
2

Mathematical Preliminaries

In this chapter, important mathematical preliminaries, required in future
chapters, are presented.

2.1 Stability Definitions

Consider an MIMO nonlinear system:

x(k + 1) = F (x(k), u(k)) (2.1)
y(k) = h(x(k)), (2.2)

where x ∈ �n, u ∈ �m, and F ∈ �n ×�m → �n is nonlinear function.

Definition 2.1. The system (2.1) is said to be forced or to have input. In
contrast, the system described by an equation without explicit presence of an
input u, that is,

x(k + 1) = F (x(k))

is said to be unforced. It can be obtained after selecting the input u as a
feedback function of the state

u(k) = ξ(x(k)). (2.3)

Such substitution eliminates u:

x(k + 1) = F (x(k), ξ(x(k))), (2.4)

and yields an unforced system (2.4) [9].

Definition 2.2. The solution of (2.1)–(2.3) is semiglobally uniformly ulti-
mately bounded (SGUUB), if for any Ω, a compact subset of �n and all
x(k0) ∈ Ω, there exists an ε > 0 and a number N (ε, x(k0)) such that
‖x(k)‖ < ε for all k ≥ k0 + N .
E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 5–10 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



6 2 Mathematical Preliminaries

In other words, the solution of (2.1) is said to be SGUUB if, for any a priori
given (arbitrarily large) bounded set Ω and any a priori given (arbitrarily
small) set Ω0, which contains (0, 0) as an interior point, there exists a control
(2.3) such that every trajectory of the closed loop system starting from Ω
enters the set Ω0 = {x(k)| ‖x(k)‖ < ε} in a finite time and remains in it
thereafter.

Theorem 2.1. Let V (x(k)) be a Lyapunov function for a discrete-time system
(2.1), which satisfies the following properties:

γ1(‖x(k)‖) ≤ V (x(k)) ≤ γ2 (‖x(k)‖),
V (x(k + 1)) − V (x(k)) = ∆V (x(k))

≤ −γ3 (‖x(k)‖) + γ3 (ζ),

where ζ is a positive constant, γ1 (•) and γ2 (•) are strictly increasing func-
tions, and γ3 (•) is a continuous, nondecreasing function. Thus if

∆V (x) < 0 for ‖x(k)‖ > ζ,

then x(k) is uniformly ultimately bounded, i.e., there is a time instant kT,
such that ‖x(k)‖ < ζ,∀k < kT.

Definition 2.3. A subset S ∈ �n is bounded if there exists r > 0 such that
‖x‖ ≤ r for all x ∈ S [9].

Theorem 2.2 (Separation Principle). [12]. The asymptotic stabilization
problem of the system (2.1)–(2.2), via estimated state feedback

u(k) = ξ (x̂(k)),
x̂ (k + 1) = F (x̂(k), u(k), y(k)) (2.5)

is solvable if and only if the system (2.1)–(2.2) is asymptotically stabilizable
and exponentially detectable.

Corollary 2.1. [12]. There is an exponential observer for a Lyapunov stable
discrete-time nonlinear system (2.1)–(2.2) with u = 0 if and only if the linear
approximation

x(k + 1) = A(k)x(k) + Bu(k),
y(k) = Cx(k), (2.6)

A =
∂F

∂x

∣∣∣∣
x=0

, B =
∂F

∂u

∣∣∣∣
x=0

, C =
∂h

∂x

∣∣∣∣
x=0

of the system (2.1)–(2.2) is detectable.



2.2 Discrete-Time High Order Neural Networks 7

2.2 Discrete-Time High Order Neural Networks

The use of multilayer neural networks is well known for pattern recognition
and for modeling of static systems. The NN is trained to learn an input–output
map. Theoretical works have proven that, even with just one hidden layer,
a NN can uniformly approximate any continuous function over a compact
domain, provided that the NN has a sufficient number of synaptic connections.

For control tasks, extensions of the first-order Hopfield model called
recurrent high order neural networks (RHONN), which present more interac-
tions among the neurons, are proposed in [13, 16]. Additionally, the RHONN
model is very flexible and allows to incorporate to the neural model a priori
information about the system structure.

Consider the following discrete-time RHONN:

x̂i(k + 1) = w�
i zi(x̂(k), υ(k)), i = 1, · · · , n, (2.7)

where x̂i (i = 1, 2, · · · , n) is the state of the ith neuron, Li is the respec-
tive number of high order connections, {I1, I2, · · · , ILi} is a collection of
nonordered subsets of {1, 2, · · · , n + m}, n is the state dimension, m is the
number of external inputs, wi (i = 1, 2, · · · , n) is the respective online adapted
weight vector, and zi(x̂(k), �(k)) is given by

zi(x(k), �(k)) =

⎡⎢⎢⎢⎣
zi1

zi2
...

ziLi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
∏

j∈I1
ξ

dij(1)
ij∏

j∈I2
ξ

dij(2)
ij

...∏
j∈ILi

ξ
dij(Li)
ij

⎤⎥⎥⎥⎥⎥⎦ , (2.8)

with dji(k) being a nonnegative integers, and ξi defined as follows:

ξi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξi1
...

ξi1

ξin+1

...
ξin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)
�1

...
�m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

In (2.9), � = [�1, �2, . . . , �m]� is the input vector to the neural network,
and S(•) is defined by

S(ς) =
1

1 + exp(−βς)
, β > 0, (2.10)

where ς is any real value variable.



8 2 Mathematical Preliminaries

Consider the problem to approximate the general discrete-time nonlinear
system (2.1), by the following discrete-time RHONN series–parallel represen-
tation [16]:

xi (k + 1) = w∗�
i zi(x(k), �(k)) + εzi , i = 1, · · · , n, (2.11)

where xi is the ith plant state, εzi is a bounded approximation error, which can
be reduced by increasing the number of the adjustable weights [16]. Assume
that there exists ideal weight vector w∗

i such that ‖εzi‖ can be minimized on
a compact set Ωzi ⊂ �Li . The ideal weight vector w∗

i is an artificial quantity
required for analytical purpose [16]. In general, it is assumed that this vector
exists and is constant but unknown. Let us define its estimate as wi and the
estimation error as

w̃i(k) = w∗
i − wi(k) . (2.12)

The estimate wi is used for stability analysis, which will be discussed later.
Since w∗

i is constant, then w̃i(k + 1)− w̃i(k) = wi(k)− wi(k+1), ∀k ∈ 0∪ Z
+.

From (2.7) three possible models can be derived:

• Parallel model

x̂i(k + 1) = w�
i zi(x̂(k), �(k)), i = 1, · · · , n (2.13)

• Series–Parallel model

x̂i(k + 1) = w�
i zi(x(k), �(k)), i = 1, · · · , n (2.14)

• Feedforward model (HONN)

x̂i(k) = w�
i zi(�(k)), i = 1, · · · , n, (2.15)

where x̂ is the NN state vector, x is the plant state vector, and � is the
input vector to NN.

2.3 The EKF Training Algorithm

The best well-known training approach for recurrent neural networks (RNN)
is the back propagation through time learning [21]. However, it is a first order
gradient descent method and hence its learning speed could be very slow
[10]. Recently, extended Kalman filter (EKF) based algorithms have been
introduced to train neural networks [1,3]. With the EKF based algorithm, the
learning convergence is improved [10]. The EKF training of neural networks,
both feedforward and recurrent ones, has proven to be reliable and practical
for many applications over the past 10 years [3].

It is known that Kalman filtering (KF) estimates the state of a linear
system with additive state and output white noises [7,20]. For KF-based neural



2.4 Neural Control 9

network training, the network weights become the states to be estimated. In
this case, the error between the neural network output and the measured plant
output can be considered as additive white noise. Because of the fact that the
neural network mapping is nonlinear, an EKF-type is required (see [18] and
references therein).

The training goal is to find the optimal weight values, which minimize the
prediction error. The EKF-based training algorithm is described by [7]

Ki(k) = Pi(k)Hi(k)
[
Ri(k) + H�

i (k)Pi(k)Hi(k)
]−1

,

wi(k + 1) = wi(k) + ηiKi(k) [y(k) − ŷ(k)] , (2.16)
Pi(k + 1) = Pi(k) − Ki(k)H�

i (k)Pi(k) + Qi(k),

where Pi ∈ �Li×Li is the prediction error associated covariance matrix, wi ∈
�Li is the weight (state) vector, Li is the total number of neural network
weights, y ∈ �m is the measured output vector, ŷ ∈ �m

is the network
output, ηi is a design parameter, Ki ∈ �Li×m

is the Kalman gain matrix,
Qi ∈ �Li×Li is the state noise associated covariance matrix, Ri ∈ �m×m is
the measurement noise associated covariance matrix, Hi ∈ �Li×m

is a matrix
for which each entry (Hij ) is the derivative of one of the neural network
output, (ŷ), with respect to one neural network weight, (w

ij
), as follows:

H
ij

(k) =
[

∂ŷ(k)
∂w

ij
(k)

]
wi(k)=ŵi(k+1)

, i = 1, . . . , n and j = 1, . . . , Li. (2.17)

Usually Pi, Qi, and Ri are initialized as diagonal matrices, with entries
Pi(0) , Qi(0), and Ri(0), respectively. It is important to note that Hi(k),
Ki(k), and Pi(k) for the EKF are bounded [20]. Therefore, there exist
constants Hi > 0, Ki > 0, and Pi > 0 such that

‖Hi(k)‖ ≤ Hi,

‖Ki(k)‖ ≤ Ki, (2.18)
‖Pi(k)‖ ≤ Pi.

Comment 2.1. The measurement and process noises are typically character-
ized as zero-mean, white noises with covariances given by δk,jRi(k) and
δk,jQi(k), respectively, with δk,j a Kronecker delta function (cero for k 
= l
and 1 for k = l) [8]. To simplify the notation in this book, the covariances
will be represented by their respective associated matrices, Ri(k) and Qi(k)
for the noises and Pi(k) for the prediction error.

2.4 Neural Control

To control a system is to force it to behave in a desired way. How to express this
“desired behavior” depends primarily on the task to be solved, but the dynam-
ics of the system, the actuators, the measurement equipment, the available



10 2 Mathematical Preliminaries

computational power, etc. influence the formulation of the desired behavior
as well. Although the desired behavior obviously is very dependent on the
application, the need to express it in mathematical terms suited for practi-
cal design of control systems seriously limits the means of expression. At the
higher level, it is customary to distinguish two basic types of problems [14]:

Regulation problem. The fundamental desired behavior is to keep the out-
put of the system at a constant level regardless of the disturbances acting on
the system.

Tracking problem. The fundamental desired behavior is to force the system
output to track a reference trajectory closely.

Neural networks (NN) have become a well-established methodology as
exemplified by their applications to identification and control of general non-
linear and complex systems [6]; the use of high order neural networks for
modeling and learning has recently increased [19]. Specifically, the problem
of designing robust neural controllers for nonlinear systems with uncertain-
ties and disturbances, which guarantees stability and trajectory tracking, has
received an increasing attention lately.

Using neural networks, control algorithms can be developed to be robust
to uncertainties and modeling errors. The most used NN structures are Feed-
forward networks and Recurrent ones [19]. The last type offers a better suited
tool to model and control nonlinear systems [15].

The neural control problem can be approached in two different ways:
Direct control system design. “Direct” means that the controller is a neural

network. A neural network controller is often advantageous when the real-
time platform available prohibits complicated solutions. The implementation
is simple while the design and tuning are difficult. With a few exceptions this
class of designs is model-based in the sense that a model of the system is
required in order to design the controller.

Indirect control system design. This class of designs is always model-based.
The idea is to use a neural network to model the system to be controlled; this
model is then employed in a more “conventional” controller design. The model
is typically trained in advanced, but the controller is designed online. As it
will appear, the indirect design is very flexible; thus it is the most appropriate
for most of the common control problems.

The increasing use of NN to modeling and control is in great part due to
the following features that makes them particularly attractive [4]:

• NN are universal approximators. It has been proven that any continuous
nonlinear function can be approximated arbitrarily well over a compact
set by a multilayer neural network, which consist of one or more hidden
layers [2].

• Learning and adaptation. The intelligence of neural networks comes from
their generalization ability with respect to unknown data. Online adapta-
tion of the weights is possible.


