
A. ter Hofstede, B. Benatallah, and H.-Y. Paik (Eds.): BPM 2007 Workshops, LNCS 4928, pp. 120–131, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Compliance Aware Business Process Design

Ruopeng Lu, Shazia Sadiq, and Guido Governatori

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

{ruopeng, shazia, guido}@itee.uq.edu.au

Abstract. Historically, business process design has been driven by business
objectives, specifically process improvement. However this cannot come at the
price of control objectives which stem from various legislative, standard and
business partnership sources. Ensuring the compliance to regulations and
industrial standards is an increasingly important issue in the design of business
processes. In this paper, we advocate that control objectives should be
addressed at an early stage, i.e., design time, so as to minimize the problems of
runtime compliance checking and consequent violations and penalties. To this
aim, we propose supporting mechanisms for business process designers. This
paper specifically presents a support method which allows the process designer
to quantitatively measure the compliance degree of a given process model
against a set of control objectives. This will allow process designers to
comparatively assess the compliance degree of their design as well as be better
informed on the cost of non-compliance.

Keywords: Business Process Design, Process Compliance Control, Business
Process Modeling.

1 Background and Motivation

Compliance essentially means ensuring that business processes, operations and
practice are in accordance with a prescribed and/or agreed set of norms. Compliance
is increasingly gaining importance as well as raising the pressure for organizations in
practically all industry sectors. Although this is not a new issue, but recent events,
particularly high profile corporate scandals, as well as new regulations such as the
Sarbanes-Oxley act have raised a new set of challenges for businesses.

Compliance is predominantly viewed as a burden, although there are indications
that businesses have started to see the regulations as an opportunity to improve their
business processes and operations. Industry reports [7] indicate that up to 80% of
companies said they expected to reap business benefits from improving their
compliance regimens.

Currently there are two main approaches towards achieving compliance. First is
retrospective reporting, wherein traditional audits are conducted for “after-the-fact”
detection, often through manual checks by expensive consultants. A second and more
recent approach is to provide some level of automation through automated detection.
The bulk of existing software solutions for compliance follows this approach. The

 Compliance Aware Business Process Design 121

proposed solutions hook into variety of enterprise system components (e.g. SAP HR,
LDAP Directory, Groupware etc.) and generate audit reports against hard-coded
checks performed on the requisite system. These solutions often specialize in certain
class of checks, for example the widely supported checks that relate to Segregation of
Duty violations in role management systems. A major issue with the two discussed
approaches is the lack of sustainability. Even with automated detection facility, the
hard coded check repositories can quickly grow out of control making it extremely
difficult to evolve and maintain them for changing legislatures and compliance
requirements. The complexity of the situation is exasperated by the presence of
dynamically changing collaborative processes shared with business partners. The
diversity, scale and complexity of compliance requirements warrant a highly
systematic and well-grounded approach.

We believe that a sustainable approach for achieving compliance should
fundamentally have a preventative focus, thus achieving compliance by design.
Incorporating compliance issues within business process design methodology can
assist process designers in tackling this complex issue using known successful
strategies. However, at the same time, there is evidence that dealing with compliance
may be a rather distinct activity from business process management within
organizational structures.

This paper presents a particular method to study the relationship between
compliance requirements modeled as controls, and process requirements modeled as
business process models. Specifically we will present a quantitative measure of
compliance for a given process model against a set of control objectives. The
associated methods will allow process designers to comparatively assess the
compliance degree of their design as well as be better informed on the cost of non-
compliance.

Related work can be found in the research of [1, 2, 3, 10]. Space does not allow
further elaboration of these works, but a distinctive feature of our work is that most
related works present solutions for runtime monitoring, where as we focus on design
time support.

The remaining paper is structured as follows. Section 2 presents the underlying
methodology for compliance aware business process design. In section 3, we present
the technique to quantitatively measure the degree of compliance during business
process design. We conclude this paper in section 4.

2 Compliance by Design Methodology

Regulations and other compliance directives are complex, vague and require
interpretation. Business will typically deal with a number of regulations/standards at
one time. Often in legalese, these mandates need to be translated by experts. Tackling
this issue warrants a systematic methodology [9].

Firstly, there is a need to provide a structured means of managing the various
(expert) interpretations within regional, industry sector and organizational contexts.
As a first step, a facility for control directory management (e.g. SAP GRC
Repository) needs to be realized by repositories of control objectives (and associated
parameters) against the major regulations.

122 R. Lu, S. Sadiq, and G. Governatori

Interpretation of regulations from legal /financial experts comes in the form of
textual descriptions (see the examples in Section 2.1). Establishing an agreement on
terms and usage between these descriptions and the business processes and
constituent activities/transactions is a difficult but essential aspect of the overall
methodology. However, it is evident that several controls may be applicable on a
given business task, and one control may impact on multiple tasks as well.

A fundamental question in this regard is the appropriate formalism to undertake the
task of representing controls objectives in a precise and unambiguous manner. Our
observation is that a compliance requirement (or its translation into a control objective
and subsequently internal controls) can be reduced to the identification of what
obligations an enterprise has to fulfill to be deemed as compliant.

The motivation to model control objectives is multifaceted: Firstly, a generic
requirements modeling framework for compliance by design will provide a
substantial improvement over current after-the-fact detection approaches. Secondly, it
will allow for an analysis of compliance rules thus providing the ability to discover
hidden dependencies, and view in holistic context, while maintaining a
comprehensible working space. Thirdly, a precise and unambiguous (formal)
specification will facilitate the systematic enrichment of business processes with
control objectives.

Subsequent to the modeling of control objectives, there is a need to provide the
ability to enhance enterprise models (business processes) with compliance
requirements. This may constitute visualization schemes [9], which facilitates a better
understanding of the interaction between the two specifications for both stakeholders
(process owners as well as compliance officers).

However, the visualization is only a first step. The new checks introduced within
the process model, can in turn be used to analyse the model for measures such as
compliance degree that can provide a quantification of the effort required to achieve a
compliant process model. Eventually, process models may need to be modified to
include the compliance requirements.

In this paper, we are focused on this last aspect, that is to assist process designers
in creating compliant business processes. The presence of the previous phases of the
methodology is assumed. As such, the goal of this so-called compliance aware
business process design is to design the process while keeping track of relevant
control objectives and ensuring that high risk controls are not ignored or violated.

In the rest of the paper, we first discuss the approach to model the controls
objectives and present an appropriate language for their representation, followed by a
simple formalization for the business process model. We then introduce the technique
to map the controls objectives and the process model into a canonical form, such that
the degree of compliance in the process model can be compared with regard to the
controls objectives. The subsequent discussion is based on a sample procurement
process (cf. Figure 1).

The procurement process may be subject to a number of control objectives from
various restrictions such as regulations, industrial standards and partner obligations
etc. The control objectives will typically have a corresponding risk statement, and a
translation to an internal control indicating effective implementation of the control
objective.

 Compliance Aware Business Process Design 123

Fig. 1. Example procurement process

Table 1. Control objectives of the procurement process

Control Objective Risk Internal Control
Process efficiency Process delays due to

repeated or additional
activities.

Purchase request with necessary information
should be fast-tracked without management
level approval.

Ensure adequate
supply of materials

Production delays due to
lack of resources/
materials

Supplier can be charged a penalty if goods not
received within k days of receipt of goods
shipment notice.

Timely and efficient
procurement process

Production delays due to
lack of resources/
materials

Purchase requests not closed (declined or
converted to Purchase Orders) within 2k days
should raise an alert to purchasing manager.

Table 1 provides examples of such control objectives for the procurement process.
Typically, these internal controls cover multiple aspects of business process,
including:

− Model structure, e.g., task execution restrictions (every purchase order must be
initially checked before passing to the Manager for approval).

− Data integrity, e.g., every Purchase Order must contain a valid purchase request
number.

124 R. Lu, S. Sadiq, and G. Governatori

− Resource allocation, e.g., segregation of duty constraint (the creation and approval
of purchase order must not be by the same officer).

− Temporal restrictions, e.g., deadline (all purchase requests must be closed within
2k days).

2.1 Modeling Control Objectives

Although our work is primarily targeted at achieving compliance by design by
adopting a preventative approach facilitated by business process models, the work on
formal modeling of control objectives has taken into account the violations and
resultant reparation policies that may surface at runtime. The objective is to be able to
examine how compliant the (possible) runtime behaviors of a process model is with
regard to the control objectives. We consider the behaviors of a process model to be
reflected by actual execution sequences (of tasks in the process). The focus is then on
the measurement for how “close” between the behaviors of the process model, and the
compliance controls. To allow for the comparison, the formal representations of
compliance controls, and the model behaviors (execution sequences) are given.

The compliance controls can be represented in a formal language, such as Formal
Contract Language (FCL) [4, 5]. FCL is a combination of an efficient non-monotonic
formalism (defeasible logic) and a deontic logic of violations. We illustrate how to
use this formalism to represent and reason about “normative” specifications relative to
a business process. For detailed presentation of the rationale and formalism of FCL,
we refer to [4, 5].

Definition 1 (FCL Rule). A rule in FCL is an expression of the form

r: A1,..., An ⇒ B

where r is the name of the rule (unique for each rule), A1,..., An are the premises
(propositions in the logic), and B is the conclusion of the rule (also a proposition of
the logic).

The propositions of the logic are built from a finite set of atomic propositions, and the
following operators: ¬ (for negation), O (for obligation), P (for permission), and ⊗
(for violation/reparation). The formation rules are as follows:

− every atomic proposition is a proposition;
− if p is an atomic proposition, then ¬p, is a proposition;
− if p is a proposition then Op is an obligation proposition and Pp is a permission

proposition; obligation propositions and permission propositions are deontic
propositions

− if p1, ..., pn are obligation propositions and q is a deontic proposition, then p1⊗ ...
⊗pn⊗q is a reparation chain.

A simple proposition corresponds to a factual statement. A reparation chain, for
example B1⊗B2 captures obligations and normative positions arising in response to
violations of obligation. Thus the expression above means that it is obliged to perform

 Compliance Aware Business Process Design 125

B2, in case B1 is not fulfilled (i.e., the obligation is violated) then the “secondary”
obligation B2 has to be fulfilled. The control objectives shown in Table 1 can be
expressed in the following FCL rules:

Purchase request should be supplied with sufficient background information in order
to streamline the approval process.

r1: CreatePurchaseRequest, ReceiveRequest ⇒ ExpressApproval
 ⊗(CheckWareHouseAvailability;CheckExpenseHistory;ManagerApproval)

Supplier can be charged a penalty if goods not received within k days of receipt of
goods shipment notice, while manager should be alerted.

r2: SendPurchaseRequest ⇒ ReceiveeDeliveryWithinkDays
 ⊗(ChargePenalty&AlertManager;ReceiveDelayDelivery)

If purchase order is not closed within 2k days the manager should be alerted.

r3: ReceiveDeliveryWithinkDays ⇒ ClosePurchaseRequestWithin2kDays
 ⊗(AlertManager&CloseRequest)

r4: ReceiveDelayDelivery ⇒ ClosePurchaseRequestWithin2kDays
 ⊗(AlertManager&CloseRequest)

For the ease of discussion, we use the letters associated with each task on Fig. 1 to
denote the tasks in the process model. r1 - r4 can thus be denoted by:

r1: A, B ⇒ F ⊗(C;D;E); r2: G ⇒ J ⊗ (H;I); r3: I ⇒ M ⊗ K; r4: J ⇒ M ⊗ K

2.2 Business Process Model

We provide a formal definition for a simple business process model. Through which
the runtime behaviors of the process as reflected by execution sequences can be
defined.

Definition 2 (Process Model). A process model W is a pair (N, E), which is defined
through a directed graph consisting a finite set of nodes N, and a finite set of flow
relations (edges) E ⊆ N × N. Nodes are classified into tasks T and coordinators C,
where N = C ∪ T, and C ∩ T = ∅. T is the set of tasks in W, and C contains
coordinators of the type {Begin, End, Fork, Synchronizer, Choice, Merge}, which
have typical workflow semantics. A sub-process model is a special type of W, which
is a fragment of a process model in which {Begin, End} is excluded from its
coordinator nodes.

Given a process model W and a task Ti ∈ T, Trigger(W, Ti) denotes the set of tasks
that can be triggered by task Ti in W as the result of execution. E.g., Trigger(W, A) =
{B} (cf. Fig. 1). For tasks followed by a Fork (AND-SPLIT) or a Choice (XOR-SPLIT)
coordinator, we consider all subsequent tasks after the coordinator can be triggered.
E.g., Trigger(W, B) = {C, D, F}, Trigger(W, G) = {H, J}. Disable(W, Ti) denotes the
set of tasks disabled as the consequence of executing Ti, which is defined to realize

126 R. Lu, S. Sadiq, and G. Governatori

the semantics of the Choice coordinator. For example, Disable(W, H) ={J}, which
means either H or J is executed but not both. Initial(W) is a function returning the first
task node in W.

An execution sequence of a process models referred to as the trace of execution in
a process model, which reflects a possible order of task executions at runtime.
Typically, a process model with parallel branches (Fork) or alternative branches
(Choice) contains more than one possible execution sequences.

For example, for tasks A, B, C, D, E, and F in W (cf. Fig. 1), there are three
possible execution sequences <A, B, F>, <A, B, C, D, E> and <A, B, D, C, E>, since F
and C, D, E are in alternative branches, and C, D in parallel branches.

We follow the general sequence definition to define an execution sequence: A
finite sequence s = {s1, s2, …, sn} is a function with the domain {1, 2, …, n}, for some
positive integer n. The i-th element of s is denoted by si.

Definition 3 (Execution Sequence). An execution sequence sW of a process model W
is a finite sequence of tasks T’ ⊆ T in W, which is defined by the sequence <T1, T2, …,
Tn>, n ≥ 1. An execution sequence ssW is a subsequence of sW if every element in ssW
is an element of sW, and the elements in ssW occur in the same order as in sW.

2.3 Measurement of Compliance

It is desirable to transform the control objectives given in FCL into a form such that it
is comparable to business process design. We establish the connection between FCL
and business process model through execution sequences and the so called state of
idealness [6]. Through the states of idealness we can determine whether a process
model is compliant with the control objective (i.e., how well the process model
supports such “ideal” states in execution).

Intuitively an ideal situation is a situation where execution sequences do not
violate FCL expressions, and thus the execution sequences are fully compliant with
the control rule. A sub-optimal situation is a situation where there are some violations,
but these are repaired. Accordingly, processes resulting in sub-optimal situations are
still compliant to a control rule even if they provide sub-optimal performance of the
control objective. A situation is non-ideal (non-compliant) if it violates a control
objective and the violations are not repaired.

There are two possible reasons for a process not to comply with a control rule: 1)
the process executes some tasks which are prohibited by the control rule (or
equivalently, it executes the opposite of obligatory tasks); 2) the process fails to
execute some tasks required by the control rule. For example consider the rule

r: A ⇒ B ⊗C

which means that, if A occurred then it must be followed by B, or in alternative, in
case B does no occur, it must be followed by C. An ideal state for r is the situation (a
possible execution sequence) s1 = <A, B>. A sub-optimal situation can be s2 = <A, C>
where the first obligation B is not fulfilled. Note that we also consider s3 = <A, B, C>
a sub-optimal situation since it is not required to perform C when B is already in
place. The non-ideal situation is s4 = <A>.

 Compliance Aware Business Process Design 127

Definition 4 (Idealness of execution sequence). Let SW be the set of all possible
execution sequences of a process model W, r: A1, …, Am ⇒ B1 ⊗…⊗ Bn be a control
objective in FCL.
− A sequence s ∈ SW is an ideal execution sequence to r iff sequence <A1, …, Am, B1>

is a subsequence of s.
− A sequence s ∈ SW is a sub-optimal execution sequence to r iff ∃Bi, 1< i ≤ n such

that <A1, …, Am, Bi> is a subsequence of s.
− A sequence s ∈ SW is a non-ideal execution sequence to r iff sequence <A1, …, Am>

is a subsequence of s and s is neither ideal nor sub-optimal.

Given a control rule r, we denote the set of ideal and sub-optimal execution
sequences as S r

ideal and S r
sub-optimal respectively. Table 2 shows such for control rules

r1 – r4. Note that for compliance checking purpose, sub-optimal execution sequences
only contain the consequences of the control rule, i.e., right hand side of r. Because
the antecedent, i.e., left hand side of r is irrelevant in sub-optimal states.

The above definition for non-ideal covers the second type of non-compliant situation
where the process fails to execute some required tasks. We argue that the first situation
where the process executes prohibited task(s) can be checked by simple sequence
(string) matching technique (for execution sequences between control rule and process
model) and hence not discussed further. In the next section, we discuss the technique to
check for compliance degree for ideal and sub-optimal execution sequences.

Table 2. State of idealness of control rules r1 – r4

Control Rule S r
ideal S r

sub-optimal
r1: A, B ⇒ F ⊗(C;D;E) <A, B, F> <C, D, E >, <F, C, D, E >, <C, D, E, F >
r2: G ⇒ J ⊗ (H;I) <G, J> <H, I >, <J, H, I >, <H, I, J>
r3: I ⇒ M ⊗ K <I, M> <K>, <M, K>, <K, M>
r4: J ⇒ M ⊗ K <J, M> <K>, <M, K>, <K, M>

3 Compliance Degree

We now have all the machinery to define the measure for compliance between a
process model and a given control rule. We propose to use the notion of compliance
degree as a quantitative measurement. The notion further utilizes the concept of
support: Given a set of execution sequences S and a process model W, the support of
W based on a sequence s∈S is given by the proportion of tasks in s that can be
executed in W. The range of support is a real number between 0 and 1, where 0
indicates no support (s is not executable in W at all) and 1 complete match (the entire
sequence s can be executed in W, i.e., it is possible to derive an execution sequence sw
from W such that s = sw). The support of W based on S is the weighted sum of support
from all sequences in S, which is also between 0 and 1.

In order to calculate the ideal and sub-optimal compliance degree, we need to first
extract the set of ideal and sub-optimal execution sequences for each control rule r, and
calculate the degree of support for these sequences in the process model. The rationale
of this technique is to measure how well a given process model W represents the ideal

128 R. Lu, S. Sadiq, and G. Governatori

and sub-optimal situations in control rule r by calculating the support for W against the
set of ideal and sub-optimal execution sequences representing r. We refer to the support
for ideal and sub-optimal sequences as ideal and sub-optimal compliance degree
respectively. The first measurement indicates whether the ideal situation (the exact
sequence) can be fully or partially supported in W (ideal compliance degree = 1, or
between [0, 1]) respectively). Similarly, the latter measurement indicates whether W
allows sub-optimal situation(s) and by what degree.

We first extract a sub-process from the process model which contains only the
relevant tasks as in the set of ideal and sub-optimal execution sequences of r. To
achieve this we use a technique called SELECTIVE_REDUCE [8]. For example, the
procurement process model W (cf. Fig. 1) is reduced into W1, W2, W3 and W4 (Fig. 2)
against control rule r1, r2, r3 and r4 respectively.

Fig. 2. Sub-processes of the procurement process

We then calculate the compliance degree through the algorithm given in Fig. 3.
The algorithm takes as inputs a process model W, a set of sequences S, and the control
rule r, produces the compliance degree comp. Functions Trigger, Disable and Initial
given in Definition 2 are utilized. An additional function SubInitial(W, r) returns the
set of task node(s) which are immediate after the last antecedent task in r. For
example, SubInitial(W2, r2) = {H, J}, where G is the last task in the antecedent of r2.
Function Sub-optimal(SW) returns TRUE if is SW the set of sub-optimal sequences.

For each sequence s in S, Tr is initially given the first task in W in step 4. For each
task Ti in a sequence s (in this case, Ti = si where si is the i-th element in s), Tr is the
current set of triggered tasks as the result of executing task Ti in W. Step 8 checks
whether the triggered tasks in Tr includes Ti. Step 11 calculates the proportion of tasks

 Compliance Aware Business Process Design 129

in W triggered by tasks in s. After all different sequences in S have been accounted
for, the final compliance degree is scaled according to the total number of sequences
in S and returned (step 12). The algorithm complexity is bound by the number of tasks
in the sequence and the number of different sequences in S.

For example, to compute the ideal compliance degree of W with regard to r1: A, B
⇒ F ⊗(C;D;E), we input W1, the sub-process of W relevant to r1 (cf. Fig. 2), and
Sr1

ideal, the set of ideal execution sequences of r1, where Sr1
ideal = {<A, B, F>}. Since

there is only one sequence in Sr1
ideal, the ideal compliance degree is (1+ 1+1)/3 = 1

(step 11), because <A, B, F> is an exact execution sequence executable in W1.

Procedure. COMPLIANCE_DEGREE
Input W, S, r
Output degree
1. degree, count, comp ← 0
2. For each different sequence s in SW
3. If Sub-optimal(SW) // for sub-optimal compliance degree
4. Tr ← SubInitial(W, r)
5 Else // for ideal compliance degree
6. Tr ← Initial(W)
7. For each task in s denoted by Ti, i ← 1, …, |s|
8. If Ti ∈ Tr
9. count = count + 1
10. Tr ← (Tr – {Ti} – Disable(W, Ti)) ∪ Trigger(W, Ti)

11.
|| s

count
compcomp +←

12. Return degree
|| S

comp←

Fig. 3. An algorithm to compute compliance degree

The sub-optimal compliance degree of W with regard to r1 can also be computed.
We again input W1 and S r1

sub-optimal, the set of sub-optimal execution sequences of r1,
where S r1

sub-optimal = {<C, D, E >, <F, C, D, E >, <C, D, E, F >}. For each sequence s
in S r1

sub-optimal, we display in Table 3 the intermediate result of degree, which is the
support of W1 received from s. Sequence <C, D, E> has degree of 1 since it is an exact
sequence executable in W1. Sequence <F, C, D, E > has degree of 0.25 because after
triggering F in W1, C, D, and E will be disabled ((1+0+0+0)/4 = 0.25 in step 9).
Similarly, sequence <C, D, E, F> has degree of 0.75 since after triggering C, D, and E
in W1, F will not be triggered ((1+1+1+0)/4 = 0.75). The sub-optimal compliance
degree is 0.67, which is the average of the three degrees.

Suppose there is a process W’ containing a subgraph (subprocess) W’1 relevant to
r1, where tasks D and E are not included (cf. Fig. 4). In this case the there is no ideal
situation in W since the ideal compliance degree is (1+1+0)/3 = 0.67 ≠ 1. The sub-
optimal compliance degree is also reduced to 0.5.

We use the ideal compliance degree to evaluate how well the process model
supports a given control rule. degree = 1 indicates all ideal situation(s) of the control
objective are represented in the process model W, (i.e., it is possible to find out the

130 R. Lu, S. Sadiq, and G. Governatori

Table 3. Intermediate result for applying COMPLIANCE_DEGREE to S r1
sub-optimal and W1

S r1
sub-optimal degree

< C, D, E > 1
< F, C, D, E > 0.25
< C, D, E, F > 0.75
sub-optimal compliance degree 0.67

Fig. 4. Sub-process relevant to r1 of an alternative procurement process

exact ideal execution sequence(s) in the relevant sub-graph of W, hence the process is
an ideal design for the control rule r). While 0 indicates none of the ideal situation(s)
is represented in W, from which we can immediately conclude that W is non-
compliant with r. If none of the task in any sequence of ideal or sub-optimal
execution sequences S r

ideal is presented in the process model W, then one can only
derive an empty sub-graph from W which contains the relevant tasks in S r

ideal, Thus
the algorithm returns 0 in this case, which is corresponding to a non-compliant
situation. Lastly, having a number between 0 and 1 indicates W represents part of
some ideal situation (i.e., it is not possible to find out exact but partial ideal execution
sequence(s) in the relevant sub-graph of W).

In addition, from the sub-optimal compliance degree we can find out whether the
process model may contain some sub-optimal situations. There can be many
interpretations for sub-optimal compliance degree. Here we consider it as an auxiliary
measurement to examine the expressiveness of the process model, in terms of
expressing both ideal and sub-optimal executions. For example, in the case when two
arbitrary process models Wα and Wβ are both ideal to a control rule, but Wα has a
higher sub-optimal compliance degree of Wβ, then Wα is a better design.

Table 4 lists the ideal and sub-optimal compliance degree for control rules r1 - r4
respectively. The overall compliance degree is the sum of the compliance degree of
each control rule. Note that we can also take a weighted approach for calculating the
sub-optimal compliance degree. For each control rule r, a weight can be assigned to

Table 4. Compliance measurement for process model W

Control Rules Ideal Compliance
Degree

Risk (Weight) Sub-optimal Compliance
Degree

r1 1 10% 0.67
r2 1 50% 0.67
r3 1 20% 1
r4 1 20% 1
TOTAL 1 100% 0.80

 Compliance Aware Business Process Design 131

reflect the relative importance of compliance with respect to r. Weights are assumed
to be determined by experts defining internal controls, as an indication of the risk (or
cost) of non-compliance. The overall sub-optimal compliance degree for W
undertakes such approach. The results show that W is compliant with all ideal
situations according to control rules r1 - r4, and W supports sub-optimal situations to a
large extend.

4 Conclusion and Future Work

This paper presents an overall methodology for compliance by design, and
specifically proposes a method to measure the degree of compliance between control
objectives and business process models during process design. The proposed method
based on the notion of compliance degree will assist process designers in undertaking
compliance aware design so that an appropriate balance between the two, often
conflicting, objectives can be achieved.

The approach presented so far is focused on assessing compliance of a process
model through execution sequences. However, control objectives may also refer to
other aspects of the process such as resource allocations, or data flow. Consideration
of these aspects is part of our future work through which we hope to extend the
proposed notion of compliance degree.

References

1. zur Muehlen, M., Ho, D.T.: Risk Management in the BPM Lifecycle. In: Bussler, C.J.,
Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 454–466. Springer, Heidelberg (2006)

2. Christopher, G., Müller, S., Pfitzmann, B.: From Regulatory Policies to Event Monitoring
Rules: Towards Model-Driven Compliance Automation. IBM Research Report RZ 3662,
IBM Zurich Research Laboratory (2006)

3. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations
and Permission. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 5–14. Springer, Heidelberg (2006)

4. Governatori, G.: Representing Business Contracts in RuleML. International Journal of
Cooperative Information Systems 14(2–3), 181–216 (2005)

5. Governatori, G., Milosevic, Z.: A Formal Analysis of a Business Contract Language.
International Journal of Cooperative Information Systems 15(4), 659–685 (2006)

6. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proceedings of the 10th IEEE Conference on
Enterprise Distributed Object Computing (2006)

7. Hagerty, J.: SOX Spending for 2006. AMR Research, Boston USA (2007)
8. Lu, R., Sadiq, S.: Managing Process Variants as an Information Resource. In: Dustdar, S.,

Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, Springer, Heidelberg
(2006)

9. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process
Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, Springer, Heidelberg (2007)

10. Zdravkovic, J., Kabilan, V.: Enabling Business Process Interoperability Using Contract
Workflow Models. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 77–
93. Springer, Heidelberg (2005)

	Compliance Aware Business Process Design
	Background and Motivation
	Compliance by Design Methodology
	Modeling Control Objectives
	Business Process Model
	Measurement of Compliance

	Compliance Degree
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

