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Discrete-Time Adaptive Neural Backstepping

This chapter deals with adaptive tracking for a class of MIMO discrete-time
nonlinear systems in presence of bounded disturbances. In this chapter, a high
order neural network structure is used to approrimate a control law designed
by the backstepping technique, applied to a block strict feedback form (BSFF).
It also presents the respective stability analysis, on the basis of the Lyapunov
approach, for the whole scheme including the extended Kalman filter (EKF)-
based NN learning algorithm. Applicability of this scheme is illustrated via
simulation for a discrete-time nonlinear model of an electric induction motor.

In recent adaptive and robust control literature, numerous approaches have
been proposed for the design of nonlinear control systems. Among these, adap-
tive backstepping constitutes a major design methodology [6,9]. The idea
behind backstepping design is that some appropriate functions of state vari-
ables are selected recursively as virtual control inputs for lower dimension
subsystems of the overall system [12]. Each backstepping stage results in a new
virtual control designs from the preceding design stages. When the procedure
ends, a feedback design for the true control input results, which achieves the
original design objective. The backstepping technique provides a systematic
framework for the design of tracking and regulation strategies, suitable for a
large class of state feedback linearizable nonlinear systems [1,9-11].

3.1 Neural Backstepping Controller Design

The model of many practical nonlinear systems can be expressed in (or trans-
formed into) a special state-space form named block strict feedback form
(BSFF) [9] as follows:

o'(k+1) = fi(@' (k) + ' (&' (k)™ (k) + d'(k),  i=1,2,...,r =1,
a'(k+1) = fr(x(k)) + g"(x(k)) u(k) + d" (k),
y(k) = ' (k), (3.1)
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where x(k) = [xlT(k),...,er(k)]T are the state variables, and x'(k) =

[xlT,xQT,...,miT]T, xt € R, r > 2, r is the number of blocks, u(k) €
R™ is the system input, y(k) € R™ is the system output; for simplicity of
notation through the remaining of this chapter d‘(k) = d'(z(k),k) € R™
is the bounded unknown disturbance vector, then there exists a constant d;
such that ||d;(k)|| < d;, for 0 < k < oo, fi(e) and ¢’ (e) are unknown smooth
nonlinear functions.

If we consider the original system (3.1) as a one-step ahead predictor, then
we can transform it into an equivalent maximum r-step ahead one, which can
predict the future states x'(k +r), 22(k+7—1),...,2"(k + 1); the causal-
ity contradiction is avoided when the controller is constructed based on the
maximum r-step ahead prediction by backstepping [3,4]:

s k47) = fl(i"l(k)) +gl(x1(l<;)) 22(k+r—1)+d (k+7),

[

2"k +2) = fr_ ("' k) + g (2" (k) 2" (k+ 1)+ d T (k+2),
o (k+1) = f (x(k)) + g"(x(k)) u(k) + d"(k),
y(k) = 2 (k), (3.2)

where fi (e) and g’ () are unknown functions of f?(z(k)) and g'(z*(k)),
respectively. For convenience of analysis, let us define (i =1,...,7 — 1)

ai(k))
(i (k)
(X (k)),
" (X(K)).

Then, system (3.2) can be written as (for details please see Appendiz A)
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SHk+r) = f1(8) + g" (B)a2(k+ 7 — 1)+ d (k+7),

Tk +2) = £ k) g (k) (k4 1)+ d7 (k + 2),
2" (k+1) = [ (k) + g"(k)u(k) + " (k),
y(k) = a1 (k). (3.3)

The objective is to design a control u(k) to force the system output y(k) to
track a desired trajectory yq (k). Once (3.3) is defined, we apply the well known
backstepping technique [9]. For system (3.2), we can define the desired virtual
controls (a?*(k), j =1,...,r — 1) and the ideal practical control (u*(k)) as
follows:
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a(k) £ 2®(k) = o' (¢ (k), ya (k + 1)),
a? (k) £ 2°(k) = *(a? (k), o' (k)),
arfl*(k) L .’Er(k) _ <,0T71 (.’Eril(k), 7'72*(]6))’
u* (k) = ¢" (x(k), a1 (k).
y(k) = ' (k), (3-4)
where ©7(j = 1,...,r) are nonlinear smooth functions. It is obvious that the

desired virtual controls a'* (k) and the ideal control u* (k) will drive the output
y(k) to track the desired signal yq(k) only if the exact system model is known
and there are no unknown disturbances. However, in practical applications,
these two conditions cannot be satisfied. In the following, neural networks
will be used to approximate the desired virtual controls, as well as the desired
practical controls, when the conditions established above are not satisfied. As
in [4], we construct the virtual and practical controls via embedded backstep-
ping without the causality contradiction [3]. Let us approximate the virtual
controls and practical control by the following HONN (i =1,...,r —1):

T

ol(k) =w' 2'(o'(k)), i=1,...,r—1,

u(k) = w" 2"(e"(k)), (3.5)
with
o' (k) = [ (k). ya(k +1)]
o'(k) = [#'(k), ' (K)] ", i=2,...7—1,
o (k) = [w(k),a” " (k)] ',
where w’ € RL7 are the estimates of ideal constant weights w’*(j = 1,...,7)

and 27 € RLi*" | Define the estimation error as
@ (k) = w’* —w? (k). (3.6)

Using the ideal constant weights and from (2.11) it follows that there exists a
HONN, which approximate the virtual controls and practical control with a
minimal error, defined as
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Then the corresponding weights updating laws are defined by

w (k4 1) = w? (k) + 7 K7 (k)e? (k), (3.8)
with
K9(k) = PI(k)H? (K)M7 " (k),
M (k) = RI(k) + H’ (k)P?(k)H (k),
Pi(k+1) = PI(k) — K (k)H (k)P? (k) + Q7 (k),
Hi(k) = [SZJJ((IZ))] : (3.9)
and
e’ (k) = v (k) — 07 (k), (3.10)

where v’ (k) € R™ is the desired signal and v*(k) € R™ is the HONN function
approximation defined, respectively, as follows

v (k) = ya(k),
v (k) = 2*(k),

o (k) = 2" (k) (3.11)

and

o"(k) = ;f*l(k), (3.12)

e"(k) = a" (k) — a" 1 (k). (3.13)

The proposed control scheme is shown in Fig.3.1. Besides, it is worth to
include the following comments:

Comment 3.1. The NN approximation error vector €, is bounded. This is a
well known neural network property [2].
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Reference va (k)
System
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N\

Neural u(k) Unknown y(k)
Controller Plant

w<k>\

Fig. 3.1. Neural backstepping control scheme

EKF

Comment 3.2. The gain matrix of the EKF (K (k)) is bounded by a constant
K >0, that is, | K (k)| < K.

Before proceeding to demonstrate the main result of this chapter, we need
to establish the following two lemmas.

Lemma 3.1. The dynamics of the tracking error (3.10) can be formulated as
dk+1)=el(k)+Aed(k), (1<j<r), (3.14)
with Aed (k) < —~ied (k) and o/ = max HHjT (k)n) K7 (k)H .

Proof. Using (3.10) and considering that v(k) do not depend on the HONN
parameters, we obtain

e (k) a5 (k)

owi (k) owi (k) (3:.15)
Let us approximate (3.15) by
A EE ORI
Ae'(k) = [811;1(19)} Aw' (k). (3.16)
Substituting (3.9) and (3.15) in (3.16) yields
Aéi(k) = —H" (k)yn'K*(k)e (k). (3.17)
Define » o o
~* = max HHZ (k)anz(k)H
then we have ‘ o
Ae'(k) < —v'e' (k). (3.18)
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Considering (3.1)—(3.13), we establish the main result of this chapter in
the following theorem.

Theorem 3.1. For the system (3.1), the HONN (3.5) trained with the EKF-
based algorithm (3.9) to approzimate the control law (3.4) ensures that the
tracking error (3.13) is semiglobally uniformly ultimately bounded (SGUUB);
moreover, the HONN weights remain bounded.

Proof. For the first block of system (3.1), with the virtual control al*(k)
approximated by the HONN (al(k) = wl' 2l (gl(k))) and e!(k) defined as
in (3.13), consider the Lyapunov function candidate

lT

Vik) =e' (k)e' (k) + @ (k)@ (k), (3.19)

whose first difference is

AV E) = ViE+1) = Vi(k),

—e (k+Del(k+ 1)+ @ (k+ D@ (k+1)  (3.20)
—et (k)el (k) — @' (k)@ (k).
From (3.6) and (3.8), then
@' (k+1) = wt (k) — ' K (k)e' (k). (3.21)
Let us define
[ (k) — " K (k)e! (k)] [@ (k) — ' K (R)e! (k)]
=@t (k)@ (k) — 2@ (k)"K' (k)e' (k)
+ (KN (k)e") T ' K (k)e (k). (3.22)
From (3.13), then
et(k+1) = el (k) + Ael (k),
(k4 Del(k+1) =e! (k)e'(k) + et (k)Ael(k)
+Aet (k)el (k) + Ae'' (k)Ael(k),
el (k4 Del(k+1) — et (k)el(k) = ¢! (k)Ael (k) + Ae' (k)el (k)
+ Aet’ (k)Ael(k),

where Ae!(k) is the error difference. Substituting (3.21) and (3.22) in (3.20)
results in

AVY(E) = ¢! (k) Aet (k) + Ae' (k)el (k) + Ae' (k) Ael (k)

—2at (k) K (k)et (k)
+ ('K (k)el (k) Tt K (k)el (k). (3.23)
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From Lemma 3.1, substituting (3.18), we obtain

AVI(E) < =29 (k)e (k) + v et (k)el (k) — 2@ (k)n K (k)e (k)
+ (' K (k)e' (k) Tn' K (k)e (k),

< =2t [l (R)||* + 41 et )7 = 2 K ) ([t (k) [ (k)|

+ [l KR | (k) |

)

< -2 B+ [l k)
~ 2 K B [Jw* — b e )]

+ Il K k)12 [l (R (3.24)

with 4! = max HHlT(k)anl(k)H > 1. There is ' > 0 such that ¥' > 0 with

ot =2t = I KR,
then
AV'(k) <0, once |e'(k)|| > k", (3.25)

with k! defined as

2

(37 + 1 K )11 [ebya
2[ln* K (k)| ‘

Therefore, the solution of (3.14) and (3.21) is stable, which leads to the
SGUUB of e!(k) and w! (k).

For the following ith (i = 2,...,r — 1) equation of the system (3.1), with
the virtual control a®* (k) approximated by the HONN ai(k) = wi' 2i(oi(k))
and e’(k) defined in (3.13), consider the Lyapunov function candidate

I<61>

T

Vik)=¢' (k)e'(k)+ @ (k) (k), (3.26)

whose first difference is

1
Dei(k+1)+ @ (k+ 1)@ (k+1) (3.27)
—e' (k)e'(k) — @' (k)@ (k).

From (3.6) and (3.8), then

@ (k+1) = @i (k) — n Ki(k)e (k). (3.28)
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Let us define
[ (k) = K (R)e' ()] [@ (k) — ' K (ke (K)]
=@ (W)@ (k) = 20" (k) K* (R)e' (k)
+ (P K (R)ei (k) niKi(k)e' (k). (3.29)
From (3.13), then
e'(k+1) = e'(k) + Ae'(k),
e (k+1)ei(k+1)=¢" (k)e'(k) + e (k)Ae' (k)
+Aet (k)el (k)
+ A6 (k)Aei(k),
e (k+1)ei(k+1)— e (k)el(k) =e' (k)TAei(k) + Aet (k)el (k)
+Aet (k)Ae' (k),

where Ae’(k) is the error difference. Substituting (3.28) and (3.29) in (3.27)
results in

AVi(k) = €' (k)Ae' (k) + Aet (k)ei(k) + Ae' (k)Aet (k)
—2~”<k> Z‘Ki(k) (k)
+ (K (k)e (k)T 'K (ke (). (3.30)

From Lemma 3.1, substituting (3.18), we obtain

AVi(k) < =27 (k) (k) +~" et (k)el(k) — 2@ (k)n'K (k) (k)
+ (K (k) (k) ' K (e’ (k),
<2 W+ @I 2 [l K ) | [ ) | e
+ [ K ®)) [l
< =29 [l B) |+ el (k) ||
=2 K (&) || [winas — w*] [l (%)
+ |l K R)||* [l (k)| (3.31)

with ¢ = max HHT (k)nim(k)”. There is 7' > 0 such that 9% > 0 with

W =21 ’Yiz _ H,r,sz(k_)’ 2

)

then »
AV*(k) <0, once He’(k)” > K (3.32)



3.2 Applications 19

with ! defined as

(5 + [ K R) [

K > S
2{[n K (k)|
Therefore, the solution of (3.14) and (3.28) is stable, which leads to the
SGUUB of ¢'(k) and w' (k). O

3.2 Applications

In this section, we apply the above developed scheme (Fig.3.1) to control a
three-phase induction motor, which is one of the most used actuators for indus-
trial applications due to its reliability, ruggedness, and relatively low cost. The
control of an induction motor is challenging, since its dynamics is described by
multivariable, coupled, and highly nonlinear system [13,15]. Early works on
control of induction motors was focused on the field oriented control (FOC) [7],
exact input—output linearization, adaptive input—output linearization, and
direct torque control (DTC) ([7] and references therein). However, most of
those works were developed stabilized controllers for continuous-time model
of the motor. In [13] a discrete-time model is proposed, as well as a control
algorithm, assuming that the parameters and load torque of the motor model
are known. Moreover, all these controllers are designed based on the physi-
cal model of the motor and results in sensitive control with respect to plant
parameters variations. To this end, we consider the control problem assum-
ing that some of the plant parameters as well as external disturbances (load
torque) are unknown.

3.2.1 Motor Model

The six-order discrete-time induction motor model in the stator fixed reference
frame (a, 3), under the assumptions of equal mutual inductances and linear
magnetic circuit, is given by [13]

wk+1) =w(k) + Z (1 —a) x M (P (k)yp* (k) — i (k)y" (k)

-(5) mw,

(k4 1) = cos (npf(k + 1)) p1(k) — sin (np6 (k + 1)) p2(k),
GO0+ 1) = sin (npf(Fk + 1)) pa (k) + cos (mp(Fk + 1)) pa (k)

“(k+1) = ¢%k) + Tu“(k) +di(k),

NQ

PP(k4+1) = P (k) +  uP(k) + do(k),

Q
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Ty, (k)
J

O(k+1)=0(k)+w(k)T — T2

w1 O a0 - 0 w), 333

«
with

p1(k) = a (cos (¢(k)) v (k) + sin (¢(k)) ¥ (k))
+b (cos (¢(k)) i*(k) + sin ((k)) i’ (k)),

p2(k) = a (cos (¢(k)) ¥ (k) —sin (6(k)) v” (k)
+b (cos (6(k)) i (k) — sin (6(k)) i (k)),

©* (k) = i%(k) + aBTY™ (k) + npSTw(k)p™ (k) — vTi%(k),
o7 (k) =i’ (k) + aBTY" (k) + npfTw(k)y’ (k) — vTi° (k),

. _ _ R. _ MZ?R, R, _ M? _ M _
with b= (1 —a)M, o= ", v = or2 T o o=Li—77 ,B=,,a=
—aT Mnyp

e s o=yt where Lg, L., and M are the stator, rotor, and mutual
inductance, respectively; Rs and R, are the stator and rotor resistances,
respectively; n, is the number of pole pairs; ¢* and i? represents the cur-
rents in the o and 3 phases, respectively; 1® and 1)” represents the fluxes in
the o and (3 phases, respectively; and 6 is the rotor angular displacement.

3.2.2 Block-Strict-Feedback-Form (BSFF) for an Induction Motor

Let us define the following states:

=[5 - [58].
ww = [50] = [520].
y(k) =z (), (3.34)

where ¥(k) = 1" (k) + ¢ (k) is the rotor flux magnitude, wq(k) and Wy (k)
are the reference signals. The objective of control is to drive the output y(k)
to track the reference yq (k). Using (3.34) the system (3.33) can be represented
in the BSFF consisting of two blocks

al(k+1) = f (2! (k) +g' (2 (k) 2 (k) + d' (k),
2?(k+1) = f2(a%(k)) + g° (2% (K)) u(k),
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where f1(z'(k)), g'(z1(k)), f2(z2(k)), and ga(z2(k)) are assumed to be
unknown and d; (k) is the unknown bounded disturbances; in this case this
disturbance is the load torque. Now we use the HONN to approximate the
desired virtual controls and the ideal practical controls described as

o (k) £ 22 (k) = @' (' (), yalk +2),
u*(k) = ¢* (z' (k), 2% (k), @' (k)),
y(k) = 2 (k).
The HONN proposed for this application is as follows:
ol (k) = w' 2" (o' (),
u(k) = w?' 2 (o*(k)) ,
with
o (k) = [t (k) ya (k+2)]
(k) = o (k), 2 (k). @' (k)]

The weights are updated using the EKF as follows:

T

w'(k +1) = w'(k) + ' K'(k)e'(k)  (i=1,2),
. . . . . . . -1
K'(k) = P(k)H' (k) [R(k) + H' (k)P () H' ()],
Pi(k+1) = Pi(k) = K'(k)H' (k)P (k) + Q' (F).
with
e! (k) = ya(k) — y(k),
(k) = 2%(k) — ot (k).
The training is performed online using a series—parallel configuration. All the
NN states are initialized in a random way. The associated covariances matrices
are initialized as diagonals, and the nonzero elements are P; (0) = P, (0) =
10000; @1 (0) = Q2 (0) = 5000, and R; (0) = Ro (0) = 10000, respectively.

The simulation is performing under the presence of the disturbances d! (k) as
shown in Fig. 3.3 and parametric variations (Fig.3.4).

3.2.3 Reduced Order Nonlinear Observer

The last control algorithm works with the full state measurement assump-
tion [13]. However, the rotor fluxes measurement is a difficult task. Here, a
reduced order nonlinear observer is designed for fluxes with rotor speed and
current measurements only. The flux dynamics in (3.33) can be written as

U(k+1) = aG(k)P (k) + (1 — a) MG(k)I(k),
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with
| cos(npTw(k)) —sin(np,Tw(k))
G(k) = [sin(inW(k)) cos (npTw(k)) |’

i (k)

The proposed observer for the system (3.33) assumes the speed and current
available for measurements:

U(k+1) = aGk)P(k) + (1 — a) MG(k)L(k).

(k) = {ia(’“)] . (3.35)

Let us define N
eV (k) = (k) — U(k).
Then
eV (k+1) = aG(k)e? (k).

A Lyapunov candidate function to proof stability of e (k) is
V(k)=e” (k)e” (k), (3.36)
with
AV(E)=V(k+1) —V(k)=e? (k—1)e%(k+1)— e’ (k)e”(k),
=" (K)(a*GT (k)G(k) — 1) " (k).

where

a’GT(k)G(k) -1 <0. (3.37)
By (3.35), GT(k)G(k) = I then the condition (3.37) is reduced to

a? 0 10

[o az} - {01} <0,
where a < 1, a = e~ *T. This condition is satisfied due to the fact that T
and « are always positive. So the increment of the Lyapunov function (3.36)
is always negative, implying that the tracking error tends asymptotically to

zero. Now we use 1® and ¥? to implement the control algorithm developed
above.

3.2.4 Simulation Results

The simulation is performed using the system (3.33) with the parameters
given in Table 3.1.

The tracking results are presented in Figs. 3.2 and 3.3. There the tracking
performance can be verified for the two plant outputs. Figure 3.4 displays
the load torque applied as an external disturbance. Figure 3.5 portrays a
parametric variation introduced in the rotor resistance (R,) as an increment.
Figure 3.6 shows the weight evolution. Figures 3.7 and 3.8 display the control
law signals. Figures 3.9 and 3.10 portray the fluxes and their estimates.
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Table 3.1. Induction motor parameters

Parameter Value Description
Rs 140 Stator resistance
L 400 mH Stator inductance
M 377mH Mutual inductance
R; 10.1 2 Rotor resistance
L. 412.8 mH Rotor inductance
np 2 Number of pole pairs
J 0.01 Kgm? Moment of inertia
Wn 168.5rads ! Nominal speed
Tr, 1.1Nm Nominal load
T 0.0001 s Sampling period
80 - T T - T : - . .

rad’s

B0y —700 200 300 400 500 600 700 800 00 1000
t (ms)

Fig. 3.2. Tracking performance w(k) (solid line) and wq(k) (dashed line)

Comment 3.3. The purpose of this chapter is to improve the tracking perfor-
mance for a class of MIMO discrete-time nonlinear systems, by means of the
use of the EKF as the neural network learning algorithm; this approach is
validated by the simulation results presented above.

Comment 3.4. In this chapter, the causality contradiction is avoided due to
the fact that the controller is constructed based on the maximum r-step ahead
predictor by the backstepping technique.

Comment 8.5. In literature there are few results that present both external
disturbances (load torque) and parametric changes (resistance variations) as
in this book.
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08

06}

04

02}

- il L i I i L L i
0 100 200 300 400 500 600 700 800 900 1000
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Fig. 3.3. Tracking performance ¥(k) (solid line) and Wq(k) (dashed line)
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050 100 200 300 400 :(?33; 600 700 800 900 1000

Fig. 3.4. Load torque T1.(k)
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Fig. 3.7. Control law signal u” (k)
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Fig. 3.9. Time evolution of ¢*(k) and its estimate (real in solid line and estimated

in dashed line)

beta flux
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Fig. 3.10. Time evolution of 1/” (k) and its estimate (real in solid line and estimated

in dashed line)
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3.3 Conclusions

This chapter has presented the application of HONN to solve the tracking
problem for a class of MIMO discrete-time nonlinear systems, using the back-
stepping technique. The training of the neural network is performed online
using an extended Kalman filter. The boundness of the tracking error is estab-
lished on the basis of the Lyapunov approach. The HONN training with the
learning algorithm based in EKF presents good performance even in presence
of larger bounded disturbances such as load torque variations and change
on the plant parameters (resistance change). Based on the proposed control
scheme, a robust neural controller is designed for an induction motor.



