
3

Discrete-Time Adaptive Neural Backstepping

This chapter deals with adaptive tracking for a class of MIMO discrete-time
nonlinear systems in presence of bounded disturbances. In this chapter, a high
order neural network structure is used to approximate a control law designed
by the backstepping technique, applied to a block strict feedback form (BSFF).
It also presents the respective stability analysis, on the basis of the Lyapunov
approach, for the whole scheme including the extended Kalman filter (EKF)-
based NN learning algorithm. Applicability of this scheme is illustrated via
simulation for a discrete-time nonlinear model of an electric induction motor.

In recent adaptive and robust control literature, numerous approaches have
been proposed for the design of nonlinear control systems. Among these, adap-
tive backstepping constitutes a major design methodology [6, 9]. The idea
behind backstepping design is that some appropriate functions of state vari-
ables are selected recursively as virtual control inputs for lower dimension
subsystems of the overall system [12]. Each backstepping stage results in a new
virtual control designs from the preceding design stages. When the procedure
ends, a feedback design for the true control input results, which achieves the
original design objective. The backstepping technique provides a systematic
framework for the design of tracking and regulation strategies, suitable for a
large class of state feedback linearizable nonlinear systems [1, 9–11].

3.1 Neural Backstepping Controller Design

The model of many practical nonlinear systems can be expressed in (or trans-
formed into) a special state-space form named block strict feedback form
(BSFF) [9] as follows:

xi(k + 1) = f i(xi(k)) + gi(xi(k))xi+1(k) + di(k), i = 1, 2, . . . , r − 1,

xr(k + 1) = f r(x(k)) + gr(x(k)) u(k) + dr(k),
y(k) = x1(k), (3.1)

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 11–28 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

12 3 Discrete-Time Adaptive Neural Backstepping

where x(k) =
[
x1�(k), . . . , xr�(k)

]� are the state variables, and xi(k) =[
x1�, x2�, . . . , xi�]�

, xi ∈ �ni , r ≥ 2, r is the number of blocks, u(k) ∈
�m is the system input, y(k) ∈ �m is the system output; for simplicity of
notation through the remaining of this chapter di(k) = di(x(k), k) ∈ �ni

is the bounded unknown disturbance vector, then there exists a constant di

such that ‖di(k)‖ ≤ di, for 0 < k < ∞, f i (•) and gi (•) are unknown smooth
nonlinear functions.

If we consider the original system (3.1) as a one-step ahead predictor, then
we can transform it into an equivalent maximum r-step ahead one, which can
predict the future states x1(k + r) , x2(k + r − 1) , . . . , xr(k + 1); the causal-
ity contradiction is avoided when the controller is constructed based on the
maximum r-step ahead prediction by backstepping [3, 4]:

x1(k + r) = f
1(

x̄1(k)
)

+ g1
(
x1(k)

)
x2(k + r − 1) + d1(k + r),

...
xr−1(k + 2) = f

r−1(
xr−1(k)

)
+ gr−1

(
xr−1(k)

)
xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(x(k)) + gr(x(k)) u(k) + dr(k),

y(k) = x1(k), (3.2)

where f
i
(•) and gi (•) are unknown functions of f i

(
xi(k)

)
and gi(xi(k)),

respectively. For convenience of analysis, let us define (i = 1, . . . , r − 1)

f
i
(k) � f

i
(xi(k)),

gi(k) � gi (xi(k)),
f

r
(k) � f

r
(X(k)),

gr(k) � gr (X(k)).

Then, system (3.2) can be written as (for details please see Appendix A)

x1(k + r) = f
1
(k) + g1(k)x2(k + r − 1) + d1(k + r),

...
xr−1 (k + 2) = f

r−1
(k) + gr−1(k)xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(k) + gr(k)u(k) + dr(k),

y(k) = x1(k). (3.3)

The objective is to design a control u(k) to force the system output y(k) to
track a desired trajectory yd(k). Once (3.3) is defined, we apply the well known
backstepping technique [9]. For system (3.2), we can define the desired virtual
controls (αj∗(k), j = 1, . . . , r − 1) and the ideal practical control (u∗(k)) as
follows:

3.1 Neural Backstepping Controller Design 13

α1∗(k) � x2(k) = ϕ1
(
x1(k), yd (k + r)

)
,

α2∗(k) � x3(k) = ϕ2
(
x2(k), α1∗(k)

)
,

...
αr−1∗(k) � xr(k) = ϕr−1

(
xr−1(k), αr−2∗(k)

)
,

u∗(k) = ϕr
(
x(k), αr−1∗(k)

)
,

y(k) = x1(k), (3.4)

where ϕj(j = 1, . . . , r) are nonlinear smooth functions. It is obvious that the
desired virtual controls αi∗(k) and the ideal control u∗(k) will drive the output
y(k) to track the desired signal yd(k) only if the exact system model is known
and there are no unknown disturbances. However, in practical applications,
these two conditions cannot be satisfied. In the following, neural networks
will be used to approximate the desired virtual controls, as well as the desired
practical controls, when the conditions established above are not satisfied. As
in [4], we construct the virtual and practical controls via embedded backstep-
ping without the causality contradiction [3]. Let us approximate the virtual
controls and practical control by the following HONN (i = 1, . . . , r − 1):

αi(k) = wi�zi(�i(k)), i = 1, . . . , r − 1,

u(k) = wr�
zr(�r(k)), (3.5)

with

�1(k) =
[
x1(k), yd(k + r)

]�
,

�i(k) =
[
xi(k), αi−1(k)

]�
, i = 2, . . . , r − 1,

�r(k) =
[
x(k), αr−1(k)

]�
,

where wj ∈ �Lj are the estimates of ideal constant weights wj∗(j = 1, . . . , r)
and zj ∈ �Lj×nj . Define the estimation error as

w̃j(k) = wj∗ − wj(k). (3.6)

Using the ideal constant weights and from (2.11) it follows that there exists a
HONN, which approximate the virtual controls and practical control with a
minimal error, defined as

αi(k) = wi∗�zi(�i(k)),

u(k) = wr∗�
zr(�r(k)) + εzi , i = 1, . . . , r − 1. (3.7)

14 3 Discrete-Time Adaptive Neural Backstepping

Then the corresponding weights updating laws are defined by

wj(k + 1) = wj(k) + ηjKj(k)ej(k), (3.8)

with

Kj(k) = P j(k)Hj(k)M j−1
(k),

M j(k) = Rj(k) + Hj�(k)P j(k)Hj(k),

P j(k + 1) = P j(k) − Kj(k)Hj�(k)P j(k) + Qj(k),

Hj(k) =
[

∂υ̂j(k)
∂wj(k)

]
, (3.9)

and

ej(k) = υj(k) − υ̂j(k), (3.10)

where υi(k) ∈ �ni is the desired signal and υ̂i(k) ∈ �ni is the HONN function
approximation defined, respectively, as follows

υ1(k) = yd(k),
υ2(k) = x2(k),

...
υr(k) = xr(k) (3.11)

and

υ̂1(k) = y(k),
υ̂2(k) = α1(k),

...
υ̂r(k) = αr−1(k), (3.12)

ej(k) denotes the error at each step, as

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k),

...
er(k) = xr(k) − αr−1(k). (3.13)

The proposed control scheme is shown in Fig. 3.1. Besides, it is worth to
include the following comments:

Comment 3.1. The NN approximation error vector εz is bounded. This is a
well known neural network property [2].

3.1 Neural Backstepping Controller Design 15

Reference
System

Unknown
Plant

Neural
Controller

EKF

()y k

()w k

+
-

()dy k

()u k

Reference
System

Unknown
Plant

Neural
Controller

EKF

()y k

()w k

+
-

()dy k

()u k

Fig. 3.1. Neural backstepping control scheme

Comment 3.2. The gain matrix of the EKF (K(k)) is bounded by a constant
K > 0, that is, ‖K(k)‖ ≤ K.

Before proceeding to demonstrate the main result of this chapter, we need
to establish the following two lemmas.

Lemma 3.1. The dynamics of the tracking error (3.10) can be formulated as

ej(k + 1) = ej(k) + ∆ej(k), (1 ≤ j ≤ r) , (3.14)

with ∆ej(k) ≤ −γjej(k) and γj = max
∥∥∥Hj�(k)ηjKj(k)

∥∥∥ .

Proof. Using (3.10) and considering that υ(k) do not depend on the HONN
parameters, we obtain

∂ei(k)
∂wi(k)

= − ∂υ̂(k)
∂wi(k)

. (3.15)

Let us approximate (3.15) by

∆ei(k) =
[

∂ei(k)
∂wi(k)

]�
∆wi(k). (3.16)

Substituting (3.9) and (3.15) in (3.16) yields

∆ei(k) = −Hi�(k)ηiKi(k)ei(k). (3.17)

Define
γi = max

∥∥∥Hi�(k)ηiKi(k)
∥∥∥

then we have
∆ei(k) ≤ −γiei(k). (3.18)

�

16 3 Discrete-Time Adaptive Neural Backstepping

Considering (3.1)–(3.13), we establish the main result of this chapter in
the following theorem.

Theorem 3.1. For the system (3.1), the HONN (3.5) trained with the EKF-
based algorithm (3.9) to approximate the control law (3.4) ensures that the
tracking error (3.13) is semiglobally uniformly ultimately bounded (SGUUB);
moreover, the HONN weights remain bounded.

Proof. For the first block of system (3.1), with the virtual control α1∗(k)
approximated by the HONN

(
α1(k) = w1�

z1
(
�1(k)

))
and e1(k) defined as

in (3.13), consider the Lyapunov function candidate

V 1(k) = e1�
(k)e1(k) + w̃1�

(k)w̃1(k), (3.19)

whose first difference is

∆V 1(k) = V 1(k + 1) − V 1(k),

= e1�
(k + 1)e1(k + 1) + w̃1�

(k + 1)w̃1(k + 1) (3.20)

− e1�
(k)e1(k) − w̃1�

(k)w̃1(k).

From (3.6) and (3.8), then

w̃1(k + 1) = w̃1(k) − η1K1(k)e1(k). (3.21)

Let us define [
w̃1(k) − η1K1(k)e1(k)

]� [
w̃1(k) − η1K1(k)e1(k)

]
= w̃1�

(k)w̃1(k) − 2w̃1�
(k)η1K1(k)e1(k)

+
(
η1K1(k)e1

)�
η1K1(k)e1(k). (3.22)

From (3.13), then

e1(k + 1) = e1(k) + ∆e1(k),

e1�
(k + 1)e1(k + 1) = e1�

(k)e1(k) + e1�
(k)∆e1(k)

+ ∆e1�
(k)e1(k) + ∆e1�

(k)∆e1(k),

e1�
(k + 1)e1(k + 1) − e1�

(k)e1(k) = e1�
(k)∆e1(k) + ∆e1�

(k)e1(k)

+ ∆e1�
(k)∆e1(k),

where ∆e1(k) is the error difference. Substituting (3.21) and (3.22) in (3.20)
results in

∆V 1(k) = e1�
(k)∆e1(k) + ∆e1�

(k)e1(k) + ∆e1�
(k)∆e1(k)

− 2w̃1�
(k)η1K1(k)e1(k)

+ (η1K1(k)e1(k))�η1K1(k)e1(k). (3.23)

3.1 Neural Backstepping Controller Design 17

From Lemma 3.1, substituting (3.18), we obtain

∆V 1(k) ≤ −2γ1e1�
(k)e1(k) + γ12

e1�
(k)e1(k) − 2w̃1�

(k)η1K1(k)e1(k)
+ (η1K1(k)e1(k))�η1K1(k)e1(k),

≤ −2γ1
∥∥e1(k)

∥∥2
+ γ12 ∥∥e1(k)

∥∥2 − 2‖η1K1(k)‖ ∥∥w̃1(k)
∥∥ ∥∥e1(k)

∥∥
+ ‖η1K1(k)‖2

∥∥e1(k)
∥∥2

,

≤ −2γ1
∥∥e1(k)

∥∥2
+ γ12 ∥∥e1(k)

∥∥2

− 2‖η1K1(k)‖ ∥∥w∗ − w1
max

∥∥ ∥∥e1(k)
∥∥

+ ‖η1K1(k)‖2
∥∥e1(k)

∥∥2
, (3.24)

with γ1 = max
∥∥∥H1�

(k)η1K1(k)
∥∥∥ > 1. There is η1 > 0 such that ϑ1 > 0 with

ϑ1 = 2γ1 − γ12 − ‖η1K1(k)‖2,

then
∆V 1(k) ≤ 0, once

∥∥e1(k)
∥∥ > κ1, (3.25)

with κ1 defined as

κ1 >

(
γ12

+ ‖η1K1(k)‖2
)∥∥e1

max

∥∥
2‖η1K1(k)‖ .

Therefore, the solution of (3.14) and (3.21) is stable, which leads to the
SGUUB of e1(k) and w̃1(k).

For the following ith (i = 2, . . . , r − 1) equation of the system (3.1), with
the virtual control αi∗(k) approximated by the HONN αi(k) = wi�zi(�i(k))
and ei(k) defined in (3.13), consider the Lyapunov function candidate

V i(k) = ei�(k)ei(k) + w̃i�(k)w̃i(k), (3.26)

whose first difference is

∆V i(k) = V i(k + 1) − V i(k),

= ei�(k + 1)ei(k + 1) + w̃i�(k + 1)w̃i(k + 1) (3.27)

− ei�(k)ei(k) − w̃i�(k)w̃i(k).

From (3.6) and (3.8), then

w̃i(k + 1) = w̃i(k) − ηiKi(k)ei(k). (3.28)

18 3 Discrete-Time Adaptive Neural Backstepping

Let us define [
w̃i(k) − ηiKi(k)ei(k)

]� [
w̃i(k) − ηiKi(k)ei(k)

]
= w̃i�(k)w̃i(k) − 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k). (3.29)

From (3.13), then

ei(k + 1) = ei(k) + ∆ei(k),

ei�(k + 1)ei(k + 1) = ei�(k)ei(k) + ei�(k)∆ei(k)

+ ∆ei�(k)ei(k)

+ ∆ei�(k)∆ei(k),

ei�(k + 1)ei(k + 1) − ei�(k)ei(k) = ei�(k)∆ei(k) + ∆ei�(k)ei(k)

+ ∆ei�(k)∆ei(k),

where ∆ei(k) is the error difference. Substituting (3.28) and (3.29) in (3.27)
results in

∆V i(k) = ei�(k)∆ei(k) + ∆ei�(k)ei(k) + ∆ei�(k)∆ei(k)

− 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k). (3.30)

From Lemma 3.1, substituting (3.18) , we obtain

∆V i(k) ≤ −2γiei�(k)ei(k) + γi2ei�(k)ei(k) − 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k),

≤ −2γi
∥∥ei(k)

∥∥2
+ γi2

∥∥ei(k)
∥∥2 − 2

∥∥ηiKi(k)
∥∥ ∥∥w̃i(k)

∥∥ ∥∥ei(k)
∥∥

+
∥∥ηiKi(k)

∥∥2 ∥∥ei(k)
∥∥2

,

≤ −2γi
∥∥ei(k)

∥∥2
+ γi2

∥∥ei(k)
∥∥2

− 2
∥∥ηiKi(k)

∥∥ ∥∥wi
max − w∗∥∥ ∥∥ei(k)

∥∥
+

∥∥ηiKi(k)
∥∥2 ∥∥ei(k)

∥∥2
. (3.31)

with γi = max
∥∥∥Hi�(k)ηiKi(k)

∥∥∥. There is ηi > 0 such that ϑi > 0 with

ϑi = 2γi − γi2 − ∥∥ηiKi(k)
∥∥2

,

then
∆V i(k) ≤ 0, once

∥∥ei(k)
∥∥ > κi, (3.32)

3.2 Applications 19

with κi defined as

κi >

(
γi2 +

∥∥ηiKi(k)
∥∥2

)∥∥ei
max

∥∥
2 ‖ηiKi(k)‖ .

Therefore, the solution of (3.14) and (3.28) is stable, which leads to the
SGUUB of ei(k) and w̃i(k). �

3.2 Applications

In this section, we apply the above developed scheme (Fig. 3.1) to control a
three-phase induction motor, which is one of the most used actuators for indus-
trial applications due to its reliability, ruggedness, and relatively low cost. The
control of an induction motor is challenging, since its dynamics is described by
multivariable, coupled, and highly nonlinear system [13, 15]. Early works on
control of induction motors was focused on the field oriented control (FOC) [7],
exact input–output linearization, adaptive input–output linearization, and
direct torque control (DTC) ([7] and references therein). However, most of
those works were developed stabilized controllers for continuous-time model
of the motor. In [13] a discrete-time model is proposed, as well as a control
algorithm, assuming that the parameters and load torque of the motor model
are known. Moreover, all these controllers are designed based on the physi-
cal model of the motor and results in sensitive control with respect to plant
parameters variations. To this end, we consider the control problem assum-
ing that some of the plant parameters as well as external disturbances (load
torque) are unknown.

3.2.1 Motor Model

The six-order discrete-time induction motor model in the stator fixed reference
frame (α, β), under the assumptions of equal mutual inductances and linear
magnetic circuit, is given by [13]

ω(k + 1) = ω(k) +
µ

α
(1 − α) × M

(
iβ(k)ψα(k) − iα(k)ψβ(k)

)
−

(
T

J

)
TL(k),

ψα(k + 1) = cos (npθ(k + 1)) ρ1(k) − sin (npθ (k + 1)) ρ2(k),
ψβ(k + 1) = sin (npθ(k + 1)) ρ1(k) + cos (npθ(k + 1)) ρ2(k),

iα(k + 1) = ϕα(k) +
T

σ
uα(k) + d1(k),

iβ(k + 1) = ϕβ(k) +
T

σ
uβ(k) + d2(k),

20 3 Discrete-Time Adaptive Neural Backstepping

θ(k + 1) = θ(k) + ω(k)T − TL(k)
J

T 2

+
µ

α

[
T − (1 − a)

α

]
M

(
iβ(k)ψα(k) − iα(k)ψβ(k)

)
, (3.33)

with

ρ1(k) = a
(
cos (φ(k)) ψα(k) + sin (φ(k)) ψβ(k)

)
+ b

(
cos (φ(k)) iα(k) + sin (φ(k)) iβ(k)

)
,

ρ2(k) = a
(
cos (φ(k)) ψα(k) − sin (φ(k)) ψβ(k)

)
+ b

(
cos (φ(k)) iα(k) − sin (φ(k)) iβ(k)

)
,

ϕα(k) = iα(k) + αβTψα(k) + npβTω(k)ψα(k) − γT iα(k),
ϕβ(k) = iβ(k) + αβTψβ(k) + npβTω(k)ψβ(k) − γT iβ(k),
φ(k) = npθ(k),

with b = (1 − a)M, α = Rr
Lr

, γ = M2Rr
σL2

r
+ Rs

σ , σ = Ls − M2

Lr
, β = M

σLr
, a =

e−αT , µ = Mnp
JLr

, where Ls, Lr, and M are the stator, rotor, and mutual
inductance, respectively; Rs and Rr are the stator and rotor resistances,
respectively; np is the number of pole pairs; iα and iβ represents the cur-
rents in the α and β phases, respectively; ψα and ψβ represents the fluxes in
the α and β phases, respectively; and θ is the rotor angular displacement.

3.2.2 Block-Strict-Feedback-Form (BSFF) for an Induction Motor

Let us define the following states:

x1(k) =
[

ω(k)
Ψ(k)

]
; x2(k) =

[
iα(k)
iβ(k)

]
,

u(k) =
[

uα(k)
uβ(k)

]
; yd(k) =

[
ωd(k)
Ψd(k)

]
,

y(k) = x1(k), (3.34)

where Ψ(k) = ψα2
(k) + ψβ2

(k) is the rotor flux magnitude, ωd(k) and Ψd(k)
are the reference signals. The objective of control is to drive the output y(k)
to track the reference yd(k). Using (3.34) the system (3.33) can be represented
in the BSFF consisting of two blocks

x1(k + 1) = f1
(
x1(k)

)
+ g1

(
x1(k)

)
x2(k) + d1(k),

x2(k + 1) = f2
(
x2(k)

)
+ g2

(
x2(k)

)
u(k),

3.2 Applications 21

where f1
(
x1(k)

)
, g1(x1(k)), f2(x2(k)), and g2(x2(k)) are assumed to be

unknown and d1(k) is the unknown bounded disturbances; in this case this
disturbance is the load torque. Now we use the HONN to approximate the
desired virtual controls and the ideal practical controls described as

α1∗(k) � x2(k) = ϕ1
(
x1(k), yd(k + 2)

)
,

u∗(k) = ϕ2
(
x1(k), x2(k), α1∗(k)

)
,

y(k) = x1(k).

The HONN proposed for this application is as follows:

α1(k) = w1�
z1

(
�1(k)

)
,

u(k) = w2�
z2

(
�2(k)

)
,

with

�1(k) =
[
x1(k), yd (k + 2)

]�
,

�2(k) =
[
x1(k), x2(k), α1(k)

]�
.

The weights are updated using the EKF as follows:

wi(k + 1) = wi(k) + ηiKi(k)ei(k) (i = 1, 2),

Ki(k) = P i(k)Hi(k)
[
Ri(k) + Hi�(k)P i(k)Hi(k)

]−1

,

P i(k + 1) = P i(k) − Ki(k)Hi�(k)P i(k) + Qi(k),

with

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k) .

The training is performed online using a series–parallel configuration. All the
NN states are initialized in a random way. The associated covariances matrices
are initialized as diagonals, and the nonzero elements are P1 (0) = P2 (0) =
10000; Q1 (0) = Q2 (0) = 5000, and R1 (0) = R2 (0) = 10000, respectively.
The simulation is performing under the presence of the disturbances d1(k) as
shown in Fig. 3.3 and parametric variations (Fig. 3.4).

3.2.3 Reduced Order Nonlinear Observer

The last control algorithm works with the full state measurement assump-
tion [13]. However, the rotor fluxes measurement is a difficult task. Here, a
reduced order nonlinear observer is designed for fluxes with rotor speed and
current measurements only. The flux dynamics in (3.33) can be written as

Ψ(k + 1) = aG(k)Ψ(k) + (1 − a)MG(k)I(k),

22 3 Discrete-Time Adaptive Neural Backstepping

with

G(k) =
[

cos(npTω(k)) −sin(npTω(k))
sin(npTω(k)) cos (npTω(k))

]
,

I(k) =
[

iα(k)
iβ(k)

]
. (3.35)

The proposed observer for the system (3.33) assumes the speed and current
available for measurements:

Ψ̂(k + 1) = aG(k)Ψ̂(k) + (1 − a)MG(k)I(k).

Let us define
eΨ (k) = Ψ(k) − Ψ̂(k).

Then
eΨ (k + 1) = aG(k)eΨ (k).

A Lyapunov candidate function to proof stability of eΨ (k) is

V (k) = eΨ�
(k)eΨ (k), (3.36)

with

∆V (k) = V (k + 1) − V (k) = eΨ�
(k − 1) eΨ (k + 1) − eΨ�

(k)eΨ (k),

= eΨ�
(k)

(
a2G�(k)G(k) − I

)
eΨ (k),

where
a2G�(k)G(k) − I < 0. (3.37)

By (3.35) , G�(k)G(k) = I then the condition (3.37) is reduced to[
a2 0
0 a2

]
−

[
1 0
0 1

]
< 0,

where a < 1, a = e−αT . This condition is satisfied due to the fact that T
and α are always positive. So the increment of the Lyapunov function (3.36)
is always negative, implying that the tracking error tends asymptotically to
zero. Now we use ψ̂α and ψ̂β to implement the control algorithm developed
above.

3.2.4 Simulation Results

The simulation is performed using the system (3.33) with the parameters
given in Table 3.1.

The tracking results are presented in Figs. 3.2 and 3.3. There the tracking
performance can be verified for the two plant outputs. Figure 3.4 displays
the load torque applied as an external disturbance. Figure 3.5 portrays a
parametric variation introduced in the rotor resistance (Rr) as an increment.
Figure 3.6 shows the weight evolution. Figures 3.7 and 3.8 display the control
law signals. Figures 3.9 and 3.10 portray the fluxes and their estimates.

3.2 Applications 23

Table 3.1. Induction motor parameters

Parameter Value Description

Rs 14Ω Stator resistance
Ls 400 mH Stator inductance
M 377 mH Mutual inductance
Rr 10.1 Ω Rotor resistance
Lr 412.8 mH Rotor inductance
np 2 Number of pole pairs
J 0.01 Kg m2 Moment of inertia
ωn 168.5 rad s−1 Nominal speed
TLn 1.1 Nm Nominal load
T 0.0001 s Sampling period

Fig. 3.2. Tracking performance ω(k) (solid line) and ωd(k) (dashed line)

Comment 3.3. The purpose of this chapter is to improve the tracking perfor-
mance for a class of MIMO discrete-time nonlinear systems, by means of the
use of the EKF as the neural network learning algorithm; this approach is
validated by the simulation results presented above.

Comment 3.4. In this chapter, the causality contradiction is avoided due to
the fact that the controller is constructed based on the maximum r-step ahead
predictor by the backstepping technique.

Comment 3.5. In literature there are few results that present both external
disturbances (load torque) and parametric changes (resistance variations) as
in this book.

24 3 Discrete-Time Adaptive Neural Backstepping

Fig. 3.3. Tracking performance Ψ(k) (solid line) and Ψd(k) (dashed line)

Fig. 3.4. Load torque TL(k)

3.2 Applications 25

Fig. 3.5. Rotor resistance variation (Rr)

Fig. 3.6. Weights evolution

26 3 Discrete-Time Adaptive Neural Backstepping

Fig. 3.7. Control law signal uα(k)

Fig. 3.8. Control law signal uβ(k)

3.2 Applications 27

Fig. 3.9. Time evolution of ψα(k) and its estimate (real in solid line and estimated
in dashed line)

Fig. 3.10. Time evolution of ψβ(k) and its estimate (real in solid line and estimated
in dashed line)

28 3 Discrete-Time Adaptive Neural Backstepping

3.3 Conclusions

This chapter has presented the application of HONN to solve the tracking
problem for a class of MIMO discrete-time nonlinear systems, using the back-
stepping technique. The training of the neural network is performed online
using an extended Kalman filter. The boundness of the tracking error is estab-
lished on the basis of the Lyapunov approach. The HONN training with the
learning algorithm based in EKF presents good performance even in presence
of larger bounded disturbances such as load torque variations and change
on the plant parameters (resistance change). Based on the proposed control
scheme, a robust neural controller is designed for an induction motor.

