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Preface

Neural networks have become a well-established methodology as exemplified
by their applications to identification and control of general nonlinear and
complex systems; the use of high order neural networks for modeling and
learning has recently increased.

Using neural networks, control algorithms can be developed to be robust to
uncertainties and modeling errors. The most used NN structures are Feedfor-
ward networks and Recurrent networks. The latter type offers a better suited
tool to model and control of nonlinear systems.

There exist different training algorithms for neural networks, which, how-
ever, normally encounter some technical problems such as local minima, slow
learning, and high sensitivity to initial conditions, among others. As a viable
alternative, new training algorithms, for example, those based on Kalman
filtering, have been proposed.

There already exists publications about trajectory tracking using neural
networks; however, most of those works were developed for continuous-time
systems. On the other hand, while extensive literature is available for linear
discrete-time control system, nonlinear discrete-time control design techniques
have not been discussed to the same degree. Besides, discrete-time neural
networks are better fitted for real-time implementations.

This book presents a solution for the trajectory tracking problem of
unknown nonlinear systems based on four schemes. For the first one, a
direct design method is consider, the well known backstepping one, under
the assumption of the complete access to the state; the second one consid-
ers an indirect method, solved with the block control and the sliding mode
techniques, under the same assumption. For the third scheme, the backstep-
ping technique is reconsidered, including a neural observer; and finally the
block control and the sliding mode techniques are used again, with a neural
observer. All the proposed schemes are developed in discrete-time and include
the respective stability analyses, using the Lyapunov approach, for each one
of the proposed schemes.



VIII Preface

To this end the real-time implementation for the schemes proposed in
this book are presented, validating the theoretical results, using a three phase
induction motor benchmark. The control of an induction motor is challenging,
since its dynamics is described by multivariable, coupled, and highly nonlinear
system; besides, it is one of the most used actuators for industrial applications
due to its reliability, ruggedness, and relatively low cost.

The material presented in this book basically reports research results
obtained during the previous three years at the Automatic Control Laboratory
of CINVESTAV-IPN, Guadalajara campus. We thank CONACYT-Mexico
for the financial support during this research through Projects 46069Y and
57801Y.

We are particulary grateful to a number of people for carefully reviewing
draft material for this book, and for discussions which in one way or another
have influenced parts of the text: Ofelia Begovich, Juan M. Ramirez, Eduardo
Bayro, Marco Perez, Jagannathan Sarangapani, Guanrong Chen and Frank
Lewis.

We also thank Juan Quiñones, Jorge Rivera, Adrian Navarro, Ernesto
Amezcua, Cristobal Sanroman, Jose Jimenez, Victor Preciado, and Hec-
tor Becerra for their collaboration in order to implement the real time
experiments.
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1

Introduction

1.1 Preliminaries

The ultimate goal of control engineering is to implement an automatic sys-
tem that could operate with increasing independence from human actions in
an unstructured and uncertain environment. Such a system may be named
autonomous or intelligent. It would need only to be presented with a goal and
would achieve its objective by learning through continuous interaction with
its environment through feedback about its behavior [13].

One class of models that has the capability to implement this learning is
the artificial neural networks. Indeed, the neural morphology of the nervous
system is quite complex to analyze. Nevertheless, simplified analogies have
been developed, which could be used for engineering applications. Based on
these simplified understandings, artificial neural networks are built [6].

An artificial neural network is a massively parallel distributed processor,
inspired from biological neural networks, which can store experimental knowl-
edge and makes it available for use. An artificial neural network consists of
a finite number of neurons (structural element), which are interconnected
to each other. It has some similarities with the brain, such as knowledge is
acquired through a learning process and interneuron connectivity named as
synaptic weights are used to store this knowledge, among others [13].

The research on neural networks, since its reborn in the early 1980s of the
twentieth century, promotes a great interest principally due to the capability of
static neural networks to approximate arbitrarily well any continuous function.
Besides in recent years the use of recurrent neural networks has been increased;
their process is described by differential equations for continuous time or by
differential equations for discrete time [6].

Using neural networks, control algorithms can be developed to be robust to
uncertainties and modeling errors. The most used neural network structures
are Feedforward networks and Recurrent ones [1, 14]. The last type offers a
better suited tool to model and control nonlinear systems [11].

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 1–4 (2008)
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2 1 Introduction

There exist different training algorithms for neural networks, which,
however, normally encounter some technical problems such as local minima,
slow learning, and high sensitivity to initial conditions, among others. As
a viable alternative, new training algorithms, for example, those based on
Kalman filtering, have been proposed [5,6,15]. Because of the fact that train-
ing a neural network typically results in a nonlinear problem, the Extended
Kalman filter (EKF) is a common tool to use, instead of a linear Kalman
filter [6].

There already exists publications about trajectory tracking using neural
networks [3, 7–12, 14]; in most of them, the design methodology is based on
the Lyapunov approach. However, most of those works were developed for
continuous-time systems. On the other hand, while extensive literature is avail-
able for linear discrete-time control system, nonlinear discrete-time control
design techniques have not been discussed to the same degree. For nonlinear
discrete-time systems, the control problem is more complex due to the cou-
plings among subsystems, inputs, and outputs [2, 4, 8]. Besides, discrete-time
neural networks are better fitted for real-time implementations.

1.2 Motivation

Taking into account the facts exposed above, it is obvious the necessity to
design control algorithms for multiple input multiple output (MIMO) discrete-
time nonlinear systems based on neural networks. These algorithms should be
robust to external disturbances as well as parametric variations.

On the other hand, in most nonlinear control designs, it is usually assumed
that all the system state are measurable. In practice, however, only part of this
state is measured directly. For this reason, nonlinear state estimation remains
an important topic for study on the nonlinear systems theory. For continuous
time recurrent neural observers have also been proposed, which do not require
a precise plant model. Nevertheless, the discrete-time case has not been dealt
with the same intensity; thus is a field replete of opportunities for research
and applications.

Therefore, the major motivation for this book is to develop alternative
methodologies that allow the design of robust controllers for discrete-time
nonlinear systems with unknown dynamics.

1.3 Objectives

The main objectives of this work are stated as follows:

• To synthesize a scheme for output trajectory tracking based on a high order
neural network (HONN) structure trained with an EKF, to approximate a
control law designed by the backstepping technique, for a class of MIMO
discrete-time nonlinear systems.
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• To synthesize a scheme for output trajectory tracking based on a recurrent
high order neural network (RHONN) trained with an EKF, to identify
using a class of MIMO discrete-time nonlinear systems and based on the
neural model design a control law by the block control and sliding modes
techniques.

• To synthesize a neural observer for a class of MIMO discrete-time nonlinear
systems, using a training algorithm based on an EKF.

• To synthesize a scheme for output trajectory tracking based on a HONN
structure trained with an EKF, to approximate a control law designed
by the backstepping technique using neural observer for a class of MIMO
discrete-time nonlinear systems.

• To synthesize a scheme for output trajectory tracking based on a neural
observer trained with an EKF, to estimate using a class of MIMO discrete-
time nonlinear systems and based on the neural model design a control law
by the block control and sliding modes techniques, for a class of MIMO
discrete-time nonlinear systems.

• To establish the stability analyses, using the Lyapunov approach, for each
one of the proposed schemes.

• To implement the real time experiments for each one of the proposed
schemes.

1.4 Book Structure

This book presents a solution for the trajectory tracking problem of unknown
nonlinear systems based on four schemes. For the first one, a direct design
method is considered: the well known backstepping one, under the assump-
tion of the complete access to the state; the second one considers an indirect
method, solved with the block control and the sliding mode techniques, under
the same assumption. For the third scheme, the backstepping technique is
reconsidered, including a neural observer; and finally the block control and
the sliding mode techniques are used again too, with a neural observer. All
the proposed schemes are developed in discrete-time.

This book is organized as follows.
In Chap. 2, some mathematical preliminaries are introduced, including sta-

bility definitions, the extended Kalman filter, and some foundations of neural
control.

Then Chap. 3 presents a high order neural network (HONN) to solve the
tracking problem for a class of MIMO discrete-time nonlinear systems, using
the backstepping technique. The training of the neural network is performed
online using an extended Kalman filter.

After that in Chap. 4 a recurrent high order neural network is used to
identify a class of discrete-time nonlinear systems and the identified model
is used to design a block control from controller. The training of the neural
networks is performed online using an extended Kalman filter.
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In Chap. 5, an RHONN is used to design a Luenberger-like observer for
a class of MIMO discrete-time nonlinear systems. The RHONO proposed
is trained with an EKF-based algorithm. The training of the RHONO is
performed online in a parallel configuration.

In Chap. 6, two solutions for the discrete-time output trajectory tracking
problem are proposed by means of the backstepping and block control tech-
niques, both of them based on an RHONO. Based on the nonlinear observer
as designed on the previous chapter, the two controllers are synthesized,
respectively.

Chapter 7 includes experimental results, on real time, for the neural iden-
tifier, the neural observer, and the four control schemes developed in the
previous chapters; all of them are applied to a three phase induction motor.

Finally some relevant conclusions and future work are stated.

1.5 Notation

Through this book, we use the following notations:

k ∈ 0 ∪ Z
+ Sampling step

|•| Absolute value
‖•‖ Euclidian norm for vectors and any adequate norm

for matrices
S (•) Sigmoid function
x ∈ �n Plant state
x̂ ∈ �n Neural network state
wi ∈ �L ith neural network estimated weight vector
w∗

i ∈ �L ith neural network ideal weight vector
Li ∈ � Number of high order connections
u ∈ �m Control action
u∗ ∈ �m Ideal control action
� ∈ �m Neural network external input
zi ∈ �Li High order terms
K ∈ �Li×m Kalman gain matrix
P ∈ �Li×Li Associated prediction error covariance matrix
Q ∈ �Li×Li Associated state noise covariance matrix
R ∈ �m×m Associated measurement noise covariance matrix
gi ∈ � ith neural observer gain
r ∈ � Number of blocks
ni ∈ � Dimension of the ith block
SD ∈ �nr Sliding manifold
ki ∈ � Control gain of the ith block
zi ∈ �ni State transformation of the ith block
e ∈ �p Output error
x̃ ∈ �n State observer error
w̃i ∈ �Li Weights estimation error



2

Mathematical Preliminaries

In this chapter, important mathematical preliminaries, required in future
chapters, are presented.

2.1 Stability Definitions

Consider an MIMO nonlinear system:

x(k + 1) = F (x(k), u(k)) (2.1)
y(k) = h(x(k)), (2.2)

where x ∈ �n, u ∈ �m, and F ∈ �n ×�m → �n is nonlinear function.

Definition 2.1. The system (2.1) is said to be forced or to have input. In
contrast, the system described by an equation without explicit presence of an
input u, that is,

x(k + 1) = F (x(k))

is said to be unforced. It can be obtained after selecting the input u as a
feedback function of the state

u(k) = ξ(x(k)). (2.3)

Such substitution eliminates u:

x(k + 1) = F (x(k), ξ(x(k))), (2.4)

and yields an unforced system (2.4) [9].

Definition 2.2. The solution of (2.1)–(2.3) is semiglobally uniformly ulti-
mately bounded (SGUUB), if for any Ω, a compact subset of �n and all
x(k0) ∈ Ω, there exists an ε > 0 and a number N (ε, x(k0)) such that
‖x(k)‖ < ε for all k ≥ k0 + N .
E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 5–10 (2008)
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6 2 Mathematical Preliminaries

In other words, the solution of (2.1) is said to be SGUUB if, for any a priori
given (arbitrarily large) bounded set Ω and any a priori given (arbitrarily
small) set Ω0, which contains (0, 0) as an interior point, there exists a control
(2.3) such that every trajectory of the closed loop system starting from Ω
enters the set Ω0 = {x(k)| ‖x(k)‖ < ε} in a finite time and remains in it
thereafter.

Theorem 2.1. Let V (x(k)) be a Lyapunov function for a discrete-time system
(2.1), which satisfies the following properties:

γ1(‖x(k)‖) ≤ V (x(k)) ≤ γ2 (‖x(k)‖),
V (x(k + 1)) − V (x(k)) = ∆V (x(k))

≤ −γ3 (‖x(k)‖) + γ3 (ζ),

where ζ is a positive constant, γ1 (•) and γ2 (•) are strictly increasing func-
tions, and γ3 (•) is a continuous, nondecreasing function. Thus if

∆V (x) < 0 for ‖x(k)‖ > ζ,

then x(k) is uniformly ultimately bounded, i.e., there is a time instant kT,
such that ‖x(k)‖ < ζ,∀k < kT.

Definition 2.3. A subset S ∈ �n is bounded if there exists r > 0 such that
‖x‖ ≤ r for all x ∈ S [9].

Theorem 2.2 (Separation Principle). [12]. The asymptotic stabilization
problem of the system (2.1)–(2.2), via estimated state feedback

u(k) = ξ (x̂(k)),
x̂ (k + 1) = F (x̂(k), u(k), y(k)) (2.5)

is solvable if and only if the system (2.1)–(2.2) is asymptotically stabilizable
and exponentially detectable.

Corollary 2.1. [12]. There is an exponential observer for a Lyapunov stable
discrete-time nonlinear system (2.1)–(2.2) with u = 0 if and only if the linear
approximation

x(k + 1) = A(k)x(k) + Bu(k),
y(k) = Cx(k), (2.6)

A =
∂F

∂x

∣∣∣∣
x=0

, B =
∂F

∂u

∣∣∣∣
x=0

, C =
∂h

∂x

∣∣∣∣
x=0

of the system (2.1)–(2.2) is detectable.
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2.2 Discrete-Time High Order Neural Networks

The use of multilayer neural networks is well known for pattern recognition
and for modeling of static systems. The NN is trained to learn an input–output
map. Theoretical works have proven that, even with just one hidden layer,
a NN can uniformly approximate any continuous function over a compact
domain, provided that the NN has a sufficient number of synaptic connections.

For control tasks, extensions of the first-order Hopfield model called
recurrent high order neural networks (RHONN), which present more interac-
tions among the neurons, are proposed in [13, 16]. Additionally, the RHONN
model is very flexible and allows to incorporate to the neural model a priori
information about the system structure.

Consider the following discrete-time RHONN:

x̂i(k + 1) = w�
i zi(x̂(k), υ(k)), i = 1, · · · , n, (2.7)

where x̂i (i = 1, 2, · · · , n) is the state of the ith neuron, Li is the respec-
tive number of high order connections, {I1, I2, · · · , ILi} is a collection of
nonordered subsets of {1, 2, · · · , n + m}, n is the state dimension, m is the
number of external inputs, wi (i = 1, 2, · · · , n) is the respective online adapted
weight vector, and zi(x̂(k), �(k)) is given by

zi(x(k), �(k)) =

⎡⎢⎢⎢⎣
zi1

zi2
...

ziLi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
∏

j∈I1
ξ

dij(1)
ij∏

j∈I2
ξ

dij(2)
ij

...∏
j∈ILi

ξ
dij(Li)
ij

⎤⎥⎥⎥⎥⎥⎦ , (2.8)

with dji(k) being a nonnegative integers, and ξi defined as follows:

ξi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξi1
...

ξi1

ξin+1

...
ξin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)
�1

...
�m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

In (2.9), � = [�1, �2, . . . , �m]� is the input vector to the neural network,
and S(•) is defined by

S(ς) =
1

1 + exp(−βς)
, β > 0, (2.10)

where ς is any real value variable.
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Consider the problem to approximate the general discrete-time nonlinear
system (2.1), by the following discrete-time RHONN series–parallel represen-
tation [16]:

xi (k + 1) = w∗�
i zi(x(k), �(k)) + εzi , i = 1, · · · , n, (2.11)

where xi is the ith plant state, εzi is a bounded approximation error, which can
be reduced by increasing the number of the adjustable weights [16]. Assume
that there exists ideal weight vector w∗

i such that ‖εzi‖ can be minimized on
a compact set Ωzi ⊂ �Li . The ideal weight vector w∗

i is an artificial quantity
required for analytical purpose [16]. In general, it is assumed that this vector
exists and is constant but unknown. Let us define its estimate as wi and the
estimation error as

w̃i(k) = w∗
i − wi(k) . (2.12)

The estimate wi is used for stability analysis, which will be discussed later.
Since w∗

i is constant, then w̃i(k + 1)− w̃i(k) = wi(k)− wi(k+1), ∀k ∈ 0∪ Z
+.

From (2.7) three possible models can be derived:

• Parallel model

x̂i(k + 1) = w�
i zi(x̂(k), �(k)), i = 1, · · · , n (2.13)

• Series–Parallel model

x̂i(k + 1) = w�
i zi(x(k), �(k)), i = 1, · · · , n (2.14)

• Feedforward model (HONN)

x̂i(k) = w�
i zi(�(k)), i = 1, · · · , n, (2.15)

where x̂ is the NN state vector, x is the plant state vector, and � is the
input vector to NN.

2.3 The EKF Training Algorithm

The best well-known training approach for recurrent neural networks (RNN)
is the back propagation through time learning [21]. However, it is a first order
gradient descent method and hence its learning speed could be very slow
[10]. Recently, extended Kalman filter (EKF) based algorithms have been
introduced to train neural networks [1,3]. With the EKF based algorithm, the
learning convergence is improved [10]. The EKF training of neural networks,
both feedforward and recurrent ones, has proven to be reliable and practical
for many applications over the past 10 years [3].

It is known that Kalman filtering (KF) estimates the state of a linear
system with additive state and output white noises [7,20]. For KF-based neural
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network training, the network weights become the states to be estimated. In
this case, the error between the neural network output and the measured plant
output can be considered as additive white noise. Because of the fact that the
neural network mapping is nonlinear, an EKF-type is required (see [18] and
references therein).

The training goal is to find the optimal weight values, which minimize the
prediction error. The EKF-based training algorithm is described by [7]

Ki(k) = Pi(k)Hi(k)
[
Ri(k) + H�

i (k)Pi(k)Hi(k)
]−1

,

wi(k + 1) = wi(k) + ηiKi(k) [y(k) − ŷ(k)] , (2.16)
Pi(k + 1) = Pi(k) − Ki(k)H�

i (k)Pi(k) + Qi(k),

where Pi ∈ �Li×Li is the prediction error associated covariance matrix, wi ∈
�Li is the weight (state) vector, Li is the total number of neural network
weights, y ∈ �m is the measured output vector, ŷ ∈ �m

is the network
output, ηi is a design parameter, Ki ∈ �Li×m

is the Kalman gain matrix,
Qi ∈ �Li×Li is the state noise associated covariance matrix, Ri ∈ �m×m is
the measurement noise associated covariance matrix, Hi ∈ �Li×m

is a matrix
for which each entry (Hij ) is the derivative of one of the neural network
output, (ŷ), with respect to one neural network weight, (w

ij
), as follows:

H
ij

(k) =
[

∂ŷ(k)
∂w

ij
(k)

]
wi(k)=ŵi(k+1)

, i = 1, . . . , n and j = 1, . . . , Li. (2.17)

Usually Pi, Qi, and Ri are initialized as diagonal matrices, with entries
Pi(0) , Qi(0), and Ri(0), respectively. It is important to note that Hi(k),
Ki(k), and Pi(k) for the EKF are bounded [20]. Therefore, there exist
constants Hi > 0, Ki > 0, and Pi > 0 such that

‖Hi(k)‖ ≤ Hi,

‖Ki(k)‖ ≤ Ki, (2.18)
‖Pi(k)‖ ≤ Pi.

Comment 2.1. The measurement and process noises are typically character-
ized as zero-mean, white noises with covariances given by δk,jRi(k) and
δk,jQi(k), respectively, with δk,j a Kronecker delta function (cero for k 
= l
and 1 for k = l) [8]. To simplify the notation in this book, the covariances
will be represented by their respective associated matrices, Ri(k) and Qi(k)
for the noises and Pi(k) for the prediction error.

2.4 Neural Control

To control a system is to force it to behave in a desired way. How to express this
“desired behavior” depends primarily on the task to be solved, but the dynam-
ics of the system, the actuators, the measurement equipment, the available
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computational power, etc. influence the formulation of the desired behavior
as well. Although the desired behavior obviously is very dependent on the
application, the need to express it in mathematical terms suited for practi-
cal design of control systems seriously limits the means of expression. At the
higher level, it is customary to distinguish two basic types of problems [14]:

Regulation problem. The fundamental desired behavior is to keep the out-
put of the system at a constant level regardless of the disturbances acting on
the system.

Tracking problem. The fundamental desired behavior is to force the system
output to track a reference trajectory closely.

Neural networks (NN) have become a well-established methodology as
exemplified by their applications to identification and control of general non-
linear and complex systems [6]; the use of high order neural networks for
modeling and learning has recently increased [19]. Specifically, the problem
of designing robust neural controllers for nonlinear systems with uncertain-
ties and disturbances, which guarantees stability and trajectory tracking, has
received an increasing attention lately.

Using neural networks, control algorithms can be developed to be robust
to uncertainties and modeling errors. The most used NN structures are Feed-
forward networks and Recurrent ones [19]. The last type offers a better suited
tool to model and control nonlinear systems [15].

The neural control problem can be approached in two different ways:
Direct control system design. “Direct” means that the controller is a neural

network. A neural network controller is often advantageous when the real-
time platform available prohibits complicated solutions. The implementation
is simple while the design and tuning are difficult. With a few exceptions this
class of designs is model-based in the sense that a model of the system is
required in order to design the controller.

Indirect control system design. This class of designs is always model-based.
The idea is to use a neural network to model the system to be controlled; this
model is then employed in a more “conventional” controller design. The model
is typically trained in advanced, but the controller is designed online. As it
will appear, the indirect design is very flexible; thus it is the most appropriate
for most of the common control problems.

The increasing use of NN to modeling and control is in great part due to
the following features that makes them particularly attractive [4]:

• NN are universal approximators. It has been proven that any continuous
nonlinear function can be approximated arbitrarily well over a compact
set by a multilayer neural network, which consist of one or more hidden
layers [2].

• Learning and adaptation. The intelligence of neural networks comes from
their generalization ability with respect to unknown data. Online adapta-
tion of the weights is possible.



3

Discrete-Time Adaptive Neural Backstepping

This chapter deals with adaptive tracking for a class of MIMO discrete-time
nonlinear systems in presence of bounded disturbances. In this chapter, a high
order neural network structure is used to approximate a control law designed
by the backstepping technique, applied to a block strict feedback form (BSFF).
It also presents the respective stability analysis, on the basis of the Lyapunov
approach, for the whole scheme including the extended Kalman filter (EKF)-
based NN learning algorithm. Applicability of this scheme is illustrated via
simulation for a discrete-time nonlinear model of an electric induction motor.

In recent adaptive and robust control literature, numerous approaches have
been proposed for the design of nonlinear control systems. Among these, adap-
tive backstepping constitutes a major design methodology [6, 9]. The idea
behind backstepping design is that some appropriate functions of state vari-
ables are selected recursively as virtual control inputs for lower dimension
subsystems of the overall system [12]. Each backstepping stage results in a new
virtual control designs from the preceding design stages. When the procedure
ends, a feedback design for the true control input results, which achieves the
original design objective. The backstepping technique provides a systematic
framework for the design of tracking and regulation strategies, suitable for a
large class of state feedback linearizable nonlinear systems [1, 9–11].

3.1 Neural Backstepping Controller Design

The model of many practical nonlinear systems can be expressed in (or trans-
formed into) a special state-space form named block strict feedback form
(BSFF) [9] as follows:

xi(k + 1) = f i(xi(k)) + gi(xi(k))xi+1(k) + di(k), i = 1, 2, . . . , r − 1,

xr(k + 1) = f r(x(k)) + gr(x(k)) u(k) + dr(k),
y(k) = x1(k), (3.1)

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 11–28 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where x(k) =
[
x1�(k), . . . , xr�(k)

]� are the state variables, and xi(k) =[
x1�, x2�, . . . , xi�]�

, xi ∈ �ni , r ≥ 2, r is the number of blocks, u(k) ∈
�m is the system input, y(k) ∈ �m is the system output; for simplicity of
notation through the remaining of this chapter di(k) = di(x(k), k) ∈ �ni

is the bounded unknown disturbance vector, then there exists a constant di

such that ‖di(k)‖ ≤ di, for 0 < k < ∞, f i (•) and gi (•) are unknown smooth
nonlinear functions.

If we consider the original system (3.1) as a one-step ahead predictor, then
we can transform it into an equivalent maximum r-step ahead one, which can
predict the future states x1(k + r) , x2(k + r − 1) , . . . , xr(k + 1); the causal-
ity contradiction is avoided when the controller is constructed based on the
maximum r-step ahead prediction by backstepping [3, 4]:

x1(k + r) = f
1(

x̄1(k)
)

+ g1
(
x1(k)

)
x2(k + r − 1) + d1(k + r),

...
xr−1(k + 2) = f

r−1(
xr−1(k)

)
+ gr−1

(
xr−1(k)

)
xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(x(k)) + gr(x(k)) u(k) + dr(k),

y(k) = x1(k), (3.2)

where f
i
(•) and gi (•) are unknown functions of f i

(
xi(k)

)
and gi(xi(k)),

respectively. For convenience of analysis, let us define (i = 1, . . . , r − 1)

f
i
(k) � f

i
(xi(k)),

gi(k) � gi (xi(k)),
f

r
(k) � f

r
(X(k)),

gr(k) � gr (X(k)).

Then, system (3.2) can be written as (for details please see Appendix A)

x1(k + r) = f
1
(k) + g1(k)x2(k + r − 1) + d1(k + r),

...
xr−1 (k + 2) = f

r−1
(k) + gr−1(k)xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(k) + gr(k)u(k) + dr(k),

y(k) = x1(k). (3.3)

The objective is to design a control u(k) to force the system output y(k) to
track a desired trajectory yd(k). Once (3.3) is defined, we apply the well known
backstepping technique [9]. For system (3.2), we can define the desired virtual
controls (αj∗(k), j = 1, . . . , r − 1) and the ideal practical control (u∗(k)) as
follows:
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α1∗(k) � x2(k) = ϕ1
(
x1(k), yd (k + r)

)
,

α2∗(k) � x3(k) = ϕ2
(
x2(k), α1∗(k)

)
,

...
αr−1∗(k) � xr(k) = ϕr−1

(
xr−1(k), αr−2∗(k)

)
,

u∗(k) = ϕr
(
x(k), αr−1∗(k)

)
,

y(k) = x1(k), (3.4)

where ϕj(j = 1, . . . , r) are nonlinear smooth functions. It is obvious that the
desired virtual controls αi∗(k) and the ideal control u∗(k) will drive the output
y(k) to track the desired signal yd(k) only if the exact system model is known
and there are no unknown disturbances. However, in practical applications,
these two conditions cannot be satisfied. In the following, neural networks
will be used to approximate the desired virtual controls, as well as the desired
practical controls, when the conditions established above are not satisfied. As
in [4], we construct the virtual and practical controls via embedded backstep-
ping without the causality contradiction [3]. Let us approximate the virtual
controls and practical control by the following HONN (i = 1, . . . , r − 1):

αi(k) = wi�zi(�i(k)), i = 1, . . . , r − 1,

u(k) = wr�
zr(�r(k)), (3.5)

with

�1(k) =
[
x1(k), yd(k + r)

]�
,

�i(k) =
[
xi(k), αi−1(k)

]�
, i = 2, . . . , r − 1,

�r(k) =
[
x(k), αr−1(k)

]�
,

where wj ∈ �Lj are the estimates of ideal constant weights wj∗(j = 1, . . . , r)
and zj ∈ �Lj×nj . Define the estimation error as

w̃j(k) = wj∗ − wj(k). (3.6)

Using the ideal constant weights and from (2.11) it follows that there exists a
HONN, which approximate the virtual controls and practical control with a
minimal error, defined as

αi(k) = wi∗�zi(�i(k)),

u(k) = wr∗�
zr(�r(k)) + εzi , i = 1, . . . , r − 1. (3.7)
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Then the corresponding weights updating laws are defined by

wj(k + 1) = wj(k) + ηjKj(k)ej(k), (3.8)

with

Kj(k) = P j(k)Hj(k)M j−1
(k),

M j(k) = Rj(k) + Hj�(k)P j(k)Hj(k),

P j(k + 1) = P j(k) − Kj(k)Hj�(k)P j(k) + Qj(k),

Hj(k) =
[

∂υ̂j(k)
∂wj(k)

]
, (3.9)

and

ej(k) = υj(k) − υ̂j(k), (3.10)

where υi(k) ∈ �ni is the desired signal and υ̂i(k) ∈ �ni is the HONN function
approximation defined, respectively, as follows

υ1(k) = yd(k),
υ2(k) = x2(k),

...
υr(k) = xr(k) (3.11)

and

υ̂1(k) = y(k),
υ̂2(k) = α1(k),

...
υ̂r(k) = αr−1(k), (3.12)

ej(k) denotes the error at each step, as

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k),

...
er(k) = xr(k) − αr−1(k). (3.13)

The proposed control scheme is shown in Fig. 3.1. Besides, it is worth to
include the following comments:

Comment 3.1. The NN approximation error vector εz is bounded. This is a
well known neural network property [2].
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Fig. 3.1. Neural backstepping control scheme

Comment 3.2. The gain matrix of the EKF (K(k)) is bounded by a constant
K > 0, that is, ‖K(k)‖ ≤ K.

Before proceeding to demonstrate the main result of this chapter, we need
to establish the following two lemmas.

Lemma 3.1. The dynamics of the tracking error (3.10) can be formulated as

ej(k + 1) = ej(k) + ∆ej(k), (1 ≤ j ≤ r) , (3.14)

with ∆ej(k) ≤ −γjej(k) and γj = max
∥∥∥Hj�(k)ηjKj(k)

∥∥∥ .

Proof. Using (3.10) and considering that υ(k) do not depend on the HONN
parameters, we obtain

∂ei(k)
∂wi(k)

= − ∂υ̂(k)
∂wi(k)

. (3.15)

Let us approximate (3.15) by

∆ei(k) =
[

∂ei(k)
∂wi(k)

]�
∆wi(k). (3.16)

Substituting (3.9) and (3.15) in (3.16) yields

∆ei(k) = −Hi�(k)ηiKi(k)ei(k). (3.17)

Define
γi = max

∥∥∥Hi�(k)ηiKi(k)
∥∥∥

then we have
∆ei(k) ≤ −γiei(k). (3.18)

�
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Considering (3.1)–(3.13), we establish the main result of this chapter in
the following theorem.

Theorem 3.1. For the system (3.1), the HONN (3.5) trained with the EKF-
based algorithm (3.9) to approximate the control law (3.4) ensures that the
tracking error (3.13) is semiglobally uniformly ultimately bounded (SGUUB);
moreover, the HONN weights remain bounded.

Proof. For the first block of system (3.1), with the virtual control α1∗(k)
approximated by the HONN

(
α1(k) = w1�

z1
(
�1(k)

))
and e1(k) defined as

in (3.13), consider the Lyapunov function candidate

V 1(k) = e1�
(k)e1(k) + w̃1�

(k)w̃1(k), (3.19)

whose first difference is

∆V 1(k) = V 1(k + 1) − V 1(k),

= e1�
(k + 1)e1(k + 1) + w̃1�

(k + 1)w̃1(k + 1) (3.20)

− e1�
(k)e1(k) − w̃1�

(k)w̃1(k).

From (3.6) and (3.8), then

w̃1(k + 1) = w̃1(k) − η1K1(k)e1(k). (3.21)

Let us define [
w̃1(k) − η1K1(k)e1(k)

]� [
w̃1(k) − η1K1(k)e1(k)

]
= w̃1�

(k)w̃1(k) − 2w̃1�
(k)η1K1(k)e1(k)

+
(
η1K1(k)e1

)�
η1K1(k)e1(k). (3.22)

From (3.13), then

e1(k + 1) = e1(k) + ∆e1(k),

e1�
(k + 1)e1(k + 1) = e1�

(k)e1(k) + e1�
(k)∆e1(k)

+ ∆e1�
(k)e1(k) + ∆e1�

(k)∆e1(k),

e1�
(k + 1)e1(k + 1) − e1�

(k)e1(k) = e1�
(k)∆e1(k) + ∆e1�

(k)e1(k)

+ ∆e1�
(k)∆e1(k),

where ∆e1(k) is the error difference. Substituting (3.21) and (3.22) in (3.20)
results in

∆V 1(k) = e1�
(k)∆e1(k) + ∆e1�

(k)e1(k) + ∆e1�
(k)∆e1(k)

− 2w̃1�
(k)η1K1(k)e1(k)

+ (η1K1(k)e1(k))�η1K1(k)e1(k). (3.23)
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From Lemma 3.1, substituting (3.18), we obtain

∆V 1(k) ≤ −2γ1e1�
(k)e1(k) + γ12

e1�
(k)e1(k) − 2w̃1�

(k)η1K1(k)e1(k)
+ (η1K1(k)e1(k))�η1K1(k)e1(k),

≤ −2γ1
∥∥e1(k)

∥∥2
+ γ12 ∥∥e1(k)

∥∥2 − 2‖η1K1(k)‖ ∥∥w̃1(k)
∥∥ ∥∥e1(k)

∥∥
+ ‖η1K1(k)‖2

∥∥e1(k)
∥∥2

,

≤ −2γ1
∥∥e1(k)

∥∥2
+ γ12 ∥∥e1(k)

∥∥2

− 2‖η1K1(k)‖ ∥∥w∗ − w1
max

∥∥ ∥∥e1(k)
∥∥

+ ‖η1K1(k)‖2
∥∥e1(k)

∥∥2
, (3.24)

with γ1 = max
∥∥∥H1�

(k)η1K1(k)
∥∥∥ > 1. There is η1 > 0 such that ϑ1 > 0 with

ϑ1 = 2γ1 − γ12 − ‖η1K1(k)‖2,

then
∆V 1(k) ≤ 0, once

∥∥e1(k)
∥∥ > κ1, (3.25)

with κ1 defined as

κ1 >

(
γ12

+ ‖η1K1(k)‖2
)∥∥e1

max

∥∥
2‖η1K1(k)‖ .

Therefore, the solution of (3.14) and (3.21) is stable, which leads to the
SGUUB of e1(k) and w̃1(k).

For the following ith (i = 2, . . . , r − 1) equation of the system (3.1), with
the virtual control αi∗(k) approximated by the HONN αi(k) = wi�zi(�i(k))
and ei(k) defined in (3.13), consider the Lyapunov function candidate

V i(k) = ei�(k)ei(k) + w̃i�(k)w̃i(k), (3.26)

whose first difference is

∆V i(k) = V i(k + 1) − V i(k),

= ei�(k + 1)ei(k + 1) + w̃i�(k + 1)w̃i(k + 1) (3.27)

− ei�(k)ei(k) − w̃i�(k)w̃i(k).

From (3.6) and (3.8), then

w̃i(k + 1) = w̃i(k) − ηiKi(k)ei(k). (3.28)
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Let us define [
w̃i(k) − ηiKi(k)ei(k)

]� [
w̃i(k) − ηiKi(k)ei(k)

]
= w̃i�(k)w̃i(k) − 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k). (3.29)

From (3.13), then

ei(k + 1) = ei(k) + ∆ei(k),

ei�(k + 1)ei(k + 1) = ei�(k)ei(k) + ei�(k)∆ei(k)

+ ∆ei�(k)ei(k)

+ ∆ei�(k)∆ei(k),

ei�(k + 1)ei(k + 1) − ei�(k)ei(k) = ei�(k)∆ei(k) + ∆ei�(k)ei(k)

+ ∆ei�(k)∆ei(k),

where ∆ei(k) is the error difference. Substituting (3.28) and (3.29) in (3.27)
results in

∆V i(k) = ei�(k)∆ei(k) + ∆ei�(k)ei(k) + ∆ei�(k)∆ei(k)

− 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k). (3.30)

From Lemma 3.1, substituting (3.18) , we obtain

∆V i(k) ≤ −2γiei�(k)ei(k) + γi2ei�(k)ei(k) − 2w̃i�(k)ηiKi(k)ei(k)

+
(
ηiKi(k)ei(k)

)�
ηiKi(k)ei(k),

≤ −2γi
∥∥ei(k)

∥∥2
+ γi2

∥∥ei(k)
∥∥2 − 2

∥∥ηiKi(k)
∥∥ ∥∥w̃i(k)

∥∥ ∥∥ei(k)
∥∥

+
∥∥ηiKi(k)

∥∥2 ∥∥ei(k)
∥∥2

,

≤ −2γi
∥∥ei(k)

∥∥2
+ γi2

∥∥ei(k)
∥∥2

− 2
∥∥ηiKi(k)

∥∥ ∥∥wi
max − w∗∥∥ ∥∥ei(k)

∥∥
+

∥∥ηiKi(k)
∥∥2 ∥∥ei(k)

∥∥2
. (3.31)

with γi = max
∥∥∥Hi�(k)ηiKi(k)

∥∥∥. There is ηi > 0 such that ϑi > 0 with

ϑi = 2γi − γi2 − ∥∥ηiKi(k)
∥∥2

,

then
∆V i(k) ≤ 0, once

∥∥ei(k)
∥∥ > κi, (3.32)
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with κi defined as

κi >

(
γi2 +

∥∥ηiKi(k)
∥∥2

)∥∥ei
max

∥∥
2 ‖ηiKi(k)‖ .

Therefore, the solution of (3.14) and (3.28) is stable, which leads to the
SGUUB of ei(k) and w̃i(k). �

3.2 Applications

In this section, we apply the above developed scheme (Fig. 3.1) to control a
three-phase induction motor, which is one of the most used actuators for indus-
trial applications due to its reliability, ruggedness, and relatively low cost. The
control of an induction motor is challenging, since its dynamics is described by
multivariable, coupled, and highly nonlinear system [13, 15]. Early works on
control of induction motors was focused on the field oriented control (FOC) [7],
exact input–output linearization, adaptive input–output linearization, and
direct torque control (DTC) ([7] and references therein). However, most of
those works were developed stabilized controllers for continuous-time model
of the motor. In [13] a discrete-time model is proposed, as well as a control
algorithm, assuming that the parameters and load torque of the motor model
are known. Moreover, all these controllers are designed based on the physi-
cal model of the motor and results in sensitive control with respect to plant
parameters variations. To this end, we consider the control problem assum-
ing that some of the plant parameters as well as external disturbances (load
torque) are unknown.

3.2.1 Motor Model

The six-order discrete-time induction motor model in the stator fixed reference
frame (α, β), under the assumptions of equal mutual inductances and linear
magnetic circuit, is given by [13]

ω(k + 1) = ω(k) +
µ

α
(1 − α) × M

(
iβ(k)ψα(k) − iα(k)ψβ(k)

)
−

(
T

J

)
TL(k),

ψα(k + 1) = cos (npθ(k + 1)) ρ1(k) − sin (npθ (k + 1)) ρ2(k),
ψβ(k + 1) = sin (npθ(k + 1)) ρ1(k) + cos (npθ(k + 1)) ρ2(k),

iα(k + 1) = ϕα(k) +
T

σ
uα(k) + d1(k),

iβ(k + 1) = ϕβ(k) +
T

σ
uβ(k) + d2(k),
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θ(k + 1) = θ(k) + ω(k)T − TL(k)
J

T 2

+
µ

α

[
T − (1 − a)

α

]
M

(
iβ(k)ψα(k) − iα(k)ψβ(k)

)
, (3.33)

with

ρ1(k) = a
(
cos (φ(k)) ψα(k) + sin (φ(k)) ψβ(k)

)
+ b

(
cos (φ(k)) iα(k) + sin (φ(k)) iβ(k)

)
,

ρ2(k) = a
(
cos (φ(k)) ψα(k) − sin (φ(k)) ψβ(k)

)
+ b

(
cos (φ(k)) iα(k) − sin (φ(k)) iβ(k)

)
,

ϕα(k) = iα(k) + αβTψα(k) + npβTω(k)ψα(k) − γT iα(k),
ϕβ(k) = iβ(k) + αβTψβ(k) + npβTω(k)ψβ(k) − γT iβ(k),
φ(k) = npθ(k),

with b = (1 − a)M, α = Rr
Lr

, γ = M2Rr
σL2

r
+ Rs

σ , σ = Ls − M2

Lr
, β = M

σLr
, a =

e−αT , µ = Mnp
JLr

, where Ls, Lr, and M are the stator, rotor, and mutual
inductance, respectively; Rs and Rr are the stator and rotor resistances,
respectively; np is the number of pole pairs; iα and iβ represents the cur-
rents in the α and β phases, respectively; ψα and ψβ represents the fluxes in
the α and β phases, respectively; and θ is the rotor angular displacement.

3.2.2 Block-Strict-Feedback-Form (BSFF) for an Induction Motor

Let us define the following states:

x1(k) =
[

ω(k)
Ψ(k)

]
; x2(k) =

[
iα(k)
iβ(k)

]
,

u(k) =
[

uα(k)
uβ(k)

]
; yd(k) =

[
ωd(k)
Ψd(k)

]
,

y(k) = x1(k), (3.34)

where Ψ(k) = ψα2
(k) + ψβ2

(k) is the rotor flux magnitude, ωd(k) and Ψd(k)
are the reference signals. The objective of control is to drive the output y(k)
to track the reference yd(k). Using (3.34) the system (3.33) can be represented
in the BSFF consisting of two blocks

x1(k + 1) = f1
(
x1(k)

)
+ g1

(
x1(k)

)
x2(k) + d1(k),

x2(k + 1) = f2
(
x2(k)

)
+ g2

(
x2(k)

)
u(k),
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where f1
(
x1(k)

)
, g1(x1(k)), f2(x2(k)), and g2(x2(k)) are assumed to be

unknown and d1(k) is the unknown bounded disturbances; in this case this
disturbance is the load torque. Now we use the HONN to approximate the
desired virtual controls and the ideal practical controls described as

α1∗(k) � x2(k) = ϕ1
(
x1(k), yd(k + 2)

)
,

u∗(k) = ϕ2
(
x1(k), x2(k), α1∗(k)

)
,

y(k) = x1(k).

The HONN proposed for this application is as follows:

α1(k) = w1�
z1

(
�1(k)

)
,

u(k) = w2�
z2

(
�2(k)

)
,

with

�1(k) =
[
x1(k), yd (k + 2)

]�
,

�2(k) =
[
x1(k), x2(k), α1(k)

]�
.

The weights are updated using the EKF as follows:

wi(k + 1) = wi(k) + ηiKi(k)ei(k) (i = 1, 2),

Ki(k) = P i(k)Hi(k)
[
Ri(k) + Hi�(k)P i(k)Hi(k)

]−1

,

P i(k + 1) = P i(k) − Ki(k)Hi�(k)P i(k) + Qi(k),

with

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k) .

The training is performed online using a series–parallel configuration. All the
NN states are initialized in a random way. The associated covariances matrices
are initialized as diagonals, and the nonzero elements are P1 (0) = P2 (0) =
10000; Q1 (0) = Q2 (0) = 5000, and R1 (0) = R2 (0) = 10000, respectively.
The simulation is performing under the presence of the disturbances d1(k) as
shown in Fig. 3.3 and parametric variations (Fig. 3.4).

3.2.3 Reduced Order Nonlinear Observer

The last control algorithm works with the full state measurement assump-
tion [13]. However, the rotor fluxes measurement is a difficult task. Here, a
reduced order nonlinear observer is designed for fluxes with rotor speed and
current measurements only. The flux dynamics in (3.33) can be written as

Ψ(k + 1) = aG(k)Ψ(k) + (1 − a)MG(k)I(k),
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with

G(k) =
[

cos(npTω(k)) −sin(npTω(k))
sin(npTω(k)) cos (npTω(k))

]
,

I(k) =
[

iα(k)
iβ(k)

]
. (3.35)

The proposed observer for the system (3.33) assumes the speed and current
available for measurements:

Ψ̂(k + 1) = aG(k)Ψ̂(k) + (1 − a)MG(k)I(k).

Let us define
eΨ (k) = Ψ(k) − Ψ̂(k).

Then
eΨ (k + 1) = aG(k)eΨ (k).

A Lyapunov candidate function to proof stability of eΨ (k) is

V (k) = eΨ�
(k)eΨ (k), (3.36)

with

∆V (k) = V (k + 1) − V (k) = eΨ�
(k − 1) eΨ (k + 1) − eΨ�

(k)eΨ (k),

= eΨ�
(k)

(
a2G�(k)G(k) − I

)
eΨ (k),

where
a2G�(k)G(k) − I < 0. (3.37)

By (3.35) , G�(k)G(k) = I then the condition (3.37) is reduced to[
a2 0
0 a2

]
−

[
1 0
0 1

]
< 0,

where a < 1, a = e−αT . This condition is satisfied due to the fact that T
and α are always positive. So the increment of the Lyapunov function (3.36)
is always negative, implying that the tracking error tends asymptotically to
zero. Now we use ψ̂α and ψ̂β to implement the control algorithm developed
above.

3.2.4 Simulation Results

The simulation is performed using the system (3.33) with the parameters
given in Table 3.1.

The tracking results are presented in Figs. 3.2 and 3.3. There the tracking
performance can be verified for the two plant outputs. Figure 3.4 displays
the load torque applied as an external disturbance. Figure 3.5 portrays a
parametric variation introduced in the rotor resistance (Rr) as an increment.
Figure 3.6 shows the weight evolution. Figures 3.7 and 3.8 display the control
law signals. Figures 3.9 and 3.10 portray the fluxes and their estimates.
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Table 3.1. Induction motor parameters

Parameter Value Description

Rs 14Ω Stator resistance
Ls 400 mH Stator inductance
M 377 mH Mutual inductance
Rr 10.1 Ω Rotor resistance
Lr 412.8 mH Rotor inductance
np 2 Number of pole pairs
J 0.01 Kg m2 Moment of inertia
ωn 168.5 rad s−1 Nominal speed
TLn 1.1 Nm Nominal load
T 0.0001 s Sampling period

Fig. 3.2. Tracking performance ω(k) (solid line) and ωd(k) (dashed line)

Comment 3.3. The purpose of this chapter is to improve the tracking perfor-
mance for a class of MIMO discrete-time nonlinear systems, by means of the
use of the EKF as the neural network learning algorithm; this approach is
validated by the simulation results presented above.

Comment 3.4. In this chapter, the causality contradiction is avoided due to
the fact that the controller is constructed based on the maximum r-step ahead
predictor by the backstepping technique.

Comment 3.5. In literature there are few results that present both external
disturbances (load torque) and parametric changes (resistance variations) as
in this book.
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Fig. 3.3. Tracking performance Ψ(k) (solid line) and Ψd(k) (dashed line)

Fig. 3.4. Load torque TL(k)
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Fig. 3.5. Rotor resistance variation (Rr)

Fig. 3.6. Weights evolution
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Fig. 3.7. Control law signal uα(k)

Fig. 3.8. Control law signal uβ(k)
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Fig. 3.9. Time evolution of ψα(k) and its estimate (real in solid line and estimated
in dashed line)

Fig. 3.10. Time evolution of ψβ(k) and its estimate (real in solid line and estimated
in dashed line)
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3.3 Conclusions

This chapter has presented the application of HONN to solve the tracking
problem for a class of MIMO discrete-time nonlinear systems, using the back-
stepping technique. The training of the neural network is performed online
using an extended Kalman filter. The boundness of the tracking error is estab-
lished on the basis of the Lyapunov approach. The HONN training with the
learning algorithm based in EKF presents good performance even in presence
of larger bounded disturbances such as load torque variations and change
on the plant parameters (resistance change). Based on the proposed control
scheme, a robust neural controller is designed for an induction motor.



4

Discrete-Time Block Control

This chapter deals with the adaptive tracking problem for a class of MIMO
discrete-time nonlinear systems in presence of bounded disturbances. In this
chapter, a recurrent high order neural network is first used to identify the plant
model, then based on this neural model, a discrete-time control law, which com-
bines discrete-time block control and sliding modes techniques, is derived. The
chapter also includes the respective stability analysis for the whole system.
It is proposed too a strategy to avoid specific adaptive weights zero-crossing.
Applicability of the proposed scheme is illustrated via simulation of a discrete-
time nonlinear controller for an induction motor.

Frequently, modern control systems require a very structured knowledge about
the system to be controlled; such knowledge should be represented in terms
of differential or difference equations. This mathematical description of the
dynamic system is named as the model. Basically there are two ways to obtain
a model; it can be derived in a deductive manner using physics laws, or it
can be inferred from a set of data collected during a practical experiment.
The first method can be simple, but in many cases it is excessively time-
consuming; some times, it would be unrealistic or impossible to obtain an
accurate model in this way. The second method, which is commonly referred
as system identification, could be a useful short cut for deriving mathematical
models. Although system identification not always results in a equally accurate
model, a satisfactory model can be often obtained with reasonable efforts. The
main drawback is the requirement to conduct a practical experiment, which
brings the system through its range of operation. Besides a certain knowledge
about the plant is still required.

4.1 Identification

In this section, we consider the problem to identify the nonlinear system

x(k + 1) = F (x(k), u(k)), (4.1)
E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 29–43 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where x ∈ �n, u ∈ �m, and F ∈ �n × �m → �n are nonlinear functions.
Now, to identify the system (4.1) we use an RHONN defined as

x̂i(k + 1) = w�
i zi(x(k), u(k)), i = 1, . . . , n, (4.2)

where x̂i (i = 1, 2, . . . , n) is the state of the ith neuron, Li is the respec-
tive number of higher-order connections, {I1, I2, . . . , ILi} is a collection of
nonordered subsets of {1, 2, . . . , n + m}, n is the state dimension, m is the
number of external inputs, wi (i = 1, 2, . . . , n) is the respective online adapted
weight vector, with zi(x(k), u(k)) as defined in (2.8).

Consider the problem to approximate the general discrete-time non-
linear system (4.1) by the following discrete-time RHONN series–parallel
representation [5]:

xi(k + 1) = w∗�
i zi(x(k), u(k)) + εzi , i = 1, . . . , n, (4.3)

where xi is the ith plant state, εzi is a bounded approximation error, which
can be reduced by increasing the number of the adjustable weights [5]. Assume
that there exists an ideal weights vector w∗

i such that ‖εzi‖ can be minimized
on a compact set Ωzi ⊂ �Li. The ideal weight vector w∗

i is an artificial quantity
required for analytical purpose [5]. In general, it is assumed that this vector
exists and is constant but unknown. Let us define its estimate as wi and the
estimation error as

w̃i(k) = w∗
i − wi(k). (4.4)

The estimate wi is used for the stability analysis, which will be discussed
later. Since w∗

i is constant, then

w̃i(k + 1) − w̃i(k) = wi(k) − wi(k + 1), ∀k ∈ 0 ∪ Z
+.

The RHONN is trained with a modified extended Kalman filter (EKF)
algorithm defined by

wi(k + 1) = wi(k) + ηiKi(k)ei(k), (4.5)

Ki(k) =
{

Pi(k)Hi(k)Mi(k) if ‖wi(k)‖ > ci,
0 if ‖wi(k)‖ < ci,

Pi(k + 1) = Pi(k) − Ki(k)H�
i (k)Pi(k) + Qi(k),

i = 1, . . . , n,

with

Mi(k) =
[
Ri(k) + H�

i (k)Pi(k)Hi(k)
]−1

, (4.6)
ei(k) = xi(k) − x̂i(k), (4.7)

where ci > 0 is a constrain used to avoid the zero-crossing, ei(k) ∈ � is the
respective identification error, Pi(k) ∈ �Li×Li is the prediction error associ-
ated covariance matrix at step k, wi ∈ �Li is the weight (state) vector, Li
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is the respective number of neural network weights, xi is the ith plant state,
x̂i is the ith neural network state, n is the number of states, Ki ∈ �Li is
the Kalman gain vector, Qi ∈ �Li×Li is the state noise associated covariance
matrix, Ri ∈ � is the measurement noise associated covariance; Hi ∈ �Li is a
vector, in which each entry (H

ij
) is the derivative of one of the neural network

state (x̂
i
) with respect to one neural network weight, (w

ij
), defined as follows:

H
ij

(k) =
[

∂x̂
i
(k)

∂wij (k)

]�

wi(k)=wi(k+1)

, (4.8)

where i = 1, ..., n and j = 1, ..., Li. If we select ci = 0, the modified EKF (4.5)
becomes the standard extended Kalman filter [2, 8]. Usually Pi and Qi are
initialized as diagonal matrices, with entries Pi(0) and Qi(0), respectively. It
is important to remark that Hi(k), Ki(k), and Pi(k) for the EKF are bounded;
for a detailed explanation of this fact see [6].

Then the dynamics of (4.7) can be expressed as

ei(k + 1) = w̃i(k)zi(x(k), u(k)) + εzi. (4.9)

By the other hand, the dynamics of (4.4) is

w̃i(k + 1) = w̃i(k) − ηiKi(k)e(k). (4.10)

Now, we establish the first main result of this chapter in the following
theorem.

Theorem 4.1. The RHONN (4.2) trained with the modified EKF-based algo-
rithm (4.5) to identify the nonlinear plant (4.1) ensures that the identification
error (4.7) is semiglobally uniformly ultimately bounded (SGUUB); moreover,
the RHONN weights remain bounded.

Proof. Case 4.1. ‖wi(k)‖ > ci: Consider the Lyapunov function candidate

Vi(k) = w̃T
i (k)w̃i(k) + e2

i (k), (4.11)
∆Vi(k) = V (k + 1) − V (k),

= w̃T
i (k + 1)w̃i(k + 1) + e2

i (k + 1)
− w̃T

i (k)w̃i(k) − e2
i (k),

Using (4.9) and (4.10) in (4.11),

∆Vi(k) = [w̃i(k) − ηiKi(k)ei(k)]T [w̃i(k) − ηiKi(k)ei(k)]

+ [w̃i(k)zi(x(k), u(k)) + εzi ]
T [w̃i(k)zi(x(k), u(k)) + εzi ] (4.12)

− w̃i(k)w̃i(k) − e2
i (k).
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Then, (4.12) can be expressed as

∆Vi(k) = w̃T
i (k)w̃i(k) − w̃T

i (k)w̃i(k)
+ η2e2

i (k)KTKi(k) + 2εziw̃i(k)zi(x(k), u(k))
+ zT

i (x(k), u(k))w̃T
i (k)w̃i(k)zi(x(k), u(k))

+ ε2zi
− 2ηiei(k)w̃T

i (k)Ki(k) − e2
i (k),

∆Vi(k) ≤ |ei(k)|2‖ηKi‖2 − |ei(k)|2
− |2ηi||ei(k)|‖w̃i(k)‖‖Ki(k)‖ + |εzi |2
+ |2εzi|‖w̃i(k)‖‖zi(x(k), u(k))‖
+ ‖w̃i(k)‖2‖zi(x(k), u(k))‖2.

Then ∆Vi(k) < 0 when the following conditions hold [3]:

|ei(k)| >
|εzi |2

1 − ‖ηKi‖2
≡ κ1,

‖w̃i(k)‖ >
|2ηiei max|‖Ki(k)‖
‖zi(x(k), u(k))‖2

− |2εzi|
‖zi(x(k), u(k))‖ ≡ κ2.

Therefore, the solution of (4.9) and (4.10) is stable; hence the identification
error and the RHONN weights are SGUUB [3].

Case 4.2. ‖wi(k)‖ < ci: Consider the same Lyapunov function candidate as in
case 1 (4.10); if Ki = 0 this implies that ∆Vi(k) = 0, then the identification
error and the weights are bounded. �
Comment 4.1. As well as many feedback linearization like controllers [1], the
neural block controller may present some singularities, due to the zero crossing
of some adaptive parameters. To overcome the controller singularity problem
in this chapter is included the constraint ci, which allows to eliminate the
controller singularities for specific weights zero-crossing [1].

4.2 Neural Block Controller Design

Consider the following special case of system (4.1):

x(k + 1) = f(x(k)) + B(x(k))u(k) + d(k),
y(k) = Cx(k), (4.13)

where x ∈ �n is the state vector of the system, u(k) ∈ �m is the input
vector, y(k) ∈ �p is the output vector, the vector f(·), the columns of B(·)
and d(·) are smooth vector fields, and d(·) is a disturbance vector. By means
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of nonsingular transformation [4, 7], system (4.13) can be represented in the
block controllable form as follows:

xi(k + 1) = fi(xi(k)) + Bi(xi(k))xi+1(k) + di(k),
xr(k + 1) = fr(x(k)) + Br(x(k))u(k) + dr(k),

y(k) = x1(k), i = 1, . . . , r − 1, (4.14)

where x(k) = [x1(k) . . . xi(k) . . . xr(k) ]�, xi(k) = [x1(k) . . . xi(k) ]�, d(k) =
[d1(k) . . . di(k) . . . dr(k) ]�, i = 1, . . . , r − 1, and the set of numbers (n1,
. . . , nr), which define the structure of system (4.14), satisfy n1 ≤ n2 ≤ · · ·
≤ nr ≤ m.

Define the following transformation:

z1(k) = x1(k) − xd
1(k),

z2(k) = x2(k) − xd
2(k),

= x2(k) − [B1(x1(k))]−1(K1z1(k) − (f1(x1(k)) − d1(k))),
z3(k) = x3(k) − xd

3(k),
= x3(k) − [B2(x2(k))]−1(K2z2(k) − (f2(x2(k)) − d2(k))),

...
zr(k) = xr(k) − xd

r (k), (4.15)

where yd(k) = xd
1(k) is the desired trajectory for tracking; xd

i is the desired
value for xi (i = 1, 2, · · · , r), which will be defined later; and Ki is a Schur
matrix. Using (4.15), system (4.14) can be rewritten as

z1(k + 1) = K1z1(k) + B1z2(k),
...

zr−1(k + 1) = Kr−1zr−1(k) + Br−1zr(k),
zr(k + 1) = fr(x(k)) + Br(x(k))u(k) + dr(k) − xd

r (k + 1). (4.16)

To design the control law, we use the sliding mode block control technique.
The manifold can be derived from the block control procedure, and a natural
selection for the sliding manifold is SD(k) = zr(k) = 0. Thus, system (4.16)
is represented, in the new variables, as

z1(k + 1) = K1z1(k) + B1z2(k),
...

zr−1(k + 1) = Kr−1zr−1(k) + Br−1SD(k),
SD(k + 1) = fr(x(k)) + Br(x(k))u(k) + dr(k) − xd

r (k + 1). (4.17)
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Once the sliding manifold is selected, the next step is to define u(k) as

u(k) =

{
ueq(k) for ‖ueq(k)‖ ≤ u0,

u0
ueq(k)

‖ueq(k)‖ for ‖ueq(k)‖ > u0,
(4.18)

where the equivalent control is calculated from SD(k + 1) = 0 as

ueq(k) = [Br(x(k))]−1(−fr(x(k)) + xd
r (k + 1) − dr(k)).

To this end, we present a stability analysis to prove that the closed-loop
system (4.17)–(4.18) motion over the manifold is stable, which is the second
main result of this chapter.

Theorem 4.2. The control law (4.18) ensures the sliding manifold SD(k) =
zr(k) = 0 is stable for system (4.14).

Proof. Write the last subsystem of (4.17) as

SD(k + 1) = SD(k)− xr(k) + xd
r (k) + fr(x1(k)) + Bru(k) + dr(k)− xd

r (k + 1).

Note that when ‖ueq(k)‖ ≤ u0, the equivalent control is applied, yielding
motion on the sliding manifold SD(k) = 0. In the case of ‖ueq(k)‖ > u0, the
proposed control strategy is u0

ueq(k)
‖ueq(k)‖ , and the closed-loop system is

SD(k + 1) = SD(k) − xr(k) + xd
r (k) + fr(x1(k)) + Bru0

ueq(k)
‖ueq(k)‖

+ dr(k) − xd
r (k + 1),

= (SD(k) − xr(k) + xd
r (k) + fr(x1(k)) + dr(k) − xd

r (k + 1))

×
(

1 − u0

‖ueq(k)‖
)

.

Along any solution of the system, the Lyapunov candidate function V (k) =
S�

D (k)SD(k) gives

∆V (k) = S�
D (k + 1)SD(k + 1) − S�

D (k)SD(k),

=
[
(SD(k) + fs(k))

(
1 − u0

‖ueq(k)‖
)]�

× (SD(k) + fs(k))
(

1 − u0

‖ueq(k)‖
)
− S�

D (k)SD(k),

≤
[
‖SD(k) + fs(k)‖

(
1 − u0

‖ueq(k)‖
)]�

×‖SD(k) + fs(k)‖
(

1 − u0

‖ueq(k)‖
)
− ‖SD(k)‖2.
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Then

∆V (k) ≤
[
‖SD(k) + fs(k)‖ − u0

‖B−1
r ‖

]� (
‖SD(k) + fs(k)‖ − u0

‖B−1
r ‖

)
−‖SD(k)‖2,

≤
(
‖SD(k) + fs(k)‖ − u0

‖B−1
r ‖

)2

− ‖SD(k)‖2,

≤ ‖SD(k)‖2 + 2‖SD(k)‖2fs(k) − 2u0
‖SD(k)‖
‖B−1

r ‖ + ‖fs(k)‖2

− 2u0
‖fs(k)‖
‖B−1

r ‖ +
u2

0

‖B−1
r ‖2

− ‖SD(k)‖2,

≤ −2‖SD(k)‖
(

u0

‖B−1
r ‖ − ‖fs(k)‖

)
+

(
u0

‖B−1
r ‖ − ‖fs(k)‖

)2

,

where fs(k) = −xr(k) + xd(k) + fr(x(k)) + dr(k) − xd
r (k + 1), and if

‖B−1
r ‖‖fs(k)‖ ≤ u0 ≤ ‖B−1

r ‖(2‖SD(k)‖ + ‖fs(k)‖) holds, then ∆V (k) ≤ 0
[4]; hence ‖SD(k)‖ and ‖ueq(k)‖ both decreases monotonically. Note that
‖B−1

r ‖(2‖SD(k)‖+ ‖fs(k)‖) ≥ u0 is a greater bound than that established by
the current case, i.e., ‖ueq(k)‖ > u0, due to the fact that ‖B−1

r ‖(2‖SD(k)‖ +
‖fs(k)‖) ≥ ‖ueq(k)‖. Therefore, the only condition drawn from the Lyapunov
analysis is ‖B−1

r ‖‖fs(k)‖ ≤ u0 [4].

The proposed control scheme is shown in Fig. 4.1. To this end, the third
main result of this chapter is the following:
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Fig. 4.1. Neural block control scheme
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Proposition 4.1. Given a desired output trajectory yd = xd
r , a dynamic sys-

tem with output y, and a neural network with output yn, then it is possible to
establish the following inequality [1]:

‖yd − y‖ ≤ ‖yn − y‖ + ‖yd − yn‖,

where yd − y is the system output tracking error, yn − y is the output
identification error, and yd − yn is the RHONN output tracking error.

Based on this proposition, it is possible to divide the tracking error in two
parts [1]:

1. Minimization of yn − y, which can be achieved by the proposed online
identification algorithm (4.1) on the basis of Theorem 4.1.

2. Minimization of yd − yn, for which a tracking algorithm is developed on
the basis of the neural identifier (4.2). This can be reached by designing
a control law based on the RHONN model. To design such controller we
propose to use the NBC methodology [1, 4].

Comment 4.2. Proposition 4.1 can be seen as a special case C = I discussed
in detail in Chap. 6.

4.3 Applications

In this section we apply the above developed scheme (Fig. 4.1) to control a
three-phase induction motor, for which model is described in Chap. 3.

4.3.1 Neural Network Identification

The RHONN proposed for this application is as follows:

x̂1(k + 1) = w11(k)S(ω(k)) + w12(k)S(ω)S(ψβ(k))iα(k)
+ w13(k)S(ω)S(ψα(k))iβ(k),

x̂2(k + 1) = w21(k)S(ω(k))S(ψβ(k)) + w22(k)iβ(k),
x̂3(k + 1) = w31(k)S(ω(k))S(ψα(k)) + w32(k)iα(k),
x̂4(k + 1) = w41(k)S(ψα(k)) + w42(k)S(ψβ(k))

+ w43(k)S(iα(k)) + w44(k)uα(k),
x̂5(k + 1) = w51(k)S(ψα(k)) + w52(k)S(ψβ(k))

+ w53(k)S(iβ(k)) + w54(k)uβ(k). (4.19)

The training is performed online, using a series–parallel configuration. All
the NN states are initialized in a random way as well as the weights vectors. It
is an important remark that the initial conditions of the plant are completely
different from the initial conditions for the NN.
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4.3.2 Neural Block Controller Design

Given full state measurements, the control objective is to develop velocity and
flux amplitude tracking for the discrete-time induction motor model (4.19),
using the discrete-time control algorithm developed above. Let us define the
following states as

x1(k) =
[

x̂1(k) − ωr(k)
Ψ(k) − Ψr(k)

]
, x2(k) =

[
iα(k)
iβ(k)

]
, (4.20)

where Ψ(k) = x̂2
2(k)+ x̂2

3(k) is the rotor flux identifying magnitude, Ψr(k) and
ωr(k) are reference signals. Then

Ψ(k + 1) = w2
21(k)S2(ω(k))S2(ψβ(k)) + w2

22(k)iβ
2
(k) + w2

32(k)iα
2
(k)

+ w2
31(k)S2(ω(k))S2(ψα(k))

+ 2w21(k)S(ω(k))S(ψβ(k))w22(k)iβ(k)
+ 2w31(k)S(ω(k))S(ψα(k))w32(k)iα(k).

Using (4.20), (4.19) can be represented in the block control form consisting
of two blocks

x1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k),
x2(k + 1) = f2(x1(k), x2(k)) + B2(k)u(k), (4.21)

with u(k) = [uα(k) uβ(k) ]� and

f1(x1(k)) =
[

w11(k)S(ω(k)) − ωr(k + 1)
f11(k)

]
,

f11(k) = w2
21(k)S2(ω(k))S2(ψβ(k)) + w2

31(k)S2(ω(k))S2(ψα(k))
+ w2I2

m(k) − Ψr(k + 1),

Im(k) =
√

w2
22(k)iα2(k) + w2

32(k)iβ2(k),

B1(x1(k)) =
[

b11(k) b12(k)
b21(k) b22(k)

]
,

b11(k) = w12(k)S(ω)S(ψβ(k)),
b12(k) = w13(k)S(ω)S(ψα),
b21(k) = 2w31(k)w32(k)S(ω(k))S(ψα(k)),
b22(k) = 2w21(k)w22(k)S(ω(k))S(ψβ(k)),

f2(x2(k)) =
[

f21(k)
f22(k)

]
, B2(k) =

[
w44(k) 0

0 w54(k)

]
,

f21(k) = w41(k)S(ψα(k)) + w42(k)S(ψβ(k)) + w43(k)S(iα(k)),
f22(k) = w51(k)S(ψα(k)) + w52(k)S(ψβ(k)) + w53(k)S(iβ(k)).
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Applying the block control technique, we define the following vector
z1(k) = x1(k). Then

z1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k) = Kz1(k), (4.22)

where K = diag{k1,k2}, with |ki| < 1 (i = 1, 2); then the desired value x2d(k)
of x2(k) is calculated from (4.22) as

x2d(k) = B−1
1 (x1(k))[−f1(x1(k)) + Kz1(k)].

It is desired that x2(k) = x2d(k). In this way, it is defined as a second new
error vector

z2(k) = x2(k) − x2d(k).

Then
z2(k + 1) = f3(x1(k)) + B2(k)u(k),

with

f3(x1(k)) = f2(x2(k)) − B−1
1 (x1(k + 1))[−f1(x1(k + 1)) + Kz1(k + 1)].

Let us select the manifold for the sliding mode as SD(k) = z2(k). To design
a control law, a discrete-time sliding mode version is implemented as

u(k) =

{
ueq(k) if ‖ueq(k)‖ ≤ u0,

u0
ueq(k)

‖ueq(k)‖ if ‖ueq(k)‖ > u0,

where ueq(k) = −B−1
2 (k)f3(x1(k)) is calculated from SD(k) = 0 and u0 is the

control resources that bound the control. This system represents the sliding
mode dynamics, which achieves the control objectives. It is an obvious fact
that the proposed control u(k) depends on iα

2
(k) and iβ

2
(k), which appears in

f1(•), making the system insolvable [4]. To overcome this problem is designed
an observer only with current measurements for the new variable Im(k) [4].
Because of the varying time of RHONN weights, we need to guarantee that
B1(•) and B2(•) are not singular; then it is necessary to avoid the zero-
crossing of the weights w13(k), w22(k), w32(k), w44(k), and w54(k), which are
the so-called controllability weights [1]. It is important to remark that in this
application only the weights w44(k) and w54(k) tend to cross zero.

4.3.3 Simulation Results

Simulations are performed for the system (4.19), using the parameters given
in Table 4.1.

For simulations the full state measurement assumption is necessary [4].
However, rotor fluxes measurement is a difficult task. Here, the reduced order
nonlinear observer designed in Chap. 2 is used to perform the simulation. The
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Table 4.1. Induction motor parameters

Parameter Value Description

Rs 14Ω Stator resistance
Ls 400 mH Stator inductance
M 377 mH Mutual inductance
Rr 10.1 Ω Rotor resistance
Lr 412.8 mH Rotor inductance
np 2 Number of pole pairs
J 0.01 Kg m2 Moment of inertia
ωn 168.5 rad s−1 Nominal speed
TLn 1.1N m Nominal load
T 0.0001 s Sampling period

Fig. 4.2. Tracking performance ω(k) (solid line), x1(k) (dash-dot line), and ωr(k)
(dashed line)

tracking results are presented in Figs. 4.2 and 4.3. There the tracking and
identification performance can be verified for the two plant outputs. Figure 4.4
displays the load torque applied as an external disturbance. Figure 4.5 presents
the parametric variation introduced in the rotor resistance (Rr) as a variation
of 1 Ω s−1. Figure 4.6 shows the weights evolution. Figures 4.7 and 4.8 portray
the fluxes and their estimates.
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Fig. 4.3. Tracking performance Ψ(k) (solid line), x2
2 + x2

3 (dash-dot line), and Ψd(k)
(dashed line)

Fig. 4.4. Load torque TL(k)
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Fig. 4.5. Rotor resistance variation (Rr)

Fig. 4.6. Weights evolution
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Fig. 4.7. Time evolution of ψα(k) and its estimate (real in solid line and estimated
in dashed line)

Fig. 4.8. Time evolution of ψβ(k) and its estimate (real in solid line and estimated
in dashed line)
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4.4 Conclusions

This chapter has presented the application of recurrent high order neural
networks to design a block control algorithm for a class of discrete-time non-
linear systems. The RHONN is used to perform the system identification;
the training of the neural networks is performed online using an extended
Kalman filter in a series–parallel configuration. The boundness of the iden-
tification error is established on the basis of the Lyapunov approach. The
proposed training algorithm avoids singularities in the control law due to
weight zero-crossings. Simulation results illustrate the robustness of the pro-
posed control methodology with respect to external disturbances as well as
parametric variations.



5

Discrete-Time Neural Observers

This chapter presents the design of an adaptive recurrent neural observer for
nonlinear systems, whose mathematical model is assumed to be unknown. The
observer is based on a recurrent high order neural network (RHONN), which
estimates the state vector of the unknown plant dynamics and it has a Luen-
berger structure. The learning algorithm for the RHONN is implemented using
an extended Kalman filter (EKF). The respective stability analysis, on the
basis of the Lyapunov approach, is included for the observer trained with an
EKF and simulation results are included to illustrate the applicability of the
proposed scheme.

Many of the nonlinear control publications assume the complete accessibility
of the system state; this is not always possible. For that reason the solution of
the nonlinear state estimation problem is a very important topic for nonlinear
control [9].

The state estimation problem has received much attention by many
authors, who have obtained interesting results in different directions. Most
of those results need the use of a special nonlinear transformation [7] or a lin-
earization technique [1, 4]. Such approaches can be considered as a relatively
simple method to construct nonlinear observers; however, they do not con-
sider uncertainties. In practice, we work in presence of external and internal
uncertainties. Observers that have a good performance even in the presence
of model and disturbance uncertainties are called robust; their design process
is too complex [11].

All the approaches mentioned above need the previous knowledge of the
plant dynamics. Recently, other kind of observer has emerged: neural observers
[3, 5, 6, 9, 10], for unknown plant dynamics.

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 45–57 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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5.1 Recurrent High Order Neural Observer
(RHONO) Design

In this section, we consider to estimate the state of a discrete-time nonlinear
system, which is assumed to be observable, given by

x(k + 1) = F (x(k), u(k)) + d(k),
y(k) = Cx(k), (5.1)

where x ∈ �n is the state vector of the system, u(k) ∈ �m is the input
vector, y(k) ∈ �p is the output vector, C ∈ �p×n is a known output matrix,
d(k) ∈ �n is a disturbance vector, and F (•) is a smooth vector field and Fi(•)
its entries; hence (5.1) can be rewritten as

x(k) =
[
x1(k) . . . xi(k) . . . xn(k)

]�
,

d(k) =
[
d1(k) . . . di(k) . . . dn(k)

]�
,

xi(k + 1) = Fi(x(k), u(k)) + di(k), i = 1, · · · , n,

y(k) = Cx(k). (5.2)

For system (5.2), we propose a Luenberger neural observer (RHONO) with
the following structure:

x̂(k) =
[
x̂1(k) . . . x̂i(k) . . . x̂n(k)

]�
,

x̂i(k + 1) = w�
i zi(x̂(k), u(k)) + gie(k),

ŷ(k) = Cx̂(k), i = 1, · · · , n, (5.3)

with gi ∈ �p, zi(x(k), u(k)) as defined in (2.8).
As discussed in [8], the general discrete-time nonlinear system (5.1), which

is assumed to be observable, can be approximated by the following discrete-
time RHONN parallel representation:

x(k + 1) = W ∗�z(x̂(k), u(k)) + εz, (5.4)

or in the single output form

xi(k + 1) = w∗�
i zi(x̂(k), u(k)) + εzi , i = 1, · · · , n, (5.5)

where xi is the ith plant state, εzi is a bounded approximation error, which
can be reduced by increasing the number of the adjustable weights [8]. Let
us assume that there exists ideal weights vector w∗

i ∈ �Li such that ‖εzi‖
can be minimized on a compact set Ωzi ⊂ �Li . The ideal weight vector w∗

i

is an artificial quantity required for analytical purpose [8]. In general it is
assumed that this vector exists and it is constant but unknown. Let us define
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its estimate as wi. Then the weights estimation w̃i(k) error is defined as

w̃i(k) = w∗
i − wi(k). (5.6)

Since w∗
i is constant, then

w̃i(k + 1) − w̃i(k) = wi(k) − wi(k + 1), ∀k ∈ 0 ∪ Z
+.

Then the weight vectors are updated online with a decoupled EKF, described
by

wi(k + 1) = wi(k) + ηiKi(k)e(k),
Ki(k) = Pi(k)Hi(k)Mi(k),

Pi(k + 1) = Pi(k) − Ki(k)H�
i (k)Pi(k) + Qi(k), i = 1, · · · , n, (5.7)

with
Mi(k) = [Ri(k) + H�

i (k)Pi(k)Hi(k)]−1. (5.8)

The output error is defined by

e(k) = y(k) − ŷ(k), (5.9)

and the state estimation error as

x̃(k) = x(k) − x̂(k). (5.10)

Then the dynamics of (5.10) can be expressed as

x̃i(k + 1) = w̃i(k)zi(x̂(k), u(k)) + ε′zi
− giCx̃(k), (5.11)

with ε′zi
= εzi + di(k). On the other hand, the dynamics of (5.6) is

w̃i(k + 1) = w̃i(k) − ηiKi(k)e(k). (5.12)

Considering (5.7)–(5.12), we establish the main result of this chapter in the
following theorem.

Theorem 5.1. For the system (5.2) the RHONO (5.3), trained with the
EKF-based algorithm (5.7), ensures that the estimation error (5.10) and the
output error (5.9) are semiglobally uniformly ultimately bounded (SGUUB);
moreover, the RHONO weights remain bounded.

Proof. Consider the Lyapunov function candidate.

Vi(k) = w̃i(k)Pi(k)w̃i(k) + x̃i(k)Pi(k)x̃i(k),
∆Vi(k) = V (k + 1) − V (k),

= w̃i(k + 1)Pi(k + 1)w̃i(k + 1) + x̃i(k + 1)Pi(k + 1)x̃i(k + 1)
− w̃i(k)Pi(k)w̃i(k) − x̃i(k)Pi(k)x̃i(k). (5.13)
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Using (5.7) and (5.6) in (5.13)

∆Vi(k) = [w̃i(k) − ηiKi(k)e(k)]T[Ai(k)][w̃i(k) − ηiKi(k)e(k)]
+ [f(k) − giCx̃(k)]T[Ai(k)][f(k) − giCx̃(k)]
− w̃i(k)Pi(k)w̃i(k) − x̃i(k)Pi(k)x̃i(k), (5.14)

with

Ai(k) = Pi(k) − Di(k) + QiDi(k) = Ki(k)H�
i (k)Pi(k),

f(k) = w̃i(k)zi(x̂(k), u(k)) + ε′zi
,

Then, (5.14) can be expressed as

∆Vi(k) = w̃T
i (k)Pi(k)w̃i(k) − w̃T

i (k)[Bi(k)]w̃i(k)
+ η2x̃T(k)CTKT[Ai(k)]Ki(k)Cx̃(k)
+ fT(k)Pi(k)f(k) − fT(k)[Bi(k)]f(k)
+ x̃T(k)CTgT

i [Ai(k)]giCx̃(k)
− w̃T

i (k)Pi(k)w̃i(k) − x̃T
i (k)Pi(k)x̃i(k),

∆Vi(k) ≤ ‖x̃(k)‖2‖ηKiC‖2‖Ai(k)‖ − ‖x̃(k)‖2‖giC‖2‖Ai(k)‖
− ‖x̃(k)‖2Pi(k) − ‖w̃i(k)‖2‖Bi(k)‖ + |ε′zi

|2‖Ai(k)‖
+ 2‖w̃i(k)‖‖zi(x̂(k), u(k))‖|ε′zi

|‖Ai(k)‖
+ ‖w̃i(k)‖2‖zi(x̂(k), u(k))‖2‖Ai(k)‖,

with Bi(k) = Di(k) − Qi,

∆Vi(k) ≤ −‖x̃(k)‖2Ei(k) − ‖w̃i(k)‖2Fi(k) + |ε′zi
|2‖Ai(k)‖ + 2Gi(k),

with

Ei(k) = Pi(k) − ‖ηKiC‖2‖Ai(k)‖ − ‖giC‖2‖Ai(k)‖,
Fi(k) = ‖Bi(k)‖ − ‖zi(x̂(k), u(k))‖2‖Ai(k)‖,
Gi(k) = ‖w∗

i − wi max‖‖zi(x̂(k), u(k))‖|ε′zi
|‖Ai(k)‖.

Then ∆Vi(k) < 0 when

‖x̃(k)‖ >

√
|ε′zi

|2‖Ai(k)‖ + 2Gi(k)
Ei(k)

≡ κ1

or

‖w̃i(k)‖ >

√
|ε′zi

|2‖Ai(k)‖ + 2Gi(k)
Fi(k)

≡ κ2.
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Fig. 5.1. Graphical illustration of Theorem 5.1

Therefore, the solution of (5.11) and (5.12) is stable; hence the estimation error
and the RHONO weights are SGUUB [3] (A graphical illustration is shown
in Fig. 5.1). Considering (5.3) and (5.9) it is easy to see that the output error
has an algebraic relation with x̃(k) for that reason if x̃(k) is bounded e(k) is
bounded too.

e(k) = Cx̃(k),
‖e(k)‖ = ‖C‖‖x̃(k)‖.

5.2 Applications

5.2.1 RHONO for the Van der Pol Oscillator

In this section, the neural observer is applied to a modified Van der Pol oscil-
lator, whose nonlinear dynamics is represented by the following equation [12]:

x1(k + 1) = x1(k) + Tx2(k) + d1(k),
x2(k + 1) = x2(k) + T (−ξ(x2

1(k) − 1)x2(k)) + T (−x1(k) + u(k)) + d2(k),
y(k) = x1(k),

d1(k) = 0.1 sin(k),
d2(k) = 0.1 cos(k), (5.15)

where variables x ∈ �2, u ∈ �, and y ∈ � are the state, input, and output of
the system, respectively; d1(k) and d2(k) are bounded external disturbances;
T is the sampling period, which is fixed at 0.1 s and ξ is a parameter for which
nominal value is equal to 2.
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Simulation Results

To estimate the state x2, we use the RHONO (5.3) with n = 2 trained with
the EKF (5.7).

x̂1(k + 1) = w11(k)S2(x̂1(k)) + w12(k)S(x̂1(k))S(x̂2(k))
+ w13(k)S2(x̂2(k)) + w14(k)S4(x̂2(k)) + g1e(k),

x̂2(k + 1) = w21(k)S2(x̂1(k)) + w22(k)S3(x̂2(k))
+ w23(k)S(x̂1(k))S(x̂2(k))
+ w24(k)S2(x̂2(k)) + w25(k)S3(u(k)) + g2e(k),

ŷ(k) = x̂1(k),

u(k) = cos
(

2πk

25

)
. (5.16)

The training is performed online, using a parallel configuration as dis-
played in Fig. 5.2. All the NN states are initialized in a random way. The
associated covariances matrices are initialized as diagonals, and the nonzero
elements are P1(0) = P2(0) = 10,000; Q1(0) = Q2(0) = 500; and R1(0) =
R2(0) = 10,000, respectively. The simulation results are presented in Figs. 5.3
and 5.4. They display the time evolution of the estimated states x1(k) and
x2(k), respectively. Figure 5.5. shows the estimation errors. Figure 5.6 displays
the parametric variation for ξ increment, and Fig. 5.7 portrays the bounded
external disturbances.
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Fig. 5.2. Neural observer scheme
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Fig. 5.3. Time evolution of the state x1(k) (solid line) and its estimated x̂1(k)
(dashed line)

Fig. 5.4. Time evolution of the state x2(k) (solid line) and its estimated x̂2(k)
(dashed line)

5.2.2 RHONO for Induction Motors

Literature in induction motors control is extensive, including field oriented
controller, VSC sliding mode controller, passivity-based controllers, and more
recently dynamic feedback linearization method, but many of the strategies
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Fig. 5.5. Estimation errors x̃1(k) (dashed line) and x̃2(k) (solid line)

Fig. 5.6. Uncertainties in parameter ξ

mentioned above assumed all the state is available for measurement and all
motor parameters are known; additionally most of those works were developed
for continuous-time systems ([2] and references therein).

In this section, we propose the use of the RHONO developed in Sect. 5.1
to estimate the state of the discrete-time induction motor model presented in
Sect. 3.2.
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Fig. 5.7. Disturbances d1(k) (solid line) and d2(k) (dashed line)

Fig. 5.8. Angular speed ω (solid line) and its estimated x̂1 (dashed line)

Simulation Results

Now, we apply the RHONO (Fig. 5.2), developed in Sect. 5.1, to estimate the
state of a three-phase induction motor (3.33). Simulations are performed for
the system (3.33), using the following parameters: Rs = 14 Ω; Ls = 400mH;
M = 377mH; Rr = 10.1 Ω; Lr = 412.8mH; np = 2; J = 0.01 Kgm2; T =
0.0001 s. To estimate the state of the system (3.33), we use the RHONO (5.3)
with n = 6 trained with the EKF (5.7).



54 5 Discrete-Time Neural Observers

Fig. 5.9. Alpha flux ψα (solid line) and its estimated x̂2 (dashed line)

Fig. 5.10. Beta flux ψβ (solid line) and its estimated x̂3 (dashed line)

x̂1(k + 1) = w11(k)S(x̂1(k)) + w12(k)S(x̂1)S(x̂3(k))x̂4(k)
+ w13(k)S(x̂1)S(x̂2(k))x̂5(k) + g1e(k),

x̂2(k + 1) = w21(k)S(x̂1(k))S(x̂3(k)) + w22(k)x̂5(k) + g2e(k),
x̂3(k + 1) = w31(k)S(x̂1(k))S(x̂2(k)) + w32(k)x̂4(k) + g3e(k),
x̂4(k + 1) = w41(k)S(x̂2(k)) + w42(k)S(x̂3(k)) + w43(k)S(x̂4(k))

+ w44(k)uα(k) + g4e(k),
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Fig. 5.11. Alpha current iα (solid line) and its estimated x̂4 (dashed line)

Fig. 5.12. Beta current iβ (solid line) and its estimated x̂5 (dashed line)

x̂5(k + 1) = w51(k)S(x̂2(k)) + w52(k)S(x̂3(k)) + w53(k)S(x̂5(k))

+ w54(k)uβ(k) + g5e(k),
x̂6(k + 1) = w61(k)S(x̂2(k)) + w62(k)S(x̂3(k)) + w63(k)S(x̂6(k))

+ g6e(k), (5.17)
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Fig. 5.13. Angular displacement θ (solid line) and its estimated x̂6 (dashed line)

Fig. 5.14. Load torque (TL)

where x̂1 estimates the angular speed ω; x̂2 and x̂3 estimates the fluxes ψα

and ψβ , respectively; x̂4 and x̂5 estimates the currents iα and iβ, respectively;
finally x̂6 estimates the angular displacement θ. The inputs uα and uβ are
selected as chirp functions.

The training is performed online, using a parallel configuration. All the
NN states are initialized in a random way. The associated covariance matrices
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Fig. 5.15. Rotor resistance variation (Rr)

are initialized as diagonals, and the nonzero elements are Pi(0) = 10,000;
Qi(0) = 500, and Ri(0) = 10,000, (i = 1, · · · , 6), respectively. The simulation
results are presented in Figs. 5.8–5.13 and they display the time evolution of
the estimated states x̂i(k), (i = 1, · · · , 6), respectively. Figures 5.14 and 5.15
display the load torque applied as an external disturbance and the parametric
variation introduced in the rotor resistance (Rr) as a variation of 1 Ω s−1,
respectively.

5.3 Conclusions

In this chapter, a RHONN is used to design a Luenberger-like observer
(RHONO) for a class of MIMO discrete-time nonlinear systems. The RHONO
proposed is trained with an EKF-based algorithm. The training of the
RHONO is performed online in a parallel configuration. The boundness of
the output and estimation errors is established on the basis of the Lyapunov
approach. Simulation results show the effectiveness of the proposed RHONO.
The results presented above seems important due to the need of observers for
unknown or partially unknown nonlinear systems in discrete-time.



6

Discrete-Time Output Trajectory Tracking

In this chapter, two schemes for trajectory tracking based on the backstepping
and the block control techniques, respectively, are proposed, using an RHONO.
This observer is based on a discrete-time recurrent high-order neural network
(RHONN), which estimates the state of the unknown plant dynamics. The
learning algorithm for the RHONN is based on an EKF. Once the neural
network structure is determined, the backstepping and the block control tech-
niques are used to develop the corresponding trajectory tracking controllers.
The respective stability analyzes, using the Lyapunov approach, for the neural
observer trained with the EKF and the controllers are included. Finally, the
applicability of the proposed design is illustrated by an example: output trajec-
tory tracking for an induction motor.

Nonlinear trajectory tracking is an important research subject ( [1, 3, 4, 6, 8],
and some references cited therein; mostly for continuous-time systems). In the
recent literature on adaptive and robust controls, numerous approaches have
been proposed for nonlinear trajectory tracking; among them the backstepping
and the block control strategies provide well-suited design methodologies [2].
For most nonlinear control designs, it is usually assumed that the whole system
state are measurable. In practice, however, it is very difficult to measure all
the state variables.

For this reason, nonlinear state estimation remains an important topic for
study in the nonlinear systems theory [9]. Recurrent neural-network observers
have also been proposed, and they do not require a precise plant model. This
technique is therefore attractive and actually has been successfully applied to
state estimation [9, 10].

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 59–72 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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6.1 Backstepping Control Using an RHONO

In this section, an RHONO is used to estimate the plant state as in Sect. 5.1,
and based on the backstepping technique developed in Sect. 3.1 the trajectory
tracking problem is solved. The proposed control scheme is shown in Fig. 6.1.
The main result of this chapter is established in the following proposition

Proposition 6.1. Given a desired output trajectory yd, a dynamic system
with output y, and a neural network with output ŷ, the following inequality
holds [2]:

‖yd − y‖ ≤ ‖ŷ − y‖ + ‖yd − ŷ‖,
where yd−y is the system output tracking error, ŷ−y is the output estimation
error, and yd − ŷ is the output tracking error of the nonlinear observer.

Based on this proposition, it is possible to divide the tracking objective
into two parts [2]:

1. Minimization of ŷ − y, which can be achieved by the proposed online
nonlinear observer algorithm trained with the EKF as shown in Theorem
5.1.

2. Minimization of yd − ŷ. For this, a tracking algorithm is developed on the
basis of the nonlinear observer (5.3). This minimization is obtained by
designing the control law (3.5), as shown in Theorem 3.1.
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Fig. 6.1. Backstepping control scheme using an RHONO
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It is possible to establish Proposition 6.1 due to the separation princi-
ple for discrete-time nonlinear systems [7], as stated in Theorem 2.2 and
Corollary 2.1.

6.1.1 Application to an Induction Motor

In this section, the control objective is to achieve velocity and flux amplitude
tracking for the discrete-time induction motor model (3.33), using the back-
stepping technique control algorithm developed in Chap. 3 and the RHONO
(5.17), as is shown in Fig. 6.1.

Block-Strict-Feedback-Form (BSFF) for an Induction Motor

Let us define the following states:

x1(k) =
[

x̂1(k)
Ψ(k)

]
; x2(k) =

[
x̂4(k)
x̂5(k)

]
,

u(k) =
[

uα(k)
uβ(k)

]
; yd(k) =

[
ωd(k)
Ψd(k)

]
,

y(k) = x1(k), (6.1)

where Ψ(k) = x̂2
2(k) + x̂2

3(k) is the rotor flux magnitude, ωd(k) and Ψd(k) are
the reference signals. The control objective is to force the output y(k) to track
the reference yd(k). Using (6.1), the system (3.33) can be represented in the
BSFF consisting of two blocks

x1(k + 1) = f1(x1(k)) + g1(x1(k))x2(k) + d1(k),
x2(k + 1) = f2(x2(k)) + g2(x2(k))u(k),

where f1(x1(k)), g1(x1(k)), f2(x2(k)), and g2(x2(k)) are assumed to be
unknown and d1(k) is an unknown bounded disturbance; in this case, this
disturbance is the load torque. Now we use the HONN to approximate the
desired virtual controls and the ideal practical controls described as

α1∗(k) � x2(k) = ϕ1(x1(k), yd(k + 2)),
u∗(k) = ϕ2(x1(k), x2(k), α1∗(k)),
y(k) = x1(k).

The HONN proposed for this application is as follows:

α1(k) = w1�
z1(�1(k)),

u(k) = w2�
z2(�2(k)),
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with

�1(k) = [x1(k), yd(k + 2)]�,

�2(k) = [x1(k), x2(k), α1(k)]�.

The weights are updated using the EKF:

wi(k + 1) = wi(k) + ηiKi(k)ei(k), i = 1, 2,

Ki(k) = P i(k)Hi(k)
[
Ri(k) + Hi�(k)P i(k)Hi(k)

]−1

,

P i(k + 1) = P i(k) − Ki(k)Hi�(k)P i(k) + Qi(k),

with

e1(k) = yd(k) − y(k),
e2(k) = x2(k) − α1(k),

The training is performed online, using a parallel configuration. All the NN
states are initialized in a random way. The associated covariances matrices are
initialized as diagonals, and the nonzero elements are P1(0) = P2(0) = 10,000;
Q1(0) = Q2(0) = 5,000; and R1(0) = R2(0) = 10,000, respectively.

Simulation Results

The simulations are performed for the system (3.33) using the following
parameters: Rs = 14 Ω; Ls = 400mH; M = 377 mH; Rr = 10.1 Ω; Lr =
412.8mH; np = 2; J = 0.01 Kgm2; T = 0.0001 s. To estimate the state
of system (3.33), we use the RHONO (5.3) with n = 5 trained with the
EKF (5.7).

The tracking results are presented in Figs. 6.2 and 6.3. There the tracking
performance can be verified for the two plant outputs. Figure 6.4 displays
the load torque applied as an external disturbance. Figure 6.5 portrays a
parametric variation introduced in the rotor resistance (Rr) as an increment.
Figure 6.6 shows the weights evolution. Figures 6.7 and 6.8 portray the fluxes
and their estimates.

6.2 Block Control Using an RHONO

In this section, an RHONO is used to estimate the plant state as in Sect. 5.1,
and based on the block control technique developed in Sect. 4.2 the trajectory
tracking problem is solved on the same basis of Proposition 6.1, dividing the
tracking objective into two parts, as in Sect. 6.1 [2]. The proposed control
scheme is shown in Fig. 6.9.
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Fig. 6.2. Tracking performance ω(k) (solid line), x̂1(k) (dash-dot line), and ωr(k)
(dashed line)

Fig. 6.3. Tracking performance Ψ(k) (solid line), x̂2
2(k)+ x̂2

3(k) (dash-dot line), and
Ψr(k) (dashed line)

6.2.1 Application to an Induction Motor

To this end we use the RHONO developed for the discrete-time induction
motor model, developed in Sect. 5.2, which is described as

x̂1(k + 1) = w11(k)S(x̂1(k)) + w12(k)S(x̂1)S(x̂3(k))x̂4(k)
+ w13(k)S(x̂1)S(x̂2(k))x̂5(k) + g1e(k),
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Fig. 6.4. Load torque TL(k)

Fig. 6.5. Rotor resistance variation (Rr)

x̂2(k + 1) = w21(k)S(x̂1(k))S(x̂3(k)) + w22(k)x̂5(k) + g2e(k),
x̂3(k + 1) = w31(k)S(x̂1(k))S(x̂2(k)) + w32(k)x̂4(k) + g3e(k),
x̂4(k + 1) = w41(k)S(x̂2(k)) + w42(k)S(x̂3(k)) + w43(k)S(x̂4(k))

+ w44(k)uα(k) + g4e(k),
x̂5(k + 1) = w51(k)S(x̂2(k)) + w52(k)S(x̂3(k)) + w53(k)S(x̂5(k))

+ w54(k)uβ(k) + g5e(k), (6.2)
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Fig. 6.6. Weights evolution

Fig. 6.7. Time evolution of ψα(k) (solid line) and its estimated x̂2(k) (dashed line)

where x̂1 estimates the angular speed ω; x̂2 and x̂3 estimates the fluxes ψα

and ψβ , respectively; x̂4 and x̂5 estimates the currents iα and iβ, respectively.
The training is performed online, using a parallel configuration. All the NN
states are initialized in a random way as well as the weights vectors. It is
important to remark that the initial conditions of the plant are completely
different from the initial conditions for the NN.
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Fig. 6.8. Time evolution of ψβ(k) (solid line) and its estimated x̂3(k) (dashed line)
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Fig. 6.9. Block control scheme using an RHONO

Comment 6.1. It is important to remark that as in Chap. 4, to apply the Block
control and the sliding modes techniques it is necessary to use the modified
EKF (4.5), to avoid the zero-crossing for w44(k) and w54(k). The proof for the
RHONN trained with the modified EKF is similar to the proof of Theorem 4.1.

Neural Block Controller Design

The control objective is to achieve velocity and flux amplitude tracking for
the discrete-time induction motor model (3.33), using the discrete-time block
control and sliding mode techniques control algorithm developed in Chap. 4.
Let us define the following states as
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x1(k) =
[

x̂1(k) − ωr(k)
Ψ(k) − Ψr(k)

]
, x2(k) =

[
x̂4(k)
x̂5(k)

]
, (6.3)

where Ψ(k) = x̂2
2(k) + x̂2

3(k) is the rotor flux identify magnitude, Ψr(k) and
ωr(k) are reference signals. Then

Ψ(k + 1) = w2
21(k)S2(x̂1(k))S2(x̂3(k)) + w2

22(k)x̂2
5(k) + w2

32(k)x̂2
4(k)

+ w2
31(k)S2(x̂1(k))S2(x̂2(k))

+ 2w21(k)S(x̂1(k))S(x̂3(k))w22(k)x̂5(k)
+ 2w31(k)S(x̂1(k))S(x̂2(k))w32(k)x̂4(k)
+ 2w22(k)x̂5(k)g2e(k) + (g2e(k))2

+ 2w21(k)S(x̂1(k))S(x̂3(k))g2e(k) + (g3e(k))2

+ 2w32(k)x̂4(k)g3e(k) + 2w31(k)S(x̂1(k))S(x̂2(k))g3e(k).

Using (6.3), (6.2) can be represented in the block control form consisting
of two blocks

x1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k),
x2(k + 1) = f2(x1(k), x2(k)) + B2(k)u(k), (6.4)

with u(k) =
[
uα(k) uβ(k)

]�
and

f1(x1(k)) =
[

w11(k)S(x1(k)) + g1e(k) − ωr(k + 1)
f11(k)

]
,

f11(k) = w2
21(k)S2(x̂1(k))S2(x̂3(k)) + w2

31(k)S2(x̂1(k))S2(x̂2(k))
+ 2w22(k)x̂5(k)g2e(k) + (g2e(k))2

+ 2w21(k)S(x̂1(k))S(x̂3(k))g2e(k)
+ (g3e(k))2 + 2w32(k)x̂4(k)g3e(k)
+ (g3e(k))2 + 2w32(k)x̂4(k)g3e(k)
+ w2I2

m(k) − Ψr(k + 1),

Im(k) =
√

w2
22(k)x̂2

4(k) + w2
32(k)x̂2

5(k),

B1(x1(k)) =
[

b11(k) b12(k)
b21(k) b22(k)

]
,

b11(k) = w12(k)S(x̂1(k))S(x̂3(k)),
b12(k) = w13(k)S(x̂1(k))S(x̂2(k)),
b21(k) = 2w31(k)w32(k)S(x̂1(k))S(x̂2(k)),
b22(k) = 2w21(k)w22(k)S(x̂1(k))S(x̂2(k)),

f2(x2(k)) =
[

f21(k)
f22(k)

]
, B2(k) =

[
w44(k) 0

0 w54(k)

]
,

f21(k) = w41(k)S(x̂2(k)) + w42(k)S(x̂3(k)) + w43(k)S(x̂4(k)),
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f22(k) = w51(k)S(x̂2(k)) + w52(k)S(x̂3(k)) + w53(k)S(x̂5(k)).

Applying the block control technique, we define the following vector
z1(k) = x1(k). Then

z1(k + 1) = f1(x1(k)) + B1(x1(k))x2(k) = Kz1(k), (6.5)

where K = diag{k1,k2}, with |ki| < 1 (i = 1, 2); then the desired value x2d(k)
of x2(k) is calculated from (6.5) as

x2d(k) = B−1
1 (x1(k))[−f1(x1(k)) + Kz1(k)].

It is desired that x2(k) = x2d(k). Hence, second new error vector is defined
as

z2(k) = x2(k) − x2d(k).

Then
z2(k + 1) = f3(x1(k)) + B2(k)u(k),

with

f3(x1(k)) = f2(x2(k)) − B−1
1 (x1(k + 1))[−f1(x1(k + 1)) + Kz1(k + 1)].

Let us select the manifold for the sliding mode as SD(k) = z2(k). To design
a control law, a discrete-time sliding mode version is implemented as

u(k) =

{
ueq(k) if ‖ueq(k)‖ ≤ u0,

u0
ueq(k)

‖ueq(k)‖ if ‖ueq(k)‖ > u0,

Fig. 6.10. Tracking performance ω(k) (solid line), x̂1(k) (dash-dot line) and ωr(k)
(dashed line)
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where ueq(k) = −B−1
2 (k)f3(x1(k)) is calculated from SD(k) = 0 and u0 is

the control resources that bound the control. Because of the time varying of
RHONO weights, we need to guarantee that B1(•) and B2(•) are not singular;
then it is necessary to avoid the zero-crossing of the weights w13(k), w22(k),
w32(k), w44(k), and w54(k), which are the so-called controllability weights [2].
It is important to remark that in this application only the weights w44(k) and
w54(k) tend to cross zero.

Fig. 6.11. Tracking performance Ψ(k) (solid line), x̂2
2(k) + x̂2

3(k) (dash-dot line),
and Ψr(k) (dashed line)

Fig. 6.12. Load torque TL (k)
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Simulation Results

Simulations are performed for the system (3.33), using the following param-
eters: Rs = 14 Ω; Ls = 400mH; M = 377mH; Rr = 10.1 Ω; Lr = 412.8mH;
np = 2; J = 0.01 Kgm2; T = 0.001 s. To estimate the state of system (3.33)
we use the RHONO (5.3) with n = 5 trained with the EKF (5.7).

The tracking results are presented in Figs. 6.10 and 6.11. There the track-
ing and state estimation performance can be verified for the two plant outputs.

Fig. 6.13. Rotor resistance variation (Rr)

Fig. 6.14. Weights evolution
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Fig. 6.15. Time evolution of ψα(k) (solid line) and its estimated x̂2(k) (dashed
line)

Fig. 6.16. Time evolution of ψβ(k) (solid line) and its estimated x̂3(k) (dashed
line)

Figure 6.12 displays the load torque applied as an external disturbance.
Figure 6.13 presents the parametric variation introduced in the rotor resis-
tance (Rr) as a variation of 1 Ω s−1. Figure 6.14 shows the weights evolution.
Figures 6.15 and 6.16 portray the fluxes and their estimates.
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6.3 Conclusions

In this chapter, the discrete-time output trajectory tracking is solved via the
design of two neural controllers based on the backstepping and the block con-
trol techniques, respectively. First, a nonlinear observer is designed based on a
RHONN trained with a modified EKF-based algorithm, where the training of
the nonlinear observer is performed online in a parallel configuration. Then,
based on the RHONO, the backstepping and the block control techniques are
designed, respectively. Simulation results for an induction motor are included
to illustrate the applicability of the proposed control schemes.
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Real Time Implementation

In this chapter real time implementation is presented in order to validate
the theoretical results discussed in previous chapters. The results presented
in this chapter include the Neural Network Identification scheme presented in
Chap. 4, the RHONO presented in Chap. 5, the Neural Backstepping Approach
analyzed in Chap. 3, the Neural Bock Control Technique discussed in Chap. 4
and the modifications of the last two controllers treated in Chap. 6 to include
the RHONO. All these applications was performed using a three phase induc-
tion motor.

The experiments are performed using a benchmark, which includes a PC for
supervising, a PWM unit for the power stage, a dSPACE DS1104 board
for data acquisition and control of the system (dSPACE is a trademark
of dSPACE GmbH), and a three phase induction motor as the plant has
to be controlled, with the following characteristics: 220V, 60Hz, 0.19 kW,
1,660 rpm, 1.3A [1]. Series of photographs and figures of the benchmark are
included. Figure 7.1 presents a schematic representation of the benchmark
used in these experiments. Figure 7.2 displays the encoder coupled with an
induction motor, Fig. 7.3 presents a view of the PC and the DS1104 board,
and Fig. 7.4 shows the PWM driver. The DS1104 board allows to download
applications directly from Simulink (Matlab and Simulink are trademarks of
the MathWorks Inc.) as is shown in Fig. 7.5. In Fig. 7.6, a Desktop inter-
face for the DS1104 board is included in order to clarify the visualization of
the experiments. The experiments performed in the benchmark includes the
Neural Network Identification scheme presented in Chap. 4, the RHONO pre-
sented in Chap. 5, the Neural Backstepping Approach analyzed in Chap. 3, the
Neural Bock Control Technique discussed in Chap. 4, and the modifications of
the last two controllers treated in Chap. 6 to include the RHONO. Finally, the
mentioned experiments are tested with a constant load torque applied with a
DC generator coupled to an induction motor as shown in Figs. 7.7 and 7.8.

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 73–94 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 7.1. Schematic representation of the control prototype

Fig. 7.2. Encoder coupled with the induction motor

7.1 Neural Identification

In this section the neural network identification scheme proposed in Chap. 4 for
the discrete-time induction motor model is applied in real time to the bench-
mark described above. During the identification process the plant and the NN
operates in open-loop. Both of them (plant and NN) have the same input
vector

[
uα uβ

]�; uα and uβ are chirp functions with 200V of amplitude and
incremental frequencies from 0 to 150Hz and 0 to 200Hz, respectively. The
implementation is performed with a sampling time of 0.0005 s. The results of
the real-time implementation are presented as follows: Fig. 7.9 shows the iden-
tification of rotor angular displacement; Fig. 7.10 displays the identification
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Fig. 7.3. View of the PC and the DS1104 board

Fig. 7.4. PWM driver

performance for the speed rotor; Figs. 7.11 and 7.12 present the identification
performance for the fluxes in phase α and β, respectively. Figures 7.13 and
7.14 portray the identification performance for currents in phase α and β,
respectively. Finally, the input signals are presented in Fig. 7.15.
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Fig. 7.5. Simulink program to be downloaded to the DS1104 board directly

Fig. 7.6. Desktop interface for the DS1104 board

7.2 Neural State Estimation

This section presents the neural network observer (RHONO) scheme pro-
posed in Chap. 5 for the discrete-time induction motor model as applied in
real time to the benchmark described above. During the estimation process,
the plant and the NN operates in open-loop. Both of them (plant and NN)
have the same input vector

[
uα uβ

]�; uα and uβ are chirp functions with



7.3 Neural Backstepping Control 77

Fig. 7.7. DC generator coupled to the induction motor as a constant load torque

Fig. 7.8. Complete view of the DC generator coupled to the induction motor as a
constant load torque

200V of amplitude and incremental frequencies from 0 to 150Hz and 0 to
200Hz, respectively. The implementation is performed with a sampling time of
0.0005 s. The results of the real-time implementation are presented as follows:
Fig. 7.16 displays the estimation performance for the speed rotor; Figs. 7.17
and 7.18 present the estimation performance for the fluxes in phase α and
β, respectively. Figures 7.19 and 7.20 portray the estimation performance for
currents in phase α and β, respectively. Finally, the input signals are presented
in Fig. 7.21.

7.3 Neural Backstepping Control

This section describes the real time results of the control law designed in
Chap. 3, based on the backstepping technique approximated by a HONN, for
the discrete-time induction motor model with a sampling time of 0.0005 s as
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Fig. 7.9. Real time rotor displacement identification (plant signal in solid line and
neural signal in dashed line)

Fig. 7.10. Real time rotor speed identification (plant signal in solid line and neural
signal in dashed line)

follows: The tracking results for the rotor speed and for the flux magnitude
are presented in Figs. 7.22 and 7.23 for the induction motor working without
load, respectively; Fig. 7.24 shows the control law in phases α and β; Fig. 7.25
presents the tracking result for the rotor speed under the presence of a load.
Finally, Fig. 7.26 displays the tracking result under the presence of an external
disturbance.
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Fig. 7.11. Real time alpha flux identification (plant signal in solid line and neural
signal in dashed line)

Fig. 7.12. Real time rotor beta flux identification (plant signal in solid line and
neural signal in dashed line)
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Fig. 7.13. Real time rotor alpha current identification (plant signal in solid line
and neural signal in dashed line)

Fig. 7.14. Real time beta current speed identification (plant signal in solid line and
neural signal in dashed line)
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Fig. 7.15. Input signals applied during the identification process (uα(k) in solid
line and uβ(k) in dashed line)

Fig. 7.16. Real time rotor speed estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.17. Real time alpha flux estimation (plant signal in solid line and neural
signal in dashed line)

Fig. 7.18. Real time beta flux estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.19. Real time alpha current estimation (plant signal in solid line and neural
signal in dashed line)

Fig. 7.20. Real time beta current estimation (plant signal in solid line and neural
signal in dashed line)
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Fig. 7.21. Input signals applied during the state estimation process (uα(k) in solid
line and uβ(k) in dashed line)

Fig. 7.22. Speed tracking performance (plant signal in solid line and reference
signal in dashed line)
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Fig. 7.23. Flux magnitude tracking performance (plant signal in solid line and
reference signal in dashed line)

Fig. 7.24. Control law signals uα(k) (solid line) and uβ(k) (dashed line)
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Fig. 7.25. Speed tracking performance (plant signal in solid line and reference
signal in dashed line) with a constant load torque

Fig. 7.26. Speed tracking performance (plant signal in solid line and reference
signal in dashed line) under the presence of disturbances

7.4 Backstepping Control Using an RHONO

The real time results of the control law designed in Chap. 6, based on the
backstepping technique approximated by a HONN using an RHONO, for
the discrete-time induction motor model with a sampling time of 0.001 s are
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Fig. 7.27. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

Fig. 7.28. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

presented as follows: The tracking results for the rotor speed and for the flux
magnitude are presented in Figs. 7.27 and 7.28 for the induction motor work-
ing without load, respectively; Fig. 7.29 shows the control law in phases α
and β; Fig. 7.30 presents the tracking result for the rotor speed under the
presence of a load. Finally, Fig. 7.31 displays the tracking result under the
presence of an external disturbance.
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Fig. 7.29. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

Fig. 7.30. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with a constant load torque

7.5 Neural Block Control with Sliding Modes

The corresponding real time results of the control law designed in Chap. 4,
based on the block control and sliding modes techniques, for the discrete-time
induction motor with a sampling time of 0.001 s are presented as follows: The
tracking results for the rotor speed and for the flux magnitude are presented
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Fig. 7.31. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

Fig. 7.32. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

in Figs. 7.32 and 7.33 for the induction motor working without load, respec-
tively; Fig. 7.34 shows the control law in phases α and β; Fig. 7.35 presents
the tracking result for the rotor speed with a constant load. Finally, Fig. 7.36
displays the tracking result under the presence of an external disturbance.
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Fig. 7.33. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

Fig. 7.34. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

7.6 Block Control with Sliding Modes Using an RHONO

This section presents the real time results of the control law designed in
Chap. 6 using the block control and sliding modes techniques, based on an
RHONO model, for the discrete-time induction motor model with a sampling
time of 0.001 s as follows: The tracking results for the rotor speed and for the
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Fig. 7.35. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with constant load torque

Fig. 7.36. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

flux magnitude are presented in Figs. 7.37 and 7.38 for the induction motor
working without load, respectively; Fig. 7.39 shows the control law in phases
α and β; Fig. 7.40 presents the tracking result for the rotor speed under the
presence of a load. Finally, Fig. 7.41 displays the tracking result under the
presence of an external disturbance.
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Fig. 7.37. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line)

Fig. 7.38. Flux magnitude tracking performance (plant signal in solid line, neural
signal in dash-dot line, and reference signal in dashed line)

7.7 Conclusions

To end this chapter, a comparative analysis of the four proposed schemes of
control is included. In Table 7.1, the four schemes are compared with an induc-
tion motor operating without load and Table 7.2 establishes the comparison
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Fig. 7.39. Control law signals uα(k) (solid line) and uβ(k) (dashed line)

Fig. 7.40. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) with constant load torque

between the four schemes with the motor operating in presence of a constant
load.

For Tables 7.1 and 7.2, B means backstepping technique, BNO means
backstepping technique using an RHONO, BCNI means block control and
sliding modes techniques, and BCNO means block control and sliding modes
techniques using an RHONO.
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Fig. 7.41. Speed tracking performance (plant signal in solid line, neural signal in
dash-dot line, and reference signal in dashed line) under the presence of disturbances

Table 7.1. Comparison of the mean square error for the controllers without load

Control algorithm Mean square error

B 4.0130
BNO 8.4350
BCNI 1.9504
BCNO 4.5363

Table 7.2. Comparison of the mean square error for the controllers with load

Control algorithm Mean square error

B 3.9158
BNO 4.6576
BCNI 1.7160
BCNO 5.2302

According to the mean square error presented above, the scheme with
better performance are the ones based on the block control using the neural
identifier and backstepping techniques, on the other hand the scheme with
worse performance is the one based on the backstepping technique using the
neural observer. It is important to remark that all the schemes present an
excellent performance. However, the technique with the smaller computational
complexity is the one based on the backstepping technique, since it allows to
use a sampling time of 0.5ms, whereas the other three schemes requires 1ms.
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Conclusions and Future Work

8.1 Conclusions

In this work, based on the neural network and feedback linearization tech-
niques, a novel method to design robust control for a class of MIMO discrete-
time nonlinear uncertain systems is proposed. This method includes four
different control schemes, which can be applied depending on the state vector
measurement viability:

a) The first designed robust direct neural control scheme is based on the
backstepping technique, approximated by a high order neural network.
On the basis of the Lyapunov approach, the respective stability analysis,
for the whole closed-loop system, including the extended Kalman filter
(EKF)-based NN learning algorithm, is also performed.

b) The second robust indirect control is designed with a recurrent high order
neural network, which enables to identify the plant model. A strategy to
avoid specific adaptive weights zero-crossing and conserve the identifier
controllability property is proposed. Based on this neural identifier and
applying the discrete-time block control approach, a nonlinear sliding man-
ifold with a desired asymptotically stable motions was formulated. Using
a Lyapunov functions approach, a discrete-time sliding mode control that
makes the designed sliding manifold to be attractive was introduced.

Both the first and second control schemes require only the plant model
structure knowledge, but the plant state vector must be available for the
measurement. In the case when only the plant output is measured, some plant
parameters are needed to design an observer.

c) For nonlinear plants whose mathematical model is assumed to be unknown
and the only output vector can be measured, the third robust control
scheme was designed. This strategy includes an adaptive recurrent neural
observer, which estimates the state vector of the unknown plant dynamics.
This observer has a Luenberger structure and is based on a recurrent high

E.N. Sanchez et al.: Discrete-Time High Order Neural Control – Trained with Kalman Filter-
ing, Studies in Computational Intelligence (SCI) 112, 95–96 (2008)
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order neural network (RHONN) trained by the EKF learning algorithm.
Using the separation principle, stability conditions for the complete closed-
loop system were derived.

d) Based on the above proposed RHONN observer, two trajectory tracking
control policies were formulated. The first one was achieved by using the
backstepping technique, while the second version was designed implement-
ing the block control linearization approach techniques. The respective
stability analysis carried out for the neural observer trained by the EKF
learning algorithm and block controller has proved robustness of the
closed-loop system.

Effectiveness of all the proposed schemes was illustrated via design,
computer simulation, and real-time implementation of four discrete-time
controllers designed for an induction motor. It was established that

e) For the controllers based on the first two proposed schemes ((a) and (b)),
only the rotor loop parameters are needed to design the rotor flux nonlinear
observer. The obtained flux estimates were then used in the direct back-
stepping high order neural network controller (a) and to train the RHONN
identifier in the indirect controller (b).

f) For the controllers based on the RHONN observer ((c) and (d)), the
knowledge of the motor parameters is not required.

The simulation and real-time implementation of the schemes proposed in
this book are presented, validating the theoretical results, using a benchmark
for a three phase induction motor.

The experimental results illustrate the robustness of the designed con-
trollers with respect to motor parameter variations and the load torque
(external disturbance).

8.2 Future Work

As a future work, it is worth to mention the following:

• Design robust controllers for electric power system using the developed in
the book robust control method

• Design a discrete-time indirect control scheme of speed and limited current
for an induction motor

• Design discrete-time neural observers of reduced order for nonlinear uncer-
tain systems

• Design a sensorless neural observer in the benchmark of an induction motor
• Design of a bounded neural controller based on the backstepping technique
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Causality Contradiction in Backstepping

For the design of adaptive controllers to be applied to discrete-time nonlinear
systems in strict feedback form through backstepping, it is common to find the
noncausal problem [5]. There are many ways to avoid the causality contradic-
tion [4–6,13]; in this appendix one of them is presented, basic idea for which
is to consider the original system description as a one-step ahead predictor;
then it is possible to transform the one-step ahead predictor into a equivalent
maximum r-step ahead predictor.

The model of many practical nonlinear systems can be expressed in (or trans-
formed into) a special state-space form named block strict feedback form
(BSFF) [8] as follows:

xi(k + 1) = f i(xi(k)) + gi(xi(k))xi+1(k) + di(k), i = 1, 2, . . . , r − 1,

xr(k + 1) = f r(x(k)) + gr(x(k))u(k) + dr(k),
y(k) = x1(k), (A.1)

where x(k) = [x1�(k), . . . , xr�(k)]� are the state variables, and xi(k) =
[x1�, x2�, . . . , xi�]�, xi ∈ �ni , r ≥ 2, r is the number of blocks, u(k) ∈ �m is
the system input, y(k) ∈ �m is the system output, for simplicity of nota-
tion through the remain of this book di(k) = di(x(k), k) ∈ �ni is the
bounded unknown disturbance vector, then there exists a constant di such
that ‖di(k)‖ ≤ di for 0 < k < ∞, f i(•) and gi(•) are unknown smooth
nonlinear functions.

In this section, as in [6], coordinate transformation are used to avoid the
noncausal problem, which often appears in discrete-time nonlinear system
control. We have assumed that the system (A.1) is in strict feedback form. It
seems that the backstepping can be used to construct stable control. However,
unlike in continuous-time systems, the causality contradiction is one of the
major problems that will be encountered when we construct controls for strict-
feedback discrete-time nonlinear system through backstepping, as detailed in
the following.
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Consider the system (A.1), if we design the ideal fictitious control for that
system

α∗
1(k) = − 1

g1(x1(k))
[f1(x1(k)) + d1(k) − yd(k + 1)],

the first block in (A.1) can be stabilized. Similarly, we can construct another
ideal fictitious control

α∗
2(k) = − 1

g2(x2(k))
[f2(x2(k)) + d2(k) − α∗

1(k + 1)]

to stabilize the second equation in (A.1). But unfortunately, α∗
1(k+1) in (A.1)

is a fictitious control of the future. This means that the fictitious control
α∗

2(k) is infeasible in practice. If we continue the process to construct the
final desired control u∗(k), we end up with a u∗(k) that is infeasible due to
unavailable future information. However, the above problem can be avoided
if we transform the system equation into a special form which is suitable for
backstepping design. The basic idea is as follows. If we consider the original
system description as a one-step ahead predictor, then we can transform the
one-step ahead predictors into an equivalent maximum r-step ahead predictor
which can predict the future states x1(k+r), x2(k+r−1), . . . , xr(k+1), then
the causality contradiction is avoided when the controller is constructed based
on the maximum r-step ahead predictor by backstepping. The transformation
procedure is detailed as follows.

Consider the system (A.1)

xi(k + 1) = f i(xi(k)) + gi(xi(k))xi+1(k) + di(k).

It can be easily obtained that xi(k + 1) is a function of xi+1(k). For
convenience of analysis, we define

xi(k + 1) = f i(1)(xi+1(k)), (A.2)

with
f i(1)(xi+1(k)) = f i(xi(k)) + gi(xi(k))xi+1(k) + di(k).

Thus, we have

xi(k + 1) =

⎡⎢⎣x1(k + 1)
...

xi(k + 1)

⎤⎥⎦ =

⎡⎢⎣ f1(1)(x2(k))
...

f i(1)(xi+1(k))

⎤⎥⎦ , i = 1, . . . , r − 1.

Then it is possible to define

xi(k + 1) = f
i(1)

(xi+1(k)), i = 1, . . . , r − 1. (A.3)
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After one more step, the first r − 1 blocks of (A.1) can be expressed as⎧⎪⎪⎨⎪⎪⎩
xi(k + 2) = f i(xi(k + 1)) + gi(xi(k + 1))xi+1(k + 1)

+ di(k + 1),
xr−1(k + 2) = f r−1(xr−1(k + 1)) + gr−1(xr−1(k + 1))xr(k + 1)

+ dr−1(k + 1),

(A.4)

i = 1, 2, . . . , r − 2.

Substituting (A.2) and (A.3) into (A.4), we can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k + 2) = f i(f
i(1)

(xi+1(k)))

+ gi(f
i(1)

(xi+1(k)))f i+1(1)(xi+2(k)) + di(k + 1)
� f i,2(xi+2(k)),

xr−1(k + 2) = f r−1(f
r−1(1)

(xr−1(k)))

+ gr−1(f
r−1(1)

(xr−1(k)))xr(k + 1) + dr−1(k + 1)
� f

r−1
(xr−1(k)) + gr−1(xr−1(k))xr(k + 1),

(A.5)

i = 1, 2, . . . , r − 2,

where

f i(2)(xi+2(k)) = f i(f
i(1)

(xi+1(k)))

+ gi(f
i(1)

(xi+1(k)))f i+1(1)(xi+2(k)) + di(k + 1),

f
r−1

(x(k)) = f r−1(f
r−1(1)

(x(k))) + dr−1(k + 1),

gr−1(x(k))xr(k + 1) = gr−1(f
r−1(1)

(x(k)))xr(k + 1).

Following the same procedure, the first (r − 2) blocks in (A.1) can be
described by

xi(k + 2) =

⎡⎢⎣x1(k + 2)
...

xi(k + 2)

⎤⎥⎦ =

⎡⎢⎣ f1,2(x3(k))
...

f i,2(xi+2(k))

⎤⎥⎦ , i = 1, . . . , r − 2,

which is a function of xi+2(k) and is denoted as

xi(k + 2)f
i(2)

(xi+1(k)), i = 1, . . . , r − 2,

Continuing the above procedure recursively, after (r − 2) steps, the first
two blocks of system (A.1) can be written as{

x1(k + r − 1) = f1(2)(x1(k)),
x2(k + r − 1) = f

2
(x2(k)) + g2(x2(k))x3(k + r − 2),

(A.6)
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where

f1,2(x1(k)) = f1
(
f

1(3)
(x1(k))

)
+ g1

(
f

1(3)
(x1(k))

)
f2(3)(x2(k))

+ d(k + r − 1),

g2(x2(2)(k)) = f2
(
f

2(3)
(x2(k))

)
,

g2(x2(k)) = g2
(
f

2(3)
(x2(k))

)
.

After one more step, the first block of (A.1) becomes

x1(k + r) = f
1
(x1(k)) + g1(x1(k))x2(k + r − 1), (A.7)

where

f
1
(X(k)) = f1(f1(2)(x1(k))) + d(k + r),

g1(X(k)) = g1(f1(2)(x1(k))).

Equations (A.4)–(A.7) are all derived from the original system, which is
equivalent to

x1(k + r) = f
1
(x1(k)) + g1(x1(k))x2(k + r − 1) + d1(k + r − 1),

...
xr−1(k + 2) = f

r−1
(xr−1(k)) + gr−1(xr−1(k))xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(x(k)) + gr(x(k))u(k) + dr(k),

y(k) = x1(k). (A.8)

For convenience of analysis, let us define i = 1, . . . , r − 1

f
i
(k) � f

i
(xi(k)),

gi(k) � gi(xi(k)),
f

r
(k) � f

r
(x(k)),

gr(k) � gr(x(k)),

where f
i
(•) and gi(•) are unknown functions of f i(xi(k)) and gi(xi(k)),

respectively.
Then, system (A.8) can be written as

x1(k + r) = f
1
(k) + g1(k)x2(k + r − 1) + d1(k + r − 1),

...
xr−1(k + 2) = f

r−1
(k) + gr−1(k)xr(k + 1) + dr−1(k + 2),

xr(k + 1) = f
r
(k) + gr(k)u(k) + dr(k),

y(k) = x1(k). (A.9)
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Comment A.1. For more detailed explanation, please see [4–6].

Comment A.2. A different very interesting solution to the causality contradic-
tion is presented in [1–3,12]; there, the noncausality problem for discrete-time
backstepping control is solved by using a filtered prediction.
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control of an induction motor, Proceedings IFAC’02, Barcelone, Spain, July 2002

9. E. N. Sanchez, A. Y. Alanis, and G. Chen, Recurrent neural networks
trained with Kalman filtering for discrete chaos reconstruction, Dynamics of
Continuous, Discrete and Impulsive Systems Series B, 13, 1–18, 2006

10. E. N. Sanchez and L. J. Ricalde, Trajectory tracking via adaptive recurrent neu-
ral control with input saturation, Proceedings of International Joint Conference
on Neural Networks’03, Portland, Oregon, USA, July 2003



108 References

Chapter 7
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