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Abstract. Realizability – checking whether a specification can be implemented
by an open system – is a fundamental step in the design flow. However, if the spec-
ification turns out not to be realizable, there is no method to pinpoint the causes
for unrealizability. In this paper, we address the open problem of providing diag-
nostic information for realizability: we formally define the notion of (minimal)
explanation of (un)realizability, we propose algorithms to compute such explana-
tions, and provide a preliminary experimental evaluation.

1 Introduction

The role of properties in the design flow is becoming increasingly important [19,2].
Properties are used to describe design intent and to document designs and components,
and play a fundamental role both in dynamic and static verification. As a result, research
has been devoted to the development of new algorithms and tools for requirements
analysis, in order to guarantee that the starting point of the process is indeed free from
flaws. Typical forms of analysis are consistency checking, and compatibility with sce-
narios [14,4]. However, most property verification algorithms and tools are currently
lacking the ability to provide diagnostic information that can support the debugging.
This is potentially a major shortcoming. In fact, the practical success of model check-
ing is tightly related to the ability of producing counterexamples (e.g., [10]): when the
system violates a requirement, model checking algorithms are able to provide a simu-
lation trace witnessing the violation, which may help the designer to find suitable fixes.

In this paper, we address the problem of providing diagnostic information for the
realizability of the specification of an open system (e.g., a component). In this set-
ting, requirements are typically separated in assumptions (i.e., the admissible behaviors
of the environment), and guarantees (i.e., the behaviors must be implemented by the
system-to-be). Intuitively, realizability is the problem of checking the existence of a
system implementing the required guarantees, given that the environment can do what-
ever allowed by the assumptions.

We make two contributions. First, we tackle the problem of precisely characterizing
the idea of diagnostic information for realizability problems. We propose notions for ex-
planation and minimal explanation of (un)realizability. This issue is in fact non trivial:
realizability could be achieved by relaxing the assertions on the system, or strength-
ening the assumptions on the environment. These notions can be also used to provide
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diagnostic information for realizable specifications, i.e., we allow pinpointing minimal
subsets of the specification that might be covered by the remaining part.

Second, we propose two methods to extend a practical, symbolic algorithm for re-
alizability, in order to extract explanations and minimal explanations in case of (un)re-
alizability. One of the algorithms is based on a explicit search in the space of subsets
of the specification, and is able to compute one explanation at a time. The other one
is fully symbolic in nature, and relies on the idea of activation variables to extract all
explanations. We implemented the methods within the NUSMV system, for the class
of Generalized Reactivity(1) [15] specifications, and we tested them on some industrial
cases. The symbolic computation of all the explanations of (un)realizability turns out
to be computationally expensive. On the other hand, the explicit algorithm can pro-
duce, with moderate performance penalty, explanations that are significantly smaller -
sometimes more than an order of magnitude - than the original specifications.

Related Work. To the best of our knowledge, the notion of explanation of realizability
has never been defined in terms of requirements. Production of diagnostic information
in case of unrealizability was addressed in [18,6,3] and in [20]. In [18,6,3] a counter-
strategy is constructed showing how the environment can force the system to violate
its guarantees. Yoshiura [20] developed heuristics to classify reasons for unrealizabil-
ity based on notions that are harder to fulfil than temporal satisfiability but easier than
realizability. In both cases, (i) the diagnostic information is “global”, i.e., it takes into
account all the input problem, and (ii) the link to the requirements in the original prob-
lem is lost. Our approach can complement both [18,6,3] and [20] by providing a smaller,
yet unrealizable specification to work on. In particular, a counter-strategy might exploit
more than one source of unrealizability. Our approach can help to obtain a more focused
counter-strategy. In terms of techniques, the fully symbolic algorithm is inspired by the
idea of activation variables for the case of Boolean satisfiability [13]. Closely related
is also the extension to the case of unsatisfiable core for LTL specifications proposed
in [9], for the less complex case of satisfiability. Finally, there is a large body of work
on fault localization and explanation in a verification context, where both a program
and a (potentially implicit) specification are given. We refer the reader to the section on
related work in Groce’s Ph.D. thesis [12] for a survey.

Document structure. In Sect. 2 we define some technical background. In Sect. 3, we
informally discuss and formalize the notion of explanation. In Sect. 4, we present the
explanation-extracting algorithm. In Sect. 5, we discuss the implementation and present
some experimental evaluation. Finally, in Sect. 6, we draw some conclusions and outline
directions for future work.

2 Preliminaries

2.1 Synthesis of Open Controllers

We are interested in the question of realizability of an LTL property [16,1]. 1 We start
from two disjoint sets E and S of input and output signals respectively, and from a
formula ϕ expressed in LTL over atomic propositions on E ∪ S (written ϕ(E , S)).

1 We assume the reader being familiar with LTL syntax and semantics.
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E is the set of variables controlled by the environment, while S is the set of variables
controlled by the system. The realizability problem for a property ϕ consists of checking
whether there exists a program such that its behavior satisfies ϕ [16]. An LTL formula
ϕ(E , S) is then realizable iff there exists such a program. Properties for which such
a program exists are called realizable or implementable. Dually, properties for which
such a program does not exist are called not realizable or unrealizable.

The realizability problem can be formalized as a two player game among the system
we are going to realize and the environment: the system plays against the environment
in such a way that at every step of the game the environment moves and then the sys-
tem tries to move by producing behaviors compatible with the property. The system
wins if it produces a correct behavior regardless of the behavior of the environment.
In this framework, checking for realizability amounts to check for the existence of a
winning strategy for the system in the corresponding game. This is tackled by gen-
erating from the property a deterministic Rabin automaton using the Safra construc-
tion [17]. This automaton is interpreted as a two player game among the system and
environment and it is traversed as to find a witness of the non emptiness of the lan-
guage of the automaton (which corresponds to a correct implementation of the given
property) [16].

2.2 Assumptions and Guarantees

Practically a specification is often represented with two distinguished sets – a set of
assumptions A and a set of guarantees G – plus a function f that turns such a set of
constraints into an actual temporal formula ϕ using Boolean and temporal connectives.
Under this assumption a specification is given as a tuple 〈A, G〉. Intuitively, assumptions
are those constraints which the environment is supposed to obey to and guarantees are
those constraints which the system has to satisfy. The function f has to have such a
form that realizability is preserved by adding assumptions to or removing guarantees
from an already realizable specification and, conversely, unrealizability is preserved by
removing assumptions from or adding guarantees to an unrealizable specification. Sim-
ilarly, adding a valid constraint to either assumptions or guarantees must not influence
the realizability of a specification.2 Note, that both A and G may be structured, such
that f may not treat all elements of A and G in the same way. In the conceptual part
of this work in Sect. 3 we are not concerned with the exact nature of the translation
and view A and G as flat sets of atomic elements; only when we consider a concrete
class of specifications (see below) for implementation we look into the structure of as-
sumptions and guarantees. We denote the temporal formula resulting from 〈A, G〉 by
applying f with φ〈A,G〉 = f(〈A, G〉). We say that 〈A, G〉 is realizable iff φ〈A,G〉 is
realizable.

2.3 Synthesis of GR(1) Properties

The high complexity established in [16] and the intricacy of Safra’s determinization
construction have caused the synthesis process to be identified as hopelessly intractable

2 In this paper we need this property only in Sect. 4.2.
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and discouraged many practitioners from ever attempting to implement it. However,
there are several classes of properties restricted to particular subsets of LTL, which can
be synthesized with more efficient algorithms. One of the most recent and advanced
results is achieved in [15] where for the class of Generalized Reactivity(1) specifications
(from now on referred to as GR(1) specification) is presented a (symbolic) algorithm
for extracting a program from a GR(1) specification that runs in time polynomial in
the size of the state space of the design. The class of GR(1) properties is sufficiently
expressive to provide complete specifications of many designs [15].

A GR(1) specification has the form 〈A, G〉 = ({ϕE
I , ϕE

R, ϕE
ψ}, {ϕS

I , ϕS
R, ϕS

ψ}). 3 For
α ∈ {E , S}, ϕα

I , ϕα
R, ϕα

ψ represent the initial conditions, the transition relation and the
liveness or fairness conditions of the environment and system, respectively. They are
such that:

– ϕα
I - a formula of the form

∧
i Ii where every Ii is a propositional formula over

signals (ϕE
I is over E and ϕS

I is over E ∪ S).
– ϕα

R - temporal formulas of the form
∧

i Ri where every Ri is a propositional for-
mula over signals E ∪ S and expressions of the form X v where v ∈ E if α = E
and v ∈ E ∪ S if α ∈ S.

– ϕα
ψ - temporal formulas of the form

∧
i GFAi where Ai is propositional formula

over signals E ∪ S.

Intuitively, the play is initialized in such a way that the environment chooses initial
values for its signals as to satisfy ϕE

I , and the system initializes its signals to satisfy ϕS
I .

At every consecutive step of the play at first the environment assigns its signals, trying
to satisfy the environment transition relation ϕE

R, and then the system does the same
with its signals and its transition relation ϕS

R. For an infinite behavior the environment
and the system try to satisfy their liveness conditions ϕE

ψ and ϕS
ψ , respectively. The

player who first violates its constraints loses.
Realizability of a GR(1) specification can be reduced to the problem of computing

the set of winning states WS in a two-player game among the environment and the
system and then checking WS against initial conditions [15]. In the following we will
use the algorithm of [15] to check for the realizability of a GR(1) specification 〈A, G〉.

3 Diagnosing (Un)Realizability

In this section we discuss what information can be returned to a developer in the case a
given specification 〈A, G〉 turns out to be either unrealizable or realizable. We focus on
“zooming into” the specification by pointing out fragments of the specification that are
by themselves (un)realizable, in order to facilitate the understanding of the problem.

We therefore suggest to use a specification 〈A′, G′〉 as an explanation for a spec-
ification 〈A, G〉 where A′, G′ are subsets of A, G. We first formalize minimality and
maximality constraints on A′ or G′. We then introduce a notion of unhelpfulness of as-
sumptions or guarantees in an explanation, where unhelpful assumptions or guarantees
can be removed from an explanation. We illustrate the concept with an example.

3 We refer the reader to [15] for details on the corresponding LTL formula.
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3.1 Explanations for (Un)Realizability

We first notice that assumptions and guarantees can be viewed as interacting, but op-
posing forces. As outlined in Sect. 2, adding assumptions or removing guarantees will
“push” a specification towards realizability. Conversely, a realizable specification may
become unrealizable when deleting assumptions or adding guarantees. These concepts
are formalized as follows.

Definition 1 ((un-) fulfillable, (in-) sufficient). Let A be a set of available assump-
tions, let G be a set of available guarantees, and let A ⊆ A and G ⊆ G.

If a specification 〈A, G〉 is realizable, we say that G is fulfillable w.r.t. A, and, con-
versely, A is sufficient w.r.t. G. Otherwise, G is unfulfillable w.r.t. A, and A is insuffi-
cient w.r.t. G, respectively.

G is minimally unfulfillable w.r.t. A iff 〈A, G〉 is unrealizable and removal of any
element of G leads to realizability: ∀g ∈ G . 〈A, G \ {g}〉 is realizable.

G is maximally fulfillable w.r.t. A in G iff 〈A, G〉 is realizable and addition of any
element of G \ G leads to unrealizability: ∀g ∈ G \ G . 〈A, G ∪ {g}〉 is unrealizable.

A is minimally sufficient w.r.t. G iff 〈A, G〉 is realizable and removal of any element
of A leads to unrealizability: ∀a ∈ A . 〈A \ {a}, G〉 is unrealizable.

A is maximally insufficient w.r.t. G in A iff 〈A, G〉 is unrealizable and addition of
any element of A \ A leads to realizability: ∀a ∈ A \ A . 〈A ∪ {a}, G〉 is realizable.

All above definitions are also transferable to a whole specification, i.e., a specification
〈A, G〉 is maximally insufficient iff A is maximally insufficient w.r.t. G, etc.

Why is separate terminology introduced for assumptions and guarantees? After all,
if a specification 〈A, G〉 is unrealizable, then A is insufficient w.r.t. G and G is unfulfil-
lable w.r.t. A (similarly for a realizable specification). However, while A is insufficient
w.r.t. G iff G is unfulfillable w.r.t. A, A might, e.g., be maximally insufficient w.r.t. G
although G is unfulfillable but not minimally unfulfillable w.r.t. A. In other words, min-
imality and maximality require introduction of separate terminology for both sides.

We now show how the above definitions can provide an explanation for an
(un)realizable specification 〈A, G〉.
Minimally Unfulfillable Sets of Guarantees. First, assume that 〈A, G〉 is unrealizable.
To understand the nature of the problem, the developer needs to see which sets of guar-
antees are not supported by sufficient assumptions or which sets of guarantees are con-
flicting. Hence, we suggest to return an explanation 〈A, G′〉 such that G′ ⊆ G is mini-
mally unfulfillable. Each such G′ is a minimal set of guarantees such that either A is not
strong enough to realize G, or the elements of G are in conflict with each other. Clearly,
there may be several such sets. The quest for minimality is based on the intuition that
if a guarantee does not contribute to making a specification unrealizable then it can be
omitted from the explanation.

Maximally Fulfillable Sets of Guarantees. While an explanation of the previous kind
helps to find the cause of unrealizability, it does not immediately suggest a fix. Our
second suggestion provides fixes in the restricted case that a fix is only allowed to
remove guarantees. Obviously, such fix should remove as few guarantees as possible
to achieve realizability. Hence, we suggest to provide the developer with a maximally
fulfillable set of guarantees G′ as an explanation. Notice that, addition of any g ∈ G\G′
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will make 〈A, G′ ∪ {g}〉 unrealizable. I.e., the complement of each such G′ constitutes
a minimal set of guarantees that, when removed from G, leads to realizability.

Note that, the distinction to minimally unfulfillable sets of guarantees as an expla-
nation becomes particularly interesting when there is more than one set of unfulfillable
guarantees. In that case a minimal fix is easier to see by providing the developer with a
maximally fulfillable set of guarantees rather than with several minimally unfulfillable
sets of guarantees as in the latter case the developer has to figure out herself which
combinations of guarantees need to be removed to avoid all “unfulfillabilities”.

A slightly different scenario where maximally fulfillable sets of guarantees can help
is finding out the set of guarantees that may be realized with a given set of assumptions,
i.e., strengthening the guarantees that the system under design will provide. In this
case, given a set of available guarantees, G ⊃ G, it is enough to compute the maximally
fulfillable sets of guarantees for 〈A, G〉.
Minimally Sufficient Sets of Assumptions. If 〈A, G〉 is realizable, the need for debugging
information is less urgent. Still, the developer might benefit from additional information
that helps her understanding. In particular, we suggest to point out minimal sets of
assumptions A′ that, on their own, are sufficient to realize a given set of guarantees
G. If 〈A, G〉 is the original specification, A′ may help to reduce the assumptions the
environment has to fulfill. Another scenario is that G is only a subset of the guarantees
under consideration. Here, the developer might want to understand which subset(s) of
assumptions A′ are responsible for realizability of this particular set of guarantees. It’s
easy to see that in both cases A′ is a set of minimally sufficient assumptions.

If 〈A, G〉 turns out to be unrealizable and the set of available assumptions has not
been exhausted (i.e., A ⊂ A), minimally sufficient sets of assumptions for 〈A, G〉 can
help to find a minimal strengthening of A such that G can be realized.

Maximally Insufficient Sets of Assumptions We have not found a good intuition on how
to use these as a debugging aid. We omit such sets from further consideration.

3.2 Criteria for Unhelpful Parts of an Explanation

Till now we proposed to remove constraints either only from assumptions or only from
guarantees. We now proceed to remove constraints from the remaining side of an expla-
nation. We first argue why constraints can be removed from both sides of a specification.
We then formulate a criterion to identify helpful and unhelpful constraints.

Removing Constraints from the Remaining Side of an Explanation. As argued
above, removing guarantees from an unrealizable specification or removing assump-
tions from a realizable specification is a natural approach to obtain a core of a specifica-
tion that explains its (un)realizability. However, previously we have only modified one
side of a specification to obtain an explanation. As mentioned, removing assumptions
pushes towards unrealizability and removing guarantees pushes towards realizability.
Hence, one might think that an explanation for unrealizability (in the form of a min-
imally unfulfillable specification) should contain the full set of assumptions A and,
similarly, an explanation for realizability (in the form of a minimally sufficient specifi-
cation) should contain the full set of guarantees G. Note, though, that an assumption or
a guarantee might be redundant. In other words, it might be covered by the remaining
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set of assumptions or guarantees. Moreover, some assumptions or guarantees might be
irrelevant w.r.t. a given explanation, i.e., they may have no influence on the behavior of
a specification, we are interested in. We believe that the developer should be informed
about such assumptions and guarantees. Below we expand that idea for the three types
of explanations proposed in Sect. 3.1.

Minimally Unfulfillable Sets of Guarantees. The aim of a minimally unfulfillable ex-
planation 〈A, G〉 is to show a conflict among the set of guarantees G or the lack of
assumptions required for realizability of G. It is possible that some of the assumptions
in A do not contribute to that aim, i.e., they do not influence the conflict among, or the
realizability of, the guarantees G. Such assumptions may be removed from an explana-
tion without losing valuable information, thereby making it simpler for understanding.

Maximally Fulfillable Sets of Guarantees. The purpose of a maximally fulfillable expla-
nation 〈A, G〉 is to show which set(s) of guarantees can be realizable with a given set of
assumptions or which set of guarantees are enough to remove to make the specification
realizable. If removing an assumption a does not change realizability of an explanation,
i.e., 〈A \ {a}, G〉 is realizable, then presence of such an assumption does not influence
the property of the set G being maximally fulfillable. Indeed, since 〈A, G ∪ {g}〉 is un-
realizable for any g ∈ G \ G then 〈A \ {a}, G ∪ {g}〉 is also unrealizable for any a
because removing an assumption cannot make an unrealizable specification realizable.
Therefore, if such an assumption is removed an explanation still fulfills its purpose and
shows a maximal set of realizable guarantees.

Minimally Sufficient Sets of Assumptions. The purpose of a minimally sufficient expla-
nation 〈A, G〉 is to point out a set of assumptions A that is enough to make a given set
of guarantees G realizable such that each assumption a ∈ A is essential for realizabil-
ity. This case is symmetrical to the case of minimally unfulfillable set of guarantees,
i.e., not every guarantee may be useful in such an explanation — some guarantees may
be realizable independent of the assumptions, or one assumption may be essential for
realizability of several guarantees therefore only one of such guarantees may be left in
the explanation to show necessity of that assumption.

Formalization. We are now ready to formulate a criterion of when a constraint in an ex-
planation should be considered unhelpful. Our intuition is as follows. Let 〈A, G〉 be an
explanation, let a ∈ A be an assumption. We say that a is helpful iff there is some sub-
set of guarantees G′ ⊆ G s.t. 〈A, G′〉 is realizable, while 〈A \ {a}, G′〉 is not. In other
words, there is a subset of guarantees G′ s.t. a makes the difference between realizabil-
ity and unrealizability for that subset (w.r.t. the given set of assumptions A). Similarly,
a guarantee g ∈ G is helpful iff there is at least one subset of assumptions A′ ⊆ A
s.t. g make the difference between realizability and unrealizability: 〈A′, G \ {g}〉 is
realizable while 〈A′, G〉 is not. We formalize that intuition below.

Definition 2 ((un-) helpful). Let 〈A, G〉 be a specification.

1. An assumption a ∈ A is unhelpful if
∀G′ ⊆ G . (〈A, G′〉 is realizable ⇔ 〈A \ {a}, G′〉 is realizable.)

2. A guarantee g ∈ G is unhelpful if
∀A′ ⊆ A . (〈A′, G〉 is realizable ⇔ 〈A′, G \ {g}〉 is realizable.)

3. An assumption or a guarantee is helpful iff it is not unhelpful.
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The next proposition shows that Def. 2 is well-behaved in the following sense. If 〈A, G〉
is an explanation and A′ ⊂ A is obtained from A by a sequence of removals of unhelpful
assumptions A′′ (by a sequence of applications of Def. 2), then each of the removed
assumptions in A′′ is unhelpful also in A. Moreover, the assumptions in A′′ could have
been removed from A in any order. The case for guarantees is similar.

Proposition 1

1. Let 〈A0 = A, G〉, 〈A1 = A0 \ {a0}, G〉, 〈A2 = A1 \ {a1}, G〉, . . . , 〈A′ = Ak \
{ak}, G〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each ai is unhelpful
in 〈Ai, G〉. Let A′′ ⊆ A \ A′, let a ∈ A′′. Then a is unhelpful in 〈A′ ∪ A′′, G〉.

2. Let 〈A, G0 = G〉, 〈A, G1 = G0 \ {g0}〉, 〈A, G2 = G1 \ {g1}〉, . . . , 〈A, G′ = Gk\
{gk}〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each gi is unhelpful in
〈A, Gi〉. Let G′′ ⊆ G \ G′, let g ∈ G′′. Then g is unhelpful in 〈A, G′ ∪ G′′〉.

The following proposition yields a practical way to remove unhelpful constraints
from the remaining side of an explanation. Given 〈A, G〉 minimally unfulfillable, we
suggest to remove assumptions from A until the result is not minimally unfulfillable
any more (resp., if 〈A, G〉 is minimally sufficient, remove guarantees from G until the
result is not minimally sufficient).

Proposition 2

1. Let 〈A, G〉 be a minimally unfulfillable specification. a ∈ A is unhelpful in A iff
〈A \ {a}, G〉 is minimally unfulfillable.

2. Let 〈A, G〉 be a minimally sufficient specification. g ∈ G is unhelpful in G iff
〈A, G \ {g}〉 is minimally sufficient.

Our next proposition shows the coincidence between Def.s 1 and 2. In particular, it
shows that an unrealizable specification 〈A, G〉 contains no unhelpful guarantees iff it
is minimally unfulfillable and a realizable specification 〈A, G〉 contains no unhelpful
assumptions iff it is minimally sufficient.

Proposition 3

1. Let 〈A, G〉 be unrealizable. g ∈ G is unhelpful in G iff 〈A, G \ {g}〉 is unrealizable.
2. Let 〈A, G〉 be unrealizable. G is minimally unfulfillable iff all g ∈ G are helpful.
3. Let 〈A, G〉 be realizable. a ∈ A is unhelpful in A iff 〈A \ {a}, G〉 is realizable.
4. Let 〈A, G〉 be realizable. A is minimally sufficient iff all a ∈ A are helpful.

Thus Def. 2 can be used to obtain minimally unfulfillable explanations from unrealiz-
able specifications (by removing unhelpful guarantees) and minimally sufficient expla-
nations from realizable specifications (by removing unhelpful assumptions).

Putting the Pieces Together. In Fig. 1 we show the approach that applies the previous
results according to the types of explanations suggested in Sect. 3.1.

3.3 Methodology

Unsatisfiable Assumptions and Guarantees. Sometimes subsets of assumptions or
guarantees may be temporally unsatisfiable. Such situations should be pointed out to
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Explaining Unrealizability — a Minimal Conflict
1. Assume 〈A,G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is minimally unfulfillable.
3. Find a minimal A′ ⊆ A s.t. 〈A′, G′〉 is minimally unfulfillable.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove unhelpful guarantees, then remove un-
helpful assumptions. Now, every single guarantee in G′ is required for a conflict; moreover,
removing any assumption from A′ leads to additional conflict(s), each involving fewer guaran-
tees.

Explaining Unrealizability — a Minimal Fix
1. Assume 〈A,G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is maximally fulfillable.
3. Find some A′ ⊆ A s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove just enough guarantees to make the speci-
fication realizable, then remove unhelpful assumptions. Now, adding any guarantee or removing
any assumption leads to unrealizability. Moreover, G \ G′ is a minimal fix to make the original
specification 〈A, G〉 realizable.

Explaining Realizability
1. Assume 〈A,G〉 realizable.
2. Find some A′ ⊆ A s.t. 〈A′, G〉 is minimally sufficient.
3. Find a minimal G′ ⊆ G s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with a realizable specification. First, remove unhelpful assumptions, then remove unhelp-
ful guarantees. Now, every single assumption in A′ is required for realizability; removing any
guarantee in G′ makes one or more assumptions unnecessary for realizability.

Fig. 1. A summary of our approach

the developer; however, as these situations may not be uniquely identifiable from the
explanations suggested above, a separate check has to be performed. Satisfiability can
be checked in various ways. A detailed treatment is out of the scope of this work. We
therefore assume that the specification has been checked for satisfiability (in particular,
the checks suggested in [20]) before applying our method.

Removing Unhelpful Constraints. When a specification is checked for unhelpful con-
straints, it is important to note that several constraints that have been found unhelpful
cannot be removed at once. For example, if for a specification 〈A, G〉 the individual
assumptions a1, a2 ∈ A are found to be unhelpful, they should not be removed at once.
Rather, it is necessary to remove one of them (e.g., a1) and then recheck the second
assumption a2 for being unhelpful in 〈A \ {a1}, G〉. Otherwise, the result can be incor-
rect. For example, if a1 and a2 are equivalent, they will always be unhelpful. Never-
theless, removing both of them can change realizability of the specification. Therefore,
constraints can be checked and removed (if found unhelpful) only one by one.
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3.4 Examples

Let us consider the following example with the assumptions on the left and guarantees
on the right and e and s being an environment and a system variable (there may be other
constraints that do not speak about e and s):

a1 =̇ e g1 =̇ s
a2 =̇ G((X e) ↔ e) g2 =̇ G((X s) ↔ e)
a3 =̇ GF e g3 =̇ GF(¬s ∧ e)

. . . . . .

The specification is unrealizable with a minimal conflict explanation 〈A, G〉 =
〈{a3}, {g2, g3}〉. A minimally unfulfillable guarantee set G shows the reason of un-
realizability (i.e., the system cannot simultaneously make s equal to the previous value
of e and at the same time reach ¬s ∧ e) and that the initial condition g1 does not influ-
ence this conflict. The presence of the assumption a3 is enough to show this conflict. By
removing a3 the explanation will not be minimally unfulfillable any more since it will
remain unrealizable even without g2 thereby losing the information about the original
conflict among guarantees g2 and g3. Thus a3 is required for the explanation.

4 Computing Explanations

In this section we describe our approach to computing explanations for specifications.
First we explain explicit algorithms that are aimed to compute one explanation for
a given specification, and we estimate their complexity. Then, we outline an alter-
native approach to computing explanations based on the use of activation variables
[13,9].

4.1 Explicit Algorithms

In the most simplistic setting we assume that there is an external realizability checker
considered as a black box and available for us as a function Realizable(〈A, G〉), which
takes a specification 〈A, G〉 and returns true iff the specification is realizable.

Among the possible kinds of explanations summarized in Fig. 1 let us begin with
an unrealizable specification and its explanation in the form of a minimal conflict. The
first step of the computation is to obtain a minimally unfulfillable set of guarantees. For
that it is enough to identify which guarantees after removal keep the specification un-
realizable. Propositions 1 and 3 establish that guarantees can be removed in any order.4

In Sect. 3.3 we noticed that a check for realizability has to be done after each removal
of any individual guarantee. As a result a simple algorithm to compute a minimally
unfulfillable explanation for a given specification 〈A, G〉 is:

4 Note, though, that while the order of removal of guarantees in a particular set of unhelpful
guarantees G′ ⊆ G from G does not matter, it is still possible that there are different sets of
unhelpful guarantees G′ �= G′′ such that both G \ G′ and G \ G′′ contain no unhelpful guar-
antees anymore (and similarly for assumptions). As a consequence, the algorithms presented
here find minimal but not necessarily minimum explanations.
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function ComputeMinUnfulfil(〈A, G〉)
G′ := G;
foreach g ∈ G

if ¬Realizable(〈A, G′ \ {g}〉) then G′ := G′ \ {g};
return 〈A, G′〉;

The second step of obtaining a “good” explanation is to remove unhelpful assumptions.
Proposition 2 shows that it is enough to detect and remove assumptions whose removal
keeps the specification minimally unfulfillable. Notice that, similarly to the previous
algorithm it is necessary to check and remove only one assumption at every iteration.
Thus the simplest algorithm is:

function ComputeGoodMinUnfulfil(〈A, G〉)
A′ := A;
foreach a ∈ A

if MinUnfulfil(〈A′ \ {a}, G〉) then A′ := A′ \ {a};
return 〈A′, G〉;

where the predicate MinUnfulfil(〈A, G〉) returns true iff the specification 〈A, G〉 is
minimally unfulfillable:

MinUnfulfil(〈A, G〉) =̇ ∀g ∈ G . Realizable(〈A, G \ {g}〉)

Notice that, all above functions ComputeMinUnfulfil, ComputeGoodMinUnfulfil and
MinUnfulfil expect as input an unrealizable specification.

In the case of computing explanations for realizable specifications (see Fig. 1) the
corresponding algorithms are symmetric to the algorithms for unrealizable specifica-
tions explained above. Hence the functions ComputeMinSuffic, ComputeGoodMinSuffic
and the predicate MinSuffic are defined similarly as ComputeMinUnfulfil, Compute-
GoodMinUnfulfil, and MinUnfulfil, respectively, by switching realizability and unreal-
izability and the player whose constraints are minimized.

A minimal fix for an unrealizable specification according to Fig. 1 is also computed
in two steps. The first step is to identify a maximal set of guarantees making the speci-
fication realizable. The simplest algorithm is very similar to ComputeMinUnfulfil with
the exception that now the aim is to make the specification realizable and maximize the
number of guarantees:

function ComputeMaxFulfil(〈A, G〉)
G′ := ∅;
foreach g ∈ G

if Realizable(〈A, G′ ∪ {g}〉) then G′ := G′ ∪ {g};
return 〈A, G′〉;

The second step is to find a minimally sufficient set of assumptions. For that the function
ComputeMinSuffic defined above can be used.

To summarize, if a specification 〈A, G〉 is unrealizable and the cause
of unrealizability is of interest, then an explanation is computed as
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ComputeGoodMinUnfulfil(ComputeMinUnfulfil(〈A, G〉)). If a minimal fix is re-
quired, then ComputeMinSuffic(ComputeMaxFulfil(〈A, G〉)) is computed. Otherwise,
if the specification 〈A, G〉 is realizable, the minimization of assumptions can be done
and ComputeGoodMinSuffic(ComputeMinSuffic(〈A, G〉)) is returned.

Complexity. Let us assume that the upper bound on the time of checking the realizabil-
ity of a specification 〈A, G〉 is denoted as [〈A, G〉], and that this upper bound cannot
increase with the removal of some constraints from either A or G. Let A and G be the
number of assumptions and guarantees, respectively. Then it is easy to see that the up-
per bound on the time of computing a minimal conflict for an unrealizable specification
is (G + A ∗ G) ∗ [〈A, G〉], where G ∗ [〈A, G〉] is the upper bound for the first step and
A ∗ G ∗ [〈A, G〉] is for the second one. Similarly, the upper bound on computing an ex-
planation for a realizable specification is (A+A∗G)∗ [〈A, G〉], and (A+G)∗ [〈A, G〉]
is the upper bound on computing a minimal fix for an unrealizable specification.

Notice that, for both, good minimally unfulfillable explanations and good minimally
sufficient explanations, the number of realizability checks for computing a minimally
unfulfillable set of guarantees (resp. a minimally sufficient set of assumptions), is linear
in the number of constraints. While, for reducing the set of assumptions (resp. guaran-
tees), the number of realizability checks may be quadratic.

4.2 Algorithms with Activation Variables

An alternative approach to computing explanations inspired by [13,9] works as follows.
In a specification 〈A, G〉 for every constraint ci ∈ A ∪ G a fresh activation variable avi

is created and then ci is substituted by avi → ci, obtaining in such a way the spec-
ification 〈AAV , GAV 〉. Activation variables, differently from usual variables, cannot
change their values after their initialization, and they belong neither to the system nor
to the environment.

According to Sect. 2.2 the addition of the constraint true to assumptions or guar-
antees cannot change the realizability of a specification. Thus, setting an activation
variable avi to false disables the corresponding constraint ci in the specification
〈AAV , GAV 〉, whereas setting avi to true makes the constraint avi → ci behave the
same as the original one ci. If a realizability checker is able to find assignments to acti-
vation variables that make a specification (un)realizable, then using these assignments
we can directly identify which subsets of constraints cause (un)realizability of the spec-
ification. The algorithm for the class of GR(1) specifications mentioned in Sect. 2.3 is
able to do that without any modifications. Given a modified specification 〈AAV , GAV 〉
after finding winning states WS and checking it against initial conditions the obtained
result is not just a constant true or false but a formula over the activation variables.
Each assignment that makes that formula true identifies a subset of the constraints that
make the specification realizable.

The major difference from the previously described algorithms is that with activation
variables one call to the realizability checker is enough to find all (un)realizable subsets
of the constraints. Unfortunately, experimental results showed that introduction of new
variables to the game slows down the realizability check considerably. As a result the
computation of explanations with activation variables is often much slower than using
the explicit algorithms described in Sect. 4.1.
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5 Experimental Evaluation

We implemented all the algorithms described in Sect. 4 plus the algorithm for GR(1)
synthesis [15] within the framework of the NUSMV system [7]. We applied several
optimizations to the algorithm for checking realizability of [15] as to improve the per-
formance. For instance, we compute the set of reachable states of the game structure
and we use such set during the realizability check to restrict the search only to reach-
able states. The different explicit algorithms have been also optimized as to possibly
re-use as much as possible results of previous checks. The implementation of activation
variables takes into account that they remain constant after the initial state.

We evaluated our algorithms on two real-life specifications parametric on the number
of components: the ARM AMBA AHB Arbiter 5 and the IBM GenBuf Controller6.
We took these specifications from [5]: since that paper is about showing feasibility of
synthesis, both specifications are realizable. We remark that, we were not able to find
real-life unrealizable specifications in the literature. As we have pointed out before, we
can make a GR(1) specification unrealizable by adding constraints to ϕS

I , ϕS
R, or φS

ψ ,
or by removing constraints from ϕE

I , ϕE
R, or ϕE

ψ. We simulate the cases of adding to
ϕS

R (referred to as W-GT), adding to ϕS
ψ (referred to as W-GF), and removing from ϕE

ψ

(referred to as WO-AF).
We ran the experiments on an Intel Xeon 3GHz bi-processor equipped with 4GB

of RAM running Linux. We fixed a memory limit to 1.5GB and a time-out to 1 hour.
We report “T” and “M”, respectively, when a time-out or a memory limit is reached.
We used BDD dynamic variable ordering during the search since this resulted in better
performances on average. All the experiments and an extended version of this paper [8]
are available from http://es.fbk.eu/people/roveri/tests/vmcai08.

The table below shows the results of experiments with activation variables:

Specification
Name

Assumptions/
Guarantees

Realizable
Time

Realizability
Time
Step 1

Time
Step 1 and 2

AMBA-1 8/52 R 0.14 0.24 212
AMBA-W-GF-1 8/53 U 0.02 587 T

The first three columns show the name of a specification, its size, and its realizability,
respectively. The fourth column gives the original realizability checking time (in sec-
onds). The fifth column lists the checking time if only assumptions (for a realizable
specification) or only guarantees (for an unrealizable one) are given activation vari-
ables — this corresponds to step 1 of the explicit algorithms. The last column shows
realizability checking times if all constraints are given activation variables — this cor-
responds to both steps of the explicit algorithms.

The above results show how significantly activation variables may slow down the
realizability check. This is the reason why only two specifications are in the table. We
remark that (1) the algorithm using activation variables computes minimum rather than
just minimal cores and (2) computing minimum cores by using activation variables has

5 ARM Ltd. AMBA Specification (Rev. 2). Available from www.arm.com, 1999.
6 http://www.haifa.ibm.com/projects/verification/RB Homepage/
tutorial3/

http://es.fbk.eu/people/roveri/tests/vmcai08
www.arm.com
http://www.haifa.ibm.com/projects/verification/RB_Homepage/tutorial3/
http://www.haifa.ibm.com/projects/verification/RB_Homepage/tutorial3/
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Table 1. Computation of explanations using explicit algorithms

Specification
Name

Assumpt/
Guarant

Real-
izable

Time Re-
alizability

Time
Step 1

Reduction
Step 1

Time
Step 2

Reduction
Step 2

AMBA-1 8 / 52 R 0.14 0.25 75.0% (2 / 52) 1.93 65.4% (2 / 18)
AMBA-1-W-GF 8 / 53 U 0.02 0.24 92.5% (8 / 4) 0.02 87.5% (1 / 4)
AMBA-1-W-GT 8 / 53 U 0.02 0.21 96.2% (8 / 2) 0.01 100% (0 / 2)
AMBA-1-WO-AF 5 / 52 U 0.09 0.41 76.9% (5 / 12) 0.07 100% (0 / 12)

AMBA-2 11 / 80 R 1.22 2.97 63.6% (4 / 80) 64.1 68.8% (4 / 25)
AMBA-2-W-GF 11 / 81 U 0.19 1.06 88.9% (11 / 9) 0.12 72.7% (3 / 9)
AMBA-2-W-GT 11 / 81 U 0.17 0.97 91.4% (11 / 7) 0.06 81.8% (2 / 7)
AMBA-2-WO-AF 10 / 80 U 0.19 1.47 87.5% (10 / 10) 0.28 100% (0 / 10)

AMBA-3 14 / 108 R 14.3 35.2 85.7% (2 / 108) 26.7 86.1% (2 / 15)
AMBA-3-W-GF 14 / 109 U 0.51 4.31 94.5% (14 / 6) 0.09 92.9% (1 / 6)
AMBA-3-W-GT 14 / 109 U 0.39 2.92 97.2% (14 / 3) 0.04 100% (0 / 3)
AMBA-3-WO-AF 13 / 108 U 1.73 15.8 90.7% (13 / 10) 0.54 100% (0 / 10)

AMBA-4 17 / 136 R 74.9 292 64.7% (6 / 137) T -
AMBA-4-W-GF 17 / 137 U 1.17 23.9 89.8% (17 / 14) 0.71 82.4% (3 / 14)
AMBA-4-W-GT 17 / 137 U 0.86 12.5 92.0% (17 / 11) 0.29 88.2% (2 / 11)
AMBA-4-WO-AF 16 / 136 U 5.03 163 92.6% (16 / 10) 0.75 100% (0 / 10)

AMBA-5 20 / 164 R 525 T - - -
AMBA-5-W-GF 20 / 165 U 19.7 188 92.7% (20 / 12) 0.50 85.0% (3 / 12)
AMBA-5-W-GT 20 / 165 U 11.6 70.1 93.9% (20 / 10) 0.26 90.0% (2 / 10)
AMBA-5-WO-AF 19 / 164 U 14.9 126 93.9% (19 / 10) 0.80 100% (0 / 10)

GENBUF-5 28 / 81 R 0.15 1.23 46.4% (15 / 81) 39.2 54.3% (15 / 37)
GENBUF-5-W-GF 28 / 82 U 0.15 2.38 87.8% (28 / 10) 0.60 88.3% (3 / 10)
GENBUF-5-W-GT 28 / 82 U 0.22 3.25 86.6% (28 / 11) 0.75 82.1% (5 / 11)
GENBUF-5-WO-AF 27 / 81 U 0.12 1.48 87.7% (27 / 10) 0.63 96.3% (1 / 10)

GENBUF-10 43 / 152 R 1.22 12.3 53.5% (20 / 152) 522 62.5% (20 / 57)
GENBUF-10-W-GF 43 / 153 U 1.26 29.3 90.2% (43 / 15) 3.34 93.0% (3 / 15)
GENBUF-10-W-GT 43 / 153 U 4.53 56.1 89.5% (43 / 16) 3.81 88.4% (5 / 16)
GENBUF-10-WO-AF 42 / 152 U 0.44 9.60 93.4% (42 / 10) 1.74 97.6% (1 / 10)

GENBUF-20 73 / 368 R 3.65 90.7 58.9% (30 / 368) M -
GENBUF-20-W-GF 73 / 369 U 3.51 470 93.2% (73 / 25) 35.5 95.9% (3 / 25)
GENBUF-20-W-GT 73 / 369 U 1328 T - - -
GENBUF-20-WO-AF 72 / 368 U 2.21 115 97.3% (72 / 10) 7.78 98.6% (1 / 10)

GENBUF-30 103 / 683 R 24.4 920 61.2% (40 / 683) M -
GENBUF-30-W-GF 103 / 684 U 23.9 T - - -
GENBUF-30-W-GT 103 / 684 U T T - - -
GENBUF-30-WO-AF 102 / 683 U 7.61 842 98.5% (102 / 10) 22.7 99.0% (1 / 10)

incurred a significant performance penalty in [13,9], too. For the explicit algorithms the
execution time results are considerably better. Table 1 reports all the results obtained
with explicit algorithms.

The first column of Table 1 indicates the name of the specification. The original spec-
ifications have names AMBA-n and GENBUF-n, where n is the number of components
of the described system. The modified ones have suffixes W-GF, W-GT, and WO-AF as
explained above. The following three columns list the size (the number of assumptions
and guarantees), the realizability and the time in seconds of checking the realizability
of a specification. The fifth column is the time required to remove unhelpful guaran-
tees from an unrealizable specification or unhelpful assumptions from a realizable one.
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The sixth column shows the percentage of corresponding player’s constraints that have
been removed and the new size of the specification. The last two columns are similar to
the previous two columns but dedicated to the removal of unhelpful constraints of the
remaining player.

The experiments show that a considerable number of constraints can be removed
from the explanations. For example, for unrealizable specifications the cause of unreal-
izability is found to be among only 9% (on average) of guarantees. Moreover, removing
92% (on average) of assumptions does not change the realizability of the obtained guar-
antees or any of their subsets. Thus before trying to understand and fix the problem a
designer can decrease the size of a specification more than 10 times thereby decreasing
the effort required to detect and comprehend a bug.

For the real-life realizable specifications ARM AMBA AHB Arbiter and IBM Gen-
Buf Controller we found that about 64% of the assumptions are not required for the
realizability of the guarantees. This may indicate that the designers over-constrained
the environment in fear that the specification may become unrealizable at some state
of the design development. Another possible reason is that not all intended guarantees
have been added to the specification. In any case showing unnecessary assumptions can
be a valuable debugging information for designers. In fact, our approach unexpectedly
shows that going from AMBA-2 to AMBA-3 the number of required assumptions de-
creases from 4 to 2. The analysis of the generated core allowed us to detect a missing
constraint in the AMBA-3 aiming to forbid one assignment to the two Boolean signals
used to encode a three value variable. (See [8] for additional details.)

In our experiments the first step of explanation computation is on average 20 times
slower than the realizability checking of the original specification. The second step is
about 25 times slower than the original realizability checking. Though the time required
for computation is relatively large, it is not exceedingly large and is very likely to be a
good trade-off by potentially decreasing the time required for debugging a specification.

6 Conclusions and Future Works

In this paper we addressed the problem of providing diagnostic information in pres-
ence of formal analysis of requirements, and in particular in the case of realizabil-
ity. We showed that the problem is nontrivial, formally characterized it, and proposed
methods to automatically extract explanations, i.e., descriptions of the reasons for
(un)realizability. The experimental evaluation shows the potential of the approach.

It is worth noticing that, most of the concepts and algorithms developed in this paper
easily extend beyond realizability: given any computable Boolean-valued function r
on a couple of finite sets 〈A, G〉 such that r has the monotonicity properties stated in
Sect. 2.2, the definitions, theorems, and algorithms developed in Sect. 3 and 4.1 apply.

In the future, we plan to evaluate the integration of the explicit and the symbolic
methods. We will investigate the use of heuristic search in the space subsets of the
specification. We will also investigate the integration within a practical framework
(e.g., contract-based design) where realizability comes into play (e.g., by composition
of contracts). Finally, given that the use of activation variables has proved to be both a
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powerful and expensive means to extract minimum cores for several problem classes
involving temporal logic, a separate investigation of how to improve this technique
(e.g., by carrying over results from the Boolean domain) seems worthwhile to us.
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