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Abstract. Ubiquitous sensing technology and statistical modeling tech-
nology are making it possible to conduct scientific research on our everyday
lives. These technologies enable us to quantitatively observe and record
everyday life phenomena and thus acquire reusable knowledge from the
large-scale sensory data. This paper proposes a ”Spatio-temporal Seman-
tic (STS) Mapping System,” which is a general framework for modeling
human behavior in an everyday life environment. The STS mapping sys-
tem consists of a wearable sensor for spatially and temporally measuring
human behavior in an everyday setting together with Bayesian network
modeling software to acquire and retarget the gathered knowledge on hu-
man behavior. We consider this STS mapping system from both the the-
oretical and practical viewpoints. The theoretical framework describes a
behavioral model in terms of a random field or as a point process in spatial
statistics. The practical aspect of this paper is concerned with a case study
in which the proposed system is used to create a new type of playground
equipment design that is safer for children, in order to demonstrate the
practical effectiveness of the system. In this case study, we studied chil-
dren’s behavior using a wireless wearable location-electromyography sen-
sor that was developed by the authors, and then a behavioral model was
constructed from the measured data. The case study shows that every-
day life science can be used to improve product designs by measuring and
modeling the way it is used.

1 Introduction

Scientists and engineers have a limited understanding of the dynamics and prop-
erties of everyday life despite its familiarity. Although standard models in scien-
tific fields such as quantum theory and cosmology exist to explain and generate
most phenomena, nothing yet exists that might represent a standard model of
everyday life. Modeling everyday life requires representing it by quantitatively
observing it and constructing a model from a large-scale amount of observed
data. The recent development of ubiquitous sensing technology, which enables
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the observation of physical phenomena in total living space, and statistical mod-
eling technology, which enables the construction of a model from the observed
data, will open the way for the field of science and technology of everyday life.

An everyday life model should be considered a ”reusable model” from the
viewpoint of practicality as well as science, to represent the apparent phenomena
in human behavior, but also to explain the underlying semantic causality among
behaviors, the environment, situations, and conditions. Even if the situations
and conditions are different from those for which the model was created, the
model can be reused under different situations and conditions if they can be
abstracted in terms of the same semantic structure. In this paper, a reusable
model indicates that we can re-use the causal model to simulate human behavior
under such differing situations and conditions.

This paper focuses on everyday life behavior for the following reasons. First,
wearable sensors [1] and location sensors [2] are available to help quantitatively
and spatio-temporally describe everyday life phenomena. Just as the Global Po-
sitioning System (GPS) [3] and the Geographical Information System (GIS) [4]
software packages are useful for representing the spatial information for given
positions worldwide, these ubiquitous sensing technologies will result in the pro-
liferation of spatio-temporally indexed data sets that can be obtained from ev-
eryday life settings. These data sets can be used for assisting with the application
of science and technology in studying everyday situations.

Second, statistics customized for use with spatial data, referred to as spatial
statistics [5,6], have recently been developed for analyzing spatial data. Although
our aim is to model a semantic structure that underlies a spatio-temporal phe-
nomena rather than a spatial or spatio-temporal structure, we can take advan-
tage of the spatial statistics approach as a starting point. However, we need to
expand spatial statistics to acquire the reusable semantic knowledge from every-
day life data that are spatio-temporally indexed. Fortunately, another statistical
modeling technology has become available for acquiring reusable semantic knowl-
edge from a large amount of data. In particular, a Bayesian network method can
be used to create a realistic model [7] and therefore, it can be used for bridging
the gap between a spatio-temporal data space and a semantic state space.

Finally, the use of science and technology for studying the behavior of people
in everyday life is urgently required in our society. By better understanding
everyday life behavior, we can better improve the quality of life. For example,
as children develop their behavioral capabilities in everyday life, their rate of
injury incidence rapidly increases. After a child learns to walk at around one
year of age, the primary cause of death is surprisingly not illness, but injury [8].
In 2006, the World Health Organization (WHO) announced their ten-year action
plan for child injury prevention [9]. Children behavior science is applicable to
preventing childhood injury. Our research group has been working on childhood
injury prevention [10].

This paper addresses the problem of creating a semantic model from the be-
havior of people in everyday life from spatio-temporally indexed data. We pro-
pose a ”Spatio-temporal Semantic (STS) Mapping System”, which is the general
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Fig. 1. Concept of spatiotemporal-semantic mapping system

framework for modeling human behavior in an everyday environment. The STS
mapping system consists of a wearable sensor for spatially and temporally mea-
suring human behavior, together with Bayesian network modeling software to
acquire and retarget the gathered knowledge on human behavior. This paper
also presents a case study for applying the proposed system to the development
of a new playground equipment design that is safer for children, in order to
show the practical effectiveness of the system. In this case study, in situ observa-
tions and measurements were made of 47 children playing with or on equipment
using a wireless wearable location-electromyography sensor that was developed
by the authors, and then a children’s behavior model was constructed from the
measured data.

2 Spatio-temporal Semantic Mapping System

2.1 Concept of STS Mapping System

Modeling human behavior, in order to develop a reusable causality model based
on the behavior, environment, situations and conditions, can be divided into
two components: representation of the scenario and the knowledge acquisition
process.

We will begin by discussing the representation. Our environment consists of
objects spatially distributed in an everyday life space. Humans exhibit a variety
of behaviors by interacting with such spatially distributed objects. Therefore,
the way a person behaves in their everyday life can be represented in an envi-
ronmental coordinate system. A geographical information system (GIS) is well
known as a representation system for describing a wide variety of information
based on an environmental coordinate system. We utilize a similar representa-
tion: we standardize and structuralize human behavior in terms of a multilayered
information structure by tagging them with environmental coordinates.



66 Y. Nishida et al.

Next, we will discuss the knowledge acquisition process. In order to gather
information on the behaviors and retarget the acquired knowledge to a new en-
vironment, we have to abstractly represent the data by expressing them in terms
of a semantic state space, and then find stable structures in this space. Using a
statistical modeling method can help us do this. The Bayesian network paradigm
is well known as a method for developing a graphical model for a semantic state
space. We utilize a Bayesian network for the knowledge acquisition.

Figure 1 presents our proposed concept for a Spatio-temporal Semantic (STS)
mapping system. The STS mapping system consists of the following components:
1) a spatio-temporal extension of the behaviormetric sensor integrated with a
non-location behaviormetric sensor and a location sensor, 2) a standardized and
multilayered representation of information based on an environmental coordinate
system, and 3) a statistical modeling process for knowledge acquisition from the
represented information, and a retargeting process.

We can express the sensory data in a standardized and multilayered way,
extract the knowledge using the modeling process, and then apply the extracted
knowledge to a new target by using this STS mapping system.

2.2 Formulation of Behavior Phenomena in STS Mapping System

In this section we will describe the formulation of behavior phenomena in the
STS mapping system. We view the observed behavior attributes as realizations
from a kind of random field referred to as a spatial point process in which random
variables have a kind of structure in a state space. We express the spatial point
process by

Z =
{
Zi(s, t) : s ∈ D ⊂ �d, t ∈ �+}

, (1)

where Zi(s, t) denotes the i-th attribute at location s at time t, D denotes a
region of interest, and typically d = 2 or 3 and s = [x, y]′ or [x, y, z]′ if we are
dealing with two- or three-dimensional space.

For example, the data obtained by an ultrasonic location sensor, which is a
kind of GPS, is composed of three-dimensional spatial data and temporal data.
So it can be expressed by

E =
{
Ei(s, t) : s ∈ D ⊂ �d, t ∈ �+}

, (2)

where Ei(s, t) denotes the occurrence of an event at location s at time t. Then
Ei normally equals a constant 1 for all s and t. On the other hand, the data
obtained by non-location sensors, such as a wearable electromyography (EMG)
sensor, can be expressed by

Z =
{
Zi(t) : t ∈ �+}

. (3)

By integrating the system with a location sensor expressed by Eq. (2) with a
non-location sensor expressed by Eq. (3) and simultaneously measuring both
data, we can obtain spatiotemporal attribute data expressed by Eq. (1). Thus
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we can expand the non-location sensor to a spatiotemporal attribute sensor by
combining it with the location sensor. We call this integration a spatio-temporal
extension. An example of a spatio-temporal extension of the wearable (EMG)
sensor is described in detail in the next section.

There is another type of data expressed by

Z =
{
Zi(s) : s ∈ D ⊂ �d

}
. (4)

For example, this type of data can be obtained by using a three-dimensional
scanner (e.g., a laser range finder equipped with stereo vision) and an envi-
ronmental map (e.g., a map created by an autonomous robot system using a
Simultaneous Localization And Mapping (SLAM) method [11]). If the data is
stationary in terms of time, we can view it as data expressed by Eq. (1). For
example, the shape data of a building can be seen as stationary in terms of time.

We can utilize a Bayesian network to create a model of causality among the
observed attributes expressed by Eq. (1). The Bayesian network model is useful
for not only developing the model by combining the observed data and external
knowledge, but also for inferring and predicting behavior with novel targets. We
can create a cross tabulation table by normalizing and quantizing the data set
(Eq. 1). We can construct a Bayesian network model from this cross tabulation,
utilizing several software packages for this purpose (e.g., BAYONET [12]). The
Bayesian network model constructed from Eq. (1) can be expressed as a joint
distribution in a state space Z by

p (Z|Bs) =
n∏

i=1

p (Zi|pa(Zi), Bs), (5)

where Bs denotes a probabilistic structure for the Bayesian network, pa(Zi)
denotes a parent of Zi, and n is the number of attributes. We can infer and
predict desired attributes by using Eq. (5). For example, we can predict the
desired attributes for one layer Zd, given the others at location s0, using

p (Zd(s0)|Zi�=d(so), Bs) =
p (Zi(so)|Bs)

∑

Zi=d

p (Zi(so)|Bs)
. (6)

2.3 Advantages of STS Mapping System

The advantages of the STS mapping system are as follows: 1) both an expert and
a layperson can see the relations among the behavior and environment, because
most people are familiar with the representations based on an environmental
coordinate system. 2) It is easy to integrate the sensory data and other data
when these data are standardized by representations based on an environmental
coordinate system. 3) It is possible to extract knowledge by using a modeling
process and then applying this knowledge to a new target. 4) It is easy to intu-
itively confirm the results of the modeling and the retargeting by visualizing the
results in an environmental coordinate system.
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3 Application of STS Mapping System: Modeling
Children’s Behavior and Using Model to Design a New
Product

3.1 Overview of Implemented STS Mapping System

We implemented the proposed STS mapping system to model children’s behav-
ior while playing on playground equipment. The realized system consisted of
a wireless wearable location-EMG (L-EMG) sensor for conducting in situ ob-
servations and measurements of children playing, a system for representing the
measured data based on an environmental coordinate system, and a Bayesian
network for modeling and retargeting. Figure 2 shows the implemented system
and the process flow. The details are described below.
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Fig. 2. Spatio-temporal semantic mapping system

3.2 Step 1: Spatio-temporal Extension of Child Behavior
Measurement with Wearable Location-EMG

Development of Wearable EMG Sensor. We have developed a wearable
EMG sensor to be used as a behaviormetric sensor for measuring children’s physi-
ological state [13,14]. We use the EMG sensor to measure the behavior of children
for the following reasons. 1) Robustness: We can robustly obtain sensor signals
related to the playing behavior because the EMG sensor can measure muscle
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activity. 2) Versatility: It is possible to use it to record other behavioral data;
for example, it can be used to measure the electrooculogram (EOG) by placing
it in a different position. The developed wireless type of EMG sensor has the
following advantages. 1) The children’s behavior is not disturbed because it was
wearable. The measurement data was directly preserved in a personal computer
(PC) via wireless communication. 2) As a result, we are able to secure sufficient
storage capacity for long durational EMG measurement. 3) We developed an
active electrode system that amplified the EMG signal near an electrode. We
were able to begin quickly measuring EMG data because the active electrode
could be easily attached to the body using an armband.

Spatio-temporal Extension of Wearable EMG Sensing. We have com-
bined a wearable EMG sensor and an ultrasonic location sensor that was also
developed by the authors [15] for spatio-temporal extension of the data from
the wearable EMG sensor. This has enabled us to obtain EMG data that are
spatio-temporally indexed. The ultrasonic location system consists of ultrasonic
receivers, ultrasonic tags with a transmitter, and a radio controller. By attach-
ing the ultrasonic tag to a child, we can detect and record the three-dimensional
position data of the child. The ultrasonic location system can track the positions
of the child within an error of 3 cm.

Observing Playing Children by Utilizing Location-EMG Sensor. We
collected spatio-temporally indexed EMG data by measuring the children’s play-
ing behavior using the developed location-EMG (L-EMG) sensor in cooperation
with the Kawawa nursery. Specifically, we measured children’s behavior as they
were climbing a stone wall, as shown in the picture on the left in Fig. 3. The
L-EMG system consists of a section for recording a video image from a USB
camera, a section for recording the three-dimensional position data from the
ultrasonic location system, and a section for recording the EMG data. Thus,
the three-dimensional position data, the video image, and the EMG signal are
simultaneously measured using the L-EMG system.

The details concerning the experimental procedures are as follows. First, the
electrodes were attached to the flexor digitorum superficialis muscle and the
extensor digitorum of the right forearm of 47 toddlers (6 three-year-olds, 17 four-
year-olds, 14 five-year-olds, and 10 six-year-olds) in the Kawawa nursery. Second,
we prepared a sensor jacket in which the ultrasonic tag and the EMG sensor were
embedded. Using the sensor jacket, the sensors could be easily attached to the
body. The picture on the right in Fig. 3 shows a child wearing the sensor jacket
and the one in the middle shows a snapshot of the data recorded by the L-EMG
system software.

3.3 Step 2: Representing Spatio-temporal EMG Data and Spatial
Depth Data from Stone Wall Using STS Mapping System

The EMG data measured by the L-EMG system was spatio-temporally indexed.
The measured EMG data can be visualized in the stone wall coordinate system by



70 Y. Nishida et al.

Stone wall type
of playground
equipment

2500[m
m

]

Sensor jacket

Ultrasonic 3D tag
Wireless EMG sensor

Child EMG

3D position

Image

Loghouse with stone wall for climbing Integrated sensing system

Fig. 3. Stone wall type of playground equipment

Fig. 4. EMG map that visualizes Location-EMG data

being input into the STS mapping system. Figure 4 shows an example of the mea-
sured EMG data visualized with respect to the stone wall coordinate system. This
EMG map was made from the EMG data measured for all subjects aged between
three and six years old. The parts in red indicate that a significant amount of mus-
cle power was used. This figure helped us to confirm that the upper part of the wall
required a significant amount of muscle power, which showed that it was difficult
to climb the stone wall. We also measured the three-dimensional shape data of the
stone wall using a laser scanner. We were also able to obtain the spatial data on
the depth distribution using the measured shape data.

3.4 Step 3: Creating Bayesian Network Model

We conducted a mesh division for the EMG data, the depth map data, and the
other data in the stone wall coordinate system. After normalizing and quantizing
the mesh data, a cross tabulation table was constructed. The items in the table
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included the following attributes; age, weight, height, intensity of EMG, maximum
grasping power, vertical displacement in playing, and depth of each block in the
stone wall. The data sets that we obtained were expressed in terms of

Z1(s, t) = Age(x, y, t), Z2(s, t) = BodyWeight(x, y, t),
Z3(s, t) = BodyHeight(x, y, t), Z4(s, t) = EMG(x, y, t),
Z5(s, t) = MaxPower(x, y, t), Z6(s, t) = Depth(x, y, t),
Z7(s, t) = V erticalDisplacement(x, y, t)

A Bayesian network was created from the constructed cross tabulation table.
We customized and used BAYONET [12] for this process. BAYONET finds
probabilistic semantic structures via a kind of greedy algorithm based on one of
several information criteria, such as Akaike’s information criterion (AIC) [16],
from the given data.

3.5 Step 4: Retargeting Bayesian Network Model: Application of
Playing Behavior Model to Construct New Product Design

We used the model to create a new design for safer playground equipment. The
model constructed in Step 3 above expresses the causal relation between age,
weight, height, intensity of EMG, maximum grasping power, vertical displace-
ment in playing, and the depth of each block in the stone wall. Falling from the
higher part of the stone wall can cause more serious injury than falling from
the lower part. The difficulty in climbing is strongly related to the risk of falling
from the equipment. As stated above, the intensity of the EMG indicates the
difficulty in climbing. So, we used the intensity of the EMG as a criterion for
the risk of falling. Among the parameters in the product design, the depth and
height of the stone wall blocks are controllable. We can infer the intensity by
varying the controllable parameters and the target age as inputs to the con-
structed Bayesian network. More concretely, we can calculate the expectation of
the EMG by utilizing Eqs. (7) and (8).
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+0mm

Schematic of stone wall Estimated EMG MapDepth Map
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Fig. 5. Estimated EMG map using Bayesian network
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p (Z4(x, y)|Zi�=4,7(x, y), Bs) =
p (Zi(x, y)|Bs)

∑

Zi=4,7

p (Zi(x, y)|Bs)
, (7)

Z1 = 3, 4, 5, 6 years old, Z2 = average body weight,
Z3 = average body height, Z5 = average maximum power,
and Z6(x, y) = depth map data from schematic, and

E(Z4) = =
∑

j

Aj × pj (Z4|Zi�=4, Bs) , (8)

where Aj denotes the coefficient for calculating the expectation from the inferred
probability distribution pj . In general, the probability distribution inferred by
a Bayesian network is a discrete distribution. Figure 5 shows an example of an
estimation of the intensity of the EMG (E(Z4(x, y))). In this figure, section A
depicts a new schematic of the stone wall structure, section B depicts the depth
map of the new schematic, section C depicts the Bayesian network model, and
section D depicts the intensity of the EMG as inferred by the Bayesian network
model. We used the customized BAYONET for this inference process. Figure 6
shows the results of the estimation of the EMG map for different ages. In the
figure, the EMG intensity is normalized so that the maximum intensity of a three
year-old becomes one. The figure shows that children can climb the wall using
less strength, as they get older. By repeating the design of a new schematic and
estimation of the EMG, we can interactively design a new stone wall type of
playground equipment.

For this case study, we created the specifications listed below in cooperation
with playground equipment makers.

Schematic of 
stone wall

3 year-old 4 year-old 6 year-old5 year-old

Fig. 6. Estimated EMG map of different ages (the EMG intensity is normalized so
that the maximum intensity of a three year-old becomes one)
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1. In order to exclude children that were 1 to 2 years of age, we designed the
lower part of the stone wall to be too difficult for them to climb, i.e., so that
they cannot exert the required degree of muscular power in this section.

2. To allow those children who can climb the lower section to enjoy the rest of
their climb, we designed the middle part of the stone wall with a variety of
difficulties.

3. To ensure safety in climbing and to help the children climb securely, we
designed the upper part of the stone wall to be relatively easy for them to
climb, i.e., not much strength is required.

We made some patterns for a wall that satisfied these specifications by re-
peating the trial design using the STS mapping system in collaboration with
playground equipment designers. Figure 7 shows three examples of stone walls
for playground equipment based on the created model and the constructed play-
ground equipment based on the model.

4 Conclusion

This paper has highlighted the possibility of creating a data-driven type of an
everyday life behavior model and using the model to improve everyday life.
This stems from the recent development of sensing and modeling technologies.
A wearable sensing technology and a statistical modeling technology make the
application of science to everyday life situations feasible.

We have proposed the concept of a Spatio-temporal Semantic mapping system
as one approach to dealing with knowledge acquisition based on real-life behav-
ior data. The STS Mapping system consists of the following components: 1) a
spatio-temporal extension of behaviormetric sensing with the integration of a
non-location behaviormetric sensor and a location sensor, 2) a standardized and
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multilayered representation of the measured data based on an environmental co-
ordinate system, and 3) a statistical modeling process for knowledge acquisition
from the represented data, and a retargeting process. This paper has described
the formulation of behavior phenomena in terms of a spatial point process as
dealt with in spatial statistics and a concrete computation method for creating
a model using the STS mapping system.

To show the effectiveness of the proposed STS mapping system, this pa-
per reported on an implemented system and a case study using it. In the case
study, we conducted in situ observations and measurements of 47 children play-
ing with or on playground equipment by using a wireless wearable location-
electromyography sensor and constructed a model of the children’s behavior
from the measured data. This paper also reported on a new play equipment de-
sign that had a climbing section that was suitable for the children’s target age
group. The new design was created using the constructed model in collaboration
with playground equipment designers. The case study showed that everyday life
behavior science could possibily be applied to evidence-based product design
as well as indicating the effectiveness of the proposed system from a practical
standpoint.

Creation of a new design as described in this paper is our first trial towards de-
veloping safer playground equipment for children. This year, our research group
constructed a system for monitoring children playing in the nursery with the
new equipment that has sensors installed in it. We hope that, by collecting
such everyday data over a long term, we will be in a better position to clarify
the relationships between injuries and children’s behavior through the continu-
ous improvement of the model and the equipment. We believe that incremental
knowledge development, which means continuous improvement and application
of knowledge using real data for feedback, is very important for making knowl-
edge really useful in our society.
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