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Real Time Implementation

In this chapter real time implementation is presented in order to validate
the theoretical results discussed in previous chapters. The results presented
in this chapter include the Neural Network Identification scheme presented in
Chap. 4, the RHONO presented in Chap. 5, the Neural Backstepping Approach
analyzed in Chap. 3, the Neural Bock Control Technique discussed in Chap. 4
and the modifications of the last two controllers treated in Chap. 6 to include
the RHONO. All these applications was performed using a three phase induc-
tion motor.

The experiments are performed using a benchmark, which includes a PC for
supervising, a PWM unit for the power stage, a dSPACE DS1104 board
for data acquisition and control of the system (dSPACE is a trademark
of dSPACE GmbH), and a three phase induction motor as the plant has
to be controlled, with the following characteristics: 220V, 60Hz, 0.19 kW,
1,660 rpm, 1.3A [1]. Series of photographs and figures of the benchmark are
included. Figure 7.1 presents a schematic representation of the benchmark
used in these experiments. Figure 7.2 displays the encoder coupled with an
induction motor, Fig. 7.3 presents a view of the PC and the DS1104 board,
and Fig. 7.4 shows the PWM driver. The DS1104 board allows to download
applications directly from Simulink (Matlab and Simulink are trademarks of
the MathWorks Inc.) as is shown in Fig. 7.5. In Fig. 7.6, a Desktop inter-
face for the DS1104 board is included in order to clarify the visualization of
the experiments. The experiments performed in the benchmark includes the
Neural Network Identification scheme presented in Chap. 4, the RHONO pre-
sented in Chap. 5, the Neural Backstepping Approach analyzed in Chap. 3, the
Neural Bock Control Technique discussed in Chap. 4, and the modifications of
the last two controllers treated in Chap. 6 to include the RHONO. Finally, the
mentioned experiments are tested with a constant load torque applied with a
DC generator coupled to an induction motor as shown in Figs. 7.7 and 7.8.
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Fig. 7.1. Schematic representation of the control prototype

Fig. 7.2. Encoder coupled with the induction motor

7.1 Neural Identification

In this section the neural network identification scheme proposed in Chap. 4 for
the discrete-time induction motor model is applied in real time to the bench-
mark described above. During the identification process the plant and the NN
operates in open-loop. Both of them (plant and NN) have the same input
vector

[
uα uβ

]�; uα and uβ are chirp functions with 200V of amplitude and
incremental frequencies from 0 to 150Hz and 0 to 200Hz, respectively. The
implementation is performed with a sampling time of 0.0005 s. The results of
the real-time implementation are presented as follows: Fig. 7.9 shows the iden-
tification of rotor angular displacement; Fig. 7.10 displays the identification
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Fig. 7.3. View of the PC and the DS1104 board

Fig. 7.4. PWM driver

performance for the speed rotor; Figs. 7.11 and 7.12 present the identification
performance for the fluxes in phase α and β, respectively. Figures 7.13 and
7.14 portray the identification performance for currents in phase α and β,
respectively. Finally, the input signals are presented in Fig. 7.15.
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Fig. 7.5. Simulink program to be downloaded to the DS1104 board directly

Fig. 7.6. Desktop interface for the DS1104 board

7.2 Neural State Estimation

This section presents the neural network observer (RHONO) scheme pro-
posed in Chap. 5 for the discrete-time induction motor model as applied in
real time to the benchmark described above. During the estimation process,
the plant and the NN operates in open-loop. Both of them (plant and NN)
have the same input vector

[
uα uβ

]�; uα and uβ are chirp functions with
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Fig. 7.7. DC generator coupled to the induction motor as a constant load torque

Fig. 7.8. Complete view of the DC generator coupled to the induction motor as a
constant load torque

200V of amplitude and incremental frequencies from 0 to 150Hz and 0 to
200Hz, respectively. The implementation is performed with a sampling time of
0.0005 s. The results of the real-time implementation are presented as follows:
Fig. 7.16 displays the estimation performance for the speed rotor; Figs. 7.17
and 7.18 present the estimation performance for the fluxes in phase α and
β, respectively. Figures 7.19 and 7.20 portray the estimation performance for
currents in phase α and β, respectively. Finally, the input signals are presented
in Fig. 7.21.

7.3 Neural Backstepping Control

This section describes the real time results of the control law designed in
Chap. 3, based on the backstepping technique approximated by a HONN, for
the discrete-time induction motor model with a sampling time of 0.0005 s as
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Fig. 7.9. Real time rotor displacement identification (plant signal in solid line and
neural signal in dashed line)

Fig. 7.10. Real time rotor speed identification (plant signal in solid line and neural
signal in dashed line)

follows: The tracking results for the rotor speed and for the flux magnitude
are presented in Figs. 7.22 and 7.23 for the induction motor working without
load, respectively; Fig. 7.24 shows the control law in phases α and β; Fig. 7.25
presents the tracking result for the rotor speed under the presence of a load.
Finally, Fig. 7.26 displays the tracking result under the presence of an external
disturbance.
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Fig. 7.11. Real time alpha flux identification (plant signal in solid line and neural
signal in dashed line)

Fig. 7.12. Real time rotor beta flux identification (plant signal in solid line and
neural signal in dashed line)
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Fig. 7.13. Real time rotor alpha current identification (plant signal in solid line
and neural signal in dashed line)

Fig. 7.14. Real time beta current speed identification (plant signal in solid line and
neural signal in dashed line)
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Fig. 7.15. Input signals applied during the identification process (uα(k) in solid
line and uβ(k) in dashed line)

Fig. 7.16. Real time rotor speed estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.17. Real time alpha flux estimation (plant signal in solid line and neural
signal in dashed line)

Fig. 7.18. Real time beta flux estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.19. Real time alpha current estimation (plant signal in solid line and neural
signal in dashed line)

Fig. 7.20. Real time beta current estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.21. Input signals applied during the state estimation process (uα(k) in solid
line and uβ(k) in dashed line)

Fig. 7.22. Speed tracking performance (plant signal in solid line and reference
signal in dashed line)
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Fig. 7.23. Flux magnitude tracking performance (plant signal in solid line and
reference signal in dashed line)

Fig. 7.24. Control law signals uα(k) (solid line) and uβ(k) (dashed line)
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Fig. 7.25. Speed tracking performance (plant signal in solid line and reference
signal in dashed line) with a constant load torque

Fig. 7.26. Speed tracking performance (plant signal in solid line and reference
signal in dashed line) under the presence of disturbances

7.4 Backstepping Control Using an RHONO

The real time results of the control law designed in Chap. 6, based on the
backstepping technique approximated by a HONN using an RHONO, for
the discrete-time induction motor model with a sampling time of 0.001 s are
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Fig. 7.27. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

Fig. 7.28. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

presented as follows: The tracking results for the rotor speed and for the flux
magnitude are presented in Figs. 7.27 and 7.28 for the induction motor work-
ing without load, respectively; Fig. 7.29 shows the control law in phases α
and β; Fig. 7.30 presents the tracking result for the rotor speed under the
presence of a load. Finally, Fig. 7.31 displays the tracking result under the
presence of an external disturbance.
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Fig. 7.29. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

Fig. 7.30. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with a constant load torque

7.5 Neural Block Control with Sliding Modes

The corresponding real time results of the control law designed in Chap. 4,
based on the block control and sliding modes techniques, for the discrete-time
induction motor with a sampling time of 0.001 s are presented as follows: The
tracking results for the rotor speed and for the flux magnitude are presented



7.5 Neural Block Control with Sliding Modes 89

Fig. 7.31. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

Fig. 7.32. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

in Figs. 7.32 and 7.33 for the induction motor working without load, respec-
tively; Fig. 7.34 shows the control law in phases α and β; Fig. 7.35 presents
the tracking result for the rotor speed with a constant load. Finally, Fig. 7.36
displays the tracking result under the presence of an external disturbance.
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Fig. 7.33. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

Fig. 7.34. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

7.6 Block Control with Sliding Modes Using an RHONO

This section presents the real time results of the control law designed in
Chap. 6 using the block control and sliding modes techniques, based on an
RHONO model, for the discrete-time induction motor model with a sampling
time of 0.001 s as follows: The tracking results for the rotor speed and for the
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Fig. 7.35. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with constant load torque

Fig. 7.36. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

flux magnitude are presented in Figs. 7.37 and 7.38 for the induction motor
working without load, respectively; Fig. 7.39 shows the control law in phases
α and β; Fig. 7.40 presents the tracking result for the rotor speed under the
presence of a load. Finally, Fig. 7.41 displays the tracking result under the
presence of an external disturbance.
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Fig. 7.37. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

Fig. 7.38. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

7.7 Conclusions

To end this chapter, a comparative analysis of the four proposed schemes of
control is included. In Table 7.1, the four schemes are compared with an induc-
tion motor operating without load and Table 7.2 establishes the comparison
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Fig. 7.39. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

Fig. 7.40. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with constant load torque

between the four schemes with the motor operating in presence of a constant
load.

For Tables 7.1 and 7.2, B means backstepping technique, BNO means
backstepping technique using an RHONO, BCNI means block control and
sliding modes techniques, and BCNO means block control and sliding modes
techniques using an RHONO.
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Fig. 7.41. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

Table 7.1. Comparison of the mean square error for the controllers without load

Control algorithm Mean square error

B 4.0130
BNO 8.4350
BCNI 1.9504
BCNO 4.5363

Table 7.2. Comparison of the mean square error for the controllers with load

Control algorithm Mean square error

B 3.9158
BNO 4.6576
BCNI 1.7160
BCNO 5.2302

According to the mean square error presented above, the scheme with
better performance are the ones based on the block control using the neural
identifier and backstepping techniques, on the other hand the scheme with
worse performance is the one based on the backstepping technique using the
neural observer. It is important to remark that all the schemes present an
excellent performance. However, the technique with the smaller computational
complexity is the one based on the backstepping technique, since it allows to
use a sampling time of 0.5ms, whereas the other three schemes requires 1ms.


