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Discrete-Time Output Trajectory Tracking

In this chapter, two schemes for trajectory tracking based on the backstepping
and the block control techniques, respectively, are proposed, using an RHONO.
This observer is based on a discrete-time recurrent high-order neural network
(RHONN), which estimates the state of the unknown plant dynamics. The
learning algorithm for the RHONN is based on an EKF. Once the neural
network structure is determined, the backstepping and the block control tech-
niques are used to develop the corresponding trajectory tracking controllers.
The respective stability analyzes, using the Lyapunov approach, for the neural
observer trained with the EKF and the controllers are included. Finally, the
applicability of the proposed design is illustrated by an example: output trajec-
tory tracking for an induction motor.

Nonlinear trajectory tracking is an important research subject ( [1, 3, 4, 6, 8],
and some references cited therein; mostly for continuous-time systems). In the
recent literature on adaptive and robust controls, numerous approaches have
been proposed for nonlinear trajectory tracking; among them the backstepping
and the block control strategies provide well-suited design methodologies [2].
For most nonlinear control designs, it is usually assumed that the whole system
state are measurable. In practice, however, it is very difficult to measure all
the state variables.

For this reason, nonlinear state estimation remains an important topic for
study in the nonlinear systems theory [9]. Recurrent neural-network observers
have also been proposed, and they do not require a precise plant model. This
technique is therefore attractive and actually has been successfully applied to
state estimation [9, 10].
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6.1 Backstepping Control Using an RHONO

In this section, an RHONO is used to estimate the plant state as in Sect. 5.1,
and based on the backstepping technique developed in Sect. 3.1 the trajectory
tracking problem is solved. The proposed control scheme is shown in Fig. 6.1.
The main result of this chapter is established in the following proposition

Proposition 6.1. Given a desired output trajectory yd, a dynamic system
with output y, and a neural network with output ŷ, the following inequality
holds [2]:

‖yd − y‖ ≤ ‖ŷ − y‖ + ‖yd − ŷ‖,
where yd−y is the system output tracking error, ŷ−y is the output estimation
error, and yd − ŷ is the output tracking error of the nonlinear observer.

Based on this proposition, it is possible to divide the tracking objective
into two parts [2]:

1. Minimization of ŷ − y, which can be achieved by the proposed online
nonlinear observer algorithm trained with the EKF as shown in Theorem
5.1.

2. Minimization of yd − ŷ. For this, a tracking algorithm is developed on the
basis of the nonlinear observer (5.3). This minimization is obtained by
designing the control law (3.5), as shown in Theorem 3.1.
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Fig. 6.1. Backstepping control scheme using an RHONO
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It is possible to establish Proposition 6.1 due to the separation princi-
ple for discrete-time nonlinear systems [7], as stated in Theorem 2.2 and
Corollary 2.1.

6.1.1 Application to an Induction Motor

In this section, the control objective is to achieve velocity and flux amplitude
tracking for the discrete-time induction motor model (3.33), using the back-
stepping technique control algorithm developed in Chap. 3 and the RHONO
(5.17), as is shown in Fig. 6.1.

Block-Strict-Feedback-Form (BSFF) for an Induction Motor

Let us define the following states:

x1(k) =
[

x̂1(k)
Ψ(k)

]
; x2(k) =

[
x̂4(k)
x̂5(k)

]
,

u(k) =
[

uα(k)
uβ(k)

]
; yd(k) =

[
ωd(k)
Ψd(k)

]
,

y(k) = x1(k), (6.1)

where Ψ(k) = x̂2
2(k) + x̂2

3(k) is the rotor flux magnitude, ωd(k) and Ψd(k) are
the reference signals. The control objective is to force the output y(k) to track
the reference yd(k). Using (6.1), the system (3.33) can be represented in the
BSFF consisting of two blocks

x1(k + 1) = f1(x1(k)) + g1(x1(k))x2(k) + d1(k),
x2(k + 1) = f2(x2(k)) + g2(x2(k))u(k),

where f1(x1(k)), g1(x1(k)), f2(x2(k)), and g2(x2(k)) are assumed to be
unknown and d1(k) is an unknown bounded disturbance; in this case, this
disturbance is the load torque. Now we use the HONN to approximate the
desired virtual controls and the ideal practical controls described as

α1∗(k) � x2(k) = ϕ1(x1(k), yd(k + 2)),
u∗(k) = ϕ2(x1(k), x2(k), α1∗(k)),
y(k) = x1(k).

The HONN proposed for this application is as follows:

α1(k) = w1�
z1(�1(k)),

u(k) = w2�
z2(�2(k)),
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with

�1(k) = [x1(k), yd(k + 2)]�,

�2(k) = [x1(k), x2(k), α1(k)]�.

The weights are updated using the EKF:

wi(k + 1) = wi(k) + ηiKi(k)ei(k), i = 1, 2,

Ki(k) = P i(k)Hi(k)
[
Ri(k) + Hi�(k)P i(k)Hi(k)

]−1

,

P i(k + 1) = P i(k) − Ki(k)Hi�(k)P i(k) + Qi(k),

with

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k),

The training is performed online, using a parallel configuration. All the NN
states are initialized in a random way. The associated covariances matrices are
initialized as diagonals, and the nonzero elements are P1(0) = P2(0) = 10,000;
Q1(0) = Q2(0) = 5,000; and R1(0) = R2(0) = 10,000, respectively.

Simulation Results

The simulations are performed for the system (3.33) using the following
parameters: Rs = 14 Ω; Ls = 400mH; M = 377 mH; Rr = 10.1 Ω; Lr =
412.8mH; np = 2; J = 0.01 Kgm2; T = 0.0001 s. To estimate the state
of system (3.33), we use the RHONO (5.3) with n = 5 trained with the
EKF (5.7).

The tracking results are presented in Figs. 6.2 and 6.3. There the tracking
performance can be verified for the two plant outputs. Figure 6.4 displays
the load torque applied as an external disturbance. Figure 6.5 portrays a
parametric variation introduced in the rotor resistance (Rr) as an increment.
Figure 6.6 shows the weights evolution. Figures 6.7 and 6.8 portray the fluxes
and their estimates.

6.2 Block Control Using an RHONO

In this section, an RHONO is used to estimate the plant state as in Sect. 5.1,
and based on the block control technique developed in Sect. 4.2 the trajectory
tracking problem is solved on the same basis of Proposition 6.1, dividing the
tracking objective into two parts, as in Sect. 6.1 [2]. The proposed control
scheme is shown in Fig. 6.9.
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Fig. 6.2. Tracking performance ω(k) (solid line), x̂1(k) (dash-dot line), and ωr(k)
(dashed line)

Fig. 6.3. Tracking performance Ψ(k) (solid line), x̂2
2(k)+ x̂2

3(k) (dash-dot line), and
Ψr(k) (dashed line)

6.2.1 Application to an Induction Motor

To this end we use the RHONO developed for the discrete-time induction
motor model, developed in Sect. 5.2, which is described as

x̂1(k + 1) = w11(k)S(x̂1(k)) + w12(k)S(x̂1)S(x̂3(k))x̂4(k)
+ w13(k)S(x̂1)S(x̂2(k))x̂5(k) + g1e(k),
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Fig. 6.4. Load torque TL(k)

Fig. 6.5. Rotor resistance variation (Rr)

x̂2(k + 1) = w21(k)S(x̂1(k))S(x̂3(k)) + w22(k)x̂5(k) + g2e(k),
x̂3(k + 1) = w31(k)S(x̂1(k))S(x̂2(k)) + w32(k)x̂4(k) + g3e(k),
x̂4(k + 1) = w41(k)S(x̂2(k)) + w42(k)S(x̂3(k)) + w43(k)S(x̂4(k))

+ w44(k)uα(k) + g4e(k),
x̂5(k + 1) = w51(k)S(x̂2(k)) + w52(k)S(x̂3(k)) + w53(k)S(x̂5(k))

+ w54(k)uβ(k) + g5e(k), (6.2)
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Fig. 6.6. Weights evolution

Fig. 6.7. Time evolution of ψα(k) (solid line) and its estimated x̂2(k) (dashed line)

where x̂1 estimates the angular speed ω; x̂2 and x̂3 estimates the fluxes ψα

and ψβ , respectively; x̂4 and x̂5 estimates the currents iα and iβ, respectively.
The training is performed online, using a parallel configuration. All the NN
states are initialized in a random way as well as the weights vectors. It is
important to remark that the initial conditions of the plant are completely
different from the initial conditions for the NN.
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Fig. 6.8. Time evolution of ψβ(k) (solid line) and its estimated x̂3(k) (dashed line)
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Fig. 6.9. Block control scheme using an RHONO

Comment 6.1. It is important to remark that as in Chap. 4, to apply the Block
control and the sliding modes techniques it is necessary to use the modified
EKF (4.5), to avoid the zero-crossing for w44(k) and w54(k). The proof for the
RHONN trained with the modified EKF is similar to the proof of Theorem 4.1.

Neural Block Controller Design

The control objective is to achieve velocity and flux amplitude tracking for
the discrete-time induction motor model (3.33), using the discrete-time block
control and sliding mode techniques control algorithm developed in Chap. 4.
Let us define the following states as
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x1(k) =
[

x̂1(k) − ωr(k)
Ψ(k) − Ψr(k)

]
, x2(k) =

[
x̂4(k)
x̂5(k)

]
, (6.3)

where Ψ(k) = x̂2
2(k) + x̂2

3(k) is the rotor flux identify magnitude, Ψr(k) and
ωr(k) are reference signals. Then

Ψ(k + 1) = w2
21(k)S2(x̂1(k))S2(x̂3(k)) + w2

22(k)x̂2
5(k) + w2

32(k)x̂2
4(k)

+ w2
31(k)S2(x̂1(k))S2(x̂2(k))

+ 2w21(k)S(x̂1(k))S(x̂3(k))w22(k)x̂5(k)
+ 2w31(k)S(x̂1(k))S(x̂2(k))w32(k)x̂4(k)
+ 2w22(k)x̂5(k)g2e(k) + (g2e(k))2

+ 2w21(k)S(x̂1(k))S(x̂3(k))g2e(k) + (g3e(k))2

+ 2w32(k)x̂4(k)g3e(k) + 2w31(k)S(x̂1(k))S(x̂2(k))g3e(k).

Using (6.3), (6.2) can be represented in the block control form consisting
of two blocks

x1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k),
x2(k + 1) = f2(x1(k), x2(k)) + B2(k)u(k), (6.4)

with u(k) =
[
uα(k) uβ(k)

]�
and

f1(x1(k)) =
[

w11(k)S(x1(k)) + g1e(k) − ωr(k + 1)
f11(k)

]
,

f11(k) = w2
21(k)S2(x̂1(k))S2(x̂3(k)) + w2

31(k)S2(x̂1(k))S2(x̂2(k))
+ 2w22(k)x̂5(k)g2e(k) + (g2e(k))2

+ 2w21(k)S(x̂1(k))S(x̂3(k))g2e(k)
+ (g3e(k))2 + 2w32(k)x̂4(k)g3e(k)
+ (g3e(k))2 + 2w32(k)x̂4(k)g3e(k)
+ w2I2

m(k) − Ψr(k + 1),

Im(k) =
√

w2
22(k)x̂2

4(k) + w2
32(k)x̂2

5(k),

B1(x1(k)) =
[

b11(k) b12(k)
b21(k) b22(k)

]
,

b11(k) = w12(k)S(x̂1(k))S(x̂3(k)),
b12(k) = w13(k)S(x̂1(k))S(x̂2(k)),
b21(k) = 2w31(k)w32(k)S(x̂1(k))S(x̂2(k)),
b22(k) = 2w21(k)w22(k)S(x̂1(k))S(x̂2(k)),

f2(x2(k)) =
[

f21(k)
f22(k)

]
, B2(k) =

[
w44(k) 0

0 w54(k)

]
,

f21(k) = w41(k)S(x̂2(k)) + w42(k)S(x̂3(k)) + w43(k)S(x̂4(k)),
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f22(k) = w51(k)S(x̂2(k)) + w52(k)S(x̂3(k)) + w53(k)S(x̂5(k)).

Applying the block control technique, we define the following vector
z1(k) = x1(k). Then

z1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k) = Kz1(k), (6.5)

where K = diag{k1,k2}, with |ki| < 1 (i = 1, 2); then the desired value x2d(k)
of x2(k) is calculated from (6.5) as

x2d(k) = B−1
1 (x1(k))[−f1(x1(k)) + Kz1(k)].

It is desired that x2(k) = x2d(k). Hence, second new error vector is defined
as

z2(k) = x2(k) − x2d(k).

Then
z2(k + 1) = f3(x1(k)) + B2(k)u(k),

with

f3(x1(k)) = f2(x2(k)) − B−1
1 (x1(k + 1))[−f1(x1(k + 1)) + Kz1(k + 1)].

Let us select the manifold for the sliding mode as SD(k) = z2(k). To design
a control law, a discrete-time sliding mode version is implemented as

u(k) =

{
ueq(k) if ‖ueq(k)‖ ≤ u0,

u0
ueq(k)

‖ueq(k)‖ if ‖ueq(k)‖ > u0,

Fig. 6.10. Tracking performance ω(k) (solid line), x̂1(k) (dash-dot line) and ωr(k)
(dashed line)
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where ueq(k) = −B−1
2 (k)f3(x1(k)) is calculated from SD(k) = 0 and u0 is

the control resources that bound the control. Because of the time varying of
RHONO weights, we need to guarantee that B1(•) and B2(•) are not singular;
then it is necessary to avoid the zero-crossing of the weights w13(k), w22(k),
w32(k), w44(k), and w54(k), which are the so-called controllability weights [2].
It is important to remark that in this application only the weights w44(k) and
w54(k) tend to cross zero.

Fig. 6.11. Tracking performance Ψ(k) (solid line), x̂2
2(k) + x̂2

3(k) (dash-dot line),
and Ψr(k) (dashed line)

Fig. 6.12. Load torque TL (k)
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Simulation Results

Simulations are performed for the system (3.33), using the following param-
eters: Rs = 14 Ω; Ls = 400mH; M = 377mH; Rr = 10.1 Ω; Lr = 412.8mH;
np = 2; J = 0.01 Kgm2; T = 0.001 s. To estimate the state of system (3.33)
we use the RHONO (5.3) with n = 5 trained with the EKF (5.7).

The tracking results are presented in Figs. 6.10 and 6.11. There the track-
ing and state estimation performance can be verified for the two plant outputs.

Fig. 6.13. Rotor resistance variation (Rr)

Fig. 6.14. Weights evolution
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Fig. 6.15. Time evolution of ψα(k) (solid line) and its estimated x̂2(k) (dashed
line)

Fig. 6.16. Time evolution of ψβ(k) (solid line) and its estimated x̂3(k) (dashed
line)

Figure 6.12 displays the load torque applied as an external disturbance.
Figure 6.13 presents the parametric variation introduced in the rotor resis-
tance (Rr) as a variation of 1 Ω s−1. Figure 6.14 shows the weights evolution.
Figures 6.15 and 6.16 portray the fluxes and their estimates.
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6.3 Conclusions

In this chapter, the discrete-time output trajectory tracking is solved via the
design of two neural controllers based on the backstepping and the block con-
trol techniques, respectively. First, a nonlinear observer is designed based on a
RHONN trained with a modified EKF-based algorithm, where the training of
the nonlinear observer is performed online in a parallel configuration. Then,
based on the RHONO, the backstepping and the block control techniques are
designed, respectively. Simulation results for an induction motor are included
to illustrate the applicability of the proposed control schemes.


