
Incremental Processing and Design of a Parser
for Japanese: A Dynamic Approach

Masahiro Kobayashi

University Education Center, Tottori University,
4-101 Koyama-chō Minami, Tottori, 680-8550 Japan

kobayashi@uec.tottori-u.ac.jp

Abstract. This paper illustrates a parser which processes Japanese sen-
tences in an incremantal fashion based on the Dynamic Syntax frame-
work. In Dynamic Syntax there has basically been no algorithm which
optimizes the application of transition rules: as it is, the rules can apply
to a current parsing state in an arbitrary way. This paper proposes both
partitioned parsing states allowing easier access to some kind of unfixed
nodes and an algorithm to apply transition rules for Japanese. The parser
proposed in this paper is implemented in Prolog. The parser is able to
process not only simple sentences but also relative clause constructions,
scrambled sentences and complex (embedded) sentences.

1 Introduction

Incremental and dynamic approaches to sentence comprehension and grammar
formalisms have attracted a great deal of attention both in psycholinguistics and
natural language processing. For example, Lombardo, Mazzei and Sturt (2004)
discuss the relationship between competence and performance in incremental
parsing based on Tree Adjoing Grammar. This paper is meant to describe a
parser and its algorithm for a fragment of Japanese based on the incremental,
left-to-right parsing formalism in the Dynamic Syntax framework (Kempson,
Meyer-Viol and Gabbay 2001, Cann, Kempson and Marten 2005) and show
how the parser processes some of the constructions in Japanese. In advocating
Dynamic Syntax, Kempson et al. (2001) and Cann et al. (2005) have shown that
the formalism is able to cope with many constructions regarding word order
phenomena, such as cross-over constructions and topicalizations in English and
also that it has a broad typological perspective. However there is no algorithm
specified for computational implementation. In other words, Dynamic Syntax
is an abstract grammar formalism with lexical rules and transition rules, and
no algorithm has been proposed which optimizes the application of transition
rules. In addition, the formalism makes the parser keep NPs unfixed within the
tree structures at a certain parsing stage and narrow down the possibilities of
outputs by specifying their positions. This means that the parser needs to deal
with not only usual binary tree structures but also unfixed tree structures whose
positions must be fixed in the final tree structure.

K. Satoh et al. (Eds.): JSAI 2007, LNAI 4914, pp. 174–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Incremental Processing and Design of a Parser for Japanese 175

This paper has two aims. The first is to propose partitioned parsing states
with easier access to fixed and unfixed nodes. The second aim is to propose an
algorithm to implement the application of lexical rules and transition rules for
Japanese. Purver and Otsuka (2003) and Otsuka and Purver (2003) proposed a
parsing and generation model for English based on the Dynamic Syntax formal-
ism, but as far as I know, there is no research so far which attempts to implement
Dynamic Syntax for Japanese. The parser can currently process not only simple
sentences but also relative clause constructions and embedded clauses. A Prolog
implementation of the parser and efficient parsing algorithm will also be pre-
sented including a comparison to Purver and Otsuka (2003) and Otsuka and
Purver (2003).

The outline of this paper is as follows: the subsequent section will be devoted to
a brief look at the Dynamic Syntax formalism and issues this paper will deal with.
This section will also describe previous studies. Section 3 will illustrate the parser
for Japanese on the basis of Dynamic Syntax and propose an algorithm as well
as show how the parser processes sentences. Section 4 discusses the effectiveness
of this approach and further issues. Section 5 concludes the discussion.

2 Dynamic Syntax and Problems of Parsing

2.1 Dynamic Syntax and Formalism

Before getting into the discussion of the issues I address, a brief illustration of
the formalism of Dynamic Syntax (hereafter DS) is needed. The DS formalism
allows the parser to process a sentence in a left-to-right fashion: it consumes the
words from the onset, building up semantic representation as the scan of the
string proceeds. The grammar formalism is called goal-directed in the sense that
in each node there exists requirement(s) prefixed by “?” and every requirement
needs to be satisfied or canceled until the parsing has been finished. The initial
state of parsing consists of the single node {Tn(a), ?Ty(t), �} (quoted from
Kempson et al. 2001: p.57), where Tn is the tree node identifier and ?Ty(t)
means that this node will be associated with a type t formula; the parser is
going to parse the sentence. The node includes the pointer � indicating that the
pointed node is highlighted or active so that lexical rules and transition rules are
applied to this node. Summing up, processing is defined as (1). A parsing state,
which is a (partial) tree structure, shifts to the next one and grows larger and
larger from the initial state T 0 to the final state T n through the application of
lexical and transition rules.

(1) T 0 → rule application → T 1 → → rule application → T n

In the tree structure, nodes are represented as sets, and the relation between
nodes are represented by the tree node predicate Tn and the node modali-
ties. The lexical items themselves are defined as rules and take the form of
IF Action1 THEN Action2 ELSE Action3 which updates the current partial

176 M. Kobayashi

tree structure. In Cann et al. (2005) the main transition rules are as follows: Lo-

cal ∗Adjunction, Generalised Adjunction, ∗Adjunction, Introduc-

tion, Prediction, Elimination, Anticipation, Completion, Thinning,
Link Adjunction, Link Evaluation and Merge.

The other characteristic worth noting is syntactic underspecification. When
the parser processes the string in a left-to-right fashion, especially in head-final
languages like Japanese, the parser cannot specify whether the NP at the begin-
ning of a sentence will be fixed to a main or subordinate or relative clause. For
example, the initial NP hon-o “book-acc” of (2a) is the object NP of a main
clause but in (2b) it is the object of a relative clause in a subordinate clause.

(2) a. Hon
book

o
acc

gakusei
student

ga
nom

katta.
buy-past

“The student bought the book.”

b. Hon
book

o
acc

katta
buy-past

gakusei
student

ga
nom

koronda
fall down-past

to
comp

Taro
Taro

ga
nom

itta.
say-past

“Taro said that the student who bought the book fell down.”

DS has a mechanism which enables the parser to keep NPs unfixed in the partial
tree structure. This paper adopts three transition rules; Local ∗Adjunction,
Generalised Adjunction and ∗Adjunction (Cann et al. 2005). Local

∗Adjunction provides an unfixed position for local scrambling, and Gener-

alised Adjunction is used to introduce a subordinate clause because it pro-
vides an unfixed node associated with a type t formula and the unfixed node
dominates all the words which belong to the subordinate clause. ∗Adjunction

rule provides a tree structure with an unfixed node for long distance scrambling.
The snapshot of the partial tree consuming hon of (2a) is shown in Figure 1 and
that of (2b) in Figure 2. The unfixed node introduced by Local ∗Adjunction

is connected to the mother node by the dashed line, while the dotted line means
that the unfixed node is provided by the Generalised Adjunction rule in
each figure. Such unfixed nodes are required to find their fixed positions by the
end of the processing with tree-update actions. Readers who wishes to see a more
detailed description of the DS formalism, are referred to Kempson et al. (2001)
and Cann et al. (2005).

2.2 Problems of Parsing in DS

This subsection will outline the issues addressed in this paper. This paper mainly
deals with two problems. The first is the issue of how we should express (par-
tial) tree structures in implementing the DS grammar. To put it another way,
the problem is how we should efficiently implement the grammar of head-final
languages such as Japanese within the DS framework in Prolog. In Prolog nota-
tion, a complete binary tree structure is often represented as node(s, node(np,
[], []), node(vp, [], [])), which is the equivalent of the usual notation
of the tree structure in which S goes to NP and VP. When unfixed nodes,

Incremental Processing and Design of a Parser for Japanese 177

{Tn(0), ?Ty(t)}

{Tn(a), Ty(e), Fo(ε, x, Hon(x)), �}

Fig. 1. The parsing tree of hon “book”
in (2a)

{Tn(0), ?Ty(t)}

{Tn(a), ?Ty(t)}

{Tn(y), Ty(e), Fo(ε, x, Hon(x)), �}

Fig. 2. The parsing tree of hon “book”
in (2b)

which are introduced by Local ∗adjunction, Generalised adjunction and
∗Adjunction, come in this notation, then it would not be easy to search a
pointed node and merge the unfixed nodes with other fixed positions. Particu-
larly in a head-final language like Japanese, the number of nodes dominated by
the unfixed node can be far larger than in English because, for example, the type
t node of a sentence sometimes needs to be unfixed until the complementizer to
has been consumed. If the parser represents the tree structures as sets of nodes,
as in DS originally, it would not be easy to parse the string efficiently. This
problem has a close relation to how we should represent the processing state.

The second issue this paper addresses is an algorithm for the application of
the transition rules and lexical rules. DS is a grammar formalism that allows
a parsing state to be updated to a subsequent state, and currently in the DS
framework transition rules can apply to any state in an arbitrary way; there
is no algorithm which specifies how and when lexical and transition rules are
applied. As illustrated in Figures 1 and 2, application of different transition
rules leads to different partial tree structures. For example in Figure 2, Local

∗adjunction is applied after applying Genralised adjunction, while only
Local ∗adjunction is applied in Figure 1. In implementing the grammar, we
need an algorithm to derive such partial structures as these two. This paper
proposes an algorithm of rule applications for the implementation of the DS
parser and provides some improvements for efficiency.

2.3 Previous Studies

Although the generation and parsing model of Purver and Otsuka (2003) and
Otsuka and Purver (2003) based on DS formalism can be found in the literature,
they mainly deal with English. Purver and Kempson (2004) and Purver, Cann
and Kempson (2006) go a step further and propose a context-dependent parsing
and generation model to account for the transition from a hearer to a speaker
and vice versa with reference to shared utterances and some context-dependent
phenomena such as VP ellipsis.

A brief description of their model and implementation is as follows. In their
implementation in Prolog, the tree structure is represented as a set of nodes. Fig-
ure 3 is their Prolog notation of a partial tree structure, while its DS conterpart
is illustrated as Figure 4 (both are cited from Otsuka and Purver 2003: p.98).

178 M. Kobayashi

tree([node(‘0’, [?ty(t), ?([\/0],ty(e)), ?([\/1],ty(e>t))]),
node(‘00’, [ty(e), fo(john), +male]),
node(‘01’, [ty(e>t), fo(X^snore(X)), +pres])]).

Fig. 3. Prolog notation of Otsuka and Purver (2003: p.98)

{Tn(0), ?Ty(t), ?〈↓0〉Ty(e), ?〈↓1〉Ty(e→t)}
��������

��������
{Tn(00), Ty(e), Fo(john), +MALE} {Tn(01), Ty(e→t), Fo(λx.snore(x)), +PRES}

Fig. 4. DS notation of Figure 3 (Otsuka and Purver 2003: p.98)

Although the tree structure is represented as a set of nodes, as Figure 3 shows,
the relation between the mother node and its daughter node is represented as
the tree node identifier (Tn): the root node has the identifier Tn(0) and the
argument daughter has the identifier Tn(00), and the functor Tn(01).

There are two problems I can point out about their model, ones related to the
two issues illustrated in subsection 2.2. The first is about Prolog tree notation
and a formal definition of the parsing state. According to Purver and Kempson
(2004: p.77) a parsing state of their parser is defined as a set of triples 〈T , W ,
A〉, where T is a tree, W , words which have already been consumed and A, rules
which have already been applied. As described above, any node (and any partial
tree) is defined as an element of set T . Therefore, once we attempt to search a
certain node, e.g., the pointed node, among the partial tree, it turns out to be
inefficient especially as the tree gets bigger and bigger. Moreover, as described in
the previous subsection, in Japanese the parser needs to cope with many unfixed
nodes other than fixed nodes; this makes the treatment of a tree as a set of nodes
inefficient for processing head-final languages. In the subsequent section of this
paper a slightly different, structured parsing state approach to DS tree structure
will be proposed which enables easier access to the nodes.

The second problem is related to the algorithm and the application of transi-
tion rules. Otsuka and Purver (2003) and Purver and Otsuka (2003) try to im-
prove the efficiency of parsing by assuming always rules which apply forcibly
and possible rules which don’t necessarily apply. In the subsequent section of
this paper I propose a different transition rule application system for Japanese
and an algorithm to process fragments of Japanese sentences.

3 Incremental Parsing for Japanese

3.1 Definition of the Parser

This subsection describes development of the parser proposed in this paper, an
issue closely related to the representation of the tree structures we have already

Incremental Processing and Design of a Parser for Japanese 179

discussed. Unlike the model of Purver and Kempson (2004), the model proposed
here has the following parsing state structure: it is a set of triples 〈W , S, P 〉
where W is a string to be consumed and P a node address of the pointed node
at a current stage including the feature fixed, local, gen and link; fixed
means that the pointer is in the fixed tree structure, local that the pointer
is in a node introduced by Local ∗Adjunction, gen that the pointer is in
a node introduced by Generalised Adjunction, and link that the pointer
is in the linked structure. S is a multitier parsing state which consists of a set
of doubles 〈R, T 〉 where R is a set of transition and lexical rules which have
been used to establish the current tree. T consists of a triple 〈F , G, L〉 where
F is a fixed tree structure, G a tree structure whose root node is introduced by
Generalised Adjunction, and L a linked tree structure. F has the binary
tree structure as shown in section 2, such as node(Mother, node(Argument,
[], []), node(Functor, [], [])), but each node, e.g., Mother, has a single
place for a node introduced by Local ∗Adjunction, while Otsuka and Purver
(2003) treat trees as a set of nodes. The pictorial image of the parsing state is
illustrated in Figure 5. The initial parsing state is 〈W0, S0, pn(fixed, [root])〉;
S0 consists of a double 〈φ, A〉 where A is the initial parsing state, which contains
only the requirement ?Ty(t) and the pointer �. The final parsing state is 〈φ, Sn,
pn(fixed, [root])〉. In Sn the generalised tree structure and the link structure
are empty, and the semantic representation is established at the root node of
the fixed tree structure. The pointer needs to go back to the root node of the
fixed tree structure for the parsing to be successful as indicated by pn(fixed,
[root]).

The separate treatment of fixed, generalised, and link structure and the pointed
node address indicator P enable us to search the pointed node and manipulate
tree-update actions efficiently: this approach helps the parser process SVO lan-
guages like Japanese, particularly when a considerable amount of nodes is domi-
nated by the unfixed mother node.

3.2 Transition Rules and Algorithm

This subsection deals with the second issue I addressed: the application of the
transition rules and its algorithm. The parser currently has the following tran-
sition rules: Local ∗Adjunction, Generalised Adjunction, ∗Adjunction,
Introduction, Prediction, Elimination, Anticipation, Completion,

〈 W , S , P 〉
⇑

〈 R , T 〉
⇑

〈 F , G , L 〉

Fig. 5. Structure of parsing state

180 M. Kobayashi

tree expansion rules = {generalised adjunction/local ∗adjunction/

link adjunction}

node update rules = {merge, link evaluation, elimination,

thinning, completion}

start
�
�

�
�

�

Apply node update rules

as many times as possible.

�

Does there remain
a word to be parsed?

�������������������������������
���������

� NO
Print results.

�
end

�
�

�
� YES

�

Can a lexical rule be applied
to the current stage?

�������������������������������
���������

NO�Apply a tree expansion rule.

�

YES

Apply a lexical rule.�

�

Fig. 6. Algorithm of processing

Thinning, Link Adjunction, Link Evaluation, and Merge. This paper as-
sumes that among those rules Introduction, Prediction, and Anticipation

are not used for processing Japanese sentences.
As mentioned earlier, there is no algorithm which specifies when and how the

transition rules apply: they can be applied to any state in an arbitrary way in the
current DS formalism. This subsection presents an algorithm, and the subsequent
subsection shows that the algorithm is sufficient to parse simple sentences, rela-
tive clause constructions, and embedded clauses. Unlike Otsuka and Purver (2003)
and Purver and Otsuka (2003), the approach proposed here divides the transi-
tion rules into two groups: one is those rules which expand partial tree structure,
tree expansion rules, and the other is those which do not expand the tree but
update the node information, node update rules. The former group,
tree expansion rules, includes Local ∗Adjunction, Generalised

Incremental Processing and Design of a Parser for Japanese 181

ds_parse([], [[R, L1]|Result], [[R2, L2], [R, L1]|Result]) :-

apply_tree_expansion_rules([[[]], L1], [], [R2, L2]),

satisfy(L2), %Checks the tree has no requirement

pretty_print([[R2, L2], [R, L1]|Result]), nl.

ds_parse([H|T], [[X, T1]|T2], Result) :-

apply_node_update_rules([[[]], T1], [], [R, Mid]),

(lexical_rule(H, [R, Mid], [R1, Mid3]);

(tree_expansion_rule([R, Mid], [R2, Mid2]),

lexical_rule(H, [R2, Mid2], [R1, Mid3])

)

),

ds_parse(T, [[R1, Mid3], [X, T1]|T2], Result).

Fig. 7. Prolog code of the algorithm

Adjunction, ∗Adjunction, and Link Adjunction. Other transition rules,
Merge, Link Evaluation, Elimination, Thinning, and Completion belong
to node update rules. The shared characteristic among the former
tree expansion rules group is that they require that the pointed node have the
requirement of type t.

The algorithm proposed here is diagramed as Figure 6, and the algorithm im-
plemented in the Prolog code is illustrated in Figure 7. The upper four lines of
Figure 7 are the base rule, and the bottom eight lines are the recursive rule. The
first argument of the ds parse predicate is the string to be consumed: when there
remains no word to be consumed, the processing ends. The second argument is
the list consisting of the pair of rules applied in that stage and the tree structure.
The algorithm defined in Figure 6 considerably improves the efficiency of pars-
ing because the tree expansion rules are not applied if the pointed node does
not have the requirement of type t. The important characteristic worth noting is
the application order of the node update rules. The parser tries to apply rules in
the following order; Merge, Link Evaluation, Elimination, Thinning, and
Completion, though there might be the possibility that some of them cannot ap-
ply. When one of the rules, e.g., Merge, cannot apply, the tree structure is passed
to the next rule, in this case Link Evaluation, without any modification to the
tree structure. This ensures that there is always an output tree structure at the
end of each rule application in node update rules. This application order espe-
cially works in the situation where the parser brings the type and semantic in-
formation up to the mother node with the β-reduction after consuming the verb:
Elimination generates the type and formula of the node and Thinning deletes
the requirement, and Completion brings the information up to the mother node.

3.3 How the Parser Works

This subsection illustrates how the parser works. The parser is written in SWI-
Prolog on Linux. The current grammar is small but the source code is composed

182 M. Kobayashi

?- parse([john, ga, hon, o, katta], X).

Step 0

Nothing applied.

Pointer: pn(fixed, [root])

Root: [tn([0]), an([?ty(t)]), []]

Gen_adj: []

Linked: link([[], [], []])

Step 1

local_adj, john applied.

Pointer: pn(fixed, [root, local])

Root: [tn([0]), an([?ty(t)]), [loc([fo(john), ty(e), ?ty(e)])]]

Gen_adj: []

Linked: link([[], [], []])

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Step 5

katta applied.

Pointer: pn(fixed, [root, 1, 1])

Root: [tn([0]), an([?ty(t), \/[1, ty((e->t))], \/[0, fo(john)], \/[0, ty(e)]]), []]

[tn([0, 0]), an([fo(john), ty(e)]), []]

[tn([0, 1]), an([\/[0, ty(e)], \/[0, fo(book)], ty((e->t))]), []]

[tn([0, 1, 0]), an([fo(book), ty(e)]), []]

[tn([0, 1, 1]), an([fo(lambda(book, lambda(john, buy(john, book)))),

ty((e->e->t))]), []]

Gen_adj: []

Linked: link([[], [], []])

Step 6

completion, elimination, completion, elimination, thinning applied.

Pointer: pn(fixed, [root])

Root: [tn([0]), an([ty(t), fo(buy(john, book)), \/[1, fo(lambda(john, buy(john, book)))],

\/[1, ty((e->t))], \/[0, fo(john)], \/[0, ty(e)]]), []]

[tn([0, 0]), an([fo(john), ty(e)]), []]

[tn([0, 1]), an([fo(lambda(john, buy(john, book))),

\/[1, fo(lambda(book, lambda(john, buy(john, book))))],

\/[1, ty((e->e->t))], \/[0, ty(e)], \/[0, fo(book)], ty((e->t))]), []]

[tn([0, 1, 0]), an([fo(book), ty(e)]), []]

[tn([0, 1, 1]), an([fo(lambda(book, lambda(john, buy(john, book)))),

ty((e->e->t))]), []]

Gen_adj: []

Linked: link([[], [], []])

Semantic Representation: fo(buy(john, book))

Fig. 8. Snapshot of the output

of about 1,200 lines except the lexicon, and the total size is 41.1 KB. The parser
can process simple sentences such as (3a, b) as well as also the relative clause
constructions (3c) and complex sentences (3d).

(3) a. John
John

ga
nom

hon
book

o
acc

katta.
buy-past

“John bought the book.”

Incremental Processing and Design of a Parser for Japanese 183

S

NP VP

�����
�����

DET N

���
���

V NP

���
���

⇐⇒

S
NP

DET
N

VP
V
NP

Fig. 9. Tree notation and command line notation

b. Hon
book

o
sc acc

John
John

ga
nom

yonda.
read-past

“John read the book.”
c. Hon

book
o
acc

katta
buy-past

gakusei
student

ga
nom

hashitta.
run-past

“The student who bought the book ran.”
d. John

John
ga
nom

hon
book

o
acc

katta
buy-past

to
comp

Tom
Tom

ga
nom

itta.
say-past

“Tom said that John bought the book.”

The parser returns all steps of the processing, N+1 steps in total, from step 0
(the initial state) to step N+1, for the N words input. Figure 8 is a simplified
snapshot of the processing of the example sentence (3a). The parsing result is
printed from step 0 (the initial state) to step 6 (final state), although steps 2,
3 and 4 are abbreviated. The semantic formula is printed at the bottom line
as fo(buy(john, book)), which means John bought the book (ignoring tense).
Some other notational conventions are given in Figure 10. As you can see in the
figure the tree structure grows from the onset to the final stage monotonically.
In each step, the tree structure is represented as lines whose dominance rela-
tionships are shown with the tab spacing. Figure 9 shows us the corresponding,
standard DS representation.

The parser can return more than one semantic representation for ambiguous
sentences. As Kempson et al. (2001: p.70) discusses, when an appropriate context
is given, the initial NP in (4) can be the subject of the main clause or that of
the subordinate clause or both of them.

(4) John
John

ga
nom

hon
book

o
acc

katta
buy-past

to
comp

itta.
say- past

1: “John said that (Tom or Mary or someone else) bought the book.”
2: “(Tom or Mary or someone else) said that John bought the book.”
3: “Johni said that hei bought the book.”

The parser returns two semantic representations by Prolog’s backtracking after
processing (4); one is fo(say(john, buy(meta v, book))), and the other
fo(say(meta v, buy(john, book))), where meta v is a meta-variable which will
be substituted for John or other entities in the context by pragmatic actions.

184 M. Kobayashi

DS notation Parser notation
〈↓0〉Ty(e) \/[0, ty(e)]
〈↑1〉Ty(t) /\[1, ty(t)]

〈↓0〉Fo(John) \/[0, fo(john)]
Tn(0110) tn([0, 1, 1, 0])

Fig. 10. Notational convention of features in DS and parser

Let me explain briefly how the algorithm in Figure 6 processes the sentence us-
ing one of the possible readings in (4), “John said that (Tom or Mary or someone
else) bought the book.” As Figure 6 shows, the first step the parser attempts to
take is to apply node update rules as many times as possible. This step results
in a vacuos application; in this case, it returns tree structures without any mod-
ification compared to the previous stage, since none of the node update rules
are applied. Then in the next step the lexical specification of the NP John
fails to apply to the current tree structure where the pointer is situated in the
type t node, since John requires that the type e node be the pointed node. As
the next step tree expansion rules, in this case Generalised Adjunction

or Local ∗Adjunction, apply because the pointed node is of type t (when
Generalised Adjunction is set to work, the semantic representation would
be fo(say(meta v, buy(john, book))), while Local ∗Adjunction leads to
the other reading fo(say(john, buy(meta v, book)))). Let us assume that
the Local ∗Adjunction applies to the current stage. After consuming the
NP John, tree expansion rules takes on a role again, because the pointer
has gone back to the root, type t node, and Generalised Adjunction gives
rise to another type t node which would be the root node of the embedded
clause in a later stage. After scanning the verb within the embedded clause
katta “buy-past”, the repetitive application of node update rules generates
the meaning of the subordinate clause fo(buy(meta v, book)) in the type t
node introduced by Generalised Adjunction, bringing the pointer back to
the type t node for the subordinate clause. Then the complementizer to in-
tegrates the unfixed subordinate tree structure to the fixed, topmost type t
node. After returning the pointer to the type t node, as shown in Figure 6,
not tree expansion rules but the lexical rule itta “say-past” applies to the
current node because tree expansion rules are triggered only if a lexical rule
cannot be applied.

As this algorithm shows, the application of these transition rules is restricted
by the types of the pointed node. In Japanese, rules which expand tree structures
are able to apply to the tree only if the pointed node is of type t.

4 Discussion

This section is devoted to discussing my approach and possibilities for future
research. This paper presented a partitioned parsing state for Japanese based

Incremental Processing and Design of a Parser for Japanese 185

on the DS framework. This approach to locally unfixed nodes and non-local
unfixed nodes, such as a type t node which establishes a new embedded clause
in the course of incremental processing, realizes more efficient actions for merging
unfixed nodes with fixed nodes as well as easier access to the pointed node.

This paper also presented the algorithm of application of the transition rules
and lexical rules. I speculate that the algorithm is basically applicable to other
head-final languages like Korean. Purver and Otsuka (2003) proposes the gen-
eration and parsing model for English on the basis of DS, but as far as I know
this paper is the first implementation for Japanese within the DS framework.

The parser (and the DS framework itself) has some problems to be overcome
in future research. The most important one to be addressed in the future is the
quantitive evaluation of the parser. Although the grammar and lexicon are still
small, the parser will be evaluated using corpus, and some stochastic treatment
should be added to improve its efficiency.

In the DS formalism the core engine of the parser does not provide any
pragmatics-related action, and there have been few in-depth studies presented
on this issue. Furthermore, the idea and treatment of discourse or context is
not very clear in DS. Therefore, the other important issue would be the formal-
ization and implementation of pragmatic actions giving rise to the merging of
meta-variables with appropriate entities in the context.

5 Conclusion

This paper delineated a parser for fragments of Japanese sentences on the basis
of Dynamic Syntax. The parser proposed separate treatments of nodes in fixed
(binary) trees and unfixed nodes for Japanese, a proposal essential for head-
final languages which often may have multiple unfixed nodes at some parsing
stages. This allows easier access to the pointed node. This paper also proposed
the algorithm of an application of transition rules which makes the parsing more
efficient. The transition rules have been classified into node update rules and
tree expansion rules. The application of these rules is restricted by the po-
sition of the pointer in the tree structure. The parser, implemented in Prolog,
is able to process simple sentences as well as relative clause constructions and
complex sentences.

Acknowledgements

I would like to thank Kei Yoshimoto for valuable suggestions and comments on an
earlier draft. I would also like to thank anonymous reviewers for their comments.

References

Cann, R., Kempson, R., Marten, L.: The Dynamics of Language. Elsevier, Amsterdam
(2005)

Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Sytnax: The Flow of Language
Understanding. Blackwell Publishers, Oxford (2001)

186 M. Kobayashi

Lombardo, V., Mazzei, A., Sturt, P.: Competence and Performance Grammar in In-
cremental Processing. In: Keller, F., et al. (eds.) Proceedings of the ACL Workshop
Incremental Parsing: Bringing Engineering and Cognition Together, pp. 1–8 (2004)

Otsuka, M., Purver., M.: Incremental Generation by Incremental Parsing. In: Proceed-
ings of the 6th Annual CLUK Research Colloquium, pp. 93–100 (2003)

Purver, M., Cann, R., Kempson, R.: Grammars as Parsers: Meeting the Dialogue Chal-
lenge. Research on Language and Computation 4, 2–3, 259–288 (2006)

Purver, M., Kempson., R.: Incremental Parsing, or Incremental Grammar? In: Pro-
ceedings of the ACL Workshop on Incremental Parsing., pp. 74–81 (2004)

Purver, M., Otsuka., M.: Incremental Generation by Incremental Parsing: Tactical
Generation in Dynamic Syntax. In: Proceedings of the 9th European Workshop on
Natural Language Generation, pp. 79–86 (2003)

	Incremental Processing and Design of a Parser for Japanese: A Dynamic Approach
	Introduction
	Dynamic Syntax and Problems of Parsing
	Dynamic Syntax and Formalism
	Problems of Parsing in DS
	Previous Studies

	Incremental Parsing for Japanese
	Definition of the Parser
	Transition Rules and Algorithm
	How the Parser Works

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

