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Preface

The theory of formal languages is widely accepted as the backbone of the-
oretical computer science. It mainly originated from mathematics (combi-
natorics, algebra, mathematical logic) and generative linguistics. Later, new
specializations emerged from areas of either computer science (concurrent and
distributed systems, computer graphics, artificial life), biology (plant develop-
ment, molecular genetics), linguistics (parsing, text searching), or mathemat-
ics (cryptography). All human problem solving capabilities can be considered,
in a certain sense, as a manipulation of symbols and structures composed by
symbols, which is actually the stem of formal language theory. Language – in
its two basic forms, natural and artificial – is a particular case of a symbol
system.

This wide range of motivations and inspirations explains the diverse ap-
plicability of formal language theory Ű and all these together explain the
very large number of monographs and collective volumes dealing with formal
language theory.

In 2004 Springer-Verlag published the volume Formal Languages and Ap-
plications, edited by C. Martín-Vide, V. Mitrana and G. Păun in the series
Studies in Fuzziness and Soft Computing 148, which was aimed at serving
as an overall course-aid and self-study material especially for PhD students
in formal language theory and applications. Actually, the volume emerged in
such a context: it contains the core information from many of the lectures de-
livered to the students of the International PhD School in Formal Languages
and Applications organized since 2002 by the Research Group on Mathemat-
ical Linguistics from Rovira i Virgili University, Tarragona, Spain.

During the editing process of the aforementioned volume, two situations
appeared:

Some important aspects, mostly extensions and applications of classical
formal language theory to different scientific areas, could not be covered, by
different reasons. New courses were promoted in the next editions of the PhD
School mentioned above.



VI Preface

To intend to fill up this gap, the volume Recent Advances in Formal Lan-
guages and Applications, edited by Z. Ésik, C. Martín-Vide and V. Mitrana,
was published in 2006 by Springer-Verlag in the series Studies in Computa-
tional Intelligence 25.

The present volume is a continuation of this comprehensive publication
effort. We believe that, besides accomplishing its main goal of complementing
the previous volumes in representing a gate to formal language theory and
its applications, it will be also useful as a general source of information in
computation theory, both at the undergraduate and research level.

For the sake of uniformity, the introductory chapter of the first volume that
presents the mathematical prerequisites as well as most common concepts and
notations used throughout all chapters appears in the present volume as well.
However, it may happen that terms other than those in the introductory chap-
ter have different meanings in different chapters or different terms have the
same meaning. In each chapter, the subject is treated relatively independent
of the other chapters, even if several chapters are related. This way, the reader
gets in touch with diverse points of view on an aspect common to two or more
chapters. We are convinced of the usefulness of such an opportunity to a young
researcher.

Acknowledgements
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and friendly cooperation, as well as to Springer-Verlag, for the efficient and
pleasant collaboration.

Tarragona, Gemma Bel-Enguix
October 2007 M. Dolores Jiménez-López
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1

Basic Notation and Terminology

This chapter presents the basic mathematical and formal language theory
notations and terminology used throughout the book.

1.1 General Mathematical Notations

The notations are those provided by standard Latex and customary in math-
ematics.

Set theory: ∈ denotes the membership (of an element to a set), ⊆ denotes
the inclusion (not necessarily proper) and ⊂ denotes the strict inclusion; the
union, intersection, and difference of two sets are denoted by ∪,∩,−, respec-
tively. (We do not use \ for the difference, because \ denotes the left quotient
of languages.) The empty set is denoted by ∅, the power set of a set X is
denoted by 2X , while the cardinality of a set X is denoted by card(X). A sin-
gleton set is often identified with its single element, and hence we also write
a for {a}. Two sets X and Y are said to be incomparable if both X − Y and
Y −X are non-empty.

Sets of numbers: the set of natural numbers (zero included) is denoted by
N, while the sets of integer, rational, and real numbers are denoted by Z,
Q, R, respectively. The subsets of these sets consisting of strictly positive
numbers are denoted by N+,Z+,Q+,R+, respectively.

1.2 Basic String Notions and Notation

An alphabet is a finite nonempty set of abstract symbols. For an alphabet V
we denote by V ∗ the set of all strings (we also say words) of symbols from V .
The empty string is denoted by λ. The set of nonempty strings over V , that
is V ∗−{λ}, is denoted by V +. Each subset of V ∗ is called a language over V .
A language which does not contain the empty string (hence being a subset of
V +) is said to be λ-free.
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If x = x1x2, for some x1, x2 ∈ V ∗, then x1 is called a prefix of x and x2 is
called a suffix of x; if x = x1x2x3 for some x1, x2, x3 ∈ V ∗, then x2 is called a
substring of x. The sets of all prefixes, suffixes, and substrings of a string x are
denoted by Pref(x), Suf(x), and Sub(x), respectively. The sets of proper (that
is, different from λ and from the string itself) prefixes, suffixes, and subwords
of x are denoted by PPref(x), PSuf(x), and PSub(x), respectively.

The length of a string x ∈ V ∗ (the number of occurrences of symbols from
V in x) is denoted by |x|. The number of occurrences of a given symbol a ∈ V
in x ∈ V ∗ is denoted by |x|a. If x ∈ V ∗ and U ⊆ V, then by |x|U we denote
the length of the string obtained by erasing from x all symbols not in U, that
is,

|x|U =
∑

a∈U

|x|a.

For a language L ⊆ V ∗, the set length(L) = {|x| | x ∈ L} is called the
length set of L.

The set of symbols occurring in a string x is denoted by alph(x). For a
language L ⊆ V ∗, we denote alph(L) =

⋃
x∈L alph(x).

The Parikh vector associated with a string x ∈ V ∗ with respect to the
alphabet V = {a1, . . . , an} is ΨV (x) = (|x|a1 , |x|a2 , . . . , |x|an

) (note that the
ordering of the symbols from V is relevant). For L ⊆ V ∗ we define ΨV (L) =
{ΨV (x) | x ∈ L}; the mapping ΨV : V ∗ −→ Nn is called the Parikh mapping
associated with V .

A set M of vectors in Nn, for some n ≥ 1, is said to be linear if there are
m ≥ 0 and the vectors vi ∈ Nn, 0 ≤ i ≤ m, such that

M = {v0 +
m∑

i=1

αivi | α1, . . . , αm ∈ N}.

A finite union of linear sets is said to be semilinear.
A language L ⊆ V ∗ is semilinear if ΨV (L) is a semilinear set. The family

of semilinear languages is denoted by SLIN .

1.3 Operations with Strings and Languages

The operations of union, intersection, difference, and complement are defined
for languages in the standard set-theoretical way.

The concatenation of two languages L1, L2 is L1L2 = {xy | x ∈ L1, y ∈
L2}.

We define further:
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L0 = {λ},
Li+1 = LLi, i ≥ 0,

L∗ =
∞⋃

i=0

Li (the Kleene ∗ -closure),

L+ =
∞⋃

i=1

Li (the Kleene + -closure).

A mapping s : V −→ 2U∗
, extended to s : V ∗ −→ 2U∗

by s(λ) = {λ} and
s(x1x2) = s(x1)s(x2), for x1, x2 ∈ V ∗, is called a substitution. If for all a ∈ V
we have λ /∈ s(a), then h is a λ-free substitution. If card(s(a)) = 1 for all
a ∈ V , then s is called a morphism (we also say homomorphism).

A morphism h : V ∗ −→ U∗ is called a coding if h(a) ∈ U for each a ∈ V
and a weak coding if h(a) ∈ U ∪ {λ} for each a ∈ V . If h : (V1 ∪ V2)∗ −→ V ∗

1

is the morphism defined by h(a) = a for a ∈ V1, and h(a) = λ otherwise, then
we say that h is a projection (associated with V1) and we denote it by prV1 .
For a morphism h : V ∗ −→ U∗, we define a mapping h−1 : U∗ −→ 2V ∗

(and
we call it an inverse morphism) by h−1(w) = {x ∈ V ∗ | h(x) = w}, w ∈ U∗.

The substitutions (hence also the morphisms and inverse morphisms) are
extended to languages in the natural way.

For x, y ∈ V ∗ we define their shuffle by

x y = {x1y1 . . . xnyn | x = x1 . . . xn, y = y1 . . . yn,

xi, yi ∈ V ∗, 1 ≤ i ≤ n, n ≥ 1}.

The left quotient of a language L1 ⊆ V ∗ with respect to L2 ⊆ V ∗ is

L2\L1 = {w ∈ V ∗ | there is x ∈ L2 such that xw ∈ L1}.

The left derivative of a language L ⊆ V ∗ with respect to a string x ∈ V ∗

is
∂l

x(L) = {w ∈ V ∗ | xw ∈ L}.
The right quotient and the right derivative are defined in a symmetric

manner:

L1/L2 = {w ∈ V ∗ | there is x ∈ L2 such that wx ∈ L1},
∂r

x(L) = {w ∈ V ∗ | wx ∈ L}.

Let F be a family of languages and ◦ be an n-ary operation with languages
from F . The family F is closed under ◦ if ◦(L1, L2, . . . , Ln) ∈ F for any choice
of the languages Li ∈ F , 1 ≤ i ≤ n. The family F is closed under substitution
with languages from the family C if for any language L ⊆ V ∗, L ∈ F , and
any substitution s : V ∗ −→ 2U∗

such that s(a) ∈ C for all a ∈ V , the language
s(L) =

⋃
x∈L s(x) still lies in F . If C = F , we simply say that F is closed

under substitution.
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A family of languages closed under (arbitrary) λ-free morphisms, inverse
morphisms and intersection with regular languages is called (full) trio - known
also as (cone) faithful cone. If a (full) trio is further closed under union, then it
is called (full) semi-AFL. The abbreviation AFL comes from Abstract Family
of Languages. A (full) semi-AFL closed under concatenation and Kleene (*-)
+-closure is called a (full) AFL.

1.4 Chomsky Grammars

A Chomsky grammar is a quadruple G = (N,T, S, P ), where N,T are disjoint
alphabets, S ∈ N , and P is a finite subset of (N ∪T )∗N(N ∪T )∗× (N ∪T )∗.

The alphabet N is called the nonterminal alphabet, T is the terminal al-
phabet, S is the axiom (start symbol), and P is the set of production rules
of G. The rules (we also say productions) (u, v) of P are written in the form
u → v. Note that |u|N ≥ 1. Sometimes, one uses to denote by VG the total
alphabet of G, that is, VG = N ∪ T .

For x, y ∈ (N ∪ T )∗ we write

x =⇒G y iff x = x1ux2, y = x1vx2,

for some x1, x2 ∈ (N ∪ T )∗ and u→ v ∈ P.

One says that x directly derives y (with respect to G). When G is understood
we write =⇒ instead of =⇒G. The reflexive closure of the relation =⇒ is
denoted by =⇒+, and the reflexive and transitive closure by =⇒∗. Each string
w ∈ (N ∪ T )∗ such that S =⇒∗

G w is called a sentential form.
The language generated by G, denoted by L(G), is defined by

L(G) = {x ∈ T ∗ | S =⇒∗ x}.

Two grammars G1, G2 are called equivalent if L(G1) − {λ} = L(G2) − {λ}
(the two languages coincide modulo the empty string).

According to the form of their rules, the Chomsky grammars are classified
as follows. A grammar G = (N,T, S, P ) is called:

– length-increasing (one also says monotonous), if for all u→ v ∈ P we have
|u| ≤ |v|.

– context-sensitive, if each u → v ∈ P has u = u1Au2, v = u1xu2, for
u1, u2 ∈ (N ∪ T )∗, A ∈ N, and x ∈ (N ∪ T )+. (In length-increasing and
context-sensitive grammars the production S → λ is allowed, provided
that S does not appear in the right-hand members of rules in P .)

– context-free, if each production u→ v ∈ P has u ∈ N .
– linear, if each rule u→ v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗NT ∗.
– right-linear, if each rule u→ v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗N .
– left-linear, if each rule u→ v ∈ P has u ∈ N and v ∈ T ∗ ∪NT ∗.
– regular, if each rule u→ v ∈ P has u ∈ N and v ∈ T ∪ TN ∪ {λ}.
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The arbitrary, length-increasing, context-free, and regular grammars are also
said to be of type 0, type 1, type 2, and type 3, respectively.

We denote by RE, LI, CS, CF, LIN, RLIN, LLIN, and REG the fami-
lies of languages generated by arbitrary, length-increasing, context-sensitive,
context-free, linear, right-linear, left-linear, and regular grammars, respec-
tively (RE stands for recursively enumerable). By FIN we denote the family
of finite languages, and by ARB the family of arbitrary languages.

The following equalities and strict inclusions hold:

FIN ⊂ REG = RLIN = LLIN ⊂ LIN ⊂ CF ⊂ CS = LI ⊂ RE ⊂ ARB.

We call this the Chomsky hierarchy.

1.5 Decision Problems

The goal of this section is to give an informal description of a decision problem
and to mention the most common decision problems in formal language theory.

Roughly speaking, a decision problem requires an output YES/NO to any
of its instances. For example, “Is the natural number n prime?” is a decision
problem; further, “Is 3 prime?” is an instance of the problem which is true while
“Is 4 prime?” is a false instance of the same problem. A decision problem is
(algorithmically/recursively) decidable if there exists an algorithm, which for
any instance of the problem given as input, outputs YES or NO, provided
that the input is true or not, respectively.

The most common decision problems in formal language theory are:

– Emptiness: Is a given language empty?
– Finiteness: Is a given language a finite set?
– Membership: Does w ∈ L hold for a given word w and a language L?
– Inclusion: Does L1 ⊆ L2 hold for two given languages L1 and L2?
– Equivalence: Does L1 = L2 hold for two given languages L1 and L2?

Clearly, a decision problem is proved to be decidable if one provides an
algorithm as above. Generally, a decision problem is proved to be undecid-
able by reducing it to a problem known to be undecidable. The following
combinatorial problem, known as the Post Correspondence Problem (PCP), is
undecidable. An instance of the PCP consists of an alphabet V with at least
two letters and two lists of words over V

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn).

The problem asks whether or not a sequence i1, i2, . . . , ik of positive integers
exists, each between 1 and n, such that ui1ui2 . . . uik

= vi1vi2 . . . vik
.

We do not give here further elements of formal language theory. They will
be elaborated in the subsequent chapters.

For the reader’s convenience, we end this section with a list of monographs
and collective volumes directly or partially related to formal language theory.
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1.6 Books on Formal Language Theory

1. A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation, and Com-
piling, Prentice Hall, Englewood Cliffs, N.J., vol. I: 1971, vol. II: 1973.

2. A.V. Aho, J.D. Ullman, Principles of Compiler Design, Addison-Wesley,
Reading, Mass., 1977.

3. I. Alexander, F.K. Hanna, Automata Theory: An Engineering Approach,
Crane Russak, 1975.

4. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart,
1979.

5. R.V. Book, ed., Formal Language Theory. Perspectives and Open Prob-
lems, Academic Press, New York, 1980.

6. W. Brauer, Automatentheorie, B.G. Teubner, Stuttgart, 1984.
7. C. Choffrut, ed., Automata Networks, Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 1988.
8. D.I.A. Cohen, Computer Theory, 2nd edition, John Wiley, 1997.
9. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems.

A Grammatical Approach to Distribution and Cooperation, Gordon and
Breach, London, 1994.

10. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

11. J. Dassow, G. Rozenberg, A. Salomaa, eds., Developments in Language
Theory, World Scientific, Singapore, 1995.

12. M.D. Davis, E.J. Weyuker, Computability, Complexity, and Languages,
Academic Press, New York, 1983.

13. P.J. Denning, J.B. Dennis, J.E. Qualitz, Machines, Languages, and Com-
putation, Prentice-Hall, Englewood Cliffs, N.J., 1978.

14. D.-Z. Du, K.-I Ko, Problem Solving in Automata, Languages and Com-
plexity, John Wiley, 2001.

15. H. Ehrig, G. Engels, H-J. Kreowski, G. Rozenberg, eds., Handbook of
Graph Grammars and Computing by Graph Transformation, World Sci-
entific, Singapore, 1999.

16. S. Eilenberg, Automata, Languages, and Machines, Academic Press,
New York, vol. A: 1974, vol. B: 1976.

17. E. Engeler, Formal Languages, Markham, Chicago, 1968.
18. Z. Ésik, C. Martín-Vide, V. Mitrana, eds., Recent Advances in Formal

Languages and Applications, Springer-Verlag, Berlin, 2006.
19. K.S. Fu, Syntactic Pettern Recognition. Applications, Springer-Verlag,

Heidelberg, 1977.
20. M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the

Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.
21. F. Gécseg, Products of Automata, Springer-Verlag, Berlin, 1986.
22. F. Gécseg, I. Peak, Algebraic Theory of Automata, Akademiai Kiado,
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23. F. Gécseg, M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.
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2.1 Introduction

Combinatorics on words, or sequences or strings of symbols over a finite al-
phabet, is a rather new field although the first papers were published at the
beginning of the 20th century [120, 121]. The interest in the study of com-
binatorics on words has been increasing since it finds applications in various
research areas of mathematics, computer science, and biology where the data
can be easily represented as words over some alphabet. Such areas may be
concerned with algorithms on strings [38, 48, 50, 51, 52, 69, 72, 84, 102, 118],
semigroups, automata and languages [2, 45, 55, 75, 82, 92, 93], molecular
genetics [78], or codes [5, 73, 79].

Motivated by molecular biology of nucleic acids, Berstel and Boasson in-
troduced in 1999 the notion of partial words which are sequences that may
contain a number of “do not know” symbols or “holes” [4]. DNA molecules are
the carriers of the genetic information in almost all organisms. Let us look
into the structure of such a molecule. A single stranded DNA molecule or a
DNA strand may be viewed as a sequence over the alphabet consisting of
the four nucleotides: a (adenine), c (cytosine), g (guanine), and t (thymine).
Each strand has two different ends: the 3′ end, and the 5′ end. The familiar
double helix of DNA, which was discovered by Watson and Crick, arises by
the bonding of a strand in the 5′ − 3′ direction with another strand in the
3′ − 5′ direction with the restriction that adenine bonds with thymine, and
cytosine bonds with guanine. Such a bonding gives rise to a double stranded
DNA molecule as in the figure

5′ - c c a c c t c g a c c c t c - 3′

3′ - g g t g g a g c t g g g a g - 5′

Because of Watson-Crick’s complementarity (a bonds to only t, and c bonds
only to g), we can view double stranded DNA sequences as single stranded

∗This material is based upon work supported by the National Science Foundation
under Grant Nos. CCF–0207673 and DMS–0452020.
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strings by keeping the strand in the 5′ − 3′ direction. The molecule in the
example above can be viewed as

5′ - ccacctcgaccctc - 3′

or simply as ccacctcgaccctc, a word over the alphabet {a, c, g, t}. However
bonding is not always perfect in nature as in the figure

5′ - c c a c c t c g a c c c t c - 3′

3′ - g g t t g a g c c g g g a g - 5′

where there is an occurrence of c paired with t, and an occurrence of a paired
with c. In such a case, we can view the molecule as 5′− ccactcgccctc− 3′ or
as ccactcgccctc, where the ’s stand for “do not know” symbols also called
“holes”. Thus, the latter example gives rise to a partial word with two holes
over the alphabet {a, c, g, t}. Processes in molecular biology can be seen as
operations on DNA sequences [72, 112]. If a set of DNA molecules fulfilling
a certain property has changed a little bit after some time or under some
influence, it is important to know whether the desired property still holds
[91].

Several interesting combinatorial properties of partial words have been in-
vestigated and connections have been made with problems in graph theory and
number theory, in particular, with problems concerning primitive sets of inte-
gers [23, 24], lattices [23, 24], partitions of integers and their generalizations
[14], chromatic polynomials [23], Sudoku games [107], vertex connectivity in
graphs [12, 29], etc. Partial words are useful in a new generation of pattern
matching algorithms that search for local similarities between sequences. In
this area, they are called “spaced seeds” and a lot of work has been dedicated
to their influence on the algorithms’ performance [40, 66, 83, 97, 103, 104].
Partial words have the potential for impacts in bio-inspired computing where
they have been considered, in particular, for finding good encodings for DNA
computations [90].

We provide here a few bibliographic remarks. Lothaire’s first book Com-
binatorics on Words appeared in 1983 [92], while recent developments culmi-
nated in a second book Algebraic Combinatorics on Words which appeared
in 2002 [93] and in a third book which appeared in 2005 [94]. Several books
have appeared quite recently that emphasize connections of combinatorics on
words to several research areas. We mention the book of Allouche and Shallit
where the emphasis is on automata theory [2], the book of Crochemore and
Rytter where the emphasis is on string algorithms [52], the book of Gusfield
where the emphasis is on algorithms related to biology [72], the book of de
Luca and Varrichio where the emphasis is on algebra [55], and finally the book
of Blanchet-Sadri where the emphasis is on partial words [10].

Research in combinatorics on partial words is underway where there are
several open problems that lay unexplored. After reviewing basic concepts
on words and partial words in Section 2.2, we will discuss some of these open
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problems which we have divided into sections: 2.3–2.5 study extensions to par-
tial words of three basic classical results on periodicity of words: The theorem
of Fine and Wilf which considers the simultaneous occurrence of different pe-
riods in one word [67], the critical factorization theorem which relates local
and global periodicity of words [43], and a theorem of Guibas and Odlyzko
which gives the structure of the set of periods of a word [71]. Section 2.6 deals
with the two word properties of primitiveness and borderedness and is con-
cerned, in particular, with the counting of primitive and unbordered partial
words. Section 2.7 solves some equations on partial words. Here the notion of
“equality” is replaced by that of “compatibility ”. Section 2.8 studies the con-
cept of unavoidable set of partial words, while Section 2.9 develops square- and
overlap-freeness of partial words. Finally, Section 2.10 discusses some other
open problems related to codes of partial words, punctured languages, and
tiling periodicity.

2.2 Preliminaries

This section is devoted to reviewing basic concepts on words and partial words.

2.2.1 Words

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A
are called letters and any finite sequence of letters is called a word over A. The
empty word, that is, the word containing no letter, is denoted by ε. For any
word u over A, |u| denotes the number of letters occurring in u and is called
the length of u. In particular, |ε| = 0. The set of all words over A is denoted by
A∗. If we define the operation of two words u and v of A∗ by juxtaposition (or
concatenation), then A∗ is a monoid with identity ε. We call A+ = A∗ \ {ε}
the free semigroup generated by A and A∗ the free monoid generated by A.
The set A∗ can also be viewed as

⋃
n≥0 An where A0 = {ε} and An is the set

of all words of length n over A.
A word of length n over A can be defined by a total function u : {0, . . . , n−

1} → A and is usually represented as u = a0a1 . . . an−1 with ai ∈ A. A period
of u is a positive integer p such that ai = ai+p for 0 ≤ i < n − p. For a
word u, the powers of u are defined inductively by u0 = ε and, for any i ≥ 1,
ui = uui−1. The set of symbols occurring in a word u is denoted by α(u).
The reversal of u, denoted by rev(u), is defined as follows: If u = ε, then
rev(ε) = ε, and if u = a0a1 . . . an−1, then rev(u) = an−1 . . . a1a0. A word u is
a factor of the word v if there exist words x, y such that v = xuy. The factor
u is called proper if u �= ε and u �= v. The word u is a prefix (respectively,
suffix) of v if x = ε (respectively, y = ε).

A nonempty word u is primitive if there exists no word v such that u = vi

with i ≥ 2. Note the fact that the empty word is not primitive. If u is a
nonempty word, then there exist a unique primitive word v and a unique
positive integer i such that u = vi.



14 Francine Blanchet-Sadri

2.2.2 Partial Words

A partial word u of length n over A is a partial function u : {0, . . . , n−1} → A.
For 0 ≤ i < n, if u(i) is defined, then i belongs to the domain of u, denoted by
i ∈ D(u), otherwise i belongs to the set of holes of u, denoted by i ∈ H(u). A
word over A is a partial word over A with an empty set of holes (we sometimes
refer to words as full words). The length of u or n is denoted by |u|.

If u is a partial word of length n over A, then the companion of u, denoted
by u�, is the total function u� : {0, . . . , n− 1} → A ∪ {} defined by

u�(i) =
{

u(i) if i ∈ D(u)
 otherwise

The bijectivity of the map u �→ u� allows us to define for partial words
concepts such as concatenation, powers, etc in a trivial way. The word
u� = abbbbcb is the companion of the partial word u of length |u| = 8 where
D(u) = {0, 1, 2, 4, 5, 6, 7} and H(u) = {3}. For convenience, we will refer to a
partial word over A as a word over the enlarged alphabet A� = A∪{}, where
the additional symbol  plays the special role of a “do not know” symbol or
“hole”. This allows us to say for example “the partial word abaaa” instead
of “the partial word with companion abaaa”. The set of all partial words
over A with an arbitrary number of holes is denoted by A∗

� which is a monoid
under the operation of concatenation where ε serves as the identity.

A (strong) period of a partial word u over A is a positive integer p such
that u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p. In such a case, we
call u (strongly) p-periodic. Similarly, a weak period of u is a positive integer
p such that u(i) = u(i + p) whenever i, i + p ∈ D(u). In such a case, we call
u weakly p-periodic. The partial word abbbbcbb is weakly 3-periodic but is
not strongly 3-periodic. The latter shows a difference between partial words
and full words since every weakly p-periodic full word is strongly p-periodic.
Another difference worth noting is the fact that even if the length of a partial
word u is a multiple of a weak period of u, then u is not necessarily a power
of a shorter partial word. The minimum period of u is denoted by p(u), and
the minimum weak period by p′(u). The set of all periods (respectively, weak
periods) of u is denoted by P(u) (respectively, P ′(u)).

For a partial word u, positive integer p and integer 0 ≤ i < p, define

ui,p = u(i)u(i + p)u(i + 2p) . . . u(i + jp)

where j is the largest nonnegative integer such that i + jp < |u|. Then u is
(strongly) p-periodic if and only if ui,p is (strongly) 1-periodic for all 0 ≤
i < p, and u is weakly p-periodic if and only if ui,p is weakly 1-periodic for
all 0 ≤ i < p. Strongly 1-periodic partial words as well as the full factors of
weakly 1-periodic partial words are over a singleton alphabet.

If u and v are two partial words of equal length, then u is said to be
contained in v, denoted by u ⊂ v, if all elements in D(u) are in D(v) and
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u(i) = v(i) for all i ∈ D(u). The order u ⊂ v on partial words is obtained
when we let  < a and a ≤ a for all a ∈ A. For example, ab �⊂ ab and
ab �⊂ aab, while ab ⊂ abb.

A partial word u is primitive if there exists no word v such that u ⊂ vi

with i ≥ 2. Note that if v is primitive and v ⊂ u, then u is primitive as well.
It was shown in [9] that if u is a nonempty partial word, then there exist a
primitive word v and a positive integer i such that u ⊂ vi. However uniqueness
does not hold as seen with the partial word u = a where u ⊂ a2 and u ⊂ ba
for distinct letters a, b.

Partial words u and v are compatible, denoted by u ↑ v, if there exists a
partial word w such that u ⊂ w and v ⊂ w. In other words, u(i) = v(i) for
every i ∈ D(u) ∩D(v). Note that for full words, the notion of compatibility
is simply that of equality. For example, aba � ↑ acbb but abbc ↑ bbc.

In the rest of this section, we discuss commutativity and conjugacy in the
context of partial words.

Let us start with commutativity. The case of full words is well known and
is stated in the following theorem.

Theorem 1. Let x and y be nonempty words. Then xy = yx if and only if
there exists a word z such that x = zm and y = zn for some integers m,n.

For nonempty partial words x and y, if there exist a word z and integers
m,n such that x ⊂ zm and y ⊂ zn, then xy ⊂ zm+n, yx ⊂ zm+n, and xy ↑ yx.
The converse is not true in general: if x = bb and y = abb, then

xy = bbabb ↑ abbbb = yx

but no desired z exists.
Let us first examine the case of one hole.

Theorem 2. [4] Let x, y be nonempty partial words such that xy has at most
one hole. If xy ↑ yx, then there exists a word z such that x ⊂ zm and y ⊂ zn

for some integers m,n.

Now, for the case of an arbitrary number of holes, let k, l be positive
integers satisfying k ≤ l. For 0 ≤ i < k + l, define

seqk,l(i) = (i0, i1, i2, . . . , in, in+1)

where i0 = i = in+1; for 1 ≤ j ≤ n, ij �= i; and for 1 ≤ j ≤ n + 1,

ij =
{

ij−1 + k if ij−1 < l
ij−1 − l otherwise

For example, seq6,8(0) = (0, 6, 12, 4, 10, 2, 8, 0).
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Definition 1. [11] Let k, l be positive integers satisfying k ≤ l and let z be
a partial word of length k + l. We say that z is (k, l)-special if there exists
0 ≤ i < k such that seqk,l(i) = (i0, i1, i2, . . . , in, in+1) contains (at least) two
positions that are holes of z while z(i0)z(i1)z(i2) . . . z(in+1) is not 1-periodic.

Example 1. Let z = cbcacbccaca, and let k = 6 and l = 8 so |z| = k+ l. We
wish to determine if z is (6, 8)-special. We already calculated seq6,8(0) and

z(0) z(6) z(12) z(4) z(10) z(2) z(8) z(0)
c c c  c c c c

This sequence does not satisfy the definition, and so we must continue with cal-
culating seq6,8(1) = (1, 7, 13, 5, 11, 3, 9, 1). The corresponding letter sequence
is

z(1) z(7) z(13) z(5) z(11) z(3) z(9) z(1)
b b a  a a  b

Here we have two positions in the sequence which are holes, and the sequence
is not 1-periodic. Hence, z is (6, 8)-special.

Under the extra condition that xy is not (|x|, |y|)-special, an extension of
Theorem 2 holds when xy has an arbitrary number of holes.

Theorem 3. [11] Let x, y be nonempty partial words such that |x| ≤ |y|. If
xy ↑ yx and xy is not (|x|, |y|)-special, then there exists a word z such that
x ⊂ zm and y ⊂ zn for some integers m,n.

Now, let us discuss conjugacy. Again, the case of full words is well known.

Theorem 4. Let x, y, z (x �= ε and y �= ε) be words such that xz = zy. Then
x = uv, y = vu, and z = (uv)nu for some words u, v and integer n ≥ 0.

For example, if x = abcda, y = daabc, and z = abc, then xz = zy because
(abcda)(abc) = (abc)(daabc). Here u = abc, v = da, and n = 0.

The case of partial words is more subtle.

Theorem 5. [28] Let x, y, z be partial words with x, y nonempty. If xz ↑ zy
and xz ∨ zy is |x|-periodic, then there exist words u, v such that x ⊂ uv,
y ⊂ vu, and z ⊂ (uv)nu for some integer n ≥ 0.

To illustrate Theorem 5, let x = ba, y = b, and z = bab. Then we
have

xz =  b a b  a b    
zy = b  a b      b 

xz ∨ zy = b b a b  a b   b 
It is clear that xz ↑ zy and xz ∨ zy is |x|-periodic. Putting u = bb and v = a,
we can verify that the conclusion does indeed hold.
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Corollary 1. [28] Let x, y be nonempty partial words, and let z be a full word.
If xz ↑ zy, then there exist words u, v such that x ⊂ uv, y ⊂ vu, and z ⊂
(uv)nu for some integer n ≥ 0.

Note that the above Corollary does not necessarily hold if z is not full
even if x, y are full. The partial words x = a, y = b, and z = bb provide a
counterexample.

Two conjugacy theorems follow without any restriction on z.

Theorem 6. [13] Let x, y and z be partial words such that |x| = |y| > 0. Then
xz ↑ zy if and only if xzy is weakly |x|-periodic.

Theorem 7. [13]
Let x, y and z be partial words such that |x| = |y| > 0. Then the following

hold:

1. If xz ↑ zy, then xz and zy are weakly |x|-periodic.
2. If xz and zy are weakly |x|-periodic and � |z||x|� > 0, then xz ↑ zy.

The assumption � |z||x|� > 0 is necessary. To see this, consider x = aa, y = ba

and z = a. Here, xz and zy are weakly |x|-periodic, but xz �↑ zy.

2.3 Periods in Partial Words

Notions and techniques related to periodic structures in words find impor-
tant applications in virtually every area of theoretical and applied computer
science, notably in text processing [51, 52], data compression [49, 119, 123],
coding [5], computational biology [39, 72, 100, 112], string searching and pat-
tern matching algorithms [38, 50, 51, 52, 69, 72, 84, 102]. Repeated patterns
and related phenomena in words have played over the years a central role
in the development of combinatorics on words, and have been highly valu-
able tools for the design and analysis of algorithms [45, 92, 93, 94]. In many
practical applications, such as DNA sequence analysis, repetitions admit a
certain variation between copies of the repeated pattern because of errors due
to mutation, experiments, etc. Approximate repeated patterns, or repetitions
where errors are allowed, are playing a central role in different variants of
string searching and pattern matching problems [85, 86, 87, 88, 111]. Partial
words have acquired great importance in this context.

The notion of period is central in combinatorics on words and there are
many fundamental results on periods of words. Among them is the well known
periodicity result of Fine and Wilf [67] which intuitively determines how far
two periodic events have to match in order to guarantee a common period.
More precisely, any word u having two periods p, q and length at least p +
q − gcd(p, q) has also the greatest common divisor of p and q, gcd(p, q), as a
period. The bound p + q − gcd(p, q) is optimal since counterexamples can be
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provided for shorter lengths, that is, there exists an optimal word of length
p + q − gcd(p, q) − 1 having p and q as periods but not having gcd(p, q) as
period [45]. Extensions of Fine and Wilf’s result to more than two periods are
given in [42, 47, 80, 122]. For instance, in [47], Constantinescu and Ilie give
an extension for an arbitrary number of periods and prove that their bounds
are optimal.

Fine and Wilf’s result has been generalized to partial words in two ways:

• First, any partial word u with h holes and having two weak periods p, q
and length at least the so-denoted l(h, p, q) has also strong period gcd(p, q)
provided u satisfies the condition of not being (h, p, q)-special (this concept
will be defined below). This extension was done for one hole by Berstel
and Boasson where the class of (1, p, q)-special partial words is empty [4];
for two or three holes by Blanchet-Sadri and Hegstrom [25]; and for an
arbitrary number of holes by Blanchet-Sadri [8]. Elegant closed formulas
for the bounds l(h, p, q) were given and shown to be optimal.

• Second, any partial word u with h holes and having two strong periods
p, q and length at least the so-denoted L(h, p, q) has also strong period
gcd(p, q). The study of the bounds L(h, p, q) was initiated by Shur and
Gamzova [114]. In particular, they gave a closed formula for L(h, p, q) in
the case where h = 2 (the cases where h = 0 or h = 1 are implied by the
above mentioned results). In [12], Blanchet-Sadri, Bal and Sisodia gave
closed formulas for the optimal bounds L(h, p, q) in the case where p = 2
and also in the case where q is “large”. In addition, they gave upper bounds
when q is “small” and h = 3, 4, 5 or 6. Their proofs are based on connectiv-
ity in a graph G(p,q)(u) associated with a given p- and q-periodic partial
word u. More recently, in [29], Blanchet-Sadri, Mandel and Sisodia pursue
by studying two types of vertex connectivity on G(p,q)(u): the so-called
modified degree connectivity and r-set connectivity where r = q mod p.
As a result, they give an efficient algorithm for computing L(h, p, q), and
manage to give closed formulas in several cases including the h = 3 and
h = 4 cases.

In this section, we discuss in details the two ways Fine and Wilf’s pe-
riodicity result has been extended to partial words: Section 2.3.1 discusses
the weak periodicity generalizations and Section 2.3.2 the strong periodicity
generalizations. For easy reference, we recall Fine and Wilf’s result.

Theorem 8. [67]
Let p and q be positive integers. If a full word u is p-periodic and q-periodic

and |u| ≥ p + q − gcd(p, q), then u is gcd(p, q)-periodic.

2.3.1 Weak Periodicity

In this section, we review the generalizations related to weak periodicity.
We first recall Berstel and Boasson’s result for partial words with exactly

one hole where the bound p + q is optimal.
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Theorem 9. [4]
Let p and q be positive integers satisfying p < q. Let u be a partial word with

one hole. If u is weakly p-periodic and weakly q-periodic and |u| ≥ l(1, p, q) =
p + q, then u is strongly gcd(p, q)-periodic.

When we discuss partial words with h ≥ 2 holes, we need the extra as-
sumption of u not being (h, p, q)-special for a similar result to hold true. In-
deed, if p and q are positive integers satisfying p < q and gcd(p, q) = 1, then
the infinite sequence (abp−1bq−p−1bn)n>0 consists of (2, p, q)-special partial
words with two holes that are weakly p-periodic and weakly q-periodic but
not gcd(p, q)-periodic.

In order to define the concept of (h, p, q)-speciality, note that a partial
word u that is weakly p-periodic and weakly q-periodic can be represented as
a 2-dimensional structure. Consider for example the partial word

w = ababababbbbbbbbbbbb
where p = 2 and q = 5. The array looks like:

u(0) u(5) u(10) u(15) u(20)
u(2) u(7) u(12) u(17) u(22)
u(4) u(9) u(14) u(19)

u(1) u(6) u(11) u(16) u(21)
u(3) u(8) u(13) u(18) u(23)

and its corresponding array of symbols looks like:

a  b b b
a  b b b
a a  b

b   b b
b b b b b

In general, if gcd(p, q) = d, we get d arrays. Each of these arrays is asso-
ciated with a subgraph G = (V,E) of G(p,q)(u) as follows: V is the subset of
D(u) comprising the defined positions of u within the array, and E = Ep∪Eq

where Ep = {{i, i− p} | i, i− p ∈ V } and Eq = {{i, i− q} | i, i− q ∈ V }. For
0 ≤ j < gcd(p, q), the subgraph of G(p,q)(u) corresponding to

D(u) ∩ {i | i ≥ 0 and i ≡ j mod gcd(p, q)}
will be denoted by Gj

(p,q)(u). Whenever gcd(p, q) = 1, G0
(p,q)(u) is just

G(p,q)(u). Referring to the partial word w above, the graph G(2,5)(w) is dis-
connected (w is (5, 2, 5)-special). Here, the ’s isolate the a’s from the b’s.

We now define the concept of speciality.
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Definition 2. [8]
Let p and q be positive integers satisfying p < q, and let h be a nonnegative

integer. Let

l(h, p, q) =
{

(h
2 + 1)(p + q)− gcd(p, q) if h is even

(�h
2 �+ 1)(p + q) otherwise

Let u be a partial word with h holes of length at least l(h, p, q). Then u is
(h, p, q)-special if Gj

(p,q)(u) is disconnected for some 0 ≤ j < gcd(p, q).

It turns out that the bound l(h, p, q) is optimal for a number of holes h.

Theorem 10. [8]
Let p and q be positive integers satisfying p < q, and let u be a non (h, p, q)-

special partial word with h holes. If u is weakly p-periodic and weakly q-periodic
and |u| ≥ l(h, p, q), then u is strongly gcd(p, q)-periodic.

In [33], progress was made towards allowing an arbitrary number of holes
and an arbitrary number of weak periods. There, the authors proved that any
partial word u with h holes and having weak periods p1, . . . , pn and length
at least the so-denoted l(h, p1, . . . , pn) has also strong period gcd(p1, . . . , pn)
provided u satisfies some criteria. In addition to speciality, they discovered
that the concepts of intractable period sets and interference between periods
play a role.

Open problem 1 Give an algorithm which given a number of holes h and
weak periods p1, . . . , pn, computes the optimal bound l(h, p1, . . . , pn) and an
optimal partial word for that bound (a partial word u with h holes of length
l(h, p1, . . . , pn) − 1 is optimal for the bound l(h, p1, . . . , pn) if p1, . . . , pn are
weak periods of u but gcd(p1, . . . , pn) is not a strong period of u).

Open problem 2 Give closed formulas for the bounds l(h, p1, . . . , pn).

The optimality proof will probably be based on results of graphs associated
with bounds and tuples of weak periods.

2.3.2 Strong Periodicity

In this section, we review the generalizations related to strong periodicity.
There exists an integer L such that if a partial word u with h holes has strong
periods p, q satisfying p < q and |u| ≥ L, then u has strong period gcd(p, q)
(L(h, p, q) is the smallest such integer L) [115]. Recall that L(0, p, q) = p +
q − gcd(p, q).

The following result is a direct consequence of Berstel and Boasson’s result.

Theorem 11. [4] The equality L(1, p, q) = p + q holds.

For h = 2, 3 or 4, we have the following results.
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Theorem 12. [114, 115] The equality L(2, p, q) = 2p + q − gcd(p, q) holds.

Theorem 13. [29] The following equality holds:

L(3, p, q) =

⎧
⎪⎨

⎪⎩

2q + p if q − p < p
2

4p if p
2 < q − p < p

2p + q if p < q − p

Theorem 14. [29] The following equality holds:

L(4, p, q) =

⎧
⎪⎨

⎪⎩

q + 3p− gcd(p, q) if q − p < p
2

q + 3p if p
2 < q − p < p

q + 3p− gcd(p, q) if p < q − p

Other results follow.

Theorem 15. [12, 113, 114, 115] The equality L(h, 2, q) = (2�h
q � + 1)q +

h mod q + 1 holds.

Setting h = nq+r where 0 ≤ r < q, L(h, 2, q) = (2n+1)q+r+1. Consider
the word u = rw(qw)n where w is the unique full word of length q having
periods 2 and q but not having period 1. Note that u is an optimal word for
the bound L(h, 2, q). Indeed, |u| = (2n + 1)q + r, u has h holes, and since w
is not 1-periodic, we also have that u is not strongly 1-periodic. It is easy to
show that u is strongly 2- and q-periodic.

In [114], the authors proved that if q > p ≥ 3 and gcd(p, q) = 1 and h is
large enough, then

pq
p+q−2 (h + 1) ≤ L(h, p, q) < pqh

p+q−2 + 4(q − 1)

Open problem 3 Give closed formulas for the bounds L(h, p, q) where h >
4.

Any partial word with h holes and having n strong periods p1, . . . , pn and
length at least the so-denoted L(h, p1, . . . , pn) has also gcd(p1, . . . , pn) as a
strong period.

Open problem 4 Give an algorithm which given a number of holes h and
strong periods p1, . . . , pn, computes the optimal bound L(h, p1, . . . , pn) and an
optimal partial word for that bound (a partial word u with h holes of length
L(h, p1, . . . , pn)− 1 is optimal for the bound L(h, p1, . . . , pn) if p1, . . . , pn are
strong periods of u but gcd(p1, . . . , pn) is not a strong period of u).

Open problem 5 Give closed formulas for the bounds L(h, p1, . . . , pn).
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2.4 Critical Factorizations of Partial words

Results concerning periodicity include the well known and fundamental criti-
cal factorization theorem, of which several versions exist [43, 45, 60, 61, 59, 92,
93]. It intuitively states that the minimal period (or global period) of a word
of length at least two is always locally detectable in at least one position of
the word resulting in a corresponding critical factorization. More specifically,
given a word w and nonempty words u, v satisfying w = uv, the minimal local
period associated to the factorization (u, v) is the length of the shortest square
at position |u|−1. It is easy to see that no minimal local period is longer than
the global period of the word. The critical factorization theorem shows that
critical factorizations are unavoidable. Indeed, for any word, there is always a
factorization whose minimal local period is equal to the global period of the
word.

More precisely, we consider a word a0a1 . . . an−1 and, for any integer i (0 ≤
i < n−1), we look at the shortest repetition (a square) centered in this position,
that is, we look at the shortest (virtual) suffix of a0a1 . . . ai which is also a
(virtual) prefix of ai+1ai+2 . . . an−1. The minimal local period at position i is
defined as the length of this shortest square. The critical factorization theorem
states, roughly speaking, that the global period of a0a1 . . . an−1 is simply the
maximum among all minimal local periods. As an example, consider the word
w = babbaab with global period 6. The minimal local periods of w are 2, 3, 1,
6, 1 and 3 which means that the factorization (babb, aab) is critical.

Crochemore and Perrin showed that a critical factorization can be found
very efficiently from the computation of the maximal suffixes of the word with
respect to two total orderings on words: the lexicographic ordering related to
a fixed total ordering on the alphabet �l, and the lexicographic ordering ob-
tained by reversing the order of letters in the alphabet �r [50]. If v denotes
the maximal suffix of w with respect to �l and v′ the maximal suffix of w with
respect to �r, then let u, u′ be such that w = uv = u′v′. The factorization
(u, v) turns out to be critical when |v| ≤ |v′|, and the factorization (u′, v′) is
critical when |v| > |v′|. There exist linear time (in the length of w) algorithms
for such computations [50, 51, 101] (the latter two use the suffix tree construc-
tion). Returning to the example above, order the letters of the alphabet by
a ≺ b. Then the maximal suffix with respect to �l is v = bbaab and with re-
spect to �r is v′ = aab. Since |v| > |v′|, the factorization (u′, v′) = (babb, aab)
of w is critical.

In [22], Blanchet-Sadri and Duncan extended the critical factorization the-
orem to partial words with one hole. In this case, the concept of local period,
which characterizes a local periodic structure at each position of the word, is
defined as follows.

Definition 3. [22] Let w be a nonempty partial word. A positive integer p is
called a local period of w at position i if there exist partial words u, v, x, y
such that u, v �= ε, w = uv, |u| = i + 1, |x| = p, x ↑ y, and such that one of
the following conditions holds for some partial words r, s:
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1. u = rx and v = ys (internal square),
2. x = ru and v = ys (left-external square if r �= ε),
3. u = rx and y = vs (right-external square if s �= ε),
4. x = ru and y = vs (left- and right-external square if r, s �= ε).

In this context, a factorization is called critical if its minimal local period is
equal to the minimal weak period of the partial word. As an example, consider
the partial word with one hole w = babaab with minimal weak period 3. The
minimal local periods of w are 2 (left-external square), 1 (internal square), 1
(internal square), 3 (internal square), 1 (internal square) and 3 (right-external
square), and both (bab, aab) and (babaa, b) are critical.

It turns out that for partial words, critical factorizations may be avoidable.
Indeed, the partial word babdaab has no critical factorization. The class of the
so-called special partial words with one hole has been described that possibly
avoid critical factorizations. Refining the method based on the maximal suf-
fixes with respect to the lexicographic/ reverse lexicographic orderings leads
to a version of the critical factorization theorem for the nonspecial partial
words with one hole whose proof provides an efficient algorithm which, given
a partial word with one hole, outputs a critical factorization when one exists
or outputs “no such factorization exists”.

In [35], Blanchet-Sadri and Wetzler further investigated the relationship
between local and global periodicity of partial words: (1) They extended the
critical factorization theorem to partial words with an arbitrary number of
holes; (2) They characterized precisely the class of partial words that do not
admit critical factorizations; and (3) They developed an efficient algorithm
which computes a critical factorization when one exists.

Some open problems related to the critical factorization theorem follow.

Open problem 6 Discover some good criterion for the existence of a critical
factorization of an unbordered partial word defined as follows: A nonempty
partial word u is unbordered if no nonempty partial words x, v, w exist such
that u ⊂ xv and u ⊂ wx.

Open problem 7 In the framework of partial words, study the periodicity
theorem on words, which has strong analogies with the critical factorization
theorem, that was derived in [102].

In [62], the authors present an O(n) time algorithm for computing all
local periods of a given word of length n, assuming a constant-size alphabet.
This subsumes (but is substantially more powerful than) the computation of
the global period of the word and the computation of a critical factorization.
Their method consists of two parts: (1) They show how to compute all internal
minimal squares; and (2) They show how to compute left- and right-external
minimal squares, in particular for those positions for which no internal square
has been found.
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Open problem 8 Find the time complexity for the computation of all the
local periods of a given partial word.

Now, consider the language

CF = {w | w is a partial word over {a, b} that has a critical factorization}
What is the position of CF in the Chomsky hierarchy? It has been proved that
CF is a context sensitive language that is not regular. The question whether
or not CF is context-free remains open.

Theorem 16. [36] The language CF is not regular.

Theorem 17. [21] The language CF is context sensitive.

Open problem 9 Is the language CF context-free?

2.5 Correlations of Partial Words

In [71], Guibas and Odlyzko consider the period sets of words of length n over a
finite alphabet, and specific representations of them, (auto)correlations, which
are binary vectors of length n indicating the periods. Among the possible 2n

bit vectors, only a small subset are valid correlations. There, they provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, that is, the number of words
sharing a given correlation. In [108], Rivals and Rahmann show that there is
redundancy in period sets and introduce the notion of an irreducible period
set. They prove that Γn, the set of all correlations of length n, is a lattice
under set inclusion and does not satisfy the Jordan-Dedekind condition. They
propose the first efficient enumeration algorithm for Γn and improve upon the
previously known asymptotic lower bounds on the cardinality of Γn. Finally,
they provide a new recurrence to compute the number of words sharing a
given period set, and exhibit an algorithm to sample uniformly period sets
through irreducible period sets.

In [24], the combinatorics of possible sets of periods and weak periods of
partial words were studied in a similar way. There, the notions of binary and
ternary correlations were introduced, which are binary and ternary vectors
indicating the periods and weak periods of partial words. Extending the re-
sult of Guibas and Odlyzko, Blanchet-Sadri, Gafni and Wilson characterized
precisely which binary and ternary vectors represent the period and weak pe-
riod sets of partial words and proved that all valid correlations may be taken
over the binary alphabet (the one-hole case was proved earlier in [16]). They
showed that the sets of all such vectors of a given length form distributive
lattices under suitably defined partial orderings extending results of Rivals
and Rahmann. They also showed that there is a well defined minimal set of
generators for any binary correlation of length n, called an irreducible period
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set, and demonstrated that these generating sets are the primitive subsets of
{1, 2, . . . , n− 1}. These primitive sets of integers have been extensively stud-
ied by many researchers including Erdös [65]. Finally, they investigated the
number of partial word correlations of length n. More recently, recurrences for
computing the size of populations of partial word correlations were obtained
as well as random sampling of period and weak period sets [23].

We first define the greatest lower bound of two given partial words u and
v of equal length as the partial word u∧ v, where (u∧ v) ⊂ u and (u∧ v) ⊂ v,
and if w ⊂ u and w ⊂ v, then w ⊂ (u ∧ v). The following example illustrates
this new concept which plays a role in this section:

u = a b  c a a b   a a
v = a c b c a a b  b b a

u ∧ v = a   c a a b    a

The contents of Section 2.5 is as follows: In Section 2.5.1, we give charac-
terizations of correlations. In Section 2.5.2, we provide structural properties
of correlations. And in Section 2.5.3, we consider the problem of counting
correlations.

2.5.1 Characterizations of Correlations

Full word correlations are vectors representing sets of periods as stated in the
following definition.

Definition 4. Let u be a (full) word. Let v be the binary vector of length |u|
for which v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

We call v the correlation of u.

For instance, the word abbababbab has periods 5 and 8 (and 10) and thus
has correlation 1000010010.

Binary vectors may satisfy some propagation rules.

Definition 5. 1. A binary vector v of length n is said to satisfy the forward
propagation rule if for all 0 ≤ p < q < n such that vp = vq = 1 we have
that vp+i(q−p) = 1 for all 2 ≤ i < n−p

q−p .
2. A binary vector v of length n is said to satisfy the backward propagation

rule if for all 0 ≤ p < q < min(n, 2p) such that vp = vq = 1 and v2p−q = 0
we have that vp−i(q−p) = 0 for all 2 ≤ i ≤ min(� p

q−p�, �
n−p
q−p �).

Note that a binary vector v of length 12 satisfying v7 = v9 = 1 and the
forward propagation rule also satisfies v7+2(9−7) = v11 = 1. Note also that
setting p = 0 in the forward propagation rule implies that viq = 1 for all i
whenever vq = 1.
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Fundamental results on periodicity of words include the following unex-
pected result of Guibas and Odlyzko which gives a characterization of full
word correlations.

Theorem 18. [71] For correlation v of length n the following are equivalent:

1. There exists a word over the binary alphabet with correlation v.
2. There exists a word over some alphabet with correlation v.
3. The correlation v satisfies the forward and backward propagation rules.

Corollary 2. [71] For any word u over an alphabet A, there exists a binary
word v of length |u| such that P(v) = P(u).

Now, partial word correlations are defined according to the following def-
inition.

Definition 6. [24]

1. The binary correlation of a partial word u satisfying P(u) = P ′(u) is the
binary vector of length |u| such that v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

2. The ternary correlation of a partial word u is the ternary vector of length
|u| such that v0 = 1 and

vi =

⎧
⎪⎨

⎪⎩

1 if i ∈ P(u)
2 if i ∈ P ′(u) \ P(u)
0 otherwise

Considering the partial word abacaacaba which has periods 9 and
11 (and 12) and strictly weak period 5, its ternary correlation vector is
100002000101.

A characterization of binary correlations follows.

Theorem 19. [24] Let n be a nonnegative integer. Then for any finite collec-
tion u1, u2, . . . , uk of full words of length n over an alphabet A, there exists
a partial word w of length n over the binary alphabet with P(w) = P ′(w) =
P(u1) ∪ P(u2) ∪ · · · ∪ P(uk).

Corollary 3. [24] The set of valid binary correlations over an alphabet A with
‖A‖ ≥ 2 is the same as the set of valid binary correlations over the binary
alphabet. Phrased differently, if u is a partial word over an alphabet A, then
there exists a binary partial word v of length |u| such that P(v) = P(u).

Follows is a characterization of valid ternary correlations.
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Theorem 20. [24] A ternary vector v of length n is the ternary correlation
of a partial word of length n over an alphabet A if and only if v0 = 1 and

1. If vp = 1, then for all 0 ≤ i < n
p we have that vip = 1.

2. If vp = 2, then there exists some 2 ≤ i < n
p such that vip = 0.

The proof is based on the following construction: For n ≥ 3 and 0 < p < n,
let n = kp + r where 0 ≤ r < p. Then define

ωp =

{
(abp−1)k if r = 0
(abp−1)kabr−1 if r > 0

ψp = abp−1bn−p−1

Then given a valid ternary correlation v of length n, the partial word
(∧

p>0|vp=1 ωp

)
∧
(∧

p|vp=2 ψp

)

has ternary correlation v.
For example, given v = 100002000101, then abbbbbbbb has correlation

v as computed in the following figure:

ω9 = a b b b b b b b b a b b
ω11 = a b b b b b b b b b b a
ψ5 = a b b b b  b b b b b b

a b b b b  b b b  b 
The following corollary implies that every partial word has a “binary equiv-

alent”.

Corollary 4. [24] The set of valid ternary correlations over an alphabet A
with ‖A‖ ≥ 2 is the same as the set of valid ternary correlations over the
binary alphabet. Phrased differently, if u is a partial word over an alphabet A,
then there exists a binary partial word v such that

1. |v| = |u| 2. P(v) = P(u) 3. P ′(v) = P ′(u)

In [74], Halava, Harju and Ilie gave a simple constructive proof of The-
orem 18 which computes v in linear time. This result was later proved for
partial words with one hole by extending Halava et al.’s approach [16]. More
specifically, given a partial word u with one hole over an alphabet A, a partial
word v over the binary alphabet exists such that Conditions 1–3 hold as well
as the following condition

4. H(v) ⊂ H(u)

However, Conditions 1–4 cannot be satisfied simultaneously in the two-hole
case. For the partial word abacaacaba can be checked by brute force to have
no such binary equivalent (although it has the binary equivalent abbbbbbbb
as discussed above).
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Open problem 10 Characterize the partial words that have an equivalent
over the binary alphabet {a, b} satisfying Conditions 1–4.

Open problem 11 Design an efficient algorithm for computing a binary
equivalent satisfying Conditions 1–4 when such equivalent exists.

Open problem 12 Can we always find an equivalent over the ternary al-
phabet {a, b, c} that satisfies Conditions 1–4?

2.5.2 Structural Properties of Correlations

A result of Rivals and Rahmann [108] states that Γn, the set of full word
correlations of length n, is a lattice under set inclusion which does not satisfy
the Jordan-Dedekind condition, a criterion which stipulates that all maximal
chains between two elements of a poset are of equal length. Violating the
Jordan-Dedekind condition implies that Γn is not distributive.

We now discuss corresponding results for partial words.

Theorem 21. [24] The set ∆n of partial word binary correlations of length n
is a distributive lattice under ⊂ where for u, v ∈ ∆n, u ⊂ v if P(u) ⊂ P(v),
and thus satisfies the Jordan-Dedekind condition. Here

1. The meet of u and v, u∩v, is the unique vector in ∆n such that P(u∩v) =
P(u) ∩ P(v).

2. The join of u and v, u∪v, is the unique vector in ∆n such that P(u∪v) =
P(u) ∪ P(v).

3. The null element is 10n−1.
4. The universal element is 1n.

The union of u and v, u ∪ v, is the vector in ∆′
n defined as (u ∪ v)i = 0 if

ui = vi = 0, 1 if either ui = 1 or vi = 1, and 2 otherwise. However, ∆′
n is not

closed under union. Considering the example

u = 1 0 2 0 0 0 1 0 1
v = 1 0 0 0 1 0 0 0 1

(u ∪ v) = 1 0 2 0 1 0 1 0 1

there is no i ≥ 2 such that (u ∪ v)i2 = 0, and therefore (u ∪ v) is not a valid
ternary correlation. However 101010101 is valid.

Theorem 22. [24] The set ∆′
n of partial word ternary correlations of length

n is a distributive lattice under ⊂ where for u, v ∈ ∆′
n, u ⊂ v if ui = 1 implies

vi = 1 and ui = 2 implies vi = 1 or vi = 2. Here

1. The meet of u and v, u∧v, is the vector (u∩v) in ∆′
n defined by P(u∧v) =

P(u) ∩ P(v) and P ′(u ∧ v) = P ′(u) ∩ P ′(v).
2. The join of u and v, u ∨ v, is the vector in ∆′

n defined by
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P ′(u ∨ v) = P ′(u) ∪ P ′(v)
P(u ∨ v) = P(u) ∪ P(v) ∪B(u ∪ v)

where B(u∪ v) is the set of all 0 < p < n such that (u∪ v)p = 2 and there
exists no i ≥ 2 satisfying (u ∪ v)ip = 0.

In the case of full words, some periods are implied by other periods because
of the forward propagation rule. If a twelve-letter full word has periods 7 and
9 then it must also have period 11 since 11 = 7 + 2(9 − 7), so {7, 9, 11}
corresponds to the irreducible period set {7, 9}. Another result of Rivals and
Rahmann shows that the set Λn of these irreducible period sets is not a lattice
but does satisfy the Jordan-Dedekind condition as a poset [108].

However, forward propagation does not hold in the case of partial words
as can be seen with the partial word abbbbbbbbb which has periods 7 and 9
but does not have period 11. The set {7, 9, 11} is irreducible in the sense of
partial words, but not in the sense of full words.

This leads us to the definition of generating sets.

Definition 7. [24] A set P ⊂ {1, 2, . . . , n − 1} generates the correlation v ∈
∆n provided that for each 0 < i < n we have that vi = 1 if and only if there
exists p ∈ P and 0 < k < n

p such that i = kp.

For instance, if v = 1001001101, then {3, 6, 7, 9}, {3, 6, 7}, {3, 7, 9}, and
{3, 7} generate v. However, the set {3, 7} is the minimal generating set of v.

For every v ∈ ∆n there is a minimal generating set R(v) for v which we
call the irreducible period set of v. Namely, this is the set of p ∈ P(v) such
that for all q ∈ P(v) with q �= p we have that q does not divide p. Denoting
by Φn the set of irreducible period sets of partial words of length n, we see
that there is an obvious bijective correspondence between Φn and ∆n given
by

R : ∆n → Φn

v �→ R(v)

E : Φn → ∆n

P �→
⋃

p∈P 〈p〉n

For n ≥ 3, we see immediately that the poset (Φn,⊂) is not a join semi-
lattice since the sets {1} and {2} will never have a join because {1} is always
maximal. On the other hand, the following holds.

Proposition 1. [24] The set Φn of irreducible period sets of partial words of
length n is a meet semilattice under set inclusion which satisfies the Jordan-
Dedekind condition. Here the null element is ∅, and the meet of two elements
is simply their intersection.

Open problem 13 Is there an efficient enumeration algorithm for ∆n?
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2.5.3 Counting Correlations

In this section, we look at the number of valid correlations of a given length.
In the case of binary correlations, we give bounds and link the problem to one
in number theory. In the case of ternary correlations, we give an exact count.

A primitive set of integers is a subset S ⊂ {1, 2, . . .} such that for any two
distinct elements s, s′ ∈ S we have that neither s divides s′ nor s′ divides
s. The irreducible period sets of correlations v ∈ ∆n are precisely the finite
primitive subsets of {1, 2, . . . , n− 1}.

A result of Erdös can be stated as follows.

Theorem 23. [65] Let S be a finite primitive set of size k with elements less
than n. Then k ≤

⌊
n
2

⌋
. Moreover, this bound is sharp.

This bound shows that the number of binary correlations of length n is at
most the number of subsets of {1, 2, . . . , n−1} of size at most

⌊
n
2

⌋
. Moreover,

the sharpness of the bound gives us that

‖∆n‖ ≥ 2�
n
2 	

Thus
ln 2
2
≤ ln ‖∆n‖

n
≤ ln 2

Open problem 14 Refine this bound on the cardinality of ∆n, the set of all
partial word binary correlations of length n.

Guibas and Odlyzko [71] showed that as n→∞
1

2 ln 2 + o(1) ≤ ln ‖Γn‖
(ln n)2 ≤

1
2 ln( 3

2 )
+ o(1)

and Rivals and Rahmann [108] improved the lower bound to

ln ‖Γn‖
(ln n)2 ≥

1
2 ln 2

(
1− ln ln n

ln n

)2
+ 0.4139

ln n −
1.47123 ln ln n

(ln n)2 + O
(

1
(ln n)2

)

where Γn is the set of all full word correlations of length n. Thus the bounds
we give, which show explicitly that ln ‖∆n‖ = Θ(n), demonstrate that the
number of partial word binary correlations is much greater than the number
of full word correlations.

Lemma 1. [24]

1. Let u be a partial word of length n. Then p ∈ P(u) if and only if ip ∈ P ′(u)
for all 0 < i ≤ �n

p �.
2. If S ⊂ {1, 2, . . . , n−1}, then there exists a unique correlation v ∈ ∆′

n such
that P ′(v) \ {n} = S.

Consequently, the cardinality of ∆′
n, the set of valid ternary correlations

of length n, is the same as the cardinality of the power set of {1, 2, . . . , n−1},
and thus
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‖∆′
n‖ = 2n−1

We end this section with the following open problem.

Open problem 15 Exhibit an algorithm to sample uniformly (weak) period
sets through irreducible (weak) period sets.

2.6 Primitive and Unbordered Partial Words

The two fundamental concepts of primitiveness and borderedness play an im-
portant role in several research areas including coding theory [5, 6, 117], com-
binatorics on words [45, 92, 93, 94, 96], computational biology [39, 100], data
communication [41], data compression [49, 119, 123], formal language theory
[57, 58], and text algorithms [38, 50, 51, 52, 69, 72, 84, 102, 118]. A primitive
word is one that cannot be written as a power of another word, while an un-
bordered word is a primitive word such that none of its proper prefixes is one
of its suffixes. For example, abaab is bordered with border ab while abaabb is
unbordered. The number of primitive and unbordered words of a fixed length
over an alphabet of a fixed size is well known, the number of primitive words
being related to the Möbius function [92].

In this section, we discuss, in particular, the problems of counting primitive
and unbordered partial words.

2.6.1 Primitiveness

A word u is primitive if there exists no word v such that u = vi with i ≥ 2. A
natural algorithmic problem is how can we decide efficiently whether a given
word is primitive. The problem has a brute force quadratic solution: divide
the input word into two parts and check whether the right part is a power of
the left part. But how can we obtain a faster solution to the problem? Fast
algorithms for testing primitivity of words can be based on the combinatorial
result that a word u is primitive if and only if u is not an inside factor of its
square uu, that is, uu = xuy implies x = ε or y = ε [45]. Indeed, any linear
time string matching algorithm can be used to test whether the string u is a
proper factor of uu. If the answer is no, then the primitiveness of u has been
verified [51]. So testing whether or not a word is primitive can be done in
linear time in the length of the word.

Primitive partial words were defined in [9]: A partial word u is primitive if
there exists no word v such that u ⊂ vi with i ≥ 2. It turns out that a partial
word u with one hole is primitive if and only if uu ↑ xuy for some partial words
x, y implies x = ε or y = ε [9]. A linear time algorithm for testing primitivity
of partial words with one hole can be based on this combinatorial result.
As an application, the existence of a binary equivalent for any partial word
with one hole satisfying Conditions 1–4 discussed in Section 2.5 was obtained
[16]. In [11], a linear time algorithm was described to test primitivity on
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partial words with more than one hole. Here the concept of speciality related
to commutativity on partial words, which was discussed in Section 2.2, is
foundational in the design of the algorithm. More precisely, it was shown that
if u is a primitive partial word with more than one hole satisfying uu ↑ xuy for
some nonempty partial words x and y such that |x| < |y|, then u is (|x|, |y|)-
special. The partial words u = abbbbb, x = a, and y = cbbcb illustrate
the fact that the condition of speciality plays a role when dealing with partial
words with more than one hole.

In [19], the very challenging problem of counting the number Ph,k(n) (re-
spectively, P ′

h,k(n)) of primitive (respectively, nonprimitive) partial words
with h holes of length n over a k-size alphabet was considered. There, for-
mulas for h = 1 and h = 2 in terms of the well known formula for h = 0 were
given. Denote by Th,k(n) the sum of Ph,k(n) and P ′

h,k(n).
We first recall the counting for primitive full words. Since there are exactly

kn words of length n over a k-size alphabet and every nonempty word w has
a unique primitive root v for which w = vn/d for some divisor d of n, the
following relation holds:

kn =
∑

d|n
P0,k(d)

Using the Möbius inversion formula, we obtain the following well-known ex-
pression for P0,k(n) [92, 105]:

P0,k(n) =
∑

d|n
µ(d)kn/d

where the Möbius function, denoted by µ, is defined as

µ(n) =

⎧
⎨

⎩

1 if n = 1
(−1)i if n is a product of i distinct primes
0 if n is divisible by the square of a prime

The cases where h = 1 and h = 2 are stated in the next two theorems.

Theorem 24. [19] The equality P ′
1,k(n) = nP ′

0,k(n) holds.

Theorem 25. [19]

1. For an odd positive integer n:

P ′
2,k(n) =

(
n

2

)
P ′

0,k(n)

2. For an even positive integer n:

P ′
2,k(n) =

(
n

2

)
P ′

0,k(n)− (k − 1)T1,k(
n

2
)
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Open problem 16 Count the number P ′
h,k(n) of nonprimitive partial words

with h holes of length n over a k-size alphabet for h > 2.

Another problem to investigate is the following.

Open problem 17 Study the language of primitive partial words as is done
for full primitive words in [105].

We end this section with the following remark. In [18], the authors ob-
tained consequences of the generalizations of Fine and Wilf’s periodicity result
to partial words. In particular, they generalized the following combinatorial
property: “For any word u over {a, b}, ua or ub is primitive.” This property
proves in some sense that there exist very many primitive words.

2.6.2 Borderedness

Unbordered partial words were also defined in [9]: A nonempty partial word
u is unbordered if no nonempty partial words x1, x2, v, w exist such that u =
x1v = wx2 and x1 ↑ x2. If such nonempty words exist and x is such that
x1 ⊂ x and x2 ⊂ x, then we call u bordered and x a border of u. A border x of
u is called minimal if |x| > |y| implies that y is not a border of u. Note that
there are two types of borders: x is an overlapping border if |x| > |v|, and
a nonoverlapping border otherwise. The partial word u = aab is bordered
with the nonoverlapping border ab and overlapping border aab, the first one
being minimal, while the partial word abc is unbordered.

We call a bordered partial word u simply bordered if a minimal border x
exists satisfying |u| ≥ 2|x|.

Proposition 2. [21] Let u be a nonempty bordered partial word. Let x be a
minimal border of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then
the following hold:

1. The partial word x is unbordered.
2. If x1 is unbordered, then u = x1u

′x2 ⊂ xu′x for some u′.

Note that Proposition 2 implies that if u is a full bordered word, then
x1 = x is unbordered. In this case, u = xu′x where x is the minimal border
of u. Hence a bordered full word is always simply bordered.

Corollary 5. [21] Every bordered full word of length n has a unique minimal
border x. Moreover, x is unbordered and |x| ≤ �n

2 �.

In [20], the problem of enumerating all unbordered partial words with h
holes of length n over a k-letter alphabet was considered, a problem that yields
some open questions for further investigation. We will denote by Uh,k(n) the
number of such words.

Let us start with the problem of enumerating all unbordered full words
of length n over a k-letter alphabet which gives a conceptually simple and
elegant recursive formula: U0,k(0) = 1, U0,k(1) = k, and for n > 0,
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U0,k(2n) = kU0,k(2n− 1)− U0,k(n)
U0,k(2n + 1) = kU0,k(2n)

These equalities can be seen from the fact that if a word has odd length 2n+1
then it is unbordered if and only if it is unbordered after removing the middle
letter. If a word has even length 2n then it is unbordered if and only if it is
obtained from an unbordered word of length 2n − 1 by adding a letter next
to the middle position unless doing so creates a word that is a perfect square.

Using these formulas and Proposition 2, we can easily obtain a formula
for counting bordered full words. Let Bk(j, n) be the number of full words of
length n over a k-letter alphabet that have a minimal border of length j:

Bk(j, n) = U0,k(j)kn−2j

If we let Bk(n) be the number of full words of length n over a k-letter alphabet
with a border of any length, then we have that

Bk(n) =
�n

2 	∑

j=1

Bk(j, n)

When we allow words to have holes, counting bordered partial words is
made extremely more difficult by the failure of Corollary 5 since there is now
the possibility of a minimal border that is overlapping as in abb. We will first
concern ourselves with the simply bordered partial words. Note that because
borderedness in partial words is defined via containment, it no longer makes
sense to talk about the minimal border of a partial word, there could be many
possible borders of a certain length.

To see inside the structure of the partial words we are trying to count
we first define a function. Let fh,k(i, j, n) be the number of partial words of
length n with h > 0 holes over a k-letter alphabet that have a hole in position
i and a minimal border of length j. When i = 0:

fh,k(0, j, n) =
{(

n−1
h−1

)
kn−h if j = 1

0 if j > 1

It is clear that fh,k(i, j, n) has some symmetry, namely that, fh,k(i, j, n) =
fh,k(n − 1 − i, j, n). Throughout this section we will rely on this to consider
only i ≤ �n

2 �.
We have some general formulas for the evaluation of fh,k(i, j, n).

Proposition 3. [20]
If 0 < i < j − 1 and j < n

2 , then

fh,k(i, j, n) =
min(h,2j)∑

h′=1

fh′,k(i, j, 2j)
(

n− 2j

h− h′

)
kn−2j−h+h′

It is possible to see from the formula in Proposition 3 that we need only
really concern ourselves with the case when j = �n

2 �.
There is a similar simplification that can be made if j − 1 < i.
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Proposition 4. [20]
If j − 1 < i, then

fh,k(i, j, n) = 2
j−1∑

i′=0

min(h−1,2j)∑

h′=0

fh′,k(i′, j, 2j)
(

n− 2j − 1
h− 1− h′

)
kn−2j−h+h′

If we restrict our attention to the case when h = 1, then we can present
many explicit formulas for the values f1,k(i, j, n). The exceptional case when
i = 0 is easily dispensed with:

f1,k(0, j, n) =
{

kn−1 if j = 1
0 if j > 1

Note that in the case where 0 < i < j − 1 and j < n
2 , the formula in Proposi-

tion 3 reduces to the very simple equality

f1,k(i, j, n) = f1,k(i, j, 2j)kn−2j

Similarly, in the case where j− 1 < i, the formula in Proposition 4 reduces to

f1,k(i, j, n) = U0,k(j)kn−2j−1

By the above discussion we can restrict our attention to the cases when i > 0,
n = 2m and j = m. These are partial words with a border that takes up
exactly half the length of the word. We wish to find a complete formula for
f1,k(i,m, 2m) where i = m− 1− i′.

We proceed by induction on i′. When i′ = 0, we have the following.

Lemma 2. [20] For all m ≥ 2, f1,k(m− 1,m, 2m) = U0,k(m).

Continuing with the first interesting case i′ = 1, we have the following
lemma.

Lemma 3. [20]
For all m ≥ 3, f1,k(m− 2,m, 2m) = U0,k(m)− k(k − 1).

This kind of analysis quickly becomes much more complicated though.
The evaluation breaks up into cases depending on how the periodicity of the
words interacts with the length of the border in modular arithmetic.

Lemma 4. [20] For all m ≥ 4, the following holds:

f1,k(m− 3,m, 2m) =
{

U0,k(m)− k2(k − 1)− k(k − 1) if m ≡ 1 mod 2
U0,k(m)− k(k − 1)2 − k(k − 1) if m ≡ 0 mod 2

Lemma 5. [20] For all m ≥ 5, the following holds:

f1,k(m− 4,m, 2m) = U0,k(m)− k(k − 1)− g1(m)− g2(m)

where
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g1(m) =
{

k(k − 1)2 if m ≡ 0 mod 2
0 if m ≡ 1 mod 2

and

g2(m) =

⎧
⎨

⎩

k2(k − 1)2 if m ≡ 0 mod 3
U0,k(4) if m ≡ 1 mod 3
k2(k − 1)2 if m ≡ 2 mod 3

To give an idea of how the values for f1,k(i,m, 2m) behave unpredictably,
here is a table of values that has been put together through a brute force
count:

i 0 1 2 3 4 5 6 7
f1,2(i, 2, 4) 0 2
f1,2(i, 3, 6) 0 2 4
f1,2(i, 4, 8) 0 2 4 6
f1,2(i, 5, 10) 0 6 6 10 12
f1,2(i, 6, 12) 0 10 12 16 18 20
f1,2(i, 7, 14) 0 22 26 32 34 38 40
f1,2(i, 8, 16) 0 42 52 60 66 70 72 74

Open problem 18 Compute the values f1,k(m− i,m, 2m) for m > i.

Let Sh,k(n) be the number of simply bordered partial words of length n
with h holes over a k-letter alphabet. Clearly if h > n, then Sh,k(n) = 0. Note
that when h = 0, Sh,k(n) = Bk(n).

Theorem 26. [20]
If 0 < h ≤ n, then a formula for Sh,k(n) is given by:

Sh,k(2m + 1) = Sh−1,k(2m) + kSh,k(2m)

Sh,k(2m) =

2

m−1∑

i=0

m∑

j=1

fh,k(i, j, 2m)

h

We can check that

S1,k(n) =
n−1∑

i=0

�n
2 	∑

j=1

f1,k(i, j, n)

Let Nh,k(n) be the number of partial words with h holes, of length n,
over a k-letter alphabet that are not simply bordered. Obviously we can find
the value of this function by subtracting the value of Sh,k(n) from the total
number of partial words with those parameters, but it would be of interest to
find a direct formula for Nh,k(n). If h = 0, then



2 Open Problems on Partial Words 37

N0,k(n) = U0,k(n)

since a bordered full word that is not simply bordered is an unbordered full
word. It is easy to see that N1,k(0) = 0, N1,k(1) = 1, N1,k(2) = 0, and for
h > 1 that Nh,k(1) = 0 and Nh,k(2) = 0. Now, for h > 0, the following formula
holds for odd n = 2m + 1:

Nh,k(2m + 1) = kNh,k(2m) + Nh−1,k(2m)

Open problem 19 What is Nh,k(2m)?

If we simplify the problem down to the h = 1 case, then we can again use
the values f1,k(i, j, n) to give a formula for N1,k(n):

N1,k(2m) = kN1,k(2m− 1) + 2U0,k(2m− 1)−
m∑

i=1

f1,k(i,m, 2m)

but it rests on the evaluation of the f1,k(i, j, 2j)’s as well.
Other interesting questions include the following.

Open problem 20 Count the number Oh,k(n) of overlapping bordered par-
tial words of length n with h holes over a k-letter alphabet for h > 0.

Open problem 21 Count the number Uh,k(n) of unbordered partial words of
length n with h holes over a k-letter alphabet for h > 0.

Another open question is suggested by the fact that every partial word of
length 5 that has more than two holes is simply bordered. The partial word
abb shows that this bound on the number of holes for length 5 is tight. For
length 6, every partial word with more than 2 holes is simply bordered as well.

Open problem 22 What is the maximum number of holes M(n) a partial
word of length n can have and still fail to be simply bordered? Some values for
small n follow.

n M(n)
5 2
6 2
7 3
8 4
9 5
10 5
11 6
12 7
13 8
14 8
15 9
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We end this section by discussing another open problem related to bor-
deredness in the context of partial words.

In 1979, Ehrenfeucht and Silberger initiated a line of research to explore the
relationship between the minimal period of a word w of length n, p(w), and the
maximum length of its unbordered factors, µ(w) [64]. Clearly, µ(w) ≤ p(w).
They conjectured that if n ≥ 2µ(w), then µ(w) = p(w). In [3], a counterex-
ample was given and it was conjectured that 3µ(w) is the precise bound. In
1982, it was established that if n ≥ 4µ(w) − 6, then µ(w) = p(w) [61]. In
2003, the bound was improved to 3µ(w) − 2 in [76] where it is believed that
the precise bound can be achieved with methods similar to those presented in
that paper.

Open problem 23 Investigate the relationship between the minimal weak pe-
riod of a partial word and the maximum length of its unbordered factors.

2.7 Equations on Partial Words

As was seen in Section 2.2, some of the most basic properties of words, like the
commutativity and the conjugacy properties, can be expressed as solutions of
the word equations xy = yx and xz = zy respectively. It is also well known
that the equation xm = ynzp has only periodic solutions in a free semigroup,
that is, if xm = ynzp holds with integers m,n, p ≥ 2, then there exists a
word w such that x, y, z are powers of w. This result, which received a lot of
attention, was first proved by Lyndon and Schützenberger for free groups [96].
Their proof implied the case for free semigroups since every free semigroup
can be embedded in a free group. Direct proofs for free semigroups appear in
[46, 77, 92].

In this section, we study equations on partial words. When we speak about
them, we replace the notion of equality with compatibility. But compatibility
is not transitive! We already solved the commutativity equation xy ↑ yx as
well as the conjugacy equation xz ↑ zy in Section 2.2. As an application of
the commutativity equation, we mention the linear time algorithm for testing
primitivity on partial words that was discussed in Section 2.6 [11], and as
an application of the conjugacy equation, we mention the efficient algorithm
for computing a critical factorization when one exists that was discussed in
Section 2.4 [22, 35]. Here, we solve three equations: xm ↑ yn, x2 ↑ ymz, and
xm ↑ ynzp.

First, let us consider the equation xm ↑ yn, also called the “good pairs”
equation. If x and y are full words, then xm = yn for some positive integers
m,n if and only if there exists a word z such that x = zk and y = zl for some
integers k, l. When dealing with partial words x and y, if there exists a partial
word z such that x ⊂ zk and y ⊂ zl for some integers k, l, then xm ↑ yn for
some positive integers m,n.

For the converse, we need a couple of lemmas.
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Lemma 6. [13]
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i such
that 0 ≤ i < p and xi,p is not 1-periodic, then D(yi,p) is empty.

Lemma 7. [13]
Let x be a partial word, let m, p be positive integers, and let i be an integer

such that 0 ≤ i < p. Then the relation

xm
i,p = xi,px(i−|x|) mod p,p . . . x(i−(m−1)|x|) mod p,p

holds.

The “good pairs” theorem is stated as follows.

Theorem 27. [13]
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Assume that (x, y) is a good pair, that is,

1. For all i ∈ H(x) the word yn
i,|x| is 1-periodic,

2. For all i ∈ H(y) the word xm
i,|y| is 1-periodic.

Then there exists a partial word z such that x ⊂ zk and y ⊂ zl for some
integers k, l.

The assumption of (x, y) being a good pair is necessary in the “good pairs”
theorem. Indeed, x2 = (ab)2 ↑ (acbadb)1 = y1 but y(1)y(4) = cd is not
1-periodic, and there exists no partial word z as desired.

Corollary 6. [13]
Let x and y be primitive partial words such that (x, y) is a good pair. If

xm ↑ yn for some positive integers m and n, then x ↑ y.

Note that if both x and y are full words, then (x, y) is a good pair. The
corollary hence implies that if x, y are primitive full words satisfying xm = yn

for some positive integers m and n, then x = y.
Second, we consider the “good triples” equation x2 ↑ ymz. Here, it is

assumed that m is a positive integer and z is a prefix of y.
Nontrivial solutions exist! A solution is trivial if x, y, z are contained in

powers of a common word. The equation x2 ↑ ymz has nontrivial solutions.
For instance, (aa)2 ↑ (aab)2aa where x = aa, y = aab, and z = aa.

The “good triples” theorem follows.

Theorem 28. [13]
Let x, y, z be partial words such that z is a proper prefix of y. Then x2 ↑ ymz

for some positive integer m if and only if there exist partial words

u, v, u0, v0, . . . , um−1, vm−1, zx
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such that u �= ε, v �= ε, y = uv,

x = (u0v0) . . . (un−1vn−1)un (2.1)
= vn(un+1vn+1) . . . (um−1vm−1)zx (2.2)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, z ↑ zx, and where one
of the following holds:

1. m = 2n, |u| < |v|, and there exist partial words u′, u′
n such that zx = u′un,

z = uu′
n, u ↑ u′ and un ↑ u′

n.
2. m = 2n + 1, |u| > |v|, and there exist partial words v′

2n and z′x such that
un = v2nzx, u = v′

2nz′x, v2n ↑ v′
2n and zx ↑ z′x.

A triple of partial words (x, y, z) which satisfy these properties we will refer
to as a good triple.

Two corollaries can be deduced.

Corollary 7. [13]
Let x, y, z be partial words such that z is a prefix of y. Assume that x, y

are primitive and that x2 ↑ ymz for some integer m ≥ 2. If x has at most one
hole and y is full, then x ↑ y.

Corollary 8. [13]
Let x, y, z be words such that z is a prefix of y. If x, y are primitive and

x2 = ymz for some integer m ≥ 2, then x = y.

Note that the corollaries do not hold when m = 1. Indeed, the words
x = aba, y = abaab and z = a provide a counterexample. Also, the first
corollary does not hold when x is full and y has one hole as is seen by setting
x = abaabb, y = ab and z = ε.

Third, let us consider the equation xmyn ↑ zp. The case of full words is
well known.

Theorem 29. [96]
Let x, y, z be full words and let m,n, p be integers such that m ≥ 2, n ≥ 2

and p ≥ 2. Then the equation xmyn = zp has only trivial solutions, that is,
x, y, and z are each a power of a common element.

When we deal with partial words, the equation xmyn ↑ zp certainly has
a solution when x, y, and z are contained in powers of a common word (we
call such solutions the trivial solutions). However, there may be nontrivial
solutions as is seen with the compatibility relation

(ab)2(ba)2 ↑ (abba)3

We will classify solutions as Type 1 (or trivial) solutions when there exists
a partial word w such that x, y, z are contained in powers of w, and as Type
2 solutions when the partial words x, y, z satisfy x ↑ z and y ↑ z. Note that if
z is full, then Type 2 solutions are trivial solutions.

The case p ≥ 4 is stated in the following theorem.
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Theorem 30. [13] Let x, y, z be primitive partial words such that (x, z) and
(y, z) are good pairs. Let m,n, p be integers such that m ≥ 2, n ≥ 2 and p ≥ 4.
Then the equation xmyn ↑ zp has only solutions of Type 1 or Type 2 unless
one of the following holds:

1. x2 ↑ zkzp for some integer k ≥ 2 and nonempty prefix zp of z,
2. z2 ↑ xlxp for some integer l ≥ 2 and nonempty prefix xp of x.

Open problem 24 Solve the equation xmyn ↑ zp on partial words for inte-
gers m ≥ 2, n ≥ 2 and p ∈ {2, 3}.

2.8 Unavoidable Sets of Partial Words

A set of (full) words X over a finite alphabet A is unavoidable if no two-sided
infinite word over A avoids X, that is, X is unavoidable if every two-sided
infinite word over A has a factor in X. For instance, the set X = {a, bbb}
is unavoidable (if a two-sided infinite word w does not have a as a factor,
then w consists only of b’s). This concept was explicitly introduced in 1983 in
connection with an attempt to characterize the rational languages among the
context-free ones [63]. It is clear from the definition that from each unavoidable
set we can extract a finite unavoidable subset, so the study can be reduced to
finite unavoidable sets. There is a vast literature on unavoidable sets of words
and we refer the reader to [44, 93, 109, 110] for more information.

Unavoidable sets of partial words were introduced recently in [15], where
the problem of classifying such sets of small cardinality was initiated, in partic-
ular, those with two elements. The authors showed that this problem reduces
to the one of classifying unavoidable sets of the form

{am1a . . . amka, bn1b . . . bnlb}
where m1, . . . ,mk, n1, . . . , nl are nonnegative integers and a, b are distinct let-
ters. They gave an elegant characterization of the special case of this problem
when k = 1 and l = 1. They proposed a conjecture characterizing the case
where k = 1 and l = 2 and proved one direction of the conjecture. They then
gave partial results towards the other direction and in particular proved that
the conjecture is easy to verify in a large number of cases. Finally, they proved
that verifying this conjecture is sufficient for solving the problem for larger
values of k and l. In [27], the authors built on the previous work by examining,
in particular, unavoidable sets of size three.

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was shown
that this problem is NP-hard by using techniques similar to those used in a
recent paper on the complexity of computing the capacity of codes that avoid
forbidden difference patterns [37]. This is in contrast with the well known
feasibility results for unavoidability of a set of full words [93].
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The contents of Section 2.8 is as follows: In Section 2.8.1, we review basics
on unavoidable sets of partial words. In Section 2.8.2, we discuss classifying
such sets of size two. And in Section2.8.3, we discuss testing unavoidability of
sets of partial words.

2.8.1 Unavoidable Sets

We first define some basic terminology. A two-sided infinite word over A is
a total function w : Z → A. A finite word u is a factor of w if there exists
some i ∈ Z such that u = w(i)w(i + 1) . . . w(i + |u| − 1). A period of w is
a positive integer p such that w(i) = w(i + p) for all i ∈ Z. If w has period
p for some p, then we call w periodic. If v is a finite word, then vZ denotes
the two-sided infinite word w with period |v| satisfying w(0) . . . w(|v| − 1) =
v. If X is a set of partial words, then X̂ denotes the set of all full words
compatible with a member of X. For instance, if X = {aa, bb}, then X̂ =
{aaaa, aaba, abaa, abba, bab, bbb}.

The concept of an unavoidable set of full words is defined as follows.

Definition 8. Let X ⊂ A∗.

1. A two-sided infinite word w avoids X if no factor of w is a member of X.
2. The set X is unavoidable if no two-sided infinite word over A avoids X,

that is, X is unavoidable if every two-sided infinite word over A has a
factor in X.

If A = {a, b}, then the following sets are unavoidable: X1 = {ε} (ε is a
factor of every two-sided infinite word); X2 = {a, bbb}; X3 = {aa, ab, ba, bb}
(this is the set of all words of length 2); and for any n ∈ N, An is unavoidable.

If X ⊂ A∗ is finite, then the following three statements are equivalent:
(1) X is unavoidable; (2) There are only finitely many words in A∗ with no
member of X as a factor; and (3) No periodic two-sided infinite word avoids
X.

An unavoidable set of partial words is defined as follows.

Definition 9. Let X ⊂ A∗
�.

1. A two-sided infinite word w avoids X if no factor of w is a member of X̂.
2. The set X is unavoidable if no two-sided infinite word over A avoids X,

that is, X is unavoidable if every two-sided infinite word over A has a
factor in X̂.

If A = {a, b}, then the following sets are unavoidable: X1 = {a, b};
X2 = {n} for any nonnegative integer n as well as any set containing X2 as
a subset (let us call such sets the trivial unavoidable sets); and X3 = {a, bbb}
since of course Definition 9 is equivalent to Definition 8 if every member of X
is full. We will explore some less trivial examples soon.
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By the definition of X̂, a two-sided infinite word w has a factor in X̂ if
and only if that factor is compatible with a member of X. Thus the two-sided
infinite words which avoid X ⊂ A∗

� are exactly those which avoid X̂ ⊂ A∗,
and X ⊂ A∗

� is unavoidable if and only if X̂ ⊂ A∗ is unavoidable. Thus with
regards to unavoidability, a set of partial words serves as a representation of
a set of full words. The set {aa, bb} represents

{aaaa, aaba, abaa, abba, bab, bbb}
We will shortly prove that this set is unavoidable.

The smaller X is, the more information is gained by identifying X as
unavoidable. Thus it is natural to begin investigating the unavoidable sets
of partial words of small cardinality. Of course, every two-sided infinite word
avoids the empty set and thus, there are no unavoidable sets of size 0. Unless
the alphabet is unary, the only unavoidable sets of size 1 are trivial. If the
alphabet is unary, then every nonempty set is unavoidable and in that case
there is only one two-sided infinite word. Thus the unary alphabet is not
interesting so we will not consider it further. Classifying the unavoidable sets
of size 2 is the focus of the next section.

2.8.2 Classifying Unavoidable Sets of Size Two

If X is a two-element unavoidable set, then every two-sided infinite unary word
has a factor compatible with a member of X. In particular, X cannot have
fewer elements than the alphabet. Thus if X has size 2, then the alphabet
is unary or binary. We hence assume that the alphabet is binary say with
distinct letters a and b since we said above that the unary alphabet is not
interesting. So one element of X is compatible with a factor of aZ and the
other element is compatible with a factor of bZ, since this is the only way to
guarantee that both aZ and bZ will not avoid X. Thus we can restrict our
attention to sets of the form

Xm1,...,mk|n1,...,nl
= {am1a . . . amka, bn1b . . . bnlb} (2.3)

for some nonnegative integers m1, . . . ,mk and n1, . . . , nl. For which integers
m1, . . . ,mk, n1, . . . , nl is Xm1,...,mk|n1,...,nl

unavoidable?
A simplification is stated in the next lemma.

Lemma 8. [15] If p is a nonnegative integer, then set

X = Xm1,...,mk|n1,...,nl

and

Y = Xp(m1+1)−1,...,p(mk+1)−1|p(n1+1)−1,...,p(nl+1)−1

Then X is unavoidable if and only if Y is unavoidable.
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The easiest place to start is with small values of k and l. Of course, the set
{a, bn1b . . . bnlb} is always unavoidable for if w is a two-sided infinite word
which does not have a as a factor, then w = bZ. This handles the case where
k = 0 (and symmetrically l = 0).

An elegant characterization for the case where k = l = 1 is stated in the
following theorem.

Theorem 31. [15] The set Xm|n = {ama, bnb} is avoidable if and only if
m + 1 and n + 1 have the same greatest power of 2 dividing them.

The next natural step is to look at k = 1 and l = 2, that is, sets of the
form

Xm|n1,n2 = {ama, bn1bn2b}
On the one hand, we have identified a large number of avoidable sets

of the form {ama, bnb}. For Xm|n1,n2 to be avoidable it is sufficient that
{ama, bn1b}, {ama, bn2b} or {ama, bn1+n2+1b} be avoidable. On the
other hand, the structure of words avoiding {ama, bn1bn2b} is not nearly
as nice as those avoiding {ama, bnb}. Thus a simple characterization seems
unlikely, unless perhaps there are no unavoidable sets of this form at all. But
there are! The set

{a7a, bb3b}
is unavoidable. Seeing that it is provides a nice example of the techniques that
can be used. Referring to the figure below,

. . . -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 . . .
. . . b b . . .
. . . a . . .
. . . b . . .
. . . a . . .
. . . a . . .
. . . b . . .
. . . a . . .

suppose instead that there exists a two-sided infinite word w which avoids
it. We know from Theorem 31 that {a7a, bb} is unavoidable, thus w must
have a factor compatible with bb. Say without loss of generality that w(0) =
w(2) = b. This implies that w(6) = a, which in turn implies that w(−2) = b.
Then we have that w(−2) = w(0) = b, forcing w(4) = a. This propagation
continues: w(−4) = w(−2) = b and so w(2) = a, which makes w(−6) = b
giving w(0) = a, a contradiction.

The perpetuating patterns phenomenon of the previous example is a spe-
cial case of a more general result.

Theorem 32. [15] If m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and the highest
power of 2 dividing n1 + 1 is less than the highest power of 2 dividing m + 1,
then Xm|n1,n2 is unavoidable.
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Here are other unavoidability results for k = 1 and l = 2.

Proposition 5. [15] The set Xm|n1,n2 is unavoidable if Conditions 1 or Con-
ditions 2 or Conditions 3 hold:

1. {ama, bn1b} is unavoidable, m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and
n1 + 1 divides n2 + 1.

2. n1 < n2, 2m = n1 + n2 and m− n1 divides m + 1.
3. m = 6, n1 = 1 and n2 = 3.

Extensive experimentation suggests that these results (and their symmet-
ric equivalents) give a complete characterization of when Xm|n1,n2 is unavoid-
able.

Conjecture 1 [15] The set Xm|n1,n2 is unavoidable if and only if one of the
following conditions (or symmetric equivalents) holds:

1. {ama, bn1b} is unavoidable, m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and
n1 + 1 divides n2 + 1.

2. m = n2−n1− 1 or m = 2n1 +n2 +2, and the highest power of 2 dividing
n1 + 1 is less than the highest power of 2 dividing m + 1.

3. n1 < n2, 2m = n1 + n2 and m− n1 divides m + 1.
4. m = 6, n1 = 1 and n2 = 3.

Open problem 25 Is Conjecture 1 true or false?

If true, then Conjecture 1 implies that the unavoidable sets of size two
have been completely classified as stated in the following proposition.

Proposition 6. [15] If Conjecture 1 is true, then Xm1,...,mk|n1,...,nl
is avoid-

able for k = 1 and l ≥ 3, and for k > 1 and l ≥ 2.

In order to prove the conjecture, only one direction remains. We must show
that if none of the aforementioned conditions hold, then Xm|n1,n2 is avoidable.
There are some partial results towards this goal. In particular there is an easy
way of verifying the conjecture for even values of m.

Proposition 7. [15] Assume m is even and 2m ≤ min(n1, n2). Then Xm|n1,n2

is avoidable.

Thus for any fixed even m we only need to verify the conjecture for finitely
many values of n1 and n2, which is generally easy. For

1. m = 0: X0|n1,n2 is always avoidable, and indeed this is the case.
2. m = 2: X2|n1,n2 is avoidable except for n1 = 1, n2 = 3 or n1 = 3, n2 = 1.

It is easy to find avoiding two-sided infinite words for other values of n1

and n2 less than 5 when m = 2. This is all that is necessary to confirm
the conjecture for m = 2.
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In this way the conjecture has been verified for all even m up to very large
values via computer.

The odd values of m seem to be much more difficult. The following propo-
sition shows that the conjecture is true for m = 1.

Proposition 8. [15] Conjecture 1 is true for m = 1, that is, X1|n1,n2 is un-
avoidable if and only if n1 and n2 are even numbers with |n1 − n2| = 2.

Other results on the avoidability of Xm|n1,n2 include the following.

Proposition 9. [15]

1. Let s ∈ N with s < m − 2. Then for n > 2(m + 1)2 + m − 1,
Xm|m+s,n = {ama, bm+sbnb} is avoidable. Intuitively this means that
if m and n1 are relatively close in value, then the set of integers n2 which
make Xm|n1,n2 unavoidable is finite.

2. If max(n1, n2) < m < n1 + n2 + 2, then Xm|n1,n2 is avoidable.
3. The set X = {ama, bbb} is avoidable.

Classifying the unavoidable sets of partial words of size greater than or
equal to two remains an open question.

Open problem 26 Classify the unavoidable sets of partial words of size l ≥ 2
over a k-letter alphabet where k ≤ l.

2.8.3 Testing Unavoidability

Efficient algorithms to determine if a finite set of full words is unavoidable are
well known [45, 93]. For example, we can check whether there is a loop in the
finite automaton of Aho and Corasick [1] recognizing A∗ \ A∗XA∗. Another
approach is the following. We say that a set of words Y is obtained from a
finite set of words X by an elementary derivation if

1. Type 1 elementary derivation: There exist words x, y ∈ X such that x is
a proper prefix of y, and Y = X \ {y} (this will be denoted by X

1→ Y ).
2. Type 2 elementary derivation: There exists a word x = ya ∈ X with a ∈ A

such that, for each letter b ∈ A there is a suffix z of y such that zb ∈ X,
and Y = (X \ {x}) ∪ {y} (this will be denoted by X

2→ Y ).

A derivation is a sequence of elementary derivations. We say that Y is derived
from X if Y is obtained from X by a derivation. If Y is derived from X, then
X is unavoidable if and only if Y is unavoidable.

Example 2. The following sequence of elementary derivations shows that X =
{aaaa, aaba, abaa, abba, bab, bbb} derives {ε}:
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X
2→ {aaaa, aaba, aba, abba, bab, bbb}
2→ {aaaa, aaba, aba, abb, bab, bbb}
2→ {aaaa, aaba, ab, bab, bbb}
2→ {aaa, aaba, ab, bab, bbb}
2→ {aa, aaba, ab, bab, bbb}
1→ {aa, ab, bab, bbb}
2→ {a, ab, bab, bbb}
1→ {a, bab, bbb}
2→ {a, ba, bbb}
2→ {a, ba, bb}
2→ {a, b, bb}
2→ {a, b}
2→ {ε, b}
1→ {ε}

The notion of a derivation gives an algorithm to check whether a set is un-
avoidable: A finite set X is unavoidable if and only if there is a derivation from
X to the set {ε}. The above derivation shows that {aaaa, aaba, abaa, abba, bab,
bbb} is unavoidable.

These algorithms to determine if a finite set of full words is unavoidable,
like the one just described, can be used to decide if a finite set of partial
words X is unavoidable by determining the unavoidability of X̂. However
this incurs a dramatic loss in efficiency, as each partial word u in X can
contribute as many as ‖A‖‖H(u)‖ elements to X̂. The above derivation shows
that {aa, bb} is unavoidable as is confirmed by Theorem 31 since m + 1 =
2 + 1 = 3 = 203 and n + 1 = 1 + 1 = 2 = 21.

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was proved
that testing the unavoidability of a finite set of partial words is much harder to
handle than the similar problem for full words. Indeed, the following theorem
holds (note that the case k = 1 is trivial).

Theorem 33. [26] The problem of deciding whether a finite set of partial
words over a k-letter alphabet where k ≥ 2 is unavoidable is NP-hard.

The proof proceeds by reduction from the 3SAT problem that is known
to be NP-complete (see [70]). In the 3SAT problem, we are given n binary
variables x1, . . . , xn and m clauses that each contain three literals (a literal
can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal.

In [26], the following related questions on avoidability of sets of partial
words were raised.
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Open problem 27 Is the decision problem of the avoidability of a set of
partial words in NP?

A similar (stronger) question is the following one.

Open problem 28 For any set of partial words X, does there always exist
a two-sided infinite periodic word that avoids X, whose period is polynomial
in the size of X?

2.9 Freeness of Partial Words

In [99], Manea and Mercaş introduce freeness of partial words. There, they
extend in a natural way the concepts of square- and overlap-freeness of words
to partial words. In [31, 30], some more basic freeness properties of partial
words are investigated generalizing the well-known freeness properties of full
words.

A one-sided infinite word over the alphabet A is a function from N to A.
The Thue-Morse word is an example of a one-sided infinite word defined by
iterating a morphism. Let φ : {a, b}∗ → {a, b}∗ be the morphism defined by
φ(a) = ab and φ(b) = ba. We define t0 = a and ti = φi(a), for all i ≥ 1.
Note that ti+1 = φ(ti) and that ti+1 = titi, where x̄ is the word obtained
from x by replacing each occurrence of a with b and each occurrence of b with
a. Thus, the limit (the infinite word) t = limi→∞ ti exists. The Thue-Morse
word is defined as t, a fixed point for the morphism φ. Computations show
that t1 = ab, t2 = abba, t3 = abbabaab, t4 = abbabaabbaababba, and

t5 = abbabaabbaababbabaababbaabbabaab (2.4)

and so on.
A one-sided infinite word w is k-free if there is no word x such that xk is

a factor of w (a word that is 2-free is also called square-free and a word that
is 3-free is called cube-free). It is called overlap-free if it does not contain any
factor of the form cycyc with c ∈ A. Any overlap-free word is clearly k-free
for all k ≥ 3.

Theorem 34. [120, 121] The Thue-Morse infinite word t is overlap-free and
hence k-free for all k ≥ 3.

A one-sided infinite partial word w over the alphabet A is a partial function
from N to A. We call w k-free if for any nonempty factor x1 . . . xk of w, no
partial word x exists such that xi ⊂ x for all 1 ≤ i ≤ k. And it is said to be
overlap-free if for any factor c1y1c2y2c3 of w no letter c ∈ A and partial word
y over A exist such that ci ⊂ c for all 1 ≤ i ≤ 3 and yj ⊂ y for all 1 ≤ j ≤ 2.
In [99], the authors propose an efficient algorithm to test whether or not a
partial word of length n is k-free. Both the time and space complexities of
the algorithm are O(n

k ). In case of full words, the time complexity can be
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reduced to O(n log n) using suffix arrays [98]. In [99], the authors also give an
efficient algorithm to construct in O(n) time a cube-free (and hence k-free for
all k ≥ 3) partial word with n holes, and modify the algorithm in the case of
a four-letter alphabet to produce such a partial word of minimal length 3n−2
(which is the minimal length among all the possible cube-free words with n
holes regardless of the alphabet over which these words are constructed).

Theorem 35. [99] For k ≥ 3, there exist infinitely many k-free infinite partial
words over a two-letter alphabet containing an arbitrary number of holes.

Note that it is enough to show the result for k = 3. The idea of the proof
is to show that there exist infinitely many cube-free infinite partial words
containing exactly one hole over a two-letter alphabet. In order to do this,
observe that if the underlined b in Equality 2.4 is replaced by , then the
resulting partial word is still cube-free. Since there is an infinite number of
occurrences of t5 in t, any replacement of the underlined b in such occurrences
leads to an infinite partial word with one hole that is cube-free. The result
follows since there is an infinite number of nonoverlapping occurrences of t5
in t.

A surprising result holds for an alphabet of size four.

Theorem 36. [99] There exists an infinite cube-free word over a four-letter
alphabet in which we can randomly replace letters by holes and obtain in this
way an infinite partial word that is cube-free as long as each pair of two con-
secutive holes are separated by at least two letters of the alphabet. Moreover,
such a word does not exist over a three-letter alphabet.

We discuss the concept of square-freeness of partial words in Section 2.9.1
and of overlap-freeness of partial words in Section 2.9.2.

2.9.1 Square-Freeness

Let us now consider the k = 2 case. A well known result from Thue states
that over a three-letter alphabet there exist infinitely many infinite words
that are square-free [120, 121]. To generalize Thue’s result, we wish to find a
square-free partial word with infinitely many holes, and an infinite full word
that remains square-free even after replacing an arbitrary selection of letters
with holes. Unfortunately, every partial word containing at least one hole
and having length at least two contains a square (either a or a cannot
be avoided, where a denotes a letter from the alphabet). Furthermore, it is
obvious that if we replace 2n consecutive letters in a full word with holes,
then the corresponding factor of the resulting partial word will be a square.

Motivated by these observations, we call a word non-trivial square-free if
it contains no factors of the form wk, k ≥ 2, except when |w| ∈ {1, 2} and
k = 2. Notice that the cube aaa is considered to be a non-trivial square. For
the sake of readability, we shall use the terms non-trivial square and square
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interchangeably. The study of non-trivial squares is not new. In [106], several
iterating morphisms are given for infinite words avoiding non-trivial squares.
In particular, the authors give an infinite binary word avoiding both cubes xxx
and squares yy with |y| ≥ 4 and an infinite binary word avoiding all squares
except 02, 12, and (01)2 using a construction that is somewhat simpler than
the original one from Fraenkel and Simpson [68].

Remark 1. When we introduce holes into arbitrary positions of a word, we
impose the restriction that every two holes must have at least two non-hole
symbols between them.

With this restriction, the study of square-free partial words becomes much
more subtle and interesting.

Theorem 37. [31] There exists an infinite word over an eight-letter alphabet
that remains square-free after replacing an arbitrary selection of its letters
with holes, and none exists over a smaller alphabet.

A suggested problem for investigation is the following. Let g(n) be the
length of a longest binary full word containing at most n distinct squares.
How does the sequence {g(n)} behave? A complete answer appears in [68].

Open problem 29 Compute the maximum number of distinct squares in a
partial word with h holes of length n over a k-letter alphabet.

2.9.2 Overlap-Freeness

A well known result of Thue states that over a binary alphabet there exist
infinitely many overlap-free words [120, 121]. In [99], the question was raised
as to whether there exist overlap-free infinite partial words, and to construct
them over a binary alphabet if such exist. The following result settles this
question.

Theorem 38. [31] There exist overlap-free infinite partial words with one hole
over a two-letter alphabet, and none exists with more than one hole.

The following result relates to a three-letter alphabet.

Theorem 39. [31] There exist infinitely many overlap-free infinite partial
words with an arbitrary number of holes over a three-letter alphabet.

For the following result, we adhere to the restriction described in Remark
1 when replacing an arbitrary selection of letters in a word with holes.

Theorem 40. [31] There exists an infinite overlap-free word over a six-letter
alphabet that remains overlap-free after an arbitrary selection of its letters are
changed to holes, and none exists over a four-letter alphabet.



2 Open Problems on Partial Words 51

The case of a five-letter alphabet remains open.

Open problem 30 Does there exist an infinite word over a five-letter alpha-
bet that remains overlap-free after an arbitrary insertion of holes?

Other problems are suggested in [31].

Open problem 31 Extend the concept of square-free (respectively, overlap-
free or cube-free) morphism to partial words.

From [31, 99], some of the properties of this kind of morphisms already
start to be obvious. A further analysis might give additional properties that
such morphisms should fulfill. Following the approach of Dejean [56], another
interesting problem to analyze is the following.

Open problem 32 Identify the exact value of k (related to k-freeness) for a
given alphabet size. This value would represent the repetitiveness threshold in
an n-letter alphabet.

If for full words this value is known for alphabets up to size 11 and it is
conjectured that for bigger size alphabets the value is n+1

n , for partial words
this value has not yet been investigated.

2.10 Other Open Problems

The theory of codes has been widely developed in connection with combi-
natorics on words [5]. In [7, 32], a new line of research was initiated by in-
troducing pcodes in connection with combinatorics on partial words, and a
theoretical framework for pcodes was developed by revisiting the theory of
codes of words, as exposited in [5], starting from pcodes of partial words.
Pcodes are defined in terms of the compatibility relation as follows.

Definition 10. [7] Let X be a nonempty set of partial words over an alphabet
A. Then X is called a pcode over A if for all positive integers m,n and partial
words u1, . . . , um, v1, . . . , vn ∈ X, the condition

u1u2 . . . um ↑ v1v2 . . . vn

implies m = n and ui = vi for i = 1, . . . ,m.

An area of current interest for the study of pcodes is data communication
where some information may be missing, lost, or unknown. While a code of
words X does not allow two distinct decipherings of some word in X+, a
pcode of partial words Y does not allow two distinct compatible decipherings
in Y +. Various ways have been described for defining and analyzing pcodes. In
particular, many pcodes can be obtained as antichains with respect to certain
partial orderings. Adapting a graph technique related to dominoes [6, 73, 79],
the pcode property was shown to be decidable for finite sets of partial words.
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For example, the set X = {a, ab} is a pcode over {a, b}, but the set
Y = {u1, u2, u3, u4} where u1 = ab, u2 = aabba, u3 = b, and u4 = ba is not
a pcode over {a, b} since u1u3u3u4u3 ↑ u2u3u1 is a nontrivial compatibility
relation over Y .

It is well known that the two-element set of words {u, v} is a code if and
only if uv �= vu. However, this is not true in general for partial words. For
instance, the set {u, v} where u = ab and v = abbaab satisfies uv �↑ vu, but
{u, v} is not a pcode since u2 ↑ v.

Open problem 33 Find a necessary and sufficient condition for a two-
element set of partial words to be a pcode.

Other suggested problems are the following.

Open problem 34 Investigate the concept of tiling periodicity introduced
recently by Karhumäki, Lifshits and Rytter’s [81]. There, the authors suggest
a number of questions for further work on this new concept.

Punctured languages are sets whose elements are partial words. In [91],
Lischke investigated to which extent restoration of punctured languages is
possible if the number of holes or the proportion of holes per word, respec-
tively, is bounded, and studied their relationships for different boundings.
The considered restoration classes coincide with similarity classes according
to some kind of similarity for languages. Thus all results he can also formulate
in the language of similarity. He shows some hierarchies of similarity classes
for each class of the Chomsky hierarchy, and proves the existence of linear
languages which are not δ-similar to any regular language for any δ < 1

2 .

Open problem 35 For 1
2 ≤ δ, do there exist linear languages which are not

δ-similar to any regular language? If they exist, then they must be non-slender.
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The alignments constitute one of the processes used to compare strings. They
allow to visualize the resemblance between strings. This chapter deals with
several methods that perform the comparison of two strings in this sense. The
extension to comparison methods of more than two strings is delicate, leads
to algorithms whose execution time is at least exponential, and is not treated
here.

The alignments are based on notions of distance or of similarity between
strings. The computations are usually performed by dynamic programming.
A typical example is the computation of the longest subsequence common to
two strings since it shows the algorithmic techniques to implement in order to
obtain an efficient computation. In particular, the reduction of the memory
space obtained by one of the algorithms constitute a strategy that can often
be applied in the solutions to close problems.

Section 3.1.1 describes the basic techniques for the computation of the
edit (or alignment) distance and the production of the associated alignments.
The chosen methodology allows to highlight a global resemblance between two
strings using assumptions that simplify the computation. The search for local
similarities between two strings is examined in Section 3.1.2.

The possibility of reduction of the memory space required by the compu-
tations is presented in Section 3.1.3 concerning the computation of longest
common subsequences.

We are then interested Section 3.2 in the approximate search for fixed
strings. More generally, approximate pattern matching consists in locating all
the occurrences of factors inside a text y, of length n, that are similar to a
string x, of length m. It consists in producing the positions of the factors of y
that are at distance at most k from x, for a given natural integer k. We assume
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in the rest that k < m ≤ n. We consider the edit distance for measuring the
approximation.

The edit distance between two strings u and v, that are not necessarily of
same length, is the minimal cost of the elementary edit operations between
these two strings. The method at the basis for approximate pattern matching
is a natural extension of the alignment method by dynamic programming
of Section 3.1. It can be improved by using a restricted notion of distance
obtained by considering the minimal number of edit operations rather than
the sum of their costs. With this distance, the problem is known under the
name of approximate pattern matching with k differences. Section 3.2 presents
several solutions.

The Hamming distance between two strings u and v of same length is the
number of positions in which the two strings possess different letters. With
this distance, the problem is known under the name of approximate pattern
matching with k mismatches. It is treated in Section 3.3.

We examine then, in Section 3.4, the case of the search for short patterns.
This gives excellent practical results and is very flexible as long as the con-
ditions of its utilization are fulfilled. The Shift-Or algorithm of Section 3.4 is
a method that is both very fast in practice and very easy to implement. The
method is flexible enough to be adapted to a wide range of similar approximate
matching problems.

3.1 Alignments

An alignment of two strings x and y of length m and n respectively consists
in aligning their symbols on vertical lines. Formally an alignment of two strings
x, y ∈ V is a word w on the alphabet (V ∪ {λ}) × (V ∪ {λ}) \ ({(λ, λ)} (λ
is the empty word) whose projection on the first component is x and whose
projection of the second component is y.

Thus an alignment w = (x0, y0)(x1, y1) · · · (xp−1, yp−1) of length p is such
that x = x0x1 · · ·xp−1 and y = y0y1 · · · yp−1 with xi ∈ V ∪ {λ} and yi ∈
V ∪ {λ} for 0 ≤ i ≤ p− 1. The alignment is represented as follows

x0 x1 · · · xp−1

y0 y1 · · · yp−1

with the symbol − instead of the symbol λ.
An example is presented in Fig. 3.1.

A C G − − A
A T G C T A

Fig. 3.1. Alignment of ACGA and ATGCTA.
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3.1.1 Global alignment

A global alignment of two strings x and y can be obtained by computing
the distance between x and y. The notion of distance between two strings is
widely used to compare files. The diff command of UNIX operating system
implements an algorithm based on this notion, in which lines of the files
are treated as symbols. The output of a comparison made by diff gives
the minimum number of operations (substitute a symbol, insert a symbol, or
delete a symbol) to transform one file into the other.

Let us define the edit distance between two strings x and y as follows: it is
the minimum number of elementary edit operations that enable to transform
x into y. The elementary edit operations are:

• the substitution of a character of x at a given position by a character of y,
• the deletion of a character of x at a given position,
• the insertion of a character of y in x at a given position.

A cost is associated with each elementary edit operation. For a, b ∈ V :

• Sub(a, b) denotes the cost of the substitution of the character a by the
character b,

• Del(a) denotes the cost of the deletion of the character a,
• Ins(a) denotes the cost of the insertion of the character a.

This means that the costs of the edit operations are independent of the posi-
tions where the operations occur. We can now define the edit distance of two
strings x and y by

edit(x, y) = min{cost of γ | γ ∈ Γx,y}

where Γx,y is the set of all the sequences of edit operations that transform
x into y, and the cost of an element γ ∈ Γx,y is the sum of the costs of its
elementary edit operations.

In order to compute edit(x, y) for two strings x and y of length m and n
respectively, we make use of a two-dimensional table T of m + 1 rows and
n + 1 columns such that

T [i, j] = edit(x[0 . . i], y[0 . . j])

for i = 0, . . . ,m−1 and j = 0, . . . , n−1. It follows edit(x, y) = T [m−1, n−1].
The values of the table T can be computed by the following recurrence

formula:

T [−1,−1] = 0 ,

T [i,−1] = T [i− 1,−1] + Del(x[i]) ,

T [−1, j] = T [−1, j − 1] + Ins(y[j]) ,

T [i, j] = min

⎧
⎪⎨

⎪⎩

T [i− 1, j − 1] + Sub(x[i], y[j]) ,

T [i− 1, j] + Del(x[i]) ,

T [i, j − 1] + Ins(y[j]) ,
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for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.
The value at position [i, j] in the table T only depends on the values at

the three neighbor positions [i− 1, j − 1], [i− 1, j] and [i, j − 1].
The direct application of the above recurrence formula gives an exponen-

tial time algorithm to compute T [m − 1, n − 1]. However the whole table T
can be computed in quadratic time, technique known as “dynamic program-
ming”. This is a general technique that is used to solve the different kinds of
alignments.

The computation of the table T proceeds in two steps. First it initializes
the first column and first row of T , this is done by a call to a generic function
Margin which is an argument of the algorithm and that depends on the kind
of alignment that is considered. Second it computes the remaining values of T ,
that is done by a call to a generic function Formula which is an argument of
the algorithm and that depends on the kind of alignment that is considered.

Generic-DP(x, m, y, n,Margin,Formula)

1 Margin(T, x, m, y, n)

2 for j ← 0 to n − 1 do
3 for i ← 0 to m − 1 do
4 T [i, j] ← Formula(T, x, i, y, j)
5 return T

Fig. 3.2. Computation of the table T by dynamic programming.

Computing a global alignment of x and y can be done by a call to
Generic-DP with the following arguments

(x,m, y, n,Global-margin,Global-formula)
(see Fig. 3.2, 3.3 and 3.4). The computation of all the values of the table T
can thus be done in quadratic space and time: O(m× n).

Global-margin(T, x, m, y, n)

1 T [−1,−1] ← 0
2 for i ← 0 to m − 1 do
3 T [i,−1] ← T [i − 1,−1] + Del(x[i])
4 for j ← 0 to n − 1 do
5 T [−1, j] ← T [−1, j − 1] + Ins(y[j])

Fig. 3.3. Margin initialization for the computation of a global alignment.

An optimal alignment (with minimal cost) can then be produced by a
call to the function One-alignment(T, x,m − 1, y, n − 1) (see Fig. 3.5). It
consists in tracing back the computation of the values of the table T from
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Global-formula(T, x, i, y, j)
1 return min{T [i − 1, j − 1] + Sub(x[i], y[j]),

T [i − 1, j] + Del(x[i]),
T [i, j − 1] + Ins(y[j])}

Fig. 3.4. Computation of T [i, j] for a global alignment.

position [m − 1, n − 1] to position [−1,−1]. At each cell [i, j] the algorithm
determines among the three values T [i− 1, j− 1]+Sub(x[i], y[j]), T [i− 1, j]+
Del(x[i]) and T [i, j − 1] + Ins(y[j]) which has been used to produce the value
of T [i, j]. If T [i− 1, j − 1] + Sub(x[i], y[j]) has been used it adds (x[i], y[j]) to
the optimal alignment and proceeds recursively with the cell at [i−1, j−1]. If
T [i− 1, j] + Del(x[i]) has been used it adds (x[i],−) to the optimal alignment
and proceeds recursively with cell at [i − 1, j]. If T [i, j − 1] + Ins(y[j]) has
been used it adds (−, y[j]) to the optimal alignment and proceeds recursively
with cell at [i, j − 1]. Recovering all the optimal alignments can be done by a
similar technique.

An example of global alignment is given in Fig. 3.6.

One-alignment(T, x, i, y, j)
1 if i = −1 and j = −1 then
2 return (λ, λ)
3 else if i = −1 then
4 return One-alignment(T, x,−1, y, j − 1) · (λ, y[j])
5 else if j = −1 then
6 return One-alignment(T, x, i − 1, y,−1) · (x[i], λ)
7 else if T [i, j] = T [i − 1, j − 1] + Sub(x[i], y[j]) then
8 return One-alignment(T, x, i − 1, y, j − 1) · (x[i], y[j])
9 else if T [i, j] = T [i − 1, j] + Del(x[i]) then

10 return One-alignment(T, x, i − 1, y, j) · (x[i], λ)
11 else return One-alignment(T, x, i, y, j − 1) · (λ, y[j])

Fig. 3.5. Recovering an optimal alignment.

3.1.2 Local alignment

A local alignment of two strings x and y consists in finding the segment of
x that is closer to a segment of y. The notion of distance used to compute
global alignments cannot be used in that case since the segments of x closer
to segments of y would only be the empty segment or individual characters.
This is why a notion of similarity is used based on a scoring scheme for edit
operations.
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T j -1 0 1 2 3 4 5
i y[j] A T G C T A
-1 x[i] 0 1 2 3 4 5 6
0 A 1 0 1 2 3 4 5
1 C 2 1 1 2 2 3 4
2 G 3 2 2 1 2 3 4
3 A 4 3 3 2 2 3 3

Fig. 3.6. Global alignment of ACGA and ATGCTA. The values of the above table
have been obtained with the following unitary costs: Sub(a, b) = 1 if a �= b and
Sub(a, a) = 0, Del(a) = Ins(a) = 1 for a, b ∈ V .

A score (instead of a cost) is associated with each elementary edit opera-
tion. For a, b ∈ V :

• SubS(a, b) denotes the score of substituting the character b for the charac-
ter a,

• DelS(a) denotes the score of deleting the character a,
• InsS(a) denotes the score of inserting the character a.

This means that the scores of the edit operations are independent of the
positions where the operations occur. For two characters a and b, a positive
value of SubS(a, b) means that the two characters are close to each other, and
a negative value of SubS(a, b) means that the two characters are far apart.

We can now define the edit score of two strings x and y by

sco(x, y) = max{score of γ | γ ∈ Γx,y}

where Γx,y is the set of all the sequences of edit operations that transform x
into y and the score of an element σ ∈ Γx,y is the sum of the scores of its
elementary edit operations.

An optimal local alignment between the strings x and y is a pair of strings
(u, v) for which u is a factor of x, v is a factor of y and sco(u, v) is max-
imal. For performing its computation, we consider a table T defined, for
i = −1, 0, . . . ,m − 1 and j = −1, 0, . . . , n − 1, by: T [i, j] is the maximal
similarity between a suffix of x[0 . . i] and a suffix of y[0 . . j]. Or also

T [i, j] = max{sco(x[� . . i], y[k . . j]) | 0 ≤ � ≤ i and 0 ≤ k ≤ j} ∪ {0}

is the score of the local alignment in [i, j].
The values of the table T can be computed by the following recurrence

formula:
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T [−1,−1] = 0 ,

T [i,−1] = 0 ,

T [−1, j] = 0 ,

T [i, j] = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T [i− 1, j − 1] + SubS(x[i], y[j]) ,

T [i− 1, j] + DelS(x[i]) ,

T [i, j − 1] + InsS(y[j]) ,

0 ,

for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.
Computing the values of T for a local alignment of x and y can be done

by a call to Generic-DP with the following arguments
(x,m, y, n,Local-margin,Local-formula)

in O(mn) time and space complexity (see Fig. 3.2, 3.7 and 3.8). Recovering a
local alignment can be done in a way similar to what is done in the case of a
global alignment (see Fig. 3.5) but the trace back procedure must start at a
position of a maximal value in T rather than at position [m− 1, n− 1].

An example of local alignment is given in Fig. 3.9.

Local-margin(T, x, m, y, n)

1 T [−1,−1] ← 0
2 for i ← 0 to m − 1 do
3 T [i,−1] ← 0
4 for j ← 0 to n − 1 do
5 T [−1, j] ← 0

Fig. 3.7. Margin initialization for computing a local alignment.

Local-formula(T, x, i, y, j)
1 return max{T [i − 1, j − 1] + SubS(x[i], y[j]),

T [i − 1, j] + DelS(x[i]),
T [i, j − 1] + InsS(y[j]),
0}

Fig. 3.8. Recurrence formula for computing a local alignment.

3.1.3 Longest Common Subsequence of Two Strings

A subsequence of a string x is obtained by deleting zero or more characters
from x. More formally w[0 . . i − 1] is a subsequence of x[0 . . m − 1] if there
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(a)

T j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j] E R D A W C Q P G K W Y
−1 x[i] 0 0 0 0 0 0 0 0 0 0 0 0 0
0 E 0 1 0 0 0 0 0 0 0 0 0 0 0
1 A 0 0 0 0 1 0 0 0 0 0 0 0 0
2 W 0 0 0 0 0 2 1 0 0 0 0 1 0
3 A 0 0 0 0 1 1 0 0 0 0 0 0 0
4 C 0 0 0 0 0 0 2 1 0 0 0 0 0
5 Q 0 0 0 0 0 0 1 3 2 1 0 0 0
6 G 0 0 0 0 0 0 0 2 1 3 2 1 0
7 K 0 0 0 0 0 0 0 1 0 2 4 3 2
8 L 0 0 0 0 0 0 0 0 0 1 3 2 1

(b) A W A C Q - G K
A W - C Q P G K

Fig. 3.9. Computation of an optimal local alignment of x = EAWACQGKL and y =
ERDAWCQPGKWY with scores: SubS(a, a) = 1, SubS(a, b) = −3 and DelS(a) = InsS(a) =
−1 for a, b ∈ V , a �= b. (a) Values of table T . (b) The corresponding alignment.

exists an increasing sequence of integers (kj | j = 0, . . . , i − 1) such that for
0 ≤ j ≤ i − 1, w[j] = x[kj ]. We say that a string is an lcs(x, y) if it is a
longest common subsequence of the two strings x and y. Note that two
strings can have several longest common subsequences. Their common length
is denoted by llcs(x, y).

A brute-force method to compute an lcs(x, y) would consist in computing
all the subsequences of x, checking if they are subsequences of y, and keeping
the longest ones. The string x of length m has potentially 2m subsequences,
and so this method could take O(2m) time, which is impractical even for fairly
small values of m.

However llcs(x, y) can be computed with a two-dimensional table T by the
following recurrence formula:

T [−1,−1] = 0 ,

T [i,−1] = 0 ,

T [−1, j] = 0 ,

T [i, j] =

{
T [i− 1, j − 1] + 1 if x[i] = y[j],
max{T [i− 1, j], T [i, j − 1]} otherwise,

for i = 0, 1, . . . ,m−1 and j =0, 1, . . . , n−1. Then T [i, j] = llcs(x[0 . . i], y[0 . . j])
and llcs(x, y) = T [m− 1, n− 1].

Computing T [m − 1, n − 1] can be done by a call to Generic-DP

with the following arguments (x,m, y, n,Local-margin,Lcs-formula) in
O(mn) time and space complexity (see Fig. 3.2, 3.7 and 3.10).
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Formula-lcs(T, x, i, y, j)
1 if x[i] = y[j] then
2 return T [i − 1, j − 1] + 1
3 else return max{T [i − 1, j], T [i, j − 1]}

Fig. 3.10. Recurrence formula for computing an lcs.

It is possible afterward to trace back a path from position [m−1, n−1] to
exhibit an lcs(x, y) in a similar way as for producing a global alignment (see
Fig. 3.5). An example is presented in Fig. 3.11.

T j −1 0 1 2 3 4 5 6 7 8
i y[j] C A G A T A G A G
−1 x[i] 0 0 0 0 0 0 0 0 0 0
0 A 0 0 1 1 1 1 1 1 1 1
1 G 0 0 1 2 2 2 2 2 2 2
2 C 0 1 1 2 2 2 2 2 2 2
3 G 0 1 1 2 2 2 2 3 3 3
4 A 0 1 2 2 3 3 3 3 4 4

Fig. 3.11. The value T [4, 8] = 4 is llcs(x, y) for x = AGCGA and y = CAGATAGAG.
String AGGA is an lcs of x and y.

3.1.4 Reducing the Space: Hirschberg Algorithm

If only the length of an lcs(x, y) is required, it is easy to see that only one row
(or one column) of the table T needs to be stored during the computation. The
space complexity becomes O(min(m,n)) as can be checked on the algorithm of
Fig. 3.12. The Hirschberg algorithm computes an lcs(x, y) in linear space and
not only the value llcs(x, y). The computation uses the algorithm of Fig. 3.12.

Let us define

T ∗[i, n] = T ∗[m, j] = 0, for 0 ≤ i ≤ m and 0 ≤ j ≤ n

T ∗[m− i, n− j] = llcs((x[i . . m− 1])R, (y[j . . n− 1])R)
for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1

and
M(i) = max

0≤j<n
{T [i, j] + T ∗[m− i, n− j]}

where the string wR is the reverse (or mirror image) of the string w. The
following property is the key observation to compute an lcs(x, y) in linear
space:
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LLCS(x, m, y, n)

1 for i ← −1 to m − 1 do
2 C[i] ← 0
3 for j ← 0 to n − 1 do
4 last ← 0
5 for i ← −1 to m − 1 do
6 if last > C[i] then
7 C[i] ← last
8 else if last < C[i] then
9 last ← C[i]

10 else if x[i] = y[j] then
11 C[i] ← C[i] + 1
12 last ← last + 1
13 return C

Fig. 3.12. O(m)-space algorithm to compute llcs(x, y).

Hirschberg(x, m, y, n)

1 if m = 0 then
2 return λ
3 else if m = 1 then
4 if x[0] ∈ y then
5 return x[0]
6 else return λ
7 else j ← �n/2�
8 C ← LLCS(x, m, y[0 . . j − 1], j)
9 C∗ ← LLCS(xR, m, y[j . . n − 1]R, n − j)

10 k ← m − 1
11 M ← C[m − 1] + C∗[m − 1]
12 for j ← −1 to m − 2 do
13 if C[j] + C∗[j] > M then
14 M ← C[j] + C∗[j]
15 k ← j
16 return Hirschberg(x[0 . . k − 1], k, y[0 . . j − 1], j)·

Hirschberg(x[k . . m − 1], m − k, y[j . . n − 1], n − j)

Fig. 3.13. O(min(m, n))-space computation of lcs(x, y).

M(i) = T [m− 1, n− 1], for 0 ≤ i < m .

In the algorithm shown in Fig. 3.13 the integer j is chosen as n/2. After
T [i, j−1] and T ∗[m−i, n−j] (0 ≤ i < m) are computed, the algorithm finds an
integer k such that T [i, k]+T ∗[m−i, n−k] = T [m−1, n−1]. Then, recursively,
it computes an lcs(x[0 . . k−1], y[0 . . j−1]) and an lcs(x[k . . m−1], y[j . . n−1]),
and concatenates them to get an lcs(x, y).
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The running time of the Hirschberg algorithm is still O(mn) but the
amount of space required for the computation becomes O(min(m,n)) instead
of being quadratic when computed by dynamic programming.

3.2 Approximate String Matching with Differences

Approximate string matching is the problem of finding all approximate oc-
currences of a pattern x of length m in a text y of length n. Approximate
occurrences of x are segments of y that are close to x according to a specific
distance: the distance between segments and x must be not greater than a
given integer k. With the edit distance (or Levenshtein distance), the problem
is known as approximate string matching with k differences. The standard
solutions to solve this problem consist in using the dynamic programming
technique introduced in Section 3.1. We describe three variations around this
technique.

Dynamic programming

We first examine a problem a bit more general for which the cost of the edit
operations is not necessarily one unit. Aligning x with a factor of y amounts to
align x with a prefix of y considering that the insertion of any number of letters
of y at the beginning of x is not penalizing. With the table T of Section 3.1.1
we check that, to solve the problem, it is sufficient then to initialize to zero
the values of the first line of the table. The positions of the occurrences are
then associated with all the values of the last line of the table that are less
than k.

To perform the search for approximate factors, we utilize the table R
defined by

R[i, j] = min{edit(x[0 . . i], y[� . . j]) | � = 0, 1, . . . , j + 1},

for i = −1, 0, . . . ,m − 1 and j = −1, 0, . . . , n − 1, where edit is the edit
distance of Section 3.1. The computation of the values of the table R utilizes
the recurrence relations that follow.

For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1, we have:

R[−1,−1] = 0,
R[i,−1] = R[i− 1,−1] + Del(x[i]),
R[−1, j] = 0,

R[i, j] = min

⎧
⎪⎨

⎪⎩

R[i− 1, j − 1] + Sub(x[i], y[j]),
R[i− 1, j] + Del(x[i]),
R[i, j − 1] + Ins(y[j]).

(3.1)
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K-diff-DP(x, m, y, n, k)
1 R[−1,−1] ← 0
2 for i ← 0 to m − 1 do
3 R[i,−1] ← i + Del(x[i])
4 for j ← 0 to n − 1 do
5 R[−1, j] ← 0
6 for i ← 0 to m − 1 do

7 R[i, j] ← min

⎧
⎪⎨

⎪⎩

R[i − 1, j − 1] + Sub(x[i], y[j])

R[i − 1, j] + Del(x[i])

R[i, j − 1] + Ins(y[j])

8 if R[m − 1, j] ≤ k then
9 Output(j)

Fig. 3.14. Approximate string matching with k differences by dynamic program-
ming.

(a)

R j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j]C A G A T A A G A G A A
−1 x[i] 0 0 0 0 0 0 0 0 0 0 0 0 0
0 G 1 1 1 0 1 1 1 1 0 1 0 1 1
1 A 2 2 1 1 0 1 1 1 1 0 1 0 1
2 T 3 3 2 2 1 0 1 2 2 1 1 1 1
3 A 4 4 3 3 2 1 0 1 2 2 2 1 1
4 A 5 5 4 4 3 2 1 0 1 2 3 2 1

(b)

G A T A A
C A G A T - A A G A G A A

G A T A A
C A G A T A A G A G A A

G A T A A
C A G A T A - A G A G A A

- G A T A A
C A G A T A A G A G A A

G A T A A
C A G - A T A A G A G A A

G A T A A -
C A G A T A A G A G A A

G A T A A
C A G A T A A G A G A A

Fig. 3.15. Search for x = GATAA in y = CAGATAAGAGAA with one difference, con-
sidering unit costs for the edit operations. (a) Values of table R. (b) The seven
alignments of x with factors of y ending at positions 5, 6, 7 and 11 on y. We note
that the fourth and sixth alignments give no extra information comparing to the
second.
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The search algorithm K-diff-DP whose code is given in Fig. 3.14 and that
translates the recurrence of the previous proposition performs the approximate
search. An example is given in Fig. 3.15.

We note that the space used by the algorithm K-diff-DP can be reduced
to a single column by reproducing the technique of Section 3.1.3. Besides, this
technique is implemented by the algorithm K-diff-cut-off (see Fig. 3.16).
As a conclusion we get the following result.

The operation K-diff-DP(x,m, y, n, k) that finds the factors u of y for
which edit(u, x) ≤ k (edit edit distance with any costs) executes in time O(m×
n) and can be realized in space O(m).

Diagonal monotony

In the rest of the section, we consider that the costs of the edit operations
are unitary. This is a simple case for which we can describe more efficient
computation strategies that those described above. The restriction allows to
state a property of monotony on the diagonals that is at the basis of the
presented variations.

Since we assume that Sub(a, b) = Del(a) = Ins(b) = 1 for a, b ∈ V , a �= b,
the recurrence relation 3.1 simplifies and becomes

R[−1,−1] = 0,
R[i,−1] = i + 1,

R[−1, j] = 0,

R[i, j] = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R[i− 1, j − 1] if x[i] = y[j],
R[i− 1, j − 1] + 1 if x[i] �= y[j],
R[i− 1, j] + 1,
R[i, j − 1] + 1.

(3.2)

for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.
A diagonal d of the table R consists of the positions [i, j] for which j− i =

d (−m ≤ d ≤ n). The property of diagonal monotony expresses that the
sequence of values on each diagonal of the table R increases with i and that
the difference between two consecutive values is at most one (see Fig. 3.15).
Before formally stating the property, we give intermediate results. The first
result means that two adjacent values on a column of the table R differ from
at most one. The second result is symmetrical to the first one for the lines
of R.

For each position j on the string y, we have

−1 ≤ R[i, j]−R[i− 1, j] ≤ 1

for i = 0, 1, . . . ,m− 1.
For each position i on the string x, we have
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−1 ≤ R[i, j]−R[i, j − 1] ≤ 1

for j = 0, 1, . . . , n− 1.
We now can state the result concerning the property of monotony on the

diagonals announced above:
For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1, we have:

R[i− 1, j − 1] ≤ R[i, j] ≤ R[i− 1, j − 1] + 1.

Partial computation

The property of monotony on the diagonals is exploited in the following way
to avoid to compute some values in the table R that are greater than k, the
maximal number of allowed differences. The values are still computed column
by column, in the increasing order of the positions on y and for each column
in the increasing order of the positions on x, as done by the algorithm K-

diff-DP. When a value equal to k + 1 is found in a column, it is useless to
compute the next values in the same diagonal since those latter are all strictly
greater than k. For pruning the computation, we keep, in each column, the
largest position at which is found an admissible value. If qj is this position,
for a given column j, only the values of lines −1 to qj + 1 are computed in
the next column (of index j + 1).

The algorithm K-diff-cut-off, given in Fig. 3.16, realizes this method.

K-diff-cut-off(x, m, y, n, k)
1 for i ← −1 to k − 1 do
2 C1[i] ← i + 1
3 p ← k
4 for j ← 0 to n − 1 do
5 C2[−1] ← 0
6 for i ← 0 to p do
7 if x[i] = y[j] then
8 C2[i] ← C1[i − 1]
9 else C2[i] ← min{C1[i − 1], C2[i − 1], C1[i]} + 1

10 C1 ← C2

11 while C1[p] > k do
12 p ← p − 1
13 if p = m − 1 then
14 Output(j)
15 p ← min{p + 1, m − 1}

Fig. 3.16. Approximate string matching with k differences by partial computation.

The column −1 is initialized until line k − 1 that corresponds to the value k.
For the next columns of index j = 0, 1, . . . , n − 1, the values are computed
until line
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pj = min

{
1 + max{i | 0 ≤ i ≤ m− 1 and R[i, j − 1] ≤ k},
m− 1.

The table R is implemented with the help of two tables C2 and C1 that allow
to memorize respectively the values of the column during the computation
and the values of the previous column. The process is similar to the one that
is used in the algorithm LLCS of Section 3.1.4. At each iteration of the loop
Lines 7–10, we have:

C1[i− 1] = R[i− 1, j − 1],
C2[i− 1] = R[i− 1, j],

C1[i] = R[i, j − 1].

We compute then the value C2[i] that is also R[i, j]. We find thus at this line
an implementation of Relation 3.2. An example of computation is given in
Fig. 3.17.

R j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j]C A G A T A A G A G A A
−1 x[i] 0 0 0 0 0 0 0 0 0 0 0 0 0
0 G 1 1 1 0 1 1 1 1 0 1 0 1 1
1 A 2 1 1 0 1 1 1 1 0 1 0 1
2 T 2 1 0 1 2 2 1 1 1 1
3 A 1 0 1 2 2 2 1 1
4 A 1 0 1 2 1

Fig. 3.17. Pruning of the computation of the dynamic programing table for the
search for x = GATAA in y = CAGATAAGAGAA with one difference (see Figure 3.15). We
notice that seventeen values of table R (those that are not shown) are not useful for
the computation of occurrences of approximate factors of x in y.

We note that the memory space used by the algorithm K-diff-cut-off

is O(m). Indeed, only two columns are memorized. This is possible since the
computation of the values for one column only needs those of the previous
column.

Diagonal computation

The variant of search with differences that we consider now consists in com-
puting the values of the table R according to the diagonals and by taking into
account the property of monotony. The interesting positions on the diagonals
are those where changes of values happen. These changes are incrementation
because of the chosen distance.

For a number q of differences and a diagonal d, we denote by L[q, d] the
index i of the line on which R[i, j] = q for the last time on the diagonal
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R j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j]C A G A T A A G A G A A
−1 x[i] 0
0 G 1
1 A 1
2 T 2
3 A 2
4 A 3

Fig. 3.18. Values of table R on diagonal 5 for the approximate search for x = GATAA
in y = CAGATAAGAGAA. The last occurrences of each value on the diagonal are in
gray. The lines where they occur are stored in table L by the algorithm of diagonal
computation. We thus have L[0, 5] = −1, L[1, 5] = 1, L[2, 5] = 3, L[3, 5] = 4.

j − i = d. The idea of the definition of L[q, d] is shown in Fig. 3.18. Formally,
for q = 0, 1, . . . , k and d = −m,−m + 1, . . . , n−m, we have

L[q, d] = i

if and only if i is the maximal index, −1 ≤ i < m, for which there exists an
index j, −1 ≤ j < n, with

R[i, j] ≤ q and j − i = d.

In other words, for fixed q, the values L[q, d] mark the lowest borderline of
the values less than q in the table R (gray values in Fig. 3.19).

The definition of L[q, d] implies that q is the smallest number of differences
between x[0 . . L[q, d]] and a factor of the text ending at position d+L[q, d] on
y. It moreover implies that the letters x[L[q, d] + 1] and y[d + L[q, d] + 1] are
different when they are defined.

The values L[q, d] are computed by iteration on d, for q going from 0
to k + 1. The principle of the computation relies on Recurrence 3.2 and the
above statements. A simulation of the computation on the table R is presented
in Fig. 3.19.

For the approximate pattern matching with k differences problem, only
the values L[q, d] for which q ≤ k are necessary. If L[q, d] = m − 1, it means
that there is an occurrence of the string x at the diagonal d with at most q
differences. The occurrence ending at position d + m− 1, this is only valid if
d + m ≤ n. We get another approximate occurrences at the end of y when
L[q, d] = i and d+i = n−1; in this case the number of differences is q+m−1−i.

The algorithm K-diff-diag, given in Fig. 3.21 performs the approximate
search for x in y by computing the values L[q, d]. It uses the function lcp where
lcp(u, v) gives the length of the longest common prefix of two strings u and v.
Let us note that the first possible occurrence of an approximate factor of x in
y can end at position m − 1 − k on y, this corresponds to diagonal −k. The
last possible occurrence starts at position n −m + k on y, this corresponds
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(a)

R j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j]C A G A T A A G A G A A
−1 x[i] 0 0 0 0 0 0 0 0 0
0 G 0 0
1 A 0 0
2 T 0
3 A 0
4 A 0

(b)

R j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j]C A G A T A A G A G A A
−1 x[i] 0 0 0 0 0 0 0 0 0
0 G 1 1 1 0 1 1 1 1 0
1 A 1 1 0 1 1 1 1 0
2 T 1 0 1 1 1
3 A 1 0 1 1
4 A 1 0 1 1

Fig. 3.19. Simulation of the diagonal computation for the search for x = GATAA
in y = CAGATAAGAGAA with one difference (see Figure 3.15). (a) Values computed
during the first step (Lines 8–13 for q = 0 of Algorithm L-diff-diag); they detect
the occurrence of x at right position 6 on y (since R[4, 6] = 0). (b) Values computed
during the second step (Lines 8–13 for q = 1); they indicate the approximate factors
of x with one difference at right positions 5, 7 and 11 on y (since R[4, 5] = R[4, 7] =
R[4, 11] = 1).

to diagonal n − m + k. Thus only diagonals going from −k to n − m + k
are considered during the computation (the initialization is also done on the
diagonals −k− 1 and n−m + k + 1 to simplify the writing of the algorithm).
Fig. 3.20 shows the table L obtained on the example of Fig. 3.15.

d −2 −1 0 1 2 3 4 5 6 7 8 9
q = −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
q = 0 −1 −1 −1 −1 4 −1 −1 −1 −1 1 −1
q = 1 0 1 4 4 4 1 1 2 4

Fig. 3.20. Values of table L of the diagonal computation when x = GATAA, y =
CAGATAAGAGAA and k = 1. Lines q = 0 and q = 1 correspond to a state of the
computation simulated on table R in Figure 3.19. Values 4 = |GATAA| − 1 on line
q = 1 indicate the presence of occurrences of x with at most one difference ending
at positions 1 + 4, 2 + 4, 3 + 4 and 7 + 4 on y.

The algorithm K-diff-diag computes the table L.
For every string x of length m, every string y of length n and every integer k

such that k < m ≤ n, the operation K-diff-diag(x,m, y, n, k) computes the
approximate occurrences of x in y with at most k differences.
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K-diff-diag(x, m, y, n, k)
1 for d ← −1 to n − m + k + 1 do
2 L[−1, d] ← −2
3 for q ← 0 to k − 1 do
4 L[q,−q − 1] ← q − 1
5 L[q,−q − 2] ← q − 1
6 for q ← 0 to k do
7 for d ← −q to n − m + k − q do

8 � ← max

⎧
⎪⎨

⎪⎩

L[q − 1, d − 1]

L[q − 1, d] + 1

L[q − 1, d + 1] + 1

9 � ← min{�, m − 1}
10 L[q, d] ← � + |lcp(x[� + 1 . . m − 1], y[d + � + 1 . . n − 1])|
11 if L[q, d] = m − 1 or d + L[q, d] = n − 1 then
12 Output(d + m − 1)

Fig. 3.21. Approximate string matching with k differences by diagonals.

In the way that the algorithm K-diff-diag is described, the memory space
for the computation is principally used by the table L. We note that it is
sufficient to memorize a single line to correctly perform the computation, this
gives an implementation in space O(n). It is however possible to reduce the
space to O(m) obtaining a space comparable to algorithm K-diff-cut-off.

If the computation of lcp(u, v) is realized in time O(|lcp(u, v)|), the algo-
rithm K-diff-diag executes in time O(m× n). But it is possible to prepare
the strings x and y in such a way that any lcp(u, v) query is answered in
constant time. For this, we utilize the suffix tree, of the string z = x$y where
$ �∈ alph(y). The string

w = lcp(x[� + 1 . . m− 1], y[d + � + 1 . . n− 1])

is nothing else but the string lcp(x[� + 1 . . m− 1]$y, y[d + � + 1 . . n− 1]) since
$ �∈ alph(y). Let f and g be the external nodes of the suffix tree associated
with suffixes of x[� + 1 . . m − 1]$y and y[d + � + 1 . . n − 1] of the string z.
Their common prefix of maximal length is then the label of the path leading
from the initial state to the lowest node that is a common ancestor to f and
g. This reduces the computation of w to the computation of this node.

The problem of the common ancestor that we are interested in here is the
one for which the tree is static. A linear preprocessing of the tree allows to
get a response in constant time to the queries (see notes). The consequence of
this result is that on a fixed alphabet, after preparation of the strings x and
y in linear time, it is possible to execute the algorithm K-diff-diag in time
O(k × n).
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3.3 Approximate String Matching with Mismatches

In this section, we are interested in the search for all the occurrences of a
string x of length m in a string y of length n with at most k mismatches
(k ∈ N , k < m ≤ n). The Hamming distance between two strings u and v of
same length is the number of mismatches between u and v and is defined by:

Ham(u, v) = card{i | u[i] �= v[i], i = 0, 1, . . . , |u| − 1}.

The problem can then be expressed as the search for all the positions j =
0, 1, . . . , n−m on y that satisfy the inequality Ham(x, y[j . . j + m− 1]) ≤ k.

3.3.1 Search automaton

A natural solution to this problem consists in using an automaton that recog-
nizes the language V ∗{w | Ham(x,w) ≤ k}. To do this, we can consider the
non-deterministic automaton defined as follows:

• each state is a pair (�, i) where � is the level of the state and i is its depth,
with 0 ≤ � ≤ k, −1 ≤ i ≤ m− 1 and � ≤ i + 1;

• the initial state is (0,−1);
• the terminal states are of the form (�,m− 1) with 0 ≤ � ≤ k;
• the transitions are, for 0 ≤ � ≤ k, 0 ≤ i < m− 1 and a ∈ V , either of the

form ((0,−1), a, (0,−1)), or of the form ((�, i), x[i + 1], (�, i + 1)), or of the
form ((�, i), a, (� + 1, i + 1)) if a �= x[i + 1] and 0 ≤ � ≤ k − 1.

The automaton possesses k + 1 levels, each level � allowing to recognize the
prefixes of x with � mismatches. The transitions of the form ((�, i), a, (�, i+1))
correspond to the equality of letters while those of the form ((�, i), a, (�+1, i+
1)) correspond to the inequality of letters. The loop on the initial state allows
to find all the occurrences of the searched factors. During the analysis of the
text with the automaton, if a terminal state (�,m−1) is reached, this indicates
the presence of an occurrence of x with exactly � mismatches.

It is clear that the automaton possesses (k + 1)× (m + 1− k
2 ) states and

that it can be build in time O(k × m). An example is shown in Fig. 3.22.
Unfortunately, the total number of states obtained by determinizing the au-
tomaton is

Θ(min{mk+1, (k + 1)!(k + 2)m−k+1}).
We can check that a direct simulation of the automaton produces a search

algorithm whose execution time is O(m×n) using the dynamic programming
as in the previous section. Actually by using a method adapted to the problem
we get, in the rest, an algorithm that performs the search in time O(k×n). This
produces a solution of same complexity as the one of algorithm K-diff-diag

that nevertheless solves a more general problem. But the solution that follows
is based on a simple management of lists without using a search algorithm for
common ancestor.
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0,-1 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,1 2,2 2,3

a, b, c, d

a b c d

b, c, d a, c, d a, b, d a, b, c

b c d

a, c, d a, b, d a, b, c

c d

Fig. 3.22. The (non-deterministic) automaton of approximate pattern matching
with two mismatches for the string abcd on the alphabet V = {a, b, c, d}.

3.3.2 Specific implementation

We show how to reduce the execution time of the simulation of the previous
automaton. To obtain the desired time, we utilize during the search a queue
F of positions that stores detected mismatches. Its update is done by letter
comparisons, but also by merging with queues associated with string x. The
sequences that they represent are defined as follows.

For a shift q of x, 1 ≤ q ≤ m − 1, G[q] is the increasing sequence, of
maximal length 2k + 1, of the positions on x of the leftmost mismatches
between x[q . . m − 1] and x[0 . . m − q − 1]. The sequences are determined
during a preprocessing phase that is described at the end of the section.

The searching phase consists in performing attempts at all the positions
j = 0, 1, . . . , n−m on y. During the attempt at position j, we scan the factor
y[j . . j + m − 1] of the text and the generic situation is the following (see
Fig. 3.23): the prefix y[j . . g] of the window has already been scanned during

y
f j g

Fig. 3.23. Variables of Algorithm K-mismatches. During the attempt at position
j, variables f and g spot a previous attempt . The mismatches between y[f . . g] and
x[0 . . g − f ] are stored in the queue F .

a previous attempt at position f , f < j, and no comparison already happens
on the suffix y[g +1 . . n−1] of the text. During the comparison of the already
scanned part of the text, y[j . . g], around k tests can be necessary. Fig. 3.24
shows a computation example.
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(a)
y a b a b c b b a b a b a a c b a b a b a b b b a b

x a b a c b a b a

(b)
x a b a c b a b a

x a b a c b a b a

(c)
y a b a b c b b a b a b a a c b a b a b a b b b a b

x a b a c b a b a

Fig. 3.24. Search with mismatches of the string x = abacbaba in the text
y = ababcbbababaacbabababbbab. (a) Occurrence of the string with exactly three
mismatches at position 0 on y. The queue F of mismatches contains positions 3, 4
and 5 on x. (b) Shift of length 1. There are seven mismatches between x[0 . . 6] and
x[1 . . 7], this corresponds to the fact that G[1] contains the sequence 〈1, 2, 3, 4, 5, 6, 7〉
(see Figure 3.26). (c) Attempt at position 1: the factor y[1 . . 7] has already been
considered but the letter y[8] = b has never been compared yet. The mismatches at
positions 0, 1, 5 and 6 on x can be deduced from the merge of the queues F and
G[1]. Three letter comparisons are necessary at positions 2, 3 and 4 in order to find
the mismatch at position 2 since these three positions are simultaneously in F and
G[1]. An extra comparison provides the mismatch at position 7.

The positions of the mismatches detected during the attempt at position f
are stored in a queue F . Their computation is done by scanning the positions
in increasing order. For the search with k mismatches, we only keep in F at
most k + 1 mismatches (the leftmost ones). Considering a possible (k + 1)-th
mismatch amounts to compute the longest prefix of x that possesses exactly
k mismatches with the aligned factor of y.

The code of the search algorithm with mismatches, K-mismatches, is
given in Fig. 3.25. The processing at position j proceeds in two steps. It first
starts by comparing the factors x[0 . . g − j] and y[j . . g] using the queues F
and G[j−f ]. The comparison amounts to perform a merge of these two queues
(Line 8); this merge is described further. The second step is only applied when
the obtained sequence contains less than k positions. It resumes the scanning
of the window by simple letter comparisons (Lines 11–18). This is during this
step that an occurrence of an approximate factor can be detected.
An example of table G and of successive values of the queue F of the mis-
matches is presented in Fig. 3.26.

In the algorithm K-mismatches, the positions stored in the queues F or J
are positions on x. They indicate mismatches between x and the factor aligned
at position f on y. Thus, if p occurs in the queue, we have x[p] �= y[f + p].
When the variable f is updated, the origin of the factor of y is replaced by
j, and we should thus perform a translation, that is to say to decrease the



80 Maxime Crochemore and Thierry Lecroq

K-mismatches(x, m, G, y, n, k)
1 F ← Empty-Queue()

2 (f, g) ← (−1,−1)
3 for j ← 0 to n − m do
4 if Length(F ) > 0 and Head(F ) = j − f − 1 then
5 Dequeue(F )

6 if j ≤ g then
7 J ← Mis-merge(f, j, g, F, G[j − f ])
8 else J ← Empty-Queue()

9 if Length(J) ≤ k then
10 F ← J
11 f ← j
12 do
13 g ← g + 1
14 if x[g − j] �= y[g] then
15 Enqueue(F, g − j)
16 while Length(F ) ≤ k and g < j + m − 1
17 if Length(F ) ≤ k then
18 Output(j)

Fig. 3.25. Approximate string matching with k mismatches.

positions by the quantity j − f . This is realized in the algorithm Mis-merge

during the addition of a position in the output queue.
If the merge realized by the algorithm Mis-merge executes in linear time,

the execution time of the algorithm K-mismatches is O(k × n) in space
O(k ×m).

3.3.3 Merge

The aim of the operation Mis-merge(f, j, g, F,G[j − f ]) (Line 8 of the al-
gorithm K-mismatches) is to produce the sequence of positions of the mis-
matches between the strings x[0 . . g−j] and y[j . . g], relying on the knowledge
of the mismatches stored in the queues F and G[j−f ]. This algorithm is given
in Fig. 3.28.

The positions p in F mark the mismatches between x[0 . . g−f ] and y[f . . g],
but only those that satisfy the inequality f + p ≥ j (by definition of F we
already have f + p ≤ g) are useful to the computation The objective of the
test in Line 5 of the algorithm K-mismatches is precisely to delete from F
the useless values. The positions q of G[j−f ] denote the mismatches between
x[j − f . . m− 1] and x[0 . . m− j + f − 1]. Those that are useful must satisfy
the inequality f +q ≤ g (we already have f +q ≥ j). The test in Line 19 of the
algorithm Mis-merge takes into account this constraint. Fig. 3.27 illustrates
the merge (see also Fig. 3.24).

Let us consider a position p on x such that j ≤ f + p ≤ g. If p occurs
in F , this means that y[f + p] �= x[p]. If p is in G[j − f ], this means that
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i x[i] G[i]
0 a 〈〉
1 b 〈1, 2, 3, 4, 5, 6, 7〉
2 a 〈3, 4, 5〉
3 c 〈3, 6, 7〉
4 b 〈4, 5, 6, 7〉
5 a 〈〉
6 b 〈6, 7〉
7 a 〈〉

j y[j] F
0 a 〈3, 4, 5〉
1 b 〈0, 1, 2, 5〉
2 a 〈2, 3〉
3 b 〈0, 1, 2, 3〉
4 c 〈0, 2, 3〉
5 b 〈0, 3, 4, 5〉
6 b 〈0, 1, 2, 3〉
7 a 〈3, 4, 6, 7〉
8 b 〈0, 1, 2, 3〉
9 a 〈3, 4, 5, 6〉
10 b 〈0, 1〉
11 a 〈1, 2, 3, 4〉
12 a 〈1, 2, 3〉
13 c 〈3, 4, 5, 7〉
14 b 〈0, 1, 2, 3〉
15 a 〈3, 4, 5, 7〉
16 b 〈0, 1, 2, 3〉
17 a 〈3, 5, 6, 7〉

(a) (b)

Fig. 3.26. Queues used for the approximate search with three mismatches of
x = abacbaba in y = ababcbbababaacbabababbbab. (a) Values of table G for string
abacbaba. The queue G[3] for instance contains 3, 6 and 7, positions on x of the
mismatches between its suffix cbaba and its prefix abacb. (b) Successive values of
queue F of the mismatches computed by Algorithm K-mismatches. The values at
positions 0, 2, 4, 10 and 12 on y possess less than three elements, which reveals the
presence of occurrences of x with at most three mismatches at these positions. At
position 0, for instance, the factor ababcbba of y possesses exactly three mismatches
with x: they are at positions 3, 4 and 5 on x.

x[p] �= x[p− j +f ]. Four situations can arise for a position p whether it occurs
or not in F and G[j − f ]. (see Fig. 3.24 and 3.27):

1. The position p is neither in F nor in G[j − f ]. We have y[f + p] = x[p]
and x[p] = x[p− j + f ], thus y[f + p] = x[p− j + f ].

2. The position p is in F but not in G[j − f ]. We have y[f + p] �= x[p] and
x[p] = x[p− j + f ], thus y[f + p] �= x[p− j + f ].

3. The position p is in G[j − f ] but not in F . We have y[f + p] = x[p] and
x[p] �= x[p− j + f ], thus y[f + p] �= x[p− j + f ].

4. The position p is in F and in G[j − f ]. We have y[f + p] �= x[p] and
x[p] �= x[p−j+f ], this does not allow to conclude on the equality between
y[f + p] and x[p− j + f ].

Among the enumerated cases, only the last three can lead to a mismatch
between the letters y[f + p] and x[p − j + f ]. Only the last case requires an
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(a)
y a b a b c b b a b a b a a a b a b a b a b b b a b

x a b a c b a b a

(b)
x a b a c b a b a

x a b a c b a b a

(c)
y a b a b c b b a b a b a a c b a b a b a b b b a b

x a b a c b a b a

Fig. 3.27. Merge during the search with three mismatches of x = abacbaba in
y = ababcbbababaacbabababbbab. (a) Occurrence of x at position 4 on y with three
mismatches at positions 0, 2 and 3 on x; F = 〈0, 2, 3〉. (b) There are three mis-
matches between x[2 . . 7] and x[0 . . 5]; G[2] = 〈3, 4, 5〉. (c) The sequences conserved
for the merge are 〈2, 3〉 and 〈3, 4, 5〉, and this latter produces the sequence 〈2, 3, 4, 5〉
of positions of the four first mismatches between x and y[6 . . 13]. A single letter com-
parison is necessary at position 3, between x[1] and y[7], since the other positions
only occur in one of the two sequences.

extra comparison of letters. They are processed in this respective order at
Lines 7–8, 10–11 and 12–15 of the algorithm of merge.

The algorithm Mis-merge (see Fig. 3.28) executes in linear time.

3.3.4 Correctness proof

The correctness proof of the algorithm K-mismatches relies on the proof of
the function Mis-merge. One of the main arguments of the proof is a property
of the Hamming distance that is stated below.

Let u, v and w be three strings of same length. Let us set d = Ham(u, v),
d′ = Ham(v, w), and assume d′ ≤ d. We then have:

d− d′ ≤ Ham(u,w) ≤ d + d′.

When the operation Mis-merge(f, j, g, F,G[j − f ]) is executed in the
algorithm K-mismatches, the next conditions are satisfied:

1. f < j ≤ g ≤ f + m− 1;
2. F = 〈p | x[p] �= y[f + p] and j ≤ f + p ≤ g)〉;
3. x[g − f ] �= y[g];
4. Length(F ) ≤ k + 1;
5. G = 〈p | x[p] �= x[p − j + f ] and j ≤ f + p ≤ g′〉 for an integer g′ such

that j ≤ g′ ≤ f + m− 1.

Moreover, if g′ < f + m − 1, Length(G) = 2k + 1 by definition of G. By
taking these conditions as assumption we get the following result.

Let J = Mis-merge(f, j, g, F,G[j − f ]). If Length(J) ≤ k,
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Mis-merge(f, j, g, F, G)

1 J ← Empty-Queue()

2 while Length(J) ≤ k and Length(F ) > 0
and Length(G) > 0 do

3 p ← Head(F )

4 q ← Head(G)

5 if p < q then
6 Dequeue(F )

7 Enqueue(J, p − j + f)

8 else if q < p then
9 Dequeue(G)

10 Enqueue(J, q − j + f)

11 else Dequeue(F )

12 Dequeue(G)

13 if x[p − j + f ] �= y[f + p] then
14 Enqueue(J, p − j + f)

15 while Length(J) ≤ k and Length(F ) > 0 do
16 Dequeued(F, p)
17 Enqueue(J, p − j + f)

18 while Length(J) ≤ k and Length(G) > 0
and Head(G) ≤ g − f do

19 Dequeued(G, q)
20 Enqueue(J, q − j + f)

21 return J

Fig. 3.28. Algorithm for merging queues.

J = 〈p | x[p] �= y[j + p] and j ≤ j + p ≤ g〉,

and, in the contrary case,

Ham(y[j . . g], x[0 . . g − j]) > k.

The result that follows is on the correctness of algorithm K-mismatches.
It assumes that the sequences G[q] are computed in accordance with their
definition.

If x, y ∈ V ∗, m = |x|, n = |y|, k ∈ N and k < m ≤ n, the algorithm
K-mismatches detects all the positions j = 0, 1, . . . , n − m on y for which
Ham(x, y[j . . j + m− 1]) ≤ k.

3.3.5 Preprocessing

The aim of the preprocessing phase is to compute the values of the table G
that is required by the algorithm K-mismatches. Let us recall that for a shift
q of x, 1 ≤ q ≤ m− 1, G[q] is the increasing sequence of positions on x of the
leftmost mismatches between x[q . . m− 1] and x[0 . . m− q− 1], and that this
sequence is limited to 2k + 1 elements.
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The algorithm Pre-K-mismatches is given in Fig. 3.29. The computation
of the sequences G[q] is realized in an elementary way by the function whose
code follows.

Pre-K-mismatches(x, m, k)
1 for q ← 1 to m − 1 do
2 G[q] ← Empty-Queue()

3 i ← q
4 while Length(G[q]) < 2k + 1 and i < m do
5 if x[i] �= x[i − q] then
6 Enqueue(G[q], i)
7 i ← i + 1
8 return G

Fig. 3.29. Preprocessing for the approximate string matching with mismatches.

The execution time of the algorithm is O(m2), but it is possible to prepare
the table in time O(k ×m× log m).

3.4 Shift-Or Algorithm

We are interested in this Section in the case of the search for short patterns.
We first present an algorithm to solve the exact string matching problem, but
that extends readily to the approximate string matching problems.

y

j

x[0]

x[0 . . 1]

x[0 . . 2]

x

i = 0

i = 1

i = 2

i = m − 1

1

0

1

0

R0
j

...
...

...
...

Fig. 3.30. Meaning of vector R0
j . Each matching prefix of x is associated with

value 1 in R0
j .
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Let R0 be a bit array of size m. Vector R0
j is the value of the entire array

R0 after text character y[j] has been processed (see Fig. 3.30). It contains
information about all matches of prefixes of x that end at position j in the
text. It is defined, for 0 ≤ i ≤ m− 1, by

R0
j [i] =

{
0 if x[0 . . i] = y[j − i . . j],
1 otherwise.

Therefore, R0
j [m − 1] = 0 is equivalent to saying that an (exact) occurrence

of the pattern x ends at position j in y.
The vector R0

j can be computed after R0
j−1 by the following recurrence

relation:

R0
j [i] =

{
0 if R0

j−1[i− 1] = 0 and x[i] = y[j],
1 otherwise,

and

R0
j [0] =

{
0 if x[0] = y[j],
1 otherwise.

The transition from R0
j−1 to R0

j can be computed very fast as follows. For
each a ∈ V , let Sa be a bit array of size m defined, for 0 ≤ i ≤ m− 1, by

Sa[i] = 0 iff x[i] = a.

The array Sa denotes the positions of the character a in the pattern x. All
arrays Sa are preprocessed before the search starts. And the computation of
R0

j reduces to two operations, SHIFT and OR:

R0
j = SHIFT(R0

j−1) OR Sy[j] .

An example is given in Fig. 3.31.

Approximate String Matching with k Mismatches

The Shift-Or algorithm easily adapts to support approximate string matching
with k mismatches. To simplify the description, we shall present the case
where at most one substitution is allowed.

We use arrays R0 and S as before, and an additional bit array R1 of size
m. Vector R1

j−1 indicates all matches with at most one substitution up to the
text character y[j − 1]. The recurrence on which the computation is based
splits into two cases.

• There is an exact match on the first i characters of x up to y[j − 1] (i.e.,
R0

j−1[i− 1] = 0). Then, substituting x[i] to y[j] creates a match with one
substitution (see Fig. 3.32). Thus,

R1
j [i] = R0

j−1[i− 1] .
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SA SC SG ST
1 1 0 1
0 1 1 1
1 1 1 0
0 1 1 1
0 1 1 1

C A G A T A A G A G A A
G 1 1 0 1 1 1 1 0 1 0 1 1
A 1 1 1 0 1 1 1 1 0 1 0 1
T 1 1 1 1 0 1 1 1 1 1 1 1
A 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1

Fig. 3.31. String x = GATAA occurs at position 2 in y = CAGATAAGAGAA.

• There is a match with one substitution on the first i characters of x up to
y[j − 1] and x[i] = y[j]. Then, there is a match with one substitution of
the first i + 1 characters of x up to y[j] (see Fig. 3.33). Thus,

R1
j [i] =

{
R1

j−1[i− 1] if x[i] = y[j],
1 otherwise.

This implies that R1
j can be updated from R1

j−1 by the relation:

R1
j =

(
SHIFT

(
R1

j−1

)
OR Sy[j]

)
AND SHIFT

(
R0

j−1

)
.

x

y

j -1 j

i -1 i

Fig. 3.32. If R0
j−1[i − 1] = 0 then R1

j [i] = 0.

An example is presented in Fig. 3.34.

Approximate String Matching with k Differences

We show in this section how to adapt the Shift-Or algorithm to the case of only
one insertion, and then dually to the case of only one deletion. The method
is based on the following elements.

One insertion is allowed: here, vector R1
j−1 indicates all matches with at

most one insertion up to text character y[j − 1]. R1
j−1[i− 1] = 0 if the first i
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x ∼

y

j -1 j

i -1 i

Fig. 3.33. R1
j [i] = R1

j−1[i − 1] if x[i] = y[j].

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 1 0 1 0 0 1 0 1 0 0
T 1 1 1 1 0 1 1 1 1 0 1 0
A 1 1 1 1 1 0 1 1 1 1 0 1
A 1 1 1 1 1 1 0 1 1 1 1 0

Fig. 3.34. String x = GATAA occurs at positions 2 and 7 in y = CAGATAAGAGAA with
no more than one mismatch.

characters of x (x[0 . . i− 1]) match i symbols of the last i + 1 text characters
up to y[j−1]. Array R0 is maintained as before, and we show how to maintain
array R1. Two cases arise.

• There is an exact match on the first i + 1 characters of x (x[0 . . i]) up to
y[j − 1]. Then inserting y[j] creates a match with one insertion up to y[j]
(see Fig. 3.35). Thus,

R1
j [i] = R0

j−1[i] .

• There is a match with one insertion on the i first characters of x up to
y[j− 1]. Then if x[i] = y[j] there is a match with one insertion on the first
i + 1 characters of x up to y[j] (see Fig. 3.36). Thus,

R1
j [i] =

{
R1

j−1[i− 1] if x[i] = y[j],
1 otherwise.

This shows that R1
j can be updated from R1

j−1 with the formula

R1
j =

(
SHIFT

(
R1

j−1

)
OR Sy[j]

)
AND R0

j−1 .

An example is given in Fig. 3.37.
One deletion is allowed: we assume here that R1

j−1 indicates all possible
matches with at most one deletion up to y[j− 1]. As in the previous solution,
two cases arise.

• There is an exact match on the first i characters of x (x[0 . . i − 1]) up
to y[j] (i.e., R0

j [i − 1] = 0). Then, deleting x[i] creates a match with one
deletion (see Fig. 3.38). Thus,
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x

+y

j -1 j

i

Fig. 3.35. If R0
j−1[i] = 0 then R1

j [i] = 0.

+

x

y

j -1 j

i -1 i

Fig. 3.36. R1
j [i] = R1

j−1[i − 1] if x[i] = y[j].

C A G A T A A G A G A A
G 1 1 1 0 1 1 1 1 0 1 0 1
A 1 1 1 1 0 1 1 1 1 0 1 0
T 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1
A 1 1 1 1 1 1 1 0 1 1 1 1

Fig. 3.37. GATAAG is an occurrence of x = GATAA with exactly one insertion in
y = CAGATAAGAGAA.

x −

y

j -1 j

i -1 i

Fig. 3.38. If R0
j [i] = 0 then R1

j [i] = 0.

R1
j [i] = R0

j [i− 1] .

• There is a match with one deletion on the first i characters of x up to
y[j − 1] and x[i] = y[j]. Then, there is a match with one deletion on the
first i + 1 characters of x up to y[j] (see Fig. 3.39). Thus,

R1
j [i] =

{
R1

j−1[i− 1] if x[i] = y[j],
1 otherwise.

The discussion provides the following formula used to update R1
j from R1

j−1:
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R1
j =

(
SHIFT

(
R1

j−1

)
OR Sy[j]

)
AND SHIFT

(
R0

j

)
.

x −

y

j -1 j

i -1 i

Fig. 3.39. R1
j [i] = R1

j−1[i − 1] if x[i] = y[j].

An example is presented in Fig. 3.40.

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 1 0 0 0 0 0 0 0
T 1 1 1 0 0 1 1 1 0 1 0 1
A 1 1 1 1 0 0 1 1 1 1 1 0
A 1 1 1 1 1 0 0 1 1 1 1 1

Fig. 3.40. GATA and ATAA are two occurrences with one deletion of x = GATAA in
y = CAGATAAGAGAA

Wu–Manber Algorithm

We present in this section a general solution for the approximate string match-
ing problem with at most k differences of the types: insertion, deletion, and
substitution. It is an extension of the problems presented above. The following
algorithm maintains k + 1 bit arrays R0,R1, . . . ,Rk that are described now.
The vector R0 is maintained similarly as in the exact matching case. The
other vectors are computed with the formula (1 ≤ � ≤ k)

R�
j =

(
SHIFT

(
R�

j−1

)
OR Sy[j]

)

AND SHIFT
(
R�−1

j

)

AND SHIFT
(
R�−1

j−1

)

AND R�−1
j−1

which can be rewritten into

R�
j =

(
SHIFT

(
R�

j−1

)
OR Sy[j]

)

AND SHIFT
(
R�−1

j AND R�−1
j−1

)

AND R�−1
j−1.
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C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 0 0 0 0 0
T 1 1 1 0 0 0 1 1 0 0 0 0
A 1 1 1 1 0 0 0 1 1 1 0 0
A 1 1 1 1 1 0 0 0 1 1 1 0

Fig. 3.41. Here x = GATAA and y = CAGATAAGAGAA and k = 1. The output 5, 6,
7, and 11 corresponds to the segments GATA, GATAA, GATAAG, and GAGAA which
approximate the pattern GATAA with no more than one difference.

WM(x, m, y, n, k)
1 for each character a ∈ V do
2 Sa ← 1m

3 for i ← 0 to m − 1 do
4 Sx[i][i] ← 0
5 R0 ← 1m

6 for � ← 1 to k do
7 R� ← SHIFT(R�−1)
8 for j ← 0 to n − 1 do
9 T ← R0

10 R0 ← SHIFT(R0) OR Sy[j]

11 for � ← 1 to k do
12 T ′ ← R�

13 R� ← (SHIFT(R�) OR Sy[j]) AND
(SHIFT((T AND R�−1)) AND T

14 T ← T ′

15 if Rk[m − 1] = 0 then
16 Output(j)

Fig. 3.42. Wu–Manber approximate string matching algorithm.

An example is given in Fig. 3.41.
The method, called the Wu–Manber algorithm, is implemented in Fig. 3.42.

It assumes that the length of the pattern is no more than the size of the mem-
ory word of the machine, which is often the case in applications.

The preprocessing phase of the algorithm takes O(σm + km) memory
space, and runs in time O(σm + k). The time complexity of its searching
phase is O(kn).

3.5 Bibliographic notes

The techniques described in this chapter are overused in molecular biology for
comparing sequences of chains of nucleic acids (DNA or RNA) or of amino
acids (proteins). The books of Deonier, Tavaré and Waterman [9], Setubal
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and Meidanis [28], Gusfield [10] and Böckenhauer and Bongartz [4] consti-
tute excellent introductions to problems of the domain. The book of Sankoff
and Kruskal [26] contains numerous applications of alignments. The book of
Crochemore, Hancart and Lecroq [7] presents in detail, together with their
correctness proofs, the algorithms for computing alignments and solving the
approximate string matching problems.

The notion of longest common subsequence to two strings is used for file
comparison. The command diff of the UNIX system implements an algorithm
based on this notion by considering that the lines of the files are letters of the
alphabet. Among the algorithms at the basis of this command are those of
Hunt and Szymanski [14] and of Myers [20]. A general presentation of the al-
gorithms for searching for common subsequences can be found in an article by
Apostolico [1]. Wong and Chandra [32] shown that the algorithm LCS-simple

is optimal in a model where we limit the access to letters to equality tests.
Without this condition, Hirschberg [13] gave a (lower) bound Ω(n × log n).
On a bounded alphabet, Masek and Paterson [18] gave an algorithm running
in time O(n2/ log n). The extension of this result to the general computa-
tion of alignments is an open problem (see Apostolico and Giancarlo [2]).
Using the Lempel-Ziv factorization of the two strings, Crochemore, Landau
and Ziv-Ukelson designed an algorithm for computing alignments running in
time O(hn2/ log n) where h ≤ 1 is the entropy of the text.

The initial algorithm of global alignment, from Needleman and Wun-
sch [24], runs in cubic time. The algorithm of Wagner and Fischer [31], as
well as the algorithm of local alignment of Smith and Waterman [29], run in
quadratic time (see [10], page 234). The method of dynamic programming was
introduced by Bellman (1957; see [6]). Sankoff [25] discusses the introduction
of the dynamic programming in the processing of molecular sequences.

The algorithm LCS is from Hirschberg [12]. A generalization of this
method has been proposed by Myers and Miller [21].

Charras and Lecroq created the site [5], accessible on the Web, where
animations of alignment algorithms are available.

The book of Navarro and Raffinot [23] is an excellent introduction to exact
and approximate string matching.

The algorithm K-diff-cut-off is from to Ukkonen [30]. The algorithm K-

diff-diag together with its implementation with the help of the computation
of common ancestors was described by Landau and Vishkin [16]. Harel and
Tarjan [11] presented the first algorithm running in constant time that solves
the problem of the common ancestor to two nodes of a tree. An improved
version is from Schieber and Vishkin [27].

Landau and Vishkin [15] conceived the algorithm K-mismatches. The
size of the automaton of Section 3.3 was established by Melichar [19].

The approximate pattern matching for short strings in the way of the
algorithm K-diff-short-pattern is from Wu and Manber [33] and also from
Baeza-Yates and Gonnet [3].
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A synthesis and experimental results on the approximate pattern matching
is presented by Navarro [22].
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Summary. This text was written for a short course on communication complexity
given at the 5th International PhD School in Formal Languages and Applications at
Tarragona, Spain (June 5/6, 2006). The course was planned for three lectures.The
text is intended to beginners and it may also serve as a guide for further reading.
Some easy exercises are spread out through the text with solutions given at the end.
The present version is a revision of the one used in class.

4.1 Motivation, Definition, and Background

4.1.1 Introduction

Whenever several persons, computers, or components of a system jointly com-
plete a certain task, that none of them can do alone, there is need for com-
munication. Sometimes, part of the actions of the participants consists of
obvious information exchange between parties (Alice knows the family name,
and Bob the first name of a person. By communicating they can find out
the person’s phone number), sometimes communication takes place invisibly
and implicitely inside a system (bits exchanged in the processing unit of a
personal computer). “How much of communication” is absolutely necessary to
complete the task? If I knew this minimum “amount of communication”, what
does it tell me about the complexity of the task?

Communication complexity deals with questions of this type in a vari-
ety of settings. Properly defined, communication problems focus attention to
the combinatorial core of an otherwise very complicated setup. Because of
this concentration to the essential it allows to derive interesting computa-
tional bounds with incontrovertible rigour and is therefore at the heart of
several lower bound proofs of computational complexity. Everyone interested
in complexity of computations should have some ideas from communication
complexity in the toolbox.

This text is organized as follows. In the current chapter we introduce some
preliminaries, give an example application of communication complexity and
C. Damm: An Introductory Course on Communication Complexity, Studies in Computational
Intelligence (SCI) 113, 95–123 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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mention some useful references. The next chapter is devoted to lower bound
techniques for communication complexity. Chapter 4.3 and 4.4 deal with some
problems of interest for formal language theory. In Chapter 4.5 we survey some
other communication setups that are studied in the literature. Throughout
the text there are exercises. Usually the exercises refer to the topic introduced
immediately before. It makes therefore sense to discuss them right where they
appear.

I conclude the introduction with a possible schedule for a short course on
communication complexity based on the present material.

LECTURE 1 1.2 Notation and definitions, 1.3 Some “benchmark functions”
for communication complexity, 1.4 An application, 1.5 Some history and
some references,

LECTURE 2 2.1 The range bound and the tiling method, 2.2 The fooling set
method, 2.3 The rank method, 2.4 Comparison of lower bound methods

LECTURE 3 3. Communication complexity and Chomsky hierarchy, 4. Com-
munication complexity applications for finite automata and Turing ma-
chines, 5.1 Different modes of communication, 5.2 Different partitions, 5.3
Different games

This plan can be completed by discussing a short research paper dealing with
surprising communication protocols. A very nice example is given in [4] (others
include, e.g., the protocols in [12] or in [19]). Actually [4] was chosen for the
PAPER session to this little course at the PhD school in Tarragona. This self-
contained, two-page paper is available online (see references) and its exposition
can hardly be improved. So I decided to not cover it directly in this text.
Instead a set of slides from our PAPER session can be sent on email-request.

4.1.2 Notations and Definitions

First we need some general mathematical notions and notations. Throughout
this text we use log to denote the base 2 logarithm. If A is a finite set, |A|
denotes the number of elements in it.

Exercise 1. Suppose you are about to make a catalogue of the books on your
bookshelf. You decide to label the books by binary strings. If you have N
books on the shelf, how many bits (binary digits) do you need for the labels?
How many decimal digits do you need if you use decimal labels instead?

A pair (A1, A2) of subsets of A is a partition of A if (1) A1 ∪A2 = A and
(2) A1 ∩ A2 = ∅. More general, a family {A1, . . . , AT } of subsets of A such
that (1)

⋃T
i=1 Ai = A and (2) Ai ∩Aj = ∅ if i �= j is also called a partition of

A. This is obviously equivalent to saying, that each element of A belongs to
exactly one of the subsets Ai.

For vectors v ∈ {0, 1}n the weight of v is defined to be
∑n

i=1 vi. The weight
of v is denoted ‖v‖.
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Now let’s start with some simple notions from communication complexity.
We want to formally describe the situation, that something is to be jointly
computed by several participants, none of which has complete information on
the input.

The actors in a communication setting are called parties or players. In a
two-party setting, the parties are almost always called Alice and Bob. Their
task is to compute a function value f(x,y), where x is Alice’s part of the
input and y Bob’s. Alice has absolutely no information about y and Bob has
no idea, what x is.

f is a function of shape f : X × Y → Z, for some non-empty sets X, Y ,
and Z. For most examples in this text we consider X = Y = {0, 1}n, where n
is fixed and Z = {0, 1}. This means, that input bits are partitioned into two
equally-sized sets of bits. One set is given to Alice, the other to Bob. So, Alice
has an n-bit-vector x, Bob has an n-bit-vector y, and they want to know the
bit z = f(x,y). The function as such is known to both players, but they only
want to determine this particular value. The point is, that the players are not
charged for computation time or memory usage, but for the number of bits
they need to exchange until they both know z.

The following trivial strategy enables Alice and Bob to compute z: (1)
When the game starts Alice sends her input x to Bob. (2) Bob, now knowing
the complete input pair (x,y) can compute z and sends this bit to Alice. This
takes n+1 bits of communication and it works for every function f . But, e.g.,
for the parity function PARITY : {0, 1}n × {0, 1}n → {0, 1} this would be a
very bad strategy. This function is defined by

PARITY(x,y) =

{
1 , if ‖x‖+ ‖y‖ is odd,
0 , else.

PARITY(x,y) is simply the parity of all input bits. A much better strategy
for PARITY is: (1) Alice sends the parity of her input bits. (2) Bob adds the
parity of his input bits and sends the result back to Alice. This takes only 2
bits of communication.

Exercise 2. For a natural number m ≥ 1 consider the function MODk:
{0, 1}n × {0, 1}n → {0, 1, . . . ,m− 1} defined by

MODk(x,y) = ‖x‖+ ‖y‖ (mod k).

Try to find a good communication strategy for this function. How many bits
of communication are sufficient when following this strategy?

The players’ aim is to communicate in such a clever way, that z can be deter-
mined without wasting too many bits of communication. For this they agree
in advance on a set of rules that govern the communication and the inter-
pretation of sent messages. This set of rules is called the protocol. Here is a
formal definition following [21]:
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Definition 1. A communication protocol P over X × Y and with range Z
is a binary tree where each internal node v is either labeled by a function
av : X → {0, 1} or a function bv : Y → Z and each leaf is labeled by some
z ∈ Z. [Inner nodes labeled by some av “belong” to Alice, others “belong” to
Bob.] Further, the two edges leaving a node are labeled 0 and 1, respectively.

Execution of the protocol on input (x, y) consists of walking down the tree
from the root to one of its leafs. If an internal node v is reached, the next
node is the one that is reached by following the edge labeled av(x) or bv(y)
depending on which function v is labeled with. The output of the protocol is
the label of the leaf that is finally reached.

In this definition the nodes in the tree represent the knowledge about the
input pair that is common to both players. The functions av, bv determine
the next bit to be send by a player depending on her or his input part. It
may happen that, in executing the protocol we walk from node v to node
v′ that both “belong to Alice”. This corresponds to the fact that in this case
Alice sends two consecutive bits. In the sequel we will describe protocols more
conveniently by combining maximum sequences of consecutive bits sent by
one and the same player to binary strings, called messages. Here is the corre-
sponding terminology (giving also another definition of protocols equivalent
to the one above):

1. The players take turns in communication. We consider all sent messages
to be binary strings of non-zero length.

2. Each sending of a message is considered a “round” in executing the pro-
tocol. The message sent in round i is denoted mi.

3. Alice sends the first message. Message mi is sent by Bob, if i is even and
by Alice otherwise.

4. The protocol determines in each step i the message to be sent. It depends
on the sequence m1, . . . ,mi−1 of previous messages (which is empty in
case i = 1) and the part of the input known to the player whose turn it
is.
The protocol also specifies when it is finished and the output of the pro-
tocol.

Remark 1. The sequence m1, . . . ,mi−1 does not contain more information
than the sequence of edge labels from the root-to-leaf-path from Definition 1.
This is due to the fact, that the labeled tree is fixed in advance and known
to both players. Given such a path each player can infer from the node labels
who sent which bit.

Remark 2. In general it is required that after execution of the protocol both
players know the output. If the output cannot be inferred from the messages
sent so far and the known input part, the last message will be the output
value. This is the case in most of our examples.

Example 1. The trivial protocol for functions f : X × Y → Z is given by:
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TRIVIAL(f) :
m1(x) := x
output := m2(m1;y) := f(m1,y)

The “clever parity protocol” described above is given by

PARITYn :
m1(x) := ‖x‖ (mod 2)
output := m2(m1;y) := m1 + ‖y‖ (mod 2)

Let P be a certain protocol. The sequence (m1,m2, . . . ,mr) of messages sent
while executing P on input pair (x,y) is called transcript of P on (x,y) and
denoted sp(x,y). Let |mi| denote the length of mi, i.e., the number of bits in
it and let |sP (x,y)| =

∑r
i=1 |mi| denote the total length of the transcript.

Definition 2. The communication complexity of the protocol P is the num-
ber of bits exchanged by the protocol in the worst case:

CC(P ) := max
(x,y)∈X×Y

|sP (x,y)|.

Exercise 3. Specify the rules of the strategy from Exercise 2 as a protocol
MODk and determine its complexity.

Let fP (x,y) denote the output generated by following P on input pair (x,y).
fP : X × Y → Z is the function computed by P .

Definition 3. The communication complexity of a function f is the commu-
nication complexity of the best protocol for f :

CC(f) := min
fP =f

CC(P ) .

Proposition 1. For any Boolean function {0, 1}n × {0, 1}n → {0, 1}n holds

CC(f) ≤ n + 1

Proof. CC(TRIVIAL(f)) = n + 1.

Exercise 4. Clearly for every f : X × Y → Z holds CC(f) ≥ 0. Give a
characterization for the set of functions, for which CC(f) = 0.

4.1.3 Some “Benchmark Functions” for Communication
Complexity

When studying papers on communication complexity one very often meets
special functions whose communication complexity is investigated. A simple
function of shape {0, 1}n × {0, 1}n → {0, 1} that is important in communica-
tion complexity is the following:



100 Carsten Damm

equality

EQn(x,y) =

{
1 , if x = y
0 , otherwise.

Proposition 2. CC(EQn) = n + 1.

Proof. We show that protocol TRIVIAL(EQn) is optimal. First observe, that
for every input (x, y) both players need to send at least one bit — otherwise
the output would not depend on the silent players input part contradicting
the definition of the function. Suppose Alice (who starts the communication)
sends less than n bits in total. Then there are two input parts x1,x2 ∈ {0, 1}n,
on which Alice sends the same messages. Then for all possible input parts y of
Bob (whose messages depend only on y and received messages) the sequence
of messages on (x1, y) and (x2, y) are the same. This means, by traveling down
the protocol tree (x1, y) and (x2, y) reach the same leaf and in particular, the
computed value will be the same. Now, suppose y = x1. Then EQn(x1,y) = 1
and EQn(x2,y) = 0, hence the protocol cannot compute the function EQn.

Other functions often met are:

greater-than

GTn(x,y) =

{
1 , if x > y
0 , otherwise.

Here, x,y are considered as binary representations of numbers in {0, . . . ,
2n − 1} — likewise in the next example.

inner-product

IPn(x,y) =
n∑

i=1

xi · yi (mod 2).

disjointness

DISJn(x,y) =

{
1 , if there is no index i such that xi = yi = 1
0 , otherwise.

Think of x, y as descriptions of sets A,B ⊆ {1, . . . , n} — xi (yi, respec-
tively) is 1 iff i is contained in A (B, respectively). Then DISJn(x,y)
indicates, whether A and B are disjoint sets.

Sometimes, when the length n of the input is understood or is unimportant,
or we speak about all functions of the sequence, we omit the index n and
write simply EQ,GT etc.

These functions perhaps don’t look too practical, and knowing about their
communication complexities does not seem to be of great value, but it is!
Consider the problem of computing some function value F (a), where a is an
N -bit input. To have something specific in mind, let a be n groups of n bits
(interpreted as n numbers in the range 0 to 2n − 1) and let F (a) = MAX (a)
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be the index of the maximum of the numbers (the smallest such index in case
of a draw). Then every computational device that computes MAX can also
be used to compute the function GE.

Exercise 5. “Reduce” the computation of GT to the computation of MAX :
Given x and y, construct a, such that the value of GT(x,y) can be inferred
from MAX (a).

In other words, the computation of GT is a by-product of computing MAX .
Thus knowing CC(GT) gives us a truly unbeatable lower bound met by every
computational device for MAX , that is “somehow charged” for communication
(we’ll see an example in the next section). The point is, that MAX is more
complicated and more special than GT. Therefore when deriving such lower
bound for MAX directly there is good chance that essentials are hidden behind
a bunch of peculiarities. On the other hand the bound would be a less general
statement — it would apply only to exactly this function.

Further “benchmark functions” are symmetric functions:

Definition 4. A function is called symmetric, if its value does not change
when input positions are permuted.

Exercise 6. Prove that the following is an equivalent definition for symmetric
boolean functions:

Definition 5. A function defined on binary inputs is called symmetric, if its
value does only depend on the number of input bits that are equal to 1.

Example 2. MODk is a symmetric function, but IP and the other examples
above are not.

Exercise 7. Prove that if f : {0, 1}n × {0, 1}n → {0, 1} is symmetric, then

CC(f) ≤ �log(n + 1)�+ 1.

4.1.4 An Application

This section serves to illustrate the idea from the last section, that real-life
computations can be “charged for communication” in non-obvious ways. It
shows also that, as mentioned in the introduction, communication can take
place implicitly within a system. The exposition is taken from the beautiful
survey [24].

Consider the following problem in VLSI-design. A “microchip” is to be
layed-out. Its purpose is to compute EQn(x,y). Two groups of n bits each
x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn), arrive simultaneously at 2n places
(the “input processors”) arranged in exactly the given bit order along one edge
of the layout. There is also an “output processor” — some place at the border
that produces the required output bit 1. There may be more processors as
well as connecting wires between them on the chip.
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Considering the processors and wires as nodes and edges of a graph, a
VLSI-design can be considered a special embedding of that graph into the
plane with some geometric restrictions. It is embedded into a grid of squares
each of which is either empty or contains exactly one of the following as shown
in Figure 4.1: a processor, a straight line connecting two opposite sides of the
square (in two orientations), a sharp bend connecting to adjacent sides of the
square (in 4 orientations) or a crossing of two lines, that each connect two
opposite sides of the square.

empty port crossing linessharp bendstraight line

Fig. 4.1. Squares in an VLSI-design and an example layout

The chip works in distinct time steps. At each step, each processor reads
the bits sent to it, computes some bit for some of its connecting wires and
sends it to the other end of this wire. It is essential to note, that we assume
“fast wires”, i.e., the time that a signal needs to travel from one to the other
end of a wire is considered to be a non-zero constant independent from its
length.

The smallest possible layout contains only the input processors lined up
in a row, one of them serving also as output processor. Let p1, . . . p2n be the
nodes, each containing a processor and the have wires to read in the input
(see figure 4.2). We describe the functioning of this layout. In the first time
step all nodes except pn+1 “sleep”. In this step pn+1 reads y1, sends it to the
left and sends an “alarm bit” to the right. The alarm bit wakes up pn+2, who
sends y2 to the left and alarms its right neighbor, and so on. Each processor,
that receives some bit from the right, will transmit it to the left in the next
step.

p1 p2 p5 p8 p10p6p3 p4 p7 9p p11 p12 p13 p14 p15 p16

x1 x2 x3 x4 x5 x6 x7 x8 1 y2 y3 y4 y5 y6 y7 y8y

Fig. 4.2. Linear VLSI layout
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When p1 eventually receives y1 it compares it with x1 and sends bit 1
to the right if they are equal and bit 0 if they are not. p2 receives this bit
simultaneously with y2. It sends bit 1 to the right, if it received 1 from the
left and x2 and y2 are the same, otherwise it sends bit 0. Finally, pn receives
one bit from the left (the resulting bit from all previous comparisons) and the
bit yn from the right. If the bit from the left is 1 and xn and yn are equal,
then pn gives the overall output bit 1, else 0.

This design is small, but computation takes n time steps, since each wire
can only carry one bit at a time. With a more generous design, the chip would
finish work earlier. The idea is to provide extra wires that pass x1 and y1, x2

and y2, . . . , xn and yn at the same time to special comparator nodes and to
collect the outcomes of comparison in a binary tree design to give the final
output value (see Figure 4.3).

Fig. 4.3. Tree-like VLSI layout

In this design O(log n) time steps are sufficient to complete the task. By
using bends in the tree part of the layout it is possible to use a little less of the
chip’s area. However, this would not reduce the total length of the wires. Since
every unit of the wire occupies some place on the chip (a square), it makes
sense to consider the total length of wires as occupied chip area. Adopting this
point of view our layout uses more than an amount of n2 of area (the right
half of the design). Combining ideas from the small-but-slow linear and the
fast-but-big tree-like design, it is possible to make a design that still works
in time O(log n) but uses area only O(n2/ log n). However, still, the product
of area and time is at least n2. And this is true for any VLSI-design! This
is a special case of results of [31], which build on communication complexity
ideas:

Proposition 3. If a VLSI-chip computes EQn, then for the number T of time
steps needed and the total number A of wire units satisfies
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AT ≥ n2.

Proof. Divide the design into two pieces by a vertical line, so that on the left
hand side we have inputs x1, . . . , xn, on the right hand side we have y1, . . . , yn.
We concentrate on the communication that crosses the line. Since by Propo-
sition 2 we have CC(EQn) = n+1 at least n bits must cross the line until the
result is known. Why not n + 1? Since only the output node (sitting on one
of the sides) needs the final result, it is not necessary to “inform” the other.
Because there are only T time steps, in one of the steps at least n/T bits cross
the line. But as the wires carry only one bit at a time, this means at least
n/T wires cross this line.

How many wires do cross the line, if its position were one place to the
right? In this case x1 and y1 were on the same side, but still communication is
needed to compute EQn−1(x2, . . . , xn), (y2, . . . , yn)). By the same argument
we conclude, that at least (n − 1)/T wires cross this line. Now we shift one
position further to the right, and as before we can conclude that at least
(n−2)/T wires cross the line, and so on. Similarly we can also shift the line by
1, 2, . . . places to the left and the line will cross at least (n−1)/T, (n−2)/T, . . .
wires.

In summing up, our lines crossed at least

n

T
+ 2

n− 1
T

+
n− 2

T
. . . + 2

1
T

=
n2

T

wires, which proves the statement.

4.1.5 Some History and Some References

Communication complexity arguments where first applied in the late 1970s [1,
32]. The result from the last section is from [31]. As the technique became
known widely, more and more results in a variety of areas where based on it
or techniques were formulated in the language of communication complexity.
In particular, also the model was extended to more sophisticated situations:
more players, non-determinism, randomization, different charging, other input
partitions etc.

The primary motivation for communication complexity study comes from
applications in the field of distributed and parallel computing (including VLSI-
computing). However, communication complexity is a neat field of study on
its own. There are even analogies to NP-completeness theory and structural
complexity. There is one difference however to “classical” complexity theory:
in communication complexity we can prove the separations, that we only
conjecture in the classical setting. Unfortunately, there seems no way to carry
things over. . . This line of research was begun by [29] and continued by, e.g.,
[3, 13, 18, 23, 8] (a random selection). One of the latest developments is
quantum communication complexity [9]. The achievements of communication
complexity theory feed back into other fields of application and theory.
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Nowadays, communication complexity is an established technique that is
characterized by strict pinpointing combinatorial situations that appear in
computations of all kind, beautiful mathematics, appealing puzzles, and sur-
prising results. This little tutorial can only give a glimpse on some of the basic
ideas in this nice toolbox. There are some very good surveys on communica-
tion complexity around, that cover more or different material: [28, 24, 14].
There are also books devoted to the subject of communication complexity:
[21, 15].

4.2 Some Lower Bound Methods and Results

4.2.1 The Range Bound and the Tiling Method

Definition 6. Let f : X × Y → Z be a function. The range of f is the set of
all values, that can be taken by the function:

Range(f) := {z ∈ Z|∃(x,y) ∈ X × Y : f(x,y) = z}.
Proposition 4.

CC(f) ≥ log |Range(f)|.
Proof. If f(x1,y1) �= f(x2,y2), then the players must use different transcripts
on (x1,y1) and (x2,y2) — otherwise the protocol would make an error. Hence,
we must have at least |Range(f)| many different transcripts, which are bi-
nary strings of length at least CC(f). By Exercise 1 CC(f) must be at least
log |Range(f)| to give these many strings.

Exercise 8. Apply Proposition 4 to the function MODk.

For functions f : X × Y → {0, 1} with boolean output Proposition 4 is not
very helpful, so we try to refine the argument.

Before going into details it is useful to have the following picture in mind:
We regard f as a matrix of order |X| × |Y | with rows indexed by inputs x
(Alice’s part) and columns indexed by inputs y (Bob’s part). Consequently,
the entry in row x and column y is f(x,y). We refer to this matrix as the
communication matrix of f and denote it by Mf — however, as said, it is
nothing else than f itself, written down in a special manner.

x

y

f(x,y)

Fig. 4.4. The communication matrix of f
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Exercise 9. Write down the communication matrix of PARITY : {0, 1}3 ×
{0, 1}3 → {0, 1}. (After writing the first few bits in a row and in a column
you will quickly see the structure and can stop writing . . . )

Definition 7. A subset R ⊆ X×Y is called a rectangle in X×Y , if R = A×B
for some subsets A ⊆ X and B ⊆ Y .

Please note, that it is not required, that A and B are consecutive in any sense!
This requirement would even be meaningless, without specifying the order of
entries in the communication matrix.

A

B

B

A

Fig. 4.5. Two examples for rectangles

Lemma 1 (Combinatorial Characterization of Rectangles). Let R ⊆
X × Y . The following are equivalent:

1. R is a rectangle.
2. For any two points (x1,y1), (x2,y2) ∈ R holds (x1,y2) ∈ R.
3. R = RX × RY , where RX = {x|∃y : (x,y) ∈ R} and RY = {y|∃x :

(x,y) ∈ R}.
Proof. 3. ⇒ 1. is obvious.
1. ⇒ 2. Let R = A × B. Since (x1,y1), (x2,y2) ∈ R we know on the one

hand side, that x1 ∈ A and on the other hand side, that y2 ∈ B. Hence,
(x1,y2) ∈ A×B = R.

2. ⇒ 3. We show (1) R ⊆ RX ×RY and (2) RX ×RY ⊆ R.
(1) Let (x,y) ∈ R. Clearly, x ∈ RX (since there is an y, such that (x,y) ∈
R). Similarly we have y ∈ RY . Together we obtain (x,y) ∈ RX ×RY .
(2) Let x1 ∈ RX and y2 ∈ RY . By construction of RX , RY this means,
there are y1 ∈ Y and x2 ∈ X, such that (x1,y1) ∈ R and (x2,y2) ∈ R.
By the assumption we can conclude (x1,y2) ∈ R.

Let P be a protocol computing f and let α = (m1, . . . ,mr) be a transcript
between Alice and Bob following this protocol. (Reminder: r depends on the
input pair.) We denote the set of input pairs on which the protocols transcript
is α as follows:

Rα = {(x,y)|sP (x,y) = α}.
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Fact 1. Rα ⊆ X × Y is a rectangle.

Proof. We use induction and seemingly show a little bit more: The set Rαi
of

input pairs whose transcript only starts with αi = (m1, . . . ,mi) is a rectangle.
For i = 0 (no message sent) Rα0 = X × Y , which is a rectangle. For i = 1

(Alice sent her first message) Rα1 = A×Y for some A ⊆ X, since m1 depends
only on Alice’s input x (A is simply the set of those x, for which Alice would
send m1).

Suppose Rαi
is a rectangle A×B for some i ≥ 1. Without loss of generality

we assume, that the next message is to be sent by Alice. By definition of the
protocol this message depends only on x and the previous messages. Let A′

be the subset of A, on which Alice, given previous messages m1, . . . ,mi, sends
mi+1. Then Rαi+1 = A′ ×B which again is a rectangle.

Let’s think about the induction argument for a second. It says that after every
round the input pairs, that are still “in the game” form a set of rectangular
shape. That’s interesting, isn’t it?

Fact 2. f(x,y) is the same for every input pair (x,y) ∈ Rα.

Proof. Follows directly from the definition of the output.

Fact 3. The family of sets RP = {Rα|α is a transcript of P on some input
pair} is a partition of X × Y . This partition is called the protocol partition
of P .

Proof. Input pair (x,y) ∈ X × Y belongs to RsP (x,y) but to no other of the
sets Rα.

Definition 8. Let f : X×Y → Z. We consider f like a coloring of the entries
of X × Y . A rectangle R ⊆ X × Y is called f -monochromatic if f is constant
on R. If f is understood, we sometimes simply speak of monochromatic rect-
angles. Especially, for z ∈ Z an f-monochromatic rectangle R ⊆ X × Y is
called a z-rectangle if f(x,y) = z for all (x,y) ∈ R.

We consider the partition number of f , which is the smallest number of
f-monochromatic rectangles in a partition of X × Y :

CovD(f) := min{T |∃ partition of X × Y into T monochromatic rectangles}.

Remark 3. The superscript D in CovD(f) reminds to “disjoint” — we want a
partition, not just a covering by monochromatic rectangles.

Example 3. Recall how communication matrices of PARITY-functions look
like (see Exercise 9). What is the partition number of such functions?

Let’s first look at our PARITY3-example from the exercise. Since order
is not an issue for the rectangles we have in mind, we order the rows and
columns such that first we have all n-vectors with even parity, and then we
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have all n-vectors with odd parity. Then we fill in the matrix entries. As the
example shows, this gives 4 rectangles:

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

.

It is obvious, that this holds in general: Entries of type even-even are 0-entries,
as well as odd-odd-type entries. The 1-entries are covered by an even-odd and
an odd-even rectangle. Hence the partition number of a PARITY-function is
at most 4. Can it be smaller?

If it was smaller, then we could combine, say, the 0-rectangles into one
(the argument for 1-rectangles is similar). So lets take an even-even entry
(x1,y1) and an odd-odd entry (x2,y2) and assume they are in the same
monochromatic rectangle. But then, by the Characterization Lemma 1 also
(x1,y2) belongs to this rectangle. But this entry is of even-odd type, which is
a contradiction.

Hence CovD(f) = 4 for all n.

Proposition 5. For every function f : X × Y → Z holds

CC(f) ≥ log CovD(f).

Proof. By the above mentioned facts the protocol partition of P is a partition
of X×Y into monochromatic rectangles. If P is an optimal protocol, on every
input pair at most CC(f) bits are exchanged. Therefore the number of possible
transcripts (and therefore the number of rectangles in the particular partition
induced by P ) is at most 2CC(f). Hence we obtain 2CC(f) ≥ CovD(f).

For later referencing we call this lower bound argument the tiling method.
Since the partition number of PARITY-functions is 4, we can conclude, that
at least 2 bits have to be exchanged to jointly determine PARITYn(x,y),
hence the protocol PARITYn is optimal. Well, no big surprise . . .

Example 4. Also no big surprise, but hopefully instructive: We reprove Propo-
sition 2 CC(EQn) = n + 1. But now we use partition numbers.

An EQn-monochromatic partition clearly needs to have 2n 1-rectangles to
cover all 1-entries (by an argument as in Example 3 we see, that no two of
the 1’s can live in the same monochromatic rectangle.).

On the other hand, we need at least one 0-rectangle to cover the 0-entries
of the communication matrix. This means C(f) > 2n, from which we conclude
CC(EQn) > n by the help of Proposition 5. But since CC(EQn) is an integer
number, it is at least n + 1.
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Exercise 10. As the examples might suggest, it is tempting to believe, that
each partition of the communication matrix of f into monochromatic rectan-
gles there is indeed already a protocol partition. However, this is not the case.
Can you find an example function of shape {1, 2, 3} × {1, 2, 3} → {0, 1} and
partition into monochromatic rectangles, that is not a protocol partition?

Remark 4. It is still open, whether for all f : {0, 1}n × {0, 1}n → {0, 1} holds
CC(f) = O(CovD(f)). This question was posed in [25].

4.2.2 The Fooling Set Method

It is sometimes hard to prove lower bounds on monochromatic partition num-
bers. The following method is often easier to apply. It was first used in [32]
and in a more elaborated form in [22].

Let f : X × Y → Z.

Definition 9. A set of input pairs {(x1,y1), . . . , (x�,y�)} is called a fooling
set for f , if there exists some z ∈ Z, such that

1. for all i, f(xi,yi) = z,
2. for all i �= j, either f(xi,yj) �= z or f(xj ,yi) �= z.

For fixed z the set is called z-fooling set.

Proposition 6. If f has a fooling set of size �, then

CC(f) ≥ log �.

Proof. By Proposition 5 it is sufficient to prove CovD(f) ≤ �.
Suppose the opposite is true, i.e., suppose there is a partition of X ×

Y into less than � monochromatic rectangles. Then there exist two pairs
(xi,yi), (xj ,yj) in the fooling set, that are in the same rectangle A × B. By
definition z is the “color” that f gives to this rectangle. By the Characteriza-
tion Lemma 1 we know that also (xi,yj) and (xj ,yi) belong to this rectangle.
But by definition of the fooling set, one of those pairs has a different color
that z, which is a contradiction. Hence, there must be at least � rectangles in
any f -monochromatic partition of X × Y .

Remark 5. The proof considers only rectangles colored z and therefore in fact
we get a lower bound on the number of z-rectangles. By lower-bounding the
number of rectangles of any color z ∈ Z and summing these bounds up, we can
improve the bound: Let Z = {z1, . . . , zt} and for i = 1, . . . , t let si be the size
of some zi-fooling set for f , then CC(f) ≤ �log(s1 + . . . + st)�. We make use
of this argument in the following example.

Example 5. We apply the bound to the disjointness function. Recall the in-
terpretation: n-bit vectors x are considered as “encoding” subsets A from
{1, . . . , n}: xi = 1 iff i ∈ A.
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We claim, that the following is a 1-fooling set for DISJn:

{(A,Ac) |A ⊆ {1, . . . , n}},

whereAc denotesthecomplementofA in{1, 2, . . . , n}. Indeed,DISJn(A,Ac) = 1
for all A and on the other hand for A �= B either A ∩ B �= ∅ or Ac ∩ Bc �= ∅.
Hence we conclude CC(DISJn) ≥ n.

But this concerns only 1-rectangles. Since the function is non-constant,
there must be at least one 0-rectangle. Hence, CC(DISJn) ≥ �log(2n + 1)� =
n + 1.

Exercise 11. Use the fooling-set bound to show that CC(GTn) = n + 1.

Remark 6. The communication argument from Section 4.1.4 on the area-time-
product of VLSI-circuits is easily seen to extend to functions like GE,GT and
so on.

4.2.3 The Rank Method

Recall that Mf denotes the communication matrix of f , i.e., the matrix with
rows and columns indexed with inputs x ∈ X and y ∈ Y and entries f(x,y).

The following bound is due to [26]

Proposition 7. Let f : X × Y → {0, 1} and let rank(M) denote the rank of
a matrix over the rationals. Then

CC(f) ≥ log rank(Mf ).

Proof. Consider a partition of X × Y into CovD(f) rectangles that are f -
monochromatic. Let R1, . . . , Rt ⊆ X×Y be the 1-rectangles in this partition.
By the tiling bound it is sufficient to prove rank(Mf ) ≥ t. We associate the
following matrices of order |X| × |Y | to them:

Mi(x,y) =

{
1 , if (x,y) ∈ Ri.

0 , else.

Observe, that all non-zero rows of Mi are the same, hence rank(Mi) = 1 for
all i. Since the Ri do not intersect, we have Mf =

∑t
i=1 Mi. By the properties

of the rank we conclude

rank(Mf ) ≤
t∑

i=1

rank(Mi) = t.

There is good chance to successfully apply the rank lower bound in cases,
where the communication matrix features some algebraic property.
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Example 6. Now we can prove a lower bound on the inner product function
IP:

CC(IPn) ≥ n.

To this end, let’s have a look on the communication matrices of IP1, IP2, IP3, . . ..
We use the natural binary ordering on rows and columns (e.g., in case n = 2
the order is 00, 01, 10, 11). Then the resulting matrices are:

MIP1 =
(

0 0
0 1

)
, MIP2 =

⎛

⎜⎜⎝

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎞

⎟⎟⎠ , MIP3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . .

Observe that except the first one, each matrix contains copies of its predecessor
matrix in the left-upper, left-lower, and in the right-upper corner and a copy of
the complement (0–1 exchanged) in the right-lower corner. These matrices are
known as Sylvester-matrices and, their rank, e.g., over the rationals is one less
than full-rank. To see this, consider entry (x, z) of (MIPn

)2. By definition this
entry equals

∑
z∈{0,1}n IPn(x, z)IPn(z,y). This is the number of z ∈ {0, 1}n

for which IPn(x, z) = IPn(z,y) = 1. This is an inhomogeneous linear system
of equations modulo 2 in n indeterminates (z1, . . . , zn). In case x �= 0 �= y the
number of solutions is 2n−1 if x = y and 2n−2 else. If one of x,y is identically
zero the number of solutions is zero. We can conclude that rank(MIPn

) = 2n−1
and Proposition 7 gives CC(IPn) ≥ n.

Exercise 12. Apply Proposition 7 to the function GTn.

4.2.4 Comparison of Lower Bound Methods

The fooling-set method and the rank-method rely on the tiling bound, there-
fore it is the potentially strongest longer bound method for communication
complexity. However, direct application of the tiling-bound is difficult.

It is interesting, to compare the relative power of lower bound methods
on communication complexity. This study has been started in [2] and was
continued in [13] and [10]. We report here some of the results from such
study. For ease of exposition we adopt the following notations from [10], that
all refer to a function of shape f : {0, 1}n × {0, 1}n → {0, 1}:
• r(f) = log rank(Mf ),
• fs(f) = log �, where � is the maximum size of a 1-fooling set for f ,
• t(f) = log CovD(f).
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Remark 7. Since in any case rank(Mf ) ≤ 2n, the rank lower bound can give no
larger bound than n. On the other hand, the fooling set lower bound account-
ing for also 0-rectangles can give the optimal bound n + 1 (see Example 5).
The reason for this somehow annoying difference is simple: An all-0-row is a
0-rectangle and would contribute to the fooling-set bound. However, its rank
is 0 — so it would not contribute to the rank lower bound.

Hence, it is only fair in a comparison, to restrict consideration to 1-fooling
sets only.

The following general inequalities are known:

• t(f) ≤ CC(f) ≤ (t(f) + 1)2

• r(f) ≤ t(f), fs(f) ≤ t(f) (see proofs above)
• If n is sufficiently large, there are example functions f , such that CC(f) =

n but fs(f) = O(log n) — the fooling-set bound may be very weak.

Concerning the comparison of fs and r the following more detailed facts were
shown

1. For almost all f : {0, 1}n × {0, 1}n → {0, 1} holds r(f) = n and simul-
taneously fs(f) = O(log n). Explicit constructions of such functions are
known.

2. For all f : {0, 1}n × {0, 1}n → {0, 1} holds fs(f) ≤ 2r(f) and explicit
constructions for f are known, for which fs(f) = n but r(f) < 0.8n.

Let us comment on the first of these results: What does “for almost all” mean?
It says, that if a function f : {0, 1}n×{0, 1}n → {0, 1} is taken at random from
the uniform distribution on the set of all such functions, then the probability
that is has the mentioned properties tends to 1 as n grows to infinity.

Exercise 13. For each k ∈ {0, 1, . . . , 2n} let EXACTk : {0, 1}n × {0, 1}n →
{0, 1} be defined by

EXACTk(x,y) =

{
1 , if ‖x‖+ ‖y‖ = k

0 , else.

Show that CC(EXACTk) ≥ �log(k + 1)�. For the proof you can use any of
the mentioned lower bound methods.

Exercise 14. We know that symmetric functions f : {0, 1}n × {0, 1}n →
{0, 1} have communication complexity bounded by O(log n). Give an example
of such a function with CC(f) ≥ �log n�.

Remark 8. Taking into account that there must exist at least one 0-rectangle
one can improve the result of Exercise 13 to

CC(EXACTk) ≥ �log(k + 2)� = �log((k + 1) + 1)�.
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Exercise 15. If the range of the function under consideration is greater than
{0, 1}, the simple idea from the last remark can be extended. E.g., it can be
shown that CC(MODk) ≥ �log(2k− 1)� = �log(k + (k− 1))�, by presenting a
0-fooling set for and by taking into account, that there must be at least one
1-rectangle, at least one 2-rectangle, . . . , at least one (k − 1)-rectangle. Try
this!

But for this function it is easy to give better lower bounds on the number
of those z-rectangles. This way one can prove CC(MODk) ≥ �2 log k�, which
is your exercise.

4.3 Communication Complexity and Chomsky Hierarchy

It is natural to ask, how communication complexity relates to other com-
plexity measures or to restricting features of computational devices. We saw
already one example concerning complexity measures in the field of VLSI-
design. Next we concentrate on the Chomsky hierarchy. We take some ideas
from the exposition in [15].

Recall the Chomsky hierarchy:

REG ⊂ CFL ⊂ CS ⊂ RE ⊂ ALL,

where the notations in this order denote the classes of regular, context-free,
context-sensitive, recursively enumerable, and all languages. (As usual, by a
language we mean a subset of Σ∗ for some fixed finite alphabet Σ.)

To bring these two concepts in touch we first need to translate functions
(studied in communication complexity) into languages (studied in formal lan-
guage theory) and vice versa. We confine to Boolean functions and to lan-
guages over the alphabet {0, 1}. The key idea is to bring sequences of functions
in correspondence to languages. Here is how:

Definition 10. For every natural number N let fN : {0, 1}N → {0, 1} be
a Boolean function. We denote by f the sequence f1, f2, . . .. The language
defined by f is the set

Lf = {w ∈ {0, 1}∗|f|w|(w) = 1}

(|w|, as usual, denotes the length of the string w).
If L ⊆ {0, 1}n, then the Boolean function sequence fL defined by L is the

sequence fL,N : {0, 1}N :→ {0, 1}, N = 1, 2, . . . with

∀w ∈ {0, 1}N : fL,N (w) = 1⇔ w ∈ L.

We want to apply communication complexity ideas to member functions from
sequences fL for arbitrary L. In the Boolean function examples studied so far,
the input was always partitioned in equal sized parts and distributed to Alice
and Bob. This is not possible for functions fL,N , if N is odd. But for these
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cases we simply consider the input space as product of X = {0, 1}�N/2	 and
Y = {0, 1}�N/2	+1 — so we give the first �N/2� bits to Alice (this input part
is denoted x) and the remaining bits to Bob (this input part is denoted y).

This said, we can now speak about the communication complexity of the
language L by considering communication complexities of the member func-
tions in the corresponding Boolean function sequence: CC(fL,N ) .

For any g : N→ N let CC(g(N)) denote the set of languages L ⊆ {0, 1}∗,
such that ∀N : CC(fL,N ) ≤ g(N).

We start with the top of the Chomsky hierarchy. The result of the following
exercise seems disappointing at first glance, but at least it is instructive. We’ll
comment on it afterwards.

Exercise 16. First recall the solution to Exercise 4. Then use a diagonaliza-
tion argument to prove the following statement:

Proposition 8. There is a language L ⊆ {0, 1}∗ which is not recursively
enumerable but has zero communication complexity:

L ∈ CC(0) \ RE.

Remark 9. The result is not really surprising. Each Turing machine is a finite
object, processing every input uniformly by the same algorithm. Proposition 8
shows, that it is inadequate to compare a uniform computational mechanism
(acceptors for languages in the Chomsky hierarchy) to non-uniform ones, like
infinite sequences of communication protocols, that provide for each input
length an own algorithm.

There is a standard way to translate uniform devices to corresponding non-
uniform ones (see [20]), that we introduce shortly: A computational device is
called non-uniform if there is some infinite sequence α1, α2, . . . called advice
that is used like an oracle mechanism: Instead of x the device processes the
combination x#α|x|. If C is a certain complexity class, defined by a resource
bounded uniform computational device, then C/g(N) denotes the class of
languages accepted by the same resources but with advice of length at most
g(N) for inputs of length N . To define this formally we introduce the following
notation:

C/g(N) = {L : α|L ∈ C, α = (αN )N∈N : ∀N |αN | ≤ g(N)}

where
L : α = {w|w#α|w| ∈ L}}.

The proposition shows, that in order to accept the language L′, a Turing
machine acceptor needed the information which constant function is computed
at inputs of length 1, length 2, . . . . This is only one bit of advice, or — in
the terminology of [20] — CC(0) ⊆ RE/1. In fact, already a finite automaton
equipped with this advice could accept L′. It is straight-forward to extend the
advice mechanism to finite automata (see [6]). Hence, the following is true:

CC(0) ⊆ REG/1.
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Proposition 9. For each regular language L ⊆ {0, 1}∗ there exists a constant
k, such that L ∈ CC(k).

Proof. See Chapter 4.4.

So, for every regular language a constant number of communicated bits is
sufficient to decide membership in that language. We express this fact as

REG ⊆ CC(O(1)).

On the other hand in [15] it is shown, that no single constant number of
communicated bits is sufficient to decide about any regular language:

Proposition 10. For every natural number k, there is a regular language Lk

outside CC(k).

Proof. Given k consider Lk = {w ∈ {0, 1}∗ : ‖w‖ = 2k+1} ∈ REG. By
Exercise 13 any deterministic communication protocol needs at least k + 1
bits of communication to decide w ∈ Lk.

Remark 10. Let const (poly, respectively) denote the class of advice sequences
α1, α2, . . . ∈ {0, 1}∗ such that ∀n : |αn| ≤ k (∀n : |αn| ≤ nk, respectively)
for some constant k. Using notation and ideas from Remark 9, the proof of
Proposition 9 and [6] one can show

CC(O(1)) ⊃ REG/const.

However, providing more than constant length advice does not help (see [6]):

REG/const = REG/poly.

How about context-free languages? Already in this language class there are
languages requiring the highest possible — namely linear — communication
complexity.

Proposition 11. There is a context-free language L ⊆ {0, 1}∗, such that L �∈
CC(o(N)).

Proof (sketch). It is easy to show, that the set of palindromes, which is a
context free language, has maximum communication complexity.

Remark 11. Palindromes are hard to recognize in our basic two party commu-
nication model since the partition of input bits among Alice and Bob is worst-
case. For other partitions (in the case n = 4, e.g., ({x1, x2, y1, y2}, {x3, x4, y3,
y4})) communication complexity 2 would be sufficient. This is related to “best
partition communication complexity”, discussed in Section 4.5.2. In [15] an
example of a context-free set is presented that has communication complexity
Ω(n) regardless how the (balanced!) partition of input bits among Alice and
Bob looks like.
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4.4 Communication Complexity Applications for Finite
Automata and Turing Machines

The following can be found in [21].

Lemma 2. Let f : {0, 1}n × {0, 1}n → {0, 1} and let there be a deterministic
finite automaton with accepted language L, such that fL,2n = f (i.e., the
“length 2n slice of L” is exactly the set of inputs xy with f(x,y) = 1). Then
for the number s of its states holds

CC(f) ≤ �log s�+ 1.

Proof. Consider a deterministic finite automaton accepting L. Let {q0, . . . ,
qs−1} be its states and let k = �log s�+1. Then the following is a deterministic
communication protocol, that accepts the input pair (x,y) if and only if the
concatenation xy belongs to L. Alice simulates the automaton on the input
x and passes the state qr in which the automaton ends in a binary encoding
(no more than k bits) to Bob. Bob then starts simulating the automaton on
y but with qr as starting state. He sends to Alice bit 1, if this computation
ends accepting and 0 otherwise. Hence �log s�+ 1 bits of communication are
sufficient.

Proof (Proposition 9). If L is regular, then it is recognized by some determin-
istic finite automaton with s states. From the lemma we can conclude, that
L ⊆ CC(�log s�+ 1).

Here is another application:

Exercise 17. Prove by means of communication complexity that the lan-
guages

L = {xy||x| = |y| and EQ(x,y) = 1}
and

L′ = {xy||x| = |y| and EQ(x,y) = 0}
are not regular.

The third application concerns the following well-known simulation: For every
s-state non-deterministic automaton there is a 2s state deterministic finite au-
tomaton that accepts the same language. We can show, that this construction
is essentially optimal:

Proof. We know from Exercise 17 that a deterministic finite automaton that
accepts the language

L′
n = {xy||x| = |y| = n and EQn(x,y) = 0}

needs at least 2n states. On the other hand, it is easy to design a non-
deterministic finite automaton with O(n) states for L′

n: It simply guesses
two input positions i, 1 ≤ i ≤ n and j, n+1 ≤ j ≤ 2n and accepts, if and only
if the input differs in these positions.
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Communication complexity finds also application for Turing machines. The
idea of the below lower bound is quite similar to the situation with deter-
ministic finite automata (and it reminds also to the VLSI-example from Sec-
tion 4.1.4). We concentrate on the following example language:

PALINDROME = {wwR|w ∈ {0, 1}∗},

where xR denotes the reversed string x.

Exercise 18. Prove that PALINDROME can be recognized by a Turing ma-
chine (1) in linear time using linear space or (2) in quadratic time using
logarithmic space.

Proposition 12. If a Turing machine accepts PALINDROME in time T (N)
using space S(N) then

T (N) · S(N) = Ω(N2).

Proof. Consider a Turing machine M that decides this language. Alice and
Bob compute EQ(x,y) for (x,y) ∈ {0, 1}n × {0, 1}n by simulating the work
of M on x0nyR ∈ {0, 1}N where N = 3n. Clearly M accepts if and only
if EQ(x,y) = 1. Whenever the read-only input head is located in the “x-
region” it is Alice who simulates and if it is in the “y-region” it is Bob who
simulates. When the head enters the “0-region” the current player can continue
to simulate until the head enters the region corresponding to the other player.
It takes at least time n to move from the x- to the y-region, thus this happens
at most T (N)/n times. Further, when the head crosses the responsibility
border (i.e., when it walks out of the 0-region), the current player passes
the necessary information to the other: the state (O(1) bits) and the contents
of the work tape(s) (O(S(N)) bits). In total they exchange O(S(N) ·T (N)/n)
bits while finding EQ(x,y). Because of Proposition 2 we can conclude T (N) ·
S(N) = Ω(n2).

The idea works obviously also for other functions with linear communication
complexity.

Remark 12. In principle the same idea should also work for pushdown au-
tomata (divide the input in two parts and let Alice simulate on the left and
Bob on the right). However, passing information between players is more dif-
ficult, because of the large amount of information that can be stored in the
stack. In [16] a more sophisticated communication model was defined, that is
applicable for lower bound proofs in this situation. The details are beyond the
scope of this tutorial.
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4.5 A Survey on Communication Problems
and Applications

4.5.1 Different Modes of Communication

The model of communication that was introduced in Section 4.1.2 is the basic
deterministic model. However, the concept of non-determinism known from
computational complexity theory turns out to be fruitful also in communica-
tion complexity. We survey some of these and related notions and results.

A non-deterministic communication protocol is a protocol, that may allow
players to choose one of several messages to send. We define the computed
value to be 1 if at least one transcript gives output 1. The length of the
protocol transcript for the worst-case input pair is the complexity of the non-
deterministic protocol. The complexity of the best nondeterministic protocol
for a function f : {0, 1}n × {0, 1}n → {0, 1} is called the nondeterministic
communication complexity of f and is denoted

CCN (f) .

Still, it holds that the set Rα of all input pairs with transcript α is a
monochromatic rectangle. It is not hard to see, that every nondeterministic
protocol for f defines a (not necessarily disjoint) covering of {0, 1}n×{0, 1}n
by monochromatic rectangles. Let Cov1(f) denote the minimum number of
1-rectangles required to cover Mf .

Exercise 19. Prove that

CCN (f) = �log Cov1(f)�.

Let Cov0(f) denote the minimum number of 0-rectangles needed to cover Mf .
The following is proved in [13]:

Proposition 13. CC(f) = O(Cov1(f) · Cov0(f)).

Cov1(f) and Cov0(f) are called cover numbers. Let ms(f) denote the maxi-
mum size of an f -monochromatic 1-rectangle. The following is obvious:

Lemma 3.
CC(f) ≥ Cov1(f) + Cov0(f).

CCN (f) ≥ #f−1(1)/ms(f).

Exercise 20. Use properties of Sylvester-matrices (see Example 6) to prove
#IP−1

n (1) > 3n.

It can be shown, that 1-rectangles of IPn have size at most 2n: ms(IPn) ≤ 2n.
Using the lemma and the exercise this gives:

Proposition 14.
CCN (IPn) = Ω(n).
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The rectangle size argument was extended to randomized communication pro-
tocols in [17]. In randomized communication protocols players make use of
random bits and the input is to be accepted with a certain probability. There
is a “private coins model” (each player uses a separate source of randomness)
and a “public coin model” (players share the random bits). In the latter model
the random bits are not taken into account for communication.

Example 7. There is a private coin random communication protocol that com-
putes EQn within O(log n) bits of communication and with error at most 1/n.

Proof (sketch). Let p, n2 < p < 2n2 be a prime and consider the input vectors
as coefficients of degree n− 1 polynomials. So every player has a polynomial.
Alice picks some r, 0 ≤ r < p at random and evaluates her polynomial at r.
She sends r as well as the value modulo p to Bob. Bob evaluates his polynomial
at the point r. If his result equals hers modulo p, then he accepts. Otherwise
he rejects.

No more than O(log n) bits are communicated and the probability of error
is small: If the input parts are the same, the polynomials are the same and
no error occurs. If the inputs are different, the polynomials differ and there is
good chance that this will be detected by random evaluation.

Another type of “communication mode” concerns rounds. The protocols men-
tioned in previous sections are all 1-round protocols: Alice sends some bits and
Bob can compute the function value. The question is, whether it is sufficient
to restrict attention to protocols bounded to a certain number of rounds or
how much round restrictions affect length of protocols. This study was started
in [29]. We mention some results:

• The protocol used in the proof of Proposition 13 uses binary search in a
number of rounds that grows as log Cov0(f). No deterministic protocol
with a constant number of rounds is known, that gives the same upper
bound.

• For each fixed k functions are known that need exponentially more com-
municated bits in k− 1-round games compared to k-round games (see [11]
for the deterministic version and [27] for the randomized).

• There is a connection between round-restricted protocols and depth/size-
tradeoffs for Boolean circuits [27].

4.5.2 Different Partitions

Recall the VLSI-example from Section 4.1.4. Processors compute EQn but bits
to be compared are at a large distance from each other. This is, what makes
the computation costly. Without this restriction, the lower bound AT ≥ n2

would no longer be applicable.

Exercise 21. Describe a layout for a VLSI-circuit with arbitrary arrangement
of inputs that achieves an area-time product o(n2).
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In view of this it seems meaningful to consider communication complexity of
functions on base of arbitrary input partitions. This model was introduced
in [29] and is heavily used for VLSI lower bound proofs:

Definition 11. Let (S, T ) be a partition of the set of inputs of a boolean func-
tion with #S = #T . An (S, T )-communication protocol is a communication
protocol that enables Alice and Bob (given the bits with index i ∈ S and with
index i ∈ T , respectively) to jointly compute the value of f on the given input.
Its complexity is defined as usual. The communication complexity of f with
respect to (S, T ) (denoted CCS,T (f)) is the complexity of the best protocol
with respect to S, T . The best partition communication complexity of f is the
minimum of CCS,T (f) over all input set partitions (S, T ):

CCbest(f) := min
(S,T )

CCS,T (f) .

The “benchmark function” for best partition communication complexity is:

shifted equality

SEQn(x,y, i) =

{
1 , if x(i) = y
0 , otherwise,

where x(i) denotes the cyclic shift of x by i places.

Proposition 15.
CCbest(SEQn) = Ω(m),

where m = 2n + log n is the size of the input.

Proposition 16. Every VLSI-chip that computes f satisfies

AT 2 ≥ (CCbest(f))2.

For proofs see [21].

4.5.3 Different Games

Depending on the situation to be modeled different versions of “communica
tion games” are in use. The basic model is the two party communication game
as introduced. To give an impression we mention only two of them:

• Multiparty communication: The input consists of k parts x1, . . . ,xk. An
obvious and hopefully useful generalization of the two-party case is the
following version (1): The share of player i consists of xi. Less obvious but
also useful is version (2): The share of player i consists of all xj , 1 ≤ i ≤ k
except xi. Version (2) is dubbed “number-on-the-forehead-model” (NOF)
while version (1) is the “number-in-the-hand-model”. The NOF version was
introduced by [5]. There are surprising connections between this model and
Boolean circuit complexity. And there are also surprising protocols (see,
e.g., [12, 7]).
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• Communication complexity of relations, which was introduced in [19]: A
relation is a subset R ⊆ X×Y ×Z. Alice is given x ∈ X, Bob is given y ∈ Y
and their task is to find some z ∈ Z, such that (x, y, z) ∈ R. For an example
consider the so-called universal relation: Un ⊆ {0, 1}n×{0, 1}n×{1, . . . , n}
is defined to be the set of all triples (x,y, i) such that x �= y and xi �= yi.
The corresponding communication game is the following: Alice is given x
and Bob is given y. They know in advance, that x �= y. Their task is to
find some bit i, in which their inputs differ.

The communication complexity of such protocols is defined in the usual way
— it is the length of the best protocol on the worst case input.

Let us elaborate somewhat more on communication complexity of rela-
tions.

Let f : {0, 1}n → {0, 1} be a non-constant Boolean function. Suppose Alice
is given some x ∈ f−1(0) and Bob is given some y ∈ f−1(1). Then they know,
that their input parts differ in at least one bit and they can communicate
to find one such position. This is the communication game on the following
relation associated to f :

Rf := {(x,y, i)|x ∈ f−1(0),y ∈ f−1(1), xi �= yi}.

Obviously, every protocol for Un gives a protocol for Rf — this is where the
name “universal relation” comes from. The trivial protocol for Un gives an
upper bound of n + �log n� communicated bits. In [30] several protocols are
given that achieve an upper bound of n + 2 (while the lower bound — proved
in the same paper — is n + 1).

We denote by CC(Rf ) the communication complexity of the relation Rf .
Further let d(f) denote the minimum depth of a Boolean circuit for f that
uses only ∧-, ∨-, and ¬-gates. The following interesting connection was proved
in [19]:

Lemma 4.
d(f) = CC(Rf ) .

This lemma was used in [4] for a new proof of the following fact, that is known
from 1950s:

Proposition 17. For every symmetric Boolean function f holds

d(f) = O(log n).

Remark 13. The proof relies on a the construction of an O(log n) protocol for
Rf . Please note, that this is not related to the result of Exercise 7.
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theory to represent behaviours of concurrent systems necessitating a generalisation
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to clearly distinguish between causality and independence between executions of
actions, a major feature of concurrent behaviour.
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5.1 Introduction

The dynamic behaviours of concurrent systems are not always adequately cap-
tured with the help of purely functional input-output descriptions. Often one
is more interested in the modelling of ongoing evolutions of such systems at
the interface with the environment, e.g., when communicating or reacting to
external stimuli. One way of representing such evolutions is to use sequences
of executed actions, which in a natural way leads to a formal language seman-
tics of dynamic systems. A successful example of this approach are finite state
machines and their languages which have numerous applications in almost ev-
ery branch of Computer Science. Another example are Turing machines and
their languages which delimit the effectiveness of computational behaviour.
Both classes of machines are of a sequential nature which makes languages
a suitable semantical domain. However, plain words and languages are only
of limited usefulness when it comes to faithful representation of concurrent
behaviours. For example, a sequential description of behaviour cannot be used
to describe the result of action refinement for which the information about
J. Kleijn and M. Koutny: Formal Languages and Concurrent Behaviours, Studies in
Computational Intelligence (SCI) 113, 125–182 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



126 Jetty Kleijn and Maciej Koutny

concurrency or independence, as opposed to causality, is of crucial impor-
tance. The problem of insufficient expressibility of sequential descriptions was
recognised in the 1970s when concurrent systems became a focus of inten-
sive research activity carried out by various groups, and when it was realised
that additional information should be added to the sequential descriptions
of system behaviours. An example coming from the process algebra world is
Milner’s observational equivalence [39] — replacing language equivalence as a
means of comparing different systems — which allows one to identify the exact
points when choices between alternative actions were made during system ex-
ecutions. Another such example are traces — introduced by Mazurkiewicz [35]
— providing explicit information on the causal dependencies between executed
actions. It is this latter approach which is the subject of this tutorial.

A key concept behind traces is that a given concurrent run can be ob-
served in different ways depending on the viewpoint of the observer and on
the particular way of recording this behaviour. Trace theory then provides a
tool which allows one to identify in a precise way different observations of
a concurrent behaviour. In its most basic form, traces equate sequences of
executed actions on basis of given independencies between such actions. The
original idea of Mazurkiewicz was to use the well-developed tools of formal
language theory for the analysis of concurrent systems, understood as Petri
nets [44, 45, 46].

Petri nets are an operational model which directly generalises state ma-
chines (labelled transition systems) through the notions of a state and state
change. Both models allow a graphical representation. What makes Petri nets
radically different from state machines is their ability to represent states as
distributed entities, and state changes as affecting only local parts of these
distributed states in a way prescribed by the underlying graphical structure.
Whereas the executions or runs of a sequential system consist of actions ex-
ecuted one-by-one in a totally ordered fashion, the actions of a run of a
concurrent system are not necessarily executed one after the other. Having
distributed states and local effects makes concurrency aspects explicit since
actions may be independent in the sense that they involve disjoint parts of
distributed states. Hence words and languages (sets of words) which are appro-
priate models for the behaviours of sequential systems are no longer sufficient
since actions executed in a concurrent system are only partially ordered. The
concern of trace theory is how to add information to observations in order to
convey the essence of causality between executed actions (i.e., the necessary
ordering in the sense that cause must precede effect).

Trace theory has as its starting point an alphabet of action names en-
riched with information about which (occurrences of) actions are indepen-
dent (or non-interfering). A key assumption is that the order of observation
of two independent actions is accidental. Hence two sequential observations
(words) which differ only w.r.t. the order of occurrence of independent ac-
tions are in fact observations of the same concurrent run and consequently
may be identified. A trace is then simply the resulting equivalence class of all
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sequential observations of the same underlying concurrent run. In this way,
formal language theory is lifted to quotient structures consisting of equivalent
observations, and a number of standard language theoretic tools can there-
fore be adapted and applied in the analysis of concurrent systems. Moreover,
by explicitly recording the dependencies between executed actions a unique
(causal) partial order can be associated to each trace. In other words, traces
can be seen as partial orders in the same way as words can be seen as total
orders.

The tutorial is organised in the following way. After a preliminary section
on sets, graphs and languages, we introduce traces and recall their main prop-
erties, including the underlying dependence graphs. We then consider Elemen-
tary Net systems [47] which are generally regarded as the most fundamental
class of Petri nets, and were indeed the model which inspired the introduction
of traces. We investigate both sequential and non-sequential ways of executing
them. The trace-based behaviour is obtained by taking sequential executions
and combining them with the structural information about the dependencies
between executed actions obtained from the graph structure of a net. That
this approach is sound follows from the fact that the partial orders defined
by traces coincide with the partial order semantics of nets represented by the
non-sequential observations captured by operationally derived processes. This
treatment is then repeated for two significant, and practically relevant, exten-
sions of Elementary Net systems (note that ‘Petri net’ is actually a generic
name rather than a single model). The first extension consists in adding in-
hibitor arcs to the net, and the other in extending the notion of a global state.
In each case we demonstrate the necessary generalisations of the concept of
action independence, leading to comtraces and local traces, respectively. The
first is based on the enhanced structure of the net whereas the other is history
dependent.

The tutorial is based on existing work and contains no proofs. The main
text presents key definitions and results as numbered items, whereas support-
ing observations (and suggested exercises for the reader) are marked with
the �symbol. For further background, proofs and references the reader is
provided with bibliographical remarks at the end of each technical section.

5.1.1 A Running Example

Throughout this tutorial, we will discuss various aspects of simple yet prac-
tically relevant concurrent systems consisting of producers, buffers and con-
sumers.

We start with a model consisting of three (sequential) components: a pro-
ducer Prod, buffer of capacity one Buff and consumer Cons. Each component
is characterised by its language which is the set of finite sequences of atomic
actions it can execute. Prod can execute three actions: m representing making
of an item, a representing adding of a newly produced item to the buffer, and
r representing the retirement of the producer. Cons can execute two actions:
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FSMProd

init

r

am

FSMBuff

init

ag

FSMCons

init

gu

Fig. 5.1. Finite state machines for the running example.

g representing getting an item from the buffer, and u representing using the
newly acquired item. Buff can execute the a and g actions. The sequences of
allowed action executions are given by the regular languages generated by the
three finite state machines shown in Figure 5.1 (all states in these machines
are considered final). The three components together form a concurrent sys-
tem in which they operate independently except for the requirement that the
actions shared by two processes are executed if both of the processes (can
and) do so.

For example, ama is a valid action sequence for the producer, but it is not
a valid behaviour of the combined system, because the buffer does not allow
two a actions without an intermediate g. On the other hand, the sequence
amgau can be executed by the whole system, and so it is a valid history. Note
that amgru is a history leading to a deadlock, i.e., a global state in which none
of the five actions can be executed.

5.2 Preliminaries

A relational tuple is a tuple reltuple df= (X1, . . . , Xm, Q1, . . . , Qn) where the
Xi’s are disjoint sets forming the domain, and the Qi’s are relations involving
the elements of the domain and perhaps some other elements.1 For example,
directed graphs and finite state machines can be regarded as relational tuples.
In fact, in all cases considered later on, a relational tuple can be viewed as a
graph of some sort and we will use the usual graphical conventions to represent
its nodes (i.e., the elements of its domain), various relationships between these
nodes, and some particular characteristics of these nodes (e.g., the initial state
of a finite state machine, or a labelling of the elements).

A particular issue which links together various kinds of relational tuples is
the idea that what really matters is the structures they represent rather than
the identities of the elements of their domains. A technical device which can
be used to capture such a view is as follows: two relational tuples, reltuple
and reltuple ′, are isomorphic if there is a bijection ψ from the domain of
reltuple to the domain of reltuple ′ such that if we replace throughout reltuple

1In this tutorial, m ≤ 2 and n ≤ 4. Note that suitable Qi’s can represent functions
on the domain as well as subsets and individual elements of the domain.



5 Formal Languages and Concurrent Behaviours 129

each element x in its domain by ψ(x) then the result is reltuple ′.2 It is then
standard to consider isomorphic relational tuples as undistinguishable.

5.2.1 Set Theoretic Notations

N denotes the set of natural numbers including zero. The powerset of a set
X is denoted by P(X), and the cardinality of a finite set X by |X|. Sets
X1, . . . Xn form a partition of a set X if they are non-empty disjoint subsets
of X such that X = X1 ∪ . . . ∪Xn.

A labelling � for a set X is a function from X to a set of labels. The
labelling can be applied to finite sequences of elements of X, �(x1 . . . xn) df=
�(x1) . . . �(xn), and to finite sequences of subsets of X, �(X1 . . . Xn) df= �(X1) . . .
�(Xn). The composition R ◦ Q of two relations R ⊆ X × Y and Q ⊆ Y × Z
comprises all pairs (x, z) in X×Z for which there is y in Y such that (x, y) ∈ R
and (y, z) ∈ Q.

Definition 1 : relations
Let R be a binary relation on a set X.

• R−1 df= {(y, x) | (x, y) ∈ R} denotes the inverse of R.
• R0 = idX

df= {(x, x) | x ∈ X} is the identity relation on X.
• Rn df= Rn−1 ◦R is the n-th power of R, for n ≥ 1.
• R+ df= R1 ∪R2 ∪ . . . is the transitive closure of R.
• R∗ df= R0 ∪R+ is the transitive and reflexive closure of R.
• R is symmetric / reflexive / irreflexive / transitive if, respectively,

R = R−1 / idX ⊆ R / idX ∩R = ∅ / R ◦R ⊆ R.
• R is acyclic if R+ is irreflexive.

The restriction of a function f : X → Y to a subset Z of X is denoted
by f |Z , and of a relation R ⊆ X × Y to a subset Z of X × Y by R|Z .
The domain of R is domR

df= {x | (x, y) ∈ R} and its codomain is given by
codomR

df= {y | (x, y) ∈ R}. We will often use the infix notation xR y to
denote (x, y) ∈ R.

Definition 2 : equivalence relations

A binary relation R on a set X is an equivalence relation if it is reflexive,
symmetric and transitive. An equivalence class of R is any maximal subset
of equivalent elements.

2This definition is not strictly formal, but it should convey sufficient meaning to
make the presentation clear.
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In other words, R is an equivalence relation iff R = (R∪R−1)∗ holds �. If R
is an equivalence relation on X, then X/R denotes the set of all equivalence
classes of R.

Given an equivalence relation R on X and a function f defined for n-
tuples of elements of X, it is often useful to lift f to n-tuples of equivalence
classes of R by setting f(Rx1 , . . . , Rxn

) df= f(x1, . . . , xn) where each Rxi
is the

equivalence class of R containing xi. We say that f is well-defined on X/R if
the value returned does not depend on the choice of the representing element
xi from Rxi

.

Definition 3 : partial orders

A binary relation R on a set X is a partial order if it is irreflexive and
transitive.

In other words, R is a partial order iff R = R+ \ idX holds �.

Definition 4 : partially ordered sets

A labelled partially ordered set (or poset) po df= (X,≺, �) is a relational
tuple consisting of a finitea set X, a partial order ≺ on X, and a labelling
� of X. The poset is total (or linear) if, in addition, all distinct elements
of X are ordered.

aFor simplicity we restrict ourselves to finite posets.

More precisely, po is total if x ≺ y or y ≺ x for all x �= y in X. Two elements
x �= y of X are unordered if neither x ≺ y nor y ≺ x; we denote this by x � y.
Moreover, we write x � y if x ≺ y or x = y.

A total poset tpo is a linearisation of a poset po if they have the same
domain and labelling, and the partial order relation of the former extends
(includes) the partial order relation of the former. The set of all linearisations
of po is denoted by lin(po).

The intersection
⋂
T PO of a non-empty set of total posets tpo =(X,≺tpo , �)

with the same domain X and labelling � is (X,≺, �) where ≺ is the rela-
tion comprising all pairs (x, y) of elements of X such that x ≺tpo y for each
tpo in T PO. The set of all linearisations of a poset po is non-empty and
po =

⋂
lin(po) which means that any poset can be identified with its set of

linearisations �.

5.2.2 Directed Acyclic Graphs

As usual, we define a labelled directed graph (or simply graph) G as a rela-
tional tuple (V,A, �) consisting of a set of nodes V , a set of arcs A ⊆ V × V ,
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and a labelling of V . (For simplicity we restrict ourselves to finite graphs, i.e.,
with a finite set of nodes).

Definition 5 : dags

A graph G = (V,A, �) is acyclic (transitive) if A is an acyclic (transitive)
relation. A dag is a (directed) acyclic graph.

Figure 5.2 shows an example of a dag G with six nodes. Any poset is a dag
and, conversely, any dag defines a (unique) poset after adding all arcs implied
by transitivity: for a dag G = (V,A, �) the relation A+ is a partial order on
V , and we refer to the graph G+ df= (V,A+, �) as the transitive closure of G.
Deleting all transitive arcs from G yields its Hasse diagram, i.e., the graph
hasse(G) df= (V,A \ (A ◦ A+), �). Figure 5.2 shows examples of both these
notions.

The Hasse diagram of a poset po is the minimal (w.r.t. the number of
arcs) dag G such that G+ = po. Moreover, a dag is a poset iff it is its own
transitive closure, and the transitive closures of two dags coincide iff their
Hasse diagrams coincide �.

G G+ hasse(G)
Fig. 5.2. A dag, its transitive closure with added arcs indicated by dotted lines,
and its Hasse diagram. Note that node labels are omitted as they are irrelevant.

5.2.3 Words and Languages

Alphabets, words, and languages are the main notions for recording the se-
quential view of a system’s behaviour.

Definition 6 : alphabets

An alphabet Σ is a finite non-empty set of symbols. A word (over Σ) is
any finite sequence a1 · · · an of symbols ai (from Σ), and a language (over
Σ) is any set of words (over Σ).

In the case that n = 0 in the above definition, one is dealing with the empty
sequence or empty word, denoted by λ. The set of all words over Σ including
λ, is denoted by Σ∗.
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λ a ag agm agma agmau

cantotalposet(agmau) a

a1

g

g1

m

m1

a

a2

u

u1

Fig. 5.3. Hasse diagram of the prefix ordering for the word agmau, and Hasse
diagram of its canonical total poset showing the identities of its nodes (bottom) and
labels (top).

Definition 7 : words
Let u = a1 . . . an and v = b1 . . . bm be two words over an alphabet Σ,
(m,n ≥ 0).

• uv
df= a1 . . . anb1 . . . bm is the concatenation of u and v.

• length(u) df= n is the length of u.
• alphabet(u) comprises all symbols occurring within u.
• #a(u) is the number of occurrences of a symbol a within u.
• occ(u) is the set of symbol occurrences of u comprising all indexed

symbols ai with a ∈ alphabet(u) and 1 ≤ i ≤ #a(u).

For the running example in this tutorial, we will use the alphabet Σ =
{a, g, m, r, u}. For the string u = agmau over Σ, we have: length(u) = 5,
alphabet(u) = {a, g, m, u}, #a(u) = 2 and occ(u) = {a1, a2, g1, m1, u1}.

Fact 8 : The set of all words over an alphabet Σ with concatenation and
the empty word forms a monoid. That is, concatenation is associativea and
λ is its unit.b

a(uv)w = u(vw) for all u, v, w in Σ∗.
bλu = uλ = u for each u in Σ∗.

A word u is a prefix of a word v if v = uw for some word w. We denote
this by u � v. Moreover, if u � v and u �= v then we write u � v. The prefix
relation � on words is a partial order �. For example, ag � agma.

For a given word, � is a total order on its prefixes which can be interpreted
as saying that every word has a unique history (see Figure 5.3). Moreover,
every word, being a sequence of symbols, corresponds directly to a total poset.
This is an important relationship now made precise.

To start with, the elements of a total poset tpo = (X,≺, �) can be listed as
a (unique) sequence x1 . . . xn such that xi ≺ xj iff i < j. The word generated
by tpo is then defined as word(tpo) df= �(x1 . . . xn). Total orders are isomorphic
iff the words they generate are the same �.

Now, given a word u it is clearly possible to see it as corresponding to
any total poset tpo such that word(tpo) = u. Since all such total posets are
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isomorphic it does not really matter which one is chosen and for our purposes
it is convenient to single out one such poset. It is called the canonical total
poset of u and is defined as cantotalposet(u) df= (occ(u),≺, �) where ai ≺ bj

if the i-th occurrence of a precedes the j-th occurrence of b within u, and
�(ai) df= a, for all symbol occurrences ai and bj in occ(u). Distinct words have
distinct canonical total posets, and the word generated by the canonical total
poset of a word is that word itself �.

5.2.4 Bibliographical Remarks

We have recalled the necessary notions and results used later in this tutorial.
Most of them are standard. We only mention that the fact that any poset
can be identified with its set of linearisations is usually known as ‘Szpilrajn’s
Theorem’ and has been first given in [49] in a fully general setting.

5.3 Traces

Words represent a sequential view of the actions executed by a system. As
such, no further information is provided on the intrinsic dependencies among
the actions and the resulting necessary ordering of their occurrences. The
introduction of traces starts from the definition of a concurrency alphabet,
which simply states which symbols are considered as representing indepen-
dent actions (not interfering with each other) and thus should be treated as
concurrent.

Definition 9 : concurrency alphabets

A concurrency alphabet is a pair CA df= (Σ, Ind) where Σ is an alphabet
and Ind is an irreflexive and symmetric binary relation over Σ called an
independence relation.

When two symbols are not independent (i.e., they do not appear as a pair
in the given independence relation), they are said to be dependent. Note that
this dependence relation is reflexive.

Let (Σ, Ind) be a concurrency alphabet and let u, v ∈ Σ∗. We write
u ∼Ind v if there are words w and z and independent symbols (a, b) ∈ Ind such
that u = wabz and v = wbaz. Thus u ∼Ind v means that they are the same
word except for a change of order of two adjacent occurrences of independent
symbols. Trace equivalence (with respect to (Σ, Ind)) is the equivalence re-
lation ≡Ind over Σ∗ obtained as the reflexive and transitive closure of ∼Ind .
Thus, two words are trace equivalent if one can be obtained from the other
by changing (repeatedly) the order of adjacent occurrences of independent
symbols. This means �that u ≡Ind v iff #a(u) = #a(v) for all a ∈ Σ and
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the order of occurrences ai and bj is the same within u and v for all pairs a, b
of dependent symbols and for all 1 ≤ i ≤ #a(u) and 1 ≤ j ≤ #b(u).

Continuing our running example with Σ = {a, g, m, r, u}, we assume CA =
(Σ, Ind) is the concurrency alphabet with independence relation Ind given by:

Ind = {(r, g), (g, r), (r, u), (u, r), (m, g), (g, m), (m, u), (u, m), (a, u), (u, a)}.

Then agmr ∼Ind amgr ∼Ind amrg and so agmr ≡Ind amrg.

Definition 10 : traces
A trace over a concurrency alphabet (Σ, Ind) is any equivalence class of
the trace equivalence relation ≡Ind , and a trace language is any set of
traces over (Σ, Ind).

The trace containing a given word u is denoted by [u]Ind , and the set of
all traces over (Σ, Ind) by Σ∗/≡Ind

. Whenever the independence relation Ind
is understood, we may drop the subscript Ind . Note that the empty trace
[λ] is {λ} rather than the empty set. For the running example, [amgr] =
{amgr, agmr, amrg}.

If two words are trace equivalent, then both their lengths and alphabets
are the same �. Hence, the alphabet of a trace and its length, defined in the
natural way as alphabet(α) df= alphabet(u) and length(α) df= length(u), where
u is any word belonging to the trace α, are both well-defined notions. Also,
trace concatenation (or sequential composition, in operational terms) defined
as [u]◦[v] df= [uv] is a well-defined operation. This follows from the observation
�that uv and u′v′ are trace equivalent whenever [u] = [u′] and [v] = [v′].

Fact 11 : The set Σ∗/≡Ind
of all traces over a concurrency alphabet

(Σ, Ind) is a monoid. That is, concatenation of traces is an associativea
operation with the empty trace [λ] as its unit.b

a(α ◦ β) ◦ γ = α ◦ (β ◦ γ) for all α, β, γ in Σ∗/≡.
bα ◦ [λ] = [λ] ◦ α = α for each α in Σ∗/≡.

The last result can be pushed a little bit further.

Fact 12 : The trace monoid Σ∗/≡Ind
is partially commutative in the sense

that, for any pair of traces α and β, alphabet(α)×alphabet(β) ⊆ Ind implies
α ◦ β = β ◦ α and, moreover, the converse holds whenever the alphabets of
α and β are disjoint.

We lift the prefix relationship on words to the level of traces, by stating
that a trace α is a prefix of a trace β if β = α ◦γ for some trace γ. We denote
this by α � β. Moreover, if α � β and α �= β then we write α � β. For
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[amr] [amg]

[amrg]

a1
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Fig. 5.4. Hasse diagram of the prefix ordering for the trace [amrg] and its depen-
dence graph (labelling is obvious and therefore omitted).

example, [a] � [amr]. It then follows that u � v and v ≡ w implies [u] � [w]
where u, v, and w are words �. Consequently, u � v implies [u] � [v], but
[u] � [v] does not necessarily imply that u � v holds �.

Unlike words which have a unique history that is captured through the
prefix relation (see Figure 5.3), the prefix relation for traces can be interpreted
as associating with a trace several histories which are sequential observations
(represented by the words in the trace) of possibly concurrent behaviour. One
could say that the concurrency between occurrences has been ‘flattened’ to
choosing an order of occurrence. In Figure 5.4 the trace [amrg] is depicted with
the ordering of its prefixes. That trace has three histories in correspondence
with the three directed paths defining its elements amgr, agmr, and amrg.

To extract information on the dependencies between the symbol occur-
rences in a trace, dependence graphs are used. In these graphs, the relationship
between dependence and order is made explicit.

Definition 13 : dependence graphs

A dependence graph over a concurrency alphabet (Σ, Ind) is a dag in which
two nodes are connected iff they are labelled with dependent symbols.

In other words, a dag G = (V,A, �) is a dependence graph over (Σ, Ind) if
� : V → Σ is a labelling such that for all distinct nodes x, y ∈ V , there is an
arc (x, y) ∈ A ∪A−1 if and only if (�(x), �(y)) /∈ Ind .

Every dag defines a language, consisting of all words that can be read
from its labels without violating the order implied by its arcs (e.g., by using a
topological sorting procedure). Formally, the language of a dag G comprises
all words associated with the total extensions of its transitive closure, i.e.,
language(G) df= word(lin(G+)). Their languages provide a fairly precise char-
acterisation of dependence graphs, as two dependence graphs over the same
concurrency alphabet are isomorphic iff their languages are the same �.

Conversely, assuming a given concurrency alphabet (Σ, Ind), with every
word u ∈ Σ∗ a dependence graph can be associated. The canonical dependence
graph of u is the dag candepgraphInd(u) given by (occ(u),≺, �) where �(ai) df= a,
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G = candepgraphInd(agmau) a1
g1

m1

a2

u1

G

a1

g1

m1

a2

u1

G+

a1

g1

m1

a2

u1

hasse(G+)

a1

g1

m1

a2

u1

a1 g1
m1 a2 u1

= cantotalposet(agmau)

a1 g1
m1 u1 a2

= cantotalposet(agmua)

a1 g1
u1 m1 a2

= cantotalposet(aguma)

a1 m1 g1
a2 u1

= cantotalposet(amgau)

a1 m1 g1
u1 a2

= cantotalposet(amgua)

Fig. 5.5. The canonical dependence graph (twice) of agmau, its transitive closure,
the Hasse diagram of its transitive closure, and Hasse diagrams of its total extensions.
(Labelling of the nodes is obvious and therefore omitted.)

for all a ∈ alphabet(u) and ai in occ(u), and ai ≺ bj if the i-th occurrence of a
(strictly) precedes the j-th occurrence of b within u and (a, b) /∈ Ind . Note that
the canonical dependence graph of the empty word is candepgraphInd(λ) =
(∅, ∅, ∅), and that candepgraph

∅
(u) = cantotalposet(u). Figure 5.5 shows an

example of a canonical dependence graph, and its total extensions.
>From the definition of u ∼Ind v, it follows that the canonical de-

pendence graphs of two words are equal whenever they are trace equiva-
lent �. Hence the canonical dependence graph of a trace α can be defined as
candepgraph(α) df= candepgraph(u) where u is any word in α. What is more,
the language defined by the canonical dependence graph of a trace consists
exactly of the words comprising that trace �. It therefore follows that dis-
tinct traces have distinct canonical dependence graphs �. Hence there is a
one-to-one correspondence between dependence graphs and traces.

On basis of the canonical dependence graph of a trace, we define the canon-
ical poset of a trace α as canposet(α) df= candepgraph(α)+. >From the above
observations, it follows that the canonical poset of a trace properly captures
the behaviours represented by the words in that trace.
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Fact 14 : Let α be a trace.

• lin(canposet(α)) = cantotalposet(α).a
• word(lin(canposet(α))) = α.

aNote that in cantotalposet(α) the trace α is treated as a set of words.

All information on the dependencies between the occurrences in a trace is
represented in its uniquely associated poset.

5.3.1 Bibliographical Remarks

Main independent sources of trace theory are [7] (in the context of combi-
natorial problems) and [35, 29] (in the context of concurrency theory). An
extensive account of trace theory is provided by [11] which, in particular,
contains a chapter on dependence graphs [20]. For a bibliography on traces
see [15].

5.4 Elementary Net Systems

In this section we first briefly discuss Petri nets as a system model, or rather
as a framework for the modelling of concurrent systems. Then we introduce
in more detail Elementary Net systems, the most basic Petri net model. In
this model the key primitive notions underlying the operation of concurrent
systems are explicitly represented and as such it has been the inspiration
for the development of trace theory. In later sections, we will discuss more
expressive net classes and how they lead to generalizations of traces.

The description of a Petri net comes in two parts, giving its static and
dynamic aspects. The (static) structure of a Petri net is a graph specifying
the local states (called places) of the system being modelled and its possible
actions (called transitions). Global (system) states consist of combinations of
the local states and it is the role of transitions to change those states in accor-
dance with the given (dynamic) rules. Each transition has a neighbourhood of
places with which it is linked and there are specific rules when transitions can
occur (concurrently) and the effect of such occurrence. Both notions are fully
determined by the transition’s neighbourhood, i.e., every transition occur-
rence depends on neighbouring local states and also its effect when it occurs
is completely local. A net system is fully specified when also an initial state is
supplied from which possible behavioural scenarios are initiated. By varying
the kind and nature of the relationships between places and transitions, as
well as the precise notions of global state, and the enabling and occurrence
rules, one obtains different classes of Petri nets.

First we introduce the basic structure underlying every Petri net. The
definition below captures what presumably is the most fundamental class of
nets.
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Fig. 5.6. A net without and with configuration (an EN-system) for the running
example with a producer and a consumer subnet connected by a (buffer) place p4.

Definition 15 : nets
A net N is a relational tuple (P, T, F ) with P and T disjoint finite sets of
nodes, called respectively places and transitions, and F ⊆ (T×P )∪(P×T )
the flow relation.

In diagrams, places are drawn as circles, and transitions as rectangles. The
flow relation is represented by directed arcs between them. Hence nets are
drawn as bipartite graphs.

Figure 5.6 shows the net N = (P, T, F), where P = {p1, p2, p3, p4, p5, p6}
is the set of places, T = {a, g, m, r, u} is the set of transitions, and the flow
relation F comprises the following twelve arcs:

(r, p1) (p2, r) (p3, m) (m, p2) (p2, a) (a, p3)
(a, p4) (p4, g) (p5, g) (g, p6) (p6, u) (u, p5) .

Let (P, T, F ) be a net. The inputs and outputs of a node x ∈ P ∪ T are
the sets •x and x•, respectively comprising all y such that yFx and xFy,
and the neighbourhood •x• of x is the union of its inputs and outputs. The
dot-notations readily extend to sets of nodes, e.g., •X comprises all inputs of
the nodes in X. It is assumed here that each net is T-restricted which means
that every transition has at least one input (cause) and at least one output
(effect). For the net N in Figure 5.6, •g = {p4, p5} and p3• = {m}.

5.4.1 Configurations and Transition Occurrence

In this and the next section, the states of a net N df= (P, T, F ) are given
by subsets of places representing the conditions that hold at a given global
situation.

Definition 16 : configurations

A configuration of a net is a subset of its places.
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In diagrams, a configuration C is represented by drawing in each place p in C
a token (a small black dot). A possible configuration for the net in Figure 5.6
is C = {p2, p5}, as illustrated on the right of Figure 5.6.

Transitions represent actions which may occur at a given configuration
and then lead to a new configuration.

Definition 17 : transition occurrences
A transition t can occur (or is enabled) at a configuration C if •t ⊆ C and
t• ∩C = ∅. Its occurrence then leads to a new configuration (C \ •t)∪ t•.

Thus a (potential) occurrence of a transition depends only on its neighbours. If
t can occur at C then we write C[t〉, and if its occurrence leads to C ′ we write
C[t〉C ′. Note that through such an occurrence, all inputs of t cease to hold,
and all outputs start to hold. Hence the change caused by the occurrence of a
transition is always the same and does not depend on the current global state.
For the configuration C shown in Figure 5.6, the enabled transitions are r and
a. Moreover, we have C[a〉{p3, p4, p5} and C[r〉{p1, p5}. Figure 5.7 provides
further intuition about the enabling and occurrence rules for net transitions.

We now lift the execution of transitions to a concurrent context by allowing
the simultaneous occurrence of transitions provided that they do not interfere
with one another, i.e., their neighbourhoods are mutually disjoint.

Definition 18 : steps

A step of a net is a subset of its transitions. A step can occur (or is
enabled) at a configuration C if the neighbourhoods of its transitions do
not overlap, and each transition is enabled. The effect of its occurrence is
the cumulative effect of the occurrences of the transitions it comprises.

In other words, a step U is enabled at C if •t• ∩ •t′• = ∅ for all distinct
transitions t and t′ in U , and C[t〉 for each transition t in U . We denote this
by C[U〉. The occurrence of an enabled step leads to a new configuration C ′

given by (C \ •U) ∪ U•, and we denote this by C[U〉C ′. Note that C[U〉C iff
the step U is empty �. For the configuration C shown in Figure 5.6, we have
C[{a}〉C′ where C′ = {p3, p4, p5}; moreover, we further have:

C′[{m, g}〉{p2, p6} C′[{m}〉{p2, p4, p5} C′[{g}〉{p3, p6} .

We are now ready to introduce sequences of transitions and step occurrences.

Definition 19 : step sequences

A step sequence of a net is a finite sequence of non-empty steps occurring
one after another from a given configuration.
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t is not enabled t is not enabled t is enabled

[t〉

t has occurred

Fig. 5.7. Local change-of-state produced by the occurrence of a transition.

In other words, a step sequence from a configuration C to a configuration
C ′ is a possibly empty sequence σ = U1 . . . Un of non-empty steps Ui such
that C[U1〉C1, . . . , Cn−1[Un〉C ′, for some configurations C1, . . . , Cn−1. We also
write C[σ〉C ′ or C[σ〉, and say that C ′ is a configuration reachable from C.
The set of all configurations reachable from C will be denoted by [C〉. Note
that we always have C ∈ [C〉. If n = 0, thus σ = λ the empty (step) sequence,
then C = C ′. The converse implication however does not hold �. For the
configuration C shown in Figure 5.6, C[{a}{m, g}{u, r}〉{p1, p5}, and, as we
will see later on, the set [C〉 comprises twelve reachable configurations.

To improve the readability of the notations when discussing examples, we
will often drop the curly brackets when writing a singleton step, e.g., we can
write a{m, g}ur instead of {a}{m, g}{u}{r}.

A special kind of step sequences are those that consist of singleton steps
only. Such sequences (of transitions) are referred to as firing sequences. For
example, amgur is a firing sequence from C to {p1, p5}. Reachability of con-
figurations does not depend on whether one uses step sequences or firing
sequences. If, however, the structure of a net is enriched with inhibitor arcs
as we will do it in the next section, then reachability may be affected by the
restriction to firing sequences.

5.4.2 Concurrency and Causality

The definition of concurrent behaviour on basis of non-interference, as in-
troduced above, allows one to investigate some intricate relationships in the
way transitions can occur. As a first observation we have that transitions
which can be executed simultaneously (at some configuration) do not have to
occur together. They can still occur one after another. Moreover, whenever
transitions can occur in any order, they must be concurrently enabled and
non-interfering.

Fact 20 : Let C,C ′ be configurations and U,U ′ be steps of a net.

• C[U ∪ U ′〉C ′ and U ∩ U ′ = ∅ implies C[UU ′〉C ′.
• C[UU ′〉C ′ and C[U ′〉 implies U ∩ U ′ = ∅ and C[U ∪ U ′〉C ′.

This fact is often referred to as a ‘diamond property’. The reason is that if
we have, say, C[{a, b}〉C ′, it then follows that we also have C[{a}〉C ′′[{b}〉C ′
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and C[{b}〉C ′′′[{a}〉C ′ where C ′′ and C ′′′ are distinct configurations �. In
drawing this yields a diamond shape. Note that the two statements together
show that for the dynamics of nets defined sofar, diamonds imply concurrency
and vice versa. For the configurations C′ = {p3, p4, p5} and C′′ = {p2, p6} of
the net shown in Figure 5.6, we have C′[{m, g}〉C′′ as well as C′[mg〉C′′ and
C′[gm〉C′′, and the resulting ‘diamond’ can be seen with a little bit of effort at
the centre of the upper state graph in Figure 5.8.

The first part of Fact 20 implies that every step of simultaneously occurring
transitions can be split into any partition of subsets occurring in sequence,
with the same effect as the original step. As a consequence, every step sequence
eventually gives rise to a valid (but not necessarily unique) firing sequence.
And so the configurations reachable from a given one are the same for step
sequences and firing sequences.

Fundamental relationships between transitions can be classified in a way
which reflects their causal dependence (occurrence of one enables the other),
competition for shared resources (both can occur, but they cannot occur to-
gether), or concurrency (they can occur together).

Definition 21 : fundamental situations - behavioural
Let t and t′ be distinct transitions, and C be a configuration of a net.

• t causally depends on t′ at C if ¬C[t〉 and C[t′t〉.
• t and t′ are in conflict at C if C[t〉, C[t′〉 and ¬C[{t, t′}〉.
• t and t′ are concurrent at C if C[{t, t′}〉.

For the configuration C shown in Figure 5.6, we have that g causally depends
on a, and the latter is in conflict with r. Moreover, m and g are concurrent at
the configuration C′ = {p3, p4, p5}.

It is interesting to note the difference between conflict and concurrency
in terms of firing sequences: in case of conflict at a configuration, both are
enabled to occur, but the occurrence of one disables the other, whereas in case
of concurrency, the two transitions can occur in either order.

Fact 22 : Let t and t′ be transitions, and C be a configuration of a net.

• If t causally depends on t′ at C then ¬C[tt′〉 and C[t′t〉.
• If t and t′ are in conflict at C then ¬C[tt′〉 and ¬C[t′t〉.
• If t and t′ are concurrent at C then C[tt′〉 and C[t′t〉.

These fundamental relationships between transitions are defined dynam-
ically by referring to a global state. However, if two transitions are in one
of these three relationships at some configuration, then none of the other re-
lationships will ever hold for them (at whatever configuration) �. In fact,
the (potential) relationships between transitions are determined by the graph
structure.
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Definition 23 : fundamental situations - structural
Let t and t′ be two distinct transitions of a net N .

• t and t′ are structurally causally related if •t∩ t′• �= ∅ or t• ∩ •t′ �= ∅.
• t and t′ are in structural backward conflict if •t ∩ •t′ �= ∅.
• t and t′ are in structural forward conflict if t• ∩ t′• �= ∅.
• t and t′ are structurally independent if •t• ∩ •t′• = ∅.

For the net shown in Figure 5.6, a and g are structurally causally related, a and
r are in structural forward conflict, and r and u are structurally independent.

5.4.3 EN-Systems and Their State Spaces

Having defined nets with states and dynamics, it is now time to study them
as systems which start their operation from an initial state.

Definition 24 : EN-systems

An elementary net system (or EN-system) consists of an underlying net
and an initial configuration. Its state space consists of all configurations
reachable from the initial configuration.

In other words, an elementary net system EN is a relational tuple (P, T, F,Cinit )
such that the first three components form its underlying net and Cinit ⊆ P
is the initial configuration. Figure 5.6 shows on the right an EN-system EN =
(P, T, F, Cinit), where Cinit = C = {p2, p5}, modelling our running example.
Its state space consists of twelve configurations:

[Cinit〉 = {{pi, pj} | i = 1, 2, 3 ∧ j = 5, 6} ∪ {{pi, p4, pj} | i = 1, 2, 3 ∧ j = 5, 6} .

The state graph ofEN is a relational tuple stategr(EN ) df= ([Cinit〉, LA,Cinit )
with node set [Cinit〉, set of labelled arcs LA

df= {(C,U,C′) | C ∈ [Cinit〉 ∧
C[U〉C ′}, and initial node Cinit . Restricting the arcs of the state graph to those
labelled by singletons steps yields the sequential state graph of EN , denoted
by seqstategr(EN ). Figure 5.8 gives examples of each kind of state graph for
the EN-system ENsimple in Figure 5.9.

Since every configuration reachable from the initial configuration by a step
sequence is also reachable by a firing sequence, all nodes in seqstategr(EN )
are reachable from the initial node. Interestingly, also stategr(EN ) can be re-
covered from the sequential state graph seqstategr(EN ) by saturating the
latter with non-singleton step labelled edges using the diamond property
(Fact 20) �.

To illustrate the above idea, let us consider the state graphs in Figure 5.8,
and two nodes, C = {p3, p4, p6} and C′ = {p2, p4, p5}. Looking at the sequen-
tial state graph, we can deduce that C[{m}{u}〉C′ and C[{u}〉. Hence, by the
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stategr(ENsimple)
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Fig. 5.8. The state graph of ENsimple from Figure 5.9 and its sequential state graph.
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second part of Fact 20, we have C[{m, u}〉C′ and so the concurrent step {m, u}
from C to C′ in the state graph has been deduced from purely sequential in-
formation.

For a behavioural comparison of EN-systems, isomorphism is too discrim-
inating, because then there would be essentially only one structure defining
the behaviour under consideration. Therefore, in EN-system theory it is the
state graph which provides the main reference point for any behaviour related
analysis. However, all information on (the relevant, active, part of) the net un-
derlying the EN-system can still be recovered from its state graph; the places
belonging to reachable configurations, transitions which actually occur and
thus appear in the steps labelling the arcs, and their neighbourhood relations,
are all explicitly represented in the state graph. Using the state graph itself
would thus lead to a similar identification of net structure and behaviour. To
abstract from the concrete information on places and transitions, state graph
isomorphism is used as an equivalence notion for the comparison of concur-
rent behaviours. Already the structure of its state graph provides a complete
and faithful representation of the behaviour of an EN-system. In particu-
lar, causality, conflict, and concurrency among (possibly renamed) transitions
can be determined from it. Note that two EN-systems have isomorphic state
graphs iff also their sequential state graphs are isomorphic �. After isomor-
phism of EN-systems, state graph isomorphism is the second strongest notion
of equivalence employed in the behavioural analysis of EN-systems. With this
equivalence it is possible to transform EN-systems in order to realise a de-
sired property or feature (a normal form) without affecting their dynamic
properties in an essential way, i.e., the state graph remains the same up to
isomorphism and the resulting system is considered behaviourally equivalent.
An important application of this idea is the following.
The enabling relation for transitions checks explicitly for the emptiness of their
output places. This may be regarded as somewhat unsatisfactory. It would be
more efficient and intuitively more appealing if it would be sufficient to check
only whether all input conditions are fulfilled.

Definition 25 : contact-freeness
An EN-system is contact-free if for every reachable configuration C and
every transition t, it is the case that •t ⊆ C implies t• ∩ C = ∅.

In other words, a contact-free system is one where the test for transition
enabledness can simply be •t ⊆ C without changing anything. The EN-system
shown in Figure 5.6 is not contact-free �. Not all EN-systems are contact-
free, but the simple transformation described next turns any EN-system into
a behaviourally equivalent contact-free version.

Two places, p and q, are complements of one another if •p = q•, p• =
•q and exactly one of them belongs to the initial configuration Cinit . The
complementation ẼN of EN is obtained by adding, for each place p without a
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Fig. 5.9. A simplified version of the EN-system from Figure 5.6 and its comple-
mentation.

complement, a fresh complement place p̃; moreover, if the initial configuration
does not contain p then p̃ is added there as well. The result is clearly an EN-
system and the two systems have isomorphic state spaces. In fact, only the
reachable configurations have to be renamed in the case that new complement
places have been added; the arc labels between corresponding states however
are the same �.

Fact 26 : ẼN is contact-free and its state space is isomorphic to that
of EN .

The construction is illustrated by the non-contact-free EN-system ENsimple in
Figure 5.9 and its contact-free complementation ˜ENsimple. The state spaces of
the two EN-systems are respectively:

Conf ∪ {{pi, pj} | i = 2, 3 ∧ j = 5, 6} (left)
Conf ∪ {{pi, p̃4, pj} | i = 2, 3 ∧ j = 5, 6} (right)

where Conf = {{pi, p4, pj} | i = 2, 3 ∧ j = 5, 6}. It is can be seen that a
suitable isomorphism for their state graphs maps each {pi, pj} to {pi, p̃4, pj},
and is the identity for the configurations in Conf.

Fact 26 assumes that one adds complements for all non-complemented
places. But it is also possible to add complementation selectively and, in
general, we have that any EN-system with an arbitrary, added set of new
complement places has a state space which is isomorphic to that of the orig-
inal EN-system �. For the EN-system EN modelling the running example
we can add a complement of the buffer place which results in the equivalent
EN-system shown in Figure 5.10. In this case already the selective comple-
mentation yields a contact-free EN-system �.

Since it is always possible to ensure contact-freeness without changing the
behaviour represented in the state-graph, we now make a simplifying assump-
tion.

In the rest of this tutorial all EN-systems are contact-free.
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Fig. 5.10. A contact-free version of the EN-system from Figure 5.6 where the place
p4 has been complemented, i.e., p7 = p̃4.

5.4.4 Behaviour of EN-Systems

Let EN = (P, T, F,Cinit ) be a fixed EN-system for the rest of this
section.

In addition to the state graph, we can also associate firing sequences and
step sequences as behavioural notions to EN-systems. The set of all firing
sequences firseq(EN ) of EN consists of those sequences u ∈ T ∗ such that
Cinit [u〉 and, similarly, the set of all step sequences stepseq(EN ) of EN com-
prises all step sequences of EN from Cinit . Each firing sequence corresponds to
a finite labelled path through the sequential state graph from the initial node.
Since the set of reachable configurations of an EN-system is finite, the sequen-
tial state graph is a finite state machine. Hence the set of firing sequences of an
EN-system is a prefix-closed regular language. However, it consists of purely
sequential observations of the EN-system’s behaviour without any reference
to the possible independence of transitions. Yet such causality information is
often of high importance for system analysis and design.

Let us first demonstrate how the theory of traces can be applied to extract
partial orders from firing sequences as representations of the necessary causal
ordering of transition occurrences within these sequences.

Definition 27 : concurrency alphabets of EN-systems

The concurrency alphabet of EN is CAEN
df= (T, IndEN ) where the struc-

tural independence relation IndEN comprises all pairs of distinct transi-
tions with disjoint neighbourhoods.

Defined in this way, IndEN = {(t, t′) | t, t′ ∈ T ∧•t•∩•t′• = ∅} is a symmetric
and irreflexive relation and so it is indeed an independence relation. For the
EN-system ENcfree in Figure 5.10, IndENcfree = Ind where Ind was defined at
the beginning of Section 5.3. An important observation is now that in a firing
sequence adjacent occurrences of independent transitions could have occurred
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also in the other order (see the diamond property, Fact 20). Hence, for every
firing sequence of EN , all its trace equivalent words from T ∗ are also firing
sequences of EN .

Fact 28 : firseq(EN ) =
⋃

u∈firseq(EN ) [u].

Taking, for example, ENcfree in Figure 5.10, we have agm ∈ firseq(ENcfree) and
[agm] = {agm, amg}. Clearly, amg is also a firing sequence of ENcfree.

The step sequences of an EN-system obviously provide important insights
into concurrency aspects of its behaviour. They are nevertheless still sequen-
tial rather than concurrent in nature in the sense that the sequential ordering
of the steps obscures the true causal dependencies between the occurrences of
transitions. Petri net models can however easily support a formal approach
where this information is readily available by unfolding behaviours into struc-
tures allowing an explicit representation of causality and concurrency.

5.4.5 Non-Sequential Observations

Rather than describing the behaviour of the system in terms of sequential
observations, like firing sequences and step sequences, we now present a se-
mantics based on a class of acyclic Petri nets, called occurrence nets. What one
essentially tries to achieve here is to record the changes of configurations due to
transitions being executed along some legal behaviour of the EN-system, and
in doing so record which places were emptied (served as inputs) and which
filled (as outputs). The resulting occurrence nets may be viewed as partial
net unfoldings, with each transition representing an occurrence of a transition
in the original net (thus occurrence nets are acyclic), and each place corre-
sponding to the occurrence of a token on a place of the original net. Conflicts
between transitions are resolved and thus the places in an occurrence net do
not branch.

Definition 29 : occurrence nets

An occurrence net is a relational tuple ON df= (B,E,R, �) such that
(B,E,R) is an underlying net,a � is a labelling for B ∪E, R is an acyclic
flow relation, and |•b| ≤ 1 and |b•| ≤ 1, for every b ∈ B.

aThe dot-notations, configurations, firing rule, etc, for ON are as those de-
fined for the underlying net.

The places of an occurrence net are usually called conditions (‘Bedingungen’
in German) and its transitions events (‘Ereignisse’ in German). The default
initial configuration of ON consists of all conditions without incoming arcs,
i.e., CON

init comprises all conditions b ∈ B such that •b = ∅, and the default
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Fig. 5.11. An occurrence net ON with nodes labelled by places and transitions
of the EN-system ENcfree in Figure 5.10 (top), and the same occurrence net with
identities of the nodes omitted (bottom).

final configuration CON
fin consists of all conditions without outgoing arcs. The

default initial configuration of the occurrence net in Figure 5.11 is CON
init =

{b1, b5, b10} and the default final configuration is CON
fin = {b4, b9, b13}.

The sets of firing and step sequences of ON are defined w.r.t. the default
initial configuration. However, since an occurrence net is meant to represent
a record of a concurrent run of an EN-system, what really counts is not the
identities of its events, but their labels which are linked to the occurrences of
transitions in the EN-system. The language of ON is the set language(ON )
of all sequences �(u) such that u is a firing sequence from the default initial
configuration of ON to the default final configuration.

By abstracting from the conditions we associate with the occurrence net
ON = (B,E,R, �) a directed acyclic graph with E as its set of nodes. This
dag dag(ON ) df= (E,R ◦R|E×E , �|E) represents the direct causal relationships
between the events. Its transitive closure dag(ON )+, see Figure 5.12, then
gives all, direct and indirect, causal dependencies. For example, e4 directly
causes e5, but there is only an indirect causal link from e4 to e6.

ON with its default initial configuration is basically a contact-free EN-
system �. Interestingly, all the sets occurring in any step sequence σ from
the initial configuration to another configuration C, are mutually disjoint �.
Moreover, C is the default final configuration iff the steps in σ use all the
events of the occurrence net �.

A slice of ON is a maximal (w.r.t. set inclusion) subset S of events from
ON which are causally unrelated, i.e., (S×S)∩R+ = ∅. The set of all slices of
ON is denoted by slices(ON ). Clearly, both default configurations are slices
and, in general, [CON

init 〉 = slices(ON ), i.e., slices are exactly those configu-
rations which are reachable from the initial configuration �. Moreover, the
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Fig. 5.12. Direct causality among the events in the occurrence net in Figure 5.11,
and full causality (node identities omitted).

final configuration of ON is always reachable from any configuration reach-
able from the initial one �. Essentially, this means that ON is deadlock-free
until its final configuration has been reached.

The processes of an EN-system are occurrence nets reflecting its structure
and possible behaviour through their labelling and initial configuration.

Definition 30 : processes of EN-systems

A process of EN is an occurrence net ON = (B,E,R, �) such that:

• � labels conditions with places and events with transitions.
• � is injective on the default initial configuration of ON , as well as on

the sets of input and output conditions of each event.
• �(CON

init ) = Cinit and, for every e ∈ E, �(•e) = •�(e) and �(e•) = �(e)•.

The occurrence net ON in Figure 5.11 is a process of the EN-system in Fig-
ure 5.10.

Processes can be used to investigate the behaviours of EN-systems. Due to
the second and third conditions in Definition 30, we can relate the firing se-
quences, step sequences and configurations of EN to their labelled versions in
ON . More precisely, if we take a step sequence CON

init [σ〉C then Cinit [�(σ)〉�(C)
holds. This can be proved by an inductive argument from which it also follows
that labelling of ON is injective on all its slices and hence also on the sets
occurring in any step sequence of ON �. If σ is a step sequence from the
default initial configuration of ON , then �(σ) is referred to as a labelled step
sequence of ON . Similar to the language of ON , the step language of ON is
defined as the set steplanguage(ON ) of all sequences �(σ) such that σ is a
step sequence from the default initial configuration of ON to the default final
configuration.

In general, it follows that all firing and step sequences of EN-systems can
be derived from their processes.
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Fact 31 : Let ON be the set of all processes of EN .

• firseq(EN ) =
⋃

ON∈ON language(ON ).
• stepseq(EN ) =

⋃
ON∈ON steplanguage(ON ).

Definition 30 does not provide any clues as to how to derive a process
of an EN-system. This is rectified in the next definition which shows how to
construct a process corresponding to a given step sequence.

Definition 32 : processes construction

The occurrence net ON σ generated by a step sequence σ = U1 . . . Un of
EN is the last element in the sequence N0, . . . , Nn where each Nk is an
occurrence net (Bk, Ek, Rk, �k) constructed thus.
Step 0: B0

df= {p1 | p ∈ Cinit} and E0 = R0
df= ∅.

Step k: Given Nk−1 we extend the sets of nodes and arcs as follows:

Bk
df= Bk−1 ∪ {p1+�p | p ∈ U•

k}
Ek

df= Ek−1 ∪ {t1+�t | t ∈ Uk}
Rk

df= Rk−1 ∪ {(p�p, t1+�t) | t ∈ Uk ∧ p ∈ •t}
∪ {(t1+�t, p1+�p) | t ∈ Uk ∧ p ∈ t•} .

In the above, the label of each node xi is set to be x, and #x denotes the
number of nodes of Nk−1 labelled by x.

The construction is illustrated in Figure 5.13 for the ENcfree in Figure 5.10
and its step sequence σ = a{m, g}{a, u}g. The resulting occurrence net is
isomorphic to the occurrence net ON in Figure 5.11 which is a process of
ENcfree.

Fact 33 : Each occurrence net constructed as in Definition 32 is a process
of EN and, for each process of EN , there is a run of the construction from
Definition 32 generating an isomorphic occurrence net.

Thus the operationally defined processes and the axiomatically defined
processes of an EN-system are essentially the same.

Finally, we return to the trace semantics of EN-systems in relation to
processes. First note that each trace gives rise to only one process, since
interchanging adjacent occurrences of independent transitions has no effect
on the construction of a process. So, ON u = ON w whenever u and w are
trace equivalent firing sequences �. Hence ON [u] the process associated to a
trace is a well-defined notion. Conversely, the language of a process is identical
to its defining trace �. Thus we have a one-to-one correspondence between
traces and the processes of an EN-system. Moreover, even though the dag
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Fig. 5.13. The occurrence net ONa{m,g}{a,u}g generated for the EN-system in Fig-
ure 5.10: node-oriented view (top), and label-oriented view (bottom).

defined by a process is not necessarily isomorphic to the dependence graph
of its trace �, they always define the same partial order on their transition
occurrences.

Fact 34 : Let u be a firing sequence of EN .

• [u] = language(ON u).
• canposet([u]) = dag(ON u)+.

To conclude, the trace semantics and the process semantics of EN-systems
lead to one partial order semantics by providing for each EN-system the same
(isomorphic) partial orders modelling the causalities in its concurrent execu-
tions. This provides a strong argument in favour of the view that both these
approaches capture the essence of causality in the behaviours of EN-systems.

5.4.6 Bibliographical Remarks

Over the past 40 or so years different classes of Petri nets have been intro-
duced by varying the kind of underlying net, notion of local state, or transition
relation. An early systematic treatment of basic notions in net theory and EN-
systems can be found in [48]. Other extensions of the EN-systems approach
adopt notions like priorities, real-time behaviour, or object-orientation. (In
fact, we consider two such extensions later in this tutorial.) The general ques-
tion of the intrinsic or common properties of nets is discussed in [8]. The
problem of associating non-sequential semantics with Petri nets is dealt with,
in particular, in [35, 40, 36, 37, 41, 42, 19, 47]. There is a systematic way of
dealing with process semantics of various classes of Petri nets proposed in [31]
which makes it possible to separately discuss behaviour, processes, causality,



152 Jetty Kleijn and Maciej Koutny

ENIp1

p2

p3

p4 p5

p6p7

r

m a g u

ENI′ p1

p2

p3

p4 p5

p6p7

r

m a g u

Fig. 5.14. Two ENI-systems modelling two variations of the running example.

and their mutually consistency. General Petri net related resources can be
found in the web pages at [26].

5.5 Adding Inhibitor Arcs

This section extends the treatment of concurrency considered so far in EN-
systems in order to accommodate the practically relevant case of nets with
inhibitor arcs. In particular, we will demonstrate how the original definition
of traces may be extended to describe in an adequate way also the additional
features of the resulting new kind of concurrent behaviours.

To see why inhibitor arcs can be a convenient modelling device, let us
imagine that a designer would like to modify the running example so that
the producer cannot retire if the customer is waiting for an item. Such a
modification is easily achieved by taking the EN-system of Figure 5.10 and
adding to it an inhibitor arc linking the place p5 and transition r. This yields
the net system ENI shown on the left of Figure 5.14. (Inhibitor arcs are drawn
with small open circles as arrowheads.) Adding this arc means that r cannot be
enabled if p5 contains a token, and so the producer indeed cannot retire if the
consumer is waiting for an item. Elementary net systems with inhibitor arcs,
or simply ENI-systems, thus extend EN-systems. The usefulness of inhibitor
arcs stems from their ability to detect a lack rather than the presence of
specific resources, i.e., tokens in specific places. That such an addition to the
EN-system syntax is a true extension of their modelling power follows from
the observation that there is no EN-system with exactly the same set of firing
sequences as ENI. This can be shown by considering two firing sequences of
ENI, amgru and amgu. If there was an EN-system generating the same firing
sequences as ENI, then, due to the second statement in Fact 20, it would also
have to generate the firing sequence amgur. But such a firing sequence is not
generated by ENI as executing the last transition would contradict the defining
characteristic of the inhibitor arc between r and p5. We will return to this
example after introducing ENI-systems more formally.
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Definition 35 : ENI-systems

An elementary net system with inhibitor arcs (or ENI-system) is a rela-
tional tuple ENI df= (P, T, F,Cinit , Inh) such that the first four components
form an (underlying) EN-system and Inh ⊆ P×T is a set of inhibitor arcs.

As inhibitor arcs are introduced on top of the model of EN-systems, wherever
it is possible notions and notations concerning the structure and configurations
of an ENI-system are inherited from its underlying EN-system. Thus, for
example, the initial configuration of the ENI-systems in Figure 5.14 is the
initial configuration of the EN-system in Figure 5.10. The only new notation
is ◦t denoting the set of all the places p where the presence of a token inhibits
the enabling of a transition t, i.e., (p, t) ∈ Inh. For example, we have ◦r = {p5}
and ◦a = ◦m = ◦g = ◦u = ∅ in the case of ENI.

The dynamic aspects of an ENI-system are also derived from the under-
lying EN-system, with proper attention being paid to the inhibiting features
of the new kind of arcs. In fact, all one needs to re-define is the enabling con-
dition for steps, by stating that a step of transitions U of an ENI-system is
enabled at a configuration C if it is enabled at C in the underlying EN-system
and, in addition, no place in ◦U belongs to C, where ◦U consists of all places
connected by inhibitor arcs to transitions in U . It is important here to stress
that the change of state effected by an executed step is exactly the same as in
the underlying EN-system; in other words, inhibitor arcs have only impact on
the enabling of steps. In the case of ENI, a is a singleton step enabled in the
initial configuration, but the other singleton step r enabled in the initial con-
figuration of the underlying EN-system is not since p5 ∈ ◦r∩ Cinit. Note that
it would be quite natural and harmless as it has no effect on the dynamics of
an ENI-system to additionally assume that for each of its transitions t, the sets
•t, t• and ◦t are mutually disjoint �. As far as executing step sequences of
ENI are concerned, we have Cinit[a〉{p3, p4, p5} and Cinit[a{m, g}〉{p2, p6, p7}.

Having introduced the step sequence semantics of ENI-systems, we have
another look at ENI. This ENI-system generates the step sequence σexmpl

df=
a{m, g}{u, r} Splitting the last step into ur leads to the sequence σinvalid

df=
a{m, g}ur which is not a valid behaviour of ENI (yet the splitting of {u, r} into
ru leads to a valid step sequence). Thus, also the first part of Fact 20 does not,
in general, hold for ENI-systems. In fact, not only the diamond property no
longer holds for ENI-systems, but even the property that every step sequence
of an EN-system can be linearised to yield some valid firing sequence is not
true for ENI-systems. Consider, for example, the ENI-system ENI′ on the right
of Figure 5.14 which has been obtained from ENI by adding an inhibitor arc
between p1 and u ensuring that the consumer can only use an item if there is
still a chance that the producer may produce another item in the future. It is
easy to see that ENI′ generates the step sequence amg{u, r}, but any attempt
to linearise its only non-singleton step, ur, results in an illegal behaviour.
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Note that ENI′ does not even have a firing sequence leading to a configuration
including both p1 and p5. Hence the reachability of configurations is affected
by the restriction to firing sequences, and so ordinary words are insufficient
to capture all potential behaviours of ENI-systems. Consequently, the gener-
alisation of trace theory we will present next will be based on step sequences
rather than on words.

5.5.1 Comtraces

We will now show how the notions of independence and causality developed
for EN-systems can be lifted to the level of ENI-systems. The concurrency
model used for EN-systems is not directly applicable to nets with inhibitor
arcs; in particular, the current notion of transition independence needs to
be replaced by a device which can be used to disallow some linearisations of
executed steps. We therefore start by modifying the notion of concurrency
alphabet.

Definition 36 : combined concurrency alphabets

A combined concurrency alphabet is a triple CCA df= (Σ, sim, ser) where Σ
is an alphabet and ser ⊆ sim are binary relations over Σ called respectively
simultaneity and serialisability. It is assumed that sim is irreflexive and
symmetric.

The two relations in a combined concurrency alphabet serve two distinct pur-
poses, one of which is to define valid steps and the other is to define valid
ways of splitting such steps. More precisely, if (a, b) ∈ sim then a and b may
occur together in a step, while (a, b) ∈ ser means that a and b may occur in a
step {a, b} and, in addition, such a step can be split into the sequence {a}{b}.

Although it may not be immediately clear, combined concurrency alpha-
bets subsume concurrency alphabets used earlier on. More precisely, the in-
dependence relation Ind of concurrency alphabets used in the definition of
traces represents the situation that simultaneity and serialisability coincide
with concurrency, i.e., sim = ser = Ind (note that this implies ser = ser−1

and that the two relations define diamonds). Intuitively, this means that si-
multaneity of symbols implies that they are totally independent and execut-
ing one has no impact on the subsequent executability of the other. In the
examples, the combined concurrency alphabet CCA corresponds to the running
ENI-system example, i.e., ENI in Figure 5.14. Thus CCA = (Σ, sim, ser), where
Σ is as before, sim = {(r, u), (u, r), (g, m), (m, g), (u, m), (m, u), (u, a), (a, u)} and
ser = sim \ {(u, r)}. As we will later see, these relations can be derived from
the structure of ENI. Note that the problem with the step sequence σinvalid

above is addressed by excluding (u, r) from ser.
Next, the notion of a step is extended so that it does not necessarily de-

pend on a net, but may also be defined relative to a combined concurrency
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alphabet CCA = (Σ, sim, ser) by stating that any non-empty set U ⊆ Σ is a
step (over CCA) if (a, b) ∈ sim for all distinct a and b in U . (If sim and ser
are not relevant we silently assume that sim = (Σ ×Σ) \ idΣ and ser = sim;
in that case every finite sequence of non-empty subsets of Σ is a step sequence
over Σ.)
We then lift in the obvious way to step sequences the following notions pre-
viously defined for words: concatenation, the set of symbol occurrences, and
what it means for the i-th occurrence of a to precede the j-th occurrence of
b within a step sequence. Note that neither the i-th occurrence of a precedes
the j-th occurrence of b, nor the j-th occurrence of b precedes the i-th oc-
currence of a, if the two occurrences belong to the same step. Taking as an
example the combined concurrency alphabet CCA defined above, we have that
a{m, g}am{u, r} is a step sequence where m1 precedes a2 and the latter symbol
occurrence precedes m2.

We can now introduce comtraces generalising traces and based on a com-
bined concurrency alphabet. When defining the trace equivalence relation, we
were able to swap any pair of neighbouring occurrences of independent sym-
bols, e.g., amu ≡ aum. A similar effect can be achieved using the extended
concurrency alphabet, but with an additional intermediate phase where the
symbols being swapped are put together into a single step which is then lin-
earised. Thus the elementary transformation needed to define comtraces is
step splitting and combining rather than symbol swapping. To this end, we
introduce � which is a relation comprising all pairs (σ, ρ) of step sequences
such that σ = τUχ and ρ = τU ′U ′′χ where τ, χ are possibly empty step
sequences, and U ′, U ′′ form a partition of U such that U ′ × U ′′ ⊆ ser . Then
we define the comtrace equivalence � to be the reflexive symmetric transitive
closure of �.

Coming back to the trace equivalence amu ≡ aum and assuming the com-
bined concurrency alphabet of the running example, we have amu � aum which
follows from amu �−1 a{m, u} � aum. Another example of comtrace equivalence
is a{m, g}{u, r} � a{m, g}ru, but we also have that a{m, g}{u, r} �� a{m, g}ur
since (u, r) �∈ ser. In fact, a{m, g}{u, r} and a{m, g}ur are not comtrace equiv-
alent step sequences.

Definition 37 : comtraces
A comtrace over a combined concurrency alphabet is any equivalence class
of its comtrace equivalence relation.

A comtrace containing a given step sequence σ will be denoted 〈σ〉. Note that
〈λ〉 = {λ} is the empty comtrace. The comtrace comprising the step sequence
σexmpl is made up of the following six step sequences: a{m, g}{u, r}, a{m, g}ru,
amgru, agmru, amg{u, r} and agm{u, r}.

Comtraces enjoy a number of the key properties satisfied by traces, and
so certain notions introduced for the latter can be re-defined for comtraces.
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To start with, σρ and σ′ρ′ are comtrace equivalent whenever 〈σ〉 = 〈σ′〉 and
〈ρ〉 = 〈ρ′〉 �. Hence comtrace concatenation 〈σ〉 $ 〈ρ〉 df= 〈σρ〉 is a well-
defined operation, and we can recover the monoidal structure of traces.

Fact 38 : The set of all comtraces over a combined concurrency alphabet
with comtrace concatenation and the empty comtrace forms a monoid.

Finally, similarly as it was done for traces, comtraces can be equipped with
a prefix relation which reflects their possible histories �.

5.5.2 Stratified Posets and Comdags

Traces have posets as their underlying dependency structures. For comtraces
however, we will need to provide another notion of causal dependence. We
start by providing a characterization of step sequences as a rather specific
kind of posets, similar to the way that total posets correspond to words.

Definition 39 : stratified posets

A poset is stratified if being an unordered pair of elements is a transitive
relation, and all elements labelled with the same label are linearly ordered.

In other words, a poset spo = (X,≺, �) is stratified if its elements can be
partitioned into non-empty sets X1, . . . , Xk such that � is injective on each of
them and the precedence relation is equal to the union of sets Xi×Xj , for all
i < j. This further implies that the unorderedness relation �spo is equal to the
union of sets Xi ×Xi \ idXi

, for all i, and that �spo ∪ idX is an equivalence
relation �. Since the partitioning of X into these Xi’s is unique, one can
associate with spo the step sequence steps(spo) df= �(X1) . . . �(Xn), and thus it
is possible to view a stratified poset as a step sequence. The converse move is
also possible, and the definition resembles that of the canonical total poset of
a word. The canonical stratified poset canstratposet(σ) of a step sequence σ is
defined as (occ(σ),≺, �) where ai ≺ bj if the i-th occurrence of a precedes the j-
th occurrence of b within σ, and �(ai) df= a, for all symbol occurrences ai and bj

in occ(u). Figure 5.15 shows the canonical stratified poset of the step sequence
σexmpl. One can immediately note that steps(canstratposet(σexmpl)) = σexmpl

and since this is a general property holding for any σ, step sequences can be
identified with the corresponding stratified order �.

We will also need structures generalising dependence graphs. Recall that
these dags result from total posets (words) by deleting some of the prece-
dence relationships between elements. Similarly, the new structures can be
interpreted as stratified posets from which certain relationships have been
deleted, while taking into account that the simultaneity within the steps also
defines a weak (mutual) dependency between elements that can be deleted
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Fig. 5.15. Hasse diagram of the canonical stratified poset for σexmpl, and a comdag.

(in either direction). The main idea here is that standard causal precedence
captures the ‘happened before’ relationship and a new weak causality relation
stands for ‘happened before or simultaneously’.

Definition 40 : comdags

A labelled directed acyclic combined graph (or simply comdag) is a re-
lational tuple comdag df= (X,≺,�, �) consisting of a finite set X, two ir-
reflexive binary relations over X, ≺ and �, and a labelling of X such
that:

• ≺′ df= (≺ ∪ �)∗◦≺◦(≺ ∪ �)∗ is an irreflexive relation.
• �(x) = �(y) implies x ≺′ y or y ≺′ x for all x �= y in X.

The irreflexivity of the relation ≺′ above has a straightforward interpretation
in operational terms, as it means that in a given run of a concurrent system
there are no events x1, x2, . . . , xk such that each xi ‘happened before or simul-
taneously’ with xi+1, while xk ‘happened (strictly) before’ x1. Comdags with
an empty relation � are nothing but dags, and we adopt similar conventions
for their graphical representation: the relation ≺ is represented by solid arcs,
and � by dashed arcs. For example, Figure 5.15 shows a comdag cdag such
that a1 ≺ m1 ≺ r1, a1 ≺ g1 ≺ u1, g1 ≺ u1, and r1 � u1.

A full account of the causal dependencies between the nodes of a comdag
comdag = (X,≺,�, �) is conveyed through its transitive closure, defined as
the relational structure comdag+ df= (X,≺′,�′, �) where ≺′ is the relation
introduced in Definition 40 and �′ df= (≺ ∪ �)∗\idX . The transitive closure of
the comdag in Figure 5.15 is shown on the left of Figure 5.16.

5.5.3 Stratified Order Structures

Traces are underpinned by posets which in their turn are transitive dags.
Similarly, the structures underlying comtraces are transitive comdags, called
stratified order structures.
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Fig. 5.16. A stratified order structure where dashed arcs between nodes have been
omitted if solid arcs are present, and the canonical dependence comdag for σexmpl.

Definition 41 : stratified order structures

A comdag sos df= (X,≺,�, �) is a labelled stratified order structure (or
so-structure) if for all x, y, z in X:

(i) x ≺ y implies x � y.
(ii) x � y � z and x �= z implies x � z.
(iii)x � y ≺ z or x ≺ y � z implies x ≺ z.

The first relation in an so-structure should be interpreted as the standard
causality, and the second relation as weak causality.

In Figure 5.16, a1 causally precedes u1, while r1 precedes u1 only in a
weakly causal manner. The latter means that r1 may occur before or simul-
taneously with u1. Observe that the so-structure sos in Figure 5.16 is the
transitive closure of the comdag in Figure 5.15, i.e., sos = cdag+.

The transitive closure of a comdag is an so-structure, and the transitive
closure of an so-structure is the same so-structure �. Moreover, given an
so-structure (X,≺,�, �) and a pair of elements x, y ∈ X, x ≺ y implies y �� x,
and (X,≺, �) is a poset �. That so-structures are conservative extensions of
posets follows from the fact that if (X,≺, �) is a poset then (X,≺,≺, �) is
an so-structure �. Hence so-structures may be viewed as generalisations of
posets.

In the case of posets, we considered their total poset linearisations (corre-
sponding to words). In the current framework, posets have been replaced by
so-structures and, accordingly, stratified order structures can be extended to
stratified posets (corresponding to step sequences).

A stratified poset spo is a stratification of an so-structure sos if they have
the same domain and labelling, ≺sos is included in ≺spo , and �sos is included
in �spo . The set of all stratifications of sos is denoted by strat(sos).

The intersection
⋂
SPO of a non-empty set SPO of stratified posets with

the same domain X and labelling � is (X,≺,�, �) where ≺ is the relation
comprising all pairs (x, y) such that x ≺spo y for each spo in SPO, and �

is a relation comprising all pairs (x, y) such that x �spo y for each spo in
SPO. The intersection of stratified posets is always a stratified order struc-
ture �. Moreover, an so-structure is completely identified by its stratification
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sos =
⋂

strat(sos) and strat(sos) is a non-empty set �. It is interesting that
the result would not hold if we restricted ourselves only to those stratifications
which are total posets �.

The step language of a comdag comprises all step sequences associated with
thestratificationsof its transitiveclosure, i.e.,wedefinesteplanguage(comdag) df=
steps(strat(comdag+)). For the comdag in Figure 5.15 and the so-structure in
Figure 5.16, steplanguage(cdag) = steplanguage(sos) comprises exactly the
same six step sequences as the comtrace to which the step sequence σexmpl

belongs. This is not a mere coincidence, as we will soon see.

5.5.4 Causality Structures Generated by Comtraces

Comdags can be used to describe the necessary ordering (causality and weak
causality) in comtraces. This relationship and the way it is derived strongly
resemble what has been done earlier on for traces and their associated dags
(dependence graphs). Let us first characterise the comdags which are consis-
tent with a given concurrency alphabet in the sense that nodes are connected
appropriately, i.e., reflecting the relation between their labels.

Definition 42 : dependence comdags

A dependence comdag over a combined concurrency alphabet (Σ, sim, ser)
is a comdag (X,≺,�, �) such that � : X → Σ and for all elements x �= y
of X:

• (�(x), �(y)) /∈ sim implies x ≺ y or y ≺ x.
• (�(x), �(y)) /∈ ser implies x ≺ y or y � x.
• x � y implies (�(y), �(x)) /∈ ser .
• x ≺ y implies (�(x), �(y)) /∈ ser .

Every comdag has an associated step language consisting of all step se-
quences that can be read from it as a stratified poset while respecting
the indicated ordering. The step language of any dependence comdag over
CCA = (Σ, sim, ser) thus consists of sequences of sets which are steps rela-
tive to CCA, i.e., (a, b) ∈ sim for every pair of distinct symbols a and b in
any step �. Moreover, deleting any arc from such comdag changes its step
language. Formally, two dependence comdags are isomorphic iff their step
languages are the same �. Moreover, with each step sequence, a dependence
comgraph can be associated which has as its nodes the symbol occurrences of
the step sequence and arcs implied by their dependencies.

The canonical dependence comdag of a step sequence σ = U1 . . . Un over
CCA is candepcomdag(σ) df= (occ(σ),≺,�, �) where, for all symbol occurrences
ai and bj in occ(σ) we have �(ai) df= a and:

• ai ≺ bj if (a, b) /∈ ser and the i-th occurrence of a precedes the j-th
occurrence of b within σ.
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• ai � bj if (b, a) /∈ ser and the j-th occurrence of b does not precede the
i-th occurrence of a within σ.

Figure 5.16 shows the canonical dependence comdag of the step sequence
σexmpl.

Canonical dependence comdags capture precisely the essence of the com-
trace equivalence relation as candepcomdag(σ) = candepcomdag(τ) iff σ and
τ are comtrace equivalent step sequences �. Hence it is possible to define
the canonical dependence comdag of a comtrace α as candepcomdag(α) df=
candepcomdag(σ), where σ is any step sequence in α. Moreover, the step se-
quences defined by the canonical dependence comdag of a comtrace are exactly
the step sequences comprising that comtrace.

Fact 43 : Let α be a comtrace. Then steplanguage(candepcomdag(α)) = α.

Hence distinct comtraces have distinct canonical dependence comdags and
it follows that comtraces are in one-to-one correspondence with dependence
comdags.

Finally, the canonical so-structure of a comtrace α is defined as cansos(α) df=
candepcomdag(α)+. The concluding result states that comtraces and their
canonical so-structures capture the same sets of behaviours.

Fact 44 : Let α be a comtrace.

• strat(cansos(α)) = canstratposet(α).a
• steps(strat(cansos(α))) = α.

aNote that in canstratposet(α) the comtrace α is treated as a set of step se-
quences.

In this way we have obtained the unique causality structure of a comtrace.

5.5.5 Step Sequences, Comtraces and Processes of ENI-Systems

Returning to the starting point of this section, i.e., to ENI-systems, we now
aim at capturing the intrinsic causality in their behaviours. Since the treat-
ment follows the same pattern as that provided for the EN-systems in the
previous section, we will be fairly brief, and further motivations and discus-
sion can be found there.

Let ENI = (P, T, F,Cinit , Inh) be henceforth a fixed ENI-system.

First, the basic operational behaviour of ENI is captured by its step lan-
guage stepseq(ENI ) defined as the set of all sequences σ of non-empty steps of
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transitions such that Cinit [σ〉. Clearly, stepseq(ENI ) is a prefix-closed, regular
set of step sequences.

To capture the causal ordering of transition occurrences in ENI ’s be-
haviour, we will use comtraces and their so-structures. For this reason, we
associate with ENI the combined concurrency alphabet CCA with Σ = T
and its simultaneity and serialisability relations given respectively by:

• (t, t′) ∈ sim if •t• ∩ •t′• = ◦t′ ∩ •t = ◦t ∩ •t′ = ∅.
• (t, t′) ∈ ser if (t, t′) ∈ sim and t• ∩ ◦t′ = ∅.

It is not difficult to see that the combined concurrency alphabet for the ENI
in Figure 5.14 is precisely CCA defined earlier in this section.

The following key result is a consequence of the observation that all step
sequences over CCA which are comtrace equivalent to a step sequence of ENI
are steps sequences of ENI as well �.

Fact 45 : stepseq(ENI ) =
⋃

σ∈stepseq(ENI ) 〈σ〉.

Hence the step language of ENI can be partitioned into comtraces. According
to this result, and building on the theory expounded earlier on, we may state
that the causal behaviour of ENI-systems can be captured by the so-structures
corresponding to the comtraces partitioning their step language. We thus treat
the causality issues at hand here similar to the approach presented as in
the previous section for EN-systems based on traces and their corresponding
posets.

As a conclusion to this section we will present a theory of processes for ENI-
systems and demonstrate that the causality and weak causality captured in the
comtraces and their so-structures of an ENI-system agree with this process
semantics. To define processes, nets similar to the occurrence nets of EN-
systems are used to describe the concurrent runs of ENI-systems. This requires
an extension of the notion of an occurrence net which has been designed to
handle nets with ordinary rather than inhibitor arcs. To deal with such arcs
at the level of occurrence nets we introduce so-called activator arcs. Each such
arc plays a role dual to that of an inhibitor arc. An activator arc between a
place and transition test for the presence of a token in the place, but this
token is not affected (removed) by the occurrence of that transition.

Definition 46 : activator occurrence nets

An activator occurrence net (ao-net) is a relational tuple AON df=
(B,E,R, �,Act) such that the first four components form an (underlying)
occurrence net and Act ⊆ B × E is a set of activator arcs.

Similarly as an occurrence net, an ao-net represents a concurrent execution
or run of a system and so it has to be acyclic in some sense, to exclude
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Fig. 5.17. An activator occurrence net AON with nodes labelled by places and
transitions of the and ENI-system ENI in Figure 5.14 (top), and the same net with
identities of the nodes omitted (bottom).

circularity in the description of the run. It is therefore assumed that the
relational structure comdag(AON ) df= (E,≺loc ,�loc , �|E), where ≺loc and �loc

are relations respectively given by (R ◦ R)|E×E ∪ (R ◦ Act) and Act−1 ◦ R,
is a comdag. Intuitively, these two relations provide local information on the
causality between event occurrences based on the dynamics of the ao-net.
Thus ≺loc stands for precedence (the first event has to produce a token for
consumption or testing by the second event) and � for weak precedence (the
first transition cannot happen after the second one, since the latter consumes
a token for which the former tests).

Activator arcs are drawn with small black circles as arrowheads and, for
every transition t, �t denotes the set of all places connected by activator arcs
with t, i.e., (p, t) ∈ Act . Figure 5.17 shows an ao-net. The step sequences of
an ao-net are defined as for its underlying occurrence net, except that a step
U is enabled at a configuration C if, in addition, �U ⊆ C where �U consists
of all places connected by activator arcs to transitions in U . Other notions,
including the default initial and final configurations, are inherited from the
underlying occurrence net.

Every occurrence net defines a dag representing the direct information on
the causality between its events, and then through transitive closure also a
poset of events. The same approach can be applied to an ao-net, but in this
case the resulting causality structure for AON is the so-structure generated
through the transitive closure of comdag(AON ) defined above. For example,
the comdag generated by the ao-net in Figure 5.18 is nothing but the cdag
shown in Figure 5.15, and so the corresponding so-structure is the sos in
Figure 5.16.
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Processes of ENI-systems are similar to those of EN-systems with the
inhibitor arcs of the system represented by activator arcs which rather than
testing for the absence of tokens are used to test for the presence of tokens
in complement places. Hence, it is tacitly assumed that each place of ENI
adjacent to an inhibitor arc has a complement place in the underlying EN-
system. (Every ENI-system can be transformed into an ENI-system with an
isomorphic state graph and satisfying this property �.)

Definition 47 : processes of ENI-systems

A process of ENI is an ao-net (B,E,R,Act , �) such that the underlying
occurrence net of the latter is a process of the underlying EN-system of
the former and, in addition, � is injective on �e and �(�e) = ◦̃�(e) for every
event e in E.

The processes of an ENI-system give information on its behaviour. The step
language of a process AON of ENI is the set steplanguage(AON ) of all step
sequences �(σ) such that σ is a step sequence from the default initial con-
figuration of AON to the default final configuration. Observe here that the
reachable configurations of AON are also reachable configurations of its un-
derlying occurrence net. Consequently, the labelling of AON is injective on
all its reachable configurations and on the steps in its step sequences �.

Definition 47 is sound in the sense that the step language of an ENI-system
coincides with the step languages of its processes.

Fact 48 : stepseq(ENI ) =
⋃

AON∈AON steplanguage(AON ) where AON
is the set of all processes of ENI .

The processes of an ENI-system can be described algorithmically as well.
This construction is also based on the one given earlier for EN-systems, show-
ing once again that the addition of inhibitor arcs leads to conservative exten-
sions of notions and results presented earlier on.

Definition 49 : processes construction

The activator occurrence net AON σ generated by a step sequence σ =
U1 . . . Un of ENI is the last element in the sequence N0, . . . , Nn where
each Nk is an activator occurrence net (Bk, Ek, Rk, Ak, �k) constructed as
in Definition 32 with the following additions:
Step 0: A0 = ∅.
Step k: Ak = Ak−1 ∪ {(p̃ �p̃, t1+�t) | t ∈ U ∧ p ∈ ◦t}.

Figure 5.18 shows in stages how to construct the ao-net following the execution
of the step sequence σexmpl of ENI. The resulting ao-net is a process of ENI (it
is isomorphic with the net in Figure 5.17).
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Fig. 5.18. The ao-net AONσexmpl constructed for the ENI-system in Figure 5.14:
node-oriented view (top), and label-oriented view (bottom).

Fact 50 : Each ao-net constructed in Definition 49 is a process of ENI and,
for each process of ENI , there is a run of the construction from Definition 49
generating an isomorphic ao-net.

As a last point we compare the causality structures of an ENI-system as
captured in comtraces through their so-structures with the process semantics
and its comdags and related so-structures.

Since splitting and combining steps of transitions according to the simul-
taneity and serialisability relations defined by the net have no effect on the
process construction we know that AON σ = AON τ iff σ and τ are comtrace
equivalent step sequences �. Hence with each comtrace one process (up to
isomorphism) is associated. Conversely the step language of a process of ENI
is identical to its defining comtrace �. We can then relate the comtraces and
processes generated by the step sequences of an ENI-system.

Fact 51 : Let σ be a step sequence of ENI .

• 〈σ〉 = steplanguage(AON σ).
• cansos(〈σ〉) = comdag(AON σ)+.

Hence comtraces and processes give the same views on the causalities in the
behaviours of ENI-systems, again providing a justification for the fundamental
soundness of the concurrency semantics they both capture.

5.5.6 Bibliographical Remarks

Inhibitor arcs have been found to be particularly useful in areas such as com-
munication protocols (see, e.g., [5]) and performance analysis (see, e.g., [12])
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and, indeed, perhaps the most natural extension of the standard net model,
e.g., [43] stated that ‘Petri nets with inhibitor arcs are intuitively the most di-
rect approach to increasing the modelling power of Petri nets’ (note that when
added to the PT-system model considered later on, they lead to a strictly more
expressive model as now Turing machines can be simulated). This section is
based on the work reported in [27] which has been further developed, e.g.,
in [31] and [28].

The enabledness of transitions in ENI-systems and ao-nets is based on an
a priori condition: the inhibitor/activator places of transitions occurring in a
step should obey the relevant constraints before the step is executed, but not
necessarily afterwards. Alternative treatments of this issue are provided in,
e.g., [6] and [50].

5.6 Place Transition Nets

In this section we give an impression of how the trace approach to describe
net behaviour can be generalised to Place/Transition systems (PT-systems
for short), a well-known and prominent class of Petri nets that employ states
to describe the availability of local resources in a quantitative way rather than
to indicate simply the holding or not-holding of local conditions. PT-systems
are of more practical use than EN-systems since certain repetitive features
which would lead to unwieldy EN-systems can be collapsed in a PT-system
thus allowing more compact representations of systems. Moreover, they are
more expressive.

Let us return to the running example. Instead of indicating whether or not
the buffer contains an item at all, the buffer place p4 in PT1, the first net in
Figure 5.19, gives the number of available (produced and not yet consumed)
items. Initially there is one item in the buffer, represented by one token in p4.
The producer is allowed to add items to the buffer also when it is not empty.
Each such item is represented by an additional token in p4. In diagrams of
PT-systems, tokens are used to indicate the current multiplicity of (resources
in) a place; thus it is possible to have more than one token in a place. In
this example, the number of tokens (items) in p4 (the buffer) is not a priori
bounded. The second net PT2 in Figure 5.19 models a producer/consumer
system with a buffer (p4) of bounded capacity (two in this case). Its current
capacity is given through its complement place p7. The token count in the
buffer and the complement together is always exactly 2. Adding an item to
the buffer by the producer decreases its remaining capacity and similarly the
consumption of an item by the consumer leads to an increase of capacity. The
third net PT3 in Figure 5.19 models a producer/consumer system with two
consumers. When there are two or more tokens in the buffer and two consumer
tokens in the local state p5, then the two consumers can each consume an
item without interfering with one another (concurrently). Hence, rather than
using a separate subsystem for each consumer the PT-systems model makes
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it possible to use multiple occurrences of tokens in a net to model identical
behaviour.
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Fig. 5.19. Three PT-systems for the running example: PT1 with an unbounded
buffer – containing one item in the initial state – and one consumer; PT2 with a
buffer of capacity two; and PT3 with an unbounded buffer and two consumers.

Thus we now have for nets a new notion of state described by multiplicities
of places (natural numbers) rather than subsets of places (booleans). Formally,
these states, called markings, are multisets of places.3

Definition 52 : markings

A marking of a net N = (P, T, F ) is a mapping M : P → N.

The dynamics of nets with markings as global states is based on a new
occurrence rule for individual transitions describing their consumption and
production of local resources.

3A multiset over a set X is a function µ : X → N, and any subset of X may be
viewed through its characteristic function as a multiset over X. By M(X) we denote
the set of all multisets over X. For two multisets µ, ν with a common domain X, we
write µ ≤ ν if µ(x) ≤ ν(x) for all x ∈ X.
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Definition 53 : transition occurrences
A transition t can occur (or is enabled) at a marking M if M(p) ≥ 1 for
every place p ∈ •t. Its occurrence then leads to a new marking M ′(p) df=
M(p)− |{(p, t)} ∩ F |+ |{(t, p)} ∩ F | for every place p ∈ P .

Thus t is enabled at a marking M whenever M assigns at least one token to
each input place of t. If t occurs, then it consumes one token from each of its
input places and produces one token in each of its output places. (Again, the
enabledness of a transition and its effect are defined completely locally and do
not depend on the global properties of a state.) If t is enabled at M , we write
M [t〉 and if its occurrence at M leads to the marking M ′, we write M [t〉M ′.

When we consider configurations as (a simple kind of) markings and com-
pare this definition with Definition 17 of transition enabling and occurrence
at a configuration, then the following observations are immediate: a transition
which is enabled at a configuration is also enabled at the marking represented
by the configuration and its occurrence would have the same effect. However,
due to the possibility of contact, the reverse does not hold in general. Without
output requirements, a transition may have an input place which is also one
of its output places (a loop), and still be able to occur at a marking.

Concurrent occurrence of transitions at a marking is possible, provided
that enough resources (tokens per place) are available for all transitions to-
gether. When multiple transitions occur, the effect of their concurrent oc-
currence is the accumulated effect of their individual occurrences. As before
(Definition 18), a step of a net is a subset of its transitions. A step U can occur
at a marking M if M(p) ≥ |p•∩U | for all places p. Its occurrence then leads to
a new marking M ′ such that M ′(p) df= M(p)−|p•∩U |+ |•p∩U | for every place
p. If U is enabled at M , we write M [U〉 and if its occurrence at M leads to
the marking M ′, we write M [U〉M ′. Note that, the transitions in a step may
have overlapping neighbourhoods. In particular, input places can be shared.
In that case, however, for the step to be enabled, the marking under consider-
ation should assign to these places at least one token for each of their output
transitions in the step (there is a conflict at the marking, if each transition
individually is enabled, but they cannot occur as a step). Single transition
occurrences are special cases of step occurrences. Furthermore, the case of
steps is easily extended to multisets of transitions occurring at a marking: a
multiset U of transitions can occur at a marking M if M(p) ≥

∑
t∈p• U(t)

for all places p. In such a case, U can be executed leading to the marking
M ′ given by M ′(p) df= M(p) −

∑
t∈p• U(t) +

∑
t∈•p U(t) for every place p.

Multisets of transitions model the phenomenon of auto-concurrency. In the
producer/consumer system with two consumers (PT3 in Figure 5.19) transi-
tion g can occur (twice) concurrent with itself at every marking with two or
more tokens in the buffer place p4 and two consumer tokens in p5. For reasons



168 Jetty Kleijn and Maciej Koutny

of convenience, we will give emphasis to the explanation of notions based on
steps with only occasional reference to multisets.

The occurrence of a step at a marking leads to a next marking. Hence,
lifting the terminology introduced for (contact-free) EN-systems and their
semantics to the more general level of PT-systems, we can define step se-
quences (and also firing sequences and multiset sequences) as finite sequences
of non-empty steps (single transitions or non-empty multisets, respectively)
occurring one after another from a given marking. A step sequence σ from a
marking M is a possibly empty sequence σ = U1 . . . Un of non-empty steps
Ui such that M [U1〉M1, . . . ,Mn−1[Un〉M ′, for some markings M1, . . . ,Mn−1.
We write M [σ〉M ′ or M [σ〉 and say that M ′ is reachable from M .

When a step is enabled at a marking, sufficient resources are available at
that marking for the independent occurrence of each of the transitions in the
step. Hence, a diamond property as formulated in the first part of Fact 20
holds.

Fact 54 : Let M,M ′ be markings and U,U ′ be steps of a net such that
U ∩ U ′ = ∅. Then M [U ∪ U ′〉M ′ implies M [UU ′〉M ′.

As a consequence, every step of transitions occurring at a marking can be
split into any sequence of subsets forming a partition of this set and each such
step sequence has the same effect (leads to the same marking) as the original
step. In particular, each step in a step sequence can be split into a firing
sequence which is an arbitrary permutation of its transitions. For multisets, a
similar diamond property can easily be proved and so every multiset sequence
can be decomposed into a step sequence �. However, due to loops, the second
statement in Fact 20 does not hold: it is not the case that a diamond of step
sequences at a marking implies that the transitions involved could also occur
concurrently. It is possible, e.g., to have step sequences {a}{b} and {b}{a}
from some marking M of a PT-system, while M [{a, b}〉 does not hold �.

5.6.1 PT-Systems and Their State Spaces

Equipping nets with initial markings leads to a new class of net systems.

Definition 55 : PT-systems

A place transition system (or PT-system) consists of an underlying net
and an initial marking. Its state space consists of all markings reachable
from the initial marking.

That is, a PT-system is a relational tuple PT df= (P, T, F,Minit ) such that
(P, T, F ) is a net and Minit : P → N is its initial marking. Because of the
diamond property (Fact 54) for steps and multisets, reachability of markings
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is the same whether defined in terms of firing sequences, or step sequences, or
multiset sequences �. Hence, also the state space is the same for the three
semantics. Contact-free EN-systems can be viewed as special PT-systems with
the additional property of being safe, i.e., no reachable marking will ever
assign more than one token to a place �. (Note that in a safe PT-system
there is no auto-concurrency �.) Exactly as for EN-systems we can consider
the state graph of PT , with the markings reachable from Minit as nodes and
with labelled arcs (M,U,M ′) whenever M [U〉M ′. In addition, there are the
sequential state graph of PT and its multiset state graph, both defined in the
obvious way.

The most basic behaviour of a PT-system PT is captured by its language
firseq(PT ) consisting of all firing sequences from its initial marking. Clearly,
firseq(PT ) is a prefix-closed language, and each firing sequence corresponds
to a unique path through the sequential state graph of PT starting from the
initial marking. Since the numbers of tokens per place are not necessarily
bounded, it is possible that the state space of PT is not finite (even though
PT itself is a finite object) and firseq(PT ) not regular. Consider PT1, the first
net in Figure 5.19 with its initial marking as given there. The number of tokens
in the buffer place p4 can be arbitrarily large, but apart from the initial item,
the consumer can never consume more items than added to the buffer by the
producer. Thus, firseq(PT1) ∩ {am}∗{gu}∗ = {(am)k(gu)n | n ≤ k + 1}. Conse-
quently, firseq(PT1) is not regular. Next to firseq(PT ), we have stepseq(PT )
and multisetseq(PT ), the step language and the multiset language PT con-
sisting of all step sequences, multiset sequences respectively, from its initial
marking. A PT-system PT such that multisetseq(PT ) = stepseq(PT ), i.e.,
it does not exhibit any auto-concurrency at all, is co-safe. Note that safe
PT-systems are necessarily co-safe, but that the converse implication is not
true �.

In contrast to the situation for EN-systems, diamonds in the sequential
state graphs of PT-systems do not imply nor exclude possible concurrent
behaviour and stepseq(PT ) cannot be reconstructed from firseq(PT ). Simi-
larly, since information on auto-concurrency is missing in the step sequence
semantics, multisetseq(PT ) cannot, in general, be derived from stepseq(PT ).
In other words, two PT-systems with isomorphic sequential state graphs may
have state graphs which are not isomorphic, and systems with isomorphic
state graphs may have multiset state graphs which are not isomorphic. More-
over, for PT-systems, the concurrency, conflict and causality relations between
transitions are not merely structural, but may change with the current mark-
ing. As an example, consider PT4 in Figure 5.20. This PT-system has exactly
all prefixes of all words which are permutations of the symbols a, b, and c, as
its firing sequences. As step sequences it has in addition {a, b}, {a, c}, {b, c},
{a, b}c, {a, c}b, {b, c}a, a{b, c}, b{a, c}, and c{a, b}. If, however, the initial
marking would have assigned one token instead of two in the uppermost place,
there would have been only firing sequences and no additional step sequences;
and with initially three tokens in the uppermost place also {a, b, c} would
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Fig. 5.20. Three PT-systems.

have been a step sequence of the system. In the second example system PT5
in Figure 5.20, auto-concurrency plays a role. It resembles PT4 with the three
transitions merged (as well as their lower input places). Note that due to auto-
concurrency, a diamond may degenerate to a single sequence (in this example,
a sequence of two concurrent occurrences of g). Moreover, with initially only
one token in the uppermost place this PT-system admits no other behaviour
than the purely sequential ggg and its prefixes. Finally, in the third system
PT6, we see that the transitions a and c can occur concurrently at the initial
marking. If, however, b occurs first, then a and c are in conflict at the resulting
marking. It is interesting to compare the step sequences and firing sequences
of PT6 with those of PT4 �.

Before introducing a new more general notion of trace as part of a partial
order approach to the operational semantics of PT-systems, we first consider
the processes of PT-systems in order to gain more insight in the causality and
concurrency in their behaviour.

5.6.2 Processes of PT-Systems

As before, processes formalise the idea of a concurrent run or a non-sequential
observation of an execution of a system. Being a record of the changes of mark-
ings along some execution of a PT-system, they capture the intrinsic concur-
rency and causality (based on the production and consumption of resources)
in the recorded behaviour. The notion of a process of a PT-system is a rather
straightforward generalization of the process definition for EN-systems.

In what follows, PT = (P, T, F,Minit ) is a fixed PT-system.

A process of PT is a labelled occurrence net that can be seen as a partial
unfolding of PT in which conflicts have been resolved. Each of its events
represents the occurrence of a transition and each condition corresponds to
the occurrence of a single token in a place of PT .
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Fig. 5.21. A process ON′ of the PT-system PT1 in Figure 5.19 (node identities are
omitted).

Definition 56 : processes of PT-systems

A process of PT is an occurrence net ON = (B,E,R, �) such that:

• � labels conditions with places and events with transitions.
• For every p ∈ P , Minit(p) = |{b ∈ CON

init | �(b) = p}|.
• � is injective on the sets of input and output conditions of each event.
• For every e ∈ E, �(•e) = •�(e) and �(e•) = �(e)•.

The occurrence net in Figure 5.21 is a process of PT1 in Figure 5.19.
The difference with Definition 30 (processes of EN-systems) is that now

the labelling of a process is not required to be injective on the default initial
configuration. This configuration is intended to represent the initial marking of
the PT-system and has for each token in each place, a condition labelled with
the name of that place. Note that for (contact-free) EN-systems, Definitions 56
and 30 coincide. The structure underlying a process of a PT-system is an
occurrence net and hence forms with its default initial configuration a contact-
free EN-system with properties as discussed before for the processes of EN-
systems. In particular, each process ON defines a dag, dag(ON ), representing
the direct causal relationships between the events, and a partial order on
its events obtained as its transitive closure dag(ON )+, describing all causal
dependencies. Moreover, for processes of PT-systems, their multiset and step
semantics coincide. The labelling, however, will in general not be injective
on the reachable configurations (the slices) and the steps executed. Consider,
e.g., in Figure 5.21 the configuration reached after the execution of the event
labelled by a. It has two conditions labelled by p4 together representing two
tokens in place p4 of PT1.

To preserve the multiplicity of the labels associated to elements, (non-
injective) labellings can be lifted to yield multisets of labels for subsets of
their domain. Given a labelling � : Y → Z and a finite X ⊆ Y , define �〈X〉 :
Z → N by �〈X〉(z) df= |{x ∈ X | �(x) = z}|, for each z ∈ Z. The labelling
can be applied in this way also to finite sequences of finite subsets of Y ,
�〈X1 . . . Xn〉 df= �〈X1〉 . . . �〈Xn〉. Note that if � is injective on each of the Xi,
then �〈X1 . . . Xn〉 and �(X1 . . . Xn) can be identified.

The multiset sequences (i.e., the step sequences) of a process of a PT-
system are related via its labelling to the multiset sequences of the system.
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Using an inductive argument, it can be proved that CON
init [σ〉C in a process

ON = (B,E,R, �) of PT implies that Minit [�〈σ〉〉�〈C〉 in PT . Again, we let
ON ) denote the set of all labelled firing sequences of ON from the default
initial configuration to its default final configuration. The multiset language
of ON is the set multisetlanguage(ON ) comprising all labelled step sequences
from the default initial configuration to its default final configuration.

Since the structure and labelling of the processes reflect the flow relation
of PT , it follows that all multiset sequences of PT can be derived from its
processes.

Fact 57 : Let ON be the set of all processes of PT .

• firseq(PT ) =
⋃

ON∈ON ON ).
• multisetseq(PT ) =

⋃
ON∈ON multisetlanguage(ON ).

Conversely, all processes of a PT-system can be constructed from its mul-
tiset sequences.

Definition 58 : processes construction

For a multiset sequence σ = U1 . . . Un of PT , an occurrence net ON σ
PT

can be generated as the last element in a sequence N0, . . . , Nn where each
Nk is an occurrence net (Bk, Ek, Rk, �k) constructed thus.
Step 0: B0

df= {pi | p ∈ P ∧ 1 ≤ i ≤Minit(p)} and E0 = R0
df= ∅.

Step k: Given Nk−1 we extend the sets of nodes as follows:

Bk
df= Bk−1 ∪ {pi+�p | p ∈ U•

k ∧ 1 ≤ i ≤
∑

t∈•p Uk(t)}
Ek

df= Ek−1 ∪ {ti+�t | t ∈ Uk ∧ 1 ≤ i ≤ Uk(t)} .

In the above, the label of each node xi is set to be x, and #x denotes the
number of nodes of Nk−1 labelled by x.
To define the arcs, we proceed as follows. For every e = ti ∈ Ek \ Ek−1,
we choosea two sets of conditions, Ine ⊆ Bk−1 \codom(Rk−1) and Oute ⊆
Bk \ Bk−1, such that Ine comprises a distinct condition for each place in
•t and Oute comprises a distinct condition for each place in t•. Moreover,
for any two distinct e, e′ ∈ Ek \Ek−1, the sets Ine and In′

e as well as Oute
and Out′e are mutually disjoint. Then:

Rk
df= Rk−1 ∪

⋃

e∈Ek\Ek−1

(Ine × {e}) ∪ ({e} ×Oute) .

aThis means that, in general, more than one process can be constructed for
a given multiset sequence.
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Fig. 5.22. Two processes and their causality dags. Both processes are associated
with the multiset sequence a{m, g}{r, u} of PT1 in Figure 5.19.

The construction is illustrated in Figure 5.22 for the PT-system PT1 from
Figure 5.19 and its multiset sequence a{m, g}{r, u}. The topmost process given
there is isomorphic to the process ON′ of the PT-system PT1 in Figure 5.21.

Fact 59 : Each occurrence net constructed in Definition 58 is a process
of PT and, for each process of PT , there is a run of the construction from
Definition 58 generating an isomorphic occurrence net.

Thus, also for PT-systems, their operationally defined processes and ax-
iomatically defined processes are essentially the same. The labelling of these
processes is in general not injective on their slices (reachable configurations).
Each slice represents through its labelling a reachable marking of the PT-
system with for each token in each place, a condition labelled with the name
of that place. This leads to a distinct representation of each token in a place
even though in PT-systems such occurrences of tokens are usually deemed
indistinguishable. When constructing a process for a given multiset sequence,
there may be more than one (distinct representation of) a token available as
input to a next occurrence of a transition leading to the choice referred to
in Definition 58. The two different processes in Figure 5.22 are the result of
choosing between the two conditions labelled by p4 as input for the event la-
belled with g after the occurrence of a. When the distinction between tokens
in a place is undesirable, equivalence classes of processes can be used as repre-
sentations of runs. The equivalence used identifies two processes whenever one
can be obtained from the other by ‘swapping’ the parts of the occurrence nets
following two conditions which occur together in a slice and have identical
labels. The two processes in Figure 5.22 are swapping equivalent. Note that
they give rise to different partial orders.
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5.6.3 Local Traces

We are now ready for lifting the definition of traces to the level of PT-systems.
In these systems the concurrency and causality relations between transitions
are determined by the current marking. In terms of firing sequences (step
sequences and multiset sequences), this means that independence of symbols
is not globally defined for all occurrences of symbols, but in a local fashion
depending on the preceding history (left-context or prefix). Another new fea-
ture is that for PT-systems, independence is not a binary relation. Consider,
e.g., PT4 in Figure 5.20. Here we have that the three transitions can occur
concurrently in pairs, but not as a triple (which would be implied in the case
of an EN-system �). Consequently, multisets (or sets when auto-concurrency
is ruled out) rather than pairs have to be used to describe the independence
among symbols or action occurrences. A local independence relation provides
the information on when and which symbols (and how many occurrences of
each) are independent.

Definition 60 : local concurrency alphabets

A local independence relation Lind over an alphabet Σ is a subset of
Σ∗ ×M(Σ). A local concurrency alphabet LCA df= (Σ,Lind) consists of
an alphabet Σ and a local independence relation Lind over Σ.

The pair (u,X) being an element of a local independence relation Lind indi-
cates that the elements of X can occur concurrently (and with the multiplic-
ities defined in X) once u has been executed. As an example, consider again
the PT-systems in Figure 5.20. The local independence relation of PT4 will
include the pairs (λ, {a, b}), (λ, {a, c}) and (λ, {b, c}), but not (λ, {a, b, c}).
In addition, (c, {a, b}), (b, {a, c}) and (a, {b, c}) will also belong to this lo-
cal independence relation. However, for PT6, (λ, {a, c}) will be included in its
local independence relation, but not (b, {a, c}). The PT-system PT5 will give
rise to the pair (λ,G2), but not to (λ,G3), where G2 and G3 are the multisets
given by Gi(g) df= i. We will see later how the local concurrency alphabet of a
PT-system can be defined by its behaviour.

First we introduce local traces based on a new (local) trace equivalence
relation. Again the elementary step in the identification of sequences is the
exchange of positions between adjacent independent symbol occurrences. Let
(Σ,Lind) be a local concurrency alphabet. Then, for two words, u, v ∈ Σ∗,
we write u ∼Lind v if there are words w, z ∈ Σ∗, a multiset X over Σ, and
x, y ∈ Σ∗ such that (w,X) ∈ Lind , X(a) = #a(x) = #a(y) for all a ∈ Σ,
and u = wxz and v = wyz. The local trace equivalence ≡Lind on Σ∗ is the
reflexive and transitive closure of ∼Lind .

Let Lind4 be the local independence relation associated with PT4 (see
above for its elements relevant here), then we have bac ∼Lind4 abc ∼Lind4
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acb ∼Lind4 cab ∼Lind4 cba ∼Lind4 bca and so bac ≡Lind4 bca. Thus all firing
sequences of length three of PT4 are local trace equivalent.

Definition 61 : local traces
A local trace over a local concurrency alphabet (Σ,Lind) is any equiva-
lence class of the local trace equivalence relation ≡Lind .

The local trace containing a given word u is denoted by [[u]]Lind , and the
set of all local traces by Σ∗/≡Lind

. Whenever the independence relation Lind
is clear from the context, we may drop it when writing [[u]]Lind etc. Note
that the empty local trace is [[λ]] = {λ}. For the PT-system PT4, we have
[[abc]]Lind4 = {abc, bac, bca, cba, cab, acb}. Note that, in the same way as
before, it can be shown that bac and bca are also local trace equivalent with
respect to the local independence relation Lind6 associated with PT6 even
though (b, {a, c}) �∈ Lind6. Hence [[abc]]Lind6 = [[abc]]Lind4.

Local independence and local trace equivalence are generalisations of the
independence relation and trace equivalence underlying the original traces.

Fact 62 : Let (Σ, Ind) be a concurrency alphabet and Lind df= {(u,X) ∈
Σ∗ × P(Σ) | (X ×X) \ idΣ ⊆ Ind}. Then ≡Ind and ≡Lind coincide.

Just like in the case of trace equivalence, it is easily seen that whenever
two words are local trace equivalent, they have the same length and alpha-
bet �. However, due to the local character of the independence relation, the
property that the order of dependent symbols is the same in all words of
a local trace does not hold true (see above where we had bac ≡Lind6 bca).
Consequently, one cannot associate a single well-defined dependence graph
with all words in a local trace in the same way as was done for traces. Also
concatenation cannot be well-defined by concatenating representatives. As an
example, consider the local independence relation {(λ, {b, c})} over the alpha-
bet {a, b, c}. Then [[bc]] = [[cb]], but [[abc]] �= [[acb]]. Still, local trace equivalence
is a right-congruence.

Fact 63 : Let (Σ,Lind) be a local concurrency alphabet and u, v, w ∈ Σ∗.
Then u ≡Lind v implies uw ≡Lind vw.

Hence the right-concatenation ⊕ of local traces with words is well-defined
by [[u]]Lind ⊕ w

df= [[uw]]Lind , and we say that a local trace α is a prefix of a
local trace β if β = α ⊕ w for some word w. This (quasi-)prefix ordering is
well-defined �. We use again the �-notation and indice the fact that α is a
prefix of β as α � β. Moreover, if α � β and α �= β then we write α � β.
Note that [[u]]Lind � [[v]]Lind and v ≡Lind w implies that [[u]]Lind � [[w]]Lind .
However, [[u]]Lind � [[v]]Lind does not necessarily imply that u � v holds �.
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The prefix relation of local traces provides information on the relationships
between the occurrences of symbols. In particular, when a local trace is used
as the representation of a run of a concurrent system, its prefixes correspond
to the different histories, each of which may be extended to a sequential rep-
resentation of that run. Returning once more to the examples of Lind4 and
Lind6, it should be observed that the trace [[abc]]Lind4 = [[abc]]Lind6 has the
same prefix structure with respect to both local independence relations. Note,
however, that from the prefix [[b]]Lind4 a concurrent step {a, c} can be executed
leading to [[abc]]Lind4, whereas in order to reach [[abc]]Lind6 from [[b]]Lind6 the
symbols a and c have to be executed sequentially. Adding this multiset infor-
mation in the form of arcs labelled with multisets in accordance with the given
local independence relation — if possible — would yield a labelled structure
comparable to a state graph and allow one to distinguish between different
concurrent behaviours defining the same local traces. We will come back to
this issue shortly.

5.6.4 PT-Systems and Local Traces

The local independence relation associated with a PT-system describes all
multisets of transitions that can occur concurrently during a run of the system.

Definition 64 : local concurrency alphabets of PT-systems

The local concurrency alphabet of PT is LCAPT
df= (T,LindPT ) where the

local independence relation LindPT comprises all pairs of firing sequences
of PT with multisets of transitions enabled at the corresponding marking.

Thus LindPT = {(u,X) ∈ T ∗ ×M(Σ) |Minit [u〉M ′ ∧M ′[X〉}.
In order to facilitate a comparison of concurrent behaviour of different

PT-systems, local independence is defined on the abstract behavioural level
of firing sequences rather than at concrete markings. Since for PT-systems
reachability of markings is the same for firing / step / multiset sequences,
all potential concurrency in the system can be described in terms of (local)
independence of transitions after a firing sequence. Note that because local
traces are equivalence classes comprising words only (rather than multiset
sequences), they are not affected when auto-concurrency is ignored, i.e., by
restricting the local independence relation of PT to pairs (u,X) with X a
subset of its transitions �. Such restriction hides information though and
applying it would be analogous to giving each transition a self-loop to a new
place of its own with one token to guarantee that the PT-system is co-safe.
The full local independence relation Lind4 of PT4 has (among others) the
following elements: (λ, ∅), (λ, {a}), (λ, {b}), (λ, {c}), (λ, {a, b}), (λ, {a, c}),
(λ, {b, c}), (a, ∅), (a, {b}), (a, {c}), (a, {b, c}) and (abc, ∅). This local inde-
pendence relation is finite. In general, however, the local independence rela-
tions of PT-systems may be infinite, since these systems can have infinitely
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many reachable markings (like PT1 in Figure 5.19) or exhibit repetitive be-
haviour (like PT2).

An important observation is that all words which belong to the local trace
of a firing sequence of a PT-system are indeed also realisable as firing se-
quences.

Fact 65 : firseq(PT ) =
⋃

u∈firseq(PT) [[u]].

Since (contact-free) EN-systems can be considered as PT-systems, it fol-
lows that they define, apart from their concurrency alphabet with its struc-
tural independence relation, also a local concurrency alphabet. The next fact
demonstrates that these two views are consistent. (Note that the local inde-
pendence induced by the structural independence relation of the EN-system
should first be restricted to the actual firing sequences of the system.)

Fact 66 : Let EN be a contact-free EN-system with concurrency alpha-
bet (T, IndEN ), and let LindEN be its local independence relation. Then
LindEN = Lind ∩ {(u,X) | u ∈ firseq(EN ) ∧ X ⊆ T} where Lind is ob-
tained from IndEN as described in Fact 62.

So far no restrictions at all have been imposed on local independence
relations, e.g., with respect to internal consistency. Yet, when applied to actual
concurrent systems — such as PT-systems — one might require or expect some
suitable conditions to reflect the intended interpretation.

Fact 67 : Let (Σ,Lind) = (T,LindPT ) be the local concurrency alphabet
of PT , and (u,X) ∈ Lind .

• Y ≤ X implies (u, Y ) ∈ Lind .
• Y ≤ X implies that (ux, Y ) ∈ Lind for all words x ∈ Σ∗ such that

#a(x) = X(a)−Y (a) for all a ∈ Σ.
• u ≡Lind v implies (v,X) ∈ Lind .

The first two items above capture the fact that independent instances of
transitions indeed occur independently from one another. They can be seen
as a translation of the diamond property (Fact 54 for multisets) to the local
independence relation. Thanks to the diamond property, the multisets in any
multiset sequence of PT can be split yielding sequential representatives for
each multiset sequence. It is, moreover, guaranteed that these representatives
are local trace equivalent with each other which, as representatives of the same
concurrent run of the net, they should be. The third item ensures that the
local independence relation of PT ‘agrees’ with the local trace equivalence
it defines. With this latter property, adding the information which multisets
of symbols are concurrently enabled after (each prefix of) a local trace is a
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well-defined operation �. In this way, the prefix ordering of a single local
trace, as well as the prefix ordering on the full set Σ∗/≡Lind

of all local traces
over a local concurrency alphabet (Σ,Lind), can be enhanced leading to mul-
tiset labelled transition systems resembling state graphs. Such ‘trace graphs’
provide all information on local independence and make it possible to distin-
guish between, e.g., [[abc]]Lind4 and [[abc]]Lind6 �. Another property satisfied
by the local concurrency alphabet of a PT-system, but not listed above is that
(ua, ∅) ∈ Lind implies (u, {a}) ∈ Lind for all words u and symbols a. This
property reflects the prefix-closedness of the overall behaviour (in terms of its
set of firing sequences) of the system.

We conclude this section by relating the local traces defined by a PT-
system to its processes. It is not difficult to see that thanks to the diamond
property of PT-systems, every process of a PT-system can be constructed
(as described in Definition 58) from a firing sequence �. However, due to
the possible multiplicity of tokens in places, this construction will in general
yield more than one process per firing sequence (even when the PT-system
is co-safe). Obviously, this implies that there is no one-to-one correspondence
between local traces and processes. Now recall the swapping equivalence of
processes which associates an equivalence class of processes with each sin-
gle concurrent run of a PT-system. These swapping equivalence classes of
processes are in one-to-one correspondence with the local trace equivalence
classes of its firing sequences.

Fact 68 : Every word in the language of a process of PT belongs to one
local trace of PT , and each local trace of PT is the union of the languages
of a set of processes from PT forming one swapping equivalence class.

Consequently, with each local trace defined by a PT-system a finite set of
partial orders can be associated. Each partial order is generated by a process
and describes possible causalities in the concurrent execution which may de-
pend on how the preceding history was observed, i.e., the choice of individual
tokens during the execution. Consider, e.g., Figure 5.22 where two processes
and their causality dags are given. Both processes can be constructed from
the local trace equivalent firing sequences agmru and gamru of the PT-system
PT1 from Figure 5.19. Note that the transition g can both have an ‘old’ token
or a ‘new’ token as its input.

Thus not distinguishing between multiple occurrences of a token in a place
leads to a partial order semantics more complicated than that of EN-systems,
both when based on processes or when employing a trace-based approach.
Treating, however, multiple tokens in a place as individual entities would lead
to a process semantics of PT-systems with the same expressiveness as the
processes of EN-systems which seems counterintuitive.
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5.6.5 Bibliographical Remarks

More background on PT-systems, their behavioural features and processes can
be found in, e.g., [9, 18, 2, 3, 31]. Even though we have restricted ourselves
to systems without arc weights, it was still possible to convey the key ideas
underlying the causality semantics.

Local traces were originally proposed in [21, 23], and further developed
in [25] with the aim to extend the semantic theory of EN-systems to the
more general PT-systems. In the latter reference (see also [22, 24]) co-safe
PT-systems are related to local event structures in a categorical setting. As
a follow-up, [32, 33] study local traces as an independent notion that can be
used to identify events and relations between them without having to rely on
the Petri net model. This has led to local traces with sets of concurrent events
rather than multisets, but otherwise defined as here. Also other definitions of
context-dependent trace equivalence in the setting of a right-congruence were
investigated in, e.g., [1, 4].

5.7 Concluding Remarks

This tutorial is an introduction to the much wider field of applying language
theory to the study of concurrent behaviours, and so there are several strands
of related research which have not even been mentioned. For example, it is
possible to develop traces for infinite system behaviours [16, 17], which also
allows one to treat aspects such as fairness [34]. Moreover, we have not con-
sidered the modelling of conflicts between enabled actions while traces and
processes represent single runs in which all the conflicts have already been re-
solved. Adding conflict amounts to the introduction of branching in processes
and considering the prefix ordering of all traces which form the system be-
haviours. (Branching processes of Petri nets [13] are the basis for an efficient
verification technique [38, 14, 30].) If, in addition, one only considers relations
between events (transition occurrences) the result is the more abstract model
of event structures [24, 51, 40] which have been used to study fundamental
concepts of concurrency in a model-independent way. Finally, we only briefly
touched upon the algebraic properties of trace concepts such as can be found
in, e.g., [11, 10].
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Summary. The advantages of homogeneous arrays of interacting processing ele-
ments are simplicity and uniformity. It turned out that a large array of not very
powerful elements operating in parallel can be programmed to be very powerful.
One type of system is of particular interest: cellular automata whose homogeneously
interconnected deterministic finite automata (the cells) work synchronously at dis-
crete time steps obeying one common transition function. Cellular automata have
extensively been investigated from different points of view. Here we discuss some of
the main aspects from a computational point of view. The focus is on very simple
types, that is, on one-dimensional cellular automata with nearest neighbor intercon-
nections. In particular, we consider universality issues, the problem how to simulate
data structures as stacks, queues, and rings without any loss of time, the famous
Firing Squad Synchronization Problem, signals, and time constructible functions
as well as several aspects of cellular automata as language acceptors. Some open
problems are addressed.

6.1 Introduction

Cellular automata are an old branch of computer science. In the late forties
of the last century they were proposed by John von Neumann in order to
solve the logical problem of nontrivial self-reproduction. From this biological
point of view he employed a mathematical device which is a multitude of
interconnected automata operating in parallel to form a larger automaton, a
macroautomaton built by microautomata. His famous early result reveals that
it is logically possible for such a nontrivial computing device to replicate itself
ad infinitum [72]. The name of these automata originates from the context in
which they were developed. Due to their intuitive and colorful concepts, cellu-
lar automata have soon been considered from a computational point of view.
So, from the very beginning, they were both, an interesting and challenging
model for theoretical computer science and an interesting model for practical
applications. Their inherent massive parallelism renders obvious applications
as model for systems that are beyond direct measurements.
M. Kutrib: Cellular Automata – A Computational Point of View, Studies in Computational
Intelligence (SCI) 113, 183–227 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Cellular automata are a young branch of computer science. Besides ap-
plications in industry, nowadays they open up new fields of application and
modeling of natural phenomena in physics, biology, chemistry as well as in
sociology, economics, and other human sciences. The development of practi-
cal and theoretical issues of cellular automata is impressive. In particular, it
seems that currently the studies from a theoretical point of view follow two
main branches. One focuses on the global behavior of cellular automata. Based
on some topology the space of configurations is investigated. An important
challenge with practical aspects is the characterization of cellular automata
on the basis of their global transition function.

The other branch may be seen to deal with information. The flexibility of
cellular automata to serve as programming tools can be utilized to develop
tricky algorithms in order to solve classical problems as well as problems con-
cerning the very nature of the system itself. An example for the latter case is
the problem of synchronization, which gave rise to intensive research. In this
connection, sources of questions are complexity issues as well as classifications
in terms of formal language recognition. These questions are objects of the
present article. More precisely, cellular automata are seen from a computa-
tional point of view. The main focus is on one-dimensional cellular automata
which are linear arrays of cells that are connected to their nearest neighbors.
The cells are exactly in one of a finite number of states, which is changed
according to local rules depending on the current state of a cell itself and the
current states of its neighbors. The state changes take place simultaneously
at discrete time steps.

The presented topics are far from being complete. From the many interest-
ing ones only a few could be chosen. In the following Section 6.2 basic defini-
tions and preliminaries are given. Higher-dimensional systems with arbitrary
cell interconnections are introduced as generalizations of one-dimensional sys-
tems with the mentioned nearest neighbor connections. For unbounded cellu-
lar spaces universality is obtained. After presenting an approach to evidence
based on the possibility to model logical gates and information transition in
two-dimensional cellular spaces with the simple rules of the Game of Life, it is
shown how cellular spaces can simulate Turing machines. Besides, investiga-
tions concerning universality (often combined with other properties) are done,
for example, in [1, 10, 33, 45, 46, 52, 53, 54, 30]. A survey of universality and
decidability versus undecidability in cellular automata and several other mod-
els of discrete computations can be found in [44]. Next we turn to show how
to simulate stacks, queues, and rings by one-dimensional cellular automata
without any loss of time. The simulations may serve as tools for designing
algorithms or as subroutines for programming cellular automata [6, 29].

The famous Firing Squad Synchronization Problem is dealt with in Sec-
tion 6.3. It was raised by Myhill in 1957 and emerged in connection with the
problem to start several parts of a parallel machine at the same time. The first
published reference appeared with a solution found by McCarthy and Minsky
in [50]. Roughly speaking, the problem is to set up a cellular space such that
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all cells in a region change to a special state for the first time after the same
number of steps.

Section 6.4 is devoted to the study of signals and constructibility of func-
tions. Signals are used to solve problems. Examples are the basic signals that
appear in solutions of the Firing Squad Synchronization Problem, or com-
plex signals that allow to generate prime numbers. So, they can be seen as
tools for algorithm design. In general, signals are able to transmit or encode
information in cellular spaces. They have been used for a long time, but the
systematic study originated from [49]. Basic questions are what kind of signals
can be sent, or which speed is possible.

One of the main branches in the theory of cellular automata is considered
in Section 6.5. Clearly, the data supplied to some device can be arranged as
strings of symbols. Instances of problems to solve can be encoded as strings
with a finite number of different symbols. Furthermore, complex answers to
problems can be encoded as binary sequences such that the answer is com-
puted bit by bit. In order to compute one piece of the answer, the set of pos-
sible inputs is split into two sets associated with the binary outcome. From
this point of view, the computational capabilities of the devices are studied in
terms of string acceptance, that is, the determination to which of the two sets
a given string belongs. These investigations are done with respect to and with
the methods of language theory. For cellular spaces and automata they origi-
nated from [11, 12] and [61, 31]. Over the years substantial progress has been
achieved, but there are still some basic open problems with deep relations to
other fields. A basic hierarchy of cellular language families is established, and
the levels are compared with well-known families of the Chomsky hierarchy.
The results are depicted in Figure 6.31. Closure properties are summarized in
Table 6.1, and decidability problems are briefly discussed.

6.2 Basics and Preliminaries

We denote the set of integers by Z and the set of nonnegative integers by N.
The data supplied to the devices in question can be arranged as strings of
symbols. In connection with formal languages, strings are called words. Let A∗

denote the set of all words over a finite alphabet A. The empty word is denoted
by λ, and we set A+ = A∗−{λ}. For the reversal of a word w we write wR, and
for its length we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

6.2.1 Cellular Spaces

Basically, the idea of cellular automata is to form a massively parallel device
as a multitude of interacting simple processing elements. In order to keep the
systems tractable, a high degree of homogeneity is preferable. Moreover, the
processing elements have to be chosen as simple as possible. So, the elements –
which sometimes are called cells – are represented by finite Moore automata.
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Due to the need for homogeneity all cells are identical. In addition, they are
arranged as grid where one dimension, that is, a linear array whose cells are
identified by integers, is of particular interest in the sequel. Homogeneous local
communication structures are achieved by a unique interconnection scheme
that defines the cells which are interconnected to a given cell. Eventually, the
cells operate synchronously at discrete time steps obeying a local transition
function, which maps the current state of the cell itself and the current states
of its connected cells (neighbors) to the next state.

So, a multitude of finite automata operating in parallel form a larger au-
tomaton such that global results are achieved by local interactions only.

To be more precise, we define a cellular space formally. The notion space
is due to the fact that, potentially, we have an infinite number of cells, that
is, we deal with the entire Euclidean space Z. In order to obtain two-way
information flow we assume that each cell is connected to its both nearest
neighbors.

Definition 1. A (one-dimensional) two-way cellular space (CS) is a system
〈S, δ, q0, A, F 〉, where

1. S is the finite, nonempty set of cell states,
2. δ : S3 → S is the local transition function,
3. q0 ∈ S is the quiescent state such that δ(q0, q0, q0) = q0,
4. A ⊆ S is the set of input symbols, and
5. F ⊆ S is the set of final states.

Basically, we have an infinite space but are interested in finite supports
only. That is, beginning a computation with a finite number of non-quiescent
cells, by definition we obtain only finitely many non-quiescent cells at every
time step. This determines the role played by the quiescent state. The set of
final states has been included with an eye towards applications.

· · ·· · · q0 q0 a1 a2 a3 an q0 q0 · · ·

Fig. 6.1. A (one-dimensional) two-way cellular space.

In general, the global behavior of a cellular space is of interest. It is in-
duced by the local behavior of all cells, that is, by the local transition function.
More precisely, a configuration of a cellular space 〈S, δ, q0, A, F 〉 at time t ≥ 0
is a description of its global state, which is formally a mapping ct : Z → S.
The configuration at time 0 is defined by the given input w = a1 · · · an ∈ A+,
n ≥ 1. We set c0(i) = ai, for 1 ≤ i ≤ n, and c0(i) = q0 otherwise. Configura-
tions may be represented as words over the set of cell states in their natural
ordering, where the quiescent state is represented by the empty word. For ex-
ample, the initial configuration for w is represented by a1a2 · · · an. Successor
configurations are computed according to the global transition function ∆.
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Let ct, t ≥ 0, be a configuration. Then its successor ct+1 = ∆(ct) is defined
by ct+1(i) = δ(ct(i − 1), ct(i), ct(i + 1)), for all i ∈ Z. A computation can be
represented as space-time diagram, where each row is a configuration and the
rows appear in chronological ordering.

An elementary technique in automata theory is the usage of multiple
tracks. Basically, this means to consider the state set as Cartesian product
of some smaller sets. Each component of a state is called register, and the
same register of all cells together form a track.

In the sequel, for convenience and readability we may omit the defini-
tion of local transition functions for situations that do not change the state.
Especially, we omit δ(q0, q0, q0) = q0.

Example 1. The following cellular spaceM = 〈S, δ, q0, A, F 〉 reverses its input
w ∈ A+ in |w| time steps (cf. Figure 6.2). It uses two tracks that are imple-
mented by the state set S = (A∪{␣})2∪{q0}. Let (s1, s2), (s3, s4) and (s5, s6)
be arbitrary states from S \ {q0}.

δ(q0, (s3, s4), q0) = (s4, s3)
δ(q0, (s3, s4), (s5, s6)) = (s5, s3)
δ((s1, s2), (s3, s4), q0) = (s4, s2)

δ((s1, s2), (s3, s4), (s5, s6)) = (s5, s2)

&'

t

n

q0
0 1 0 0 1
� � � � �

q0

q0
1 0 0 1 �

0 � � � �
q0

q0
0 0 1 � �

1 0 � � �
q0

q0
0 1 � � �

0 1 0 � �
q0

q0
1 � � � �

0 0 1 0 �
q0

q0
� � � � �

1 0 0 1 0
q0

Fig. 6.2. Space-time diagram of a two-way cellular space reversing its input.

6.2.2 Important Generalizations

So far, cellular spaces have been introduced as one-dimensional arrays whose
cells are connected to their immediate neighbors. Certainly, these types belong
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to the most important and natural ones. In particular, from a computational
perspective they are best investigated. However, there are many generaliza-
tions which are just as interesting and natural. More generally speaking, the
specification of a cellular space includes the type and specification of the cells,
their interconnection scheme (which can imply a dimension of the system),
the local rules which are formalized as local transition function, and the in-
put and output modes. In the present subsection we briefly deal with two
generalizations. First, we consider arbitrary unique interconnection schemes
which are called neighborhood-indices and, secondly, devices whose cells are
arranged as d-dimensional grids.

So, assume that the cells of a cellular space are arranged as d-dimensional
grid such that we deal with the Euclidean space Z

d.

Definition 2. 1. Let d, k ≥ 1 be positive integers. A d-dimensional neighbor-
hood-index of degree k is a k-tuple N = (n1, n2, . . . , nk) of different ele-
ments from Z

d.
2. Some cell j ∈ Z

d is called a neighbor of cell i ∈ Z
d, if there is a k′ ∈ N

such that j = i + k′. The cells i and j are called neighbors, if either i is
neighbor of j, or vice versa.

In order to identify the neighbors of a cell i one has to add the elements
of N to i. In particular, if 0 belongs to N , then cell i is its own neighbor. Only
in this case the next state of a cell depends on its current state. Configurations
are now mappings ct : Z

d → S, and the global transition function ∆ is induced
by the local transition function δ : Sk → S as follows:

ct+1 = ∆(ct) ⇐⇒ ct+1(i) = δ(ct(i + n1), . . . , ct(i + nk)), for all i ∈ Z
d.

There are general methods that allow to simulate a cellular space by another
one having a (reduced) standard neighborhood-index. So, it suffices to consider
the most important standard ones. Whenever the ordering of the elements of
a neighborhood-index does not matter, we may specify it as a set.

Example 2. Let d ≥ 1, k ≥ 0, and m1, . . . ,md denote the components of
m ∈ Z

d. Then

Hd
k = {m ∈ Z

d | k ≥
∑d

i=1 |mi|} or

H̄d
k = {m ∈ Z

d | k ≥
∑d

i=1 |mi| ∧ mi ≥ 0, for 1 ≤ i ≤ d}

are (generalized) von-Neumann neighborhoods. Similarly,

Md
k = {m ∈ Z

d | k ≥ max{|mi| | 1 ≤ i ≤ d}} or
M̄d

k = {m ∈ Z
d | k ≥ max{|mi| | 1 ≤ i ≤ d} ∧ mi ≥ 0, for 1 ≤ i ≤ d}

are (generalized) Moore neighborhoods (cf. Figure 6.3). &'
The following famous cellular space is known as Game of Life. While the

underlying rules are quite simple, the global behavior is rather complex. In
fact, it is unpredictable.
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H̄1
1 H1

1 H2
1 M2

1 H̄2
2

Fig. 6.3. Standard neighborhoods (the origin is shaded).

Example 3. We consider the two-dimensional space Z
2. The cells are connected

according to the Moore-neighborhood M2
1 , where each cell is connected to

itself and to its eight immediate neighbors. Cells may be dead or alive, so
the state set is chosen to be {0, 1}. The local transition function is defined
dependent on the number of living cells in the neighborhood. In particular,
a cell stays or becomes alive, if there are exactly three living cells within its
Moore-neighborhood. It stays in its current state, if there are exactly four
living cells within its Moore-neighborhood, and it dies from overpopulation
or isolation otherwise.

The Game of Life made its first appearance in [16]. Over the years very
interesting properties have been discovered. Some of them are based on the
behavior of patterns that represent the arrangement of dead and living cells
(cf. Figures 6.4 and 6.5). &'

t t + 1 t + 2 t + 3 t + 4

Fig. 6.4. Evolution of a periodical stationary pattern (blinker) in the Game of Life.
Living cells are shaded.

6.2.3 Universality

In order to explore the power of general cellular spaces, we are now going to
prove their universality. To this end, it is shown how cellular spaces can sim-
ulate Turing machines. Moreover, given a Turing machine, the corresponding
cellular space should be as simple as possible. Therefore, we present a direct
simulation by a one-dimensional space, where the number of states depends
on the number of states and tape symbols of the Turing machine [30].
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t t + 1 t + 2 t + 3 t + 4

Fig. 6.5. Evolution of a periodical non-stationary pattern (glider) in the Game of
Life. Living cells are shaded. Within four time steps the glider moves diagonally one
cell to the north east.

But first we have another approach to evidence based on the generaliza-
tions. Roughly speaking, the idea is to model logical gates and information
transmission in two-dimensional cellular spaces. Then universal computers can
be build and embedded into the space. Interestingly, the constructions can be
done with the simple rules of the Game of Life. So, two states are sufficient [4].

A stream of information is modeled as stream of bits. Consider a stream of
gliders moving with the same space between, and assume some of the gliders
are missing. Then the stream can be interpreted as stream of bits where the
presence of a glider means 1 and the absence means 0. The following pattern
depicted in Figure 6.6 is known as glider gun. The core of the gun behaves

Fig. 6.6. Evolution of a glider gun in the Game of Life. Living cells are shaded.
Within 30 time steps a glider is emitted to the north east. The arrows indicate the
direction of the stream of gliders.
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periodical. In addition, it emits a glider every 30 time steps. So, a glider gun
can be seen as a source of a stream of bits consisting of ones only.

Now we turn to logical gates. In order to obtain a NOT gate, one observes
that whenever two gliders collide at a right angle, then all wreckage disappears.
So, the input stream to negate can be directed to a bit stream emitted by a
glider gun. If a 1 (a glider) of the input stream reaches the collision area, it
will collide with the incoming glider from the gun and is destroyed. If a 0 of
the input stream reaches the collision area, the incoming glider will pass the
collision area. In this way a 1 yields to a 0, and vice versa (cf. Figure 6.7).

Input stream Glider gun

Output stream

Fig. 6.7. A NOT gate in the Game of Life. Living cells are shaded. The cells shaded
lightgray are not alive. They indicate the missing glider representing a 0.

Similarly, AND and OR gates are constructed. Figure 6.8 shows the
schematic diagrams, where G means glider gun, and E is a pattern called
eater. An eater absorbs incoming gliders.

The universality of cellular spaces follows since universal computers can
be build from logical gates and bit streams. These computers can be embed-
ded into the space. But it is worth mentioning that the effective construction
requires to start with finite configurations of the cellular space. On the other
hand, the computers may use potentially infinite memory. Nevertheless, by
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Fig. 6.8. Schematic diagrams of logical gates in the Game of Life. Glider guns and
eaters are denoted by G and E.

nontrivial constructions it is possible to extend the available memory on de-
mand of the computation [4].

Next we show how to simulate an arbitrary Turing machine by a one-
dimensional cellular space with von-Neumann H1

1 neighborhood, where the
number of states depends on the number of states and tape symbols of the
Turing machine. Since the Turing machine is arbitrary, in particular, the sim-
ulation of universal Turing machines is possible. There are universal Turing
machines, for example, with four states and six tape symbols [56]. So, the next
theorem gives also an upper bound on the size necessary for a (universal) cel-
lular space.

Theorem 1. Let T = 〈S, T, δ, s0, ␣〉 be a one-tape Turing machine with state
set S, tape symbols T , transition function δ, initial state s0, and blank sym-
bol ␣. Then there is a cellular spaceM with |T |+4|S| states, that simulates T
in twice the time.

Proof. Without loss of generality, we assume that S and T are disjoint. Each
symbol of the tape inscription is stored in one cell of M. The left neighbor
of the cell storing the currently scanned tape symbol represents the current
state of T (cf. Figure 6.9).

At first glance, due to the H1 neighborhood of the cellular space, the
problem arises that a possible left move of the head cannot be observed by
the cell at the left of the cell representing the state of T . But an intermediate
step can solve the problem. In particular, the cell representing the state of T
changes to some new state that indicates the next state as well as the intended
head movement. For simplicity, we do the same for right moves and no moves.
The formal construction of M = 〈S′, δ′, q0, A, F 〉 is as follows:

S′ = S ∪ T ∪ (S × {stay, right, left})

The local transition function δ′ is defined dependent on δ. Let s, s′ ∈ S and
a, a′ ∈ T . For all a1, a2 ∈ T ,
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s

Turing machine

· · · a−2 a−1 a0 a1 a2 · · · · · · a−2 a−1 s a0 a1 a2 · · ·

Cellular space

Fig. 6.9. Correspondent configurations of a Turing machine and a simulating cel-
lular space.

δ(s, a) = (s′, a′, stay) =⇒ ( δ′(a1, s, a) = (s′, stay),
δ′(s, a, a1) = a′,
δ′(a1, (s′, stay), a′) = s′),

δ(s, a) = (s′, a′, right) =⇒ ( δ′(a1, s, a) = (s′, right),
δ′(s, a, a1) = a′,
δ′(a1, (s′, right), a′) = a′,
δ′((s′, right), a′, a1) = s′),

δ(s, a) = (s′, a′, left) =⇒ ( δ′(a1, s, a) = (s′, left),
δ′(s, a, a1) = a′,
δ′(a1, (s′, left), a′) = a1,
δ′(a2, a1, (s′, left)) = s′).

In all other situations cells do not change their states. &'

6.2.4 Simulation of Data Structures

This subsection is devoted to show how to simulate certain data structures by
(one-dimensional) cellular spaces without any loss of time. The simulations
may serve as tools for designing algorithms or as subroutines for programming
cellular spaces. First we consider pushdown stores (stacks) [6, 29], that is,
stores obeying the principle last in first out. Assume without loss of generality
that at most one symbol is pushed onto or popped from the stack at each time
step. We distinguish one cell that simulates the top of the pushdown store.
It suffices to use three additional tracks for the simulation. Let the three
pushdown registers of each cell be numbered one, two, and three from top to
bottom, and suppose that the third register is connected to the first register
of the right neighbor. The content of the pushdown store is identified by
scanning the registers in their natural ordering beginning in the distinguished
cell, whereby empty registers are ignored (cf. Figure 6.10).

The pushdown store dynamics of the transition function is defined such
that each cell prefers to have only the first two registers filled. The third
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Fig. 6.10. Pushdown registers exemplarily storing the string PUSHDOWNER.

register is used as a buffer. In order to reach that charge it obeys the following
rules (cf. Figure 6.11).

1. If all three registers of its left (upper) neighbor are filled, it takes over
the symbol from the third register of the neighbor and stores it in its first
register. The old contents of the first and second registers are shifted to
the second and third register.

2. If the second register of its left neighbor is free, it erases its own first
register. Observe that the erased symbol is taken over by the left neighbor.
In addition, the cell stores the content of its second register into its first
one, if the second one is filled. Otherwise, it takes the symbol of the first
register of its right neighbor, if this register is filled.

3. Possibly more than one of these actions are superimposed.
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Fig. 6.11. Principle of a pushdown store simulation. Subfigures are in row-major
order.
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The main difference between pushdown stores and rings or queues is the
way how to access the data. A ring obeys the principle first in first out, that
is, the first symbol of the stored string is read and possibly erased while, in
addition, a new symbol may be added at the end of the string. So, a ring
can write and erase at the same time. A queue is a special case of a ring.
It can either write or erase a symbol, but not both at the same time. In
order to simulate a ring or queue, also no more than three additional registers
are needed. The first two registers are used to store the symbols, where the
second one is needed to cope with the situation when symbols are erased
consecutively. The third track is used to move the new symbols from the front
to the back of the string (cf. Figure 6.12).

· · ·

· · ·

Fig. 6.12. Logical connections between ring registers.

Again, without loss of generality, we may assume that at most one symbol
is entered to or erased from the ring at every time step. Moreover, each cell
prefers to have the first two registers filled. Altogether, it obeys the following
rules (cf. Figure 6.13).

1. If the third register of its left neighbor is filled, it takes over the symbol
from that register. The cell stores the symbol into its first free register, if
possible. Otherwise, it stores the symbol into its own third register.

2. If the third register of its left neighbor is free, it marks its own third
register as free.

3. If the second register of its left neighbor is free, it erases its own first
register. Observe that the erased symbol is taken over by the left neighbor.
In addition, the cell stores the content of its second register into its first
one, if the second one is filled. Otherwise it takes the symbol of the first
register of its right neighbor, if this register is filled.

4. If the second register of its left neighbor is filled and its own second register
is free, then the cell takes the symbol from the first register of its right
neighbor and stores it into its own second register.

5. Possibly, more than one of these actions are superimposed.

6.3 Synchronization

The famous Firing Squad Synchronization Problem (FSSP) was raised by
Myhill in 1957. It emerged in connection with the problem to start several
parts of a parallel machine at the same time. The first published reference
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Fig. 6.13. Principle of a ring (queue) simulation. Subfigures are in row-major order.

appeared with a solution found by McCarthy and Minsky in [50]. Roughly
speaking, the problem is to set up a cellular space such that all cells in a
region change to a special state for the first time after the same number
of steps. Originally, the problem has been stated as follows: Consider a finite
but arbitrary long chain of finite automata that are all identical except for the
automata at the ends. The automata are called soldiers, and the automaton at
the left end is the general. The automata work synchronously, and the state of
each automaton at time step t + 1 depends on its own state and on the states
of its both immediate neighbors at time step t. The problem is to find states
and state transitions such that the general may initiate a synchronization in
such a way that all soldiers enter a distinguished state, the firing state, for
the first time at the same time step. At the beginning all non-general soldiers
are in the quiescent state. More formally, the FSSP is defined as follows.

Definition 3. Let C be the set of all cellular space configurations of the form
#gq0 · · · q0#, that is, for some n ≥ 1, c(0) = c(n + 1) = #, c(1) = g and
c(i) = q0, for i /∈ {0, 1, n + 1}. The Firing Squad Synchronization Problem is
to specify a cellular space 〈S, δ, q0, A, F 〉 such that for all c ∈ C,

1. there is a t ≥ 1 such that
(
∆t(c)

)
(i) = f , for 1 ≤ i ≤ n and some f ∈ S,

2. for all 0 ≤ t′ < t it holds
(
∆t′(c)

)
(i) �= f , for 1 ≤ i ≤ n, and

3. δ(q0, q0, #) = δ(#, q0, q0) = δ(q0, q0, q0) = q0.



6 Cellular Automata – A Computational Point of View 197

While the first solution of the problem takes 3n time steps to synchronize
the n cells in between the cells in state #, Goto [18] was the first who presented
a minimal time solution.

Lemma 1. The minimal solution time for the FSSP is 2n− 2, where n is the
number of cells to be synchronized.

Proof. In contrast to the assertion assume there is a faster solution taking
some time tf < 2n − 2. Observe that the cells which are initially in the
quiescent state may leave the quiescent state not before their left neighbor
is in a non-quiescent state. Therefore, the rightmost cell n cannot leave the
quiescent state before time n− 1. It takes another n− 1 time steps to send a
feedback of this activation back to the general. Since tf < 2n− 2, the general
fires independently of such a feedback.

Now consider the problem with 2n− 1 cells. Since the cells are determin-
istic, the general fires again at time tf < 2n − 2. But at this time step the
rightmost cell 2n−1 is still in the quiescent state, since it takes at least 2n−2
time steps to activate it. &'

Next we present an algorithm that is not time optimal. It takes 3n time,
but reveals basic procedural methods.

Algorithm 1. The FSSP can be solved by dividing the array in two, four,
eight etc. parts of (almost) the same length until all cells are cut-points.
Exactly at this time the cells change to the firing state synchronously. The
divisions are performed recursively. First the array is divided into two parts.
Then the process is applied to both parts in parallel, etc.

In order to divide the array into two parts, the general sends two signals S1
and S2 to the right (cf. Figure 6.14). Signal S1 moves with speed 1, that is,
one cell per time step, and signal S2 with speed 1/3, that is, one cell every
three time steps. When signal S1 reaches the right end, a signal S3 is sent
back to the left with speed 1. Signals S2 and S3 meet in the center of the
array. Dependent on whether the length of the array is even or odd the center
is represented by two or one cell. Next, the center cell(s) becomes a general. It
sends signals S1 and S2 to the left and to the right. This process repeats until
all cells are generals. At this time they change to the firing state synchronously.

Since the times needed to divide the sub-arrays are bounded by 3n/2,
3n/4, 3n/8, and so on, altogether the algorithm takes at most 3n time steps.
&'

The next step towards a time optimal solution is to set up additional
signals in order to determine the cut-points earlier.

Algorithm 2. The previous algorithm is modified as follows (cf. Figure 6.15).
When signal S1 arrives at the right end, the end cell becomes a general and
sends two signals S3 and S4 to the left. Signal S4 behaves as signal S2 except
for the moving direction, that is, it moves with speed 1/3 to the left. The center
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Fig. 6.14. Firing Squad Synchronization with a slow algorithm. Darkgray cells
are generals, gray cells contain a signal with speed 1, lightgray cells a signal with
speed 1/3, and crosshatched cells are in the firing state.

of the array is again determined by the collision of S2 and S3. The center
cell(s) behaves as for the previous algorithm. In particular, it sends signals S1
and S3 to the right. The collision of S1 and S4 determines the center of the
right half of the array after 3n/2 + n/4 time steps. After another n/8 time
steps the center of the third quarter of the array is known. If the remaining
cut-points could be determined similarly, the total synchronization time would
not exceed 2n time steps: 3n/2 + n/4 + n/8 + n/16 + · · · = 2n. Since without
general there are only n − 1 cells to be passed through, the synchronization
obeys the optimal time bound 2(n− 1).

Unfortunately, the presented procedure is not a solution, since only one
of two cut-points is found, respectively. Clearly, one can determine the center
of the left half of the array, if the general sends an additional signal S5 with
speed 1/7 at initial time to the right. But then the next problem is to find
the center of the left quarter of the array. To this end, the general can send
another signal with speed 1/15 to the right. Altogether, for a solution the
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Fig. 6.15. Schematic diagrams of signals. Slow FSSP algorithm (left), additional
signals for right cut-points (center), and additional signals for left cut-points (right).

general has to send signals with speeds 1/(2k − 1), k ≥ 1. Thus, the number
of signals depends on the length of the array, and the problem is not solved.
&'

Nevertheless, there is a solution based on this approach [73]. The idea is
rather simple, the additional signals are generated and moved by trigger sig-
nals (cf. Figure 6.16). The trigger signals themselves are emitted by signals S1
and S3 in the opposite direction at each other time step. Whenever a trigger
signal reaches the leftmost or rightmost cell, a new signal to be triggered is
generated. Whenever a trigger signal reaches a triggered signal, the latter is
moved one cell ahead. On the other hand, any triggered signal absorbs each
other trigger signal. That way, the desired behavior is achieved, and a minimal
time solution for the FSSP is obtained.

Apart from time optimality there is a natural interest in efficient solutions
with respect to the number of states or the number of bits to be communicated
to neighbors. While there exists a time optimal solution where just one bit
of information is communicated [47], the minimal number of states is still
an open problem. The first time optimal solution [18] uses several thousand
states. The presented algorithm from [73] takes 16 states. About one year
later, an eight state time optimal solution was published [3]. Currently, a six
state solution is known [48]. In the same paper it is proved that there does not
exist a time optimal four state algorithm. It is a challenging open problem to
prove or disprove that there exists a five state solution.

Many modifications and generalizations of the FSSP have been investi-
gated. Just to mention a few of them, solutions for higher dimensions can
be found in [19, 57, 60, 63, 70], fault tolerant synchronizations are studied
in [41, 67], generalized positions of the general are considered in [51], and
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Fig. 6.16. Firing Squad Synchronization with a time optimal algorithm using trigger
signals.

growing squads in [21]. In [32] the problem is solved for reversible cellular
spaces, and in [27, 35, 38, 39] more general graphs are considered.

6.4 Signals and Time Constructibility

Signals are used to solve problems. Examples are the basic signals that appear
in solutions of the FSSP, or complex signals that allow to generate prime
numbers. So, they can be seen as tools for algorithm design. In general, signals
are used to transmit or encode information in cellular spaces. They have been
used for a long time, but the systematic study originated from [49]. Basic
questions are what kind of signals can be send, or what speed is possible.

6.4.1 Signals

Roughly speaking, signals are described as follows: If some cell changes to the
state s of its neighbor after some k ≥ 1 time steps, and if subsequently its
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neighbors and their neighbors do the same, then the basic signal s moves with
speed 1/k in the corresponding direction.

By this description it becomes intuitively clear what signals are. But the
concept is much more complex. So a formal treatment is advisable. Obviously,
the maximal speed is one, that is, one cell per time step. Signals are formalized
as mappings, where the signal is distinguished from its implementation, since
not every mapping of the appropriate type can be implemented. The mapping
takes a time step and yields the cell in which the signal resides at this time.

Definition 4. A signal is a mapping ξ : N→ Z, where for all t ≥ 0, ξ(t+1) ∈
{ξ(t)− 1, ξ(t), ξ(t) + 1}.

The current site of an implemented signal is indicated by special states.

Definition 5. A signal ξ is CS-practicable, if there is a cellular space 〈S, δ, q0,
A, F 〉 with distinguished state s ∈ S, subset S′ ⊆ S, and initial configuration
c0(0) = s, c0(i) = q0, for i �= 0, such that ct(i) ∈ S′ ⇐⇒ ξ(t) = i.

It is evident that there are simple and complex signals. In general, auxiliary
signals are needed in order to implement complex ones. Signal ξ is said to be
basic, if the sequence of elementary moves (ξ(t + 1) − ξ(t))t≥0 is ultimately
periodic. It is rightmoving (leftmoving), if it never moves to the left (right),
that is, ξ(t + 1) ∈ {ξ(t), ξ(t) + 1} (ξ(t + 1) ∈ {ξ(t)− 1, ξ(t)}).

Example 4. The signal ξ : N→ Z with ξ(n) = �n
3 � is basic, since the sequence

0, 0, 1, 0, 0, 1, . . . of elementary moves is periodic (cf. Figure 6.17). &'

Example 5. The signal ξ : N→ Z with

ξ(0) = 0 and ξ(n) =
1
4
· 2�log2 n� −

∣∣∣∣ n− 3
4
· 2�log2 n�

∣∣∣∣

is obviously not basic (cf. Figure 6.18). &'

The next lemma clarifies the relation between basic signals and implemen-
tations.

Lemma 2. A signal ξ is basic if and only if it can be implemented in a
cellular space such that all cells not containing ξ are in the quiescent state
(i �= ξ(t) ⇐⇒ ct(i) = q0).

With other words, a signal is basic if and only if it can be implemented
without auxiliary signals.

Definition 6.

1. Let ξ be a basic signal whose sequence of elementary moves after some
time n0 is periodic with period length p. Let u = ξ(t + p)− ξ(t), for some
t > n0.
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Fig. 6.17. The basic signal of Exam-
ple 4.
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Fig. 6.18. Gray cells contain the sig-
nal of Example 5, lightgray cells a
basic auxiliary signal.

a) The slope of ξ is p/u.
b) The speed of ξ is u/p.

2. A monotone increasing (decreasing) function ρ : N → N is called char-
acteristic function of a rightmoving (leftmoving) signal ξ, if ξ(ρ(n)) = n
and ξ(ρ(n)− 1) �= n.

Since the speed is at most 1, the slope is at least 1. The characteristic
function takes a cell and yields the time step at which the signal arrives at
the cell for the first time. Clearly, ρ(n) ≥ n for a characteristic function of
a CS-practicable signal that is generated in cell 0.

6.4.2 Practicable Signals

In order to obtain a rich family of practicable signals we first show that certain
classes of signals are practicable. Then we provide operations that preserve
this property. So, one can construct new practicable signals from practicable
ones by applying the operations.

Signals with exponential characteristic function

Lemma 3. Let b ≥ 2 be a positive integer. Then the signal ξ with character-
istic function bn is CS-practicable.
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Proof. At initial time signal ξ resides in cell 0. At each time step bn, n ≥ 1, it
moves one cell to the right. To this end, two auxiliary signals α and β are used.
In general, signals with speed y

x ≤ 1 may be implemented by alternating y
right moves and x− y no moves. Signal α is generated at time b− 2 in cell 0.
Signal β is generated at time 1

2 (b2 + b− 2) in cell 1
2b(b− 1) (cf. Figure 6.19).

Whenever ξ meets α, signal ξ stays for one time step and then moves one
cell to the right. Signal α also stays for one time step, and then it starts to
move right with speed 1 until it meets β. Next, it moves back to the left with
speed 1 until it meets ξ again. Initially and whenever β meets α, signal β
moves b cells to the right within b+1 time steps. Subsequently, it moves with
speed (b−1)

(b+1) to the right.

n

0 1 2 3 6 10 13
0
1 = 30

3 = 31

9 = 32

27 = 33

n

0 1 2 3 5 8 11 13
0
1 = 20

2 = 21

4 = 22

8 = 23

16 = 24

32 = 25

Fig. 6.19. Signals ξ with characteristic functions 2n and 3n (darkgray), auxiliary
signals α (lightgray) and β (gray).

Exemplarily, the correctness of the construction is shown by induction. It
is proved that α meets ξ at time bn−2 in cell n−1 and, subsequently, meets β
at time 1

2 (bn+1 + bn − 2) in cell n− 1 + 1
2 (bn(b− 1)).

The induction basis n = 1 follows immediately from the generations of the
signals. Assume now, the assertion is true for some n ≥ 1. After meeting β,
signal α meets ξ at time bn+1+bn−2

2 − 1 + bn(b−1)
2 = bn+1 − 2 in cell n. At
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time bn+1 − 1 both signals stay in cell n. Subsequently, at time bn+1 they
move to cell n + 1. Next, signal α passes through cells n + 1 + k at time steps
bn+1 + k, k = 1, 2, . . . Especially for k = −1 + 1

2 (bn+1(b − 1)), signal α is in
cell n + 1

2 (bn+1(b− 1)) at time 1
2 (bn+2 + bn+1 − 2).

After its last meeting with α, signal β first has moved b cells to the right
within b+1 time steps. Next it started to move with speed (b−1)

(b+1) to the right.
Therefore, it passes through cells n−1+ 1

2 (bn(b−1))+b+k(b−1) at time steps
1
2 (bn+1+bn−2)+b+1+k(b+1), k = 1, 2, . . . Especially for k = 1

2 (bn+1−bn−2),
signal β is in cell n + 1

2 (bn+1(b− 1)) at time 1
2 (bn+2 + bn+1 − 2). &'

Signals with polynomial characteristic function

A signal with characteristic function n2 can be derived from (n + 1)2 =
n2 + 2n + 1. In particular, before signal ξ may move from cell n to n + 1
it has to stay for 2n time steps in cell n. The delay is exactly the time needed
by an auxiliary signal α that moves from cell n to cell 0 and back (cf. Fig-
ure 6.20). Proceeding inductively, a signal with characteristic function nb can
be implemented by utilizing auxiliary signals with polynomial characteristic
functions whose degrees are less than b.

Lemma 4. Let b ≥ 1 be a positive integer. Then the signal with characteristic
function nb is CS-practicable.

Proof. Exemplarily, the construction for b = 3 is shown, where an auxiliary
signal with characteristic function n2b is used (cf. Figure 6.21). Constructions
for arbitrary b are straightforward.

First, we derive (n+1)3 = n3+3n2+3n+1, and obtain the necessary time
of delay. A signal with characteristic function n3 has to stay for 3n2 + 3n
time steps in cell n before it moves to cell n + 1. The delay 3n is exactly the
time needed by an auxiliary signal α that moves from cell n to cell 0 and
back, and once more to cell 0. Subsequently, in cell 0 a quadratic signal β
is generated, which moves from cell 0 to cell n and back, and once more to
cell n. &'

Signals whose characteristic functions contain square roots

The problem whether the following lemma is true for k = 1 was left open
in [49]. It has been solved in [66].

Lemma 5. Let k ≥ 1 be a positive integer. Then the signal with characteristic
function kn + �√n� is CS-practicable.

Signals whose characteristic functions contain logarithms

Lemma 6. Let b ≥ 2 be a positive integer. Then the signal with characteristic
function n + �logb(n)� is CS-practicable.
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n

0 1 2 3 4 5
0
1 = 12

4 = 22

9 = 32

16 = 42

25 = 52

36 = 62

Fig. 6.20. Signal ξ with characteris-
tic function n2 (darkgray), auxiliary
signal α (gray).

n

0 1 2 3 4
0
1 = 13

8 = 23

27 = 33

Fig. 6.21. Signal ξ with character-
istic function n3 (darkgray), auxiliary
signals α (lightgray) and β (gray, gray
dashed).

A gap in the family of practicable signals

Signals with characteristic functions of the form n+ logb(n) are lower bounds
of CS-practicable signals beyond the identity (plus some constant). In between
there is a gap.

Lemma 7. Let ρ(n) ≥ n, for all n ≥ 0, be the characteristic function of a
CS-practicable signal. Then ρ(n)− n either is ultimately constant or there is
some b ≥ 2 such that ρ(n) ≥ n + �logb(n)�, for all n ≥ 1.

Proof. Let M be a cellular space with state set S implementing the signal
with characteristic function ρ. As usual, we denote its configurations by ct,
t ≥ 0. We assume that ρ(n) ≥ n + �logb(n)� does not hold for all b ≥ 2. In
particular, it does not hold for b = |S|, where we may assume |S| ≥ 2 without
loss of generality. Therefore, there is an n0 such that ρ(n0) < n0 + �logb(n0)�.
Since ρ(n0) ≥ n0, we obtain n0 ≥ b.
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Observe that due to the maximal speed of auxiliary signals, any cell i ≥ 0
cannot participate in the implementation of the signal before time i. So, we
consider the sequence of m ≥ 1 successive states of some cell i ≥ 0 beginning
at time step i, that is, ci(i)ci+1(i) · · · ci+m−1(i), and denote it by w(i,m). The
number of different sequences of length �logb(n0)� is at most n0. Therefore,
there are numbers i ≥ 0 and j ≥ 1 with i+j ≤ n0 such that w(i, �logb(n0)�) =
w(i + j, �logb(n0)�). This implies w(�, �logb(n0)�) = w(� + kj, �logb(n0)�), for
all k ≥ 0 and � ≥ i.

At time ρ(n0) the signal resides in cell n0 which is indicated by a distin-
guished state. By ρ(n0)−n0 < �logb(n0)� follows that at time steps ρ(n0)+kj
the cells n0 +kj are in the same state. Therefore, ρ(n0 +kj) = ρ(n0)+kj and
due to the maximal speed of signals we obtain ρ(n0 + k) = ρ(n0) + k, for all
k ≥ 0. We derive ρ(n0)− n0 = ρ(n)− n, for all n ≥ n0. Thus, ρ is ultimately
constant. &'

6.4.3 Time Constructibility

The investigation of time constructible functions in cellular spaces originates
from [15], where a cellular space is constructed whose cell at the origin distin-
guishes exactly the time steps that are prime numbers. In [49] the systematic
study of this concept was started. Since all values of a function have to be
constructed, we consider strictly increasing functions. Initially, all cells except
the one at the origin are quiescent.

Definition 7. A strictly increasing function f : N → N is CS-time-con-
structible if there is a cellular space 〈S, δ, q0, A, F 〉 with distinguished state
s ∈ S and initial configuration c0(0) = s, c0(i) = q0, for i �= 0, such that
cell 0 is in some state from F at time t, if and only if t = f(i) for some i ≥ 1.
The family of CS-time-constructible functions is denoted by F (CS).

Lemma 8. Let b ≥ 2 be a positive integer. Then the function bn is CS-time-
constructible.

Proof. In order to time construct the function bn, an auxiliary signal β with
speed (b−1)

(b+1) is generated at time 0 in cell 0. It arrives at cells kb(b−1)
2 at time

steps kb(b+1)
2 . A second auxiliary signal α is generated at time b in cell 0.

Subsequently, it repeatedly moves with speed 1 to the right until it meets β,
bounces and moves with speed 1 back to cell 0. At its arrival cell 0 changes
to some state from F .

If α leaves cell 0 at some time bn, then it arrives at cell 1
2bn(b− 1) at time

bn + 1
2bn(b−1). Exactly at this time signal β is in the same cell (for k = bn−1).

Therefore, signal α is back at cell 0 at time bn + bn(b− 1) = bn+1. &'

At first glance, it seems that CS-time-constructible functions cannot grow
faster than exponential functions. Among others, the next lemma says that
this is a false impression.
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Lemma 9. 1. The factorial function n! is CS-time-constructible.
2. The function that maps n to the nth prime number is CS-time-con-

structible.

The two families of CS-time-constructible functions and CS-practicable
signals are very rich. Moreover, they are closely related. The next two results
bridge the gap between the notions.

Theorem 2. Let h : N→ N be a strictly increasing function. If the signal with
characteristic function h is CS-practicable, then h is CS-time-constructible.

With other words, all characteristic functions of Section 6.4.2 are CS-
time-constructible. Unfortunately, the converse is not true in general. For
example, functions of the form n+�logi�, where logi denotes the ifold iterated
logarithm, i ≥ 2, are CS-time-constructible. But by Lemma 7 they are not
characteristic functions of CS-practicable signals. Nevertheless, for most of
the relevant functions, the converse is true. Whenever the difference between
f(n) and n is at least linear, a corresponding signal can be derived from a
CS-time-constructible function f .

Theorem 3. Let f be a CS-time-constructible function. If (k − 1)f(n) ≥ kn,
for some positive integer k ≥ 1, then the signal with characteristic function f
is CS-practicable.

Finally, we summarize closure properties of the family F (CS) in order to
be able to construct new functions by certain operations.

Theorem 4. Let f and g be functions belonging to F (CS).

1. Let k be a positive rational constant such that �k ·f� is strictly increasing.
Then �k · f� belongs to F (CS).

2. The sum f + g belongs to F (CS).
3. If f(n) ≥ g(n), for all n ≥ 1, and (k + 1)f − kg is strictly increasing, for

some positive integer k ≥ 1, then the function (k + 1)f − kg belongs to
F (CS).

4. The composition f(g) belongs to F (CS).

Further results about signals as well as time constructible and time com-
putable functions can be found, for example, in [5, 6, 7, 13, 34, 68, 69].

6.5 Cellular Language Acceptors

Now we turn to one of the main branches in the theory of automata. Clearly,
the data supplied to some device can be arranged as strings of symbols. In-
stances of problems to solve can be encoded as strings with a finite number of
different symbols. Furthermore, complex answers to problems can be encoded
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as binary sequences such that the answer is computed bit by bit. In order to
compute one piece of the answer, the set of possible inputs is split into two
sets associated with the binary outcome. From this point of view, the compu-
tational capabilities of the devices are studied in terms of string acceptance,
that is, the determination to which of the two sets a given string belongs.
These investigations are done with respect to and with the methods of lan-
guage theory. For cellular spaces and automata they originated from [11, 12]
and [61, 31]. Over the years substantial progress has been achieved, but there
are still some basic open problems with deep relations to other fields.

6.5.1 Cellular Automata

Once we have a universal device there is a natural interest in realistic models
that meet certain restrictions. Similar to the step from Turing machines to
linear bounded automata, that is in terms of formal languages, from recur-
sively enumerable to context-sensitive languages, the step from cellular spaces
to cellular automata is to bound the number of available cells by the length of
the input. For simplicity, the boundaries in space are modelled by a so-called
permanent boundary symbol #. Due to the nearest neighbor connections, cells
cannot communicate across a boundary. So, we may focus on the computa-
tions in between the boundaries and may disregard the computations outside.
A widely studied question is to what extend one-way information flow reduces
the computational capabilities of cellular automata. One-way information flow
from right to left is achieved by providing the H̄1 neighborhood (cf. Exam-
ple 2), that is, the next state of a cell depends on the current states of the cell
itself and its immediate neighbor to the right.

Definition 8. A (one-dimensional) two-way cellular automaton (CA) is a
system 〈S, δ, #, A, F 〉, where

1. S is the finite, nonempty set of cell states,
2. # /∈ S is the permanent boundary symbol,
3. A ⊆ S is the nonempty set of input symbols,
4. F ⊆ S is the set of final states, and
5. δ : (S ∪ {#})× S × (S ∪ {#})→ S is the local transition function.

· · ·# a1 a2 a3 an #

Fig. 6.22. A two-way cellular automaton.

If the flow of information is restricted to one-way, the resulting device is
a one-dimensional one-way cellular automaton (OCA).

A configuration of a cellular automaton 〈S, δ, #, A, F 〉 at time t ≥ 0 is
formally a mapping ct : {1, . . . , n} → S, for n ≥ 1. The configuration at
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· · ·a1 a2 a3 an #

Fig. 6.23. A one-way cellular automaton.

time 0 is defined by the given input w = a1 · · · an ∈ A+. We set c0(i) = ai, for
1 ≤ i ≤ n. So, #a1a2 · · · an# represents the initial configuration for w including
the boundary symbols. Let ct, t ≥ 0, be a configuration with n ≥ 2, then ct+1

is defined as follows:

ct+1 = ∆(ct) ⇐⇒

⎧
⎨

⎩

ct+1(1) = δ(#, ct(1), ct(2))
ct+1(i) = δ(ct(i− 1), ct(i), ct(i + 1)), i ∈ {2, . . . , n− 1}
ct+1(n) = δ(ct(n− 1), ct(n), #)

for CAs, and

ct+1 = ∆(ct) ⇐⇒
{

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {1, . . . , n− 1}
ct+1(n) = δ(ct(n), #)

for OCAs. For n = 1, the next state of the sole cell is δ(#, ct(1), #) or δ(ct(1), #).

6.5.2 Mode of Acceptance and Speed-Up

What is the result of the computation? One can partition the whole set of
possible configurations into accepting and rejecting ones. This general ap-
proach is insufficient, since it could be much harder to determine whether a
resulting configuration is accepting or not. So, it should be easy, say trivial, to
recognize an accepting configuration. We define a configuration to be accept-
ing when the cell receiving the first symbol of the input (cell 1) is in a final
state from F . Further definitions of accepting configurations are studied, for
example, in [26, 62], while more general input modes are considered in [42].

More precisely, an input w is accepted by an OCA, CA, or CS M, if at
some time during its course of computation cell 1 enters a final state. The
language accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n
be a mapping. If all w ∈ L(M) are accepted within at most t(|w|) time
steps, then L(M) is said to be of time complexity t. The family of languages
that are accepted by OCAs (CAs, CSs) with time complexity t is denoted by
Lt(OCA) (Lt(CA), Lt(CS)). The index is omitted for arbitrary time. Ac-
tually, arbitrary time in linearly space bounded devices is exponential time.
If t(n) = n, acceptance is said to be in real time and we write Lrt(OCA)
(Lrt(CA), Lrt(CS)). The linear-time languages Llt(OCA) are defined accord-
ing to Llt(OCA) =

⋃
k∈Q, k≥1 Lk·n(OCA), and similarly for CAs and CSs.

In order to avoid technical overloading in writing, two languages L and L′

are considered to be equal, if they differ at most in the empty word, that is,
L− {λ} = L′ − {λ}.
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Example 6. The language {anbn | n ≥ 1} is accepted by some OCA in real
time (cf. Figure 6.24). During the first step, each cell with input symbol a
changes into a state a′. In addition, the rightmost cell recognizes its position
by means of the neighboring boundary symbol, and changes into a state r.
Afterwards, at each time step the cell states b and r are shifted to the left.
Whenever a b meets an a, the corresponding cell changes into state c. When r
meets an a, the corresponding cell enters a final state R that is no longer
shifted to the left. The construction is easily modified to reject inputs having
a wrong format. &'

a a a a a a b b b b b b #

a′ a′ a′ a′ a′ a′ b b b b b r #

a′ a′ a′ a′ a′ c b b b b r #

a′ a′ a′ a′ a′ b b b b r #

a′ a′ a′ a′ c b b b r #

a′ a′ a′ a′ b b b r #

a′ a′ a′ c b b r #

a′ a′ a′ b b r #

a′ a′ c b r #

a′ a′ b r #

a′ c r #

a′ r #

R #

t

n

Fig. 6.24. Space-time diagram of an OCA accepting an input from the language
{anbn | n ≥ 1} in real time.

Helpful tools in connection with time complexities are speed-up theorems.
Strong results are obtained in [24, 25], where the parallel language families
are characterized by certain types of customized sequential machines. Among
others, such machines have been developed for CSs, CAs, and OCAs. In par-
ticular, it is possible to speed up the time beyond real time linearly. Therefore,
linear-time computations can be sped up close to real time. Later, the question
whether real time can be achieved is discussed in detail later.

Theorem 5. LetM be a CS, CA, or OCA obeying time complexity rt+r(n),
where r : N → N is a mapping and rt denotes real time. Then for all k ≥ 1
an equivalent device M′ of the same type obeying time complexity rt + � r(n)

k �
can effectively be constructed.
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The next example states that any constant beyond real time can be omit-
ted.

Example 7. Let k0 ≥ 1 and M be a device in question with time complexity
rt + k0. Then there is an equivalent real-time device M′ of the same type.
It suffices to set k = k0 + 1 and to apply Theorem 5 in order to obtain
rt + �k0

k � = rt + � k0
k0+1� = rt for the time complexity of M′. &'

Next, a linear-time computation is sped up close to real time.

Example 8. Let k0 ≥ 1 and M be a device in question with time complexity
rt+k0 ·rt. Then for all rational numbers ε > 0 there is an equivalent deviceM′

of the same type with time complexity �(1+ε)·rt�. We set k =
⌈

k0
ε

⌉
and apply

Theorem 5 in order to obtain rt +
⌊

k0·rt
�k0/ε�

⌋
≤ rt +

⌊
k0·rt
k0/ε

⌋
= rt + �ε · rt� =

�(1 + ε) · rt�. &'

6.5.3 Basic Hierarchy of Languages

The goal of this section is to establish a basic hierarchy of cellular language
families, and to compare the levels with well-known families of the Chomsky
hierarchy. The properness of some inclusions are long-standing open problems
with deep relations to sequential complexity problems. In order to establish
the hierarchy we start at the upper end.

In Theorem 1 it is shown how to simulate deterministic Turing machines
by cellular spaces. Since the number of non-quiescent cells is just one more
than the space complexity of the Turing machine, CAs can simulate linearly
space-bounded Turing machines. Conversely, a straightforward construction
of Turing machines from CSs and of linearly space-bounded Turing machines
from CAs shows the following lemma [31].

Lemma 10. The family L (CS) is identical with the recursively enumer-
able languages. The family L (CA) is identical with the complexity class
DSPACE(n), that is, with the deterministic context-sensitive languages.

Corollary 1. The family L (CA) is properly included in L (CS).

The family L (OCA) is very powerful. It contains the context-free lan-
guages as well as a PSPACE-complete language [8, 22]. For structural reasons
it is contained in L (CA). It is an open problem whether or not the inclusion
is proper.

Corollary 2. The family L (OCA) is included in L (CA).

We continue with the lower end of the hierarchy, and consider the weakest
devices in question, the real-time OCAs.

Lemma 11. The regular languages are properly included in Lrt(OCA).
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Proof. Let L be a regular language represented by some deterministic finite
automaton E . We construct a real-time OCA M with two tracks that simu-
lates E . In fact, the first register of each cell is used to simulate E , whereas
the second track is used to shift the input to the left, that is, to feed it into
the simulation of E . So, the first register of the leftmost cell fetches the whole
input and simulates E completely.

The properness of the stated inclusion follows from Example 6 which shows
that the non-regular language {anbn | n ≥ 1} belongs to Lrt(OCA). &'

In order to reach the next level of the hierarchy we consider unary lan-
guages. It turns out that even massively parallel OCAs with a certain time
bound cannot accept more unary languages than a single deterministic finite
automaton [59].

Lemma 12. Let L ⊆ {a}+ be a unary language accepted by some OCA M.
If for all b ≥ 2 there is a wb ∈ L which is accepted by M in t(|wb|) <
|wb|+ �logb(|wb|)� time steps, then there are k0, k ≥ 1 such that ak0+m·k ∈ L
for all m ≥ 0.

Proof. Let M = 〈S, δ, #, A, F 〉. In particular, for b = (|S| + 1)3 there exists
a wb ∈ L whose length is denoted by n0, and which is accepted in t(n0),
n0 ≤ t(n0) < n0+�log(|S|+1)3(n0)�, time steps. It follows �log(|S|+1)3(n0)� ≥ 1,

and thus n0 > |S|3. Moreover, we have �n
1
2
0 � > |S|, for |S| > 1.

For convenience now we assume that the cells of the OCA are num-
bered from right to left. For a computation with initial configuration #an0#
we consider the words cn−1(n)cn(n)cn+1(n) · · · cn+�log|S|2 (n0)	−1(n), for all
1 ≤ n ≤ n0, and denote them by en. All these words have the same length
�log|S|2(n0)�+ 1. The number of different words is at most

|S|�log|S|2 (n0)	+1 = |S| · |S|�log|S|2 (n0)	 ≤ |S| · �|S|log|S|2 (n0)�
= |S| · �|S| 12 log|S|(n0)� = |S| · �(|S|log|S|(n0))

1
2 �

= |S| · �n
1
2
0 � < �n

1
2
0 � · �n

1
2
0 � ≤ n0.

Therefore, at least two of e1, . . . , en0 are identical, say ei and ej with i < j.
Since initially all cells are in the same state, en+1 is uniquely determined
by en. So, ei = ej implies en0−(j−i) = en0 and, furthermore, if the array is
long enough, en0+m(j−i) = en0 , for all m ≥ −1. For k0 = n0 and k = j − i,
ek0+m·k = en0 follows, for all m ≥ −1. Since an0 is accepted in less than
n0 + �log(|S|+1)3(n0)� time steps, word en0 contains an accepting state due to
�log(|S|+1)3(n0)� ≤ �log|S|2(n0)� + 1. Therefore, for all m ≥ 1, input ak0+m·k

is also accepted. &'

For real-time computations a closer look at the proof of the previous lemma
reveals the following lemma.

Lemma 13. Each unary real-time OCA language is regular.
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Proof. Considering the proof of Lemma 12 in case of real time, one observes
that the relevant information of the words en consists of the first two states
only. Moreover, the first state appears in all cells to the left at the same time
step. So, it is easy to construct an equivalent deterministic finite automaton
with two registers that computes the first state of the next word en+1 by
applying the transition function to twice the current first state, and the second
state of the next word en+1 by applying the transition function to the current
first state and the current second state. &'

Example 9. In general, Lemma 12 cannot be used to prove that an accepted
unary language is regular. For example, consider the non-regular language
L = {a2n | n ≥ 1} ∪ {a2n−1 | n ≥ 1}, and suppose there is an OCA accepting
{a2n | n ≥ 1} with time complexity t(n) that is at least of order n + log(n)
(cf. Example 10). Clearly, the second subset {a2n−1 | n ≥ 1} which contains
all words of odd length can be accepted in real time. So, an OCA accepting L
by accepting the subsets on different tracks in parallel obeys the time com-
plexity t(n) if n is even, and real time if n is odd. Therefore, the conditions
of Lemma 12 are met, and it is applicable for k0 = 1 and k = 2. &'

On the other hand, in particular cases Lemma 12 can be used to prove
that a non-regular unary language is not accepted in less than n+log(n) time.

Theorem 6. Let r ∈ o(log), r : N → N, be a function. Then language L =
{a2n | n ≥ 1} does not belong to Lrt+r(OCA).

Proof. In contrast to the assertion, assume L ∈ Lrt+r(OCA). Then, for all
b ≥ 1, there is a wb ∈ L which is accepted in t(|wb|) < |wb|+ �logb(|wb|)� time
steps. By Lemma 12 we conclude that there are n0, k ≥ 1, such that a2n0 ∈ L
and a2n0+m·k ∈ L, for all m ≥ 1, which is a contradiction. &'

The next example gives a tight bound for the OCA time complexity nec-
essary to accept language {a2n | n ≥ 1}.

Example 10. The following OCA M = 〈S, δ, #, A, F 〉 accepts the unary lan-
guage {a2n | n ≥ 1} with time complexity t(n) = n + log(n).

The basic idea of the construction is to generate a binary counter in the
rightmost cell with one step delay (cf. Figure 6.25). The counter moves to the
left whereby the cells passed through are counted. The length of the counter
is increased when necessary. In addition, cells which are passed through by
the counter have to check whether all bits are 1. In this case the value of the
counter is 2n−1, for some n ≥ 1. Due to the delayed generation this indicates
a correct input length and the cell enters the final state. Clearly, the desired
time complexity is obeyed. A formal construction is as follows.

S = {a, e, 1, +, 0, •
0
, +
1
}, A = {a}, F = {+}, and for all s1, s2 ∈ S:
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t

n

a a a a a a a a a a a a a a a a #

a a e #

a a +
1 e #

a a •
0 + e #

a a +
1 1 + e #

a a •
0

+
1 e + e #

a a +
1

•
0 + e + e #

a a •
0 0 1 + e + e #

a a +
1 1 1 e + e + e #

a a •
0

+
1 1 e e + e + e #

a a +
1

•
0

+
1 e e + e + e #

a a •
0 0

•
0 + e e + e + e #

a a +
1 1 0 1 + e e + e + e #

a a •
0

+
1 0 1 e + e e + e + e #

a a +
1

•
0 0 1 e e + e e + e + e #

a •
0 0 1 1 e e + e e + e + e #

+
1 1 1 1 e e + e e + e + e #

+
1 1 1 e e + e e + e + e #

+
1 1 e e + e e + e + e #

+
1 e e + e e + e + e #

+ e e + e e + e + e #

Fig. 6.25. Space-time diagram of an OCA accepting an input from the language
{a2n | n ≥ 1} in n + log(n) time. Lightgray arrows mark the moving counter, whose
digits are 0, 1, or •

0
. The latter is a 0 reporting a carry-over. A +

1
indicates that, so

far, the cell has been passed through by 1s only.

δ(s1, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e if
(
s1 /∈ {•

0
, +
1
, +, a} ∧ s2 ∈ {e, +}

)
∨
(
s1 = a ∧ s2 = #

)

+ if
(
s1 = +

1
∧ s2 = e

)

+
1

if
(
s1 = a ∧ s2 ∈ {e, •

0
}
)
∨
(
s1 = +

1
∧ s2 = 1

)

•
0

if
(
s1 = a ∧ s2 = +

1

)
∨

(
s1 = •

0
∧ s2 ∈ {+

1
, 1}

)

0 if
(
s1 �= a ∧ s2 ∈ {•0 , 0}

)

1 if
(
s1 = •

0
∧ s2 ∈ {0, e, +}

)
∨
(
s1 �= +

1
∧ s2 = 1

)

s1 otherwise

&'

Corollary 3. The family Lrt(OCA) is properly included in Lrt+log(OCA).
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For structural reasons, the next inclusion follows immediately. Its proper-
ness and, in fact, infinite proper hierarchies in between Lrt(OCA) and
Llt(OCA) have been shown in [37].

Corollary 4. The family Lrt+log(OCA) is properly included in Llt(OCA).

Since real-time and linear-time CSs use at most linearly many cells, they
can be simulated by real-time and linear-time CAs. So, we do not need to con-
sider them separately. Once we know that, in general, a linear-time OCA lan-
guage cannot be accepted by any real-time OCA, the question arises whether
two-way information flow can help in this respect. The next result gives a
(partial) answer [9, 71]. The answer is not complete, since the input has to
be reversed. Alternatively, one could reverse the neighborhood of the cells in
an OCA. Then the rightmost cell indicates the result of the computation. In
this case the input could remain as it is. In any case, the condition cannot
be relaxed since it is an open problem whether the corresponding language
families are closed under reversal.

Theorem 7. A language is accepted by a linear-time OCA if and only if its
reversal is accepted by a CA in real time.

Proof. LetM be a real-time CA. The cells of a linear-time OCAM′ accepting
LR(M) collect the information necessary to simulate one transition of M in
an intermediate step. Therefore, the first step ofM is simulated in the second
step of M′. We obtain a behavior as depicted in Figure 6.26.

Altogether, M′ cannot simulate the last step of M. So, the construction
has to be extended slightly. Each cell has an extra register that is used to
simulate transitions of M under the assumption that the cell is the leftmost
one (cf. Figure 6.27). The transitions of the real leftmost cell now correspond
to the missing transitions of the previous simulation. &'

It turned out that for OCAs linear time is strictly more powerful than
real time. The problem is still open for CAs. The next inclusions follow for
structural reasons and by the closure of Llt(CA) under reversal.

Corollary 5. Any linear-time OCA language as well as its reversal belong to
Llt(CA).

Now we can join the upper and the lower part of the hierarchy. The ques-
tion whether or not one-way information flow is a strict weakening of two-way
information flow for unbounded time is a long-standing open problem. Even
the inclusion does not follow for structural reasons. It is proved in [8, 22] in
terms of simulations of equivalent sequential machines. In the same paper it is
shown that a PSPACE-complete language is accepted by OCAs. In fact, it is
an open question whether real-time CAs are strictly weaker than unbounded
time CAs. If both classes coincide, then a PSPACE-complete language would
be accepted in polynomial time! The basic hierarchy obtained is depicted in
Figure 6.31 on page 221.

Theorem 8. The family Llt(CA) is included in L (OCA).
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t

n

40 30 20 10 #

40,30 30,20 20,10 10,e #

31 21 11 e #

31,21 21,11 11,e e,e #

22 12 e e #

22,12 12,e e,e e,e #

13 e e e #

OCA

# 10 20 30 40 #

# 11 21 31 41 #

# 12 22 32 42 #

# 13 23 33 43 #

# 14 24 34 44 #

CA

Fig. 6.26. Intermediate steps in the construction of the proof of Theorem 7.

t

n

40 30 20 10
#

#
40,30

#
30,20

#
20,10

#
10,e

#

41

31 21 11 e
#

? ? ?

41

31,21 21,11 11,e e,e #
? ? ?

32

22 12 e e
#

? ? ?

32

22,12 12,e e,e e,e #
? ? ?

23

13 e e e
#

? ? ?

23

13,e e,e e,e e,e #
? ? ?

14

e e e e
#

? ? ?

OCA

# 10 20 30 40 ## 10 20 30 40 #

# 11 21 31 41 #

# 12 22 32 42 #

# 13 23 33 43 #

# 14 24 34 44 #

CA

Fig. 6.27. Example of a linear-time OCA simulation of a real-time CA computation
on reversed input.
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6.5.4 Relations to Context-Free Languages

The relations between the language families in question and the regular, (de-
terministic) context-sensitive and recursively enumerable languages of the
Chomsky hierarchy are quite clear. But what about the context-free lan-
guages? In [8] it is shown that they are properly included in the family
L (OCA). On the other hand, the family Lrt(OCA) is incomparable with
the family of context-free languages [65] since it contains, for example, the
language {anbncn | n ≥ 1}, and does not contain the two-linear language LL
with

L = {anbn | n ≥ 1} ∪ {anbwabn | w ∈ {a, b}∗, n ≥ 1}.

Theorem 9.

1. The context-free languages are properly included in the family L (OCA).
2. The family of context-free languages is incomparable with the families

Lrt(OCA) and Lrt+log(OCA).

Nevertheless, even the real-time OCA languages contain important sub-
families, for example, the linear context-free languages [61], the Dyck lan-
guages [59], and the bracketed context-free languages [14]. Furthermore, the
non-semilinear language {(aib)∗ | i ≥ 0} [59] and the inherently ambiguous
language {aibjck | i = j or j = k for i, j, k ≥ 1} [31] belong to Lrt(OCA).

Whether or not the context-free languages are included in the family
Lrt(CA) is an open question raised in [31]. It is related to the open ques-
tion whether or not sequential one-tape Turing machines are able to accept
the context-free languages in square-time. A proof for the inclusion would im-
ply the existence of square-time Turing machines. In fact, also the problem
whether or not the context-free languages are included in Llt(CA) is open.
But for the important metalinear and deterministic context-free languages we
can answer the inclusion problem in the affirmative [40].

Theorem 10. The metalinear languages are properly included in the family
Lrt(CA).

Proof. Let L be a metalinear language. Then there exists a k ≥ 1 such that L
is k-linear. Therefore, we can represent L as union of finitely many concate-
nations L1 · L2 · · · · · Lk, where each Li is a linear context-free language. The
family Lrt(CA) is closed under union. The family Lrt(OCA) is closed under
reversal [59]. Since the linear context-free languages [61] belong to the family
Lrt(OCA), there exist real-time OCAs for each of the languages LR

1 , . . . , LR
k .

Since the concatenation of a real-time and a linear-time OCA language is
again a linear-time OCA language [22], we obtain LR

k · · · · · LR
1 ∈ Llt(OCA).

From the equality Llt(OCA) = L R
rt (CA) it follows L1 ·· · ··Lk = L ∈ Lrt(CA).

&'

Theorem 11. The deterministic context-free languages are properly included
in the family Lrt(CA).
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Proof. Here we cannot use an ordinary stack simulation because we are con-
cerned with deterministic pushdown automata that are allowed to perform
λ-transitions. But without loss of generalization we may assume that a given
deterministic pushdown automatonM pushes at most k ≥ 1 symbols onto the
stack in every non-λ-transition, and erases exactly one symbol from the stack
in every λ-transition [17]. Moreover, the first transition is a non-λ-transition.

By the equality Llt(OCA) = L R
rt (CA) it suffices to construct a ((k+1)·n)-

time OCA M′ that accepts the language LR(M). To this end, let M be a
deterministic pushdown automaton with state set S, set of stack symbols G,
set of input symbols A, initial state s0, bottom-of-stack symbol ⊥ ∈ G, set of
accepting states F , and transition function δ : S ×G× (A ∪ {λ})→ S ×G∗.

Now we construct the OCA M′ = 〈S′, δ′, #, A, F ′〉.
Each cell of M has k + 2 registers, where the first one can store either

an input symbol, or a distinguished special symbol $, or a state of M. The
second register is used to implement a finite counter with range 0 to k. The
remaining k registers can store stack symbols of M and may be empty. Ac-
cordingly, S′ is defined to be (S ∪ A ∪ {$}) × {0, . . . , k} × (G ∪ {λ})k. The
transition function δ′ ensures that at every time step t ≥ 1 exactly one cell
contains a symbol from S in its first register. This symbol is the current state
of M. So, F ′ is defined to be F × {0, . . . , k} × (G ∪ {λ})k.

Let a1a2 · · · an be an input of M. We consider M′ when fed with the
reverse input anan−1 · · · a1. Initially all counter registers are set to 0, and
all k registers for stack symbols are empty. Since the first transition of M′ is
a non-λ-transition and the rightmost cell can identify itself, for all a ∈ A, the
initial step ofM′ is defined as follows (cf. Figure 6.28).

s0 a1 a2 · · · an

⊥
#

an an−1 · · · a2 a1

δ(s0,⊥, a1) = (s′, g1g2 · · · gp)

s′ a2 · · · an

g1...
gp

⊥

#

an an−1 · · · a2 s′

g1...
gp

λ...
λ

Fig. 6.28. The initial step of the pushdown automaton M (left) and the corre-
sponding transition of the OCA M′ (right). Counters are not depicted.



6 Cellular Automata – A Computational Point of View 219

δ(s0,⊥, a) = (s′, g1g2 · · · gp) ⇐⇒ δ′((a, 0, λk), #) = (s′, 0, g1g2 · · · gpλ
k−p)

Proceeding inductively, at every time step there is exactly one distin-
guished cell containing the current state ofM in its first register. All cells to
its right are marked by the special symbol $, and all cells to its left store still
their input symbols (cf. Figures 6.28,6.29,6.30).

Every simulation of a transition ofM is performed in two phases. During
the first phase, the new state and the new symbols at the top of the stack
ofM are computed. (The first phase is indicated by 0 in the counter registers.)
LetM perform a non-λ-transition (cf. Figure 6.29). The cell to the left of the
distinguished cell has the necessary information. For all a ∈ A, s ∈ S, and
gj ∈ G,

δ(s, g1, a) = (s′, g′1g
′
2 · · · g′p) ⇐⇒

δ′((a, 0, λk), (s, 0, g1g2 · · · gk)) = (s′, k − p, g′1g
′
2 · · · g′pλk−p).

All other cells of the left part keep their states. For all a, ã ∈ A,

δ′((a, 0, λk), (ã, 0, λk)) = (a, 0, λk).

The distinguished cell observes that M does not perform a λ-transition. It
stores the special symbol $ in its first register. For all s ∈ S,

δ(s, g1, a) is defined for some a ∈ A ⇐⇒
δ′((s, 0, g1g2 · · · gk), #) = ($, 0, g2g3 · · · gkλ) and
δ′((s, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = ($, 0, g2g3 · · · gkgk+1).

s ai ai+1 · · · an

g1...
gm

⊥

#

an · · · ai+1 ai s $ $ $

g1

...

gk

· · ·

gm
k +1
...

gm

δ(s, g1, ai) = (s′, g′1 · · · g′p)

s′ ai+1 · · · an

g′1...
g′p
g2...
gm

⊥

#

an · · · ai+1 s′s′ $ $ $ $

g′1...
g′p

g2

...

gk+1

· · ·

gm
k +2
...

gm

Fig. 6.29. A non-λ-transition of the pushdown automaton M (left) and the corre-
sponding transition of the OCA M′ (right). Counters are not depicted.
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At each time step, cells containing the special symbol $ shift the contents of
the k stack symbol registers one position to the top where the last register is
filled with the symbol shifted out by the right neighbor. For all gj ∈ G,

δ′(($, 0, g1g2 · · · gk), #) = ($, 0, g2g3 · · · gkλ) and
δ′(($, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = ($, 0, g2g3 · · · gkgk+1)

The purpose of the counter is to pack the stack symbols after a non-λ-
transition. If the content of the counter is greater than 0, the second phase is
performed in the distinguished cell. For all s ∈ S, gj ∈ G, and 1 ≤ i ≤ k,

δ′((s, i, g1g2 · · · gpλ
i), ($, 0, gp+1gp+2 · · · gp+k)) = (s, i−1, g1g2 · · · gpgp+1λ

i−1).

If the counter has been decreased to 0, then the next transition ofM is sim-
ulated. The distinguished cell as well as its left neighbor recognize whether it
is a λ-transition. Since during λ-transitions the top-of-stack symbol is erased,
from the above described behavior we get the packing for free (cf. Figure 6.30).
For all a ∈ A, s ∈ S, and gj ∈ G,

δ(s, g1, λ) is defined or i > 0 ⇐⇒
δ′((a, 0, λ), (s, i, g1g2 · · · gk)) = (a, 0, λ)

δ(s, g1, λ) = (s′, λ) ⇐⇒
δ′((s, 0, g1g2 · · · gk), #) = (s′, 0, g2g3 · · · gkλ) and
δ′((s, 0, g1g2 · · · gk), ($, 0, gk+1gk+2 · · · g2k)) = (s′, 0, g2g3 · · · gkgk+1)

s ai ai+1 · · · an

g1...
gm

⊥

#

an · · · ai+1 ai s $ $ $

g1

...

gk

· · ·

gm
k +1
...

gm ...

δ(s, g1, λ) = (s′, λ)

s′ ai ai+1 · · · an

g2...
gm

⊥

#

an · · · ai+1 ai s′ $ $ $

g2

...

gk+1

· · ·

gm
k +2
...

gm ...

Fig. 6.30. A λ-transition of the pushdown automaton M (left) and the correspond-
ing transition of the OCA M′ (right). Counters are not depicted.
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The OCAM′ takes at most (k+1) ·n time steps. It has to simulate n non-
λ-transitions ofM. This takes n time steps. During each of these transitions
some p symbols are pushed onto the stack which cause k−p packing steps. In
addition, there are at most p additional λ-transitions that erase the p symbols.
So, every non-λ-transition causes at most k further steps. It follows that M′

obeys the time complexity (k + 1) · n. &'

Altogether we obtain the hierarchy depicted in Figure 6.31, where the only
known proper inclusions are at the top and the lower end.

L (CS) RE

L (CA) DCSL

L (OCA) CFL

Llt(CA)

Llt(OCA) Lrt(CA) = L R
lt (OCA) DCFL

Lrt+log(OCA) METALIN

Lrt(OCA) LIN REG

Fig. 6.31. Basic hierarchy of language families. A solid arrow indicates a proper
inclusion, a dashed arrow an inclusion, and a double arrow an equality. Linear, meta-
linear, and deterministic context-free languages are denoted by LIN, METALIN,
and DCFL. Regular, context-free, deterministic context-sensitive, and recursively
enumerable languages are denoted by REG, CFL, DCSL, and RE.

6.5.5 Summary of Closure Properties and Decidability Problems

Finally, this subsection is devoted to summarize closure properties of and
decidability results for the language families in question.

Closure properties

The closure properties of L (CS) and L (CA) are those of the recursively
enumerable and deterministic context-sensitive languages. In [8, 22] strong
closure properties are derived for the family of OCA languages. It is shown that
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L (OCA) is an AFL, that is, an abstract family of languages (cf., e.g., [58])
which is in addition closed under reversal.

The closure under reversal is of crucial importance. It is an open problem
for Lrt(CA) and, equivalently, for Llt(OCA). Moreover, it is linked with the
open closure property under concatenation for the same family. If the answer
to the open reversal closure of Lrt(CA) is negative, we have to deal with two
different language families. Since the properness of the inclusion Lrt(CA) ⊆
Llt(CA) is also open, the problem gains in importance. A negative answer of
the former problem would imply a proper inclusion. A language L ∈ Lrt(CA)
whose reversal does not belong to Lrt(CA) may serve as witness since Llt(CA)
is closed under reversal. In fact, the following stronger relation is shown in [23].

Theorem 12. The family Lrt(CA) is closed under reversal if and only if
Lrt(CA) and Llt(CA) are identical.

The question whether or not the family Lrt(OCA) is closed under con-
catenation was open for a long time. It has been solved negatively in [64].

The question whether or not one of the families Lrt(CA) = L R
lt (OCA)

or Llt(CA) is closed under concatenation is another famous open problem
in this field. Nevertheless, it is shown in [23] that the closure of Lrt(CA)
under reversal implies its closure under concatenation. Since in this case we
obtain Lrt(CA) = Llt(CA), the family of linear-time CA languages were also
closed under concatenation. The concatenation closure for unary real-time
CA languages has been solved in the affirmative [23].

Table 6.1 summarizes some closure properties of the language families in
question.

Decidability problems

It is well known that all nontrivial decidability problems for Turing machines
are undecidable [55]. Moreover, many of them are not even semidecidable,
for example, neither finiteness nor infiniteness. Now we turn to summarize
undecidable properties of cellular automata. Most of the early results are
shown in [59] by reductions of Post Correspondence Problems. In terms of
trellis automata the undecidability of emptiness, equivalence, and universal-
ity is derived in [28]. Here we present improved results that show the non-
semidecidability of the properties. Almost all results in this section are proved
in [43] by reductions of Turing machine problems. To this end, valid com-
putations of Turing machines are considered. Roughly speaking, these are
histories of accepting Turing machine computations which can be encoded
in small grammars [20]. The generated languages are accepted by real-time
OCAs.

Theorem 13. For any language family that effectively contains Lrt(OCA)
emptiness, universality, finiteness, infiniteness, equivalence, inclusion, con-
text-freeness, and regularity are not semidecidable.
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Lrt(OCA) Lrt(CA) Llt(CA) L (OCA) L (CA) L (CS)

∪ , ∩ + + + + + +
complementation, − + + + + + −
reversal + ? + + + +
concatenation − ? ? + + +
λ-free iteration − ? ? + + +
concatenation REG + + ? + + +
REG concatenation + ? ? + + +
marked concatenation + + + + + +
marked λ-free iteration + + + + + +

hom−1 + + + + + +
deterministic gsm−1 + + + + + +
gsm−1 − ? ? + + +
inj. length-pres. hom + + + + + +
λ-free hom − ? ? + + +
λ-free gsm − ? ? + + +
λ-free substitution − ? ? + + +
hom − − − − − +

Table 6.1. Summary of closure properties. Concatenation REG denotes the con-
catenation with regular languages at the right, REG concatenation at the left,
hom denotes homomorphisms, gsm generalized sequential machine mappings, and
inj. length-pres. abbreviates injective length-preserving. A + indicates closure, a −
non-closure, and a question mark an open problem.

Next the question arises whether some structural properties of cellular
language acceptors are (semi)decidable. For example, whether or not a real-
time two-way language is a real-time one-way language. The questions turned
out to be not even semidecidable.

Theorem 14. For any language family L that effectively contains Lrt(CA)
it is not semidecidable whether L ∈ L is a real-time OCA language.

In general, a family L of languages possesses a pumping lemma in the
narrow sense if for each L ∈ L there exists a constant n ≥ 1 computable
from L such that each z ∈ L with |z| > n admits a factorization z = uvw,
where |v| ≥ 1 and u′viw′ ∈ L, for infinitely many i ≥ 0. The prefix u′ and the
suffix w′ depend on u,w and i.

Theorem 15. Any language family whose word problem is semidecidable and
that effectively contains Lrt(OCA) does not possess a pumping lemma (in the
narrow sense).

Theorem 16. There is no minimization algorithm converting some CA or
OCA (with arbitrary time complexity) to an equivalent automaton of the same
type with a minimal number of states.

Nevertheless, there are nontrivial decidable properties of cellular spaces.
It is known that injectivity of the global transition function is equivalent to
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the reversibility of the automaton. It is shown in [2] that global reversibility
is decidable for one-dimensional CSs, whereas the problem is undecidable for
higher dimensions [36].
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7.1 Introduction

A paper in a previous volume [51] explained parsing, which is the process of
determining the parses of an input string according to a formal grammar. Also
discussed was tabular parsing, which solves the task of parsing in polynomial
time by a form of dynamic programming. In passing, we also mentioned that
parsing of input strings can be easily generalised to parsing of finite automata.

In applications involving natural language, the set of parses for a given
input sentence is typically very large. This is because formal grammars often
fail to capture subtle properties of structure, meaning and use of language,
and consequently allow many parses that humans would not find plausible.

In natural language systems, parsing is commonly one stage of process-
ing amongst several others. The effectiveness of the stages that follow parsing
generally relies on having obtained a small set of preferred parses, ideally only
one, from amongst the full set of parses. This is called (syntactic) disambigua-
tion. There are roughly two ways to achieve this. First, some kind of filter
may be applied to the full set of parses, to reject all but a few. This filter may
look at the meanings of words and phrases, for example, and may be based
on linguistic knowledge that is very different in character from the grammar
that was used for parsing.

A second approach is to augment the parsing process so that weights are
attached to parses and subparses. The higher the weight of a parse or sub-
parse, the more confident we are that it is correct. This is called weighted
parsing. If the weights are chosen to define a probability distribution over
parses or strings, this may also be called probabilistic parsing. Disambigua-
tion is achieved by computing the parse with the highest weight or, where
appropriate, highest probability.

The simplest form of probabilistic parsing relies on an assignment of prob-
abilities to individual rules from a context-free grammar. These probabilities
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are then multiplied upon combination of rules to form parses. Models that
are close to this basic idea, such as [18, 21], have been highly influential from
the 1990s onward. The success of probabilistic parsing is due to its flexibility
and scalability, in contrast to approaches to disambiguation that rely on much
deep knowledge of language. For general discussions about statistical natural
language processing see [12, 43, 9].

In Section 7.2 we discuss both weighted and probabilistic context-free
grammars. We investigate intersection of weighted context-free grammars and
finite automata in Section 7.3. By normalisation, discussed in Section 7.4, it
can be shown that for the sake of disambiguation we may restrict our atten-
tion to probabilistic context-free grammars. Parsing is treated in Section 7.5,
and how the probabilities of grammar rules can be obtained empirically is
explained in Section 7.6.

Section 7.7 discusses the computation of prefix probabilities, and proba-
bilistic push-down automata are the subject of Section 7.8. By considering
semirings, a number of computations involving context-free grammars and
push-down automata can be unified, as demonstrated in Section 7.9. We end
with additional bibliographic remarks in Section 7.10.

7.2 Weighted and Probabilistic Context-Free Grammars

A weighted context-free grammar (WCFG) G is a 5-tuple (Σ,N, S,R, µ), where
(Σ,N, S,R) is a context-free grammar and µ is a mapping from rules in R to
positive real numbers. We refer to these numbers as weights, and they should
be thought of as a measure of the desirability of using the corresponding rules.
In general, a rule with a high weight is preferred over one with a low weight.

Let d = π1 · · ·πm ∈ R∗ be a string of rules (or alternatively, of labels
that uniquely identify rules), and let α and β be strings of grammar symbols.
The expression α

d⇒ β means that β can be obtained from α by a left-most
derivation in m steps, and the i-th step replaces the left-most nonterminal
Ai by γi according to rule πi = (Ai → γi). All derivations in this paper are
assumed to be left-most. If S

d⇒ w, we define the yield of d as y(d) = w.
We now define µ(α d⇒ β) to be

∏m
i=1 µ(πi) if α

d⇒ β holds and to be
0 otherwise. In words, if the expression α

d⇒ β denotes a valid left-most
derivation, we compute the product of the weights of the used rules, and
otherwise we take 0. This notation allows us to define the weight of a string
w as:

µ(w) =
∑

d

µ(S d⇒ w). (7.1)

In words, to obtain the weight of a string we sum the weights of all left-most
derivations of that string. For choices of d such that S

d⇒ w does not denote a
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valid left-most derivation, nothing is contributed to the sum. If S
d⇒ w holds,

we also write µ(d) in place of µ(S d⇒ w).

Example 1. In the grammar below, the rules are labelled by names πi and the
weights are the numbers between brackets.

π1 : S → A A (3)
π2 : S → a a (1)
π3 : A → a (2)

This grammar is ambiguous, as there are two left-most derivations of aa,
namely S

π1⇒ AA π3⇒ aA π3⇒ aa with weight µ(π1) · µ(π3) · µ(π3) = 3 · 2 · 2 =
12 and S

π2⇒ aa with weight µ(π2) = 1. The weight of aa is therefore µ(aa) =
µ(S π1π3π3⇒ aa) + µ(S π2⇒ aa) = 12 + 1 = 13.

We say a WCFG is convergent if
∑

d,w µ(S d⇒ w) is a finite number. A
WCFG can be called a probabilistic context-free grammar (PCFG) if µ maps
all rules to numbers no greater than 1 [28, 29, 10, 73]. Where we are dealing
with PCFGs, we will often replace the name µ of the weight assignment by p.

We say a WCFG is proper if for every nonterminal A:
∑

π=(A→α)

µ(π) = 1. (7.2)

In other words, for each nonterminal A in a parse tree or in a sentential form,
µ gives us a probability distribution over the rules that we can apply.

A WCFG is said to be consistent if:
∑

d,w

µ(S d⇒ w) = 1. (7.3)

This means that µ is a probability distribution over derivations of terminal
strings. An equivalent statement is that µ is a probability distribution over
terminal strings, as:

∑

d,w

µ(S d⇒ w) =
∑

w

µ(w). (7.4)

Clearly, consistency implies convergence. Properness and consistency are two
closely related concepts but, as we will see below, neither implies the other.

An important auxiliary concept for much of the theory that is to follow is
the partition function Z, which maps each nonterminal A to:

Z(A) =
∑

d,w

µ(A d⇒ w). (7.5)

Note that a WCFG is consistent if and only if Z(S) = 1.
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By decomposing derivations into smaller derivations, and by making use
of the fact that multiplication distributes over addition, we can rewrite:

Z(A) =
∑

π=(A→α)

µ(π) · Z(α), (7.6)

where we define:

Z(ε) = 1, (7.7)
Z(aβ) = Z(β), (7.8)
Z(Bβ) = Z(B) · Z(β), for β �= ε. (7.9)

The partition function may be approximated by only considering derivations
up to a certain depth. We define for all A and k ≥ 0:

Zk(A) =
∑

d,w:depth(d)≤k

p(A d⇒ w), (7.10)

where the depth of a left-most derivation is the largest number of rules visited
on a path from the root to a leaf in the familiar representation as parse tree.
More precisely, depth(ε) = 0 and if π = (A → X1 · · ·Xm) and Xi

di⇒ wi

(1 ≤ i ≤ m), then depth(πd1 · · · dm) = 1 + maxi depth(di).
By again decomposing derivations, we obtain a recursive characterisation:

Zk+1(A) =
∑

π=(A→α)

p(π) · Zk(α), (7.11)

and Z0(A) = 0 for all A, where we define:

Zk(ε) = 1, (7.12)
Zk(aβ) = Zk(β), (7.13)
Zk(Bβ) = Zk(B) · Zk(β), for β �= ε. (7.14)

Naturally, for all A:

lim
k→∞

Zk(A) = Z(A). (7.15)

If we interpret (7.6) together with (7.7) through (7.9) as a system of polyno-
mial equations over variables Z(A), for the set of nonterminals A ∈ N , then
there may be several solutions. The intended solution, as given by (7.5), is
the smallest non-negative solution. This follows from the fact that the oper-
ation implied by (7.11) that computes values Zk+1(A) from values Zk(B) is
monotone, and the least fixed-point of this operation corresponds to (7.5),
following (7.15).

The values Z(A) may be approximated by computing Zk(A) for k = 1, . . .
until the values stabilise. Another option is to use Newton’s method [22]. In
special cases, the solution can be found analytically.
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Example 2. Consider the following proper WCFG:

S → S S (q)
S → a (1− q)

for a certain choice of q between 0 and 1. Using (7.6) through (7.9), we obtain:

Z(S) = q · Z(S)2 + (1− q). (7.16)

We can solve this equation, distinguishing between two cases. If q ≤ 1
2 , then

Z(S) = 1 and if q > 1
2 , then Z(S) = 1−q

q . We make use of the fact that we need
the smallest non-negative solution. It follows that the WCFG is consistent only
if q ≤ 1

2 . The intuition for the case q > 1
2 is that probability mass is lost in

‘infinite derivations’.
A WCFG can also be consistent without being proper. An example is:

S† → S ( q
1−q )

S → S S (q)
S → a (1− q)

for 1
2 < q < 1.

7.3 Weighted Intersection

It was shown by [5] that context-free languages are closed under intersection
with regular languages. The proof relies on the construction of a new CFG
out of an input CFG and an input finite automaton. Here we extend that
construction by letting the input grammar be a weighted CFG. For an even
more general construction, where also the finite automaton is weighted, we
refer to [49].

To avoid a number of technical complications, we assume here that the
finite automaton has no epsilon transitions, and has only one final state. Thus,
a finite automaton (FA) M is a 5-tuple (Σ, Q, q0, qf , ∆), where Σ and Q
are two finite sets of input symbols and states, respectively, q0 is the initial
state, qf is the final state, and ∆ is a finite set of transitions, each of the form
s

a�→ t, where s, t ∈ Q and a ∈ Σ.
For a FA M as above and a PCFG G = (Σ, N, S, R, µ) with the same

set Σ, we construct a new PCFG G∩ = (Σ, N∩, S∩, R∩, µ∩), where N∩ =
Q× (Σ ∪N)×Q, S∩ = (q0, S, qf ), and R∩ is the set of rules that is obtained
as follows.

• For each A → X1 · · ·Xm in R and each sequence s0, . . . , sm ∈ Q, with
m ≥ 0, let (s0, A, sm)→ (s0,X1, s1) · · · (sm−1,Xm, sm) be in R∩; if m = 0,
the new rule is of the form (s0, A, s0) → ε. Function µ∩ assigns the same
weight to the new rule as µ assigned to the original rule.
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• For each s
a�→ t in ∆, let (s, a, t)→ a be in R∩. Function µ∩ assigns weight

1 to this rule.

Observe that a rule of G∩ is constructed either out of a rule of G or out of a
transition ofM. On the basis of this correspondence between rules and transi-
tions of G∩, G andM, it can be stated that each derivation d∩ in G∩ deriving
a string w corresponds to a unique derivation d in G deriving the same string
and a unique computation c inM recognising the same string. Conversely, if
there is a derivation d in G deriving string w, and some computation c in M
recognising the same string, then the pair of d and c corresponds to a unique
derivation d∩ in G∩ deriving the same string w. Furthermore, the weights of
d and d∩ are equal, by the definition of µ∩.

Parsing of a string w = a1 · · · an can be seen as a special case of the
construction, where there is a linear FA, with states q0 = s0, s1, . . . , sn = qf ,
and transitions of the form si−1

ai�→ si (1 ≤ i ≤ n). The intersection grammar
constructed as explained above can be seen as a succinct representation of all
parses of w. As weights are copied unchanged from G to G∩, we can find the
parse of w with the highest weight on the basis of G∩. We will return to this
issue in Section 7.5.

We say a nonterminal in a CFG is generating if at least one terminal string
can be derived from that nonterminal. We say a nonterminal is reachable if
a string containing that nonterminal can be derived from the start symbol.
A nonterminal is called useless if it is non-generating or non-reachable or
both. A grammar G∩ as obtained above generally contains a large number of
useless nonterminals, to the extent that the construction as given may not be
practical.

Introduction of non-generating nonterminals can be avoided by construct-
ing rules in a bottom-up phase. That is, a rule is introduced only if all the
members in the right-hand side have been found to be generating. This ensures
that the left-hand side nonterminal is also generating. In a following top-down
phase, the non-reachable nonterminals can be eliminated, by a standard tech-
nique that is linear in the size of the grammar [65].

Below, we will assume one more improvement. The motivation is that the
number of rules of the form (s0, A, sm) → (s0,X1, s1) · · · (sm−1,Xm, sm) is
exponential in m. Our improvement effectively postpones enumeration of all
relevant combinations of s1, . . . , sm−1 until (s0, A, sm) is found to be reachable
in the top-down phase. During the bottom-up phase, given in Figure 7.1, such
rules are constructed incrementally by items of the form (s0, A → α • β, si),
where A → αβ is a rule and i = |α|. Existence of such an item in table I
means that there are s1, . . . , si−1 such that (s0,X1, s1), . . . , (si−1,Xi, si) are
all generating nonterminals, with α = X1 · · ·Xi. We also have a separate table
N to store such generating nonterminals.

The bottom-up phase is similar to a bottom-up variant of the parsing
algorithm by [26], and the complexity is very similar. The time complexity in
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first_phase:
N = ∅ {table of generating nonterminals for N∩}
I = ∅ {table of items, partially representing rules for R∩}
A = ∅ {agenda, items yet to be processed}
for all (s

a�→ t) ∈ ∆ do
add_symbol(s, a, t)

for all s ∈ Q do
for all (A → ε) ∈ R do

A = A ∪ {(s, A → •, s)}
while A �= ∅ do

choose (s, A → α • β, t) ∈ A
A = A− {(s, A → α • β, t)}
add_item(s, A → α • β, t)

add_symbol(s, X, t):
if (s, X, t) /∈ N

N = N ∪ {(s, X, t)}
for all (r, A → α • Xβ, s) ∈ I do

A = A ∪ {(r, A → αX • β, t)}
for all (A → Xβ) ∈ R do

A = A ∪ {(s, A → X • β, t)}

add_item(r, A → α • β, s):
if (r, A → α • β, s) /∈ I

I = I ∪ {(r, A → α • β, s)}
if β = ε

add_symbol(r, A, s)
else

let Xγ = β
for all (s, X, t) ∈ N do

A = A ∪ {(r, A → αX • γ, t)}

Fig. 7.1. The bottom-up phase of the intersection algorithm. Input are PCFG G
and FA M. The tables N and I will be used in the subsequent top-down phase.

our case is cubic in the number of states ofM and linear in the size of G. The
space complexity is quadratic in the number of states of M.

Let us now turn to the construction of G∩ out of N and I in the top-
down phase, given in Figure 7.2. From the start symbol (q0, S, qf ), we descend
and construct rules for reachable nonterminals that were also found to be
generating in the bottom-up phase. Nonterminals are individually added to
N∩ in such a way that rules cannot be constructed more than once.

Some remarks about the implementation are in order. First, the agenda A
is here represented as a set to avoid the presence of duplicate elements. The
maximum number of elements the agenda may contain at any given time is
thereby quadratic in the number of states ofM. If we alternatively represent
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second_phase:
make_rules(q0, S, qf )

make_rules(r, A, s): {if second argument is nonterminal}
if (r, A, s) /∈ N∩

N∩ = N∩ ∪ {(r, A, s)}
for all π = (A → X1 · · ·Xm) ∈ R do

s0 = r
sm = s
for all s1, . . . , sm−1 ∈ Q such that (s0, X1, s1), . . . , (sm−1, Xm, sm) ∈ N do

ρ = (r, A, s) → (s0, X1, s1) · · · (sm−1, Xm, sm)
R∩ = R∩ ∪ {ρ}
µ∩(ρ) = µ(π)
for all i such that 1 ≤ i ≤ m do

make_rules(si−1, Xi, si)

make_rules(r, a, s): {if second argument is terminal}
if (r, a, s) /∈ N∩

N∩ = N∩ ∪ {(r, a, s)}
ρ = (r, a, s) → a
R∩ = R∩ ∪ {ρ}
µ∩(ρ) = 1

Fig. 7.2. The top-down phase of the intersection algorithm. On the basis of table N ,
the nonterminals and rules of G∩ are constructed, together with the weight function
µ∩ on rules.

the agenda as a queue or stack, allowing elements to be present more than
once, the space complexity may become cubic.

Second, one may use I in the top-down phase to guide the search for
relevant rules from G and states from M. This process is further simplified
by having the bottom-up phase record a list of the reasons why a certain
element is in N or I. For example, if (r,A → αX • β, t) was obtained from
(r,A→ α • Xβ, s) and (s,X, t), then the mentioned list for (r,A→ αX • β, t)
contains amongst others the pair consisting of (r,A→ α • Xβ, s) and (s,X, t).
Such a pair is recorded in the list by add_symbol if (s,X, t) is added toN after
(r,A→ α • Xβ, s) is added to I, and it is recorded by add_item otherwise.

The additional bookkeeping however is at the cost of having larger tables
at the end of the bottom-up phase. This increase is from square to cubic in
the number of states of M, as a pair consisting of (r,A → α • Xβ, s) and
(s,X, t) contains three states. See also [3, Exercise 4.2.21].

With or without the above optimisations, the space complexity isO(|Q|r+1),
where r is the length of the longest right-hand side. This can be reduced to
O(|Q|3), either by transforming the original grammar to binary form (that is,
with r = 2) before the intersection, or by refining the intersection algorithm
to return a grammar in binary form.



7 Probabilistic Parsing 237

G:

S → a S a ( 1
2
)

S → b S b ( 1
8
)

S → b ( 3
8
)

M:

q0 q1 qf

b
a a

b
G∩:

(q0, S, qf ) → (q0, a, q1) (q1, S, q1) (q1, a, qf ) ( 1
2
)

(q1, S, q1) → (q1, a, qf ) (qf , S, q0) (q0, a, q1) ( 1
2
)

(qf , S, q0) → (qf , b, q0) (q0, S, q0) (q0, b, q0) ( 1
8
)

(qf , S, q0) → (qf , b, q0) (q0, S, qf ) (qf , b, q0) ( 1
8
)

(qf , S, q0) → (qf , b, q0) ( 3
8
)

(q0, S, q0) → (q0, b, q0) (q0, S, q0) (q0, b, q0) ( 1
8
)

(q0, S, q0) → (q0, b, q0) (q0, S, qf ) (qf , b, q0) ( 1
8
)

(q0, S, q0) → (q0, b, q0) ( 3
8
)

(q0, b, q0) → b (1)

(q0, a, q1) → a (1)

(q1, a, qf ) → a (1)

(qf , b, q0) → b (1)

Fig. 7.3. Example of intersection of PCFG G and FA M, resulting in G∩, which is
presented here without useless nonterminals.

Example 3. Figure 7.3 shows the end result G∩ of applying the algorithm in
Figures 7.1 and 7.2 on an example PCFG G and FAM.

7.4 Normalisation

An obvious question is whether general convergent WCFGs have any advan-
tages over proper and consistent PCFGs. In this section we will show that if
we are only interested in the ratios between the weights of derivations, rather
than in absolute values, the answer is negative. This allows us to restrict our
attention to proper and consistent PCFGs for the purpose of disambiguation.

The argument hinges on normalisation of WCFGs [69, 1, 49, 52], which can
be defined as the construction of a proper and consistent PCFG (Σ,N, S,R, p)
out of a convergent WCFG (Σ,N, S,R, µ). The function p is given by:

p(π) =
µ(π) · Z(α)

Z(A)
, (7.17)

for each rule π = (A → α). In words, the probability of a rule is normalised
to the portion it represents of the total weight mass of derivations from the
left-hand side nonterminal A.

That the ratios between weights of derivations are not affected by normal-
isation follows from a result in [49]:

p(S d⇒ w) =
µ(S d⇒ w)

Z(S)
, (7.18)



238 Mark-Jan Nederhof and Giorgio Satta

0 q
0

Z(S)

10.5

1

0 q
0

q′

10.5

0.5

1

Fig. 7.4. The values of Z(S) and q′ as functions of q, for Example 4.

for each derivation d and string w. In other words, the weights of all derivations
change by the same factor. Note that this factor is 1 if the original grammar
is already consistent. This implies that consistent WCFGs and proper and
consistent PCFGs describe the same class of probability distributions over
derivations.

Example 4. Let us return to the WCFG from Example 2, with the values of
µ between brackets:

S → S S (q)
S → a (1− q)

The result of normalisation is the proper and consistent PCFG below, with
the values of p between brackets:

S → S S (q′)
S → a (1− q′)

For q ≤ 1
2 , we have q′ = q. For q > 1

2 however, we have:

q′ = q·Z(SS)
Z(S) = q·Z(S)2

Z(S) = q · Z(S ) = q · 1−q
q = 1− q. (7.19)

The values of Z(S) and q′ as functions of q are represented in Figure 7.4.

7.5 Parsing

As explained in Section 7.3, context-free parsing is strongly related to com-
puting the intersection of a context-free grammar and a finite automaton. If
the input grammar is probabilistic, the probabilities of the rules are simply
copied to the intersection grammar. The remaining task is to find the most
probable derivation in the intersection grammar.

Note that the problem of finding the most probable derivation in a PCFG
does not rely on that PCFG being the intersection of another PCFG and a
FA. Let us therefore consider an arbitrary PCFG G = (Σ, N, S, R, p), and
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our task is to find d and w such that p(S d⇒ w) is maximal. Let pmax denote
this maximal value. We further define pmax (X) to be the maximal value of
p(X d⇒ w), for any d and w, where X can be a terminal or nonterminal.
Naturally, pmax = pmax (S) and pmax (a) = 1 for each terminal a.

Much of the following discussion will focus on computing pmax rather
than on computing a choice of d and w such that pmax = p(S d⇒ w). The
justification is that most algorithms to compute pmax can be easily extended
to a computation of relevant d and w using additional data structures that
record how intermediate results were obtained. These data structures however
make the discussion less transparent, and are therefore largely ignored.

Consider the graph that consists of the nonterminals as vertices, with an
edge from A to B iff there is a rule of the form A→ αBβ. If G is non-recursive,
then this graph is acyclic. Consequently, the nonterminals can be arranged in
a topological sort A1, . . . , A|N |. This allows us to compute for j = |N |, . . . , 1
in this order:

pmax (Aj) = max
π=(Aj→X1···Xm)

p(π) · pmax (X1) · . . . · pmax (Xm). (7.20)

The topological sort ensures that any value for a nonterminal in the right-hand
side has been computed at an earlier step.

A topological sort can be found in linear time in the size of the graph
[19]. See [44] for an application strongly related to ours. In many cases how-
ever, there is a topological sort that follows naturally from the way that G is
constructed. For example, assume that G is the intersection of a PCFG G′ in
Chomsky normal form and a linear FA with states s0, . . . , sn as in Section 7.3.
We impose an arbitrary linear ordering ≺N on the set of nonterminals from
G′. As topological sort we can now take the linear ordering ≺ defined by:

(si, A, sj) ≺ (si′ , A
′, sj′) iff j > j′ ∨

(j = j′ ∧ i < i′) ∨
(j = j′ ∧ i = i′ ∧A ≺N A′).

(7.21)

By this ordering, the computation of the values in (7.20) can be seen as a
probabilistic extension of CYK parsing [31]. This amounts to a generalised
form of Viterbi’s algorithm [71], which was designed for probabilistic models
with a finite-state structure.

If G is recursive, then a different algorithm is needed. We may use the fact
that the probability of a derivation is always smaller than (or equal to) that
of any of its subderivations. The reason is that the probability of a derivation
is the product of the probabilities of a list of rules, and these are positive
numbers not exceeding 1. We also rely on monotonicity of multiplication, i.e.
for any positive numbers c1, c2, c3, if c1 < c2 then c1 · c3 < c2 · c3.

The algorithm in Figure 7.5 is a special case of an algorithm by Knuth
[35], which generalises Dijkstra’s algorithm to compute the shortest path in a
weighted graph [19]. In each iteration, the value of pmax (A) is established for a
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E = Σ
repeat

F = {A | A /∈ E ∧ ∃A → X1 · · ·Xm[X1, . . . , Xm ∈ E ]}
if F = ∅

report failure and halt
for all A ∈ F do

q(A) = max
π=(A→X1···Xm):

X1,...,Xm∈E

p(π) · pmax (X1) · . . . · pmax (Xm)

choose A ∈ F such that q(A) is maximal
pmax (A) = q(A)
E = E ∪ {A}

until S ∈ E
output pmax (S)

Fig. 7.5. Knuth’s generalisation of Dijkstra’s algorithm, applied to finding the most
probable derivation in a PCFG.

nonterminal A. The set E contains all grammar symbols X for which pmax (X)
has already been established; this is initially Σ, as we set pmax (a) = 1 for each
a ∈ Σ. The set F contains the nonterminals not yet in E that are candidates
to be added next. Each nonterminal A in F is such that a derivation from A
exists consisting of a rule A → X1 · · ·Xm, and derivations from X1, . . . , Xm

matching the values of pmax (X1), . . . , pmax (Xm) found earlier. The nonter-
minal A for which such a derivation has the highest probability is then added
to E .

Knuth’s algorithm can be combined with construction of the intersection
grammar, along the lines of [46], which also allows for variants expressing
particular parsing strategies. See also [34].

A problem related to finding the most probable parse is to find the k most
probable parses. This was investigated by [32, 54, 27].

Much of the discussed theory of probabilistic parsing carries over to more
powerful formalisms, such as probabilistic tree adjoining grammars [58, 63].

We want to emphasise that finding the most probable string is much harder
than finding the most probable derivation. In fact, the decision version of the
former problem is NP-complete if there is a specified bound on the string
length [64], and it remains so even if the PCFG is replaced by a probabilis-
tic finite automaton [11]; see also [70]. If the bound on the string length is
dropped, then this problem becomes undecidable, as shown in [55, 8].

7.6 Parameter Estimation

Whereas rules of grammars are often written by linguists, or derived from
structures defined by linguists, it is very difficult to correctly estimate the
probabilities that should be attached to these rules on the basis of linguistic
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intuitions. Instead, one often relies on two techniques called supervised and
unsupervised estimation.

7.6.1 Supervised Estimation

Supervised estimation relies on explicit access to a sample of data in which
one can observe the events whose probabilities are to be estimated. In the
case of PCFGs, this sample is a bag D of derivations of terminal strings, often
called a tree bank. We assume a fixed order d1, . . . , dm of the derivations in
tree bank D. The bag is assumed to be representative for the language at
hand, and the probability of a rule is estimated by the ratio of its frequency
in the tree bank and the total frequency of rules with the same left-hand side.
This is a form of relative frequency estimation.

Formally, define C(π, d) to be the number of occurrences of rule π in deriva-
tion d. Similarly, C(A, d) is the number of times nonterminal A is expanded in
derivation d, or equivalently, the sum of all C(π, d) such that π has left-hand
side A. Summing these numbers for all derivations in the tree bank, we obtain:

C(π,D) =
∑

1≤h≤m

C(π, dh), (7.22)

C(A,D) =
∑

1≤h≤m

C(A, dh). (7.23)

Our estimation for the probability of a rule π = (A→ α) now is:

pD(π) =
C(π,D)
C(A,D)

. (7.24)

One justification for this estimation is that it maximises the likelihood of
the tree bank [16]. This likelihood for given p is defined by:

p(D) =
∏

1≤h≤m

p(dh). (7.25)

The PCFG that results by taking estimation pD as above is guaranteed to
be consistent [13, 60, 16].

Note that supervised estimation assigns probability 0 to rules that do not
occur in the tree bank, which means that probabilistic parsing algorithms
ignore such rules. A tree bank may contain zero occurrences of rules because
it is too small to contain all phenomena in a language, and some rules that
do not occur in one tree bank may in fact be valid and would occur if the
tree bank were larger. To circumvent this problem one may apply a form of
smoothing, which means shifting some probability mass from observed events
to those that did not occur. Rules that do not occur in the tree bank thereby
obtain a small but non-zero probability. For a study of smoothing techniques
used for natural language processing, see [14].
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Example 5. Consider the following CFG:

π1 : S → S S
π2 : S → a S b
π3 : S → a b
π4 : S → b a
π5 : S → c

Assume a tree bank consisting of only two derivations, π1π3π5 and π2π3,
with yields abc and aabb, respectively. Without smoothing, the estimation is
p(π1) = 1

5 , p(π2) = 1
5 , p(π3) = 2

5 , p(π4) = 0
5 , p(π5) = 1

5 .

7.6.2 Unsupervised Estimation

We define an (unannotated) corpus as a bag W of strings in a language.
As in the case of tree banks, the bag is assumed to be representative for
the language at hand. We assume a fixed order w1, . . . , wm of the strings in
corpus W. Estimation of a probability assignment p to rules of a CFG on
the basis of a corpus is called unsupervised as there is no direct access to
frequencies of rules. A string from the corpus may possess several derivations,
each representing different bags of rule occurrences.

A common unsupervised estimation for PCFGs is a form of Expectation-
Maximisation (EM) algorithm [20]. It computes a probability assignment p
by successive refinements p0, p1, . . ., until the values stabilise. The initial as-
signment p0 may be arbitrarily chosen, and subsequent estimates pt+1 are
computed on the basis of pt, in a way to be explained below. In each step, the
likelihood pt(W) of the corpus increases. This likelihood for given p is defined
by:

p(W) =
∏

1≤h≤m

p(wh). (7.26)

The algorithm converges to a local optimum (or a saddlepoint) with respect
to the likelihood of the corpus, but no algorithm is known to compute the
global optimum, that is, the assignment p such that p(W) is maximal.

Computation of pt+1 on the basis of pt corresponds to a simple idea. With
unsupervised estimation, we do not have access to a single derivation for each
string in the corpus, and therefore cannot determine frequencies of rules by
simple counts. Instead, we consider all derivations for each string, and the
counts we would obtain for individual derivations are combined by taking a
weighted average. The weighting of this average is determined by the current
assignment pt, which offers us probabilities pt(d)

pt(w) , where y(d) = w, which is
the conditional probability of derivation d given string w.

More precisely, an estimated count Ct(π) of a rule π in a corpus, given
assignment pt, can be defined by:
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Ct(π) =
∑

1≤h≤m

∑

d:y(d)=wh

pt(d)
pt(wh)

· C(π, d). (7.27)

Similarly:

Ct(A) =
∑

1≤h≤m

∑

d:y(d)=wh

pt(d)
pt(wh)

· C(A, d). (7.28)

Using these values we compute the next estimation pt+1(π) for each rule
π = (A→ α) as:

pt+1(π) =
Ct(π)
Ct(A)

. (7.29)

Note the similarity of this to (7.24).

Example 6. Consider the CFG from Example 5, with a corpus consisting of
strings w1 = abc, w2 = acb and w3 = abab. The first two strings can only be
derived by d1 = π1π3π5 and d2 = π2π5, respectively. However, w3 is ambiguous
as it can be derived by d3 = π1π3π3 and d4 = π2π4.

For a given pt, we have:

Ct(π1) = 1 +
pt(d3)
pt(w3)

Ct(π2) = 1 +
pt(d4)
pt(w3)

Ct(π3) = 1 + 2 · pt(d3)
pt(w3)

Ct(π4) =
pt(d4)
pt(w3)

Ct(π5) = 2

Ct(S) = 5 + 3 · pt(d3)
pt(w3)

+ 2 · pt(d4)
pt(w3)

The assignment that pt converges to depends on the initial choice of p0. We
investigate two such initial choices:

pt(π1) pt(π2) pt(π3) pt(π4) pt(π5)
t = 0 0.200 0.200 0.200 0.200 0.200
t = 1 0.163 0.256 0.186 0.116 0.279
t = 2 0.162 0.257 0.184 0.117 0.279
...

...
...

...
...

...
t =∞ 0.160 0.260 0.180 0.120 0.280

and:
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pt(π1) pt(π2) pt(π3) pt(π4) pt(π5)
t = 0 0.100 0.100 0.600 0.100 0.100
t = 1 0.229 0.156 0.330 0.028 0.257
t = 2 0.236 0.146 0.344 0.019 0.255
...

...
...

...
...

...
t =∞ 0.250 0.125 0.375 0.000 0.250

In the first case, the likelihood of the corpus is 2.14 · 10−5 and in the second
case 2.57 · 10−5.

As strings may allow a large number of derivations, a direct implemen-
tation of (7.27) and (7.28) is often not feasible. To obtain a more practical
algorithm, we first rewrite Ct(π) as below. Treatment of Ct(A) is similar.

Ct(π) =
∑

1≤h≤m

1
pt(wh)

∑

d:y(d)=wh

pt(d) · C(π, d). (7.30)

The value pt(wh) is just Z(St,h), where St,h is the start symbol of the intersec-
tion of the PCFG with probability assignment pt and the linear FA accepting
the singleton language {wh}. How this value can be computed has already
been explained in Section 7.2. Let us therefore concentrate on the second part
of the above expression, fixing an assignment p, rule π = (A→ α) and string
w = a1 · · · an. We rewrite:

∑

d:y(d)=w

p(d) · C(π, d) =
∑

i,j

∑

d1,d2,d3,β

p(S d1⇒ a1 · · · aiAβ) · p(π) ·
p(α d2⇒ ai+1 · · · aj) ·
p(β d3⇒ aj+1 · · · an)

(7.31)

=
∑

i,j

outer(A, i, j) · p(π) · inner(α, i, j), (7.32)

where we define:

outer(A, i, j) =
∑

d1,d3,β

p(S d1⇒ a1 · · · aiAβ) · p(β d3⇒ aj+1 · · · an), (7.33)

inner(α, i, j) =
∑

d2

p(α d2⇒ ai+1 · · · aj). (7.34)

The intuition is that the occurrences of π in the different d such that y(d) = w
are grouped according to the substring ai+1 · · · aj that they cover. For each
choice of i and j we look at the sum of probabilities of matching derivations,
dividing them into the subderivations that are ‘inside’ and ‘outside’ the rele-
vant occurrence of π.

The values of inner(α, i, j) can be computed similarly to the computa-
tion of the partition function Z, which was explained in Section 7.2. For the
remaining values, we have:
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outer(A, i, j) =
δ(A = S ∧ i = 0 ∧ j = n) +

∑

π=(B→γAη),i′,j′

outer(B, i′, j′) · p(π) · inner(γ, i′, i) · inner(η, j, j′),(7.35)

with δ defined to return 1 if its argument is true and 0 otherwise. Here we
divide the derivations ‘outside’ a nonterminal occurrence into parts outside
parent nonterminal occurrences, and the parts below siblings on the left and
on the right. A special case is if the nonterminal occurrence can be the root
of the parse tree, which corresponds to a value of 1, which is the product of
zero rule probabilities.

If we fill in the values for inner , we obtain a system of linear equations
with outer(A, i, j) as variables, which can be solved in polynomial time. The
system is of course without cyclic dependencies if the grammar is without
cycles.

The algorithm we have described is called the inside-outside algorithm
[4, 39, 31, 57]. It generalises the forward-backward algorithm for probabilis-
tic models with a finite-state structure [6]. Generalised PCFGs, with right-
hand sides representing regular languages, were considered in [37]. The inside-
outside algorithm is guaranteed to result in consistent PCFGs [60, 16, 52].

7.7 Prefix Probabilities

Let p be the probability assignment of a PCFG. The prefix probability of a
string w is defined to be Pref (w) =

∑
v p(wv). Prefix probabilities have

important applications in speech recognition. For example, assume a prefix of
the input is w, and the next symbol suggested by the speech recogniser is a.
The probability that a is the next symbol according to the PCFG is given by:

Pref (wa)
Pref (w)

. (7.36)

For given w, there may be infinitely many v such that p(wv) > 0. As we
will show, the difficulty of summing infinitely many values can be overcome
by isolating a finite number of auxiliary values whose computation can be
carried out ‘off-line’, that is, independent of any particular w. On the basis of
these values, Pref (w) can be computed in cubic time for any given w.

We first extend left-most derivations to ‘dotted’ derivations written as
S

d⇒ w • α. The dot indicates a position in the sentential form separating the
known prefix w and a string α of grammar symbols together generating an
unknown suffix v. No symbol to the right of the dot may be rewritten. The
rationale is that this would lead to probability mass being included more than
once in the theory that is to follow.
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Formally, a dotted derivation can be either A
ε⇒ • A, which represents the

empty derivation, or it can be of the form A
dπ⇒ wv • αβ, where π = (B → vα)

with v �= ε, to represent the (left-most) derivation A
d⇒ wBβ

π⇒ wvαβ.
In the remainder of this section, we will assume that the PCFG is proper

and consistent. This allows us to rewrite:

Pref (w) =
∑

d,α

p(S d⇒ w • α) ·
∑

d′,v

p(α d′
⇒ v) =

∑

d,α

p(S d⇒ w • α). (7.37)

Note that derivations leading from any α in the above need not be considered
individually, as the sum of their probabilities is 1 for proper and consistent
PCFGs.

Example 7. We investigate the prefix probability of bb, for the following
PCFG:

π1 : S → A a (0.2)
π2 : S → b (0.8)
π3 : A→ S a (0.4)
π4 : A→ S b (0.6)

The set of derivations d such that S
d⇒ bb • α, some α, can be described by

the regular expression (π1(π3 ∪ π4))∗π1π4π2. By summing the probabilities of
these derivations, we get:

Pref (bb) =
∑

m≥0

(
p(π1) · (p(π3) + p(π4))

)m · p(π1) · p(π4) · p(π2)

=
∑

m≥0

p(π1)m · p(π1) · p(π4) · p(π2).

As
∑

m≥0 p(π1)m = 1
1−p(π1)

= 1.25, we obtain:

Pref (bb) = 1.25 · 0.2 · 0.6 · 0.8 = 0.12.

The remainder of this section derives a practical solution for computing
the value in (7.37), due to [30]. This requires that the underlying CFG is in
Chomsky normal form, or more precisely that every rule has the form A→ BC
or A→ a. We will ignore rules S → ε here.

We first distinguish two kinds of subderivation. For the first kind, the yield
falls entirely within the known prefix w = a1 · · · an. For the second, the yield
includes the boundary between known prefix w and unknown suffix v. We
do not have to investigate the third kind of subderivation, whose yield falls
entirely within the unknown suffix, because the factors involved are always 1,
as explained before.

For subderivations within the known prefix we have values of the form:

∑
d p(A d⇒ ai+1 · · · aj), (7.38)
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with i and j between 0 and n. These values can be computed using techniques
already discussed, in Section 7.2 for Z, and in Section 7.6.2 for inner . Here,
the computation can be done in cubic time in the length of the prefix, since
there are no cyclic dependencies.

Let us now look at derivations at the boundary between w and v. If the
relevant part of w is empty, we have:

∑

d

p(A d⇒ • A) = 1. (7.39)

If the relevant part of w is only one symbol an, we have:
∑

d,α

p(A d⇒ an • α) =
∑

π=(B→an)

∑

d,α

p(A d⇒ Bα) · p(π). (7.40)

Here B plays the role of the last nonterminal in a path in a parse tree from
A down to an, taking the left-most child at each step.

It is easy to see that:
∑

d,α

p(A d⇒ Bα) = δ(A = B) +
∑

π=(A→CD)

p(π) ·
∑

d,α

p(C d⇒ Bα). (7.41)

If we replace expressions of the form
∑

d,α p(A d⇒ Bα) by variables chain(A,B),
then (7.41) represents a system of linear equations, for fixed B and different
A. This system can be solved with a time complexity that is cubic in the
number of nonterminals. Note that this is independent of the known prefix w,
and is therefore an off-line computation.

If the derivation covers a larger portion of the prefix (i + 1 < n) we have:
∑

d,α

p(A d⇒ ai+1 · · · an • α) =

∑

π=(D→BC)

∑

d,α

p(A d⇒ Dα) · p(π) ·

∑

k:i<k≤n

∑

d1

p(B d1⇒ ai+1 · · · ak) ·
∑

d2,β

p(C d2⇒ ak+1 · · · an • β). (7.42)

The intuition is as follows. In a path in the parse tree from the indicated
occurrence of A to the occurrence of ai+1, there is a first node, labelled B,
whose yield is entirely within the known prefix. The yield of its sibling, labelled
C, includes the remainder of the prefix to the right as well as part of the
unknown suffix.

We already know how to compute
∑

d,α p(A d⇒ Dα) and
∑

d1
p(B d1⇒

ai+1 · · · ak). If we now replace expressions of the form
∑

d,α p(A d⇒ ai+1 · · · an •
α) in (7.42) by variables prefix_inside(A, i), then we obtain a system of equa-
tions, which define values prefix_inside(A, i) in terms of prefix_inside(B, k)
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with k > i. These values can be computed in quadratic time if the other values
in (7.42) have already been obtained. The resulting value of prefix_inside(S, 0)
is the required prefix probability of w.

In many applications, the prefix probabilities need to be computed for
increasingly long strings. For example in real-time speech recognition, the
input grows as the acoustic signal is processed and sequences of sounds are
recognised as words. The algorithm above has the disadvantage that the values
in (7.42) are specific to the length n of the prefix w. If w grows on the right
by one more symbol, the computation of the values has to be done anew. The
algorithm by [66], which is based on Earley’s algorithm, suffers less from this
problem. Most of the values it computes can be reused as the prefix grows.
A very similar algorithm was described by [56]. It differs from [66] in that it
does not explicitly isolate any off-line computations.

Prefix probabilities for tree adjoining and linear indexed grammars were
investigated by [48, 47].

7.8 Probabilistic Push-Down Automata

A paper in a previous volume [51] argued that a parsing strategy can be
formalised as a mapping from CFGs to push-down automata that preserves
the described languages. In this section we investigate the extension of this
notion to probabilistic parsing strategies [53], which are to preserve probability
distributions over strings.

As in [51], our type of push-down automaton does not possess states.
Hence, a push-down automaton (PDA) M is a 5-tuple (Σ, Γ, Xinit , Xfinal ,
∆), where Σ is a finite set of input symbols, Γ is a finite set of stack symbols,
Xinit ∈ Γ is the initial stack symbol, Xfinal ∈ Γ is the final stack symbol, and
∆ is the set of transitions. Each transition can have one of the following three
forms: X

ε�→ XY (a push transition), YX ε�→ Z (a pop transition), or X
x�→ Y

(a swap transition); here X,Y,Z ∈ Γ , x ∈ Σ ∪{ε}. Note that in our notation,
stacks grow from left to right, i.e., the top-most stack symbol will be found
at the right end.

Without loss of generality, we assume that any PDA is such that for a
given stack symbol X �= Xfinal , there are either one or more push transitions
X

ε�→ XY , or one or more pop transitions YX ε�→ Z, or one or more swap
transitions X

x�→ Y , but no combinations of different kinds of transition. If a
PDA does not satisfy this normal form, it can easily be brought in this form
by introducing for each stack symbol X �= Xfinal three new stack symbols
Xpush , Xpop and Xswap and new swap transitions X

ε�→ Xpush , X
ε�→ Xpop

and X
ε�→ Xswap . In each existing transition that operates on top-of-stack X,

we then replace X by one from Xpush , Xpop or Xswap , depending on the type
of that transition. We also assume that Xfinal does not occur in the left-hand
side of any transition, again without loss of generality.
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As usual, the process of recognition of a string w starts with a configuration
consisting of the singleton stack Xinit . If a list of transitions leads to singleton
stack Xfinal when the entire input w has been scanned, then we say that w
is recognised. Such a list of transitions is called a computation. The language
accepted by the PDA is the set of all strings that can be recognised. We
assume below that a PDA is always reduced, which means that each stack
symbol can be used in some computation that recognises a string. For more
precise definitions, we refer to [51].

A weighted push-down automaton (WPDA) M is a 6-tuple (Σ, Γ, Xinit ,
Xfinal , ∆, µ), where (Σ, Γ, Xinit , Xfinal , ∆) is a PDA, and µ is a mapping from
transitions in ∆ to positive real numbers. Thereby, a WPDA assigns weights
to computations and strings, in the same way as WCFGs assign weights to
derivations and strings.

A probabilistic push-down automaton (PPDA) is a WPDA with the re-
striction that the values assigned to transitions are no greater than 1 [61].
Consistency is defined as for WCFGs. We say a WPDA is proper if:

• Στ=(X
ε�→XY ) p(τ) = 1 for each X ∈ Γ such that there is at least one

transition of the form X
ε�→ XY ;

• Στ=(X
x�→Y ) p(τ) = 1 for each X ∈ Γ such that there is at least one transi-

tion of the form X
x�→ Y ; and

• Στ=(Y X
ε�→Z) p(τ) = 1 for each X,Y ∈ Γ such that there is at least one

transition of the form Y X
ε�→ Z.

For each stack that may arise in the recognition of a string, exactly one of
the above three clauses applies, depending on the symbol on top (provided
this is not Xfinal). The conditions ensure that the sum of probabilities of next
possible transitions is always 1.

An obvious question is whether parsing strategies, mapping CFGs to
PDAs, preserve the capacity to describe probability distributions on strings.
In many cases, PDAs are able to describe a wider range of probability distri-
butions than the CFGs they were derived from by a parsing strategy.

Consider for example the parsing strategy of top-down parsing. The stack
symbols of the constructed PDA are of the form [A→ α • β], where A→ αβ
is a rule in the CFG. The transitions are given by:

• [A→ α • aβ] a�→ [A→ αa • β] for each rule A→ αaβ;
• [A→ α • Bβ] ε�→ [A→ α • Bβ] [B → • γ] for each pair of rules A→ αBβ

and π = B → γ; and
• [A→ α • Bβ] [B → γ •] ε�→ [A→ αB • β].

We assume without loss of generality that the start symbol has only one
defining rule, say S → σ. The initial stack symbol is then [S → • σ] and the
final stack symbol is [S → σ •].

The probability distribution described by a proper and consistent PCFG
can be carried over to a PPDA implementing the top-down parsing strategy



250 Mark-Jan Nederhof and Giorgio Satta

if we let transitions of the first and third kind above have probability 1, and
let those of the second kind have the same probability as the rule B → γ from
the PCFG.

The reverse does not hold in general. In the PPDA we may assign different
probabilities to two different transitions of the form:

• [A→ α • Bβ] ε�→ [A→ α • Bβ] [B → • γ]; and
• [A′ → α′ • Bβ′] ε�→ [A′ → α′ • Bβ′] [B → • γ].

Such a distinction between the different contexts for an occurrence of nonter-
minal B cannot normally be encoded into the original CFG. This observation
is related to a technique from [17] that allows probability distributions more
refined than those that can be expressed in terms of a given CFG. See also
[33].

Example 8. Consider the CFG:

π1 : S → A
π2 : A→ a B
π3 : A→ b B
π4 : B → c
π5 : B → d

If p is the probability distribution over strings induced by a proper PCFG
that extends the CFG above, then we must have:

p(ac)
p(ad)

=
p(bc)
p(bd)

. (7.43)

Another way of looking at this is that we have a 2-dimensional parameter
space, as there are only two free parameters: once we choose p(π2) and p(π4),
then p(π3) must be 1−p(π2) and p(π5) must be 1−p(π4). Naturally p(π1) = 1.

Consider now the corresponding top-down PDA. If we are to turn this into
a proper PPDA, all transitions must have probability 1, except the following
six:

• [S → • A] ε�→ [S → • A] [A→ • aB],
• [S → • A] ε�→ [S → • A] [A→ • bB],
• [A→ a • B] ε�→ [A→ a • B] [B → • c],
• [A→ a • B] ε�→ [A→ a • B] [B → • d],
• [A→ b • B] ε�→ [A→ b • B] [B → • c], and
• [A→ b • B] ε�→ [A→ b • B] [B → • d].

Now (7.43) no longer restricts the space of available probability distributions.
Seen in a different way, we have a 3-dimensional parameter space, as there are
three free parameters; the probabilities of the first, third and fifth transitions
above determine those of the others.
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Another parsing strategy that preserves the allowable probability distribu-
tions is left-corner parsing [68]. This preservation does not hold for all parsing
strategies however, as pointed out for bottom-up parsing by [1]. Another strat-
egy for which it does not hold is LR parsing. In [53], an example is given of
a PCFG with a probability distribution that cannot be expressed in terms of
the corresponding PDA implementing the LR strategy. However, as shown by
[50], this problem disappears if we abandon the requirement that the PPDA
be proper.

7.9 Semirings

Let us compare the computation of Z (Section 7.2) with the computation of
pmax (Section 7.5). An important similarity is that values coming from mem-
bers in the right-hand side of a rule are multiplied, as can be witnessed in
both (7.9) and (7.20). An important difference is that in (7.6) we add the
values coming from alternative derivations, whereas in (7.20) these values are
combined by maximisation. By allowing other operations in place of those
mentioned above, possibly with another domain of weights, we obtain a gen-
eral class of computations involving context-free grammars. The domain and
operations are subject to a number of constraints, which can be expressed as
an algebraic structure.

Formally, a semiring is a 5-tuple (D,⊕,⊗,0,1), where D is a set, ⊕ and
⊗ are binary operations on D, and 0,1 ∈ D, with the following properties for
all a, b, c ∈ D:

additive identity a⊕ 0 = 0⊕ a = a,
additive commutativity a⊕ b = b⊕ a,
additive associativity (a⊕ b)⊕ c = a⊕ (b⊕ c),
multiplicative identity a⊗ 1 = 1⊗ a = a,
annihilation a⊗ 0 = 0⊗ a = 0,
multiplicative associativity (a⊗ b)⊗ c = a⊗ (b⊗ c),
distributivity a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

The semiring (R+,+, ·, 0, 1) underlies the computation of Z, where R
+

stands for the non-negative real numbers, and + and · stand for ordinary
addition and multiplication. By replacing + by max, we obtain the semiring
(R+,max, ·, 0, 1), which underlies the computation of pmax . These and several
other semirings were discussed in relation to context-free grammars by [25].
Semirings are firmly rooted in the theory of context-free grammars and other
formalisms, often in connection with formal power series [36]. For applications
of semirings with a focus on finite-state transducers, see [45].

In the remainder of this section, we investigate the semiring (R+ ∪
{∞},min,+,∞, 0). The domain includes the symbol ∞, which also acts
as the ‘zero’ element. This means that min(a,∞) = min(∞, a) = a and
a +∞ = ∞ + a = ∞ for all a. We will show that this semiring is useful
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for error correction of programming languages, which is closely related to the
problem of computing the optimal parse on the basis of WCFGs, as is known
from [67].

Assume a CFG G, and assume two functions on terminals, called d and
i, and a function s on pairs of terminals. These functions define the costs of
correcting a string by deleting or inserting a terminal, or by substituting one
terminal by another. Costs are non-negative real numbers. We assume that
s(a, b) ≤ d(a) + i(b), or in words, it is at least as costly to delete a and insert
b as to substitute a by b. Naturally, s(a, a) = 0 for all a, which means that
leaving a terminal unaffected can be treated as substituting it by itself.

The minimum edit distance between two strings w and v, denoted by
dist(w, v), is defined as the minimum sum of costs of a list of deletions, in-
sertions and substitutions needed to turn w into v [72]. We are now asked to
solve the following problem. Given a string w, compute the string v in the
language generated by G that minimises dist(w, v). Similarly to our presenta-
tion in Section 7.5, the algorithm we will show computes this minimal value
dist(w, v), but not the relevant v itself nor the used edit operations. These
can be computed by a simple extension of the basic mechanism.

Let us assume a PDA A instead of a CFG as representation of a context-
free language, which slightly simplifies the discussion. The PDA may imple-
ment any parsing strategy. We now construct a WPDA A′ as follows. For
each stack symbol X in A, A′ has two distinct stack symbols X and Xdel .
A symbol of the form Xdel will be on top of the stack immediately after a
substitution, or at the beginning of the input. While it is on top of the stack,
we allow an uninterrupted sequence of deletions, but no other actions. We
thereby effectively force a canonical ordering on the edit operation and stack
manipulations, placing deletions as early as possible. If the initial stack symbol
of A is X, then that of A′ is Xdel . Further:

• Pop and push transitions are copied unchanged from A to A′. Also swap
transitions of the form X

ε�→ Y are copied unchanged. The weight of all
these transitions is 0.

• For each transition X
a�→ Y in A, A′ has the following transitions:

– X
b�→ Ydel with weight s(b, a), for each b, and

– X
ε�→ Y with weight i(a).

• For each stack symbol Xdel , A′ has the following transitions:
– Xdel

a�→ Xdel with weight d(a), for each a, and
– Xdel

ε�→ X with weight 0.

As dictated by the specified semiring, weights in a computation are added. In
the presence of ambiguity, we take the minimum weight of all the computations
that recognise a string.

Example 9. Consider the following grammar and the top-down PDA obtained
from it:
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[S → • aAa]del
ε�→ [S → • aAa] (0)

[S → • aAa]
ε�→ [S → a • Aa] (i(a))

[S → a • Aa]
ε�→ [S → a • Aa] [A → • a] (0)

[A → • a]
a�→ [A → a •]del (0)

[A → a •]del ε�→ [A → a •] (0)

[S → a • Aa] [A → a •] ε�→ [S → aA • a] (0)

[S → aA • a]
b�→ [S → aAa •]del (s(b, a))

[S → aAa •]del b�→ [S → aAa •]del (d(b))

[S → aAa •]del ε�→ [S → aAa •] (0)

Fig. 7.6. One possible list of transitions that can be applied in order to recognise
string abb with error correction, in Example 9. The weights of these transitions are
given between brackets.

S → a A a
A→ b A b
A→ a

One of several ways to recognise the string abb, while allowing for error cor-
rection, is by application of the list of transitions in Figure 7.6. The total
weight of the computation is i(a) + s(b, a) + d(b). There are other computa-
tions recognising the same string, which may have lower weight, depending
on the values of i, d and s.

In transforming a PDA to become an error-correcting WPDA, new non-
determinism is introduced. By tabulation however, all computations can be
simulated in cubic time in the input length, in a way that allows extraction of
the computation with the lowest weight [38]. Depending on the chosen pars-
ing strategy, the result may be similar to Earley’s algorithm [2, 42], to CYK
parsing [67], or to tabular LR parsing [41, 40].

7.10 Further References

Some interpretations of probabilistic formalisms differ from what we have
described above in that they define acceptance by cut-point. This means that
a probabilistic grammar or automaton with probability assignment p is paired
with a number c between 0 and 1. The language that is thereby defined consists
of all strings w such that p(w) > c. For PCFGs this was investigated by [59],
and for PPDAs by [28, 24, 62, 23].

Assume a PCFG with probability assignment p. If we let λπ = loge p(π)
for each rule π, then the probability of a derivation can be rewritten as:

p(d) =
∏

π

p(π)C(π,d) =
∏

π

eλπ·C(π,d). (7.44)
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This equation stresses that the probability of a derivation is determined only
by the frequencies of individual rules occurring in it. We cannot express, say,
preference for combinations or patterns of rules. For this, we need to generalise
the framework to log-linear models [7, 15]. Such a model allows us to specify
a number of arbitrary features c1, . . . , cm on derivations. The features map
derivations to non-negative numbers. Further, there is an equal number of
weights λ1, . . . , λm. The model thereby defines a probability distribution on
derivations as:

p(d) =
1
z

∏

i

eλi·ci(d) =
1
z
e
∑

i λi·ci(d), (7.45)

where z is a normalisation constant, that is, z is the sum of e
∑

i λi·ci(d) for all
d that are valid left-most derivations.
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Summary. DNA-based computers have been made possible by biotechnology de-
veloped in the last two decades. They can make advances on challenges caused by
limiting features of conventional silicon computers. General and application specific
DNA-based computers both require memory systems for DNA computers capable
of either sophisticated processing capabilities or the storage of massive amounts of
data and, more importantly, effective methods to extract information meaningful to
human brains from massive corpora of data. We survey the challenges and methods
to build such memories, as well as some applications where they offer very good
potential. The DNA memories discussed here do not require an intelligent, outside
“brain” to extract the relevant features from given data. Hybridization affinity nat-
urally selects the relevant features in the input and display them on a DNA chip
signature as a 2D graphical and semantic representation, by relatively simple paral-
lel procedures that would take forbidding amounts of time to operate on equivalent
massive amount of data in digital form by conventional computers.

Keywords: Noncrosshybridizing oligonculeotides,PCR,PCRSelection,DNA-
based memories, information retrieval, semantic retrieval, DNA chips, textual
entailment.

8.1 Introduction

The original motivation for DNA Computing was the real feasibility, demon-
strated by [1], to utilize Deoxyribonucleic Acid (DNA) molecules as data
processors capable of solving problems intractable with conventional solu-
tions. The original vision was to ultimately replace conventional computers
with biological computers made of DNA. As such, DNA computers would
then require input-output protocols, processors, and memory systems to pro-
cess information for difficult general-purpose computational applications. This
vision has substantially evolved in the last decade. Research has expanded
from building DNA Computers for general solutions toward the use of DNA
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as special-purpose computers for specific applications. Here scientists apply
lessons learned in biology to solve difficult computational problems by taking
advantage of the massively parallel nature of DNA molecules. A survey of the
basic biological ideas and biotechnology that made DNA Computing a reality
can be found in [15, 21, 22].

Both the original and new visions still require memory systems for DNA
computers capable of either sophisticated processing capabilities (such as self-
assembly of DNA into useful molecular structures [31, 32], or capable of stor-
ing, in principle, large amounts of data (order of terabytes and larger) for
information retrieval [2]. In addition to its computational role, Eric Baum [2]
suggested that DNA is capable of storing data more compactly than is possi-
ble using the best technologies conventional expertise can create. A terabyte
of data can, in principle, fit well within a gram of DNA material. The sheer
capacity best conventional counterparts of laser media such as CD / DVD
which store about 8 Gigs max on 120mm disk, solid state media which stores
about the same per cm2, and magnetic hard disks which stores up to one
Terabyte over several 3.5in platters [4]. Given the current state of biotech-
nology, it seems conceivable that large caches of data can be represented in
so-called DNA-based memories in small volumes. Further, by taking advan-
tage of massive parallelism naturally occurring in DNA interactions, it may
be possible not only to store terabytes of data compactly, but also mine data
from it in just a few hours. The most striking of possibilities is the potential
to apply what is known about DNA computing to create so-called memories
capable of retrieving information where only data is stored. This idea is best
illustrated by a hypothetical memory that would store results of a national
survey as data but retrieves information in the form of line graphs/charts,
or answers to complex questions which require aggregation of data or even
reasoning about the contents of the memory.

The realization of this vision poses a number of challenges. The critical one
is “Can such a memory be created to store even genetic data which is native to
the source media?” A second question can be framed as “Can one realistically
design a DNA based memory to store and mine a terabyte of data in only
a few hours?” Third, “Can it be done with the same degree of accuracy and
reliability standard on conventional computers?” Finally, with the potential
quantity of data so vast and the memory sizes so minuscule, “How will the
results become specifically useful to humans?”

The next section presents two of these challenges (specifically, “How to
test DNA memories?” and “How to build DNA memories?”). The following
sections continue by summarizing solutions to many of the critical challenges
facings DNA memories. The final section concludes by summarizing some of
the known applications and some other potential applications of DNA mem-
ories.
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8.2 Challenges to DNA Memory Implementations

This section introduces several very critical challenges in developing and test-
ing DNA Memories. The first of these challenges is technological in nature and
must be met on two fronts: biotechnology and computer technology. Biotech-
nologies have advanced enough to retrieve and sequence results from DNA
memories and can provide a means to create DNA of any desirable species.
However, no efficient bio-process or bio-technology standard is readily avail-
able to systematically and automatically encode text and data into DNA form.
As such, years may be required to bring DNA memories to the commercial
world. Computer technologies need to advance in order to enable faster devel-
opment and lower cost testing for memory protocols. Alternatives to testing
in vitro provide a platform capable of testing principle implementations of
protocols in silico but are bound to relatively small memories given computa-
tional boundaries of conventional hardware. Until these issues are addressed,
researchers will be challenged to constantly replace and update hardware for
development and testing purposes. The final analysis is that the technologies
are available for DNA-based memories but they are not always efficient. The
next section shows how Baum’s proposed memory could be implemented with
extant biotechnologies and briefly analyzes the efficiency of the technologies
that enable implementation.

The largest class of challenges to overcome is centered on the very chem-
istry that makes DNA-based memories so intriguing. First in this class is the
need for input protocols that encode data into DNA such that undesirable
hybridizations do not occur. For example, consider the disastrous result of an
input protocol that encodes two very different inputs into two very chemi-
cally similar DNA structures. The resulting memory would have two data ele-
ments capable of hybridizing together and to queries. Similarly, if two queries
were encoded as Watson-Crick complements of each other, the retrieval proto-
col certainly fail to retrieve. Again, consider the input protocol that encodes
queries as WC complements of DNA structures that represent very different
data in the memory. The retrieval protocol could provide none or very confus-
ing results. This challenge is best expressed as the problem of finding input
protocols that store data into DNA reliably to enable reliable retrieval and to
prevent data loss or confusion of data.

Still another challenge in this class is to overcome the effects of kinetic
forces that negatively influence motion and chemical reactions within the test
tube. The kinetic effect on the motion of DNA may prevent queries from
reaching a particular target DNA structure in the memory. By analogy, a
single person in a dense crowd of people may see his date across the room but
not be able to reach her because he is continually buffeted by many a people
moving in different directions. Even if two DNA molecules get close enough to
hybridize, it may be that the crowd of DNA prevents a desirable fold or bend
in the DNA or causes partial hybridization to more than one molecule (e.g.
a 3-way knot). The root cause of this problem is too many people (i.e., too
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much DNA) in too small a room (or test tube holding the DNA memory). As
a result, this challenge is to find a concentration ideal for retrieval protocols
to operate.

Another class of challenges is found as a result of the capacity potential.
Specifically, it may be that so much data is stored that retrieval will eventually
fail to return anything useful to humans (typical internet seacrhes comes to
mind.) Even with the potential for DNA to act as a computer and create
information where data is stored, it is also conceivable such protocols will
not scale to the maximum data storage capacity of DNA-based memories. As
such, too much data would result in far too little information. The challenge
thus remains to invent scalable retrieval protocols and DNA structures that
capture exactly the data and information expected by a human querying the
system. Even more challenging is to create these structures and protocols
to provide very informative and very specific results. This challenge is best
expressed as one of retrieving (getting what humans want) by the semantics
of the query constructed from human language that expresses what is desired.
More succinctly, this challenge is one of semantic retrieval.

The remainder of this article demonstrates solutions to two of these chal-
lenges. Section 8.3 tackles the critical challenge of overcoming the time and
expense of in vitro experimentation, a challenge made even more difficult due
to a glass wall that separates the computer scientist, who is interested in DNA
memories as solutions to information storage and retrieval problems, and the
chemist who has the education and experience to perform experiments in vitro
and produce actual results. This solution uses a computer software, called
EdnaCo [14], that is capable of reliable simulation of in vitro experiments.
Section 8.4 continues with a second critical problem of producing the raw
material needed to encode such volumes of data into DNA. The ideal solution
to this challenge, known as the encoding solution, is a DNA library that is
resistant to self hybridization and whose complement library is also resistant
to self-hybridization. The remaining challenges of the capacity potential and
kinetic effects are discussed elsewhere [14].

8.3 Virtual Test Tubes

In this section we summarize the experimental tool used to test and bench-
mark the memory protocols. Full details of virtual test tubes can be found in
several sources [14, 13].

8.3.1 Test Tubes in Silico

A virtual test tube (VTT) is “any type of (simulated) biomolecular reactions
in electronic media that captures fairly closely the environment and kinetics
of the molecular interactions, while making minimal assumptions about the
global behavior of molecular populations.” (as defined by [14]). EdnaCo [14] is
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a distributed VTT implementation. The computational framework of EdnaCo
is a complex of interacting data structures distributed over several processing
nodes which are interconnected, transparently to the user, in order to produce
a single test tube in each run.

The VTT of EdnaCo consists of an organized network space of a cellular
automaton [16] arranged in grid formation. The nodes (cells) represent quanta
of 2D or 3D space that may be empty or occupied by nucleotides, molecules, or
other reactants. Each cell can also be characterized by associated parameters
that render the tube conditions in a realistic way, such as temperature, salinity,
covalent bonds, etc. The entire tube is distributed over a cluster of processors
in such a way that each local processor holds only a segment of the entire tube.
A segment is itself a copy of Edna, so that one can check the contents of the
tube and manage deletions (when a strand leaves the local tube segment) and
additions (incoming strands, strand additions at the outset of the simulation,
and hybridization events). No strand is split between two different nodes, but
their Brownian motion may include migration to any other different node.
Further details on the performance and implementation of EdnaCo can be
found in [14].

Real nucleotides are replaced in EdnaCo with virtual ones implemented
as C++ objects. Polymers, called strands when implemented in simulation,
are represented as complex structural combinations of these nucleotide ob-
jects (e.g., linked lists in a software implementation.) Strands carry context
information (meta-information, such as position, velocity, direction, etc.), in
addition to their internal structure, which may include even morphological in-
formation. Strand interaction in silico occurs similarly to how it would occur
if the interaction were to occur in vitro. Two strands encounter each other
when they come into close proximity to each other. At this point of the en-
counter, the tube attempts to hybridize one strand to hybridize to the other,
according to some pre-specified criterion for local interactions, for example,
some approximation of the Gibbs Energy released by the real molecules. One
approximation is the Hamming distance [30] with provides an error count or
count of mismatches between two DNA sequences of equal length perfectly
lined up to each another. A second approximation is the h-measure developed
by [16] that computes the Hamming distance with frame shifts but still as-
sumes the strands are rigid and do not form buldges, in particular. A third
approximation is the simplified dynamic programming algorithm of [9].

Each strand is moved about by a motion engine that mimics random-like
Brownian motion of the real test tube with actually random motion. The
motion engine tracks when any molecule moves beyond the border of a cell.
When a border is crossed, the motion model transfers the molecule to the
migration engine, which moves it from cell to cell (processor to processor).
Motion occurs in discrete steps, called iterations. Each iteration corresponds
to about 1 ms of real time in the real test tube, roughly equivalent to the time
it takes two molecules to settle a hybridization event.
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8.3.2 Validation

How can a naturally suspecting biologist or chemist give any credence to
the outcome of a simulation or any conclusions based on their analyses? To
validate the simulation to suspecting chemists, it is necessary to develop con-
trolled experiments that will quantify the degree of reliability and fidelity of
the test tube experiments. For validation, Adleman’s experiment was success-
fully recreated [13] inside a virtual test tube, except at a larger scale that
well illustrates the power and scope of the simulations. Random graph con-
figurations [28] were chosen as instances by selecting varying edge densities
depending on a fixed probability (0.2, 0.4, and 0.6) of including an edge from
the set of possible edges. The size of the graph (number of vertices) varied
from 5-9. Each graph was a positive instance, where one witness Hamiltonian
path was placed randomly, connecting source to destination. Vertex strands
were selected as polymers of 20 bases. Edges were constructed from two ver-
tices by taking the last 10 bases of one vertex and ligating it to first 10 bases
of another (but in Watson-Crick complementary form.) The experiment was
done under conditions that capture a mildly stringent hybridization criterion
where hybridization occurs only if the strands perfectly match in all but two
or three places, but were otherwise unconstrained [19], including frame-shifts.
The experiment was performed 30 times for 3000 iterations. The results were
averaged to provide accurate results. Over 99.4% of nearly 500 total instances
of the problem systematically returned the correct answer and solution.

The result of this simulation not only validates the results of the real test
tube but also illustrates the power of EdnaCo’s VTT’s to provide very real-
istic results. Quantifying the success rate by performing the same number of
experiments would be very costly in the wet lab where each experiment would
cost at least several hundreds of dollars. Here, DNA computers in silico pro-
vided the solution to Adleman’s initial experiment in about 1200 iterations of
the simulation. Moreover, [13] were able to show how to improve the efficiency
of Adleman’s technique (which is essentially brute force and blindly attempts
to build all possible paths (most of which will fail to be Hamiltonian) by in-
troducing the concept of a fitness function. The fitness functions were later
used to improve the efficiency of the simulation and suggest that protocols
may exist to achieve similar improvements to Adleman’s experiment in vitro.
More information on this experiment or the enhancements that derived from
this validation can be found in [13]. In [25], a similar second validation, which
uses the PCR protocol to selectively increase the concentration of specific DNA
species, is reported. EdnaCo has proven itself equally useful and reliable in
implementing PCR [20], DNA Chips [27], and Baum’s associative memory
[2, 24].
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8.4 Noncrosshybridizing Bases and PCR Selection

The encoding problem E [15, 16] is defined as the problem of represent-
ing, as DNA structures, the data set D in a humanly understood language
(such as English), or in the bits of conventional computers (although En-
glish will continue to be the running example.) An ideal representation would
be unambiguous and fully available for retrieval. To be considered truly
unambiguous, two requirements must be met. First, D must be encoded
unambiguously to represent English words WEnglish (i.e. every WEnglish

in DEnglish must have exactly one counterpart DNA codeword WDNA in
DDNA and, likewise, every WDNA in DDNA must have exactly one coun-
terpart WEnglish in DEnglish). Second, DDNA must remain unambiguous
over time and persist through any protocols (e.g. PCR). Encoding solutions
are fully available when all strands in D can be queried and retrieved. Of
specific concern are encoding solutions that cross-hybridize and thus would
create ambiguity in the encoding (because queries may match similar DNA)
or may hide information (two memory strands may hybridize and prevent
retrieval.) Ideally, every WDNA in DDNA will not hybridize to itself or any
other WDNA in DDNA and complementary WDNA in the complementary set
of DDNA will not hybridize to itself or any other complementary WDNA in
the complementary set of DDNA.

An ideal solution to the encoding problem will produce an ideal data rep-
resentation efficiently in a manner that is both scalable and reversible. First,
encoding solutions are expected to represent data with all the characteris-
tics of DDNA expected of an ideal solution (as described in Section 8.2). The
encoding process itself is expected to be reversible (i.e. a data set DEnglish

is encoded as DDNA such that DEnglish can be reconstructed exactly from the
reverse encoding DDNA to DEnglish). The complexity of the encoding algo-
rithm must be low and ideally linear to the size of D. For example, DEnglish

or DBytes with n elements should require at most n steps to produce DDNA.
The solution E must be scalable to encode very large amounts of data and
could ideally encode DDNA from any size D).

The solution that is generally considered to be ideal is substitution of
words and phrases with a codeword that captures the significance of that
word or phrase. In DNA memories, a codeword is a ssDNA (single-stranded
DNA) that unambiguously represents bytes or a language construct (e.g. word,
phrase or concept). For example, Adleman hashed graph vertices and edges
unambiguously into DNA codewords and demonstrated that his model was
feasible in vitro by producing a solution to the Hamiltonian Path Problem.
This demonstration essentially proved that his representation was fully avail-
able over the full length of the experiment and unambiguous in its represen-
tation.

This encoding solution requires a single pass over the text to substitute
codewords with language constructs that completes in linear time. For ex-
ample, n words require n substitutions to produce to DDNA and m phases
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require m substitutions to produce DDNA In more general terms, any set of
abstract concepts of size n can be represented in DNA after n substitutions
of DNA for concept. By similar substitution of the language constructs with
DNA words, the process can be reversed. The encoding solution is scalable to
the size of the number of the codewords available.

This solution is common and generally considered adequate. The criti-
cal shortcoming of this approach is the lack of available DNA to encode the
words of the English language (currently estimated to be around a million by
http://www.languagemonitor.com/) or word concepts expressed in WordNet
as approximately 207,000 different meanings used worldwide and expressed by
different words (http://wordnet.princeton.edu/man/wnstats.7WN). Finding
DNA sets of sufficient quantity and quality for even subsets of these databases
is the so-called word design problem. Its solution has motivated a decade long
search for an optimal set of codewords [5, 20, 15, 18, 3, 13, 10, 16]. As pointed
out in [20], relatively small DNA strands of 20-mers could easily represent 1
terabyte of data if just one byte corresponded to one 20-mer. If representing
abiotic data in the form of words and phrases, or more conceptual ideas in
the form of word meanings or word relationships, the potential exists to real-
ize Baum’s [2] first estimates of exceeding the capacity of the human brain.
Because of the importance of the encoding problem for the entire field, there
has been many efforts to find good codeword designs since early days. Surveys
can be found in [15, 11, 12, 16]

The ideal approach is to use DNA-based computing to solve the prob-
lem because the results is largely independent of Gibbs energy models and
likely to yield optimal performance in vitro. The resulting PCR Selection
(PCRS) [3, 10] protocol was designed to take advantage of PCR’s capabil-
ities to select, amplify DNA, and obtain noninteracting (referred to below
as noncrosshybridizing, for short nxh) codewords. The protocol uses PCR to
selectively amplify DNA in a test tube and then selectively separate the ampli-
fied DNA from the rest of the test tube. Step one of PCRS is initialized with
a seed set of dsDNA D1 that is placed into a test tube at a low temperature.
Each D1 is initialized as a pair of DNA with universal, unchanging primers
attached such that P1 attached at the 5′ end and primer P ′

2 attached at 3′ end.
This protocol begins by heating the test tube to a temperature warm enough
to melt less all DNA, then quickly cooling it to allow more complementary
DNA to re-hybridized. The protocol continues by amplifying the melted ss-
DNA (the more nxh DNA in the test tube) by PCR. Amplification [23] of the
nxh DNA only occurs because the primers, inserted to initiate PCR extension,
will not hybridize to the dsDNA (the more stable and more complementary
DNA in the test tube.)

The capability of PCRS to identify nxh subsets was evaluated experimen-
tally in [6, 7]. The validation began with an initial DNA set of DNA seeded
with the full set of random 20-mers. The primers, P1 and P2, were nxh 20-
mers and were excluded from the seed set. Figure 1.1 in cite14 shows the tem-
plates (red) in the top row (centered above each gel) with each primer (black)
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attached at the 5′ and 3′ ends. The first template was fully complementary
while the last was nxh. Two other templates were selected as intermediate
steps between fully complementary and nxh. The template sequences were
designed using an in silico software tool [10] that selects nxh DNA from an
initially random pool.

In a first round of experiments, PCR was performed on each of the four
templates representative of the spectrum of conditions between fully crosshy-
bridizing and nxh extremes. The test tube was heated to 52oC, 58oC, 64oC,
70oC, and 74oC (centigrade) and PCR extension was allowed to run for 1
round that lasted one hour. Each template was incubated in a PCR buffer of
50 mM KCI, 10 mM Tris-HCI, 0.1% Triton X-100, 2.5mM MgCl2, 0.4 nM 4
dNTP, and 4 U Taq DNA polymerase in total 10ul volume. The results of the
20 experiments (5 temperatures for each of the four species) were then placed
into a denature gel at 400V. Denaturing was allowed to run for one hour be-
fore being captured by autoradiography. In the resulting gels, amplification
occurred at 52oC, 58oC, and 64oC for all species. At temperatures at or above
70oC, very little amplification occurred for the three nearly crosshybridizing
templates. However, amplification for the nxh DNA templates occurred at all
temperatures with maximum yield at 52oC. This result proves that PCRS
can selectively amplify nxh DNA from a seed set and eventually extract a
maximal subset.

This experiment was repeated a second time to determine the ideal con-
ditions for nxh amplification. In this experiment, only the maximally similar
and maximally dissimilar templates were used. The range of temperatures in-
cluded 37oC, 40oC, 43oC, 46oC, 48oC, 50oC, 56oC, 62oC, 68oC, and 72oC. It
was determined that no amplification occurs at 43oC when the templates are
complementary. However, plenty of amplification occurs when the tempera-
ture was 43oC and below. This range of temperatures allows PCRS to operate
efficiently.

The results of PCRS were evaluated and the nxh quality of each set was
confirmed to be very high in [7]. PCRS was again performed to produce a set of
template species. The nxh quality was then evaluated by spectrophotometric
quantification, a method that measures optical density by spectrography. The
critical property being exploited is that UV light absorption at 260nm is less
for ssDNA than for dsDNA. By melting the DNA results fully, a spectropho-
tometer can measure the amount of light absorbed by the ssDNA. Thus, a
rough census of nxh to crosshybridizing DNA can be taken over time. As the
test tube cools, hybridization will occur naturally only if the DNA can form
energetically stable bonds. The measurement of this concentration of dsDNA
over time curve is called the CoT curve. (for Concentration-Time.) A steep
decline in the CoT indicates the DNA is very crosshybridzing while a flatter
CoT curve indicates the DNA is more nxh.

PCRS is ideal for creating nxh sets. Because PCRS is massively parallel in
nature, it is maximally efficient in vitro. As a result, the time of completion
for a single round of PCRS is in the order of minutes to hours. The product
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set is maximally nxh according to the natural process of DNA hybridization
and not an approximation of hybridization applied in other approaches. The
characterization of several product sets has been given in [7]. The remaining
challenge thus becomes to discover a scalable solution that can extract the
codeword sequences from these nxh product sets. Even if one is willing to
bear the cost, in terms of money, of sequencing a sample of the code set in
vitro, it remains forbiddingly infeasible in terms of time to sequence the whole
product set of 20-mers, estimated to be 10,000 - 50,000 species [6].

In order to get useful information on the composition of such nxh set,
PCRS has been implemented in silico with EdnaCo. In simulation, a model
is required to of decide whether two strands hybridize. An approximation of
Gibbs energy that has proved to provide very good results up to 60-mers can
be used [8]. Scalability is still a challenge due to the sheer size of input sets
and the number of rounds needed to refine the codeword set. The advantage
is that the codeword set will be fully sequenced and of comparable quality.
We will discuss this solution in full details below.

In [20], PCR selection (PCRS) was implemented in silico on EdnaCo to
identify quality codeword sets. PCRS protocol was implemented exactly as it
would be in vitro with one exception: all copies of a codeword were removed
from the virtual test tube at the moment any copy of the codeword formed
a duplex according to Gibbs energy. This variation significantly reduced the
overhead and helped the apparent kinetic problems that emerged in vitro
required to converge to an ideal nxh codeword set.

The codeword product sets were evaluated by both size and quality. Qual-
ity was evaluated by three methods to assess the application of each set
in vitro. The first method performed an O(n2) search of R = {Σr} to de-
termine if any r would hybridize to any member of R and if any r′ (the com-
plement of r) would hybridize to any member of R′ (the complement set of R).
Because Gibbs energy evaluation is the primary criterion for hybridization in
silico and is an excellent predictor of hybridization in vitro, this first method
is an excellent measure of the nxh quality of R. The second method estimates
the Gibbs energy of each pair of codewords. The third method characterizes
each r in R as blocks of 2, 3, and 4-mers.

PCRS was performed with various input sets of uniform length n where
n = 5, 6, 7, 8, 10, 13, 16, and 20 [20]. No matter how efficiently represented in
simulation, a seed set of length 20 contains at most 420 strands. The resources
needed to perform PCRS with that much input are too high a computational
and memory requirement even for supercomputers of today. This challenge
motivated a pre-processing filtering that reduces the complexity and search
space of the input DNA. The inputs to PCRS, called S, were filtered to min-
imize wasting simulation cycles. Each S was filtered to remove a priori those
obvious candidate DNA species likely to be removed by PCR Selection. In
every full n-mer DNA set, a sizable number of them is immediately available
to be discarded as they are palindromes or contain hairpins (i.e., reverse WC
complements of self or other strands in the set), contain k-mer runs (k > 3) of
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G/Cs. The above filters were implemented on a full seed input of all n-mers.
Where it was feasible, the input set was scanned to remove any hybridizing
DNA that would crosshybridize even with very stringent hybridization thresh-
olds according to the h-distance [17] which is less accurate but executes faster
than the Gibbs approximation used by EdnaCo. Because scanning for crosshy-
bridization was only possible over several months for 12-mers and 13-mers,
a different pre-processing step was used for n > 13. The serialized filter was
replaced by a distributed filter to do the work to PCRS running on EdnaCo
(a parallel application). By removing these strands from the input sets, were
able to reduce the complexity of these problems by orders of magnitude [20].
As shown in Figure 8.1, the net gain is a filtered set (middle bars) that is at
least one order of magnitude smaller in size than the full set (left bars). The
size of n-mer set seems to grow exponentially with a power law 40.72n+1.66.

The results and capabilities of PCRS to scale and produce large sets of
nxh were first discussed in [20]. Below is a recap of the evidence presented in
that paper that proves PCRS as a scalable solution capable of produce fully
sequenced nxh codewords efficiently in a matter of hours for small examples
and months for very large codeword sets. The next section addresses the issue
of scalability and is followed by two evaluations of the nxh quality of the
codeword product sets.
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Fig. 8.1. Pre-filtering of the space of n-mers reduces the full set by at least an order
of magnitude. The filtering process removes from the full input set (left bars) the
DNA species that contain hairpins or short runs of the same base and those species
that are palindromes or are too much like other strands already passed by the filter.
The size of the resulting filtered set (middle bars) can be estimated by the power
law 40.72n+1.66 (right bars). [20]

Figure 8.2 compares the size of filtered n-mer input set (dark blue) is
compared with the PCRS product set (red) and an ideal PCRS product set
(black). Due to the sheer complexity of the task, the experiments for 20-mers
were not completed after 10 months into the simulation. The growth in size
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for n-mer sets in range from 5-10 was calculated to be 4.19sqrt((n)+0.3). By
extrapolation, the sizes of 20-mer nxh sets are estimated to be around 416 or
4.7 billion. The set of 16-mers began with 413.23474901 or about 93 million DNA
polymers. PCRS produced a set of about 48, which was reduced to about 47
or 16KDNA polymers by additional exhaustive filtering.
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Fig. 8.2. Size of the PCR Selection product obtained from the filtered input sets
(left bars). The size of the resulting set (middle bars) can be estimated by the
sub-power law 41.9pn+0.6 (light bars on the right). [20]

[20] obtained very large sets of very good nxh quality that are guaranteed
to perform well under a variety of reaction conditions in wet test tubes. The
method is constructive, not in the sense that it selects the actual wet strands
as the PCR Selection protocol does in vitro [10], but in the complementary
and more advantageous sense that the sequence and composition of the ac-
tual codewords is known, thereby bypassing a costly or impossible sequencing
procedure. The method is also nearly optimal, in the sense that the size of
the codeset obtained is in the order of magnitude of the theoretical maximum
size of a set for the given hybridization stringency under which the simulation
was conducted.

The net result is that there is in hand a number of codeword sets of n-mers
for values of n = 4-10, 13-,16- and 20mers. More importantly, we have the
protocol that is capable of producing far larger codeword sets. The analysis
for some of these sets has been presented, for example, G/C-content analysis
and a bias analysis of the most frequent k-mer-blocks for k = 2, 3, 4. These
results suggest further analyses that could be conducted with the products of
the protocol in vitro to obtain further characterization of its products (so far
only conducted in vitro for 20-mers [7]). These PCRS experiments (including
the analysis) have lasted over 10 months and are expected to bear full fruit up
to 20-mers (once resources become available). PCRS can easily be scaled to
sets of longer polymers with feasible (but long) run times up to about 60-mers
when the Gibbs energy model used begins to fail. At that point, optimality
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will be out of range. Given the very encouraging results of PCRS [20], tensor
products [15], and shuffle codes [29], it may be necessary to apply tensor
product and shuffle codes as filters to PCRS as the size of the n-mers increase
much beyond 20-mers.

[20] argued that the size of these codeword sets may be in the order of
magnitude of maximal sets and provided a good practical estimate of the ca-
pacity of a DNA memory [20] based on Baum’s construction [2]. With these
codes, we have the support required to implement virtually any kind of appli-
cation of biomolecular computing, and in particular, the primary ingredient
for DNA memories [25, 18, 25, 33].

8.5 Some Applications of DNA Memories

In this Section, we summarize a few applications of DNA memories capable of
retrieving both biotic and abiotic data under development or consideration.

Given a nxh basis B of N oligos of length n, arbitrary data sets can be
represented by a so-called signature. [18, 5] define the representation as a sig-
nature as follows. Without loss of generality, it will be assumed that strings x
to be encoded are written in a four letter alphabet {a,c,g,t}. The signature of
a string x with respect to B is a vector V of size N obtained by shredding. x
to fragments of size n or less and allowing the fragments to hybridize under
saturation conditions to the oligos in B. The vector V can be visualized as
a 2D matrix by arranging the basis strands in a 2D DNA-chip, with a fixed
common number of basis strand per spot. The vector V may appear not to be
well-defined, since it is clear that its calculation depends on the concentration
of basis as well a strands x used in an experiment to compute it. To avoid
these difficulties, this situation is idealized to the case where only the same
number of copies (say, a fixed large number of copies) of each basis strand
is present in the tube, that the target input x is poured in saturation con-
centrations over the chip, and that the tube is small enough that all possible
hybridization occur within reasonable time. These idealizations are supported
by a number experiments performed on EdnaCo that essentially normalize the
representation and make it unique to within small variation in intensity for
each pixel, but with basically the same pattern over the entire chip. Precise
details can be found in [18]

An obvious and very intriguing application of the type of DNA memo-
ries described above is in storage and retrieval of genomic data of biological
organisms. One cannot help but wonder what type of signatures given or-
ganisms may produce and how they compare to one another. These issues
have been explored in several cases, of which we mention three, two with ge-
nomic data and one with abiotic/textual data. Precise details can be found in
[20, 26, 27, 25]

In the first application, a number of plasmids of lengths varying between
3Kbp (kilobase pairs) and 4.5Kbps were shredded to fragments of size 40 or
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less and thrown into a tube containing a basis B of three different nxh quality
consisting of 36-mers. The each member of the basis B was permanently fixed
to a spot on a thin piece of glass. Their signature were approximated by
simulation on EdnaCo by a simple process described above, i.e. measuring
the degree in which the shredded target DNA interacted with the DNA on
the chip. The variability of the signatures was telling of the nature and origin
of the plasmids. More nxh bases produced signatures with less variability and
noise. As the noise decreased, the size of the basis could be reduced so that
the same result could be achieved with far fewer nxh DNA and far smaller
DNA chips. On a high-quality nxh basis, the plasmid signatures appeared
were just as different as the organisms that originated them. This application
shows how genetic data could be captured by merely measuring hybridization
affinity to an nxh set of DNA. In a second application, the DNA chip can reveal
emergent information from a set of shredded DNA that the shredded DNA
itself became the DNA memory. The shredded DNA is placed into a test tube.
PCR selection protocol is applied to identify an nxh subset, and the resulting
species become the DNA memory placed onto a DNA chip. When the shredded
DNA is allowed to interact with the DNA chip, the resulting signature is far
sharper and crisper. By performing this process on many such species, it is
possible to create a single, re-usable DNA chip capable of identifying the origin
species of any DNA sample. Precise details can be found in [20].

Furthermore, this same protocol can be extended to very different data
sets. For example, the shredded DNA may be replaced with English words
from a Shakespearian play encoded in DNA structures. PCR selection protocol
could then produce a meaning subset of words (arguably the most meaningful
subset of words) which could then be placed on a DNA chip. The application
of this chip could assist in natural language processing problems of question
answering and information summarization. Precise details of this protocol can
be found [26, 27] (for genetic data) and [25] (for abiotic data).

In the third application, DNA memories are used to reveal the meaning of
human language in applications such as recognizing textual entailment (RTE).
Here, the capacity potential of DNA to retrieve fine-grained information from
vast amounts of data could be truly leveraged. Data representing the full com-
plement of word-phrase meanings is stored into a DNA memory. This potential
has been documented in the case of textual entailment challenge (RTE), A
typical instance of RTE consists of two paragraphs (one called the text and the
other called the hypothesis). The problem is to decide whether the hypothesis
is entailed by the text. This is not a problem about logical inference, but rather
a problem that requires bringing into play background knowledge about the
world, usually left implicit in the text. Using DNA memory representations of
semantic networks such as WordNet, entailment can be solved automatically
by disambiguating the words and phrases of each paragraph to meanings in the
DNA memory and then examining the overlap of the corresponding semantic
concepts contained in both text and hypothesis. This application shows how
DNA memories might be able to capture semantical knowledge in superior
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ways to that standard syntactic and lexical representations. More details can
be found in [25, 27].

In conclusion, we mention an important advantage on this type of DNA
memory. Information retrieval normally requires the identification of the rel-
evant data, retrieval of the data from the DNA-based memory, and further
processing of the desired information. The critical issue is how to “identify
the correct data to retrieve”. The simplest and most frequent conventional
approach is to “let the human decide” which data to retrieve. For example,
conventional computers ask the user to search for information by opening a
series of files on a file system, reading each file, and deciding from the content
which file is correct. The underlying system may provide tools to help the
human search by iterating through a list of files searching for keywords. This
“key-word” search approach will miss files and content that express similar
concepts with words different than the keywords. Ideally, data retrieval tools
could not only retrieve lexically (by matching key words); but also retrieved
by matching meanings of words captured in the query to meanings of words
captured in the data in the memory. By contrast, the DNA memories discussed
here do not require an intelligent, outside “brain” to extract the relevant fea-
tures from the given data. Hybridization affinity naturally selects the relevant
features in the input and display them on the DNA chip signature as a 2D
graphical and semantic representation.
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