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Abstract Although the lymphatic system has 
been initially described in the sixteenth century, 
basic research has been limited. Despite its 
importance for the maintenance of tissue fluid 
homeostasis and for the afferent immune 
response, research of the molecular mechanisms 
of lymphatic vessel formation and function has 
for a long time been hampered. One reason 
could be because of the difficulties of visibility 
due to the lack of lymphatic markers. But since 
the discovery of several molecules specifically 
expressed in lymphatic endothelial cells, a 
rediscovery of the lymphatic vasculature has 
taken place. New scientific insights has facili-
tated detailed analysis of the nature and organi-
zation of the lymphatic system in physiological 
and pathophysiological conditions, such as in 
chronic inflammation and metastatic cancer 
spread. Knowledge about the molecules that 
control lymphangiogenesis and tumor-associ-
ated lymphangiogenesis is now expanding, 

allowing better opportunities for the develop-
ment of drugs interfering with the relevant sig-
naling pathways. Advances in our understanding 
of the mechanisms have translated into a num-
ber of novel therapeutic studies.

8.1 
Introduction

The lymphatic vasculature develops separately, 
but is functionally related to the blood vascular 
system. While the blood vascular system is a 
closed circulatory system, the lymphatic system 
is open-ended. It collects the interstitial fluid in 
the periphery and drains the absorbed lymph in 
the nuchal region into the subclavian veins. This 
loop controls the balance of various factors and 
10% of the body fluid volume. Next to the trans-
port of interstitial fluid, the lymphatic system 
plays an essential role in the circulation of macro-
molecules, dietary fats, lymphocytes, and  antigen- 
presenting cells. In the immune- regulatory net-
work, the lymphatic system directs the trafficking 
of cytokines and immune cells. However, the 
lymphatic system is also a common pathway for 
lymphatic metastasis, and therefore plays an 
essential role for overall survival of cancer 
patients.
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8 8.2 
Embryonic Lymphatic Development

The lymphatic system develops in parallel with 
the blood vascular system, but although major 
progress has been made, it remains controversial 
as to whether the lymphatic vasculature is 
 developing from embryonic veins, from lymp-
hangioblasts, or from both (Wilting et al. 1999). 
In 1902, Florence Sabin proposed the most 
widely accepted theory that the lymphatic vascu-
lature develops from embryonic veins (Sabin 
1902; Sabin 1904) and that the peripheral lym-
phatic system expands from the primary lymph 
sacs, originates from vascular endothelial cells, 
and then spreads by endothelial sprouting, form-
ing capillaries. Upon the formation of the vascu-
lar system, Lyve-1 (lymphatic vessel endothelial 
hyaluron receptor) starts to be expressed in 
venous endothelial cells of the cardinal vein, and 
endothelial cells become competent to respond 
to lymphatic signals (lymphatic competence). 
Induced by a so far unknown signal almost at the 
same time, Prox-1 expression occurs in restricted 
areas of the cardinal vein, determining the lym-
phatic fate (lymphatic bias) of budding endothe-
lial cells. Homebox gene Prox-1 is a transcription 
factor related to the Drosophila gene prospero, 
and expressing endo thelial cells are detected in a 
polarized manner in a subset of cells of the cardi-
nal vein, leading to budding of endothelial cells, 
initially in the jugular and mesonephric regions 
(Wigle and Oliver 1999). The analysis of Prox-1 
null mice revealed that Prox-1 is required to pro-
mote lymphangiogenesis in a specific subpopu-
lation in the embryonic vein. The importance 
becomes evident by the fact that in Prox-1 null 
mice the lymphatics do not develop, whereas the 
blood vessels seem to be unaffected (Wigle and 
Oliver 1999). Prox-1 promotes the lymphatic 
differentiation and leads to the downregulation 
of blood vessel markers (Wigle et al. 2002).

The vascular endothelial growth factor 
(VEGF)-C plays another essential role during 
lymphatic development. Binding of its receptor, 
the VEGF-Receptor-3 (VEGFR-3), expressed on 

early blood vessels and on lymphatic endothe-
lium is required for migration and budding. In 
VEGF-C knockout mice, endothelial cells com-
mit to the lymphatic lineage but do not sprout to 
form lymph vessels (Karkkainen et al. 2004). 
Xenopus tadpoles with VEGF-C knockdown had 
lymphatic commitment but impaired the direc-
tional migration and budding (Ny et al. 2005). 
Taken together, these results suggest that Prox-1 
activity is required for the commitment of the 
venous endothelial cells to lymphatic differentia-
tion, whereas VEGF-C/VEGFR-3 signaling pro-
vides essential signals for sprouting (Karkkainen 
et al. 2004; Wigle and Oliver 1999). The devel-
opment of the lymphatic vasculature during 
embryogenesis lags behind that of the blood ves-
sels, and these vessels at a later point in time 
develop Prox-1, Lyve-1, and CD31 positive ves-
sel structures. Vascular endothelial growth 
 factor–A and –C, but not basic FGF-2 (basic 
FGF), hepatocyte growth factor (HGF), and 
hypoxia, stimulate the development of early lym-
phatics (Kreuger et al. 2006; Liersch et al. 2006). 
Additional molecules, including the mucin-type 
glycoprotein podoplanin, Neuropilin-2 (Nrp-2), 
and angiopoietin-2 (Ang2) play major roles in 
the further maturation of the developing lym-
phatic system. Integrin a9b1 is required for the 
development of the fully functional  lymphatic 
system and is involved in mediating the effects of 
VEGF-C and VEGF-D via VEGFR-3. Mice 
deficient in the integrin a9-subunit show edema 
and chylothorax, and die shortly after birth.

An alternative model suggested that the pri-
mary lymphatics develop in the mesenchyme 
from precursor cells, so-called lymphangio-
blasts, independent from veins, and only later 
establish connections with the venous system 
(Huntington and McClure 1910). This was sup-
ported by the findings obtained in birds, where 
the lymph sacs develop by sprouting and form 
the embryonic mesenchyme (Schneider et al. 
1999). Recently it has been shown in the tadpole 
model that both mechanisms can also contribute 
to lymph vessel development (Ny et al. 2005). 
Evidence for both models has been recently 
found in murine embroid bodies. In these 
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 three-dimensional structures lymphatic endothe-
lial cells (LEC) seem to develop not only from 
blood vessels. In agreement with earlier obser-
vation, LYVE-1/CD31 positive vessels develop 
much earlier than Prox-1 expression occurs. But  
Prox-1 was partially expressed not only in a sub-
population of LYVE-1/CD31 positive blood 
endothelial vessels (Fig. 8.1), but also in addi-
tional areas of newly formed lymphatic vessels 
not associated to any blood vessel.

In summary, until now published data sug-
gest that the lymphatic vasculature is budding 

of from pre-existing veins, with a contribution 
from mesenchymal progenitors.

8.3 
The Lymphatic Function

The lymphatic system consists of capillaries, 
collecting vessels, lymph nodes, trunks, and 
ducts. In the periphery, the blind-ended, finger 
shaped capillaries consist of a single layer of 

Fig. 8.1  Embryonic development of the lymph system. 
Lymphatic competence of vascular structures in 
embryoid bodies (EB) show differential expression 
of Lyve-1 and Prox-1. Double immunofluores-
cence stains of 21 days old EBs for CD31 (red; a, d) 
and Prox-1 (green, e) revealed CD31-positive blood 
vessels and CD31+/Prox-1+ (e; arrow) positive lym-
phatic vessels (f; merged image). Differential immun-
ofluorescence stains for CD31 (a, d; red) and 
LYVE-1 (b; green) revealed that vascular structures 
are CD31+/Lyve-1 positive (b; arrow/arrowhead) 

with no  expression of Prox-1 (e; arrowhead). (c, f) 
Merged images. Scale bars: 100 µm. (g) At early 
embryonic development endothelial cells of the cardi-
nal vein express LYVE-1 and VEGFR-3 (lymphatic 
competence). Upon stimulation a subset of endothelial 
cells express the transcription factor Prox-1, a master 
regulator of lymphatic differentiation (lymphatic bias). 
These Prox-1 cells bud off and migrate out to form the 
primitive lymph sacs and then the mature lymphatic 
network. During this process, they upregulate the 
expression of additional lymphatic lineage markers
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8 overlapping cells, connected to the surrounding 
tissue by fibrillin-containing anchoring  filaments 
(Gerli et al. 2000). Due to an absent basal mem-
brane, no smooth muscle cells, and lack of tight 
cell–cell junctions (Barsky et al. 1983; Leak and 
Burke 1968; Sauter et al. 1998), only these fila-
ments stabilize the lymphatic capillaries and 
facilitate lymphatic flow and drainage (Leak and 
Burke 1966). Under physiological conditions, 
lymphatic capillaries remain collapsed, but espe-
cially in the case of increased interstitial pres-
sure the anchoring filaments provide a better 
drainage by increasing their luminal volume. 
After the capillaries merge into collecting ves-
sels, they consist of valves and are surrounded 
by smooth muscle cells. Intrinsic pump activity, 
nitric oxide–responsiveness (Shirasawa et al. 
2000; von der Weid 2001), skeletal muscle 
action and valves regulate the unidirectional 
lymph flow (von der Weid 2001). Collecting 
vessels become the afferent lymphatics of lymph 
nodes, emptying into the subcapsular sinus. 
Lymph nodes are discrete structures surrounded 
by a capsule composed of connective tissue. 
Lymph nodes function as filters and reservoirs 
and exist for the activation of T-lymphocytes 
and B-lymphocytes. The capsule is perforated at 
various points by afferent lymphatics. Lymph 
fluid, macromolecules, and cells travel through 
the subcapsular, the trabecular, and marginal 
sinuses to reach the efferent lymphatic. The lin-
ing endothelium of the sinuses is lymphatic 
endothelium, expressing the typical lymphatic 
markers. Lymph node sinuses have an irregular 
surface with many reticular cells and fibers pro-
truding into or crossing the lumen and, equiva-
lent to the anchoring filaments of the peripheral 
capillaries, these fibers support the intranodal 
vessel lumen (Okada et al. 2002). Casts of these 
sinuses are connected with the surrounded nodal 
parenchyma and blood vessels by lymphaticov-
enous shunts (Okada et al. 2002). All collecting 
lymphatic vessels pass through lymph nodes, 
which are organized in clusters through the lym-
phatic systems. After leaving the lymph node, 

the efferent lymphatic vessels merge to thoracic 
ducts and drain the collected fluids, proteins, and 
cells back into the blood vascular circulation. 
Reflecting this  specialized function in drainage, 
transport, and dissemination the lymphatic vas-
culature is crucially involved in the pathogenesis 
of various diseases or inflammatory conditions.

8.3.1 
Molecular Players in the Regulation  
of Lymphangiogenesis

The lymphatic endothelium expresses most of 
the common endothelial cell markers and shares 
various biological similarities with the blood 
endothelium (Sauter et al. 1998; Wissmann and 
Detmar 2006). The main regulator of lymphatic 
differentiation is the homebox transcription fac-
tor Prox-1 (Drosophila prospero related homeo-
box gene) (Alitalo and Carmeliet 2002; Wigle 
et al. 2002). Essential for lymph vessel growth 
are growth factors like VEGF-C and VEGF-D 
(Jeltsch et al. 1997; Oh et al. 1997; Veikkola et al. 
2001). These were the first described stimulators 
of lymphangiogenesis (Fig. 8.2). Both are mem-
bers of the VEGF-family, and they bind and acti-
vate the vascular endothelial growth factor 
receptor (VEGFR)-3 (Achen et al. 1998; Cao 
et al. 2004; Joukov et al. 1996; Lee et al. 1996; 
Makinen et al. 2001a; Veikkola et al. 2001), but 
after stepwise proteolytic processing by enzymes 
such as plasmin and proprotein convertases, they 
also bind VEGFR-2 (Joukov et al. 1997; Stacker 
et al. 1999) influencing angiogenesis as well 
(Cao et al. 1998; Marconcini et al. 1999; 
Witzenbichler et al. 1998). VEGFR-3, also 
known as FLT-4, was the first lymphangiogenic 
specific growth factor receptor (Kaipainen et al. 
1995). It is expressed in early embryonic devel-
opment in venous and lymphatic endothelium 
(Kaipainen et al. 1995) and synthesis is in parts 
controlled via activation of the p42/p44 MAPK 
signaling cascade, in protein C kinase dependent 
fashion, and via AKT phosphorylation (Makinen 
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et al. 2001b). However, in adults the expression 
of VEGFR-3 becomes confined to the lymphatic 
endothelium (Kaipainen et al. 1995), but in addi-
tion also monocytes, macrophages, dendritic 
cells, and fenestrated capillaries and veins express 
VEGFR-3 (Hamrah et al. 2003; Partanen et al. 
2000; Schoppmann et al. 2002). Interestingly, 
VEGFR-3 is reexpressed on capillary  endothelium 
in tumor tissue and is even involved in tumor-
angiogenesis and tumor growth (Laakkonen et al. 
2007). Signaling via VEGFR-3 is also important 
for the remodeling of primary vascular networks 
into larger blood vessels, a function essential for 
the development of the cardiovascular system in 
embryos (Dumont et al. 1998). Targeted inacti-
vation of VEGFR-3 results in embryonic lethal-
ity as a result of failure to remodel the capillary 

network before the emergence of lymphatic ves-
sels (Dumont et al. 1998). VEGF-C induces 
lymphangiogenesis both in embryos and tumors 
mainly by its interaction with VEGFR-3 (Jeltsch 
et al. 2003). VEGF-C knockouts fail to form ini-
tial lymphatic vessels indicating the pivotal role 
in embryogenesis (Karkkainen et al. 2004). In 
contrast, VEGF-D is not required for embryo-
genesis (Baldwin et al. 2005), but is the strongest 
inducer of lymphangiogenesis in the adult when 
given via adenoviral delivery (Rissanen et al. 
2003). Exogenous VEGF-D can rescue the phe-
notype of VEGF-C deficient mice (Karkkainen 
et al. 2004). Recent studies revealed that VEGF-A 
also supports lymphangiogenesis through inter-
action with VEGFR-2, expressed on LEC 
(Fig. 8.2). VEGF-A induces proliferation of LEC 

Fig. 8.2  Lymphangiogenic growth factors and their 
receptors. VEGFR vascular endothelial growth 
 factor receptor; HGFR hepatocyte growth factor 
 receptor; IGFR insulin-like growth factor receptor; 

PDGFR platelet derived growth factor receptor, FGF 
fibroblast growth factor, TIE Tyrosine kinase with 
 immunoglobulin-like and EGF-like domains
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8 and overexpression in vivo induces lymphangio-
genesis in tissue repair and inflammation (Hong 
et al. 2004; Kunstfeld et al. 2004; Nagy et al. 
2002). Even neutralizing anti-VEGF-A antibod-
ies reduce both lymphatic vessel density (LVD) 
and lymph node metastasis in xenograft models 
(Whitehurst et al. 2007). Recently, it has been 
suggested that VEGF-A predominantly promotes 
lymphatic enlargement, but not the formation of 
lymphatic vessels (Wirzenius et al. 2007). How-
ever, whether the effect is mainly direct or indi-
rect is still not well understood, because VEGF-A 
also might stimulate lymphangiogenesis indi-
rectly by recruitment of VEGF-C/-D secreting 
mononuclear cells (Cursiefen et al. 2004b).

Podoplanin is a transmembrane sialomuco-
protein expressed at high levels on lymphatic 
vessel endothelium (Breiteneder-Geleff et al. 
1999). It appears to be important for their cor-
rect function and formation. In humans, podo-
planin is also expressed in osteoblastic cells, 
kidney podocytes, and lung alveolar Type-I 
cells (Wetterwald et al. 1996). The precise func-
tion of podoplanin is unclear; however, mice 
with a targeted gene deletion were shown to 
have impaired lymphatic function and lym-
phedema (Schacht et al. 2003). Podoplanin 
knockout mice having defects in lymphatic, but 
not blood vessel patterning, show symptoms of 
lymphedema and die at birth due to respiratory 
failure (Schacht et al. 2003). Podoplanin is also 
able to aggregate platelets by interaction with the 
-C-type  lectin-like receptor2 (CLEC-2), prevent-
ing leaks between the both vasculatures (Kato 
et al. 2003; Suzuki-Inoue et al. 2007). Interest-
ingly, Wicki et al. (2006) recently published that 
podoplanin is upregulated in the invasive front 
of a number of human carcinomas and promotes 
tumor-cell invasion.

LYVE-1, the primary lymphatic endothelial 
receptor for hyaluronan has been shown to be a 
highly specific marker for lymphatic endothe-
lium in a wide variety of different tissues, and 
to distinguish lymphatic from blood vascu-
lar endothelium in numerous human tumors 

(Banerji et al. 1999). The considerable structural 
similarity between LYVE-1 and the leukocyte 
inflammatory homing receptor CD44 suggests a 
potential role for LYVE-1 in lymphatic traffick-
ing (Banerji et al. 1999). However, the precise 
function of LYVE-1 remains unknown, and 
LYVE-1 −/− mice display no obvious phenotype 
(Gale et al. 2007). Recently, Lyve-1 expression 
has also been reported to be absent in some 
tumor- and inflammation-associated lymphatic 
vessels (Rubbia-Brandt et al. 2004). It could 
be downregulated upon incubation of cultured 
LEC with tumor necrosis factor-alpha (Johnson 
et al. 2007).

Evidence is mounting concerning the role 
of integrins in lymphangiogenesis. Especially 
a9b1 seems to have a crucial role in lymp-
hangiogenesis. Mice deficient in the integrin a9 
subunit show edema, extra vascular lympho-
cytes surrounding lymphatic vessels, and die 
shortly after birth (Huang et al. 2000). Because 
integrin b1 can stimulate to some degree 
VEGFR-3, and VEGF-C and VEGF-D can bind 
a9b1, the integrin-complex might be involved 
in lymphatic vessel formation and stabilization 
(Wang et al. 2001). Integrin a9b1 has a role in 
growth factor induced lymphangiogenesis as 
Prox-1 upregulates the integrin and VEGFR-3 
(Mishima et al. 2007). Antagonism of a9b1 sup-
pressed VEGF-C induced motility. Additional 
studies revealed that a1b1 and a2b1 are 
expressed on LEC in healing wounds, and antag-
onists could block lymphangiogenesis (Hong 
et al. 2004). Antagonists of a4b1, which is 
expressed on tumor lymphatic endothelium, has 
been shown to block tumor metastasis as well as 
lymphangiogenesis (Garmy-Susini et al. 2007).

While Neuropilin-1 is mainly expressed on 
arterial endothelial cells, Neuropilin-2 is 
restricted to veins and lymphatics and is known 
to mediate axonal guidance during neuronal 
development. Neuropilin-2 is expressed by LEC 
and deficient mice develop a reduced small 
lymphatic endothelium (Yuan et al. 2002). It is 
also a receptor for VEGF-C and VEGF-D, 
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raising the possibility that VEGF-C signaling is 
enhanced by Neuropilin, similar to Neuropilin-1 
promotion of VEGF-A binding to VEGFR-2 
(Karkkainen et al. 2001).

Subsequent studies have also identified addi-
tional lymphangiogenic factors, including fibro-
blast growth factor-2 (bFGF), platelet derived 
growth factor (PDGF-BB), HGF, insulin-like 
growth factor (IGF), and angiopoietins (Ang-1/-
2). bFGF promotes lymphangiogensis in a mouse 
cornea assay, but it is more likely that this is 
due to an indirect effect by inducing VEGF-C 
production (Chang et al. 2004; Kubo et al. 
2002). Recently, HGF was described as a novel 
 lymphangiogenic growth factor. HGF promoted 
lymp hangiogenesis and promoted peritumoral 
lymphangiogenesis (Kajiya et al. 2005). Of inter-
est, HGF-receptor, also known as MET/c-met 
has been reported to correlate with metastatic 
spread of cancer (Danilkovitch-Miagkova and 
Zbar 2002). Studies also revealed that the insu-
lin-like growth factor 1 and 2 (IGF-1/-2) induce 
lymphangiogenesis, but the effect could not be 
blocked by antagonist of VEGFR-3 (Bjorndahl 
et al. 2005), although IGF-receptors promoted 
expression of VEGF-C and lymph node metasta-
sis in a Lewis lung carcinoma model (Tang et al. 
2003). Whether IGF-1/-2 has a direct or indirect 
effect has to be further analyzed. In addition to 
Prox-1, VEGF-C, VEGF-D, and VEGFR-3, sev-
eral molecules are known to be especially impor-
tant for later stages of lymphatic development.

While angiopoietin-2 (Ang-2) is not required 
for the formation of lymphatics, it plays a key 
role in their subsequent remodeling and matura-
tion. Mice lacking Ang-2 develop subcutaneous 
oedema and chylous ascites and die shortly after 
birth, due to impaired lymphatic vessel forma-
tion (Gale et al. 2002). Ang-1 can rescue these 
effects, although the abnormal angiogenesis also 
observed in Ang-2 −/− mice is not corrected (Gale 
et al. 2002). Interestingly, VEGF-C induces Ang-2 
expression in cultured LEC through VEGFR-
2, indicating a possible connection between 
the VEGF and angiopoietin families during 

lymphangiogenesis (Veikkola et al. 2003). 
However, so far there are no data published about 
the angiopoietins enhancing tumor-lymphangio-
genesis and lymphatic metastasis, although a 
majority of tumors show an increased expression 
(for review (Tait and Jones 2004).

The PDGF-family (Platelet derived growth 
factor) includes at least four structurally related 
members, PDGF-AA, PDGF-BB, PDGF-CC, 
and PDGF-DD, that can form both homodimers 
and hetereodimers (Heldin and Westermark 
1999). PDGF signaling is critical for proper 
embryonic development, whereas in the adult it 
plays a role in wound healing and in the control 
of interstitial fluid pressure. Besides stimulation 
of stromal cell recruitment, PDGF seems to be 
an important factor in regulating angiogenesis, 
pericyte recruitment, and tumor growth (Heldin 
and Westermark 1999; Ostman and Heldin 
2007; Reinmuth et al. 2009). PDGF-BB plays a 
direct role in promoting lymphangiogenesis and 
metastasis. Expression of PDGF-BB in murine 
fibrosarcoma cells induce tumor lymphangio-
genesis, leading to enhanced metastasis in 
lymph nodes (Cao et al. 2004). Cao et al. sug-
gest that PDGF-BB acts as a survival factor for 
newly formed lymphatics through interaction 
with receptors PDGFR-alpha and -beta, both 
detected on isolated primary lymphatic endothe-
lia cells. PDGFs may modulate the postnatal 
remodeling of lymphatic vessels, but not the 
development of rudimentary lymphatic vessels. 
This has to be validated in future.

Several other molecules were additionally 
found to be required for the development. The 
tyrosine kinase Syk and the adaptor protein SLP-
76 were found to be involved in the separation of 
blood and lymph vessels (Abtahian et al. 2003). 
Deficiency resulted in arteriovenous shunting 
and connections between blood vessels and blood-
filled lymph vessels. A similar role has been 
reported for Spred-1/Spred-2. In knockout mice, 
blood-filled lymphatic vessels have been reported 
indicating a possible role in vascular separation 
(Taniguchi et al. 2007) and angiopoietin-like 
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8 protein-4 might be required for sustained separa-
tion of the two vasculatures (Backhed et al. 
2007). Recently, two membrane proteins have 
been described specifically expressed in activated 
tumor-associated LEC. Applying double-staining 
techniques with established LEC markers, Fiedler 
et al. (2006) have screened endothelial cell dif-
ferentiation antigens for their expression in LECs. 
Their experiments identified the sialomucin 
CD34 as being exclusively expressed by LECs in 
human tumors but not in corresponding normal 
tissues. LyP-1, a molecular marker of tumor lym-
phatics in the MDA-MB-435 breast carcinoma 
cell line, which was grown in nude mice, was 
identified by combining ex vivo screening of 
phage-displayed peptides and in vivo screening 
for tumor homing. LyP-1 does not appear in nor-
mal lymphatics, and it remains to be determined 
whether it is expressed in other tumor types 
(Laakkonen et al. 2002). Since LEC’s can be suc-
cessfully isolated by tissue micropreparation 
from lymphatic channels, embryonic stem cells, 
even when established in primary culture, pro-
vide a valuable opportunity to further explore 
molecular mechanisms of lymphangiogene-
sis and the biology of lymphatic metastasis 
(Hirakawa et al. 2003; Kono et al. 2006; Petrova 
et al. 2002; Podgrabinska et al. 2002; Wick et al. 
2007). This may lead to the identification of 
endothelial lineage specific signatures.

8.4 
Pathology of the Lymphatic Vasculature

Lymphatic vessels have multiple functions and 
play an important role in various diseases. 
Impaired function of lymphatic vessels results in 
lymphedema. Based on the cause, lymphedema 
occurs as a hereditary (primary) edema or 
acquired (secondary) edema, but share common 
features—the dysfunctional lymphatic vessel 
showing fibrosis and susceptibility to inflamma-
tion and infection. The secondary lymphedema 

is a frequent clinical finding in industrialized 
countries due to cancer treatment including sur-
gery, radiotherapy, and chemotherapy.

8.4.1 
Secondary Lymphedema

In the setting of inflammation, lymphatic vessels 
have multiple functions. In acute inflammation, 
edema is one typical sign and a significant fea-
ture. It results when the amount of inflamed tissue 
fluid exceeds the capacity of lymphatic vessel for 
drainage. Lymphatic vessels have the passive role 
to transport the interstitial fluid and cytokines to 
the sentinel lymph nodes. In addition, the lym-
phatic vessels actively participate in the inflam-
matory process and are responsible for the afferent 
immune response by enhancing the migration of 
dendritic cells, which could be induced in two 
different ways. One is the increasing level 
of markers such as the secondary lymphoid 
chemokine (CCL21) or by increased lymphangio-
genesis, triggered by infiltrating immune cells. In 
the case of an inflammatory response, the infil-
trating immune cells are a major source of growth 
factors and even stromal fibroblasts secrete 
chemokines and other cytokines such as VEGF-A, 
VEGF-C, and monocyte-colony stimulating fac-
tor (M-CSF). They are chemotactic for further 
monocytes and macrophages (Barleon et al. 1996; 
Melder et al. 1996). Macrophages, in particular, 
secrete many angiogenic and lymphangiogenic 
factors, including VEGF-C and VEGF-D 
(Schoppmann et al. 2002), and therefore trigger 
lymphangiogenesis. It has even been reported 
that macrophages contribute to lymphangiogene-
sis by incorporation into newly formed lymphatic 
vessels in the inflamed cornea (Kerjaschki et al. 
2006). Thus, VEGFR-3 might have crucial roles 
in amplification of pathological lymphangiogen-
esis. Cornea inflammation increased the expres-
sion of VEGFR-3 and induced VEGF-C in 
dendritic cells, possibly by the secretion of 
 proinflammatory cytokines (Hamrah et al. 2003). 
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It further induces pronounced recruitment of den-
dritic cells to lymph nodes and triggers graft-
rejection. VEGF-C producing macrophages were 
also found to participate in lymphangiogenesis in 
human renal transplant rejection (Kerjaschki et al. 
2004). Therefore, antilymphangiogenic strategies 
may improve transplant survival in the setting of 
transplantation (Cursiefen et al. 2004a, 2003).

In one setting of lymphatic dysfunction, the 
clinical finding of lymphedema is associated 
with a blockade of the lymphatic fluid uptake. 
Filiariasis, a parasitic worm infection (Brugia 
malayi or Wuchereria bancrofti), often causes 
massive fibrosis of the lymph nodes and lymph 
channels in the inguinal region. The resulting 
edema of the external genitalia and the lower 
limbs is so extreme that it is called elephantiasis. 
In Europe, one often finds edema resulting from 
trauma, surgery, tissue grafting, and congenital 
edema (Daroczy 1995; Gerber 1998; Mortimer 
1998; Witte et al. 1998). Treatment of cancer by 
removal or irradiation of lymph nodes induces 
posttreatment lymphedema. Impaired lymphatic 
drainage produces swelling, scarring, and immun-
dysregulatory disorders. Lymphedema can be a 
result of an induced imbalance between lymph 
formation and absorption. The induced fluid 
accumulation causes pain, chronic and disabling 
swelling, tissue fibrosis, adipose degeneration, 
poor immune function, and susceptibility to 
infections, as well as impaired wound healing 
(Rockson 2001). Recent studies of experimental 
lymphedema revealed that VEGF-C protein 
injection into the wounded area and virus-medi-
ated VEGF-C gene therapy induce the growth of 
functional lymphatics (Karkkainen et al. 2001; 
Szuba et al. 2002). Furthermore, it has been 
shown that adenoviral delivery regenerated lym-
phatic vessels in mice (Tammela et al. 2007). 
Postsurgical lymphedemas might be a future 
indication for VEGF-C-based therapies; how-
ever, in the case of cancer treatment related lym-
phedema, future studies are warranted. VEGF-C 
might increase the risk of distant organ metasta-
sis if not all tumor cells have been removed.

8.4.2 
Primary Lymphedema

Primary lymphedemas are rare genetic develop-
mental disorders which can manifest at birth 
(Milroy’s disease) or at the onset of puberty 
(Meige’s disease) (Witte et al. 1998). Milroy’s 
disease is a congenital form of disease. It has 
been mapped to the telomeric part of chromo-
some 5q, in the region 5q34-q35 and Irrthum 
et al. (2000) have shown that this region includes 
a VEGFR-3 intragenic polymorphism. Several 
heterozygous VEGFR-3 missense mutations have 
been found in Milroy’s disease, resulting in the 
expression of an inactive tyrosine kinase (Irrthum 
et al. 2003; Karkkainen et al. 2000). The effect of 
these mutations was the inhibition of autophos-
phorylation of the receptor causing this congeni-
tal hereditary lymphedema (Irrthum et al. 2000). 
In Milroy’s disease, the superficial or subcuta-
neous lymphatic vessels are usually aplastic or 
 hypoplastic, whereas in other lymphedema syn-
dromes, such as in lymphedema distichiasis 
(LD), the microlymphatic network is normal or 
larger than in healthy controls (Bollinger et al. 
1983). The inactivating mutation of the forkhead 
transcription factor FOXC2 in autosomal domi-
nant LD syndrome relates to pubertal onset of 
lymphedema and double row of eyelashes (disti-
chiasis) (Fang et al. 2000). FOXC2 is a member 
of the forkhead/winged helix family of transcrip-
tion factors involved in developmental pathways. 
FOXC2 knockout mice display aortic arch and 
ventricular septal defects and also defective 
 lymphatic valve formation and abnormal peri-
cyte recruitment (Petrova et al. 2004). FOXC2 
is necessary in lymphatic maturation and is 
expressed in the developing lymphatic vessels 
and  lymphatic valves of adults (Dagenais et al. 
2004; Petrova et al. 2004). Dysfunction of 
SOX18, a transcription factor of the SOX family, 
has been identified as a cause for  hypotrichosis  ly
mphedema-teleangiectasia syndrome in humans 
(Irrthum et al. 2003), and is interestingly regulated 
by VEGFR-3 activation (Cermenati et al. 2008). 
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8 However, the detailed function is unclear. Reelin 
mutations, a gene coding for a protein guiding 
neuronal-cell migration, is accompanied with 
congenital lymphedema and chylous ascites 
(Hong et al. 2000).

In many lymphedema patients none of the 
aforementioned genetic defects are visible, indi-
cating more relevant genes in human lymphatic 
development. Different familial lymphedema 
syndromes emphasize even bigger phenotypic 
and genotypic heterogeneity in inherited lym-
phedema angiodysplasia syndromes, where the 
mutated genes have not been characterized yet 
(Northup et al. 2003).

8.5 
Role of Lymphangiogenesis in Cancer

The metastatic spread of tumor cells is respon-
sible for the majority of cancer deaths, and with 
few exceptions, all cancers can metastasize. The 
lymphatic system is the primary pathway of 
metastasis for most human cancers. For migrat-
ing tumor cells, the lymphatic system has many 
advantages over the blood circulation. Even the 
smallest lymphatic vessels are larger than blood 
capillaries; flow velocities are lower and there is 
less interference with serum factors. High shear 
stress and mechanic deformation in the blood 
vascular system often kills metastatic cells 
(Liotta et al. 1991; Weiss 1992). Lymphatic ves-
sels have no or a discontinuous basal membrane, 
intercellular gaps, and lymphatic capillaries are 
not surrounded by pericytes.

8.5.1 
Lymphvascular Invasion

Lymphatic vessels in comparison to blood ves-
sels are easier to invade and provide ideal con-
duits. In addition, LEC’s secret chemotactic 
agents attract malignant tumor cells toward 
areas of high LVD (Shields et al. 2007). Tumor 

cells protrude and migrate between LEC, known 
as lymphovascular invasion (LVI), an important 
parameter in the prognosis of cancer patients 
associated with relapse-free and overall survival 
in various cancers (Lee et al. 2006, 2007; Lotan 
et al. 2005; May et al. 2007). Once tumor cells 
gain access to lymphatic vessels, they embolize 
as single cells or in clusters to the sentinel lymph 
node (SLN) (Yancopoulos et al. 2000). When 
tumor cells infiltrate, the SLN further metastasis 
to distant lymph nodes or distant organs occurs. 
Through lymphaticovenous connections cancer 
cells metastasize via blood vessels, although 
hematogenous metastasis could also occur with-
out SLN metastasis (Fisher and Fisher 1966).

8.5.2 
Tumor-Lymphangiogenesis

Lymphangiogenesis has been found in the tissue 
of many malignancies. Studies revealed that 
tumors can actively induce the formation of 
tumor lymphangiogenesis and promote metasta-
sis (Mandriota et al. 2001; Skobe et al. 2001; 
Stacker et al. 2001). VEGF-C and VEGF-D 
induced lymphatic vessel proliferation intratu-
morally and peritumorally. Size of the  peritumoral 
lymphatic vessel was observed to be a most reli-
able and significant predictor for cutaneous mel-
anoma metastasis and survival (Dadras et al. 
2003). There is still an ongoing controversy 
regarding the significance and functionality of 
intratumoral lymphatics or intratumoral lymp-
hangiogenesis. Although there have been studies 
demonstrating that intratumoral lymphatics are 
nonfunctional for fluid drainage (Padera et al. 
2002), others could describe the prognostic influ-
ence of intratumoral lymphatics in immunhis-
tochemical analysis (Dadras et al. 2003). Tumor 
lymphangiogenesis predicts the presence of mel-
anoma metastasis in sentinel lymph nodes at 
time of surgery (Dadras et al. 2003). In addition, 
several clinical studies have correlated intratu-
moral LVD with metastasis (reviewed by (Achen 
et al. 2005; Stacker et al. 2002), but nevertheless 
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the importance of intratumoral lymphangiogen-
esis in regard to metastasis is debatable and may 
depend on the organ and/or experimental model 
used. This leads to the general problem that cur-
rent methodology of lymphangiogenesis quanti-
fication is still characterized by high intra- and 
inter-observer variability. For using the amount 
of lymphatic vessels in a tumor as a clinically 
useful parameter, a reliable quantification tech-
nique needs to be developed.

8.5.3 
Lymphatic Endothelial Cell Activation

Aside from peritumoral lymphangiogenesis, 
activation of lymphatic vessels has also been 
proposed as a way to enhance tumor cell infil-
tration and sentinel lymph node metastasis. He 
et al. (2005) recently noted that peritumoral 
LEC proximal to subcutaneous LNM35 lung 
tumors often displayed an activated phenotype 
– characterized by increased vessel sprouting, 
dilation, and permeability. VEGF-C may also 
activate lymphatics to promote tumor cell 
chemotaxis, lymphatic intravasation, blood ves-
sel leakage with enhanced lymphatic vessel 
dilatation and hence tumor cell dissemination 
(Hoshida et al. 2006). Others have speculated 
that activated lymphatics might upregulate 
secretion of chemo kines that could attract 
tumor cells (Alitalo et al. 2004). This activated 
phenotype can apparently be reversed by aden-
oviral delivery of soluble Flt-4 (He et al. 2005). 
Experimental evidence has been obtained sug-
gesting that LEC’s could attract tumor cells by 
secreting chemokines, and therefore actively 
promote lymphatic metastasis. One of the 
chemokines, named secondary lymphoid 
chemokine (SLC/CCL21), is highly expressed 
in lymph nodes, specifically in endothelial cells 
of high endothelial venules and T cell-rich 
areas, and also in the lymphatic endothelium of 
multiple organs (Gunn et al. 1998). CCL19 and 
CCL21, chemokines produced by LEC (Saeki 
et al. 1999), induce a biochemical change 

when bound to CCR7. Inactivation of CCR7 or 
CCL21 blocked dendritic cells to migrate from 
peripheral tissues to draining lymph nodes 
(Gunn et al. 1999). Recent reports have also 
shown that human (Takeuchi et al. 2004) and 
murine (Wiley et al. 2001) melanomas express 
CCR7, the receptor for CCL21 and CCL19 and 
that in gastric carcinoma, head/neck squamous 
cell carcinoma, nonsmall cell lung cancer, and 
breast cancer, these two factors are associated 
with lymph node metastasis (Mashino et al. 
2002; Muller et al. 2001; Takanami 2003; Wang 
et al. 2004; Yan et al. 2004). It has been reported 
earlier that CCR7 and CXCR4, receptors for 
SLC/CCL21 and CXCL12, respectively, are 
significantly expressed in human breast cancer 
cells. Their ligands exhibit high levels of expres-
sion in regional lymph nodes, bone marrow, 
lung, and liver, which represent the first destina-
tions of breast cancer metastasis (Muller et al. 
2001). Inhibiting the interaction between this 
receptor–ligand pair in vivo reduced the ability 
of MDA-MB-231 breast cancer cells to metas-
tasize to both lung and lymph nodes. These data 
suggest active interactions between tumor cells 
and endothelial cells. Furthermore, overexpres-
sion of CCR7 by B16 murine melanoma cells 
enhanced the incidence of lymph node but not 
lung metastasis when the tumor cells were 
implanted into the footpads of mice (Wiley 
et al. 2001). CCR7-mediated enhancement of 
lymphatic metastasis could be completely sup-
pressed by treatment with neutralizing anti-SLC 
antibodies (Wiley et al. 2001). These data indi-
cate that chemokines and their receptors play a 
critical role in determining the metastatic desti-
nation of tumor cells.

8.5.4 
Lymph Node Lymphangiogenesis

Paget (1889) concluded that metastasis occurred 
only when certain favored tumor cells (the seed) 
had a special affinity for the growth milieu pro-
vided by certain specific organs (the soil). The 
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concept of the “Seed and soil hypothesis” 
(Fig. 8.3) for tumor lymphangiogenesis has been 
recently described by Hirakawa et al. (2007, 
2005). They describe an increased lymphangio-
genesis in the sentinel lymph node, even prior to, 
and after metastatic colonization (Hirakawa et al. 
2007, 2005) (Fig. 8.3). Similar observations have 
been also made in malignant melanoma experi-
ments (Harrell et al. 2007) and in hematological 
malignancies such as lymphomas (Ruddell et al. 
2003). Interestingly, these investigators also 
observed a 20-30-fold increase in lymph flow. 
Equivalent changes of lymph node lymphangio-
genesis have been recently described in unin-
volved axillary lymph nodes of human breast 
cancer patients (Qian et al. 2006), and lymph 
node lymphangiogenesis was even associated 
with nonsentinel lymph node metastasis (Van 
den Eynden et al. 2006, 2007). That lymph nodes 
respond to inflammation or neoplasia is a long-
known fact. Activated lymph nodes can increase 
many-fold in size and weight (Cahill et al. 1976; 
Hall and Morris 1965; Hay and Hobbs 1977). 
This can be a morphological change known as 
reactive lymphadenopathy also observed during 
inflammatory processes. Although the exact 

mechanism underlying cancer-associated lymph 
node lymphangiogenesis remains unclear, it 
could be proposed as a possible way for tumors 
to disseminate faster throughout the lymphatic 
system and, subsequently, to distant sites.

8.6 
Targeting Lymphangiogenesis

Dissemination of tumor cells is an early and 
common event and is associated with poorer 
prognosis for human cancer patients. Targeting 
lymphangiogenesis could prevent lymphatic 
metastasis and further dissemination to distant 
lymph nodes or even distant organs. In the set-
ting of adjuvant tumor therapy, antilymphangio-
genic treatment may be an interesting approach 
after the primary tumor has been surgically 
removed. Preventing the dissemination of micro-
metastasis and keeping the metastasis in a local-
ized stage might increase the therapeutic 
opportunities and improve prognosis. Thus far, 
therapeutic agents include antibodies, soluble 
receptors, and tyrosine kinase inhibitors.

afferent lymphatics

efferent lymphatic

Capsule

Trabecula

artery/vein

Hilus

Sinuses
-subcapsular
-trabecular
-medullary

promoting distant LN-
lymphangiogenesis

haematogenous metastasis
to distant organs lymphatic metastasis

to distant lymph nodes

Sentinel
LN-involvmentLymphatic metastasis

Preparing the SOIL Enhancing metastasisNormal Lymph node

Fig. 8.3  Lymph node lymphangiogenesis. Cancer pro-
motes tumor-associated lymphangiogenesis lead-
ing to enhanced metastasis to sentinel lymph nodes 
(SLN). Lymphangiogenic factors (VEGF-C or 
VEGF-A) are drained to the SLN where they induce 
expansion of the lymphatic network (lymph node 

lymphangiogenesis) preparing the lymph node for 
the later arrival of the metastatic cells. Metastatic 
cells then further stimulate sentinel lymph node 
lymphangiogenesis and distant lymph node lymp-
hangiogenesis, enhancing cancer spread to distant 
lymph nodes and organs
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8.6.1 
Antibodies

The most extensively targeted molecular system 
is the VEGFR-3/VEGF-C and VEGFR-3/
VEGF-D system. Inhibition by neutralizing anti-
bodies reduced lymphangiogenesis and pre-
vented lymphatic metastasis in various animal 
models (He et al. 2002, 2005; Hoshida et al. 
2006; Roberts et al. 2006; Stacker et al. 2001). 
Interestingly, neutralizing VEGFR-3 antibody 
blocked the formation of new lymphatics, while 
the preexisting lymphatics have not been affected 
(Pytowski et al. 2005). Of further importance is 
the expression of VEGFR-2 and the stimulation 
of LEC by VEGF-A and by proteolytically pro-
cessed VEGF-C. Clinical studies inhibiting the 
activation of VEGFR-2 by the neutralizing 
VEGF-A antibody (bevacizumab) showed to be 
beneficial in human tumors (for review (Ferrara 
et al. 2004). An antilymphangiogenic effect of 
this antibody has never been evaluated system-
atically so far. Treatment of breast carcinoma in 
animal models with an anti-VEGF-A antibody 
revealed a reduced LVD and lymph node metas-
tasis (Whitehurst et al. 2007). The effect might 
be more pronounced by a combined blockade of 
both VEGF-C and VEGF-A, leading to dual 
blocking of angiogenesis and lymphangiogene-
sis. Double blockade by an anti-receptor target-
ing may lead to enhanced antiangiogenic and 
antitumor effect (Tammela et al. 2008).

8.6.2 
Soluble Receptors

Soluble receptors compete with membrane-
bound receptors. They comprise their extracel-
lular portions and retain the ability to bind their 
ligand. Even due to the binding of multiple 
 soluble factors they might be very effective. 
Inhibition of VEGFR-3 signaling with a soluble 
receptor, VEGFR-3-Ig, suppressed tumor lymp-
hangiogenesis and lymphatic metastasis in a 

breast and lung carcinoma model (He et al. 
2002; Karpanen et al. 2001).

8.6.3 
Small Molecule Inhibitor

A similar approach, but interacting intracellularly 
with the signal transduction are the receptor 
tyrosine kinase inhibitors such as sorafenib and 
sunitinib. Both interact with the VEGFR-2 and 
VEGFR-3 phosphorylation pockets and inhibit 
consecutive signaling pathways, but no studies 
have been published so far on their  specific anti-
lymphangiogenic effect. Cedarinib and vande-
tanib, which block VEGFR-2 and VEGFR-3 
signaling, yielded no inhibition of lymphatic 
metastasis in animal models, suggesting that 
kinase inhibition of both receptors may not be 
enough (Padera et al. 2008). But further studies are 
warranted to determine the role of tyrosine kinase 
inhibitors in antilymphangiogenic treatment.

8.7 
Conclusions

Lymphangiogenesis is currently receiving 
increasing scientific and clinical interest. The 
identification of novel mediators of lymphan-
giogenesis will likely lead to new advances in our 
understanding of the mechanisms underlying 
tumor metastasis. Comprehensive research strat-
egies have revealed a number of novel targets 
supporting biologically based therapeutic stud-
ies. Novel lymphangiogenic targets for the treat-
ment of cancers and inflammation support the 
future development of individualized therapies, 
possibly avoiding adverse side effects.
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