Studies in Computational Intelligence 113

Gemma Bel-Enguix
M. Dolores Jiménez-Lopez
Carlos Martin-Vide (Eds.)

New Developments
in Formal Lanqguages
and Applications

@ Springer

Gemma Bel-Enguix, M. Dolores Jiménez-Lopez and Carlos Martin-Vide (Eds.)

New Developments in Formal Languages and Applications

Studies in Computational Intelligence, Volume 113

Editor-in-chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 92. Ang Yang, Yin Shan and Lam Thu Bui (Eds.)
Success in Evolutionary Computation, 2008
ISBN 978-3-540-76285-0

Vol. 93. Manolis Wallace, Marios Angelides and Phivos
Mylonas (Eds.)

Advances in Semantic Media Adaptation and
Personalization, 2008

ISBN 978-3-540-76359-8

Vol. 94. Arpad Kelemen, Ajith Abraham and Yuehui Chen
(Eds.)

Computational Intelligence in Bioinformatics, 2008

ISBN 978-3-540-76802-9

Vol. 95. Radu Dogaru

Systematic Design for Emergence in Cellular Nonlinear
Networks, 2008

ISBN 978-3-540-76800-5

Vol. 96. Aboul-Ella Hassanien, Ajith Abraham and Janusz
Kacprzyk (Eds.)

Computational Intelligence in Multimedia Processing:
Recent Advances, 2008

ISBN 978-3-540-76826-5

Vol. 97. Gloria Phillips-Wren, Nikhil Ichalkaranje and
Lakhmi C. Jain (Eds.)

Intelligent Decision Making: An AI-Based Approach, 2008
ISBN 978-3-540-76829-9

Vol. 98. Ashish Ghosh, Satchidananda Dehuri and Susmita
Ghosh (Eds.)

Multi-Objective Evolutionary Algorithms for Knowledge
Discovery from Databases, 2008

ISBN 978-3-540-77466-2

Vol. 99. George Meghabghab and Abraham Kandel

Search Engines, Link Analysis, and User’s Web Behavior,
2008

ISBN 978-3-540-77468-6

Vol. 100. Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2008
ISBN 978-3-540-77476-1

Vol. 101. Michael Granitzer, Mathias Lux and Marc Spaniol
(Eds.)

Multimedia Semantics - The Role of Metadata, 2008

ISBN 978-3-540-77472-3

Vol. 102. Carlos Cotta, Simeon Reich, Robert Schaefer and
Antoni Ligeza (Eds.)

Knowledge-Driven Computing, 2008

ISBN 978-3-540-77474-7

Vol. 103. Devendra K. Chaturvedi

Soft Computing Techniques and its Applications in Electrical
Engineering, 2008

ISBN 978-3-540-77480-8

Vol. 104. Maria Virvou and Lakhmi C. Jain (Eds.)

Intelligent Interactive Systems in Knowledge-Based
Environment, 2008

ISBN 978-3-540-77470-9

Vol. 105. Wolfgang Guenthner

Enhancing Cognitive Assistance Systems with Inertial
Measurement Units, 2008

ISBN 978-3-540-76996-5

Vol. 106. Jacqueline Jarvis, Dennis Jarvis, Ralph Ronnquist
and Lakhmi C. Jain (Eds.)

Holonic Execution: A BDI Approach, 2008

ISBN 978-3-540-77478-5

Vol. 107. Margarita Sordo, Sachin Vaidya and Lakhmi C. Jain
(Eds.)

Advanced Computational Intelligence Paradigms

in Healthcare - 3, 2008

ISBN 978-3-540-77661-1

Vol. 108. Vito Trianni
Evolutionary Swarm Robotics, 2008
ISBN 978-3-540-77611-6

Vol. 109. Panagiotis Chountas, Ilias Petrounias and Janusz
Kacprzyk (Eds.)

Intelligent Techniques and Tools for Novel System
Architectures, 2008

ISBN 978-3-540-77621-5

Vol. 110. Makoto Yokoo, Takayuki Ito, Minjie Zhang,
Juhnyoung Lee and Tokuro Matsuo (Eds.)

Electronic Commerce, 2008

ISBN 978-3-540-77808-0

Vol. 111. David Elmakias (Ed.)

New Computational Methods in Power System Reliability,
2008

ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanis and Alexander
G. Loukianov

Discrete-Time High Order Neural Control: Trained with
Kalman Filtering, 2008

ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jiménez-Lépez and
Carlos Martin-Vide (Eds.)

New Developments in Formal Languages and Applications,
2008

ISBN 978-3-540-78290-2

Gemma Bel-Enguix

M. Dolores Jiménez-Lopez
Carlos Martin-Vide

(Eds.)

New Developments
in Formal Languages
and Applications

@ Springer

Gemma Bel-Enguix

M. Dolores Jiménez-Lopez

Carlos Martin-Vide

Rovira i Virgili University

Research Group on Mathematical Linguistics
Plaza Imperial Tarraco, 1

43005 Tarragona

Spain

ISBN 978-3-540-78290-2 e-ISBN 978-3-540-78291-9
Studies in Computational Intelligence ISSN 1860-949X
Library of Congress Control Number: 2008921711

(© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany
Printed on acid-free paper

987654321

springer.com

Preface

The theory of formal languages is widely accepted as the backbone of the-
oretical computer science. It mainly originated from mathematics (combi-
natorics, algebra, mathematical logic) and generative linguistics. Later, new
specializations emerged from areas of either computer science (concurrent and
distributed systems, computer graphics, artificial life), biology (plant develop-
ment, molecular genetics), linguistics (parsing, text searching), or mathemat-
ics (cryptography). All human problem solving capabilities can be considered,
in a certain sense, as a manipulation of symbols and structures composed by
symbols, which is actually the stem of formal language theory. Language — in
its two basic forms, natural and artificial — is a particular case of a symbol
system.

This wide range of motivations and inspirations explains the diverse ap-
plicability of formal language theory U and all these together explain the
very large number of monographs and collective volumes dealing with formal
language theory.

In 2004 Springer-Verlag published the volume Formal Languages and Ap-
plications, edited by C. Martin-Vide, V. Mitrana and G. Paun in the series
Studies in Fuzziness and Soft Computing 148, which was aimed at serving
as an overall course-aid and self-study material especially for PhD students
in formal language theory and applications. Actually, the volume emerged in
such a context: it contains the core information from many of the lectures de-
livered to the students of the International PhD School in Formal Languages
and Applications organized since 2002 by the Research Group on Mathemat-
ical Linguistics from Rovira i Virgili University, Tarragona, Spain.

During the editing process of the aforementioned volume, two situations
appeared:

Some important aspects, mostly extensions and applications of classical
formal language theory to different scientific areas, could not be covered, by
different reasons. New courses were promoted in the next editions of the PhD
School mentioned above.

VI Preface

To intend to fill up this gap, the volume Recent Advances in Formal Lan-
guages and Applications, edited by Z. Esik, C. Martin-Vide and V. Mitrana,
was published in 2006 by Springer-Verlag in the series Studies in Computa-
tional Intelligence 25.

The present volume is a continuation of this comprehensive publication
effort. We believe that, besides accomplishing its main goal of complementing
the previous volumes in representing a gate to formal language theory and
its applications, it will be also useful as a general source of information in
computation theory, both at the undergraduate and research level.

For the sake of uniformity, the introductory chapter of the first volume that
presents the mathematical prerequisites as well as most common concepts and
notations used throughout all chapters appears in the present volume as well.
However, it may happen that terms other than those in the introductory chap-
ter have different meanings in different chapters or different terms have the
same meaning. In each chapter, the subject is treated relatively independent
of the other chapters, even if several chapters are related. This way, the reader
gets in touch with diverse points of view on an aspect common to two or more
chapters. We are convinced of the usefulness of such an opportunity to a young
researcher.

Acknowledgements

Our deep gratitude is due to all the contributors, for their professional
and friendly cooperation, as well as to Springer-Verlag, for the efficient and
pleasant collaboration.

Tarragona, Gemma Bel-Enguiz
October 2007 M. Dolores Jiménez-Lopez
Carlos Martin-Vide

Contents

1 Basic Notation and Terminology

2 Open Problems on Partial Words
Francine Blanchet-Sadri

3 Alignments and Approximate String Matching
Mazime Crochemore and Thierry Lecroq

4 An Introductory Course on Communication Complexity
Carsten Damimo

5 Formal Languages and Concurrent Behaviours
Jetty Kleyn and Macie) Koutny.t

6 Cellular Automata — A Computational Point of View
Martin KulTibo

7 Probabilistic Parsing
Mark-Jan Nederhof and Giorgio Satta

8 DNA-Based Memories: A Survey
Andrew J. Neel and Maxz H. Garzonc..vuuiiiinenina...

1

Basic Notation and Terminology

This chapter presents the basic mathematical and formal language theory
notations and terminology used throughout the book.

1.1 General Mathematical Notations

The notations are those provided by standard Latex and customary in math-
ematics.

Set theory: € denotes the membership (of an element to a set), C denotes
the inclusion (not necessarily proper) and C denotes the strict inclusion; the
union, intersection, and difference of two sets are denoted by U, N, —, respec-
tively. (We do not use \ for the difference, because \ denotes the left quotient
of languages.) The empty set is denoted by 0, the power set of a set X is
denoted by 2%, while the cardinality of a set X is denoted by card(X). A sin-
gleton set is often identified with its single element, and hence we also write
a for {a}. Two sets X and Y are said to be incomparable if both X —Y and
Y — X are non-empty.

Sets of numbers: the set of natural numbers (zero included) is denoted by
N, while the sets of integer, rational, and real numbers are denoted by Z,
Q, R, respectively. The subsets of these sets consisting of strictly positive
numbers are denoted by N, Z, Q. , R, respectively.

1.2 Basic String Notions and Notation

An alphabet is a finite nonempty set of abstract symbols. For an alphabet V'
we denote by V* the set of all strings (we also say words) of symbols from V.
The empty string is denoted by A. The set of nonempty strings over V', that
is V* — {\}, is denoted by V'*. Each subset of V* is called a language over V.
A language which does not contain the empty string (hence being a subset of
V) is said to be A-free.

2 Basic Notation and Terminology

If x = z1x4, for some x1, 29 € V*, then x is called a prefiz of and x5 is
called a suffiz of x; if x = x1x9x3 for some x1,z9,x3 € V*, then x5 is called a
substring of x. The sets of all prefixes, suffixes, and substrings of a string x are
denoted by Pref(z), Suf(x), and Sub(z), respectively. The sets of proper (that
is, different from A and from the string itself) prefixes, suffixes, and subwords
of = are denoted by PPref(x), PSuf(z), and PSub(x), respectively.

The length of a string x € V* (the number of occurrences of symbols from
V in x) is denoted by |z|. The number of occurrences of a given symbol a € V
in z € V* is denoted by |z|,. If z € V* and U C V, then by |z|y we denote
the length of the string obtained by erasing from x all symbols not in U, that

is,
el = 3l
acU

For a language L C V*, the set length(L) = {|z| | = € L} is called the
length set of L.

The set of symbols occurring in a string « is denoted by alph(z). For a
language L C V*, we denote alph(L) =, alph(x).

The Parikh vector associated with a string x € V* with respect to the
alphabet V' = {a1,...,a,} is v (z) = (|%]a,, |T]ags - - -, |Z]a,) (note that the
ordering of the symbols from V is relevant). For L C V* we define ¥y (L) =
{@y () | * € L}; the mapping ¥y : V* — N" is called the Parikh mapping
associated with V.

A set M of vectors in N, for some n > 1, is said to be linear if there are
m > 0 and the vectors v; € N™, 0 < ¢ < m, such that

m
M:{Uo—i-Zozivi|o<1,...,ozm€N}.
i=1

A finite union of linear sets is said to be semilinear.
A language L C V* is semilinear if ¥y (L) is a semilinear set. The family
of semilinear languages is denoted by SLIN.

1.3 Operations with Strings and Languages

The operations of union, intersection, difference, and complement are defined
for languages in the standard set-theoretical way.

The concatenation of two languages Ly, Ly is L1Lo = {xy | @ € L,y €
Lo},

We define further:

1 Basic Notation and Terminology 3

L’ = {)‘}7
L*Y =LL i >0,

L* = U L' (the Kleene *-closure),
i=0

LT = U L' (the Kleene + -closure).

i=1

A mapping s : V — 2U7 | extended to s : V* — 2V by s(\) = {\} and
s(z1x2) = s(w1)s(we), for w1, 20 € V*, is called a substitution. If for all a € V
we have A ¢ s(a), then h is a A-free substitution. If card(s(a)) = 1 for all
a € V, then s is called a morphism (we also say homomorphism).

A morphism h : V* — U™ is called a coding if h(a) € U for each a € V
and a weak coding if h(a) € UU{\} foreach a € V. If h: (V; UVo)* — V¥
is the morphism defined by h(a) = a for a € Vi, and h(a) = A otherwise, then
we say that h is a projection (associated with V1) and we denote it by pry,.
For a morphism h : V* — U*, we define a mapping h=! : U* — 2V~ (and
we call it an inverse morphism) by h=!(w) = {z € V* | h(z) = w}, w € U*.

The substitutions (hence also the morphisms and inverse morphisms) are
extended to languages in the natural way.

For z,y € V* we define their shuffle by

xwy={T1y1.. . TpYn | T=21 .. Tny Y = Y1 -+ Yn,
iy €VS5,1<i<nn>1}

The left quotient of a language Ly C V* with respect to Ly C V* is
Lo\Ly; = {w € V" | there is € Ly such that xw € Ly }.

The left derivative of a language L C V* with respect to a string x € V*
is
(L) ={weV*|zweL}.
The right quotient and the right derivative are defined in a symmetric
manner:

Li/Ly = {w € V" | there is € Ly such that wz € Ly},
(L) ={weV" | wxe L}

Let F be a family of languages and o be an n-ary operation with languages
from F. The family F is closed under o if o(Ly, La, ..., L,) € F for any choice
of the languages L; € F, 1 < ¢ < n. The family F is closed under substitution
with languages from the family C if for any language L C V* L € F, and
any substitution s : V* — 2Y" such that s(a) € C for all a € V, the language
s(L) = Uyer s() still lies in F. If C = F, we simply say that F is closed
under substitution.

4 Basic Notation and Terminology

A family of languages closed under (arbitrary) A-free morphisms, inverse
morphisms and intersection with regular languages is called (full) trio - known
also as (cone) faithful cone. If a (full) trio is further closed under union, then it
is called (full) semi-AFL. The abbreviation AFL comes from Abstract Family
of Languages. A (full) semi-AFL closed under concatenation and Kleene (*-)
+-closure is called a (full) AFL.

1.4 Chomsky Grammars

A Chomsky grammar is a quadruple G = (N, T, S, P), where N, T are disjoint
alphabets, S € N, and P is a finite subset of (NUT)*N(N UT)* x (NUT)*.

The alphabet N is called the nonterminal alphabet, T is the terminal al-
phabet, S is the aziom (start symbol), and P is the set of production rules
of G. The rules (we also say productions) (u,v) of P are written in the form
u — v. Note that |u|y > 1. Sometimes, one uses to denote by Vi the total
alphabet of G, that is, Vg = NUT.

For z,y € (NUT)* we write

=gy iff © = xuzs,y = T10T2,
for some 1,292 € (NUT)" and v — v € P.

One says that x directly derives y (with respect to G). When G is understood
we write = instead of =. The reflexive closure of the relation = is
denoted by =T, and the reflexive and transitive closure by =*. Each string
w € (N UT)* such that S =¢, w is called a sentential form.

The language generated by G, denoted by L(G), is defined by

LG)={zeT" | S ="z}

Two grammars G1, Gy are called equivalent if L(G1) — {\} = L(G2) — {\}
(the two languages coincide modulo the empty string).

According to the form of their rules, the Chomsky grammars are classified
as follows. A grammar G = (N, T, S, P) is called:

— length-increasing (one also says monotonous), if for all u — v € P we have
fu] < [o].

— context-sensitive, if each u — v € P has u = ujAus,v = ujxus, for
ui,ug € (NUT)*;A € N, and x € (NUT)*. (In length-increasing and
context-sensitive grammars the production S — X is allowed, provided
that S does not appear in the right-hand members of rules in P.)

— context-free, if each production u — v € P has u € N.

— linear, if each rule u v € Phasu e N andv e T"UT*NT*.

— right-linear, if each rule w — v € Phasu &€ N and v e T*UT*N.

— left-linear, if each rule w — v € P hasu € N and v € T* U NT™.

— regular, if each rule u — v € Phasu € N and v € TUTN U {A}.

1 Basic Notation and Terminology 5

The arbitrary, length-increasing, context-free, and regular grammars are also
said to be of type 0, type 1, type 2, and type 3, respectively.

We denote by RE, LI, CS, CF, LIN, RLIN, LLIN, and REG the fami-
lies of languages generated by arbitrary, length-increasing, context-sensitive,
context-free, linear, right-linear, left-linear, and regular grammars, respec-
tively (RE stands for recursively enumerable). By FIN we denote the family
of finite languages, and by ARB the family of arbitrary languages.

The following equalities and strict inclusions hold:

FIN C REG=RLIN=LLIN CLINCCFCCS=LICREC ARB.
We call this the Chomsky hierarchy.

1.5 Decision Problems

The goal of this section is to give an informal description of a decision problem
and to mention the most common decision problems in formal language theory.

Roughly speaking, a decision problem requires an output YES/NO to any
of its instances. For example, “Is the natural number n prime?” is a decision
problem; further, “Is 3 prime?” is an instance of the problem which is true while
“Is 4 prime?” is a false instance of the same problem. A decision problem is
(algorithmically /recursively) decidable if there exists an algorithm, which for
any instance of the problem given as input, outputs YES or NO, provided
that the input is true or not, respectively.

The most common decision problems in formal language theory are:

— FEmptiness: Is a given language empty?

— Finiteness: Is a given language a finite set?

— Membership: Does w € L hold for a given word w and a language L7
— Inclusion: Does L1 C Lo hold for two given languages L; and Lo?

— Equivalence: Does L1 = Ly hold for two given languages L1 and Lo?

Clearly, a decision problem is proved to be decidable if one provides an
algorithm as above. Generally, a decision problem is proved to be undecid-
able by reducing it to a problem known to be undecidable. The following
combinatorial problem, known as the Post Correspondence Problem (PCP), is
undecidable. An instance of the PCP consists of an alphabet V' with at least
two letters and two lists of words over V'

u=(u1,us,...,uy) and v= (v1,v2,...,0p).

The problem asks whether or not a sequence i1, io, ..., of positive integers
exists, each between 1 and n, such that w;, u;, ... u;, = vy, Vi, ... Vi, .

We do not give here further elements of formal language theory. They will
be elaborated in the subsequent chapters.

For the reader’s convenience, we end this section with a list of monographs
and collective volumes directly or partially related to formal language theory.

6

1.

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23

Basic Notation and Terminology

6 Books on Formal Language Theory

A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation, and Com-

piling, Prentice Hall, Englewood Cliffs, N.J., vol. I: 1971, vol. IT: 1973.

A.V. Aho, J.D. Ullman, Principles of Compiler Design, Addison-Wesley,

Reading, Mass., 1977.

. I. Alexander, F.K. Hanna, Automata Theory: An Engineering Approach,
Crane Russak, 1975.

. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart,
1979.

. R.V. Book, ed., Formal Language Theory. Perspectives and Open Prob-

lems, Academic Press, New York, 1980.

W. Brauer, Automatentheorie, B.G. Teubner, Stuttgart, 1984.

C. Choffrut, ed., Automata Networks, Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 1988.

D.ILA. Cohen, Computer Theory, 2nd edition, John Wiley, 1997.

E. Csuhaj-Varja, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems.

A Grammatical Approach to Distribution and Cooperation, Gordon and

Breach, London, 1994.

J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory,

Springer-Verlag, Berlin, Heidelberg, 1989.

J. Dassow, G. Rozenberg, A. Salomaa, eds., Developments in Language

Theory, World Scientific, Singapore, 1995.

M.D. Davis, E.J. Weyuker, Computability, Complexity, and Languages,

Academic Press, New York, 1983.

P.J. Denning, J.B. Dennis, J.E. Qualitz, Machines, Languages, and Com-

putation, Prentice-Hall, Englewood Cliffs, N.J., 1978.

D.-Z. Du, K.-I Ko, Problem Solving in Automata, Languages and Com-

plexity, John Wiley, 2001.

H. Ehrig, G. Engels, H-J. Kreowski, G. Rozenberg, eds., Handbook of

Graph Grammars and Computing by Graph Transformation, World Sci-

entific, Singapore, 1999.

S. Eilenberg, Automata, Languages, and Machines, Academic Press,

New York, vol. A: 1974, vol. B: 1976.

E. Engeler, Formal Languages, Markham, Chicago, 1968.

Z. Esik, C. Martin-Vide, V. Mitrana, eds., Recent Advances in Formal

Languages and Applications, Springer-Verlag, Berlin, 2006.

K.S. Fu, Syntactic Pettern Recognition. Applications, Springer-Verlag,

Heidelberg, 1977.

M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the

Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.

F. Gécseg, Products of Automata, Springer-Verlag, Berlin, 1986.

F. Gécseg, 1. Peak, Algebraic Theory of Automata, Akademiai Kiado,

Budapest, 1972.

. F. Gécseg, M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

1 Basic Notation and Terminology 7

. S. Ginsburg, The Mathematical Theory of Context-Free Languages,
McGraw-Hill Book Comp., New York, 1966.

S. Ginsburg, Algebraic and Automata- Theoretic Properties of Formal Lan-
guages, North-Holland, Amsterdam, 1975.

A. Ginzburg, Algebraic Theory of Automata, Academic Press, New York,
1968.

M. Gross, A. Lentin, Notions sur les grammaires formelles, Gauthier-
Villars, Paris, 1967.

M. Harrison, Introduction to Formal Language Theory, Addison-Wesley,
Reading, Mass., 1978.

G.T. Herman, G. Rozenberg, Developmental Systems and Languages,
North-Holland, Amsterdam, 1975.

J.E. Hopcroft, J.D. Ullman, Formal Languages and Their Relations to
Automata, Addison-Wesley, Reading, Mass., 1969.

J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages,
and Computing, Addison-Wesley, Reading, Mass., 1979.

J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley, Boston, 2001.

M. Ito, ed., Words, Languages, and Combinatorics, World Scientific,
Singapore, 1992.

M. Ito, Gh. Paun, S. Yu, eds., Words, Semigroups, and Transductions,
World Scientific, Singapore, 2001.

J. Karhumiki, H.A. Maurer, Gh. Paun, G. Rozenberg, eds., Jewels are
Forever, Springer-Verlag, Berlin, 1999.

D. Kelley, Automata and Formal Languages. An Introduction. Prentice-
Hall, New Jersey, 1995.

7. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book
Comp., New York, 1978.

D.C. Kozen, Automata and Computability, Springer-Verlag, New York,
1997.

W. Kuich, A. Salomaa, Semirings, Automata, Languages, Springer-Verlag,
Berlin, Heidelberg, New York, 1986.

P. Linz, An Introduction to Formal Languages and Automata, D.C. Heath
and Co., Lexington, Mass., 1990.

M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass.,
1983.

M. Lothaire, Algebraic Combinatorics on Words, Cambridge University
Press, 1997.

C. Martin-Vide, V. Mitrana, eds., Where Mathematics, Computer Science,
Linguistics, and Biology Meet, Kluwer, Dordrecht, 2000.

C. Martin-Vide, V. Mitrana, eds., Grammars and Automata for String
Processing: From Mathematics and Computer Science to Biology, and
Back, Taylor and Francis, London, 2002.

C. Martin-Vide, Gh. Paun, eds., Recent Topics in Mathematical and Com-
putational Linguistics, Ed. Academiei, Bucuresti, 2000.

46

47.

48.
49.

50.

51.

92.

53.

o4.

95.
56.

o7.

98.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.
69.

Basic Notation and Terminology

. C. Martin-Vide, V. Mitrana, Gh. Paun, eds., Formal Languages and Ap-
plications, Springer-Verlag, Berlin, 2004.

H. Maurer, Theoretische Grundlagen der Programmiersprachen, Hochschul-
taschenbiicher 404, Bibliographisches Inst., 1969.

A. Meduna, Automata and Languages, Springer-Verlag, London, 2000.
M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, En-
glewood Cliffs, NJ, 1967.

J.N. Mordenson, D.S. Malik, Fuzzy Automata and Languages, Chapman
& Hall/CRC, London, 2002.

A. Paz, Introduction to Probabilistic Automata, Academic Press, New
York, 1971.

Gh. Paun, Recent Results and Problems in Formal Language Theory, The
Scientific and Encyclopaedic Publ. House, Bucharest, 1984 (in Romanian).
Gh. Paun, ed., Mathematical Aspects of Natural and Formal Languages,
World Scientific, Singapore, 1994.

Gh. Paun, ed., Mathematical Linguistics and Related Topics, The Publ.
House of the Romanian Academy, Bucharest, 1995.

Gh. Paun, Marcus Contextual Grammars, Kluwer, Dordrecht, 1997.

Gh. Paun, Membrane Computing. An Introduction, Springer-Verlag, Berlin,
2002.

Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

Gh. Paun, G. Rozenberg, A. Salomaa, eds., Current Trends in Theoretical
Computer Science. Entering the 21st Century, World Scientific, Singapore,
2001.

Gh. Paun, A. Salomaa, eds., New Trends in Formal Languages: Control,
Cooperation, Combinatorics, Lecture Notes in Computer Science 1218,
Springer-Verlag, Berlin, 1997.

Gh. Paun, A. Salomaa, eds., Grammatical Models of Multi-Agent Systems,
Gordon and Breach, London, 1999.

J.E. Pin, Varieties of Formal Languages, Plenum Press, Oxford, 1986.
G.E. Revesz, Introduction to Formal Languages, McGraw-Hill Book Comp.,
New York, 1983.

G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Aca-
demic Press, New York, 1980.

G. Rozenberg, A. Salomaa, Cornerstones of Undecidability, Prentice Hall,
New York, 1994.

G. Rozenberg, A. Salomaa, eds., Developments in Language Theory, World
Scientific, Singapore, 1994.

G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-
Verlag, Berlin, 3 volumes, 1997.

A. Salomaa, Theory of Automata, Pergamon, Oxford, 1969.

A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.
A. Salomaa, Jewels of Formal Language Theory, Computer Science Press,
Rockville, 1981.

70

71.

72.

73.

74.

75.

76.

e

78.

79

1 Basic Notation and Terminology 9

. A. Salomaa, Computation and Automata, Cambridge Univ. Press, Cam-
bridge, 1985.

A. Salomaa, M. Soittola, Automata-Theoretic Aspects of Formal Power
Series, Springer-Verlag, Berlin, New York, 1978.

A. Salomaa, D. Wood, S. Yu, eds., A Half-Century of Automata Theory,
World Scientific, Singapore, 2001.

D. Simovici, R.L. Tenney, Theory of Formal Languages With Applications,
World Scientific, Singapore, 1999.

S. Sippu, E. Soisalon-Soininen, Parsing Theory. Vol. I: Languages and
Parsing, Springer-Verlag, Berlin, Heidelberg, 1988.

M. Sipser, Introduction to the Theory of Computation, PWS Publishing
Company, Boston, 1997.

H.J. Shyr, Free Monoids and Languages, Hon Min Book Comp., Taichung,
1991.

R.G. Taylor, Models of Computation and Formal Languages, Oxford Uni-
versity Press, 1998.

D. Wood, Grammar and L Forms. An Introduction, Springer-Verlag,
Berlin, 1980 (Lecture Notes in Computer Science, 91).

. D. Wood, Theory of Computation, Harper and Row, New York, 1987.

2

Open Problems on Partial Words*

Francine Blanchet-Sadri

Department of Computer Science, University of North Carolina
P.O. Box 26170, Greensboro, NC 27402-6170, USA
blanchet@uncg.edu

2.1 Introduction

Combinatorics on words, or sequences or strings of symbols over a finite al-
phabet, is a rather new field although the first papers were published at the
beginning of the 20th century [120, 121]. The interest in the study of com-
binatorics on words has been increasing since it finds applications in various
research areas of mathematics, computer science, and biology where the data
can be easily represented as words over some alphabet. Such areas may be
concerned with algorithms on strings [38, 48, 50, 51, 52, 69, 72, 84, 102, 11§],
semigroups, automata and languages [2, 45, 55, 75, 82, 92, 93], molecular
genetics 78], or codes [5, 73, 79].

Motivated by molecular biology of nucleic acids, Berstel and Boasson in-
troduced in 1999 the notion of partial words which are sequences that may
contain a number of “do not know” symbols or “holes” [4]. DNA molecules are
the carriers of the genetic information in almost all organisms. Let us look
into the structure of such a molecule. A single stranded DNA molecule or a
DNA strand may be viewed as a sequence over the alphabet consisting of
the four nucleotides: a (adenine), ¢ (cytosine), g (guanine), and ¢ (thymine).
Each strand has two different ends: the 3’ end, and the 5’ end. The familiar
double helix of DNA, which was discovered by Watson and Crick, arises by
the bonding of a strand in the 5 — 3’ direction with another strand in the
3’ — 5’ direction with the restriction that adenine bonds with thymine, and
cytosine bonds with guanine. Such a bonding gives rise to a double stranded
DNA molecule as in the figure

5-ccacctcgaccctc-3
3-gg9tggagctgggag-5
Because of Watson-Crick’s complementarity (a bonds to only ¢, and ¢ bonds
only to g), we can view double stranded DNA sequences as single stranded
*This material is based upon work supported by the National Science Foundation

under Grant Nos. CCF-0207673 and DMS-0452020.

F. Blanchet-Sadri: Open Problems on Partial Words, Studies in Computational Intelligence (SCI)
113, 11-58 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

12 Francine Blanchet-Sadri

strings by keeping the strand in the 5 — 3’ direction. The molecule in the
example above can be viewed as

5" - ccacctegacecte - 3/

or simply as ccacctegacecte, a word over the alphabet {a,c,g,t}. However
bonding is not always perfect in nature as in the figure

5-ccacctecgaccctce-3
3d-ggttgagccgggag-5

where there is an occurrence of ¢ paired with ¢, and an occurrence of a paired
with ¢. In such a case, we can view the molecule as 5" — ccaoctcgocecte — 3’ or
as ccaoctcgocecte, where the ¢’s stand for “do not know” symbols also called
“holes”. Thus, the latter example gives rise to a partial word with two holes
over the alphabet {a,c,g,t}. Processes in molecular biology can be seen as
operations on DNA sequences [72, 112]. If a set of DNA molecules fulfilling
a certain property has changed a little bit after some time or under some
influence, it is important to know whether the desired property still holds
[91].

Several interesting combinatorial properties of partial words have been in-
vestigated and connections have been made with problems in graph theory and
number theory, in particular, with problems concerning primitive sets of inte-
gers [23, 24|, lattices [23, 24], partitions of integers and their generalizations
[14], chromatic polynomials [23]|, Sudoku games [107], vertex connectivity in
graphs [12, 29|, etc. Partial words are useful in a new generation of pattern
matching algorithms that search for local similarities between sequences. In
this area, they are called “spaced seeds” and a lot of work has been dedicated
to their influence on the algorithms’ performance [40, 66, 83, 97, 103, 104].
Partial words have the potential for impacts in bio-inspired computing where
they have been considered, in particular, for finding good encodings for DNA
computations [90].

We provide here a few bibliographic remarks. Lothaire’s first book Com-
binatorics on Words appeared in 1983 [92], while recent developments culmi-
nated in a second book Algebraic Combinatorics on Words which appeared
in 2002 [93] and in a third book which appeared in 2005 [94]. Several books
have appeared quite recently that emphasize connections of combinatorics on
words to several research areas. We mention the book of Allouche and Shallit
where the emphasis is on automata theory [2], the book of Crochemore and
Rytter where the emphasis is on string algorithms [52], the book of Gusfield
where the emphasis is on algorithms related to biology [72], the book of de
Luca and Varrichio where the emphasis is on algebra [55], and finally the book
of Blanchet-Sadri where the emphasis is on partial words [10].

Research in combinatorics on partial words is underway where there are
several open problems that lay unexplored. After reviewing basic concepts
on words and partial words in Section 2.2, we will discuss some of these open

2 Open Problems on Partial Words 13

problems which we have divided into sections: 2.3-2.5 study extensions to par-
tial words of three basic classical results on periodicity of words: The theorem
of Fine and Wilf which considers the simultaneous occurrence of different pe-
riods in one word [67], the critical factorization theorem which relates local
and global periodicity of words [43], and a theorem of Guibas and Odlyzko
which gives the structure of the set of periods of a word [71]. Section 2.6 deals
with the two word properties of primitiveness and borderedness and is con-
cerned, in particular, with the counting of primitive and unbordered partial
words. Section 2.7 solves some equations on partial words. Here the notion of
“equality” is replaced by that of “compatibility”. Section 2.8 studies the con-
cept of unavoidable set of partial words, while Section 2.9 develops square- and
overlap-freeness of partial words. Finally, Section 2.10 discusses some other
open problems related to codes of partial words, punctured languages, and
tiling periodicity.

2.2 Preliminaries

This section is devoted to reviewing basic concepts on words and partial words.

2.2.1 Words

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A
are called letters and any finite sequence of letters is called a word over A. The
empty word, that is, the word containing no letter, is denoted by e. For any
word u over A, |u| denotes the number of letters occurring in u and is called
the length of u. In particular, |e| = 0. The set of all words over A is denoted by
A*. If we define the operation of two words u and v of A* by juxtaposition (or
concatenation), then A* is a monoid with identity e. We call AT = A*\ {¢}
the free semigroup generated by A and A* the free monoid generated by A.
The set A* can also be viewed as | J,,~, A" where A° = {e} and A" is the set
of all words of length n over A.

A word of length n over A can be defined by a total function « : {0,...,n—
1} — A and is usually represented as u = agay .. . a,—1 with a; € A. A period
of u is a positive integer p such that a; = a1, for 0 < i < n —p. For a
word u, the powers of u are defined inductively by u° = ¢ and, for any i > 1,
u' = uu'~L. The set of symbols occurring in a word u is denoted by a(u).
The reversal of u, denoted by rev(u), is defined as follows: If uw = &, then
rev(e) = ¢, and if u = apay ...a,—1, then rev(u) = a,_1...a1a9. A word u is
a factor of the word v if there exist words x,y such that v = zuy. The factor
u is called proper if uw # € and u # v. The word u is a prefiz (respectively,
suffix) of v if & = e (respectively, y =).

A nonempty word u is primitive if there exists no word v such that u = v*
with ¢ > 2. Note the fact that the empty word is not primitive. If u is a
nonempty word, then there exist a unique primitive word v and a unique
positive integer i such that u = v°.

14 Francine Blanchet-Sadri
2.2.2 Partial Words

A partial word u of length n over A is a partial function w : {0,...,n—1} — A.
For 0 <i < n, if u(i) is defined, then 7 belongs to the domain of u, denoted by
1 € D(u), otherwise i belongs to the set of holes of u, denoted by i € H(u). A
word over A is a partial word over A with an empty set of holes (we sometimes
refer to words as full words). The length of u or n is denoted by |ul.

If u is a partial word of length n over A, then the companion of u, denoted
by us, is the total function u, : {0,...,n — 1} — AU {o} defined by

toli) = {u(i) if i € D(u)

o otherwise

The bijectivity of the map u +— wu, allows us to define for partial words
concepts such as concatenation, powers, etc in a trivial way. The word
U = abbobbcd is the companion of the partial word u of length |u| = 8 where
D(u) =4{0,1,2,4,5,6,7} and H(u) = {3}. For convenience, we will refer to a
partial word over A as a word over the enlarged alphabet A, = AU{¢}, where
the additional symbol ¢ plays the special role of a “do not know” symbol or
“hole”. This allows us to say for example “the partial word abacaac” instead
of “the partial word with companion abacaa¢”. The set of all partial words
over A with an arbitrary number of holes is denoted by A} which is a monoid
under the operation of concatenation where € serves as the identity.

A (strong) period of a partial word u over A is a positive integer p such
that w(i) = w(j) whenever i,j € D(u) and ¢ = j mod p. In such a case, we
call u (strongly) p-periodic. Similarly, a weak period of u is a positive integer
p such that u(i) = u(i + p) whenever i,7 +p € D(u). In such a case, we call
u weakly p-periodic. The partial word abbobbebb is weakly 3-periodic but is
not strongly 3-periodic. The latter shows a difference between partial words
and full words since every weakly p-periodic full word is strongly p-periodic.
Another difference worth noting is the fact that even if the length of a partial
word w is a multiple of a weak period of u, then u is not necessarily a power
of a shorter partial word. The minimum period of u is denoted by p(u), and
the minimum weak period by p’(u). The set of all periods (respectively, weak
periods) of u is denoted by P(u) (respectively, P’(u)).

For a partial word wu, positive integer p and integer 0 < i < p, define

U p = w(@)u(i + p)u(i+ 2p) ... u(i + jp)

where j is the largest nonnegative integer such that ¢ + jp < |u|. Then wu is
(strongly) p-periodic if and only if u;, is (strongly) 1l-periodic for all 0 <
1 < p, and u is weakly p-periodic if and only if w;, is weakly 1-periodic for
all 0 < i < p. Strongly 1-periodic partial words as well as the full factors of
weakly 1-periodic partial words are over a singleton alphabet.

If v and v are two partial words of equal length, then u is said to be
contained in v, denoted by u C wv, if all elements in D(u) are in D(v) and

2 Open Problems on Partial Words 15

u(i) = v(i) for all i € D(u). The order v C v on partial words is obtained
when we let ¢ < @ and a < a for all a € A. For example, acbe ¢ aoob and
aobo ¢ aocab, while acbo C aobb.

A partial word w is primitive if there exists no word v such that u C v°
with ¢ > 2. Note that if v is primitive and v C u, then u is primitive as well.
It was shown in [9] that if u is a nonempty partial word, then there exist a
primitive word v and a positive integer i such that u C v*. However uniqueness
does not hold as seen with the partial word u = oa where v C a? and v C ba
for distinct letters a, b.

Partial words u and v are compatible, denoted by u T v, if there exists a
partial word w such that v C w and v C w. In other words, u(i) = v(i) for
every ¢ € D(u) N D(v). Note that for full words, the notion of compatibility
is simply that of equality. For example, acboao | aoocbb but aobbee T obboco.

In the rest of this section, we discuss commutativity and conjugacy in the
context of partial words.

Let us start with commutativity. The case of full words is well known and
is stated in the following theorem.

Theorem 1. Let x and y be nonempty words. Then xy = yx if and only if
there exists a word z such that x = 2™ and y = z™ for some integers m,n.

For nonempty partial words x and y, if there exist a word z and integers
m,n such that x C 2™ and y C 2", then xy C 2™, yx C 2™, and zy | y=.
The converse is not true in general: if = obb and y = abbo, then

xy = obbabbo T abboobb = yx

but no desired z exists.
Let us first examine the case of one hole.

Theorem 2. [}/ Let x,y be nonempty partial words such that xy has at most
one hole. If xy T yx, then there exists a word z such that x C 2™ and y C 2"
for some integers m,n.

Now, for the case of an arbitrary number of holes, let k,l be positive
integers satisfying k < [. For 0 <1i < k + [, define

sedy, ; (1) = (G0, 01,72, - - n,int1)

where ig =i =ipq1; for 1 < j <n,i; #4;and for 1 <j<n+1,

. _{ij_1+kifij_1<l
15 =

ij—1 — | otherwise

For example, seqq 5(0) = (0,6,12,4,10,2,8,0).

16 Francine Blanchet-Sadri

Definition 1. [11] Let k,l be positive integers satisfying k < | and let z be
a partial word of length k + 1. We say that z is (k,l)-special if there exists
0 <i < k such that seqy, (i) = (io,i1,72,---,%n,int1) contains (at least) two
positions that are holes of z while z(i0)z(i1)2(i2) . . . 2(int1) is not 1-periodic.

Ezample 1. Let z = cbcacocbeocaca, and let k =6 and [= 8 so |z| = k+1. We
wish to determine if 2 is (6, 8)-special. We already calculated seqg (0) and

2(0) z(6) 2(12) z(4) 2(10) z(2) 2z(8) =(0)
c ¢ ¢ o ¢ ¢ ¢ ¢

This sequence does not satisfy the definition, and so we must continue with cal-
culating seqg g(1) = (1,7,13,5,11,3,9,1). The corresponding letter sequence
is
2(1) 2(7) 2(13) 2(5) 2(11) z(3) 2(9) 2(1)
b b a o a a © b

Here we have two positions in the sequence which are holes, and the sequence
is not 1-periodic. Hence, z is (6, 8)-special.

Under the extra condition that zy is not (|z|, |y|)-special, an extension of
Theorem 2 holds when zy has an arbitrary number of holes.

Theorem 3. [11] Let x,y be nonempty partial words such that |z| < |y|. If
xy 1 yx and zy is not (|z|, |y|)-special, then there exists a word z such that
x C 2™ andy C 2" for some integers m,n.

Now, let us discuss conjugacy. Again, the case of full words is well known.

Theorem 4. Let x,y,z (v # ¢ and y # ¢) be words such that xz = zy. Then
x=uwv, y =vu, and z = (uv)"u for some words u,v and integer n > 0.

For example, if x = abcda, y = daabe, and z = abe, then xz = zy because
(abeda)(abe) = (abe)(daabe). Here uw = abe, v = da, and n = 0.
The case of partial words is more subtle.

Theorem 5. [28] Let x,y,z be partial words with x,y nonempty. If xz 1 zy
and xz V zy is |x|-periodic, then there exist words u,v such that © C wwv,
y Cvu, and z C (uv)™u for some integer n > 0.

To illustrate Theorem 5, let © = oba, y = obo, and z = boaboooo. Then we
have

rz=0obaboaboooo
zy=boabooooobo
xzVzy=bbaboaboobo

It is clear that zz 1 zy and a2z V zy is |z|-periodic. Putting u = bb and v = q,
we can verify that the conclusion does indeed hold.

2 Open Problems on Partial Words 17

Corollary 1. [28] Let x,y be nonempty partial words, and let z be a full word.
If xz 7 zy, then there exist words w,v such that x C wv, y C vu, and z C
(uv)™u for some integer n > 0.

Note that the above Corollary does not necessarily hold if z is not full
even if z,y are full. The partial words * = a,y = b, and z = obb provide a
counterexample.

Two conjugacy theorems follow without any restriction on z.

Theorem 6. [13] Let x,y and z be partial words such that |x| = |y| > 0. Then
xz 1 zy if and only if xzy is weakly |x|-periodic.

Theorem 7. [15]
Let x,y and z be partial words such that |x| = |y| > 0. Then the following
hold:

1. If 2 7 zy, then xz and zy are weakly |x|-periodic.
2. If xz and zy are weakly |x|-periodic and L%J >0, then xz T zy.

The assumption L%j > 0 is necessary. To see this, consider x = aa, y = ba
and z = a. Here, xz and zy are weakly |z|-periodic, but zz ¥ zy.

2.3 Periods in Partial Words

Notions and techniques related to periodic structures in words find impor-
tant applications in virtually every area of theoretical and applied computer
science, notably in text processing [51, 52|, data compression [49, 119, 123],
coding [5], computational biology [39, 72, 100, 112], string searching and pat-
tern matching algorithms [38, 50, 51, 52, 69, 72, 84, 102]. Repeated patterns
and related phenomena in words have played over the years a central role
in the development of combinatorics on words, and have been highly valu-
able tools for the design and analysis of algorithms [45, 92, 93, 94]. In many
practical applications, such as DNA sequence analysis, repetitions admit a
certain variation between copies of the repeated pattern because of errors due
to mutation, experiments, etc. Approximate repeated patterns, or repetitions
where errors are allowed, are playing a central role in different variants of
string searching and pattern matching problems [85, 86, 87, 88, 111]. Partial
words have acquired great importance in this context.

The notion of period is central in combinatorics on words and there are
many fundamental results on periods of words. Among them is the well known
periodicity result of Fine and Wilf [67] which intuitively determines how far
two periodic events have to match in order to guarantee a common period.
More precisely, any word u having two periods p,q and length at least p +
q — ged(p,) has also the greatest common divisor of p and ¢, ged(p, q), as a
period. The bound p + ¢ — ged(p, q) is optimal since counterexamples can be

18 Francine Blanchet-Sadri

provided for shorter lengths, that is, there exists an optimal word of length
p+ g — ged(p, q) — 1 having p and ¢ as periods but not having ged(p, q) as
period [45]. Extensions of Fine and Wilf’s result to more than two periods are
given in [42, 47, 80, 122]. For instance, in [47], Constantinescu and Ilie give
an extension for an arbitrary number of periods and prove that their bounds
are optimal.

Fine and Wilf’s result has been generalized to partial words in two ways:

e First, any partial word u with h holes and having two weak periods p, g
and length at least the so-denoted I(h, p, ¢) has also strong period ged(p, q)
provided wu satisfies the condition of not being (h, p, ¢)-special (this concept
will be defined below). This extension was done for one hole by Berstel
and Boasson where the class of (1, p, ¢)-special partial words is empty [4];
for two or three holes by Blanchet-Sadri and Hegstrom [25]; and for an
arbitrary number of holes by Blanchet-Sadri [8]. Elegant closed formulas
for the bounds I(h, p, q) were given and shown to be optimal.

e Second, any partial word w with h holes and having two strong periods
p,q and length at least the so-denoted L(h,p,q) has also strong period
ged(p,). The study of the bounds L(h,p,q) was initiated by Shur and
Gamzova [114]. In particular, they gave a closed formula for L(h,p,q) in
the case where h = 2 (the cases where h = 0 or h = 1 are implied by the
above mentioned results). In [12], Blanchet-Sadri, Bal and Sisodia gave
closed formulas for the optimal bounds L(h,p, ¢) in the case where p = 2
and also in the case where ¢ is “large”. In addition, they gave upper bounds
when ¢ is “small” and h = 3,4, 5 or 6. Their proofs are based on connectiv-
ity in a graph G, 4)(u) associated with a given p- and g-periodic partial
word u. More recently, in [29], Blanchet-Sadri, Mandel and Sisodia pursue
by studying two types of vertex connectivity on G, q)(u): the so-called
modified degree connectivity and r-set connectivity where r = ¢ mod p.
As a result, they give an efficient algorithm for computing L(h, p, q), and
manage to give closed formulas in several cases including the h = 3 and
h = 4 cases.

In this section, we discuss in details the two ways Fine and Wilf’s pe-
riodicity result has been extended to partial words: Section 2.3.1 discusses
the weak periodicity generalizations and Section 2.3.2 the strong periodicity
generalizations. For easy reference, we recall Fine and Wilf’s result.

Theorem 8. [67]
Let p and q be positive integers. If a full word u is p-periodic and q-periodic
and |u| > p+ q — ged(p, q), then u is ged(p, q)-periodic.

2.3.1 Weak Periodicity

In this section, we review the generalizations related to weak periodicity.
We first recall Berstel and Boasson’s result for partial words with exactly
one hole where the bound p + ¢ is optimal.

2 Open Problems on Partial Words 19

Theorem 9. [//

Let p and q be positive integers satisfying p < q. Let u be a partial word with
one hole. If u is weakly p-periodic and weakly q-periodic and |u| > 1(1,p,q) =
P+ q, then u is strongly ged(p, q)-periodic.

When we discuss partial words with A > 2 holes, we need the extra as-
sumption of u not being (h, p, q)-special for a similar result to hold true. In-
deed, if p and ¢ are positive integers satisfying p < ¢ and ged(p, ¢) = 1, then
the infinite sequence (ab?~1ob?"P~1ob™), - consists of (2, p, q)-special partial
words with two holes that are weakly p-periodic and weakly ¢-periodic but
not ged(p, q)-periodic.

In order to define the concept of (h,p,q)-speciality, note that a partial
word u that is weakly p-periodic and weakly g-periodic can be represented as
a 2-dimensional structure. Consider for example the partial word

w = ababaooobabobbobbbbbbbbb
where p = 2 and ¢ = 5. The array looks like:

u(0) u(5) u(10) u(15) u(20)
w(2) w(7) uw(12) w(17) u(22)
w(4) u(9) w(14) u(19)

u(1) u(6) u(1l) w(16) u(21)

u(3) u(8) u(13) u(18) u(23)

and its corresponding array of symbols looks like:

aobbb

aobbbd

aa<ob
boobbd
bbbbb

In general, if ged(p, q) = d, we get d arrays. Each of these arrays is asso-
ciated with a subgraph G = (V, E) of G, q)(u) as follows: V' is the subset of
D(u) comprising the defined positions of u within the array, and E = E, U E,
where E, = {{i,i—p}|i,i—peV}and E, = {{i,i—q} | i{,i—q € V}. For
0 < j < ged(p, q), the subgraph of G, 4)(u) corresponding to

D(u)n{i|i>0andi=jmod ged(p,q)}

will be denoted by Ggp q)(u). Whenever ged(p,q) = 1, G?p o(u) is just
G (p,q)(u). Referring to the partial word w above, the graph G s 5)(w) is dis-
connected (w is (5,2, 5)-special). Here, the ¢’s isolate the a’s from the b’s.

We now define the concept of speciality.

20 Francine Blanchet-Sadri

Definition 2. [8§/
Let p and q be positive integers satisfying p < q, and let h be a nonnegative
integer. Let

(L +1)(p+q) —ged(p, q) if h is even
Hhpr) = { (ng +1)(p+q) otherwise

Let u be a partial word with h holes of length at least l(h,p,q). Then wu is
(h,p, q)-special if Gzp 2 (u) is disconnected for some 0 < j < ged(p, q).

It turns out that the bound I(h, p, q) is optimal for a number of holes h.

Theorem 10. [8§/

Let p and q be positive integers satisfying p < q, and let u be a non (h,p, q)-
special partial word with h holes. If u is weakly p-periodic and weakly q-periodic
and |u| > U(h,p,q), then u is strongly ged(p, q)-periodic.

In [33], progress was made towards allowing an arbitrary number of holes
and an arbitrary number of weak periods. There, the authors proved that any
partial word w with h holes and having weak periods p1,...,p, and length
at least the so-denoted I(h,p1,...,p,) has also strong period ged(p1, ..., pn)
provided w satisfies some criteria. In addition to speciality, they discovered
that the concepts of intractable period sets and interference between periods
play a role.

Open problem 1 Give an algorithm which given a number of holes h and
weak periods pi,...,pn, computes the optimal bound l(h,p1,...,p,) and an
optimal partial word for that bound (a partial word uw with h holes of length
Wh,p1,...,pn) — 1 is optimal for the bound l(h,p1,...,pn) if P1,-..,Dn are
weak periods of u but ged(p1, ..., pn) is not a strong period of u).

Open problem 2 Give closed formulas for the bounds l(h,p1,...,Dn)-

The optimality proof will probably be based on results of graphs associated
with bounds and tuples of weak periods.

2.3.2 Strong Periodicity

In this section, we review the generalizations related to strong periodicity.
There exists an integer L such that if a partial word « with h holes has strong
periods p, g satisfying p < ¢ and |u| > L, then u has strong period ged(p, q)
(L(h,p,q) is the smallest such integer L) [115]. Recall that L(0,p,q) = p +
q — ged(p, q)-

The following result is a direct consequence of Berstel and Boasson’s result.

Theorem 11. [/] The equality L(1,p,q) = p + q holds.

For h = 2,3 or 4, we have the following results.

2 Open Problems on Partial Words 21
Theorem 12. [114, 115] The equality L(2,p,q) = 2p + q — ged(p, q) holds.

Theorem 13. [29] The following equality holds:

2¢+p ifq-p<%
L(3,p,q) = { 4p iff<q—p<p
2p+q ifp<q-p

Theorem 14. [29] The following equality holds:

q+3p—ged(p,q) ifqg—p<§
L(4,p,q) = {q+3p ifE<q—p<p
q+3p—ged(p,q) ifp<q—p

Other results follow.

Theorem 15. [12, 113, 114, 115] The equality L(h,2,q) = (2[%] + 1)g +
h mod q + 1 holds.

Setting h = ng+r where 0 < r < ¢, L(h,2,q) = (2n+1)g+r+1. Consider
the word u = o"w(¢%w)™ where w is the unique full word of length ¢ having
periods 2 and g but not having period 1. Note that u is an optimal word for
the bound L(h,2,q). Indeed, |u] = (2n + 1)q + r, u has h holes, and since w
is not 1-periodic, we also have that u is not strongly 1-periodic. It is easy to
show that u is strongly 2- and ¢-periodic.

In [114], the authors proved that if ¢ > p > 3 and ged(p,¢) = 1 and h is
large enough, then

L (h+1) < L(hp,q) < 22 +4(q— 1)

Open problem 3 Give closed formulas for the bounds L(h,p,q) where h >
4.

Any partial word with h holes and having n strong periods p1, ..., p, and
length at least the so-denoted L(h,pi,...,p,) has also ged(p1,...,pn) as a
strong period.

Open problem 4 Give an algorithm which given a number of holes h and
strong periods p1, . .., pn, computes the optimal bound L(h,p1,...,p,) and an
optimal partial word for that bound (a partial word u with h holes of length
L(h,p1,...,pn) — 1 is optimal for the bound L(h,p1,...,pn) if D1,...,pn are
strong periods of u but ged(py, ..., pn) is not a strong period of u).

Open problem 5 Give closed formulas for the bounds L(h,pi,...,pn).

22 Francine Blanchet-Sadri
2.4 Critical Factorizations of Partial words

Results concerning periodicity include the well known and fundamental criti-
cal factorization theorem, of which several versions exist [43, 45, 60, 61, 59, 92,
93]. It intuitively states that the minimal period (or global period) of a word
of length at least two is always locally detectable in at least one position of
the word resulting in a corresponding critical factorization. More specifically,
given a word w and nonempty words u, v satisfying w = uv, the minimal local
period associated to the factorization (u,v) is the length of the shortest square
at position |u| — 1. It is easy to see that no minimal local period is longer than
the global period of the word. The critical factorization theorem shows that
critical factorizations are unavoidable. Indeed, for any word, there is always a
factorization whose minimal local period is equal to the global period of the
word.

More precisely, we consider a word aga; . . . a,—1 and, for any integer i (0 <
1 < n—1), we look at the shortest repetition (a square) centered in this position,
that is, we look at the shortest (virtual) suffix of agay ...a; which is also a
(virtual) prefix of a;y1ai42...a,—1. The minimal local period at position i is
defined as the length of this shortest square. The critical factorization theorem
states, roughly speaking, that the global period of aga; ... a,—1 is simply the
maximum among all minimal local periods. As an example, consider the word
w = babbaab with global period 6. The minimal local periods of w are 2, 3, 1,
6, 1 and 3 which means that the factorization (babb, aab) is critical.

Crochemore and Perrin showed that a critical factorization can be found
very efficiently from the computation of the maximal suffixes of the word with
respect to two total orderings on words: the lexicographic ordering related to
a fixed total ordering on the alphabet =<;, and the lexicographic ordering ob-
tained by reversing the order of letters in the alphabet <, [50]. If v denotes
the maximal suffix of w with respect to <; and v’ the maximal suffix of w with
respect to <,, then let u,u’ be such that w = uv = u/v’. The factorization
(u,v) turns out to be critical when |v| < [¢|, and the factorization (u',v") is
critical when |v| > |v/|. There exist linear time (in the length of w) algorithms
for such computations [50, 51, 101] (the latter two use the suffix tree construc-
tion). Returning to the example above, order the letters of the alphabet by
a < b. Then the maximal suffix with respect to <; is v = bbaab and with re-
spect to <. is v/ = aab. Since |v| > [v'[, the factorization (u’,v") = (babb, aad)
of w is critical.

In [22], Blanchet-Sadri and Duncan extended the critical factorization the-
orem to partial words with one hole. In this case, the concept of local period,
which characterizes a local periodic structure at each position of the word, is
defined as follows.

Definition 3. [22] Let w be a nonempty partial word. A positive integer p is
called a local period of w at position i if there exist partial words u,v,z,y
such that u,v # €, w = wv, |u| =i+ 1, |z| = p, x Ty, and such that one of
the following conditions holds for some partial words r,s:

2 Open Problems on Partial Words 23

1. u=rx and v =ys (internal square),

2. ¢ =ru and v = ys (left-external square if r #),

3. uw=rx and y = vs (right-external square if s #),

4. x=ru and y = vs (left- and right-external square if r,s # ¢).

In this context, a factorization is called critical if its minimal local period is
equal to the minimal weak period of the partial word. As an example, consider
the partial word with one hole w = baobaab with minimal weak period 3. The
minimal local periods of w are 2 (left-external square), 1 (internal square), 1
(internal square), 3 (internal square), 1 (internal square) and 3 (right-external
square), and both (baob, aab) and (bacobaa,b) are critical.

It turns out that for partial words, critical factorizations may be avoidable.
Indeed, the partial word babdaab has no critical factorization. The class of the
so-called special partial words with one hole has been described that possibly
avoid critical factorizations. Refining the method based on the maximal suf-
fixes with respect to the lexicographic/ reverse lexicographic orderings leads
to a version of the critical factorization theorem for the nonspecial partial
words with one hole whose proof provides an efficient algorithm which, given
a partial word with one hole, outputs a critical factorization when one exists
or outputs “no such factorization exists”.

In [35], Blanchet-Sadri and Wetzler further investigated the relationship
between local and global periodicity of partial words: (1) They extended the
critical factorization theorem to partial words with an arbitrary number of
holes; (2) They characterized precisely the class of partial words that do not
admit critical factorizations; and (3) They developed an efficient algorithm
which computes a critical factorization when one exists.

Some open problems related to the critical factorization theorem follow.

Open problem 6 Discover some good criterion for the existence of a critical
factorization of an unbordered partial word defined as follows: A nonempty
partial word u is unbordered if no monempty partial words x,v,w exist such
that uw C v and u C wzx.

Open problem 7 In the framework of partial words, study the periodicity
theorem on words, which has strong analogies with the critical factorization
theorem, that was derived in [102].

In [62], the authors present an O(n) time algorithm for computing all
local periods of a given word of length n, assuming a constant-size alphabet.
This subsumes (but is substantially more powerful than) the computation of
the global period of the word and the computation of a critical factorization.
Their method consists of two parts: (1) They show how to compute all internal
minimal squares; and (2) They show how to compute left- and right-external
minimal squares, in particular for those positions for which no internal square
has been found.

24 Francine Blanchet-Sadri

Open problem 8 Find the time complexity for the computation of all the
local periods of a given partial word.

Now, consider the language
CF = {w | w is a partial word over {a,b} that has a critical factorization}

What is the position of C'F' in the Chomsky hierarchy? It has been proved that
CF is a context sensitive language that is not regular. The question whether
or not C'F' is context-free remains open.

Theorem 16. [36] The language CF is not regular.
Theorem 17. [21] The language CF is context sensitive.

Open problem 9 Is the language CF context-free?

2.5 Correlations of Partial Words

In [71], Guibas and Odlyzko consider the period sets of words of length n over a
finite alphabet, and specific representations of them, (auto)correlations, which
are binary vectors of length n indicating the periods. Among the possible 2"
bit vectors, only a small subset are valid correlations. There, they provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, that is, the number of words
sharing a given correlation. In [108], Rivals and Rahmann show that there is
redundancy in period sets and introduce the notion of an irreducible period
set. They prove that I3,, the set of all correlations of length n, is a lattice
under set inclusion and does not satisfy the Jordan-Dedekind condition. They
propose the first efficient enumeration algorithm for I, and improve upon the
previously known asymptotic lower bounds on the cardinality of I5,. Finally,
they provide a new recurrence to compute the number of words sharing a
given period set, and exhibit an algorithm to sample uniformly period sets
through irreducible period sets.

In [24], the combinatorics of possible sets of periods and weak periods of
partial words were studied in a similar way. There, the notions of binary and
ternary correlations were introduced, which are binary and ternary vectors
indicating the periods and weak periods of partial words. Extending the re-
sult of Guibas and Odlyzko, Blanchet-Sadri, Gafni and Wilson characterized
precisely which binary and ternary vectors represent the period and weak pe-
riod sets of partial words and proved that all valid correlations may be taken
over the binary alphabet (the one-hole case was proved earlier in [16]). They
showed that the sets of all such vectors of a given length form distributive
lattices under suitably defined partial orderings extending results of Rivals
and Rahmann. They also showed that there is a well defined minimal set of
generators for any binary correlation of length n, called an irreducible period

2 Open Problems on Partial Words 25

set, and demonstrated that these generating sets are the primitive subsets of
{1,2,...,n — 1}. These primitive sets of integers have been extensively stud-
ied by many researchers including Erdos [65]. Finally, they investigated the
number of partial word correlations of length n. More recently, recurrences for
computing the size of populations of partial word correlations were obtained
as well as random sampling of period and weak period sets [23].

We first define the greatest lower bound of two given partial words u and
v of equal length as the partial word u A v, where (uAv) C v and (uAv) C v,
and if w C u and w C v, then w C (u A v). The following example illustrates
this new concept which plays a role in this section:

u =abocaabooaa
v =acbcaabobba
uANv=aoocaaboooa

The contents of Section 2.5 is as follows: In Section 2.5.1, we give charac-
terizations of correlations. In Section 2.5.2, we provide structural properties
of correlations. And in Section 2.5.3, we consider the problem of counting
correlations.

2.5.1 Characterizations of Correlations

Full word correlations are vectors representing sets of periods as stated in the
following definition.

Definition 4. Let u be a (full) word. Let v be the binary vector of length |u]
for which vo =1 and
. {1 if i€ Pu)

0 otherwise

We call v the correlation of u.

For instance, the word abbababbab has periods 5 and 8 (and 10) and thus
has correlation 1000010010.
Binary vectors may satisfy some propagation rules.

Definition 5. 1. A binary vector v of length n is said to satisfy the forward
propagation rule if for all 0 < p < q < n such that v, = vg = 1 we have
that vy iq—py = 1 for all 2 < i < Z=L.

2. A binary vector v of length n is said to satisfy the backward propagation
rule if for all 0 < p < ¢ < min(n, 2p) such that v, = vy =1 and vyp_q =0
we have that vy_iq—p) =0 for all 2 < i < min(| 2], [(=5]).

Note that a binary vector v of length 12 satisfying v; = vg = 1 and the
forward propagation rule also satisfies vz a9_7) = vi1 = 1. Note also that
setting p = 0 in the forward propagation rule implies that v;, = 1 for all ¢
whenever v, = 1.

26 Francine Blanchet-Sadri

Fundamental results on periodicity of words include the following unex-
pected result of Guibas and Odlyzko which gives a characterization of full
word correlations.

Theorem 18. [71] For correlation v of length n the following are equivalent:

1. There exists a word over the binary alphabet with correlation v.
2. There exists a word over some alphabet with correlation v.
3. The correlation v satisfies the forward and backward propagation rules.

Corollary 2. [71] For any word u over an alphabet A, there exists a binary
word v of length |u| such that P(v) = P(u).

Now, partial word correlations are defined according to the following def-
inition.

Definition 6. [24]

1. The binary correlation of a partial word u satisfying P(u) = P’ (u) is the
binary vector of length |u| such that vo =1 and

B {1 if i€ P(u)

Uy = .
0 otherwise

2. The ternary correlation of a partial word w is the ternary vector of length
|u| such that vg =1 and

1 if ie€P(u)
v; =132 if i€ P'(u)\Pu)

0 otherwise

Considering the partial word abacaocacaba which has periods 9 and
11 (and 12) and strictly weak period 5, its ternary correlation vector is
100002000101.

A characterization of binary correlations follows.

Theorem 19. [2/] Let n be a nonnegative integer. Then for any finite collec-
tion uy,us, ..., ur of full words of length n over an alphabet A, there exists
a partial word w of length n over the binary alphabet with P(w) = P'(w) =
'P(ul) U P(Ug) J---u P(uk)

Corollary 3. [24] The set of valid binary correlations over an alphabet A with
|[A]| > 2 is the same as the set of valid binary correlations over the binary
alphabet. Phrased differently, if u is a partial word over an alphabet A, then
there exists a binary partial word v of length |u| such that P(v) = P(u).

Follows is a characterization of valid ternary correlations.

2 Open Problems on Partial Words 27

Theorem 20. [2/] A ternary vector v of length n is the ternary correlation
of a partial word of length n over an alphabet A if and only if vg = 1 and

1. If v, = 1, then for all 0 < i < 3 we have that v, = 1.
2. If v, = 2, then there exists some 2 < i < % such that v;p = 0.

The proof is based on the following construction: For n > 3 and 0 < p < n,
let n = kp + r where 0 < r < p. Then define

o = (abP~1)F it r=0
P (@b Ykabt i >0

Wy = abP~ob" P

Then given a valid ternary correlation v of length n, the partial word

(/\p>0|’vp:1 wp) A (/\p\u,,:2 ¢p>

has ternary correlation v.
For example, given v = 100002000101, then abbbbobbbobo has correlation
v as computed in the following figure:

wg =abbbbbbbbabbd
wip=abbbbbbbbbba
Vs =abbbbobbbbbb

abbbbobbbobo

The following corollary implies that every partial word has a “binary equiv-
alent”.

Corollary 4. [24] The set of valid ternary correlations over an alphabet A
with ||A]| > 2 is the same as the set of valid ternary correlations over the
binary alphabet. Phrased differently, if u is a partial word over an alphabet A,
then there exists a binary partial word v such that

1. | =1|u| 2. Pw)=P) 3 P(v)="P(u)

In [74], Halava, Harju and Ilie gave a simple constructive proof of The-
orem 18 which computes v in linear time. This result was later proved for
partial words with one hole by extending Halava et al.’s approach [16]. More
specifically, given a partial word u with one hole over an alphabet A, a partial
word v over the binary alphabet exists such that Conditions 1-3 hold as well
as the following condition

4. H(v) C H(u)

However, Conditions 1-4 cannot be satisfied simultaneously in the two-hole
case. For the partial word abacacoacaba can be checked by brute force to have
no such binary equivalent (although it has the binary equivalent abbbbobbbobo
as discussed above).

28 Francine Blanchet-Sadri

Open problem 10 Characterize the partial words that have an equivalent
over the binary alphabet {a,b} satisfying Conditions 1—4.

Open problem 11 Design an efficient algorithm for computing a binary
equivalent satisfying Conditions 1-4 when such equivalent exists.

Open problem 12 Can we always find an equivalent over the ternary al-
phabet {a, b, c} that satisfies Conditions 1-4¢

2.5.2 Structural Properties of Correlations

A result of Rivals and Rahmann [108| states that I5,, the set of full word
correlations of length n, is a lattice under set inclusion which does not satisfy
the Jordan-Dedekind condition, a criterion which stipulates that all maximal
chains between two elements of a poset are of equal length. Violating the
Jordan-Dedekind condition implies that I3, is not distributive.

We now discuss corresponding results for partial words.

Theorem 21. [2/] The set A,, of partial word binary correlations of length n
is a distributive lattice under C where for u,v € Ay, uw C v if P(u) C P(v),
and thus satisfies the Jordan-Dedekind condition. Here

1. The meet of u and v, uNwv, is the unique vector in A, such that P(unv) =
P(u) N P(v).

2. The join of u and v, uUv, is the unique vector in A, such that P(uUv) =
P(u) UP(v).

3. The null element is 1071,

4. The universal element is 1™.

The union of u and v, u U v, is the vector in A}, defined as (uUv); = 0 if
u; = v; = 0, 1 if either u; = 1 or v; = 1, and 2 otherwise. However, A/ is not
closed under union. Considering the example

w —=102000101
v =100010001
(WUv)=102010101

there is no ¢ > 2 such that (v Uwv);2 = 0, and therefore (u U v) is not a valid
ternary correlation. However 101010101 is valid.

Theorem 22. [2/] The set Al of partial word ternary correlations of length
n is a distributive lattice under C where for u,v € AL, u C v if u; = 1 implies
v; =1 and u; = 2 implies v; =1 or v; = 2. Here

1. The meet of u and v, uAv, is the vector (uNv) in Al defined by P(uiv) =
P(u)NPw) and P'(uAv) =P (u) NP (v).
2. The join of u and v, uV v, is the vector in Al defined by

2 Open Problems on Partial Words 29

P'(uVwv) =P (u) UP (v)
P(uVv)="Pu)UP)UB(uUv)

where B(uUv) is the set of all 0 < p < n such that (uUv), =2 and there
exists no i > 2 satisfying (v U v);, = 0.

In the case of full words, some periods are implied by other periods because
of the forward propagation rule. If a twelve-letter full word has periods 7 and
9 then it must also have period 11 since 11 = 7+ 2(9 — 7), so {7,9,11}
corresponds to the irreducible period set {7,9}. Another result of Rivals and
Rahmann shows that the set A,, of these irreducible period sets is not a lattice
but does satisfy the Jordan-Dedekind condition as a poset [108].

However, forward propagation does not hold in the case of partial words
as can be seen with the partial word abbbbbbobobb which has periods 7 and 9
but does not have period 11. The set {7,9,11} is irreducible in the sense of
partial words, but not in the sense of full words.

This leads us to the definition of generating sets.

Definition 7. [2/] A set P C {1,2,...,n — 1} generates the correlation v €
A, provided that for each 0 < i < n we have that v; = 1 if and only if there
eristspe P and 0 < k < % such that i = kp.

For instance, if v = 1001001101, then {3,6,7,9}, {3,6,7}, {3,7,9}, and
{3, 7} generate v. However, the set {3,7} is the minimal generating set of v.
For every v € A,, there is a minimal generating set R(v) for v which we
call the irreducible period set of v. Namely, this is the set of p € P(v) such
that for all ¢ € P(v) with ¢ # p we have that ¢ does not divide p. Denoting
by &,, the set of irreducible period sets of partial words of length n, we see

that there is an obvious bijective correspondence between @,, and 4, given
by

R:A,— &,
v — R(v)

E:o, — A,
P = UpeP<p>n

For n > 3, we see immediately that the poset (®,,C) is not a join semi-
lattice since the sets {1} and {2} will never have a join because {1} is always
maximal. On the other hand, the following holds.

Proposition 1. [2/] The set @, of irreducible period sets of partial words of
length n is a meet semilattice under set inclusion which satisfies the Jordan-
Dedekind condition. Here the null element is (), and the meet of two elements
s simply their intersection.

Open problem 13 Is there an efficient enumeration algorithm for A, ?

30 Francine Blanchet-Sadri
2.5.3 Counting Correlations

In this section, we look at the number of valid correlations of a given length.
In the case of binary correlations, we give bounds and link the problem to one
in number theory. In the case of ternary correlations, we give an exact count.

A primitive set of integers is a subset S C {1,2,...} such that for any two
distinct elements s,s’ € S we have that neither s divides s’ nor s’ divides
s. The irreducible period sets of correlations v € A,, are precisely the finite
primitive subsets of {1,2,...,n — 1}.

A result of Erdds can be stated as follows.

Theorem 23. [65] Let S be a finite primitive set of size k with elements less
than n. Then k < {%J Moreover, this bound is sharp.

This bound shows that the number of binary correlations of length n is at

most the number of subsets of {1,2,...,n—1} of size at most L%J Moreover,
the sharpness of the bound gives us that
|4, > 2L%]
s m2 oA
LS n |4, <In?2
2 n

Open problem 14 Refine this bound on the cardinality of A, the set of all
partial word binary correlations of length n.

Guibas and Odlyzko [71] showed that as n — oo

1 In ”FHH 1
21n 2 + 0(1) S (In n)2 § 2 ln(%) + 0(1)

and Rivals and Rahmann [108] improved the lower bound to

In ||T, 1 2 . . 1
n |l - 1 (1— i) +0413971471231nnn+0((ln1n)2>

(Inn)2 = 21n2 Inn Inn (In n)2

where I, is the set of all full word correlations of length n. Thus the bounds
we give, which show explicitly that In ||A,|| = ©(n), demonstrate that the
number of partial word binary correlations is much greater than the number
of full word correlations.

Lemma 1. [2//

1. Let u be a partial word of length n. Then p € P(u) if and only if ip € P’ (u)
Jor all 0 <i < [2].

2.If S C {1,2,...,n—1}, then there exists a unique correlation v € Al, such
that P'(v) \ {n} = S.

Consequently, the cardinality of A/, the set of valid ternary correlations
of length n, is the same as the cardinality of the power set of {1,2,...,n—1},
and thus

2 Open Problems on Partial Words 31

1ALl =2t
We end this section with the following open problem.

Open problem 15 Ezhibit an algorithm to sample uniformly (weak) period
sets through irreducible (weak) period sets.

2.6 Primitive and Unbordered Partial Words

The two fundamental concepts of primitiveness and borderedness play an im-
portant role in several research areas including coding theory [5, 6, 117], com-
binatorics on words [45, 92, 93, 94, 96], computational biology [39, 100], data
communication [41], data compression [49, 119, 123], formal language theory
[57, 58], and text algorithms [38, 50, 51, 52, 69, 72, 84, 102, 118|. A primitive
word is one that cannot be written as a power of another word, while an un-
bordered word is a primitive word such that none of its proper prefixes is one
of its suffixes. For example, abaab is bordered with border ab while abaabb is
unbordered. The number of primitive and unbordered words of a fixed length
over an alphabet of a fixed size is well known, the number of primitive words
being related to the Mdbius function [92].

In this section, we discuss, in particular, the problems of counting primitive
and unbordered partial words.

2.6.1 Primitiveness

A word u is primitive if there exists no word v such that v = v? with i > 2. A
natural algorithmic problem is how can we decide efficiently whether a given
word is primitive. The problem has a brute force quadratic solution: divide
the input word into two parts and check whether the right part is a power of
the left part. But how can we obtain a faster solution to the problem? Fast
algorithms for testing primitivity of words can be based on the combinatorial
result that a word w is primitive if and only if w is not an inside factor of its
square uu, that is, uu = zuy implies © = ¢ or y = ¢ [45]. Indeed, any linear
time string matching algorithm can be used to test whether the string u is a
proper factor of wu. If the answer is no, then the primitiveness of v has been
verified [51]. So testing whether or not a word is primitive can be done in
linear time in the length of the word.

Primitive partial words were defined in [9]: A partial word w is primitive if
there exists no word v such that « C v® with ¢ > 2. It turns out that a partial
word u with one hole is primitive if and only if uu T xuy for some partial words
x,y implies © = € or y = £ [9]. A linear time algorithm for testing primitivity
of partial words with one hole can be based on this combinatorial result.
As an application, the existence of a binary equivalent for any partial word
with one hole satisfying Conditions 1-4 discussed in Section 2.5 was obtained
[16]. In [11], a linear time algorithm was described to test primitivity on

32 Francine Blanchet-Sadri

partial words with more than one hole. Here the concept of speciality related
to commutativity on partial words, which was discussed in Section 2.2, is
foundational in the design of the algorithm. More precisely, it was shown that
if w is a primitive partial word with more than one hole satisfying uu T xuy for
some nonempty partial words = and y such that |z| < |y|, then u is (|z], |y]|)-
special. The partial words u = abobbbob, x = ao, and y = cobbeb illustrate
the fact that the condition of speciality plays a role when dealing with partial
words with more than one hole.

In [19], the very challenging problem of counting the number Py ;(n) (re-
spectively, P ;(n)) of primitive (respectively, nonprimitive) partial words
with h holes of length n over a k-size alphabet was considered. There, for-
mulas for h =1 and h = 2 in terms of the well known formula for 2 = 0 were
given. Denote by T}, x(n) the sum of Py, x(n) and P, (n).

We first recall the counting for primitive full words. Since there are exactly
k™ words of length n over a k-size alphabet and every nonempty word w has
a unique primitive root v for which w = v™/? for some divisor d of n, the

following relation holds:
K" =" Py(d)

d|n

Using the Md&bius inversion formula, we obtain the following well-known ex-
pression for Py (n) [92, 105]:

Pos(n) = 3 u(d)kn?

d|n

where the Mobius function, denoted by p, is defined as

1 ifn=1
p(n) = ¢ (=1)% if n is a product of 4 distinct primes
0 if n is divisible by the square of a prime

The cases where h = 1 and h = 2 are stated in the next two theorems.
Theorem 24. [19] The equality P| ;(n) = nl% ;(n) holds.
Theorem 25. [19]
1. For an odd positive integer n:

n

P = (5) Phuto)

2. For an even positive integer n:

(ﬁ

Pt = (5) Foatm) = (6 = DT ()

2 Open Problems on Partial Words 33

Open problem 16 Count the number P}’Lk(n) of nonprimitive partial words
with h holes of length n over a k-size alphabet for h > 2.

Another problem to investigate is the following.

Open problem 17 Study the language of primitive partial words as is done
for full primitive words in [105].

We end this section with the following remark. In [18], the authors ob-
tained consequences of the generalizations of Fine and Wilf’s periodicity result
to partial words. In particular, they generalized the following combinatorial
property: “For any word u over {a, b}, ua or ub is primitive.” This property
proves in some sense that there exist very many primitive words.

2.6.2 Borderedness

Unbordered partial words were also defined in [9]: A nonempty partial word
u is unbordered if no nonempty partial words 1, xo, v, w exist such that u =
r1v = wxe and x7 T xo. If such nonempty words exist and x is such that
x1 C x and x5 C z, then we call u bordered and x a border of u. A border x of
u is called minimal if |x| > |y| implies that y is not a border of u. Note that
there are two types of borders: x is an overlapping border if |x| > |v|, and
a nonoverlapping border otherwise. The partial word u = aocab is bordered
with the nonoverlapping border ab and overlapping border aab, the first one
being minimal, while the partial word aboc is unbordered.

We call a bordered partial word u simply bordered if a minimal border x
exists satisfying |u| > 2|x|.

Proposition 2. [21] Let u be a nonempty bordered partial word. Let x be a
minimal border of u, and set u = x1v = wxe where r1 C x and xo C x. Then
the following hold:

1. The partial word x is unbordered.
2. If x1 is unbordered, then uw = x1u'xy C xu'z for some u'.

Note that Proposition 2 implies that if u is a full bordered word, then
x1 = x is unbordered. In this case, u = zu’x where x is the minimal border
of u. Hence a bordered full word is always simply bordered.

Corollary 5. [21] Every bordered full word of length n has a unique minimal
border x. Moreover, x is unbordered and |x| < |%].

In [20], the problem of enumerating all unbordered partial words with h
holes of length n over a k-letter alphabet was considered, a problem that yields
some open questions for further investigation. We will denote by Uj, i (n) the
number of such words.

Let us start with the problem of enumerating all unbordered full words
of length n over a k-letter alphabet which gives a conceptually simple and
elegant recursive formula: Uy (0) = 1, Up (1) = k, and for n > 0,

34 Francine Blanchet-Sadri

Uo’k(Q’I’L) = ka’k(2n - 1) - Uo’k(n)
Uo)k(Qn + 1) = ka’k(Qn)

These equalities can be seen from the fact that if a word has odd length 2n+1
then it is unbordered if and only if it is unbordered after removing the middle
letter. If a word has even length 2n then it is unbordered if and only if it is
obtained from an unbordered word of length 2n — 1 by adding a letter next
to the middle position unless doing so creates a word that is a perfect square.
Using these formulas and Proposition 2, we can easily obtain a formula
for counting bordered full words. Let By (j,n) be the number of full words of
length n over a k-letter alphabet that have a minimal border of length j:

By (j,n) = Uoi(j)k™=2%

If we let By (n) be the number of full words of length n over a k-letter alphabet
with a border of any length, then we have that

13
Bi(n) = Z By (j,n)

When we allow words to have holes, counting bordered partial words is
made extremely more difficult by the failure of Corollary 5 since there is now
the possibility of a minimal border that is overlapping as in acbb. We will first
concern ourselves with the simply bordered partial words. Note that because
borderedness in partial words is defined via containment, it no longer makes
sense to talk about the minimal border of a partial word, there could be many
possible borders of a certain length.

To see inside the structure of the partial words we are trying to count
we first define a function. Let f3 x(¢,7,n) be the number of partial words of
length n with A > 0 holes over a k-letter alphabet that have a hole in position
7 and a minimal border of length j. When ¢ = 0:

n—1\1.n—h :¢ -
. _ (h71>k ifj=1
fh,k(ovjan) {0 1f]>1

It is clear that fp, x(i,j,n) has some symmetry, namely that, fj, x(i,j,n) =
fnk(n —1—1,j,n). Throughout this section we will rely on this to consider
only i < [%].

We have some general formulas for the evaluation of fy (1, 7, n).

Proposition 3. [20]
Ifo<i<j—1andj<z, then

min(h,27)

o N &] —2j—h+h'
_ , 92 fn—2j—ht
Snge(iy j;m) > fwilisg ‘7)<h—h’>

h'=1

It is possible to see from the formula in Proposition 3 that we need only

really concern ourselves with the case when j = [].

There is a similar simplification that can be made if j — 1 < i.

2 Open Problems on Partial Words 35

Proposition 4. [20]
If j — 1 < i, then

j—1 min(h—1,2j) <

o RN e I O N A Y
fh,k(Z,J’n):QZ Z fh’,k(zlvjaz?) J)k 2j—hth
/=0 h'’=0

h—1-—H

If we restrict our attention to the case when h = 1, then we can present
many explicit formulas for the values f1 x (i, j,n). The exceptional case when
i = 0 is easily dispensed with:

o [Erlifj=1
fl,k(oajan){o lf]>1

Note that in the case where 0 <7 < j —1 and j < %, the formula in Proposi-
tion 3 reduces to the very simple equality

fl,k(iaja ’ﬂ) = fl,k(ivja 2j)kn72j
Similarly, in the case where j —1 < i, the formula in Proposition 4 reduces to
fra(isg,m) = Up g (5)k" 2771

By the above discussion we can restrict our attention to the cases when i > 0,
n = 2m and j = m. These are partial words with a border that takes up
exactly half the length of the word. We wish to find a complete formula for
fik(i,m,2m) where i = m — 1 — 7',

We proceed by induction on 7. When ' = 0, we have the following.

Lemma 2. [20] For allm > 2, f1 ,(m —1,m,2m) = Uy (m).

Continuing with the first interesting case i = 1, we have the following
lemma.

Lemma 3. [20]
For allm >3, f1(m —2,m,2m) = Uy r(m) — k(k —1).

This kind of analysis quickly becomes much more complicated though.
The evaluation breaks up into cases depending on how the periodicity of the
words interacts with the length of the border in modular arithmetic.

Lemma 4. [20] For all m > 4, the following holds:

 JUpr(m) —k*(k—1)—k(k—1) if m =1 mod 2
Frx(m = 3,m, 2m) = {Ui:(m) — k(k—1)2 = k(k — 1) if m = 0 mod 2

Lemma 5. [20] For all m > 5, the following holds:
fre(m —4,m,2m) = Uy r(m) — k(k — 1) — g1(m) — g2(m)

where

36 Francine Blanchet-Sadri

[k(k—=1)? if m=0mod 2
gu(m) = {0 if m=1mod 2

and

k*(k —1)% if m = 0 mod 3
g2(m) = < Up r(4) if m=1mod 3
k2(k —1)% if m = 2 mod 3

To give an idea of how the values for fi (¢, m,2m) behave unpredictably,
here is a table of values that has been put together through a brute force
count:

y i 0123456 7]
f1,2(i,2,4) 102

f12(i,3,6) |0 2 4

f12(6,4,8) [0 2 4 6
f12(,5,10)[0 6 6 10 12
f1,2(4,6,12)[0 10 12 16 18 20
f1,2(4,7,14)|0 22 26 32 34 38 40
f12(i,8,16)]0 42 52 60 66 70 72 74

Open problem 18 Compute the values fi1 (m —i,m,2m) for m > i.

Let Spr(n) be the number of simply bordered partial words of length n
with h holes over a k-letter alphabet. Clearly if & > n, then S}, ;(n) = 0. Note
that when h =0, Sy 1 (n) = Bg(n).

Theorem 26. [20]
If 0 < h < n, then a formula for Sy x(n) is given by:
Shvk(Qm + 1) = Sh_lyk(2m) =+ kSh7k(2m)

m—1

2 Z > fun(isg.2m)

Sh7k(2m) = ! 3=1

R
We can check that

w3
—

n—11

S]ﬂk;(’ll) = f17k(i7j7n)

Jj=1

Il
=]

i

Let Np, k(n) be the number of partial words with h holes, of length n,
over a k-letter alphabet that are not simply bordered. Obviously we can find
the value of this function by subtracting the value of Sy, ,(n) from the total
number of partial words with those parameters, but it would be of interest to
find a direct formula for Nj, ;(n). If h = 0, then

2 Open Problems on Partial Words 37

No,k(n) = Uy r(n)

since a bordered full word that is not simply bordered is an unbordered full
word. It is easy to see that Ny ,(0) = 0, N1 (1) = 1, N1 x(2) = 0, and for
h > 1 that Nj, x(1) = 0 and N, x(2) = 0. Now, for A > 0, the following formula
holds for odd n = 2m + 1:

Nh’k(2m + 1) = thJg(Qm) + Nh,l’k(2m)
Open problem 19 What is Ny, ;,(2m)?

If we simplify the problem down to the h = 1 case, then we can again use
the values f1 x(4,j,n) to give a formula for Ny ;(n):

N1 k(2m) = kNyp(2m — 1) + 20 5 (2m — 1) = > f14(i,m, 2m)

i=1

but it rests on the evaluation of the fi (4, 7,27)’s as well.
Other interesting questions include the following.

Open problem 20 Count the number Oy, i (n) of overlapping bordered par-
tial words of length n with h holes over a k-letter alphabet for h > 0.

Open problem 21 Count the number Uy, ,,(n) of unbordered partial words of
length n with h holes over a k-letter alphabet for h > 0.

Another open question is suggested by the fact that every partial word of
length 5 that has more than two holes is simply bordered. The partial word
aoobb shows that this bound on the number of holes for length 5 is tight. For
length 6, every partial word with more than 2 holes is simply bordered as well.

Open problem 22 What is the maximum number of holes M(n) a partial
word of length n can have and still fail to be simply bordered? Some values for

small n follow.

—
=)
© 00 00 O ULU i W

38 Francine Blanchet-Sadri

We end this section by discussing another open problem related to bor-
deredness in the context of partial words.

In 1979, Ehrenfeucht and Silberger initiated a line of research to explore the
relationship between the minimal period of a word w of length n, p(w), and the
maximum length of its unbordered factors, p(w) [64]. Clearly, p(w) < p(w).
They conjectured that if n > 2u(w), then p(w) = p(w). In [3], a counterex-
ample was given and it was conjectured that 3u(w) is the precise bound. In
1982, it was established that if n > 4u(w) — 6, then p(w) = p(w) [61]. In
2003, the bound was improved to 3u(w) — 2 in [76] where it is believed that
the precise bound can be achieved with methods similar to those presented in
that paper.

Open problem 23 Investigate the relationship between the minimal weak pe-
riod of a partial word and the maximum length of its unbordered factors.

2.7 Equations on Partial Words

As was seen in Section 2.2, some of the most basic properties of words, like the
commutativity and the conjugacy properties, can be expressed as solutions of
the word equations xy = yx and zz = zy respectively. It is also well known
that the equation 2" = y" 2P has only periodic solutions in a free semigroup,
that is, if 2 = y"2P holds with integers m,n,p > 2, then there exists a
word w such that x,y, z are powers of w. This result, which received a lot of
attention, was first proved by Lyndon and Schiitzenberger for free groups [96].
Their proof implied the case for free semigroups since every free semigroup
can be embedded in a free group. Direct proofs for free semigroups appear in
[46, 77, 92].

In this section, we study equations on partial words. When we speak about
them, we replace the notion of equality with compatibility. But compatibility
is not transitive! We already solved the commutativity equation xy | yz as
well as the conjugacy equation zz T zy in Section 2.2. As an application of
the commutativity equation, we mention the linear time algorithm for testing
primitivity on partial words that was discussed in Section 2.6 [11], and as
an application of the conjugacy equation, we mention the efficient algorithm
for computing a critical factorization when one exists that was discussed in
Section 2.4 [22, 35]. Here, we solve three equations: ™ T y", 22 T y™z, and
™ Ty 2P,

First, let us consider the equation ™ T ™, also called the “good pairs”
equation. If x and y are full words, then 2 = y™ for some positive integers
m, n if and only if there exists a word z such that z = z* and y = 2! for some
integers k, . When dealing with partial words x and v, if there exists a partial
word z such that C 2* and y C 2! for some integers k., then z™ 1 y" for
some positive integers m,n.

For the converse, we need a couple of lemmas.

2 Open Problems on Partial Words 39

Lemma 6. [13]

Let x,y be partial words and let m,n be positive integers such that x™ T y™
with ged(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i such
that 0 < i < p and x;, is not 1-periodic, then D(y; ,) is empty.

Lemma 7. [13]
Let x be a partial word, let m,p be positive integers, and let i be an integer
such that 0 < i < p. Then the relation

m = , ;- .
Lip = Ti,pT(i—|x|) mod p,p * + + L(i—(m—1)|z|) mod p,p

holds.
The “good pairs” theorem is stated as follows.

Theorem 27. [13]
Let x,y be partial words and let m,n be positive integers such that x™ T y"
with ged(m,n) = 1. Assume that (z,y) s a good pair, that is,

1. For alli € H(z) the word y", |, is 1-periodic,

2. For all i € H(y) the word x™; |, is 1-periodic.

Then there exists a partial word z such that x C 2¥ and y C 2' for some
integers k, .

The assumption of (z,y) being a good pair is necessary in the “good pairs”
theorem. Indeed, 2 = (aob)? 1 (acbadb)! = y' but y(1)y(4) = cd is not
1-periodic, and there exists no partial word z as desired.

Corollary 6. [13]
Let x and y be primitive partial words such that (x,y) is a good pair. If
™ 1T y™ for some positive integers m and n, then x T y.

Note that if both z and y are full words, then (z,y) is a good pair. The
corollary hence implies that if x, y are primitive full words satisfying =" = y"
for some positive integers m and n, then x = y.

Second, we consider the “good triples” equation z? T y™z. Here, it is
assumed that m is a positive integer and z is a prefix of y.

Nontrivial solutions exist! A solution is trivial if x,y, 2z are contained in
powers of a common word. The equation z? T 4™z has nontrivial solutions.
For instance, (acoa)? 1 (aab)?aa where x = aooa, y = aab, and z = aa.

The “good triples” theorem follows.

Theorem 28. [13]
Let .5, z be partial words such that z is a proper prefiz of y. Then z? T y™z
for some positive integer m if and only if there exist partial words

U, VyUQy VOy e+ vy Um—15Um—1, 2z

40 Francine Blanchet-Sadri
such that uw # €, v # €, y = uv,

x = (upvg) - .. (Up—1Vn—1)Un (2.1)
= U (Un+1Vn41) -+ - (Un—1Um—1)2z (2.2)

where 0 <n <m,uTu;, andv T v; for all0 <i <m, 27 z;, and where one
of the following holds:

1. m = 2n, |u| < |v|, and there exist partial words v,), such that z, = u'uy,
z=uul, ulu and u, T ul,.
2.m=2n+1, |u| > |[v|, and there exist partial words v}, and zl such that

— _ / ! / !
Up, = V2pZg, U = VgpZr, Van | Vg, and zg T 25.

A triple of partial words (x,y,z) which satisfy these properties we will refer
to as a good triple.

Two corollaries can be deduced.

Corollary 7. [13]

Let x,y, z be partial words such that z is a prefix of y. Assume that x,y
are primitive and that > T y™z for some integer m > 2. If x has at most one
hole and y is full, then x T vy.

Corollary 8. [13]
Let x,y, z be words such that z is a prefix of y. If x,y are primitive and
2% = y™z for some integer m > 2, then x = y.

Note that the corollaries do not hold when m = 1. Indeed, the words
r = aba, y = abaab and z = a provide a counterexample. Also, the first
corollary does not hold when x is full and y has one hole as is seen by setting
x = abaabb, y = abo and z = €.

Third, let us consider the equation x™y™ T zP. The case of full words is
well known.

Theorem 29. [96]

Let x,y, z be full words and let m,n,p be integers such that m > 2,n > 2
and p > 2. Then the equation x™y"™ = 2P has only trivial solutions, that is,
x,y, and z are each a power of a common element.

When we deal with partial words, the equation z™y™ T 2P certainly has
a solution when z,y, and z are contained in powers of a common word (we
call such solutions the trivial solutions). However, there may be nontrivial
solutions as is seen with the compatibility relation

(aob)?(boa)? T (abba)3

We will classify solutions as Type 1 (or trivial) solutions when there exists
a partial word w such that x,y, z are contained in powers of w, and as Type
2 solutions when the partial words x,y, z satisfy x T z and y T z. Note that if
z is full, then Type 2 solutions are trivial solutions.

The case p > 4 is stated in the following theorem.

2 Open Problems on Partial Words 41

Theorem 30. [13] Let x,y,z be primitive partial words such that (x,z) and
(y,2) are good pairs. Let m,n,p be integers such that m > 2,n > 2 and p > 4.
Then the equation x™y™ T zP has only solutions of Type 1 or Type 2 unless
one of the following holds:

1. 227 zkzp for some integer k > 2 and nonempty prefix z, of z,
2. 22 1 zlz, for some integer | > 2 and nonempty prefir x, of x.

Open problem 24 Solve the equation x™y™ T 2P on partial words for inte-
gersm >2,n>2 and p € {2,3}.

2.8 Unavoidable Sets of Partial Words

A set of (full) words X over a finite alphabet A is unavoidable if no two-sided
infinite word over A avoids X, that is, X is unavoidable if every two-sided
infinite word over A has a factor in X. For instance, the set X = {a, bbb}
is unavoidable (if a two-sided infinite word w does not have a as a factor,
then w consists only of ’s). This concept was explicitly introduced in 1983 in
connection with an attempt to characterize the rational languages among the
context-free ones [63]. It is clear from the definition that from each unavoidable
set we can extract a finite unavoidable subset, so the study can be reduced to
finite unavoidable sets. There is a vast literature on unavoidable sets of words
and we refer the reader to [44, 93, 109, 110] for more information.

Unavoidable sets of partial words were introduced recently in [15], where
the problem of classifying such sets of small cardinality was initiated, in partic-
ular, those with two elements. The authors showed that this problem reduces
to the one of classifying unavoidable sets of the form

{ao™ . ..a0™ka,bo™b. .. bo"b}

where mq,...,mg,n1,...,n; are nonnegative integers and a, b are distinct let-
ters. They gave an elegant characterization of the special case of this problem
when £ = 1 and [= 1. They proposed a conjecture characterizing the case
where k£ = 1 and [= 2 and proved one direction of the conjecture. They then
gave partial results towards the other direction and in particular proved that
the conjecture is easy to verify in a large number of cases. Finally, they proved
that verifying this conjecture is sufficient for solving the problem for larger
values of k and [. In [27], the authors built on the previous work by examining,
in particular, unavoidable sets of size three.

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was shown
that this problem is NP-hard by using techniques similar to those used in a
recent paper on the complexity of computing the capacity of codes that avoid
forbidden difference patterns [37|. This is in contrast with the well known
feasibility results for unavoidability of a set of full words [93].

42 Francine Blanchet-Sadri

The contents of Section 2.8 is as follows: In Section 2.8.1, we review basics
on unavoidable sets of partial words. In Section 2.8.2, we discuss classifying
such sets of size two. And in Section2.8.3, we discuss testing unavoidability of
sets of partial words.

2.8.1 Unavoidable Sets

We first define some basic terminology. A two-sided infinite word over A is
a total function w : Z — A. A finite word u is a factor of w if there exists
some i € 7 such that v = w())w(i + 1)...w(i + |u| — 1). A period of w is
a positive integer p such that w(i) = w(i + p) for all i € Z. If w has period
p for some p, then we call w periodic. If v is a finite word, then v? denotes
the two-sided infinite word w with period |v| satisfying w(0)...w(Jv] — 1) =
v. If X is a set of partial words, then X denotes the set of all full words
compatible with a member of X. For instance, if X = {acca, bob}, then X =
{aaaa, aaba, abaa, abba, bab, bbb}.
The concept of an unavoidable set of full words is defined as follows.

Definition 8. Let X C A*.

1. A two-sided infinite word w avoids X if no factor of w is a member of X .

2. The set X is unavoidable if no two-sided infinite word over A avoids X,
that is, X is unavoidable if every two-sided infinite word over A has a
factor in X.

If A = {a,b}, then the following sets are unavoidable: X; = {¢} (¢ is a
factor of every two-sided infinite word); Xy = {a,bbb}; X3 = {aa, ab, ba, bb}
(this is the set of all words of length 2); and for any n € N, A™ is unavoidable.

If X C A* is finite, then the following three statements are equivalent:
(1) X is unavoidable; (2) There are only finitely many words in A* with no
member of X as a factor; and (3) No periodic two-sided infinite word avoids
X.

An unavoidable set of partial words is defined as follows.

Definition 9. Let X C A}.

1. A two-sided infinite word w avoids X if no factor of w is a member ofX.

2. The set X is unavoidable if no two-sided infinite word over A avoids X,
that is, X is unavoidable if every two-sided infinite word over A has a
factor in X.

If A = {a,b}, then the following sets are unavoidable: X; = {ac,ob};
Xy = {o"} for any nonnegative integer n as well as any set containing X5 as
a subset (let us call such sets the trivial unavoidable sets); and X35 = {a, bbb}
since of course Definition 9 is equivalent to Definition 8 if every member of X
is full. We will explore some less trivial examples soon.

2 Open Problems on Partial Words 43

By the definition of X, a two-sided infinite word w has a factor in X if
and only if that factor is compatible with a member of X. Thus the two-sided
infinite words which avoid X C A% are exactly those which avoid X C A*,
and X C AZ is unavoidable if and only if X C A* is unavoidable. Thus with
regards to unavoidability, a set of partial words serves as a representation of
a set of full words. The set {aooa, bob} represents

{aaaa, aaba, abaa, abba, bab, bbb}

We will shortly prove that this set is unavoidable.

The smaller X is, the more information is gained by identifying X as
unavoidable. Thus it is natural to begin investigating the unavoidable sets
of partial words of small cardinality. Of course, every two-sided infinite word
avoids the empty set and thus, there are no unavoidable sets of size 0. Unless
the alphabet is unary, the only unavoidable sets of size 1 are trivial. If the
alphabet is unary, then every nonempty set is unavoidable and in that case
there is only one two-sided infinite word. Thus the unary alphabet is not
interesting so we will not consider it further. Classifying the unavoidable sets
of size 2 is the focus of the next section.

2.8.2 Classifying Unavoidable Sets of Size Two

If X is a two-element unavoidable set, then every two-sided infinite unary word
has a factor compatible with a member of X. In particular, X cannot have
fewer elements than the alphabet. Thus if X has size 2, then the alphabet
is unary or binary. We hence assume that the alphabet is binary say with
distinct letters a and b since we said above that the unary alphabet is not
interesting. So one element of X is compatible with a factor of a” and the
other element is compatible with a factor of bZ, since this is the only way to
guarantee that both a? and b” will not avoid X. Thus we can restrict our
attention to sets of the form

— mi mi n1 ny
X romengsemn = 1a0™a. . .ao™ a, bo™ b ... bo" b} (2.3)
for some nonnegative integers my, ..., myg and nq,...,n;. For which integers
My Mgy N1 38 Xy mgng,...,n, unavoidable?

A simplification is stated in the next lemma.

Lemma 8. [15] If p is a nonnegative integer, then set

X=X

My,emg|ng,..,ng
and
Y = Xp(ml+1)—1,...,p(mk+1)—1|p(n1+1)—1,...,p(nl+1)—1

Then X s unavoidable if and only if Y is unavoidable.

44 Francine Blanchet-Sadri

The easiest place to start is with small values of k and [. Of course, the set
{a,bo™b...bo™b} is always unavoidable for if w is a two-sided infinite word
which does not have @ as a factor, then w = b%. This handles the case where
k =0 (and symmetrically | = 0).

An elegant characterization for the case where k = [= 1 is stated in the
following theorem.

Theorem 31. [15] The set X,,),, = {ao™a,bo"b} is avoidable if and only if
m+ 1 and n+ 1 have the same greatest power of 2 dividing them.

The next natural step is to look at k = 1 and [= 2, that is, sets of the
form

Xm\nl,n2 = {aoma, bOnlbOnQb}

On the one hand, we have identified a large number of avoidable sets
of the form {ao™a,bo™b}. For X, n, to be avoidable it is sufficient that
{ao™a,bo™ b}, {ao™a,bo™b} or {ac™a,bo™ T2 1p} be avoidable. On the
other hand, the structure of words avoiding {ao™a, bo™ bo™2b} is not nearly
as nice as those avoiding {a¢™a, bo™b}. Thus a simple characterization seems
unlikely, unless perhaps there are no unavoidable sets of this form at all. But
there are! The set

{ao"a, bobo®b}
is unavoidable. Seeing that it is provides a nice example of the techniques that
can be used. Referring to the figure below,
[O[5 A3 210 [12B[AE6[]
bl |b

a

suppose instead that there exists a two-sided infinite word w which avoids
it. We know from Theorem 31 that {ac”a,bob} is unavoidable, thus w must
have a factor compatible with bob. Say without loss of generality that w(0) =
w(2) = b. This implies that w(6) = a, which in turn implies that w(—2) = b.
Then we have that w(—2) = w(0) = b, forcing w(4) = a. This propagation
continues: w(—4) = w(—2) = b and so w(2) = a, which makes w(—6) = b
giving w(0) = a, a contradiction.

The perpetuating patterns phenomenon of the previous example is a spe-
cial case of a more general result.

Theorem 32. [15] If m = ny —ny — 1 or m = 2ny + ng + 2, and the highest
power of 2 dividing ni + 1 is less than the highest power of 2 dividing m + 1,
then Xpn, n, 5 unavoidable.

2 Open Problems on Partial Words 45
Here are other unavoidability results for k =1 and [= 2.

Proposition 5. [15] The set X, jn, n, is unavoidable if Conditions 1 or Con-
ditions 2 or Conditions 3 hold:

1. {ao™a, bo™ b} is unavoidable, m = 2ny +ny+2 orm =ng —ny — 1, and
n1 + 1 divides noy + 1.

2.n1 < na, 2m =ny + ng and m — ny divides m + 1.

3. m=6,n =1 and ny = 3.

Extensive experimentation suggests that these results (and their symmet-
ric equivalents) give a complete characterization of when X, ,,, ,, is unavoid-
able.

Conjecture 1 [15] The set X, |n, n, is unavoidable if and only if one of the
following conditions (or symmetric equivalents) holds:

1. {ao™a,bo™ b} is unavoidable, m = 2ny +ny +2 or m =ny —ny — 1, and
n1 + 1 divides noy + 1.

2. m=ng—ny—1 orm=2ny +ns+2, and the highest power of 2 dividing
n1 + 1 is less than the highest power of 2 dividing m + 1.

3. n1 < n9, 2m = ny + ng and m — ny divides m + 1.

4. m=6,n; =1 and ny = 3.

Open problem 25 Is Conjecture 1 true or false?

If true, then Conjecture 1 implies that the unavoidable sets of size two
have been completely classified as stated in the following proposition.

Proposition 6. [15] If Conjecture 1 is true, then Xy, . miiny,...n, 5 avoid-
able for k=1 and 1 > 3, and for k > 1 and [l > 2.

In order to prove the conjecture, only one direction remains. We must show
that if none of the aforementioned conditions hold, then X, ,,, ,,, is avoidable.
There are some partial results towards this goal. In particular there is an easy
way of verifying the conjecture for even values of m.

Proposition 7. [15] Assume m is even and 2m < min(ny,na). Then X jn, n,
1s avoidable.

Thus for any fixed even m we only need to verify the conjecture for finitely
many values of n; and ns, which is generally easy. For

1. m = 0: Xg,, n, is always avoidable, and indeed this is the case.

2. m = 2: Xy, n, is avoidable except for ny = 1,n2 =3 or ny = 3,n2 = 1.
It is easy to find avoiding two-sided infinite words for other values of n
and ng less than 5 when m = 2. This is all that is necessary to confirm
the conjecture for m = 2.

46 Francine Blanchet-Sadri

In this way the conjecture has been verified for all even m up to very large
values via computer.

The odd values of m seem to be much more difficult. The following propo-
sition shows that the conjecture is true for m = 1.

Proposition 8. [15/ Conjecture 1 is true for m =1, that is, Xin, 5, s un-
avoidable if and only if n1 and ny are even numbers with |ny — ng| = 2.

Other results on the avoidability of X,,|,,, », include the following.

Proposition 9. [15]

1. Let s € N with s < m — 2. Then for n > 2(m + 1)2 + m — 1,
Xppfmtsn = {a0™a,bo™ 5bo"b} is avoidable. Intuitively this means that
if m and ny are relatively close in value, then the set of integers ny which
make X p,n, n, unavoidable is finite.

2. If max(ni,no) < m < ny+ng + 2, then X n, n, is avoidable.

3. The set X = {ao™a, bbb} is avoidable.

Classifying the unavoidable sets of partial words of size greater than or
equal to two remains an open question.

Open problem 26 Classify the unavoidable sets of partial words of size l > 2
over a k-letter alphabet where k < 1.

2.8.3 Testing Unavoidability

Efficient algorithms to determine if a finite set of full words is unavoidable are
well known [45, 93|. For example, we can check whether there is a loop in the
finite automaton of Aho and Corasick [1] recognizing A* \ A*X A*. Another
approach is the following. We say that a set of words Y is obtained from a
finite set of words X by an elementary derivation if

1. Type 1 elementary derivation: There exist words z,y € X such that z is

a proper prefix of y, and Y = X \ {y} (this will be denoted by X 4 Y).
2. Type 2 elementary derivation: There exists a word x = ya € X witha € A
such that, for each letter b € A there is a suffix z of y such that zb € X,

and Y = (X \ {z}) U {y} (this will be denoted by X = Y.

A derivation is a sequence of elementary derivations. We say that Y is derived
from X if YV is obtained from X by a derivation. If Y is derived from X, then
X is unavoidable if and only if Y is unavoidable.

Ezxample 2. The following sequence of elementary derivations shows that X =
{aaaa, aaba, abaa, abba, bab, bbb} derives {e}:

2 Open Problems on Partial Words 47

X 2 {aaaa, aaba, aba, abba, bab, bbb}
2, {aaaa, aaba, aba, abb, bab, bbb}
2, {aaaa, aaba, ab, bab, bbb}

2 {aaa, aaba, ab, bab, bbb}
2 {aa, aaba, ab, bab, bbb}
L {aa, ab, bab, bbb}

2 {a, ab, bab, bbb}

L {a, bab, bbb}

2 {a, ba, bbb}

2 {a, ba,bb}

2 {a,b, bb}

2 {a,b}

2 {e,b}

= {e)

The notion of a derivation gives an algorithm to check whether a set is un-
avoidable: A finite set X is unavoidable if and only if there is a derivation from
X to the set {e}. The above derivation shows that {aaaa, aaba, abaa, abba, bab,
bbb} is unavoidable.

These algorithms to determine if a finite set of full words is unavoidable,
like the one just described, can be used to decide if a finite set of partial
words X is unavoidable by determining the unavoidability of X. However
this incurs a dramatic loss in efficiency, as each partial word u in X can
contribute as many as || A||I7 | elements to X. The above derivation shows
that {aooa, bob} is unavoidable as is confirmed by Theorem 31 since m + 1 =
24+41=3=28andn+1=1+1=2=2%

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was proved
that testing the unavoidability of a finite set of partial words is much harder to
handle than the similar problem for full words. Indeed, the following theorem
holds (note that the case k =1 is trivial).

Theorem 33. [26] The problem of deciding whether a finite set of partial
words over a k-letter alphabet where k > 2 is unavoidable is NP-hard.

The proof proceeds by reduction from the 3SAT problem that is known
to be NP-complete (see [70]). In the 3SAT problem, we are given n binary
variables x1,...,x, and m clauses that each contain three literals (a literal
can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal.

In [26], the following related questions on avoidability of sets of partial
words were raised.

48 Francine Blanchet-Sadri

Open problem 27 Is the decision problem of the avoidability of a set of
partial words in NP?

A similar (stronger) question is the following one.

Open problem 28 For any set of partial words X, does there always exist
a two-sided infinite periodic word that avoids X, whose period is polynomial
in the size of X ?

2.9 Freeness of Partial Words

In [99], Manea and Mercag introduce freeness of partial words. There, they
extend in a natural way the concepts of square- and overlap-freeness of words
to partial words. In [31, 30|, some more basic freeness properties of partial
words are investigated generalizing the well-known freeness properties of full
words.

A one-sided infinite word over the alphabet A is a function from N to A.
The Thue-Morse word is an example of a one-sided infinite word defined by
iterating a morphism. Let ¢ : {a,b}* — {a,b}* be the morphism defined by
#(a) = ab and ¢(b) = ba. We define ty = a and t; = ¢*(a), for all i > 1.
Note that ¢;41 = ¢(t;) and that ¢;41 = t;t;, where T is the word obtained
from z by replacing each occurrence of a with b and each occurrence of b with
a. Thus, the limit (the infinite word) ¢ = lim;_ ¢; exists. The Thue-Morse
word is defined as t, a fixed point for the morphism ¢. Computations show
that t; = ab, to = abba, t3 = abbabaab, t4 = abbabaabbaababba, and

t5 = abbabaabbaababbabaababbaabbabaab (2.4)

and so on.

A one-sided infinite word w is k-free if there is no word z such that z* is
a factor of w (a word that is 2-free is also called square-free and a word that
is 3-free is called cube-free). It is called overlap-free if it does not contain any
factor of the form cycyc with ¢ € A. Any overlap-free word is clearly k-free
for all £ > 3.

Theorem 34. [120, 121] The Thue-Morse infinite word t is overlap-free and
hence k-free for all k > 3.

A one-sided infinite partial word w over the alphabet A is a partial function
from N to A. We call w k-free if for any nonempty factor zi...x) of w, no
partial word z exists such that x; C x for all 1 <14 < k. And it is said to be
overlap-free if for any factor c¢yyicoy2c3 of w no letter ¢ € A and partial word
y over A exist such that ¢; Ccforalll1 <i<3andy; Cyforalll <j <2
In [99], the authors propose an efficient algorithm to test whether or not a
partial word of length n is k-free. Both the time and space complexities of
the algorithm are O(%). In case of full words, the time complexity can be

2 Open Problems on Partial Words 49

reduced to O(nlogn) using suffix arrays [98]. In [99], the authors also give an
efficient algorithm to construct in O(n) time a cube-free (and hence k-free for
all k > 3) partial word with n holes, and modify the algorithm in the case of
a four-letter alphabet to produce such a partial word of minimal length 3n —2
(which is the minimal length among all the possible cube-free words with n
holes regardless of the alphabet over which these words are constructed).

Theorem 35. [99] For k > 3, there exist infinitely many k-free infinite partial
words over a two-letter alphabet containing an arbitrary number of holes.

Note that it is enough to show the result for k& = 3. The idea of the proof
is to show that there exist infinitely many cube-free infinite partial words
containing exactly one hole over a two-letter alphabet. In order to do this,
observe that if the underlined b in Equality 2.4 is replaced by ¢, then the
resulting partial word is still cube-free. Since there is an infinite number of
occurrences of t5 in ¢, any replacement of the underlined b in such occurrences
leads to an infinite partial word with one hole that is cube-free. The result
follows since there is an infinite number of nonoverlapping occurrences of ts
in ?.

A surprising result holds for an alphabet of size four.

Theorem 36. [99] There exists an infinite cube-free word over a four-letter
alphabet in which we can randomly replace letters by holes and obtain in this
way an infinite partial word that is cube-free as long as each pair of two con-
secutive holes are separated by at least two letters of the alphabet. Moreover,
such a word does not exist over a three-letter alphabet.

We discuss the concept of square-freeness of partial words in Section 2.9.1
and of overlap-freeness of partial words in Section 2.9.2.

2.9.1 Square-Freeness

Let us now consider the k£ = 2 case. A well known result from Thue states
that over a three-letter alphabet there exist infinitely many infinite words
that are square-free [120, 121]. To generalize Thue’s result, we wish to find a
square-free partial word with infinitely many holes, and an infinite full word
that remains square-free even after replacing an arbitrary selection of letters
with holes. Unfortunately, every partial word containing at least one hole
and having length at least two contains a square (either a¢ or oa cannot
be avoided, where a denotes a letter from the alphabet). Furthermore, it is
obvious that if we replace 2n consecutive letters in a full word with holes,
then the corresponding factor of the resulting partial word will be a square.
Motivated by these observations, we call a word non-trivial square-free if
it contains no factors of the form w* k > 2, except when |w| € {1,2} and
k = 2. Notice that the cube aaa is considered to be a non-trivial square. For
the sake of readability, we shall use the terms non-trivial square and square

50 Francine Blanchet-Sadri

interchangeably. The study of non-trivial squares is not new. In [106], several
iterating morphisms are given for infinite words avoiding non-trivial squares.
In particular, the authors give an infinite binary word avoiding both cubes zxx
and squares yy with |y| > 4 and an infinite binary word avoiding all squares
except 02, 12, and (01)? using a construction that is somewhat simpler than
the original one from Fraenkel and Simpson [68].

Remark 1. When we introduce holes into arbitrary positions of a word, we
impose the restriction that every two holes must have at least two non-hole
symbols between them.

With this restriction, the study of square-free partial words becomes much
more subtle and interesting.

Theorem 37. [31] There exists an infinite word over an eight-letter alphabet
that remains square-free after replacing an arbitrary selection of its letters
with holes, and none exists over a smaller alphabet.

A suggested problem for investigation is the following. Let g(n) be the
length of a longest binary full word containing at most n distinct squares.
How does the sequence {g(n)} behave? A complete answer appears in [68].

Open problem 29 Compute the maximum number of distinct squares in a
partial word with h holes of length n over a k-letter alphabet.

2.9.2 Overlap-Freeness

A well known result of Thue states that over a binary alphabet there exist
infinitely many overlap-free words [120, 121]. In [99], the question was raised
as to whether there exist overlap-free infinite partial words, and to construct
them over a binary alphabet if such exist. The following result settles this
question.

Theorem 38. [31] There exist overlap-free infinite partial words with one hole
over a two-letter alphabet, and none exists with more than one hole.

The following result relates to a three-letter alphabet.

Theorem 39. [31] There exist infinitely many overlap-free infinite partial
words with an arbitrary number of holes over a three-letter alphabet.

For the following result, we adhere to the restriction described in Remark
1 when replacing an arbitrary selection of letters in a word with holes.

Theorem 40. [31] There exists an infinite overlap-free word over a siz-letter
alphabet that remains overlap-free after an arbitrary selection of its letters are
changed to holes, and none exists over a four-letter alphabet.

2 Open Problems on Partial Words 51

The case of a five-letter alphabet remains open.

Open problem 30 Does there exist an infinite word over a five-letter alpha-
bet that remains overlap-free after an arbitrary insertion of holes?

Other problems are suggested in [31].

Open problem 31 Eztend the concept of square-free (respectively, overlap-
free or cube-free) morphism to partial words.

From [31, 99], some of the properties of this kind of morphisms already
start to be obvious. A further analysis might give additional properties that
such morphisms should fulfill. Following the approach of Dejean [56], another
interesting problem to analyze is the following.

Open problem 32 Identify the exact value of k (related to k-freeness) for a
given alphabet size. This value would represent the repetitiveness threshold in
an n-letter alphabet.

If for full words this value is known for alphabets up to size 11 and it is
conjectured that for bigger size alphabets the value is "TH, for partial words

this value has not yet been investigated.

2.10 Other Open Problems

The theory of codes has been widely developed in connection with combi-
natorics on words [5]. In [7, 32], a new line of research was initiated by in-
troducing pcodes in connection with combinatorics on partial words, and a
theoretical framework for pcodes was developed by revisiting the theory of
codes of words, as exposited in [5], starting from pcodes of partial words.
Pcodes are defined in terms of the compatibility relation as follows.

Definition 10. [7] Let X be a nonempty set of partial words over an alphabet
A. Then X is called a pcode over A if for all positive integers m,n and partial
words Uy, ..., Upm,V1,...,0, € X, the condition

ULUSD « - Uy, | V1V ... Uy
implies m =n and u; =v; fori=1,....,m.

An area of current interest for the study of pcodes is data communication
where some information may be missing, lost, or unknown. While a code of
words X does not allow two distinct decipherings of some word in X, a
pcode of partial words Y does not allow two distinct compatible decipherings
in Y. Various ways have been described for defining and analyzing pcodes. In
particular, many pcodes can be obtained as antichains with respect to certain
partial orderings. Adapting a graph technique related to dominoes [6, 73, 79],
the pcode property was shown to be decidable for finite sets of partial words.

52 Francine Blanchet-Sadri

For example, the set X = {a¢,acb} is a pcode over {a,b}, but the set
Y = {u1,ug, us, us} where u; = aob, us = aaobba, us = ob, and uy = ba is not
a pcode over {a,b} since ujusususuz T ugusuy is a nontrivial compatibility
relation over Y.

It is well known that the two-element set of words {u,v} is a code if and
only if uwv # vu. However, this is not true in general for partial words. For
instance, the set {u,v} where u = aob and v = abbaab satisfies uv ¥ vu, but
{u,v} is not a pcode since u? 1 v.

Open problem 33 Find a necessary and sufficient condition for a two-
element set of partial words to be a pcode.

Other suggested problems are the following.

Open problem 34 Investigate the concept of tiling periodicity introduced
recently by Karhumdki, Lifshits and Rytter’s [81]. There, the authors suggest
a number of questions for further work on this new concept.

Punctured languages are sets whose elements are partial words. In [91],
Lischke investigated to which extent restoration of punctured languages is
possible if the number of holes or the proportion of holes per word, respec-
tively, is bounded, and studied their relationships for different boundings.
The considered restoration classes coincide with similarity classes according
to some kind of similarity for languages. Thus all results he can also formulate
in the language of similarity. He shows some hierarchies of similarity classes
for each class of the Chomsky hierarchy, and proves the existence of linear
languages which are not §-similar to any regular language for any ¢ < %

Open problem 35 For % < 6, do there exist linear languages which are not
0-similar to any reqular language? If they exist, then they must be non-slender.

References

1. A.V. Aho and M.J. Corasick. Efficient string machines, an aid to bibliographic
research. Comm. ACM, 18:333-340, 1975.

2. J.P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gen-
eralizations. Cambridge University Press, 2003.

3. R. Assous and M. Pouzet. Une caractérisation des mots périodiques. Discrete
Math., 25:1-5, 1979.

4. J. Berstel and L. Boasson. Partial words and a theorem of fine and wilf.
Theoret. Comput. Sci., 218:135-141, 1999.

5. J. Berstel and D. Perrin. Theory of Codes. Academic Press, Orlando, FL, 1985.

6. F. Blanchet-Sadri. On unique, multiset, and set decipherability of three-word
codes. IEEE Trans. Inform. Theory, 47:1745-1757, 2001.

7. F. Blanchet-Sadri. Codes, orderings, and partial words. Theoret. Comput. Sci.,
329:177-202, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

2 Open Problems on Partial Words 53

. F. Blanchet-Sadri. Periodicity on partial words. Comput. Math. Appl., 47:71-82,

2004.

. F. Blanchet-Sadri. Primitive partial words. Discrete Appl. Math., 148:195-213,

2005.

F. Blanchet-Sadri. Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, 2007.

F. Blanchet-Sadri and A.R. Anavekar. Testing primitivity on partial words.
Discrete Appl. Math., 155:279-287, 2007. (www.uncg.edu/mat/primitive).

F. Blanchet-Sadri, D. Bal, and G. Sisodia. Graph connectivity, partial words
and a theorem of Fine amd Wilf. Information and Computation, to ap-
pear(www.uncg.edu/mat/research/finewilf3).

F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis. Equations on partial words.
In R. Kralovic and P. Urzyczyn, editors, MFCS 2006. 31st International Sym-
posium on Mathematical Foundations of Computer Science, LNCS, vol. 4162,
Springer, pp. 167-178.

F. Blanchet-Sadri, L. Bromberg, and K. Zipple. Tilings and quasiperiods of
words. Preprint (www.uncg.edu/cmp/research/tilingperiodicity).

F. Blanchet-Sadri, N.C. Brownstein, and J. Palumbo. Two element unavoidable
sets of partial words. In T. Harju, J. Karhumaki, and A. Lepisto, editors, DLT
2007. 11th International Conference on Developments in Language Theory,
LNCS, Vol. 4588, Springer, pp. 96-107.

F. Blanchet-Sadri and A. Chriscoe. Local periods and binary partial words:
an algorithm. Theoret. Comput. Sci., 314:189-216, 2004. (www.uncg.edu/mat/
AlgBin).

F. Blanchet-Sadri, E. Clader, and O. Simpson. Border correlations of partial
words. Preprint (www.uncg.edu/cmp/research/bordercorrelation).

F. Blanchet-Sadri, K. Corcoran, and J. Nyberg. Fine and wilf’s periodicity re-
sult on partial words and consequences. In LATA 2007, 1st International Con-
ference on Language and Automata Theory and Applications, GRLMC Report
35/07, Tarragona.

F. Blanchet-Sadri and M. Cucuringu. Counting primitive partial words.
Preprint.

F. Blanchet-Sadri, M. Cucuringu, and J. Dodge. Counting unbordered partial
words. Preprint.

F. Blanchet-Sadri, C.D. Davis, J. Dodge, R. Mercas, and M. Moorefield. Un-
bordered partial words. Preprint (www.uncg.edu/mat/border).

F. Blanchet-Sadri and S. Duncan. Partial words and the critical fac-
torization theorem. J. Combin. Theory Ser. A, 109:221-245, 2005.
(www.uncg.edu/mat/cft).

F. Blanchet-Sadri, J. Fowler, J. Gafni, and K. Wilson. Combinatorics on partial
word correlations. Preprint (www.uncg.edu/cmp/research/correlations?2).
F. Blanchet-Sadri, J. Gafni, and K. Wilson. Correlations of partial words. In
W. Thomas and P. Weil, editors, STACS 2007, volume 4393, pages 97108,
Berlin, 2007. (www.uncg.edu/mat/research/correlations).

F. Blanchet-Sadri and R.A. Hegstrom. Partial words and a theorem of fine
and wilf revisited. Theoret. Comput. Sci., 270:401-419, 2002.

F. Blanchet-Sadri, R. Jungers, and J. Palumbo. Testing avoidability of sets of
partial words is hard. Preprint.

F. Blanchet-Sadri, A. Kalcic, and T. Weyand. Unavoidable sets of partial words
of size three. Preprint (www.uncg.edu/cmp/research/unavoidablesets2).

54

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Francine Blanchet-Sadri

. F. Blanchet-Sadri and D.K. Luhmann. Conjugacy on partial words. Theoret.
Comput. Sci., 289:297-312, 2002.

F. Blanchet-Sadri, T. Mandel, and G. Sisodia. Connectivity in graphs associ-
ated with partial words. Preprint (www.uncg.edu/cmp/research/finewilf4).
F. Blanchet-Sadri, R. Mercag, and G. Scott. Counting distinct squares in
partial words. Preprint (www.uncg.edu/cmp/research/freeness).

F. Blanchet-Sadri, R. Mercag, and G. Scott. A generalization of thue freeness
for partial words. Preprint (www.uncg.edu/cmp/research/freeness).

F. Blanchet-Sadri and M. Moorefield. Pcodes of partial words.
Preprint(www.uncg. edu/mat/pcode).

F. Blanchet-Sadri, T. Oey, and T. Rankin. Partial words and generalized
fine and wilf’s theorem for an arbitrary number of weak periods. Preprint
(www.uncg.edu/mat/research/finewilf2).

F. Blanchet-Sadri, B. Shirey, and G. Gramajo. Periods, partial words, and a
result of guibas and odlyzko. Preprint (www.uncg.edu/mat/bintwo).

F. Blanchet-Sadri and N.D. Wetzler. Partial words and the criti-
cal factorization theorem revisited. Theoret. Comput. Sci., to appear.
(www.uncg.edu/mat/research/cft2).

F. Blanchet-Sadri and J. Zhang. On the critical factorization theorem.
Preprint.

V.D. Blondel, R. Jungers, and V. Protasov. On the complexity of computing
the capacity of codes that avoid forbidden difference patterns. IEEE Trans.
Inform. Theory, 52:5122-5127, 2006.

R.S. Boyer and J.S Moore. A fast string searching algorithm. Comm. ACM,
20:762-772, 1977.

D. Breslauer, T. Jiang, and Z. Jiang. Rotations of periodic strings and short
superstrings. J. of Algorithms, 24:340-353, 1997.

J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in
genomic dna. J. Comput. System Sci., 70:342-363, 2005.

P. Bylanski and D.G.W. Ingram. Digital transmission systems. IEFE, 1980.
M.G. Castelli, F. Mignosi, and A. Restivo. Fine and wilf’s theorem for three
periods and a generalization of sturmian words. Theoret. Comput. Sci., 218:83—
94, 1999.

Y. Césari and M. Vincent. Une caractérisation des mots périodiques. C.R.
Acad. Sci. Paris, 268:1175-1177, 1978.

C. Choffrut and K. Culik II. On extendibility of unavoidable sets. Discrete
Appl. Math., 9:125-137, 1984.

C. Choffrut and J. Karhuméki. Combinatorics of words. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 1, pages 329-438.
Springer, Berlin, 1997.

D.D. Chu and H.S. Town. Another proof on a theorem of lyndon and schiitzen-
berger in a free monoid. Soochow J. Math., 4:143-146, 1978.

S. Constantinescu and L. Ilie. Generalised fine and wilf’s theorem for arbitrary
number of periods. Theoret. Comput. Sci., 339:49-60, 2005.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, 2007.

M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. LNCS, 1644:261-270, 1999.

M. Crochemore and D. Perrin. Two-way string matching. J. of the ACM,
38:651-675, 1991.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

2 Open Problems on Partial Words 55

. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
1994.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, NJ,
2003.

A. de Luca. On the combinatorics of finite words. Theoret. Comput. Sci.,
218:13-39, 1999.

A. de Luca and S. Varricchio. Regularity and Finiteness Conditions, volume 1,
chapter 11, pages 747-810. Springer, Berlin, 1997.

A. de Luca and S. Varricchio. Finiteness and Regularity in Semigroups and
Formal Languages. Springer, Berlin, 1999.

F. Dejean. Sur un théoréme de thue. J. Combin. Theory Ser. A, 13:90-99,
1972.

P. D6mosi. Some results and problems on primitive words. In 11th Interna-
tional Conference on Automata and Formal Languages, 2005.

P. Démosi, S. Horvath, and M. Ito. Primitive Words and Context-Free Lan-
guages.

J.P. Duval. Périodes locales et propagation de périodes dans un mot. Theoret.
Comput. Sci., 204: 87-98, 1998

J.P. Duval. Périodes et répétitions des mots du monoide libre. Theoret. Com-
put. Sci., 9:17-26, 1979.

J.P. Duval. Relationship between the period of a finite word and the length of
its unbordered segments. Discrete Math., 40:31-44, 1982.

J.P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre. Linear-time
computation of local periods. Theoret. Comput. Sci., 326:229-240, 2004.

A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free
languages. Theoret. Comput. Sci., 27:311-322, 1983.

A. Ehrenfeucht and D.M. Silberger. Periodicity and unbordered segments of
words. Discrete Math., 26:101-109, 1979.

P. Erdos. Note on sequences of integers no one of which is divisible by another.
J. London Math. Soc., 10:126-128, 1935.

M. Farach-Colton, G.M. Landau, S.C. Sahinalp, and D. Tsur. Optimal spaced
seeds for approximate string matching. In L. Caires, G.F. Italiano, L. Monteiro,
C. Palanidessi, and M. Yung, editors, ICALP 2005, LNCS, vol. 3580, Springer,
pp- 1251-1262, 2005.

N.J. Fine and H.S. Wilf. Uniqueness theorems for periodic functions. In Proc.
Amer. Math. Soc., volume 16, pages 109-114, 1965.

A.S. Fraenkel and R.J. Simpson. How many squares must a binary sequence
contain? FElectron. J. Combin., 2, 1995.

7. Galil and J. Seiferas. Time-space optimal string matching. J. Comput.
System Sci., 26:280-294, 1983.

M.R. Garey and D.S. Johnson. Computers and Intractability -A Guide to the
Theory of NP-Completeness. Freeman, 1979.

L.J. Guibas and A.M. Odlyzko. Periods in strings. J. Combin. Theory Ser. A,
30:19-42, 1981.

D. Gustfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univer-
sity Press, Cambridge, 1997.

F. Guzman. Decipherability of codes. J. Pure Appl. Algebra, 141:13-35, 1999.
V. Halava, T. Harju, and L. Ilie. Periods and binary words. J. Combin. Theory
Ser. A, 89:298-303, 2000.

56

75

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.
91.

92.

93.

94.

95.

96.

97.

98.

99

Francine Blanchet-Sadri

. T. Harju. Combinatorics on Words, chapter 19, pages 381-392. Springer,
Berlin, 2006.

T. Harju and D. Nowotka. Periodicity and unbordered segments of words. Bull.
Eur. Assoc. Theor. Comput. Sci. EATCS, 80:162—-167, 2003.

T. Harju and D. Nowotka. The equation 2 = 372" in a free semigroup.
Semigroup Forum, 68:488-490, 2004.

T. Head, G. Paun, and D. Pixton. Language Theory and Molecular Genetics,
volume 2, chapter 7, pages 295-360. Springer, Berlin, 1997.

T. Head and A. Weber. Deciding multiset decipherability. IEEE Trans. Inform.
Theory, 41:291-297, 1995.

J. Justin. On a paper by castelli, mignosi, restivo. Theoret. Inform. Appl.,
34:373-377, 2000.

J. Karhuméki, Y. Lifshits, and W. Rytter. Tiling periodicity. In CPM 2007,
18th Annual Symposium on Combinatorial Pattern Matching, 2007.

L. Kari, G. Rozenberg, and A. Salomaa. L Systems, volume 1, chapter 7, pages
253-328. Springer, Berlin, 1997.

U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Appl. Math., 138:253-263, 2004.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM J. on Comput., 6:323-350, 1977.

R. Kolpakov and G. Kucherov. Finding approximate repetitions under ham-
ming distance. Lecture Notes in Computer Science, 2161:170-181, 2001.

R. Kolpakov and G. Kucherov. Finding approximate repetitions under ham-
ming distance. Theoret. Comput. Sci., 33:135-156, 2003.

G. Landau and J. Schmidt. An algorithm for approximate tandem repeats.
Lecture Notes in Computer Science, 684:120-133, 1993.

G.M. Landau, J.P. Schmidt, and D. Sokol. An algorithm for approximate
tandem repeats. J. Comput. Biology, 8:1-18, 2001.

P. Leupold. Languages of partial words - how to obtain them and what prop-
erties they have. Grammars, 7:179-192, 2004.

P. Leupold. Partial words for dna coding. LNCS, 3384:224-234, 2005.

G. Lischke. Restorations of punctured languages and similarity of languages.
Math. Logic Quart., 52:20-28, 2006.

M. Lothaire. Combinatorics on Words. Cambridge University Press, Cam-
bridge, 1997.

M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge, 2002.

M. Lothaire. Applied Combinatorics on Words. Cambridge University Press,
Cambridge, 2005.

R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Springer, Berlin,
2001.

R.C. Lyndon and M.P. Schiitzenberger. The equation o™ = b"c” in a free
group. Michigan Math. J., 9; 289-298, 1962.

B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18:440-445, 2002.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. SIAM J. on Comput., 22:935-948, 1993.

. F. Manea and R. Mercas. Freeness of partial words. Preprint.

100

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.
119.

120.

2 Open Problems on Partial Words 57

. D. Margaritis and S. Skiena. Reconstructing strings from substrings in rounds.
In FOCS 1995, 36th Annual Symposium on Foundations of Computer Science,
pages 613-620, 1995.

E.M. McCreight. A space-economical suffix tree construction algorithm. J. of
the ACM, 23:262-272, 1976.

F. Mignosi, A. Restivo, and S. Salemi. A periodicity theorem on words and
applications. LNCS, 969:337-348, 1995.

F. Nicolas and E. Rivals. Hardness of optimal spaced seed design. In Apostolico,
A., Crochemore, M. and Park, K., editors, CPM 2005, 16th Annual Symposium
on Combinatorial Pattern Matching, LNCS, vol. 3537, Srpinger, pages 144-155,
2005.

L. Noé and G. Kucherov. Improved hit criteria for dna local alignment. BMC
Bioinformatics, 5, 2004.

H. Petersen. On the language of primitive words. Theoret. Comput. Sci.,
161:141-156, 1996.

N. Rampersad, J. Shallit, and M. w Wang. Avoiding large squares in infinite
binary words. Theoret. Comput. Sci., 339:19-34, 2005.

G. Richomme. Sudo-lyndon. Bull. Fur. Assoc. Theor. Comput. Sci. EATCS,
92:143-149, 2007.

E. Rivals and S. Rahmann. Combinatorics of periods in strings. J. Combin.
Theory Ser. A, 104:95-113, 2003.

L. Rosaz. Unavoidable languages, cuts and innocent sets of words. RAIRO
Theoret. Inform. Appl., 29:339-382, 1995.

L. Rosaz. Inventories of unavoidable languages and the word-extension conjec-
ture. Theoret. Comput. Sci., 201:151-170, 1998.

J.P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strings. SIAM J. Comput.,
27:972-992, 1998.

J. Setubal and J.Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, Boston, MA, 1997.

A.M. Shur and Y.V. Gamzova. Periods’ interaction property for partial words.
In T. Harju and J. Karhiimaki, editors, Words 2003, volume 27, pages 75-82,
2003.

A.M. Shur and Y.V. Gamzova. Partial words and the periods’ interaction
property. Izv. RAN, 68:199-222, 2004. (see Shur, A.M., Gamzova, Y.V.: Partial
words and the interaction property of periods. Izv. Math. 68 (2004) 405-428,
for the English translation).

A.M. Shur and Y.V. Konovalova. On the periods of partial words. LNCS, vol.
2136, Springer, pp. 657-665, 2001.

H.J. Shyr. Free Monoids and Languages. Hon Min Book Company, Taichung,
Taiwan, 1991.

H.J. Shyr and G. Thierrin. Disjunctive languages and codes. LNCS, vol.56,
Springer, pp. 171-176, 1977.

W.F. Smyth. Computing Patterns in Strings. Pearson Addison-Wesley, 2003.
J.A. Storer. Data Compression: Methods and Theory. Computer Science Press,
Rockville, MD, 1988.

A. Thue. Uber unendliche zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat.
Kl. Christiana, 7:1-22, 1906. Reprinted in Nagell, T., Selberg, A., Selberg,
S., Thalberg, K. (eds.): Selected Mathematical Papers of Axel Thue. Oslo,
Norway, Universitetsforlaget (1977) 139-158.

58 Francine Blanchet-Sadri

121. A. Thue. Uber die gegenseitige lage gleicher teile gewisser zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana, 12:1-67, 1912. Reprinted in Nagell,
T., Selberg, A., Selberg, S., Thalberg, K. (eds.): Selected Mathematical Papers
of Axel Thue. Oslo, Norway, Universitetsforlaget (1977) 139-158.

122. R. Tijdeman and L. Zamboni. Fine and wilf words for any periods. Indag.
Math., 14:135-147, 2003.

123. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, 23:337-343, 1977.

3

Alignments and Approximate String Matching

Maxime Crochemore! and Thierry Lecroq?

I Department of Computer Science, King’s College London

London WC2R 2LS, UK
Maxime.Crochemore@kcl.ac.uk
and
Université Paris Est, France

2 LITIS, Université de Rouen
76821 Mont-Saint-Aignan Cedex, France
Thierry.Lecroq@univ-rouen.fr

The alignments constitute one of the processes used to compare strings. They
allow to visualize the resemblance between strings. This chapter deals with
several methods that perform the comparison of two strings in this sense. The
extension to comparison methods of more than two strings is delicate, leads
to algorithms whose execution time is at least exponential, and is not treated
here.

The alignments are based on notions of distance or of similarity between
strings. The computations are usually performed by dynamic programming.
A typical example is the computation of the longest subsequence common to
two strings since it shows the algorithmic techniques to implement in order to
obtain an efficient computation. In particular, the reduction of the memory
space obtained by one of the algorithms constitute a strategy that can often
be applied in the solutions to close problems.

Section 3.1.1 describes the basic techniques for the computation of the
edit (or alignment) distance and the production of the associated alignments.
The chosen methodology allows to highlight a global resemblance between two
strings using assumptions that simplify the computation. The search for local
similarities between two strings is examined in Section 3.1.2.

The possibility of reduction of the memory space required by the compu-
tations is presented in Section 3.1.3 concerning the computation of longest
common subsequences.

We are then interested Section 3.2 in the approximate search for fixed
strings. More generally, approximate pattern matching consists in locating all
the occurrences of factors inside a text y, of length n, that are similar to a
string x, of length m. It consists in producing the positions of the factors of y
that are at distance at most k from z, for a given natural integer k. We assume

M. Crochemore and T. Lecroq: Alignments and Approximate String Matching, Studies in
Computational Intelligence (SCI) 113, 59-93 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

60 Maxime Crochemore and Thierry Lecroq

in the rest that £k < m < n. We consider the edit distance for measuring the
approximation.

The edit distance between two strings u and v, that are not necessarily of
same length, is the minimal cost of the elementary edit operations between
these two strings. The method at the basis for approximate pattern matching
is a natural extension of the alignment method by dynamic programming
of Section 3.1. It can be improved by using a restricted notion of distance
obtained by considering the minimal number of edit operations rather than
the sum of their costs. With this distance, the problem is known under the
name of approximate pattern matching with k differences. Section 3.2 presents
several solutions.

The Hamming distance between two strings v and v of same length is the
number of positions in which the two strings possess different letters. With
this distance, the problem is known under the name of approximate pattern
matching with & mismatches. It is treated in Section 3.3.

We examine then, in Section 3.4, the case of the search for short patterns.
This gives excellent practical results and is very flexible as long as the con-
ditions of its utilization are fulfilled. The Shift-Or algorithm of Section 3.4 is
a method that is both very fast in practice and very easy to implement. The
method is flexible enough to be adapted to a wide range of similar approximate
matching problems.

3.1 Alignments

An alignment of two strings = and y of length m and n respectively consists
in aligning their symbols on vertical lines. Formally an alignment of two strings
x,y € V is a word w on the alphabet (VU {A}) x (VU {A})\ {(MA)}F (A
is the empty word) whose projection on the first component is and whose
projection of the second component is y.

Thus an alignment w = (Zo,%)(T1,71) - - (Tp—1,7,_1) of length p is such
that © = ToT1 - Tp—1 and y = G, -,y With T; € VU {A} and 7; €
V U{\} for 0 <4 < p— 1. The alignment is represented as follows

ToT1 -+ Tp_1
Yo U1 YUp—a
with the symbol — instead of the symbol .
An example is presented in Fig. 3.1.

ACG— —A
ATGCTA

Fig. 3.1. Alignment of ACGA and ATGCTA.

3 Alignments and Approximate String Matching 61

3.1.1 Global alignment

A global alignment of two strings x and y can be obtained by computing
the distance between x and y. The notion of distance between two strings is
widely used to compare files. The diff command of UNIX operating system
implements an algorithm based on this notion, in which lines of the files
are treated as symbols. The output of a comparison made by diff gives
the minimum number of operations (substitute a symbol, insert a symbol, or
delete a symbol) to transform one file into the other.

Let us define the edit distance between two strings x and y as follows: it is
the minimum number of elementary edit operations that enable to transform
x into y. The elementary edit operations are:

e the substitution of a character of x at a given position by a character of y,
e the deletion of a character of x at a given position,
e the insertion of a character of y in = at a given position.

A cost is associated with each elementary edit operation. For a,b € V:

e Sub(a,b) denotes the cost of the substitution of the character a by the
character b,

e Del(a) denotes the cost of the deletion of the character a,

e Ins(a) denotes the cost of the insertion of the character a.

This means that the costs of the edit operations are independent of the posi-
tions where the operations occur. We can now define the edit distance of two
strings x and y by

edit(x,y) = min{cost of v | v € I}

where I, , is the set of all the sequences of edit operations that transform
x into y, and the cost of an element v € I, , is the sum of the costs of its
elementary edit operations.

In order to compute edit(x,y) for two strings x and y of length m and n
respectively, we make use of a two-dimensional table T' of m + 1 rows and
n + 1 columns such that

Tli, 7] = edit(x[0..4],y[0..7])
fori=0,...,m—1and j =0,...,n—1. It follows edit(z,y) = Tm—1,n—1].

The values of the table T' can be computed by the following recurrence
formula:
T[-1,-1 =0,
Tli,—1] =T[i —1,—1] + Del(x[i]),
T[-1,5] =T[-1,j — 1] + Ins(y[j]) ,
Ti,j] = min< T[i — 1, 4] + Del(z[i]),
Tli,j — 1] + Ins(y[j]) ,

62 Maxime Crochemore and Thierry Lecroq

fori=0,1,...,m—1and j=0,1,...,n— 1.

The value at position [z,] in the table T' only depends on the values at
the three neighbor positions [i — 1,5 — 1], [i — 1, 4] and [¢,j — 1].

The direct application of the above recurrence formula gives an exponen-
tial time algorithm to compute T[m — 1,n — 1]. However the whole table T'
can be computed in quadratic time, technique known as “dynamic program-
ming”. This is a general technique that is used to solve the different kinds of
alignments.

The computation of the table T proceeds in two steps. First it initializes
the first column and first row of 7', this is done by a call to a generic function
MARGIN which is an argument of the algorithm and that depends on the kind
of alignment that is considered. Second it computes the remaining values of T,
that is done by a call to a generic function FORMULA which is an argument of
the algorithm and that depends on the kind of alignment that is considered.

GENERIC-DP (2, m, y,n, MARGIN, FORMULA)
1 MARGIN(T, xz, m,y,n)
2 for j«—0ton—1do
3 fori<— 0tom—1do
4 T1i, j] < FormuLA(T, z,i,y,7)
5 return T

Fig. 3.2. Computation of the table T" by dynamic programming.

Computing a global alignment of x and y can be done by a call to
GENERIC-DP with the following arguments

(z,m,y,n, GLOBAL-MARGIN, GLOBAL-FORMULA)
(see Fig. 3.2, 3.3 and 3.4). The computation of all the values of the table T
can thus be done in quadratic space and time: O(m x n).

GLOBAL-MARGIN(T, z,m,y,n)
1 T[-1,-1] <0
for i — 0tom—1do
T, —1] < T[i — 1, —1] + Del(z[i])
for j — 0ton—1do
T[-1,5] — T[-1,j — 1] + Ins(yls])

Tt W N

Fig. 3.3. Margin initialization for the computation of a global alignment.

An optimal alignment (with minimal cost) can then be produced by a
call to the function ONE-ALIGNMENT(T,z,m — 1,y,n — 1) (see Fig. 3.5). It
consists in tracing back the computation of the values of the table T' from

3 Alignments and Approximate String Matching 63

GLOBAL-FORMULA (T, ,4,y, j)

1 return min{7[i — 1,5 — 1] + Sub(z[¢], y[j]),
T[i — 1,4] + Del(x[d]),
Tli,j — 1] + Ins(yls])}

Fig. 3.4. Computation of Ti, j] for a global alignment.

position [m — 1,n — 1] to position [—1,—1]. At each cell [i,j] the algorithm
determines among the three values T'[i — 1, j — 1] + Sub(z[i], y[5]), T[i — 1, 5] +
Del(x[i]) and Ti,j — 1] 4+ Ins(y[j]) which has been used to produce the value
of T[i,5]. U T[i — 1,5 — 1] 4+ Sub(x[i], y[j]) has been used it adds (z[i], y[j]) to
the optimal alignment and proceeds recursively with the cell at [i —1,j — 1]. If
T[i — 1, 7] 4+ Del(x[i]) has been used it adds (x[i], —) to the optimal alignment
and proceeds recursively with cell at [¢ — 1,7]. If T[i,5 — 1] + Ins(y[j]) has
been used it adds (—, y[j]) to the optimal alignment and proceeds recursively
with cell at [i, 7 — 1]. Recovering all the optimal alignments can be done by a
similar technique.
An example of global alignment is given in Fig. 3.6.

ONE-ALIGNMENT(T, x,%,y,)
1 if i=—1and j = —1 then
2 return (\\)
3 else if i = —1 then
4 return ONE-ALIGNMENT(T,z,—1,y,7 — 1) - (A, y[4])
5 else if j = —1 then
6 return ONE-ALIGNMENT(T, z,¢ — 1,y, —1) - (z[i],)
7 elseif T[i,j]=T[i — 1,5 — 1] 4+ Sub(z[i],y[j]) then
8 return ONE-ALIGNMENT (T, z,i — 1,y,5 — 1) - (z[i], y[4])
9 else if Ti,j] = T[i — 1, j] + Del(x[i]) then
0 return ONE-ALIGNMENT(T, z,7 — 1,y,7) - (z[t], A)
1 else return ONE-ALIGNMENT(T, z,%,y,j5 — 1) - (A, y[j])

Fig. 3.5. Recovering an optimal alignment.

3.1.2 Local alignment

A local alignment of two strings = and y consists in finding the segment of
x that is closer to a segment of y. The notion of distance used to compute
global alignments cannot be used in that case since the segments of x closer
to segments of y would only be the empty segment or individual characters.
This is why a notion of similarity is used based on a scoring scheme for edit
operations.

64 Maxime Crochemore and Thierry Lecroq
T3
i
-1 z[i]
0 A
1cC
2 G
3 A

Fig. 3.6. Global alignment of ACGA and ATGCTA. The values of the above table
have been obtained with the following unitary costs: Sub(a,b) = 1 if a # b and
Sub(a,a) =0, Del(a) = Ins(a) =1 for a,b e V.

A score (instead of a cost) is associated with each elementary edit opera-
tion. For a,b € V:

e Subg(a,b) denotes the score of substituting the character b for the charac-
ter a,

e Delg(a) denotes the score of deleting the character a,

e Insg(a) denotes the score of inserting the character a.

This means that the scores of the edit operations are independent of the

positions where the operations occur. For two characters a and b, a positive

value of Subg(a,b) means that the two characters are close to each other, and

a negative value of Subg(a,b) means that the two characters are far apart.
We can now define the edit score of two strings x and y by

sco(x,y) = max{score of v | vy € I, ,}

where I, is the set of all the sequences of edit operations that transform x
into y and the score of an element o € I, is the sum of the scores of its
elementary edit operations.

An optimal local alignment between the strings x and y is a pair of strings
(u,v) for which u is a factor of z, v is a factor of y and sco(u,v) is max-
imal. For performing its computation, we consider a table T defined, for
i =-1,0,...,m—1and j = —1,0,...,n — 1, by: T[¢,j] is the maximal
similarity between a suffix of x[0..4] and a suffix of y[0.. j]. Or also

T, j] = max{sco(z[l..i],y[k..j]) |0 <L <iand 0 <k <j}U{0}

is the score of the local alignment in [i, j].
The values of the table T" can be computed by the following recurrence
formula:

3 Alignments and Approximate String Matching 65

T[-1,-1] =0,
T[i,~1] = 0,
T[_lv.]] = 07

Tli—1,j — 1] + Subs(z[i], y[5]) ,
T[i—1,7] + Dels(x[7]),

T(i,j — 1]+ Inss(y[j]) ,

07

T[i, j] = max

fore=0,1,...,m—1and j=0,1,...,n— 1.

Computing the values of T' for a local alignment of x and y can be done
by a call to GENERIC-DP with the following arguments

(z, m,y,n, LOCAL-MARGIN, LOCAL-FORMULA)
in O(mn) time and space complexity (see Fig. 3.2, 3.7 and 3.8). Recovering a
local alignment can be done in a way similar to what is done in the case of a
global alignment (see Fig. 3.5) but the trace back procedure must start at a
position of a maximal value in 7" rather than at position [m — 1,n — 1].

An example of local alignment is given in Fig. 3.9.

LOCAL-MARGIN(T, z,m, y,n)

1 T[-1,-1] <0
2 fori—0tom—1do
3 T}, —1] <0
4 for j—0ton—1do
5 T[-1,j] <0

Fig. 3.7. Margin initialization for computing a local alignment.

LocAL-FORMULA(T, z,4,y,7)

1 return max{7T'[i — 1,j — 1] + Subs(z[i], y[j]),
T[i—1,j] + Dels(x[i]),
Tli, 5 — 1] + Inss(y[4]),
0}

Fig. 3.8. Recurrence formula for computing a local alignment.

3.1.3 Longest Common Subsequence of Two Strings

A subsequence of a string x is obtained by deleting zero or more characters
from z. More formally w[0..i — 1] is a subsequence of z[0..m — 1] if there

66 Maxime Crochemore and Thierry Lecroq

T j |-10 1 2 3 4 5 6 7 8 9 10 11
i yjJE R D A W C Q P G K W Y
~Tz[0 0 0 0 0 0 0 0 0 0 0 0 0
0o EJ0 1 0 [oJo 0o 0o 000 0 0 0
1 a0 0 0 0 [1fo 0 0 0 0 0 0 0
2 wlo 0o o0 0 02/t 0 00 0 1 0

@ 3 4o 0o 0o o0 1 [o oo o0 o0 0 0
4 ¢clo 00 0 0 0 1 0 0 0 0 0
5 Q10 0 0 0 0 0 1 1 0 0 0
6 G0 000 0 0 0 2 1 2 1 0
7 K0 0 0 0 0 0 0 1 0 2 [4]/3 2
8 Lo o000 0000 0 1 3 2 1

AWACQ-GK
(b) AW-CQPGK

Fig. 3.9. Computation of an optimal local alignment of z = EAWACQGKL and y =
ERDAWCQPGKWY with scores: Subs(a, a) = 1, Subs(a,b) = —3 and Dels(a) = Inss(a) =
—1 for a,b € V, a #b. (a) Values of table T. (b) The corresponding alignment.

exists an increasing sequence of integers (k; | j = 0,...,7 — 1) such that for
0 <j<i-1, wj] = xk;]. We say that a string is an les(z,y) if it is a
longest common subsequence of the two strings x and y. Note that two
strings can have several longest common subsequences. Their common length
is denoted by llcs(z,y).

A brute-force method to compute an les(x,y) would consist in computing
all the subsequences of x, checking if they are subsequences of y, and keeping
the longest ones. The string = of length m has potentially 2™ subsequences,
and so this method could take O(2™) time, which is impractical even for fairly
small values of m.

However llcs(z,y) can be computed with a two-dimensional table T" by the
following recurrence formula:

T[-1,-1] =0,
Tli,~1] =0,
T[_]-?]] = Oa
Tl j] = T[z'—l,tj—l]‘%—l N if z[i] :.y[j],
max{T[i — 1,5],T[i,7 — 1]} otherwise,

fori =0,1,...,m—1and j=0,1,...,n—1. Then T[i, j] = lles(x[0..14],y[0..j])
and lles(z,y) =T[m —1,n —1].

Computing T[m — 1,n — 1] can be done by a call to GENERIC-DP
with the following arguments (z,m,y,n, LOCAL-MARGIN, LCS-FORMULA) in
O(mn) time and space complexity (see Fig. 3.2, 3.7 and 3.10).

3 Alignments and Approximate String Matching 67

Formura-Les(T, z,4,y, j)
1 if z[i] = y[j] then
2 return T[i — 1,5 — 1]+ 1
3 else return max{T[i — 1,5],T[i,7 — 1]}

Fig. 3.10. Recurrence formula for computing an lcs.

Tt is possible afterward to trace back a path from position [m—1,n—1] to
exhibit an les(z,y) in a similar way as for producing a global alignment (see
Fig. 3.5). An example is presented in Fig. 3.11.

j|l-t0o 1 2 3 4 5 6 7 8
i yjJc A ¢ A T A G A G
—1zf0 0_0 0O 0 0 0 0 0 0
0 A [0 0 1 1 1 1 1 1 1
1 ¢ o 0 1 2 2 2 2 2 2
2 ¢ o 1 1 F—2—2—2_2 2 2
360 11 2 2 2 2 3 3
4 A0 1 2 2 3 3 3 3 4

Fig. 3.11. The value T[4,8] = 4 is lles(z,y) for © = AGCGA and y = CAGATAGAG.
String AGGA is an lcs of = and y.

3.1.4 Reducing the Space: Hirschberg Algorithm

If only the length of an les(x, y) is required, it is easy to see that only one row

(or one column) of the table T needs to be stored during the computation. The

space complexity becomes O(min(m,n)) as can be checked on the algorithm of

Fig. 3.12. The Hirschberg algorithm computes an lcs(z, y) in linear space and

not only the value llcs(x,y). The computation uses the algorithm of Fig. 3.12.
Let us define

T*[i,n] =T"[m,j]=0, for0<i<m and 0<j<n
T*[m —i,n—7j] = les((zfi..m —1DT (y[i.. n—1])%)
for0<i<m-1 and 0<j<n-1

and
M (i) = max {T[i,j| +T"[m —i,n—j]}
0<j<n
where the string w'? is the reverse (or mirror image) of the string w. The
following property is the key observation to compute an lcs(z,y) in linear
space:

68 Maxime Crochemore and Thierry Lecroq

LLCS(z,m,y,n)
1 fori«— —1tom—1do

2 Cli]<0
3 for j«—0ton—1do
4 last — 0
5 for i — —1tom — 1 do
6 if last > C[i] then
7 Cli] « last
8 else if last < C[i] then
9 last — C[i]
10 else if z[i] = y[j] then
11 Cli] — CJi] + 1
12 last «— last+ 1
13 return C

Fig. 3.12. O(m)-space algorithm to compute llcs(z,y).

HIRSCHBERG (x, m,y,n)
1 if m =0 then
2 return A\

3 else if m =1 then

4 if z[0] € y then

5 return z[0]

6 else return A

7 elsej«— [n/2|

8 C «— LLCS(z,m,y[0..7 —1],7)

9 C* — LLCS(z®,m,y[j..n — 1" n—j)
10 k—m-—1
11 M — Cm — 1]+ C*[m — 1]
12 for j «— —1tom —2do
13 if C[j] +C"[j] > M then
14 M — C[j]+ C*[j]
15 ke j
16 return HIRSCHBERG (z[0..k — 1], k,y[0..5 — 1], j)-

HirRsCHBERG(z[k..m — 1],m — k,y[j..n —1],n — j)

Fig. 3.13. O(min(m,n))-space computation of les(z,y).

M@ =Tm—-1n-1], for0<i<m.

In the algorithm shown in Fig. 3.13 the integer j is chosen as n/2. After
Ti,j—1] and T*[m—i,n—j] (0 < i < m) are computed, the algorithm finds an
integer k such that T'[i, k|+T*[m—i,n—k] = T[m—1,n—1]. Then, recursively,
it computes an les(z[0.. k—1],y[0..j—1]) and an les(z[k..m—1],y[j .. n—1]),
and concatenates them to get an lcs(z,y).

3 Alignments and Approximate String Matching 69

The running time of the Hirschberg algorithm is still O(mn) but the
amount of space required for the computation becomes O(min(m,n)) instead
of being quadratic when computed by dynamic programming.

3.2 Approximate String Matching with Differences

Approximate string matching is the problem of finding all approximate oc-
currences of a pattern x of length m in a text y of length n. Approximate
occurrences of x are segments of y that are close to = according to a specific
distance: the distance between segments and & must be not greater than a
given integer k. With the edit distance (or Levenshtein distance), the problem
is known as approximate string matching with k& differences. The standard
solutions to solve this problem consist in using the dynamic programming
technique introduced in Section 3.1. We describe three variations around this
technique.

Dynamic programming

We first examine a problem a bit more general for which the cost of the edit
operations is not necessarily one unit. Aligning = with a factor of y amounts to
align x with a prefix of y considering that the insertion of any number of letters
of y at the beginning of z is not penalizing. With the table T" of Section 3.1.1
we check that, to solve the problem, it is sufficient then to initialize to zero
the values of the first line of the table. The positions of the occurrences are
then associated with all the values of the last line of the table that are less
than k.

To perform the search for approximate factors, we utilize the table R
defined by

RJi, j] = min{edit(x[0. .i],y[¢..j]) | £=0,1,...,5+ 1},

for i = =1,0,...,m — 1 and 5 = —1,0,...,n — 1, where edit is the edit
distance of Section 3.1. The computation of the values of the table R utilizes
the recurrence relations that follow.

Fori=0,1,...,m—1and j=0,1,...,n — 1, we have:

R[-1,-1] =0,
Rli,~1] = R[i — 1,—1] + Del(x[i)),
R[_I’j] =0,

R[i,j] = min< R[i — 1, 4] + Del(x][i]), (3.1)
Rli, j — 1] + Ins(y[j])-

70 Maxime Crochemore and Thierry Lecroq

K-p1rr-DP (z, m, y,n, k)
1 R[-1,-1]«0
2 fori+— 0tom—1do
3 R[i,—1] < i+ Del(z[i])

4f0r]'<—0t0n—1d0
6 for i < 0tom —1do

R[i — 1,5 — 1] + Sub(x[i], y[])
7 Rl[i,j] < min{ R[i — 1, 5] + Del(x[i])

R[i,j — 1] + Ins(y[j])
8 if Rlm —1,j] <k then
9 OutpruT(j)

Fig. 3.14. Approximate string matching with k£ differences by dynamic program-
ming.

R j5 |-10 1 2 3 4 5 6 7 8 9 10 11
i yjlc A G A T A A G A G A A
—1z[lllo 0 0 0 0O O 0O O O O O 0 O
(@) 0 ¢GJf1t 1101 1 110 1 0 1 1
1 A2 21 101 1 110 1 0 1
2 T 3 3 2 2 1 0 1 2 2 1 1 11
3 A4 433 2101 2 2 211
4 A5 5 4 4 3 2 1 01 2 3 21
GATAA GATAA
CAGAT-AAGAGAA CAGATAAGAGAA
GATAA -GATAA
CAGATA-AGAGAA CAGATAAGAGAA
(b)
GATAA GATAA-
CAG-ATAAGAGAA CAGATAAGAGAA
GATAA

CAGATAAGAGAA

Fig. 3.15. Search for z = GATAA in y = CAGATAAGAGAA with one difference, con-
sidering unit costs for the edit operations. (a) Values of table R. (b) The seven
alignments of x with factors of y ending at positions 5, 6, 7 and 11 on y. We note
that the fourth and sixth alignments give no extra information comparing to the
second.

3 Alignments and Approximate String Matching 71

The search algorithm K-DIFF-DP whose code is given in Fig. 3.14 and that
translates the recurrence of the previous proposition performs the approximate
search. An example is given in Fig. 3.15.

We note that the space used by the algorithm K-DIFF-DP can be reduced
to a single column by reproducing the technique of Section 3.1.3. Besides, this
technique is implemented by the algorithm K-DIFF-CUT-OFF (see Fig. 3.16).
As a conclusion we get the following result.

The operation K-DIFF-DP (a2, m,y,n, k) that finds the factors u of y for
which edit(u, z) < k (edit edit distance with any costs) executes in time O(m x
n) and can be realized in space O(m).

Diagonal monotony

In the rest of the section, we consider that the costs of the edit operations
are unitary. This is a simple case for which we can describe more efficient
computation strategies that those described above. The restriction allows to
state a property of monotony on the diagonals that is at the basis of the
presented variations.

Since we assume that Sub(a,b) = Del(a) = Ins(b) =1 for a,b € V, a # b,
the recurrence relation 3.1 simplifies and becomes

R[-1,-1] =0,
Rli,~1] =i+1,
R[_Lj] =0,
Rli—1,j—1] if zli] = yljl,
o RE-1 141 ifal] £yl
R[i, j] = min Rli—1.4] +1. (3.2)
Rli,j — 1] + 1.

fori=0,1,....m—1and j=0,1,...,n— 1.

A diagonal d of the table R consists of the positions [i, j] for which j —i =
d (—m < d < n). The property of diagonal monotony expresses that the
sequence of values on each diagonal of the table R increases with ¢ and that
the difference between two consecutive values is at most one (see Fig. 3.15).
Before formally stating the property, we give intermediate results. The first
result means that two adjacent values on a column of the table R differ from
at most one. The second result is symmetrical to the first one for the lines
of R.

For each position j on the string y, we have

~1<Rli,j]-R[i-1,j] <1

fori=0,1,...,m—1.
For each position ¢ on the string z, we have

72 Maxime Crochemore and Thierry Lecroq

forj=0,1,...,n—1.

We now can state the result concerning the property of monotony on the
diagonals announced above:

Fort=0,1,....m—1and j =0,1,...,n — 1, we have:

Partial computation

The property of monotony on the diagonals is exploited in the following way
to avoid to compute some values in the table R that are greater than k, the
maximal number of allowed differences. The values are still computed column
by column, in the increasing order of the positions on y and for each column
in the increasing order of the positions on z, as done by the algorithm K-
DIFF-DP. When a value equal to k + 1 is found in a column, it is useless to
compute the next values in the same diagonal since those latter are all strictly
greater than k. For pruning the computation, we keep, in each column, the
largest position at which is found an admissible value. If ¢; is this position,
for a given column j, only the values of lines —1 to ¢; + 1 are computed in
the next column (of index j + 1).

The algorithm K-DIFF-CUT-OFF, given in Fig. 3.16, realizes this method.

K-DIFF-CUT-OFF (2, m, y,n, k)
1 fori«— —1tok—1do

2 (& [Z] — i+ 1

3 p—k

4 for j«—0ton—1do
5 Cil-1]«0

6 for i — 0 to p do

7 if z[i] = y[j] then
8 Cali] « C1[i — 1]
9 else Cs[i] «— min{C1[i — 1], Ca[i — 1], C1[i]} + 1
10 Cl — 02

11 while Ci[p] > k do
12 p—p-—1

13 if p=m — 1 then
14 OuTpPUT(j)

15 p<—min{p+1,m—1}

Fig. 3.16. Approximate string matching with & differences by partial computation.

The column —1 is initialized until line £ — 1 that corresponds to the value k.
For the next columns of index j = 0,1,...,n — 1, the values are computed
until line

3 Alignments and Approximate String Matching 73

. {1+max{i|0§i§m—1andR[i,j—l]gk},
p; = min)
m — 1.

The table R is implemented with the help of two tables Cy and C; that allow
to memorize respectively the values of the column during the computation
and the values of the previous column. The process is similar to the one that
is used in the algorithm LLCS of Section 3.1.4. At each iteration of the loop
Lines 7-10, we have:

Cili—1]=R[i — 1,5 — 1],
Coli —1] = R[i — 1, 4],
Cili] = R[i, j — 1].

We compute then the value Cs[i] that is also R[i, j]. We find thus at this line
an implementation of Relation 3.2. An example of computation is given in
Fig. 3.17.

Rj|-10 1 2 3 4 5 6 7 8 9 10 11
i yjJc A G A T A A G A G A A
—1z[llo 0 0 0 0O OO OO O O 0 O
0G|l 110 1 1 1 1010 1 1
1 A 21101 1110 10 1
2 T 2 10 1 2 2 1 1 1 1
3 A 1 01 2 2 2 1 1
4 A 1 0 1 2 1

Fig. 3.17. Pruning of the computation of the dynamic programing table for the
search for = GATAA in y = CAGATAAGAGAA with one difference (see Figure 3.15). We
notice that seventeen values of table R (those that are not shown) are not useful for
the computation of occurrences of approximate factors of x in y.

We note that the memory space used by the algorithm K-DIFF-CUT-OFF
is O(m). Indeed, only two columns are memorized. This is possible since the
computation of the values for one column only needs those of the previous
column.

Diagonal computation

The variant of search with differences that we consider now consists in com-
puting the values of the table R according to the diagonals and by taking into
account the property of monotony. The interesting positions on the diagonals
are those where changes of values happen. These changes are incrementation
because of the chosen distance.

For a number ¢ of differences and a diagonal d, we denote by L[q,d] the
index i of the line on which R[i,j] = ¢ for the last time on the diagonal

74 Maxime Crochemore and Thierry Lecroq
R j |-10 1 2 3 4 5 6 7 8 9 10 11
i yjJc A G A T A A G A G A A
1 x[d] 0
0 G 1
1 A 1
2 T 2
3 A 2
4 A 3

Fig. 3.18. Values of table R on diagonal 5 for the approximate search for x = GATAA
in y = CAGATAAGAGAA. The last occurrences of each value on the diagonal are in
gray. The lines where they occur are stored in table L by the algorithm of diagonal
computation. We thus have L[0,5] = —1, L[1,5] =1, L[2,5] =3, L[3,5] = 4.

j—1i =d. The idea of the definition of L[q, d] is shown in Fig. 3.18. Formally,
forq=0,1,....,kand d= —m,—m+1,...,n — m, we have

Lig,d] =1

if and only if ¢ is the maximal index, —1 < ¢ < m, for which there exists an
index j, —1 < j < n, with

R[i,j]<gand j—i=d.

In other words, for fixed ¢, the values L[q,d] mark the lowest borderline of
the values less than ¢ in the table R (gray values in Fig. 3.19).

The definition of L[q, d] implies that ¢ is the smallest number of differences
between z[0. . L[g, d]] and a factor of the text ending at position d+ Lg, d] on
y. It moreover implies that the letters z[L[q, d] + 1] and y[d + L|g, d] + 1] are
different when they are defined.

The values L[g,d] are computed by iteration on d, for ¢ going from 0
to k + 1. The principle of the computation relies on Recurrence 3.2 and the
above statements. A simulation of the computation on the table R is presented
in Fig. 3.19.

For the approximate pattern matching with k differences problem, only
the values L|q,d] for which ¢ < k are necessary. If L[g,d] = m — 1, it means
that there is an occurrence of the string = at the diagonal d with at most ¢
differences. The occurrence ending at position d 4+ m — 1, this is only valid if
d+m < n. We get another approximate occurrences at the end of y when
L[q,d] = i and d+i = n—1; in this case the number of differences is g+m—1—i.

The algorithm K-DIFF-DIAG, given in Fig. 3.21 performs the approximate
search for x in y by computing the values L[q, d]. It uses the function lep where
lep(u, v) gives the length of the longest common prefix of two strings v and v.
Let us note that the first possible occurrence of an approximate factor of = in
y can end at position m — 1 — k on g, this corresponds to diagonal —k. The
last possible occurrence starts at position n — m + k on y, this corresponds

3 Alignments and Approximate String Matching 75

Rj|-10 1 2 3 4 5 6 7 8 9 10 11
i yjJc A G A T A A G A G A A
—1z[[0 0 0 0 0 0 0 0 ©
@ O 0 0
1 A 0 0
2 T 0
3 4 0
4 A 0
Rj|-10 1 2 3 4 5 6 7 8 9 10 11
i yjJc A G A T A A G A G A A
—1z[E][0 0 0 0 0 0 0 0 O
p OGP L 10 L1110
1 A 1 1.0 1 1 1 10
2 T 1 0 1 11
3 A 1 0 1 1
4 A 1 1 1

Fig. 3.19. Simulation of the diagonal computation for the search for x = GATAA
in y = CAGATAAGAGAA with one difference (see Figure 3.15). (a) Values computed
during the first step (Lines 8-13 for ¢ = 0 of Algorithm L-DIFF-DIAG); they detect
the occurrence of x at right position 6 on y (since R[4, 6] = 0). (b) Values computed
during the second step (Lines 8-13 for ¢ = 1); they indicate the approximate factors
of x with one difference at right positions 5, 7 and 11 on y (since R[4,5] = R[4,7] =
R[4,11] = 1).

to diagonal n — m + k. Thus only diagonals going from —k to n — m + k
are considered during the computation (the initialization is also done on the
diagonals —k — 1 and n — m + k + 1 to simplify the writing of the algorithm).
Fig. 3.20 shows the table L obtained on the example of Fig. 3.15.

d |[-2-10 1 2 3 4 5 6 7 8 9
g=-1] -2 -2-2-2-2-2-2-2 -2 -2 -2
gq=0 [-1 -1 -1 -14 -1 -1-1-11 -1
qg=1 0 1 4 4 4 1 1 2 4

Fig. 3.20. Values of table L of the diagonal computation when x = GATAA, y =
CAGATAAGAGAA and £ = 1. Lines ¢ = 0 and ¢ = 1 correspond to a state of the
computation simulated on table R in Figure 3.19. Values 4 = |GATAA| — 1 on line
q = 1 indicate the presence of occurrences of x with at most one difference ending
at positions 1 +4,2+4,3+4 and 744 on y.

The algorithm K-DIFF-DIAG computes the table L.

For every string « of length m, every string y of length n and every integer k
such that k£ < m < n, the operation K-DIFF-DIAG(z,m,y,n, k) computes the
approximate occurrences of x in y with at most & differences.

76 Maxime Crochemore and Thierry Lecroq

K-DIFF-DIAG (2, m, y, n, k)
1 ford«— —-1ton—m+k+1do

2 L[-1,d] « -2

3 forqg—0tok—1do

4 Llg,—qg—1]+qg—1

5 Llg,—q¢—2]—q—1

6 for g <— 0 to k do

7 ford«— —qton—m+k—qdo

Llg—1,d—-1]

8 ¢+—max{ Llg—1,d] +1
Lig—1,d+1]+1
9 £ — min{¢,m — 1}
10 Lig,d) — £+ |lep(z[t+1..m —=1],y[d+ £+ 1..n—1])
11 if Llg,d]=m —1ord+ L[g,d] =n — 1 then
12 OurpuT(d+m —1)

Fig. 3.21. Approximate string matching with k& differences by diagonals.

In the way that the algorithm K-DIFF-DIAG is described, the memory space
for the computation is principally used by the table L. We note that it is
sufficient to memorize a single line to correctly perform the computation, this
gives an implementation in space O(n). It is however possible to reduce the
space to O(m) obtaining a space comparable to algorithm K-DIFF-CUT-OFF.

If the computation of lep(u,v) is realized in time O(|lep(u,v)|), the algo-
rithm K-DIFF-DIAG executes in time O(m x n). But it is possible to prepare
the strings x and y in such a way that any lep(u,v) query is answered in
constant time. For this, we utilize the suffix tree, of the string z = 2%y where
$ & alph(y). The string

w=lpxil+1..m—-1,y[d+L+1..n—1])

is nothing else but the string lep(z[f+1..m —1]$y,y[d+ £+ 1..n — 1]) since
$ & alph(y). Let f and g be the external nodes of the suffix tree associated
with suffixes of z[¢ + 1..m — 1]$y and y[d + ¢ + 1..n — 1] of the string z.
Their common prefix of maximal length is then the label of the path leading
from the initial state to the lowest node that is a common ancestor to f and
g. This reduces the computation of w to the computation of this node.

The problem of the common ancestor that we are interested in here is the
one for which the tree is static. A linear preprocessing of the tree allows to
get a response in constant time to the queries (see notes). The consequence of
this result is that on a fixed alphabet, after preparation of the strings x and
y in linear time, it is possible to execute the algorithm K-DIFF-DIAG in time
O(k x n).

3 Alignments and Approximate String Matching 7
3.3 Approximate String Matching with Mismatches

In this section, we are interested in the search for all the occurrences of a
string = of length m in a string y of length n with at most £ mismatches
(k € N, k <m <n). The Hamming distance between two strings v and v of
same length is the number of mismatches between v and v and is defined by:

Ham(u,v) = card{i | uli] # v[i],i =0,1,...,|u| — 1}.

The problem can then be expressed as the search for all the positions j =
0,1,...,n —m on y that satisfy the inequality Ham(z,y[j..j +m —1]) < k.

3.3.1 Search automaton

A natural solution to this problem consists in using an automaton that recog-
nizes the language V*{w | Ham(xz,w) < k}. To do this, we can consider the
non-deterministic automaton defined as follows:

e cach state is a pair (¢,4) where ¢ is the level of the state and 7 is its depth,
with0</<Ek, —-1<i<m-—1land/l<i+1;
the initial state is (0, —1);
the terminal states are of the form (£,m — 1) with 0 < ¢ < k;
the transitions are, for 0 < /¢ <k, 0<i¢<m — 1 and a € V, either of the
form ((0,—1),a, (0,—1)), or of the form ((¢,17), z[i + 1], (¢,i+ 1)), or of the
form ((4,4),a,(¢+1,i+1))ifa#2z[i+1]and 0 <l <k —1.

The automaton possesses k + 1 levels, each level ¢ allowing to recognize the
prefixes of x with ¢ mismatches. The transitions of the form ((¢,%),a, (¢,i+1))
correspond to the equality of letters while those of the form ((¢,4),a, (£4+1,i+
1)) correspond to the inequality of letters. The loop on the initial state allows
to find all the occurrences of the searched factors. During the analysis of the
text with the automaton, if a terminal state (¢, m—1) is reached, this indicates
the presence of an occurrence of x with exactly ¢ mismatches.

It is clear that the automaton possesses (k + 1) x (m + 1 — %) states and
that it can be build in time O(k x m). An example is shown in Fig. 3.22.
Unfortunately, the total number of states obtained by determinizing the au-

tomaton is
O(min{m* ! (k4 1)!(k +2)m~F+1}).

We can check that a direct simulation of the automaton produces a search
algorithm whose execution time is O(m x n) using the dynamic programming
as in the previous section. Actually by using a method adapted to the problem
we get, in the rest, an algorithm that performs the search in time O(kxn). This
produces a solution of same complexity as the one of algorithm K-DIFF-DIAG
that nevertheless solves a more general problem. But the solution that follows
is based on a simple management of lists without using a search algorithm for
common ancestor.

78 Maxime Crochemore and Thierry Lecroq

a,b,c,d

Fig. 3.22. The (non-deterministic) automaton of approximate pattern matching
with two mismatches for the string abed on the alphabet V = {a,b, c,d}.

3.3.2 Specific implementation

We show how to reduce the execution time of the simulation of the previous
automaton. To obtain the desired time, we utilize during the search a queue
F of positions that stores detected mismatches. Its update is done by letter
comparisons, but also by merging with queues associated with string x. The
sequences that they represent are defined as follows.

For a shift ¢ of , 1 < ¢ < m — 1, G|q] is the increasing sequence, of
maximal length 2k 4 1, of the positions on x of the leftmost mismatches
between z[q..m — 1] and z[0..m — g — 1]. The sequences are determined
during a preprocessing phase that is described at the end of the section.

The searching phase consists in performing attempts at all the positions
j=0,1,...,n—m on y. During the attempt at position j, we scan the factor
ylj..J + m — 1] of the text and the generic situation is the following (see
Fig. 3.23): the prefix y[j .. g] of the window has already been scanned during

v | I | |

Fig. 3.23. Variables of Algorithm K-MIsMATCHES. During the attempt at position
j, variables f and g spot a previous attempt . The mismatches between y[f .. g] and
z[0..g — f] are stored in the queue F'.

a previous attempt at position f, f < j, and no comparison already happens
on the suffix y[g+ 1..n — 1] of the text. During the comparison of the already
scanned part of the text, y[j..g], around k tests can be necessary. Fig. 3.24
shows a computation example.

3 Alignments and Approximate String Matching 79

yHababcbbaibabaacbabababbbab
(&) r [abalcblab al
z [apale®aba]
(b) mlabacbaba‘
y[ababcbbablabaacbabababbbab

()

mlabacbaba‘

Fig. 3.24. Search with mismatches of the string x = abacbaba in the text
y = ababcbbababaacbabababbbab. (a) Occurrence of the string with exactly three
mismatches at position 0 on y. The queue F' of mismatches contains positions 3, 4
and 5 on z. (b) Shift of length 1. There are seven mismatches between z[0.. 6] and
z[1..7], this corresponds to the fact that G[1] contains the sequence (1,2,3,4,5,6,7)
(see Figure 3.26). (c) Attempt at position 1: the factor y[1..7] has already been
considered but the letter y[8] = b has never been compared yet. The mismatches at
positions 0, 1, 5 and 6 on x can be deduced from the merge of the queues F' and
G[1]. Three letter comparisons are necessary at positions 2, 3 and 4 in order to find
the mismatch at position 2 since these three positions are simultaneously in F' and
G[1]. An extra comparison provides the mismatch at position 7.

The positions of the mismatches detected during the attempt at position f
are stored in a queue F. Their computation is done by scanning the positions
in increasing order. For the search with & mismatches, we only keep in F at
most k + 1 mismatches (the leftmost ones). Considering a possible (k + 1)-th
mismatch amounts to compute the longest prefix of x that possesses exactly
k mismatches with the aligned factor of y.

The code of the search algorithm with mismatches, K-MISMATCHES, is
given in Fig. 3.25. The processing at position j proceeds in two steps. It first
starts by comparing the factors z[0..g — j] and y[j .. g] using the queues F'
and G[j — f]. The comparison amounts to perform a merge of these two queues
(Line 8); this merge is described further. The second step is only applied when
the obtained sequence contains less than k positions. It resumes the scanning
of the window by simple letter comparisons (Lines 11-18). This is during this
step that an occurrence of an approximate factor can be detected.

An example of table G and of successive values of the queue F' of the mis-
matches is presented in Fig. 3.26.

In the algorithm K-MISMATCHES, the positions stored in the queues F' or J
are positions on x. They indicate mismatches between x and the factor aligned
at position f on y. Thus, if p occurs in the queue, we have z[p] # y[f + pl.
When the variable f is updated, the origin of the factor of y is replaced by
j, and we should thus perform a translation, that is to say to decrease the

80 Maxime Crochemore and Thierry Lecroq

K-MmisMATCHES (x, m, G, y, n, k)
1 F «— EMPTY-QUEUE()
2 (f>g) — (_17 _1)
3 for j — 0ton—mdo

4 if LENGTH(F') > 0 and HEAD(F) = j — f — 1 then
5 DEQUEUE(F)
6 if j < g then
7 J <« Mis-MERGE(f, j, 9, F,G[j — f])
8 else J «— EMPTY-QUEUE()
9 if LENaTH(J) < k then
10 F—J
11 fe3j
12 do
13 g—g+1
14 if (g — j] # ylg] then
15 ENQUEUE(F, g — j)
16 while LENGTH(F) < kand g<j+m—1
17 if LENaTH(F') < k then
18 OuTpUT(j)

Fig. 3.25. Approximate string matching with & mismatches.

positions by the quantity 7 — f. This is realized in the algorithm MIS-MERGE
during the addition of a position in the output queue.

If the merge realized by the algorithm MIS-MERGE executes in linear time,
the execution time of the algorithm K-MISMATCHES is O(k X m) in space
O(k x m).

3.3.3 Merge

The aim of the operation MIS-MERGE(f, 4,9, F,G[j — f]) (Line 8 of the al-
gorithm K-MISMATCHES) is to produce the sequence of positions of the mis-
matches between the strings x[0..g—j] and y[j .. g, relying on the knowledge
of the mismatches stored in the queues F' and G[j — f]. This algorithm is given
in Fig. 3.28.

The positions p in F' mark the mismatches between [0 .. g—f] and y[f .. g],
but only those that satisfy the inequality f + p > j (by definition of F we
already have f + p < g) are useful to the computation The objective of the
test in Line 5 of the algorithm K-MISMATCHES is precisely to delete from F
the useless values. The positions ¢ of G[j — f] denote the mismatches between
z[j—f..m—1] and 2[0..m — j + f — 1]. Those that are useful must satisfy
the inequality f+q¢ < g (we already have f+¢q > j). The test in Line 19 of the
algorithm MIS-MERGE takes into account this constraint. Fig. 3.27 illustrates
the merge (see also Fig. 3.24).

Let us consider a position p on x such that j < f+p < g. If p occurs
in F', this means that y[f + p] # z[p|. If p is in G[j — f], this means that

3 Alignments and Approximate String Matching 81

J |yl F
0la (3,4,5)
1o (0,1,2,5)
2 la (2,3)
306 (0,1,2,3)
4lc (0,2,3)
5 (0,3,4,5)
6 b (0,1,2,3)
7la (3,4,6,7)
8 b (0,1,2,3)
i|z[i] Gli] 9 la (3,4,5,6)
Ola () 10(b (0,1)
1o (1,2,3,4,5,6,7) 1lla (1,2,3,4)
2la (3,4,5) 12la (1,2,3)
3l (3,6,7) 13)c (3,4,5,7)
4b (4,5,6,7) 14pp (0,1,2,3)
5la () 15la (3,4,5,7)
6lp (6,7) 166 (0,1,2,3)
7la () 17la (3,5,6,7)
(a) (b)

Fig. 3.26. Queues used for the approximate search with three mismatches of
x = abacbaba in y = ababcbbababaacbabababbbab. (a) Values of table G for string
abacbaba. The queue G[3] for instance contains 3, 6 and 7, positions on x of the
mismatches between its suffix cbaba and its prefix abacb. (b) Successive values of
queue F' of the mismatches computed by Algorithm K-MiSMATCHES. The values at
positions 0, 2, 4, 10 and 12 on y possess less than three elements, which reveals the
presence of occurrences of x with at most three mismatches at these positions. At
position 0, for instance, the factor ababcbba of y possesses exactly three mismatches
with z: they are at positions 3, 4 and 5 on =.

x[p] # x[p—j+ f]. Four situations can arise for a position p whether it occurs
or not in F and G[j — f]. (see Fig. 3.24 and 3.27):

1. The position p is neither in F nor in G[j — f]. We have y[f + p] = z[p]
and z[p] = x[p — j + f], thus y[f +p] = z[p — j + f].

2. The position p is in F but not in G[j — f]. We have y[f + p] # z[p] and
zlp] = z[p — j + f], thus y[f +p] # 2[p — j + f].

3. The position p is in G[j — f] but not in F. We have y[f + p] = z[p] and
xlp] # x[p — j + f, thus y[f +p] # z[p —j + f].

4. The position p is in F' and in G[j — f]. We have y[f + p| # z[p] and
x[p] # x[p—j+ f], this does not allow to conclude on the equality between
ylf +pl and zfp —j + f].

Among the enumerated cases, only the last three can lead to a mismatch
between the letters y[f + p] and x[p — j + f]. Only the last case requires an

82 Maxime Crochemore and Thierry Lecroq

ylababEbbababaiaababababbbab

(a)

:clabacbaba‘

xlabacbaba‘

(b)

wlabacbaba‘

ylababcbbababaacbabababbbab

()

xlabacbaba‘

Fig. 3.27. Merge during the search with three mismatches of z = abacbaba in
y = ababcbbababaacbabababbbab. (a) Occurrence of z at position 4 on y with three
mismatches at positions 0, 2 and 3 on z; F' = (0,2,3). (b) There are three mis-
matches between z[2..7] and z[0..5]; G[2] = (3,4,5). (c¢) The sequences conserved
for the merge are (2,3) and (3,4,5), and this latter produces the sequence (2, 3,4, 5)
of positions of the four first mismatches between x and y[6 .. 13]. A single letter com-
parison is necessary at position 3, between z[1] and y[7], since the other positions
only occur in one of the two sequences.

extra comparison of letters. They are processed in this respective order at
Lines 7-8, 10-11 and 12-15 of the algorithm of merge.
The algorithm MI1s-MERGE (see Fig. 3.28) executes in linear time.

3.3.4 Correctness proof

The correctness proof of the algorithm K-MISMATCHES relies on the proof of
the function M1s-MERGE. One of the main arguments of the proof is a property
of the Hamming distance that is stated below.

Let u, v and w be three strings of same length. Let us set d = Ham/(u,v),
d' = Ham(v,w), and assume d’ < d. We then have:

d—d < Ham(u,w) < d+d.

When the operation MIS-MERGE(f, 7, g, F,G[j — f]) is executed in the
algorithm K-MISMATCHES, the next conditions are satisfied:

L f<ji<g<f+m-1
F={p|x[p] #ylf +pland j < f+p<g));

zlg — f1 # ylgl:
LENGTH(F) < k + 1;

G={pl|zlp|#£zlp—j+ fland j < f+p < ¢') for an integer g’ such
that 7 < ¢ < f+m—1.

Rbil-anl ol o

Moreover, if ¢ < f + m — 1, LENGTH(G) = 2k + 1 by definition of G. By
taking these conditions as assumption we get the following result.
Let J = MIS-MERGE(f, j, g, F, G[j — f]). If LENGTH(J) < k,

3 Alignments and Approximate String Matching 83

Mis-MERGE(f, 7,9, F, G)
1 J < EmMPTY-QUEUE()
2 while LENaTH(J) < k and LENGTH(F) > 0
and LENGTH(G) > 0 do

3 p«< HEAD(F)

4 ¢+ HeaD(G)

5 if p < g then

6 DEQUEUE(F)

7 ENQUEUE(J,p — j + f)

8 else if ¢ < p then

9 DEQUEUE(G)
10 ENQUEUE(J,q — 7 + f)
11 else DEQUEUE(F)
12 DEQUEUE(G)
13 if z[p —j+ f] # y[f + p] then
14 ENQUEUE(J,p — 7 + f)

15 while LENngTH(J) < k and LENGTH(F') > 0 do

16 DEQUEUED(F,p)

17 ENQUEUE(J,p—j+ f)

18 while LENnaTH(J) < k and LENGTH(G) > 0
and HEAD(G) < g — f do

19 DEQUEUED(G,q)

20 ENQUEUE(J,q — j + f)

21 return J

Fig. 3.28. Algorithm for merging queues.

J={(p|alp] #ylj+pland j < j+p < g),

and, in the contrary case,

Ham(y[j..g],z[0..9 —j]) > k.

The result that follows is on the correctness of algorithm K-MISMATCHES.
It assumes that the sequences Glg] are computed in accordance with their
definition.

Ife,y e V', m=|z|,n = |y, k € N and k < m < n, the algorithm
K-MISMATCHES detects all the positions j = 0,1,...,n —m on y for which
Ham(z,ylj..7+m—1]) <k.

3.3.5 Preprocessing

The aim of the preprocessing phase is to compute the values of the table G
that is required by the algorithm K-MISMATCHES. Let us recall that for a shift
gofxz,1<q<m-—1, G[qg] is the increasing sequence of positions on x of the
leftmost mismatches between x[q..m — 1] and x[0..m — ¢ — 1], and that this
sequence is limited to 2k + 1 elements.

84 Maxime Crochemore and Thierry Lecroq

The algorithm PRE-K-MISMATCHES is given in Fig. 3.29. The computation
of the sequences G|q| is realized in an elementary way by the function whose
code follows.

PRE-K-MISMATCHES (2, m, k)
1 for g« 1tom—1do
Glq] — EMPTY-QUEUE()
3 i q
4 while LENGTH(G]q]) < 2k+ 1 and i < m do
5 if x[i] # x[i — q] then
6
7
8

[\V]

ENQUEUE(G|q], %)
i—1+1
return GG

Fig. 3.29. Preprocessing for the approximate string matching with mismatches.

The execution time of the algorithm is O(m?), but it is possible to prepare
the table in time O(k x m x logm).

3.4 Shift-Or Algorithm

We are interested in this Section in the case of the search for short patterns.
We first present an algorithm to solve the exact string matching problem, but
that extends readily to the approximate string matching problems.

J

y ||
[] =l i=0 [1]
|:] z[0..1] i=1 0
|:| 2[0..2] i=2 0

| x i=m—1 E

Fig. 3.30. Meaning of vector R? Each matching prefix of x is associated with
value 1 in R]Q.

3 Alignments and Approximate String Matching 85

Let RY be a bit array of size m. Vector R? is the value of the entire array
R after text character y[j] has been processed (see Fig. 3.30). It contains
information about all matches of prefixes of x that end at position j in the
text. It is defined, for 0 < i < m — 1, by

Rogy - JO i =yl =i)
7 1 otherwise.

Therefore, R(; [m — 1] = 0 is equivalent to saying that an (exact) occurrence
of the pattern z ends at position j in y.
The vector Rg-) can be computed after R271 by the following recurrence
relation:
RYji] - {0 if RY_,[i — 1] =0 and afi] = ylj].
1 otherwise,

and

1 otherwise.

The transition from REL1 to R? can be computed very fast as follows. For
each a € V, let S, be a bit array of size m defined, for 0 <7 <m — 1, by

Su[i] =0 iff x[i] = a.

The array S, denotes the positions of the character a in the pattern z. All
arrays S, are preprocessed before the search starts. And the computation of
R? reduces to two operations, SHIFT and OR:

R) = SHIFT(R) ;) OR Sy-

An example is given in Fig. 3.31.

Approximate String Matching with &k Mismatches

The Shift-Or algorithm easily adapts to support approximate string matching
with & mismatches. To simplify the description, we shall present the case
where at most one substitution is allowed.

We use arrays R” and § as before, and an additional bit array R of size
m. Vector R;_l indicates all matches with at most one substitution up to the
text character y[j — 1]. The recurrence on which the computation is based
splits into two cases.

e There is an exact match on the first ¢ characters of = up to y[j — 1] (i.e.,
R?fl[z' — 1] = 0). Then, substituting z[i] to y[j] creates a match with one
substitution (see Fig. 3.32). Thus,

1 _ R0 [
R;[i] =R;_[i —1].

g —1

86 Maxime Crochemore and Thierry Lecroq

Sa Sc Sg St
110 1
0 1 1 1
1110
01 1 1
0 1 1 1

CAGATAAGAGAA
G110111101011
A111011110101
T111101111111
A111110111111
A111111011111

Fig. 3.31. String x = GATAA occurs at position 2 in y = CAGATAAGAGAA.

e There is a match with one substitution on the first 7 characters of x up to
ylj — 1] and z[i] = y[j]. Then, there is a match with one substitution of
the first i + 1 characters of = up to y[j] (see Fig. 3.33). Thus,

J 1 otherwise.

This implies that le can be updated from R;_l by the relation:

R) = (SHIFT(R;_,) OR S,;) AND SHIFT(R] ,).

Fig. 3.32. If R} ,[i — 1] =0 then Rj[i] =0
An example is presented in Fig. 3.34.

Approximate String Matching with k Differences

We show in this section how to adapt the Shift-Or algorithm to the case of only
one insertion, and then dually to the case of only one deletion. The method
is based on the following elements.

One insertion is allowed: here, vector R;71 indicates all matches with at

most one insertion up to text character y[j — 1]. le-fl[i — 1] = 0 if the first i

3 Alignments and Approximate String Matching 87

Fig. 3.33. R}[i] = R} _[i — 1] if z[i] = y[].

CAGATAAGAGAA
G00O0O0O0O0O0O0O0OO0OO0OO
A101010010100
T111101111010
A111110111101
A111111011110

Fig. 3.34. String x = GATAA occurs at positions 2 and 7 in y = CAGATAAGAGAA with
no more than one mismatch.

characters of = (z[0..7 — 1]) match ¢ symbols of the last i 4 1 text characters
up to y[j —1]. Array R is maintained as before, and we show how to maintain
array R'. Two cases arise.

e There is an exact match on the first ¢ + 1 characters of = (z[0..4]) up to

y[7 — 1]. Then inserting y[j] creates a match with one insertion up to y[j]
(see Fig. 3.35). Thus,
Rj[i] =R] ,[i].

e There is a match with one insertion on the i first characters of z up to
ylj — 1]. Then if z[i] = y[j] there is a match with one insertion on the first
i + 1 characters of = up to y[j] (see Fig. 3.36). Thus,

, R [i—1] if z[i] = y[j]
Rii]={ 771 ’
Y [{ 1 otherwise.

This shows that R; can be updated from R}_l with the formula
R} = (SHIFT(R]_,) OR S,;) AND R),.

An example is given in Fig. 3.37.
One deletion is allowed: we assume here that R;-fl indicates all possible
matches with at most one deletion up to y[j — 1]. As in the previous solution,

two cases arise.

e There is an exact match on the first ¢ characters of z (z[0..7 — 1]) up
to y[j] (ie., R?[i — 1] = 0). Then, deleting x[i] creates a match with one
deletion (see Fig. 3.38). Thus,

88 Maxime Crochemore and Thierry Lecroq

1
y [[+]

N

1

Fig. 3.35. If R)_,[i] = 0 then R}[i] = 0.

J-1 7

v - [
- I

i-1 4

Fig. 3.36. Rj[i] =R} ,[i — 1] if [i] = y[j].

CAGATAAGAGAA
G111011110101
A111101111010
T111110111111
A111111011111
A111111101111

Fig. 3.37. GATAAG is an occurrence of x = GATAA with exactly one insertion in
y = CAGATAAGAGAA.

Fig. 3.38. If R}[i] = 0 then Rj[i] = 0.

Rj[i] = R)[i —1].

e There is a match with one deletion on the first ¢ characters of = up to
y[j — 1] and z[i] = y[j]. Then, there is a match with one deletion on the
first ¢ + 1 characters of = up to y[j] (see Fig. 3.39). Thus,

7 1 otherwise.

The discussion provides the following formula used to update R} from R}%:

3 Alignments and Approximate String Matching 89

R} = (SHIFT(R;_,) OR S,;) AND SHIFT(RY).

Fig. 3.39. R}[i] =R ,[i — 1] if z[i] = y[j].
An example is presented in Fig. 3.40.

CAGATAAGAGAA
GO0O0OO0OOO0OOO0OO0OO
A100010000000
T111001110101
A111100111110
A111110011111

Fig. 3.40. GATA and ATAA are two occurrences with one deletion of x = GATAA in
y = CAGATAAGAGAA

‘Wu—Manber Algorithm

We present in this section a general solution for the approximate string match-
ing problem with at most k differences of the types: insertion, deletion, and
substitution. It is an extension of the problems presented above. The following
algorithm maintains k + 1 bit arrays R, R!, ... ,Rk that are described now.
The vector R? is maintained similarly as in the exact matching case. The
other vectors are computed with the formula (1 < ¢ < k)

R = (SHIFT(R(_,) OR &)
AND SHIFT(R!™')
AND SHIFT(RZ})
AND R}
which can be rewritten into
R} = (SHIFT(R]_,) OR S,)
AND SHIFT(R;™" AND R/Z})
AND R/Z].

90 Maxime Crochemore and Thierry Lecroq

CAGATAAGAGAA
GOO0O0O0O0O0O0O0O0OO0O
A100000000000
T111000110000
A111100011100
A111110001110

Fig. 3.41. Here x = GATAA and y = CAGATAAGAGAA and k = 1. The output 5, 6,
7, and 11 corresponds to the segments GATA, GATAA, GATAAG, and GAGAA which
approximate the pattern GATAA with no more than one difference.

WM (z,m,y,n, k)
1 for each character a € V do
2 Sy — 1™

fori<—0tom—1do
Szpipli] 0

RO — 1™

for / < 1 to k do
R’ — SHIFT(R‘1)

for j — 0ton—1do

9 TR’
10 R%«< SHIFT(R°) OR S,
11 for / — 1 to k do

0 O U W

12 T+ R*

13 R’ — (SHIFT(R’) OR S,;) AND
(SHIFT((T AND R‘1Y)) AND T

14 T—T

15 if R*[m — 1] = 0 then

16 OuTrPUT(j)

Fig. 3.42. Wu—Manber approximate string matching algorithm.

An example is given in Fig. 3.41.

The method, called the Wu-Manber algorithm, is implemented in Fig. 3.42.
It assumes that the length of the pattern is no more than the size of the mem-
ory word of the machine, which is often the case in applications.

The preprocessing phase of the algorithm takes O(om + km) memory
space, and runs in time O(om+ k). The time complexity of its searching
phase is O(kn).

3.5 Bibliographic notes
The techniques described in this chapter are overused in molecular biology for

comparing sequences of chains of nucleic acids (DNA or RNA) or of amino
acids (proteins). The books of Deonier, Tavaré and Waterman [9], Setubal

3 Alignments and Approximate String Matching 91

and Meidanis [28], Gusfield [10] and Bockenhauer and Bongartz [4] consti-
tute excellent introductions to problems of the domain. The book of Sankoff
and Kruskal [26] contains numerous applications of alignments. The book of
Crochemore, Hancart and Lecroq [7] presents in detail, together with their
correctness proofs, the algorithms for computing alignments and solving the
approximate string matching problems.

The notion of longest common subsequence to two strings is used for file
comparison. The command diff of the UNIX system implements an algorithm
based on this notion by considering that the lines of the files are letters of the
alphabet. Among the algorithms at the basis of this command are those of
Hunt and Szymanski [14] and of Myers [20]. A general presentation of the al-
gorithms for searching for common subsequences can be found in an article by
Apostolico [1]. Wong and Chandra [32] shown that the algorithm LCS-SIMPLE
is optimal in a model where we limit the access to letters to equality tests.
Without this condition, Hirschberg [13] gave a (lower) bound £2(n x logn).
On a bounded alphabet, Masek and Paterson [18] gave an algorithm running
in time O(n?/logn). The extension of this result to the general computa-
tion of alignments is an open problem (see Apostolico and Giancarlo [2]).
Using the Lempel-Ziv factorization of the two strings, Crochemore, Landau
and Ziv-Ukelson designed an algorithm for computing alignments running in
time O(hn?/logn) where h < 1 is the entropy of the text.

The initial algorithm of global alignment, from Needleman and Wun-
sch [24], runs in cubic time. The algorithm of Wagner and Fischer [31], as
well as the algorithm of local alignment of Smith and Waterman [29], run in
quadratic time (see [10], page 234). The method of dynamic programming was
introduced by Bellman (1957; see [6]). Sankoff [25] discusses the introduction
of the dynamic programming in the processing of molecular sequences.

The algorithm LCS is from Hirschberg [12]. A generalization of this
method has been proposed by Myers and Miller [21].

Charras and Lecroq created the site [5], accessible on the Web, where
animations of alignment algorithms are available.

The book of Navarro and Raffinot [23] is an excellent introduction to exact
and approximate string matching.

The algorithm K-DIFF-CUT-OFF is from to Ukkonen [30]. The algorithm K-
DIFF-DIAG together with its implementation with the help of the computation
of common ancestors was described by Landau and Vishkin [16]. Harel and
Tarjan [11] presented the first algorithm running in constant time that solves
the problem of the common ancestor to two nodes of a tree. An improved
version is from Schieber and Vishkin [27].

Landau and Vishkin [15] conceived the algorithm K-MISMATCHES. The
size of the automaton of Section 3.3 was established by Melichar [19].

The approximate pattern matching for short strings in the way of the
algorithm K-DIFF-SHORT-PATTERN is from Wu and Manber [33] and also from
Baeza-Yates and Gonnet [3].

92

Maxime Crochemore and Thierry Lecroq

A synthesis and experimental results on the approximate pattern matching

is presented by Navarro [22].

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Apostolico. String Editing and Longest Common Subsequences. G. Rozen-
berg and A. Salomaa, editors. Handbook of Formal Languages, 1997, 361-398.
Springer-Verlag.

. A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology.

J. Comput. Bio., 5(2):173-196, 1998.

. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Comm.

ACM, 35(10):74-82, 1992.

. H.-J. Bockenhauer and D. Bongartz. Algorithmic Aspects of Bioinformatics.

Springer-Verlag, 2007.

. C. Charras and T. Lecroq. Sequence Comparison. http://monge.univ-mlv.fr/

«lecroq/seqcomp/

. T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms.

The MIT Press, 1990.

. M. Crochemore, C. Hancart and T. Lecroq. Algorithms on strings. Cambridge

University Press, 2007.

. M. Crochemore, G. M. Landau and M. Ziv-Ukelson. A sub-quadratic se-

quence alignment algorithm for unrestricted cost matrices. SIAM J. Comput.,
32(6):1654-1673, 2003.

. R. C. Deonier, S. Tavaré and M. S. Waterman. Computational Genome Analysis:

An Introduction (Statistics for Biology € Health). Springer-Verlag, 2005.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ances-
tors. SIAM J. Comput., 13(2):338-355, 1984.

D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Comm. ACM, 18(6):341-343, 1975.

D. S. Hirschberg. An Information-Theoretic Lower Bound for the Longest Com-
mon Subsequence Problem. Inform. Process. Lett., 7(1):40-41, 1978.

J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest com-
mon subsequences. Comm. ACM, 20(5):350-353, 1977.

G. M. Landau and U. Vishkin. Efficient string matching with & mismatches.
Theoret. Comput. Sci., 43(2-3):239-249, 1986.

G. M. Landau and U. Vishkin. Fast string matching with k differences. J. Com-
put. System Sci., 37(1):63-78, 1988.

V. 1. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phys. Dokl., 6:707-710, 1966.

W. J. Masek and M. S. Paterson. A faster algorithm for computing string edit
distances. J. Comput. Syst. Sci., 20(1):18-13, 1980.

B. Melichar. Approximate String Matching by Finite Automata. Computer
Analysis of Images and Patterns, V. Hlavac and R. Sara, editors, Lecture Notes
in Computer Science, volume 970, 342—-349, Springer-Verlag, Berlin, 1995.

E. W. Myers. An O(N D) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

3 Alignments and Approximate String Matching 93

. E. W. Myers and W. Miller. Optimal alignment in linear space. CABIOS,
4(1):11-17, 1988.

G. Navarro. A guided tour to approximate string matching. ACM Comp. Surv.,
33(1):31-88, 2001.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings — Practical on-
line search algorithms for texts and biological sequences. Cambridge University
Press, 2002.

S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.,
48:443-453, 1970.

D. Sankoff. The early introduction of dynamic programming into computational
biology. Bioinformatics, 16:41-47, 2000.

D. Sankoff and J. Kruskal, editors. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Cambridge Uni-
versity Press, second edition, 1999.

B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification
and parallelization. STAM J. Comput., 17(6):1253-1262, 1988.

J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, 1997.

T. F. Smith and M. S. Waterman. Identification of common molecular sequences.
J. Mol. Biol., 147:195-197, 1981.

E. Ukkonen. Algorithms for approximate string matching. Inform. and Control,
64(1-3):100-118, 1985.

R. A. Wagner and M. Fischer. The string-to-string correction problem. J. ACM,
21(1):168-173, 1974.

C. K. Wong and A. K. Chandra. Bounds for the string editing problem. J. ACM,
23(1):13-16, 1976.

S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM,
35(10):83-91, 1992.

4

An Introductory Course on Communication
Complexity

Carsten Damm

Institut fiir Informatik, Universitdt Goéttingen
Lotzestr. 16-18, D-37073 Gottingen
damm@informatik.uni-goettingen.de

Summary. This text was written for a short course on communication complexity
given at the 5th International PhD School in Formal Languages and Applications at
Tarragona, Spain (June 5/6, 2006). The course was planned for three lectures.The
text is intended to beginners and it may also serve as a guide for further reading.
Some easy exercises are spread out through the text with solutions given at the end.
The present version is a revision of the one used in class.

4.1 Motivation, Definition, and Background

4.1.1 Introduction

Whenever several persons, computers, or components of a system jointly com-
plete a certain task, that none of them can do alone, there is need for com-
munication. Sometimes, part of the actions of the participants consists of
obvious information exchange between parties (Alice knows the family name,
and Bob the first name of a person. By communicating they can find out
the person’s phone number), sometimes communication takes place invisibly
and implicitely inside a system (bits exchanged in the processing unit of a
personal computer). “How much of communication” is absolutely necessary to
complete the task? If I knew this minimum “amount of communication”, what
does it tell me about the complexity of the task?

Communication complexity deals with questions of this type in a vari-
ety of settings. Properly defined, communication problems focus attention to
the combinatorial core of an otherwise very complicated setup. Because of
this concentration to the essential it allows to derive interesting computa-
tional bounds with incontrovertible rigour and is therefore at the heart of
several lower bound proofs of computational complexity. Everyone interested
in complexity of computations should have some ideas from communication
complexity in the toolbox.

This text is organized as follows. In the current chapter we introduce some
preliminaries, give an example application of communication complexity and
C. Damm: An Introductory Course on Communication Complezity, Studies in Computational

Intelligence (SCI) 113, 95-123 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

96 Carsten Damm

mention some useful references. The next chapter is devoted to lower bound
techniques for communication complexity. Chapter 4.3 and 4.4 deal with some
problems of interest for formal language theory. In Chapter 4.5 we survey some
other communication setups that are studied in the literature. Throughout
the text there are exercises. Usually the exercises refer to the topic introduced
immediately before. It makes therefore sense to discuss them right where they
appear.

I conclude the introduction with a possible schedule for a short course on
communication complexity based on the present material.

LECTURE 1 1.2 Notation and definitions, 1.3 Some “benchmark functions”
for communication complexity, 1.4 An application, 1.5 Some history and
some references,

LECTURE 2 2.1 The range bound and the tiling method, 2.2 The fooling set
method, 2.3 The rank method, 2.4 Comparison of lower bound methods

LECTURE 3 3. Communication complexity and Chomsky hierarchy, 4. Com-
munication complexity applications for finite automata and Turing ma-
chines, 5.1 Different modes of communication, 5.2 Different partitions, 5.3
Different games

This plan can be completed by discussing a short research paper dealing with
surprising communication protocols. A very nice example is given in [4] (others
include, e.g., the protocols in [12] or in [19]). Actually [4] was chosen for the
PAPER session to this little course at the PhD school in Tarragona. This self-
contained, two-page paper is available online (see references) and its exposition
can hardly be improved. So I decided to not cover it directly in this text.
Instead a set of slides from our PAPER session can be sent on email-request.

4.1.2 Notations and Definitions

First we need some general mathematical notions and notations. Throughout
this text we use log to denote the base 2 logarithm. If A is a finite set, |A]
denotes the number of elements in it.

Exercise 1. Suppose you are about to make a catalogue of the books on your
bookshelf. You decide to label the books by binary strings. If you have N
books on the shelf, how many bits (binary digits) do you need for the labels?
How many decimal digits do you need if you use decimal labels instead?

A pair (A1, As) of subsets of A is a partition of A if (1) A3 U Ay = A and
(2) A1 N Ay =). More general, a family {A;,..., Ar} of subsets of A such
that (1) U?Zl A, =Aand (2) AinA; =0if i # j is also called a partition of
A. This is obviously equivalent to saying, that each element of A belongs to
exactly one of the subsets A;.

For vectors v € {0,1}" the weight of v is defined to be Y., v;. The weight
of v is denoted ||v]|.

4 An Introductory Course on Communication Complexity 97

Now let’s start with some simple notions from communication complexity.
We want to formally describe the situation, that something is to be jointly
computed by several participants, none of which has complete information on
the input.

The actors in a communication setting are called parties or players. In a
two-party setting, the parties are almost always called Alice and Bob. Their
task is to compute a function value f(x,y), where x is Alice’s part of the
input and y Bob’s. Alice has absolutely no information about y and Bob has
no idea, what x is.

f is a function of shape f: X xY — Z, for some non-empty sets X, Y,
and Z. For most examples in this text we consider X =Y = {0,1}", where n
is fixed and Z = {0, 1}. This means, that input bits are partitioned into two
equally-sized sets of bits. One set is given to Alice, the other to Bob. So, Alice
has an n-bit-vector x, Bob has an n-bit-vector y, and they want to know the
bit z = f(x,y). The function as such is known to both players, but they only
want to determine this particular value. The point is, that the players are not
charged for computation time or memory usage, but for the number of bits
they need to exchange until they both know z.

The following trivial strategy enables Alice and Bob to compute z: (1)
When the game starts Alice sends her input x to Bob. (2) Bob, now knowing
the complete input pair (x,y) can compute z and sends this bit to Alice. This
takes n+ 1 bits of communication and it works for every function f. But, e.g.,
for the parity function PARITY : {0,1}" x {0,1}" — {0,1} this would be a
very bad strategy. This function is defined by

PARITY (x,y) = {1 A 1% + |yl is odd,

0 , else.
PARITY (x,y) is simply the parity of all input bits. A much better strategy
for PARITY is: (1) Alice sends the parity of her input bits. (2) Bob adds the
parity of his input bits and sends the result back to Alice. This takes only 2
bits of communication.

Exercise 2. For a natural number m > 1 consider the function MODy:
{0,1}" x {0,1}" — {0,1,...,m — 1} defined by

MODy(x,y) = [Ix[| + [ly[l (mod k).

Try to find a good communication strategy for this function. How many bits
of communication are sufficient when following this strategy?

The players’ aim is to communicate in such a clever way, that z can be deter-
mined without wasting too many bits of communication. For this they agree
in advance on a set of rules that govern the communication and the inter-
pretation of sent messages. This set of rules is called the protocol. Here is a
formal definition following [21]:

98 Carsten Damm

Definition 1. A communication protocol P over X X Y and with range Z
is a binary tree where each internal node v is either labeled by a function
ay : X — {0,1} or a function b, : Y — Z and each leaf is labeled by some
z € Z. [Inner nodes labeled by some a, “belong” to Alice, others “belong” to
Bob.] Further, the two edges leaving a node are labeled 0 and 1, respectively.

Ezxecution of the protocol on input (x,y) consists of walking down the tree
from the root to one of its leafs. If an internal node v is reached, the next
node is the one that is reached by following the edge labeled a,(x) or b,(y)
depending on which function v is labeled with. The output of the protocol is
the label of the leaf that is finally reached.

In this definition the nodes in the tree represent the knowledge about the
input pair that is common to both players. The functions a,,b, determine
the next bit to be send by a player depending on her or his input part. It
may happen that, in executing the protocol we walk from node v to node
v’ that both “belong to Alice”. This corresponds to the fact that in this case
Alice sends two consecutive bits. In the sequel we will describe protocols more
conveniently by combining maximum sequences of consecutive bits sent by
one and the same player to binary strings, called messages. Here is the corre-
sponding terminology (giving also another definition of protocols equivalent
to the one above):

1. The players take turns in communication. We consider all sent messages
to be binary strings of non-zero length.

2. Each sending of a message is considered a “round” in executing the pro-
tocol. The message sent in round ¢ is denoted m;.

3. Alice sends the first message. Message m; is sent by Bob, if 4 is even and
by Alice otherwise.

4. The protocol determines in each step ¢ the message to be sent. It depends
on the sequence my,...,m;_; of previous messages (which is empty in
case i = 1) and the part of the input known to the player whose turn it
is.

The protocol also specifies when it is finished and the output of the pro-
tocol.

Remark 1. The sequence my,...,m;—1 does mot contain more information
than the sequence of edge labels from the root-to-leaf-path from Definition 1.
This is due to the fact, that the labeled tree is fixed in advance and known
to both players. Given such a path each player can infer from the node labels
who sent which bit.

Remark 2. In general it is required that after execution of the protocol both
players know the output. If the output cannot be inferred from the messages
sent so far and the known input part, the last message will be the output
value. This is the case in most of our examples.

Example 1. The trivial protocol for functions f: X x Y — Z is given by:

4 An Introductory Course on Communication Complexity 99

TRIVIAL(f) :
mi(x) :=x
output := mo(my;y) = f(my,y)
The “clever parity protocol” described above is given by

PARITY,, :
m1(x) = ||x|| (mod 2)
output = ma(m:y) = my + [ly|| (mod 2)

Let P be a certain protocol. The sequence (mq, ma, ..., m,) of messages sent
while executing P on input pair (x,y) is called transcript of P on (x,y) and
denoted s, (x,y). Let |m;| denote the length of m;, i.e., the number of bits in
it and let [sp(x,y)| = >\, |m;| denote the total length of the transcript.

Definition 2. The communication complexity of the protocol P is the num-
ber of bits exchanged by the protocol in the worst case:

P) = .
ce(p) (xégggxyWSP(x,yH

Exercise 3. Specify the rules of the strategy from Exercise 2 as a protocol
MODy, and determine its complexity.

Let fp(x,y) denote the output generated by following P on input pair (x,y).
fp: X XY — Z is the function computed by P.

Definition 3. The communication complexity of a function f is the commu-
nication complexity of the best protocol for f:

ce(f) = ;21:1} CC(P).

Proposition 1. For any Boolean function {0,1}™ x {0,1}"™ — {0,1}™ holds
CO(f)<n+1

Proof. CC(TRIVIAL(f)) =n+ 1.

Exercise 4. Clearly for every f : X xY — Z holds CC(f) > 0. Give a

characterization for the set of functions, for which C'C(f) = 0.

4.1.3 Some “Benchmark Functions” for Communication

Complexity

When studying papers on communication complexity one very often meets
special functions whose communication complexity is investigated. A simple
function of shape {0,1}" x {0,1}" — {0,1} that is important in communica-
tion complexity is the following:

100 Carsten Damm

equality
1 ifx=y

EQn(X7 y) = {

0 , otherwise.
Proposition 2. CC(EQ,,) =n+ 1.

Proof. We show that protocol TRIVIAL(EQ,,) is optimal. First observe, that
for every input (z,y) both players need to send at least one bit — otherwise
the output would not depend on the silent players input part contradicting
the definition of the function. Suppose Alice (who starts the communication)
sends less than n bits in total. Then there are two input parts x1,x2 € {0,1}",
on which Alice sends the same messages. Then for all possible input parts y of
Bob (whose messages depend only on y and received messages) the sequence
of messages on (x1,y) and (x2,y) are the same. This means, by traveling down
the protocol tree (x1,y) and (x2,y) reach the same leaf and in particular, the
computed value will be the same. Now, suppose y = x1. Then EQ,, (x1,y) =1
and EQ,,(x2,y) = 0, hence the protocol cannot compute the function EQ,,.

Other functions often met are:

greater-than
1 Jifx>y
0 , otherwise.

GT,(x,y) = {

Here, x,y are considered as binary representations of numbers in {0, ...,
2" — 1} — likewise in the next example.
inner-product

IPn(X7 y) = sz *Yi (mOd 2)
i=1

disjointness

1 , if there is no index ¢ such that z; =y; = 1

DISJ,(x,y) = {

0 , otherwise.

Think of x, y as descriptions of sets A, B C {1,...,n} — x; (y;, respec-
tively) is 1 iff ¢ is contained in A (B, respectively). Then DISJ, (x,y)
indicates, whether A and B are disjoint sets.

Sometimes, when the length n of the input is understood or is unimportant,
or we speak about all functions of the sequence, we omit the index n and
write simply EQ, GT etc.

These functions perhaps don’t look too practical, and knowing about their
communication complexities does not seem to be of great value, but it is!
Consider the problem of computing some function value F(a), where a is an
N-bit input. To have something specific in mind, let a be n groups of n bits
(interpreted as m numbers in the range 0 to 2" — 1) and let F'(a) = MAX (a)

4 An Introductory Course on Communication Complexity 101

be the index of the maximum of the numbers (the smallest such index in case
of a draw). Then every computational device that computes MAX can also
be used to compute the function GE.

Exercise 5. “Reduce” the computation of GT to the computation of MAX:
Given x and y, construct a, such that the value of GT(x,y) can be inferred
from MAX (a).

In other words, the computation of GT is a by-product of computing MAX.
Thus knowing CC(GT) gives us a truly unbeatable lower bound met by every
computational device for MA X, that is “somehow charged” for communication
(we’ll see an example in the next section). The point is, that MAX is more
complicated and more special than GT. Therefore when deriving such lower
bound for MAX directly there is good chance that essentials are hidden behind
a bunch of peculiarities. On the other hand the bound would be a less general
statement — it would apply only to exactly this function.
Further “benchmark functions” are symmetric functions:

Definition 4. A function is called symmetric, if its value does not change
when input positions are permuted.

Exercise 6. Prove that the following is an equivalent definition for symmetric
boolean functions:

Definition 5. A function defined on binary inputs is called symmetric, if its
value does only depend on the number of input bits that are equal to 1.

Ezample 2. MODy, is a symmetric function, but IP and the other examples
above are not.

Exercise 7. Prove that if f: {0,1}" x {0,1}" — {0,1} is symmetric, then

CC(f) < log(n+1)] + 1.

4.1.4 An Application

This section serves to illustrate the idea from the last section, that real-life
computations can be “charged for communication” in non-obvious ways. It
shows also that, as mentioned in the introduction, communication can take
place implicitly within a system. The exposition is taken from the beautiful
survey [24].

Consider the following problem in VLSI-design. A “microchip” is to be
layed-out. Its purpose is to compute EQ,, (x,y). Two groups of n bits each
x = (x1,%2,...,Zn),y = (Y1,Y2,...,Yn), arrive simultaneously at 2n places
(the “input processors”) arranged in exactly the given bit order along one edge
of the layout. There is also an “output processor” — some place at the border
that produces the required output bit 1. There may be more processors as
well as connecting wires between them on the chip.

102 Carsten Damm

Considering the processors and wires as nodes and edges of a graph, a
VLSI-design can be considered a special embedding of that graph into the
plane with some geometric restrictions. It is embedded into a grid of squares
each of which is either empty or contains exactly one of the following as shown
in Figure 4.1: a processor, a straight line connecting two opposite sides of the
square (in two orientations), a sharp bend connecting to adjacent sides of the
square (in 4 orientations) or a crossing of two lines, that each connect two
opposite sides of the square.

||
| : ™

empty port straight line sharp bend crossing lines

Fig. 4.1. Squares in an VLSI-design and an example layout

The chip works in distinct time steps. At each step, each processor reads
the bits sent to it, computes some bit for some of its connecting wires and
sends it to the other end of this wire. It is essential to note, that we assume
“fast wires”, i.e., the time that a signal needs to travel from one to the other
end of a wire is considered to be a non-zero constant independent from its

length.
The smallest possible layout contains only the input processors lined up
in a row, one of them serving also as output processor. Let p1, ... p2, be the

nodes, each containing a processor and the have wires to read in the input
(see figure 4.2). We describe the functioning of this layout. In the first time
step all nodes except p,41 “sleep”. In this step p,41 reads y;, sends it to the
left and sends an “alarm bit” to the right. The alarm bit wakes up p, 42, who
sends o to the left and alarms its right neighbor, and so on. Each processor,
that receives some bit from the right, will transmit it to the left in the next
step.

X1 Xy X3 Xy X5 X Xy X3 Yy

LA A A 2 Z R AN A

Fig. 4.2. Linear VLSI layout

4 An Introductory Course on Communication Complexity 103

When p; eventually receives y; it compares it with x; and sends bit 1
to the right if they are equal and bit 0 if they are not. ps receives this bit
simultaneously with ys. It sends bit 1 to the right, if it received 1 from the
left and z9 and y- are the same, otherwise it sends bit 0. Finally, p, receives
one bit from the left (the resulting bit from all previous comparisons) and the
bit y, from the right. If the bit from the left is 1 and x,, and y, are equal,
then p,, gives the overall output bit 1, else 0.

This design is small, but computation takes n time steps, since each wire
can only carry one bit at a time. With a more generous design, the chip would
finish work earlier. The idea is to provide extra wires that pass 1 and y;, 22
and vy, ..., T, and y, at the same time to special comparator nodes and to
collect the outcomes of comparison in a binary tree design to give the final
output value (see Figure 4.3).

FTIIIIIIT EEE

-

g

I
[o zi

Fig. 4.3. Tree-like VLSI layout

In this design O(logn) time steps are sufficient to complete the task. By
using bends in the tree part of the layout it is possible to use a little less of the
chip’s area. However, this would not reduce the total length of the wires. Since
every unit of the wire occupies some place on the chip (a square), it makes
sense to consider the total length of wires as occupied chip area. Adopting this
point of view our layout uses more than an amount of n? of area (the right
half of the design). Combining ideas from the small-but-slow linear and the
fast-but-big tree-like design, it is possible to make a design that still works
in time O(logn) but uses area only O(n?/logn). However, still, the product
of area and time is at least n?. And this is true for any VLSI-design! This
is a special case of results of [31], which build on communication complexity
ideas:

Proposition 3. If a VLSI-chip computes EQ,,, then for the number T' of time
steps needed and the total number A of wire units satisfies

104 Carsten Damm
AT > n?.

Proof. Divide the design into two pieces by a vertical line, so that on the left
hand side we have inputs 1, ..., z,, on the right hand side we have y1, ..., y,.
We concentrate on the communication that crosses the line. Since by Propo-
sition 2 we have CC(EQ),,) = n+ 1 at least n bits must cross the line until the
result is known. Why not n + 1?7 Since only the output node (sitting on one
of the sides) needs the final result, it is not necessary to “inform” the other.
Because there are only T time steps, in one of the steps at least n/T bits cross
the line. But as the wires carry only one bit at a time, this means at least
n/T wires cross this line.

How many wires do cross the line, if its position were one place to the
right? In this case x1 and y; were on the same side, but still communication is
needed to compute EQ,,_(z2,...,2n), (y2,...,yn)). By the same argument
we conclude, that at least (n — 1)/T wires cross this line. Now we shift one
position further to the right, and as before we can conclude that at least
(n—2)/T wires cross the line, and so on. Similarly we can also shift the line by
1,2, ... places to the left and the line will cross at least (n—1) /T, (n—2)/T, ...
wires.

In summing up, our lines crossed at least

n+2n—1+n—2 +21*n
T T T T T

wires, which proves the statement.

4.1.5 Some History and Some References

Communication complexity arguments where first applied in the late 1970s [1,
32]. The result from the last section is from [31]. As the technique became
known widely, more and more results in a variety of areas where based on it
or techniques were formulated in the language of communication complexity.
In particular, also the model was extended to more sophisticated situations:
more players, non-determinism, randomization, different charging, other input
partitions etc.

The primary motivation for communication complexity study comes from
applications in the field of distributed and parallel computing (including VLSI-
computing). However, communication complexity is a neat field of study on
its own. There are even analogies to NP-completeness theory and structural
complexity. There is one difference however to “classical” complexity theory:
in communication complexity we can prove the separations, that we only
conjecture in the classical setting. Unfortunately, there seems no way to carry
things over... This line of research was begun by [29] and continued by, e.g.,
[3, 13, 18, 23, 8] (a random selection). One of the latest developments is
quantum communication complexity [9]. The achievements of communication
complexity theory feed back into other fields of application and theory.

4 An Introductory Course on Communication Complexity 105

Nowadays, communication complexity is an established technique that is
characterized by strict pinpointing combinatorial situations that appear in
computations of all kind, beautiful mathematics, appealing puzzles, and sur-
prising results. This little tutorial can only give a glimpse on some of the basic
ideas in this nice toolbox. There are some very good surveys on communica-
tion complexity around, that cover more or different material: |28, 24, 14].
There are also books devoted to the subject of communication complexity:
21, 15].

4.2 Some Lower Bound Methods and Results

4.2.1 The Range Bound and the Tiling Method

Definition 6. Let f : X XY — Z be a function. The range of f is the set of
all values, that can be taken by the function:

Range(f) :={z € Z|3(x,y) € X x Y : f(x,y) = z}.

Proposition 4.

CC(f) = log [Range(f)].

Proof. If f(x1,y1) # f(X2,y2), then the players must use different transcripts
on (x1,y1) and (x2,y2) — otherwise the protocol would make an error. Hence,
we must have at least |Range(f)| many different transcripts, which are bi-
nary strings of length at least CC(f). By Exercise 1 CC(f) must be at least
log |Range(f)| to give these many strings.

Exercise 8. Apply Proposition 4 to the function MODy,.

For functions f : X x Y — {0,1} with boolean output Proposition 4 is not
very helpful, so we try to refine the argument.

Before going into details it is useful to have the following picture in mind:
We regard f as a matrix of order |X| x |Y| with rows indexed by inputs x
(Alice’s part) and columns indexed by inputs y (Bob’s part). Consequently,
the entry in row x and column y is f(x,y). We refer to this matrix as the
communication matriz of f and denote it by My — however, as said, it is
nothing else than f itself, written down in a special manner.

Fig. 4.4. The communication matrix of f

106 Carsten Damm

Exercise 9. Write down the communication matrix of PARITY : {0,1}3 x
{0,1}® — {0,1}. (After writing the first few bits in a row and in a column
you will quickly see the structure and can stop writing ...)

Definition 7. A subset R C X XY is called a rectangle in X XY, if R = AxB
for some subsets A C X and BCY.

Please note, that it is not required, that A and B are consecutive in any sense!
This requirement would even be meaningless, without specifying the order of
entries in the communication matrix.

Fig. 4.5. Two examples for rectangles

Lemma 1 (Combinatorial Characterization of Rectangles). Let R C
X x Y. The following are equivalent:

1. R is a rectangle.

2. For any two points (x1,y1), (X2,y2) € R holds (x1,y2) € R.

3.R = Rx X Ry, where Rx = {x|3y : (x,y) € R} and Ry = {y|3x :
(x,y) € R}.

Proof. 3. = 1. is obvious.

1.= 2. Let R = A x B. Since (x1,¥y1),(X2,y2) € R we know on the one
hand side, that x; € A and on the other hand side, that y» € B. Hence,
(x1,y2) € Ax B=R.

2. = 3. Weshow (1) RC Rx x Ry and (2) Rx x Ry C R.
(1) Let (x,y) € R. Clearly, x € Rx (since there is an y, such that (x,y) €
R). Similarly we have y € Ry. Together we obtain (x,y) € Rx X Ry.
(2) Let x; € Rx and ys € Ry. By construction of Rx, Ry this means,
there are y1 € Y and xo € X, such that (x1,y1) € R and (x2,y2) € R.
By the assumption we can conclude (x1,y2) € R.

Let P be a protocol computing f and let @« = (my,...,m,) be a transcript
between Alice and Bob following this protocol. (Reminder: r depends on the
input pair.) We denote the set of input pairs on which the protocols transcript
is «v as follows:

Ra ={(x,y)lsp(x,y) = a}.

4 An Introductory Course on Communication Complexity 107
Fact 1. R, C X xY is a rectangle.

Proof. We use induction and seemingly show a little bit more: The set R, of
input pairs whose transcript only starts with a; = (mq,...,m;) is a rectangle.

For i = 0 (no message sent) R,, = X X Y, which is a rectangle. For i = 1
(Alice sent her first message) R,, = AxY for some A C X since m; depends
only on Alice’s input x (A is simply the set of those x, for which Alice would
send my).

Suppose R, is a rectangle A x B for some i > 1. Without loss of generality
we assume, that the next message is to be sent by Alice. By definition of the
protocol this message depends only on x and the previous messages. Let A’
be the subset of A, on which Alice, given previous messages myq, ..., m;, sends
miy1. Then R,,,, = A" x B which again is a rectangle.

Let’s think about the induction argument for a second. It says that after every
round the input pairs, that are still “in the game” form a set of rectangular
shape. That’s interesting, isn’t it?

Fact 2. f(x,y) is the same for every input pair (x,y) € Ry.
Proof. Follows directly from the definition of the output.

Fact 3. The family of sets Rp = {Rqu|« is a transcript of P on some input
pair} is a partition of X x Y. This partition is called the protocol partition
of P.

Proof. Input pair (x,y) € X x Y belongs to R, (xy) but to no other of the
sets Ry,.

Definition 8. Let f : X XY — Z. We consider [like a coloring of the entries
of X xY. A rectangle R C X XY is called f-monochromatic if f is constant
on R. If f is understood, we sometimes simply speak of monochromatic rect-
angles. Especially, for z € Z an f-monochromatic rectangle R C X XY s
called a z-rectangle if f(x,y) = z for all (x,y) € R.

We consider the partition number of f, which is the smallest number of
f-monochromatic rectangles in a partition of X X Y :

Cov? (f) := min{T|3 partition of X x Y into T monochromatic rectangles}.

Remark 3. The superscript D in Cov” (f) reminds to “disjoint” — we want a
partition, not just a covering by monochromatic rectangles.

Ezample 3. Recall how communication matrices of PARITY -functions look
like (see Exercise 9). What is the partition number of such functions?

Let’s first look at our PARITY 3-example from the exercise. Since order
is not an issue for the rectangles we have in mind, we order the rows and
columns such that first we have all n-vectors with even parity, and then we

108 Carsten Damm

have all n-vectors with odd parity. Then we fill in the matrix entries. As the
example shows, this gives 4 rectangles:

00001111
00001111
00001111
00001111
11110000
11110000
11110000
11110000

It is obvious, that this holds in general: Entries of type even-even are 0-entries,
as well as odd-odd-type entries. The 1-entries are covered by an even-odd and
an odd-even rectangle. Hence the partition number of a PARITY -function is
at most 4. Can it be smaller?

If it was smaller, then we could combine, say, the 0-rectangles into one
(the argument for 1l-rectangles is similar). So lets take an even-even entry
(x1,y1) and an odd-odd entry (x2,y2) and assume they are in the same
monochromatic rectangle. But then, by the Characterization Lemma 1 also
(x1,y2) belongs to this rectangle. But this entry is of even-odd type, which is
a contradiction.

Hence CovP (f) = 4 for all n.

Proposition 5. For every function f: X XY — Z holds
CC(f) > log Cov®(f).

Proof. By the above mentioned facts the protocol partition of P is a partition
of X XY into monochromatic rectangles. If P is an optimal protocol, on every
input pair at most CC(f) bits are exchanged. Therefore the number of possible
transcripts (and therefore the number of rectangles in the particular partition
induced by P) is at most 26“/). Hence we obtain 26°) > CovP(f).

For later referencing we call this lower bound argument the tiling method.
Since the partition number of PARITY -functions is 4, we can conclude, that
at least 2 bits have to be exchanged to jointly determine PARITY,(x,y),
hence the protocol PARITY, is optimal. Well, no big surprise ...

Example 4. Also no big surprise, but hopefully instructive: We reprove Propo-
sition 2 CC(EQ,,) = n + 1. But now we use partition numbers.

An EQ,,-monochromatic partition clearly needs to have 2" 1-rectangles to
cover all l-entries (by an argument as in Example 3 we see, that no two of
the 1’s can live in the same monochromatic rectangle.).

On the other hand, we need at least one O-rectangle to cover the 0O-entries
of the communication matrix. This means C'(f) > 2", from which we conclude
CC(EQ,,) > n by the help of Proposition 5. But since CC(EQ),,) is an integer
number, it is at least n + 1.

4 An Introductory Course on Communication Complexity 109

Exercise 10. As the examples might suggest, it is tempting to believe, that
each partition of the communication matrix of f into monochromatic rectan-
gles there is indeed already a protocol partition. However, this is not the case.
Can you find an example function of shape {1,2,3} x {1,2,3} — {0,1} and
partition into monochromatic rectangles, that is not a protocol partition?

Remark 4. It is still open, whether for all f:{0,1}" x {0,1}" — {0,1} holds
CC(f) = O(CovP(f)). This question was posed in [25].

4.2.2 The Fooling Set Method

It is sometimes hard to prove lower bounds on monochromatic partition num-
bers. The following method is often easier to apply. It was first used in [32]
and in a more elaborated form in [22].

Let f: X xY — Z.

Definition 9. A set of input pairs {(x1,y1),--.,(Xe,y¢)} is called a fooling
set for f, if there exists some z € Z, such that

1. for all i, f(x;,y;) = z,
2. for all i # j, either f(x;,y;) # =z or f(X;,y:) # 2.

For fized z the set is called z-fooling set.
Proposition 6. If f has a fooling set of size £, then
CC(f) > logt.

Proof. By Proposition 5 it is sufficient to prove Cov?(f) < /.

Suppose the opposite is true, i.e., suppose there is a partition of X x
Y into less than ¢ monochromatic rectangles. Then there exist two pairs
(xi,¥:), (xj,y;) in the fooling set, that are in the same rectangle A x B. By
definition z is the “color” that f gives to this rectangle. By the Characteriza-
tion Lemma 1 we know that also (x;,y;) and (x;,y;) belong to this rectangle.
But by definition of the fooling set, one of those pairs has a different color
that z, which is a contradiction. Hence, there must be at least ¢ rectangles in
any f-monochromatic partition of X x Y.

Remark 5. The proof considers only rectangles colored z and therefore in fact
we get a lower bound on the number of z-rectangles. By lower-bounding the
number of rectangles of any color z € Z and summing these bounds up, we can
improve the bound: Let Z = {z1,...,2} and for ¢ = 1,...,¢ let s; be the size
of some z;-fooling set for f, then CC(f) < [log(sy + ...+ s¢)]. We make use
of this argument in the following example.

Ezxample 5. We apply the bound to the disjointness function. Recall the in-
terpretation: n-bit vectors x are considered as “encoding” subsets A from
{1,....;n}ra; =11t i € A.

110 Carsten Damm
We claim, that the following is a 1-fooling set for DISJ,,:
{(A,A9)|A CA{L,...,n}},

where A®denotesthe complementof Ain{1,2,...,n}.Indeed, DISJ,, (4, A°) =1
for all A and on the other hand for A # B either AN B # () or A°N B¢ # 0.
Hence we conclude CC(DISJ,,) > n.

But this concerns only 1-rectangles. Since the function is non-constant,
there must be at least one O-rectangle. Hence, CC(DISJ,) > [log(2" + 1)] =
n+ 1.

Exercise 11. Use the fooling-set bound to show that CC(GT,) =n + 1.

Remark 6. The communication argument from Section 4.1.4 on the area-time-
product of VLSI-circuits is easily seen to extend to functions like GE, GT and
SO on.

4.2.3 The Rank Method

Recall that My denotes the communication matrix of f, i.e., the matrix with
rows and columns indexed with inputs x € X and y € Y and entries f(x,y).
The following bound is due to [26]

Proposition 7. Let f : X x Y — {0,1} and let rank(M) denote the rank of
a matrixz over the rationals. Then

CC(f) > logrank(My).

Proof. Consider a partition of X x Y into Cov”(f) rectangles that are f-
monochromatic. Let Ry,..., Ry € X XY be the 1-rectangles in this partition.
By the tiling bound it is sufficient to prove rank(My) > t. We associate the
following matrices of order | X| x |Y| to them:

1 ,if (x,y) € R;.
Mi (X7 Y) = ()

0 , else.
Observe, that all non-zero rows of M, are the same, hence rank(A;) = 1 for
all 7. Since the R; do not intersect, we have M; = 22;:1 M. By the properties
of the rank we conclude

¢
rank(My) < Zrank(Mi) =t.
i=1

There is good chance to successfully apply the rank lower bound in cases,
where the communication matrix features some algebraic property.

4 An Introductory Course on Communication Complexity 111

Example 6. Now we can prove a lower bound on the inner product function
1P:
cC(1py,) > n.

To this end, let’s have alook on the communication matrices of IP, IP5, IP5,
We use the natural binary ordering on rows and columns (e.g., in case n = 2
the order is 00, 01, 10, 11). Then the resulting matrices are:

00000000
01010101
0000 00110011
o 00\ 0101) 01100110
IP1—<01)7 1P, — 0011 3 1IP; — 00001111 g
0110 01011010
00111100
01101001

Observe that except the first one, each matrix contains copies of its predecessor
matrix in the left-upper, left-lower, and in the right-upper corner and a copy of
the complement (0-1 exchanged) in the right-lower corner. These matrices are
known as Sylvester-matrices and, their rank, e.g., over the rationals is one less
than full-rank. To see this, consider entry (x,z) of (Mip,,). By definition this
entry equals }_,c 1 130 IPn(x,2)IPy(z,y). This is the number of z € {0,1}"
for which IP,(x,z) = IP,(z,y) = 1. This is an inhomogeneous linear system
of equations modulo 2 in n indeterminates (21, ..., 2z,). In case x # 0 # y the
number of solutions is 27! if x = y and 272 else. If one of x,y is identically
zero the number of solutions is zero. We can conclude that rank(Mip,) = 2"—1
and Proposition 7 gives CC(IP,,) > n.

Exercise 12. Apply Proposition 7 to the function GT,,.

4.2.4 Comparison of Lower Bound Methods

The fooling-set method and the rank-method rely on the tiling bound, there-
fore it is the potentially strongest longer bound method for communication
complexity. However, direct application of the tiling-bound is difficult.

It is interesting, to compare the relative power of lower bound methods
on communication complexity. This study has been started in [2| and was
continued in [13] and [10]. We report here some of the results from such
study. For ease of exposition we adopt the following notations from [10], that
all refer to a function of shape f:{0,1}" x {0,1}" — {0,1}:

o 1(f)=Ilogrank(My),
o fs(f) =log¥, where ¢ is the maximum size of a 1-fooling set for f,

o t(f) =log CovP(f).

112 Carsten Damm

Remark 7. Since in any case rank(My) < 2", the rank lower bound can give no
larger bound than n. On the other hand, the fooling set lower bound account-
ing for also O-rectangles can give the optimal bound n + 1 (see Example 5).
The reason for this somehow annoying difference is simple: An all-O-row is a
0-rectangle and would contribute to the fooling-set bound. However, its rank
is 0 — so it would not contribute to the rank lower bound.

Hence, it is only fair in a comparison, to restrict consideration to 1-fooling
sets only.

The following general inequalities are known:

o t(f)<CC(f) < (6(f) +1)

o 1(f) <t(f), fs(f) < t(f) (see proofs above)

e If nis sufficiently large, there are example functions f, such that CC(f) =
n but fs(f) = O(logn) — the fooling-set bound may be very weak.

Concerning the comparison of fs and r the following more detailed facts were
shown

1. For almost all f : {0,1}" x {0,1}" — {0,1} holds r(f) = n and simul-
taneously fs(f) = O(logn). Explicit constructions of such functions are
known.

2. For all f : {0,1}" x {0,1}" — {0,1} holds fs(f) < 2r(f) and explicit
constructions for f are known, for which fs(f) = n but r(f) < 0.8n.

Let us comment on the first of these results: What does “for almost all” mean?
It says, that if a function f : {0,1}"x{0,1}" — {0,1} is taken at random from
the uniform distribution on the set of all such functions, then the probability
that is has the mentioned properties tends to 1 as n grows to infinity.

Exercise 13. For each k € {0,1,...,2n} let EXACT} : {0,1}" x {0,1}" —
{0,1} be defined by

Lo it flx] + [yl = &

EXACTy(x,y) = {O else

Show that CC(EXACT}) > [log(k + 1)]. For the proof you can use any of

the mentioned lower bound methods.

Exercise 14. We know that symmetric functions f : {0,1}" x {0,1}" —
{0,1} have communication complexity bounded by O(logn). Give an example
of such a function with CC(f) > [logn].

Remark 8. Taking into account that there must exist at least one O-rectangle
one can improve the result of Exercise 13 to

CC(EXACTy) > [log(k +2)] = [log((k + 1) + 1)].

4 An Introductory Course on Communication Complexity 113

Exercise 15. If the range of the function under consideration is greater than
{0,1}, the simple idea from the last remark can be extended. E.g., it can be
shown that CC(MODy,) > [log(2k —1)] = [log(k + (k — 1))], by presenting a
0-fooling set for and by taking into account, that there must be at least one
l-rectangle, at least one 2-rectangle, ..., at least one (k — 1)-rectangle. Try
this!

But for this function it is easy to give better lower bounds on the number
of those z-rectangles. This way one can prove CC(MODy) > [2log k], which
is your exercise.

4.3 Communication Complexity and Chomsky Hierarchy

It is natural to ask, how communication complexity relates to other com-
plexity measures or to restricting features of computational devices. We saw
already one example concerning complexity measures in the field of VLSI-
design. Next we concentrate on the Chomsky hierarchy. We take some ideas
from the exposition in [15].

Recall the Chomsky hierarchy:

REG c CFL ¢ CS € RE C ALL,

where the notations in this order denote the classes of regular, context-free,
context-sensitive, recursively enumerable, and all languages. (As usual, by a
language we mean a subset of X* for some fixed finite alphabet X.)

To bring these two concepts in touch we first need to translate functions
(studied in communication complexity) into languages (studied in formal lan-
guage theory) and vice versa. We confine to Boolean functions and to lan-
guages over the alphabet {0, 1}. The key idea is to bring sequences of functions
in correspondence to languages. Here is how:

Definition 10. For every natural number N let fy : {0,1}Y — {0,1} be
a Boolean function. We denote by f the sequence f1, fa,.... The language
defined by f is the set

Lf = {W € {0’ 1}*‘f\w|(w) = 1}

(Iw], as usual, denotes the length of the string w).
If L € {0,1}", then the Boolean function sequence [, defined by L is the
sequence fr y : {0,1}V :— {0,1}, N = 1,2, ... with

vwe {0, 1}V frn(w)=1ewe L

We want to apply communication complexity ideas to member functions from
sequences fr, for arbitrary L. In the Boolean function examples studied so far,
the input was always partitioned in equal sized parts and distributed to Alice
and Bob. This is not possible for functions fr, n, if NV is odd. But for these

114 Carsten Damm

cases we simply consider the input space as product of X = {0, 1}LN /2] and
Y = {0, 1} V211 50 we give the first | N/2] bits to Alice (this input part
is denoted x) and the remaining bits to Bob (this input part is denoted y).

This said, we can now speak about the communication complexity of the
language L by considering communication complexities of the member func-
tions in the corresponding Boolean function sequence: CC(fr) -

For any g : N — N let CC(g(NN)) denote the set of languages L C {0, 1}*,
such that VN : CC(fr n) < g(N).

We start with the top of the Chomsky hierarchy. The result of the following
exercise seems disappointing at first glance, but at least it is instructive. We’ll
comment on it afterwards.

Exercise 16. First recall the solution to Exercise 4. Then use a diagonaliza-
tion argument to prove the following statement:

Proposition 8. There is a language L C {0,1}* which is not recursively
enumerable but has zero communication complexity:

L € CC(0) \ RE.

Remark 9. The result is not really surprising. Each Turing machine is a finite
object, processing every input uniformly by the same algorithm. Proposition 8
shows, that it is inadequate to compare a uniform computational mechanism
(acceptors for languages in the Chomsky hierarchy) to non-uniform ones, like
infinite sequences of communication protocols, that provide for each input
length an own algorithm.

There is a standard way to translate uniform devices to corresponding non-
uniform ones (see [20]), that we introduce shortly: A computational device is
called non-uniform if there is some infinite sequence oy, s, ... called advice
that is used like an oracle mechanism: Instead of x the device processes the
combination x#a . If C is a certain complexity class, defined by a resource
bounded uniform computational device, then C/g(NN) denotes the class of
languages accepted by the same resources but with advice of length at most
g(N) for inputs of length N. To define this formally we introduce the following
notation:

C/g(N)={L:a|lLeC,a=(an)nven: VN |an| <g(N)}

where
L:a={wlw#an, € L}}.

The proposition shows, that in order to accept the language L', a Turing
machine acceptor needed the information which constant function is computed
at inputs of length 1, length 2, This is only one bit of advice, or — in
the terminology of [20] — CC(0) C RE/1. In fact, already a finite automaton
equipped with this advice could accept L'. It is straight-forward to extend the
advice mechanism to finite automata (see [6]). Hence, the following is true:

CC(0) C REG/1.

4 An Introductory Course on Communication Complexity 115

Proposition 9. For each regular language L C {0,1}* there exists a constant
k, such that L € CC(k).

Proof. See Chapter 4.4.

So, for every regular language a constant number of communicated bits is
sufficient to decide membership in that language. We express this fact as

REG C CC(O(1)).

On the other hand in [15] it is shown, that no single constant number of
communicated bits is sufficient to decide about any regular language:

Proposition 10. For every natural number k, there is a regular language Ly,
outside CC(k).

Proof. Given k consider L, = {w € {0,1}* : |w| = 2¥F'} € REG. By
Exercise 13 any deterministic communication protocol needs at least k + 1
bits of communication to decide w € L.

Remark 10. Let const (poly, respectively) denote the class of advice sequences
a1, ag,... € {0,1}* such that Vn : |a,| < k (Vn : |a,| < n, respectively)
for some constant k. Using notation and ideas from Remark 9, the proof of
Proposition 9 and [6] one can show

CC(O(1)) D REG/const.
However, providing more than constant length advice does not help (see [6]):
REG/const = REG /poly.

How about context-free languages? Already in this language class there are
languages requiring the highest possible — namely linear — communication
complexity.

Proposition 11. There is a context-free language L C {0,1}*, such that L ¢
CC(o(N)).

Proof (sketch). It is easy to show, that the set of palindromes, which is a
context free language, has maximum communication complexity.

Remark 11. Palindromes are hard to recognize in our basic two party commu-
nication model since the partition of input bits among Alice and Bob is worst-
case. For other partitions (in the case n =4, e.g., ({z1, 22, Y1, Y2}, {23, 24, Y3,
y4})) communication complexity 2 would be sufficient. This is related to “best
partition communication complexity”, discussed in Section 4.5.2. In [15] an
example of a context-free set is presented that has communication complexity
2(n) regardless how the (balanced!) partition of input bits among Alice and
Bob looks like.

116 Carsten Damm

4.4 Communication Complexity Applications for Finite
Automata and Turing Machines

The following can be found in [21].

Lemma 2. Let f:{0,1}" x {0,1}" — {0,1} and let there be a deterministic
finite automaton with accepted language L, such that fro, = f (i.e., the
“length 2n slice of L7 is exactly the set of inputs Xy with f(x,y) =1). Then
for the number s of its states holds

CC(f) < [logs] + 1.

Proof. Consider a deterministic finite automaton accepting L. Let {qq,. ..,
gs—1} be its states and let k = [log s]+1. Then the following is a deterministic
communication protocol, that accepts the input pair (x,y) if and only if the
concatenation xy belongs to L. Alice simulates the automaton on the input
x and passes the state ¢, in which the automaton ends in a binary encoding
(no more than k bits) to Bob. Bob then starts simulating the automaton on
y but with ¢, as starting state. He sends to Alice bit 1, if this computation
ends accepting and 0 otherwise. Hence [log s]| + 1 bits of communication are
sufficient.

Proof (Proposition 9). If L is regular, then it is recognized by some determin-
istic finite automaton with s states. From the lemma we can conclude, that

L C CC([log s] +1).
Here is another application:

Exercise 17. Prove by means of communication complexity that the lan-
guages
L = {xyl[x| = |y| and EQ(x,y) = 1}
and
L' = {xyl||x| = ly| and EQ(x,y) = 0}
are not regular.

The third application concerns the following well-known simulation: For every
s-state non-deterministic automaton there is a 2° state deterministic finite au-
tomaton that accepts the same language. We can show, that this construction
is essentially optimal:

Proof. We know from Exercise 17 that a deterministic finite automaton that
accepts the language

L, = {xy||x| = ly| = n and EQ,,(x,y) = 0}

needs at least 2™ states. On the other hand, it is easy to design a non-
deterministic finite automaton with O(n) states for L!: It simply guesses
two input positions i,1 <7 < n and j,n+1 < j < 2n and accepts, if and only
if the input differs in these positions.

4 An Introductory Course on Communication Complexity 117

Communication complexity finds also application for Turing machines. The
idea of the below lower bound is quite similar to the situation with deter-
ministic finite automata (and it reminds also to the VLSI-example from Sec-
tion 4.1.4). We concentrate on the following example language:

PALINDROME = {ww’|w € {0,1}*},

where x* denotes the reversed string x.

Exercise 18. Prove that PALINDROME can be recognized by a Turing ma-
chine (1) in linear time using linear space or (2) in quadratic time using
logarithmic space.

Proposition 12. If a Turing machine accepts PALINDROME in time T'(N)
using space S(N) then

T(N)-S(N) = 2(N?).

Proof. Consider a Turing machine M that decides this language. Alice and
Bob compute EQ(x,y) for (x,y) € {0,1}™ x {0,1}" by simulating the work
of M on x0"y® € {0,1}" where N = 3n. Clearly M accepts if and only
if EQ(x,y) = 1. Whenever the read-only input head is located in the “x-
region” it is Alice who simulates and if it is in the “y-region” it is Bob who
simulates. When the head enters the “0-region” the current player can continue
to simulate until the head enters the region corresponding to the other player.
It takes at least time n to move from the x- to the y-region, thus this happens
at most T(N)/n times. Further, when the head crosses the responsibility
border (i.e., when it walks out of the O-region), the current player passes
the necessary information to the other: the state (O(1) bits) and the contents
of the work tape(s) (O(S(V)) bits). In total they exchange O(S(N)-T(N)/n)
bits while finding EQ(x,y). Because of Proposition 2 we can conclude T'(N) -
S(N) = 2(n?).

The idea works obviously also for other functions with linear communication
complexity.

Remark 12. In principle the same idea should also work for pushdown au-
tomata (divide the input in two parts and let Alice simulate on the left and
Bob on the right). However, passing information between players is more dif-
ficult, because of the large amount of information that can be stored in the
stack. In [16] a more sophisticated communication model was defined, that is
applicable for lower bound proofs in this situation. The details are beyond the
scope of this tutorial.

118 Carsten Damm

4.5 A Survey on Communication Problems
and Applications

4.5.1 Different Modes of Communication

The model of communication that was introduced in Section 4.1.2 is the basic
deterministic model. However, the concept of non-determinism known from
computational complexity theory turns out to be fruitful also in communica-
tion complexity. We survey some of these and related notions and results.

A non-deterministic communication protocol is a protocol, that may allow
players to choose one of several messages to send. We define the computed
value to be 1 if at least one transcript gives output 1. The length of the
protocol transcript for the worst-case input pair is the complexity of the non-
deterministic protocol. The complexity of the best nondeterministic protocol
for a function f : {0,1}"™ x {0,1}" — {0,1} is called the nondeterministic
communication complexity of f and is denoted

ccN(f).

Still, it holds that the set R, of all input pairs with transcript « is a
monochromatic rectangle. It is not hard to see, that every nondeterministic
protocol for f defines a (not necessarily disjoint) covering of {0,1}" x {0,1}"
by monochromatic rectangles. Let Covl(f) denote the minimum number of
1-rectangles required to cover Mj.

Exercise 19. Prove that
COV (1) = log Cov' (/)].

Let Cov"(f) denote the minimum number of 0-rectangles needed to cover Mj.
The following is proved in [13]:
Proposition 13. CC(f) = O(Cov'(f) - Cov"(f)).

Cov' (f) and Cov’(f) are called cover numbers. Let ms(f) denote the maxi-
mum size of an f-monochromatic 1-rectangle. The following is obvious:

Lemma 3.

CO(f) > Cov'(f) + Cov°(f).
CCN(f) = #£71(1)/ms(f).

Exercise 20. Use properties of Sylvester-matrices (see Example 6) to prove
#IP, M (1) > 3™

It can be shown, that 1-rectangles of IP,, have size at most 2": ms(IP,,) < 2™.
Using the lemma and the exercise this gives:

Proposition 14.
coN(P,) = 2(n).

4 An Introductory Course on Communication Complexity 119

The rectangle size argument was extended to randomized communication pro-
tocols in [17]. In randomized communication protocols players make use of
random bits and the input is to be accepted with a certain probability. There
is a “private coins model” (each player uses a separate source of randomness)
and a “public coin model” (players share the random bits). In the latter model
the random bits are not taken into account for communication.

Ezxample 7. There is a private coin random communication protocol that com-
putes EQ,, within O(logn) bits of communication and with error at most 1/n.

Proof (sketch). Let p,n? < p < 2n? be a prime and consider the input vectors
as coeflicients of degree n — 1 polynomials. So every player has a polynomial.
Alice picks some r,0 < r < p at random and evaluates her polynomial at r.
She sends r as well as the value modulo p to Bob. Bob evaluates his polynomial
at the point r. If his result equals hers modulo p, then he accepts. Otherwise
he rejects.

No more than O(logn) bits are communicated and the probability of error
is small: If the input parts are the same, the polynomials are the same and
no error occurs. If the inputs are different, the polynomials differ and there is
good chance that this will be detected by random evaluation.

Another type of “communication mode” concerns rounds. The protocols men-
tioned in previous sections are all 1-round protocols: Alice sends some bits and
Bob can compute the function value. The question is, whether it is sufficient
to restrict attention to protocols bounded to a certain number of rounds or
how much round restrictions affect length of protocols. This study was started
in [29]. We mention some results:

e The protocol used in the proof of Proposition 13 uses binary search in a
number of rounds that grows as log Cov’(f). No deterministic protocol
with a constant number of rounds is known, that gives the same upper
bound.

e For each fixed k functions are known that need exponentially more com-
municated bits in k& — 1-round games compared to k-round games (see [11]
for the deterministic version and [27] for the randomized).

e There is a connection between round-restricted protocols and depth/size-
tradeoffs for Boolean circuits [27].

4.5.2 Different Partitions

Recall the VLSI-example from Section 4.1.4. Processors compute EQ,, but bits
to be compared are at a large distance from each other. This is, what makes
the computation costly. Without this restriction, the lower bound AT > n?
would no longer be applicable.

Exercise 21. Describe a layout for a VLSI-circuit with arbitrary arrangement
of inputs that achieves an area-time product o(n?).

120 Carsten Damm

In view of this it seems meaningful to consider communication complexity of
functions on base of arbitrary input partitions. This model was introduced
in [29] and is heavily used for VLSI lower bound proofs:

Definition 11. Let (S,T) be a partition of the set of inputs of a boolean func-
tion with #S = #T. An (S, T)-communication protocol is a communication
protocol that enables Alice and Bob (given the bits with index i € S and with
index i € T', respectively) to jointly compute the value of f on the given input.
Its complexity is defined as usual. The communication complexity of f with
respect to (S,T) (denoted CCsr(f)) is the complexity of the best protocol
with respect to S,T. The best partition communication complexity of f is the
minimum of CCsr(f) over all input set partitions (S,T):

COPSt(f) = (Ingn) CCsr(f)-

The “benchmark function” for best partition communication complexity is:

shifted equality
1 ,ifx(i) =y

0 , otherwise,

SEQ, (x,y,i) = {

where x(i) denotes the cyclic shift of x by 4 places.

Proposition 15.
CCP*Y(SEQ,,) = 2(m),

where m = 2n + logn is the size of the input.
Proposition 16. Every VLSI-chip that computes [satisfies
AT2 > (chest(f))Q.

For proofs see [21].

4.5.3 Different Games

Depending on the situation to be modeled different versions of “communica
tion games” are in use. The basic model is the two party communication game
as introduced. To give an impression we mention only two of them:

e Multiparty communication: The input consists of k parts xi,...,Xg. An
obvious and hopefully useful generalization of the two-party case is the
following version (1): The share of player i consists of x;. Less obvious but
also useful is version (2): The share of player ¢ consists of all 2,1 <i <k
except x;. Version (2) is dubbed “number-on-the-forehead-model” (NOF)
while version (1) is the “number-in-the-hand-model”. The NOF version was
introduced by [5]. There are surprising connections between this model and
Boolean circuit complexity. And there are also surprising protocols (see,
e.g., [12, 7]).

4 An Introductory Course on Communication Complexity 121

e Communication complexity of relations, which was introduced in [19]: A
relation is a subset R C X XY x Z. Alice is given z € X, Bobis giveny € Y
and their task is to find some z € Z, such that (z,y, 2) € R. For an example
consider the so-called universal relation: U, C {0,1}"x{0,1}"x{1,...,n}
is defined to be the set of all triples (x,y,?) such that x # y and z; # y;.
The corresponding communication game is the following: Alice is given x
and Bob is given y. They know in advance, that x # y. Their task is to
find some bit ¢, in which their inputs differ.

The communication complexity of such protocols is defined in the usual way
— it is the length of the best protocol on the worst case input.

Let us elaborate somewhat more on communication complexity of rela-
tions.

Let f: {0,1}™ — {0, 1} be a non-constant Boolean function. Suppose Alice
is given some x € f~1(0) and Bob is given some y € f~!(1). Then they know,
that their input parts differ in at least one bit and they can communicate
to find one such position. This is the communication game on the following
relation associated to f:

Ry ={(x,y,i)|x € 7o),y € £, 2 # vid-

Obviously, every protocol for U,, gives a protocol for Ry — this is where the
name “universal relation” comes from. The trivial protocol for U, gives an
upper bound of n + [logn] communicated bits. In [30] several protocols are
given that achieve an upper bound of n+ 2 (while the lower bound — proved
in the same paper — is n + 1).

We denote by CC(Ry) the communication complexity of the relation Ry.
Further let d(f) denote the minimum depth of a Boolean circuit for f that
uses only A-, V-, and —-gates. The following interesting connection was proved
in [19]:

Lemma 4.

d(f) = CC(Ry).

This lemma was used in [4] for a new proof of the following fact, that is known
from 1950s:

Proposition 17. For every symmetric Boolean function f holds
d(f) = O(logn).

Remark 15. The proof relies on a the construction of an O(logn) protocol for
R¢. Please note, that this is not related to the result of Exercise 7.

References

1. H. Abelson. Lower bounds on information transfer in distributed computations.
In Proceedings of the 19th IEEE FOCS. IEEE Computer Society, Ann Arbor,
pp. 151-158, 1978.

122

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Carsten Damm

A. Aho, J. Ullman, and M. Yannakakis. On notions of information transfer in
VLSI-circuits. In Proceedings of the 15th Annual ACM Symposium on Theory
of Computing, pages 133-139, 1983.

. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication com-

plexity theory. In Proceedings of the 27th Annual Symposium on Foundations
of Computer Science, FOCS 86. IEEE Computer Society, Toronto, pp. 337-347,
1986.

. G.S. Brodal and T. Husfeldt. A communication complexity proof that sym-

metric functions have logarithmic depth. Brics report series. http://www.brics.
dk/RS/96/1/BRICS-RS-96-1.ps.gz.

. A.K. Chandra, M.L. Furst, and R.J. Lipton. Multi-party protocols. In STOC.,

Boston, ACM, pages 94-99, 1983.

. C. Damm and M. Holzer. Automata that take advice. In Mathematical Foun-

dations of Computer Science, LNCS, vol 969, pp. 149-158, 1995.

. C. Damm, S. Jukna, and J. Sgall. Some bounds on multiparty communication

complexity of pointer jumping. Computational Complexity, 7(2):109-127, 1998.

. C. Damm, M. Krause, C. Meinel, and S. Waack. On relations between counting

communication complexity classes. Journal of Computer and System Sciences,
69:259-280, 2004.

. R. de Wolf. Quantum communication and complexity. Theoretical Computer

Science, 287:337-353, 2002.

M. Dietzfelbinger, J. Hromkovi¢, and G. Schnitger. A comparison of two lower-
bound methods for communication complexity. Theoretical Computer Science,
168(1):39-51, 1996.

P. Duris, Z. Galil, and G. Schnitger. Lower bounds on communication complex-
ity. IC, 73:1-22, 1987.

V. Grolmusz. The bns lower bound for multi-party protocols is nearly optimal.
Information and Computation, 112:51-54, 1994.

B. Halstenberg and R. Reischuk. Different modes of communication. SIAM
Journal on Computing, 22, 1993.

J. Hromkovi¢. Randomized communicating protocols (a survey). In Proceed-
ings of the International Symposium on Stochastic Algorithms: Foundations and
Applications. LNCS, vol. 2264, Springer, pp. 1-32.

J. Hromkovi¢. Communication Complexity and Parallel Computing. Springer,
Berlin, 1997.

J. Hromkovi¢ and G. Schnitger. Pushdown automata and multicounter ma-
chines, a comparison of computation modes. In Automata, Languages and Pro-
gramming: 30th International Colloquium, pages 66—80, 2003.

M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and communica-
tion complexity. SIAM Journal on Discrete Mathematics, 8:76-92, 1995.

M. Karchmer, I. Newman, M. Saks, and A. Wigderson. Non-deterministic com-
munication complexity with few witnesses. Journal of Computer and System
Sciences, 49:247-257, 1994.

M. Karchmer and A. Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In STOC., pages 539-550, 1988.

R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28:191-209, 1982.

E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1996.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

4 An Introductory Course on Communication Complexity 123

R.J. Lipton and R. Sedgewick. Lower bounds for VLSI. In 18th Annual ACM
Symposium on the Theory of Computing, pages 300-307, 1981.

S.V. Lokam. Spectral methods for matrix rigidity with applications to size-depth
tradeoffs and communication complexity. In FOCS, pages 6-15, 1995.

L. Lovasz. Communication complexity: A survey. In B. Korte, L. Lovasz, H.J.
Promel, and A. Schrijver, editors, Paths, Flows, and VLSI Layout. Algorithms
and Combinatorics 9, pages 235—265. 1990.

L. Lovéasz and M. Saks. Lattices, Mobius functions and communication com-
plexity. Journal of Computer and System Sciences, 47:322-349, 1993.

K. Mehlhorn and E.M. Schmidt. Las vegas is better than determinsm in VLSI
and distributed computing. In 14th Annual ACM Symposium on Theory of
Computing, pages 330-337, 1982.

N. Nisan and A. Wigderson. Rounds in communication complexity revisited.
SIAM Journal on Computing, 22, 1993.

A. Orlitsky and A. Gamal. Communication complexity. In Complexity in In-
formation Theory, pages 16-61. 1988.

C. Papadimitriou and M. Sipser. Communication complexity. JCSS, 28:260-269,
1984.

G. Tardos and U. Zwick. The communication complexity of the universal rela-
tion. In Proceedings of the 12th IEEE Conference on Computational Complezity,
pages 247-259, 1997.

C. Thompson. Area-time complexity for VLSI. In Proceedings of the 11th ACM
STOC. ACM, Atlanta, pp. 81-88.

A.C.C. Yao. Some complexity questions related to distributive computing. In
Proceedings of the 11th Annual ACM Symposium on the Theory of Computing,
Atalanta, pp. 209-213, 1979.

5

Formal Languages and Concurrent Behaviours

Jetty Kleijn! and Maciej Koutny?

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands
kleijn@liacs.nl

2 School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom
maciej.koutny@ncl.ac.uk

Summary. This is a tutorial based on a course delivered as part of the International
PhD School in Formal Languages and Applications located at the Rovira i Virgili
University in Tarragona, Spain. It is focused on an application of formal language
theory to represent behaviours of concurrent systems necessitating a generalisation
of language theory to traces, which originates with the work of Mazurkiewicz in
1977. The tutorial uses Petri nets as an underlying system model which allows one
to clearly distinguish between causality and independence between executions of
actions, a major feature of concurrent behaviour.

Keywords: formal languages, traces, concurrency, causality, independence,
partial orders, Petri nets, inhibitor arcs, processes.

5.1 Introduction

The dynamic behaviours of concurrent systems are not always adequately cap-
tured with the help of purely functional input-output descriptions. Often one
is more interested in the modelling of ongoing evolutions of such systems at
the interface with the environment, e.g., when communicating or reacting to
external stimuli. One way of representing such evolutions is to use sequences
of executed actions, which in a natural way leads to a formal language seman-
tics of dynamic systems. A successful example of this approach are finite state
machines and their languages which have numerous applications in almost ev-
ery branch of Computer Science. Another example are Turing machines and
their languages which delimit the effectiveness of computational behaviour.
Both classes of machines are of a sequential nature which makes languages
a suitable semantical domain. However, plain words and languages are only
of limited usefulness when it comes to faithful representation of concurrent
behaviours. For example, a sequential description of behaviour cannot be used
to describe the result of action refinement for which the information about
J. Kleijn and M. Koutny: Formal Languages and Concurrent Behaviours, Studies in

Computational Intelligence (SCI) 113, 125-182 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

126 Jetty Kleijn and Maciej Koutny

concurrency or independence, as opposed to causality, is of crucial impor-
tance. The problem of insufficient expressibility of sequential descriptions was
recognised in the 1970s when concurrent systems became a focus of inten-
sive research activity carried out by various groups, and when it was realised
that additional information should be added to the sequential descriptions
of system behaviours. An example coming from the process algebra world is
Milner’s observational equivalence [39] — replacing language equivalence as a
means of comparing different systems — which allows one to identify the exact
points when choices between alternative actions were made during system ex-
ecutions. Another such example are traces — introduced by Mazurkiewicz [35]
— providing explicit information on the causal dependencies between executed
actions. It is this latter approach which is the subject of this tutorial.

A key concept behind traces is that a given concurrent run can be ob-
served in different ways depending on the viewpoint of the observer and on
the particular way of recording this behaviour. Trace theory then provides a
tool which allows one to identify in a precise way different observations of
a concurrent behaviour. In its most basic form, traces equate sequences of
executed actions on basis of given independencies between such actions. The
original idea of Mazurkiewicz was to use the well-developed tools of formal
language theory for the analysis of concurrent systems, understood as Petri
nets [44, 45, 46].

Petri nets are an operational model which directly generalises state ma-
chines (labelled transition systems) through the notions of a state and state
change. Both models allow a graphical representation. What makes Petri nets
radically different from state machines is their ability to represent states as
distributed entities, and state changes as affecting only local parts of these
distributed states in a way prescribed by the underlying graphical structure.
Whereas the executions or runs of a sequential system consist of actions ex-
ecuted one-by-one in a totally ordered fashion, the actions of a run of a
concurrent system are not necessarily executed one after the other. Having
distributed states and local effects makes concurrency aspects explicit since
actions may be independent in the sense that they involve disjoint parts of
distributed states. Hence words and languages (sets of words) which are appro-
priate models for the behaviours of sequential systems are no longer sufficient
since actions executed in a concurrent system are only partially ordered. The
concern of trace theory is how to add information to observations in order to
convey the essence of causality between executed actions (i.e., the necessary
ordering in the sense that cause must precede effect).

Trace theory has as its starting point an alphabet of action names en-
riched with information about which (occurrences of) actions are indepen-
dent (or non-interfering). A key assumption is that the order of observation
of two independent actions is accidental. Hence two sequential observations
(words) which differ only w.r.t. the order of occurrence of independent ac-
tions are in fact observations of the same concurrent run and consequently
may be identified. A trace is then simply the resulting equivalence class of all

5 Formal Languages and Concurrent Behaviours 127

sequential observations of the same underlying concurrent run. In this way,
formal language theory is lifted to quotient structures consisting of equivalent
observations, and a number of standard language theoretic tools can there-
fore be adapted and applied in the analysis of concurrent systems. Moreover,
by explicitly recording the dependencies between executed actions a unique
(causal) partial order can be associated to each trace. In other words, traces
can be seen as partial orders in the same way as words can be seen as total
orders.

The tutorial is organised in the following way. After a preliminary section
on sets, graphs and languages, we introduce traces and recall their main prop-
erties, including the underlying dependence graphs. We then consider Elemen-
tary Net systems [47] which are generally regarded as the most fundamental
class of Petri nets, and were indeed the model which inspired the introduction
of traces. We investigate both sequential and non-sequential ways of executing
them. The trace-based behaviour is obtained by taking sequential executions
and combining them with the structural information about the dependencies
between executed actions obtained from the graph structure of a net. That
this approach is sound follows from the fact that the partial orders defined
by traces coincide with the partial order semantics of nets represented by the
non-sequential observations captured by operationally derived processes. This
treatment is then repeated for two significant, and practically relevant, exten-
sions of Elementary Net systems (note that ‘Petri net’ is actually a generic
name rather than a single model). The first extension consists in adding in-
hibitor arcs to the net, and the other in extending the notion of a global state.
In each case we demonstrate the necessary generalisations of the concept of
action independence, leading to comtraces and local traces, respectively. The
first is based on the enhanced structure of the net whereas the other is history
dependent.

The tutorial is based on existing work and contains no proofs. The main
text presents key definitions and results as numbered items, whereas support-
ing observations (and suggested exercises for the reader) are marked with
the v/ symbol. For further background, proofs and references the reader is
provided with bibliographical remarks at the end of each technical section.

5.1.1 A Running Example

Throughout this tutorial, we will discuss various aspects of simple yet prac-
tically relevant concurrent systems consisting of producers, buffers and con-
sumers.

We start with a model consisting of three (sequential) components: a pro-
ducer Prod, buffer of capacity one Buff and consumer Cons. Each component
is characterised by its language which is the set of finite sequences of atomic
actions it can execute. Prod can execute three actions: m representing making
of an item, a representing adding of a newly produced item to the buffer, and
r representing the retirement of the producer. Cons can execute two actions:

128 Jetty Kleijn and Maciej Koutny

init init init
r
m) a g a u g

FSMProd FSMBuff FSMCons

Fig. 5.1. Finite state machines for the running example.

g representing getting an item from the buffer, and u representing using the
newly acquired item. Buff can execute the a and g actions. The sequences of
allowed action executions are given by the regular languages generated by the
three finite state machines shown in Figure 5.1 (all states in these machines
are considered final). The three components together form a concurrent sys-
tem in which they operate independently except for the requirement that the
actions shared by two processes are executed if both of the processes (can
and) do so.

For example, ama is a valid action sequence for the producer, but it is not
a valid behaviour of the combined system, because the buffer does not allow
two a actions without an intermediate g. On the other hand, the sequence
amgau can be executed by the whole system, and so it is a valid history. Note
that amgru is a history leading to a deadlock, i.e., a global state in which none
of the five actions can be executed.

5.2 Preliminaries

A relational tuple is a tuple reltuple = (X1,..., Xm,Q1,...,Q,) where the
X;’s are disjoint sets forming the domain, and the @Q;’s are relations involving
the elements of the domain and perhaps some other elements.! For example,
directed graphs and finite state machines can be regarded as relational tuples.
In fact, in all cases considered later on, a relational tuple can be viewed as a
graph of some sort and we will use the usual graphical conventions to represent
its nodes (i.e., the elements of its domain), various relationships between these
nodes, and some particular characteristics of these nodes (e.g., the initial state
of a finite state machine, or a labelling of the elements).

A particular issue which links together various kinds of relational tuples is
the idea that what really matters is the structures they represent rather than
the identities of the elements of their domains. A technical device which can
be used to capture such a view is as follows: two relational tuples, reltuple
and reltuple’, are isomorphic if there is a bijection v from the domain of
reltuple to the domain of reltuple’ such that if we replace throughout reltuple

n this tutorial, m < 2 and n < 4. Note that suitable Q;’s can represent functions
on the domain as well as subsets and individual elements of the domain.

5 Formal Languages and Concurrent Behaviours 129

each element z in its domain by t(x) then the result is reltuple’.? It is then
standard to consider isomorphic relational tuples as undistinguishable.

5.2.1 Set Theoretic Notations

N denotes the set of natural numbers including zero. The powerset of a set
X is denoted by P(X), and the cardinality of a finite set X by |X|. Sets
X1q,... X, form a partition of a set X if they are non-empty disjoint subsets
of X such that X = X U...UX,.

A labelling ¢ for a set X is a function from X to a set of labels. The
labelling can be applied to finite sequences of elements of X, £(x;...x,) =
((x1) ... 0(zy), and to finite sequences of subsets of X, /(X1 ... X,) = £(X1) ...
¢(X,,). The composition R o @ of two relations RC X xY and Q CY x Z
comprises all pairs (z, z) in X x Z for which there is y in Y such that (z,y) € R

and (y,2) € Q.

Definition 1 : relations
Let R be a binary relation on a set X.

R "= {(y,z) | (z,y) € R} denotes the inverse of R.

RO = idx = {(x,z) | x € X} is the identity relation on X.

R" £ R" 10 R is the n-th power of R, for n > 1.

Rt £ R'UR?U... is the transitive closure of R.

R* = ROU R™ is the transitive and reflexive closure of R.

R is symmetric / reflexive / irreflexive / transitive if, respectively,
R=R'!/idxCR/idxNR=2/RoRCR.

e Ris acyclic if RT is irreflexive.

The restriction of a function f : X — Y to a subset Z of X is denoted
by flz, and of a relation R C X X Y to a subset Z of X x Y by R|z.

The domain of R is domg = {z | (z,y) € R} and its codomain is given by

df

codomp = {y | (z,y) € R}. We will often use the infix notation = Ry to
denote (z,y) € R.

Definition 2 : equivalence relations

A binary relation R on a set X is an equivalence relation if it is reflexive,
symmetric and transitive. An equivalence class of R is any maximal subset
of equivalent elements.

2This definition is not strictly formal, but it should convey sufficient meaning to
make the presentation clear.

130 Jetty Kleijn and Maciej Koutny

In other words, R is an equivalence relation iff R = (RUR™!)* holds V. IfR
is an equivalence relation on X, then X/R denotes the set of all equivalence
classes of R.

Given an equivalence relation R on X and a function f defined for n-
tuples of elements of X, it is often useful to lift f to n-tuples of equivalence
classes of R by setting f(Ry,,...,Rs,) = f(x1,...,2,) where each R,, is the
equivalence class of R containing ;. We say that f is well-defined on X/R if
the value returned does not depend on the choice of the representing element

x; from R,,.

Definition 3 : partial orders

A binary relation R on a set X is a partial order if it is irreflexive and
transitive.

In other words, R is a partial order iff R = R \ idx holds v .

Definition 4 : partially ordered sets

A labelled partially ordered set (or poset) po = (X, <,¢) is a relational
tuple consisting of a finite® set X, a partial order < on X, and a labelling
¢ of X. The poset is total (or linear) if, in addition, all distinct elements
of X are ordered.

“For simplicity we restrict ourselves to finite posets.

More precisely, po is total if x <y or y < x for all z # y in X. Two elements
x # y of X are unordered if neither x < y nor y < x; we denote this by = ~ y.
Moreover, we write z < y if z <y or z = y.

A total poset tpo is a linearisation of a poset po if they have the same
domain and labelling, and the partial order relation of the former extends
(includes) the partial order relation of the former. The set of all linearisations
of po is denoted by lin(po).

The intersection (| 7 PO of anon-empty set of total posets tpo = (X, <ypo, £)
with the same domain X and labelling ¢ is (X, <,¢) where < is the rela-
tion comprising all pairs (x,y) of elements of X such that x <y, y for each
tpo in TPO. The set of all linearisations of a poset po is non-empty and
po = () lin(po) which means that any poset can be identified with its set of

linearisations

5.2.2 Directed Acyclic Graphs

As usual, we define a labelled directed graph (or simply graph) G as a rela-
tional tuple (V, A, ¢) consisting of a set of nodes V, a set of arcs A CV x V|

5 Formal Languages and Concurrent Behaviours 131

and a labelling of V. (For simplicity we restrict ourselves to finite graphs, i.e.,
with a finite set of nodes).

Definition 5 : dags

A graph G = (V, A, {) is acyclic (transitive) if A is an acyclic (transitive)
relation. A dag is a (directed) acyclic graph.

Figure 5.2 shows an example of a dag G with six nodes. Any poset is a dag
and, conversely, any dag defines a (unique) poset after adding all arcs implied
by transitivity: for a dag G = (V, A, £) the relation AT is a partial order on
V', and we refer to the graph GT = (V, AT, 0) as the transitive closure of G.
Deleting all transitive arcs from G yields its Hasse diagram, i.e., the graph
hasse(G) = (V, A\ (Ao AT),{). Figure 5.2 shows examples of both these
notions.

The Hasse diagram of a poset po is the minimal (w.r.t. the number of
arcs) dag G such that GT = po. Moreover, a dag is a poset iff it is its own
transitive closure, and the transitive closures of two dags coincide iff their
Hasse diagrams coincide v

*—————» o

G hasse(G)

Fig. 5.2. A dag, its transitive closure with added arcs indicated by dotted lines,
and its Hasse diagram. Note that node labels are omitted as they are irrelevant.

5.2.3 Words and Languages

Alphabets, words, and languages are the main notions for recording the se-
quential view of a system’s behaviour.

Definition 6 : alphabets

An alphabet X' is a finite non-empty set of symbols. A word (over X)) is
any finite sequence a; - - - a,, of symbols a; (from X), and a language (over
X)) is any set of words (over X).

In the case that n = 0 in the above definition, one is dealing with the empty
sequence or empty word, denoted by A. The set of all words over X' including
A, is denoted by X*.

132 Jetty Kleijn and Maciej Koutny

A a ag agm agma agmau

>0 0 @0 >0 >0

a g m a u
cantotalposet(agmau) R S
al gl ml a2 ul

Fig. 5.3. Hasse diagram of the prefix ordering for the word agmau, and Hasse
diagram of its canonical total poset showing the identities of its nodes (bottom) and
labels (top).

Definition 7 : words

Let w = ay...a, and v = by...b,, be two words over an alphabet }/,
(m,n > 0).

uw = ai...apby...b,, is the concatenation of u and v.

length(u) < n is the length of u.

alphabet(u) comprises all symbols occurring within .

#4(u) is the number of occurrences of a symbol a within w.

occ(u) is the set of symbol occurrences of u comprising all indexed
symbols a* with a € alphabet(u) and 1 < i < #,(u).

For the running example in this tutorial, we will use the alphabet & =
{a,g,m,r,u}. For the string u = agmau over I, we have: length(u) = 5,
alphabet(u) = {a, g,m,u}, #a(u) = 2 and occ(u) = {al,a% g' m! u'}.

Fact 8 : The set of all words over an alphabet X' with concatenation and
the empty word forms a monoid. That is, concatenation is associative® and
\ is its unit.?

“(uv)w = u(vw) for all u,v,w in X*.

®Au = u\ = u for each u in X*.

A word u is a prefix of a word v if v = uw for some word w. We denote
this by v < v. Moreover, if © < v and u # v then we write u < v. The prefix
relation < on words is a partial order v . For example, ag < agma.

For a given word, < is a total order on its prefixes which can be interpreted
as saying that every word has a unique history (see Figure 5.3). Moreover,
every word, being a sequence of symbols, corresponds directly to a total poset.
This is an important relationship now made precise.

To start with, the elements of a total poset tpo = (X, <,) can be listed as
a (unique) sequence 1 ...z, such that z; < z; iff i < j. The word generated
by tpo is then defined as word(tpo) = £(z ...,). Total orders are isomorphic
iff the words they generate are the same

Now, given a word w it is clearly possible to see it as corresponding to
any total poset tpo such that word(tpo) = u. Since all such total posets are

5 Formal Languages and Concurrent Behaviours 133

isomorphic it does not really matter which one is chosen and for our purposes
it is convenient to single out one such poset. It is called the canonical total
poset of u and is defined as cantotalposet(u) = (occ(u), <,) where a’ < bl
if the i-th occurrence of a precedes the j-th occurrence of b within u, and
((a’) = a, for all symbol occurrences a’ and b’ in occ(u). Distinct words have
distinct canonical total posets, and the word generated by the canonical total
poset of a word is that word itself v

5.2.4 Bibliographical Remarks

We have recalled the necessary notions and results used later in this tutorial.
Most of them are standard. We only mention that the fact that any poset
can be identified with its set of linearisations is usually known as ‘Szpilrajn’s
Theorem’ and has been first given in [49] in a fully general setting.

5.3 Traces

Words represent a sequential view of the actions executed by a system. As
such, no further information is provided on the intrinsic dependencies among
the actions and the resulting necessary ordering of their occurrences. The
introduction of traces starts from the definition of a concurrency alphabet,
which simply states which symbols are considered as representing indepen-
dent actions (not interfering with each other) and thus should be treated as
concurrent.

Definition 9 : concurrency alphabets

A concurrency alphabet is a pair CA = (X, Ind) where X is an alphabet
and Ind is an irreflexive and symmetric binary relation over X' called an
independence relation.

When two symbols are not independent (i.e., they do not appear as a pair
in the given independence relation), they are said to be dependent. Note that
this dependence relation is reflexive.

Let (X, Ind) be a concurrency alphabet and let w,v € X*. We write
U ~pq v if there are words w and z and independent symbols (a, b) € Ind such
that v = wabz and v = wbaz. Thus u ~p,q v means that they are the same
word except for a change of order of two adjacent occurrences of independent
symbols. Trace equivalence (with respect to (X, Ind)) is the equivalence re-
lation =j,4 over X* obtained as the reflexive and transitive closure of ~p, .
Thus, two words are trace equivalent if one can be obtained from the other
by changing (repeatedly) the order of adjacent occurrences of independent

symbols. This means v that u =rnd U iff #a(u) = #4(v) for all a € X and

134 Jetty Kleijn and Maciej Koutny

the order of occurrences a* and b’ is the same within v and v for all pairs a, b

of dependent symbols and for all 1 <i < #,(u) and 1 < j < #4(u).
Continuing our running example with £ = {a, g, m,r,u}, we assume CA =

(Z,Ind) is the concurrency alphabet with independence relation Ind given by:

Ind = {(r,g), (&), (r,u), (w0, 7), (m g), (g:m), (m,), (u,m), (a,u), (v, 2)}.

Then agmr ~1,4 amgr ~14 amrg and so agmr =4 amrg.

Definition 10 : traces

A trace over a concurrency alphabet (X, Ind) is any equivalence class of
the trace equivalence relation =j,4, and a trace language is any set of
traces over (X, Ind).

The trace containing a given word w is denoted by [u],,,, and the set of
all traces over (X, Ind) by X*/=, ,. Whenever the independence relation Ind
is understood, we may drop the subscript Ind. Note that the empty trace
[A] is {A} rather than the empty set. For the running example, [amgr] =
{amgr, agmr, amrg}.

If two words are trace equivalent, then both their lengths and alphabets
are the same v . Hence, the alphabet of a trace and its length, defined in the
natural way as alphabet(a) = alphabet(u) and length(a) = length(u), where
u is any word belonging to the trace «, are both well-defined notions. Also,
trace concatenation (or sequential composition, in operational terms) defined
as [u]o[v] = [uv] is a well-defined operation. This follows from the observation

that uv and u'v’ are trace equivalent whenever [u] = [u/] and [v] = [v'].

Fact 11 : The set X*/=,, of all traces over a concurrency alphabet
(X, Ind) is a monoid. That is, concatenation of traces is an associative®
operation with the empty trace [\] as its unit.”

“(aoB)oy=ao (o) forall @, in /=,
bao[A] = [\ o a = a for each a in X*/=.

The last result can be pushed a little bit further.

Fact 12 : The trace monoid X*/=, , is partially commutative in the sense
that, for any pair of traces a and 3, alphabet(c) x alphabet(3) C Ind implies
a o 3 = o« and, moreover, the converse holds whenever the alphabets of
« and (are disjoint.

We lift the prefix relationship on words to the level of traces, by stating
that a trace « is a prefiz of a trace 3 if § = a o~ for some trace v. We denote
this by a < . Moreover, if « < g and a # [then we write a < . For

5 Formal Languages and Concurrent Behaviours 135

[l

[amrg] g
Fig. 5.4. Hasse diagram of the prefix ordering for the trace [amrg] and its depen-
dence graph (labelling is obvious and therefore omitted).

example, [a] < [amr]. It then follows that u < v and v = w implies [u] < [w]
where u, v, and w are words v . Consequently, u <I v implies [u] < [v], but
[u] <1 [v] does not necessarily imply that « < v holds

Unlike words which have a unique history that is captured through the
prefix relation (see Figure 5.3), the prefix relation for traces can be interpreted
as associating with a trace several histories which are sequential observations
(represented by the words in the trace) of possibly concurrent behaviour. One
could say that the concurrency between occurrences has been ‘flattened’ to
choosing an order of occurrence. In Figure 5.4 the trace [amrg] is depicted with
the ordering of its prefixes. That trace has three histories in correspondence
with the three directed paths defining its elements amgr, agmr, and amrg.

To extract information on the dependencies between the symbol occur-
rences in a trace, dependence graphs are used. In these graphs, the relationship
between dependence and order is made explicit.

Definition 13 : dependence graphs

A dependence graph over a concurrency alphabet (X, Ind) is a dag in which
two nodes are connected iff they are labelled with dependent symbols.

In other words, a dag G = (V, A, /) is a dependence graph over (X, Ind) if
{:V — X is a labelling such that for all distinct nodes z,y € V, there is an
arc (z,y) € AU A=Y if and only if (¢(z),£(y)) ¢ Ind.

Every dag defines a language, consisting of all words that can be read
from its labels without violating the order implied by its arcs (e.g., by using a
topological sorting procedure). Formally, the language of a dag G comprises
all words associated with the total extensions of its transitive closure, i.e.,
language(G) = word(lin(GT)). Their languages provide a fairly precise char-
acterisation of dependence graphs, as two dependence graphs over the same
concurrency alphabet are isomorphic iff their languages are the same v

Conversely, assuming a given concurrency alphabet (X, Ind), with every
word u € X* a dependence graph can be associated. The canonical dependence
graph of u is the dag candepgraph,,,4(u) given by (occ(u), <, £) where £(a’) = a,

136 Jetty Kleijn and Maciej Koutny

G = candepgraph;,4(agmau) 1

a

g oyl g e g oy!
al é;’ a? al ;‘ a2 al a’

m' m mt

G G*™ hasse(GT)
%—»g.l—f'ol—ff—»uol = cantotalposet(agmau)
aol—>gol—>m.1—il.l—>a.2 = cantotalposet(agmua)
a:_»g.l—il.l—»m.l—»af = cantotalposet(aguma)
&1.1—3.1—}.1—3.2—3.1 = cantotalposet(amgau)
aol—inol—>g.1—il.1—>a.2 = cantotalposet(amgua)

Fig. 5.5. The canonical dependence graph (twice) of agmau, its transitive closure,
the Hasse diagram of its transitive closure, and Hasse diagrams of its total extensions.
(Labelling of the nodes is obvious and therefore omitted.)

for all a € alphabet(u) and a’ in occ(u), and a* < b7 if the i-th occurrence of a
(strictly) precedes the j-th occurrence of b within u and (a, b) ¢ Ind. Note that
the canonical dependence graph of the empty word is candepgraph,;(A) =
(@,2,2), and that candepgraphy(u) = cantotalposet(u). Figure 5.5 shows an
example of a canonical dependence graph, and its total extensions.

>From the definition of u ~yp,q v, it follows that the canonical de-
pendence graphs of two words are equal whenever they are trace equiva-
lent v . Hence the canonical dependence graph of a trace a can be defined as
candepgraph(a) = candepgraph(u) where u is any word in . What is more,
the language defined by the canonical dependence graph of a trace consists
exactly of the words comprising that trace v . It therefore follows that dis-
tinct traces have distinct canonical dependence graphs v'. Hence there is a
one-to-one correspondence between dependence graphs and traces.

On basis of the canonical dependence graph of a trace, we define the canon-
ical poset of a trace « as canposet(«) = candepgraph(ca)t. >From the above
observations, it follows that the canonical poset of a trace properly captures
the behaviours represented by the words in that trace.

5 Formal Languages and Concurrent Behaviours 137

Fact 14 : Let o be a trace.

e lin(canposet(a)) = cantotalposet(cr).”
e word(lin(canposet(a))) = a.

“Note that in cantotalposet(a) the trace « is treated as a set of words.

All information on the dependencies between the occurrences in a trace is
represented in its uniquely associated poset.

5.3.1 Bibliographical Remarks

Main independent sources of trace theory are [7] (in the context of combi-
natorial problems) and [35, 29] (in the context of concurrency theory). An
extensive account of trace theory is provided by [11] which, in particular,
contains a chapter on dependence graphs [20]. For a bibliography on traces
see [15].

5.4 Elementary Net Systems

In this section we first briefly discuss Petri nets as a system model, or rather
as a framework for the modelling of concurrent systems. Then we introduce
in more detail Elementary Net systems, the most basic Petri net model. In
this model the key primitive notions underlying the operation of concurrent
systems are explicitly represented and as such it has been the inspiration
for the development of trace theory. In later sections, we will discuss more
expressive net classes and how they lead to generalizations of traces.

The description of a Petri net comes in two parts, giving its static and
dynamic aspects. The (static) structure of a Petri net is a graph specifying
the local states (called places) of the system being modelled and its possible
actions (called transitions). Global (system) states consist of combinations of
the local states and it is the role of transitions to change those states in accor-
dance with the given (dynamic) rules. Each transition has a neighbourhood of
places with which it is linked and there are specific rules when transitions can
occur (concurrently) and the effect of such occurrence. Both notions are fully
determined by the transition’s neighbourhood, i.e., every transition occur-
rence depends on neighbouring local states and also its effect when it occurs
is completely local. A net system is fully specified when also an initial state is
supplied from which possible behavioural scenarios are initiated. By varying
the kind and nature of the relationships between places and transitions, as
well as the precise notions of global state, and the enabling and occurrence
rules, one obtains different classes of Petri nets.

First we introduce the basic structure underlying every Petri net. The
definition below captures what presumably is the most fundamental class of
nets.

138 Jetty Kleijn and Maciej Koutny

Opt N OPl

PN N
et

Fig. 5.6. A net without and with configuration (an EN-system) for the running
example with a producer and a consumer subnet connected by a (buffer) place p4.

Definition 15 : nets

A net N is a relational tuple (P, T, F) with P and T disjoint finite sets of
nodes, called respectively places and transitions, and F C (T'x P)U(P xT)
the flow relation.

In diagrams, places are drawn as circles, and transitions as rectangles. The
flow relation is represented by directed arcs between them. Hence nets are
drawn as bipartite graphs.

Figure 5.6 shows the net N = (P, T,F), where P = {p1,p2,p3, p4, p5, p6}
is the set of places, T = {a,g,m,r,u} is the set of transitions, and the flow
relation F comprises the following twelve arcs:

a,p3)
u,p5) .

(r,p1) (p2,r) (p3,m) (mp2) (p2,a)
(a,p4) (p4.g) (p5.8) (gp6) (p6,u)

Let (P,T,F) be a net. The inputs and outputs of a node x € PUT are
the sets ®x and z°, respectively comprising all y such that yFz and zFy,
and the neighbourhood ®z® of x is the union of its inputs and outputs. The
dot-notations readily extend to sets of nodes, e.g., *X comprises all inputs of
the nodes in X. It is assumed here that each net is T-restricted which means
that every transition has at least one input (cause) and at least one output
(effect). For the net N in Figure 5.6, *g = {p4,p5} and p3°® = {m}.

S~ —~

5.4.1 Configurations and Transition Occurrence

In this and the next section, the states of a net N = (P, T,F) are given
by subsets of places representing the conditions that hold at a given global
situation.

Definition 16 : configurations

A configuration of a net is a subset of its places.

5 Formal Languages and Concurrent Behaviours 139

In diagrams, a configuration C'is represented by drawing in each place p in C
a token (a small black dot). A possible configuration for the net in Figure 5.6
is C = {p2,p5}, as illustrated on the right of Figure 5.6.

Transitions represent actions which may occur at a given configuration
and then lead to a new configuration.

Definition 17 : transition occurrences

A transition ¢ can occur (or is enabled) at a configuration C'if *t C C' and
t*NC = @. Its occurrence then leads to a new configuration (C'\ °t) Ut®.

Thus a (potential) occurrence of a transition depends only on its neighbours. If
t can occur at C' then we write C[t), and if its occurrence leads to C’ we write
C[t)C'. Note that through such an occurrence, all inputs of ¢ cease to hold,
and all outputs start to hold. Hence the change caused by the occurrence of a
transition is always the same and does not depend on the current global state.
For the configuration C shown in Figure 5.6, the enabled transitions are r and
a. Moreover, we have C[a){p3,p4,p5} and C[r){p1,p5}. Figure 5.7 provides
further intuition about the enabling and occurrence rules for net transitions.

We now lift the execution of transitions to a concurrent context by allowing
the simultaneous occurrence of transitions provided that they do not interfere
with one another, i.e., their neighbourhoods are mutually disjoint.

Definition 18 : steps

A step of a net is a subset of its transitions. A step can occur (or is
enabled) at a configuration C' if the neighbourhoods of its transitions do
not overlap, and each transition is enabled. The effect of its occurrence is
the cumulative effect of the occurrences of the transitions it comprises.

In other words, a step U is enabled at C if *t®* N °t’* = @ for all distinct
transitions ¢ and ¢ in U, and C|[t) for each transition ¢ in U. We denote this
by C[U). The occurrence of an enabled step leads to a new configuration C”
given by (C'\ *U) U U®, and we denote this by C[U)C". Note that C[U)C' iff
the step U is empty V. For the configuration C shown in Figure 5.6, we have
C[{a})C’ where C' = {p3, p4, p5}; moreover, we further have:

C'[{m,g}){p2,p6} C'[{m}){p2,p4,p5} C'[{g}){p3,p6} -

We are now ready to introduce sequences of transitions and step occurrences.

Definition 19 : step sequences

A step sequence of a net is a finite sequence of non-empty steps occurring
one after another from a given configuration.

140 Jetty Kleijn and Maciej Koutny

e _ P @_® a_8 a0

O O O

t is not enabled t is not enabled t is enabled t has occurred

Fig. 5.7. Local change-of-state produced by the occurrence of a transition.

In other words, a step sequence from a configuration C' to a configuration
C" is a possibly empty sequence o = Uj ... U, of non-empty steps U; such
that C{U1)C1, ..., Cph_1[U,)C", for some configurations C1, ..., C,_1. We also
write C[o)C” or C[o), and say that C’ is a configuration reachable from C.
The set of all configurations reachable from C' will be denoted by [C). Note
that we always have C' € [C). If n = 0, thus ¢ = X the empty (step) sequence,
then C' = C’. The converse implication however does not hold V. For the
configuration C shown in Figure 5.6, C[{a}{m, g}{u,r}){p1,p5}, and, as we
will see later on, the set [C) comprises twelve reachable configurations.

To improve the readability of the notations when discussing examples, we
will often drop the curly brackets when writing a singleton step, e.g., we can
write a{m, g}ur instead of {a}{m, g}{u}{r}.

A special kind of step sequences are those that consist of singleton steps
only. Such sequences (of transitions) are referred to as firing sequences. For
example, amgur is a firing sequence from C to {p1,p5}. Reachability of con-
figurations does not depend on whether one uses step sequences or firing
sequences. If, however, the structure of a net is enriched with inhibitor arcs
as we will do it in the next section, then reachability may be affected by the
restriction to firing sequences.

5.4.2 Concurrency and Causality

The definition of concurrent behaviour on basis of non-interference, as in-
troduced above, allows one to investigate some intricate relationships in the
way transitions can occur. As a first observation we have that transitions
which can be executed simultaneously (at some configuration) do not have to
occur together. They can still occur one after another. Moreover, whenever
transitions can occur in any order, they must be concurrently enabled and
non-interfering.

Fact 20 : Let C,C’ be configurations and U, U’ be steps of a net.
e C[UUUNC" and UNU' =@ implies C[UU")C".
ClUU")C" and C[U'Y implies UNU’" = @ and C[UUU')C".

This fact is often referred to as a ‘diamond property’. The reason is that if
we have, say, C[{a,b})C", it then follows that we also have C[{a})C"[{b})C’

5 Formal Languages and Concurrent Behaviours 141

and C[{b})C"[{a})C’ where C" and C"" are distinct configurations v . In
drawing this yields a diamond shape. Note that the two statements together
show that for the dynamics of nets defined sofar, diamonds imply concurrency
and vice versa. For the configurations ¢’ = {p3,p4,p5} and C” = {p2,p6} of
the net shown in Figure 5.6, we have C'[{m, g})C"” as well as C'[mg)C” and
C'[gm)C”, and the resulting ‘diamond’ can be seen with a little bit of effort at
the centre of the upper state graph in Figure 5.8.

The first part of Fact 20 implies that every step of simultaneously occurring
transitions can be split into any partition of subsets occurring in sequence,
with the same effect as the original step. As a consequence, every step sequence
eventually gives rise to a valid (but not necessarily unique) firing sequence.
And so the configurations reachable from a given one are the same for step
sequences and firing sequences.

Fundamental relationships between transitions can be classified in a way
which reflects their causal dependence (occurrence of one enables the other),
competition for shared resources (both can occur, but they cannot occur to-
gether), or concurrency (they can occur together).

Definition 21 : fundamental situations - behavioural

Let t and ¢’ be distinct transitions, and C' be a configuration of a net.

e t causally depends on ¢’ at C'if —~C[t) and C[t't).
e tand ¢ are in conflict at C if C[t), C[t') and —-C[{¢,¢'}).
e ¢t and ¢’ are concurrent at C' if C[{t,t'}).

For the configuration C shown in Figure 5.6, we have that g causally depends
on a, and the latter is in conflict with r. Moreover, m and g are concurrent at
the configuration ¢’ = {p3, p4, p5}.

It is interesting to note the difference between conflict and concurrency
in terms of firing sequences: in case of conflict at a configuration, both are
enabled to occur, but the occurrence of one disables the other, whereas in case
of concurrency, the two transitions can occur in either order.

Fact 22 : Let t and ¢’ be transitions, and C be a configuration of a net.

e If ¢ causally depends on ¢’ at C' then —=C[tt’) and C[t't).
e Ift¢ and ¢ are in conflict at C' then =C[¢t') and —C[t't).
e Ift¢ and ¢’ are concurrent at C' then C[tt') and C[t't).

These fundamental relationships between transitions are defined dynam-
ically by referring to a global state. However, if two transitions are in one
of these three relationships at some configuration, then none of the other re-
lationships will ever hold for them (at whatever configuration) V. In fact,
the (potential) relationships between transitions are determined by the graph
structure.

142 Jetty Kleijn and Maciej Koutny

Definition 23 : fundamental situations - structural

Let ¢t and ¢’ be two distinct transitions of a net N.

t and t’ are structurally causally related if *tNt¢'® # & or t* N°t # @.
t and t' are in structural backward conflict if *t N *t’ # @.

t and ¢’ are in structural forward conflict if t* N¢'® # @.

t and ¢’ are structurally independent if *t® N °t'® = @.

For the net shown in Figure 5.6, a and g are structurally causally related, a and
r are in structural forward conflict, and r and u are structurally independent.

5.4.3 EN-Systems and Their State Spaces

Having defined nets with states and dynamics, it is now time to study them
as systems which start their operation from an initial state.

Definition 24 : EN-systems

An elementary net system (or EN-system) consists of an underlying net
and an initial configuration. Its state space consists of all configurations
reachable from the initial configuration.

In other words, an elementary net system EN is arelational tuple (P, T, F, Cip;t)
such that the first three components form its underlying net and Cy,;; C P
is the initial configuration. Figure 5.6 shows on the right an EN-system EN =
(P, T,F,Cinit), where Ciniy = C = {p2,p5}, modelling our running example.
Its state space consists of twelve configurations:

[Cinit> = {{pivpj} ‘ i=1,23N]j= 5,6}U{{pi,p4,pj} ‘ i=1,23N]j= 576} .

The state graph of EN isarelational tuple stategr(EN) £ ([Cinit), LA, Cinit)
with node set [Cini), set of labelled arcs LA = {(C,U,C") | C' € [Cini) A
C[U)C'}, and initial node Cy;;. Restricting the arcs of the state graph to those
labelled by singletons steps yields the sequential state graph of EN, denoted
by segstategr(EN). Figure 5.8 gives examples of each kind of state graph for
the EN-system ENgipp1. in Figure 5.9.

Since every configuration reachable from the initial configuration by a step
sequence is also reachable by a firing sequence, all nodes in segstategr(EN)
are reachable from the initial node. Interestingly, also stategr(EN) can be re-
covered from the sequential state graph segstategr(EN) by saturating the
latter with non-singleton step labelled edges using the diamond property
(Fact 20) v

To illustrate the above idea, let us consider the state graphs in Figure 5.8,
and two nodes, C = {p3, p4, p6} and C’' = {p2, p4, p5}. Looking at the sequen-
tial state graph, we can deduce that C[{m}{u})C’ and C[{u}). Hence, by the

5 Formal Languages and Concurrent Behaviours 143

init: {p2,p5}

AN
{a}
\ {m,u}

{p3,p4,p5}

{m}

stategr (ENgimpie)

{p3,p4,p6}

init I\m
! T,
|
— g}
f\\\\\\\g\\\\\‘\“//////m
J‘\\\\\m I seqstategr (ENgimp1e)

Fig. 5.8. The state graph of ENginp1. from Figure 5.9 and its sequential state graph.

144 Jetty Kleijn and Maciej Koutny

second part of Fact 20, we have C[{m,u})C’ and so the concurrent step {m,u}
from C to C’' in the state graph has been deduced from purely sequential in-
formation.

For a behavioural comparison of EN-systems, isomorphism is too discrim-

inating, because then there would be essentially only one structure defining
the behaviour under consideration. Therefore, in EN-system theory it is the
state graph which provides the main reference point for any behaviour related
analysis. However, all information on (the relevant, active, part of) the net un-
derlying the EN-system can still be recovered from its state graph; the places
belonging to reachable configurations, transitions which actually occur and
thus appear in the steps labelling the arcs, and their neighbourhood relations,
are all explicitly represented in the state graph. Using the state graph itself
would thus lead to a similar identification of net structure and behaviour. To
abstract from the concrete information on places and transitions, state graph
isomorphism is used as an equivalence notion for the comparison of concur-
rent behaviours. Already the structure of its state graph provides a complete
and faithful representation of the behaviour of an EN-system. In particu-
lar, causality, conflict, and concurrency among (possibly renamed) transitions
can be determined from it. Note that two EN-systems have isomorphic state
graphs iff also their sequential state graphs are isomorphic V. After isomor-
phism of EN-systems, state graph isomorphism is the second strongest notion
of equivalence employed in the behavioural analysis of EN-systems. With this
equivalence it is possible to transform EN-systems in order to realise a de-
sired property or feature (a normal form) without affecting their dynamic
properties in an essential way, i.e., the state graph remains the same up to
isomorphism and the resulting system is considered behaviourally equivalent.
An important application of this idea is the following.
The enabling relation for transitions checks explicitly for the emptiness of their
output places. This may be regarded as somewhat unsatisfactory. It would be
more efficient and intuitively more appealing if it would be sufficient to check
only whether all input conditions are fulfilled.

Definition 25 : contact-freeness

An EN-system is contact-free if for every reachable configuration C' and
every transition ¢, it is the case that *¢t C C implies t* N C = @.

In other words, a contact-free system is one where the test for transition
enabledness can simply be *¢t C C' without changing anything. The EN-system
shown in Figure 5.6 is not contact-free v'. Not all EN-systems are contact-
free, but the simple transformation described next turns any EN-system into
a behaviourally equivalent contact-free version.

Two places, p and ¢, are complements of one another if °p = ¢°, p®* =
°q and exactly one of them belongs to the initial configuration Cj;. The
complementation EN of EN is obtained by adding, for each place p without a

5 Formal Languages and Concurrent Behaviours 145

5 s/ A8
ENsimple ENsimple

Fig. 5.9. A simplified version of the EN-system from Figure 5.6 and its comple-
mentation.

complement, a fresh complement place p; moreover, if the initial configuration
does not contain p then p is added there as well. The result is clearly an EN-
system and the two systems have isomorphic state spaces. In fact, only the
reachable configurations have to be renamed in the case that new complement
places have been added; the arc labels between corresponding states however
are the same v

Fact 26 : EN is contact-free and its state space is isomorphic to that
of EN.

The construction is illustrated by the non-contact-free EN-system ENgipp1e in

Figure 5.9 and its contact-free complementation EN/si\m:le. The state spaces of
the two EN-systems are respectively:

Conf U {{pi,pj}|i=2,3Aj=5,6} (left)
Conf U {{pi,p4,pj}|i=23Aj=56} (right)

where Conf = {{pi,p4,pj} | i = 2,3 A j = 5,6}. It is can be seen that a
suitable isomorphism for their state graphs maps each {pi,pj} to {pi,p4,pj},
and is the identity for the configurations in Conf.

Fact 26 assumes that one adds complements for all non-complemented
places. But it is also possible to add complementation selectively and, in
general, we have that any EN-system with an arbitrary, added set of new
complement places has a state space which is isomorphic to that of the orig-
inal EN-system V. For the EN-system EN modelling the running example
we can add a complement of the buffer place which results in the equivalent
EN-system shown in Figure 5.10. In this case already the selective comple-
mentation yields a contact-free EN-system

Since it is always possible to ensure contact-freeness without changing the
behaviour represented in the state-graph, we now make a simplifying assump-
tion.

In the rest of this tutorial all EN-systems are contact-free.

146 Jetty Kleijn and Maciej Koutny

. O Pl Echree

/®

p3 E O/

Fig. 5.10. A contact-free version of the EN-system from Figure 5.6 where the place
p4 has been complemented, i.e., p7 = p4.

5.4.4 Behaviour of EN-Systems

Let EN = (P,T,F,Cin) be a fixed EN-system for the rest of this
section.

In addition to the state graph, we can also associate firing sequences and
step sequences as behavioural notions to EN-systems. The set of all firing
sequences firseq(EN) of EN consists of those sequences v € T™* such that
Clinit|u) and, similarly, the set of all step sequences stepseq(EN) of EN com-
prises all step sequences of EN from C},;;. Each firing sequence corresponds to
a finite labelled path through the sequential state graph from the initial node.
Since the set of reachable configurations of an EN-system is finite, the sequen-
tial state graph is a finite state machine. Hence the set of firing sequences of an
EN-system is a prefix-closed regular language. However, it consists of purely
sequential observations of the EN-system’s behaviour without any reference
to the possible independence of transitions. Yet such causality information is
often of high importance for system analysis and design.

Let us first demonstrate how the theory of traces can be applied to extract
partial orders from firing sequences as representations of the necessary causal
ordering of transition occurrences within these sequences.

Definition 27 : concurrency alphabets of EN-systems

The concurrency alphabet of EN is CAgyn £ (T, Ind g) where the struc-
tural independence relation Ind gy comprises all pairs of distinct transi-
tions with disjoint neighbourhoods.

Defined in this way, Indgy = {(t,t) | t,t' € TA®t*N°t'* = @} is a symmetric
and irreflexive relation and so it is indeed an independence relation. For the
EN-system ENcsree in Figure 5.10, Indgy,,,., = Ind where Ind was defined at
the beginning of Section 5.3. An important observation is now that in a firing
sequence adjacent occurrences of independent transitions could have occurred

5 Formal Languages and Concurrent Behaviours 147

also in the other order (see the diamond property, Fact 20). Hence, for every
firing sequence of EN, all its trace equivalent words from T™* are also firing
sequences of EN.

Fact 28 : firseq(EN) = Uueﬁrseq(EN) [u].

Taking, for example, EN¢¢ree in Figure 5.10, we have agm € firseq(ENcsree) and
[agm] = {agm, amg}. Clearly, amg is also a firing sequence of ENcfyee.

The step sequences of an EN-system obviously provide important insights
into concurrency aspects of its behaviour. They are nevertheless still sequen-
tial rather than concurrent in nature in the sense that the sequential ordering
of the steps obscures the true causal dependencies between the occurrences of
transitions. Petri net models can however easily support a formal approach
where this information is readily available by unfolding behaviours into struc-
tures allowing an explicit representation of causality and concurrency.

5.4.5 Non-Sequential Observations

Rather than describing the behaviour of the system in terms of sequential
observations, like firing sequences and step sequences, we now present a se-
mantics based on a class of acyclic Petri nets, called occurrence nets. What one
essentially tries to achieve here is to record the changes of configurations due to
transitions being executed along some legal behaviour of the EN-system, and
in doing so record which places were emptied (served as inputs) and which
filled (as outputs). The resulting occurrence nets may be viewed as partial
net unfoldings, with each transition representing an occurrence of a transition
in the original net (thus occurrence nets are acyclic), and each place corre-
sponding to the occurrence of a token on a place of the original net. Conflicts
between transitions are resolved and thus the places in an occurrence net do
not branch.

Definition 29 : occurrence nets

daf

An occurrence net is a relational tuple ON = (B, E,R,¢) such that
(B, E, R) is an underlying net,” ¢ is a labelling for BU E, R is an acyclic
flow relation, and |°b| <1 and |b°| < 1, for every b € B.

“The dot-notations, configurations, firing rule, etc, for ON are as those de-
fined for the underlying net.

The places of an occurrence net are usually called conditions (‘Bedingungen’
in German) and its transitions events (‘Ereignisse’ in German). The default
initial configuration of ON consists of all conditions without incoming arcs,
i.e., CON comprises all conditions b € B such that *b = @, and the default

int

148 Jetty Kleijn and Maciej Koutny

p2 el p3 €2 p2 es p3

p5 p6 b7 p5 p6
b0 O L8] @, [u] U L8] Obis
€4 b11 €5 bi2 €6
p2 p3 p2 p3
O 2] O [n] O 2] O
p7 L‘J p7 p7

o 1
p4 p4
2 W PS5 pé
O] O [u] O] O

Fig. 5.11. An occurrence net ON with nodes labelled by places and transitions
of the EN-system ENctree in Figure 5.10 (top), and the same occurrence net with
identities of the nodes omitted (bottom).

final configuration C Oyfv consists of all conditions without outgoing arcs. The
default initial configuration of the occurrence net in Figure 5.11 is C%,, =
{b1,b5,b10} and the default final configuration is C% = {b4, by, b13}.

The sets of firing and step sequences of ON are defined w.r.t. the default
initial configuration. However, since an occurrence net is meant to represent
a record of a concurrent run of an EN-system, what really counts is not the
identities of its events, but their labels which are linked to the occurrences of
transitions in the EN-system. The language of ON is the set language(ON)
of all sequences ¢(u) such that u is a firing sequence from the default initial
configuration of ON to the default final configuration.

By abstracting from the conditions we associate with the occurrence net
ON = (B, E,R,?) a directed acyclic graph with E as its set of nodes. This
dag dag(ON) = (E, Ro R|gx g, {|g) represents the direct causal relationships
between the events. Its transitive closure dag(ON)™, see Figure 5.12, then
gives all, direct and indirect, causal dependencies. For example, e, directly
causes ej, but there is only an indirect causal link from ey to eg.

ON with its default initial configuration is basically a contact-free EN-
system v, Interestingly, all the sets occurring in any step sequence o from
the initial configuration to another configuration C, are mutually disjoint v
Moreover, C' is the default final configuration iff the steps in o use all the
events of the occurrence net .

A slice of ON is a maximal (w.r.t. set inclusion) subset S of events from
ON which are causally unrelated, i.e., (S x S)NR* = @. The set of all slices of
ON is denoted by slices(ON). Clearly, both default configurations are slices
and, in general, [CON) = slices(ON), i.e., slices are exactly those configu-

rations which are reachable from the initial configuration v Moreover, the

5 Formal Languages and Concurrent Behaviours

€2 o =a_e3 q
a \g a \

® Cgp
dag(ON) <& ‘/ dag(ON)* -/

Fig. 5.12. Direct causality among the events in the occurrence net in Figure 5.11,
and full causality (node identities omitted).

final configuration of ON is always reachable from any configuration reach-
able from the initial one v . Essentially, this means that ON is deadlock-free
until its final configuration has been reached.

The processes of an EN-system are occurrence nets reflecting its structure
and possible behaviour through their labelling and initial configuration.

Definition 30 : processes of EN-systems
A process of EN is an occurrence net ON = (B, E, R, () such that:

e /[labels conditions with places and events with transitions.

e [is injective on the default initial configuration of ON, as well as on
the sets of input and output conditions of each event.

o ((CEN) = Cini and, for every e € E, £(*¢) = *4(e) and £(e®) = L(e)°.

The occurrence net ON in Figure 5.11 is a process of the EN-system in Fig-
ure 5.10.

Processes can be used to investigate the behaviours of EN-systems. Due to
the second and third conditions in Definition 30, we can relate the firing se-
quences, step sequences and configurations of EN to their labelled versions in
ON . More precisely, if we take a step sequence CON [0)C then Cipit [€(0))4(C)
holds. This can be proved by an inductive argument from which it also follows
that labelling of ON is injective on all its slices and hence also on the sets
occurring in any step sequence of ON V.Ifoisa step sequence from the
default initial configuration of ON, then ¢(o) is referred to as a labelled step
sequence of ON. Similar to the language of ON, the step language of ON is
defined as the set steplanguage(ON) of all sequences ¢(c) such that o is a
step sequence from the default initial configuration of ON to the default final
configuration.

In general, it follows that all firing and step sequences of EN-systems can
be derived from their processes.

150 Jetty Kleijn and Maciej Koutny

Fact 31 : Let ON be the set of all processes of EN.

o firseq(EN) = Joycon language(ON).
o stepseq(EN) = Upncon steplanguage(ON).

Definition 30 does not provide any clues as to how to derive a process
of an EN-system. This is rectified in the next definition which shows how to
construct a process corresponding to a given step sequence.

Definition 32 : processes construction

The occurrence net ON, generated by a step sequence o = Uj ... U, of
EN is the last element in the sequence Ny, ..., N, where each Nj is an
occurrence net (By, Ey, Ry, {x) constructed thus.

Step 0: By < {pl |p € szt} and Fy = Ry Lo,

Step k: Given Nj_1 we extend the sets of nodes and arcs as follows:

By £ Be_ U {p'*2P |pe Up}
Ey £ Er 1 U {t1+At |t € Ug}
Ri E Ry U {(p2P,t112Y) |t € Uy, Ap € *t}
U {88 plt2P) [t e Uy, Ap et} .

In the above, the label of each node z? is set to be x, and Az denotes the
number of nodes of Nj,_; labelled by z.

The construction is illustrated in Figure 5.13 for the EN¢free in Figure 5.10
and its step sequence o = a{m,g}{a,u}g. The resulting occurrence net is
isomorphic to the occurrence net ON in Figure 5.11 which is a process of
Echree~

Fact 33 : Each occurrence net constructed as in Definition 32 is a process
of EN and, for each process of EN, there is a run of the construction from
Definition 32 generating an isomorphic occurrence net.

Thus the operationally defined processes and the axiomatically defined
processes of an EN-system are essentially the same.

Finally, we return to the trace semantics of EN-systems in relation to
processes. First note that each trace gives rise to only one process, since
interchanging adjacent occurrences of independent transitions has no effect
on the construction of a process. So, ON, = ON,, whenever v and w are
trace equivalent firing sequences v’ . Hence ON [v] the process associated to a
trace is a well-defined notion. Conversely, the language of a process is identical
to its defining trace v'. Thus we have a one-to-one correspondence between
traces and the processes of an EN-system. Moreover, even though the dag

5 Formal Languages and Concurrent Behaviours 151
1 2 p32

. O—»D—»O\\ ®
p

p2

O/KW?PK%
O OHDHS>D<

o0 D<P6

Fig. 5.13. The occurrence net ONu(yg}{au}g generated for the EN-system in Fig-
ure 5.10: node-oriented view (top), and label-oriented view (bottom).

defined by a process is not necessarily isomorphic to the dependence graph
of its trace v , they always define the same partial order on their transition
occurrences.

Fact 34 : Let u be a firing sequence of EN.

e [u] = language(ON).
o canposet([u]) = dag(ON,,)*"

To conclude, the trace semantics and the process semantics of EN-systems
lead to one partial order semantics by providing for each EN-system the same
(isomorphic) partial orders modelling the causalities in its concurrent execu-
tions. This provides a strong argument in favour of the view that both these
approaches capture the essence of causality in the behaviours of EN-systems.

5.4.6 Bibliographical Remarks

Over the past 40 or so years different classes of Petri nets have been intro-
duced by varying the kind of underlying net, notion of local state, or transition
relation. An early systematic treatment of basic notions in net theory and EN-
systems can be found in [48]. Other extensions of the EN-systems approach
adopt notions like priorities, real-time behaviour, or object-orientation. (In
fact, we consider two such extensions later in this tutorial.) The general ques-
tion of the intrinsic or common properties of nets is discussed in [8]. The
problem of associating non-sequential semantics with Petri nets is dealt with,
in particular, in [35, 40, 36, 37, 41, 42, 19, 47]. There is a systematic way of
dealing with process semantics of various classes of Petri nets proposed in [31]
which makes it possible to separately discuss behaviour, processes, causality,

152 Jetty Kleijn and Maciej Koutny

Orpt

ENI ENT/ (Opt

p

X f@)\Q/

Fig. 5.14. Two ENI-systems modelling two variations of the running example.

and their mutually consistency. General Petri net related resources can be
found in the web pages at [26].

5.5 Adding Inhibitor Arcs

This section extends the treatment of concurrency considered so far in EN-
systems in order to accommodate the practically relevant case of nets with
inhibitor arcs. In particular, we will demonstrate how the original definition
of traces may be extended to describe in an adequate way also the additional
features of the resulting new kind of concurrent behaviours.

To see why inhibitor arcs can be a convenient modelling device, let us
imagine that a designer would like to modify the running example so that
the producer cannot retire if the customer is waiting for an item. Such a
modification is easily achieved by taking the EN-system of Figure 5.10 and
adding to it an inhibitor arc linking the place p5 and transition r. This yields
the net system ENI shown on the left of Figure 5.14. (Inhibitor arcs are drawn
with small open circles as arrowheads.) Adding this arc means that r cannot be
enabled if p5 contains a token, and so the producer indeed cannot retire if the
consumer is waiting for an item. Elementary net systems with inhibitor arcs,
or simply ENI-systems, thus extend EN-systems. The usefulness of inhibitor
arcs stems from their ability to detect a lack rather than the presence of
specific resources, i.e., tokens in specific places. That such an addition to the
EN-system syntax is a true extension of their modelling power follows from
the observation that there is no EN-system with exactly the same set of firing
sequences as ENI. This can be shown by considering two firing sequences of
ENI, amgru and amgu. If there was an EN-system generating the same firing
sequences as ENI, then, due to the second statement in Fact 20, it would also
have to generate the firing sequence amgur. But such a firing sequence is not
generated by ENI as executing the last transition would contradict the defining
characteristic of the inhibitor arc between r and p5. We will return to this
example after introducing ENI-systems more formally.

5 Formal Languages and Concurrent Behaviours 153

Definition 35 : ENI-systems

An elementary net system with inhibitor arcs (or ENI-system) is a rela-

tional tuple ENI < (P, T, F,Cipnit, Inh) such that the first four components
form an (underlying) EN-system and Inh C P X T is a set of inhibitor arcs.

As inhibitor arcs are introduced on top of the model of EN-systems, wherever
it is possible notions and notations concerning the structure and configurations
of an ENI-system are inherited from its underlying EN-system. Thus, for
example, the initial configuration of the ENI-systems in Figure 5.14 is the
initial configuration of the EN-system in Figure 5.10. The only new notation
is °t denoting the set of all the places p where the presence of a token inhibits
the enabling of a transition ¢, i.e., (p,t) € Inh. For example, we have °r = {p5}
and °a = °m = °g = °u = & in the case of ENI.

The dynamic aspects of an ENI-system are also derived from the under-
lying EN-system, with proper attention being paid to the inhibiting features
of the new kind of arcs. In fact, all one needs to re-define is the enabling con-
dition for steps, by stating that a step of transitions U of an ENI-system is
enabled at a configuration C'if it is enabled at C' in the underlying EN-system
and, in addition, no place in °U belongs to C, where °U consists of all places
connected by inhibitor arcs to transitions in U. It is important here to stress
that the change of state effected by an executed step is exactly the same as in
the underlying EN-system; in other words, inhibitor arcs have only impact on
the enabling of steps. In the case of ENI, a is a singleton step enabled in the
initial configuration, but the other singleton step r enabled in the initial con-
figuration of the underlying EN-system is not since p5 € °r M Ciy;¢. Note that
it would be quite natural and harmless as it has no effect on the dynamics of
an ENI-system to additionally assume that for each of its transitions ¢, the sets
°t, t* and °t are mutually disjoint V. As far as executing step sequences of
ENT are concerned, we have Ciyi[2){p3, p4,p5} and Ciyit[a{m, g}){p2, p6,p7}.

Having introduced the step sequence semantics of ENI-systems, we have

another look at ENI. This ENI-system generates the step sequence oexmp1 =

a{m, g}{u,r} Splitting the last step into ur leads to the sequence oinyaria £
a{m, g}ur which is not a valid behaviour of ENI (yet the splitting of {u,r} into
ru leads to a valid step sequence). Thus, also the first part of Fact 20 does not,
in general, hold for ENI-systems. In fact, not only the diamond property no
longer holds for ENI-systems, but even the property that every step sequence
of an EN-system can be linearised to yield some valid firing sequence is not
true for ENI-systems. Consider, for example, the ENI-system ENI’ on the right
of Figure 5.14 which has been obtained from ENI by adding an inhibitor arc
between pl and u ensuring that the consumer can only use an item if there is
still a chance that the producer may produce another item in the future. It is
easy to see that ENI’ generates the step sequence amg{u,r}, but any attempt
to linearise its only non-singleton step, ur, results in an illegal behaviour.

154 Jetty Kleijn and Maciej Koutny

Note that ENI’ does not even have a firing sequence leading to a configuration
including both p1 and p5. Hence the reachability of configurations is affected
by the restriction to firing sequences, and so ordinary words are insufficient
to capture all potential behaviours of ENI-systems. Consequently, the gener-
alisation of trace theory we will present next will be based on step sequences
rather than on words.

5.5.1 Comtraces

We will now show how the notions of independence and causality developed
for EN-systems can be lifted to the level of ENI-systems. The concurrency
model used for EN-systems is not directly applicable to nets with inhibitor
arcs; in particular, the current notion of transition independence needs to
be replaced by a device which can be used to disallow some linearisations of
executed steps. We therefore start by modifying the notion of concurrency
alphabet.

Definition 36 : combined concurrency alphabets

A combined concurrency alphabet is a triple CCA = (X, sim, ser) where X
is an alphabet and ser C sim are binary relations over X called respectively
simultaneity and serialisability. It is assumed that sim is irreflexive and
symmetric.

The two relations in a combined concurrency alphabet serve two distinct pur-
poses, one of which is to define valid steps and the other is to define valid
ways of splitting such steps. More precisely, if (a,b) € sim then a and b may
occur together in a step, while (a,b) € ser means that a and b may occur in a
step {a,b} and, in addition, such a step can be split into the sequence {a}{b}.

Although it may not be immediately clear, combined concurrency alpha-
bets subsume concurrency alphabets used earlier on. More precisely, the in-
dependence relation Ind of concurrency alphabets used in the definition of
traces represents the situation that simultaneity and serialisability coincide
with concurrency, i.e., sim = ser = Ind (note that this implies ser = ser—!
and that the two relations define diamonds). Intuitively, this means that si-
multaneity of symbols implies that they are totally independent and execut-
ing one has no impact on the subsequent executability of the other. In the
examples, the combined concurrency alphabet CCA corresponds to the running
ENI-system example, i.e., ENI in Figure 5.14. Thus CCA = (T, sim, ser), where
T is as before, sim = {(z,u), (u, 1), (g, m), (m, g), (4, m), (m,u), (u,a), (a,u)} and
ser = sim\ {(u,r)}. As we will later see, these relations can be derived from
the structure of ENI. Note that the problem with the step sequence ipyaiig
above is addressed by excluding (u,r) from ser.

Next, the notion of a step is extended so that it does not necessarily de-
pend on a net, but may also be defined relative to a combined concurrency

5 Formal Languages and Concurrent Behaviours 155

alphabet CCA = (X, sim, ser) by stating that any non-empty set U C X' is a
step (over CCA) if (a,b) € sim for all distinct @ and b in U. (If sim and ser
are not relevant we silently assume that sim = (X' x X) \ idy and ser = sim;
in that case every finite sequence of non-empty subsets of X is a step sequence
over X.)

We then lift in the obvious way to step sequences the following notions pre-
viously defined for words: concatenation, the set of symbol occurrences, and
what it means for the i-th occurrence of a to precede the j-th occurrence of
b within a step sequence. Note that neither the i-th occurrence of a precedes
the j-th occurrence of b, nor the j-th occurrence of b precedes the i-th oc-
currence of a, if the two occurrences belong to the same step. Taking as an
example the combined concurrency alphabet CCA defined above, we have that
a{m, glam{u,r} is a step sequence where m' precedes a® and the latter symbol
occurrence precedes m?.

We can now introduce comtraces generalising traces and based on a com-
bined concurrency alphabet. When defining the trace equivalence relation, we
were able to swap any pair of neighbouring occurrences of independent sym-
bols, e.g., amu = aum. A similar effect can be achieved using the extended
concurrency alphabet, but with an additional intermediate phase where the
symbols being swapped are put together into a single step which is then lin-
earised. Thus the elementary transformation needed to define comtraces is
step splitting and combining rather than symbol swapping. To this end, we
introduce « which is a relation comprising all pairs (o, p) of step sequences
such that ¢ = 7Uyx and p = 7U'U"x where T, are possibly empty step
sequences, and U’,U” form a partition of U such that U’ x U” C ser. Then
we define the comtrace equivalence = to be the reflexive symmetric transitive
closure of =.

Coming back to the trace equivalence amu = aum and assuming the com-
bined concurrency alphabet of the running example, we have amu & aum which
follows from amu ="' a{m, u} = aum. Another example of comtrace equivalence
is a{m, g}{u,r} = a{m, g}ru, but we also have that a{m,g}{u,r} ¥ a{m, glur
since (u,r) ¢ ser. In fact, a{m, g}{u, r} and a{m, g}ur are not comtrace equiv-
alent step sequences.

Definition 37 : comtraces

A comtrace over a combined concurrency alphabet is any equivalence class
of its comtrace equivalence relation.

A comtrace containing a given step sequence o will be denoted (o). Note that
(A) = {\} is the empty comtrace. The comtrace comprising the step sequence
Texmp1 18 made up of the following six step sequences: a{m, g}{u,r}, a{m, g}ru,
amgru, agmru, amg{u,r} and agm{u,r}.

Comtraces enjoy a number of the key properties satisfied by traces, and
so certain notions introduced for the latter can be re-defined for comtraces.

156 Jetty Kleijn and Maciej Koutny

To start with, op and ¢’p’ are comtrace equivalent whenever (o) = (¢’) and

(py = {p) v’ Hence comtrace concatenation (o) ® {p) = {(op) is a well-
defined operation, and we can recover the monoidal structure of traces.

Fact 38 : The set of all comtraces over a combined concurrency alphabet
with comtrace concatenation and the empty comtrace forms a monoid.

Finally, similarly as it was done for traces, comtraces can be equipped with
a prefix relation which reflects their possible histories

5.5.2 Stratified Posets and Comdags

Traces have posets as their underlying dependency structures. For comtraces
however, we will need to provide another notion of causal dependence. We
start by providing a characterization of step sequences as a rather specific
kind of posets, similar to the way that total posets correspond to words.

Definition 39 : stratified posets

A poset is stratified if being an unordered pair of elements is a transitive
relation, and all elements labelled with the same label are linearly ordered.

In other words, a poset spo = (X, <,¥) is stratified if its elements can be
partitioned into non-empty sets X7i,..., X} such that ¢ is injective on each of
them and the precedence relation is equal to the union of sets X; x X, for all
1 < j. This further implies that the unorderedness relation ~,, is equal to the
union of sets X; x X; \ idy,, for all 4, and that ~,,, Uidx is an equivalence
relation v'. Since the partitioning of X into these X;’s is unique, one can
associate with spo the step sequence steps(spo) = £(X1)...0(X,), and thus it
is possible to view a stratified poset as a step sequence. The converse move is
also possible, and the definition resembles that of the canonical total poset of
a word. The canonical stratified poset canstratposet(o) of a step sequence o is
defined as (occ(o), <, £) where a® < b/ if the i-th occurrence of a precedes the j-
th occurrence of b within o, and £(a’) < a, for all symbol occurrences a’ and b/
in occ(u). Figure 5.15 shows the canonical stratified poset of the step sequence
Oexmp1- One can immediately note that steps(canstratposet(Cexnp1)) = Texmp1
and since this is a general property holding for any o, step sequences can be
identified with the corresponding stratified order

We will also need structures generalising dependence graphs. Recall that
these dags result from total posets (words) by deleting some of the prece-
dence relationships between elements. Similarly, the new structures can be
interpreted as stratified posets from which certain relationships have been
deleted, while taking into account that the simultaneity within the steps also
defines a weak (mutual) dependency between elements that can be deleted

5 Formal Languages and Concurrent Behaviours 157

r m ro
. A o
m r m
a a
al a'
g u g u
°)
1 1 cdag 1 1
g u g u

Fig. 5.15. Hasse diagram of the canonical stratified poset for Gexmp1, and a comdag.

(in either direction). The main idea here is that standard causal precedence
captures the ‘happened before’ relationship and a new weak causality relation
stands for ‘happened before or simultaneously’.

Definition 40 : comdags

A labelled directed acyclic combined graph (or simply comdag) is a re-
lational tuple comdag = (X, <,C,¢) consisting of a finite set X, two ir-
reflexive binary relations over X, < and [, and a labelling of X such
that:

e </ Z(KULC)*o<o(<ULC)* is an irreflexive relation.
e /(xz)=/{(y) implies & <" y or y <" x for all z # y in X.

The irreflexivity of the relation <’ above has a straightforward interpretation
in operational terms, as it means that in a given run of a concurrent system
there are no events x1, o, . . .,) such that each x; ‘happened before or simul-
taneously’ with x;41, while z; ‘happened (strictly) before’ z1. Comdags with
an empty relation [are nothing but dags, and we adopt similar conventions
for their graphical representation: the relation < is represented by solid arcs,
and C by dashed arcs. For example, Figure 5.15 shows a comdag cdag such
that a! <m! <r! al <g!' <u!, g' <u!, and r! Cul.

A full account of the causal dependencies between the nodes of a comdag

comdag = (X, <,C,¢) is conveyed through its transitive closure, defined as
the relational structure comdag™ = (X, <’,',¢) where <’ is the relation
/df

introduced in Definition 40 and C'= (< U C)*\id x. The transitive closure of
the comdag in Figure 5.15 is shown on the left of Figure 5.16.

5.5.3 Stratified Order Structures

Traces are underpinned by posets which in their turn are transitive dags.
Similarly, the structures underlying comtraces are transitive comdags, called
stratified order structures.

158 Jetty Kleijn and Maciej Koutny

. };rl rr1
|
: 3
1 |
|
) ou zu
SOsS gl ut g1 ul

Fig. 5.16. A stratified order structure where dashed arcs between nodes have been
omitted if solid arcs are present, and the canonical dependence comdag for gexmp1-

Definition 41 : stratified order structures

A comdag sos £ (X,=<,C,¢) is a labelled stratified order structure (or

so-structure) if for all z,y, z in X:

(i) < y implies = C y.
(ii)x Cy C z and = # z implies z C z.
(iijr Cy <z or x <y C z implies = < z.

The first relation in an so-structure should be interpreted as the standard
causality, and the second relation as weak causality.

In Figure 5.16, a' causally precedes u', while r' precedes u' only in a
weakly causal manner. The latter means that r' may occur before or simul-
taneously with u'!. Observe that the so-structure sos in Figure 5.16 is the
transitive closure of the comdag in Figure 5.15, i.e., sos = cdag™.

The transitive closure of a comdag is an so-structure, and the transitive
closure of an so-structure is the same so-structure . Moreover, given an
so-structure (X, <, C, ¢) and a pair of elements x,y € X, x < y implies y £ «,
and (X, <, ¢) is a poset V' . That so-structures are conservative extensions of
posets follows from the fact that if (X, <,¥) is a poset then (X, <, <,{) is
an so-structure v’ . Hence so-structures may be viewed as generalisations of
posets.

In the case of posets, we considered their total poset linearisations (corre-
sponding to words). In the current framework, posets have been replaced by
so-structures and, accordingly, stratified order structures can be extended to
stratified posets (corresponding to step sequences).

A stratified poset spo is a stratification of an so-structure sos if they have
the same domain and labelling, <5 is included in <y, and T, is included
in <spo. The set of all stratifications of sos is denoted by strat(sos).

The intersection (| SPO of a non-empty set SPO of stratified posets with
the same domain X and labelling ¢ is (X, <,C,¢) where < is the relation
comprising all pairs (z,y) such that z <, y for each spo in SPO, and C
is a relation comprising all pairs (z,y) such that « <p, y for each spo in
SPO. The intersection of stratified posets is always a stratified order struc-
ture v . Moreover, an so-structure is completely identified by its stratification

5 Formal Languages and Concurrent Behaviours 159

sos = [strat(sos) and strat(sos) is a non-empty set V. 1t is interesting that
the result would not hold if we restricted ourselves only to those stratifications
which are total posets v

The step language of a comdag comprises all step sequences associated with
thestratifications ofits transitive closure, i.e., we define steplanguage(comdag) =
steps(strat(comdag™)). For the comdag in Figure 5.15 and the so-structure in
Figure 5.16, steplanguage(cdag) = steplanguage(sos) comprises exactly the
same six step sequences as the comtrace to which the step sequence exmp1
belongs. This is not a mere coincidence, as we will soon see.

5.5.4 Causality Structures Generated by Comtraces

Comdags can be used to describe the necessary ordering (causality and weak
causality) in comtraces. This relationship and the way it is derived strongly
resemble what has been done earlier on for traces and their associated dags
(dependence graphs). Let us first characterise the comdags which are consis-
tent with a given concurrency alphabet in the sense that nodes are connected
appropriately, i.e., reflecting the relation between their labels.

Definition 42 : dependence comdags

A dependence comdag over a combined concurrency alphabet (X, sim, ser)
is a comdag (X, <,Z,¢) such that £ : X — X and for all elements = # y
of X:

(U(z),L(y)) ¢ sim implies x < y or y < .
(U(z),L(y)) ¢ ser implies x < y or y C .
2 C y implies ({(y),4(x)) ¢ ser.
x <y implies (¢(x),l(y)) ¢ ser.

Every comdag has an associated step language consisting of all step se-
quences that can be read from it as a stratified poset while respecting
the indicated ordering. The step language of any dependence comdag over
CCA = (X, sim, ser) thus consists of sequences of sets which are steps rela-
tive to CCA, i.e., (a,b) € sim for every pair of distinct symbols a and b in
any step v Moreover, deleting any arc from such comdag changes its step
language. Formally, two dependence comdags are isomorphic iff their step
languages are the same v . Moreover, with each step sequence, a dependence
comgraph can be associated which has as its nodes the symbol occurrences of
the step sequence and arcs implied by their dependencies.

The canonical dependence comdag of a step sequence o = Uy ...U, over
CCA is candepcomdag(o) = (oce(o), <, T,) where, for all symbol occurrences
a* and b’ in occ(o) we have £(a’) = a and:

e a' < ¥ if (a,b) ¢ ser and the i-th occurrence of a precedes the j-th
occurrence of b within o.

160 Jetty Kleijn and Maciej Koutny

e a' TV if (ba) ¢ ser and the j-th occurrence of b does not precede the
i-th occurrence of a within o.

Figure 5.16 shows the canonical dependence comdag of the step sequence
Uexmpl~

Canonical dependence comdags capture precisely the essence of the com-
trace equivalence relation as candepcomdag(c) = candepcomdag(7) iff o and
T are comtrace equivalent step sequences v'. Hence it is possible to define
the canonical dependence comdag of a comtrace « as candepcomdag(c) =
candepcomdag (o), where o is any step sequence in a. Moreover, the step se-
quences defined by the canonical dependence comdag of a comtrace are exactly
the step sequences comprising that comtrace.

Fact 43 : Let a be a comtrace. Then steplanguage(candepcomdag()) = a.

Hence distinct comtraces have distinct canonical dependence comdags and
it follows that comtraces are in one-to-one correspondence with dependence
comdags.

Finally, the canonical so-structure of a comtrace « is defined as cansos(«) =
candepcomdag(a)™. The concluding result states that comtraces and their
canonical so-structures capture the same sets of behaviours.

Fact 44 : Let o be a comtrace.

o strat(cansos(«)) = canstratposet(ar).®
o steps(strat(cansos(a))) = a.

“Note that in canstratposet(a) the comtrace « is treated as a set of step se-
quences.

In this way we have obtained the unique causality structure of a comtrace.

5.5.5 Step Sequences, Comtraces and Processes of ENI-Systems

Returning to the starting point of this section, i.e., to ENI-systems, we now
aim at capturing the intrinsic causality in their behaviours. Since the treat-
ment follows the same pattern as that provided for the EN-systems in the
previous section, we will be fairly brief, and further motivations and discus-
sion can be found there.

Let ENI = (P, T, F, Cinit, Inh) be henceforth a fixed ENI-system.

First, the basic operational behaviour of ENI is captured by its step lan-
guage stepseq(ENI) defined as the set of all sequences o of non-empty steps of

5 Formal Languages and Concurrent Behaviours 161

transitions such that Cy,;[0). Clearly, stepseq(ENI) is a prefix-closed, regular
set of step sequences.

To capture the causal ordering of transition occurrences in ENI’s be-
haviour, we will use comtraces and their so-structures. For this reason, we
associate with ENI the combined concurrency alphabet CCA with X = T
and its simultaneity and serialisability relations given respectively by:

o (Lt)Esimif N =t Nt ="t = 2.
(t,t') € ser if (t,t') € sim and t* N°t' = @.

It is not difficult to see that the combined concurrency alphabet for the ENI
in Figure 5.14 is precisely CCA defined earlier in this section.

The following key result is a consequence of the observation that all step
sequences over C'CA which are comtrace equivalent to a step sequence of ENI
are steps sequences of FNI as well v

Fact 45 : stepseq(ENI) = Ugestepseq(EM) (o).

Hence the step language of ENI can be partitioned into comtraces. According
to this result, and building on the theory expounded earlier on, we may state
that the causal behaviour of ENI-systems can be captured by the so-structures
corresponding to the comtraces partitioning their step language. We thus treat
the causality issues at hand here similar to the approach presented as in
the previous section for EN-systems based on traces and their corresponding
posets.

As a conclusion to this section we will present a theory of processes for ENI-
systems and demonstrate that the causality and weak causality captured in the
comtraces and their so-structures of an ENI-system agree with this process
semantics. To define processes, nets similar to the occurrence nets of EN-
systems are used to describe the concurrent runs of ENI-systems. This requires
an extension of the notion of an occurrence net which has been designed to
handle nets with ordinary rather than inhibitor arcs. To deal with such arcs
at the level of occurrence nets we introduce so-called activator arcs. Each such
arc plays a role dual to that of an inhibitor arc. An activator arc between a
place and transition test for the presence of a token in the place, but this
token is not affected (removed) by the occurrence of that transition.

Definition 46 : activator occurrence nets

An activator occurrence net (ao-net) is a relational tuple AON =

(B,E, R, ¢, Act) such that the first four components form an (underlying)
occurrence net and Act C B x E is a set of activator arcs.

Similarly as an occurrence net, an ao-net represents a concurrent execution
or run of a system and so it has to be acyclic in some sense, to exclude

162 Jetty Kleijn and Maciej Koutny

p2 el p3 €2 p2 €3 pil
b O [a] O o] O] O
p7 b2 b3 by
bs p4(Obs p7()br
p5 pé p5
bs O 18] @, [u] O
€4 b €5 bio
p2 p3 p2 pl
O B O =] O B O
p7
p4 7 ()
p5 pé p5
O L& U [u] O

Fig. 5.17. An activator occurrence net AON with nodes labelled by places and
transitions of the and ENI-system ENI in Figure 5.14 (top), and the same net with
identities of the nodes omitted (bottom).

circularity in the description of the run. It is therefore assumed that the
relational structure comdag(AON) = (E, <10¢, Cioe, £|E), where <5, and o
are relations respectively given by (R o R)|pxz U (R o Act) and Act ' o R,
is a comdag. Intuitively, these two relations provide local information on the
causality between event occurrences based on the dynamics of the ao-net.
Thus <, stands for precedence (the first event has to produce a token for
consumption or testing by the second event) and for weak precedence (the
first transition cannot happen after the second one, since the latter consumes
a token for which the former tests).

Activator arcs are drawn with small black circles as arrowheads and, for
every transition ¢, ®t denotes the set of all places connected by activator arcs
with ¢, i.e., (p,t) € Act. Figure 5.17 shows an ao-net. The step sequences of
an ao-net are defined as for its underlying occurrence net, except that a step
U is enabled at a configuration C' if, in addition, *U C C where *U consists
of all places connected by activator arcs to transitions in U. Other notions,
including the default initial and final configurations, are inherited from the
underlying occurrence net.

Every occurrence net defines a dag representing the direct information on
the causality between its events, and then through transitive closure also a
poset of events. The same approach can be applied to an ao-net, but in this
case the resulting causality structure for AON is the so-structure generated
through the transitive closure of comdag(AON) defined above. For example,
the comdag generated by the ao-net in Figure 5.18 is nothing but the cdag
shown in Figure 5.15, and so the corresponding so-structure is the sos in
Figure 5.16.

5 Formal Languages and Concurrent Behaviours 163

Processes of ENI-systems are similar to those of EN-systems with the
inhibitor arcs of the system represented by activator arcs which rather than
testing for the absence of tokens are used to test for the presence of tokens
in complement places. Hence, it is tacitly assumed that each place of ENI
adjacent to an inhibitor arc has a complement place in the underlying EN-
system. (Every ENI-system can be transformed into an ENI-system with an

isomorphic state graph and satisfying this property v 2

Definition 47 : processes of ENI-systems

A process of ENI is an ao-net (B, E, R, Act,) such that the underlying
occurrence net of the latter is a process of the underlying EN-system of

—

the former and, in addition, £ is injective on *e and £(*e) = °/(e) for every
event e in E.

The processes of an ENI-system give information on its behaviour. The step
language of a process AON of ENI is the set steplanguage(AON) of all step
sequences {(o) such that o is a step sequence from the default initial con-
figuration of AON to the default final configuration. Observe here that the
reachable configurations of AON are also reachable configurations of its un-
derlying occurrence net. Consequently, the labelling of AON is injective on
all its reachable configurations and on the steps in its step sequences

Definition 47 is sound in the sense that the step language of an ENI-system
coincides with the step languages of its processes.

Fact 48 : stepseq(ENI) = U onecaon Steplanguage(AON) where AON
is the set of all processes of ENI.

The processes of an ENI-system can be described algorithmically as well.
This construction is also based on the one given earlier for EN-systems, show-
ing once again that the addition of inhibitor arcs leads to conservative exten-
sions of notions and results presented earlier on.

Definition 49 : processes construction

The activator occurrence net AON, generated by a step sequence o =
Uy...U, of ENI is the last element in the sequence Ny,..., N, where
each Ny is an activator occurrence net (By, Fx, Ry, Ay, £i) constructed as
in Definition 32 with the following additions:

Step 0: Ag = 2.

Step k: A = Ap_1 U{(p 2P, t1T8Y) |t € U A p € °t}.

Figure 5.18 shows in stages how to construct the ao-net following the execution
of the step sequence oegmp1 of ENI. The resulting ao-net is a process of ENT (it
is isomorphic with the net in Figure 5.17).

164 Jetty Kleijn and Maciej Koutny
p21 p31
O—_ &

%7)1/ P41

p2 p3 m

O\ a] O [] O
p7 p4 p7

o— :
8//>

p6 u p5
[] O

Fig. 5.18. The ao-net AON,,,., constructed for the ENI-system in Figure 5.14:
node-oriented view (top), and label-oriented view (bottom).

Fact 50 : Each ao-net constructed in Definition 49 is a process of ENI and,
for each process of ENI, there is a run of the construction from Definition 49
generating an isomorphic ao-net.

As a last point we compare the causality structures of an ENI-system as
captured in comtraces through their so-structures with the process semantics
and its comdags and related so-structures.

Since splitting and combining steps of transitions according to the simul-
taneity and serialisability relations defined by the net have no effect on the
process construction we know that AON, = AON; iff o and T are comtrace
equivalent step sequences V' . Hence with each comtrace one process (up to
isomorphism) is associated. Conversely the step language of a process of ENT
is identical to its defining comtrace v’ . We can then relate the comtraces and
processes generated by the step sequences of an ENI-system.

Fact 51 : Let o be a step sequence of ENI.

o (o) = steplanguage(AON).
e cansos({c)) = comdag(AON,)*.

Hence comtraces and processes give the same views on the causalities in the
behaviours of ENI-systems, again providing a justification for the fundamental
soundness of the concurrency semantics they both capture.

5.5.6 Bibliographical Remarks

Inhibitor arcs have been found to be particularly useful in areas such as com-
munication protocols (see, e.g., [5]) and performance analysis (see, e.g., [12])

5 Formal Languages and Concurrent Behaviours 165

and, indeed, perhaps the most natural extension of the standard net model,
e.g., [43] stated that ‘Petri nets with inhibitor arcs are intuitively the most di-
rect approach to increasing the modelling power of Petri nets’ (note that when
added to the PT-system model considered later on, they lead to a strictly more
expressive model as now Turing machines can be simulated). This section is
based on the work reported in [27] which has been further developed, e.g.,
in [31] and [28].

The enabledness of transitions in ENI-systems and ao-nets is based on an
a priori condition: the inhibitor/activator places of transitions occurring in a
step should obey the relevant constraints before the step is executed, but not
necessarily afterwards. Alternative treatments of this issue are provided in,
e.g., [6] and [50].

5.6 Place Transition Nets

In this section we give an impression of how the trace approach to describe
net behaviour can be generalised to Place/Transition systems (PT-systems
for short), a well-known and prominent class of Petri nets that employ states
to describe the availability of local resources in a quantitative way rather than
to indicate simply the holding or not-holding of local conditions. PT-systems
are of more practical use than EN-systems since certain repetitive features
which would lead to unwieldy EN-systems can be collapsed in a PT-system
thus allowing more compact representations of systems. Moreover, they are
more expressive.

Let us return to the running example. Instead of indicating whether or not
the buffer contains an item at all, the buffer place p4 in PT1, the first net in
Figure 5.19, gives the number of available (produced and not yet consumed)
items. Initially there is one item in the buffer, represented by one token in p4.
The producer is allowed to add items to the buffer also when it is not empty.
Each such item is represented by an additional token in p4. In diagrams of
PT-systems, tokens are used to indicate the current multiplicity of (resources
in) a place; thus it is possible to have more than one token in a place. In
this example, the number of tokens (items) in p4 (the buffer) is not a priori
bounded. The second net PT2 in Figure 5.19 models a producer/consumer
system with a buffer (p4) of bounded capacity (two in this case). Its current
capacity is given through its complement place p7. The token count in the
buffer and the complement together is always exactly 2. Adding an item to
the buffer by the producer decreases its remaining capacity and similarly the
consumption of an item by the consumer leads to an increase of capacity. The
third net PT3 in Figure 5.19 models a producer/consumer system with two
consumers. When there are two or more tokens in the buffer and two consumer
tokens in the local state p5, then the two consumers can each consume an
item without interfering with one another (concurrently). Hence, rather than
using a separate subsystem for each consumer the PT-systems model makes

166 Jetty Kleijn and Maciej Koutny

it possible to use multiple occurrences of tokens in a net to model identical
behaviour.

NN
gﬁﬂ)gﬁ o

PT3

Fig. 5.19. Three PT-systems for the running example: PT1 with an unbounded

buffer — containing one item in the initial state — and one consumer; PT2 with a
buffer of capacity two; and PT3 with an unbounded buffer and two consumers.

Thus we now have for nets a new notion of state described by multiplicities
of places (natural numbers) rather than subsets of places (booleans). Formally,
these states, called markings, are multisets of places.?

Definition 52 : markings

A marking of a net N = (P, T, F) is a mapping M : P — N.

The dynamics of nets with markings as global states is based on a new
occurrence rule for individual transitions describing their consumption and
production of local resources.

3 A multiset over a set X is a function p: X — N, and any subset of X may be
viewed through its characteristic function as a multiset over X. By M(X) we denote
the set of all multisets over X. For two multisets u, v with a common domain X, we
write p < v if p(z) < v(zx) for all x € X.

5 Formal Languages and Concurrent Behaviours 167

Definition 53 : transition occurrences

A transition ¢ can occur (or is enabled) at a marking M if M(p) > 1 for
every place p € °t. Its occurrence then leads to a new marking M’ (p) £

M(p) — {(p,)} N F| + [{(t,p)} N F| for every place p € P.

Thus t is enabled at a marking M whenever M assigns at least one token to
each input place of ¢. If ¢ occurs, then it consumes one token from each of its
input places and produces one token in each of its output places. (Again, the
enabledness of a transition and its effect are defined completely locally and do
not depend on the global properties of a state.) If ¢ is enabled at M, we write
M]t) and if its occurrence at M leads to the marking M’, we write M [t)M’.
When we consider configurations as (a simple kind of) markings and com-
pare this definition with Definition 17 of transition enabling and occurrence
at a configuration, then the following observations are immediate: a transition
which is enabled at a configuration is also enabled at the marking represented
by the configuration and its occurrence would have the same effect. However,
due to the possibility of contact, the reverse does not hold in general. Without
output requirements, a transition may have an input place which is also one
of its output places (a loop), and still be able to occur at a marking,.
Concurrent occurrence of transitions at a marking is possible, provided
that enough resources (tokens per place) are available for all transitions to-
gether. When multiple transitions occur, the effect of their concurrent oc-
currence is the accumulated effect of their individual occurrences. As before
(Definition 18), a step of a net is a subset of its transitions. A step U can occur
at a marking M if M (p) > |p®NU| for all places p. Its occurrence then leads to

df

a new marking M’ such that M’(p) = M (p)—|p* NU|+|*pNU]| for every place
p. If U is enabled at M, we write M[U) and if its occurrence at M leads to
the marking M’, we write M[U)M’. Note that, the transitions in a step may
have overlapping neighbourhoods. In particular, input places can be shared.
In that case, however, for the step to be enabled, the marking under consider-
ation should assign to these places at least one token for each of their output
transitions in the step (there is a conflict at the marking, if each transition
individually is enabled, but they cannot occur as a step). Single transition
occurrences are special cases of step occurrences. Furthermore, the case of
steps is easily extended to multisets of transitions occurring at a marking: a
multiset U of transitions can occur at a marking M if M(p) > >, . U(t)
for all places p. In such a case, U can be executed leading to the marking
M’ given by M'(p) = M(p) — Dotepe Ut) + 2240, U(t) for every place p.
Multisets of transitions model the phenomenon of auto-concurrency. In the
producer/consumer system with two consumers (PT3 in Figure 5.19) transi-
tion g can occur (twice) concurrent with itself at every marking with two or
more tokens in the buffer place p4 and two consumer tokens in p5. For reasons

168 Jetty Kleijn and Maciej Koutny

of convenience, we will give emphasis to the explanation of notions based on
steps with only occasional reference to multisets.

The occurrence of a step at a marking leads to a next marking. Hence,
lifting the terminology introduced for (contact-free) EN-systems and their
semantics to the more general level of PT-systems, we can define step se-
quences (and also firing sequences and multiset sequences) as finite sequences
of non-empty steps (single transitions or non-empty multisets, respectively)
occurring one after another from a given marking. A step sequence o from a
marking M is a possibly empty sequence ¢ = U; ... U, of non-empty steps
U; such that M[Uy) M, ..., M,_1[U,)M’, for some markings My, ..., M, 1.
We write M[o)M' or M[c) and say that M’ is reachable from M.

When a step is enabled at a marking, sufficient resources are available at
that marking for the independent occurrence of each of the transitions in the
step. Hence, a diamond property as formulated in the first part of Fact 20
holds.

Fact 54 : Let M, M’ be markings and U, U’ be steps of a net such that
UNU' = @. Then M[UUU'YM" implies M[UU")M".

As a consequence, every step of transitions occurring at a marking can be
split into any sequence of subsets forming a partition of this set and each such
step sequence has the same effect (leads to the same marking) as the original
step. In particular, each step in a step sequence can be split into a firing
sequence which is an arbitrary permutation of its transitions. For multisets, a
similar diamond property can easily be proved and so every multiset sequence
can be decomposed into a step sequence v . However, due to loops, the second
statement in Fact 20 does not hold: it is not the case that a diamond of step
sequences at a marking implies that the transitions involved could also occur
concurrently. It is possible, e.g., to have step sequences {a}{b} and {b}{a}

from some marking M of a PT-system, while M[{a,b}) does not hold v .

5.6.1 PT-Systems and Their State Spaces

Equipping nets with initial markings leads to a new class of net systems.

Definition 55 : PT-systems

A place transition system (or PT-system) consists of an underlying net
and an initial marking. Its state space consists of all markings reachable
from the initial marking.

That is, a PT-system is a relational tuple PT = (P, T, F, M;n;) such that
(P,T,F) is a net and M;,;; : P — N is its initial marking. Because of the
diamond property (Fact 54) for steps and multisets, reachability of markings

5 Formal Languages and Concurrent Behaviours 169

is the same whether defined in terms of firing sequences, or step sequences, or
multiset sequences V. Hence, also the state space is the same for the three
semantics. Contact-free EN-systems can be viewed as special PT-systems with
the additional property of being safe, i.e., no reachable marking will ever
assign more than one token to a place v (Note that in a safe PT-system

there is no auto-concurrency v .) Exactly as for EN-systems we can consider
the state graph of PT, with the markings reachable from M;,;; as nodes and
with labelled arcs (M, U, M') whenever M[U)M’. In addition, there are the
sequential state graph of PT and its multiset state graph, both defined in the
obvious way.

The most basic behaviour of a PT-system PT is captured by its language
firseq(PT) consisting of all firing sequences from its initial marking. Clearly,
firseq(PT) is a prefix-closed language, and each firing sequence corresponds
to a unique path through the sequential state graph of PT starting from the
initial marking. Since the numbers of tokens per place are not necessarily
bounded, it is possible that the state space of PT is not finite (even though
PT itself is a finite object) and firseq(PT) not regular. Consider PT1, the first
net in Figure 5.19 with its initial marking as given there. The number of tokens
in the buffer place p4 can be arbitrarily large, but apart from the initial item,
the consumer can never consume more items than added to the buffer by the
producer. Thus, firseq(PT1) N {am}*{gu}* = {(am)*(gu)" | n < k + 1}. Conse-
quently, firseq(PT1) is not regular. Next to firseq(PT), we have stepseq(PT)
and multisetseq(PT), the step language and the multiset language PT con-
sisting of all step sequences, multiset sequences respectively, from its initial
marking. A PT-system PT such that multisetseq(PT) = stepseq(PT), i.e.,
it does not exhibit any auto-concurrency at all, is co-safe. Note that safe
PT-systems are necessarily co-safe, but that the converse implication is not
true \/

In contrast to the situation for EN-systems, diamonds in the sequential
state graphs of PT-systems do not imply nor exclude possible concurrent
behaviour and stepseq(PT) cannot be reconstructed from firseq(PT). Simi-
larly, since information on auto-concurrency is missing in the step sequence
semantics, multisetseq(PT') cannot, in general, be derived from stepseq(PT).
In other words, two PT-systems with isomorphic sequential state graphs may
have state graphs which are not isomorphic, and systems with isomorphic
state graphs may have multiset state graphs which are not isomorphic. More-
over, for PT-systems, the concurrency, conflict and causality relations between
transitions are not merely structural, but may change with the current mark-
ing. As an example, consider PT4 in Figure 5.20. This PT-system has exactly
all prefixes of all words which are permutations of the symbols a, b, and c, as
its firing sequences. As step sequences it has in addition {a, b}, {a,c}, {b,c},
{a,b}c, {a,c}b, {b,c}a, a{b,c}, b{a,c}, and c{a,b}. If, however, the initial
marking would have assigned one token instead of two in the uppermost place,
there would have been only firing sequences and no additional step sequences;
and with initially three tokens in the uppermost place also {a,b,c} would

170 Jetty Kleijn and Maciej Koutny

2]

DauCIS=6)

@/
5 & &

PT4 PTH PT6
Fig. 5.20. Three PT-systems.

have been a step sequence of the system. In the second example system PT5
in Figure 5.20, auto-concurrency plays a role. It resembles PT4 with the three
transitions merged (as well as their lower input places). Note that due to auto-
concurrency, a diamond may degenerate to a single sequence (in this example,
a sequence of two concurrent occurrences of g). Moreover, with initially only
one token in the uppermost place this PT-system admits no other behaviour
than the purely sequential ggg and its prefixes. Finally, in the third system
PT6, we see that the transitions a and c¢ can occur concurrently at the initial
marking. If, however, b occurs first, then a and ¢ are in conflict at the resulting
marking. It is interesting to compare the step sequences and firing sequences
of PT6 with those of PT4 v .

Before introducing a new more general notion of trace as part of a partial
order approach to the operational semantics of PT-systems, we first consider
the processes of PT-systems in order to gain more insight in the causality and
concurrency in their behaviour.

5.6.2 Processes of PT-Systems

As before, processes formalise the idea of a concurrent run or a non-sequential
observation of an execution of a system. Being a record of the changes of mark-
ings along some execution of a PT-system, they capture the intrinsic concur-
rency and causality (based on the production and consumption of resources)
in the recorded behaviour. The notion of a process of a PT-system is a rather
straightforward generalization of the process definition for EN-systems.

In what follows, PT = (P, T, F, M;p;t) is a fixed PT-system.

A process of PT is a labelled occurrence net that can be seen as a partial
unfolding of PT in which conflicts have been resolved. Each of its events
represents the occurrence of a transition and each condition corresponds to
the occurrence of a single token in a place of PT.

5 Formal Languages and Concurrent Behaviours 171

p2() [a] O [n] O [x] Opt
}—‘ p3 p2

"0 »d -

p5 () 8] O [u] (Ops

Fig. 5.21. A process ON' of the PT-system PT1 in Figure 5.19 (node identities are
omitted).

Definition 56 : processes of PT-systems

A process of PT is an occurrence net ON = (B, E, R, ¢) such that:

¢ labels conditions with places and events with transitions.

For every p € P, Mini(p) = [{b € CON | £(b) = p}|.

¢ is injective on the sets of input and output conditions of each event.
For every e € E, {(®¢e) = *{(e) and {(e®) = {(e)°.

The occurrence net in Figure 5.21 is a process of PT1 in Figure 5.19.

The difference with Definition 30 (processes of EN-systems) is that now
the labelling of a process is not required to be injective on the default initial
configuration. This configuration is intended to represent the initial marking of
the PT-system and has for each token in each place, a condition labelled with
the name of that place. Note that for (contact-free) EN-systems, Definitions 56
and 30 coincide. The structure underlying a process of a PT-system is an
occurrence net and hence forms with its default initial configuration a contact-
free EN-system with properties as discussed before for the processes of EN-
systems. In particular, each process ON defines a dag, dag(ON), representing
the direct causal relationships between the events, and a partial order on
its events obtained as its transitive closure dag(ON)*, describing all causal
dependencies. Moreover, for processes of PT-systems, their multiset and step
semantics coincide. The labelling, however, will in general not be injective
on the reachable configurations (the slices) and the steps executed. Consider,
e.g., in Figure 5.21 the configuration reached after the execution of the event
labelled by a. It has two conditions labelled by p4 together representing two
tokens in place p4 of PTI1.

To preserve the multiplicity of the labels associated to elements, (non-
injective) labellings can be lifted to yield multisets of labels for subsets of
their domain. Given a labelling ¢ : Y — Z and a finite X C Y, define ¢(X) :
Z — Nby (X)(z) £ |{z € X | {(x) = z}|, for each z € Z. The labelling
can be applied in this way also to finite sequences of finite subsets of Y,
Xy ... X,) Z 0(X1)...0(X,). Note that if £ is injective on each of the X;,
then £(X; ... X,) and /(X5 ... X,,) can be identified.

The multiset sequences (i.e., the step sequences) of a process of a PT-
system are related via its labelling to the multiset sequences of the system.

172 Jetty Kleijn and Maciej Koutny
Using an inductive argument, it can be proved that Ci%\t’ [0)C in a process
ON = (B, E,R,{) of PT implies that M;,;:[¢(c))¢(C) in PT . Again, we let
ON) denote the set of all labelled firing sequences of ON from the default
initial configuration to its default final configuration. The multiset language
of ON is the set multisetlanguage(ON) comprising all labelled step sequences
from the default initial configuration to its default final configuration.

Since the structure and labelling of the processes reflect the flow relation
of PT, it follows that all multiset sequences of PT can be derived from its
processes.

Fact 57 : Let ON be the set of all processes of PT.

o firseq(PT) =Upncon ON).
o multisetseq(PT) = o ycon multisetlanguage(ON).

Conversely, all processes of a PT-system can be constructed from its mul-
tiset sequences.

Definition 58 : processes construction

For a multiset sequence o = U ...U, of PT, an occurrence net ON%G
can be generated as the last element in a sequence Ny, ..., N, where each
Ny, is an occurrence net (By, Ey, R, {) constructed thus.

Step 0: By = {p’ | pe€ PA1<i< Mn(p)} and Eg = Ry = @.

Step k: Given Nji_1 we extend the sets of nodes as follows:

B ¥ By U{p*o7 |[p € UR AL <1< rn, Unl®)}
Ep = By U {t7 [t € Up N1 <i <Uk(t)} -

In the above, the label of each node 2’ is set to be x, and Az denotes the
number of nodes of Nj_; labelled by z.

To define the arcs, we proceed as follows. For every e = t* € Ej, \ Ex_1,
we choose® two sets of conditions, In. C By_1 \ codom(Ry—1) and Out, C
By \ Bg—1, such that In. comprises a distinct condition for each place in
°t and Out. comprises a distinct condition for each place in ¢t®. Moreover,
for any two distinct e, e’ € Fy, \ Fy_1, the sets In, and In, as well as Out,
and Out, are mutually disjoint. Then:

Rip £ R,_1U U (Ine x {e}) U ({e} x Oute) .

e€EK\Ex_1

%This means that, in general, more than one process can be constructed for
a given multiset sequence.

5 Formal Languages and Concurrent Behaviours 173

p3 p2

p2 ()~ [0f=O—~{r}=Orpt
p4 () p4 06 a’<.—,.—>:
P8 O——{e~-O—{u}=Opr5

P2 @*@<§;@* p1

p4 6
s bf}»o .

Fig. 5.22. Two processes and their causality dags. Both processes are associated
with the multiset sequence a{m, g}{r,u} of PT1 in Figure 5.19.

The construction is illustrated in Figure 5.22 for the PT-system PT1 from
Figure 5.19 and its multiset sequence a{m, g}{r,u}. The topmost process given
there is isomorphic to the process ON’ of the PT-system PT1 in Figure 5.21.

Fact 59 : Each occurrence net constructed in Definition 58 is a process
of PT and, for each process of PT, there is a run of the construction from
Definition 58 generating an isomorphic occurrence net.

Thus, also for PT-systems, their operationally defined processes and ax-
iomatically defined processes are essentially the same. The labelling of these
processes is in general not injective on their slices (reachable configurations).
Each slice represents through its labelling a reachable marking of the PT-
system with for each token in each place, a condition labelled with the name
of that place. This leads to a distinct representation of each token in a place
even though in PT-systems such occurrences of tokens are usually deemed
indistinguishable. When constructing a process for a given multiset sequence,
there may be more than one (distinct representation of) a token available as
input to a next occurrence of a transition leading to the choice referred to
in Definition 58. The two different processes in Figure 5.22 are the result of
choosing between the two conditions labelled by p4 as input for the event la-
belled with g after the occurrence of a. When the distinction between tokens
in a place is undesirable, equivalence classes of processes can be used as repre-
sentations of runs. The equivalence used identifies two processes whenever one
can be obtained from the other by ‘swapping’ the parts of the occurrence nets
following two conditions which occur together in a slice and have identical
labels. The two processes in Figure 5.22 are swapping equivalent. Note that
they give rise to different partial orders.

174 Jetty Kleijn and Maciej Koutny
5.6.3 Local Traces

We are now ready for lifting the definition of traces to the level of PT-systems.
In these systems the concurrency and causality relations between transitions
are determined by the current marking. In terms of firing sequences (step
sequences and multiset sequences), this means that independence of symbols
is not globally defined for all occurrences of symbols, but in a local fashion
depending on the preceding history (left-context or prefix). Another new fea-
ture is that for PT-systems, independence is not a binary relation. Consider,
e.g., PT4 in Figure 5.20. Here we have that the three transitions can occur
concurrently in pairs, but not as a triple (which would be implied in the case
of an EN-system v). Consequently, multisets (or sets when auto-concurrency
is ruled out) rather than pairs have to be used to describe the independence
among symbols or action occurrences. A local independence relation provides
the information on when and which symbols (and how many occurrences of
each) are independent.

Definition 60 : local concurrency alphabets

A local independence relation Lind over an alphabet X' is a subset of
2% x M(X). A local concurrency alphabet LCA = (X, Lind) consists of
an alphabet X and a local independence relation Lind over X .

The pair (u, X) being an element of a local independence relation Lind indi-
cates that the elements of X can occur concurrently (and with the multiplic-
ities defined in X') once u has been executed. As an example, consider again
the PT-systems in Figure 5.20. The local independence relation of PT4 will
include the pairs (A, {a,b}), (A, {a,c}) and (A, {b,c}), but not (A, {a,b,c}).
In addition, (c,{a,b}), (b,{a,c}) and (a, {b,c}) will also belong to this lo-
cal independence relation. However, for PT6, (), {a, c}) will be included in its
local independence relation, but not (b, {a, c}). The PT-system PT5 will give
rise to the pair (A, G2), but not to (A, G3), where G5 and G3 are the multisets
given by G;(g) £ §. We will see later how the local concurrency alphabet of a
PT-system can be defined by its behaviour.

First we introduce local traces based on a new (local) trace equivalence
relation. Again the elementary step in the identification of sequences is the
exchange of positions between adjacent independent symbol occurrences. Let
(X, Lind) be a local concurrency alphabet. Then, for two words, u,v € X*,
we write u ~r;nq v if there are words w, z € X*, a multiset X over X, and
x,y € X* such that (w,X) € Lind, X(a) = #4(x) = #4(y) for all a € X,
and v = wzrz and v = wyz. The local trace equivalence =p;,q on X* is the
reflexive and transitive closure of ~,4.

Let Lind4 be the local independence relation associated with PT4 (see
above for its elements relevant here), then we have bac ~pjpasa abc ~pinas

5 Formal Languages and Concurrent Behaviours 175

acb ~ringa €ab ~rpingq cba ~rings bca and so bac =pjngq bea. Thus all firing
sequences of length three of PT4 are local trace equivalent.

Definition 61 : local traces

A local trace over a local concurrency alphabet (X, Lind) is any equiva-
lence class of the local trace equivalence relation =p,,4.

The local trace containing a given word w is denoted by [u],,.,, and the
set of all local traces by X*/=, ,. Whenever the independence relation Lind
is clear from the context, we may drop it when writing [u],,,, etc. Note
that the empty local trace is [A\] = {A}. For the PT-system PT4, we have
[abc]; 44 = {abc,bac,bca, cba, cab,acb}. Note that, in the same way as
before, it can be shown that bac and bca are also local trace equivalent with
respect to the local independence relation Lind6 associated with PT6 even
though (b, {a,c}) ¢ Lind6. Hence [abc]; 4 = [abc]yinas-

Local independence and local trace equivalence are generalisations of the
independence relation and trace equivalence underlying the original traces.

Fact 62 : Let (X, Ind) be a concurrency alphabet and Lind < {(u, X) €
X xP(X) | (X x X)\ idy C Ind}. Then =j,q and =p;,q coincide.

Just like in the case of trace equivalence, it is easily seen that whenever
two words are local trace equivalent, they have the same length and alpha-
bet v . However, due to the local character of the independence relation, the
property that the order of dependent symbols is the same in all words of
a local trace does not hold true (see above where we had bac =pjn6 bca).
Consequently, one cannot associate a single well-defined dependence graph
with all words in a local trace in the same way as was done for traces. Also
concatenation cannot be well-defined by concatenating representatives. As an
example, consider the local independence relation {(\, {b, c})} over the alpha-
bet {a, b, c}. Then [bc] = [cb], but [abc] # [acb]. Still, local trace equivalence
is a right-congruence.

Fact 63 : Let (X, Lind) be a local concurrency alphabet and u, v, w € X*.
Then u =g v implies vw =r,q VW.

Hence the right-concatenation & of local traces with words is well-defined
by [u] g @ w = [uw],,, > and we say that a local trace a is a prefir of a
local trace § if f = o @ w for some word w. This (quasi-)prefix ordering is
well-defined v". We use again the <-notation and indice the fact that « is a
prefix of § as a < 3. Moreover, if « < 3 and a # § then we write a < .
Note that [u];,,; < [v] 1 ing @0d v =Ling w implies that [u] ., < [w] .4
However, [u] ;... < [v] ;,a does not necessarily imply that v <0 v holds

176 Jetty Kleijn and Maciej Koutny

The prefix relation of local traces provides information on the relationships
between the occurrences of symbols. In particular, when a local trace is used
as the representation of a run of a concurrent system, its prefixes correspond
to the different histories, each of which may be extended to a sequential rep-
resentation of that run. Returning once more to the examples of Lind4 and
Lind6, it should be observed that the trace [abc], ;44 = [abc];;nq6 has the
same prefix structure with respect to both local independence relations. Note,
however, that from the prefix [b];, ., a concurrent step {a, c} can be executed
leading to [abc];; 44, Whereas in order to reach [abc];; 46 from [b];, .4 the
symbols a and c have to be executed sequentially. Adding this multiset infor-
mation in the form of arcs labelled with multisets in accordance with the given
local independence relation — if possible — would yield a labelled structure
comparable to a state graph and allow one to distinguish between different
concurrent behaviours defining the same local traces. We will come back to
this issue shortly.

5.6.4 PT-Systems and Local Traces

The local independence relation associated with a PT-system describes all
multisets of transitions that can occur concurrently during a run of the system.

Definition 64 : local concurrency alphabets of PT-systems

The local concurrency alphabet of PT is LCApr £ (T, Lind pr) where the
local independence relation Lind pr comprises all pairs of firing sequences
of PT with multisets of transitions enabled at the corresponding marking.

Thus Lindpp = {(u, X) € T* x M(X) | Mipit[u)M' N M'[X)}.

In order to facilitate a comparison of concurrent behaviour of different
PT-systems, local independence is defined on the abstract behavioural level
of firing sequences rather than at concrete markings. Since for PT-systems
reachability of markings is the same for firing / step / multiset sequences,
all potential concurrency in the system can be described in terms of (local)
independence of transitions after a firing sequence. Note that because local
traces are equivalence classes comprising words only (rather than multiset
sequences), they are not affected when auto-concurrency is ignored, i.e., by
restricting the local independence relation of PT to pairs (u, X) with X a
subset of its transitions v’ . Such restriction hides information though and
applying it would be analogous to giving each transition a self-loop to a new
place of its own with one token to guarantee that the PT-system is co-safe.
The full local independence relation Lind4 of PT4 has (among others) the
following elements: (A, @), (A, {a}), (A, {b}), (A, {c}), (\,{a,b}), (A, {a,c}),
(A, {b,c}), (a,9), (a,{b}), (a,{c}), (a,{b,c}) and (abe, &). This local inde-
pendence relation is finite. In general, however, the local independence rela-
tions of PT-systems may be infinite, since these systems can have infinitely

5 Formal Languages and Concurrent Behaviours 177

many reachable markings (like PT1 in Figure 5.19) or exhibit repetitive be-
haviour (like PT2).

An important observation is that all words which belong to the local trace
of a firing sequence of a PT-system are indeed also realisable as firing se-
quences.

Fact 65 : firseq(PT) = U,efirseqpr) [ul-

Since (contact-free) EN-systems can be considered as PT-systems, it fol-
lows that they define, apart from their concurrency alphabet with its struc-
tural independence relation, also a local concurrency alphabet. The next fact
demonstrates that these two views are consistent. (Note that the local inde-
pendence induced by the structural independence relation of the EN-system
should first be restricted to the actual firing sequences of the system.)

Fact 66 : Let EN be a contact-free EN-system with concurrency alpha-
bet (T, Indgy), and let Lind gy be its local independence relation. Then
Lindgy = Lind N {(u,X) | u € firseq(EN) A X C T} where Lind is ob-
tained from Ind gy as described in Fact 62.

So far no restrictions at all have been imposed on local independence
relations, e.g., with respect to internal consistency. Yet, when applied to actual
concurrent systems — such as PT-systems — one might require or expect some
suitable conditions to reflect the intended interpretation.

Fact 67 : Let (X, Lind) = (T, Lind p7) be the local concurrency alphabet
of PT, and (u, X) € Lind.

e Y < X implies (u,Y) € Lind.
Y < X implies that (uz,Y) € Lind for all words x € X* such that
#ao(z) = X(a)-Y (a) for all a € X.

e U =p;,q v implies (v, X) € Lind.

The first two items above capture the fact that independent instances of
transitions indeed occur independently from one another. They can be seen
as a translation of the diamond property (Fact 54 for multisets) to the local
independence relation. Thanks to the diamond property, the multisets in any
multiset sequence of PT can be split yielding sequential representatives for
each multiset sequence. It is, moreover, guaranteed that these representatives
are local trace equivalent with each other which, as representatives of the same
concurrent run of the net, they should be. The third item ensures that the
local independence relation of PT ‘agrees’ with the local trace equivalence
it defines. With this latter property, adding the information which multisets
of symbols are concurrently enabled after (each prefix of) a local trace is a

178 Jetty Kleijn and Maciej Koutny

well-defined operation v'. In this way, the prefix ordering of a single local
trace, as well as the prefix ordering on the full set X*/=,. of all local traces
over a local concurrency alphabet (X, Lind), can be enhanced leading to mul-
tiset labelled transition systems resembling state graphs. Such ‘trace graphs’
provide all information on local independence and make it possible to distin-
guish between, e.g., [abc]; 4, and [abc];; 46 V' . Another property satisfied
by the local concurrency alphabet of a PT-system, but not listed above is that
(ua,) € Lind implies (u,{a}) € Lind for all words u and symbols a. This
property reflects the prefix-closedness of the overall behaviour (in terms of its
set of firing sequences) of the system.

We conclude this section by relating the local traces defined by a PT-
system to its processes. It is not difficult to see that thanks to the diamond
property of PT-systems, every process of a PT-system can be constructed
(as described in Definition 58) from a firing sequence V. However, due to
the possible multiplicity of tokens in places, this construction will in general
yield more than one process per firing sequence (even when the PT-system
is co-safe). Obviously, this implies that there is no one-to-one correspondence
between local traces and processes. Now recall the swapping equivalence of
processes which associates an equivalence class of processes with each sin-
gle concurrent run of a PT-system. These swapping equivalence classes of
processes are in one-to-one correspondence with the local trace equivalence
classes of its firing sequences.

Fact 68 : Every word in the language of a process of PT belongs to one
local trace of PT, and each local trace of PT is the union of the languages
of a set of processes from PT forming one swapping equivalence class.

Consequently, with each local trace defined by a PT-system a finite set of
partial orders can be associated. Each partial order is generated by a process
and describes possible causalities in the concurrent execution which may de-
pend on how the preceding history was observed, i.e., the choice of individual
tokens during the execution. Consider, e.g., Figure 5.22 where two processes
and their causality dags are given. Both processes can be constructed from
the local trace equivalent firing sequences agmru and gamru of the PT-system
PT1 from Figure 5.19. Note that the transition g can both have an ‘old’ token
or a ‘new’ token as its input.

Thus not distinguishing between multiple occurrences of a token in a place
leads to a partial order semantics more complicated than that of EN-systems,
both when based on processes or when employing a trace-based approach.
Treating, however, multiple tokens in a place as individual entities would lead
to a process semantics of PT-systems with the same expressiveness as the
processes of EN-systems which seems counterintuitive.

5 Formal Languages and Concurrent Behaviours 179
5.6.5 Bibliographical Remarks

More background on PT-systems, their behavioural features and processes can
be found in, e.g., [9, 18, 2, 3, 31]|. Even though we have restricted ourselves
to systems without arc weights, it was still possible to convey the key ideas
underlying the causality semantics.

Local traces were originally proposed in [21, 23|, and further developed
in [25] with the aim to extend the semantic theory of EN-systems to the
more general PT-systems. In the latter reference (see also [22, 24]) co-safe
PT-systems are related to local event structures in a categorical setting. As
a follow-up, [32, 33| study local traces as an independent notion that can be
used to identify events and relations between them without having to rely on
the Petri net model. This has led to local traces with sets of concurrent events
rather than multisets, but otherwise defined as here. Also other definitions of
context-dependent trace equivalence in the setting of a right-congruence were
investigated in, e.g., [1, 4].

5.7 Concluding Remarks

This tutorial is an introduction to the much wider field of applying language
theory to the study of concurrent behaviours, and so there are several strands
of related research which have not even been mentioned. For example, it is
possible to develop traces for infinite system behaviours [16, 17], which also
allows one to treat aspects such as fairness [34]. Moreover, we have not con-
sidered the modelling of conflicts between enabled actions while traces and
processes represent single runs in which all the conflicts have already been re-
solved. Adding conflict amounts to the introduction of branching in processes
and considering the prefix ordering of all traces which form the system be-
haviours. (Branching processes of Petri nets [13] are the basis for an efficient
verification technique [38, 14, 30].) If, in addition, one only considers relations
between events (transition occurrences) the result is the more abstract model
of event structures [24, 51, 40] which have been used to study fundamental
concepts of concurrency in a model-independent way. Finally, we only briefly
touched upon the algebraic properties of trace concepts such as can be found
in, e.g., [11, 10].

Acknowledgements

We would like to thank Carlos Martin-Vide for encouraging us to prepare
this tutorial. We are grateful to our colleagues, Grzegorz Rozenberg and Hen-
drik Jan Hoogeboom, for technical advice and references. This work has been
supported by the EPSRC project CASINO.

180

Jetty Kleijn and Maciej Koutny

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

S. Bauget and P. Gastin. On congruences and partial orders. In Jiri Wieder-
mann and Petr Hajek, editors, MFCS, volume 969 of Lecture Notes in Computer
Science, pages 434—443. Springer, 1995.

E. Best and R.R. Devillers. Sequential and concurrent behaviour in Petri net
theory. Theor. Comput. Sci., 55(1):87-136, 1987.

E. Best and C. Fernandez. Non-sequential Processes, A Petri Net View. Num-
ber 13 in EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Heidelberg, 1988.

I. Biermann and B. Rozoy. Reliable generalized and context dependent com-
mutation relations. In Michel Bidoit and Max Dauchet, editors, TAPSOFT,
volume 1214 of Lecture Notes in Computer Science, pages 165-176. Springer,
1997.

J. Billington. Protocol specification using P-graphs, a technique based on
coloured Petri nets. In Reisig and Rozenberg [46], pages 293-330.

N. Busi and G.M. Pinna. Process semantics for place/transition nets with in-
hibitor and read arcs. Fundam. Inform., 40(2-3):165-197, 1999.

P. Cartier and D. Foata. Probléemes combinatoires de commutalion et réar-
rangements. Number 85 in Lecture Notes in Mathematics. Springer-Verlag,
Heidelberg, 1969.

J. Desel and G. Juhas. “What is a Petri net?”. In Hartmut Ehrig, Gabriel Juhés,
Julia Padberg, and Grzegorz Rozenberg, editors, Unifying Petri Nets, volume
2128 of Lecture Notes in Computer Science, pages 1-25. Springer, 2001.
J.Desel and W. Reisig. Place/transition Petri nets. In Reisig and Rozenberg
[45], pages 122-173.

V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 457-533. Springer-Verlag, Heidelberg, 1997.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1995.

S. Donatelli and G. Franceschinis. Modelling and analysis of distributed software
using GSPNs. In Reisig and Rozenberg [46], pages 438—476.

J. Engelfriet. Branching processes of Petri nets. Acta Inf., 28(6):575-591, 1991.
J. Esparza, S. Roémer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In Tiziana Margaria and Bernhard Steffen, editors, TACAS, volume
1055 of Lecture Notes in Computer Science, pages 87—106. Springer, 1996.
ftp://inf.informatik.uni stuttgart.de/pub/techreports/theorie/traces.bib.

P. Gastin. Infinite traces. In I. Guessarian, editor, Proc. Spring School of
Theoretical Computer Science on Semantics of Systems of Concurrent Processes,
number 469 in Lecture Notes in Computer Science, pages 277-308, Heidelberg,
1990. Springer-Verlag.

P. Gastin and A. Petit. Poset properties of complex traces. In I. M. Havel
and V. Koubek, editors, Proc. 17th Symposium on Mathematical Foundations
of Computer Science (MFCS’92), Prague (Czechoslovakia), 1992, number 629 in
Lecture Notes in Computer Science, pages 255263, Heidelberg, 1992. Springer-
Verlag.

U. Goltz and W. Reisig. The non-sequential behavior of Petri nets. Information
and Control, 57(2/3):125-147, 1983.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

5 Formal Languages and Concurrent Behaviours 181

H.J. Hoogeboom and G. Rozenberg. Diamond properties of elementary net
systems. Fundam. Inform., 14(3):287-300, 1991.

H.J. Hoogeboom and G. Rozenberg. Dependence graphs. In V. Diekert and
G. Rozenberg, editors, The Book of Traces, chapter 2, pages 43—-67. World Sci-
entific, Singapore, 1995.

P.W. Hoogers, H.C.M. Kleijn, and P.S. Thiagarajan. A trace semantics for
Petri nets. In W. Kuich, editor, Proc. 19th (ICALP’92), Vienna, number 623 in
Lecture Notes in Computer Science, pages 595-604, Heidelberg, 1992. Springer-
Verlag.

P.W. Hoogers, H.C.M. Kleijn, and P.S. Thiagarajan. Local event structures
and Petri nets. In Eike Best, editor, CONCUR, volume 715 of Lecture Notes in
Computer Science, pages 462-476. Springer, 1993.

P.W. Hoogers, H.C.M. Kleijn, and P.S. Thiagarajan. A trace semantics for Petri
nets. Inf. Comput., 117(1):98-114, 1995.

P.W. Hoogers, H.C.M. Kleijn, and P.S. Thiagarajan. An event structure seman-
tics for general Petri nets. Theor. Comput. Sci., 153(1&2):129-170, 1996.
P.W. Hoogers. Behavioural Aspects of Petri Nets. Dissertation, Leiden Univer-
sity, 1994.

http://www.informatik.uni hamburg.de/TGI/PetriNets, .

R.J. and Maciej Koutny. Semantics of inhibitor nets. Inf. Comput., 123(1):1-16,
1995.

G.Juhas, R. Lorenz, and T. Singliar. On synchronicity and concurrency in Petri
nets. In Wil M. P. van der Aalst and Eike Best, editors, I[CATPN, volume 2679
of Lecture Notes in Computer Science, pages 357-376. Springer, 2003.

R.M. Keller. Parallel program schemata and maximal parallelism I. Fundamen-
tal results. Journal of the Association for Computing Machinery, 20(3):514-537,
1973.

V. Khomenko, M. Koutny, and W. Vogler. Canonical prefixes of Petri net
unfoldings. Acta Inf., 40(2):95-118, 2003.

H.C.M. Kleijn and M. Koutny. Process semantics of general inhibitor nets. Inf.
Comput., 190(1):18-69, 2004.

H.C.M. Kleijn, R. Morin, and B. Rozoy. Event structures for local traces. Electr.
Notes Theor. Comput. Sci., 16(2), 1998.

H.C.M. Kleijn, R. Morin, and B. Rozoy. A general categorical connection be-
tween local event structures and local traces. In Gabriel Ciobanu and Gheorghe
Paun, editors, FCT, volume 1684 of Lecture Notes in Computer Science, pages
338-349. Springer, 1999.

M.Z. Kwiatkowska. Fairness for mon-interleaving concurrency. PhD Thesis,
University of Leicester (UK), 1989.

A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

A.W. Magzurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang Reisig, and
Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255 of Lecture
Notes in Computer Science, pages 279-324. Springer, 1987.

A.W. Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, REX Workshop, volume 354 of
Lecture Notes in Computer Science, pages 285-363. Springer, 1989.

K.L. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In Gregor von Bochmann and David K.

182

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Jetty Kleijn and Maciej Koutny

Probst, editors, CAV, volume 663 of Lecture Notes in Computer Science,
pages 164-177. Springer, 1992.

R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 1980.

M. Nielsen, G.D. Plotkin, and G. Winskel. Petri nets, event structures and
domains, part I. Theor. Comput. Sci., 13:85-108, 1981.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Behavioural notions for ele-
mentary net systems. 4:45-59, 1990.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems.
Theor. Comput. Sci., 96(1):3-33, 1992.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

C.A. Petri. Fundamentals of a theory of asynchronous information flow. In
Proc. of IFIP Congress’62, North Holland, Amsterdam (1962), pages 386-390,
1962.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer, 1998.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications,
volume 1492 of Lecture Notes in Computer Science. Springer, 1998.

G. Rozenberg and J. Engelfriet. Elementary net systems. In Reisig and Rozen-
berg [45], pages 12-121.

G. Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure, be-
haviour. Number 224 in Lecture Notes in Computer Science, pages 585—668,
Heidelberg, 1986. Springer-Verlag.

E. Szpilrajn. Sur 'extension de l'ordre partiel. Fundam. Math., 16:386-389,
1930.

W. Vogler. Partial order semantics and read arcs. Theor. Comput. Sci.,
286(1):33-63, 2002.

G. Winskel. Event structures. In W. Brauer, editor, Petri nets: central models
and their properties; advances in Petri nets; proceedings of an advanced course,
Bad Honnef, 8.-19. Sept. 1986, Vol. 2, number 255 in Lecture Notes in Computer
Science, Heidelberg, 1986. Springer-Verlag.

6

Cellular Automata —
A Computational Point of View

Martin Kutrib

Institut fir Informatik, Universitiat Giessen
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Summary. The advantages of homogeneous arrays of interacting processing ele-
ments are simplicity and uniformity. It turned out that a large array of not very
powerful elements operating in parallel can be programmed to be very powerful.
One type of system is of particular interest: cellular automata whose homogeneously
interconnected deterministic finite automata (the cells) work synchronously at dis-
crete time steps obeying one common transition function. Cellular automata have
extensively been investigated from different points of view. Here we discuss some of
the main aspects from a computational point of view. The focus is on very simple
types, that is, on one-dimensional cellular automata with nearest neighbor intercon-
nections. In particular, we consider universality issues, the problem how to simulate
data structures as stacks, queues, and rings without any loss of time, the famous
Firing Squad Synchronization Problem, signals, and time constructible functions
as well as several aspects of cellular automata as language acceptors. Some open
problems are addressed.

6.1 Introduction

Cellular automata are an old branch of computer science. In the late forties
of the last century they were proposed by John von Neumann in order to
solve the logical problem of nontrivial self-reproduction. From this biological
point of view he employed a mathematical device which is a multitude of
interconnected automata operating in parallel to form a larger automaton, a
macroautomaton built by microautomata. His famous early result reveals that
it is logically possible for such a nontrivial computing device to replicate itself
ad infinitum [72]. The name of these automata originates from the context in
which they were developed. Due to their intuitive and colorful concepts, cellu-
lar automata have soon been considered from a computational point of view.
So, from the very beginning, they were both, an interesting and challenging
model for theoretical computer science and an interesting model for practical
applications. Their inherent massive parallelism renders obvious applications
as model for systems that are beyond direct measurements.

M. Kutrib: Cellular Automata — A Computational Point of View, Studies in Computational

Intelligence (SCI) 113, 183-227 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008

184 Martin Kutrib

Cellular automata are a young branch of computer science. Besides ap-
plications in industry, nowadays they open up new fields of application and
modeling of natural phenomena in physics, biology, chemistry as well as in
sociology, economics, and other human sciences. The development of practi-
cal and theoretical issues of cellular automata is impressive. In particular, it
seems that currently the studies from a theoretical point of view follow two
main branches. One focuses on the global behavior of cellular automata. Based
on some topology the space of configurations is investigated. An important
challenge with practical aspects is the characterization of cellular automata
on the basis of their global transition function.

The other branch may be seen to deal with information. The flexibility of
cellular automata to serve as programming tools can be utilized to develop
tricky algorithms in order to solve classical problems as well as problems con-
cerning the very nature of the system itself. An example for the latter case is
the problem of synchronization, which gave rise to intensive research. In this
connection, sources of questions are complexity issues as well as classifications
in terms of formal language recognition. These questions are objects of the
present article. More precisely, cellular automata are seen from a computa-
tional point of view. The main focus is on one-dimensional cellular automata
which are linear arrays of cells that are connected to their nearest neighbors.
The cells are exactly in one of a finite number of states, which is changed
according to local rules depending on the current state of a cell itself and the
current states of its neighbors. The state changes take place simultaneously
at discrete time steps.

The presented topics are far from being complete. From the many interest-
ing ones only a few could be chosen. In the following Section 6.2 basic defini-
tions and preliminaries are given. Higher-dimensional systems with arbitrary
cell interconnections are introduced as generalizations of one-dimensional sys-
tems with the mentioned nearest neighbor connections. For unbounded cellu-
lar spaces universality is obtained. After presenting an approach to evidence
based on the possibility to model logical gates and information transition in
two-dimensional cellular spaces with the simple rules of the Game of Life, it is
shown how cellular spaces can simulate Turing machines. Besides, investiga-
tions concerning universality (often combined with other properties) are done,
for example, in [1, 10, 33, 45, 46, 52, 53, 54, 30]. A survey of universality and
decidability versus undecidability in cellular automata and several other mod-
els of discrete computations can be found in [44]. Next we turn to show how
to simulate stacks, queues, and rings by one-dimensional cellular automata
without any loss of time. The simulations may serve as tools for designing
algorithms or as subroutines for programming cellular automata [6, 29].

The famous Firing Squad Synchronization Problem is dealt with in Sec-
tion 6.3. It was raised by Myhill in 1957 and emerged in connection with the
problem to start several parts of a parallel machine at the same time. The first
published reference appeared with a solution found by McCarthy and Minsky
in [50]. Roughly speaking, the problem is to set up a cellular space such that

6 Cellular Automata — A Computational Point of View 185

all cells in a region change to a special state for the first time after the same
number of steps.

Section 6.4 is devoted to the study of signals and constructibility of func-
tions. Signals are used to solve problems. Examples are the basic signals that
appear in solutions of the Firing Squad Synchronization Problem, or com-
plex signals that allow to generate prime numbers. So, they can be seen as
tools for algorithm design. In general, signals are able to transmit or encode
information in cellular spaces. They have been used for a long time, but the
systematic study originated from [49]. Basic questions are what kind of signals
can be sent, or which speed is possible.

One of the main branches in the theory of cellular automata is considered
in Section 6.5. Clearly, the data supplied to some device can be arranged as
strings of symbols. Instances of problems to solve can be encoded as strings
with a finite number of different symbols. Furthermore, complex answers to
problems can be encoded as binary sequences such that the answer is com-
puted bit by bit. In order to compute one piece of the answer, the set of pos-
sible inputs is split into two sets associated with the binary outcome. From
this point of view, the computational capabilities of the devices are studied in
terms of string acceptance, that is, the determination to which of the two sets
a given string belongs. These investigations are done with respect to and with
the methods of language theory. For cellular spaces and automata they origi-
nated from [11, 12] and [61, 31]. Over the years substantial progress has been
achieved, but there are still some basic open problems with deep relations to
other fields. A basic hierarchy of cellular language families is established, and
the levels are compared with well-known families of the Chomsky hierarchy.
The results are depicted in Figure 6.31. Closure properties are summarized in
Table 6.1, and decidability problems are briefly discussed.

6.2 Basics and Preliminaries

We denote the set of integers by Z and the set of nonnegative integers by N.
The data supplied to the devices in question can be arranged as strings of
symbols. In connection with formal languages, strings are called words. Let A*
denote the set of all words over a finite alphabet A. The empty word is denoted
by A, and we set AT = A*—{\}. For the reversal of a word w we write w®, and
for its length we write |w|. We use C for inclusions and C for strict inclusions.

6.2.1 Cellular Spaces

Basically, the idea of cellular automata is to form a massively parallel device
as a multitude of interacting simple processing elements. In order to keep the
systems tractable, a high degree of homogeneity is preferable. Moreover, the
processing elements have to be chosen as simple as possible. So, the elements —
which sometimes are called cells — are represented by finite Moore automata.

186 Martin Kutrib

Due to the need for homogeneity all cells are identical. In addition, they are
arranged as grid where one dimension, that is, a linear array whose cells are
identified by integers, is of particular interest in the sequel. Homogeneous local
communication structures are achieved by a unique interconnection scheme
that defines the cells which are interconnected to a given cell. Eventually, the
cells operate synchronously at discrete time steps obeying a local transition
function, which maps the current state of the cell itself and the current states
of its connected cells (neighbors) to the next state.

So, a multitude of finite automata operating in parallel form a larger au-
tomaton such that global results are achieved by local interactions only.

To be more precise, we define a cellular space formally. The notion space
is due to the fact that, potentially, we have an infinite number of cells, that
is, we deal with the entire Euclidean space Z. In order to obtain two-way
information flow we assume that each cell is connected to its both nearest
neighbors.

Definition 1. A (one-dimensional) two-way cellular space (CS) is a system
(S,9,q0, A, F), where

1. S is the finite, nonempty set of cell states,

2.6:5% = S is the local transition function,

3. qo € S is the quiescent state such that §(qo, g0, qo) = qo,
4. A C S is the set of input symbols, and

5. F C S is the set of final states.

Basically, we have an infinite space but are interested in finite supports
only. That is, beginning a computation with a finite number of non-quiescent
cells, by definition we obtain only finitely many non-quiescent cells at every
time step. This determines the role played by the quiescent state. The set of
final states has been included with an eye towards applications.

o [0} g0}—{arj—azf—{as}— - —{tnf—{d0]—{a0] - -

Fig. 6.1. A (one-dimensional) two-way cellular space.

In general, the global behavior of a cellular space is of interest. It is in-
duced by the local behavior of all cells, that is, by the local transition function.
More precisely, a configuration of a cellular space (S, d, qo, 4, F') at time ¢t > 0
is a description of its global state, which is formally a mapping ¢; : Z — S.
The configuration at time 0 is defined by the given input w = a; ---a, € A",
n > 1. We set ¢o(i) = a;, for 1 < i < n, and ¢g(i) = go otherwise. Configura-
tions may be represented as words over the set of cell states in their natural
ordering, where the quiescent state is represented by the empty word. For ex-
ample, the initial configuration for w is represented by ajas - - - a,. Successor
configurations are computed according to the global transition function A.

6 Cellular Automata — A Computational Point of View 187

Let ¢;, t > 0, be a configuration. Then its successor ¢, 41 = A(c;) is defined
by cty1(i) = 6(ct(i — 1), ¢(i), ce(i + 1)), for all ¢ € Z. A computation can be
represented as space-time diagram, where each row is a configuration and the
rows appear in chronological ordering.

An elementary technique in automata theory is the usage of multiple
tracks. Basically, this means to consider the state set as Cartesian product
of some smaller sets. Each component of a state is called register, and the
same register of all cells together form a track.

In the sequel, for convenience and readability we may omit the defini-
tion of local transition functions for situations that do not change the state.
Especially, we omit 6(qo, g0, q0) = qo-

Ezample 1. The following cellular space M = (S, d, qo, A, F') reverses its input
w € AT in |w| time steps (cf. Figure 6.2). It uses two tracks that are imple-
mented by the state set S = (AU{u})2U{qo}. Let (s1,52), (s3,54) and (s5, s6)
be arbitrary states from S\ {qo}.

(S(QQ,(S3,84)7(]0) ()
(qo, (s3,84), (85,56)) = (85,53)
) = (54, 2)

) = (55, 52)

5((517 82)7 (533 54)7 q0
6((s1,82), (83, 84), (85, S6)

n

1
@ 0 0]10|1 o
Ujujufulu
1L1ojop1|u
t |49 q0
Oluju|lu|u
q0 grposias o | v q0
90 u|u|u
Ooped| L | L |
q0 q0
O =0~ v | u
lluju|uju
q0 q0
OO0 110+ u
Uy u u ()
q0 q0
1101011410

Fig. 6.2. Space-time diagram of a two-way cellular space reversing its input.

6.2.2 Important Generalizations

So far, cellular spaces have been introduced as one-dimensional arrays whose
cells are connected to their immediate neighbors. Certainly, these types belong

188 Martin Kutrib

to the most important and natural ones. In particular, from a computational
perspective they are best investigated. However, there are many generaliza-
tions which are just as interesting and natural. More generally speaking, the
specification of a cellular space includes the type and specification of the cells,
their interconnection scheme (which can imply a dimension of the system),
the local rules which are formalized as local transition function, and the in-
put and output modes. In the present subsection we briefly deal with two
generalizations. First, we consider arbitrary unique interconnection schemes
which are called neighborhood-indices and, secondly, devices whose cell