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Abstract. Image Registration is central to different applications such
as medical analysis, biomedical systems, image guidance, etc. In this pa-
per we propose a new algorithm for multi-modal image registration. A
Bayesian formulation is presented in which a likelihood term is defined
using an observation model based on linear intensity transformation func-
tions. The coefficients of these transformations are represented as prior
information by means of Markov random fields. This probabilistic ap-
proach allows one to find optimal estimators by minimizing an energy
function in terms of both the parameters that control the affine trans-
formation of one of the images and the coefficient fields of the intensity
transformations for each pixel.

Keywords: Image Registration, Markov Random Fields, Bayesian
Estimation, Intensity Transformation Function.

1 Introduction

Image registration is the alignment of images that may come from the same
or different source. This task is very important to many applications involving
image processing or analysis such as medical analysis, biomedical systems, image
guidance, depth estimation, and optical flow. A special kind of registrations
is called Multimodal Image Registration, in which two o more images coming
from different sources are aligned; this process is very useful in computer aided
visualization in the medical field.

In the literature, there are basically two classes of methods to register mul-
timodal images: those based on features such as edge locations, landmarks or
surfaces [6][7][11], and those based on intensity [1][19][4][16]. Within the inten-
sity methods there are two popular ones. Partitioned Intensity Uniformly (PIU)
[19][5], proposed by Woods et al, is one of them. In this method it is assumed
that uniform regions in one of the images correspond to regions, also uniform,
in the other one. To achieve the registration, a corresponding measure is estab-
lished based on the statistical characteristics of both images. The goal of this
method is to use this measure to minimize the variance of intensity ratios. The
other method that has shown good results is the registration based on mutual
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information (MI), proposed by Viola et al [18]. In this method, statistical depen-
dencies between images are compared, establishing a metric based on the entropy
of each image and the join entropy. Even though the method is theoretically ro-
bust, it is complicated to implement and requires vast computational resources.
Another drawback of MI is that it completely ignores spatial information such
as edges or homogenous regions.

A method related to the work proposed in this paper is presented in [10].
It focuses only on elastic registration of multimodal images; it uses an itera-
tive scheme that iterates between finding the coefficients of polynomial intensity
transformations and registration using the demons method [17]. This method
makes the assumption that there are at most two functional dependencies be-
tween intensities. This restriction limits its applications since there are cases, as
those found in medical imaging, where inhomogeneity and noise are presented
in both images to register.

In this work, we present a more general registration method, in which a prob-
abilistic model permits the characterization of the image registration by means
of linear intensity transformation functions. Rigourously based on Bayesian esti-
mation, the main goal of this method is to establish the parameters of the affine
transformation, and at the same time, determine in a probabilistic framework
the coefficient values of these linear functions for each pixel to achieve the image
registration. These transformations have the purpose to estimate the adequate
intensity changes that match the intensity values between the images. In this ap-
proach, the coefficients of the linear intensity transformations (labeled MRCF)
are represented as Markov Random Fields (MRF)[2], giving in this way the prior
information about the homogeneity of the intensity changes.

The paper is organized as follows: in Section 2, we give an introduction to
MRF and present the Bayesian framework of image registration using affine
transformation and MRCF; in Section 3, we describe some experiments and
results; finally in Section 4, some conclusions are presented.

2 Bayesian Framework for Multimodal Image
Registration

2.1 Markov Random Fields

In this subsection, we present the basic definition of Markov Random Fields, for
more detail refer to [2][12][8]. Let L be the discrete pixel lattice where 2D images
of size n × m are observed:

L = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}. (1)

To simplify the notation, the pixels in a n×m image can be conveniently re-index
by a number r taking values in {1, 2, ..., n×m}. The sites in L are related to one
another via a neighborhood system. A neighborhood system for L is given by

N = {Nr|∀r ∈ L}, (2)
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where Nr are the sites neighboring r. The neighborhood relationship has the
following properties:

– a site is not neighboring to itself: r /∈ Nr;
– the neighboring relationship is mutual: r ∈ Nr′ ⇐⇒ r′ ∈ Nr.

We can define a graph (L, N), where L contains the nodes and N determines
the link between the nodes according to a neighborhood system. A clique C for
(L, N) is a subset of sites in L such that for all r, s ∈ C such that r �= s, we
have that r ∈ Ns and s ∈ Nr. In a first order neighborhood system (the four
nearest sites to r), cliques may be composed of either single sites c = {r}, or a
pair of neighboring sites c = {r, r′}, thus the collections of single-cliques C1 and
pair-cliques C2 are defined as

C1 = {{r}|r ∈ L},
C2 = {{r, s}|r ∈ Ns, s ∈ Nr}.

Let F = {F1, ..., Fn×m} be a family of random variables defined on L, where
a realization of Fr can take a value fr in Ω; we denote a realization of a joint
event as F = f . F is said to be a Markov random field on L with respect to a
neighborhood system N if the following conditions are satisfied:

– p(f) > 0, ∀f ∈ F,
– p(fr|fL−{r}) = p(fr|fNr).

The Hammersley and Clifford theorem [2] establishes that an MRF has an equiv-
alence with a Gibbs distribution, which has the following form

p(f) =
1

Zf
exp{−

∑

C

VC(f)}, (3)

where Zf is a normalizing constant, the sum in the exponential ranges over
the cliques of the given neighborhood system on L, and {VC} are the potential
functions, each one depending on the values of f at the sites that belong to
the clique C. These potential functions, together with the neighborhood system,
control the appearance of the sample field f .

2.2 Bayesian Estimation

To describe the probabilistic framework for multimodal image registration, we
assume first that the observation model in each pixel is given by

I2(T (r)) = g(I1(r)) + η(r), (4)

where I1, I2 are the images to register; T is the affine transformation that aligns
the images I1, I2; and η(r) ∼ N(0, σ2). g(I1(r)) is the intensity transformation
function which may be, in general, very complex such as logarithmic, gamma,
contrast-stretching, inverse, polynomial, or thresholding transformations, (see
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more details in [9]). In particular, we model this transformation with a locally
linear function given by

g(I1(r)) = K1(r)I1(r) + K2(r), (5)

where K1 and K2 are Markov random coefficient fields (MRCF) that describe
the intensity transformation at each pixel r. Given the observation model (4)
and the linear functions (5), one can estimate their parameters using Bayesian
estimation theory, following the steps [13]:

1. Find the likelihood of the observation p(I1, I2|K1, K2, T ).
2. Using the prior distributions p(K1, K2, T ), find the posterior distribution

p(K1, K2, T |I1, I2).
3. Define an appropriate cost function C(K̂1, K̂2, T̂ , K1, K2, T ), that assigns a

cost to estimators K̂1, K̂2, T̂ , given that the true values are K1, K2, T .
4. Find the optimal estimators K∗

1 , K∗
2 , T ∗ by minimizing

Q(K̂1, K̂2, T̂ ) = E[C(K̂1, K̂2, T̂ , K1, K2, T )|I1, I2). (6)

Now, we proceed to analyze each step in detail.
Assuming that η(r) (normal) is known and iid, the likelihood function can be

written as
p(I1, I2|K1, K2, T ) =

1
ZL

exp[−
∑

r∈L

VT (r)], (7)

where

VT (r) =
(I2(T (r)) − K1(r)I1(r) − K2(r))2

2σ2
. (8)

In this model, K1, K2, and T are assumed independent; hence, one can express
p(K1, K2, T ) as a product of independent probabilities. Now, the probability of T
is considered constant, and K1, K2 are MRF, resulting in the prior distribution:

p(K1, K2, T ) = p(K1)p(K2)p(T )
= 1

ZP
exp[−∑

C VC(K1) −
∑

C VC(K2) + log p(T )] . (9)

Using (8), (9), and the Bayes rule, one finds the posterior distribution as:

p(K1, K2, T |I1, I2) =
1
Z

exp[−U(K1, K2, T )], (10)

where Z is a normalizing constant composed by 1/ZL and 1/ZP , and

U(K1, K2, T ) =
∑

r∈L

VT (r) +
∑

C

VC(K1) +
∑

C

VC(K2) − κ, (11)

where VT is given by (8), and κ is a noninformative constant; the potential
function VC considers only cliques of size 2, that is, nearest-pair sites < r, s >
which are one unit apart:

VC(K(r), K(s)) = λr,s(K(r) − K(s))2, (12)
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where λr,s is a positive regularization parameter that may depend on the sites
< r, s >; however, we used the same λ for all < r, s > in our implementation.

Let θ = [K1, K2, T ] denote the estimator vector, and define the cost function
(1 − δ(x)), where

δ(x) =
{

1,if x = 0
0, otherwise. (13)

To find the optimal estimator θ∗, using this cost function, we see that

Q(θ̂) =
∫

θ∈Θ

(1 − δ(θ̂ − θ))p(θ|I1, I2)dθ

=
∫

θ∈Θ

p(θ|I1, I2)dθ −
∫

θ∈Θ

δ(θ̂ − θ)p(θ|I1, I2)dθ

= 1 −
∫

θ∈Θ

δ(θ̂ − θ)p(θ|I1, I2)dθ. (14)

Therefore, to minimize (14), we need to find θ̂ that maximizes p(θ̂|I1, I2), which
is equivalent to finding

K∗
1 , K∗

2 , T ∗ = arg min
K1,K2,T

U(K1, K2, T ), (15)

which is called maximum a posteriori (MAP) estimator.

2.3 Minimization Algorithm

The minimization of (15) may be achieved using different unconstrained opti-
mization algorithms (see [15]). However, in this paper, we have used an efficient
Newtonian gradient descent algorithm (NGD) [14]. This method is based on the
idea of moving, in each iteration, in a direction d such that ∇U · d < 0 (i.e.,
a descent direction). The convergence may be accelerated if one considers each
element of K1(r), K2(r), and each element of the affine transformation T as the
position of a particle of unit mass, subject to a force equal to −∂U/∂K1(r) (re-
spectively, −∂U/∂K2(r), −∂U/∂T ). The equation of motion of these particles
may be obtained from Newton’s second law. The discretization of these equations
gives way to an iterative gradient descent algorithm with inertia:

K
(t+h)
1 (r) =

2
αh + 1

K
(t)
1 (r) +

αh − 1
αh + 1

K
(t−h)
1 (r)

− h2

αh + 1
∇K1(r)U

(t) (16)

K
(t+h)
2 (r) =

2
αh + 1

K
(t)
2 (r) +

αh − 1
αh + 1

K
(t−h)
2 (r)

− h2

αh + 1
∇K2(r)U

(t) (17)

T (t+h) =
2

αh + 1
T (t) +

αh − 1
αh + 1

T (t−h)

− h2

αh + 1
∇T U (t), (18)



Image Registration Using Markov Random Coefficient Fields 311

where α is a friction coefficient, U (t) = U(K(t)
1 (r), K(t)

2 (r), T (t)), and h is the step
size. This method differs from the typical gradient descent in that the friction
coefficient α allows the algorithm to avoid, in many cases, becoming trapped
in local minima. Notice that if α = 1/h the NGD is a typical gradient descent
method.

3 Results and Discussion

In the following section, we present some experiments involving different kind of
images to test the performance of the algorithm. First, we show the ability of the
MRCF to compute the intensity changes required to achieve the image registra-
tion between multimodal images and its robustness to noise and inhomogeneities.
Second, we compare our algorithm against the method proposed by Viola et al.
[18]. All these experiments were performed on a PC-based workstation running
at 3.0 GHz.

3.1 Experiments

In order to test the ability of the proposed algorithm to find the coefficients of
the linear intensity transformation functions, we built a one-dimensional signal
of 126 samples. Fig. 1a shows the signal I1(thicker line), which is the negative
of I2 (thinner line), and shifted five samples to the left of I2 . In the plot in
Fig. 1b, we can see the thicker line composed by the intensity transformation
K1(r)I1(r) + K2(r), and I2(r − d), where d is the displacement found by the
proposed algorithm; to appreciate the matching between the signals, the thicker
line is plotted few values below I2. In fact, the signal I1 was built by setting
I1(r) = −I2(r+d); one can observe in Figures 1c and 1d how the MRCF K1, K2

approach this transformation.
In order to test the robustness of the algorithm to noise, the following exper-

iment consisted in the registration of the images in Fig. 2a and Fig. 2b; this last
one was built artificially. We added normal random values to the image in Fig.
2b. The true relative mean error (TRME) between the true parameter vector
θ∗ = [0.2094, 2.0,−36,−18] (corresponding to the angle, scale, and displace-
ments in (x, y)) and the vector values θi obtained by the algorithm for different
noise standard deviations σ = {0, 2, 4, 6, 8, 10, 12, 14, 16} is ploted in Fig. 3. This
error has the advantage of independently taking into account the unit scales of
the quantities to evaluate, and it is computed for each θi as follows

TRMEi =

∑4
k=1 | θ

∗
i (k)−θi(k)

θ∗
i (k) |

4
. (19)

In all the experiments, we used the same set of values for the parameters of the
algorithm; in all tests, the error was less than 3.0%.

Wealso applied this registrationapproach todifferentkinds ofbrain images com-
ing from different sources or processes. The first experiment consisted in register-
ing a Magnetic Resonance (MR) image in Fig. 4a and the Computed Tomography
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Fig. 1. a) Original signals I1, I2; b) aligned signals; c) K1 field; d) K2 field

Fig. 2. a), b) images I1, I2 to align; c) transformed image I1 ; d) difference between
image transformed I1 and registered I2

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

Er
ro

r

σ

Fig. 3. True relative mean error

(CT) image in Fig. 4b. We can see in Fig. 4c the transformation of the MR-image
using the MRCF to match the image in Fig. 4b that together with the estimated
affine-parameters produce the superimposed registration shown in Fig. 4d.
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Fig. 4. a) MR-image, b) CT-image, c) transformed MR-image, d) superimposed regis-
tration

Fig. 5. a) T1-image, b) T2-image

Fig. 6. a) Histogram of 0 < K1 < 1; quantized values of white and gray natter: b)
0.2 ≤ K1 < 0.6, c) 0.6 ≤ K1 < 1

In the next experiment, we examine the coefficient values of the fields K1 and
K2 obtained by registering a synthetic magnetic resonance image spin-lattice re-
laxation time (T1), and spin-spin relaxation time (T2) obtained from the Brain-
web Database [3]; these are shown in Fig. 5. The T1-image was produced with
0% of Gaussian noise and 0% intensity shading (inhomogeneity), while the T2-
image with 0% of noise and 40% of inhomogeneity. A histogram of the values of
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0 < K1(r) < 1 is plotted in Fig. 6a. These values correspond to a region of the
T1-image where it is necessary to reduce the intensity levels in order to match the
intensity values of the same regions in the T2-image. We can see that there are
two modes localized approximately at 0.4 and 0.8, corresponding respectively to
the white and gray matter. These distributions show that it is necessary to have
a set of coefficient values (i.e., different intensity transformation functions) to
adjust the intensities of T1 to approximate those of T2 in these regions, mainly
due to their inhomogeneity. This is more evident in Figures 6b and 6c where we
separated the white and gray matter using the K1-interval values [0.2, 0.6) and
[0.6, 1), and thresholded in intervals of 0.1.

3.2 Comparisons

Here we present some comparisons with one of the most popular and referenced
algorithms in the literature; this method was presented in [18] and it is based
on Mutual Information theory. To do this, we obtained T1 and T2 images from
the Brainweb and made several experiments. The first one consists in registering
a T1-image with 3% of noise and 20% of inhomogeneity versus a set of T2-
images (similar to that shown in Fig. 5) having different level of noise and 40%
of inhomogeneity; the set of images were previously transformed using a known
affine transformation. In both algorithms, the transformation T was initialized
with the identity. Due to the stochastic nature of the MI method, it required
to let the program run for 300 seconds ten times for each image pair. However,
since MRCF is deterministic, we let the program run 300 seconds once for each
image pair. The results are plotted on Figure 7. Notice that MI does not always
converge to an acceptable solution in most cases (large variances), while MRCF
reached a TRME below 1% in all cases.

Fig. 7. Boxplot of results obtained by MI and MRCF
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Fig. 8. a) T1-image, b) T2-image, c) transformed T1-image, d) superimposed registra-
tion

For the final comparison, we choose the hardest case in which a T1-image with
9% of noise and 40% of inhomogeneity was registered with a T2-images with also
9% of noise and 40% of inhomogeneity. The results obtained by MRCF are shown
in Fig. 8. The TRME of MRCF was of 1.1865%, while for MI was 71.0916%,
both computed in 600 seconds.

4 Conclusions

This work presents an algorithm rigourously based on Bayesian estimation in
which two Markov Random Fields (K1, K2) represent the coefficients of linear
intensity transfer functions applied to each pixel. These functions are included
in a very simple observation model (4) that allows one to estimate with high
precision the necessary intensity changes and the parameter values of the affine
transformation to match the images to register. Another important characteristic
of this energy function is that it includes spatial coherence as priori knowledge by
means of the MRCF (see equations (11), (12)). Although the resulting posteriori
energy function (15) is highly non-linear with respect to the affine transformation
parameters, and quadratic with respect to the MRF’s K1, K2, it was successfully
minimized using an efficient, simple, and easy to implement Newtonian gradient
descent algorithm.

The paper also presents examples that illustrate the generality of the algo-
rithm to estimate the coefficient values K1 and K2 of the local linear functions
to approach the intensity transformation needed to achieve the image registra-
tion. We showed the performance and stability of the algorithm to get high
precision registrations in cases in which radical intensity changes exist, as those
shown in Figures 1, 4, 5 and 8. Preliminary results show that the fields K1 and
K2 may also yield discriminatory information about the different regions in the
images, which may be useful for a posterior segmentation process. Finally, we
demonstrate the robustness of the proposed algorithm to noise and intensity
inhomogeneities, outperforming the MI-algorithm as it was described in [18].

Perspectives for future research include: (1) a generalization of the proposed
methodology for the registration of 3D brain images, (2) the addition of a
segmentation stage that takes advantage of the MRCF K1 and K2, and (3)
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the application of MRCF to other problems in computer vision and image
processing.
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