system, 488
agent-based tourist guidance system,

382
agent-oriented programming (AOP), 41
agglutination, 1106
agglutinin, 1106, 1108
agglutinogen, 1106, 1108
aging algorithm, 460
AI-ECON artificial stock market, 563
air operations officer (OPSO), 370, 372
air-flow sensor, 1099
aircraft, fighter, 370
aircraft, strike, 370
aircraft, threat, 371
algae data set, 117, 119, 123, 143, 146
algorithm

evolutionary (EA), 928
quantum, evolution, 963

algorithm, aging, 460
algorithm, backpropagation (BP), 13,

526, 781, 854, 1072
algorithm, best-match, 453
algorithm, branch-and-bound, 97
algorithm, bucket-brigade, 543
algorithm, clustering, 141
algorithm, combinatorial, 352
algorithm, evolutionary (EA), 23, 37,

47, 537, 834, 851, 862, 881, 883
algorithm, expectation-maximization

(EM), 121–123, 130, 141, 736, 747
algorithm, first fit decreasing weight

(FFD), 899, 914, 916, 917
algorithm, fitness estimation PSO, 1051
algorithm, fuzzy C-means (FCM), 617,

620
algorithm, genetic (GA), 20, 23, 32, 37,

45, 47, 413, 415, 425, 542–544,
546, 550, 555, 556, 798, 803–806,
830, 831, 837, 838, 854, 856, 883,
902, 1036, 1041, 1049, 1052, 1071

algorithm, gradient descent, 1053
algorithm, greedy, 358, 899, 1032, 1057

algorithm, harmonic k-means clustering,
141

algorithm, HS, 735
algorithm, hybrid grouping genetic

(HGGA), 916
algorithm, immune, 1101–1103
algorithm, iterated greedy (IG), 916,

919
algorithm, k-means clustering, 112, 141
algorithm, memetic, 919
algorithm, metaheuristic, 881
algorithm, MTP, 916
algorithm, nearest trajectory, 532
algorithm, optimization, 1030, 1032,

1040, 1048, 1049
algorithm, particle swarm optimization

(PSO), 1029, 1048, 1054, 1056,
1059

algorithm, RLS, 856, 858
algorithm, scheduling, 440
algorithm, storage-reduction, 535
algorithmic mechanism design,

distributed, 158
aliasing, 1039, 1040
allocation, resource, 157, 173, 443
ambiguity problem, 311
amplify operation, 1071
analog circuit, 804
analog hardware, 803
analogue circuit evolution, 963
analogue electronics, 768, 782
analogue neural model, 782
analogue neural system, 768
analysis agent, 696
analysis agent, distributed, 694
analysis tree, 314
analysis, mean field, 166
analysis, means-ends (MEA), 1110,

1113
analysis, pattern, 708
analysis, statistical, 1100
analysis, time series, 1099
animal brain, 799
animated agent, 209
annealing, 1068
annealing, genetic simulated (GSA),

906
annealing, simulated (SA), 909
annotated atomic formula (atom), 236

1124 Index

annotated literal, 238
annotated literal, vector, 243
annotated logic, 233, 235
annotated logic program with strong

negation (ALPSN), 233, 241
annotated logic program,

paraconsistent, 238
annotated logic programming, 233
annotated logic, paraconsistent, 235,

300
annotated logic, propositional

paraconsistent, 235
annotated sentence, 309
annotation, 233, 235, 271–274
annotation, bf-, 285–292, 294
annotation, HPSG, 331
annotation, LFG, 331
annotation, paraconsistent vector, 300
annotation, vector, 243, 271–274, 284,

293–295, 299
annotator, human, 309
ant colony optimization (ACO), 39
ant system, 883
antecedent fuzzy set, 644, 649
anti-Hebbian learning, 777
antibody, 159, 1091, 1093, 1096, 1101,

1106–1108, 1110, 1113
antibody-based computing, 1106–1108,

1110, 1113
antigen, 159, 1096, 1097, 1106–1108
antigen-antibody compound, 1107
antigen-antibody reaction, 1096, 1106,

1107
anytime algorithm, 98
application programming interface

(API), 399
application-specific integrated circuit

(ASIC), 807
applications

genetic programming, 958
appraisal theory, 197
approach, constructive systems, 1091
approach, synthetic, 1091
approach, top-down, 833
approximate reasoning, 25
approximation error, 597
approximation, stochastic, 725
approximator, universal, 521
arc, 353, 453

arc, evaluation, 1098
architectural design, 365, 367
architecture, artificial neural network

(ANN), 851, 853
architecture, brain, 764
architecture, client-server (C-S), 440,

442, 444
architecture, grid, 440
architecture, neural, 719
architecture, peer-to-peer (P2P), 440,

447, 462
architecture, server-based, 447
architecture, service-oriented (SOA),

446, 451
architecture, subsumption, 49
architecture-altering operator, 928, 949
archive, digital, 388
ARM processor, 786
array, sensor, 488
art

computer, 969
evolutionary, 970

ART, fuzzy, 46
artificial adaptive agent, 543, 545
artificial agent, 518, 578
artificial brain (A-Brain), 518, 797, 799,

800, 802, 804, 805, 808, 811, 812,
814, 816, 823, 825, 830, 832, 833,
835–838

artificial immune system (AIS), 40
artificial intelligence

human competitive, 962
artificial intelligence (AI), 3, 4, 7, 9, 26,

311, 351, 381, 567, 690, 927, 1071
artificial intelligence (AI), distributed,

41, 157
artificial intelligence (AI), symbolic, 718
artificial life (Alife), 17, 39, 156, 174,

409, 411, 417, 488, 546, 883
artificial neural network

evolution, 957, 965
artificial neural network (ANN), 4, 5, 9,

17, 20, 23, 26, 41, 45, 47, 111, 120,
403, 425, 518, 519, 532, 536, 579,
641, 643, 691, 692, 715, 733, 749,
772, 778, 781, 782, 798, 803, 831,
837, 851, 860, 872, 883, 1071

artificial neural network (ANN)
architecture, 851, 853

Index 1125

artificial neural network (ANN) bias,
521

artificial neural network (ANN)
classifier, 99

artificial neural network (ANN)
ensemble, 852, 858, 860, 870, 872

artificial neural network (ANN)
evolution, 803

artificial neural network (ANN) group,
31

artificial neural network (ANN) learning
rule, 851

artificial neural network (ANN) module,
797, 798, 804, 805, 807–809, 813,
826, 827, 830, 834, 836–838

artificial neural network (ANN) weight,
23, 27, 28, 521, 851, 853

artificial neural network (ANN),
evolution, 859

artificial neural network (ANN),
modular, 859

artificial neural network (ANN), pulsed,
27

artificial neural network (ANN),
recurrent, 851

artificial neural network, evolutionary
(EANN), 851, 855

artificial neural network, memetic
Pareto (MPANN), 870

artificial neural system, 769, 781, 782
artificial neuron, 801, 804, 811
artificial problem solving, 1111
artificial stock market, 413, 545, 562,

571
artificial stock market, agent-based,

563, 565–567
artificial stock market, AI-ECON, 563
artificial stock market, SFI, 413, 545,

563, 564, 575
artificial system, 18, 49, 767, 768, 1092,

1111
ARTMAP, fuzzy, 47
assertion, defeasible, 249, 262
asset pricing model, 563
association rule, 22
associative memory (AM), 715, 724,

726, 782
associative network, feedforward, 734
associative search, 782

assumption-based truth maintenance
system (ATMS), 233

asymmetric membership function, 662

asynchronous inter-agent
communication, 489

ATIS corpus, 334

atlas, digital, 801

atom (annotated atomic formula), 236

atomic formula, 235

atomic formula, annotated (atom), 236

attack, random, 491

attack, targeted, 491

attention, 193

attraction point, 1032, 1033, 1038, 1046

attraction, short-range, 1039

attractor, 175, 561, 1097, 1100

attribute, 366

auction, 157

auction scheme, 567

auction, double (DA), 574, 578

audio streaming, 690

augmented genetic algorithm (GA), 550

AURA system, 782

Australian credit card data set, 856,
858, 864, 868, 871

auto-associative neural network
(AANN), 525

auto-immune disease, 1102, 1105

auto-regression, fuzzy multivariate, 48

autoepistemic logic, 233

automata, cellular (CA), 158

automata, probabilistic cellular (PCA),
159

automated reasoning, 319, 374

automated theorem proving, 3, 8

automatic modularization, 859

automatic speech recognition (ASR), 3

automatic statistical summary of
elementary speech structures
(ASSESS), 200

automatically defined function (ADF),
948

automobile engine, 1099

automobile engine combustion control
system, 1099

automobile engine sensor diagnosis,
1099

autonomous agent, 387, 517, 579

1126 Index

autonomous nanotechnology swarm
(ANTS), 37

autonomous robot, 797, 836
autoregressive (AR) model, 523
autoregressive moving-average (ARMA)

model, 520, 523
available bandwidth, 690
average, harmonic, 141

averaging, 863, 865, 871
Avida, 410
axon, 770, 777, 780, 781

backbone, grid, 468
backgammon, 49, 964, 970

backpropagation (BP) algorithm, 13,
27, 28, 39, 526, 699, 781, 854, 861,
1072

backpropagation (BP), fuzzy, 46
backtracking, 10, 16, 882, 919

backward chaining, 10, 23
backward chaining genetic

programming, 975

bacteria, 1113
bagging, 44
balance, exploration-exploitation, 1031

balancing, load, 450, 463
Baldi, 202

bandwidth allocation, dynamic, 691
bandwidth prediction, 690, 691
bandwidth, available, 690

bandwidth, consumption, 691
bandwidth, network, 691
base pair, DNA, 1066, 1080

base sequence, DNA, 1077
base, DNA, 1066

base, Herbrand, 239
basic emotions, 187, 202
basis function, 121, 122, 129, 131, 133

basis function, canonical, 354
basis function, Gausssian, 130
basis function, radial (RBF), 135

basis vector, Gaussian, 136
basis, canonical, 359, 361

batch, 422, 424, 425, 429, 430
Battiti’s MI-based feature selection

method (MIFS), 98

Bayesian classifier, 11
Bayesian discriminant, 96

Bayesian discriminant feature selection
(BDFS), 96

Bayesian information criterion, 748, 751
Bayesian learning rule, 575
Bayesian network, 5, 10, 21, 23, 580,

1100
Bayesian self-organizing map, 740
Bayesian vector quantization (VQ), 726
Bayesian, näıve, 44
bead, magnetic, 1069, 1080, 1083
before-after (bf) relation, 234, 284–288,

290, 293–295
before/after, disjoint, 285
before/after, f-included, 288
before/after, immediate, 286
before/after, included, 287
before/after, joint, 286
before/after, paraconsistent, 288
before/after, s-included, 287
behavior change, 212
behavior change model, 213
behavior control module, 814
behavior, agent, 489
behavior, niching, 1045
behavioral finance, 577
belief network, 5, 10, 23
beliefs-desires-intentions (BDI) agent,

10, 23, 42
beliefs-desires-intentions (BDI) model,

42
benchmark, discrete mathematics and

theoretical computer science
(DIMACS), 894, 912, 913, 919

benchmark, natural language processing
(NLP), 314

Beowulf cluster, 783, 979
best position (pbest), 1031–1034, 1038,

1045
best, global (gbest), 1030, 1031, 1033,

1036–1038, 1040, 1045, 1046, 1051
best, local (lbest), 1030, 1033, 1034,

1036, 1037, 1051
best-match algorithm, 453
bf (before-after) EVALPSN, 234, 291,

294, 299
bf-annotation, 285–292, 294
bf-EVALP clause, 285–289, 291, 293,

294, 296, 298, 299
bf-EVALP literal, 290, 294

Index 1127

bf-EVALPSN clause, 285
bf-EVALPSN process order safety

verification system, 295
bf-EVALPSN safety verification, 297
bf-literal, 285, 293, 294
bf-measure, 290
Bhattacharryya divergence, 95
bi-lattice, 236, 290, 292
bias, artificial neural network (ANN),

521
biased mutation, 664, 665
bidirectional associative memory

(BAM), 693
bin packing heuristic, 914
bin packing problem (BPP), 882, 887,

892, 894, 899, 905, 914, 917, 969
binary tournament selection, 656, 661
bio-engineering, 1091
bio-soft computing, 1081
biochemical process, 1066
bioinformatics, 968, 1092, 1110
biological brain, 763, 765
biological inspiration, 1029
biological mimicking, 1092
biological neural network, 769
biological neural system, 769, 780, 784,

786
biological neuron, 26, 766, 767, 773, 775
biological neuron IC (BIONIC), 784
biological plausibility, 782, 1030, 1044
biological problem solving, 1111
biological system, 18, 157, 767–769, 779,

781, 788, 968, 1091, 1092, 1111
biology, 175, 766
biology, molecular, 1065
bird flock, 1029
bit string, chromosome, 804, 806, 809
bit string, genetic algorithm (GA), 903
bit-flip mutation, 657, 664
black box model, 641
black-and-white model, 1098
black-box, 541
Black-Scholes model, 548
bloat, 982, 986

control
genetic programming, 987

genetic programming
theory, 986

bloat, software, 48

blocking pair, 1106, 1108
blood group, 1108
blood serum, 1108
blood transfusion, 1108
BLT, 423, 424
Blue Brain, 783, 789, 790
Blue Gene, 800
Bluetooth, 398, 401
book, code, 727
Boolean logic, 23, 41, 766
Boolean logic circuit, 1071
boosting, 44
boredom control circuit, 824
boredom meter module, 824
bound, greatest lower (GLB), 356, 358,

363
bound, least upper (LUB), 358, 367
bound, lower, 357, 360
boundary formation, agent, 163
bounded rationality, 517
Box-Jenkins, 533
Bragg diffraction, 745
brain, 14, 20, 716, 769, 777, 789
brain architect (BA), 797, 809, 811, 813,

814, 820, 824, 826, 829, 832, 834,
836

brain architecture, 764
brain building, 799, 800, 802, 806, 807,

814, 834, 835
brain function, 764, 766, 769
brain modeling, 769
brain theory, 799
brain, animal, 799
brain, artificial (A-Brain), 518, 797,

799, 800, 802, 804, 805, 808, 811,
812, 814, 816, 823, 825, 830, 832,
833, 835–838

brain, biological, 763, 765
brain, human, 767, 768, 799–801
brain, mammalian, 773, 836
branch-and-bound algorithm, 97
breadth-first search, 10, 16
breast cancer data set, 868
brewery pipeline network, 267
brewery pipeline process, 284
brewery pipeline valve control, 265
bucket-brigade algorithm, 543
building design ontology, 368
building elevator, 1065, 1072

1128 Index

building, high-rise, 1072
building, multi-storey, 1065, 1073

C, 410, 418, 421, 423, 807
C measure, 730
C++, 410, 418, 420, 421, 424, 426, 427,

430
C, Handel-, 798, 803, 805, 830, 832
C, Objective, 420
C-language Inference Production

System (CLIPS), 8, 24
C#, 420, 424
cache

data, 976
fitness, 977, 982

calculus, λ-, 9
calculus, predicate, 9
calibration, fuzzy set, 598, 599, 620, 621
camera language, 813
camera, CCD, 813
camera, CMU-CAM2, 813
cancelation, noise, 1102
cancer, 1113
cancer classification, 101
cancer data set, 101
candidate solution, 883
canon, 353, 354, 358, 359
canonical basis, 359, 361
canonical basis function, 354
canonical formation rule, 351, 353, 356,

358, 361, 366, 374
canonical graph, 356
capacity, network, 691
capital asset pricing model (CAPM),

574
Cartesian genetic programming, 958
cascade correlation, 29
case-based reasoning (CBR), 21, 333
Cauchy mutation, 863
cell phone, 397
cell, immune, 159
cell, Voronoi, 727
cellular automata (CA), 158, 411, 576,

1093
cellular automata, probabilistic (PCA),

159, 164, 165, 168, 169
cellular automaton evolution, 958, 963
Celoxica, 797, 805, 806, 809, 814, 830,

834, 837

central limit theorem, 727

centralized scheduler, 440
centroid, cluster, 531

cerebral cortex, 721

certainty grade, 647

CFX, 419
chaining, 459

chaining mechanism, 462

chaining operation, 456

chaining policy, 453

chaining, backward, 10, 23
chaining, forward, 10, 23

channel noise model, 728

chaos, 7, 155

chaotic dynamic system, 532
chaotic system, 1071

chaotic time series, 532

character string, 1066, 1070

charge-coupled device (CCD) camera,
813

chart, process schedule, 269, 279

chart, process time, 286–288
checkers, 970

checkpoint, 452

checkpointing, 421, 426

chemistry, computational, 968

chess, 964, 970
child, 885

China Brain project, 836

China test, 813

Chisholm example, 258
chromosome, 538, 539, 542, 543, 883,

904, 919

chromosome bit string, 804, 806, 809
chromosome, elite, 808

chromosome, test, 808

circuit, analogue evolution, 963

circuit, analog, 804
circuit, boredom control, 824

circuit, digital, 804

circuit, dominator, 821, 828

circuit, Hamiltonian, 1105

circuit, winner-takes-all (WTA), 820,
822, 823

circular self-organizing map, 748
class, 360

class, pattern, 20

Classdesc, 421, 426

Index 1129

classification, 83, 112, 518, 529, 535,
536, 642, 644, 647, 648, 651, 662,
664, 715, 726, 833

genetic programming, 958
classification boundary, 649, 653, 654
classification data, 17
classification error, 29, 641
classification, cancer, 101
classification, hierarchy, 386
classification, ionosphere, 100
classification, pattern, 10, 16, 26, 28,

642, 644, 647, 648, 651, 662, 664
classification, sonar, 100
classifier, 81, 543–545, 641, 860
classifier accuracy, 641, 646, 662, 663,

666, 672
classifier complexity, 662
classifier ensemble, 44
classifier error rate, 641
classifier fusion, 44
classifier interpretability, 672
classifier selection, 44
classifier system, genetic-fuzzy (GFCS),

571
classifier, artificial neural network

(ANN), 99
classifier, Bayesian, 11
classifier, fuzzy rule-based, 641, 644,

647, 648, 650, 652, 653, 655,
661–663, 665, 667, 669, 672, 674

classifier, interval rule-based, 644, 653
classifier, pattern, 43
clause, bf-, 296
clause, bf-EVALP, 285–289, 291, 293,

294, 298, 299
clause, bf-EVALPSN, 285
clause, EVALP, 271–273
clause, EVALPSN, 270, 279, 282, 295
clause, generalized Horn (GH), 239
clause, Horn, 238
cleaning, network, 1093
client, 447
client, iJADE FreeWalker, 397
client-server (CS) architecture, 387,

395, 440, 442, 444
client-therapist relationship, 212, 215
clique, 912, 914
clock tick, 805, 808, 824, 827–829, 831
clonal selection theory, 1101

closure, genetic programming, 938
cluster, 748
cluster centroid, 531
cluster computing, 442, 443
cluster diameter, 493
cluster formation algorithm, dynamic,

490
cluster map, 491, 493
cluster, agent, 502
cluster, data, 614, 617
cluster, PC, 801, 802
cluster-head, 489, 491
cluster-information message, 493
clustering, 112, 136, 614, 715, 726, 732,

749
clustering algorithm, 141
clustering algorithm, decentralized, 489
clustering algorithm, decentralized

adaptive, 490
clustering algorithm, k-means, 112, 141
clustering algorithm, non-hierarchical,

530
clustering coefficient, 491
clustering heuristic, 491
clustering, decentralized dynamic, 502
clustering, dynamic data, 489
clustering, fuzzy, 598, 614, 619
clustering, fuzzy C-means (FCM), 614,

615
clustering, k-means, 863
clustering, temporal gene expression,

747
clustering-based rule generation, 646
CMU-CAM2 camera, 813
co-evolution, 572, 573, 975
co-evolutionary learning, 859
coalition, multi-agent, 502
cobweb model, 544, 549, 552, 571, 573,

574
code, firing-order, 766
code, population, 766
code, rank-order, 780, 782
code, rate, 766
codebook, 727, 743
coding theory, hierarchical noise

tolerant, 727
coefficient of determination, 701
coefficient, clustering, 491
coefficient, correlation, 498

1130 Index

coefficient, fuzzification , 614, 616
cognition system, 716
cognitive modeling, 370, 799
cognitive science, 311
coil, double helical, 1080
coil, random, 1080
collective intelligence, 36
collective memory, 1032
colored Petri Net (CPN), 42, 447, 453,

455
combination method, 855, 863
combination operation, 321
combinatorial algorithm, 352
combinatorial explosion, 17, 1071
combinatorial optimization, 659, 1071
combinatorial problem, 881, 1065, 1107,

1113
combustion control system, automobile

engine, 1099
commerce, electronic (eCommerce), 578
commodity computing, 444
commodity price, 157
common generalization, 357
common specialization, 357
communication, 1101
communication protocol, 387, 440, 447
communication volume, 494
communication, address-event, 781, 786
communication, agent, 486
communication, asynchronous

inter-agent, 489
communication, inter-agent, 489, 490,

502
communication, inter-task, 440, 445,

446
communication, swarm particle, 1030
communications system,

packet-switching, 786
communications, network-on-chip

(NoC), 785, 786
compact genetic algorithm (cGA), 808,

837
comparison, pairwise, 598, 608, 634
compartmental model, 776
compatibility, 445
compatibility grade, 650
competitive learning, 113, 530, 693, 724
compilation, just-in-time, 420, 431
compiler, 18

compiler optimizer, 420
compiler, hardware, 803–805, 830
compiler, silicon, 805
complement, Watson-Crick, 1069
complementarity, Watson-Crick, 1066,

1071
complementary DNA (cDNA), 1068
complementary DNA molecule, 1066
complete lattice, 235, 245, 271–274
complex adaptive system, 485
complex dynamical system, 769
complex system, 17, 155, 157, 174, 175
complexity measure, 673
complexity, classifier, 662
complexity, computational, 487
compound search, 98
computation, evolutionary (EC), 852,

859
computation, neural, 769, 789
computational agent, 212
computational chemistry, 968
computational complexity, 87, 92, 487,

733, 774, 775
computational efficiency, 82, 774, 854,

856, 1041
computational fluid dynamics, 419
computational grid, 440
computational intelligence (CI), 4, 16,

17, 20, 42, 155, 158, 174, 517, 549,
570, 571, 579, 1092

computational intelligence (CI) system,
hybrid, 43

computational learning, 307
computational load, 1030, 1041, 1046
computational model, 233
computational model of emotion, 197
computational music analysis, 307
computational overhead, 87
computational power, 768
computational science, 442, 444
computer

parallel, 977
computer art, 969
computer engineering, 768
computer game, 970
computer memory, 1065, 1066
computer network, 442, 444
computer personality, 208
computer program, 18, 546, 547

Index 1131

evolution of, 928
computer science (CS), 5
computer virus, 158, 174
computer, DNA, 1065
computer, electronic, 763
computer, emotionally intelligent, 216
computer, mainframe, 441
computer, parallel, 440, 1065
computer, silicon-based, 1065, 1071
computer, super-, 20, 439, 767, 768,

789, 800, 801, 979
computer, von Neumann, 1071, 1084
computer-aided design (CAD), 369
computer-mediated therapy, 212
computerized agent, 967
computers are social actors (CASA)

paradigm, 207
computing agent, 463
computing grid, 439, 441, 443, 444
computing management service, 464,

466, 474
computing node, 446, 447
computing paradigm, 156
computing resource, 441, 444, 447, 471
computing resource, heterogeneous, 441
computing, affective, 216
computing, anti-body, 1113
computing, antibody-based, 1106–1108,

1110
computing, bio-soft, 1081
computing, cluster, 442, 443
computing, commodity, 444
computing, distributed, 439, 441, 442
computing, DNA, 40, 155, 1069, 1071,

1077, 1105, 1106, 1110, 1113
computing, enterprise, 440
computing, evolutionary (EC), 4, 31,

39, 883
computing, granular, 4
computing, grid, 155, 156, 174, 446, 691
computing, high-performance (HPC),

443
computing, immunity-based (IBC), 40,

155
computing, membrane-based (MBC),

40
computing, meta-, 442
computing, molecular, 1065, 1066
computing, Nature-inspired (NIC), 40

computing, neuromorphic, 768, 782, 789
computing, parallel, 41, 442
computing, parasitic, 155, 156, 174
computing, peer-to-peer (P2P), 440,

444
computing, protein-based, 1105
computing, quantum (QC), 41
computing, scientific, 420, 421, 444
computing, soft, 4, 17, 1071
computing, ubiquitous, 1105
computing, wet, 1065
concept, 352, 364
concept specification, 382
concept type, 364
concept type hierarchy, 351, 360
conceptual entity, 597
conceptual graph (CG), 351, 352, 357,

358, 363–366, 368–370, 372, 374
conceptual graph (CG) consistency, 361
conceptual graph (CG) programming

language, 364
conceptual graph (CG) unification, 362,

364
conceptual graph (CG) validity, 361
conceptual graph theory (CGT), 351,

354, 360
conceptual structure, 352
concurrency, 763
conditional probability, 94
conditional probability, fuzzy, 651
confidence interval, 606
confidence level, 625
conflict resolution, 233
conformity relation, 354
conjunction, information, 364
conjunction, knowledge, 351, 363–369,

372, 374
connected unit, 1093
connection, 467
connection, excitatory, 722
connection, inhibitory, 722
connectionism, 4, 17
connectivity, 471, 766–769, 778, 780
connectivity netlist, 786
consciousness, 764, 802
consequent class, 645, 650, 651
consistency, 95, 357
consistency, conceptual graph (CG),

361

1132 Index

constrained reasoning, 21
constraint, 364, 370, 386

grammar-based genetic programming,
950, 951

constraint logic programming, 364
constraint satisfaction problem (CSP),

364
constraint, problem, 1035, 1049
constraint, sensibility, 353, 359
constriction factor, 1034
construct, 366
constructive algorithm for training

cooperative neural-network
ensembles (CNNE), 866, 868

constructive systems approach, 1091
consumption bandwidth, 691
container, 424, 472
container, grid, 450, 466
container, microkernel grid, 463
container, smartGRID, 450, 463
container, smartGRID2, 463
content management system, 751
context-aware agent, 388
context-aware mobile service, 388
context-aware system, 388
context-aware tourist guidance system,

382, 388
context-free grammar (CFG), 312, 324,

328
context-free grammar, probabilistic

(PCFG), 328
context-free grammar, stochastic, 331
context-free rule, 307
context-preserving crossover

theory, 984
context-preserving crossover, genetic

programming, 935
context-sensitive grammar

genetic programming, 952
continuous problem space, 1046
control

robot
evolution, 963

control state, valve, 276
control, energy, 501
control, process, 300
control, process order, 300
control, process release, 277
control, process release safety, 279

controlled diversification, 1035

controlled mix, 268, 272, 275

controlled separate, 268, 272, 275, 276
controller

proportional integrative and
derivative (PID), evolution, 963

controller, fuzzy, 25

convergence predictor, 503

convergence, genetic algorithm (GA),
906

convergence, network, 27, 29

cooperative agent, 156

cooperative selfish agent, 175

coordinates, grid, 491
copy rule, 355

copying, mutual, 156, 159, 163, 1093

copying, repair by, 159, 163, 1095

Core War, 964

core, fuzzy set, 610

Cormas, 413, 428

corpora, LFG-annotated, 314
corpus, 307

corpus fragment, 308

corpus, parsed, 308

corpus-based parsing system, 336

corpus-based, probabilistic parsing, 307

correlation coefficient, 92, 498
correlation entropy, 496, 502

correlation matrix memory (CMM), 782

correlation matrix, mutual, 1099

correlation-based feature selection
(CFS), 92

cortex, 764–766, 786

cortex map, 724

cortical map, 721

cortical micro-architecture, 766
Cosmo, 207

cost function, 530, 549, 726–728, 737

counterpropagation network, 693

covariance matrix, 734

cox model, penalized, 102

credibility, agent, 1098, 1100
credit assignment problem, 1097

crossover, 898

context-preserving

theory, 984

genetic programming,
context-preserving, 935

Index 1133

genetic programming, headless
chicken, 935

genetic programming, one-point, 935
genetic programming, size-fair, 935
genetic programming, subtree, 934
genetic programming, uniform, 935
homologous

theory, 984
linear genetic programming,

homologous, 955
one-point

theory, 984
size-fair

theory, 984
crossover operator, 31, 32, 36, 47, 537,

550, 556, 656, 668, 806, 853, 871,
885, 887, 891, 896, 902, 906, 919,
928, 947

crossover probability, 656
crossover rate, 891
crossover, cycle (CX), 888, 889, 903
crossover, greedy partition (GPX), 897
crossover, merging (MOX), 888, 890,

903
crossover, merging independent sets

(MIS), 904, 912, 914
crossover, multi-point, 885
crossover, one point, 656, 885, 903
crossover, order (OX), 888, 889, 903
crossover, partially matched (PMX),

888
crossover, permutation order based

(POP), 903, 912, 914, 916, 918
crossover, two point, 885
crossover, uniform, 656, 664
crossover, uniform order based (UOBX),

903
crowd behavior, 411
crowding distance, 660
cuisine ontology, 393, 394
Culberson and Luo (CL) heuristics,

898, 902, 904, 919
cultural theory of emotion, 187
currency, 558, 562
curve fitting, 28, 959
customized tourist information, 403
cut point, 885, 903, 912
cybernetics, 4
cycle crossover (CX), 888, 889, 903

cycle, safety verification, 296
cycle, strategy update, 167
cytosine, 1066

damage rate, 168, 169, 173
Darwin IV robot, 802
Darwin streaming server, 702
Darwinian evolution, 802
Darwinism, neural, 802
data, 14
data modeling, 959
data analysis system, multi-agent, 694,

696
data cache, 976
data classification, 17
data cluster, 614, 617
data clustering, 83
data compression, 518
data distribution, 83
data driven, 146
data exchange format, 384
data mining (DM), 3, 4, 16, 29, 386,

549, 674, 675, 690, 699, 801, 968,
974, 1101

data mining (DM), fuzzy, 651, 674
data point, 131
data pre-processing, 16, 19–21, 25, 26,

32, 33, 81, 82, 700, 919
data projection, 749
data projection method, 732
data projection, nonlinear, 732
data reduction, 82, 85, 101
data reduction, entropy-based, 85
data reduction, representative entropy

(REDR), 85, 88
data set, algae, 117, 123, 143, 146
data set, Australian credit card, 856,

858, 864, 868, 871
data set, breast cancer, 868
data set, cancer, 101
data set, diabetes, 856, 858, 864, 868,

871
data set, Falkenauer, 916, 919
data set, glass, 868
data set, heart disease, 856, 857, 868
data set, high-dimensional, 112, 146
data set, ionosphere, 100
data set, iris, 750
data set, letter recognition, 868

1134 Index

data set, microarray gene expression,
102

data set, reduced, 83
data set, Scholl and Klein (SK), 914,

916, 919
data set, sonar, 100
data set, soybean, 868
data set, testing, 857, 865
data set, training, 534, 855, 857, 864
data set, validation, 855, 857
data set, wine, 136
data space, 121, 135
data structure, 352
data visualization, 83, 443, 715, 732,

736, 737, 749
data, DNA sequence, 1091
data, gene, 1102
data, genetic, 1091
data, genome, 1092
data, meta-, 383, 388
data-driven fuzzy membership function

estimation, 598
data-driven triangular fuzzy set, 612
data-oriented parsing (DOP), 307, 336
database, 443
database management system (DBMS),

22
DCOM, 424
de-fuzzification, output, 25
deadlock, 159, 175
decentralized adaptive clustering

algorithm, 490
decentralized clustering algorithm, 489
decentralized dynamic clustering, 502
decentralized multi-agent algorithm,

501
decision module, 814
decision rule, 541–543, 546, 561, 562,

574
decision support, 749
decision tree (DT), 6, 9, 16, 91, 99, 532,

580, 860
decision tree (DT) pruning, 17
decoder, greedy, 887, 891, 920
decomposition, task, 446
deduction system, 360
default logic, 233
default reasoning, 233
defeasible assertion, 249, 262

defeasible deontic detachment (DDD+),
263

defeasible deontic logic, 244, 257

defeasible deontic logic, Nute’s, 247, 256

defeasible deontic reasoning, 275, 299

defeasible deontic reasoning, EVALPSN,
266, 274

defeasible deontic theory, 258, 262

defeasible derivation principle, 249

defeasible factual detachment (DSD+),
258, 262

defeasible logic, 233, 244, 249, 254

defeasible reasoning, 233, 243, 244, 247,
254

defeasible rule, 248, 249, 254–256, 262

defeasible theory, 248, 254–257, 262

defeater, 248, 254

defense domain, 370

definite clause grammar, 324

degree distribution, 490

degree distribution, vertex, 490

degree, fuzzy membership, 605

delta learning, 693

delta learning rule, 27

delta learning rule, generalized, 27

deme, 978

denaturation, 1068, 1080, 1083

denaturation temperature gradient
PCR (DTG-PCR), 1068, 1080,
1081, 1083

dendrite, 770, 777

dendritic tree, 771, 773, 776, 784

denial-of-service, distributed (DDOS),
158

density estimation, 83

density histogram, 745

density matching model, 738

density-based method, 85

deontic detachment, defeasible (DDD+),
263

deontic formula, 247

deontic inheritance, 257

deontic logic, 244

deontic logic, defeasible, 244, 257

deontic logic, Nute’s defeasible, 247, 256

deontic notion, 234, 247

deontic operator, 256, 262

deontic reasoning, defeasible, 275, 299

Index 1135

deontic reasoning, EVALPSN defeasible,
266, 274

deontic theory, defeasible, 258, 262
deoxynucleotide-triphosphate (dNTP),

1068
deoxyribonucleic acid (DNA), 40, 1066
depth-1 subtree, 307, 312
depth-first search, 10, 16
derivation length, 313
derivation tree, 319, 323
derivation, language, 320
derivation, most probable, 329
derivation, music, 320
derivation, physics, 320
derivation, shortest, 323, 329
derivational problem solving, 320
Desatur, 913
descent, gradient, 141
description logic, 373, 386
description, task/service (TSD), 451
descriptor, 597–599
design, architectural, 365, 367
design, distributed algorithmic

mechanism, 158
design, engineering, 1096
design, mechanism, 158
detachment, defeasible deontic (DDD+),

263
detachment, defeasible factual (DSD+),

258, 262
detect operation, 1071
detection, intrusion, 1105
detection, network intrusion, 157
detector, frequency, 829
deterministic parsing, 307
deterministic spatial prisoner’s dilemma

(SPD), 167
deterministic Turing Machine (DTM),

1084
device, handheld, 402, 403
diabetes data set, 856, 858, 864, 868,

871
diagram, Hasse, 290
dialog processing, 308
difference of Gaussians function, 114
differential emotion scale (DES), 200
differential equation, 1096
differential evolution, 5
digital archive, 388

digital atlas, 801

digital circuit, 764, 804

digital electronics, 782

digital hardware, 803

digital organism, 410

digital spike communications model,
782

digital technology, 767

dilemma, prisoner’s (PD), 159

dimensionality reduction, 28, 525, 715,
732, 749

Dirac delta function, 772

direct load management, 501

directed acyclic graph (DAG), 977

Directory, Google, 390, 402

Directory, Open, 390, 402

disambiguation, 312

disambiguation, syntactic, 311

Discipulus, 968

discourse structure, 311

discourse, universe of, 598, 603, 605,
610, 625

discrete event scheduler, 422, 424, 425

discrete mathematics and theoretical
computer science (DIMACS)
benchmark, 894, 912, 913, 919

discretization, fuzzy, 642, 654, 661

discretization, interval, 643, 654, 655

discriminant, 11

discriminant analysis, 719

discriminant capability, 94

discriminant, Bayesian, 96

discrimination, self-nonself, 1102

disease agent, 1091

disease, auto-immune, 1102, 1105

disjoint before/after, 285

disjunctive subset, 354

dislex, 731

dissimilarity, 732

distance measure, 114

distance, Euclidean, 16, 122, 129, 141,
530, 615, 630, 631, 732, 749, 1097

distance, Hamming, 1097

distance, Kullback-Leibler information,
738

distance, Mahalanobis, 95

distance, Tchebyschev, 616

distributed agent, 1101

1136 Index

distributed algorithmic mechanism
design, 158

distributed analysis agent, 694
distributed artificial intelligence (AI),

41, 157
distributed computing, 439, 441, 442
distributed denial-of-service (DDOS),

158
distributed grid, 690
distributed heterogeneous grid, 690
distributed media grid environment, 696
distributed resources, 691
distributed system, 387
divergence, 732
divergence, Bhattacharryya, 95
divergence, Kullback-Liebler, 87, 95
diverse and accurate ensemble learning

algorithm (DIVACE), 870, 872
diversification, agent, 1113
diversification, controlled, 1035
diversity, 860, 892, 979, 1101, 1102,

1106
diversity, population, 906
divide-and-conquer, 16, 821, 852, 859,

872
dividend, stock, 413
DNA base, 1066
DNA base pair, 1066, 1080
DNA base sequence, 1077
DNA computer, 1065
DNA computing, 40, 155, 1069, 1071,

1077, 1105, 1106, 1110, 1113
DNA double-strand helix, 1066
DNA duplex, 1068
DNA molecule, 1065, 1069, 1070, 1080,

1082
DNA molecule, complementary, 1066
DNA molecule, double stranded, 1069
DNA polymerase, 1066
DNA process, 1065
DNA reaction, 1065
DNA sequence, 1066, 1068, 1069, 1078,

1080
DNA sequence data, 1091
DNA single-strand helix, 1066
DNA strand, 1065, 1069, 1080,

1082–1084
DNA template, 1068
DNA, complementary (cDNA), 1068

DNA, single-strand (ssDNA), 1068,
1081, 1083

document mining, 726
domain, 354, 358, 359, 364, 369, 382,

390
domain expert, 8, 18, 382
domain information, 367
domain knowledge, 351, 359, 363, 370,

388, 597, 598, 624
domain ontology, 382
domain ontology model, 403
domain semantics, 359
domain, tourist, 397
Domany-Kinzel (DK) model, 165
dominator circuit, 821, 828
DOP model, tree-based, 314
DOP+, 313, 336
DOP, ML, 315
DOP, supervised, 334
DOP, UML, 335
DOP, unsupervised, 308, 333, 336
double auction (DA), 564, 568, 574, 578
double helical coil, 1080
double-auction (DA) market, 568
double-strand DNA molecule, 1069
double-strand helix, DNA, 1066
draughts, 970
DSD-proof, 257
duplex, DNA, 1068
dynamic bandwidth allocation, 691
dynamic cluster formation, 488
dynamic cluster formation algorithm,

490
dynamic clustering, decentralized, 502
dynamic data clustering, 489
dynamic fitness function, 975
dynamic hierarchy, 489
dynamic network, 488, 1097
dynamic offset range, 491
dynamic optimization problem, 1043
dynamic problem, 1040, 1046
dynamic subset selection, 974, 975
dynamic swarm size, 1041
dynamical system, 1097
dynamics, molecular (MD), 410
dynamics, multi-agent, 489, 503
dynamics, non-linear, 565
dynamics, population, 1097
dynamics, replicator, 167

Index 1137

eager scheduling, 457
Echo, 410
EcoLab, 420–423, 426, 429, 430
ecological system, 1097
econometrics, 519, 548, 552, 565, 566,

573, 575
economic agent, 411, 541, 543, 579
economic agent, adaptive, 561
economic agent, Lucasian, 541–544
economic model, agent-based, 571
economic modeling, 540, 966
economic system, 157
economics, 158, 175, 517, 540, 570, 573,

576, 580, 966
economics, macro-, 541, 544, 549
economics, neo-classical, 576
economics, Santa Fe Institute (SFI),

544
economy, market, 157
economy, planned, 157
edge detection, 766
effector, 42, 811
efficiency, computational, 1041
efficient market hypothesis (EMH), 548,

565, 566, 573, 967
eigenvalue, 608
eigenvector, 608, 733
election operator, 550, 556
electricity market complex adaptive

system (EMCAS), 568
electricity power grid, 441–443
electricity supply, 568
electroencephalogram (EEG), 198
electromyography (EMG), 199
electronic commerce (eCommerce), 578
electronic computer, 763
electronic document, 750
electronic engineering, 768
electronic system level (ESL), 807
electronics, analogue, 768, 782
electronics, digital, 782
electrophoresis, gel, 1080, 1083
elevator dispatch problem, 1080, 1082
elevator group, 1065
elevator group control system, 1072
elevator group management, 1065, 1072
elevator group supervisory control

system (EGSCS), 1072
elevator scheduling, 1065

elevator scheduling, optimal, 1074
elevator, building, 1065, 1072
eLibrary, 689
elite chromosome, 808
elitism, 661
elitist EMO algorithm, 659, 661
elongation, 1068
Elvis robot, 960
email, spam, 158, 174
embedded model, 91
embedded processor, 786
embodied agent, 206, 211
embryonic hardware, 804
emergence, 409, 486
emergent property, 573
EMO algorithm, elitist, 659, 661
EMO algorithm, memetic, 663
EMO-based genetics-based machine

learning (GBML), 663
EMO-based rule selection, 663
emotion, agent, 216
emotion, computational model of, 197
emotion, cultural theory of, 187
emotion, expression of, 191
emotion, human, 208
emotion, model of, 197
emotion, neurological model of, 189
emotion, simulated, 207, 208
emotion, simulation of, 216
emotion, synthetic, 207, 208
emotional competence framework, 196
emotional intelligence, 185, 196, 206
emotional Stroop test, 193
emotional voice recognition, 197
emotionally intelligent computer, 197,

216
emotions, 187
emotions, basic, 187, 202
emotions, higher cognitive, 188
emotions, intentional, 190
emotions, negative, 205
emotions, nonintentional, 190
emotions, secondary, 190
emotions, tertiary, 190
emotive speech, 202
emotive text, 200
empathic agent, 210
empathy, 202
encoder/decoder problem, 527

1138 Index

energy control, distributed, 501
energy landscape, 27
energy management, distributed, 501
engine monitoring and control, 965
engine, automobile, 1099
engine, search, 97, 1101
engineering design, 1096
engineering, agent, 563, 564, 567, 568,

570–572, 577
engineering, bio-, 1091
engineering, computer, 768
engineering, electronic, 768
engineering, evolutionary (EE), 826,

828, 829, 832, 836
engineering, knowledge (KE), 351
engineering, neural systems, 768, 783
engineering, software (SE), 7, 18
enhanced learning, 1072
ensemble, artificial neural network

(ANN), 852, 858, 860, 870, 872
ensemble, classifier, 44
enterprise computing, 440
entity, logical, 267
entity, physical, 267
entropy function, 617
entropy, correlation, 496, 502
entropy, fuzzy set, 617
entropy, Kolmogorov-Sinai, 495
entropy, metric, 495
entropy, Rényi, 495, 502
entropy, representative (RE), 85
entropy-based data reduction method,

85
environment, 446, 719
environment, agent-based modeling

(ABM), 416, 431
environment, open, 439, 440, 444
environment, runtime, 450, 463
enzyme, 1068, 1080
enzyme function, 1066
enzyme reaction, 1066, 1067
epistemic negation, 236, 244, 246, 262,

272–274, 289
EPNet, 853, 856, 859
epoch, 19, 27, 854, 866, 868
equal piles problem, 895, 897
equation, differential, 1096
equation, Kolmogorov, 160
equation, position update, 1034

equation, swarm update, 1046
equilibrium, Nash, 155–157, 173–175
equilibrium, Pareto-inferior, 554
equilibrium, Pareto-superior, 554, 555
era, post-genome, 1091
eradication, abnormal node, 1095
Erben fitness function, 912
error landscape, 27
error tolerant vector quantization (VQ),

726
error, classification, 29
error, least squares, 856
error, mean squared (MSE), 16, 701,

733
error, prediction, 701
error, quantization, 737
error, squared, 492
error, vector quantization (VQE), 83
error-correction learning, 719
Essen Associative Code (ESAC), 317
Essen Folksong Collection (EFC), 312,

316, 330
estimation, fitness, 1041, 1043, 1050,

1052–1054, 1056
estimation, fuzzy set membership, 620
ethics, 203
ethology, 799
Euclidean distance, 16, 122, 129, 141,

493, 530, 615, 630, 631, 732, 749,
1097

EVALP clause, 271–273
EVALPSN clause, 270, 279, 282, 295
EVALPSN defeasible deontic reasoning,

266, 274
EVALPSN pipeline control safety

verification, 266
EVALPSN safety verification, 277, 279,

284
EVALPSN safety verification

framework, 266, 267, 284
EVALPSN stable model, 265
EVALPSN, bf (before-after), 234, 291,

294, 299
evaluation arc, 1098
evaluation, fitness, 1033, 1034, 1036,

1041, 1043, 1044, 1049, 1052–1054,
1056

evaluation, rule, 383
evolution, 883, 1113

Index 1139

computer program, 928
grammatical, 952
recurrent transition network, 957

evolution finite state automata (FSA),
957

evolution strategy, 883
evolution, artificial neural network

(ANN), 803, 859
evolution, co-, 572, 573, 975
evolution, Darwinian, 802
evolution, differential, 5
evolution, generic, 830, 832, 837
evolution, multi-module, 834
evolution, multi-test, 828–830
evolutionarily stable strategy (ESS),

174
evolutionary algorithm (EA), 23, 37, 47,

537, 540, 568, 834, 851, 862, 881,
883, 928

evolutionary algorithm (EA),
multi-objective, 870

evolutionary algorithm (EA), speciated,
859

evolutionary algorithm parallel (EA),
977

evolutionary algorithm, hybrid (HEA),
881, 913

evolutionary algorithm, memetic, 881
evolutionary art, 970
evolutionary artificial neural network

(EANN), 851, 855
evolutionary computation (EC), 518,

519, 536, 579, 804, 852, 859, 872,
927

evolutionary computation winter, 32
evolutionary computing (EC), 4, 31, 39,

883
evolutionary engineering (EE), 826,

828, 829, 832, 836
evolutionary ensembles with NCL

(EENCL), 862–865
evolutionary game theory, 573
evolutionary multiobjective (EMO)

fuzzy rule selection, 644, 664–666,
669, 670, 672

evolutionary multiobjective design, 661,
663

evolutionary multiobjective fuzzy data
mining (DM), 674

evolutionary multiobjective opti-
mization (EMO), 643, 655,
658

evolutionary music, 970
evolutionary process, 766
evolutionary programming (EP), 32, 36,

536, 540, 853, 883
evolutionary quantum computer

programming, 964
evolutionary search

models, 983
evolutionary strategy (ES), 32, 536,

538, 1072
evolvability, 829, 832
evolvable hardware (EHW), 34, 803,

826, 883
evolving agent, 966
examination timetabling, 894, 917
example, Chisholm, 258
exchange rate, 12, 544, 558, 560–562,

572, 967
excitatory connection, 722
exclusive-or (XOR), 27
exemplar, 322
exemplar, training, 26, 27, 29
exemplary problem solution, 322
exhaustive search, 10, 16, 881
expectation operator, 553
expectation-maximization (EM) algo-

rithm, 121–123, 130, 141, 315, 335,
736, 747

expert, 121, 603, 605, 607, 608, 620, 630
expert knowledge, 363, 370
expert opinion, 598
expert system (ES), 18, 21, 22, 543
expert system (ES) shell, 24
expert system (ES), fuzzy, 45, 47
expert, domain, 8, 382
expert, human, 859
experts, mixture of, 121, 129, 131, 141,

146
experts, product of, 126, 130, 131, 146
experts, sum of, 130
explanation capability, 649
explanation-based learning, 319
exploitation, 1031, 1032
exploitation, social, 1033
exploration, personal, 1033
exploration, serial, 1037, 1038

1140 Index

exploration-exploitation balance, 1031
explorer particle, 1044
expression, 191
expression, facial, 192
extended vector annotated logic

program with strong negation
(EVALPSN), 234, 244, 245, 256,
258, 262–265, 284

extensible markup language (XML),
373, 383, 384, 388

extension, 1068
extension, feature structure (FS), 366
external join, 356
extraction, feature, 28

f-included before/after, 288
facial action coding system (FACS),

192, 199, 202
facial action parameter (FAP), 192
facial definition parameter (FDP), 192
facial electromyography (EMG), 199
facial expression, 192, 199
factual detachment, defeasible (DSD+),

258, 262
failure rate, 168–170, 173
Falkenauer data set, 916, 919
false negative, 1096, 1099
false positive, 1096, 1099
family, fuzzy set, 621
fan-in, 765
fan-out, 765
fascicle processor, 786
fault tolerance, 445, 448, 450, 457, 463,

715, 763, 764, 767, 769
feature, 81
feature dependence, 92
feature evaluation, 91
feature extraction, 28, 81, 525, 719
feature relevance, 92
feature selection, 81, 90, 101
feature selection criteria, 91
feature selection method, MI-raw based

(MI-raw-FS), 98
feature selection method, mutual

information-based (MIFS), 98
feature selection method, quadratic

MI-based (QMIFS), 98
feature selection, Bayesian discriminant

(BDFS), 96

feature space, 112, 740–742
feature structure (FS), 366
feature structure (FS) extension, 366
feature structure (FS) inheritance, 355
feature structure (FS) intension, 366
feature structure (FS) type, 355
feature subset goodness, 94
features structure (FS) theory, 365
feedback network, 693
feedforward associative network, 734
feedforward network, 693
feedforward neural network, 522, 526,

719
field programmable gate array (FPGA),

34, 40, 783, 785, 789, 797, 803,
806–809, 830, 831, 837

fighter aircraft, 370
file exchange, multimedia, 444
filter method, 83, 92
filter, low pass, 1031
filtering, noise, 17, 21, 28
finance, behavioral, 577
finance, quantitative, 518
financial agent, 563, 565
financial market, 561, 577
financial time series, 519, 531, 532, 548,

552, 563
financial time series prediction, 966
finite state automata (FSA) evolution,

957
finite state automata (FSA), 540
finite state machine (FSM), 34, 540
firewall, 1096, 1105
firing rate, 773, 778, 779
firing-order code, 766
first fit decreasing weight (FFD)

algorithm, 899, 914, 916, 917
first-order logic (FOL), 9, 22, 360, 373
fish shoal, 1029
fitness, 884, 1032

fitness case, genetic programming,
942

multi-objective, 942
genetic programming, 966

fitness cache, 977, 982
fitness case, genetic programming, 942
fitness estimation, 1041, 1043, 1050,

1052–1054, 1056
fitness estimation PSO algorithm, 1051

Index 1141

fitness evaluation, 854, 857, 1033, 1034,
1036, 1041, 1043, 1044, 1049,
1052–1054, 1056

fitness function, 32, 536, 557, 732, 803,
805, 806, 808, 811, 814, 828, 829,
833, 834, 837, 838, 884, 891, 906,
918, 919, 940, 1047, 1049

dynamic, 975
genetic programming, 940, 944

fitness function, Erben, 912
fitness reliability, 1041, 1042, 1056
fitness sharing, 859, 862, 982
fitness-proportionate selection, 934
fixed-length DNA algorithm, 1082
fixpoint semantics, 240
flat graph, 912
floating search, 98
floating-point operations per second

(FLOPs), 767
flock of birds, 1029
Fluent, 419
food source, swarm, 1031
forecasting, 117, 518, 524
forecasting rule, agent, 415
forecasting rule, market, 413, 415
forecasting, time series, 28, 535
foreign exchange rate, 12
forgetting term, 720, 723
formal language, 42
formal logic, 9
formal safety verification, 234, 266, 299,

300
formalism, non-monotonic, 244
format, media content, 699
formation rule, canonical, 351, 353, 356,

358, 361, 366, 374
formula agent, 574
formula, deontic, 247
Fortran, 418, 423
forward chaining, 10, 23
forward message, 492
Fourier transform, 745
Fourier transform, quantum

evolution, 964
frame, 9, 22
frame system, 1071
framework, 597
framework, agent-based modeling

(ABM), 421, 423, 424, 431

framework, EVALPSN safety
verification, 284

framework, genetic simulated annealing
framework (GSA), 919

framework, Java, 399
framework, Jena, 399
framework, message passing/routing,

462
framework, order based, 919
framework, resource management, 462
Framsticks, 410
Free Software Foundation (FSF), 417
frequency assignment problem, 896, 899
frequency detector, 829
frequency-based search, 381
full method, genetic programming, 931
function approximation, 647, 651, 675
function optimization, 549
function optimization problem, 1044
function, activation, 804
function, basis, 121, 122, 129, 131, 133
function, cost, 726–728, 737
function, enzyme, 1066
function, fuzzy membership, 47
function, hyperbolic tangent, 521
function, kernel, 740, 742, 774
function, mapping, 740
function, mexican hat, 724
function, minimization, 1054
function, neighbourhood, 725, 727, 728,

731, 737, 740, 742–744
function, objective, 32, 162, 536, 614,

731, 742, 884, 893, 904, 919, 1043
function, projection, 733
function, Rastrigin, 1048, 1052, 1054
function, Schwefel, 1049, 1054
function, sigmoid, 521, 723, 804
function, squashing, 804
function, Tauber-Wiener, 521
fusion, classifier, 44
fuzzification coefficient, 614, 616
fuzzification, input, 25
fuzzy associative memory (FAM), 45
fuzzy backpropagation (BP), 46
fuzzy C-means (FCM) clustering, 614,

615
fuzzy C-means (FCM) clustering

algorithm, 617, 620
fuzzy clustering, 598, 614, 619

1142 Index

fuzzy cognitive map (FCM), 23
fuzzy conditional probability, 651
fuzzy controller, 25
fuzzy data mining (DM), 651, 674
fuzzy discretization, 642, 654, 661
fuzzy expert system (ES), 45, 47
fuzzy feature evaluation index (FFEI),

97
fuzzy GBML algorithm, 667
fuzzy inference system (FIS), 25, 45
fuzzy inference system,

adaptive-network (ANFIS),
45

fuzzy integral, 44
fuzzy logic, 18, 23, 24, 45, 519, 536, 571,

580, 642, 1072
fuzzy mapping, 624, 634
fuzzy membership degree, 605
fuzzy membership function, 47, 597,

601, 608
fuzzy membership function estimation,

597
fuzzy membership function estimation,

data-driven, 598
fuzzy membership function estimation,

horizontal, 605
fuzzy membership function estimation,

pairwise, 605, 607
fuzzy membership function estimation,

priority, 607
fuzzy membership function estimation,

vertical, 605, 606
fuzzy membership function, linear, 613
fuzzy membership function, piecewise,

623
fuzzy membership function, unimodal,

610
fuzzy membership grade, 606
fuzzy min-max neural network, 47
fuzzy model, 47
fuzzy multivariate auto-regression

(MAR), 48
fuzzy neuron, 628
fuzzy partition, 661
fuzzy reasoning, 370, 644, 647, 648
fuzzy relation, 629, 634
fuzzy rule, 9, 22, 641–644, 646–655,

662–670, 672–674
fuzzy rule base, 47

fuzzy rule extraction, 644, 650
fuzzy rule selection, 663
fuzzy rule set, 648
fuzzy rule-based classifier, 641, 644, 647,

648, 650, 652, 653, 655, 661–663,
665, 667, 669, 672, 674

fuzzy rule-based system, 627, 634, 641,
643, 648, 663, 673–675

fuzzy search, 403
fuzzy set, 25, 597–599, 605, 606, 616,

624, 625, 630
fuzzy set calibration, 598, 599, 620, 621
fuzzy set core, 610
fuzzy set entropy, 617
fuzzy set family, 621
fuzzy set formation, problem-oriented,

599
fuzzy set membership, 25
fuzzy set membership degree, 617
fuzzy set membership estimation, 620
fuzzy set membership estimation,

user-based, 620
fuzzy set notation, 599
fuzzy set operator, 25
fuzzy set perception, 599, 629, 634
fuzzy set semantics, 598, 599, 621
fuzzy set, data-driven triangular, 612
fuzzy set, Gaussian, 621, 623
fuzzy set, higher-order, 620
fuzzy set, hypercube, 47
fuzzy set, interval-valued, 606
fuzzy set, referential, 621
fuzzy set, triangular, 612, 621, 623
fuzzy set, type-2, 620
fuzzy subspace, 650
fuzzy system, 4, 641, 1071
fuzzy-neuro system, 46
FuzzyART, 46
FuzzyARTMAP, 47

gambling agent, 577
game

computer, 970
game strategy, 3
game theoretic framework, 173
game theory, 8, 155–157, 159, 161, 174,

175, 966
game theory, evolutionary, 573
game-playing strategy, 859

Index 1143

Gandalf, 207
Gaussian, 30, 122, 128, 725
Gaussian basis function, 130
Gaussian basis vector, 136
Gaussian fuzzy set, 621, 623
Gaussian kernel, 531, 741, 742, 747
Gaussian membership function, 662
Gaussian mixture, 738, 740
Gaussian mutation, 863
Gaussian noise, 135
Gaussian pancake, 128
gel electrophoresis, 1066, 1069, 1080,

1083
gel electrophoresis, temperature

gradient (TGGE), 1081
gel, agarose, 1069
Gelfond-Lifschitz transformation, 242
gene, 1091
gene data, 1102
gene expression clustering, temporal,

747
gene expression, microarray, 102
gene network, 1091
general packet radio services (GPRS),

398, 400
general-purpose processor, 789
generalization, 29, 356, 362, 529, 672,

852, 855, 859
generalization, common, 357
generalized delta learning rule, 27
generalized harmony learning, 144
generalized Horn (GH) clause, 239
generally Horn program (GHP), 237,

239
generation, 32, 536, 809
generative topographic map (GTM),

111, 121, 129, 143, 147
generic concept, 597
generic evolution, 830, 832, 837
generic topographic map (GTM), 732,

736
genetic program representation, 929
genetic programming

automatically defined function
(ADF), 948

genetic algorithm (GA), 20, 23, 32, 37,
45, 47, 98, 413, 415, 425, 536, 538,
542–544, 546, 550, 555, 556, 561,
563, 567, 571, 572, 643, 655, 798,

803–806, 830, 831, 837, 838, 854,
856, 883, 902, 1036, 1041, 1049,
1052, 1071

genetic algorithm (GA) bit string, 884,
903

genetic algorithm (GA) convergence,
906

genetic algorithm (GA), augmented,
550

genetic algorithm (GA), order based,
898

genetic algorithm (GA), steady state,
891

genetic algorithm, compact (cGA), 808,
837

genetic algorithm, grouping (GGA),
896, 913

genetic algorithm, non-dominated
sorting (NSGA-II), 5

genetic data, 1091

genetic network programming, 1072

genetic operator, 537, 550, 556, 570,
881, 884, 891, 928, 946, 1102, 1105

genetic operator rates, 942

genetic population, 32

genetic programming

applications, 958

backward chaining, 975

Cartesian, 958

developmental, 954

geographically distributed, 978

grammar-based, 950

grammatical evolution, 952

initialization, 931

initialization, full method, 931

initialization, grow method, 931

linear representation, 955

machine code, 955

Markov model, 984

master-slave, 978

multi-objective, 968

neural network, 957

parallel, 977

parallel distributed, 957

Parisian, 966

representation

graph-based, 957

reverse polish, 981

1144 Index

search spaces
theory, 984

speedup techniques, 973
strongly-typed

theory, 984
tree-based representation, 931
Turing complete, 956

genetic programming theory, 982
genetic programming (GP), 32, 36, 519,

536, 540, 541, 547, 548, 551, 555,
563, 566, 567, 570, 575, 576, 883,
927

multi-objective, 934
parallel, 979

genetic programming closure, 938
genetic programming problem solver

(GPPS), 949
genetic programming search space, 940
genetic programming sufficiency, 939
genetic simulated annealing (GSA),

906, 910, 916, 918, 919
genetic simulated annealing (GSA)

framework, 919
genetic simulated annealing (GSA),

order based, 913, 914, 917
genetic string, 32
genetic-fuzzy classifier system (GFCS),

571
genetically altered penguin, 250
genetics-based machine learning

(GBML), 667
GenNet, 804
genome, 1091
genome data, 1092
genome sequence, 1080
genotype, 1105
geographical information, 402
geographical information system (GIS),

425
geographically distributed genetic

programming, 978
glass data set, 868
global best (gbest), 1030, 1031, 1033,

1036–1038, 1040, 1045, 1046, 1051
global minimum, 19, 27
global optimum, 1029, 1036, 1044, 1049,

1052, 1054
global positioning system (GPS), 382,

388, 397, 401–403

global positioning system (GPS) agent,
398, 400

global positioning system (GPS)
receiver, 401

Globus, 443, 444
GNU C compiler (GCC), 420, 423, 430
goodness, 94
Google Directory, 390, 402
GP-based agent, 555
GPU speedup factor, 981
grade, fuzzy membership, 606
grade, membership, 605
gradient descent, 27, 141
gradient descent algorithm, 1053
gradient descent, stochastic, 728
gradient method, 733
gradient-based optimization, 631
grammar, 307
grammar, context-free (CFG), 312, 324,

328
grammar, context-sensitive

genetic programming, 952
grammar, definite clause, 324
grammar, head-driven phrase structure

(HPSG), 314
grammar, internalized, 309
grammar, lexical-functional (LFG), 314
grammar, probabilistic context-free

(PCFG), 308, 328, 329
grammar, stochastic context-free, 331
grammar, stochastic lexicalized, 332
grammar-based constraint, 950, 951
grammar-based genetic programming,

950
grammatical evolution, 952
granular computing, 4
granular mapping, 634
granularity, 661
granule, information, 598, 624, 625
graph, 158, 352, 363

directed acyclic (DAG), 977
graph coloring problem (GCP), 882,

887, 892, 893, 897, 899, 905, 912,
917

graph matching, 368
graph projection, 361
graph theory, conceptual (CGT), 360
graph unification, 367
graph, canonical, 356

Index 1145

graph, conceptual (CG), 351, 352, 357,
358, 363–366, 368–370, 372, 374

graph, flat, 912

graph, labeled, 352
graph, Leighton, 912

graph, resource description framework
(RDF), 399

graph, scale-free, 490

graph, tree, 489

graph, well-formed, 354

graph-based genetic programming, 957
Graphcode, 426, 429

graphical knowledge representation, 352

graphical user interface (GUI), 397, 422

graphics processing unit (GPU), 980

gray model, 1098
greatest lower bound (GLB), 356, 358,

363
greedy algorithm, 358, 899, 1032, 1057

greedy algorithm, iterated (IG), 900

greedy decoder, 887, 891, 920

greedy partition crossover (GPX), 897

grid, 690
grid architecture, 440

grid architecture, super-local, 440, 444

grid backbone, 468

grid computing, 155, 156, 174, 446, 691
grid computing, service-oriented, 440

grid container, 450, 466

grid container, microkernel, 463

grid coordinates, 491

grid information service, 696
grid inter-operability, 446

grid management service, 464

grid middleware, 689, 695

grid scalability, 446
grid service, 695

grid technology, 689, 691

grid, computational, 440

grid, computing, 439, 441, 443, 444

grid, distributed, 690, 696
grid, electricity power, 441–443

grid, heterogeneous, 690

grid, media, 689–691, 695

grid, power, 502
grid, sensor, 488, 489

grid, server-based, 440

grid, service-oriented, 443

group, artificial neural network (ANN),
31

group, blood, 1108
group, elevator, 1065
grouping genetic algorithm (GGA), 896,

913
grouping problem, 892
grow method, genetic programming,

931
growing hierarchical-SOM, 751
guanine, 1066
guidance system, intelligent tourist, 395

habituation, 773, 775
halting

program
Markov chain model, 985

Hamiltonian circuit, 1105
Hamiltonian path problem, 1066
Hamming distance, 1097
Handel-C, 798, 803, 805, 830, 832
handheld device, 397, 398, 402, 403
hardware compiler, 803–805, 830
hardware description language (HDL),

803, 807
hardware, analog, 803
hardware, digital, 803
hardware, embryonic, 804
hardware, evolvable (EHW), 34, 803,

826, 883
harmonic average, 141
harmonic k-means clustering algorithm,

141
harmonic means, K, 146, 147
harmonic topographic map (HaToM),

121, 140, 142, 143, 147
harmony learning, generalized, 144
Hasse diagram, 290
head-driven phrase structure grammar

(HPSG), 314
head-word, 308
headless chicken crossover, genetic

programming, 935
health belief model, 213
health professional, 213
heart disease data set, 856, 857, 868
Heatbugs, 416
Hebbian learning, 113, 693, 716, 720,

723, 724, 734, 777, 782

1146 Index

Hebrand base, 239
Hebrand interpretation, 242
Hebrand universe, 239
helix, double-strand DNA, 1066
helix, single-strand DNA, 1066
Herman the Bug, 203, 207
heterogeneous agent, 158, 413
heterogeneous computing resource, 441
heterogeneous grid, 690
heuristic, 882, 969

hyper-, 969
heuristic rule evaluation, 664
heuristic rule extraction, 665
heuristic search, 10, 16
heuristic search engine, 97
heuristic, bin packing, 914
heuristic, clustering, 491
heuristic, largest first, 900
heuristic, local, 1057, 1058
heuristic, ordering, 899
heuristics, 7, 919, 1100, 1105, 1111

meta-, 969
heuristics, Culberson and Luo (CL),

898, 902, 904, 919
hidden layer, 29
hierarchical noise tolerant coding

theory, 727
hierarchical relationship, 382
hierarchical temporal memory (HTM),

20
hierarchy classification, 386
hierarchy, concept type, 360
hierarchy, dynamic, 489
hierarchy, inheritance, 355, 362
hierarchy, interval type, 371
hierarchy, specialization, 358
hierarchy, subsumption type, 356
hierarchy, taxonomic, 362, 363
hierarchy, type, 355, 359, 361, 363, 371,

374
high-dimensional data set, 112, 146
high-level language (HLL), 3, 6, 8, 18,

418, 798, 805
high-performance computing (HPC),

443
high-rise building, 1072
high-speed networking, 689
higher cognitive emotions, 188
higher-order fuzzy set, 620

higher-order logic (HOL), 9
higher-order neural network (HONN),

13
hill climbing, 909, 969
histogram, 424, 425
histogram estimator, 93
Hodgkin-Huxley model, 766, 776
homologous crossover

linear genetic programming, 955
theory, 984

Hong Kong travel, 390, 402
Hopfield network, 27, 693, 719
horizontal fuzzy membership function

estimation, 605
Horn clause, 238
host agent, 1091
HPSG annotation, 331
HS algorithm, 735
hub, 468, 489, 490
human agent, 518, 545, 578
human annotator, 309
human brain, 767, 768, 799–801
human competitive artificial

intelligence, 962
human competitiveness, 962
human emotion, 208
human expert, 859
human health professional, 213
human intelligence, 48
human therapist, 213
human tourist guide, 402
human visual perception, 716
human-competitive awards (Humies),

964
human-competitive machine

intelligence, 987
human-computer interaction (HCI), 185
human-human interaction, 203, 204, 216
humanoid robot, 3
hybrid coloring algorithm (HCA), 896
hybrid computational intelligence (CI)

system, 43
hybrid evolutionary algorithm (HEA),

881, 913
hybrid grouping genetic algorithm

(HGGA), 916
hybrid system, 19
hybridization, 1066, 1067, 1071, 1080,

1082

Index 1147

hyper-heuristic, 969
hyperbolic tangent function, 521

hypercube fuzzy set, 47
hypertext, 174

hypertext markup language (HTML),
384

hypothesis, adaptive market, 967
hypothesis, efficient market (EMH),

548, 565, 566, 573, 967

hypothesis, permanent income, 573
hypothesis, rational expectations

(REH), 549, 565, 566, 573

identification, user, 1105

idiomatic phrase, 310
if...then production rule, 9, 22, 23, 543

iJADE FreeWalker, 382, 389, 395, 397,
400, 402

iJADE FreeWalker client, 397
iJADE FreeWalker server, 399

iJADE tourist guidance system, 401
iJADE tourist information center, 399

image processing, 784, 965, 966
image watermark, 966

IMBS, 1105
immediate before/after, 286

immune algorithm, 1101–1103
immune cell, 159

immune memory, 1097
immune network, 1096

immune system, 1091–1093, 1106, 1110,
1113

immune system model, 1096

immunity, adaptive, 1113
immunity-based computing (IBC), 40,

155
immunity-based problem solver, 1106

immunity-based problem solving, 1111,
1113

immunity-based system (IMBS), 159,
1091, 1092, 1095, 1102, 1113

immunologic memory, 1102

immunology, 1092
impulse generator module, 824

included before/after, 287
independent agent, 156

independent component analysis (ICA),
721

index, performance, 612, 614, 619, 631,
633

index, projection, 734
index, separation, 617
indirect load management, 501
individual learning, 556, 564, 567
individual-based modeling (IBM), 410,

411
individual-based modeling (IBM),

vector-based, 1178
inductive logic programming, 319
inference engine, 22, 23
inference system, adaptive-network

fuzzy (ANFIS), 45
inference system, fuzzy (FIS), 25, 45
inference, probabilistic, 23
inference, semi-strict, 258
inflation rate, 544, 553, 555, 556, 562
InfoDaemon, 700
informatics, bio-, 968, 1092, 1110
information, 14
information conjunction, 364
information granule, 598, 624, 625
information merging, 363
information processing, 766
information processing system, 715,

763, 766, 768
information retrieval (IR), 381, 751
information retrieval (IR), mobile, 398
information storage, 771
information system (IS), 163, 173, 441,

1093
information theory, 969
information, domain, 367
information, geographical, 402
information, tourist, 382, 402, 403
inheritance, 362
inheritance hierarchy, 355, 362
inheritance rule, 372
inheritance, deontic, 257
inheritance, feature structure (FS), 355
inhibitory connection, 722
initialization

genetic programming, 931
input fuzzification, 25
input layer, 29
input signal register (ISR), 810
input space, 741, 742
input/output training data, 17, 26

1148 Index

input/output transfer function, 17, 521,
526, 770, 778

insertion mutation, 890, 903, 918

instance, 352, 359, 360

instance-based learning (IBL), 533

instrument, scientific, 443

Intel C++ compiler (ICC), 430

intelligence, 3, 7, 719

intelligence, artificial (AI), 3, 4, 7, 9, 26,
351, 381, 567, 927, 1071

intelligence, collective, 36

intelligence, computational (CI), 4, 16,
17, 20, 42, 155, 158, 174, 517, 570,
571, 579, 1092

intelligence, human, 48

intelligence, machine, 718, 927

intelligence, mindless, 49

intelligence, swarm (SI), 36

intelligent agent, 21, 42, 386, 446, 543

intelligent Java agent-based develop-
ment environment (iJADE), 382,
389

intelligent network services, 381

intelligent system, 4, 17, 155, 158, 351,
769

intelligent tourist guidance system, 395

intension, feature structure (FS), 366

intentional emotions, 190

intepretation, Herbrand, 242

inter module signaling interface (IMSI),
809–811, 813, 826, 838

inter-agent communication, 489, 490,
502

inter-agent interaction, 485

inter-connectivity, module, 832, 833

inter-operability, 439, 445, 447, 451

inter-operability, grid, 446

inter-task communication, 440, 445, 446

interaction, agent, 409, 453, 1100

interaction, inter-agent, 485

interaction, multi-agent, 486

interclass distance, 96

interconnections, neuron, 764

interface agent, 201, 206

interface, graphical user (GUI), 422

interface, robot-brain, 813

interface, voice, 402

internalized grammar, 309

internet, 155, 174, 396, 417, 439, 440,
442, 444, 689

internet being, 156, 174, 175
internet streaming, 691
interoperability, ontology, 372
interpretability, 646, 673
interpretability-accuracy tradeoff, 674,

675
interpretability-complexity tradeoff, 643
interval discretization, 643, 654, 655
interval rule, 644, 649, 653–655
interval rule-based classifier, 644, 653
interval type hierarchy, 371
interval, confidence, 606
interval-valued fuzzy set, 606
intrusion detection, 1105
intrusion detection, network, 157
invention

patentable, 963
inversion operator, 885, 903, 912, 914
ionosphere classification, 100
ionosphere data set, 100
iris data set, 750
Isomap, 732
iterated greedy algorithm (IG), 900,

916, 919
iterated prisoner’s dilemma (IPD), 160,

859
iterative rule learning approach, 667
itinerary, 403
Izhikevich model, 775, 785

Java, 418, 420–422, 424, 425, 427, 430
Java applet, 41
Java framework, 399
Java Virtual Machine (JVM), 41, 400,

424, 428, 431
jellyfish agent, 426
Jena framework, 399
Jerne network, 1105
jitter, 699
job management service, 440
job scheduling, 440, 708
join operator, 357, 361, 366, 371
join rule, 355
join subsumption, 374
join, external, 356
joint before/after, 286
just-in-time compilation, 420, 431

Index 1149

k nearest neighbors (KNN), 532
k-harmonic means, 146, 147
k-means agent, 535
k-means clustering, 530, 863
k-means clustering algorithm, 112, 141
k-means clustering algorithm, harmonic,

141
Kalman filter, 532, 541
keep-it-simple, stupid (KISS), 571
kernel function, 529, 740, 742, 774
kernel method, 529, 740
kernel principal component analysis

(PCA), 734
kernel regression, 735
kernel self-organizing map (SOM), 740
kernel, Gaussian, 531, 741, 742, 747
kernel-based topographic map, 732
keyword, 381
keyword search, 381
kinematics, 964
KNN agent, 535
knowledge, 14, 382, 383
knowledge acquisition, 801
knowledge base (KB), 8, 9, 22, 351
knowledge combination, 364
knowledge conjunction, 351, 363–369,

372, 374
knowledge conjunction model, 369
knowledge conjunction reasoning tool,

367, 370
knowledge discovery (KD), 548, 549
knowledge discovery (KD) tree, 102
knowledge engineer (KE), 4, 8
knowledge engineering (KE), 351, 381
knowledge representation, 9, 352, 374
knowledge representation system, 364
knowledge representation tool, 353
knowledge representation, graphical,

352
knowledge retrieval, 373
knowledge reuse, 384
knowledge sharing, 384, 397
knowledge structure, 365, 366
knowledge, defense, 370
knowledge, domain, 351, 363, 388, 597,

598, 624
knowledge, expert, 363, 370
knowledge-based system (KBS), 21
knowledge-level reasoning, 369

Kohonen map, temporal (TKM), 747
Kohonen’s self-organizing map (SOM),

117, 715
Kolmogorov complexity, 548

Kolmogorov equation, 160
Kolmogorov-Sinai entropy, 495

Kullback-Leibler information distance,
738

Kullback-Liebler divergence, 87, 95
kurtosis, 566

kurtotic noise, 135

Lévy mutation, 863

label substitution, 309
label substitution operation, 313

labeled graph, 352
labeled tree, 319

Lagrange multiplier, 615
landscape, energy, 27

landscape, error, 27
langauge semantics, 373

language comprehension, 311
language derivation, 320

language, agent communication, 42
language, agent implementation, 419,

431
language, C, 807

language, camera, 813
language, extensible markup (XML),

383, 384, 388
language, formal, 42

language, hardware description (HDL),
803, 807

language, high-level (HLL), 3, 6, 8, 18,
418, 798

language, hypertext markup (HTML),
384

language, LISt Processing (LISP), 8

language, LOGic PROgramming
(Prolog), 3, 8, 9

language, low-level, 18
language, markup, 381

language, natural, 18, 571
language, ontology, 374, 383

language, simple protocol and RDF
query (SPARQL), 399

language, standard generalized markup
(SGML), 384

1150 Index

language, web ontology (OWL), 385,
388, 392, 399, 400

Laplacian, 135
Laplacian noise, 135
largest first heuristic, 900
latent point, 121, 123, 125, 126, 129,

131, 133, 136, 139
latent space, 121, 123, 125, 126, 133,

135
lateral inhibition, 716, 717
lattice, 356, 371
lattice, bi-, 236, 290, 292
lattice, complete, 235, 245, 271–274
Laura, 202, 207, 210, 213
layer, hidden, 29
layer, input, 29
layer, logic, 383
layer, output, 29
layer, proof, 383
layer, trust, 383
lazy learning, 518, 534
leaky integrate-and-fire (LIF) model,

772–775, 779, 785
learning, 14, 719, 802
learning algorithm, 641
learning algorithm, backpropagation

(BP), 27, 28, 39
learning algorithm, Oja, 721
learning rate, 720, 723, 725, 854, 857,

868
learning rule, 781, 782, 851
learning rule, artificial neural network

(ANN), 851
learning rule, Bayesian, 575
learning rule, delta, 27
learning rule, min-max, 47
learning rule, ToPoE, 128
learning supervised, 692
learning theory, 21
learning vector quantization (LVQ), 29,

114, 726
learning, adaptive, 767
learning, anti-Hebbian, 777
learning, co-evolutionary, 859
learning, competitive, 530, 724
learning, computational, 307
learning, enhanced, 1072
learning, error-correction, 719
learning, explanation-based, 319

learning, Hebbian, 113, 716, 720, 723,
724, 734, 777, 782

learning, individual, 556, 564, 567
learning, instance-based (IBL), 533
learning, lazy, 518, 534
learning, machine (ML), 9, 16, 856, 927
learning, negative correlation (NCL),

860, 866
learning, population, 519
learning, reinforcement, 571, 580, 720,

851
learning, relational, 307
learning, social, 519, 556, 563, 567
learning, supervised, 112, 518, 719, 740
learning, unsupervised, 112, 334, 518,

693, 715, 719, 731
least mean square (LMS) learning, 27,

693
least squares error, 856
least upper bound (LUB), 358, 367
Leighton graph, 912
Lena image, 743
length of derivation, 313
letter recognition data set, 868
lexical grammar, stochastic, 332
lexical-functional grammar (LFG), 314
lexical-syntactic category, 309
LFG annotation, 331
LFG-annotated corpora, 314
library, space, 424, 426, 429
library, XML parsing, 450
lie detector, 199
life, artificial (Alife), 156, 174, 409, 411,

417
ligation, 1066, 1067, 1080, 1082
linear combination method, 853, 855
linear combination method, rank-based,

853, 855, 858
linear fuzzy membership function, 613
linear genetic programming (GP), 955
linear projection, 733
linear regression model, 534, 570
linear separability, 11, 27, 740
linearization, 601
linguistic interpretability, 641
linguistic parsing, 327
linguistic productivity, 310
linguistic term, 598, 645, 649
linguistic value, 642, 645

Index 1151

linguistic variable, 24
linguistically quantified variable, 597
linguistics, psycho-, 311
link, subtype, 355
LISt Processing (LISP) language, 3, 8
list programming (LISP), 546
list, preference, 1109, 1110
list, tabu, 1040
literal, 247, 254, 255, 257, 262, 270, 285,

295
literal, annotated, 238
literal, bf-, 285, 293, 294
literal, bf-EVALP, 290, 294
literal, vector annotated, 243, 244
literal, well extended vector annotated

(WEVA), 246
literal, well vector annotated (WVA),

244
load balancing, 440, 443, 450, 463
load balancing, network, 37
load management, direct, 501
load management, indirect, 501
local area network (LAN), 164, 442, 447
local best (lbest), 1030, 1033, 1034,

1036, 1037, 1051
local heuristic, 1057, 1058
local minima, 732, 743, 854
local minimum, 19, 27
local optima, 1036, 1044, 1049
local optimum, 1029, 1044, 1057
local scheduler, 440, 446, 447
local search, 659, 663, 665, 870, 1053,

1059
location, 388
location awareness, 395, 402
location-aware mobile tourist guidance

system, 395
location-aware tourist information, 402
location-aware tourist information

retrieval system, 403
locking, process, 280, 283
logic circuit, Boolean, 1071
logic gate, 764, 772, 806, 837
logic gate, universal, 764
logic layer, semantic web, 383
logic network

evolution, 957
logic program, 237, 238, 242
logic program, paraconsistent, 235

logic program, paraconsistent
annotated, 238

logic program, stochastic, 324
logic programming, 233–235, 264, 307,

364
LOGic PROgramming language

(Prolog), 3, 8, 9
logic programming, annotated, 233
logic programming, constraint, 364
logic programming, inductive, 319
logic, annotated, 233, 235
logic, autoepistemic, 233
logic, Boolean, 23, 41, 766
logic, default, 233
logic, defeasible, 233, 244, 249, 254
logic, defeasible deontic, 244, 257
logic, deontic, 244
logic, description, 373, 386
logic, first-order (FOL), 9, 22, 360, 373
logic, formal, 9
logic, fuzzy, 18, 23, 24, 45, 519, 1072
logic, higher-order (HOL), 9
logic, modal, 244
logic, multi-valued, 25
logic, Nute’s defeasible deontic, 247, 256
logic, paraconsistent, 233
logic, paraconsistent annotated, 235
logic, predicate, 1071
logic, propositional, 9, 22
logic, propositional paraconsistent

annotated, 235
logic, two-valued, 25
logical entity, 267
logical state, 267
logistic function, 698
Logo, 427
long-horizon agent, 575
long-term depression (LTD), 777
long-term memory (LTM), 764, 777
long-term potentiation (LTP), 777
lookup table (LUT), 35, 47, 649, 774,

809, 838
Lotka-Volterra equation, 1097
low pass filter, 1031
low-level language, 18
lower bound, 357, 360
lower bound, greatest (GLB), 356, 358,

363
Lucasian economic agent, 541–544

1152 Index

machine code, 546
machine code genetic programming

(GP), 955
machine intelligence, 718, 927

human-competitive, 987
machine learning (ML), 4, 9, 14, 16,

641, 675, 690, 828, 856, 927
machine translation, 308
machine, Turing (TM), 1066
machine, virtual (VM), 420, 424
MACK, 207
macroeconomic model, agent-based, 556
macroeconomic modeling, 562
macroeconomics, 541, 544, 549, 572, 575
macroeconomics, agent-based, 573
macroeconomics, neo-classical, 549, 572
magnetic bead, 1069, 1080, 1083
magnetic resonance imaging (MRI), 763
Mahalanobis distance, 95
mainframe computer, 441
maintenance, self, 156, 159
major histocompatability complex

(MHC), 1092
majority class, 650
majority voting, 44, 853, 855, 857, 863,

865, 871
mammalian brain, 773, 836
management agent, 450, 463
management, computing, 464, 466, 474
management, elevator group, 1065
management, energy, 501
management, grid, 464
management, power load, 501
management, resource, 443, 446, 462,

471
manifold mapping, 732
manipulation, symbol, 7
map, cluster, 491, 493
map, cortex, 724
map, fuzzy cognitive (FCM), 23
map, generative topographic (GTM),

111, 121, 129, 143, 147
map, generic topographic (GTM), 732,

736
map, harmonic topographic (HaToM),

140, 143, 147
map, retinotopic, 114
map, self-organizing (SOM), 142, 146,

725

map, self-organizing feature (SOFM),
725

map, somatosensory, 114

map, temporal Kohonen (TKM), 747

map, tonotopic, 114

map, topographic, 111, 146, 721

map, topological, 725

map, topology preserving, 111, 114,
121, 146, 715, 726

mapping function, 740

mapping, fuzzy, 624, 634

mapping, granular, 634

mapping, manifold, 732

mapping, relational, 629

mapping, retina-cortex, 715

mapping, Sammon, 119, 732, 750

market diversity, 567

market economy, 157

market efficiency, 568

market force, 544

market forecasting rule, 413, 415

market modeling, 411

market price, 544

market, financial, 577

Markov chain model

program execution, 985

Markov chain theory

evolutionary algorithms, 984

Markov model, 159–161

genetic programming, 984

Markov random field (MRF) model, 744

markup, 384

markup language, 381

markup language, extensible (XML),
384, 388

markup language, hypertext (HTML),
384

markup language, standard generalized
(SGML), 384

marriage problem, stable (SMP), 1106,
1107, 1113

Mason, 413, 416, 417, 421, 424–426,
428, 430, 431

massively parallel processor (MPP), 442

master-slave, 443

master-slave genetic programming, 978

matching, graph, 368

matching, pattern, 113

Index 1153

mathematical function approximation,
28

mathematical model, 443
mating, 32
mating pool, 537, 538
matrix, affinity, 1106, 1109
matrix, covariance, 734
matrix, mutual correlation, 1099
matrix, partition, 614
matrix, payoff, 162
matrix, resource, 471
maximum compatibility method, 652
maximum likelihood estimator, 315
maximum likelihood learning algorithm,

84
McCulloch & Pitts neuron model, 26,

778
mean field analysis, 166
mean squared error (MSE), 16, 701, 733
meaning, 382
meaning-based search, 381
means, k-harmonic, 146, 147
means-ends analysis (MEA), 1110, 1113
measure, bf-, 290
measure, performance, 173, 905, 912
measure, symmetric similarity, 730
mechanism design, 158
mechanism design, distributed

algorithmic, 158
mechanism, scheduling, 471
media content, 690
media content format, 699
media grid, 689–691, 695
media grid portal, 695
media resolution, 699
media server, 702
media streaming, 689, 690
media streaming, QoS-aware, 690
medical imaging, 966
medication, 1091, 1092
medicine, personalized, 1091, 1092
meet operator, 357, 361
melodic analysis, 308, 315
membership degree, fuzzy set, 617
membership estimation, fuzzy set, 620
membership estimation, user-based

fuzzy set , 620
membership function, 642, 643, 647,

648, 655, 668

membership function estimation,
data-driven fuzzy, 598

membership function estimation, fuzzy,
597

membership function estimation,
horizontal fuzzy, 605

membership function estimation,
pairwise fuzzy, 605, 607

membership function estimation,
priority fuzzy, 607

membership function estimation,
user-centric, 599

membership function estimation,
vertical fuzzy, 605, 606

membership function, asymmetric, 662
membership function, fuzzy, 47, 601,

608
membership function, Gaussian, 662
membership function, linear fuzzy, 613
membership function, trapezoidal, 662
membership function, unimodal fuzzy,

610
membership grade, 598, 605
membership, fuzzy set, 25
membrane-based computing (MBC), 40
memetic algorithm, 919
memetic EMO algorithm, 663
memetic evolutionary algorithm, 881
memetic Pareto artificial neural network

(MPANN), 870
memory, 518, 802
memory optimized accelerator for spik-

ing neural networks (MASPINN),
784

memory, associative (AM), 715, 724,
726, 782

memory, bidirectional associative
(BAM), 693

memory, collective, 1032
memory, computer, 1065, 1066
memory, correlation matrix (CMM),

782
memory, hierarchical temporal (HTM),

20
memory, immune, 1097
memory, immunologic, 1102
memory, long-term (LTM), 764, 777
memory, non-holographic, 782
memory, short-term (STM), 597, 764

1154 Index

memory, social collective, 1030
memory, sparse distributed (SDM), 782
merging crossover (MOX), 888, 890, 903
merging independent sets crossover

(MIS), 904, 912, 914
merging, ontology, 363
message passing, 440, 442
message passing interface (MPI), 442,

980
message passing/routing framework,

462
message routing, 440
message, cluster-information, 493
message, forward, 492
message, recruit, 491
meta-heuristics, 969
metacomputing, 442
metadata, 383, 388
metaheuristic algorithm, 881
metaphysics, 9
method, combination, 855, 863
method, data projection, 732
method, filter, 83
method, gradient, 733
method, kernel, 740
method, linear combination, 853, 855
method, Newton optimization, 733
method, non-linear combination, 853
method, nonparametric, 735
method, numerical, 734
method, population-based, 1105
method, subset, 853, 858
method, wrapper, 83
metric entropy, 495
metric, performance, 431, 692
metric, similarity, 747
mexican hat function, 724
MI-based feature selection method with

uniform modification (MIFS-U),
93

MI-raw based feature selection method
(MI-raw-FS), 98

Michigan approach, 667
micro-architecture, cortical, 766
micro-architecture, neural, 766, 767
micro-chip, 767
micro-macro relation, 572
microarray gene expression data set,

102

microkernel grid container, 463
microprocessor, 786
middleware, 444
middleware, grid, 689, 695
millions of instructions per second

(MIPS), 785
Mimic, 210
mimicking, biological, 1092
min-max learning rule, 47
min-max neural network, fuzzy, 47
mind, 14, 764
mindless intelligence, 49
minima, local, 732, 743, 854
minimization, 884
minimization function, 1054
minimum description length, 969
minimum energy broadcast problem,

487
minimum operator, 648
minimum, global, 19, 27
minimum, local, 19, 27
mining, data (DM), 1101
mining, document, 726
mining, text, 117, 726
minor components analysis, 128
MIPS per watt, 785
mission rehearsal exercise (MRE), 198
Mitra’s multi-scale method, 87
mix operation, 1070
mix, controlled, 268, 272, 275
mixture of experts, 121, 129, 131, 141,

146
Mixture-of-Experts, 44
ML-DOP, 315
mobile (cell) phone, 382, 397
mobile ad hoc network, 488
mobile agent, 389, 395, 397, 398, 401,

402
mobile information retrieval (IR), 398
mobile service, context-aware, 388
modal logic, 244
model car racing, 970
model of emotion, 197
model, adaptive, 570
model, agent-based (ABM), 411, 419,

428, 431, 517, 549, 550, 560, 561,
568–572, 574–579

model, beliefs-desires-intentions (BDI),
42

Index 1155

model, black-and-white, 1098
model, Black-Scholes, 548
model, channel noise, 728
model, cobweb, 544, 549, 552, 571
model, compartmental, 776
model, computational, 233
model, computational (emotion), 197
model, density matching, 738
model, digital spike communications,

782
model, domain ontology, 403
model, Domany-Kinzel (DK), 165
model, embedded, 91
model, EVALPSN stable, 265
model, fuzzy, 47
model, gray, 1098
model, Hodgkin-Huxley, 766, 776
model, immune system, 1096
model, Izhikevich, 775, 785
model, knowledge conjunction, 369
model, leaky integrate-and-fire (LIF),

772–775, 779, 785
model, linear regression, 570
model, Markov, 159–161
model, mathematical, 443
model, noise, 135
model, parametric, 570
model, perfect, 264
model, point-neuron, 773, 774, 776, 785
model, shape-space, 1097
model, skeptical, 1098
model, spike response, 774
model, spiking neuron, 782
model, stable, 255, 256
model, stupid, 426–429, 431
model, task/service (TS), 451, 457, 462
model, VALPSN stable, 258
modeling environment, agent-based

(ABM), 416, 431
modeling framework, agent-based

(ABM), 421, 423, 424, 431
modeling platform, agent-based (ABM),

419, 428, 429, 431
modeling system, agent-based (ABM),

409, 418, 420–422, 426
modeling, brain, 769
modeling, cognitive, 799
modeling, individual-based (IBM), 410,

411

modeling, macroeconomic, 562

modeling, market, 411

modeling, neural, 768, 774, 782, 786,
789

modeling, population-based, 410

modeling, time series, 28, 533

modeling, traffic, 411

modeling, wavelet, 692

modular artificial neural network
(ANN), 859

modular software development, 598

modularization, automatic, 859

module inter-connectivity, 832, 833

module, artificial neural network
(ANN), 797, 798, 804, 805,
807–809, 813, 826, 827, 830, 834,
837, 838

module, behavior control, 814

module, boredom meter, 824

module, decision, 814

module, impulse generator, 824

module, multigen, 823, 827

module, pattern detector, 830

module, pattern recognition, 814, 836

module, randomizer, 825

module, threshold detector, 825

molecular biology, 1065

molecular computing, 1065, 1066

molecular dynamics (MD), 410

molecule, DNA, 1065, 1069, 1070, 1080,
1082

momentum, 29, 868

momentum, swarm particle, 1031, 1032,
1036

money supply, 562

monitor processor, 786

Mono, 424

Monte Carlo simulation, 411, 423

moods, 190

Moore’s Law, 48, 767, 799, 800, 803,
835, 837

morphism, 357

most probable derivation, 329

Mousetrap, 417

moving-average model, 561

Mozart’s G minor symphony, 316

MTP algorithm, 916

multi-agent, 382

1156 Index

multi-agent algorithm, decentralized,
501

multi-agent coalition, 502

multi-agent data analysis system, 694,
696

multi-agent dynamics, 489, 503

multi-agent interaction, 486

multi-agent network, 487, 489

multi-agent network, self-organizing,
488

multi-agent organism, 156

multi-agent system (MAS), 23, 42, 386,
388, 485, 488

multi-agent system (MAS) ontology, 42

multi-cast routing, 786

multi-dimensional scaling, 118

multi-layer perceptron (MLP), 13, 27,
91, 520–524, 693, 697, 717, 719,
864

multi-level performance metric, 702

multi-modal distribution, 128

multi-module evolution, 834

multi-objective evolutionary algorithm
(EA), 870

multi-objective evolutionary
optimization, 5

multi-objective fitness, 942

genetic programming, 966

multi-objective genetic programming
(GP), 934, 968

multi-objective optimization, 866, 870

multi-point crossover, 885

multi-scale method, 84

multi-storey building, 1065, 1073

multi-test evolution, 828–830

multi-valued logic, 25

multidimensional scaling (MDS), 732,
737

multigen module, 823, 827

multimedia file exchange, 444

multimedia services, 689, 690

multimedia, real-time, 689

multiobjective fuzzy GBML algorithm,
667

multiobjective fuzzy genetics-based
machine learning (GBML), 644

multiobjective fuzzy rule selection, 663,
665

multiobjective optimization (MO), 643,
655, 658, 920

multiple optima, 1037
multiply constrained problem, 920
multiprocessor, 786

multivariate auto-regression (MAR),
fuzzy, 48

music
evolutionary, 970

music analysis, computational, 307

music derivation, 320
musical parsing, 327

mutation, 1101, 1104, 1105
genetic programming, point, 935
genetic programming, subtree, 935

mutation operator, 31, 32, 36, 47, 537,
539, 550, 556, 656, 657, 806, 808,
853, 871, 885, 887, 891, 906, 909,
912, 914, 928, 946

mutation probability, 657, 664, 668

mutation, biased, 664, 665
mutation, bit-flip, 657, 664
mutation, Cauchy, 863

mutation, Gaussian, 863
mutation, insertion, 890, 903, 918

mutation, Lévy, 863
mutation, non-biased, 664

mutation, non-Gaussian, 863
mutation, order based, 890, 903
mutation, position-based, 890

mutation, super-, 909
mutation, swap, 890

mutual copying, 156, 159, 163
mutual correlation matrix, 1099
mutual information (MI), 92, 93

mutual information-based feature
selection method (MIFS), 93, 98

mutual repair, 159, 160, 162, 1093
mutual voting, 1098
mutual, copying, 1093

näıve Bayesian, 44
nanotechnology, 1071
Nash equilibrium, 155–157, 173–175

natural language, 18, 571
natural language processing (NLP), 3,

307, 334, 402
natural selection, 31, 542, 544, 883

Index 1157

Nature, 6, 17, 20, 27, 32, 40, 49, 536,
716, 1029

Nature-inspired computing (NIC), 40
nearest neighbor, 84, 535
nearest neighbor (NN) model, 1082
nearest neighbour rule, 99
nearest trajectory algorithm, 532
negation, 236, 262
negation as failure, 264
negation, epistemic, 236, 244, 246, 262,

272–274, 289
negation, ontological, 233, 237
negation, strong, 233, 237, 264
negative correlation learning (NCL),

860, 866
negative emotions, 205
negotiation, agent, 159
neighbor agent, 156, 158, 164, 170, 173
neighbor unit, 1093
neighbourhood, 20, 724
neighbourhood function, 114, 725, 727,

728, 731, 737, 740, 742–744
neighbourhood, swarm particle, 1033,

1036, 1045
neo-classical economics, 576
neo-classical macroeconomics, 549, 572
neocortex, 49, 801
netlist, connectivity, 786
netlist, neural, 768
NetLogo, 413, 421, 425–428
network bandwidth, 397, 403, 691
network bandwidth prediction, 691
network capacity, 691
network cleaning, 1093
network convergence, 27, 29
network intrusion detection, 157
network latency, 387
network load, 387
network load balancing, 37
network over-training, 28
network performance, 692
network pruning, 29
network resources, 689
network services, intelligent, 381
network structure, 488
network throughput, 691
network topology, 488, 782
network traffic, 387, 397
network training time, 17, 28, 29

network weather service (NWS), 692
network, active sensor, 488
network, agent, 158, 426
network, artificial neural (ANN), 26, 45,

47, 733, 749, 883
network, Bayesian, 5, 10, 21, 23, 580,

1100
network, belief, 5, 10, 23
network, brewery pipeline, 267
network, computer, 442, 444
network, counterpropagation, 693
network, dynamic, 488, 1097
network, feedback, 693
network, feedforward, 693
network, feedforward associative, 734
network, gene, 1091
network, Hopfield, 27, 693, 719
network, immune, 1096
network, Jerne, 1105
network, local area (LAN), 164, 442,

447
network, mobile ad hoc, 488
network, multi-agent, 487, 489
network, pipeline, 270
network, principal component, 721
network, randomly connected, 491
network, recurrent, 26, 693, 719
network, scale-free, 158, 489–491, 494
network, self-organizing, 724
network, self-organizing multi-sensor,

488
network, self-repairing, 168, 169, 175,

1093
network, semantic, 9, 22, 352, 1071
network, sensor, 158, 487–489
network, social, 517, 578
network, subspace, 734
network, supervised, 26
network, unsupervised, 26
network, wide area (WAN), 442
network, wireless ad hoc, 157
network-on-chip (NoC)

communications, 785, 786
networked agent, 156
networked recognition, 1096, 1100, 1105
networked selfish agent, 158
networking, high-speed, 689
neural architecture, 719
neural code, 764, 769

1158 Index

neural computation, 769, 789

neural cortical column, 800

neural Darwinism, 802

neural dynamics, 771

neural gas, 731

neural micro-architecture, 766, 767

neural model, analogue, 782

neural modeling, 768, 774, 782, 786, 789

neural modeling system, 771

neural netlist, 768

neural network

evolution, 957, 965

neural network modeling, spiking, 785

neural network predictor, 692

neural network, artificial (ANN), 4, 5,
9, 17, 20, 23, 41, 120, 403, 425,
518, 519, 532, 536, 579, 641, 715,
733, 749, 772, 778, 781, 782, 798,
803, 831, 837, 851, 860, 872, 1071

neural network, auto-associative
(AANN), 525

neural network, biological, 769

neural network, feedforward, 526, 719

neural network, higher-order (HONN),
13

neural network, spiking (SPINN), 784,
801

neural processor, 782

neural system, 767, 778, 782

neural system adaptation, 769, 770

neural system, analogue, 768

neural system, biological, 769, 780, 784,
786

neural systems engineering, 768, 777,
783

neural winter, 27, 32

neuro-fuzzy system, 45

neurobiology, 763

neurocomputer for spiking neural
networks (NESPINN), 784

neurological model of emotion, 189

neuromorphic computing, 768, 782, 789

NEURON, 784

neuron, 763, 764, 767–770, 772–774,
777, 779

neuron activation, 775, 804

neuron dynamics, 775

neuron interconnections, 764

neuron model, McCulloch & Pitts, 26,
778

neuron model, spiking, 785
neuron, artificial, 801, 804, 811
neuron, biological, 26, 766, 767, 773,

775
neuron, fuzzy, 628
neuroplasticity, 766
neuroscience, 799–801, 836
neutralization, noise, 1102, 1104
neutralizing signal, 1105
Newton optimization method, 733
niching behavior, 1045
niching particle swarm optimization

(PSO), 1038
NLP benchmark, 314
node, abnormal, 1094, 1095
node, computing, 446, 447
node, normal, 1094
noise cancelation, 1102
noise filtering, 17, 21, 28
noise model, 135
noise neutralization, 1102, 1104
noise tolerance, 535, 715, 743
noise tolerant vector quantization (VQ),

731
noise, Gaussian, 135
noise, kurtotic, 135
noise, Laplacian, 135
noise, uniform, 135
noisy data, 81
non-algorithmic approach, 17
non-biased mutation, 664
non-deterministic search engine, 98
non-dominated sorting, 870
non-dominated sorting genetic

algorithm (NSGA), 5, 659
non-Gaussian mutation, 863
non-hierarchical clustering algorithm,

530
non-holographic memory, 782
non-linear combination method, 853
non-linear dynamics, 565
non-linear forecasting model, 524
non-monotonic formalism, 244
non-monotonic reasoning, 233, 242
non-monotonic system, 233
nonhead-word, 308
nonintentional emotions, 190

Index 1159

nonlinear data projection, 732
nonlinear principal component analysis

(NLPCA), 734
nonparametric method, 735

nonself, 159, 1092, 1093, 1097, 1102,
1105, 1113

normal agent, 164, 166, 168, 170, 172,
1098

normal node, 1094

normalization, 723
normalization, weight, 720

normative reasoning, 257
notation, fuzzy set, 599

notion, deontic, 247
noun phrase (NP), 309, 310, 316

NP-complete problem, 1065, 1071
NP-hard, 487, 881

NP-hard problem, 1065
nucleotide, 1080

numeric regression, 943
numerical control, 967

numerical method, 734
Nute’s defeasible deontic logic, 247, 256

object-based programming, 41
object-oriented programming (OOP),

22, 41
object-oriented programming (OOP)

language, 419

Objective C, 420, 421, 423
objective function, 32, 162, 527, 536,

614, 643, 731, 742, 884, 893, 904,
919, 1043

objective space, 658, 660

obligation, 244, 247, 262
offspring, 537, 550, 656, 668, 853, 871,

882, 892, 896, 903
offspring agent, 412

Oja learning algorithm, 721
Olga, 207

oligonucleotide, 1067, 1080–1082
one point crossover, 656, 885, 903

one-point crossover
theory, 984

one-point crossover, genetic
programming, 935

oneself, 1106
ontological negation, 233, 237

ontology, 9, 19, 23, 351, 354, 358, 359,
362, 365, 372, 374, 381, 383, 384,
395, 401

ontology interoperability, 372
ontology language, 374, 383
ontology merging, 363
ontology model, domain, 403
ontology tool, 373
ontology, building design, 368
ontology, cuisine, 393, 394
ontology, domain, 382
ontology, multi-agent system (MAS), 42
ontology, travel, 389, 390, 393, 399, 402
ontology, travel website, 382
ontology, unification, 365
ontology-based agent, 381
ontology-based tourist guidance system,

389
Open Directory, 390, 402
open environment, 439, 440, 444, 446,

485
open grid services architecture (OGSA),

444
open source, 411, 417, 420, 428
operation, amplify, 1071
operation, combination, 321
operation, detect, 1071
operation, mix, 1070
operation, separate, 1066, 1070
operation, substitution, 309, 317, 320,

321, 324–326
operator

architecture-altering, 928, 949
crossover, 928, 947
genetic, 928, 946
mutation, 928, 946
reproduction, 929, 946

operator, crossover, 31, 32, 36, 47, 537,
550, 556, 656, 668, 806, 853, 871,
885, 887, 891, 896, 902, 906, 919

operator, deontic, 256, 262
operator, election, 550, 556
operator, expectation, 553
operator, fuzzy set, 25
operator, genetic, 537, 550, 556, 570,

881, 891, 1102, 1105
operator, inversion, 885, 903, 912, 914
operator, join, 361, 366, 371
operator, meet, 361

1160 Index

operator, minimum, 648
operator, mutation, 31, 32, 36, 47, 537,

539, 550, 556, 656, 657, 806, 808,
853, 871, 885, 887, 891, 906, 909,
912, 914

operator, product, 648
operator, projection, 361, 362
operator, recombination, 537, 539, 853,

1102
operator, reproduction, 31, 32, 550
operator, selection, 556, 891
operator, unify, 361
opinion, expert, 598
optical character recognition (OCR),

966
optima, local, 1036, 1044, 1049
optima, multiple, 1037
optimal elevator scheduling, 1074
optimal scheduling, 1065
optimal search engine, 97
optimal vector quantization (VQ), 727
optimal, Pareto, 556, 572
optimization, 27, 32, 403, 558, 881, 883,

904
optimization algorithm, 1030, 1032,

1040, 1048, 1049
optimization method, Newton, 733
optimization problem, 601, 626, 634
optimization, ant colony (ACO), 39
optimization, combinatorial, 1071
optimization, dynamic, 1043
optimization, function, 549, 1044
optimization, gradient-based, 631
optimization, multi-objective, 866, 870,

920
optimization, multi-objective

evolutionary, 5
optimization, particle swarm (PSO), 5,

38, 47, 1029, 1041, 1046, 1051
optimizer, compiler, 420
optimum, global, 1029, 1036, 1044,

1049, 1052, 1054
optimum, local, 1029, 1044, 1057
order based framework, 919
order based genetic algorithm (GA),

898
order based genetic simulated annealing

(GSA), 913, 914, 917
order based mutation, 890, 903

order based representation, 887
order crossover (OX), 888, 889, 903
order, process, 284, 294, 295, 297
ordering, 354
ordering heuristic, 899
ordering, topographical, 715
organism multi-agent, 156
organism, digital, 410
organization, self-, 156, 163, 448, 453,

486, 719–721
organization, virtual, 443
Ortony Clore Collins (OCC) model, 197
Othello, 970
output de-fuzzification, 25
output layer, 29
output signal register (OSR), 810
over-fitting, 28, 91, 92, 641, 672, 969,

972, 973
over-training, network, 28
overlapping generations (OLG) model,

552, 554, 555, 557, 558, 560–562,
573

overlapping generations (OLG) model,
two-period, 552, 556

OWL DL, 386
OWL Full, 386
OWL Lite, 386

Pac-Man, 970
packet-switching communications

system, 786
pair, blocking, 1106, 1108
pairwise comparison, 598, 608, 634
pairwise fuzzy membership function

estimation, 605, 607
Palm Pilot, 402
paraconsistent annotated logic, 235, 300
paraconsistent annotated logic program,

238
paraconsistent annotated logic,

propositional , 235
paraconsistent before/after, 288
paraconsistent logic, 233
paraconsistent logic program, 235
paraconsistent vector annotation, 300
paradigm, agent-based, 419
paradigm, computing, 156
parallel algorithm discovery and

orchestration, 958

Index 1161

parallel computer, 440, 1065
parallel computing, 41, 442, 977
parallel distributed genetic

programming (GP), 957
parallel evolutionary algorithm (EA),

977
parallel genetic programming (GP),

977, 979
parallel processing, 980, 1065, 1070
parallel processing, super-, 1066
parallel virtual machine (PVM), 442,

980
parallel, super-, 1069
parallelism, 767
parameterized self-organizing map

(PSOM), 731
parameters, 598
parametric model, 570
parasitic computing, 155, 156, 174
parent, 537, 550, 656, 885, 896, 903
parent selection, 668
Pareto differential evolution, 871
Pareto front, 658
Pareto optimal, 556, 572
Pareto-inferior equilibrium, 554
Pareto-optimal fuzzy rule-based system,

643
Pareto-optimal rule set, 664
Pareto-optimal solution, 658
Pareto-superior equilibrium, 554, 555
Parisian genetic programming, 966
parse accuracy, 308
parse tree, 308, 314
parsed corpus, 308
parser, resource description framework

(RDF), 384
parseval metric, 330
parsing model, 307
parsing system, 336
parsing system, corpus-based, 336
parsing system, probabilistic, 336
parsing, corpus-based probabilistic, 307
parsing, data-oriented (DOP), 307
parsing, deterministic, 307
parsing, linguistic, 327
parsing, musical, 327
parsing, probabilistic, 307
parsing, rule-based deterministic, 307
parsing, supervised, 335

parsing, XML, 450, 463
part-of-speech string, 334
part-of-speech tagger, 334
partially matched crossover (PMX), 888
partialness, 365
particle swarm, 883
particle swarm optimization (PSO), 5,

38, 47, 969, 1029, 1041, 1046, 1051
particle swarm optimization (PSO)

algorithm, 1029, 1048, 1054, 1056,
1059

particle swarm optimization (PSO),
niching, 1038

particle, explorer, 1044
particle, quantum, 1046
particle, swarm, 1030, 1034, 1037
partition matrix, 614
Parzen window estimator, 93
Pascal language, 6
patentable invention, 963
pathogen, 1091, 1092
pattern, 81
pattern analysis, 708
pattern class, 20
pattern classification, 10, 16, 26, 28,

642, 644, 647, 648, 651, 662, 664
pattern classifier, 43
pattern detector module, 830
pattern distance-based criteria, 96
pattern matching, 113, 369
pattern recognition, 20, 28, 81, 199,

530, 545, 715, 716, 719, 734, 801,
830, 835

pattern recognition module, 814, 836
pattern space, 650, 653
pattern vector, 644
pattern, spatio-temporal, 771, 780
pattern, x-ray diffraction, 745
payoff, 160, 167, 169, 170, 172, 173, 175
payoff matrix, 162
PC cluster, 801, 802
PC, Pocket, 382, 398, 400, 402
PCR, denaturation temperature

gradient (DTG-PCR), 1068, 1080,
1081, 1083

PCR, production-detection, 1071
PCR, quantitative (Q-PCR), 1068
peer-to-peer (P2P) architecture, 440,

447, 462

1162 Index

peer-to-peer (P2P) computing, 440, 444
penalized Cox model, 102
penguin, genetically-altered, 250
Penn Treebank, 309, 312, 330
peptide, 1093, 1113
perception, 42
perception, fuzzy set, 599, 629, 634
perception, human visual, 716
perceptron, 11, 27, 28, 717
perceptron, multi-layer (MLP), 27, 520,

717, 719, 864
percolation theory, 159
perfect model, 264
performance density, 786
performance index, 612, 614, 619, 631,

633
performance measure, 173, 892, 905,

912
performance metric, 431, 692, 701
performance metric, multi-level, 702
performance, network, 692
performance, PSO algorithm, 1036
Perlin’s responsive face, 202
permanent income hypothesis, 573
permission, 244, 247, 265, 266, 272, 276,

280–284
permutation order based crossover

(POP), 903, 912, 914, 916, 918
persistence, state, 446
Persona, 207
personal digital assistant (PDA), 382,

397, 402
personal exploration, 1033
personality, computer, 208
personalized medicine, 1091, 1092
Petri Net, colored (CPN), 42, 447, 453,

455
phenotype, 1105
pheromone, 37
phone, cell, 382, 397
phone, mobile, 382, 397
phonetic typewriter, 117
phrase structure tree, 309, 314
phrase, idiomatic, 310
phrase, noun (NP), 309, 310, 316
phrase, prepositional (PP), 309
phrase, verb (VP), 309, 310, 316
physical entity, 267
physical state, 267

physics derivation, 320
piecewise fuzzy membership function,

623
piecewise linear transformation, 622
pipe, 267, 274
pipeline control safety verification,

EVALPSN pipeline control, 266
pipeline network, 270
pipeline network, brewery, 267
pipeline process, 270, 297, 299
pipeline process control, 234
pipeline process order control, 234
pipeline process, brewery, 284
pipeline safety property, 270
pipeline valve control, 234
pipeline valve control safety verification,

284, 299
pipeline valve safety, 270
pipeline, brewery, 265
Pittsburgh approach, 667
place, 455
planned economy, 157
platform, agent-based modeling (ABM),

410, 431
plausibility, biological, 1044
plurality voting, 44
Pocket PC, 382, 398, 400, 402
point mutation

genetic programming, 935
point, cut, 885, 903, 912
point, data, 131
point, latent, 121, 123, 125, 126, 129,

131, 133, 136, 139
point-neuron model, 773, 774, 776, 785
poker, 970
policy, chaining, 453
policy, scheduling, 456, 462
polychronization, 771
polychronizaton, 780
polymerase chain reaction (PCR), 1066,

1067, 1071, 1080
polymerase, DNA, 1066
population, 536, 538, 546, 555, 809
population code, 766
population diversity, 906
population dynamics, 1097
population learning, 519
population size

genetic programming, 942

Index 1163

population, agent, 156, 1101

population, generation, 32
population, genetic, 32

population, sub-, 978

population-based method, 1105

population-based modeling, 410
population-based search, 928

portable digital assistant (PDA), 382,
397, 402

portal, media grid, 695

portal, service, 463

portal, tourist information, 388

portal, travel, 390
portal, web, 696

Poser, 210

position update equation, 1034

position, swarm particle, 1030

position-based mutation, 890
post-genome era, 1091

power efficiency, 767, 768

power grid, electricity, 441

power grid, scale-free, 502
power load management, 501

pre-processing, data, 16, 19–21, 25, 26,
32, 33

precision test, 401

predicate calculus, 9

predicate logic, 1071

prediction, 852, 1099
prediction error, 701

prediction, bandwidth, 690, 691

prediction, network bandwidth, 691

prediction, time series, 532, 533

prediction, traffic, 690
prediction, video bandwidth, 691

predictor, convergence, 503

predictor, neural network, 692

preference list, 1109, 1110
prepositional phrase (PP), 309

preprocessing, data, 81, 82, 700, 919

price dynamics, 564

price euphoria, 551

price, commodity, 157
price-volume relation, 573

primer, 1068, 1080

primitive set, 930

principal component analysis (PCA),
16, 525, 527, 733

principal component analysis (PCA),
kernel, 734

principal component analysis, nonlinear
(NLPCA), 734

principal component network, 721
priority fuzzy membership function

estimation, 607
prisoner’s dilemma (PD), 159, 161, 542
prisoner’s dilemma, iterated (IPD), 160,

859
prisoner’s dilemma, spatial (SPD), 160,

167, 173
probabilistic cellular automata (PCA),

159, 164, 165, 168, 169
probabilistic context-free grammar

(PCFG), 308, 328, 329
probabilistic inference, 23
probabilistic parsing, 307
probabilistic parsing system, 336
probabilistic reasoning, 21
probability density, 84
probability density function (PDF), 84,

128, 130, 727
probability distribution, tree, 312
probability divergence-based criteria, 94
probability, crossover, 656
probability, fuzzy conditional, 651
probability, mutation, 657, 664, 668
probability, tree, 314
probe, 421, 425, 426
probe, agent, 426
problem bin packing (BPP), 882
problem constraint, 1035, 1049
problem solution, exemplary, 322
problem solver, immunity-based, 1106
problem solving, 327
problem solving, artificial, 1111
problem solving, biological, 1111
problem solving, derivational, 320
problem solving, immunity-based, 1111,

1113
problem space, 1030, 1034, 1035, 1049,

1050, 1056
problem space search, 1035
problem space, continuous, 1046
problem space, quantized, 1047, 1049
problem specification, 598
problem, bin packing (BPP), 887, 892,

894, 899, 905, 914, 917

1164 Index

problem, combinatorial, 1065, 1107,
1113

problem, credit assignment, 1097
problem, dynamic, 1040, 1046
problem, elevator dispatch, 1080, 1082
problem, equal piles, 895
problem, frequency assignment, 896,

899
problem, graph coloring (GCP), 882,

887, 892, 893, 897, 899, 905, 912,
917

problem, grouping, 892
problem, Hamiltonian path, 1066
problem, multiply constrained, 920
problem, NP-complete, 1065, 1071
problem, NP-hard, 1065
problem, optimization, 601, 626, 634
problem, set partitioning (SPP), 881,

887, 892, 896, 898, 904, 906, 910,
913, 919, 920

problem, stable marriage (SMP), 1106,
1107, 1113

problem, static, 1040, 1046
problem, timetabling, 882, 1049
problem, travelling salesman (TSP),

731, 881
problem-oriented formation, fuzzy set,

599
procedural programming, 6
process, 156, 267
process control, 234, 300, 967
process control, pipeline, 234
process locking, 280, 283
process order, 284, 294, 295, 297
process order control, 234, 300
process order control, pipeline, 234
process order safety, 295
process order safety verification, 298,

299
process order safety verification system,

291
process release, 282, 283
process release control, 277
process release safety control, 279
process safety, 269
process safety verification, 282–284
process schedule, 269, 280, 282–284,

292, 297, 298
process schedule chart, 269, 279

process time chart, 286–288, 292
process, affinity separation, 1068
process, biochemical, 1066
process, brewery pipeline, 284
process, DNA, 1065
process, pipeline, 270, 297, 299
process, safety verification, 298
process, sub-, 267
processing

image, 965, 966
signal, 965, 966

processing, parallel, 1065, 1070
processing, real-time, 299
processing, signal, 1100
processing, sub-symbolic, 48
processing, super-parallel, 1066
processing, symbolic, 48
processor, ARM, 786
processor, embedded, 786
processor, fascicle, 786
processor, general-purpose, 789
processor, micro-, 786
processor, monitor, 786
processor, multi-, 786
processor, neural, 782
product of experts, 126, 130, 131, 146
product of experts, topographic

(ToPoE), 121, 126, 140, 142, 143,
147

product operator, 648
production rule, if..then, 9
production system, 1071
production-detection PCR, 1071
productivity, linguistic, 310
profile of mood states (POMS), 200
profile-aware eager scheduling (PAES),

457
profiling agent, 450, 463, 471
program, generally Horn (GHP), 239
program, logic, 237, 238, 242
program, paraconsistent annotated

logic, 238
program, stratified, 264
programmable logic array (PLA), 34
programmable logic device (PLD), 34
programming language, conceptual

graph (CG), 364
programming language, object-oriented

(OOP), 419

Index 1165

programming, agent-oriented (AOP), 41
programming, annotated logic, 233
programming, evolutionary (EP), 32,

36, 853, 883
programming, genetic (GP), 32, 36,

547, 548, 883
programming, genetic network, 1072
programming, logic, 233–235, 264, 307,

364
programming, object-based, 41
programming, object-oriented (OOP),

22, 41
programming, procedural, 6
projection, 131, 357, 358, 360
projection function, 733
projection index, 734
projection operator, 361, 362
projection, data, 732, 749
projection, graph, 361
projection, linear, 733
proof layer, semantic web, 383
proof tree, 319
proof, DSD, 257
proof, SD, 257
property, pipeline safety, 270
property, safety, 274, 295, 297
proportional integrative and derivative

(PID), controller
evolution, 963

proportionate selection, 552
propositional logic, 9, 22
propositional paraconsistent annotated

logic, 235
propositional symbol, 238
Protégé, 392
protein, 1091, 1092
protein-based computing, 1105
proteome, 1091
protocol, 453
protocol, agent interaction, 453
protocol, communication, 440, 447
protocol, streaming, 689, 691
protocol, TCP/IP, 157
prototyping, 806, 807
provability relation, 249
proximity, 732, 749
proxy scheduler, 443
pruning, 91, 535
pruning, decision tree (DT), 17

pruning, network, 29
pseudo random number generator

(RNG), 422, 431
PSO algorithm performance, 1036
PSO, niching, 1038
psycholinguistics, 311
pulsed artificial neural network (ANN),

27
purification, affinity, 1081
Python language, 422, 424, 425

Q-α-FS, 96, 98
QoS-aware media grid, 690
QoS-aware media streaming, 690
quadratic MI-based feature selection

method (QMIFS), 98
Quality-of-Service (QoS), 441, 689, 696
quantitative finance, 518
quantitative PCR (Q-PCR), 1068
quantization, 112, 117, 132
quantization error, 737
quantization error, vector (VQE), 83
quantization, learning vector (LVQ),

726
quantization, vector (VQ), 715, 726,

732, 743
quantized problem space, 1047, 1049
quantum algorithm evolution, 963
quantum computer

genetic programming, 964
quantum computing (QC), 41
quantum Fourier transform evolution,

964
quantum particle, 1046
quantum Turing Machine (QTM), 1084
queue, wait, 1074

Rényi entropy, 495, 502
radial basis function (RBF), 29, 135,

524, 693, 742, 748
radial basis function (RBF) neural

network, 522, 528
radial basis neural network (RBN), 520,

522, 528
railway interlocking safety, 266
random attack, 491
random coil, 1080
random number generator (RNG), 424,

425, 427, 429

1166 Index

random number generator (RNG),
pseudo, 422, 431

random sampling, 88
random search, 1030
random search engine, 98
random walk, 565, 566
randomizer module, 825
randomly connected network, 491
rank-based linear combination method,

853, 855, 858
rank-based selection scheme, 853
rank-order code, 780, 782
Rastrigin function, 1048, 1052, 1054
rate code, 766
rate, crossover, 891
rate, damage, 168, 169, 173
rate, failure, 168–170, 173
rate, genetic operator, 942
rate, recognition success, 1094
rate, repair, 164, 168, 173, 174
rate, repair success, 168, 1093
rate, selfish repair, 169
rational expectations equilibrium

(REE), 544–546, 550, 551, 562,
565

rational expectations hypothesis (REH),
549, 565, 566, 573

reaction, antigen-antibody, 1096, 1106,
1107

reaction, DNA, 1065
reaction, enzyme, 1067
real estate agent (REA), 203, 207
real-time (RT), 387, 443, 767, 768, 785,

789, 811, 826, 835, 837, 838
real-time multimedia, 689
real-time processing, 299
reasoning, 23, 363, 365, 388
reasoning tool, knowledge conjunction,

367, 370
reasoning, approximate, 25
reasoning, automated, 319, 374
reasoning, case-based (CBR), 21
reasoning, constrained, 21
reasoning, default, 233
reasoning, defeasible, 233, 243, 244, 247,

254
reasoning, defeasible deontic, 275, 299
reasoning, EVALPSN defeasible deontic,

266, 274

reasoning, fuzzy, 370, 644, 647, 648
reasoning, knowledge-level, 369
reasoning, non-monotonic, 233, 242
reasoning, normative, 257
reasoning, probabilistic, 21
reasoning, temporal, 300
receiver, global positioning system

(GPS), 401
receptor, 159, 1101
reciprocal matrix, 607
recognition, 1101
recognition accuracy, 82, 199
recognition performance, 81
recognition success rate, 1094
recognition, adaptive, 1096, 1105
recognition, networked, 1096, 1100,

1105
recognition, pattern, 20, 28, 734
recombination, 1105
recombination operator, 537, 539, 853,

1102
reconciliation, 629, 634
reconfigurable silicon, 807
recruit message, 491
recurrent neural network, 26, 520, 523,

524, 693, 719, 851
recurrent self-organizing map (RSOM),

731, 747
recurrent transition network

evolution, 957
recursive agent simulation toolkit

(Repast), 569
recursive least-square (RLS) algorithm,

853
recursive self-organizing map, 731
reduced data set, 83
reduction, dimensionality, 28
redundancy, representational, 896, 905
redundant data, 81
references, 426
referent, restrict, 356
referential fuzzy set, 621
reflection, 421, 423
refractory period, 774, 775
regression

numeric, 943
symbolic, 943, 944, 959

regression, kernel, 735
regression, symbolic, 547

Index 1167

reinforcement learning, 571, 580, 720,
851

relation, 352–354, 359, 364
relation, (before-after) bf, 234, 284–288,

290, 293–295
relation, conformity, 354
relation, fuzzy, 629, 634
relation, provability, 249
relation, subsumption, 362
relation, subtype, 354
relation, subtype-supertype, 362
relation, superiority, 253, 254, 256, 262,

275
relational learning, 307
relational learning, statistical, 319
relational learning, stochastic, 324
relational mapping, 629
relationship, hierarchical, 382
release, process, 282, 283
reliability theory, 159, 160
reliability threshold, 1043
reliability, agent, 1098
reliability, fitness, 1041, 1042, 1056
remote procedure call (RPC), 395
repair by copying, 159, 163, 1095
repair rate, 164, 168, 173, 174
repair rate, selfish, 169
repair success rate, 168, 1093
repair unit, 1093
repair, mutual, 159, 160, 162, 1093
repair, self-, 49, 156, 174
repair, strategic, 171, 173
repair, uniform, 171, 174
repaired agent, 164, 168
Repast, 413, 416, 417, 420–422, 424–426,

428–431
replicator dynamics, 167
representation

genetic programming, 929
prefix notation, 931
syntax tree, 929
tree-based in genetic programming,

931
representation system, knowledge, 364
representation, knowledge, 9, 374
representational redundancy, 896, 905
representative entropy (RE), 85
representative entropy data reduction

(REDR), 85, 88

reproduction, 882, 884, 1101
reproduction mechanism, 884
reproduction operator, 31, 32, 550, 929,

946
request-related scheduling, 462
resource, 382
resource allocation, 157, 173, 440, 443
resource description framework (RDF),

373, 383, 384, 399
resource description framework (RDF)

graph, 399
resource description framework (RDF)

parser, 384
resource description framework (RDF)

triple, 383, 385
resource description framework schema

(RDFS), 383, 385, 399
resource management, 440, 443, 445,

446, 471
resource management framework, 462
resource matrix, 471, 472
resource sharing, 439, 442
resource utilization, 471
resource, computing, 441, 444
resource, web, 383
resource, web services (WSR), 452, 475
resource, world wide web (WWW), 384
resources, distributed, 691
resources, network, 689
responsibility, 117, 121, 122, 126, 128,

130, 131, 133, 146
restrict referent, 356
restrict type, 356
retina-cortex mapping, 715
retinotopic map, 114
retinotopic model, 716
retrieval system, location-aware tourist

information, 403
retrieval, knowledge, 373
ribonucleic acid (RNA), 1068
RLS algorithm, 856, 858
RoboCup, 963
robot, 802, 811, 812, 815, 823, 829

Elvis, 960
robot control, 117
robot control evolution, 963
robot, autonomous, 797, 836
robot, Darwin IV, 802
robot, humanoid, 3

1168 Index

robot-brain interface, 813
robotic football, 970
robustness, 1111
root, 1078
rough set, 21
roulette wheel selection, 557, 884
route planning, 403
routing, 830, 837
routing, multi-cast, 786
routing, selfish, 156, 157
rule, 359, 383
rule base, fuzzy, 47
rule evaluation, 383
rule length, 662
rule probability, 307
rule set, 663
rule weight, 647, 650
rule, agent forecasting, 415
rule, association, 22
rule, canonical formation, 351, 353, 356,

358, 361, 366, 374
rule, context-free, 307
rule, copy, 355
rule, decision, 541–543, 546
rule, defeasible, 248, 249, 254–256, 262
rule, fuzzy, 9, 22, 641–644, 646–655,

662–670, 672–674
rule, generalized delta learning, 27
rule, if...then production, 9, 22, 23
rule, inheritance, 372
rule, interval, 644, 649, 653–655
rule, join, 355
rule, learning, 851
rule, market forecasting, 415
rule, production, 22
rule, simplify, 355
rule, strict, 249, 275
rule, syntax, 373
rule, weight update, 29
rule-based classifier, fuzzy, 641, 644,

647, 648, 652, 653, 655, 661, 663,
672, 674

rule-based classifier, interval, 644, 653
rule-based system, 23, 543, 859
rule-based system, fuzzy, 627, 634, 641,

643, 648, 663, 673–675
rule-based, deterministic parsing, 307
rule-of-thumb, 1071
runtime environment, 450, 463

s-included before/after, 287
safety control, process release, 279
safety property, 274, 295, 297
safety property, pipeline, 270
safety verification, 234, 265
safety verification cycle, 296
safety verification framework,

EVALPSN, 284
safety verification process, 298
safety verification system, bf-EVALPSN

process order, 294, 295
safety verification system, EVALPSN,

266, 267
safety verification system, process order,

291
safety verification, bf-EVALPSN, 297
safety verification, EVALPSN, 266, 277,

279, 284
safety verification, formal, 234, 266,

299, 300
safety verification, pipeline valve

control, 284, 299
safety verification, process, 282–284
safety verification, process order, 298,

299
safety, pipeline valve, 270
safety, process, 269
safety, process order, 295
safety, railway interlocking, 266
Sammon mapping, 119, 732, 750
Sammon stress, 733
Santa Fe artificial stock market, 413
Santa Fe Institute (SFI) economics, 544
scalability, 82, 440, 448
scalability, grid, 446
scale-free graph, 490
scale-free network, 158, 489–491, 494
scale-free power grid, 502
scale-free sensor grid, 491
scale-free sensor network, 496, 502
scale-free topology, 490
scale-free tree graph, 489, 496, 498
scaling, 749
scaling, multidimensional (MDS), 118,

732
schedule, process, 269, 279, 280,

282–284, 292, 297, 298
scheduler, centralized, 440
scheduler, discrete event, 422, 424, 425

Index 1169

scheduler, local, 440, 446, 447
scheduler, proxy, 443
scheduler, super-local, 440
scheduler, task, 443
scheduling, 382, 386, 450, 453, 455, 459,

1071
scheduling agent, 450, 459
scheduling algorithm, 440
scheduling mechanism, 471
scheduling policy, 451, 456, 462
scheduling policy, tagged, 456
scheduling strategy, 445, 446
scheduling strategy, super-local, 446
scheduling, eager, 457
scheduling, elevator, 1065
scheduling, job, 440, 708
scheduling, optimal, 1065
scheduling, optimal elevator, 1074
scheduling, profile-aware eager (PAES),

457
scheduling, request-related, 462
scheduling, task, 445
scheduling, task-related, 455, 462
scheduling, two-commit, 440
scheduling, vehicle, 896
schema, 543
schema theory, 983
schema, resource description framework

(RDFS), 383, 385, 399
Scholl and Klein (SK) data set, 914,

916, 919
Schwefel function, 1049, 1054
science, computational, 442, 444
scientific computing, 420, 421, 444
scientific instrument, 443
scripting, 422, 426, 427
SD-proof, 257
search, 384, 1029, 1041, 1046

evolutionary
models, 983

population-based, 928
stochastic, 983

search agent, 381
search algorithm, tabu, 897
search engine, 97, 381, 1101
search engine, heuristic, 97
search engine, non-deterministic, 98
search engine, optimal, 97
search engine, random, 98

search engine, stochastic, 98

search engine, weighting-based, 98
search space, 32, 566, 983, 1045, 1110

genetic programming, 940

search spaces

theory
genetic programming, 984

search, associative, 782

search, breadth-first, 10, 16

search, compound, 98

search, depth-first, 10, 16
search, exhaustive, 10, 16, 881

search, floating, 98

search, frequency-based, 381

search, fuzzy, 403
search, heuristic, 10, 16

search, keyword, 381

search, local, 870, 1053, 1059

search, meaning-based, 381

search, problem space, 1035
search, random, 1030

search, semantic, 381

search, sequential backward, 98

search, sequential forward, 98
search, tabu, 881, 913

secondary emotions, 190

seignorage, 553, 562

selection

fitness-proportionate, 934
tournament, 934, 975

selection operator, 556, 891

selection probability, 884

selection scheme, rank-based, 853
selection theory, clonal, 1101

selection, classifier, 44

selection, proportionate, 552

selection, roulette wheel, 557

selection, tournament, 557
self, 1092, 1093, 1097, 1102, 1105, 1106

self maintenance, 156, 159

self organization, 693

self, non-, 159, 1092, 1093, 1097, 1102,
1105, 1113

self-nonself discrimination, 1102

self-organization, 156, 163, 448, 453,
486, 489, 719–721, 769

self-organizing feature map (SOFM),
725

1170 Index

self-organizing map (SOM), 84, 88, 111,
117, 131, 142, 146, 530, 532, 693,
715, 725

self-organizing map (SOM), kernel, 740
self-organizing map, adaptive subspace

(ASSOM), 731
self-organizing map, Bayesian, 740
self-organizing map, circular, 748
self-organizing map, parameterized

(PSOM), 731
self-organizing map, recurrent (RSOM),

731, 747
self-organizing map, recursive, 731
self-organizing map, stochastic (SSOM),

731
self-organizing map, visualization

induce (ViSOM), 731, 736, 749
self-organizing mixture network

(SOMN), 732, 738, 745
self-organizing multi-agent network, 488
self-organizing network, 724
self-reactive agent, 1102, 1104
self-repair, 49, 156, 174, 768
self-repair network, 1093
self-repairing network, 168, 169, 175
selfish agent, 155, 156, 162, 163, 167,

168, 173, 175
selfish agent, cooperative, 175
selfish agent, networked, 158
selfish repair rate, 169
selfish routing, 156, 157
selfish task allocation, 156
selfishware, 156, 158, 174, 175
semantic annotation, 311
semantic gap, 18
semantic network, 9, 22, 352, 1071
semantic relationship, 352
semantic search, 381
semantic web, 372, 381, 383, 388, 399
semantic web logic layer, 383
semantic web proof layer, 383
semantic web trust layer, 383
semantics, 9, 233, 352, 381, 385, 597
semantics, domain, 359
semantics, fixpoint, 240
semantics, fuzzy set, 598, 599, 621
semantics, knowledge, 359
semantics, language, 373
semantics, stable model, 235, 242, 264

semantics, weak, 373
semantics, XML, 384
semi-strict inference, 258
sensibility constraint, 353, 359
sensing, 81
sensor, 443, 811, 817

soft, 959
sensor array, 488
sensor diagnosis, automobile engine,

1099
sensor grid, 488, 489
sensor grid, scale-free, 491
sensor network, 158, 487–489
sensor network, active, 488
sensor network, scale-free, 496, 502
sensor, air-flow, 1099
sentence, 316
sentence structure, 307
sentence structure fragment, 307
sentence, annotated, 309
separate operation, 1066, 1070
separate, controlled, 268, 272, 275, 276
separation index, 617
separation, affinity, 1083
sequence data, DNA, 1091
sequence, DNA, 1066, 1068, 1069, 1078,

1080
sequence, DNA base, 1077
sequential backward search, 98
sequential forward search, 98
serial exploration, 1037, 1038
serum, blood, 1108
server, 440
server, Darwin streaming, 702
server, iJADE Freewalker, 399
server, media, 702
server, streaming, 694
server-based architecture, 447
server-based grid, 440
service container, 440
Service Oriented Architecture Protocol

(SOAP), 463
service portal, 463
service, grid, 695
service, job management, 440
service, web, 463
service-oriented architecture (SOA),

446, 451
service-oriented grid, 443

Index 1171

service-oriented grid computing, 440

services, web (WS), 439, 440, 446, 475

set membership, 896

set membership, fuzzy, 25

set operator, fuzzy, 25

set partitioning problem (SPP), 881,
887, 892, 896, 898, 904, 906, 910,
913, 919, 920

set, fuzzy, 25, 598, 599, 605, 606, 616,
624, 625, 630

set, rough, 21

SFI artificial stock market, 545, 563,
564, 575

shape-space model, 1097

shell, expert system (ES), 24

shoal of fish, 1029

short-range attraction, 1039

short-term memory (STM), 597, 764

shortest derivation, 323, 329

sigmoid, 778

sigmoid function, 521, 698, 723, 804

signal processing, 965, 966, 1100

signal register, input (ISR), 810

signal register, output (OSR), 810

signal strength detector (SSD), 817, 829

signal, neutralizing, 1105

signaling speed, 803

silicon, 768

silicon compiler, 805

silicon, reconfigurable, 807

silicon-based computer, 1065, 1071

similarity, 83, 92

similarity index, 96

similarity measure, symmetric, 730

similarity metric, 747

simple object access protocol (SOAP),
450

simple protocol and RDF query
language (SPARQL), 399

simplicity, 311

simplify rule, 355

simulated annealing (SA), 854, 871,
881, 909, 936, 969

simulated annealing, genetic (GSA),
906, 910, 916, 918, 919

simulated emotion, 207, 208

simulated synapse, 460, 462, 468

simulation, Monte Carlo, 411, 423

single nucleotide polymorphism (SNP),
1091

single-strand DNA (ssDNA), 1068,
1081, 1083

single-strand helix, DNA, 1066
size, dynamic swarm, 1041
size-fair crossover

theory, 984
size-fair crossover, genetic programming,

935
skeptical model, 1098
skyscraper, 1072
small world phenomenon, 491
Smalltalk language, 428
smartGRID, 447
smartGRID container, 450, 463
smartGRID2, 462
smartGRID2 container, 463
smoothing spline, 735
social actor, 212
social cognitive theory, 213
social collective memory, 1030
social exploitation, 1033
social interaction, 519
social learning, 519, 556, 563, 567
social network, 517, 578
social sciences, agent-based, 517
society, agent, 412
soft computing, 4, 17, 1071
soft sensor, 959
software agent, 41, 386, 398, 409, 411,

578
software bloat, 48
software development, modular, 598
software engineering (SE), 7, 18
solution infeasibility, 896
solution space, 27, 32
solution, candidate, 883
SOM Toolbox, 116, 121
soma, 770, 784
somatosensory map, 114
sonar classification, 100
sonar data set, 100
sorting, non-dominated, 870
soybean data set, 868
space library, 424, 426, 429
space, data, 121, 135
space, feature, 112, 740–742
space, input, 741, 742

1172 Index

space, latent, 121, 123, 125, 126, 133,
135

space, problem, 1030, 1034, 1035, 1049,
1050, 1056

space, search, 32, 1045, 1110
space, solution, 27, 32
space, state, 27
space, weight, 27
spam email, 158, 174
sparse distributed memories (SDM),

782
spatial prisoner’s dilemma (SPD), 160,

167, 173
spatial prisoner’s dilemma (SPD),

deterministic, 167
spatial prisoner’s dilemma (SPD),

stochastic, 167
spatial strategy, totalistic, 167
spatio-temporal, 1092
spatio-temporal pattern, 771, 780
specialization hierarchy, 358
specialization, common, 357
speciated evolutionary algorithm (EA),

859
speciation, 859
specification, concept, 382
specification, problem, 598
speculator, 568, 571
speech interface, 202
speech understanding, 308
speech, emotive, 202
speech, synthetic, 202
speedup factor, 797, 798, 806, 807, 809,

815, 834, 837
speedup factor, GPU, 981
spike event, 766, 771, 772, 774, 775,

777–779, 781, 786, 788
spike response model, 774
spike-time-dependent plasticity

(STDP), 777, 782
spiking neural network (SPINN), 784,

801
spiking neural network modeling, 785
spiking neuron model, 782, 785
spiking pattern, 777, 780
SPINN emulation engine (SEE), 784,

785
SpiNNaker, 785, 786, 788, 789
spline, smoothing, 735

spyware, 174
squared error, 492
squashing function, 804
stable marriage problem (SMP), 1106,

1107, 1113
stable model, 255, 256
stable model semantics, 235, 242, 264
stable model, EVALPSN, 265
stable model, VALPSN, 258
standard generalized markup language

(SGML), 384
standard, web services (WS), 445, 447,

450, 451, 462, 463, 475
StarLogo, 427
state persistence, 440, 445, 446, 451
state space, 27
state, agent, 158
state, logical, 267
state, physical, 267
state, valve control, 276
static problem, 1040, 1046
stationarity, 561, 563
statistical analysis, 1100
statistical learning theory, 528, 641
statistical relational learning, 319
statistics, 690
steady state genetic algorithm (GA),

891
Steve, 207
stigmergy, 37
stochastic approximation, 725
stochastic context-free grammar, 331
stochastic gradient descent, 728
stochastic lexicalized grammar, 332
stochastic logic program, 324
stochastic relational learning, 324
stochastic search, 983
stochastic search engine, 98
stochastic self-organizing map (SSOM),

731
stochastic spatial prisoner’s dilemma

(SPD), 167
stochastic tree substitution grammar

(STSG), 328
stock dividend, 413
stock market, 966
stock market, agent-based, 564
stock market, artificial, 413, 545, 562,

571

Index 1173

stopping condition, 892
storage-reduction algorithm, 535
strand, DNA, 1065, 1069, 1080,

1082–1084
strategic repair, 171, 173
strategy update cycle, 167
strategy, evolutionarily stable (ESS),

174
strategy, evolutionary, 1072
strategy, scheduling, 446
strategy, trading, 413
stratification, 265
stratified program, 264
streaming protocol, 689, 691
streaming server, 694
streaming, audio, 690
streaming, internet, 691
streaming, media, 689, 690
streaming, video, 690
stress, Sammon, 733
strict rule, 249, 275
strike aircraft, 370
string, character, 1066, 1070
string, genetic, 32
string, genetic algorithm (GA), 884
strong negation, 233, 237, 264
strongly-typed genetic programming

theory, 984
structural information, 382
structure simplicity, 311
structure, feature (FS), 366
structure, knowledge, 366
structure, network, 488
stupid model, 426–429, 431
sub-population, 978
sub-process, 267
sub-swarm, 1030, 1031, 1034, 1037,

1038, 1040, 1045, 1046
sub-symbolic processing, 48
subset method, 853, 858
subset, disjunctive, 354
subspace network, 734
substitution operation, 309, 317, 320,

321, 324–326
substitution, label, 309
subsumption, 356, 358, 359, 363, 365
subsumption architecture, 49
subsumption relation, 362
subsumption type hierarchy, 356

subsumption, join, 374
subsumption, type, 357, 361, 364, 369,

374
subtree, 307
subtree crossover, genetic programming,

934
subtree mutation, genetic programming,

935
subtree, depth-1, 307, 312
subtree, treebank, 314
subtype, 355, 360, 361
subtype link, 355
subtype relation, 354
subtype-supertype relation, 362
success rate, recognition, 1094
success rate, repair, 1093
sufficiency, genetic programming, 939
Sugarscape, 412
Sugeno model, 45
sum of experts, 130
sunspot effect, 573
sunspot equilibrium, 557
super-local grid architecture, 440, 444
super-local scheduler, 440
super-local scheduling strategy, 446
super-mutation, 909
super-parallel, 1069
super-parallel processing, 1066
supercomputer, 20, 439, 767, 768, 789,

800, 801, 979
genetic programming, 977

superiority relation, 253, 254, 256, 262,
275

supertype, 355, 359, 361
supervised DOP, 334
supervised learning, 112, 518, 692, 719,

740
supervised network, 26
supervised parsing, 335
support, 611
support vector machine (SVM), 5, 21,

30, 91, 99, 528, 740
support vector machine based recursive

feature elimination (SVM-RFE),
98

survival-of-the-fittest, 31, 36, 519, 552,
556, 572, 886

swap mutation, 890
Swarm, 410, 413, 416, 417, 420–426, 428

1174 Index

swarm, 36, 39, 883, 966
swarm food source, 1031
swarm intelligence (SI), 36
swarm particle, 1030, 1034, 1037
swarm particle acceleration, 1033
swarm particle communication, 1030
swarm particle momentum, 1031, 1032,

1036
swarm particle neighbourhood, 1033,

1036, 1045
swarm particle position, 1030
swarm particle velocity, 1031, 1033,

1034, 1038, 1039, 1044
swarm size, dynamic, 1041
swarm update equation, 1046
swarm, autonomous nanotechnology

(ANTS), 37
swarm, sub-, 1030, 1031, 1034, 1037,

1038, 1040, 1045, 1046
symbol manipulation, 7
symbol, propositional, 238
symbolic artificial intelligence (AI), 718
symbolic processing, 48
symbolic regression, 547, 943, 944, 959
symmetric similarity measure, 730
synapse, 113, 770, 777, 801
synapse, simulated, 460, 462, 468
synaptic plasticity in spiking neural

networks (SP2INN), 785
synaptic weight, 720, 772, 774, 777, 781,

782, 784
syntactic disambiguation, 311
syntax rule, 373
syntax tree, 929
synthetic approach, 1091
synthetic emotion, 207, 208
synthetic speech, 202
synthetic therapist, 213, 215
system identification, 943
system integration, 387
system, adaptive, 851, 1105
system, agent-based, 488
system, artificial, 18, 49, 767, 768, 1092,

1111
system, artificial immune (AIS), 40
system, artificial neural, 769, 781, 782
system, biological, 18, 157, 769, 781,

788, 1091, 1092, 1111
system, biological system, 767, 768, 779

system, chaotic, 1071
system, cognition, 716
system, complex, 17, 155, 157, 174, 175
system, complex adaptive, 485
system, complex dynamical, 769
system, content management, 751
system, context-aware, 388
system, context-aware tourist guidance,

388
system, corpus-based parsing, 336
system, database management (DBMS),

22
system, deduction, 360
system, distributed, 387
system, dynamical, 1097
system, ecological, 1097
system, economic, 157
system, expert (ES), 21
system, frame, 1071
system, fuzzy, 4, 1071
system, fuzzy inference (FIS), 25
system, fuzzy-neuro, 46
system, global positioning (GPS), 382,

388, 397, 401–403
system, hybrid, 19
system, iJADE tourist guidance, 401
system, immune, 1091–1093, 1106, 1110,

1113
system, immunity-based (IMBS), 159,

1091, 1092, 1095, 1102, 1113
system, information (IS), 163, 173, 1093
system, information processing, 715
system, intelligent, 4, 17, 155, 158, 351,

769
system, intelligent tourist guidance, 395
system, knowledge representation, 364
system, knowledge-based (KBS), 21
system, location-aware mobile tourist

guidance, 395
system, location-aware tourist

information retrieval, 403
system, multi-agent (MAS), 23, 42, 386,

388, 488
system, neural, 778, 782
system, neural modeling, 771
system, non-monotonic, 233
system, ontology-based tourist

guidance, 389
system, parsing, 336

Index 1175

system, probabilistic parsing, 336
system, production, 1071
system, rule-based, 23, 859
system, tourist guidance, 388, 397, 402
system, virtual exhibition (VES), 388
system, vision, 782
system-on-a-chip (SoC), 807
systems approach, constructive, 1091

t-test, 857, 858, 865
T7 programming language, 985
table, lookup (LUT), 35, 47
tabu list, 1040
tabu search, 881, 913
tabu search algorithm, 897
tag, 384
tagged scheduling policy, 456
Taguchi method, 47
targeted attack, 491
task decomposition, 440, 445–447, 451
task scheduler, 443
task scheduling, 445
task-related scheduling, 455, 462
task/service (TS) model, 451, 457, 462
task/service description (TSD), 451
Tauber-Wiener function, 521
taxonomic hierarchy, 362, 363
taxonomy, 359
Tchebyschev distance, 616
TCL, 422, 423, 427, 430
TCP/IP protocol, 157
TD-gammon, 49
teaching agent, 204
technology, grid, 689
temperature gradient gel electrophoresis

(TGGE), 1081
template, DNA, 1068
temporal gene expression clustering,

747
temporal Kohonen map (TKM), 731,

747
temporal reasoning, 300
term, 382
term, linguistic, 598
termination condition, 657
termination criteria, 536, 537
termination criterion, 943, 944
tertiary emotions, 190
test chromosome, 808

test tube, 1066, 1067, 1070
test, China, 813
test, precision, 401
test, Turing, 8
test, usability, 401
testing data set, 857, 865
text mining, 117, 726
text, emotive, 200
text-based agent, 210
TGGE, 1084
theme, 359, 364
theorem proving, 319, 364
theorem proving, automated, 3, 8
theorem, central limit, 727
theory

bloat
genetic programming, 982, 986

schema, 983
search spaces

genetic programming, 984
Turing complete programs, 984

theory of reasoned action/planned
behavior, 213

theory, clonal selection, 1101
theory, conceptual graph (CGT), 360
theory, defeasible, 248, 254–257, 262
theory, defeasible deontic, 258, 262
theory, features structure (FS), 365
theory, game, 155–157, 159, 161, 174,

175
theory, learning, 21
theory, percolation, 159
theory, reliability, 159, 160
therapist, 212
therapist, human, 213
therapist, synthetic, 213, 215
therapist-client relationship, 212, 215
therapy, computer-mediated, 212
threat aircraft, 371
threat level, 370
threshold, 773–775, 778, 784, 1050, 1053
threshold detector module, 825
threshold, reliability, 1043
throughput, network, 691
thymine, 1066
tick, clock, 805, 808, 824, 827–829, 831
Tierra, 410
time chart, process, 292
time series, 490

1176 Index

time series analysis, 1099
time series forecasting, 28, 535
time series modeling, 28, 533
time series prediction, 532, 533
time series, chaotic, 532
time series, financial, 519, 531, 532, 548,

552, 563
time, wait, 1074
time-to-live (TTL), 453, 459, 469
timetabling problem, 882, 897, 899, 902,

917, 1049
timetabling, examination, 894, 917
TK Solver, 329
token, 453
tolerance, 1097
tolerance, fault, 715
tolerance, noise, 715
tonotopic map, 114
tool, knowledge representation, 353
tool, ontology, 373
top-down approach, 833
ToPoE learning rule, 128
ToPoE, twinned, 135
topographic map, 111, 146
topographic map, generative (GTM),

111, 121, 129, 143, 147
topographic map, harmonic (HaToM),

121, 140, 142
topographic product of experts

(ToPoE), 121, 126, 140, 142, 143,
147

topographic projection, 131
topographical ordering, 715
topograpic, map, 721
topological map, 725
topology, 488, 1093
topology preservation, 749
topology preserving map, 111, 114, 121,

146, 715, 726
topology product, 729
topology, network, 488, 782
topology, scale-free, 490
totalistic spatial strategy, 167
tourist domain, 397
tourist guidance system, 388, 397, 402
tourist guidance system, agent-based,

382
tourist guidance system, context-aware,

382, 388

tourist guidance system, iJADE, 401
tourist guidance system, location-aware

mobile, 395
tourist guidance system, ontology-based,

389
tourist guide, human, 402
tourist information, 382, 402, 403
tourist information center, 398
tourist information center, iJADE, 399
tourist information portal, 388
tourist information retrieval system,

location-aware, 403
tourist information, customized, 403
tourist information, location-aware, 402
tournament selection, 557, 656, 661,

934, 975
tracker, 447, 455, 459
tradeoff, accuracy-complexity, 641, 643,

670, 672–674
tradeoff, interpretability-accuracy, 674,

675
tradeoff, interpretability-complexity,

643
trading strategy, 413
traffic modeling, 411
traffic prediction, 690
traffic volume, 490
training data set, 534, 834, 855, 857,

864
training data, input/output, 17, 26
training exemplar, 26, 27, 29
training time, network, 17, 28, 29
transfer function input/output, 17, 521,

526, 770, 778
transform, Fourier, 745
transform, wavelet, 692
transformation, Gelfond-Lifschitz, 242
transfusion, blood, 1108
transistor, 767, 833
transition, 453, 457
transitivity, 608, 609
Transputer, 979
transtheoretical model (TTM), 213–215
trapezoidal membership function, 662
travel guide website, 390
travel ontology, 389, 390, 393, 399, 402
travel portal, 390
travel website, 382, 402
travel website ontology, 382

Index 1177

travel, Hong Kong, 390, 402
travelling salesman problem (TSP), 37,

487, 731, 881, 969
tree graph, scale-free, 489, 496, 498
tree probability, 314
tree probability distribution, 312
tree structure, 307
tree substitution grammar (TSG), 327
tree substitution grammar, stochastic

(STSG), 328
tree, analysis, 314
tree, dendritic, 776
tree, derivation, 319, 323
tree, knowledge discovery (KD), 102
tree, labeled, 319
tree, parse, 308, 314
tree, phrase structure, 309, 314
tree, proof, 319
tree-based DOP model, 314
treebank subtree, 314
triangular fuzzy set, 612, 621, 623
triple, resource description framework

(RDF), 383, 385
triplet, 916
Tron, 970
trust layer, semantic web, 383
Turing complete genetic programming,

956
Turing complete program

theory, 984
Turing Machine (TM), 1066
Turing Machine, deterministic (DTM),

1084
Turing Machine, quantum (QTM), 1084
Turing test, 8, 962, 988
twinned ToPoE, 135
two point crossover, 885
two-commit scheduling, 440
two-period overlapping generations

(OLG) model, 552, 556
two-valued logic, 25
type, 352, 359, 364
type hierarchy, 353, 355, 359, 361, 363,

371, 374
type hierarchy, subsumption, 356
type subsumption, 357, 361, 364, 369,

374
type, absurd, 359
type, concept, 364

type, feature structure (FS) , 355
type, restrict, 356
type, sub-, 355, 360, 361
type, super-, 355, 359, 361
type, universal, 359
type-2 fuzzy set, 620
typewriter, phonetic, 117
typicality, 601

U-matrix, 731, 736, 749
ubiquitous computing, 1105
UCI knowledge discovery in databases

repository (UCI-KDD), 87, 99
UCI machine learning (UCI-ML)

repository, 136, 644, 669, 856, 868
UML-DOP, 335
unexploded ordnance (UXO), 812, 813,

835, 968
unification, 356, 357, 362–366, 369, 374
unification, conceptual graph (CG),

362, 364
unification, graph, 367
unification, ontology, 365
uniform crossover, 656, 664

genetic programming, 935
uniform noise, 135
uniform repair, 171, 174
uniform, order based crossover (UOBX),

903
unify operator, 361
unimodal fuzzy membership function,

610
unit, connected, 1093
unit, neighbor, 1093
unit, repair, 1093
universal approximator, 31, 521, 641
universal logic gate, 764
universal markup language (UML), 373
universal resource locator (URL), 385
universal type, 359
universality, 766
universe of discourse, 598, 603, 605, 610,

625
universe, Herbrand, 239
unrestricted DOP (U-DOP), 308,

333–336
unsupervised learning, 112, 334, 518,

693, 715, 719, 731
unsupervised network, 26

1178 Index

unsupervised neural network, 530
UNURAN, 427
update cycle, strategy, 167
upper bound, least (LUB), 358, 367
usability test, 401
user identification, 1105
user preferences, 388, 403
user profile, 388
user-based fuzzy set membership

estimation, 620
user-centric membership function

estimation, 599

validation data set, 855, 857
validity, conceptual graph (CG), 361
VALPSN stable model, 258
valve, 267, 271, 274, 280
valve control state, 276
valve, brewery pipeline, 265
variable bit rate video (VBR), 691
variable similarity-based criteria, 92
variable, linguistic, 24
vector annotated literal, 243, 244
vector annotated literal, well (WVA),

244
vector annotated literal, well extended

(WEVA), 246
vector annotated logic program with

strong negation (VALPSN), 234,
243, 247, 255, 264

vector annotation, 243, 271–274, 284,
293–295, 299

vector annotation, paraconsistent, 300
vector quantization (VQ), 715, 726, 732,

743
vector quantization (VQ), Bayesian, 726
vector quantization (VQ), error

tolerant, 726
vector quantization (VQ), noise

tolerant, 731
vector quantization (VQ), optimal, 727
vector quantization error (VQE), 83
vector, weight, 725
vector-based individual-based modeling

(IBM), 410
vehicle scheduling, 896
velocity, swarm particle, 1031, 1033,

1034, 1038, 1039, 1044
verb phrase (VP), 309, 310, 316

verification, 807
verification, formal safety, 266
verification, safety, 234, 265
vertex degree distribution, 490
vertical fuzzy membership function

estimation, 605, 606
very large-scale integrated circuit

(VLSI), 803
video bandwidth prediction, 691
video compression, 744
video streaming, 690
video, variable bit rate (VBR), 691
Virtex, 797, 805–807, 837
virtual exhibition system (VES), 388
virtual machine (VM), 420, 424
Virtual Machine, Java (JVM), 424, 428,

431
virtual organization (VO), 443
virus, 1113
virus, computer, 158, 174
vision system, 782
visualization, 112, 117, 131, 146
visualization induce self-organizing map

(ViSOM), 731, 736, 749
visualization, data, 443, 715, 732, 736,

737, 749
Viterbi optimization, 328
vocabulary, 383, 384
voice interface, 402
voice recognition, emotional, 197
von Neumann computer, 1071, 1084
Voronoi cell, 727
voting, majority, 44
voting, mutual, 1098
voting, plurality, 44
voting-based scheme, 649

wait queue, 1074
wait time, 1074
Wall Street Journal (WSJ) corpus, 328,

330–332, 334, 335
watermark, image, 966
Watson-Crick complement, 1069
Watson-Crick complementarity, 1066,

1071
wavelet, 532, 1105
wavelet modeling, 692
wavelet transform, 692
waves, 1040, 1057, 1058

Index 1179

waves of warm particles (WoSP), 1038,
1040, 1046, 1048, 1049, 1054,
1056, 1057

weak semantics, 373
web authoring, 373
web ontology language (OWL), 373,

385, 388, 392, 399, 400
web page, 381, 384
web portal, 696
web resource, 383
web service, 463
web service description language

(WSDL), 452, 463, 465
web services, 424
web services (WS), 439, 440, 446
web services (WS) resource, 475
web services (WS) standards, 445, 447,

450, 451, 462, 463, 475
web services resource (WSR), 452
web services resource framework

(WSRF), 446
web services standard, 463
web, semantic, 372, 381, 383, 388, 399
website, 382
website, travel, 382, 402
website, travel guide related, 390
weight normalization, 720
weight space, 27
weight update rule, 29
weight vector, 725
weight, artificial neural network (ANN),

23, 27, 28, 521, 851, 853
weight, synaptic, 772, 774, 777, 781,

782, 784

weighted average cluster diameter, 493
weighting-based search engine, 98
well extended vector annotated

(WEVA) literal, 246
well vector annotated (WVA) literal,

244
well-formed graph, 354
wet computing, 1065
white box model, 641
wide area network (LAN), 442
wine data set, 136
winner-take-all, 648
winner-take-all scheme, 649
winner-takes-all (WTA), 857, 863, 865,

871
winner-takes-all (WTA) circuit, 820,

822, 823
winter, evolutionary computation, 32
winter, neural, 27, 32
wireless ad hoc network, 157
workstation, 440
world wide web (WWW), 373, 381, 384
world wide web (WWW) resource, 384
world wide web consortium (W3C), 383
worm, 158, 174
wrapper method, 83

x-ray diffraction pattern, 745
Xilinx, 797
XML parsing library, 450, 463
XML semantics, 384

zero intelligent (ZI) agent, 568
ZI Plus (ZIP) agent, 568

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

