
KNIME: The Konstanz Information Miner

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel and Bernd

Wiswedel

ALTANA Chair for Bioinformatics and Information Mining,
Department of Computer and Information Science, University of Konstanz,
Box M712, 78457 Konstanz, Germany
contact@knime.org

Abstract. The Konstanz Information Miner is a modular environment, which enables easy
visual assembly and interactive execution of a data pipeline. It is designed as a teaching,
research and collaboration platform, which enables simple integration of new algorithms and
tools as well as data manipulation or visualization methods in the form of new modules or
nodes. In this paper we describe some of the design aspects of the underlying architecture and
briefly sketch how new nodes can be incorporated.

1 Overview

The need for modular data analysis environments has increased dramatically over the
past years. In order to make use of the vast variety of data analysis methods around, it
is essential that such an environment is easy and intuitive to use, allows for quick and
interactive changes to the analysis process and enables the user to visually explore
the results. To meet these challenges data pipelining environments have gathered
incredible momentum over the past years. Some of today’s well-established (but un-
fortunately also commercial) data pipelining tools are InforSense KDE (InforSense
Ltd.), Insightful Miner (Insightful Corporation), and Pipeline Pilot (SciTegic). These
environments allow the user to visually assemble and adapt the analysis flow from
standardized building blocks, which are then connected through pipes carrying data
or models. An additional advantage of these systems is the intuitive, graphical way
to document what has been done.

KNIME, the Konstanz Information Miner provides such a pipelining environment.
Figure 1 shows a screenshot of an example analysis flow. In the center, a flow is
reading in data from two sources and processes it in several, parallel analysis flows,
consisting of preprocessing, modeling, and visualization nodes. On the left a reposi-
tory of nodes is shown. From this large variety of nodes, one can select data sources,
data preprocessing steps, model building algorithms, as well as visualization tools
and drag them onto the workbench, where they can be connected to other nodes. The



320 Berthold et al.

Fig. 1. An example analysis flow inside KNIME.

ability to have all views interact graphically (visual brushing) creates a powerful en-
vironment to visually explore the data sets at hand. KNIME is written in Java and its
graphical workflow editor is implemented as an Eclipse (Eclipse Foundation (2007))
plug-in. It is easy to extend through an open API and a data abstraction framework,
which allows for new nodes to be quickly added in a well-defined way.

In this paper we describe some of the internals of KNIME in more detail. More
information as well as downloads can be found at http://www.knime.org.

2 Architecture

The architecture of KNIME was designed with three main principles in mind.

• Visual, interactive framework: Data flows should be combined by simple
drag&drop from a variety of processing units. Customized applications can be
modeled through individual data pipelines.

• Modularity: Processing units and data containers should not depend on each other
in order to enable easy distribution of computation and allow for independent de-
velopment of different algorithms. Data types are encapsulated, that is, no types
are predefined, new types can easily be added bringing along type specific ren-
derers and comparators. New types can be declared compatible to existing types.

• Easy expandability: It should be easy to add new processing nodes or views and
distribute them through a simple plugin mechanism without the need for compli-
cated install/deinstall procedures.



KNIME: The Konstanz Information Miner 321

In order to achieve this, a data analysis process consists of a pipeline of nodes, con-
nected by edges that transport either data or models. Each node processes the arriv-
ing data and/or model(s) and produces results on its outputs when requested. Fig-
ure 2 schematically illustrates this process. The type of processing ranges from basic
data operations such as filtering or merging to simple statistical functions, such as
computations of mean, standard deviation or linear regression coefficients to compu-
tation intensive data modeling operators (clustering, decision trees, neural networks,
to name just a few). In addition, most of the modeling nodes allow for an interactive
exploration of their results through accompanying views. In the following we will
briefly describe the underlying schemata of data, node, workflow management and
how the interactive views communicate.

2.1 Data structures

All data flowing between nodes is wrapped within a class called DataTable, which
holds meta-information concerning the type of its columns in addition to the actual
data. The data can be accessed by iterating over instances of DataRow. Each row
contains a unique identifier (or primary key) and a specific number of DataCell
objects, which hold the actual data. The reason to avoid access by Row ID or index is
scalability, that is, the desire to be able to process large amounts of data and therefore
not be forced to keep all of the rows in memory for fast random access. KNIME
employs a powerful caching strategy which moves parts of a data table to the hard
drive if it becomes too large. Figure 3 shows a UML diagram of the main underlying
data structure.

2.2 Nodes

Nodes in KNIME are the most general processing units and usually resemble one node
in the visual workflow representation. The class Node wraps all functionality and

Fig. 2. A schematic for the flow of data and models in a KNIME workflow.



322 Berthold et al.

makes use of user defined implementations of a NodeModel, possibly a NodeDialog,
and one or more NodeView instances if appropriate. Neither dialog nor view must be
implemented if no user settings or views are needed. This schema follows the well-
known Model-View-Controller design pattern. In addition, for the input and output
connections, each node has a number of Inport and Outport instances, which can
either transport data or models. Figure 4 shows a UML diagram of this structure.

2.3 Workflow management

Workflows in KNIME are essentially graphs connecting nodes, or more formally, a
direct acyclic graph (DAG). The WorkflowManager allows to insert new nodes and
to add directed edges (connections) between two nodes. It also keeps track of the
status of nodes (configured, executed, ...) and returns, on demand, a pool of exe-
cutable nodes. This way the surrounding framework can freely distribute the work-
load among a couple of parallel threads or – in the future – even a distributed cluster
of servers. Thanks to the underlying graph structure, the workflow manager is able
to determine all nodes required to be executed along the paths leading to the node
the user actually wants to execute.

Fig. 3. A UML diagram of the data structure and the main classes it relies on.



KNIME: The Konstanz Information Miner 323

Fig. 4. A UML diagram of the Node and the main classes it relies on.

2.4 Views and interactive brushing

Each Node can have an arbitrary number of views associated with it. Through re-
ceiving events from a HiLiteHandler (and sending events to it) it is possible to
mark selected points in such a view to enable visual brushing. Views can range from
simple table views to more complex views on the underlying data (e. g. scatterplots,
parallel coordinates) or the generated model (e. g. decision trees, rules).

2.5 Meta nodes

So-called Meta Nodes wrap a sub workflow into an encapsulating special node. This
provides a series of advantages such as enabling the user to design much larger,
more complex workflows and the encapsulation of specific actions. To this end some
customized meta nodes are available, which allow for a repeated execution of the
enclosed sub workflow, offering the ability to model more complex scenarios such as
cross-validation, bagging and boosting, ensemble learning etc. Due to the modularity
of KNIME, these techniques can then be applied virtually to any (learning) algorithm
available in the repository.

Additionally, the concept of Meta Nodes helps to assign dedicated servers to this
subflow or export the wrapped flow to other users as a predefined module.

2.6 Distributed processing

Due to the modular architecture it is easy to designate specific nodes to be run on
separate machines. But to accommodate the increasing availability of multi-core ma-



324 Berthold et al.

chines, the support for shared memory parallelism also becomes increasingly impor-
tant. KNIME offers a unified framework to parallelize data-parallel operations. Sieb
et al. (2007) describe further extensions, which enable the distribution of complex
tasks such as cross validation on a cluster or a GRID.

3 Repository

KNIME already offers a large variety of nodes, among them are nodes for various
types of data I/O, manipulation, and transformation, as well as data mining and ma-
chine learning and a number of visualization components. Most of these nodes have
been specifically developed for KNIME to enable tight integration with the frame-
work; other nodes are wrappers, which integrate functionality from third party li-
braries. Some of these are summarized in the next section.

3.1 Standard nodes

• Data I/O: generic file reader, and reader for the attribute-relation file format
(ARFF), database connector, CSV and ARFF writer, Excel spreadsheet writer

• Data manipulation: row and column filtering, data partitioning and sampling,
sorting or random shuffling, data joiner and merger

• Data transformation: missing value replacer, matrix transposer, binners, nominal
value generators

• Mining algorithms: clustering (k-means, sota, fuzzy c-means), decision tree,
(fuzzy) rule induction, regression, subgroup and association rule mining, neural
networks (probabilistic neural networks and multi-layer-perceptrons)

• Visualization: scatter plot, histogram, parallel coordinates, multidimensional scal-
ing, rule plotters

• Misc: scripting nodes

3.2 External tools

KNIME integrates functionality of different open source projects that essentially cover
all major areas of data analysis such as WEKA (Witten and Frank (2005)) for ma-
chine learning and data mining, the R environment (R Development core team (2007))
for statistical computations and graphics, and JFreeChart (Gilbert (2005)) for visual-
ization.

• WEKA: essentially all algorithm implementations, for instance support vector
machines, Bayes networks and Bayes classifier, decision tree learners

• R-project: console node to interactively execute R commands, basic R plotting
node

• JFreeChart: various line, pie and histogram charts

The integration of these tools not only enriches the functionality available in
KNIME but has also proven to be helpful to overcome compatibility limitations when
the aim is on using these different libraries in a shared setup.



KNIME: The Konstanz Information Miner 325

4 Extending KNIME

KNIME already includes plug-ins to incorporate existing data analysis tools. It is usu-
ally straightforward to create wrappers for external tools without having to modify
these executables themselves. Adding new nodes to KNIME, also for native new op-
erations, is easy. For this, one needs to extend three abstract classes:

• NodeModel: this class is responsible for the main computations. It requires to
overwrite three main methods: configure(), execute(), and reset(). The
first takes the meta information of the input tables and creates the definition of
the output specification. The execute function performs the actual creation of
the output data or models, and reset discards all intermediate results.

• NodeDialog: this class is used to specify the dialog that enables the user to ad-
just individual settings that affect the node’s execution. A standardized set of
DefaultDialogComponent objects allows the node developer to quickly create
dialogs when only a few standard settings are needed.

• NodeView: this class can be extended multiple times to allow for different views
onto the underlying model. Each view is automatically registered with a
HiLiteHandler which sends events when other views have hilited points and
allows to launch events in case points have been hilit inside this view.

In addition to the three model, dialog, and view classes the programmer also needs to
provide a NodeFactory, which serves to create new instances of the above classes.
The factory also provides names and other details such as the number of available
views or a flag indicating absence or presence of a dialog.

A wizard integrated in the Eclipse-based development environment enables con-
venient generation of all required class bodies for a new node.

5 Conclusion

KNIME, the Konstanz Information Miner offers a modular framework, which pro-
vides a graphical workbench for visual assembly and interactive execution of data
pipelines. It features a powerful and intuitive user interface, enables easy integration
of new modules or nodes, and allows for interactive exploration of analysis results or
trained models. In conjunction with the integration of powerful libraries such as the
WEKA data mining toolkit and the R-statistics software, it constitutes a feature rich
platform for various data analysis tasks.

KNIME is an open source project available at http://www.knime.org. The current
release version 1.2.1 (as of 14 May 2007) has numerous improvements over the first
public version released in July 2006. KNIME is actively maintained by a group of
about 10 people and has more than 6 000 downloads so far. It is free for non-profit
and academic use.



326 Berthold et al.

References

INFORSENSE LTD.: InforSense KDE. http://www.inforsense.com/kde.html.
INSIGHTFUL CORPORATION: Insightful Miner. http://www.insightful.com/

products/iminer/default.asp.
SCITEGIC: Pipeline Pilot. http://www.scitegic.com/products/overview/.
ECLIPSE FOUNDATION (2007):Eclipse 3.2 Documentation. http://www.eclipse.org.
GILBERT, D. (2005): JFreeChart Developer Guide. Object Refinery Limited, Berkeley, Cal-

ifornia. http://www.jfree.org/jfreechart.
R DEVELOPMENT CORE TEAM (2007): R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0. http://www.R-project.org.

SIEB C., MEINL T., and BERTHOLD, M. R. (2007): Parallel and distributed data pipelining
with KNIME. Mediterranean Journal of Computers and Networks, Special Issue on Data
Mining Applications on Supercomputing and Grid Environments. To appear.

WITTEN, I. H. and FRANK, E (2005): Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann, San Francisco.
http://www.cs.waikato.ac.nz/˜ml/weka/index.html.


