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Abstract. In this note a new model of grammatical picture generation
is introduced. The model is based on the notion of pure context-free
grammars of formal string language theory. The resulting model, called
Pure 2D context-free grammar (CFG), generates rectangular picture ar-
rays of symbols. The generative power of this model in comparison to
certain other related models is examined. Also we associate a regular
control language with a Pure 2D CFG and notice that the generative
power increases. Certain closure properties are obtained.

1 Introduction

Theoretical studies on digital pictures and picture analysis include syntactic
techniques as one of the main areas of study. In the problem of generation and
description of picture patterns considered as connected, digitized, finite arrays
of symbols, syntactic methods have played a significant role on account of their
structure-handling ability. Several picture language generating devices have been
introduced in the literature based on generalizing to two dimensions different
kinds of grammars like the Chomskian string grammars, the Lindenmayer sys-
tems (L systems) and so on and adapting the techniques and results of formal
string language theory. See for example [5,6,14,1].

One of the earliest picture models was proposed by Siromoney et al [9], moti-
vated by certain floor designs called “kolam” patterns. In this two-dimensional
model, which we call as Siromoney matrix grammar, generation of rectangu-
lar arrays takes place in two phases with a sequential mode of rewriting in the
first phase generating strings of intermediate symbols and a parallel mode of
rewriting these strings in the second phase to yield rectangular picture patterns.
Recently there has been a renewed interest in the study of Siromoney matrix
grammars [12,13].

Another very general rectangular array generating model, called extended
controlled tabled L array system (ECTLAS) was proposed by Siromoney and
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Siromoney [10], incorporating into arrays the developmental type of generation
used in the well-known biologically motivated L-systems. Here the symbols ei-
ther on the left, right, up or down borders of a rectangular array are rewritten
simultaneously by equal length strings to generate rectangular picture arrays.

Pure context-free grammars [4] which make use of only one kind of symbols,
called terminal symbols, unlike the Chomskian grammars, have been investigated
in formal string language theory for their language generating power and other
properties. In this note we introduce a new two-dimensional grammar, called
Pure 2D Context-free grammar (CFG), for picture array generation based on
pure context-free rules. Unlike the models in [9,10], we allow rewriting any col-
umn or any row of the rectangular array rewritten and do not prescribe any
priority of rewriting columns and rows as in [9] in which the second phase of
generation can take place only after the first phase is over. We compare the
generative power of the new model with those in [9,10,11,2]. Certain closure
properties are obtained. Also we associate a regular control language with a
Pure 2D CFG and notice that the generative power increases. Interpretation of
the letter symbols in picture arrays by primitive patterns is a well-known tech-
nique to obtain interesting classes of “kolam” [9] pictures or “chain code” [3,12]
pictures and so on. We indicate here chain code interpretation of the picture
arrays generated by Pure 2D CF grammars.

2 Preliminaries

Let Σ be a finite alphabet. A word or string w = a1a2 . . . an (n ≥ 1) over Σ is
a sequence of symbols from Σ. The length of a word w is denoted by |w|. The
set of all words over Σ, including the empty word λ with no symbols, is denoted
by Σ∗. We call words of Σ∗ as horizontal words. For any word w = a1a2 . . . an,
we denote by wT the vertical word

a1

a2

...
an

We also define (wT )T = w. We set λT as λ itself. A rectangular m × n array
M over Σ is of the form

M =

a11 · · · a1n

...
. . .

...
am1 · · · amn

where each aij ∈ Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set of all rectangular arrays over
Σ is denoted by Σ∗∗, which includes the empty array λ. Σ∗∗ − {λ} = Σ++. We
denote respectively by ◦ and � the column concatenation and row concatenation
of arrays in V ∗∗. In contrast to the case of strings, these operations are partially
defined, namely, for any X, Y ∈ V ∗∗, X ◦ Y is defined if and only if X and Y
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have the same number of rows. Similarly X � Y is defined if and only if X and
Y have the same number of columns.

We refer to [5,6] for array grammars. For notions of formal language theory we
refer to [8]. We briefly recall pure context-free grammars [4] and the rectangular
picture generating models in [9,10,11,1,2].

Definition 1 ([4]). A pure context-free grammar is G = (Σ, P, Ω) where Σ is
a finite alphabet, Ω is a set of axiom words and P is a finite set of context-free
rules of the form a → α, a ∈ Σ, α ∈ Σ∗. Derivations are done as in a context-
free grammar except that unlike a context-free grammar, there is only one kind
of symbol, namely the terminal symbol. The language generated consists of all
words generated from each axiom word.

Example 1. The pure context-free grammar G = ({a, b, c}, {c → acb}, {acb})
generates the language {ancbn/n ≥ 1}.
We restrict ourselves to recalling Tabled 0L array systems (T0LAS) introduced
in [10] for generating rectangular picture arrays.

Definition 2. A tabled 0L array system (T 0LAS) is G = (T,P , M0) where
• T is a finite nonempty set (the alphabet of G);
• P is a finite set of tables, {t1, t2, . . . , tk}, and each ti, i = 1, . . . , k, is a left,
right, up, or down table consisting respectively, of a finite set of left, right, up,
or down rules only. The rules within a table are context-free in nature but all
right hand sides of rules within the same table are of the same length;
• M0 ∈ Σ++ is an axiom array of G.

A derivation in G takes place as follows: Starting with a rectangular array M1 ∈
Σ++, all the symbols of either the rightmost or leftmost column or the uppermost
or lowermost row of M1 are rewritten in parallel respectively by the rules of a left
or a right table or an up or a down table to yield a rectangular array M2. A set
M(G) of rectangular arrays is called a Tabled 0L array language (T 0LAL) if and
only if there exists a tabled 0L array system G such that M(G) = {M |M0 ⇒∗

M, M ∈ T ∗∗}. The family of Tabled 0L array languages is denoted by L(T 0LAL).

In the 2D grammar model introduced in [9], which we call as Siromoney Matrix
grammar, a horizontal word Si1 . . . Sin over intermediate symbols is generated
by a Chomskian grammar. Then from each intermediate symbol Sij a vertical
word of the same length over terminal symbols is derived to constitute the jth
column of the rectangular array generated. We recall this model restricting to
regular and context-free cases.

Definition 3. A Siromoney matrix grammar is a 2−tuple (G1, G2) where

G1 = (H1, I1, P1, S) is a regular or context-free grammar,
H1 is a finite set of horizontal nonterminals,
I1 = {S1, S2, · · · , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅,
P1 is a finite set of production rules called horizontal production rules,
S is the start symbol, S ∈ H1,
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G2 = (G21, G22, · · · , G2k) where
G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular grammars,
V2i is a finite set of vertical nonterminals, V2i ∩ V2j = ∅, i �= j,
T is a finite set of terminals,
P2i is a finite set of right linear production rules of the form
X −→ aY or X −→ a where X, Y ∈ V2i, a ∈ T
Si ∈ V2i is the start symbol of G2i.

The type of G1 gives the type of G , so we speak about regular, context-free
Siromoney matrix grammars if G1 is regular, context-free respectively. Deriva-
tions are defined as follows: First a string Si1Si2 · · · Sin ∈ I∗1 is generated
horizontally using the horizontal production rules of P1 in G1. That is, S ⇒
Si1Si2 · · · Sin ∈ I∗1 . Vertical derivations proceed as follows: We write

Ai1 · · · Ain

⇓

ai1 · · · ain

Bi1 · · · Bin

if Aij → aijBij are rules in P2j , 1 ≤ j ≤ n. The derivation terminates if Aj →
amj are all terminal rules in G2.

The set L(G) of picture arrays generated by G consists of all m × n arrays
[aij ] such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗

G1
Si1Si2 · · · Sin ⇒∗

G2
[aij ] . We

denote the picture language classes of regular, CF Siromoney Matrix grammars
by RML, CFML respectively.

The regular/context-free Siromoney Matrix grammars were extended in [11] by
specifying a finite set of tables of rules in the second phase of generation with
each table having either right-linear nonterminal rules or right-linear terminal
rules. The resulting families of picture array languages are denoted by TRML
and TCFML and are known to properly include RML and CFML respectively.

Based on a well known characterization of recognizable string languages in
terms of local languages and projections, an interesting model of Tiling Recog-
nizable languages describing rectangular picture arrays was introduced in [1,2].
We now recall briefly these notions.

Given a rectangular picture array p of size m× n over an alphabet Σ, p̂ is an
(m+2)× (n+2) picture array obtained by surrounding p by the special symbol
# /∈ Σ in its border. A square picture array of size 2× 2 is called a tile. The set
of all tiles which are sub-pictures of p is denoted by B2×2(p).

Definition 4. Let Γ be a finite alphabet. A two-dimensional language or picture
array language L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over the
alphabet Γ ∪ {#} such that L = {p ∈ Γ ∗∗/B2×2(p̂)} ⊆ Γ ∗∗. The family of local
picture array languages will be denoted by LOC.
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Definition 5. A tiling system (TS) is a 4-tuple T = (Σ, Γ, Θ, π)where Σ and
Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#}
and π : Γ → Σ is a projection.

The tiling system T recognizes a picture array language L over the alphabet
Σ as follows: L = π(L′) where L′ = L(Θ)is the local two-dimensional language
over Γ corresponding to the set of tiles Θ. We write L = L(T ) and we say that
L is the language recognized by T. A picture array language L ⊆ Σ∗∗ is tiling
recognizable if there exists a tiling system T such that L = L(T ). The family of
tiling recognizable picture array languages is denoted by REC.

3 Pure 2D Picture Grammars

We now introduce a new two-dimensional grammar for picture generation. The
salient feature of this model is that the shearing effect in replacing a subarray
of a given rectangular array is taken care of by rewriting a row or column of
symbols in parallel by equal length strings and by using only terminal symbols
as in a pure string grammar. This new model is related to the model T0LAS
in [10] in the sense that a column or row of symbols of a rectangular array is
rewritten in parallel. This feature incorporates into arrays the parallel rewriting
feature of the well-known and widely investigated Lindenmayer systems [7]. But
the difference between this new model and the T0LAS in [10] is that the rewriting
is done only at the “edges” of a rectangular array in a T0LAS whereas here we
allow rewriting in parallel of any column or row of symbols. We now define the
new grammar model.

Definition 6. A Pure 2D Context-free grammar (P2DCFG) is a 4-tuple G =
(Σ, Pc, Pr,M′) where

• Σ is a finite set of symbols ;
• Pc = {tci/1 ≤ i ≤ m}, Pr = {trj/1 ≤ j ≤ n};
Each tci , (1 ≤ i ≤ m), called a column table, is a set of context-free rules of the
form a → α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a → α, b → β in tci , we
have |α| = |β| where |α| denotes the length of |α|;
Each trj , (1 ≤ j ≤ n), called a row table, is a set of context-free rules of the form
c → γT , c ∈ Σ and γ ∈ Σ∗ such that for any two rules c → γT , d → δT in trj ,
we have |γ| = |δ|;
• M′ ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.
Derivations are defined as follows: For any two arrays M1, M2, we write M1 ⇒
M2 if M2 is obtained from M1 by either rewriting a column of M1 by rules of
some column table tci in Pc or a row of M1 by rules of some row table trj in Pr.
⇒∗ is the reflexive transitive closure of ⇒ .

The picture array language L(G) generated by G is the set of rectangular
picture arrays {M/M0 ⇒∗ M ∈ Σ∗∗, for some M0 ∈ M′}. The family of pic-
ture array languages generated by Pure 2D Context-free grammars is denoted by
P2DCFL.
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M0 ⇒
x b b x
z y y z
x b b x

⇒

x b b x
x b b x
z y y z
x b b x
x b b x

⇒

x b b x
x b b x
x b b x
z y y z
x b b x
x b b x
x b b x

⇒

x b b b x
x b b b x
x b b b x
z y y y z
x b b b x
x b b b x
x b b b x

= M1

Fig. 1. Derivation M01 ⇒∗ M1

x x x y x x x
b b b z b b b
b b b z b b b
b b b z b b b
b b b z b b b
b b b z b b b

Fig. 2. A picture array M2

Example 2. Consider the Pure 2D Context-free grammar G = (Σ1, Pc1 , Pr1 ,
{M01}) where Σ1 = {x, y, z, b}, Pc1 = {tc1}, Pr1 = {tr1}

tc1 = {b → bb, y → yy}, tr1 =

⎧
⎨

⎩

b
y → y

b
,

x
z → z

x

⎫
⎬

⎭
, M01 =

x b x
z y z
x b x

A sample derivation M01 ⇒ M1 , on using tc1 , tr1 , tr1 , tc1 in this order, is given
in Figure 1:

Each of the arrays occurring in the derivation given belongs to the picture
language generated by G1.

Example 3. Consider the Pure 2D Context-free grammar G = (Σ2, Pc2 , Pr2 ,
{M02}) where Σ2 = {x, y, z, b}, Pc2 = {tc2}, Pr2 = {tr2}
tc2 = {y → xyx, z → bzb} tr2 =

{

x → x
b
, y → y

z

}

M02 = x y x
b z b

G2 generates picture arrays M2 of the form shown in Figure 2.
Here again we note that the number of rows in the generated picture array

need not have any proportion to the number of columns but will have an equal
number of columns to the left and right of the middle column (yz . . . z)T .

4 Comparisons and Closure Results

We now compare the new 2D grammar model introduced here with those in
[9,10,1,2].

Theorem 1. The family of P2DCFL is incomparable with the families of RML
and CFML but not disjoint with these families.
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Proof. The picture language consisting of rectangular arrays over a single sym-
bol a of all sizes m × n(m, n ≥ 1) is generated by a regular Siromoney matrix
grammar G. In fact the language of horizontal words generated in the first phase
of G1 is {Sn

1 /n ≥ 1} where S1 is an intermediate symbol and the language of
vertical words generated by S1 in the second phase is {(an)T /n ≥ 1}. A corre-
sponding Pure 2D CF grammar consists of a column table with the rule a → aa

and a row table with the rule a → a
a

and axiom array a. The incomparability

with CFML is due to the fact that it is known [9] that the picture languages
in examples 2 and 3 cannot be generated by any context-free Siromoney matrix
grammar and hence by any regular Siromoney matrix grammar since each of the
generated pictures of example 2, has an equal number of rows above and below
the middle row zy . . . yz and in example 3, each of the generated pictures has an
equal number of columns to the left and right of the middle column (yz . . . z)T .
On the other hand a picture language consisting of rectangular arrays of the
form M1 ◦ M2 where M1 and M2 are rectangular arrays over the symbols a, b
respectively with equal number of columns can be generated by a context-free
Siromoney matrix grammar with the language of horizontal words Sn

1 Sn
2 (S1, S2

are intermediate symbols) in the first phase and S1, S2 generating vertical words
over a, b respectively. This picture language, cannot be generated by any Pure
2D context-free grammar since the string language {anbn/n ≥ 1} is not a pure
CFL [4] and an argument similar to this can be done in the two-dimensional case
also. The incomparability with RML can be seen by considering a picture lan-
guage with rectangular arrays each row of which is a word in a3b3(ab)∗, known
[4] to be not a Pure CFL.

Theorem 2. The family of P2DCFL is incomparable with the families of
TRML and TCFML but not disjoint with these families.

Proof. In view of the proper inclusions RML ⊂ TRML, CFML ⊂ TCFML
and incomparability (Theorem 1) of P2DCFL with RML and CFML , it is
enough to note that the picture array language of example 2 generating picture
arrays as shown in Figure 1 can neither belong to TRML nor to TCFML, in
view of the fact that in the picture arrays in Figure 1 each has an equal number
of rows above and below the middle row zy . . . yz.

Theorem 3. Every language in the family L(T 0LAL) is a coding of a Pure 2D
CFL.

Proof. Let L be a picture array language generated by a T 0LAS [10] G =
(T,P , M0). We construct a Pure 2D CFG G′as follows: For each symbol a in the
alphabet T of G, we introduce a new distinct symbol A. Let T ′ = {A/a ∈ T }.
Each rule of the form a → a1a2 · · · amb, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T in a right
table t, is replaced by a rule A → a1a2 · · · amB, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T .
Each rule of the form a → a1a2 · · · amb, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T in
a down table t, is replaced by a rule A → (a1a2 · · · amB)T , A, B ∈ T ′, ai(1 ≤
i ≤ m), b ∈ T . Likewise the rules in left and up tables are replaced by rules
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constructed with a similar idea. Then G′ = (T ∪T ′,P ′, {M ′
0}) where P ′ consists

of the tables of G with each table having the rules replaced as mentioned above.
The modified left and right tables of G become the column tables of G′ and the
modified up and down tables of G the row tables of G′. The axiom array M

′
0

is M0 with its border symbols replaced by the new symbols. Define a coding c
(a letter to letter mapping) by c(A) = a where A is the new symbol introduced
corresponding to a. It can be seen that c(L(G′)) = L.

Theorem 4. The family of Pure 2D Context-free languages is incomparable with
LOC and REC.

Proof. The language of square picture arrays with 1s in the main diagonal and
0s in other positions is known [1] to be in LOC and the language of square pic-
ture arrays over 0s is known [1] to be in REC but both these languages cannot
be generated by any P2DCFG for the simple reason that the language of square
arrays cannot be generated by a P2DCFG as the rewriting of a column and of a
row are independent. On the other hand a picture array language L1 consisting
of arrays M = M1 ◦ c ◦ M1 where M1 is a string over a (M is a picture array
with only one row) is generated by a P2DCFG with a column rule c → aca but
L1 is known [1] to be not in REC and hence not in LOC.

It is a well-known tool in formal language theory [8] to control the sequence of
application of rules of a grammar by requiring the control words to belong to
a language. Generally, if the control words constitute a regular language, the
generative power of a grammar might not increase. Here we associate a regular
control language with a Pure 2D CFG and notice that the generative power
increases.

Definition 7. A Pure 2D Context-free grammar with a regular control is Gc =
(G, Lab(G), C) where G is a Pure 2D Context-free grammar, Lab(G) is a set of
labels of the tables of G and C ⊆ Lab(G)∗ is a regular (string) language. The
words in Lab(G)∗ are called control words of G. Derivations M1 ⇒w M2 in Gc

are done as in G except that if w ∈ Lab(G)∗ and w = l1l2 . . . lm then the tables
of rules with labels l1, l2, . . . lm are successively applied starting with M1 to yield
M2. The picture array language generated by Gc consists of all picture arrays
obtained from the axiom array of G with the derivations controlled as described
above. We denote the family of picture array languages generated by Pure 2D
Context-free grammars with a regular control by (R)P2DCFL.

Lemma 1. The Pure 2D Context-free grammar G in example 2 with a regular
control language {(l1l2)n/n ≥ 1} on the labels l1, l2 of the tables tc1 , tr1 respec-
tively, generates picture arrays as shown in Figure 1 but with sizes (2n+1)×(n+
2), n ≥ 1, and thus having a proportion between the height (the number of rows
in a picture array) and width (the number of columns in a picture array). In fact
the number of rows above and below the middle row zy . . . yz equals the number of
columns between the leftmost and rightmost columns, namely, (x . . . xzx . . . x)T .



338 K.G. Subramanian, A.K. Nagar, and M. Geethalakshmi

Proof. The tables of rules generating the picture array language in example 2

are tc1 = {b → bb, y → yy}, tr1 =

⎧
⎨

⎩

b
y → y

b
,

x
z → z

x

⎫
⎬

⎭
. Since the control language

on the labels of the tables consists of words {(l1l2)n/n ≥ 1}, an application of
the rules of the table tc1 is immediately followed by an application of the rules of
the table tr1 so that the array rewritten grows one column followed by one row
above and one row below the middle row zy . . . yz.The resulting array is then
collected in the language generated. This process is repeated so that the arrays
generated have a proportion between the width and height as mentioned in the
statement of the theorem.

Theorem 5. The family of P2DCFL is properly contained in (R)P2DCFL.

Proof. The containment follows since every P2DCFL is generated by a P2DCFG
G and the regular control language is Lab(C)∗ itself. The proper containment is
a consequence of the Lemma 1.

Generating “square arrays” over one symbol a is of interest in picture array
generation. Such square arrays can be generated by a ‘simple’ P2DCFG with a
regular control.

Theorem 6. The picture array language consisting of square arrays over one
symbol a is generated by a P2DCFG with a regular control.

Proof. The P2DCFG ({a}, {tc1}, {tr1}, a) where tc1 = {a → aa}, tr1 = {a → a
a
}

with the regular control language {(l1l2)n/n ≥ 1} where l1, l2 are respectively
the labels of tc1 , tr1 can be seen to generate the picture array language consisting
of square arrays over one symbol a.

We now examine some of the closure properties of P2DCFL. We also consider
operations of transposition, reflection about base, reflection about leg. The oper-
ation of transposition of a rectangular array interchanges the rows and columns.
The operation of reflection about the base reflects the rectangular array about
the bottommost row and of reflection about the leg reflects the rectangular array
about the leftmost column.

Theorem 7. The family of P2DCFL is not closed under union, column cate-
nation, row catenation but is closed under projection, transposition, reflection
about the base and reflection about the leg.

Proof. Let the alphabet be {a, b, c, x, y}. Non-closure under union follows by
the fact that L1 = {X1 ◦ (cn)T ◦ Y1/X1 ∈ {a}++, Y1 ∈ {b}++, |X1|c = |Y1|c}
where |X |c stands for the number of columns of X , is generated by a P2DCFG
with a column table consisting of a rule c → acb and a row table with rules

a → a
a
, b → b

b
, c → c

c
. Likewise L2 = {X2 ◦ (cn)T ◦ Y2/X2 ∈ {x}++, Y2 ∈

{y}++, |X2|c = |Y2|c} is also generated by a similar P2DCFG. It can be seen
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that L1 ∪ L2 cannot be generated by any P2DCFG, since such a grammar will
require a column table with rules of the forms c → acb and c → xcy. But then
this will yield arrays not in the union.

Non-closure under column catenation of arrays can be seen by considering
L1 ◦ L2 and noting that any P2DCFG generating L1 ◦ L2 will again require a
column table with rules c → acb and c → xcy but then this will lead to generating
arrays not in the column catenation L1 ◦ L2. Non-closure under row catenation
can be seen in a similar manner.

If L is a picture array language generated by a P2DCFG G and LT is the
transposition of L, then the P2DCFG G′ to generate LT is formed by taking
the column tables of G as row tables and row tables as column tables but for
a rule a → α in a column table of G, the rule a → αT (α ∈ Σ∗∗) is added in
the corresponding row table of G′ and likewise for a rule b → βT (β ∈ Σ∗∗) in
a row table of G, the rule b → β is added in the corresponding column table of
G′. Closure under the operations of reflection about base, reflection about leg
can be seen in a similar manner.

5 Interpretations of Picture Arrays

The idea of interpreting letter symbols in a picture array by primitive patterns
is a well-known technique to obtain interesting classes of “kolam” [9] pictures
or chain code [3] pictures and so on. We can employ here this technique to
generate such picture patterns as an application of the Pure 2D CF grammars.
Each symbol of a rectangular array is considered to occupy a unit square in the
rectangular grid so that each row or column of symbols in the array respectively
occupies a horizontal or vertical sequence of adjacent unit squares. A mapping i,
called an interpretation, from the alphabet Σ = {a1, a2, . . . an} of a Pure2DCFG
G to a set of primitive picture patterns {p1, p2, . . . pm} is defined such that for
1 ≤ i ≤ n, i(ai) = pj, for some 1 ≤ j ≤ m. A primitive picture pattern could
be a blank. Given a picture array M over Σ, i(M) is obtained by replacing
every symbol a ∈ M by the corresponding picture pattern i(a). For instance, in
Example 2, if we define, using two chain code primitives, namely, , − the

|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||

Fig. 3. The alphabetic letter H



340 K.G. Subramanian, A.K. Nagar, and M. Geethalakshmi

interpretation mapping i by i(x) = i(z) = , i(y) = − and i(b) = blank then
the interpretation i(M1) of M1 in Figure 1 will give a picture of the alphabetic
letter H (Figure 3).

Likewise if the primitive picture patterns are those used in “kolam” pictures,
we can obtain “kolam” patterns from Pure 2D CFL via suitable interpretation.

6 Conclusion

The picture array generating model based on pure context-free grammars in-
troduced here does not prescribe a priority of rewriting column or row unlike
[9,11] and does not allow rewriting only the borders of an array as in [10]. But it
requires a “control” to maintain a “proportion” between the number of columns
and the number of rows. In the case of string grammars, the class of pure CFLs
[4], is included in the class of CFLs. Here we have seen that the family of Pure
2D CFLs becomes incomparable with the family of CFMLs introduced in [9].
But we can extend the model of Pure 2D CFG by allowing nonterminal symbols
as well and this might increase the power of this model. It remains to be seen
in future whether this kind of an extension will be more powerful than the 2D
model in [10]. Also it remains to examine whether other properties [4] of pure
string languages carry over to the Pure 2D Context-free grammars.
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