
6

Cellular Automata –
A Computational Point of View

Martin Kutrib

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Summary. The advantages of homogeneous arrays of interacting processing ele-
ments are simplicity and uniformity. It turned out that a large array of not very
powerful elements operating in parallel can be programmed to be very powerful.
One type of system is of particular interest: cellular automata whose homogeneously
interconnected deterministic finite automata (the cells) work synchronously at dis-
crete time steps obeying one common transition function. Cellular automata have
extensively been investigated from different points of view. Here we discuss some of
the main aspects from a computational point of view. The focus is on very simple
types, that is, on one-dimensional cellular automata with nearest neighbor intercon-
nections. In particular, we consider universality issues, the problem how to simulate
data structures as stacks, queues, and rings without any loss of time, the famous
Firing Squad Synchronization Problem, signals, and time constructible functions
as well as several aspects of cellular automata as language acceptors. Some open
problems are addressed.

6.1 Introduction

Cellular automata are an old branch of computer science. In the late forties
of the last century they were proposed by John von Neumann in order to
solve the logical problem of nontrivial self-reproduction. From this biological
point of view he employed a mathematical device which is a multitude of
interconnected automata operating in parallel to form a larger automaton, a
macroautomaton built by microautomata. His famous early result reveals that
it is logically possible for such a nontrivial computing device to replicate itself
ad infinitum [72]. The name of these automata originates from the context in
which they were developed. Due to their intuitive and colorful concepts, cellu-
lar automata have soon been considered from a computational point of view.
So, from the very beginning, they were both, an interesting and challenging
model for theoretical computer science and an interesting model for practical
applications. Their inherent massive parallelism renders obvious applications
as model for systems that are beyond direct measurements.
M. Kutrib: Cellular Automata – A Computational Point of View, Studies in Computational
Intelligence (SCI) 113, 183–227 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



184 Martin Kutrib

Cellular automata are a young branch of computer science. Besides ap-
plications in industry, nowadays they open up new fields of application and
modeling of natural phenomena in physics, biology, chemistry as well as in
sociology, economics, and other human sciences. The development of practi-
cal and theoretical issues of cellular automata is impressive. In particular, it
seems that currently the studies from a theoretical point of view follow two
main branches. One focuses on the global behavior of cellular automata. Based
on some topology the space of configurations is investigated. An important
challenge with practical aspects is the characterization of cellular automata
on the basis of their global transition function.

The other branch may be seen to deal with information. The flexibility of
cellular automata to serve as programming tools can be utilized to develop
tricky algorithms in order to solve classical problems as well as problems con-
cerning the very nature of the system itself. An example for the latter case is
the problem of synchronization, which gave rise to intensive research. In this
connection, sources of questions are complexity issues as well as classifications
in terms of formal language recognition. These questions are objects of the
present article. More precisely, cellular automata are seen from a computa-
tional point of view. The main focus is on one-dimensional cellular automata
which are linear arrays of cells that are connected to their nearest neighbors.
The cells are exactly in one of a finite number of states, which is changed
according to local rules depending on the current state of a cell itself and the
current states of its neighbors. The state changes take place simultaneously
at discrete time steps.

The presented topics are far from being complete. From the many interest-
ing ones only a few could be chosen. In the following Section 6.2 basic defini-
tions and preliminaries are given. Higher-dimensional systems with arbitrary
cell interconnections are introduced as generalizations of one-dimensional sys-
tems with the mentioned nearest neighbor connections. For unbounded cellu-
lar spaces universality is obtained. After presenting an approach to evidence
based on the possibility to model logical gates and information transition in
two-dimensional cellular spaces with the simple rules of the Game of Life, it is
shown how cellular spaces can simulate Turing machines. Besides, investiga-
tions concerning universality (often combined with other properties) are done,
for example, in [1, 10, 33, 45, 46, 52, 53, 54, 30]. A survey of universality and
decidability versus undecidability in cellular automata and several other mod-
els of discrete computations can be found in [44]. Next we turn to show how
to simulate stacks, queues, and rings by one-dimensional cellular automata
without any loss of time. The simulations may serve as tools for designing
algorithms or as subroutines for programming cellular automata [6, 29].

The famous Firing Squad Synchronization Problem is dealt with in Sec-
tion 6.3. It was raised by Myhill in 1957 and emerged in connection with the
problem to start several parts of a parallel machine at the same time. The first
published reference appeared with a solution found by McCarthy and Minsky
in [50]. Roughly speaking, the problem is to set up a cellular space such that



6 Cellular Automata – A Computational Point of View 185

all cells in a region change to a special state for the first time after the same
number of steps.

Section 6.4 is devoted to the study of signals and constructibility of func-
tions. Signals are used to solve problems. Examples are the basic signals that
appear in solutions of the Firing Squad Synchronization Problem, or com-
plex signals that allow to generate prime numbers. So, they can be seen as
tools for algorithm design. In general, signals are able to transmit or encode
information in cellular spaces. They have been used for a long time, but the
systematic study originated from [49]. Basic questions are what kind of signals
can be sent, or which speed is possible.

One of the main branches in the theory of cellular automata is considered
in Section 6.5. Clearly, the data supplied to some device can be arranged as
strings of symbols. Instances of problems to solve can be encoded as strings
with a finite number of different symbols. Furthermore, complex answers to
problems can be encoded as binary sequences such that the answer is com-
puted bit by bit. In order to compute one piece of the answer, the set of pos-
sible inputs is split into two sets associated with the binary outcome. From
this point of view, the computational capabilities of the devices are studied in
terms of string acceptance, that is, the determination to which of the two sets
a given string belongs. These investigations are done with respect to and with
the methods of language theory. For cellular spaces and automata they origi-
nated from [11, 12] and [61, 31]. Over the years substantial progress has been
achieved, but there are still some basic open problems with deep relations to
other fields. A basic hierarchy of cellular language families is established, and
the levels are compared with well-known families of the Chomsky hierarchy.
The results are depicted in Figure 6.31. Closure properties are summarized in
Table 6.1, and decidability problems are briefly discussed.

6.2 Basics and Preliminaries

We denote the set of integers by Z and the set of nonnegative integers by N.
The data supplied to the devices in question can be arranged as strings of
symbols. In connection with formal languages, strings are called words. Let A∗

denote the set of all words over a finite alphabet A. The empty word is denoted
by λ, and we set A+ = A∗−{λ}. For the reversal of a word w we write wR, and
for its length we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

6.2.1 Cellular Spaces

Basically, the idea of cellular automata is to form a massively parallel device
as a multitude of interacting simple processing elements. In order to keep the
systems tractable, a high degree of homogeneity is preferable. Moreover, the
processing elements have to be chosen as simple as possible. So, the elements –
which sometimes are called cells – are represented by finite Moore automata.



186 Martin Kutrib

Due to the need for homogeneity all cells are identical. In addition, they are
arranged as grid where one dimension, that is, a linear array whose cells are
identified by integers, is of particular interest in the sequel. Homogeneous local
communication structures are achieved by a unique interconnection scheme
that defines the cells which are interconnected to a given cell. Eventually, the
cells operate synchronously at discrete time steps obeying a local transition
function, which maps the current state of the cell itself and the current states
of its connected cells (neighbors) to the next state.

So, a multitude of finite automata operating in parallel form a larger au-
tomaton such that global results are achieved by local interactions only.

To be more precise, we define a cellular space formally. The notion space
is due to the fact that, potentially, we have an infinite number of cells, that
is, we deal with the entire Euclidean space Z. In order to obtain two-way
information flow we assume that each cell is connected to its both nearest
neighbors.

Definition 1. A (one-dimensional) two-way cellular space (CS) is a system
〈S, δ, q0, A, F 〉, where

1. S is the finite, nonempty set of cell states,
2. δ : S3 → S is the local transition function,
3. q0 ∈ S is the quiescent state such that δ(q0, q0, q0) = q0,
4. A ⊆ S is the set of input symbols, and
5. F ⊆ S is the set of final states.

Basically, we have an infinite space but are interested in finite supports
only. That is, beginning a computation with a finite number of non-quiescent
cells, by definition we obtain only finitely many non-quiescent cells at every
time step. This determines the role played by the quiescent state. The set of
final states has been included with an eye towards applications.

· · ·· · · q0 q0 a1 a2 a3 an q0 q0 · · ·

Fig. 6.1. A (one-dimensional) two-way cellular space.

In general, the global behavior of a cellular space is of interest. It is in-
duced by the local behavior of all cells, that is, by the local transition function.
More precisely, a configuration of a cellular space 〈S, δ, q0, A, F 〉 at time t ≥ 0
is a description of its global state, which is formally a mapping ct : Z → S.
The configuration at time 0 is defined by the given input w = a1 · · · an ∈ A+,
n ≥ 1. We set c0(i) = ai, for 1 ≤ i ≤ n, and c0(i) = q0 otherwise. Configura-
tions may be represented as words over the set of cell states in their natural
ordering, where the quiescent state is represented by the empty word. For ex-
ample, the initial configuration for w is represented by a1a2 · · · an. Successor
configurations are computed according to the global transition function ∆.



6 Cellular Automata – A Computational Point of View 187

Let ct, t ≥ 0, be a configuration. Then its successor ct+1 = ∆(ct) is defined
by ct+1(i) = δ(ct(i − 1), ct(i), ct(i + 1)), for all i ∈ Z. A computation can be
represented as space-time diagram, where each row is a configuration and the
rows appear in chronological ordering.

An elementary technique in automata theory is the usage of multiple
tracks. Basically, this means to consider the state set as Cartesian product
of some smaller sets. Each component of a state is called register, and the
same register of all cells together form a track.

In the sequel, for convenience and readability we may omit the defini-
tion of local transition functions for situations that do not change the state.
Especially, we omit δ(q0, q0, q0) = q0.

Example 1. The following cellular spaceM = 〈S, δ, q0, A, F 〉 reverses its input
w ∈ A+ in |w| time steps (cf. Figure 6.2). It uses two tracks that are imple-
mented by the state set S = (A∪{␣})2∪{q0}. Let (s1, s2), (s3, s4) and (s5, s6)
be arbitrary states from S \ {q0}.

δ(q0, (s3, s4), q0) = (s4, s3)
δ(q0, (s3, s4), (s5, s6)) = (s5, s3)
δ((s1, s2), (s3, s4), q0) = (s4, s2)

δ((s1, s2), (s3, s4), (s5, s6)) = (s5, s2)

&'

t

n

q0
0 1 0 0 1
� � � � �

q0

q0
1 0 0 1 �

0 � � � �
q0

q0
0 0 1 � �

1 0 � � �
q0

q0
0 1 � � �

0 1 0 � �
q0

q0
1 � � � �

0 0 1 0 �
q0

q0
� � � � �

1 0 0 1 0
q0

Fig. 6.2. Space-time diagram of a two-way cellular space reversing its input.

6.2.2 Important Generalizations

So far, cellular spaces have been introduced as one-dimensional arrays whose
cells are connected to their immediate neighbors. Certainly, these types belong



188 Martin Kutrib

to the most important and natural ones. In particular, from a computational
perspective they are best investigated. However, there are many generaliza-
tions which are just as interesting and natural. More generally speaking, the
specification of a cellular space includes the type and specification of the cells,
their interconnection scheme (which can imply a dimension of the system),
the local rules which are formalized as local transition function, and the in-
put and output modes. In the present subsection we briefly deal with two
generalizations. First, we consider arbitrary unique interconnection schemes
which are called neighborhood-indices and, secondly, devices whose cells are
arranged as d-dimensional grids.

So, assume that the cells of a cellular space are arranged as d-dimensional
grid such that we deal with the Euclidean space Z

d.

Definition 2. 1. Let d, k ≥ 1 be positive integers. A d-dimensional neighbor-
hood-index of degree k is a k-tuple N = (n1, n2, . . . , nk) of different ele-
ments from Z

d.
2. Some cell j ∈ Z

d is called a neighbor of cell i ∈ Z
d, if there is a k′ ∈ N

such that j = i + k′. The cells i and j are called neighbors, if either i is
neighbor of j, or vice versa.

In order to identify the neighbors of a cell i one has to add the elements
of N to i. In particular, if 0 belongs to N , then cell i is its own neighbor. Only
in this case the next state of a cell depends on its current state. Configurations
are now mappings ct : Z

d → S, and the global transition function ∆ is induced
by the local transition function δ : Sk → S as follows:

ct+1 = ∆(ct) ⇐⇒ ct+1(i) = δ(ct(i + n1), . . . , ct(i + nk)), for all i ∈ Z
d.

There are general methods that allow to simulate a cellular space by another
one having a (reduced) standard neighborhood-index. So, it suffices to consider
the most important standard ones. Whenever the ordering of the elements of
a neighborhood-index does not matter, we may specify it as a set.

Example 2. Let d ≥ 1, k ≥ 0, and m1, . . . ,md denote the components of
m ∈ Z

d. Then

Hd
k = {m ∈ Z

d | k ≥
∑d

i=1 |mi|} or

H̄d
k = {m ∈ Z

d | k ≥
∑d

i=1 |mi| ∧ mi ≥ 0, for 1 ≤ i ≤ d}

are (generalized) von-Neumann neighborhoods. Similarly,

Md
k = {m ∈ Z

d | k ≥ max{|mi| | 1 ≤ i ≤ d}} or
M̄d

k = {m ∈ Z
d | k ≥ max{|mi| | 1 ≤ i ≤ d} ∧ mi ≥ 0, for 1 ≤ i ≤ d}

are (generalized) Moore neighborhoods (cf. Figure 6.3). &'
The following famous cellular space is known as Game of Life. While the

underlying rules are quite simple, the global behavior is rather complex. In
fact, it is unpredictable.



6 Cellular Automata – A Computational Point of View 189

H̄1
1 H1

1 H2
1 M2

1 H̄2
2

Fig. 6.3. Standard neighborhoods (the origin is shaded).

Example 3. We consider the two-dimensional space Z
2. The cells are connected

according to the Moore-neighborhood M2
1 , where each cell is connected to

itself and to its eight immediate neighbors. Cells may be dead or alive, so
the state set is chosen to be {0, 1}. The local transition function is defined
dependent on the number of living cells in the neighborhood. In particular,
a cell stays or becomes alive, if there are exactly three living cells within its
Moore-neighborhood. It stays in its current state, if there are exactly four
living cells within its Moore-neighborhood, and it dies from overpopulation
or isolation otherwise.

The Game of Life made its first appearance in [16]. Over the years very
interesting properties have been discovered. Some of them are based on the
behavior of patterns that represent the arrangement of dead and living cells
(cf. Figures 6.4 and 6.5). &'

t t + 1 t + 2 t + 3 t + 4

Fig. 6.4. Evolution of a periodical stationary pattern (blinker) in the Game of Life.
Living cells are shaded.

6.2.3 Universality

In order to explore the power of general cellular spaces, we are now going to
prove their universality. To this end, it is shown how cellular spaces can sim-
ulate Turing machines. Moreover, given a Turing machine, the corresponding
cellular space should be as simple as possible. Therefore, we present a direct
simulation by a one-dimensional space, where the number of states depends
on the number of states and tape symbols of the Turing machine [30].



190 Martin Kutrib

t t + 1 t + 2 t + 3 t + 4

Fig. 6.5. Evolution of a periodical non-stationary pattern (glider) in the Game of
Life. Living cells are shaded. Within four time steps the glider moves diagonally one
cell to the north east.

But first we have another approach to evidence based on the generaliza-
tions. Roughly speaking, the idea is to model logical gates and information
transmission in two-dimensional cellular spaces. Then universal computers can
be build and embedded into the space. Interestingly, the constructions can be
done with the simple rules of the Game of Life. So, two states are sufficient [4].

A stream of information is modeled as stream of bits. Consider a stream of
gliders moving with the same space between, and assume some of the gliders
are missing. Then the stream can be interpreted as stream of bits where the
presence of a glider means 1 and the absence means 0. The following pattern
depicted in Figure 6.6 is known as glider gun. The core of the gun behaves

Fig. 6.6. Evolution of a glider gun in the Game of Life. Living cells are shaded.
Within 30 time steps a glider is emitted to the north east. The arrows indicate the
direction of the stream of gliders.



6 Cellular Automata – A Computational Point of View 191

periodical. In addition, it emits a glider every 30 time steps. So, a glider gun
can be seen as a source of a stream of bits consisting of ones only.

Now we turn to logical gates. In order to obtain a NOT gate, one observes
that whenever two gliders collide at a right angle, then all wreckage disappears.
So, the input stream to negate can be directed to a bit stream emitted by a
glider gun. If a 1 (a glider) of the input stream reaches the collision area, it
will collide with the incoming glider from the gun and is destroyed. If a 0 of
the input stream reaches the collision area, the incoming glider will pass the
collision area. In this way a 1 yields to a 0, and vice versa (cf. Figure 6.7).

Input stream Glider gun

Output stream

Fig. 6.7. A NOT gate in the Game of Life. Living cells are shaded. The cells shaded
lightgray are not alive. They indicate the missing glider representing a 0.

Similarly, AND and OR gates are constructed. Figure 6.8 shows the
schematic diagrams, where G means glider gun, and E is a pattern called
eater. An eater absorbs incoming gliders.

The universality of cellular spaces follows since universal computers can
be build from logical gates and bit streams. These computers can be embed-
ded into the space. But it is worth mentioning that the effective construction
requires to start with finite configurations of the cellular space. On the other
hand, the computers may use potentially infinite memory. Nevertheless, by



192 Martin Kutrib

AND

G

A

B A ∧ B

E

OR

G

A

B E

G A ∨ B

NOT

G

A

¬ A

Fig. 6.8. Schematic diagrams of logical gates in the Game of Life. Glider guns and
eaters are denoted by G and E.

nontrivial constructions it is possible to extend the available memory on de-
mand of the computation [4].

Next we show how to simulate an arbitrary Turing machine by a one-
dimensional cellular space with von-Neumann H1

1 neighborhood, where the
number of states depends on the number of states and tape symbols of the
Turing machine. Since the Turing machine is arbitrary, in particular, the sim-
ulation of universal Turing machines is possible. There are universal Turing
machines, for example, with four states and six tape symbols [56]. So, the next
theorem gives also an upper bound on the size necessary for a (universal) cel-
lular space.

Theorem 1. Let T = 〈S, T, δ, s0, ␣〉 be a one-tape Turing machine with state
set S, tape symbols T , transition function δ, initial state s0, and blank sym-
bol ␣. Then there is a cellular spaceM with |T |+4|S| states, that simulates T
in twice the time.

Proof. Without loss of generality, we assume that S and T are disjoint. Each
symbol of the tape inscription is stored in one cell of M. The left neighbor
of the cell storing the currently scanned tape symbol represents the current
state of T (cf. Figure 6.9).

At first glance, due to the H1 neighborhood of the cellular space, the
problem arises that a possible left move of the head cannot be observed by
the cell at the left of the cell representing the state of T . But an intermediate
step can solve the problem. In particular, the cell representing the state of T
changes to some new state that indicates the next state as well as the intended
head movement. For simplicity, we do the same for right moves and no moves.
The formal construction of M = 〈S′, δ′, q0, A, F 〉 is as follows:

S′ = S ∪ T ∪ (S × {stay, right, left})

The local transition function δ′ is defined dependent on δ. Let s, s′ ∈ S and
a, a′ ∈ T . For all a1, a2 ∈ T ,



6 Cellular Automata – A Computational Point of View 193

s

Turing machine

· · · a−2 a−1 a0 a1 a2 · · · · · · a−2 a−1 s a0 a1 a2 · · ·

Cellular space

Fig. 6.9. Correspondent configurations of a Turing machine and a simulating cel-
lular space.

δ(s, a) = (s′, a′, stay) =⇒ ( δ′(a1, s, a) = (s′, stay),
δ′(s, a, a1) = a′,
δ′(a1, (s′, stay), a′) = s′),

δ(s, a) = (s′, a′, right) =⇒ ( δ′(a1, s, a) = (s′, right),
δ′(s, a, a1) = a′,
δ′(a1, (s′, right), a′) = a′,
δ′((s′, right), a′, a1) = s′),

δ(s, a) = (s′, a′, left) =⇒ ( δ′(a1, s, a) = (s′, left),
δ′(s, a, a1) = a′,
δ′(a1, (s′, left), a′) = a1,
δ′(a2, a1, (s′, left)) = s′).

In all other situations cells do not change their states. &'

6.2.4 Simulation of Data Structures

This subsection is devoted to show how to simulate certain data structures by
(one-dimensional) cellular spaces without any loss of time. The simulations
may serve as tools for designing algorithms or as subroutines for programming
cellular spaces. First we consider pushdown stores (stacks) [6, 29], that is,
stores obeying the principle last in first out. Assume without loss of generality
that at most one symbol is pushed onto or popped from the stack at each time
step. We distinguish one cell that simulates the top of the pushdown store.
It suffices to use three additional tracks for the simulation. Let the three
pushdown registers of each cell be numbered one, two, and three from top to
bottom, and suppose that the third register is connected to the first register
of the right neighbor. The content of the pushdown store is identified by
scanning the registers in their natural ordering beginning in the distinguished
cell, whereby empty registers are ignored (cf. Figure 6.10).

The pushdown store dynamics of the transition function is defined such
that each cell prefers to have only the first two registers filled. The third



194 Martin Kutrib

U

P

D

H

S O W

R

E

N

Fig. 6.10. Pushdown registers exemplarily storing the string PUSHDOWNER.

register is used as a buffer. In order to reach that charge it obeys the following
rules (cf. Figure 6.11).

1. If all three registers of its left (upper) neighbor are filled, it takes over
the symbol from the third register of the neighbor and stores it in its first
register. The old contents of the first and second registers are shifted to
the second and third register.

2. If the second register of its left neighbor is free, it erases its own first
register. Observe that the erased symbol is taken over by the left neighbor.
In addition, the cell stores the content of its second register into its first
one, if the second one is filled. Otherwise, it takes the symbol of the first
register of its right neighbor, if this register is filled.

3. Possibly more than one of these actions are superimposed.

e
d

g
f

i
h

push c
e
d

c
g
f

i
h

push b

d

c
b

g
f

e

i
h

c
b

f

e
d

i
h

g

push a
c
b

a
e
d

h

g
f i

pop
b

e
d

c
g
f

i
h

c
b d

g
f

e

i
h

pop
c

e
d f

i
h

g

pop
d e

g
f h i

e
d f g

i
h

e
d

g
f h i

e
d

g
f

i
h

Fig. 6.11. Principle of a pushdown store simulation. Subfigures are in row-major
order.



6 Cellular Automata – A Computational Point of View 195

The main difference between pushdown stores and rings or queues is the
way how to access the data. A ring obeys the principle first in first out, that
is, the first symbol of the stored string is read and possibly erased while, in
addition, a new symbol may be added at the end of the string. So, a ring
can write and erase at the same time. A queue is a special case of a ring.
It can either write or erase a symbol, but not both at the same time. In
order to simulate a ring or queue, also no more than three additional registers
are needed. The first two registers are used to store the symbols, where the
second one is needed to cope with the situation when symbols are erased
consecutively. The third track is used to move the new symbols from the front
to the back of the string (cf. Figure 6.12).

· · ·

· · ·

Fig. 6.12. Logical connections between ring registers.

Again, without loss of generality, we may assume that at most one symbol
is entered to or erased from the ring at every time step. Moreover, each cell
prefers to have the first two registers filled. Altogether, it obeys the following
rules (cf. Figure 6.13).

1. If the third register of its left neighbor is filled, it takes over the symbol
from that register. The cell stores the symbol into its first free register, if
possible. Otherwise, it stores the symbol into its own third register.

2. If the third register of its left neighbor is free, it marks its own third
register as free.

3. If the second register of its left neighbor is free, it erases its own first
register. Observe that the erased symbol is taken over by the left neighbor.
In addition, the cell stores the content of its second register into its first
one, if the second one is filled. Otherwise it takes the symbol of the first
register of its right neighbor, if this register is filled.

4. If the second register of its left neighbor is filled and its own second register
is free, then the cell takes the symbol from the first register of its right
neighbor and stores it into its own second register.

5. Possibly, more than one of these actions are superimposed.

6.3 Synchronization

The famous Firing Squad Synchronization Problem (FSSP) was raised by
Myhill in 1957. It emerged in connection with the problem to start several
parts of a parallel machine at the same time. The first published reference



196 Martin Kutrib

e
d

g
f

i
h

in c
c
e
d

g
f

i
h

in b
b
e
d

c
g
f

i
h

e
d

b

g
f

c
i
h

in a
a
e
d

g
f

b
i
h c

out
e

a
g
f

i
h

b
c

f
e g

a
i
h

b
c

out
f

h

g i

a
b
c

out

g h
c
i b a

h

g i c
a
b

h

g
c
i b a

h

g
c
i

a
b

Fig. 6.13. Principle of a ring (queue) simulation. Subfigures are in row-major order.

appeared with a solution found by McCarthy and Minsky in [50]. Roughly
speaking, the problem is to set up a cellular space such that all cells in a
region change to a special state for the first time after the same number
of steps. Originally, the problem has been stated as follows: Consider a finite
but arbitrary long chain of finite automata that are all identical except for the
automata at the ends. The automata are called soldiers, and the automaton at
the left end is the general. The automata work synchronously, and the state of
each automaton at time step t + 1 depends on its own state and on the states
of its both immediate neighbors at time step t. The problem is to find states
and state transitions such that the general may initiate a synchronization in
such a way that all soldiers enter a distinguished state, the firing state, for
the first time at the same time step. At the beginning all non-general soldiers
are in the quiescent state. More formally, the FSSP is defined as follows.

Definition 3. Let C be the set of all cellular space configurations of the form
#gq0 · · · q0#, that is, for some n ≥ 1, c(0) = c(n + 1) = #, c(1) = g and
c(i) = q0, for i /∈ {0, 1, n + 1}. The Firing Squad Synchronization Problem is
to specify a cellular space 〈S, δ, q0, A, F 〉 such that for all c ∈ C,

1. there is a t ≥ 1 such that
(
∆t(c)

)
(i) = f , for 1 ≤ i ≤ n and some f ∈ S,

2. for all 0 ≤ t′ < t it holds
(
∆t′(c)

)
(i) �= f , for 1 ≤ i ≤ n, and

3. δ(q0, q0, #) = δ(#, q0, q0) = δ(q0, q0, q0) = q0.



6 Cellular Automata – A Computational Point of View 197

While the first solution of the problem takes 3n time steps to synchronize
the n cells in between the cells in state #, Goto [18] was the first who presented
a minimal time solution.

Lemma 1. The minimal solution time for the FSSP is 2n− 2, where n is the
number of cells to be synchronized.

Proof. In contrast to the assertion assume there is a faster solution taking
some time tf < 2n − 2. Observe that the cells which are initially in the
quiescent state may leave the quiescent state not before their left neighbor
is in a non-quiescent state. Therefore, the rightmost cell n cannot leave the
quiescent state before time n− 1. It takes another n− 1 time steps to send a
feedback of this activation back to the general. Since tf < 2n− 2, the general
fires independently of such a feedback.

Now consider the problem with 2n− 1 cells. Since the cells are determin-
istic, the general fires again at time tf < 2n − 2. But at this time step the
rightmost cell 2n−1 is still in the quiescent state, since it takes at least 2n−2
time steps to activate it. &'

Next we present an algorithm that is not time optimal. It takes 3n time,
but reveals basic procedural methods.

Algorithm 1. The FSSP can be solved by dividing the array in two, four,
eight etc. parts of (almost) the same length until all cells are cut-points.
Exactly at this time the cells change to the firing state synchronously. The
divisions are performed recursively. First the array is divided into two parts.
Then the process is applied to both parts in parallel, etc.

In order to divide the array into two parts, the general sends two signals S1
and S2 to the right (cf. Figure 6.14). Signal S1 moves with speed 1, that is,
one cell per time step, and signal S2 with speed 1/3, that is, one cell every
three time steps. When signal S1 reaches the right end, a signal S3 is sent
back to the left with speed 1. Signals S2 and S3 meet in the center of the
array. Dependent on whether the length of the array is even or odd the center
is represented by two or one cell. Next, the center cell(s) becomes a general. It
sends signals S1 and S2 to the left and to the right. This process repeats until
all cells are generals. At this time they change to the firing state synchronously.

Since the times needed to divide the sub-arrays are bounded by 3n/2,
3n/4, 3n/8, and so on, altogether the algorithm takes at most 3n time steps.
&'

The next step towards a time optimal solution is to set up additional
signals in order to determine the cut-points earlier.

Algorithm 2. The previous algorithm is modified as follows (cf. Figure 6.15).
When signal S1 arrives at the right end, the end cell becomes a general and
sends two signals S3 and S4 to the left. Signal S4 behaves as signal S2 except
for the moving direction, that is, it moves with speed 1/3 to the left. The center



198 Martin Kutrib

Fig. 6.14. Firing Squad Synchronization with a slow algorithm. Darkgray cells
are generals, gray cells contain a signal with speed 1, lightgray cells a signal with
speed 1/3, and crosshatched cells are in the firing state.

of the array is again determined by the collision of S2 and S3. The center
cell(s) behaves as for the previous algorithm. In particular, it sends signals S1
and S3 to the right. The collision of S1 and S4 determines the center of the
right half of the array after 3n/2 + n/4 time steps. After another n/8 time
steps the center of the third quarter of the array is known. If the remaining
cut-points could be determined similarly, the total synchronization time would
not exceed 2n time steps: 3n/2 + n/4 + n/8 + n/16 + · · · = 2n. Since without
general there are only n − 1 cells to be passed through, the synchronization
obeys the optimal time bound 2(n− 1).

Unfortunately, the presented procedure is not a solution, since only one
of two cut-points is found, respectively. Clearly, one can determine the center
of the left half of the array, if the general sends an additional signal S5 with
speed 1/7 at initial time to the right. But then the next problem is to find
the center of the left quarter of the array. To this end, the general can send
another signal with speed 1/15 to the right. Altogether, for a solution the



6 Cellular Automata – A Computational Point of View 199

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
2

S
4

S
1

S
3

S
2

S
5

S
4

Fig. 6.15. Schematic diagrams of signals. Slow FSSP algorithm (left), additional
signals for right cut-points (center), and additional signals for left cut-points (right).

general has to send signals with speeds 1/(2k − 1), k ≥ 1. Thus, the number
of signals depends on the length of the array, and the problem is not solved.
&'

Nevertheless, there is a solution based on this approach [73]. The idea is
rather simple, the additional signals are generated and moved by trigger sig-
nals (cf. Figure 6.16). The trigger signals themselves are emitted by signals S1
and S3 in the opposite direction at each other time step. Whenever a trigger
signal reaches the leftmost or rightmost cell, a new signal to be triggered is
generated. Whenever a trigger signal reaches a triggered signal, the latter is
moved one cell ahead. On the other hand, any triggered signal absorbs each
other trigger signal. That way, the desired behavior is achieved, and a minimal
time solution for the FSSP is obtained.

Apart from time optimality there is a natural interest in efficient solutions
with respect to the number of states or the number of bits to be communicated
to neighbors. While there exists a time optimal solution where just one bit
of information is communicated [47], the minimal number of states is still
an open problem. The first time optimal solution [18] uses several thousand
states. The presented algorithm from [73] takes 16 states. About one year
later, an eight state time optimal solution was published [3]. Currently, a six
state solution is known [48]. In the same paper it is proved that there does not
exist a time optimal four state algorithm. It is a challenging open problem to
prove or disprove that there exists a five state solution.

Many modifications and generalizations of the FSSP have been investi-
gated. Just to mention a few of them, solutions for higher dimensions can
be found in [19, 57, 60, 63, 70], fault tolerant synchronizations are studied
in [41, 67], generalized positions of the general are considered in [51], and



200 Martin Kutrib

Fig. 6.16. Firing Squad Synchronization with a time optimal algorithm using trigger
signals.

growing squads in [21]. In [32] the problem is solved for reversible cellular
spaces, and in [27, 35, 38, 39] more general graphs are considered.

6.4 Signals and Time Constructibility

Signals are used to solve problems. Examples are the basic signals that appear
in solutions of the FSSP, or complex signals that allow to generate prime
numbers. So, they can be seen as tools for algorithm design. In general, signals
are used to transmit or encode information in cellular spaces. They have been
used for a long time, but the systematic study originated from [49]. Basic
questions are what kind of signals can be send, or what speed is possible.

6.4.1 Signals

Roughly speaking, signals are described as follows: If some cell changes to the
state s of its neighbor after some k ≥ 1 time steps, and if subsequently its



6 Cellular Automata – A Computational Point of View 201

neighbors and their neighbors do the same, then the basic signal s moves with
speed 1/k in the corresponding direction.

By this description it becomes intuitively clear what signals are. But the
concept is much more complex. So a formal treatment is advisable. Obviously,
the maximal speed is one, that is, one cell per time step. Signals are formalized
as mappings, where the signal is distinguished from its implementation, since
not every mapping of the appropriate type can be implemented. The mapping
takes a time step and yields the cell in which the signal resides at this time.

Definition 4. A signal is a mapping ξ : N→ Z, where for all t ≥ 0, ξ(t+1) ∈
{ξ(t)− 1, ξ(t), ξ(t) + 1}.

The current site of an implemented signal is indicated by special states.

Definition 5. A signal ξ is CS-practicable, if there is a cellular space 〈S, δ, q0,
A, F 〉 with distinguished state s ∈ S, subset S′ ⊆ S, and initial configuration
c0(0) = s, c0(i) = q0, for i �= 0, such that ct(i) ∈ S′ ⇐⇒ ξ(t) = i.

It is evident that there are simple and complex signals. In general, auxiliary
signals are needed in order to implement complex ones. Signal ξ is said to be
basic, if the sequence of elementary moves (ξ(t + 1) − ξ(t))t≥0 is ultimately
periodic. It is rightmoving (leftmoving), if it never moves to the left (right),
that is, ξ(t + 1) ∈ {ξ(t), ξ(t) + 1} (ξ(t + 1) ∈ {ξ(t)− 1, ξ(t)}).

Example 4. The signal ξ : N→ Z with ξ(n) = �n
3 � is basic, since the sequence

0, 0, 1, 0, 0, 1, . . . of elementary moves is periodic (cf. Figure 6.17). &'

Example 5. The signal ξ : N→ Z with

ξ(0) = 0 and ξ(n) =
1
4
· 2�log2 n� −

∣∣∣∣ n− 3
4
· 2�log2 n�

∣∣∣∣

is obviously not basic (cf. Figure 6.18). &'

The next lemma clarifies the relation between basic signals and implemen-
tations.

Lemma 2. A signal ξ is basic if and only if it can be implemented in a
cellular space such that all cells not containing ξ are in the quiescent state
(i �= ξ(t) ⇐⇒ ct(i) = q0).

With other words, a signal is basic if and only if it can be implemented
without auxiliary signals.

Definition 6.

1. Let ξ be a basic signal whose sequence of elementary moves after some
time n0 is periodic with period length p. Let u = ξ(t + p)− ξ(t), for some
t > n0.



202 Martin Kutrib

n

0 1 2 3 4 · · · 9

t 0
1
2
3
4

...

20

Fig. 6.17. The basic signal of Exam-
ple 4.

n

0 1 2 3 4 · · · 9

t 0
1
2
3
4
...

8

...

16
...

20

Fig. 6.18. Gray cells contain the sig-
nal of Example 5, lightgray cells a
basic auxiliary signal.

a) The slope of ξ is p/u.
b) The speed of ξ is u/p.

2. A monotone increasing (decreasing) function ρ : N → N is called char-
acteristic function of a rightmoving (leftmoving) signal ξ, if ξ(ρ(n)) = n
and ξ(ρ(n)− 1) �= n.

Since the speed is at most 1, the slope is at least 1. The characteristic
function takes a cell and yields the time step at which the signal arrives at
the cell for the first time. Clearly, ρ(n) ≥ n for a characteristic function of
a CS-practicable signal that is generated in cell 0.

6.4.2 Practicable Signals

In order to obtain a rich family of practicable signals we first show that certain
classes of signals are practicable. Then we provide operations that preserve
this property. So, one can construct new practicable signals from practicable
ones by applying the operations.

Signals with exponential characteristic function

Lemma 3. Let b ≥ 2 be a positive integer. Then the signal ξ with character-
istic function bn is CS-practicable.



6 Cellular Automata – A Computational Point of View 203

Proof. At initial time signal ξ resides in cell 0. At each time step bn, n ≥ 1, it
moves one cell to the right. To this end, two auxiliary signals α and β are used.
In general, signals with speed y

x ≤ 1 may be implemented by alternating y
right moves and x− y no moves. Signal α is generated at time b− 2 in cell 0.
Signal β is generated at time 1

2 (b2 + b− 2) in cell 1
2b(b− 1) (cf. Figure 6.19).

Whenever ξ meets α, signal ξ stays for one time step and then moves one
cell to the right. Signal α also stays for one time step, and then it starts to
move right with speed 1 until it meets β. Next, it moves back to the left with
speed 1 until it meets ξ again. Initially and whenever β meets α, signal β
moves b cells to the right within b+1 time steps. Subsequently, it moves with
speed (b−1)

(b+1) to the right.

n

0 1 2 3 6 10 13
0
1 = 30

3 = 31

9 = 32

27 = 33

n

0 1 2 3 5 8 11 13
0
1 = 20

2 = 21

4 = 22

8 = 23

16 = 24

32 = 25

Fig. 6.19. Signals ξ with characteristic functions 2n and 3n (darkgray), auxiliary
signals α (lightgray) and β (gray).

Exemplarily, the correctness of the construction is shown by induction. It
is proved that α meets ξ at time bn−2 in cell n−1 and, subsequently, meets β
at time 1

2 (bn+1 + bn − 2) in cell n− 1 + 1
2 (bn(b− 1)).

The induction basis n = 1 follows immediately from the generations of the
signals. Assume now, the assertion is true for some n ≥ 1. After meeting β,
signal α meets ξ at time bn+1+bn−2

2 − 1 + bn(b−1)
2 = bn+1 − 2 in cell n. At



204 Martin Kutrib

time bn+1 − 1 both signals stay in cell n. Subsequently, at time bn+1 they
move to cell n + 1. Next, signal α passes through cells n + 1 + k at time steps
bn+1 + k, k = 1, 2, . . . Especially for k = −1 + 1

2 (bn+1(b − 1)), signal α is in
cell n + 1

2 (bn+1(b− 1)) at time 1
2 (bn+2 + bn+1 − 2).

After its last meeting with α, signal β first has moved b cells to the right
within b+1 time steps. Next it started to move with speed (b−1)

(b+1) to the right.
Therefore, it passes through cells n−1+ 1

2 (bn(b−1))+b+k(b−1) at time steps
1
2 (bn+1+bn−2)+b+1+k(b+1), k = 1, 2, . . . Especially for k = 1

2 (bn+1−bn−2),
signal β is in cell n + 1

2 (bn+1(b− 1)) at time 1
2 (bn+2 + bn+1 − 2). &'

Signals with polynomial characteristic function

A signal with characteristic function n2 can be derived from (n + 1)2 =
n2 + 2n + 1. In particular, before signal ξ may move from cell n to n + 1
it has to stay for 2n time steps in cell n. The delay is exactly the time needed
by an auxiliary signal α that moves from cell n to cell 0 and back (cf. Fig-
ure 6.20). Proceeding inductively, a signal with characteristic function nb can
be implemented by utilizing auxiliary signals with polynomial characteristic
functions whose degrees are less than b.

Lemma 4. Let b ≥ 1 be a positive integer. Then the signal with characteristic
function nb is CS-practicable.

Proof. Exemplarily, the construction for b = 3 is shown, where an auxiliary
signal with characteristic function n2b is used (cf. Figure 6.21). Constructions
for arbitrary b are straightforward.

First, we derive (n+1)3 = n3+3n2+3n+1, and obtain the necessary time
of delay. A signal with characteristic function n3 has to stay for 3n2 + 3n
time steps in cell n before it moves to cell n + 1. The delay 3n is exactly the
time needed by an auxiliary signal α that moves from cell n to cell 0 and
back, and once more to cell 0. Subsequently, in cell 0 a quadratic signal β
is generated, which moves from cell 0 to cell n and back, and once more to
cell n. &'

Signals whose characteristic functions contain square roots

The problem whether the following lemma is true for k = 1 was left open
in [49]. It has been solved in [66].

Lemma 5. Let k ≥ 1 be a positive integer. Then the signal with characteristic
function kn + �√n� is CS-practicable.

Signals whose characteristic functions contain logarithms

Lemma 6. Let b ≥ 2 be a positive integer. Then the signal with characteristic
function n + �logb(n)� is CS-practicable.



6 Cellular Automata – A Computational Point of View 205

n

0 1 2 3 4 5
0
1 = 12

4 = 22

9 = 32

16 = 42

25 = 52

36 = 62

Fig. 6.20. Signal ξ with characteris-
tic function n2 (darkgray), auxiliary
signal α (gray).

n

0 1 2 3 4
0
1 = 13

8 = 23

27 = 33

Fig. 6.21. Signal ξ with character-
istic function n3 (darkgray), auxiliary
signals α (lightgray) and β (gray, gray
dashed).

A gap in the family of practicable signals

Signals with characteristic functions of the form n+ logb(n) are lower bounds
of CS-practicable signals beyond the identity (plus some constant). In between
there is a gap.

Lemma 7. Let ρ(n) ≥ n, for all n ≥ 0, be the characteristic function of a
CS-practicable signal. Then ρ(n)− n either is ultimately constant or there is
some b ≥ 2 such that ρ(n) ≥ n + �logb(n)�, for all n ≥ 1.

Proof. Let M be a cellular space with state set S implementing the signal
with characteristic function ρ. As usual, we denote its configurations by ct,
t ≥ 0. We assume that ρ(n) ≥ n + �logb(n)� does not hold for all b ≥ 2. In
particular, it does not hold for b = |S|, where we may assume |S| ≥ 2 without
loss of generality. Therefore, there is an n0 such that ρ(n0) < n0 + �logb(n0)�.
Since ρ(n0) ≥ n0, we obtain n0 ≥ b.



206 Martin Kutrib

Observe that due to the maximal speed of auxiliary signals, any cell i ≥ 0
cannot participate in the implementation of the signal before time i. So, we
consider the sequence of m ≥ 1 successive states of some cell i ≥ 0 beginning
at time step i, that is, ci(i)ci+1(i) · · · ci+m−1(i), and denote it by w(i,m). The
number of different sequences of length �logb(n0)� is at most n0. Therefore,
there are numbers i ≥ 0 and j ≥ 1 with i+j ≤ n0 such that w(i, �logb(n0)�) =
w(i + j, �logb(n0)�). This implies w(�, �logb(n0)�) = w(� + kj, �logb(n0)�), for
all k ≥ 0 and � ≥ i.

At time ρ(n0) the signal resides in cell n0 which is indicated by a distin-
guished state. By ρ(n0)−n0 < �logb(n0)� follows that at time steps ρ(n0)+kj
the cells n0 +kj are in the same state. Therefore, ρ(n0 +kj) = ρ(n0)+kj and
due to the maximal speed of signals we obtain ρ(n0 + k) = ρ(n0) + k, for all
k ≥ 0. We derive ρ(n0)− n0 = ρ(n)− n, for all n ≥ n0. Thus, ρ is ultimately
constant. &'

6.4.3 Time Constructibility

The investigation of time constructible functions in cellular spaces originates
from [15], where a cellular space is constructed whose cell at the origin distin-
guishes exactly the time steps that are prime numbers. In [49] the systematic
study of this concept was started. Since all values of a function have to be
constructed, we consider strictly increasing functions. Initially, all cells except
the one at the origin are quiescent.

Definition 7. A strictly increasing function f : N → N is CS-time-con-
structible if there is a cellular space 〈S, δ, q0, A, F 〉 with distinguished state
s ∈ S and initial configuration c0(0) = s, c0(i) = q0, for i �= 0, such that
cell 0 is in some state from F at time t, if and only if t = f(i) for some i ≥ 1.
The family of CS-time-constructible functions is denoted by F (CS).

Lemma 8. Let b ≥ 2 be a positive integer. Then the function bn is CS-time-
constructible.

Proof. In order to time construct the function bn, an auxiliary signal β with
speed (b−1)

(b+1) is generated at time 0 in cell 0. It arrives at cells kb(b−1)
2 at time

steps kb(b+1)
2 . A second auxiliary signal α is generated at time b in cell 0.

Subsequently, it repeatedly moves with speed 1 to the right until it meets β,
bounces and moves with speed 1 back to cell 0. At its arrival cell 0 changes
to some state from F .

If α leaves cell 0 at some time bn, then it arrives at cell 1
2bn(b− 1) at time

bn + 1
2bn(b−1). Exactly at this time signal β is in the same cell (for k = bn−1).

Therefore, signal α is back at cell 0 at time bn + bn(b− 1) = bn+1. &'

At first glance, it seems that CS-time-constructible functions cannot grow
faster than exponential functions. Among others, the next lemma says that
this is a false impression.



6 Cellular Automata – A Computational Point of View 207

Lemma 9. 1. The factorial function n! is CS-time-constructible.
2. The function that maps n to the nth prime number is CS-time-con-

structible.

The two families of CS-time-constructible functions and CS-practicable
signals are very rich. Moreover, they are closely related. The next two results
bridge the gap between the notions.

Theorem 2. Let h : N→ N be a strictly increasing function. If the signal with
characteristic function h is CS-practicable, then h is CS-time-constructible.

With other words, all characteristic functions of Section 6.4.2 are CS-
time-constructible. Unfortunately, the converse is not true in general. For
example, functions of the form n+�logi�, where logi denotes the ifold iterated
logarithm, i ≥ 2, are CS-time-constructible. But by Lemma 7 they are not
characteristic functions of CS-practicable signals. Nevertheless, for most of
the relevant functions, the converse is true. Whenever the difference between
f(n) and n is at least linear, a corresponding signal can be derived from a
CS-time-constructible function f .

Theorem 3. Let f be a CS-time-constructible function. If (k − 1)f(n) ≥ kn,
for some positive integer k ≥ 1, then the signal with characteristic function f
is CS-practicable.

Finally, we summarize closure properties of the family F (CS) in order to
be able to construct new functions by certain operations.

Theorem 4. Let f and g be functions belonging to F (CS).

1. Let k be a positive rational constant such that �k ·f� is strictly increasing.
Then �k · f� belongs to F (CS).

2. The sum f + g belongs to F (CS).
3. If f(n) ≥ g(n), for all n ≥ 1, and (k + 1)f − kg is strictly increasing, for

some positive integer k ≥ 1, then the function (k + 1)f − kg belongs to
F (CS).

4. The composition f(g) belongs to F (CS).

Further results about signals as well as time constructible and time com-
putable functions can be found, for example, in [5, 6, 7, 13, 34, 68, 69].

6.5 Cellular Language Acceptors

Now we turn to one of the main branches in the theory of automata. Clearly,
the data supplied to some device can be arranged as strings of symbols. In-
stances of problems to solve can be encoded as strings with a finite number of
different symbols. Furthermore, complex answers to problems can be encoded



208 Martin Kutrib

as binary sequences such that the answer is computed bit by bit. In order to
compute one piece of the answer, the set of possible inputs is split into two
sets associated with the binary outcome. From this point of view, the compu-
tational capabilities of the devices are studied in terms of string acceptance,
that is, the determination to which of the two sets a given string belongs.
These investigations are done with respect to and with the methods of lan-
guage theory. For cellular spaces and automata they originated from [11, 12]
and [61, 31]. Over the years substantial progress has been achieved, but there
are still some basic open problems with deep relations to other fields.

6.5.1 Cellular Automata

Once we have a universal device there is a natural interest in realistic models
that meet certain restrictions. Similar to the step from Turing machines to
linear bounded automata, that is in terms of formal languages, from recur-
sively enumerable to context-sensitive languages, the step from cellular spaces
to cellular automata is to bound the number of available cells by the length of
the input. For simplicity, the boundaries in space are modelled by a so-called
permanent boundary symbol #. Due to the nearest neighbor connections, cells
cannot communicate across a boundary. So, we may focus on the computa-
tions in between the boundaries and may disregard the computations outside.
A widely studied question is to what extend one-way information flow reduces
the computational capabilities of cellular automata. One-way information flow
from right to left is achieved by providing the H̄1 neighborhood (cf. Exam-
ple 2), that is, the next state of a cell depends on the current states of the cell
itself and its immediate neighbor to the right.

Definition 8. A (one-dimensional) two-way cellular automaton (CA) is a
system 〈S, δ, #, A, F 〉, where

1. S is the finite, nonempty set of cell states,
2. # /∈ S is the permanent boundary symbol,
3. A ⊆ S is the nonempty set of input symbols,
4. F ⊆ S is the set of final states, and
5. δ : (S ∪ {#})× S × (S ∪ {#})→ S is the local transition function.

· · ·# a1 a2 a3 an #

Fig. 6.22. A two-way cellular automaton.

If the flow of information is restricted to one-way, the resulting device is
a one-dimensional one-way cellular automaton (OCA).

A configuration of a cellular automaton 〈S, δ, #, A, F 〉 at time t ≥ 0 is
formally a mapping ct : {1, . . . , n} → S, for n ≥ 1. The configuration at



6 Cellular Automata – A Computational Point of View 209

· · ·a1 a2 a3 an #

Fig. 6.23. A one-way cellular automaton.

time 0 is defined by the given input w = a1 · · · an ∈ A+. We set c0(i) = ai, for
1 ≤ i ≤ n. So, #a1a2 · · · an# represents the initial configuration for w including
the boundary symbols. Let ct, t ≥ 0, be a configuration with n ≥ 2, then ct+1

is defined as follows:

ct+1 = ∆(ct) ⇐⇒

⎧
⎨

⎩

ct+1(1) = δ(#, ct(1), ct(2))
ct+1(i) = δ(ct(i− 1), ct(i), ct(i + 1)), i ∈ {2, . . . , n− 1}
ct+1(n) = δ(ct(n− 1), ct(n), #)

for CAs, and

ct+1 = ∆(ct) ⇐⇒
{

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {1, . . . , n− 1}
ct+1(n) = δ(ct(n), #)

for OCAs. For n = 1, the next state of the sole cell is δ(#, ct(1), #) or δ(ct(1), #).

6.5.2 Mode of Acceptance and Speed-Up

What is the result of the computation? One can partition the whole set of
possible configurations into accepting and rejecting ones. This general ap-
proach is insufficient, since it could be much harder to determine whether a
resulting configuration is accepting or not. So, it should be easy, say trivial, to
recognize an accepting configuration. We define a configuration to be accept-
ing when the cell receiving the first symbol of the input (cell 1) is in a final
state from F . Further definitions of accepting configurations are studied, for
example, in [26, 62], while more general input modes are considered in [42].

More precisely, an input w is accepted by an OCA, CA, or CS M, if at
some time during its course of computation cell 1 enters a final state. The
language accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n
be a mapping. If all w ∈ L(M) are accepted within at most t(|w|) time
steps, then L(M) is said to be of time complexity t. The family of languages
that are accepted by OCAs (CAs, CSs) with time complexity t is denoted by
Lt(OCA) (Lt(CA), Lt(CS)). The index is omitted for arbitrary time. Ac-
tually, arbitrary time in linearly space bounded devices is exponential time.
If t(n) = n, acceptance is said to be in real time and we write Lrt(OCA)
(Lrt(CA), Lrt(CS)). The linear-time languages Llt(OCA) are defined accord-
ing to Llt(OCA) =

⋃
k∈Q, k≥1 Lk·n(OCA), and similarly for CAs and CSs.

In order to avoid technical overloading in writing, two languages L and L′

are considered to be equal, if they differ at most in the empty word, that is,
L− {λ} = L′ − {λ}.



210 Martin Kutrib

Example 6. The language {anbn | n ≥ 1} is accepted by some OCA in real
time (cf. Figure 6.24). During the first step, each cell with input symbol a
changes into a state a′. In addition, the rightmost cell recognizes its position
by means of the neighboring boundary symbol, and changes into a state r.
Afterwards, at each time step the cell states b and r are shifted to the left.
Whenever a b meets an a, the corresponding cell changes into state c. When r
meets an a, the corresponding cell enters a final state R that is no longer
shifted to the left. The construction is easily modified to reject inputs having
a wrong format. &'

a a a a a a b b b b b b #

a′ a′ a′ a′ a′ a′ b b b b b r #

a′ a′ a′ a′ a′ c b b b b r #

a′ a′ a′ a′ a′ b b b b r #

a′ a′ a′ a′ c b b b r #

a′ a′ a′ a′ b b b r #

a′ a′ a′ c b b r #

a′ a′ a′ b b r #

a′ a′ c b r #

a′ a′ b r #

a′ c r #

a′ r #

R #

t

n

Fig. 6.24. Space-time diagram of an OCA accepting an input from the language
{anbn | n ≥ 1} in real time.

Helpful tools in connection with time complexities are speed-up theorems.
Strong results are obtained in [24, 25], where the parallel language families
are characterized by certain types of customized sequential machines. Among
others, such machines have been developed for CSs, CAs, and OCAs. In par-
ticular, it is possible to speed up the time beyond real time linearly. Therefore,
linear-time computations can be sped up close to real time. Later, the question
whether real time can be achieved is discussed in detail later.

Theorem 5. LetM be a CS, CA, or OCA obeying time complexity rt+r(n),
where r : N → N is a mapping and rt denotes real time. Then for all k ≥ 1
an equivalent device M′ of the same type obeying time complexity rt + � r(n)

k �
can effectively be constructed.



6 Cellular Automata – A Computational Point of View 211

The next example states that any constant beyond real time can be omit-
ted.

Example 7. Let k0 ≥ 1 and M be a device in question with time complexity
rt + k0. Then there is an equivalent real-time device M′ of the same type.
It suffices to set k = k0 + 1 and to apply Theorem 5 in order to obtain
rt + �k0

k � = rt + � k0
k0+1� = rt for the time complexity of M′. &'

Next, a linear-time computation is sped up close to real time.

Example 8. Let k0 ≥ 1 and M be a device in question with time complexity
rt+k0 ·rt. Then for all rational numbers ε > 0 there is an equivalent deviceM′

of the same type with time complexity �(1+ε)·rt�. We set k =
⌈

k0
ε

⌉
and apply

Theorem 5 in order to obtain rt +
⌊

k0·rt
�k0/ε�

⌋
≤ rt +

⌊
k0·rt
k0/ε

⌋
= rt + �ε · rt� =

�(1 + ε) · rt�. &'

6.5.3 Basic Hierarchy of Languages

The goal of this section is to establish a basic hierarchy of cellular language
families, and to compare the levels with well-known families of the Chomsky
hierarchy. The properness of some inclusions are long-standing open problems
with deep relations to sequential complexity problems. In order to establish
the hierarchy we start at the upper end.

In Theorem 1 it is shown how to simulate deterministic Turing machines
by cellular spaces. Since the number of non-quiescent cells is just one more
than the space complexity of the Turing machine, CAs can simulate linearly
space-bounded Turing machines. Conversely, a straightforward construction
of Turing machines from CSs and of linearly space-bounded Turing machines
from CAs shows the following lemma [31].

Lemma 10. The family L (CS) is identical with the recursively enumer-
able languages. The family L (CA) is identical with the complexity class
DSPACE(n), that is, with the deterministic context-sensitive languages.

Corollary 1. The family L (CA) is properly included in L (CS).

The family L (OCA) is very powerful. It contains the context-free lan-
guages as well as a PSPACE-complete language [8, 22]. For structural reasons
it is contained in L (CA). It is an open problem whether or not the inclusion
is proper.

Corollary 2. The family L (OCA) is included in L (CA).

We continue with the lower end of the hierarchy, and consider the weakest
devices in question, the real-time OCAs.

Lemma 11. The regular languages are properly included in Lrt(OCA).



212 Martin Kutrib

Proof. Let L be a regular language represented by some deterministic finite
automaton E . We construct a real-time OCA M with two tracks that simu-
lates E . In fact, the first register of each cell is used to simulate E , whereas
the second track is used to shift the input to the left, that is, to feed it into
the simulation of E . So, the first register of the leftmost cell fetches the whole
input and simulates E completely.

The properness of the stated inclusion follows from Example 6 which shows
that the non-regular language {anbn | n ≥ 1} belongs to Lrt(OCA). &'

In order to reach the next level of the hierarchy we consider unary lan-
guages. It turns out that even massively parallel OCAs with a certain time
bound cannot accept more unary languages than a single deterministic finite
automaton [59].

Lemma 12. Let L ⊆ {a}+ be a unary language accepted by some OCA M.
If for all b ≥ 2 there is a wb ∈ L which is accepted by M in t(|wb|) <
|wb|+ �logb(|wb|)� time steps, then there are k0, k ≥ 1 such that ak0+m·k ∈ L
for all m ≥ 0.

Proof. Let M = 〈S, δ, #, A, F 〉. In particular, for b = (|S| + 1)3 there exists
a wb ∈ L whose length is denoted by n0, and which is accepted in t(n0),
n0 ≤ t(n0) < n0+�log(|S|+1)3(n0)�, time steps. It follows �log(|S|+1)3(n0)� ≥ 1,

and thus n0 > |S|3. Moreover, we have �n
1
2
0 � > |S|, for |S| > 1.

For convenience now we assume that the cells of the OCA are num-
bered from right to left. For a computation with initial configuration #an0#
we consider the words cn−1(n)cn(n)cn+1(n) · · · cn+�log|S|2 (n0)	−1(n), for all
1 ≤ n ≤ n0, and denote them by en. All these words have the same length
�log|S|2(n0)�+ 1. The number of different words is at most

|S|�log|S|2 (n0)	+1 = |S| · |S|�log|S|2 (n0)	 ≤ |S| · �|S|log|S|2 (n0)�
= |S| · �|S| 12 log|S|(n0)� = |S| · �(|S|log|S|(n0))

1
2 �

= |S| · �n
1
2
0 � < �n

1
2
0 � · �n

1
2
0 � ≤ n0.

Therefore, at least two of e1, . . . , en0 are identical, say ei and ej with i < j.
Since initially all cells are in the same state, en+1 is uniquely determined
by en. So, ei = ej implies en0−(j−i) = en0 and, furthermore, if the array is
long enough, en0+m(j−i) = en0 , for all m ≥ −1. For k0 = n0 and k = j − i,
ek0+m·k = en0 follows, for all m ≥ −1. Since an0 is accepted in less than
n0 + �log(|S|+1)3(n0)� time steps, word en0 contains an accepting state due to
�log(|S|+1)3(n0)� ≤ �log|S|2(n0)� + 1. Therefore, for all m ≥ 1, input ak0+m·k

is also accepted. &'

For real-time computations a closer look at the proof of the previous lemma
reveals the following lemma.

Lemma 13. Each unary real-time OCA language is regular.



6 Cellular Automata – A Computational Point of View 213

Proof. Considering the proof of Lemma 12 in case of real time, one observes
that the relevant information of the words en consists of the first two states
only. Moreover, the first state appears in all cells to the left at the same time
step. So, it is easy to construct an equivalent deterministic finite automaton
with two registers that computes the first state of the next word en+1 by
applying the transition function to twice the current first state, and the second
state of the next word en+1 by applying the transition function to the current
first state and the current second state. &'

Example 9. In general, Lemma 12 cannot be used to prove that an accepted
unary language is regular. For example, consider the non-regular language
L = {a2n | n ≥ 1} ∪ {a2n−1 | n ≥ 1}, and suppose there is an OCA accepting
{a2n | n ≥ 1} with time complexity t(n) that is at least of order n + log(n)
(cf. Example 10). Clearly, the second subset {a2n−1 | n ≥ 1} which contains
all words of odd length can be accepted in real time. So, an OCA accepting L
by accepting the subsets on different tracks in parallel obeys the time com-
plexity t(n) if n is even, and real time if n is odd. Therefore, the conditions
of Lemma 12 are met, and it is applicable for k0 = 1 and k = 2. &'

On the other hand, in particular cases Lemma 12 can be used to prove
that a non-regular unary language is not accepted in less than n+log(n) time.

Theorem 6. Let r ∈ o(log), r : N → N, be a function. Then language L =
{a2n | n ≥ 1} does not belong to Lrt+r(OCA).

Proof. In contrast to the assertion, assume L ∈ Lrt+r(OCA). Then, for all
b ≥ 1, there is a wb ∈ L which is accepted in t(|wb|) < |wb|+ �logb(|wb|)� time
steps. By Lemma 12 we conclude that there are n0, k ≥ 1, such that a2n0 ∈ L
and a2n0+m·k ∈ L, for all m ≥ 1, which is a contradiction. &'

The next example gives a tight bound for the OCA time complexity nec-
essary to accept language {a2n | n ≥ 1}.

Example 10. The following OCA M = 〈S, δ, #, A, F 〉 accepts the unary lan-
guage {a2n | n ≥ 1} with time complexity t(n) = n + log(n).

The basic idea of the construction is to generate a binary counter in the
rightmost cell with one step delay (cf. Figure 6.25). The counter moves to the
left whereby the cells passed through are counted. The length of the counter
is increased when necessary. In addition, cells which are passed through by
the counter have to check whether all bits are 1. In this case the value of the
counter is 2n−1, for some n ≥ 1. Due to the delayed generation this indicates
a correct input length and the cell enters the final state. Clearly, the desired
time complexity is obeyed. A formal construction is as follows.

S = {a, e, 1, +, 0, •
0
, +
1
}, A = {a}, F = {+}, and for all s1, s2 ∈ S:



214 Martin Kutrib

t

n

a a a a a a a a a a a a a a a a #

a a e #

a a +
1 e #

a a •
0 + e #

a a +
1 1 + e #

a a •
0

+
1 e + e #

a a +
1

•
0 + e + e #

a a •
0 0 1 + e + e #

a a +
1 1 1 e + e + e #

a a •
0

+
1 1 e e + e + e #

a a +
1

•
0

+
1 e e + e + e #

a a •
0 0

•
0 + e e + e + e #

a a +
1 1 0 1 + e e + e + e #

a a •
0

+
1 0 1 e + e e + e + e #

a a +
1

•
0 0 1 e e + e e + e + e #

a •
0 0 1 1 e e + e e + e + e #

+
1 1 1 1 e e + e e + e + e #

+
1 1 1 e e + e e + e + e #

+
1 1 e e + e e + e + e #

+
1 e e + e e + e + e #

+ e e + e e + e + e #

Fig. 6.25. Space-time diagram of an OCA accepting an input from the language
{a2n | n ≥ 1} in n + log(n) time. Lightgray arrows mark the moving counter, whose
digits are 0, 1, or •

0
. The latter is a 0 reporting a carry-over. A +

1
indicates that, so

far, the cell has been passed through by 1s only.

δ(s1, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e if
(
s1 /∈ {•

0
, +
1
, +, a} ∧ s2 ∈ {e, +}

)
∨
(
s1 = a ∧ s2 = #

)

+ if
(
s1 = +

1
∧ s2 = e

)

+
1

if
(
s1 = a ∧ s2 ∈ {e, •

0
}
)
∨
(
s1 = +

1
∧ s2 = 1

)

•
0

if
(
s1 = a ∧ s2 = +

1

)
∨

(
s1 = •

0
∧ s2 ∈ {+

1
, 1}

)

0 if
(
s1 �= a ∧ s2 ∈ {•0 , 0}

)

1 if
(
s1 = •

0
∧ s2 ∈ {0, e, +}

)
∨
(
s1 �= +

1
∧ s2 = 1

)

s1 otherwise

&'

Corollary 3. The family Lrt(OCA) is properly included in Lrt+log(OCA).



6 Cellular Automata – A Computational Point of View 215

For structural reasons, the next inclusion follows immediately. Its proper-
ness and, in fact, infinite proper hierarchies in between Lrt(OCA) and
Llt(OCA) have been shown in [37].

Corollary 4. The family Lrt+log(OCA) is properly included in Llt(OCA).

Since real-time and linear-time CSs use at most linearly many cells, they
can be simulated by real-time and linear-time CAs. So, we do not need to con-
sider them separately. Once we know that, in general, a linear-time OCA lan-
guage cannot be accepted by any real-time OCA, the question arises whether
two-way information flow can help in this respect. The next result gives a
(partial) answer [9, 71]. The answer is not complete, since the input has to
be reversed. Alternatively, one could reverse the neighborhood of the cells in
an OCA. Then the rightmost cell indicates the result of the computation. In
this case the input could remain as it is. In any case, the condition cannot
be relaxed since it is an open problem whether the corresponding language
families are closed under reversal.

Theorem 7. A language is accepted by a linear-time OCA if and only if its
reversal is accepted by a CA in real time.

Proof. LetM be a real-time CA. The cells of a linear-time OCAM′ accepting
LR(M) collect the information necessary to simulate one transition of M in
an intermediate step. Therefore, the first step ofM is simulated in the second
step of M′. We obtain a behavior as depicted in Figure 6.26.

Altogether, M′ cannot simulate the last step of M. So, the construction
has to be extended slightly. Each cell has an extra register that is used to
simulate transitions of M under the assumption that the cell is the leftmost
one (cf. Figure 6.27). The transitions of the real leftmost cell now correspond
to the missing transitions of the previous simulation. &'

It turned out that for OCAs linear time is strictly more powerful than
real time. The problem is still open for CAs. The next inclusions follow for
structural reasons and by the closure of Llt(CA) under reversal.

Corollary 5. Any linear-time OCA language as well as its reversal belong to
Llt(CA).

Now we can join the upper and the lower part of the hierarchy. The ques-
tion whether or not one-way information flow is a strict weakening of two-way
information flow for unbounded time is a long-standing open problem. Even
the inclusion does not follow for structural reasons. It is proved in [8, 22] in
terms of simulations of equivalent sequential machines. In the same paper it is
shown that a PSPACE-complete language is accepted by OCAs. In fact, it is
an open question whether real-time CAs are strictly weaker than unbounded
time CAs. If both classes coincide, then a PSPACE-complete language would
be accepted in polynomial time! The basic hierarchy obtained is depicted in
Figure 6.31 on page 221.

Theorem 8. The family Llt(CA) is included in L (OCA).



216 Martin Kutrib

t

n

40 30 20 10 #

40,30 30,20 20,10 10,e #

31 21 11 e #

31,21 21,11 11,e e,e #

22 12 e e #

22,12 12,e e,e e,e #

13 e e e #

OCA

# 10 20 30 40 #

# 11 21 31 41 #

# 12 22 32 42 #

# 13 23 33 43 #

# 14 24 34 44 #

CA

Fig. 6.26. Intermediate steps in the construction of the proof of Theorem 7.

t

n

40 30 20 10
#

#
40,30

#
30,20

#
20,10

#
10,e

#

41

31 21 11 e
#

? ? ?

41

31,21 21,11 11,e e,e #
? ? ?

32

22 12 e e
#

? ? ?

32

22,12 12,e e,e e,e #
? ? ?

23

13 e e e
#

? ? ?

23

13,e e,e e,e e,e #
? ? ?

14

e e e e
#

? ? ?

OCA

# 10 20 30 40 ## 10 20 30 40 #

# 11 21 31 41 #

# 12 22 32 42 #

# 13 23 33 43 #

# 14 24 34 44 #

CA

Fig. 6.27. Example of a linear-time OCA simulation of a real-time CA computation
on reversed input.



6 Cellular Automata – A Computational Point of View 217

6.5.4 Relations to Context-Free Languages

The relations between the language families in question and the regular, (de-
terministic) context-sensitive and recursively enumerable languages of the
Chomsky hierarchy are quite clear. But what about the context-free lan-
guages? In [8] it is shown that they are properly included in the family
L (OCA). On the other hand, the family Lrt(OCA) is incomparable with
the family of context-free languages [65] since it contains, for example, the
language {anbncn | n ≥ 1}, and does not contain the two-linear language LL
with

L = {anbn | n ≥ 1} ∪ {anbwabn | w ∈ {a, b}∗, n ≥ 1}.

Theorem 9.

1. The context-free languages are properly included in the family L (OCA).
2. The family of context-free languages is incomparable with the families

Lrt(OCA) and Lrt+log(OCA).

Nevertheless, even the real-time OCA languages contain important sub-
families, for example, the linear context-free languages [61], the Dyck lan-
guages [59], and the bracketed context-free languages [14]. Furthermore, the
non-semilinear language {(aib)∗ | i ≥ 0} [59] and the inherently ambiguous
language {aibjck | i = j or j = k for i, j, k ≥ 1} [31] belong to Lrt(OCA).

Whether or not the context-free languages are included in the family
Lrt(CA) is an open question raised in [31]. It is related to the open ques-
tion whether or not sequential one-tape Turing machines are able to accept
the context-free languages in square-time. A proof for the inclusion would im-
ply the existence of square-time Turing machines. In fact, also the problem
whether or not the context-free languages are included in Llt(CA) is open.
But for the important metalinear and deterministic context-free languages we
can answer the inclusion problem in the affirmative [40].

Theorem 10. The metalinear languages are properly included in the family
Lrt(CA).

Proof. Let L be a metalinear language. Then there exists a k ≥ 1 such that L
is k-linear. Therefore, we can represent L as union of finitely many concate-
nations L1 · L2 · · · · · Lk, where each Li is a linear context-free language. The
family Lrt(CA) is closed under union. The family Lrt(OCA) is closed under
reversal [59]. Since the linear context-free languages [61] belong to the family
Lrt(OCA), there exist real-time OCAs for each of the languages LR

1 , . . . , LR
k .

Since the concatenation of a real-time and a linear-time OCA language is
again a linear-time OCA language [22], we obtain LR

k · · · · · LR
1 ∈ Llt(OCA).

From the equality Llt(OCA) = L R
rt (CA) it follows L1 ·· · ··Lk = L ∈ Lrt(CA).

&'

Theorem 11. The deterministic context-free languages are properly included
in the family Lrt(CA).



218 Martin Kutrib

Proof. Here we cannot use an ordinary stack simulation because we are con-
cerned with deterministic pushdown automata that are allowed to perform
λ-transitions. But without loss of generalization we may assume that a given
deterministic pushdown automatonM pushes at most k ≥ 1 symbols onto the
stack in every non-λ-transition, and erases exactly one symbol from the stack
in every λ-transition [17]. Moreover, the first transition is a non-λ-transition.

By the equality Llt(OCA) = L R
rt (CA) it suffices to construct a ((k+1)·n)-

time OCA M′ that accepts the language LR(M). To this end, let M be a
deterministic pushdown automaton with state set S, set of stack symbols G,
set of input symbols A, initial state s0, bottom-of-stack symbol ⊥ ∈ G, set of
accepting states F , and transition function δ : S ×G× (A ∪ {λ})→ S ×G∗.

Now we construct the OCA M′ = 〈S′, δ′, #, A, F ′〉.
Each cell of M has k + 2 registers, where the first one can store either

an input symbol, or a distinguished special symbol $, or a state of M. The
second register is used to implement a finite counter with range 0 to k. The
remaining k registers can store stack symbols of M and may be empty. Ac-
cordingly, S′ is defined to be (S ∪ A ∪ {$}) × {0, . . . , k} × (G ∪ {λ})k. The
transition function δ′ ensures that at every time step t ≥ 1 exactly one cell
contains a symbol from S in its first register. This symbol is the current state
of M. So, F ′ is defined to be F × {0, . . . , k} × (G ∪ {λ})k.

Let a1a2 · · · an be an input of M. We consider M′ when fed with the
reverse input anan−1 · · · a1. Initially all counter registers are set to 0, and
all k registers for stack symbols are empty. Since the first transition of M′ is
a non-λ-transition and the rightmost cell can identify itself, for all a ∈ A, the
initial step ofM′ is defined as follows (cf. Figure 6.28).

s0 a1 a2 · · · an

⊥
#

an an−1 · · · a2 a1

δ(s0,⊥, a1) = (s′, g1g2 · · · gp)

s′ a2 · · · an

g1...
gp

⊥

#

an an−1 · · · a2 s′

g1...
gp

λ...
λ

Fig. 6.28. The initial step of the pushdown automaton M (left) and the corre-
sponding transition of the OCA M′ (right). Counters are not depicted.



6 Cellular Automata – A Computational Point of View 219

δ(s0,⊥, a) = (s′, g1g2 · · · gp) ⇐⇒ δ′((a, 0, λk), #) = (s′, 0, g1g2 · · · gpλ
k−p)

Proceeding inductively, at every time step there is exactly one distin-
guished cell containing the current state ofM in its first register. All cells to
its right are marked by the special symbol $, and all cells to its left store still
their input symbols (cf. Figures 6.28,6.29,6.30).

Every simulation of a transition ofM is performed in two phases. During
the first phase, the new state and the new symbols at the top of the stack
ofM are computed. (The first phase is indicated by 0 in the counter registers.)
LetM perform a non-λ-transition (cf. Figure 6.29). The cell to the left of the
distinguished cell has the necessary information. For all a ∈ A, s ∈ S, and
gj ∈ G,

δ(s, g1, a) = (s′, g′1g
′
2 · · · g′p) ⇐⇒

δ′((a, 0, λk), (s, 0, g1g2 · · · gk)) = (s′, k − p, g′1g
′
2 · · · g′pλk−p).

All other cells of the left part keep their states. For all a, ã ∈ A,

δ′((a, 0, λk), (ã, 0, λk)) = (a, 0, λk).

The distinguished cell observes that M does not perform a λ-transition. It
stores the special symbol $ in its first register. For all s ∈ S,

δ(s, g1, a) is defined for some a ∈ A ⇐⇒
δ′((s, 0, g1g2 · · · gk), #) = ($, 0, g2g3 · · · gkλ) and
δ′((s, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = ($, 0, g2g3 · · · gkgk+1).

s ai ai+1 · · · an

g1...
gm

⊥

#

an · · · ai+1 ai s $ $ $

g1

...

gk

· · ·

gm
k +1
...

gm

δ(s, g1, ai) = (s′, g′1 · · · g′p)

s′ ai+1 · · · an

g′1...
g′p
g2...
gm

⊥

#

an · · · ai+1 s′s′ $ $ $ $

g′1...
g′p

g2

...

gk+1

· · ·

gm
k +2
...

gm

Fig. 6.29. A non-λ-transition of the pushdown automaton M (left) and the corre-
sponding transition of the OCA M′ (right). Counters are not depicted.



220 Martin Kutrib

At each time step, cells containing the special symbol $ shift the contents of
the k stack symbol registers one position to the top where the last register is
filled with the symbol shifted out by the right neighbor. For all gj ∈ G,

δ′(($, 0, g1g2 · · · gk), #) = ($, 0, g2g3 · · · gkλ) and
δ′(($, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = ($, 0, g2g3 · · · gkgk+1)

The purpose of the counter is to pack the stack symbols after a non-λ-
transition. If the content of the counter is greater than 0, the second phase is
performed in the distinguished cell. For all s ∈ S, gj ∈ G, and 1 ≤ i ≤ k,

δ′((s, i, g1g2 · · · gpλ
i), ($, 0, gp+1gp+2 · · · gp+k)) = (s, i−1, g1g2 · · · gpgp+1λ

i−1).

If the counter has been decreased to 0, then the next transition ofM is sim-
ulated. The distinguished cell as well as its left neighbor recognize whether it
is a λ-transition. Since during λ-transitions the top-of-stack symbol is erased,
from the above described behavior we get the packing for free (cf. Figure 6.30).
For all a ∈ A, s ∈ S, and gj ∈ G,

δ(s, g1, λ) is defined or i > 0 ⇐⇒
δ′((a, 0, λ), (s, i, g1g2 · · · gk)) = (a, 0, λ)

δ(s, g1, λ) = (s′, λ) ⇐⇒
δ′((s, 0, g1g2 · · · gk), #) = (s′, 0, g2g3 · · · gkλ) and
δ′((s, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = (s′, 0, g2g3 · · · gkgk+1)

s ai ai+1 · · · an

g1...
gm

⊥

#

an · · · ai+1 ai s $ $ $

g1

...

gk

· · ·

gm
k +1
...

gm ...

δ(s, g1, λ) = (s′, λ)

s′ ai ai+1 · · · an

g2...
gm

⊥

#

an · · · ai+1 ai s′ $ $ $

g2

...

gk+1

· · ·

gm
k +2
...

gm ...

Fig. 6.30. A λ-transition of the pushdown automaton M (left) and the correspond-
ing transition of the OCA M′ (right). Counters are not depicted.



6 Cellular Automata – A Computational Point of View 221

The OCAM′ takes at most (k+1) ·n time steps. It has to simulate n non-
λ-transitions ofM. This takes n time steps. During each of these transitions
some p symbols are pushed onto the stack which cause k−p packing steps. In
addition, there are at most p additional λ-transitions that erase the p symbols.
So, every non-λ-transition causes at most k further steps. It follows that M′

obeys the time complexity (k + 1) · n. &'

Altogether we obtain the hierarchy depicted in Figure 6.31, where the only
known proper inclusions are at the top and the lower end.

L (CS) RE

L (CA) DCSL

L (OCA) CFL

Llt(CA)

Llt(OCA) Lrt(CA) = L R
lt (OCA) DCFL

Lrt+log(OCA) METALIN

Lrt(OCA) LIN REG

Fig. 6.31. Basic hierarchy of language families. A solid arrow indicates a proper
inclusion, a dashed arrow an inclusion, and a double arrow an equality. Linear, meta-
linear, and deterministic context-free languages are denoted by LIN, METALIN,
and DCFL. Regular, context-free, deterministic context-sensitive, and recursively
enumerable languages are denoted by REG, CFL, DCSL, and RE.

6.5.5 Summary of Closure Properties and Decidability Problems

Finally, this subsection is devoted to summarize closure properties of and
decidability results for the language families in question.

Closure properties

The closure properties of L (CS) and L (CA) are those of the recursively
enumerable and deterministic context-sensitive languages. In [8, 22] strong
closure properties are derived for the family of OCA languages. It is shown that



222 Martin Kutrib

L (OCA) is an AFL, that is, an abstract family of languages (cf., e.g., [58])
which is in addition closed under reversal.

The closure under reversal is of crucial importance. It is an open problem
for Lrt(CA) and, equivalently, for Llt(OCA). Moreover, it is linked with the
open closure property under concatenation for the same family. If the answer
to the open reversal closure of Lrt(CA) is negative, we have to deal with two
different language families. Since the properness of the inclusion Lrt(CA) ⊆
Llt(CA) is also open, the problem gains in importance. A negative answer of
the former problem would imply a proper inclusion. A language L ∈ Lrt(CA)
whose reversal does not belong to Lrt(CA) may serve as witness since Llt(CA)
is closed under reversal. In fact, the following stronger relation is shown in [23].

Theorem 12. The family Lrt(CA) is closed under reversal if and only if
Lrt(CA) and Llt(CA) are identical.

The question whether or not the family Lrt(OCA) is closed under con-
catenation was open for a long time. It has been solved negatively in [64].

The question whether or not one of the families Lrt(CA) = L R
lt (OCA)

or Llt(CA) is closed under concatenation is another famous open problem
in this field. Nevertheless, it is shown in [23] that the closure of Lrt(CA)
under reversal implies its closure under concatenation. Since in this case we
obtain Lrt(CA) = Llt(CA), the family of linear-time CA languages were also
closed under concatenation. The concatenation closure for unary real-time
CA languages has been solved in the affirmative [23].

Table 6.1 summarizes some closure properties of the language families in
question.

Decidability problems

It is well known that all nontrivial decidability problems for Turing machines
are undecidable [55]. Moreover, many of them are not even semidecidable,
for example, neither finiteness nor infiniteness. Now we turn to summarize
undecidable properties of cellular automata. Most of the early results are
shown in [59] by reductions of Post Correspondence Problems. In terms of
trellis automata the undecidability of emptiness, equivalence, and universal-
ity is derived in [28]. Here we present improved results that show the non-
semidecidability of the properties. Almost all results in this section are proved
in [43] by reductions of Turing machine problems. To this end, valid com-
putations of Turing machines are considered. Roughly speaking, these are
histories of accepting Turing machine computations which can be encoded
in small grammars [20]. The generated languages are accepted by real-time
OCAs.

Theorem 13. For any language family that effectively contains Lrt(OCA)
emptiness, universality, finiteness, infiniteness, equivalence, inclusion, con-
text-freeness, and regularity are not semidecidable.



6 Cellular Automata – A Computational Point of View 223

Lrt(OCA) Lrt(CA) Llt(CA) L (OCA) L (CA) L (CS)

∪ , ∩ + + + + + +
complementation, − + + + + + −
reversal + ? + + + +
concatenation − ? ? + + +
λ-free iteration − ? ? + + +
concatenation REG + + ? + + +
REG concatenation + ? ? + + +
marked concatenation + + + + + +
marked λ-free iteration + + + + + +

hom−1 + + + + + +
deterministic gsm−1 + + + + + +
gsm−1 − ? ? + + +
inj. length-pres. hom + + + + + +
λ-free hom − ? ? + + +
λ-free gsm − ? ? + + +
λ-free substitution − ? ? + + +
hom − − − − − +

Table 6.1. Summary of closure properties. Concatenation REG denotes the con-
catenation with regular languages at the right, REG concatenation at the left,
hom denotes homomorphisms, gsm generalized sequential machine mappings, and
inj. length-pres. abbreviates injective length-preserving. A + indicates closure, a −
non-closure, and a question mark an open problem.

Next the question arises whether some structural properties of cellular
language acceptors are (semi)decidable. For example, whether or not a real-
time two-way language is a real-time one-way language. The questions turned
out to be not even semidecidable.

Theorem 14. For any language family L that effectively contains Lrt(CA)
it is not semidecidable whether L ∈ L is a real-time OCA language.

In general, a family L of languages possesses a pumping lemma in the
narrow sense if for each L ∈ L there exists a constant n ≥ 1 computable
from L such that each z ∈ L with |z| > n admits a factorization z = uvw,
where |v| ≥ 1 and u′viw′ ∈ L, for infinitely many i ≥ 0. The prefix u′ and the
suffix w′ depend on u,w and i.

Theorem 15. Any language family whose word problem is semidecidable and
that effectively contains Lrt(OCA) does not possess a pumping lemma (in the
narrow sense).

Theorem 16. There is no minimization algorithm converting some CA or
OCA (with arbitrary time complexity) to an equivalent automaton of the same
type with a minimal number of states.

Nevertheless, there are nontrivial decidable properties of cellular spaces.
It is known that injectivity of the global transition function is equivalent to



224 Martin Kutrib

the reversibility of the automaton. It is shown in [2] that global reversibility
is decidable for one-dimensional CSs, whereas the problem is undecidable for
higher dimensions [36].

References

1. K. Albert, Čulik II. A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems, 1:1–16, 1987.

2. S. Amoroso and Y.N Patt. Decision procedures for surjectivity and injectivity
of parallel maps for tessellation structures. J. Comput. System Sci., 6:448–464,
1972.

3. R.M. Balzer. An 8-state minimal time solution to the firing squad synchroniza-
tion problem. Inform. Control, 10:22–42, 1967.

4. E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for your Mathe-
matical Plays. volume 2, chapter 25, Academic Press, 1982.

5. Th. Buchholz and M. Kutrib. On the power of one-way bounded cellular time
computers. In In Developments in Language Theory (DLT 1997), pp. 365-375,
1997.

6. Th. Buchholz and M. Kutrib. Some relations between massively parallel arrays.
Parallel Comput., 23:1643–1662, 1997.

7. Th. Buchholz and M. Kutrib. On time computability of functions in one-way
cellular automata. Acta Inform., 35:329–352, 1998.

8. J.H. Chang, O.H. Ibarra, and A. Vergis. On the power of one-way communica-
tion. J. ACM, 35:697–726, 1998.

9. C. Choffrut and K. Čulik II. On real-time cellular automata and trellis au-
tomata. Acta Inform., 21:393–407, 1984.

10. E.F. Codd. Cellular Automata. Academic Press, New York, 1968.
11. S.N. Cole. Real-time computation by n-dimensional iterative arrays of finite-

state machines. In IEEE Symposium on Switching and Automata Theory (SWAT
1966).

12. S.N. Cole. Real-time computation by n-dimensional iterative arrays of finite-
state machines. IEEE Trans. Comput., pages 349–365, 1969.

13. J.C. Dubacq and V. Terrier. Signals for cellular automata in dimension 2 or
higher. In Theoretical Informatics (LATIN 2002), LNCS, vol. 2286, pp. 147-163.

14. C.R. Dyer. One-way bounded cellular automata. Inform. Control, 44:261–281,
1980.

15. P.C. Fischer. Generation of primes by a one-dimensional real-time iterative
array. J. ACM, 12:388–394, 1965.

16. M. Gardner. Mathematical games. Sci. Amer, 224:112–117, 1971.
17. S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw

Hill, New York, 1996.
18. E. Goto. A minimal time solution of the firing squad problem. Technical report.
19. A. Grasselli. Synchronization of cellular arrays: The firing squad problem in two

dimensions. Inform. Control, 28:113–124, 1975.
20. J. Hartmanis. Context-free languages and Turing machine computations. In

Proceedings of the Symposia in Applied Mathematics, 19, pages 42–51, 1967.
21. G.T. Herman, W.H. Liu, S. Rowland, and A. Walker. Synchronization of growing

cellular arrays. Inform. Control, 25:103–122, 1974.



6 Cellular Automata – A Computational Point of View 225

22. O.H. Ibarra and T. Jiang. On one-way cellular arrays. SIAM J. Comput.,
16:1135–1154, 1987.

23. O.H. Ibarra and T. Jiang. Relating the power of cellular arrays to their closure
properties. Theoret. Comput. Sci., 57:225–238, 1998.

24. O.H. Ibarra, S.M. Kim, and S. Moran. Sequential machine characterizations of
trellis and cellular automata and applications. SIAM J. Comput., 14:426–447,
1985.

25. O.H. Ibarra and M.A. Palis. Some results concerning linear iterative (systolic)
arrays. J. Parallel Distributed Comput., 2:182–218, 1985.

26. O.H. Ibarra, M.A. Palis, and S.M. Kim. Fast parallel language recognition by
cellular automata. Theoret. Comput. Sci., 41(2): 231-246, 1985.

27. K. Čulik II and S. Dube. An efficient solution of the firing mob problem. Theoret.
Comput. Sci., 91:57–69, 1991.

28. K. Čulik II, J. Gruska, and A. Salomaa. Systolic trellis automata: Stability,
decidability and complexity. Inform. Control, 71:218–230, 1986.

29. K. Čulik II and S. Yu. Iterative tree automata. Theoret. Comput. Sci.,
32:227–247, 1984.

30. A.R. Smith III. Simple computation–universal cellular spaces. J. ACM,
18:339–353, 1971.

31. A.R. Smith III. Real-time language recognition by one-dimensional cellular
automata. J. Comput. System Sci., 6:233–253, 1972.

32. K. Imai and K. Morita. Firing squad synchronization problem in reversible
cellular automata. Theoret. Comput. Sci., 165:475–482, 1996.

33. K. Imai and K. Morita. A computation-universal two-dimensional 8-state trian-
gular reversible cellular automaton. Theoret. Comput. Sci., 231:181–191, 2000.

34. C. Iwamoto, T. Hatsuyama, K. Morita, and K. Imai. Constructible functions in
cellular automata and their applications to hierarchy results. Theoret. Comput.
Sci., 270:797–809, 2002.

35. T. Jiang. The synchronization of nonuniform networks of finite automata. In-
form. Comput., 97:234–261, 1992.

36. J. Kari. Reversibility and surjectivity problems of cellular automata. J. Comput.
System Sci., 48:149–182, 1994.

37. A. Klein and M. Kutrib. Fast one-way cellular automata. Theoret. Comput.
Sci., 1(3):233–250, 2003.

38. K. Kobayashi. The firing squad synchronization problem for a class of polyau-
tomata networks. J. Comput. System Sci., 17:300–318, 1978.

39. K. Kobayashi. On the minimal firing time of the firing squad synchronization
problem for polyautomata networks. Theoret. Comput. Sci., 7:149–167, 1978.

40. M. Kutrib. Automata arrays and context-free languages, pages 139–148. Kluwer
Academic Publishers, 2001.

41. M. Kutrib and R. Vollmar. The firing squad synchronization problem in defec-
tive cellular automata. IEICE Trans. Inf. Syst., pages 895–900, 1995.

42. M. Kutrib and Th. Worsch. Investigation of different input modes for cellular
automata. In Ch. Jesshope, V. Jossofov and W. Wihelmi, editors, Parallel
Processing by Cellular Automata and Arrays (Parcella 1994), Akademie Verlag,
Berlin, pp. 141-150, 1994.

43. A. Malcher. Descriptional complexity of cellular automata and decidability
questions. J. Autom. Lang. Comb., 7:549–560, 2002.

44. M. Margenstern. Frontier between decidability and undecidability: a survey.
Theoret. Comput. Sci., 231:217–251, 2000.



226 Martin Kutrib

45. B. Martin. Efficient unidimensional universal cellular automaton. In Mathe-
matical Foundations of Computer Science (MFCS 1992), volume 629 of Lecture
Notes in Computer Science, pages 374–382, Berlin, 1992.

46. B. Martin. A universal cellular automaton in quasi-linear time and its S–m–n
form. Theoret. Comput. Sci., 123:199–237, 1994.

47. J. Mazoyer. A minimal time solution to the firing squad synchronization problem
with only one bit of information exchanged. Technical report.

48. J. Mazoyer. A six-state minimal time solution to the firing squad synchronization
problem. Theoret. Comput. Sci., 50:183–238, 1987.

49. J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. The-
oret. Comput. Sci., 217:53–80, 1999.

50. E.F. Moore. The firing squad synchronization problem, pages 213–214. Addison-
Wesley, 1964.

51. F.R. Moore and G.C. Langdon. A generalized firing squad problem. Inform.
Control, 12:17–33, 1968.

52. K. Morita. Computation-universality of one-dimensional one-way reversible cel-
lular automata. Inform. Process. Lett., 42:325–329, 1992.

53. K. Morita. Reversible simulation of one-dimensional irreversible cellular au-
tomata. Theoret. Comput. Sci., 148:157–163, 1995.

54. K. Morita and S. Ueno. Computation-universal models of two-dimensional 16-
state reversible cellular automata. Trans. IEICE, 75:141, 1992.

55. H.G. Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 89:25–59, 1953.

56. Y.Rogozhin. Smalluniversalturingmachines.Theoret.Comput.Sci.,168:215–240,
1996.

57. P. Rosenstiehl, J.R. Fiksel, and A. Holliger. Intelligent graphs: Networks of finite
automata capable of solving graph problems. Academic Press, New York.

58. A. Salomaa. Formal Languages. Academic Press, New York, 1973.
59. S.R. Seidel. Language recognition and the synchronization of cellular automata.

Technical report.
60. I. Shinahr. Two- and three-dimensional firing-squad synchronization problems.

Inform. Control, 24:163–180, 1974.
61. A.R. Smith. Cellular automata and formal languages. In IEEE Symposium on

Switching and Automata Theory (SWAT 1970). IEEE Press, pp. 216-224, 1970.
62. R. Sommerhalder and S.C. van Westrhenen. Parallel language recognition in

constant time by cellular automata. Acta Inform., 19:397–407, 1983.
63. H. Szwerinski. Time optimal solution of the firing squad synchronization prob-

lem for n-dimensional rectangles with the general at an arbitrary position. The-
oret. Comput. Sci., 19:305–320, 1982.

64. V. Terrier. On real time one-way cellular array. Theoret. Comput. Sci.,
141:331–335, 1995.

65. V. Terrier. Language not recognizable in real time by one-way cellular automata.
Theoret. Comput. Sci., 156:281–287, 1996.

66. V. Terrier. Construction of a signal of ratio n+�√n�. Unpublished manuscript,
2002.

67. H. Umeo. A simple design of time-efficient firing squad synchronization algo-
rithms with fault-tolerance. IEICE Trans. Inf. Syst., pages 733–739, 2004.

68. H. Umeo and N. Kamikawa. A design of real-time non-regular sequence gen-
eration algorithms and their implementations on cellular automata with 1-bit
inter-cell communications. Fund. Inform., 52:257–275, 2002.



6 Cellular Automata – A Computational Point of View 227

69. H. Umeo and N. Kamikawa. Real-time generation of primes by a 1-bit-
communication cellular automaton. Fund. Inform., 58:421–435, 2003.

70. H. Umeo, M. Maeda, M. Hisaoka, and M. Teraoka. A state-efficient mapping
scheme for designing two-dimensional firing squad synchronization algorithms.
Fund. Inform., 74:603–623, 2006.

71. H. Umeo, K. Morita, and K. Sugata. Deterministic one-way simulation of two-
way real-time cellular automata and its related problems. Inform. Process. Lett.,
14:158–161, 1982.

72. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press. Edited and completed by Arthur W. Burks.

73. A. Waksman. An optimum solution to the firing squad synchronization problem.
Inform. Control, 9:66–78, 1996.




