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Abstract. Process choreographies describe interactions between differ-
ent business partners and the dependencies between these interactions.
While different proposals were made for capturing choreographies at an
implementation level, it remains unclear how choreographies should be
described on a conceptual level. While the Business Process Modeling No-
tation (BPMN) is already in use for describing choreographies in terms
of interconnected interface behavior models, this paper will introduce in-
teraction modeling using BPMN. Such interaction models do not suffer
from incompatibility issues and are better suited for human modelers.
BPMN extensions are proposed and a mapping from interaction models
to interface behavior models is presented.

1 Introduction

The Business Process Modeling Notation (BPMN [1]) is the de-facto standard
for business process modeling. It is mainly used for capturing activities, decision
responsibilities, control and data flow in business process within one organiza-
tion. However, in cross-organizational settings we concentrate on the interaction
behavior between the different partners involved. The individual partners can
internally implement processes as they like as long as their interaction behavior
conforms to the choreography that is agreed upon. Especially when relying on
electronic messages as means for interaction between different partners, an exact
definition of message formats and interaction sequences is of major importance.

BPMN can already be used for choreography modeling by expressing inter-
connected interface behavior models. However, this modeling style leads to re-
dundant control flow dependencies and the danger of incompatible processes. An
example for such incompatibility would be a supplier who waits for the payment
to arrive before delivering the purchased goods. The buyer, on the other hand,
waits for the goods to be delivered before actually paying for them. Both part-
ners would wait endlessly – a classical deadlock situation. Interaction models
avoid these problems by describing control flow dependencies between interac-
tions. This means that a particular control flow dependency is not explicitly
assigned to any of the partners in the model.

Another drawback of redundancy is that modelers need more time for creating
and understanding the models. It has turned out that interaction modeling allows
faster creation and understanding by human modelers.
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There are different language proposals for interaction modeling, e.g. the Web
Service Choreography Description Language (WS-CDL [9]) and Let’s Dance [11].
WS-CDL operates on an implementation level and only comes with a textual
syntax. Let’s Dance has a graphical notation, however, it is very different to that
of established process modeling languages. The motivation for extending BPMN
is to reuse a very popular notation as many process modelers are already trained
in this notation.

The remainder of this paper is structured as follows. The next section will
revisit choreography modeling with standard BPMN, before section 3 introduces
the extensions for interaction modeling. Section 4 shows how interface behavior
models can be generated out of interaction models. Section 5 will report on
related work and section 6 concludes and points to future work.

2 Choreography Modeling Using Standard BPMN

A bidding scenario is going to be used as sample choreography throughout this
paper. Three types of participants are involved in this scenario: a seller, several
bidders and an auctioning service. The seller initiates an auction with the goal
to sell her goods for the highest possible price. She does not operate the auction
by herself but rather outsources this to an auctioning service. Different bidders
can join in if they are interested in the goods and place their bids accordingly.
Figure 1 shows the structural view on this collaboration scenario using BPMN.
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Fig. 1. Bidding scenario: Structural view

The participant types are represented by pools and message flows between the
pools indicate which messages might be sent from a participant of one type to a
participant of another type. Ordering constraints between the message exchanges
are not expressed in the diagram.

Figure 2 depicts the complete choreography consisting of interconnected be-
havioral interfaces. For every message flow message send and receive events are
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Fig. 2. Interconnected behavioral interfaces for the bidding scenario

introduced. The control flow within each pool connects these communication ac-
tivities and therefore defines the behavioral dependencies between the different
message exchanges.

First, the seller sends an auction creation request to the auctioning service
who acknowledges it with a confirmation message. As soon as the auction begins
(depicted by an intermediate timer event), bidders can place bids that are in
turn confirmed by the auctioning service. The auction ends at a given point in
time and the auctioning service notifies the seller about which seller has placed
the highest bid and how high the corresponding amount is. The bidder who has
won the auction also gets a notification. All other bidders with lower bids are
informed, too. Finally, payment and shipment can happen in parallel. The seller
sends payment details containing e.g. the bank account number to the successful
bidder and acknowledges the payment as soon as the money has arrived. On the
shipment side, the seller sends a notification to the bidder as soon as the goods
are sent and the bidder acknowledges the delivery.
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While the choreography model contains all relevant interactions and depen-
dencies, interface behavior models are the individual views on the choreography
from the perspective of one of the participants. Figure 3 shows how such a model
looks like for the bidders. Only the communication actions of the bidders are in-
cluded, while the other participants are depicted as black boxes.

Modeling choreographies in terms of interconnected interface behavior models
has two drawbacks:

1. Redundancy. As an example, the ordering constraint between the auction
creation request and the creation confirmation appears twice: in the interface
behavior models of the seller and the auctioning service. Parallelism, branch-
ing, loops and timeouts are duplicated in the model, too. This redundancy
involves unnecessary modeling effort and often lead to invalid models.

2. Potentially incompatible behavior. If sequencing structures do notmatch
properly, we might run into deadlocks. An even more common modeling error
occurs in the case of branching: While modelers immediately understand the
semantics of data-based XOR-gateways, we often find misunderstanding in
the case of event-based XOR-gateways, resulting in erroneous models.
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Fig. 4. Matching branching structures

Figure 4 shows properly matching branching structures. The data-based XOR-
gateway on the auctioning service’s side indicates that it decides whether regis-
tration is needed or not. The event-based XOR-gateway makes the choice on the
seller’s side dependent on which message comes in. Process modelers often use
data-based gateways instead of event-based gateways, ignoring the location of
where the choice is made. Furthermore, we see in this example that the receipt
action for the auction creation confirmation needs to appear twice in the seller’s
interface behavior model. Such problems compound when further parties are in-
volved. Also, looping and multiple instances are typical sources for mismatches
between the different interface behavior models.
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Interaction models do not suffer these drawbacks. As interactions are the basic
building blocks, less nodes are needed to express the same choreography as an
interaction model. Especially the distinction between local choices and choices
made by the environment is often not needed. Incompatibility does not occur as
control flow dependencies are not duplicated. While observing human modelers
using the different choreography modeling styles, it turned out that interaction
modeling leads to faster model creation and understanding.

However, interaction models come with their own anomalies. Locally unen-
forceable choreographies, i.e. choreographies where the individual participant
cannot collectively enforce global control flow constraints without additional
synchronization messages, can be expressed. Imagine e.g. that an interaction
between the seller and a bidder must only occur after a certain interaction be-
tween the auctioning service and another bidder has taken place. In this case the
seller and the first bidder cannot know when the second interaction has actually
happened. This property of local enforceability is reported in [12] and [5].

3 BPMN Extensions for Interaction Modeling

This section is going to introduce the BPMN extensions for interaction modeling,
which we will call “iBPMN”. Atomic interactions are going to be the basic
building blocks of these models and control and data flow are defined between
them. I.e., we do not use separate send and receive activities in the models.

Each elementary interaction (represented as message event) is attached to
a message flow in iBPMN, as shown in Figure 5. All control flow constructs
that are available in BPMN also apply in these interaction models. E.g. we see
that parallelism and timers appear in the choreography. Elementary interactions
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Fig. 5. iBPMN interaction model for the bidding scenario
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can be composed to form complex interactions, enabling loop interactions and
multiple instances interactions as shown in the figure.

In iBPMN, pools are empty, i.e., the internal behavior of the participants
is completely hidden. Therefore, the interaction model is a refinement of the
structural diagram in Figure 1.

A recurrent scenario in choreographies is that several participants of the same
type are involved in one conversation. Our bidding scenario also includes this
case: Several bidders participate in an auction. In order to make a clear distinc-
tion between the case with only one participant of a type vs. potentially many
participants, we introduce shadowed pools as shown in Figure 5.

In interaction models we make a distinction between explicit choices and rac-
ing choices. In the case of explicit choices one participant decides which branch
to take. This is represented by a data-driven XOR-gateway. We further add an
association between the gateway and one of the pools in order to define who
actually carries out the choice. In the case of racing choices one among a set of
events can happen and the event occurring first inhibits the others from happen-
ing and determines which branch is taken. Event-based XOR-gateways depict
this. Figures 6 and 7 illustrate the two types of choices.

Another recurrent scenario in choreographies is passing on participant ref-
erences. Imagine the payment between bidder and seller is carried out using a
payment service and the seller can choose which service to use. The seller needs
to pass on the reference to this service to the bidder so that the bidder can issue
the payment with that service. Figure 8 illustrates how this is represented in
iBPMN: A data object is attached to the message flow and the object is in turn
associated with the corresponding participant.

We are now going to validate the suitability of iBPMN for choreography mod-
eling by investigating which of the Service Interaction Patterns are directly sup-
ported. These patterns describe recurrent scenarios in choreographies and have
already been used to assess Let’s Dance [11] and WS-CDL [4].

Some of these patterns appear in our sample choreography. E.g., Send, Receive
and Send/receive can be found in the first two interactions where the seller
initiates the auction.
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In the case of Racing incoming messages a participant processes the first out
of a set of messages that he receives. This can be modeled using an event-based
XOR-gateway. One-to-many send occurs in the choreography where the auction-
ing service sends out notifications to all the unsuccessful bidders, which is modeled
through a multiple instances send activity. However, the fact that a message is sent
to all unsuccessful bidders is only captured by the annotation. It might be desir-
able to more directly integrate such a “for each” into iBPMN. A general drawback
of BPMN is that it cannot be specified which particular participant a message is
sent to, only the participant type is defined. We have said that simple pools indi-
cate that there must be at most one participant of that type in one choreography
instance. Therefore, we can be sure that all messages sent to a participant of type
auctioning service are actually sent to the same concrete participant, if all mes-
sages belong to the same choreography instance. It becomes difficult in those cases
where we have many participants of the same type in one choreography instance.
In our example we do not directly see that there is a distinction between the bidder
with the highest bid and the remaining bidders.

One-from-many receive can be found during the bidding phase: The auction-
ing service does not know in advance how many bidders are going to take part
in the auction. As there are potentially many bidders a bid from any sender
is received and processed. Multi-responses is a bi-lateral pattern where several
responses are sent back as result of a single request. This can easily be modeled
using loop interactions in iBPMN. Contingent requests involves a list of recipi-
ents for requests. If the first recipient does not respond within a given timeframe,
the request is sent to the second and so on. Loop interactions with correspond-
ing annotations express this in iBPMN. However, late responses from previous
participants are discarded. Therefore, this pattern is only partially supported in
iBPMN. Atomic multicast notification is not supported in iBPMN.

Relayed request requires that a participant observes a conversation between
two other participants. This can easily be modeled using two parallel interactions
in iBPMN. Request with referral alludes the notion of link passing mobility.
Figure 8 showed how this is modeled in iBPMN.

We see that all Service Interaction Patterns are directly supported in iBPMN
(except atomic multicast notification). In this sense iBPMN provides the same
pattern support as Let’s Dance. iBPMN provides better pattern support than
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WS-CDL, as scenarios where multiple participants of the same type are involved
and the exact number of participants are only known at design-time are fully
supported in iBPMN.

4 Generation of Interface Behavior Models

While deriving individual interface behavior models from classical BPMN chore-
ographies is trivial (see Section 2), deriving these models from iBPMN chore-
ographies is more complex. A typical approach to generating interface behavior
models out of interaction models is by means of model reduction (cf. [12]). Those
interactions where the corresponding participant is not involved in are marked
as τ -actions and they are removed from the model while preserving control flow
dependencies. This section presents an algorithm for interface behavior models
out of simple iBPMN models.
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Fig. 9. iBPMN constructs and their interaction Petri net representation

We restrict the algorithm to a very small subset of iBPMN models. We only
allow elementary interactions as well as AND- and data-based XOR-gateways.
In [5] we have already presented a reduction algorithm for interaction Petri nets,
an extension to classical place / transition nets for interaction modeling. We are
going to reuse this algorithm in the following way:

1. Translate the simple iBPMN model to an interaction Petri net. Figure 9
shows the translation rules for the allowed constructs. We mark those in-
teractions as τ -actions where the participant who we generate the interface
behavior model for does not participate. We also mark those transitions
representing exclusive choices being made by another participant as τ . The
transitions representing AND-gateways are labeled “+”.

2. Apply the reduction algorithm from [5]. This removes all τ -transitions from
the model. Those “+”-transitions that are involved in choices, i.e. sharing
a common input place with another transition, are relabeled to τ and are
reduced as well.
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3. Transform the resulting interaction Petri net in such a way that only those
patterns appear that can be directly translated back to BPMN. Optionally,
the net can be reduced by removing redundant places or removing “+”-
transitions with at most one preceding and at most one succeeding transition.

4. Translate the interaction Petri net to BPMN.

The resulting BPMN interface behavior models will contain message send
activities and event-based gateways, in addition to those constructs allowed in
the input iBPMN model. The interaction Petri net patterns that are translated
back to BPMN are shown in Figure 10.
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Fig. 10. Interaction Petri net patterns translated to BPMN

The transformation in step 3 leads to adding “+”-transitions in those cases
where interactions have more than one input or output place or where input
or output place are shared with other transitions. The “+”-transitions will be
translated to gateways later on. Only the patterns depicted in Figure 10 can be
translated. Therefore, the introduction several “+”-transitions might be neces-
sary in some structures.

Figure 11 shows the result of the generation algorithm. The two interactions
m3 and m5 do not occur in the interface behavior model for A, as this participant
is not involved in m3 and m5. The choice made by B results in the occurrence of
an event-based gateway for A. A only knows which branch B has chosen as soon
as it gets one of the messages m2, m4 and m6. Furthermore, m4 and m6 needed
to be sequentialized as BPMN requires that an event-based gateway is followed
by events as opposed to other gateways. In this case, the parallelism from the
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Fig. 11. Generation of a BPMN interface behavior model from an iBPMN model

interaction model completely disappears in A’s interface behavior model (while
it would be preserved in the interface behavior model for C).

It is not possible to generate valid BPMN interface behavior models out of
every valid simple iBPMN model. This is due to the fact that the reduction
algorithm might produce non-free-choice interaction Petri nets. In free-choice
nets, every transition that shares an input place with another transition t, has
the same set of input places like t (cf. [6]). A non-free-choice net would need
to be represented by a BPMN model, where an event-based XOR-gateway is
followed by an AND-gateway. This is not allowed.

5 Related Work

In [11], Zaha et al. identify the need for describing choreographies on a con-
ceptual level and introduce the choreography language Let’s Dance. It provides
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direct support for most of the Service Interaction Patterns [2], a catalog of com-
mon scenarios in choreographies and therefore a benchmark for assessing chore-
ography languages. Let’s Dance follows the interaction modeling approach, i.e.
interactions are the basic building block in choreography models. Let’s Dance
comes with a set of own control flow constructs different to those e.g. known
from BPMN or UML 2.0 Activity Diagrams. BPMN [1] has been assessed for
its suitability for process modeling in [10]. However, choreography modeling was
not discussed and the Service Interaction Patterns were not considered.

Message Sequence Charts (MSCs [8]) can also be used for describing chore-
ographies following the interconnected interface behavior modeling approach.
However, they are rather suited for describing mere sequences of interactions
in contrast to full choreographies: conditional branching, parallel branching and
iterations are not supported.

WS-CDL [9] and BPEL4chor [3] are proposals for describing choreographies at
an implementation level. Both approaches allow to specify choreographies of web
services and do not come with a graphical representation. While WS-CDL follows
the interaction modeling approach, BPEL4chor allows to specify interconnected
behavioral interfaces. BPEL4chor distinguishes between three different artifact
types: Participant topology, behavioral interfaces and participant grounding. The
topology describes the structural aspects of the choreography, the behavioral in-
terfaces describe the control and data flow dependencies between the communi-
cation activities within the participants and the participant grounding introduces
web-service-specific configurations, e.g. the mapping of message links to WSDL
port types and operations.

Dijkman et al. have defined a mapping from BPMN to Petri nets in [7]. They
consider more constructs than we have used in section 4 including subprocesses,
timer events and intermediate events attached to activities (cancellation).

6 Conclusion

This paper has introduced iBPMN, a set of extensions to the Business Process
Modeling Notation for interaction modeling. Following an interaction modeling
approach as opposed to modeling interconnected interface behavior models, it
can be expected that choreography designers can understand models better,
introduce less errors, such as incompatibility, into the models and are faster at
creating the models. However, a detailed survey validating these hypotheses is
left to future work.

We have shown that most Service Interaction Patterns can be expressed using
iBPMN and we have presented an algorithm for deriving interface behavior mod-
els from simple interaction models. The algorithm is validated through ongoing
implementation.

It turns out that some choreographies are not locally enforceable, i.e., it is pos-
sible to introduce control flow dependencies between interactions that cannot be
collectively enforced by the participants without the addition of synchronization
interactions. This property was reported in [12]. Verifying the absence of such
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anomalies in choreographies is beyond the scope of this paper and are also left
to future work.
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