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Preface

This volume contains the proceedings of the 9th international conference on Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI 2008), held in
San Francisco, January 7–9, 2008. The purpose of VMCAI is to provide a forum
for researchers from three communities—Verification, Model Checking, and Ab-
stract Interpretation— that will facilitate interaction, cross-fertilization, and the
advance of hybrid methods that combine the three areas. With the growing need
for formal tools to reason about complex, infinite-state, and embedded systems,
such hybrid methods are bound to be of great importance.

Topics covered by VMCAI include program verification, program certifica-
tion, model checking, debugging techniques, abstract interpretation, abstract
domains, static analysis, type systems, deductive methods, and optimization.

VMCAI 2008 was the 9th VMCAI meeting. Previous meetings were held in
Port Jefferson 1997, Pisa 1998, Venice 2002, New York 2003, Venice 2004, Paris
2005, Charleston 2006, and Nice 2007.

The program committee selected 21 papers out of over 60 on the basis of
at least three reviews. The principal criteria were relevance and quality. The
program of VMCAI 2008 included, in addition to the research papers, three
invited talks, by Radhia Cousot, Maurice Herlihy and Neil Jones, and three
tutorials, by Orna Kupferman, Jens Palsberg, and Marco Pistoia.

We would like to thank the Program Committee members and the reviewers,
without whose dedicated effort the conference would not have been possible.
Our thanks also to the Steering Committee members for their helpful advice.
Thanks to Radu Grosu, the local arrangement chair. Special thanks are due to
Venkat Vishwanath for handling the Web site. Alfred Hofmann and his team at
Springer-Verlag were very helpful in preparing the proceedings.

Special thanks are due to the institutions that helped sponsor this event: the
University of Illinois at Chicago and Microsoft.

January 2008 Francesco Logozzo
Doron A. Peled
Lenore D. Zuck
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Abstract Interpretation of Non-monotone
Bi-inductive Semantic Definitions�,��

Radhia Cousot

CNRS, Paris, France
radhia.cousot@ens.fr

Divergence/nonterminating behaviors definitely need to be considered in static
program analysis [13]1, in particular for typing [2,11].

Divergence information is part of the classical order-theoretic fixpoint de-
notational semantics [12] but not explicit in small-step/abstract-machine-based
operational semantics [14,15,16] and absent of big-step/natural operational se-
mantics [8]. A standard approach is therefore to generate an execution trace
semantics from a (labelled) transition system/small-step operational semantics,
using either an order-theoretic [3] or metric [19] fixpoint definition or else a
categorical definition as a final coalgebra for a behavior functor (modeling the
transition relation) up to a weak bisimulation [7,10,18] or using an equational
definition for recursion in an order-enriched category [9].

However, the description of execution traces by small steps may be impractical
as compared to a compositional definition using big steps. Moreover, execution
traces are not always at an appropriate level of abstraction and relational se-
mantics often look more natural.

We introduce bi-inductive structural definitions, a simple order-theoretic gen-
eralization of structural set-theoretic inductive definitions [14,15,16]. This gener-
alization covers inductive, co-inductive and bi-inductive definitions which allows
simultaneous inductive and co-inductive definitions, possibly non-monotone, a
case extending [6]. These bi-inductive structural definitions can be presented
in several equivalent forms including fixpoints and rule-based definitions. The
notion of bi-inductive structural definitions unifies the various presentations of
semantics and static analyzes in apparently different styles.

Bi-inductive structural definitions can be used in bi-finite structural seman-
tics since it allows the simultaneous definition of finite/terminating and infinite/
diverging behaviors — in both big-step and small-step styles. Using induction
only would exclude infinite behaviors while using co-induction only might intro-
duce spurious finite behaviors (for example in big-step relational semantics).
� Joint work with Patrick Cousot, École normale supérieure, Paris, France.

�� This work was done in the project team Abstraction common to the CNRS, INRIA
and the École normale supérieure.

1 For example, the authors of [17] state that their “work is the first provably correct
strictness analysis and call-by-name to call-by-value transformation for an untyped
higher-order language” but since the considered big-step semantics does not account
for divergence, the considered analysis is not strictness [13] but a weaker needness
analysis.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

radhia.cousot@ens.fr


2 R. Cousot

The bi-inductive structural definitions are illustrated on the structural bi-
finitary semantics of the call-by-value λ-calculus [14,15,16] (for which co-induc-
tion is shown to be inadequate). The finite and infinite behaviors are specified
both in small/big-step style and at various levels of abstractions thus general-
izing and completing [3] in which only transition-based — that is small step —
semantics are considered.

The bi-inductive structural definitions are preserved by abstraction. This al-
lows to prove the soundness and completeness of semantics at various levels of
abstraction by abstract interpretation [1,4,5].

This is illustrated on the eager λ-calculus by abstraction of a trace semantics
into a relational semantics and a reduction operational semantics. We get the
following hierarchy of semantics

This proves that all the semantics are well-behaved in the sense that they ab-
stract the intuitive small-step trace semantics.

In conclusion bi-inductive definitions should satisfy the need for formal seman-
tics describing both finite and infinite behaviors, at various levels of abstraction,
and in different styles, despite the possible absence of monotony. Static analysis
algorithms can also be presented using bi-inductive definitions thus unifying the
fixpoint and rule-based approaches.

References
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CTL as an Intermediate Language

Neil D. Jones1 and René Rydhof Hansen2

1 DIKU, University of Copenhagen (retired)
neil@diku.dk

2 Department of Computer Science, Aalborg University
rrh@cs.aau.dk

Abstract. The Coccinelle system is a program transformer used to au-
tomate and document collateral evolutions in Linux device drivers. Se-
mantics are developed for the its underlying semantic patch language
(SmPL). A richer and more efficient version is defined, implemented by
compiling to the temporal logic CTL-V as an intermediate language.

This invited talk overviews [1], and describes as well a semantics example, a
correctness proof, and sketches a model checker [2]. Two semantics are developed
for the core of Coccinelle [3,4]: one a traditional continuation semantics, and an
alternative that uses a temporal logic as intermediate compiling language.

The first semantics is denotational – in essence a higher-order functional pro-
gram and so executable, but inefficient and limited to straight-line source pro-
grams. The alternative of compiling into CTL-V (as in [3]) ameliorates both
problems. The compilation is proven correct and a model check algorithm is
outlined. CTL-V is CTL extended with existentially quantified variables rang-
ing over source code parameters and program points. Quantification is defined
using the staging concept from partial evaluation. Related work includes [5,6,7].

References

1. Jones, N.D., Hansen, R.R.: The semantics of semantic patches in Coccinelle: Pro-
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Multi-valued Logics, Automata, Simulations, and Games

Orna Kupferman and Yoad Lustig

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{orna,yoadl}@cs.huji.ac.il

Multi-valued systems are systems in which the atomic propositions and the transitions
are not Boolean and can take values from some set. Latticed systems, in which the ele-
ments in the set are partially ordered, are useful in abstraction, query checking, and rea-
soning about multiple view-points. For example, abstraction involves systems in which
an atomic proposition can take values from {true, unknown, false}, and these values can
be partially ordered according to a “being more true” order (true ≥ unknown ≥ false) or
according to a “being more informative” order (true ≥ unknown and false ≥ unknown).
For Boolean temporal logics, researchers have developed a rich and beautiful theory
that is based on viewing formulas as descriptors of languages of infinite words or trees.
This includes a relation between temporal-logic formulas and automata on infinite ob-
jects, a theory of simulation relation between systems, a theory of two-player games,
and a study of the relations among these notions. The theory is very useful in practice,
and is the key to almost all algorithms and tools we see today in verification.

Since traditional temporal logics are Boolean, the automata, simulation relations, and
games are Boolean too: An automaton may accept or reject its input, a system may or
may not simulate another system, and a player either wins or loses a game. When we
interpret temporal-logic formulas over latticed systems, the truth value of a formula is
a lattice element, and it essentially denotes the truth value of the statement “the system
satisfies the formula”. We study an extension of automata, simulation relations, and
games to such a setting. We start by introducing latticed automata. A lattice automa-
ton A associates with an input word w a lattice element that denotes the truth value of
the statement “w is in the language of A”. Our study of lattice automata includes their
expressive power, closure properties, the blow-up involved in related constructions (in
terms of the size of both the automaton and the underlying lattice), and decision prob-
lems for them. We continue to latticed simulation relations, which associate with two
systems S1 and S2 a lattice element that denotes the truth value of the statement “every
behavior of S1 is also a behavior of S2”. We show that latticed simulation is logically
characterized by the universal fragment of latticed μ-calculus, and can be calculated in
polynomial time. We then proceed to defining latticed two-player games. As you may
guess by now, the value of the game denotes the truth value of the statement “Player 1
can force the game to computations that satisfy the winning condition”.1 We prove a
min-max property for latticed games, and show that they can be solved by decomposi-
tion to Boolean games. Finally, we relate the three latticed notions, and conclude that
most of the properties that these notions enjoy in the Boolean setting are maintained in
the latticed setting.

1 Well, this is not obvious; you may have also guessed that the value of the game is a lattice
element l such that Player 1 can force the game to computations that satisfy the winning
condition with truth value at least l. Do these definitions coincide?

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, p. 5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Verification of Register Allocators

Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles, USA

palsberg@ucla.edu
http://www.cs.ucla.edu/~palsberg

A register allocator is difficult to write and debug. The task is to assign hardware
registers to as many program variables as possible, assign memory locations
to the rest, and avoid memory traffic to the extent possible. A good register
allocator can produce code that is 2.5 times faster than code generated by a
naive register allocator.

I will survey recent approaches to verification of register allocators. The goal
is to answer three questions: What is correctness of a register allocator and how
can we specify it? How can we specify a register allocator such that we can
reason about it? Which proof techniques can we use?

I will cover four rather different approaches. One approach uses a type system
to check the output of a register allocator [1]. We have implemented the type
system in LLVM and found it to be highly useful for finding bugs in register
allocators. A second approach is to prove the correctness of a constraint-based
specification of a register allocator. We have carried out such a proof for Ap-
pel and George’s ILP-based register allocator [2]. A third approach is to prove
the correctness of a step-by-step specification of a register allocator. The proof
amounts to proving a preservation theorem that establishes an invariant for the
register allocator; we have carried out such a proof for a register allocator based
on puzzle solving [3]. A fourth approach is to prove the correctness of the original
program and then specify register allocation as proof transformation [4].

Jens Palsberg is a Professor of Computer Science at UCLA. He is an associate
editor of ACM Transactions of Programming Languages and Systems, a member
of the editorial board of Information and Computation, and a former member
of the editorial board of IEEE Transactions on Software Engineering.
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Program Analysis and Programming Languages

for Security

Marco Pistoia

IBM T.J. Watson Research Center, Hawthorne, New York, USA
pistoia@us.ibm.com

Abstract. The security of a software system is almost always retrofitted
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the security and privacy research community has been looking for solu-
tions to automatically detect security problems, information-flow viola-
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– Computation of access control requirements
– Identification of mutability, accessibility, and isolation policy violations
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Abstract. Integer octagonal constraints (a.k.a. Unit Two Variables Per
Inequality or UTVPI integer constraints) constitute an interesting class
of constraints for the representation and solution of integer problems
in the fields of constraint programming and formal analysis and verifi-
cation of software and hardware systems, since they couple algorithms
having polynomial complexity with a relatively good expressive power.
The main algorithms required for the manipulation of such constraints
are the satisfiability check and the computation of the inferential closure
of a set of constraints. The latter is called tight closure to mark the dif-
ference with the (incomplete) closure algorithm that does not exploit the
integrality of the variables. In this paper we present and fully justify an

O(n3) algorithm to compute the tight closure of a set of UTVPI integer
constraints.

1 Introduction

Integer octagonal constraints, also called Unit Two Variables Per Inequality
(UTVPI) integer constraints —that is, constraints of the form ax + by ≤ d
where a, b ∈ {−1, 0, +1}, d ∈ Z and the variables x and y range over the
integers—, constitute an interesting subclass of linear integer constraints ad-
mitting polynomial solvability. The place which these constraints occupy in the
complexity/expressivity spectrum is, in fact, peculiar. Concerning complexity,
relaxing the restriction of (at most) two variables per constraint and/or relaxing
the restriction on coefficient make the satisfiability problem NP-complete [13,14].
Concerning expressivity, integer octagonal constraints can be used for represent-
ing and solving many integer problems in the field of constraint programming,
such as temporal reasoning and scheduling [13]. In the field of formal analysis
and verification of software and hardware systems, these constraints have been
successfully used in a number of applications [5,6,9,18].

� This work has been partly supported by MURST project “AIDA — Abstract In-
terpretation: Design and Applications,” and by a Royal Society (UK) International
Joint Project (ESEP) award.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 8–21, 2008.
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When (integer or rational) octagonal constraints are used to build abstract
domains1 —such as the Octagon Abstract Domain implemented in the library
with the same name [19] or the domain of octagonal shapes defined in [2] and
implemented in the Parma Polyhedra Library [4]— the most critical operation
is not the satisfiability check (although very important in constraint program-
ming) but closure by entailment. This is the procedure whereby a set of octagonal
constraints is augmented with (a finite representation of) all the octagonal con-
straints that can be inferred from it. The closure algorithms for rational octago-
nal constraints are sound but not complete for integer octagonal constraints. The
latter require so-called tight closure algorithms that fully exploit the integrality
of the variables.

In 2005, Lahiri and Musuvathi proposed an O(n3) algorithm for the satisfiabil-
ity check of a (non trivially redundant) system of UTVPI integer constraints [15].
They also sketched (without formal definitions and proofs) a tight closure algo-
rithm with the same worst-case complexity bound. Still in 2005, Miné proposed
a modification of the strong (i.e., non-tight) closure algorithm for rational oc-
tagonal constraints and argued that this would provide a good and efficient
approximation of tight closure [18,19]. In the same year we showed that the al-
gorithm for computing the strong closure of rational octagonal constraints as
described in [16,18,19] could be simplified with a consequential improvement in
its efficiency [2,3]. In this paper we show that our result can be extended so as
to apply to integer octagonal constraints. This enables us to present and fully
justify an O(n3) algorithm to compute the tight closure of a set of UTVPI inte-
ger constraints. In particular, this is the first time that an algorithm achieving
such a complexity bound is provided with a proof of correctness.

In Section 2 webriefly introduce the terminologyand notation adopted through-
out the paper and we recall a few standard results on weighted graphs. In Section 3,
we give the definition of rational-weighted octagonal graphs and recall some of the
results that were established in [2,3]. In Section 4, we extend these results to the
case of integer-weighted octagonal graphs. Finally, in Section 5 we conclude and
briefly discuss future work.

2 Preliminaries

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that
d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A rational-weighted
directed graph (graph, for short) G in N is a pair (N , w), where w : N ×N → Q∞
is the weight function for G.

Let G = (N , w) be a graph. A pair (ni, nj) ∈ N × N is an arc of G if
w(ni, nj) < +∞; the arc is proper if ni �= nj . A path π = n0 · · · np in G is a
non-empty and finite sequence of nodes such that (ni−1, ni) is an arc of G, for
1 In abstract interpretation theory [8], an abstract domain is an algebraic structure

formalizing a set of assertions endowed with an approximation relation, plus various
operations that correctly approximate the operations of some concrete domain, i.e.,
the domain being abstracted/approximated.
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all i = 1, . . . , p. Each node ni where i = 0, . . . , p and each arc (ni−1, ni) where
i = 1, . . . , p is said to be in the path π. The length of the path π is the number
p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path π is∑p

i=1 w(ni−1, ni) and denoted by w(π). The path π is simple if each node occurs
at most once in π. The path π is proper if all the arcs in it are proper. The path
π is a proper cycle if it is a proper path, n0 = np and p ≥ 2. If π1 = n0 · · · nh

and π2 = nh · · · np are paths, where 0 ≤ h ≤ p, then the path concatenation
π = n0 · · ·nh · · · np of π1 and π2 is denoted by π1 :: π2; if π1 = n0n1 (so that
h = 1), then π1 :: π2 will also be denoted by n0 ·π2. Note that path concatenation
is not the same as sequence concatenation.

A graph (N , w) can be interpreted as the system of potential constraints

C :=
{

ni − nj ≤ w(ni, nj)
∣
∣ ni, nj ∈ N

}
.

Hence, the graph (N , w) is consistent if and only if the system of constraints it
represents is satisfiable in Q, i.e., there exists a rational valuation ρ : N → Q

such that, for each constraint (ni − nj ≤ d) ∈ C, the relation ρ(ni) − ρ(nj) ≤ d
holds. It is well-known that a graph is consistent if and only if it has no negative
weight cycles (see [7, Section 25.5] and [22]).

The set of consistent graphs in N is denoted by G. This set is partially ordered
by the relation ‘�’ defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 � G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

We write G � G′ when G � G′ and G �= G′. When augmented with a bottom
element ⊥ representing inconsistency, this partially ordered set becomes a non-
complete lattice G⊥ =

〈
G ∪ {⊥}, �, �, �

〉
, where ‘�’ and ‘�’ denote the finitary

greatest lower bound and least upper bound operators, respectively.

Definition 1 (Closed graph). A consistent graph G = (N , w) is closed if the
following properties hold:

∀i ∈ N : w(i, i) = 0; (1)
∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
⊔{

G′ ∈ G
∣
∣ G′ � G and G′ is closed

}
.

Although the lattice of rational graphs is not complete, it will include the infinite
least upper bound defining the closure of a rational graph G. Informally, this
must hold since the weights of the least upper bound graph must be linear
combinations of the rational weights of G and hence are also rational.

When trivially extended so as to behave as the identity function on the bottom
element ⊥, shortest-path closure is a kernel operator (monotonic, idempotent
and reductive) on the lattice G⊥, therefore providing a canonical form.

The following lemma recalls a well-known result for closed graphs (for a proof,
see Lemma 5 in [3]).

Lemma 1. Let G = (N , w) ∈ G be a closed graph. Then, for any path π = i · · · j
in G, it holds that w(i, j) ≤ w(π).
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3 Rational Octagonal Graphs

We assume in the following that there is a fixed set V = {v0, . . . , vn−1} of n
variables. The octagon abstract domain allows for the manipulation of octag-
onal constraints of the form avi + bvj ≤ d, where a, b ∈ {−1, 0, +1}, a �= 0,
vi, vj ∈ V , vi �= vj and d ∈ Q. Octagonal constraints can be encoded using po-
tential constraints by splitting each variable vi into two forms: a positive form
v+

i , interpreted as +vi; and a negative form v−i , interpreted as −vi. Then any
octagonal constraint avi + bvj ≤ d can be written as a potential constraint
v − v′ ≤ d0 where v, v′ ∈ {v+

i , v−i , v+
j , v−j } and d0 ∈ Q. Namely, an octagonal

constraint such as vi + vj ≤ d can be translated into the potential constraint
v+

i − v−j ≤ d; alternatively, the same octagonal constraint can be translated into
v+

j − v−i ≤ d. Furthermore, unary (octagonal) constraints such as vi ≤ d and
−vi ≤ d can be encoded as v+

i − v−i ≤ 2d and v−i − v+
i ≤ 2d, respectively.

From now on, we assume that the set of nodes is N := {0, . . . , 2n− 1}. These
will denote the positive and negative forms of the variables in V : for all i ∈ N , if
i = 2k, then i represents the positive form v+

k and, if i = 2k+1, then i represents
the negative form v−k of the variable vk. To simplify the presentation, for each
i ∈ N , we let ı denote i + 1, if i is even, and i − 1, if i is odd, so that, for all
i ∈ N , we also have ı ∈ N and ı = i. Then we can rewrite a potential constraint
v − v′ ≤ d where v ∈ {v+

k , v−k } and v′ ∈ {v+
l , v−l } as the potential constraint

i − j ≤ d in N where, if v = v+
k , i = 2k and if v = v−k , i = 2k + 1; similarly, if

v′ = v+
l , j = 2l and if v′ = v−l , j = 2l + 1.

It follows from the above translations that any finite system of octagonal
constraints, translated into a set of potential constraints in N as above, can
be encoded by a graph G in N . In particular, any finite satisfiable system of
octagonal constraints can be encoded by a consistent graph in N . However,
the converse does not hold since in any valuation ρ of an encoding of a set of
octagonal constraints we must also have ρ(i) = −ρ(ı), so that the arcs (i, j)
and (j, ı) should have the same weight. Therefore, to encode rational octagonal
constraints, we restrict attention to consistent graphs over N where the arcs in
all such pairs are coherent.

Definition 2 (Octagonal graph). A (rational) octagonal graph is any con-
sistent graph G = (N , w) that satisfies the coherence assumption:

∀i, j ∈ N : w(i, j) = w(j, ı). (3)

The set O of all octagonal graphs (with the usual addition of the bottom element,
representing an unsatisfiable system of constraints) is a sub-lattice of G⊥, sharing
the same least upper bound and greatest lower bound operators. Note that, at
the implementation level, coherence can be automatically and efficiently enforced
by letting arc (i, j) and arc (j, ı) share the same representation. This also implies
that an octagonal constraint such as vi + vj ≤ d will always be translated into
both v+

i − v−j ≤ d and v+
j − v−i ≤ d.
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When dealing with octagonal graphs, observe that the coherence assump-
tion links the positive and negative forms of variables. A closure by entailment
procedure should consider, besides transitivity, the following inference rule:

i − ı ≤ d1 j − j ≤ d2

i − j ≤ d1 + d2

2

(4)

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs.

Definition 3 (Strongly closed graph). An octagonal graph G = (N , w) is
strongly closed if it is closed and the following property holds:

∀i, j ∈ N : 2w(i, j) ≤ w(i, ı) + w(j, j). (5)

The strong closure of an octagonal graph G in N is

S-closure(G) :=
⊔{

G′ ∈ O
∣
∣ G′ � G and G′ is strongly closed

}
.

When trivially extended with a bottom element, strong closure is a kernel oper-
ator on the lattice of octagonal graphs.

A modified closure procedure is defined in [16], yielding strongly closed oc-
tagonal graphs. A significant efficiency improvement can be obtained thanks to
the following theorem (for a proof, see Theorem 2 in [3]).

Theorem 1. Let G = (N , w) be a closed octagonal graph. Consider the graph
GS = (N , wS), where wS is defined, for each i, j ∈ N , by

wS(i, j) := min
{

w(i, j),
w(i, ı)

2
+

w(j, j)
2

}

.

Then GS = S-closure(G).

Intuitively, the theorem states that strong closure can be obtained by appli-
cation of any shortest-path closure algorithm followed by a single local prop-
agation step using the constraint inference rule (4). In contrast, in the strong
closure algorithm of [16], the outermost iterations of (a variant of) the Floyd-
Warshall shortest-path algorithm are interleaved with n applications of the in-
ference rule (4), leading to a more complex and less efficient implementation.

4 Integer Octagonal Graphs

We now consider the case of integer octagonal constraints, i.e., octagonal con-
straints where the bounds are all integral and the variables are only allowed to
take integral values. These can be encoded by suitably restricting the codomain
of the weight function of octagonal graphs.
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Definition 4 (Integer octagonal graph). An integer octagonal graph is an
octagonal graph G = (N , w) having an integral weight function:

∀i, j ∈ N : w(i, j) ∈ Z ∪ {+∞}.

As an integer octagonal graph is also a rational octagonal graph, the constraint
system that it encodes will be satisfiable when interpreted to take values in Q.
However, when interpreted to take values in Z, this system may be unsatisfi-
able since the arcs encoding unary constraints can have an odd weight; we say
that an octagonal graph is Z-consistent if its encoded integer constraint system
is satisfiable. For the same reason, the strong closure of an integer octagonal
graph does not provide a canonical form for the integer constraint system that
it encodes and we need to consider the following tightening inference rule:

i − ı ≤ d

i − ı ≤ 2�d/2�
. (6)

Definition 5 (Tightly closed graph). An octagonal graph G = (N , w) is
tightly closed if it is a strongly closed integer octagonal graph and the following
property holds:

∀i ∈ N : w(i, ı) is even. (7)

The tight closure of an octagonal graph G in N is

T-closure(G) :=
⊔{

G′ ∈ O
∣
∣ G′ � G and G′ is tightly closed

}
.

By property (7), any tightly closed integer octagonal graph will encode a satis-
fiable integer constraint system and is therefore Z-consistent. Moreover, since
the encoding of any satisfiable integer constraint system will result in a Z-
consistent integer octagonal graph G that satisfies property (7), its tight closure
T-closure(G) will also be Z-consistent. This means that, if G is not Z-consistent,
then T-closure(G) =

⊔
∅ = ⊥; that is, the tight closure operator computes ei-

ther a tightly closed graph or the bottom element. Therefore, tight closure is a
kernel operator on the lattice of octagonal graphs, as was the case for strong
closure.

An incremental closure procedure for obtaining the tight closure of an octag-
onal graph was defined in [13] and improved in [12]. The algorithm, which is
also presented and discussed in [18, Section 4.3.5], maintains the tight closure
of a system of octagonal constraints by performing at most O(n2) operations
each time a new constraint is added: thus, for m constraints, the worst case
complexity is O(mn2). In particular, for the case of a dense system of octagonal
constraints where m ∈ O(n2), the worst case complexity is O(n4).

The following theorem shows that a more efficient tight closure algorithm can
be obtained by a simple modification to the improved strong closure algorithm
of Theorem 1. Basically, inference rule (6) must be applied to ensure property
(7) holds before applying inference rule (4).
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Theorem 2. Let G = (N , w) be a closed integer octagonal graph. Consider the
graph GT = (N , wT), where wT is defined, for each i, j ∈ N , by

wT(i, j) := min
{

w(i, j),
⌊w(i, ı)

2

⌋
+

⌊w(j, j)
2

⌋}

.

Then, if GT is an octagonal graph, GT = T-closure(G).

procedure tight closure if consistent(var w [0 . . 2n − 1] [0 . . 2n − 1])

{ Classical Floyd-Warshall: O(n3) }
for k := 0 to 2n − 1 do

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
(
w[i, j], w[i, k] + w[k, j]

)
;

{ Tight coherence: O(n2) }
for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
(
w[i, j], floor

(
w[i, ı]/2

)
+ floor

(
w[j, j]/2

))
;

Fig. 1. A O(n3) tight closure algorithm for Z-consistent integer octagonal graphs

Figure 1 shows the pseudo-code for a O(n3) tight closure algorithm based on
Theorem 2 and on the classical Floyd-Warshall shortest-path closure algorithm.
Note that the pseudo-code in Figure 1 assumes that the data structure recording
the weight function w, here denoted to be similar to a two-dimensional array,
automatically implements the coherence assumption for octagonal graphs (i.e.,
property (3) of Definition 2).

In the case of sparse graphs, a better complexity bound can be obtained by
modifying the code in Figure 1 so as to compute the shortest path closure using
Johnson’s algorithm [7]: the worst case complexity of such an implementation
will be O(n2 log n + mn), which significantly improves upon the O(mn2) worst
case complexity of [12,13] when, e.g., m ∈ Θ(n). However, as observed else-
where [18,23], some of the targeted applications (e.g., static analysis) typically
require the computation of graphs that are dense, so that the Floyd-Warshall
algorithm is often a better choice from a practical perspective.

It is possible to define an incremental variant of the tight closure algorithm
in Figure 1, which is simply based on the corresponding incremental version of
the Floyd-Warshall shortest path closure algorithm. In such a case, we obtain
the same worst case complexity of [12,13].

The proof of Theorem 2 relies on a few auxiliary lemmas. The first two were
also used in [3] for the formal proof of Theorem 1 above (for their detailed proofs,
see Lemmas 9 and 10 in [3]).
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Lemma 2. Let G = (N , w) be an octagonal graph, G� = (N , w�) := closure(G)
and (z1, z2) be an arc in G�. Then there exists a simple path π = z1 · · · z2 in G
such that w�(z1, z2) = w(π).

Lemma 3. Let G = (N , w) be a closed octagonal graph and i, j ∈ N be such
that i �= j and 2w(i, j) ≥ w(i, ı) + w(j, j). Let G�

s = (N , w�
s ) := closure(Gs)

where Gs := (N , ws) and, for each h1, h2 ∈ N ,

ws(h1, h2) :=

{(
w(i, ı) + w(j, j)

)
/2, if (h1, h2) ∈

{
(i, j), (j, ı)

}
;

w(h1, h2), otherwise.

Let also z1, z2 ∈ N . Then one or both of the following hold:

w�
s (z1, z2) = w(z1, z2);

2w�
s (z1, z2) ≥ w(z1, z1) + w(z2, z2).

Informally, Lemma 3 states that if inference rule (4) is applied to a closed oc-
tagonal graph, then the resulting graph can be closed just by making further
applications of inference rule (4). Note that, if G is an integer octagonal graph
and property (7) holds, then the derived graph Gs will also be an integer oc-
tagonal graph. We now state a new lemma for integer octagonal graphs showing
that when inference rule (6) is applied we obtain a similar conclusion to that for
Lemma 3.

Lemma 4. Let G = (N , w) be a closed integer octagonal graph and i ∈ N .
Let G�

t := closure(Gt) where Gt := (N , wt) is an octagonal graph and, for each
h1, h2 ∈ N ,

wt(h1, h2) :=

{
w(i, ı) − 1, if (h1, h2) = (i, ı);
w(h1, h2), otherwise.

(8)

Let G�
t = (N , w�

t ) and z1, z2 ∈ N . Then one or both of the following hold:

w�
t (z1, z2) = w(z1, z2), (9)

w�
t (z1, z2) ≥

⌊w(z1, z1)
2

⌋
+

⌊w(z2, z2)
2

⌋
. (10)

Proof. By hypothesis and Definition 1, G�
t � Gt � G. If (z1, z2) is not an arc in

G�
t , then w�

t (z1, z2) = +∞; thus, as G�
t � G, we also have w(z1, z2) = +∞ and

hence property (9) holds. Suppose now that (z1, z2) is an arc in G�
t . Then we

can apply Lemma 2, so that there exists a simple path π = z1 · · · z2 in Gt such
that w�

t (z1, z2) = wt(π).
Suppose first that wt(π) = w(π). Then, as G is closed, by Lemma 1 we

obtain w(π) ≥ w(z1, z2) so that w�
t (z1, z2) ≥ w(z1, z2). However G�

t � G so that
w�

t (z1, z2) ≤ w(z1, z2) and therefore property (9) holds.
Secondly, suppose that wt(π) �= w(π). Then, by Equation (8), (i, ı) must be

an arc in π, so that
π = π1 :: (i ı) :: π2, (11)
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where π1 = z1 · · · i, π2 = ı · · · z2 are simple paths in Gt that do not contain the
arc (i, ı). Therefore, by Equation (8), we have wt(π1) = w(π1), wt(π2) = w(π2).

For π = j0 · · · jp any path in a graph in N , let π denote the path jp · · · j0.
Consider (11) and let

π′
1 = π1 :: (i ı) :: π1, π′

2 = π2 :: (i ı) :: π2.

As G is an octagonal graph, we have w(π1) = w(π1) and w(π2) = w(π2) so that

w(π′
1) = 2w(π1) + w(i, ı), w(π′

2) = 2w(π2) + w(i, ı).

As G is closed, by Lemma 1,

w(π′
1) ≥ w(z1, z1), w(π′

2) ≥ w(z2, z2)

so that

w(π1) +
w(i, ı)

2
≥ w(z1, z1)

2
, w(π2) +

w(i, ı)
2

≥ w(z2, z2)
2

.

Therefore

wt(π) = wt(π1) + wt(i, ı) + wt(π2)

= w(π1) +
w(i, ı) − 1

2
+ w(π2) +

w(i, ı) − 1
2

≥ w(z1, z1)
2

− 1
2

+
w(z2, z2)

2
− 1

2

≥
⌊w(z1, z1)

2

⌋
+

⌊w(z2, z2)
2

⌋
.

Hence, as w�
t (z1, z2) = wt(π), we obtain property (10), as required. ��

The next result uses Lemmas 3 and 4 to derive a property relating the weight
functions for a closed integer octagonal graph and its tight closure.

Lemma 5. Let G = (N , w) be a closed integer octagonal graph such that GT =
(N , wT) := T-closure(G) is an octagonal graph and let z1, z2 ∈ N . Then one or
both of the following hold:

wT(z1, z2) = w(z1, z2); (12)

wT(z1, z2) =
⌊w(z1, z1)

2

⌋
+

⌊w(z2, z2)
2

⌋
. (13)

Proof. The proof is by contraposition; thus we assume that neither (12) nor (13)
hold. Without loss of generality, let the graph G be �-minimal in the set of all
closed integer octagonal graphs such that T-closure(G) = GT and for which
neither (12) nor (13) hold. Clearly the negation of (12) implies that G �= GT, so
that GT � G.

As G is closed but not tightly closed, by Definitions 3 and 5, it follows that
there exist i, j ∈ N such that either
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(i) i = j and w(i, ı) is odd; or
(ii) property (7) holds and 2w(i, j) > w(i, ı) + w(j, j).

Consider graph G1 = (N , w1) where the weight function w1 is defined, for all
h1, h2 ∈ N , by

w1(h1, h2) :=

{⌊
w(i,ı)

2

⌋
+

⌊
w(j,j)

2

⌋
, if (h1, h2) ∈

{
(i, j), (j, ı)

}
;

w(h1, h2), otherwise.

Let G�
1 = closure(G1). By Definitions 1, 3 and 5,

GT � G�
1 � G1 � G. (14)

Thus T-closure(G�
1) = GT so that, by the minimality assumption on G, one or

both of the following hold:

wT(z1, z2) = w�
1(z1, z2); (15)

wT(z1, z2) =
⌊w�

1(z1, z1)
2

⌋
+

⌊w�
1(z2, z2)

2

⌋
. (16)

As GT �= ⊥, by (14), G1 is consistent. Therefore, by construction, G1 is an
integer octagonal graph. If property (i) holds for i, j, then Lemma 4 can be
applied and, if property (ii) holds for i, j, then Lemma 3 can be applied and
also, since property (7) holds, both w1(z1, z1) and w(z2, z2) are even. Hence,
letting G�

1 := (N , w�
1), one or both of the following hold:

w�
1(z1, z2) = w(z1, z2); (17)

w�
1(z1, z2) ≥

⌊w(z1, z1)
2

⌋
+

⌊w(z2, z2)
2

⌋
. (18)

Again by Lemmas 3 and 4,

w�
1(z1, z1) ≥ 2

⌊w(z1, z1)
2

⌋
,

w�
1(z2, z2) ≥ 2

⌊w(z2, z2)
2

⌋
;

since the lower bounds for w�
1(z1, z1) and w�

1(z2, z2) are even integers, we obtain

⌊w�
1(z1, z1)

2

⌋
+

⌊w�
1(z2, z2)

2

⌋
≥

⌊w(z1, z1)
2

⌋
+

⌊w(z2, z2)
2

⌋
. (19)

Suppose first that (15) and (17) hold. Then by transitivity we obtain (12),
contradicting the contrapositive assumption for G.

If (15) and (18) hold, then it follows

wT(z1, z2) ≥
⌊w(z1, z1)

2

⌋
+

⌊w(z2, z2)
2

⌋
. (20)
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On the other hand, if (16) holds, then, by (19), we obtain again property (20).
However, by Definitions 3 and 5 we also have

wT(z1, z2) ≤
⌊w(z1, z1)

2

⌋
+

⌊w(z2, z2)
2

⌋
.

By combining this inequality with (20) we obtain (13), contradicting the contra-
positive assumption for G. ��

Proof (of Theorem 2). Let GT := T-closure(G). By definition of GT, GT �G
so that T-closure(GT)�GT. As GT is an octagonal graph, GT is consistent, and
hence GT �= ⊥; let GT = (N , wT). Letting i, j ∈ N , to prove the result we need
to show that wT(i, j) = wT(i, j). Let kij :=

⌊
w(i, ı)/2

⌋
+

⌊
w(j, j)/2

⌋
.

By Definitions 1, 3 and 5, it follows that both properties wT(i, j) ≤ w(i, j) and
wT(i, j) ≤ kij hold so that, by definition of wT, we have wT(i, j) ≤ wT(i, j). By
Lemma 5, wT(i, j) = w(i, j) and/or wT(i, j) = kij . Therefore since, by definition,
wT(i, j) = min

{
w(i, j), kij

}
, we obtain wT(i, j) ≤ wT(i, j). ��

It follows from the statement of Theorem 2 that an implementation based on it
also needs to check the consistency of GT. In principle, one could apply again
a shortest-path closure procedure so as to check whether GT contains some
negative weight cycles. However, a much more efficient solution is obtained by
the following result.

Theorem 3. Let G = (N , w) be a closed integer octagonal graph. Consider the
graphs Gt = (N , wt) and GT = (N , wT) where, for each i, j ∈ N ,

wt(i, j) :=

{
2�w(i, j)/2�, if j = ı;
w(i, j), otherwise;

(21)

wT(i, j) := min
{

w(i, j),
⌊w(i, ı)

2

⌋
+

⌊w(j, j)
2

⌋}

. (22)

Suppose that, for all i ∈ N , wt(i, ı) + wt(ı, i) ≥ 0. Then GT is an octagonal
graph.

This result is a corollary of the following result proved in [15, Lemma 4].

Lemma 6. Let G = (N , w) be an integer octagonal graph with no negative
weight cycles and Gt = (N , wt), where wt satisfies (21), have a negative weight
cycle. Then there exists i, ı ∈ N and a cycle π = (i · π1 · ı) :: (ı · π2 · i) in G such
that w(π) = 0 and the weight of the shortest path in G from i to ı is odd.

Proof (of Theorem 3). The proof is by contradiction; suppose GT is not
an octagonal graph; then by Definitions 1, 3 and 5, GT is inconsistent. We
show that Gt is also inconsistent. Again, we assume to the contrary that Gt is
consistent and derive a contradiction. Let i, j ∈ N . By (21), we have wt(i, j) ≤
w(i, j) and wt(i, ı)/2 + wt(j, j)/2 = kij , where kij :=

⌊
w(i, ı)/2

⌋
+

⌊
w(j, j)/2

⌋
.

Letting S-closure(Gt) = (N , wS
t ), we have, by Definition 3, wS

t (i, j) ≤ wt(i, j)
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and wS
t (i, j) ≤ wt(i, ı)/2 + wt(j, j)/2. Thus wS

t (i, j) ≤ min
(
w(i, j), kij

)
. As this

holds for all i, j ∈ N , by (22), S-closure(Gt)�GT, contradicting the assumption
that Gt was consistent. Hence Gt is inconsistent and therefore contains a negative
weight cycle.

By Lemma 6, there exists i, ı ∈ N and a cycle π = (i · π1 · ı) :: (ı · π2 · i)
in G such that w(π) = 0 and the weight of the shortest path in G from i to
ı is odd. As G is closed, w(i, ı) ≤ w(i · π1 · ı) and w(ı, i) ≤ w(ı · π2 · i). Thus
w(i, ı) + w(ı, i) ≤ w(π) = 0. Moreover, (iı) is a path and hence the shortest
path from i to ı so that w(iı) is odd; hence, by (21), w(i, ı) = wt(i, ı) + 1 and
w(ı, i) ≥ wt(ı, i). Therefore wt(i, ı) + wt(ı, i) < 0. ��

function tight closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

{ Initialization: O(n) }
for i := 0 to 2n − 1 do w[i, i] := 0;

{ Classical Floyd-Warshall: O(n3) }
for k := 0 to 2n − 1 do

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
(
w[i, j], w[i, k] + w[k, j]

)
;

{ Check for Q-consistency: O(n) }
for i := 0 to 2n − 2 step 2 do

if w[i, i] < 0 return false;

{ Tightening: O(n) }
for i := 0 to 2n − 1 do

w[i, ı] := 2 · floor
(
w[i, ı]/2

)
;

{ Check for Z-consistency: O(n) }
for i := 0 to 2n − 2 step 2 do

if w[i, ı] + w[ı, i] < 0 return false;

{ Strong coherence: O(n2) }
for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
(
w[i, j], w[i, ı]/2 + w[j, j]/2

)
;

return true;

Fig. 2. A O(n3) tight closure algorithm for integer coherent graphs

The combination of the results stated in Theorems 2 and 3 (together with
the well known result for rational consistency) leads to an O(n3) tight closure
algorithm, such as that given by the pseudo-code in Figure 2, that computes
the tight closure of any (possibly inconsistent) coherent integer-weighted graph
returning the Boolean value ‘true’ if and only if the input graph is Z-consistent.
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5 Conclusion and Future Work

We have presented and fully justified an O(n3) algorithm that computes the tight
closure of a set of integer octagonal constraints. The algorithm —which is based
on the extension to integer-weighted octagonal graphs of the one we proposed for
rational-weighted octagonal graphs [2,3]— and its proof of correctness means the
issue about the possibility of computing the tight closure at a computational cost
that is asymptotically not worse than the cost of computing all-pairs shortest
paths is finally closed.

In the field of hardware and software verification, the integrality constraint
that distinguishes integer-weighted from rational-weighted octagonal graphs can
be seen as an abstraction of the more general imposition of a set of congruence
relations. Such a set can be encoded by an element of a suitable abstract domain
such as the non-relational congruence domain of [10] (that is, of the form x = a
(mod b)), the weakly relational zone-congruence domain of [17] (that is, also
allowing the form x − y = a (mod b)), the linear congruence domain of [11],
and the more general fully relational rational grids domain developed in [1]. The
combination of such domains with the abstract domain proposed in [2,3] is likely
to provide an interesting complexity-precision trade-off. Future work includes
the investigation into such a combination, exploiting the ideas presented in this
paper.
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18. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
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Abstract. We consider verification of safety properties for parameter-
ized systems with linear topologies. A process in the system is an ex-
tended automaton, where the transitions are guarded by both local and
global conditions. The global conditions are non-atomic, i.e., a process
allows arbitrary interleavings with other transitions while checking the
states of all (or some) of the other processes. We translate the problem
into model checking of infinite transition systems where each configura-
tion is a labeled finite graph. We derive an over-approximation of the in-
duced transition system, which leads to a symbolic scheme for analyzing
safety properties. We have implemented a prototype and run it on several
nontrivial case studies, namely non-atomic versions of Burn’s protocol,
Dijkstra’s protocol, the Bakery algorithm, Lamport’s distributed mutual
exclusion protocol, and a two-phase commit protocol used for handling
transactions in distributed systems. As far as we know, these protocols
have not previously been verified in a fully automated framework.

1 Introduction

We consider verification of safety properties for parameterized systems. Typically,
a parameterized system consists of an arbitrary number of processes organized
in a linear array. The task is to verify correctness regardless of the number of
processes. This amounts to the verification of an infinite family; namely one for
each size of the system. An important feature in the behaviour of a parame-
terized system is the existence of global conditions. A global condition is either
universally or existentially quantified. An example of a universal condition is that
all processes to the left of a given process i should satisfy a property θ. Process
i can perform the transition only if all processes with indices j < i satisfy θ. In
an existential condition we require that some (rather than all) processes satisfy
θ. Together with global conditions, we allow features such as shared variables,
broadcast communication, and processes operating on unbounded variables.

All existing approaches to automatic verification of parameterized systems
(e.g., [13, 5, 7, 9]) make the unrealistic assumption that a global condition is
performed atomically, i.e., the process which is about to make the transition
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checks the states of all the other processes and changes its own state, all in
one step. However, almost all protocols (modeled as parameterized systems with
global conditions) are implemented in a distributed manner, and therefore it is
not feasible to test global conditions atomically.

In this paper, we propose a method for automatic verification of parameter-
ized systems where the global conditions are not assumed to be atomic. The
main idea is to translate the verification problem into model checking of sys-
tems where each configuration is a labeled finite graph. The labels of the nodes
encode the local states of the processes, while the labels of the edges carry in-
formation about the data flow between the processes. Our verification method
consists of three ingredients each of which is implemented by a fully automatic
procedure: (i) a preprocessing phase in which a refinement protocol is used to
translate the behaviour of a parameterized system with global conditions into a
system with graph configurations; (ii) a model checking phase based on symbolic
backward reachability analysis of systems with graph configurations; and (iii)
an over-approximation scheme inspired by the ones proposed for systems with
atomic global conditions in [4] and [2]. The over-approximation scheme is ex-
tended here in a non-trivial manner in order to cope with configurations which
have graph structures. The over-approximation enables us to work with efficient
symbolic representations (upward closed sets of configurations) in the backward
reachability procedure. Below, we describe the three ingredients in detail.

In order to simplify the presentation, we consider a basic model. Neverthe-
less, the method can be generalized to deal with a number of features which are
added to enrich the basic model, such as broadcast communication and shared
variables (see [3] for details). In the basic model, a process is a finite-state au-
tomaton which operates on a set of local variables ranging over the Booleans.
The transitions of the automaton are conditioned by the local state of the pro-
cess, values of the local variables, and by global conditions. Transitions involving
global conditions are not assumed to be atomic. Instead, they are implemented
using an underlying protocol, here referred to as the refinement protocol. Sev-
eral different versions of the protocol are possible. The one in the basic model
works as follows. Let us consider a process, called the initiator, which is about to
perform a transition with a global condition. Suppose that the global condition
requires that all processes to the left of the initiator satisfy θ. Then, the initia-
tor sends a request asking the other processes whether they satisfy θ or not. A
process sends an acknowledgment back to the initiator only if it satisfies θ. The
initiator performs the transition when it has received acknowledgments from all
processes to its left. The acknowledgments are sent by the different processes in-
dependently. This means that the initiator may receive the acknowledgments in
any arbitrary order, and that a given process may have time to change its local
state and its local variables before the initiator has received its acknowledgment.

The refinement protocol induces a system with an infinite set of configura-
tions each of which is a finite graph. The nodes of the graph contain information
about the local states and the values of the local variables of the processes, while
the edges represent the flow of request and acknowledgment messages used to
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implement the refinement protocol. We observe that the graph representation de-
fines a natural ordering on configurations, where a configuration is smaller than
another configuration, if the graph of the former is contained in the graph of the
latter (i.e., if there is a label-respecting injection from the smaller to the larger
graph). To check safety properties, we perform backward reachability analysis
on sets of configurations which are upward closed under the above mentioned
ordering. Two attractive features of upward closed sets are (i) checking safety
properties can almost always be reduced to the reachability of an upward closed
set; and (ii) they are fully characterized by their minimal elements (which are
finite graphs), and hence these graphs can be used as efficient symbolic represen-
tations of infinite sets of configurations. One problem is that upward closedness
is not preserved in general when computing sets of predecessors. To solve the
problem, we consider a transition relation which is an over-approximation of the
one induced by the parameterized system. To do that, we modify the refine-
ment protocols by eliminating the processes which have failed to acknowledge a
universal global condition (either because they do not satisfy the condition or
because they have not yet sent an acknowledgment). For instance in the above
example, it is always the case that process i will eventually perform the transi-
tion. However, when performing the transition, we eliminate each process j (to
the left of i) which has failed to acknowledge the request of i. The approximate
transition system obtained in this manner is monotonic w. r. t. the ordering on
configurations, in the sense that larger configurations can simulate smaller ones.
The fact that the approximate transition relation is monotonic, means that up-
ward closedness is maintained when computing predecessors. Therefore, all the
sets which are generated during the backward reachability analysis procedure
are upward closed, and can hence be represented by their minimal elements.
Observe that if the approximate transition system satisfies a safety property
then we can conclude that the original system satisfies the property too. The
whole verification process is fully automatic since both the approximation and
the reachability analysis are carried out without user intervention. Termination
of the approximated backward reachability analysis is not guaranteed in general.
However, the procedure terminates on all the examples we report in this paper.

In this paper, we will also describe how the method can be generalized to deal
with the model where processes are infinite-state. More precisely, the processes
may operate on variables which range over the natural numbers, and the transi-
tions may be conditioned by gap-order constraints. Gap-order constraints [17] are
a logical formalism in which one can express simple relations on variables such
as lower and upper bounds on the values of individual variables; and equality,
and gaps (minimal differences) between values of pairs of variables.

Another aspect of our method is that systems with graph configurations are
interesting in their own right. The reason is that many protocols have inherently
distributed designs, rather than having explicit references to global conditions.
For instance, configurations in the Lamport distributed mutual exclusion pro-
tocol [15] or in the two-phase commit protocol of [12] are naturally modeled as
graphs where the nodes represent the local states of the processes, and the edges
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describe the data traveling between the processes. In such a manner, we get a
model identical to the one extracted through the refinement protocol, and hence
it can be analyzed using our method.

We have implemented a prototype and used it for verifying a number of chal-
lenging case studies such as parameterized non-atomic versions of Burn’s pro-
tocol, Dijkstra’s protocol, the Bakery algorithm, Lamport’s distributed mutual
exclusion protocol [15] , and the two-phase commit protocol used for handling
transactions in [12]. As far as we know, none of these examples has previously
been verified in a fully automated framework.

Related Work. We believe that this is the first work which can handle auto-
matic verification of parameterized systems where global conditions are tested
non-atomically. All existing automatic verification methods (e.g., [13, 5, 7, 9, 10,
4,2]) are defined for parameterized systems where universal and existential con-
ditions are evaluated atomically. Non-atomic versions of parameterized mutual
exclusion protocols such as the Bakery algorithm and two-phase commit protocol
have been studied with heuristics to discover invariants, ad-hoc abstractions, or
semi-automated methods in [6, 14, 16, 8]. In contrast to these methods, our ver-
ification procedure is fully automated and is based on a generic approximation
scheme for quantified conditions.

The method presented in this paper is related to those in [4, 2] in the sense
that they also rely on combining over-approximation with symbolic backward
reachability analysis. However, the papers [4,2] assume atomic global conditions.
As described above, the passage from the atomic to the non-atomic semantics is
not trivial. In particular, the translation induces models whose configurations are
graphs, and are therefore well beyond the capabilities of the methods described
in [4, 2] which operate on configurations with linear structures. Furthermore,
the underlying graph model can be used in its own to analyze a large class of
distributed protocols. This means that we can handle examples none of which
can be analyzed within the framework of [4, 2].

2 Preliminaries

In this section, we define a basic model of parameterized systems.
For a natural number n, let n denote the set {1, . . . , n}. We use B to denote

the set {true, false} of Boolean values. For a finite set A, we let B(A) denote
the set of formulas which have members of A as atomic formulas, and which are
closed under the Boolean connectives ¬, ∧, ∨. A quantifier is either universal or
existential. A universal quantifier is of one of the forms ∀L, ∀R, ∀LR. An existential
quantifier is of one of the forms ∃L, ∃R, or ∃LR. The subscripts L, R, and LR
stand for Left, Right, and Left-Right respectively. A global condition over A is of
the form �θ where � is a quantifier and θ ∈ B(A). A global condition is said to
be universal (resp. existential) if its quantifier is universal (resp. existential). We
use G(A) to denote the set of global conditions over A.
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Parameterized Systems. A parameterized system consists of an arbitrary
(but finite) number of identical processes, arranged in a linear array. Sometimes,
we refer to processes by their indices, and say e.g., the process with index i
(or simply process i) to refer to the process with position i in the array. Each
process is a finite-state automaton which operates on a finite number of Boolean
local variables. The transitions of the automaton are conditioned by the values
of the local variables and by global conditions in which the process checks, for
instance, the local states and variables of all processes to its left or to its right.
The global transitions are not assumed to be atomic operations. A transition
may change the value of any local variable inside the process. A parameterized
system induces an infinite family of finite-state systems, namely one for each
size of the array. The aim is to verify correctness of the systems for the whole
family (regardless of the number of processes inside the system). A parameterized
system P is a triple (Q, X, T ), where Q is a set of local states, X is a set of local
Boolean variables, and T is a set of transition rules. A transition rule t is of the
form

t :

⎡

⎣
q

grd → stmt
q′

⎤

⎦ (1)

where q, q′ ∈ Q and grd → stmt is a guarded command. Below we give the
definition of a guarded command. Let Y denote the set X ∪ Q. A guard is a
formula grd ∈ B(X) ∪ G(Y ). In other words, the guard grd constraints either
the values of local variables inside the process (if grd ∈ B(X)); or the local states
and the values of local variables of other processes (if grd ∈ G(Y )). A statement
is a set of assignments of the form x1 = e1; . . . ; xn = en, where xi ∈ X , ei ∈ B,
and xi 	= xj if i 	= j. A guarded command is of the form grd → stmt, where grd
is a guard and stmt is a statement.

3 Transition System

In this section, we describe the induced transition system.
A transition system T is a pair (D, =⇒), where D is an (infinite) set of

configurations and =⇒ is a binary relation on D. We use ∗=⇒ to denote the
reflexive transitive closure of =⇒. For sets of configurations D1, D2 ⊆ D we use
D1 =⇒ D2 to denote that there are c1 ∈ D1 and c2 ∈ D2 with c1 =⇒ c2. We
will consider several transition systems in this paper.

First, a parameterized system P = (Q, X, T ) induces a transition system
T (P) = (C, −→) as follows. In order to reflect non-atomicity of global condi-
tions, we use a protocol, called the refinement protocol, to refine (implement)
these conditions. The refinement protocol uses a sequence of request and ac-
knowledgment messages between processes. Therefore, a configuration is defined
by (i) the local states and the values of the local variables of the different pro-
cesses; and by (ii) the flow of requests and acknowledgments which are used to
implement the refinement protocol. Below, we describe these two components,
and then use them to define the set of configurations and the transition relation.
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Process States. A local variable state v is a mapping from X to B. For a local
variable state v, and a formula θ ∈ B(X), we evaluate v |= θ using the standard
interpretation of the Boolean connectives. Given a statement stmt and a variable
state v, we denote by stmt(v) the variable state obtained from v by mapping x
to e if (x = e) ∈ stmt, v(x) otherwise. We will also work with temporary states
which we use to implement the refinement protocol. A temporary state is of the
form qt where q ∈ Q and t ∈ T . The state qt indicates that the process is waiting
for acknowledgments from other processes while trying to perform transition t
(which contains a global condition). We use QT to denote the set of temporary
states, and define Q• = Q ∪ QT . A process state u is a pair (q, v) where q ∈ Q•

and v is a local variable state. We say that u is temporary if q ∈ QT , i.e., if the
local state is temporary. For a temporary process state u = (qt, v), we write u∗

to denote the process state (q, v), i.e., we replace qt by the corresponding state
q. If u is not temporary then we define u∗ = u.

Sometimes, abusing notation, we view a process state (q, v) as a mapping
u : X∪Q• �→ B, where u(x) = v(x) for each x ∈ X , u(q) = true, and u(q′) = false
for each q′ ∈ Q• − {q}. The process state thus agrees with v on the values of
local variables, and maps all elements of Q•, except q, to false . For a formula
θ ∈ B(X ∪ Q•) and a process state u, the relation u |= θ is then well-defined.
This is true in particular if θ ∈ B(X).

The Refinement Protocol. The refinement protocol is triggered by an initia-
tor which is a process trying to perform a transition involving a global condition.
The protocol consists of three phases described below. In the first phase, the
initiator enters a temporary state and sends a request to the other processes
asking whether they satisfy the global condition. In the second phase, the other
processes are allowed to respond to the initiator. When a process receives the
request, it sends an acknowledgment only if it satisfies the condition. The ini-
tiator remains in the temporary state until it receives acknowledgments from
all relevant processes (e.g., all processes to its right if the quantifier is ∀R, or
some process to its left if the quantifier is ∃L, etc). Then, the initiator performs
the third phase which consists of leaving the temporary state, and changing its
local state and variables according to the transition. The request of the initia-
tor is received independently by the different processes. Also, the processes send
their acknowledgments independently. In particular this means that the initiator
may receive the acknowledgments in any arbitrary order. To model the status
of the request and acknowledgments, we use edges. A request edge is of the form
i

req−→t j where i and j are process indices and t ∈ T is a transition. Such an
edge indicates that process i is in a temporary state trying to perform transition
t (which contains a global condition); and that it has issued a request which is
yet to be acknowledged by process j. An acknowledgment edge is of the form
i

ack←−t j with a similar interpretation, except that it indicates that the request
of process i has been acknowledged by process j. Observe that if a process is in
a temporary state, then it must be an initiator.
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Configurations. A configuration c ∈ C is a pair (U, E) where U = u1 · · ·un is
a sequence of process states, and E is a set of edges. We use |c| to denote the
number of processes inside c, i.e., |c| = n. Intuitively, the above configuration
corresponds to an instance of the system with n processes. Each pair ui =
(qi, vi) gives the local state and the values of local variables of process i. We
use U [i] to denote ui. The set E encodes the current status of requests and
acknowledgments among the processes. A configuration must also satisfy the
following two invariants:

1. If ui is a temporary process state (for some transition t) then, for each
j : 1 ≤ j 	= i ≤ n, the set E contains either an edge of the form i

req−→t j or
an edge of the form i

ack←−t j (but not both). This is done to keep track of
the processes which have acknowledged request of i.

2. If ui is not a temporary process state then the set E does not contain any edge
of the form i

req−→t j or i
ack←−t j, for any t ∈ T and for any j : 1 ≤ j 	= i ≤ n.

That is, if process i is not in a temporary states, then it is not currently
waiting for acknowledgments, and hence no edges of the above form need to
be stored.

Transition Relation. Consider two configurations c = (U, E) and c′ = (U ′, E′)
with |c| = |c′| = n. We describe how c can perform a transition to obtain c′. Such
a transition is performed by some process with index i for some i : 1 ≤ i ≤ n.
We write c i−→ c′ to denote that (i) U [j] = U ′[j] for each j : 1 ≤ j 	= i ≤ n
(i.e., only process i changes state during the transition); and (ii) that there is
a t ∈ T of the form (1) such that one the following four conditions is satisfied
(each condition corresponds to one type of transitions):

– Local Transitions: grd ∈ B(X), U [i] = (q, v), U ′[i] = (q′, v′), v |= grd,
v′ = stmt(v) , and E′ = E. By grd ∈ B(X), we mean that t is a local
transition. The values of the local variables of the process should satisfy the
guard grd, and they are modified according to stmt. The local states and
variables of other processes are not relevant during the transition. Since the
transition does not involve global conditions, the edges remains unchanged.

– Refinement Protocol – First Phase: grd = �θ ∈ G(Y ), U [i] = (q, v), U ′[i] =
(qt, v), and E′ = E ∪ {i

req−→t j| 1 ≤ j 	= i ≤ n}. Since grd ∈ G(Y ), the
transition t contains a global condition. The initiator, which is process i,
triggers the first phase of the refinement protocol. To do this, it moves to
the temporary state qt. It also sends a request to all other processes, which
means that the new set of edges E′ should be modified accordingly. The local
variables of the initiator are not changed during this step.

– Refinement Protocol – Second Phase: grd = �θ ∈ G(Y ), U [i] is a temporary
process state, U ′[i] = U [i], and there is a j : 1 ≤ j 	= i ≤ n such that
U [j]∗ |= θ and E′ = E − {i

req−→t j} ∪ {i
ack←−t j}. A process (with index

j) which satisfies the condition θ sends an acknowledgment to the initiator
(process i). To reflect this, the relevant request edge is replaced by the corre-
sponding acknowledgment edge. No local states or variables of any processes
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are changed. Notice that we use U [j]∗ in the interpretation of the guard.
This means that a process which is in the middle of checking a global con-
dition, is assumed to be in its original local state until all the phases of the
refinement protocol have successfully been carried out.

– Refinement Protocol – Third Phase: grd = �θ ∈ G(Y ), U [i] = (qt, v), U ′[i] =
(q′, v′), v′ = stmt(v), E′ = E − {i

ack←−t j| 1 ≤ j 	= i ≤ n} − {i
req−→t j| 1 ≤

j 	= i ≤ n}, and one of the following conditions holds:

• � = ∀L and (i ack←−t j) ∈ E for each j : 1 ≤ j < i.
• � = ∀R and (i ack←−t j) ∈ E for each j : i < j ≤ n.
• � = ∀LR and (i ack←−t j) ∈ E for each j : 1 ≤ j 	= i ≤ n.
• � = ∃L and (i ack←−t j) ∈ E for some j : 1 ≤ j < i.
• � = ∃R and (i ack←−t j) ∈ E for some j : i < j ≤ n.
• � = ∃LR and (i ack←−t j) ∈ E for some j : 1 ≤ j 	= i ≤ n.

The initiator has received acknowledgments from the relevant processes. The
set of relevant processes depends on the type of the quantifier. For instance,
in case the quantifier is ∀L then the initiator waits for acknowledgments
from all processes to its left (with indices smaller than i). Similarly, if the
quantifier is ∃R then the initiator waits for an acknowledgment from some
process to its right (with index larger than i), and so on. The initiator leaves
its temporary state and moves to a new local state (the state q′) as required
by the transition rule t. Also, the values of the local variables of the initiator
are updated according to stmt. Since, process i is not in a temporary state
any more, all the corresponding edges are removed from the configuration.

We use c −→ c′ to denote that c i−→ c′ for some i.

Variants of Refinement Protocols. Our method can be modified to deal
with several different variants of the refinement protocol described in Section 3.
Observe that in the original version of the protocol, a process may either ac-
knowledge a request or remain passive. One can consider a variant where we
allow processes to explicitly refuse acknowledging of requests, by sending back
a negative acknowledgment (a nack). We can also define different variants de-
pending on the way a failure of a global condition is treated (in the third phase
of the protocol). For instance, the initiator may be allowed to reset the protocol,
by re-sending requests to all the processes (or only to the processes which have
sent a negative acknowledgment).

4 Safety Properties

In order to analyze safety properties, we study the coverability problem defined
below. Given a parameterized system P = (Q, X, T ), we assume that, prior to
starting the execution of the system, each process is in an (identical) initial
process state uinit = (qinit , vinit ). In the induced transition system T (P) =
(C, −→), we use Init to denote the set of initial configurations, i.e., configurations
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of the form (Uinit , Einit ), where Uinit = uinit · · ·uinit and Einit = ∅. In other
words, all processes are in their initial states, and there are no edges between
the processes. Notice that the set of initial configurations is infinite.

We define an ordering on configurations as follows. Given two configurations,
c = (U, E) with |c| = m, and c′ = (U ′, E′) with |c′| = n, we write c � c′ to
denote that there is a strictly monotonic1 injection h from the set m to the set
n such that the following conditions are satisfied for each t ∈ T and i, j : 1 ≤
i 	= j ≤ m: (i) ui = u′

h(i), (ii) if (i
req−→t j) ∈ E then (h(i)

req−→t h(j)) ∈ E′,

and (iii) if (i ack←−t j) ∈ E then (h(i) ack←−t h(j)) ∈ E′. In other words, for each
process in c there is a corresponding process in c′ with the same local state and
with the same values of local variables. Furthermore, each request edge in c is
matched by a request edge between the corresponding processes in c′, while each
acknowledgment edge in c is matched by an acknowledgment edge between the
corresponding processes in c′.

A set of configurations D ⊆ C is upward closed (with respect to �) if c ∈ D
and c � c′ implies c′ ∈ D. The coverability problem for parameterized systems
is defined as follows:

PAR-COV

Instance A parameterized system P = (Q, X, T ) and an upward closed set
CF of configurations.
Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [18,11]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV (i.e., to the reachability of upward closed sets). Intuitively, we use
CF to denote a set of bad states which we do not want to occur during the
execution of the system. For instance, in a mutual exclusion protocol, if the
local state qcrit corresponds to the process being in the critical section, then CF

can be defined to be the set of all configurations where at least two processes are
in qcrit . In such a case, CF is the set of bad configurations (those violating the
mutual exclusion property). Notice that once a configuration has two processes
in qcrit then it will belong to CF regardless of the values of the local variables,
the states of the rest of processes, and the edges between the processes. This
implies that CF is upward closed.

5 Approximation

In this section, we introduce an over-approximation of the transition relation of
a parameterized system. The aim of the over-approximations is to derive a new
transition system which is monotonic with respect to the ordering � defined
on configurations in Section 4. Formally, a transition system is monotonic with
respect to the ordering �, if for any configurations c1, c2, c3 such that c1 → c2

1 h : m → n strictly monotonic means: i < j ⇒ h(i) < h(j) for all i, j : 1 ≤ i, j ≤ m.
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and c1 � c3; there exists a configuration c4 such that c3 → c4 and c2 � c4. The
only transitions which violate monotonicity are those corresponding to the third
phase of the refinement protocol when the quantifier is universal. Therefore, the
approximate transition system modifies the behavior of the third phase in such a
manner that monotonicity is maintained. More precisely, in the new semantics,
we remove all processes in the configuration which have failed to acknowledge
the request of the initiator (the corresponding edge is a request rather than an
acknowledgment). Below we describe formally how this is done.

In Section 3, we mentioned that each parameterized system P = (Q, X, T )
induces a transition system T (P) = (C, −→). A parameterized system P also
induces an approximate transition system A(P) = (C, � ); the set C of config-
urations is identical to the one in T (P). We define �= (−→ ∪ �1), where −→
is defined in Section 3, and �1 (which reflects the approximation of universal
quantifiers in third phase of the refinement protocol) is defined as follows.

Consider two configurations c = (U, E) and c′ = (U ′, E′) with |c| = n and
|c′| = m. Suppose that U [i] = (qt, v) for some i : 1 ≤ i ≤ n and some transition
of the form of (1) where grd = �θ ∈ G(Y ) with � ∈ {∀L, ∀R, ∀LR}. In other
words, in c, process i is in a temporary state, performing the second phase of
refinement protocol with respect to a universal quantifier. We write c i

�1 c′ to
denote that there is a strictly monotonic injection h : m �→ n such that the
following conditions are satisfied (the image of h represents the indices of the
processes we keep in the configuration):

– j is in the image of h iff one of the following conditions is satisfied: (i) j = i,
(ii) � = ∀L and either j > i or (i ack←−t j) ∈ E, (iii) � = ∀R and either
j < i or (i ack←−t j) ∈ E, (iv) � = ∀LR and (i ack←−t j) ∈ E. That is we keep
the initiator (process i) together with all the relevant processes who have
acknowledged its request.

– U ′[h−1(i)] = (q′, stmt(v)) and U ′[j] = U [h(j)] for h(j) 	= i, i.e., the local
variables of process i are updated according to stmt while the states and
local variables of other processes are not changed.

– E′ is obtained from E as follows. For all j, k ∈ m and t′ ∈ T , (i) (j ack←−t′ k) ∈
E′ iff (h(j) ack←−t′ h(k)) ∈ E, and (ii) (j

req−→t′ k) ∈ E′ iff (h(j)
req−→t′ h(k)) ∈

E. In other words, we remove all edges connected to processes which are
removed from the configuration c.

We use c �1 c′ to denote that c i
�1 c′ for some i.

Lemma 1. The approximate transition system (C, � ) is monotonic w.r.t. �.

We define the coverability problem for the approximate system as follows.

APRX-PAR-COV

Instance A parameterized system P = (Q, X, T ) and an upward closed set
CF of configurations.
Question Init ∗

� CF ?

Since −→⊆�, a negative answer to APRX-PAR-COV implies a negative
answer to PAR-COV.
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6 Backward Reachability Analysis

In this section, we present a scheme based on backward reachability analysis
and we show how to instantiate it for solving APRX-PAR-COV. For the rest
of this section, we assume a parameterized system P = (Q, X, T ) and the induced
approximate transition system A(P) = (C, � ).

Constraints. The scheme operates on constraints which we use as a symbolic
representation for sets of configurations. A constraint φ denotes an upward closed
set [[φ]] ⊆ C of configurations. The constraint φ represents minimal conditions
on configurations. More precisely, φ specifies a minimum number of processes
which should be in the configuration, and then imposes certain conditions on
these processes. The conditions are formulated as specifications of the states
and local variables of the processes, and as restrictions on the set of edges. A
configuration c which satisfies φ should have at least the number of processes
specified by φ. The local states and the values of the local variables should satisfy
the conditions imposed by φ. Furthermore, c should contain at least the set of
edges required by φ. In such a case, c may have any number of additional edges
and processes (whose local states and local variables are then irrelevant for the
satisfiability of φ by c). This definition implies that the interpretation [[φ]] of a
constraint φ is upward closed (a fact proved in Lemma 2). Below, we define the
notion of a constraint formally.

A constraint is a pair (Θ, E) where Θ = θ1 · · · θm is a sequence with θi ∈
B(X ∪ Q•), and E is a set of edges of the form i

req−→t j or i
ack←−t j with t ∈ T

and 1 ≤ i, j ≤ m. We use Θ(i) to denote θi and |φ| to denote m. Intuitively, a
configuration satisfying φ should contain at least m processes, where the local
state and variables of the ith process satisfy θi. Furthermore the set E defines
the minimal set of edges which should exist in the configuration. More precisely,
for a constraint φ = (Θ, E1) with |φ| = m, and a configuration c = (U, E2) with
|c| = n, we write c |= φ to denote that there is a strictly monotonic injection h
from the set m to the set n such that the following conditions are satisfied for
each t ∈ T and i, j : 1 ≤ i, j ≤ m: (i) uh(i) |= θi, (ii) if (i

req−→t j) ∈ E1 then

(h(i)
req−→t h(j)) ∈ E2, and (iii) if (i ack←−t j) ∈ E1 then (h(i) ack←−t h(j)) ∈ E2.

Given a constraint φ, we let [[φ]] = {c ∈ C| c |= φ}. Notice that if some θi

is unsatisfiable then [[φ]] is empty. Such a constraint can therefore be safely
discarded if it arises in the algorithm. For a (finite) set of constraints Φ, we
define [[Φ]] =

⋃
φ∈Φ [[φ]]. The following lemma follows from the definitions.

Lemma 2. For each constraint φ, the set [[φ]] is upward closed.

In all the examples we consider, the set CF in the definition of APRX-PAR-

COV can be represented by a finite set ΦF of constraints. The coverability
question can then be answered by checking whether Init ∗

� [[ΦF ]].

Entailment and Predecessors. To define our scheme we will use two oper-
ations on constraints; namely entailment, and computing predecessors, defined
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below. We define an entailment relation � on constraints, where φ1 � φ2 iff
[[φ2]] ⊆ [[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 � Φ2
denote that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 � φ2. Observe that
Φ1 � Φ2 implies that [[Φ2]] ⊆ [[Φ1]]. The lemma below, which follows from the
definitions, gives a syntactic characterization which allows computing of the en-
tailment relation.

Lemma 3. For constraints φ = (Θ, E) and φ′ = (Θ′, E′) of size m and n
respectively , we have φ � φ′ iff there exists a strictly monotonic injection h :
m → n such that:

1. Θ′(h(i)) ⇒ Θ(i) for each i ∈ m, and
2. ∀i, j : 1 ≤ i, j ≤ m and ∀t ∈ T , the following conditions holds: (i) if i

req−→t

j ∈ E then h(i)
req−→t h(j) ∈ E′, and (ii) if i

ack←−t j ∈ E then h(i) ack←−t

h(j) ∈ E′.

For a constraint φ, we let Pre(φ) be a set of constraints, such that [[Pre(φ)]] =
{c| ∃c′ ∈ [[φ]] . c � c′}. In other words Pre(φ) characterizes the set of configura-
tions from which we can reach a configuration in φ through the application of
a single rule in the approximate transition relation. In the definition of Pre we
rely on the fact that, in any monotonic transition system, upward-closedness is
preserved under the computation of the set of predecessors (see e.g. [1]). From
Lemma 2 we know that [[φ]] is upward closed; by Lemma 1, (C, � ) is monotonic,
we therefore know that [[Pre(φ)]] is upward closed.

Lemma 4. For any constraint φ, Pre(φ) is computable.

For a set Φ of constraints, we let Pre(Φ) =
⋃

φ∈Φ Pre(φ).

Scheme. Given a finite set ΦF of constraints, the scheme checks whether
Init ∗=⇒ [[ΦF ]]. We perform a backward reachability analysis, generating a se-
quence Φ0 � Φ1 � Φ2 � · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ Pre(Φj ). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj � Φj+1. Notice that the termination condition
implies that [[Φj ]] = (

⋃
0≤i≤j [[Φi]]). Consequently, Φj characterizes the set of all

predecessors of [[φF ]]. This means that Init ∗
� [[ΦF ]] iff (Init

⋂
[[Φj ]]) 	= ∅. In order

to check emptiness of (Init
⋂

[[Φj ]]), we rely on the result below which follows
from the definitions. For a constraint φ = (Θ, E), we have (Init

⋂
[[φ]]) = ∅ iff

either E 	= ∅, or uinit � Θ(i) for some i ∈ n. Observe that, in order to imple-
ment the scheme we need to be able to (i) compute Pre (Lemma 4); (ii) check
for entailment between constraints (Lemma 3); and (iii) check for emptiness of
(Init

⋂
[[φ]]) for a constraint φ (as described above).

7 Unbounded Variables

In this section, we extend the basic model of Section 2 in two ways. First, we
consider processes which operate on variables with unbounded domains. More
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precisely, we allow local variables to range over the integers, and use a simple set
of formulas, called gap-order formulas, to constrain the numerical variables in
the guards. Furthermore, we allow nondeterministic assignment, where a variable
may be assigned any value satisfying a guard. The new value of a variable may
also depend on the values of variables of the other processes. Due to shortage of
space we will only give an overview of the main ideas.

Consider a set A, partitioned into a set AB of Boolean variables, and a set AN

of numerical variables. The set of gap-order formulas over AN, denoted GF(AN),
is the set of formulas which are either of the form x = y, x ≤ y or x <k y,
where k ∈ N. Here x <k y stands for x + k < y and specifies a gap of k
units between y and x. We use F(A) to denote the set of formulas which have
members of B(AB) and of GF(AN) as atomic formulas, and which is closed under
the Boolean connectives ∧, ∨. For a set A, we use Anext = {xnext | x ∈ A} to
refer to the next-value versions of the variables in A.

Transitions. In our extended model, the set of local variables X is the union of
a set XB of Boolean variables and a set XN of numerical variables. As mentioned
above, variables may be assigned values which are derived from those of the other
processes. To model this, we use the set p·Y = {p·x|x ∈ Y } to refer to the local
state and variables of process p. We consider a global condition to be of the form
∀p : θ where θ ∈ F (X ∪ p ·Y ∪ Xnext). In other words, the formula checks the
local variables of the initiator (through X), and the local states and variables of
the other processes (through p·Y ). It also specifies how the local variables of the
process in transition are updated (through Xnext). Notice that the new values
are defined in terms of the current values of variables and local states of all
the other processes. Other types of transitions can be extended in an analogous
manner. Values of next-variables not mentioned in θ remain unchanged.

Example 1. As an example, let the guard in the above transition rule be of the
form ∀p : p ·num < numnext where num is a numerical variable. Then, this
means that the process assigns to its variable num, a new value which is strictly
greater than the values of num in all other processes. Such a rule is used for
instance in the Bakery algorithm to generate new tickets.

The Refinement Protocol. The first phase of the refinement protocol re-
mains the same as in the basic model, i.e., the initiator sends requests to all
other processes. The second phase is modified, so that an acknowledgment edge
carries information about the responding process, i.e., the acknowledgment sent
by process p has the form ackp(up) where up is the current local state of p. In
the third phase, the initiator checks the global condition by looking at the values
attached to the acknowledgments, and updates its own local variables accord-
ingly. For instance, in the above example, the initiator receives the values of the
variables num of all the other processes on the acknowledgment edges. Then, it
chooses a new value which is larger than all received values.

Constraints. The constraint system is modified so that we add gap-order con-
straints on the local variables of the processes and also on the values carried by
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the acknowledgment edges. Performing operations such as checking entailment
and computing predecessors on constraints with gap-orders can be carried out
in a similar manner to [2].

8 Experimental Results

We have implemented our method in a prototype that we have run on several pa-
rameterized systems, including non-atomic refinements of Burn’s protocol, Dijk-
stra’s protocol and the Bakery’s algorithm, as well as on the Lamport distributed
Mutual exclusion protocol and the two-phase commit protocol. The Bakery and
Lamport protocols have numerical local variables, while the rest have bounded
local variables. The refinement R1 used for the first two algorithms corresponds
to the refinement protocol introduced in Section 3. The refinements R2 and R3
are those introduced in the end of Section 3. More precisely, in R2, the initiator
re-sends a request to all the processes whose values violate the global condition
being tested. In R3, the initiator re-sends requests to all other processes.

The results, using a 2 GHZ computer with 1 GB of memory, are summarized
in Table 1. We give for each case study, the number of iterations, the time, the
number of constraints in the result, and an estimate of memory usage. Details
of the case studies can be found in [3].

Table 1. Experimental results on several mutual exclusion algorithms

refine iterat. time final constr. memory

Burns R1 26 0.5 sec 44 1MB

Dijkstra R1 93 0.5 sec 41 1MB

Bakery R2 4 0.06 sec 12 1MB

Bakery R3 4 0.06 sec 12 1MB

Two Phase Commit - 6 0.03 sec 9 1MB

Lamport - 29 30 mn 4676 222MB

9 Conclusions and Future Work

We have presented a method for automatic verification of parameterized systems.
The main feature of the method is that it can handle global conditions which
are not assumed to be atomic operations. We have built a prototype which we
have successfully applied on a number of non-trivial mutual exclusion protocols.
There are several interesting directions for future work. First, our algorithm op-
erates essentially on infinite sets of graphs. Therefore, it seems feasible to extend
the method to other classes of systems whose configurations can be modeled by
graphs such as cache coherence protocols and dynamically allocated data struc-
tures. Furthermore, although the method works successfully on several examples,
there is at least one protocol (namely the non-atomic version of Szymanski’s pro-
tocol) where the method gives a false positive. We believe that this problem can
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be solved by introducing a scheme which allows refining the abstraction (the
over-approximation). Therefore, we plan to define a CEGAR (Counter-Example
Guided Abstraction Refinement) scheme on more exact representations of sets
of configurations.

References

1. Abdulla, P., et al.: Algorithmic analysis of programs with well quasi-ordered do-
mains. ICom 160, 109–127 (2000)

2. Abdulla, P., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State
Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Abdulla, P., et al.: Handling parameterized systems with non-atomic global condi-
tions. Technical Report 2007-030, it (2007)

4. Abdulla, P., et al.: Regular Model Checking Without Transducers (On Efficient
Verification of Parameterized Systems). In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

5. Abdulla, P., et al.: Regular Model Checking Made Simple and Efficient. In: Brim,
L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg
(2002)

6. Pnueli, A., et al.: Parameterized Verification with Automatically Computed In-
ductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

7. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003)

8. Chkliaev, D., Hooman, J., van der Stok, P.: Mechanical verification of transaction
processing systems. In: ICFEM 2000 (2000)

9. Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameter-
ized Verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2005)

10. Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidel-
berg (2000)

11. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. FMSD 2(2), 149–164 (1993)

12. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1992)

13. Kesten, Y., et al.: Symbolic model checking with rich assertional languages.
TCS 256, 93–112 (2001)

14. Lahiri, S.K., Bryant, R.E.: Indexed Predicate Discovery for Unbounded System
Verification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–
147. Springer, Heidelberg (2004)

15. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
CACM 21(7), 558–565 (1978)

16. Manna, Z., et al.: STEP: the Stanford Temporal Prover. Draft Manuscript (1994)
17. Revesz, P.: A closed form evaluation for datalog queries with integer (gap)-order

constraints. TCS 116, 117–149 (1993)
18. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification. In: Proc. LICS 1986, pp. 332–344 (1986)



Abstract Interpretation of the Physical Inputs

of Embedded Programs

Olivier Bouissou1 and Matthieu Martel2

1 CEA LIST
Laboratoire MeASI

F-91191 Gif-sur-Yvette Cedex, France
Olivier.Bouissou@cea.fr

2 Laboratoire ELIAUS-DALI
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Abstract. We define an abstraction of the continuous variables that
serve as inputs to embedded software. In existing static analyzers, these
variables are most often abstracted by a constant interval, and this ap-
proach has shown its limits. We propose a different method that analyzes
in a more precise way the continuous environment. This environment is
first expressed as the semantics of a special continuous program, and we
define a safe abstract semantics. We introduce the abstract domain of
interval valued step functions and show that it safely over-approximates
the set of continuous functions. The theory of guaranteed integration is
then used to effectively compute an abstract semantics and we prove that
this abstract semantics is safe.

1 Introduction

The behavior of an embedded system depends on both a discrete system (the
program) and a continuous system (the physical environment). The program
constantly interacts with the environment, picking up physical values by means
of sensors and modifying them via actuators. Thus, static analyzers for criti-
cal embedded software [4,13] usually face the discrete part of a wider, hybrid
system [17] but they often poorly abstract the physical environment in which,
in practice, the embedded systems are run. To take an extreme example (more
reasonable examples abound in articles dedicated to hybrid systems [1,23]), the
static analysis of avionic codes should abstract the plane environment, that is,
the engines, the wings, and the atmosphere itself.

In practice, the sensors correspond to volatile variables in C programs and,
at analysis-time, the user must assign to these variables a range given by the
minimal and maximal values the sensor can send. In this case, a static analyzer
assumes that the value sent by the sensor may switch from its minimum to
its maximum in an arbitrary short laps of time, while, in practice, it follows
a continuous evolution. As a consequence, the results of the static analysis are
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significantly over-approximated, and our experience with Fluctuat [13] has shown
that this naive abstraction of the continuous variables is an important source of
loss of precision. The abstraction of the physical environment is even more crucial
for embedded systems that cannot be physically tested in their real environment,
like space crafts whose safety only relies on verification tools.

In this article, we consider a special case of hybrid systems: the continuous
environment serves as input for the discrete system which is represented by
the embedded program. We present an analysis of the continuous part of the
system using the abstract interpretation framework [8]. Our analysis permits a
better over-approximation of the continuous variables than an abstraction with
intervals and can be seen as the first step in the process of introducing hybrid
components to existing static analyzers. A first approach to the abstraction of
a continuous function could be done as follows: first partition the time line into
(not necessarily regular) steps and then chose for each step an over- and under-
approximation of the function on this step. This technique defines a family of
Galois connections between various domains (one for each choice of the parti-
tioning [22]), but is not compatible with efficient implementations. We indeed
compute the over- and under-approximations using validated ODE solvers (see
Section 4); modern algorithms [6,24] dynamically change the step size, and thus
dynamically partition the time line, in order to reach a user defined precision. We
must then consider an abstract domain for which the step sizes are not statically
defined (see Section 3). This article is focused on the definition and correction of
the abstract domain and we omit for the sake of conciseness the purely numerical
aspects of the computation: the method briefly described in Section 5 is fully
developped in [6]. In addition, a guaranteed extrapolation algorithm that safely
bounds a function on an interval [t, ∞[ would be necessary to find a non naive
widening. These purely numerical aspects are out of the scope of this article.

This article is organized as follows. In Section 2, we describe the continuous
environment as the collecting semantics of a continuous program, described by
an interval valued ODE. As most collecting semantics of usual programs, this
semantics is neither representable in machine nor computable, so we present
in Section 3 an abstract domain which can be effectively used for the over-
approximation of continuous functions. We also give correctness criteria in order
to build a safe abstraction of elements of the concrete domain. In Section 4,
we show that guaranteed integration algorithms compute an abstract semantics
of the ODE and we prove that this semantics is a safe over-approximation of
the collecting one in Section 5. Finally, we show (Section 6) using a basic ex-
ample that our approach gives better results than a naive abstraction of the
environment using intervals.

To our knowledge, this is the first formalism that allows for the integration of
the continuous environment in an abstract interpretation of embedded software.
Edalat et al. defined a domain theoretic characterization of continuous functions
[11,12] and showed that the solution to ODEs can be obtained by successive
approximations. Their work is located at the concrete level, as they describe the
continuous functions, and it does not provide an abstraction in the sense of the
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abstract interpretation theory, which is the main result of the present article.
On the other hand, the analysis of non-linear hybrid automata using guaranteed
ODE solvers was implemented in HyperTech [18], but the continuous dynamics
is not defined by its own, which is necessary for the analysis of embedded software
where the discrete and the continuous subsystems are clearly disjoint. Previous
works on abstract interpretation strategies for hybrid systems mainly involved
the analysis of hybrid automata [16].

1.1 Notation

The set of real numbers is R, while the set of non negative real numbers is R+.
The set of natural numbers is N. We will also consider the set of floating point
numbers F [25]. The domain of continuous functions defined on R+ with values
in R is C0

+ and the set of differentiable functions from R+ to R is C1
+. For a

function f ∈ C1
+, we note ḟ ∈ C0

+ its first derivative. We use bold symbols to
represent intervals: given a domain D with an order ≤D, the set of intervals
on D is D. Elements of D are denoted x; for an interval x ∈ D, we note its
lower bound x and its upper bound x, such that x = {x ∈ D | x ≤D x ≤D x}.
In particular, we will consider the set of intervals on real numbers R, intervals
on non negative real numbers R+ and intervals on floating point numbers F .
Finally, we use arrows to represent vectors: given a domain D, the set of vectors
of dimension n is Dn and elements of Dn are denoted −→x . Vectors of intervals
are denoted −→x .

2 Syntax and Semantics of Continuous Processes

Hybrid systems are composed of two intrinsically different processes that run in
parallel: a discrete program and a continuous environment. In order to deal with
and to analyze the whole system, one needs to find a unified representation of
both parts. As for computer programs, we define a syntax, a collecting and an
abstract semantics of the continuous environment. This section is dedicated to
the definition of the concrete part.

2.1 Syntax

The environment represents physical quantities such as the temperature of the
air, the speed of the wind or the deceleration of a car. Such quantities evolve
continuously with time (i.e. their value cannot instantaneously jump from a to
b), and thus follow a function from C0

+. Most often, this function is not explic-
itly known, but is defined as the solution to an ordinary differential equation
(ODE). An ODE can be seen as a relation between a function y ∈ C1

+ and its
first derivative ẏ via a continuous function F : ẏ = F

(
y; −→p

)
. −→p is a set of constant

parameters (e.g. the gravitational constant, the length of the plane, etc.). This
representation as an autonomous ODE of order 1 (i.e. F only depends on the
spatial value of y, and not on the time t) is expressive enough to capture other
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forms of ODE (non-autonomous and higher order ODEs are easily transformed
into higher dimensional autonomous ODEs of order one). An ODE relates the
value of the system at time t + dt with the value of the system at time t, which
is the continuous equivalent to any discrete dynamical system. It consequently
forms the syntax of the continuous process. In order to achieve more expressive-
ness, we allow the parameters of the function F to be intervals, leading to the
notion of interval ODE.

Definition 1. Interval ODE.
Let F be a continuous function with a set of parameters −→p ∈ −→

R . An in-
terval ordinary differential equation (interval ODE) is given by the relation:
ẏ = F

(
y; −→p

)
, −→p ⊆ −→

R .

This formalism is expressive enough to capture most dynamical systems and the
introduction of interval parameters makes it suitable to express uncertainties on
the system. We extend the uncertainty to the initial conditions of the ODE, and
define the notion of interval initial value problems.

Definition 2. Interval IVP.
Let F be a continuous function with a set of parameters −→p . An interval initial
value problem is given by an interval ODE and an interval initial condition:

ẏ = F (y, −→p ) y(0) ∈ y0 (1)

An interval IVP gives a complete characterization of a set of continuous environ-
ments using only three terms: a continuous function, a set of parameters and an
initial interval value. We will thus write the physical environment P:=(F,p,y),
where F is the function, p its parameters and y the initial value. Example 1 shows
how this compact notation is used to define a set of functions.

Example 1. The continuous process P=(F,p,y) with F(y)=p*y, p=[-2,-1] and
y=[0.5,3] corresponds to the IVP ẏ = p.y, y(0) ∈ [0.5, 3], p ∈ [−2, −1]. It
defines the functions y(x) = q.ep.x with q ∈ [0.5, 3], p ∈ [−2, −1] (see Figure 1).

2.2 Collecting Semantics

Just like the collecting semantics of a discrete program is the set of all the (dis-
crete) execution traces corresponding to a set of input parameters, the collecting
semantics of the continuous process (F,p,y) is the solution to the correspond-
ing interval IVP, that is, the set of all possible dynamics (i.e. continuous traces)
of the system. The solution to a (real valued) ODE ẏ = F

(
y; −→p

)
is a function

y ∈ C1
+ such that for every time t, it holds that ẏ(t) = F

(
y(t); −→p

)
. The solution

to a real valued initial value problem is a solution to the ODE that additionally
satisfies the initial condition. The existence and/or uniqueness of this solution
depends mainly on the function F , and this question is not relevant for this
article. On the contrary, we will always assume that F is smooth enough so
that there exists a solution y defined on R+ for any initial condition and any
parameter. The notion of solution to an IVP is then extended to interval IVP:
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Fig. 1. Solutions to the interval ODE of Example 1

Definition 3. Solution to an interval IVP.
The solution to the interval IVP (1) is a set of functions Y ⊆ C1

+ such that y ∈ Y
if and only if there exists p ∈ p and y0 ∈ y0 such that y is a solution to the (real
valued) IVP ẏ = F (y, p), y(0) = y0.

The semantics �P� of P=(F,p,y) is the solution to the interval initial value
problem ẏ = F

(
y, p

)
, y(0) ∈ y. It is an element of the concrete domain D =

P
(
C1
+
)
, the power set of C1

+. The inclusion ⊆, union ∪ and intersection ∩ give
a lattice structure to D. Each element of �P� is a continuous function which
characterizes one particular evolution of the continuous system under one set of
parameters and one input.

3 Abstract Domain

The concrete domain for the continuous processes is thus the powerset of the
set of differentiable functions C1

+. In this section, we present an abstract domain
that collects elements from C1

+.

3.1 Interval Valued Step Functions

Continuous functions are not enumerable in machine as they assign to an infi-
nite, uncountable number of elements (every t ∈ R+) a value that is itself not
representable (as a real number) in finite precision. Thus, an abstraction of a set
of continuous functions must abstract the values reached by the functions as well
as the instants at which these values are obtained. The former is done by using
intervals instead of sets while the latter is done by considering step functions,
i.e. functions that are almost always constant.

Definition 4. Interval valued step functions.
D� is the set of all step functions from R+ to R. We recall that given a domain
D, a function f : R+ → D is a step function if and only if either:

– there exist an infinite sequence t0 = 0 < t1 < · · · < tn < tn+1 < . . . such
that ∀n ∈ N, f is constant between tn and tn+1;
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– there exist t0 = 0 < t1 < · · · < tn < · · · < tN such that ∀n ∈ [0, N − 1], f is
constant between tn and tn+1 and f is constant between tN and ∞.

Representation of step functions
Following the notations used by Julien Bertrane [2], we represent the step func-
tions as a conjunction of constraints of the form “ti : xi”, which means that
the function switches to xi at time ti. The switching times ti do not need to be
ordered, nor different; the infinite conjunction f = t0 : x0 ∧ t1 : x1 ∧ · · · ∧ tn :
xn ∧ . . . represents the function f such that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ N|tj ≤ t}. A finite sequence of constraints f = t0 : x0∧t1 : x1∧· · ·∧tN :
xN represents the step function f such that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ [0, N ]|tj ≤ t}. We use the more compact notation f =

∧
0≤i≤N ti : xi,

with N ∈ N∪{∞}. Let us remark that this notation is not unique. For example,
the conjunctions 3 : [1, 2] ∧ 0 : [1, 2] and 0 : [1, 2] ∧ 1 : [1, 2] define the same
constant function with value [1, 2]. This makes the equality of functions difficult
to define (we can say that f = g ⇔ ∀t ∈ R+, f(t) = g(t) but this is not satisfying
as it cannot be used for an implementation). To solve this problem, we define a
normal form for the conjunctions of constraints characterized by:

1. The switching times are sorted increasingly and all different, i.e. if f =∧
0≤i≤N ti : xi, then 0 = t0 < t1 < · · · < tn < . . .

2. Consecutive constraints cannot have equal values: ∀i ∈ [0, N ], xi �= xi+1.

With these conditions, the representation is unique. It is moreover easy to com-
pute the normalized form Norm(f) of a given conjunction of constraints f . First
we sort the constraints by ascending switching time, with the convention that if
two constraints have the same time, then we only keep the one with the highest
index. This makes the conjunction to fulfill the first normalization condition.
Then, we remove any constraint ti : xi such that xi−1 = xi. This way, we only
keep the longest possible steps, which satisfies the second condition. It is easy
to see that the normalization process does not change the meaning of the repre-
sentation: for a conjunction f , then it holds that ∀t ∈ R+, f(t) = Norm(f)(t).
Given two normalized conjunctions, we define an equality test:

∧

0≤i≤N

ti : xi =
∧

0≤j≤M

uj : yj ⇐⇒ N = M and ∀i ∈ [0, N ], ti = ui and xi = yi . (2)

The normalization process induces an equivalence relation (f ≡ g ⇔ Norm(f) =
Norm(g)). Thus, from now on we work in the domain D�

/≡, i.e. we always
consider that the conjunctions are normalized. We will however keep the notation
D� for D�

/≡ whenever it is clear from the context.

Proposition 1. Let f, g ∈ D�. Then it holds that:

f = g ⇐⇒ ∀t ∈ R+, f(t) = g(t) (3)

Proof. Clearly, we have f = g ⇒ ∀t ∈ R+, f(t) = g(t). Let us prove the other
direction. Let f, g ∈ D� such that ∀t ∈ R+, f(t) = g(t), with f =

∧
0≤i≤N ti : xi

and g =
∧

0≤j≤M uj : yj . We have N = M : suppose that N �= M , then we can
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suppose that N < M and N �= ∞, so ∀t ≥ tN , f(t) = g(t) = xN ; however,
g has at least a step in [tn, ∞], and thus its value changes at least once, hence
the contradiction. Now, let us suppose that A = {i ∈ N|ti �= ui} �= ∅, and let
k = min A, with tk < uk. Then we have tk−1 = uk−1 < tk < uk, so f(tk−1) =
g(tk−1) = xk−1 and f(tk) = xk, g(tk) = g(tk−1) = xk−1, so xk = xk−1, hence
the contradiction. So, ∀i ∈ [0, N ], ti = ui, and xi = yi. �

3.2 Concretisation and Abstraction

The function f =
∧

0≤i≤N ti : xi represents the set of continuous, differentiable
functions that remain within xi for any time t ∈ [ti, ti+1]. The concretisation
function γ : D� → D is thus defined by:

γ
( ∧

0≤i≤N

ti : xi

)
=

{
y ∈ C1

+ | ∀i ≤ N, ∀t ∈ [ti, ti+1], y(t) ∈ xi

}
(4)

If N is finite, the last constraint transforms into ∀t ≥ tN , y(t) ∈ xN .
For example, Figure 2(a) shows a step function (represented by the black bold

steps) and a function within its concretisation (the dashed curve). Among others,
the solutions of Example 1 are contained in the concretisation (gray surface).

The definition of an abstraction is not as direct as for the concretisation. As
in the case of the polyhedra domain [9], we cannot define a best abstraction: it
is always possible to increase the quality of the abstraction by selecting smaller
steps. Thus, we only give a criteria for a function to be a safe abstraction. Let
us first define the lower- (Y) and upper-functions (Y) of a set of continuous
real functions Y ∈ D : Y = λt.inf {y(t) | y ∈ Y} and Y = λt.sup {y(t) | y ∈ Y}.
Equivalently, we define the lower- and upper-functions of an interval valued step
function. Let f ∈ D�, the real valued step functions f and f are: f = λt.f(t)

and f = λt.f(t). These four functions are the basis of the Validity condition:

Definition 5. A function α : D → D� satisfy the Validity condition (V.C.) if
and only if for all Y ∈ D, it holds that:

∀t ∈ R+, α
(
Y

)
(t) ≤ Y(t) ≤ Y(t) ≤ α

(
Y

)
(t) (5)

This property states that the computed interval valued step function indeed
encloses the set {y(t) | y ∈ Y} for all t ∈ R+. The V.C. is a necessary and
sufficient condition for the abstraction α to be sound (see Theorem 1).

3.3 Structure of the Abstract Domain

Let us now show that D� can be given a lattice structure and that, under the
V.C., the abstraction α : D → D� is sound. Intuitively, we want to define the
order ⊆� pointwise (i.e. f ⊆� g ⇔ ∀t ∈ R+, f(t) ⊆ g(t)). We give a condition (6)
on the constraints that allows for the effective testing of whether f ⊆� g. Let
f =

∧
0≤i≤N ti : xi and g =

∧
0≤j≤M uj : yj , then

f ⊆� g ⇐⇒ ∀(i, j) ∈ [0, N ] × [0, M ], [ti, ti+1] ∩ [uj , uj+1] 	= ∅ ⇒ xi ⊆ yj (6)
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(a) An abstraction of the solutions of
Example 1.

(b) Abstract meet operator.

Fig. 2. Abstract domain

Proposition 2. If f, g ∈ D� are in a normalized form, then it holds that:

f ⊆� g ⇐⇒ ∀t ∈ R+, f(t) ⊆ g(t) (7)

Proof. Let f =
∧

0≤i≤N ti : xi and g =
∧

0≤j≤M uj : yj be such that f ⊆� g,
and let t ∈ R+. There exist i ∈ [0, N ] and j ∈ [0, M ] such that t ∈ [ti, ti+1] and
t ∈ [uj , uj+1]. Thus, [ti, ti+1] ∩ [uj , uj+1] �= ∅, so f(t) = xi ⊆ yj = g(t).

Now, let f, g ∈ D� such that ∀t ∈ R+, f(t) ⊆ g(t), f and g written as
above. Let i, j ∈ [0, N ] × [0, M ] such that [ti, ti+1] ∩ [uj , uj+1] �= ∅, and let
t ∈ [ti, ti+1] ∩ [uj, uj+1]. Then, f(t) = xi and g(t) = yj , so xi ⊆ yj . �

The equality (Equation (2)) and the partial order (Equation (6)) defined on
D� are equivalent to the usual equality and order on functions, but the charac-
terization we provide allows their efficient implementation (between normalized
functions, the operations run in linear time and yield normalized functions).

The meet operator ∩� on D� is defined as follows. If f =
∧

0≤i≤N ti : xi and
g =

∧
0≤j≤M uj : yj , then

f ∩� g = Norm

⎛

⎝
∧

0≤i≤N

ti : x̃i ∧
∧

0≤j≤M

uj : ỹj

⎞

⎠ where (8)

x̃i = xi ∩ yk , k = max{j|uj ≤ ti} (9)

ỹj = yj ∩ xk , k = max{i|ti ≤ uj} (10)

The intersection f ∩� g creates a new step function whose value is at every time t
the intersection f(t)∩g(t). If this intersection is empty (i.e. x̃i = ∅ for some i or
ỹj = ∅ for some j), we define f ∩� g as ⊥�, the bottom element of D�. A graphical
representation of the effect of ∩� is shown in Figure 2(b): the intersection of two
step functions (bold and dashed steps) is computed. The result is the gray area,
and the vertical dashed lines represent the switching times.
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The abstract join operator ∪� is defined in the same way. Let h = f ∪� g, h is
given as for the meet ∩�, except that Equations (9) and (10) are changed into:

x̃i = xi ∪ yk where k = max{j|uj ≤ ti} (11)

ỹj = yj ∪ xk where k = max{i|ti ≤ uj} (12)

The only difference is that we set the value of h at any time t to be f(t) ∪ g(t).

Proposition 3. Let �� = 0 : [−∞, ∞] be the step function with only one step
with value R. We define a special element ⊥� such that γ(⊥�) = ∅ and ∀f ∈
D�, ⊥� ⊆� f . Then 〈D�, ��, ⊥�, ⊆�, ∩�, ∪�〉 is a lattice.

Proof. Clearly, ∀f ∈ D�, ⊥� ⊆� f ⊆� ��. We still need to prove that:

1. ∩� is a meet operator: let f, g ∈ D� and h = f ∩� g, with f =
∧

0≤i≤N ti : xi

and g =
∧

0≤j≤M uj : yj . We first show that h ⊆� f by showing that
∀t ∈ R+, h(t) ⊆ f(t). Let t ∈ R+, and i, j ∈ [0, N ] × [0, M ] be such that
t ∈ [ti, ti+1] and t ∈ [uj, uj+1]. Then, depending on the relative positions of
ti, ti+1, uj and uj+1, the computation of h (Equation (8)) defines h(t) to be
x̃i or ỹj , with x̃i = xi∩yj and ỹj = yj ∩xi. Thus, we have h(t) ∈ xi = f(t).
So, h ⊆� f . Equivalently, we have h ⊆� g. Now, let H ∈ D� such that H ⊆� f
and H ⊆� g. Let t ∈ R+ and i, j such that t ∈ [ti, ti+1] and t ∈ [uj, uj+1].
Then, H(t) ⊆ f(t) = xi and H(t) ⊆ g(t) = yj , so H(t) ⊆ xi ∩ yj , i.e.
H(t) ⊆ h(t). So, H ⊆� h.

2. ∪� is a join operator: the proof runs as for ∩�. �

We now formulate the main theorem of this section that guarantees the sound-
ness of the abstraction.

Theorem 1. If α satisfies the V.C., then for every Y ∈ D, Y ⊆ γ
(
α(Y)

)
.

Proof. Let Y ∈ D and f = α
(
Y

)
∈ D�. We want to prove that Y ⊆ γ

(
f
)
. As α

satisfies the V.C., we know that ∀t ∈ R+, ∀y ∈ Y, y(t) ∈ f(t). Let now y ∈ Y;
y is a continuous function that verifies ∀t ∈ R+, y(t) ∈ f(t), thus y ∈ γ

(
f
)
. So,

it holds that Y ⊆ γ
(
f
)
. �

4 Guaranteed Integration

In this section, we present a technique called guaranteed integration of ODEs
that, as shown in Section 5, enables one to compute the abstract semantics of
the continuous processes. Guaranteed integration of ODEs tries to answer the
following question: given an ODE (possibly with interval parameters), an initial
value (possibly an interval) and a final time T , can we compute bounds on the
value of the solution to the IVP at T ? There are basically two kinds of methods
for computing such bounds on the solution to the IVP. On the one side, classical
methods use the Taylor series decomposition of the solution and then interval
arithmetics. Advanced techniques are used in order to limit the wrapping effect
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inherent to the interval computations, and the first tools (e.g. VNODE [24] or
AWA [20]) use such techniques. On the other side, new methods (e.g. GRKLib [6]
or ValEncIA-IVP [26]) have recently been proposed that compute the bounds
as the sum of a non-validated approximation point and a guaranteed error, i.e.
an interval that is proved to contain the distance between the real solution and
the approximation point. We give the main ideas of how the GRKLib [6] method
works in the proof of Theorem 2. The reader can find more detailed explanations
about GRKLib and a complete proof in [6].

Theorem 2. Given an interval ODE ẏ = F (y, p) and an interval initial value
denoted y(0) ∈ yn + en, where en is the error and yn the approximation point,
it is possible to find a step size h, a global enclosure ỹ, an approximation point
yn+1 and a local enclosure en+1 of the error such that ∀t ∈ [0, h], y(t) ⊆ ỹ and
y(h) ⊆ yn+1 + en+1, where y is any solution to the interval IVP.

Proof sketch. Let us first assume that the step size h is given. The next point
yn+1 is computed by the classical RK4 algorithm [15] that uses four evaluations
of F to approximate the mean derivative between t and t+h. yn+1 is a function
of yn and h only. So, yn+1 = ψ(yn, h), where ψ is expressed using F only.

The computation of en+1 requires a two steps process: first we compute the a
priori bound ỹ and then we use it to compute a tighter bound on the global error
at t + h. The computation of ỹ uses the Picard interval operator and a Banach
fix-point argument as in [20]. Using results from [3,19], we compute en+1 as
en+1 = η + χ + μ. The three terms are computed as follows:

– η represents the discretization error and is computed as the distance between
the flows of the real valued solution to the IVP and the real valued function
ψ. Both functions are equal at time t and so are their first 4 derivatives. As
a consequence, η can be expressed as a function of their fifth derivative only
(we use Taylor expansion to prove it).

– χ represents the propagation of the error en into en+1. In other words, it
is the distance between the images by ψ of two points inside yn + en. This
is computed using the Jacobian matrix of ψ and this is mainly where the
wrapping effect occurs (if the matrix is a rotation matrix, then big over-
approximations arise).

– μ represents the implementation error, i.e. the distance between the com-
puted floating point number yn+1 and the real value that would have been
obtained on an infinite precision computer. We use the global error domain
[21] to compute yn+1 so that we obtain both the floating point number
and an over-approximation of its distance to the real number, i.e. an over-
approximation of μ.

By combining these three computations, we obtain an over-approximation of the
global error at time t + h based on the error at time t. �

We leave the problem of finding an appropriate step size h open for now and
show in Section 5 how to deal with it, and that it can be seen as some kind of
dynamic partitioning [7] of the set of control points of the continuous semantics.
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Input: P=(F,p,y)
Output: �P��

t = 0; h = InitialGuess(F);
yn = y;
while (h, ỹ, y) = GRK

(
F, p, yn

)
do

res = res ∧ t : ỹ; yn = y;
end
return res ∧ t : R

Algorithm 1. Abstract semantics computation

5 Abstract Semantics

In this section, we show that the guaranteed integration methods provide a safe
abstract semantics for the continuous processes. An abstract semantics �P�� of
a continuous process P=(F,p,y) is an interval valued step functions (i.e. an ele-
ment of D�) that provides two things. On the one side, we have an abstraction
of the values that represents as an interval the set {y(t)|y ∈ �P�} at all time
t ∈ R+. On the other side, we have an abstraction of the time line that col-
lects the instants whose values are abstracted by the same interval. In Section
4, we showed that these abstractions are provided by the guaranteed integra-
tion algorithms: given an abstraction of the values at one time t (y(t) ∈ yn),
a function GRK(F, P, yn) exists that computes h (i.e. the abstraction on the
instants), ỹ (i.e. the abstraction on the values) and a new interval y such that
∀u ∈ [t, t+h], y(u) ∈ ỹ and y(t+h) ∈ y. Let us briefly explain how the step size
h is chosen: first, during the computation of the a priori approximation ỹ, we
use a Banach fix-point argument, and thus compute ỹ as the limit of the iterates
of a contracting function. On a computer, this can loop forever either due to
rounding errors or because the fix-point is reached after an infinite iteration.
Thus, we use a limit on the number of iterations and we use a smaller step size
if this limit is reached. Secondly, after each step, the width of y is compared to
the user specified tolerance and control theoretic techniques are used in order to
adjust the next step-size and avoid the error to grow. Thus, the partitioning of
the time line is dynamically computed at each step.

Definition 6. Abstract semantics.
Let P=(F,p,y) be a continuous process. The abstract semantics �P�� of P is the
result of Algorithm 1.

The abstract semantics is computed by iterating the guaranteed integration pro-
cess. Let us remark that the implementation of the GRK function can fail to find
h, ỹ and y if the selected step size becomes smaller than the machine precision.
Whenever this happens, a sort of widening is performed as we end the constraint
conjunction by the safe over-approximation t : R+.

Theorem 3. Let P=(F,p,y) be a continuous process. Then the abstract seman-
tics �P�� is a safe abstraction of the concrete semantics, i.e.:

�P� ⊆ γ
(
�P��

)
(13)
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Proof. Let α : D → D� be the abstraction function defined by α
(
�P�

)
= �P�� and

∀Y ∈ D, Y �= �P�, α(Y) = ��. If we show that α satisfies the V.C., then Equation
(13) holds. Let Y ∈ D, we show that α(Y) satisfies Equation (5). This is clearly
the case if Y �= �P�. Let us suppose that Y = �P�, and let �P�� =

∧
0≤i≤N ti : xi.

We need to prove that ∀i ∈ [0, N ], ∀t ∈ [ti, ti+1] and ∀y ∈ Y, y(t) ∈ xi. We
prove this by induction on i.

For i = 0, we have ∀y ∈ Y, y(0) ∈ y and the GRK function gives h, ỹ and
y1 such that ∀t ∈ [0, h], ∀y ∈ Y, y(t) ∈ ỹ. The algorithm 1 sets x0 to ỹ, which
proves the case i = 0.

Let now i ∈ [0, N ] be such that ∀y ∈ Y, ∀t ∈ [ti, ti+1], y(t) ∈ xi. Clearly,
the algorithm 1 also gives an interval yi such that ∀y ∈ Y, y(ti+1) ∈ yi.
Let P’=(F,p,yi) be the interval IVP which differs from P only for the ini-
tial value. Then, for every H > 0, it holds that {y(t)|t ∈ [0, H ], y ∈ �P’�} =
{y(t)|t ∈ [ti+1, ti+1 + H ], y ∈ �P�}, i.e. the solutions to the initial IVP for time
between ti+1 and ti+1 + H are the same as the solutions to the IVP P’ for time
between 0 and H , as by hypothesis our systems are autonomous. The GRK
function gives ỹ and h such that ∀t ∈ [0, H ], ∀y ∈ �P’�, y(t) ∈ ỹ. The algorithm
1 sets xi+1 to be ỹ and ti+2 to ti+1 + h, so we have ∀t ∈ [ti+1, ti+2], ∀y ∈
Y, y(t) ∈ xi+1. �

6 Example

We present an example that illustrates how we intend to include our work into
existing static analyzers. We consider a code that is often used in embedded
programs: an integrator with thresholds. The program in Listing 1 (inspired
from [14]) integrates using the rectangle method the input data. The integration
is carried out up to some threshold defined by the interval [INF,SUP]. The input
data are given by a sensor (the volatile variable x) at a frequency of 8KHz. The
integrator is a well known difficult problem for the analysis of numerical precision
[10]. Its behavior is extremely depending of the input data (i.e. the physical
environment) of the frequency of the integration process (i.e. the sampling rate)
and of the precision of the sensor.

1 #define SUP 4
2 #define INF −4
3 // assume x ’=2∗Pi∗y and y’=−2∗Pi∗x
4 vo la t i l e f loat x ;
5 static f loat i n t g rx =0.0 ,h=1.0/8;
6 void main ( ) {
7 while ( t rue ) { // assume frequency = 8 KHz
8 x i = x ; i n tg rx += x i ∗h ;
9 i f ( i n tg rx > SUP)

10 in tg rx = SUP;
11 i f ( i n tg rx < INF)
12 in tg rx = INF ;
13 }}

Listing 1. Simple integrator

The comments in the code in Listing 1 indicate how we could give the analyzers
hints on the physical environment. The first one (Line 3) gives the differential
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Fig. 3. Result of the analysis of the integrator

equation followed by x and y while the second one (Line 7) indicates the fre-
quency of the main loop. Such comments could be understood by a static an-
alyzer and are often already present (although not in this form) in embedded
programs (it is very frequent to find a comment such as “this loop runs at 8KHz”
in the code usually given to static analyzers). In this example, the input signal
is x(t) = sin(2πt). In theory (i.e. with a perfect knowledge of the environment
and an infinite precision computer), the value of intgrx remains bounded by
[0, 2]. As explained in the introduction, a naive abstraction of the continuous en-
vironment approximates x by the interval [−1, 1]. In this case, the analyzer binds
the variable intgrx with the value [−n · h, n · h] after unrolling the main loop
n times. We implemented a prototype analyzer that uses the abstraction of the
continuous environment of Section 5 to improve this result. The analyzer uses
the GRKLib library [6] as guaranteed integration tool. The analyzer takes as
input language a subset of C and the comments are changed into specific asser-
tions that the analyzer understands. Figure 3 shows the results obtained by this
analyzer and by an abstraction using intervals. After 100 iterations, the value
of intgrx is [−4, 4] with an interval based analyzer, because of the thresholds,
and [−4.353 · 10−2, 4.192 · 10−2] with our analyzer.

7 Conclusion

In this article, we provided a formalization and an abstraction of the physical
environment of embedded software which is coherent with the analysis of the
discrete program itself. Like the collecting semantics of a program describes all
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the possible executions for any input data, our description of the continuous en-
vironment describes all possible continuous evolutions for any initial condition
and parameter of the system. We then defined an abstract domain that allows
for the sound over-approximation of continuous functions: the domain of interval
valued step functions. A major difficulty in the definition of this domain was to
deal with dynamic step sizes in order to cope with the most efficient numerical
algorithms. Our representation of such functions as a conjunction of constraints
allows for an elegant definition of the abstract operators and their efficient imple-
mentation. Finally, we showed that the guaranteed integration methods provide
an abstract semantics for the continuous process that is sound with respect to
the collecting one. A simple example derived from a well known, difficult problem
shows that our approach considerably improves the analysis.

The analysis of the complete hybrid system still needs some extensions. First
of all, we do not consider yet feedback from the program, i.e. we have not men-
tionned actuators. Previous work by Olivier Bouissou [5] dealt with this problem
and a merge of both results is necessary. Secondly, our formalism only abstracts
the environment and does not consider the action of the sensors. These latter
introduce some noise inside the system as their measurements as well as their
sampling rate are imprecise. From a certain point of view, our model supposes
that we have perfect sensors, i.e. that the values provided to the program are
the exact values of the continuous environment. Clearly, a better modeling of
sensors is necessary. For example, we can add comments and/or assertions in
the program that describe the inaccuracy of the sensors. Thus, our abstraction
of the environment remains valid, and it is only when the values are passed to
the program that they are modified in order to match the specification of the
sensor. Finally, the addition of an extrapolation method as a widening operator
is needed to complete the abstract interpretation of continuous functions. This
is a purely numerical problem that does not affect our domain.
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Abstract. Realizability – checking whether a specification can be implemented
by an open system – is a fundamental step in the design flow. However, if the spec-
ification turns out not to be realizable, there is no method to pinpoint the causes
for unrealizability. In this paper, we address the open problem of providing diag-
nostic information for realizability: we formally define the notion of (minimal)
explanation of (un)realizability, we propose algorithms to compute such explana-
tions, and provide a preliminary experimental evaluation.

1 Introduction

The role of properties in the design flow is becoming increasingly important [19,2].
Properties are used to describe design intent and to document designs and components,
and play a fundamental role both in dynamic and static verification. As a result, research
has been devoted to the development of new algorithms and tools for requirements
analysis, in order to guarantee that the starting point of the process is indeed free from
flaws. Typical forms of analysis are consistency checking, and compatibility with sce-
narios [14,4]. However, most property verification algorithms and tools are currently
lacking the ability to provide diagnostic information that can support the debugging.
This is potentially a major shortcoming. In fact, the practical success of model check-
ing is tightly related to the ability of producing counterexamples (e.g., [10]): when the
system violates a requirement, model checking algorithms are able to provide a simu-
lation trace witnessing the violation, which may help the designer to find suitable fixes.

In this paper, we address the problem of providing diagnostic information for the
realizability of the specification of an open system (e.g., a component). In this set-
ting, requirements are typically separated in assumptions (i.e., the admissible behaviors
of the environment), and guarantees (i.e., the behaviors must be implemented by the
system-to-be). Intuitively, realizability is the problem of checking the existence of a
system implementing the required guarantees, given that the environment can do what-
ever allowed by the assumptions.

We make two contributions. First, we tackle the problem of precisely characterizing
the idea of diagnostic information for realizability problems. We propose notions for ex-
planation and minimal explanation of (un)realizability. This issue is in fact non trivial:
realizability could be achieved by relaxing the assertions on the system, or strength-
ening the assumptions on the environment. These notions can be also used to provide
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diagnostic information for realizable specifications, i.e., we allow pinpointing minimal
subsets of the specification that might be covered by the remaining part.

Second, we propose two methods to extend a practical, symbolic algorithm for re-
alizability, in order to extract explanations and minimal explanations in case of (un)re-
alizability. One of the algorithms is based on a explicit search in the space of subsets
of the specification, and is able to compute one explanation at a time. The other one
is fully symbolic in nature, and relies on the idea of activation variables to extract all
explanations. We implemented the methods within the NUSMV system, for the class
of Generalized Reactivity(1) [15] specifications, and we tested them on some industrial
cases. The symbolic computation of all the explanations of (un)realizability turns out
to be computationally expensive. On the other hand, the explicit algorithm can pro-
duce, with moderate performance penalty, explanations that are significantly smaller -
sometimes more than an order of magnitude - than the original specifications.

Related Work. To the best of our knowledge, the notion of explanation of realizability
has never been defined in terms of requirements. Production of diagnostic information
in case of unrealizability was addressed in [18,6,3] and in [20]. In [18,6,3] a counter-
strategy is constructed showing how the environment can force the system to violate
its guarantees. Yoshiura [20] developed heuristics to classify reasons for unrealizabil-
ity based on notions that are harder to fulfil than temporal satisfiability but easier than
realizability. In both cases, (i) the diagnostic information is “global”, i.e., it takes into
account all the input problem, and (ii) the link to the requirements in the original prob-
lem is lost. Our approach can complement both [18,6,3] and [20] by providing a smaller,
yet unrealizable specification to work on. In particular, a counter-strategy might exploit
more than one source of unrealizability. Our approach can help to obtain a more focused
counter-strategy. In terms of techniques, the fully symbolic algorithm is inspired by the
idea of activation variables for the case of Boolean satisfiability [13]. Closely related
is also the extension to the case of unsatisfiable core for LTL specifications proposed
in [9], for the less complex case of satisfiability. Finally, there is a large body of work
on fault localization and explanation in a verification context, where both a program
and a (potentially implicit) specification are given. We refer the reader to the section on
related work in Groce’s Ph.D. thesis [12] for a survey.

Document structure. In Sect. 2 we define some technical background. In Sect. 3, we
informally discuss and formalize the notion of explanation. In Sect. 4, we present the
explanation-extracting algorithm. In Sect. 5, we discuss the implementation and present
some experimental evaluation. Finally, in Sect. 6, we draw some conclusions and outline
directions for future work.

2 Preliminaries

2.1 Synthesis of Open Controllers

We are interested in the question of realizability of an LTL property [16,1]. 1 We start
from two disjoint sets E and S of input and output signals respectively, and from a
formula ϕ expressed in LTL over atomic propositions on E ∪ S (written ϕ(E , S)).

1 We assume the reader being familiar with LTL syntax and semantics.
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E is the set of variables controlled by the environment, while S is the set of variables
controlled by the system. The realizability problem for a property ϕ consists of checking
whether there exists a program such that its behavior satisfies ϕ [16]. An LTL formula
ϕ(E , S) is then realizable iff there exists such a program. Properties for which such
a program exists are called realizable or implementable. Dually, properties for which
such a program does not exist are called not realizable or unrealizable.

The realizability problem can be formalized as a two player game among the system
we are going to realize and the environment: the system plays against the environment
in such a way that at every step of the game the environment moves and then the sys-
tem tries to move by producing behaviors compatible with the property. The system
wins if it produces a correct behavior regardless of the behavior of the environment.
In this framework, checking for realizability amounts to check for the existence of a
winning strategy for the system in the corresponding game. This is tackled by gen-
erating from the property a deterministic Rabin automaton using the Safra construc-
tion [17]. This automaton is interpreted as a two player game among the system and
environment and it is traversed as to find a witness of the non emptiness of the lan-
guage of the automaton (which corresponds to a correct implementation of the given
property) [16].

2.2 Assumptions and Guarantees

Practically a specification is often represented with two distinguished sets – a set of
assumptions A and a set of guarantees G – plus a function f that turns such a set of
constraints into an actual temporal formula ϕ using Boolean and temporal connectives.
Under this assumption a specification is given as a tuple 〈A, G〉. Intuitively, assumptions
are those constraints which the environment is supposed to obey to and guarantees are
those constraints which the system has to satisfy. The function f has to have such a
form that realizability is preserved by adding assumptions to or removing guarantees
from an already realizable specification and, conversely, unrealizability is preserved by
removing assumptions from or adding guarantees to an unrealizable specification. Sim-
ilarly, adding a valid constraint to either assumptions or guarantees must not influence
the realizability of a specification.2 Note, that both A and G may be structured, such
that f may not treat all elements of A and G in the same way. In the conceptual part
of this work in Sect. 3 we are not concerned with the exact nature of the translation
and view A and G as flat sets of atomic elements; only when we consider a concrete
class of specifications (see below) for implementation we look into the structure of as-
sumptions and guarantees. We denote the temporal formula resulting from 〈A, G〉 by
applying f with φ〈A,G〉 = f(〈A, G〉). We say that 〈A, G〉 is realizable iff φ〈A,G〉 is
realizable.

2.3 Synthesis of GR(1) Properties

The high complexity established in [16] and the intricacy of Safra’s determinization
construction have caused the synthesis process to be identified as hopelessly intractable

2 In this paper we need this property only in Sect. 4.2.
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and discouraged many practitioners from ever attempting to implement it. However,
there are several classes of properties restricted to particular subsets of LTL, which can
be synthesized with more efficient algorithms. One of the most recent and advanced
results is achieved in [15] where for the class of Generalized Reactivity(1) specifications
(from now on referred to as GR(1) specification) is presented a (symbolic) algorithm
for extracting a program from a GR(1) specification that runs in time polynomial in
the size of the state space of the design. The class of GR(1) properties is sufficiently
expressive to provide complete specifications of many designs [15].

A GR(1) specification has the form 〈A, G〉 = ({ϕE
I , ϕE

R, ϕE
ψ}, {ϕS

I , ϕS
R, ϕS

ψ}). 3 For
α ∈ {E , S}, ϕα

I , ϕα
R, ϕα

ψ represent the initial conditions, the transition relation and the
liveness or fairness conditions of the environment and system, respectively. They are
such that:

– ϕα
I - a formula of the form

∧
i Ii where every Ii is a propositional formula over

signals (ϕE
I is over E and ϕS

I is over E ∪ S).
– ϕα

R - temporal formulas of the form
∧

i Ri where every Ri is a propositional for-
mula over signals E ∪ S and expressions of the form X v where v ∈ E if α = E
and v ∈ E ∪ S if α ∈ S.

– ϕα
ψ - temporal formulas of the form

∧
i GFAi where Ai is propositional formula

over signals E ∪ S.

Intuitively, the play is initialized in such a way that the environment chooses initial
values for its signals as to satisfy ϕE

I , and the system initializes its signals to satisfy ϕS
I .

At every consecutive step of the play at first the environment assigns its signals, trying
to satisfy the environment transition relation ϕE

R, and then the system does the same
with its signals and its transition relation ϕS

R. For an infinite behavior the environment
and the system try to satisfy their liveness conditions ϕE

ψ and ϕS
ψ , respectively. The

player who first violates its constraints loses.
Realizability of a GR(1) specification can be reduced to the problem of computing

the set of winning states WS in a two-player game among the environment and the
system and then checking WS against initial conditions [15]. In the following we will
use the algorithm of [15] to check for the realizability of a GR(1) specification 〈A, G〉.

3 Diagnosing (Un)Realizability

In this section we discuss what information can be returned to a developer in the case a
given specification 〈A, G〉 turns out to be either unrealizable or realizable. We focus on
“zooming into” the specification by pointing out fragments of the specification that are
by themselves (un)realizable, in order to facilitate the understanding of the problem.

We therefore suggest to use a specification 〈A′, G′〉 as an explanation for a spec-
ification 〈A, G〉 where A′, G′ are subsets of A, G. We first formalize minimality and
maximality constraints on A′ or G′. We then introduce a notion of unhelpfulness of as-
sumptions or guarantees in an explanation, where unhelpful assumptions or guarantees
can be removed from an explanation. We illustrate the concept with an example.

3 We refer the reader to [15] for details on the corresponding LTL formula.
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3.1 Explanations for (Un)Realizability

We first notice that assumptions and guarantees can be viewed as interacting, but op-
posing forces. As outlined in Sect. 2, adding assumptions or removing guarantees will
“push” a specification towards realizability. Conversely, a realizable specification may
become unrealizable when deleting assumptions or adding guarantees. These concepts
are formalized as follows.

Definition 1 ((un-) fulfillable, (in-) sufficient). Let A be a set of available assump-
tions, let G be a set of available guarantees, and let A ⊆ A and G ⊆ G.

If a specification 〈A, G〉 is realizable, we say that G is fulfillable w.r.t. A, and, con-
versely, A is sufficient w.r.t. G. Otherwise, G is unfulfillable w.r.t. A, and A is insuffi-
cient w.r.t. G, respectively.

G is minimally unfulfillable w.r.t. A iff 〈A, G〉 is unrealizable and removal of any
element of G leads to realizability: ∀g ∈ G . 〈A, G \ {g}〉 is realizable.

G is maximally fulfillable w.r.t. A in G iff 〈A, G〉 is realizable and addition of any
element of G \ G leads to unrealizability: ∀g ∈ G \ G . 〈A, G ∪ {g}〉 is unrealizable.

A is minimally sufficient w.r.t. G iff 〈A, G〉 is realizable and removal of any element
of A leads to unrealizability: ∀a ∈ A . 〈A \ {a}, G〉 is unrealizable.

A is maximally insufficient w.r.t. G in A iff 〈A, G〉 is unrealizable and addition of
any element of A \ A leads to realizability: ∀a ∈ A \ A . 〈A ∪ {a}, G〉 is realizable.

All above definitions are also transferable to a whole specification, i.e., a specification
〈A, G〉 is maximally insufficient iff A is maximally insufficient w.r.t. G, etc.

Why is separate terminology introduced for assumptions and guarantees? After all,
if a specification 〈A, G〉 is unrealizable, then A is insufficient w.r.t. G and G is unfulfil-
lable w.r.t. A (similarly for a realizable specification). However, while A is insufficient
w.r.t. G iff G is unfulfillable w.r.t. A, A might, e.g., be maximally insufficient w.r.t. G
although G is unfulfillable but not minimally unfulfillable w.r.t. A. In other words, min-
imality and maximality require introduction of separate terminology for both sides.

We now show how the above definitions can provide an explanation for an
(un)realizable specification 〈A, G〉.
Minimally Unfulfillable Sets of Guarantees. First, assume that 〈A, G〉 is unrealizable.
To understand the nature of the problem, the developer needs to see which sets of guar-
antees are not supported by sufficient assumptions or which sets of guarantees are con-
flicting. Hence, we suggest to return an explanation 〈A, G′〉 such that G′ ⊆ G is mini-
mally unfulfillable. Each such G′ is a minimal set of guarantees such that either A is not
strong enough to realize G, or the elements of G are in conflict with each other. Clearly,
there may be several such sets. The quest for minimality is based on the intuition that
if a guarantee does not contribute to making a specification unrealizable then it can be
omitted from the explanation.

Maximally Fulfillable Sets of Guarantees. While an explanation of the previous kind
helps to find the cause of unrealizability, it does not immediately suggest a fix. Our
second suggestion provides fixes in the restricted case that a fix is only allowed to
remove guarantees. Obviously, such fix should remove as few guarantees as possible
to achieve realizability. Hence, we suggest to provide the developer with a maximally
fulfillable set of guarantees G′ as an explanation. Notice that, addition of any g ∈ G\G′
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will make 〈A, G′ ∪ {g}〉 unrealizable. I.e., the complement of each such G′ constitutes
a minimal set of guarantees that, when removed from G, leads to realizability.

Note that, the distinction to minimally unfulfillable sets of guarantees as an expla-
nation becomes particularly interesting when there is more than one set of unfulfillable
guarantees. In that case a minimal fix is easier to see by providing the developer with a
maximally fulfillable set of guarantees rather than with several minimally unfulfillable
sets of guarantees as in the latter case the developer has to figure out herself which
combinations of guarantees need to be removed to avoid all “unfulfillabilities”.

A slightly different scenario where maximally fulfillable sets of guarantees can help
is finding out the set of guarantees that may be realized with a given set of assumptions,
i.e., strengthening the guarantees that the system under design will provide. In this
case, given a set of available guarantees, G ⊃ G, it is enough to compute the maximally
fulfillable sets of guarantees for 〈A, G〉.
Minimally Sufficient Sets of Assumptions. If 〈A, G〉 is realizable, the need for debugging
information is less urgent. Still, the developer might benefit from additional information
that helps her understanding. In particular, we suggest to point out minimal sets of
assumptions A′ that, on their own, are sufficient to realize a given set of guarantees
G. If 〈A, G〉 is the original specification, A′ may help to reduce the assumptions the
environment has to fulfill. Another scenario is that G is only a subset of the guarantees
under consideration. Here, the developer might want to understand which subset(s) of
assumptions A′ are responsible for realizability of this particular set of guarantees. It’s
easy to see that in both cases A′ is a set of minimally sufficient assumptions.

If 〈A, G〉 turns out to be unrealizable and the set of available assumptions has not
been exhausted (i.e., A ⊂ A), minimally sufficient sets of assumptions for 〈A, G〉 can
help to find a minimal strengthening of A such that G can be realized.

Maximally Insufficient Sets of Assumptions We have not found a good intuition on how
to use these as a debugging aid. We omit such sets from further consideration.

3.2 Criteria for Unhelpful Parts of an Explanation

Till now we proposed to remove constraints either only from assumptions or only from
guarantees. We now proceed to remove constraints from the remaining side of an expla-
nation. We first argue why constraints can be removed from both sides of a specification.
We then formulate a criterion to identify helpful and unhelpful constraints.

Removing Constraints from the Remaining Side of an Explanation. As argued
above, removing guarantees from an unrealizable specification or removing assump-
tions from a realizable specification is a natural approach to obtain a core of a specifica-
tion that explains its (un)realizability. However, previously we have only modified one
side of a specification to obtain an explanation. As mentioned, removing assumptions
pushes towards unrealizability and removing guarantees pushes towards realizability.
Hence, one might think that an explanation for unrealizability (in the form of a min-
imally unfulfillable specification) should contain the full set of assumptions A and,
similarly, an explanation for realizability (in the form of a minimally sufficient specifi-
cation) should contain the full set of guarantees G. Note, though, that an assumption or
a guarantee might be redundant. In other words, it might be covered by the remaining
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set of assumptions or guarantees. Moreover, some assumptions or guarantees might be
irrelevant w.r.t. a given explanation, i.e., they may have no influence on the behavior of
a specification, we are interested in. We believe that the developer should be informed
about such assumptions and guarantees. Below we expand that idea for the three types
of explanations proposed in Sect. 3.1.

Minimally Unfulfillable Sets of Guarantees. The aim of a minimally unfulfillable ex-
planation 〈A, G〉 is to show a conflict among the set of guarantees G or the lack of
assumptions required for realizability of G. It is possible that some of the assumptions
in A do not contribute to that aim, i.e., they do not influence the conflict among, or the
realizability of, the guarantees G. Such assumptions may be removed from an explana-
tion without losing valuable information, thereby making it simpler for understanding.

Maximally Fulfillable Sets of Guarantees. The purpose of a maximally fulfillable expla-
nation 〈A, G〉 is to show which set(s) of guarantees can be realizable with a given set of
assumptions or which set of guarantees are enough to remove to make the specification
realizable. If removing an assumption a does not change realizability of an explanation,
i.e., 〈A \ {a}, G〉 is realizable, then presence of such an assumption does not influence
the property of the set G being maximally fulfillable. Indeed, since 〈A, G ∪ {g}〉 is un-
realizable for any g ∈ G \ G then 〈A \ {a}, G ∪ {g}〉 is also unrealizable for any a
because removing an assumption cannot make an unrealizable specification realizable.
Therefore, if such an assumption is removed an explanation still fulfills its purpose and
shows a maximal set of realizable guarantees.

Minimally Sufficient Sets of Assumptions. The purpose of a minimally sufficient expla-
nation 〈A, G〉 is to point out a set of assumptions A that is enough to make a given set
of guarantees G realizable such that each assumption a ∈ A is essential for realizabil-
ity. This case is symmetrical to the case of minimally unfulfillable set of guarantees,
i.e., not every guarantee may be useful in such an explanation — some guarantees may
be realizable independent of the assumptions, or one assumption may be essential for
realizability of several guarantees therefore only one of such guarantees may be left in
the explanation to show necessity of that assumption.

Formalization. We are now ready to formulate a criterion of when a constraint in an ex-
planation should be considered unhelpful. Our intuition is as follows. Let 〈A, G〉 be an
explanation, let a ∈ A be an assumption. We say that a is helpful iff there is some sub-
set of guarantees G′ ⊆ G s.t. 〈A, G′〉 is realizable, while 〈A \ {a}, G′〉 is not. In other
words, there is a subset of guarantees G′ s.t. a makes the difference between realizabil-
ity and unrealizability for that subset (w.r.t. the given set of assumptions A). Similarly,
a guarantee g ∈ G is helpful iff there is at least one subset of assumptions A′ ⊆ A
s.t. g make the difference between realizability and unrealizability: 〈A′, G \ {g}〉 is
realizable while 〈A′, G〉 is not. We formalize that intuition below.

Definition 2 ((un-) helpful). Let 〈A, G〉 be a specification.

1. An assumption a ∈ A is unhelpful if
∀G′ ⊆ G . (〈A, G′〉 is realizable ⇔ 〈A \ {a}, G′〉 is realizable.)

2. A guarantee g ∈ G is unhelpful if
∀A′ ⊆ A . (〈A′, G〉 is realizable ⇔ 〈A′, G \ {g}〉 is realizable.)

3. An assumption or a guarantee is helpful iff it is not unhelpful.



Diagnostic Information for Realizability 59

The next proposition shows that Def. 2 is well-behaved in the following sense. If 〈A, G〉
is an explanation and A′ ⊂ A is obtained from A by a sequence of removals of unhelpful
assumptions A′′ (by a sequence of applications of Def. 2), then each of the removed
assumptions in A′′ is unhelpful also in A. Moreover, the assumptions in A′′ could have
been removed from A in any order. The case for guarantees is similar.

Proposition 1

1. Let 〈A0 = A, G〉, 〈A1 = A0 \ {a0}, G〉, 〈A2 = A1 \ {a1}, G〉, . . . , 〈A′ = Ak \
{ak}, G〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each ai is unhelpful
in 〈Ai, G〉. Let A′′ ⊆ A \ A′, let a ∈ A′′. Then a is unhelpful in 〈A′ ∪ A′′, G〉.

2. Let 〈A, G0 = G〉, 〈A, G1 = G0 \ {g0}〉, 〈A, G2 = G1 \ {g1}〉, . . . , 〈A, G′ = Gk\
{gk}〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each gi is unhelpful in
〈A, Gi〉. Let G′′ ⊆ G \ G′, let g ∈ G′′. Then g is unhelpful in 〈A, G′ ∪ G′′〉.

The following proposition yields a practical way to remove unhelpful constraints
from the remaining side of an explanation. Given 〈A, G〉 minimally unfulfillable, we
suggest to remove assumptions from A until the result is not minimally unfulfillable
any more (resp., if 〈A, G〉 is minimally sufficient, remove guarantees from G until the
result is not minimally sufficient).

Proposition 2

1. Let 〈A, G〉 be a minimally unfulfillable specification. a ∈ A is unhelpful in A iff
〈A \ {a}, G〉 is minimally unfulfillable.

2. Let 〈A, G〉 be a minimally sufficient specification. g ∈ G is unhelpful in G iff
〈A, G \ {g}〉 is minimally sufficient.

Our next proposition shows the coincidence between Def.s 1 and 2. In particular, it
shows that an unrealizable specification 〈A, G〉 contains no unhelpful guarantees iff it
is minimally unfulfillable and a realizable specification 〈A, G〉 contains no unhelpful
assumptions iff it is minimally sufficient.

Proposition 3

1. Let 〈A, G〉 be unrealizable. g ∈ G is unhelpful in G iff 〈A, G \ {g}〉 is unrealizable.
2. Let 〈A, G〉 be unrealizable. G is minimally unfulfillable iff all g ∈ G are helpful.
3. Let 〈A, G〉 be realizable. a ∈ A is unhelpful in A iff 〈A \ {a}, G〉 is realizable.
4. Let 〈A, G〉 be realizable. A is minimally sufficient iff all a ∈ A are helpful.

Thus Def. 2 can be used to obtain minimally unfulfillable explanations from unrealiz-
able specifications (by removing unhelpful guarantees) and minimally sufficient expla-
nations from realizable specifications (by removing unhelpful assumptions).

Putting the Pieces Together. In Fig. 1 we show the approach that applies the previous
results according to the types of explanations suggested in Sect. 3.1.

3.3 Methodology

Unsatisfiable Assumptions and Guarantees. Sometimes subsets of assumptions or
guarantees may be temporally unsatisfiable. Such situations should be pointed out to
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Explaining Unrealizability — a Minimal Conflict
1. Assume 〈A,G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is minimally unfulfillable.
3. Find a minimal A′ ⊆ A s.t. 〈A′, G′〉 is minimally unfulfillable.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove unhelpful guarantees, then remove un-
helpful assumptions. Now, every single guarantee in G′ is required for a conflict; moreover,
removing any assumption from A′ leads to additional conflict(s), each involving fewer guaran-
tees.

Explaining Unrealizability — a Minimal Fix
1. Assume 〈A,G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is maximally fulfillable.
3. Find some A′ ⊆ A s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove just enough guarantees to make the speci-
fication realizable, then remove unhelpful assumptions. Now, adding any guarantee or removing
any assumption leads to unrealizability. Moreover, G \ G′ is a minimal fix to make the original
specification 〈A, G〉 realizable.

Explaining Realizability
1. Assume 〈A,G〉 realizable.
2. Find some A′ ⊆ A s.t. 〈A′, G〉 is minimally sufficient.
3. Find a minimal G′ ⊆ G s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with a realizable specification. First, remove unhelpful assumptions, then remove unhelp-
ful guarantees. Now, every single assumption in A′ is required for realizability; removing any
guarantee in G′ makes one or more assumptions unnecessary for realizability.

Fig. 1. A summary of our approach

the developer; however, as these situations may not be uniquely identifiable from the
explanations suggested above, a separate check has to be performed. Satisfiability can
be checked in various ways. A detailed treatment is out of the scope of this work. We
therefore assume that the specification has been checked for satisfiability (in particular,
the checks suggested in [20]) before applying our method.

Removing Unhelpful Constraints. When a specification is checked for unhelpful con-
straints, it is important to note that several constraints that have been found unhelpful
cannot be removed at once. For example, if for a specification 〈A, G〉 the individual
assumptions a1, a2 ∈ A are found to be unhelpful, they should not be removed at once.
Rather, it is necessary to remove one of them (e.g., a1) and then recheck the second
assumption a2 for being unhelpful in 〈A \ {a1}, G〉. Otherwise, the result can be incor-
rect. For example, if a1 and a2 are equivalent, they will always be unhelpful. Never-
theless, removing both of them can change realizability of the specification. Therefore,
constraints can be checked and removed (if found unhelpful) only one by one.
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3.4 Examples

Let us consider the following example with the assumptions on the left and guarantees
on the right and e and s being an environment and a system variable (there may be other
constraints that do not speak about e and s):

a1 =̇ e g1 =̇ s
a2 =̇ G((X e) ↔ e) g2 =̇ G((X s) ↔ e)
a3 =̇ GF e g3 =̇ GF(¬s ∧ e)

. . . . . .

The specification is unrealizable with a minimal conflict explanation 〈A, G〉 =
〈{a3}, {g2, g3}〉. A minimally unfulfillable guarantee set G shows the reason of un-
realizability (i.e., the system cannot simultaneously make s equal to the previous value
of e and at the same time reach ¬s ∧ e) and that the initial condition g1 does not influ-
ence this conflict. The presence of the assumption a3 is enough to show this conflict. By
removing a3 the explanation will not be minimally unfulfillable any more since it will
remain unrealizable even without g2 thereby losing the information about the original
conflict among guarantees g2 and g3. Thus a3 is required for the explanation.

4 Computing Explanations

In this section we describe our approach to computing explanations for specifications.
First we explain explicit algorithms that are aimed to compute one explanation for
a given specification, and we estimate their complexity. Then, we outline an alter-
native approach to computing explanations based on the use of activation variables
[13,9].

4.1 Explicit Algorithms

In the most simplistic setting we assume that there is an external realizability checker
considered as a black box and available for us as a function Realizable(〈A, G〉), which
takes a specification 〈A, G〉 and returns true iff the specification is realizable.

Among the possible kinds of explanations summarized in Fig. 1 let us begin with
an unrealizable specification and its explanation in the form of a minimal conflict. The
first step of the computation is to obtain a minimally unfulfillable set of guarantees. For
that it is enough to identify which guarantees after removal keep the specification un-
realizable. Propositions 1 and 3 establish that guarantees can be removed in any order.4

In Sect. 3.3 we noticed that a check for realizability has to be done after each removal
of any individual guarantee. As a result a simple algorithm to compute a minimally
unfulfillable explanation for a given specification 〈A, G〉 is:

4 Note, though, that while the order of removal of guarantees in a particular set of unhelpful
guarantees G′ ⊆ G from G does not matter, it is still possible that there are different sets of
unhelpful guarantees G′ �= G′′ such that both G \ G′ and G \ G′′ contain no unhelpful guar-
antees anymore (and similarly for assumptions). As a consequence, the algorithms presented
here find minimal but not necessarily minimum explanations.
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function ComputeMinUnfulfil(〈A, G〉)
G′ := G;
foreach g ∈ G

if ¬Realizable(〈A, G′ \ {g}〉) then G′ := G′ \ {g};
return 〈A, G′〉;

The second step of obtaining a “good” explanation is to remove unhelpful assumptions.
Proposition 2 shows that it is enough to detect and remove assumptions whose removal
keeps the specification minimally unfulfillable. Notice that, similarly to the previous
algorithm it is necessary to check and remove only one assumption at every iteration.
Thus the simplest algorithm is:

function ComputeGoodMinUnfulfil(〈A, G〉)
A′ := A;
foreach a ∈ A

if MinUnfulfil(〈A′ \ {a}, G〉) then A′ := A′ \ {a};
return 〈A′, G〉;

where the predicate MinUnfulfil(〈A, G〉) returns true iff the specification 〈A, G〉 is
minimally unfulfillable:

MinUnfulfil(〈A, G〉) =̇ ∀g ∈ G . Realizable(〈A, G \ {g}〉)

Notice that, all above functions ComputeMinUnfulfil, ComputeGoodMinUnfulfil and
MinUnfulfil expect as input an unrealizable specification.

In the case of computing explanations for realizable specifications (see Fig. 1) the
corresponding algorithms are symmetric to the algorithms for unrealizable specifica-
tions explained above. Hence the functions ComputeMinSuffic, ComputeGoodMinSuffic
and the predicate MinSuffic are defined similarly as ComputeMinUnfulfil, Compute-
GoodMinUnfulfil, and MinUnfulfil, respectively, by switching realizability and unreal-
izability and the player whose constraints are minimized.

A minimal fix for an unrealizable specification according to Fig. 1 is also computed
in two steps. The first step is to identify a maximal set of guarantees making the speci-
fication realizable. The simplest algorithm is very similar to ComputeMinUnfulfil with
the exception that now the aim is to make the specification realizable and maximize the
number of guarantees:

function ComputeMaxFulfil(〈A, G〉)
G′ := ∅;
foreach g ∈ G

if Realizable(〈A, G′ ∪ {g}〉) then G′ := G′ ∪ {g};
return 〈A, G′〉;

The second step is to find a minimally sufficient set of assumptions. For that the function
ComputeMinSuffic defined above can be used.

To summarize, if a specification 〈A, G〉 is unrealizable and the cause
of unrealizability is of interest, then an explanation is computed as
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ComputeGoodMinUnfulfil(ComputeMinUnfulfil(〈A, G〉)). If a minimal fix is re-
quired, then ComputeMinSuffic(ComputeMaxFulfil(〈A, G〉)) is computed. Otherwise,
if the specification 〈A, G〉 is realizable, the minimization of assumptions can be done
and ComputeGoodMinSuffic(ComputeMinSuffic(〈A, G〉)) is returned.

Complexity. Let us assume that the upper bound on the time of checking the realizabil-
ity of a specification 〈A, G〉 is denoted as [〈A, G〉], and that this upper bound cannot
increase with the removal of some constraints from either A or G. Let A and G be the
number of assumptions and guarantees, respectively. Then it is easy to see that the up-
per bound on the time of computing a minimal conflict for an unrealizable specification
is (G + A ∗ G) ∗ [〈A, G〉], where G ∗ [〈A, G〉] is the upper bound for the first step and
A ∗ G ∗ [〈A, G〉] is for the second one. Similarly, the upper bound on computing an ex-
planation for a realizable specification is (A+A∗G)∗ [〈A, G〉], and (A+G)∗ [〈A, G〉]
is the upper bound on computing a minimal fix for an unrealizable specification.

Notice that, for both, good minimally unfulfillable explanations and good minimally
sufficient explanations, the number of realizability checks for computing a minimally
unfulfillable set of guarantees (resp. a minimally sufficient set of assumptions), is linear
in the number of constraints. While, for reducing the set of assumptions (resp. guaran-
tees), the number of realizability checks may be quadratic.

4.2 Algorithms with Activation Variables

An alternative approach to computing explanations inspired by [13,9] works as follows.
In a specification 〈A, G〉 for every constraint ci ∈ A ∪ G a fresh activation variable avi

is created and then ci is substituted by avi → ci, obtaining in such a way the spec-
ification 〈AAV , GAV 〉. Activation variables, differently from usual variables, cannot
change their values after their initialization, and they belong neither to the system nor
to the environment.

According to Sect. 2.2 the addition of the constraint true to assumptions or guar-
antees cannot change the realizability of a specification. Thus, setting an activation
variable avi to false disables the corresponding constraint ci in the specification
〈AAV , GAV 〉, whereas setting avi to true makes the constraint avi → ci behave the
same as the original one ci. If a realizability checker is able to find assignments to acti-
vation variables that make a specification (un)realizable, then using these assignments
we can directly identify which subsets of constraints cause (un)realizability of the spec-
ification. The algorithm for the class of GR(1) specifications mentioned in Sect. 2.3 is
able to do that without any modifications. Given a modified specification 〈AAV , GAV 〉
after finding winning states WS and checking it against initial conditions the obtained
result is not just a constant true or false but a formula over the activation variables.
Each assignment that makes that formula true identifies a subset of the constraints that
make the specification realizable.

The major difference from the previously described algorithms is that with activation
variables one call to the realizability checker is enough to find all (un)realizable subsets
of the constraints. Unfortunately, experimental results showed that introduction of new
variables to the game slows down the realizability check considerably. As a result the
computation of explanations with activation variables is often much slower than using
the explicit algorithms described in Sect. 4.1.
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5 Experimental Evaluation

We implemented all the algorithms described in Sect. 4 plus the algorithm for GR(1)
synthesis [15] within the framework of the NUSMV system [7]. We applied several
optimizations to the algorithm for checking realizability of [15] as to improve the per-
formance. For instance, we compute the set of reachable states of the game structure
and we use such set during the realizability check to restrict the search only to reach-
able states. The different explicit algorithms have been also optimized as to possibly
re-use as much as possible results of previous checks. The implementation of activation
variables takes into account that they remain constant after the initial state.

We evaluated our algorithms on two real-life specifications parametric on the number
of components: the ARM AMBA AHB Arbiter 5 and the IBM GenBuf Controller6.
We took these specifications from [5]: since that paper is about showing feasibility of
synthesis, both specifications are realizable. We remark that, we were not able to find
real-life unrealizable specifications in the literature. As we have pointed out before, we
can make a GR(1) specification unrealizable by adding constraints to ϕS

I , ϕS
R, or φS

ψ ,
or by removing constraints from ϕE

I , ϕE
R, or ϕE

ψ. We simulate the cases of adding to
ϕS

R (referred to as W-GT), adding to ϕS
ψ (referred to as W-GF), and removing from ϕE

ψ

(referred to as WO-AF).
We ran the experiments on an Intel Xeon 3GHz bi-processor equipped with 4GB

of RAM running Linux. We fixed a memory limit to 1.5GB and a time-out to 1 hour.
We report “T” and “M”, respectively, when a time-out or a memory limit is reached.
We used BDD dynamic variable ordering during the search since this resulted in better
performances on average. All the experiments and an extended version of this paper [8]
are available from http://es.fbk.eu/people/roveri/tests/vmcai08.

The table below shows the results of experiments with activation variables:

Specification
Name

Assumptions/
Guarantees

Realizable
Time

Realizability
Time
Step 1

Time
Step 1 and 2

AMBA-1 8/52 R 0.14 0.24 212
AMBA-W-GF-1 8/53 U 0.02 587 T

The first three columns show the name of a specification, its size, and its realizability,
respectively. The fourth column gives the original realizability checking time (in sec-
onds). The fifth column lists the checking time if only assumptions (for a realizable
specification) or only guarantees (for an unrealizable one) are given activation vari-
ables — this corresponds to step 1 of the explicit algorithms. The last column shows
realizability checking times if all constraints are given activation variables — this cor-
responds to both steps of the explicit algorithms.

The above results show how significantly activation variables may slow down the
realizability check. This is the reason why only two specifications are in the table. We
remark that (1) the algorithm using activation variables computes minimum rather than
just minimal cores and (2) computing minimum cores by using activation variables has

5 ARM Ltd. AMBA Specification (Rev. 2). Available from www.arm.com, 1999.
6 http://www.haifa.ibm.com/projects/verification/RB Homepage/
tutorial3/

http://es.fbk.eu/people/roveri/tests/vmcai08
www.arm.com
http://www.haifa.ibm.com/projects/verification/RB_Homepage/tutorial3/
http://www.haifa.ibm.com/projects/verification/RB_Homepage/tutorial3/
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Table 1. Computation of explanations using explicit algorithms

Specification
Name

Assumpt/
Guarant

Real-
izable

Time Re-
alizability

Time
Step 1

Reduction
Step 1

Time
Step 2

Reduction
Step 2

AMBA-1 8 / 52 R 0.14 0.25 75.0% (2 / 52) 1.93 65.4% (2 / 18)
AMBA-1-W-GF 8 / 53 U 0.02 0.24 92.5% (8 / 4) 0.02 87.5% (1 / 4)
AMBA-1-W-GT 8 / 53 U 0.02 0.21 96.2% (8 / 2) 0.01 100% (0 / 2)
AMBA-1-WO-AF 5 / 52 U 0.09 0.41 76.9% (5 / 12) 0.07 100% (0 / 12)

AMBA-2 11 / 80 R 1.22 2.97 63.6% (4 / 80) 64.1 68.8% (4 / 25)
AMBA-2-W-GF 11 / 81 U 0.19 1.06 88.9% (11 / 9) 0.12 72.7% (3 / 9)
AMBA-2-W-GT 11 / 81 U 0.17 0.97 91.4% (11 / 7) 0.06 81.8% (2 / 7)
AMBA-2-WO-AF 10 / 80 U 0.19 1.47 87.5% (10 / 10) 0.28 100% (0 / 10)

AMBA-3 14 / 108 R 14.3 35.2 85.7% (2 / 108) 26.7 86.1% (2 / 15)
AMBA-3-W-GF 14 / 109 U 0.51 4.31 94.5% (14 / 6) 0.09 92.9% (1 / 6)
AMBA-3-W-GT 14 / 109 U 0.39 2.92 97.2% (14 / 3) 0.04 100% (0 / 3)
AMBA-3-WO-AF 13 / 108 U 1.73 15.8 90.7% (13 / 10) 0.54 100% (0 / 10)

AMBA-4 17 / 136 R 74.9 292 64.7% (6 / 137) T -
AMBA-4-W-GF 17 / 137 U 1.17 23.9 89.8% (17 / 14) 0.71 82.4% (3 / 14)
AMBA-4-W-GT 17 / 137 U 0.86 12.5 92.0% (17 / 11) 0.29 88.2% (2 / 11)
AMBA-4-WO-AF 16 / 136 U 5.03 163 92.6% (16 / 10) 0.75 100% (0 / 10)

AMBA-5 20 / 164 R 525 T - - -
AMBA-5-W-GF 20 / 165 U 19.7 188 92.7% (20 / 12) 0.50 85.0% (3 / 12)
AMBA-5-W-GT 20 / 165 U 11.6 70.1 93.9% (20 / 10) 0.26 90.0% (2 / 10)
AMBA-5-WO-AF 19 / 164 U 14.9 126 93.9% (19 / 10) 0.80 100% (0 / 10)

GENBUF-5 28 / 81 R 0.15 1.23 46.4% (15 / 81) 39.2 54.3% (15 / 37)
GENBUF-5-W-GF 28 / 82 U 0.15 2.38 87.8% (28 / 10) 0.60 88.3% (3 / 10)
GENBUF-5-W-GT 28 / 82 U 0.22 3.25 86.6% (28 / 11) 0.75 82.1% (5 / 11)
GENBUF-5-WO-AF 27 / 81 U 0.12 1.48 87.7% (27 / 10) 0.63 96.3% (1 / 10)

GENBUF-10 43 / 152 R 1.22 12.3 53.5% (20 / 152) 522 62.5% (20 / 57)
GENBUF-10-W-GF 43 / 153 U 1.26 29.3 90.2% (43 / 15) 3.34 93.0% (3 / 15)
GENBUF-10-W-GT 43 / 153 U 4.53 56.1 89.5% (43 / 16) 3.81 88.4% (5 / 16)
GENBUF-10-WO-AF 42 / 152 U 0.44 9.60 93.4% (42 / 10) 1.74 97.6% (1 / 10)

GENBUF-20 73 / 368 R 3.65 90.7 58.9% (30 / 368) M -
GENBUF-20-W-GF 73 / 369 U 3.51 470 93.2% (73 / 25) 35.5 95.9% (3 / 25)
GENBUF-20-W-GT 73 / 369 U 1328 T - - -
GENBUF-20-WO-AF 72 / 368 U 2.21 115 97.3% (72 / 10) 7.78 98.6% (1 / 10)

GENBUF-30 103 / 683 R 24.4 920 61.2% (40 / 683) M -
GENBUF-30-W-GF 103 / 684 U 23.9 T - - -
GENBUF-30-W-GT 103 / 684 U T T - - -
GENBUF-30-WO-AF 102 / 683 U 7.61 842 98.5% (102 / 10) 22.7 99.0% (1 / 10)

incurred a significant performance penalty in [13,9], too. For the explicit algorithms the
execution time results are considerably better. Table 1 reports all the results obtained
with explicit algorithms.

The first column of Table 1 indicates the name of the specification. The original spec-
ifications have names AMBA-n and GENBUF-n, where n is the number of components
of the described system. The modified ones have suffixes W-GF, W-GT, and WO-AF as
explained above. The following three columns list the size (the number of assumptions
and guarantees), the realizability and the time in seconds of checking the realizability
of a specification. The fifth column is the time required to remove unhelpful guaran-
tees from an unrealizable specification or unhelpful assumptions from a realizable one.
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The sixth column shows the percentage of corresponding player’s constraints that have
been removed and the new size of the specification. The last two columns are similar to
the previous two columns but dedicated to the removal of unhelpful constraints of the
remaining player.

The experiments show that a considerable number of constraints can be removed
from the explanations. For example, for unrealizable specifications the cause of unreal-
izability is found to be among only 9% (on average) of guarantees. Moreover, removing
92% (on average) of assumptions does not change the realizability of the obtained guar-
antees or any of their subsets. Thus before trying to understand and fix the problem a
designer can decrease the size of a specification more than 10 times thereby decreasing
the effort required to detect and comprehend a bug.

For the real-life realizable specifications ARM AMBA AHB Arbiter and IBM Gen-
Buf Controller we found that about 64% of the assumptions are not required for the
realizability of the guarantees. This may indicate that the designers over-constrained
the environment in fear that the specification may become unrealizable at some state
of the design development. Another possible reason is that not all intended guarantees
have been added to the specification. In any case showing unnecessary assumptions can
be a valuable debugging information for designers. In fact, our approach unexpectedly
shows that going from AMBA-2 to AMBA-3 the number of required assumptions de-
creases from 4 to 2. The analysis of the generated core allowed us to detect a missing
constraint in the AMBA-3 aiming to forbid one assignment to the two Boolean signals
used to encode a three value variable. (See [8] for additional details.)

In our experiments the first step of explanation computation is on average 20 times
slower than the realizability checking of the original specification. The second step is
about 25 times slower than the original realizability checking. Though the time required
for computation is relatively large, it is not exceedingly large and is very likely to be a
good trade-off by potentially decreasing the time required for debugging a specification.

6 Conclusions and Future Works

In this paper we addressed the problem of providing diagnostic information in pres-
ence of formal analysis of requirements, and in particular in the case of realizabil-
ity. We showed that the problem is nontrivial, formally characterized it, and proposed
methods to automatically extract explanations, i.e., descriptions of the reasons for
(un)realizability. The experimental evaluation shows the potential of the approach.

It is worth noticing that, most of the concepts and algorithms developed in this paper
easily extend beyond realizability: given any computable Boolean-valued function r
on a couple of finite sets 〈A, G〉 such that r has the monotonicity properties stated in
Sect. 2.2, the definitions, theorems, and algorithms developed in Sect. 3 and 4.1 apply.

In the future, we plan to evaluate the integration of the explicit and the symbolic
methods. We will investigate the use of heuristic search in the space subsets of the
specification. We will also investigate the integration within a practical framework
(e.g., contract-based design) where realizability comes into play (e.g., by composition
of contracts). Finally, given that the use of activation variables has proved to be both a
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powerful and expensive means to extract minimum cores for several problem classes
involving temporal logic, a separate investigation of how to improve this technique
(e.g., by carrying over results from the Boolean domain) seems worthwhile to us.
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Abstract. Model checking using Craig interpolants provides an effec-
tive method for computing an over-approximation of the set of reachable
states using a SAT solver. This method requires proofs of unsatisfiabil-
ity from the SAT solver to progress. If an over-approximation leads to a
satisfiable formula, the computation restarts using more constraints and
the previously computed approximation is not reused. Though the new
formula eliminates spurious counterexamples of a certain length, there is
no guarantee that the subsequent approximation is better than the one
previously computed. We take an abstract, approximation-oriented view
of interpolation based model checking. We study counterexample-free ap-
proximations, which are neither over- nor under-approximations of the
set of reachable states but still contain enough information to conclude
if counterexamples exist. Using such approximations, we devise a model
checking algorithm for approximation refinement and discuss a prelimi-
nary implementation of this technique on some hardware benchmarks.

1 Introduction

Model Checking is an algorithmic technique for establishing that a transition
system satisfies certain mathematically specified correctness requirements [1].
Symbolic model checking techniques employ implicit representations of set of
states such as Binary Decision Diagrams (BDDs) or propositional logic formulae.
Formulating stages in model checking as a Boolean satisfiability (SAT) problem
allows model checking tools to harness the capabilities of propositional SAT
solvers, thereby greatly enhancing their scalability. However, image computation
and fixed point detection, two essential steps in model checking, both involve
the expensive operation of quantifier elimination.

A Craig interpolant is a formula, which can be extracted from a resolution
proof generated by a SAT-solver in linear time [2,3]. For a suitably constructed
Boolean formula, the interpolant provides a conservative approximation of the
image, obviating the need for precise image computation [4]. Interpolants also
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provide a means for detecting fixed points detection without quantifier elimi-
nation. On the other hand, the approximate image may contain spurious coun-
terexamples, necessitating quality guarantees for the approximation.

The progress and efficiency of an interpolation-based model checking algo-
rithm is contingent on its ability to (a) avoid and eliminate spurious coun-
terexamples, and (b) to rapidly reach a fixed point. If the original algorithm
encounters a spurious counterexample, the computation is begun afresh using a
more constrained formula. Though techniques have been suggested for reusing
interpolants [5], there is a significant loss of information between computations
using different constraints. In particular, the approximation is guaranteed to ex-
clude spurious counterexamples shorter than a specified bound. Increasing the
bound from k to k′ only guarantees that spurious counterexamples shorter than
k′ are eliminated. The new approximation may contain spurious counterexam-
ples longer than k′, which were previously absent, and may omit states that
were previously known to be safe. Thus, both the spurious counterexamples
and the number of iterations may differ vastly between subsequent runs of the
interpolation-based algorithm.

Contribution. The motivation for our work is to devise a method to reuse and
refine approximations after each restart. To this end, our contributions are:

1. Modeling interpolation-based model checking with approximate image and
pre-image operators that provide counterexample guarantees. This abstract
view allows us to employ standard tools from fixed point approximation.

2. Counterexample-free approximations. These neither over- nor under-approxi-
mate the set of reachable states but contain sufficient information to conclude
if counterexamples exist. Such approximations do not result in satisfiability
and can be reused.

3. A new algorithm for interpolation-based model checking. We combine ap-
proximate forward and backward analysis to successively refine counterex-
ample-free approximations until a result is obtained.

Related Work. Model checking using interpolants was first proposed in [4].
Marques-Silva [6,5] identifies optimizations and conditions for interpolant reuse,
but no guarantee about the approximation is provided. In fact, Jhala and McMil-
lan [7] report that the interpolants are “often unnecessarily weak,” and introduce
an interpolant strengthening method. Their observation concurs with our expe-
rience that the interpolant is often too weak to admit reusable approximations.

Approximate techniques combining forward and backward reachability are
well known in symbolic model checking with BDDs [8,9,10] and abstract in-
terpretation [11,12], and have been analyzed theoretically [13,14]. The work of
Cabodi et al. [15] is closest to ours, combining forward and backward analyzes
with interpolants. Their focus is eliminating redundancy in the interpolants, but
reuse or refinement are not considered. Refinement techniques using interpola-
tion focus on abstractions of the transition relation [16] rather than approxima-
tions, as we do. Our algorithm for refining counterexample-free approximations
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is inspired by that of [12] for refining abstract domains. The differences are that
our approximation operators are not monotone and our algorithm is based on
our fixed point characterization of counterexample-free approximations.

2 Background

We begin with a review of finite state model checking, followed by a description
of symbolic model checking using Craig interpolants.

2.1 Finite State Model Checking

A transition system M = (S, T ) consists of a finite set of states S, and a tran-
sition relation T ⊆ S × S. We fix M as the transition system for the rest of the
paper. A path is a sequence of states s0 → · · · → sn such that for 0 ≤ i < n,
the pair (si, si+1) ∈ T . The image of a set of states Q ⊆ S is the set of suc-
cessor states with respect to T , given by the operator post(Q) = {s′ ∈ S|∃s ∈
Q and (s, s′) ∈ T }. Let post0(Q) = Q and posti+1(Q) = post(posti(Q)). Given
a set I ⊆ S of initial states, the set of states reachable from I and a fixed point
characterization thereof are given by the equation:

RI =
⋃

i≥0

posti(I) = μQ.(I ∪ post(Q))

The pre-image of a set Q ⊆ S is the set of states with a successor in Q, de-
scribed by the operator pre(Q) = {s ∈ S|∃s′ ∈ Q and (s, s′) ∈ T }. The set of
backward reachable states from a set F ⊆ S of failure states and a fixed point
characterization thereof are given by the equation:

BF =
⋃

i≥0

prei(F ) = μQ.(F ∪ pre(Q)) .

A set of states P is inductive if for any Q ⊆ P , it holds that post(Q) ⊆ P .
The set P is an inductive invariant of a system M with initial states I if P is
inductive and I ⊆ P . Observe that RI is the smallest inductive invariant of M ,
and that BF , the complement of BF , is inductive.

Given sets I of initial and F of failure states, with I ∩ F = ∅, let 〈I, F 〉
denote the assertion that the states in F are unreachable from those in I. The
verification problem requires deciding if 〈I, F 〉 holds for M . We write M |= 〈I, F 〉
if the assertion holds. A counterexample to 〈I, F 〉 is a path s0 → · · · sn with
s0 ∈ I and sn ∈ F . A possible counterexample is a path with s0 ∈ I or sn ∈ F .
A spurious counterexample is a path with sn ∈ F and s0 /∈ RI or s0 ∈ I and
sn /∈ BF . If RI ∩ BF = ∅, we can conclude that M |= 〈I, F 〉.

The length of a path is the number of transitions on it. Consider the set of
shortest paths between pairs of states in S. The diameter of M is the length of
the longest path in this set. The reachability diameter of I ⊆ S, denoted rd(I),
is the length of the longest path in this set emanating from a state in I. The
backward diameter of F ⊆ S, denoted bd(F ), is the length of the longest path in
this set terminating in a state in F .
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2.2 Symbolic Model Checking Using Interpolants

In SAT-based symbolic model checking, sets and relations are represented using
propositional logic formulae. In the sequel, we use sets and relations, and their
propositional encoding by their characteristic Boolean functions interchangeably.

In 1957, Craig showed that for each inconsistent pair of formulae A, B in first
order logic, there exists a formula ϕ – the Craig interpolant [17] – such that

– A implies ϕ,
– ϕ is inconsistent with B, and
– ϕ refers only to non-logical symbols common to A and B.

Intuitively, the interpolant ϕ can be understood as an abstraction of A. Comput-
ing precise images and pre-images using SAT is an expensive operation. McMillan
proposed using Craig interpolation for effective, over-approximate image com-
putation [4]. Given a depth k, one starts with an unwinding of the transition
relation as in Bounded Model Checking (BMC):

I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (1)

A SAT solver is used to determine if the formula above is satisfiable. If so,
there exists a counterexample to 〈I, F 〉 of length at most k and the procedure
terminates reporting an error. Otherwise, the formula is partitioned into two
parts denoted by A and B as below.

A ≡ I(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (2)

The formulae A and B are inconsistent, so there exists an interpolant, say ϕ.
The interpolant represents a set that contains post(I), i.e., over-approximates
the image of I. In addition, no failure state can be reached from ϕ in up to
k − 1 steps because ϕ and B are inconsistent. The algorithm proceeds to the
next iteration by checking 〈ϕ, F 〉, which may yield a new interpolant ϕ′. If an
interpolant implies the disjunction of all previously computed interpolants, a
fixed point is reached, and one may conclude that F is unreachable from I.

However, as ϕ over-approximates the image, it may represent states that are
not reachable, and thus, Eq. 1 with ϕ(x0) in place of I(x0) may become satisfi-
able even though no counterexample exists. In this case, McMillan’s technique
restarts the approximation with a higher value of k. The previously computed
interpolants are abandoned, and the only information retained after a restart is
the new value of k.

3 Approximate Analysis Using Counterexample
Guarantees

3.1 Approximations in Model Checking

Interpolation-based model checking relies on computing approximations. In gen-
eral, model checking methods that use approximations face two challenges:
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1. Counterexamples. Let s0 → · · · → sn with sn ∈ F be a possible coun-
terexample. Deciding if s0 is reachable is as hard as model checking, hence
other approaches are required to deal with counterexamples.

2. Progress. If the approximation computed does not lead to a conclusive an-
swer, a better approximation has to be found, either by refining the existing
one or repeating the computation using a better approximation operator.

Interpolation-based methods provide a counterexample guarantee, i.e., a for-
mal statement about the counterexamples in the approximation. If a possible
counterexample is encountered, the fixed point computation is repeated using a
stronger guarantee. Though a stronger guarantee eliminates spurious counterex-
amples of a given length, the approximation computed need not be comparable
to the previous one. In particular, the new approximation may contain spurious
counterexamples that were previously absent and omit states previously known
not to lead to counterexamples of a certain length.

We model the image computation step in interpolation-based model checking
using approximate image operators and formalize the notion of counterexam-
ple guarantees. The goal of this formalization is to obtain an abstract, approxi-
mation-oriented view of interpolation-based model checking. This view allows
us to utilize ideas from approximate model checking [8] and abstract interpre-
tation [18] to derive a new algorithm incorporating approximation reuse and
refinement.

3.2 Approximation Operators

We briefly recall standard results from fixed point approximation about combin-
ing forward and backward analyzes (See [19] for the related background).

An approximate image operator ˆpost satisfies post(Q) ⊆ ˆpost(Q) for all Q.
An approximate pre-image operator ˆpre satisfies pre(Q) ⊆ ˆpre(Q) for all Q. The
approximate sets of forward- and backward-reachable states are

R̂I =
⋃

i≥0

ˆpost
i
(I) B̂F =

⋃

i≥0

ˆprei(F ) .

It is a standard fixed point approximation result that RI ⊆ R̂I and BF ⊆ B̂F .
We say approximate operator to refer to an approximate post- or pre-image
operator. An operator F : S → S is additive if F (Q ∪ Q′) = F (Q) ∪ F (Q′). F is
monotone if for Q ⊆ Q′, it holds that F (Q) ⊆ F (Q′). An additive operator on a
lattice is necessarily monotone. The operators post and pre are additive, hence
monotone. We consider operators ˆpost and ˆpre that are not additive or monotone.
The approximate image obtained depends on a resolution proof generated by a
SAT solver, which in turn depends on the SAT solver’s heuristics, thus we cannot
make conclusions about monotonicity or additivity. This is a significant difference
from several approximate operators in the literature. Widening operators [18]
may also not be additive or monotone.
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Recall that 〈I, F 〉 is the assertion that F is unreachable from I. Our aim
is to determine if 〈I, F 〉 holds by combining forward and backward analysis to
successively refine approximations of RI and BF .

Definition 1. Consider the assertions 〈I, F 〉 and 〈I ′, F ′〉. The assertion 〈I ′, F ′〉
refines 〈I, F 〉 if I ′ ⊆ I and F ′ ⊆ F . The assertion 〈I ′, F ′〉 is sufficient for 〈I, F 〉
if it holds that if M |= 〈I ′, F ′〉 then M |= 〈I, F 〉.

If 〈I ′, F ′〉 refines 〈I, F 〉, then 〈I, F 〉 is sufficient for 〈I ′, F ′〉. This is the core
idea behind conservative approximation and abstraction techniques. Another
approach, which we adopt, is to use conservative methods to refine a verification
problem to a sufficient one. Lemma 1 illustrates one such well known refinement.

Lemma 1. M |= 〈I, F 〉 if and only if M |= 〈I ∩ BF , F ∩ RI〉.

If approximate sets are used, 〈I ∩ B̂F , F ∩ R̂I〉 is sufficient for 〈I, F 〉, but if
M �|= 〈I ∩ B̂F , F ∩ R̂I〉, the analysis is inconclusive. In this situation, we refine
the approximations R̂I and B̂F , which in turn may lead to a refinement of 〈I ∩
B̂F , F ∩R̂I〉 sufficient for 〈I, F 〉. Lemma 2 provides a fixed point characterization
of this iterative refinement process (See [14] for a detailed discussion). The fixed
point characterization does not affect the precise result computed. In contrast, if
approximate operators are used, fixed point iteration may lead to a more precise
result than just 〈I ∩ B̂F , F ∩ R̂I〉.

Lemma 2. Let RI and BF be the forward- and backward-reachable states for
the verification problem 〈I, F 〉. Let R̂I and B̂F be corresponding approximate
sets computed with ˆpost and ˆpre.

1. Let G(〈X, Y 〉) = 〈I ∩X ∩BY , F ∩Y ∩RX〉 be a mapping between verification
problems. Then, 〈I ∩ BF , F ∩ RI〉 is the greatest fixed point of G.

2. Let ˆpost and ˆpre be monotone. Define Ĝ(〈X, Y 〉) = 〈I∩X∩B̂Y , F ∩Y ∩R̂X〉.
Let 〈IG, FG〉 be the greatest fixed point of G and 〈IĜ, FĜ〉 be the greatest fixed
point of Ĝ. Then, IG ⊆ IĜ and FG ⊆ FĜ.

Such a characterization forms the basis of our algorithm. Though the approxi-
mate operators we consider are not monotone, we can define an iterative compu-
tation to obtain a similar result. The main obstacle to realizing such an iteration
is that R̂I or B̂F cannot be computed if the approximation introduces possible
counterexamples. Interpolants are computed from proofs of unsatisfiability and
counterexamples result in a satisfiable formula. Therefore, we need to study
counterexamples in the approximation and design methods to avoid them.

3.3 Counterexample Guarantees

Approximate images computed by interpolation do not contain spurious coun-
terexamples shorter than the specified bound. We formalize this notion as a
counterexample guarantee and study its properties.
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Definition 2. A counterexample guarantee (P, k) is a set of states P ⊆ S and
a natural number k. An approximate image operator ˆpost provides the coun-
terexample guarantee (P, k) if for all sets Q ⊆ S, states s ∈ ˆpost(Q) and paths
s = s0 → · · · → sj with j < k, if sj ∈ P , then s ∈ post(Q). A counterexample
guarantee for an approximate pre-image operator ˆpre is similarly defined.

We can be certain that a state in the approximate image, leading to a counterex-
ample shorter than k is not introduced by the approximation. Similarly, a state in
the approximate pre-image, reachable from a state in P by a path shorter than
k is also contained in the precise pre-image. For example, the counterexample
guarantee (F, 0) provides no information about the spurious states in an approx-
imate image. If (F, 1) is the guarantee, the approximation does not introduce any
states in F , but may introduce states on a path to F . Thus, if the approximate
image of Q contains a state in F , we know that a state in Q leads to F .

Let Int(A, B) be a procedure that returns the interpolant for an unsatisfiable
pair A and B. An approximate image providing the counterexample guarantee
(F, k) can be derived by computing Int(A, B), where A and B are as follows [4]:

A ≡ Q(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (3)

Similarly, we obtain an approximate pre-image operator providing the counterex-
ample guarantee (I, k) by computing Int(A, B), where A and B are:

A ≡ T (xk−1, xk) ∧ Q(xk)
B ≡ (I(x0) ∨ · · · ∨ I(xk−1)) ∧ T (x0, x1) ∧ . . . ∧ T (xk−2, xk−1)

(4)

We refer to Eq. 3 and 4 as interpolation formulae. If the counterexample guar-
antee an operator provides is insufficient to reach a conclusion about a possible
counterexample, we can generate an operator providing a stronger guarantee.

Definition 3. A counterexample guarantee (P ′, k′) is stronger than (P, k) if
P ⊆ P ′ and k ≤ k′.

McMillan’s original algorithm increases k if a possible counterexample is discov-
ered [4], and Marques-Silva [6] suggests heuristics for choosing the increment.
This processes can be viewed as iterative strengthening of a counterexample
guarantee until it is, intuitively speaking, strong enough. Another possibility
is to add states to P . Let R̂I and B̂F be computed with ˆpost and ˆpre. A
counterexample guarantee (P, k) is image-adequate if R̂I contains no spuri-
ous counterexamples. (P, k) is pre-image-adequate if B̂F contains no spurious
counterexamples.

Theorem 1. Let 〈I, F 〉 be a verification problem. The counterexample guarantee
(F, bd(F ) + 1) is image-adequate and (I, rd(I) + 1) is pre-image-adequate.

Adequate guarantees are worst-case requirements. In practice, properties can be
proved using approximate operators that provide weaker guarantees [4]. Corol-
lary 1 indicates the bounds for the special cases of inductive sets and Corollary 2
recalls different adequate guarantees.
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Corollary 1. The counterexample guarantee (F, 1) is image-adequate if F is
inductive. (I, 1) is pre-image-adequate if I is inductive.

Corollary 2. For k > 1, if (F, k) is image-adequate, then so is (F ∪pre(F ), k−
1). If (I, k) is pre-image-adequate, then so is (I ∪ post(I), k − 1).

To see Corollary 2, observe that if I and F are not inductive, then rd(I) =
rd(I ∪ post(I)) + 1 and bd(F ) = bd(F ∪ pre(F )) + 1. Thus, if, when feasible, the
counterexample guarantee is strengthened by taking the union with an image
or pre-image in addition to increasing k, fewer operators may have to be tried
before the adequacy bound is reached.

3.4 Counterexample-Free Approximations

Strengthening a counterexample guarantee eliminates spurious counterexamples
shorter than the specified bound, but need not result in a better approxima-
tion. We want to design an approximate image operator that also guarantees an
improvement in the approximation. One possibility is to constrain subsequent
approximations using previous ones.

A sequence of approximations cannot directly be reused after a restart because
they may lead to satisfiability. The approximation cannot be used to constrain
the next one because it may not include the reachable states. Marques-Silva [5]
identifies conditions for interpolant reuse, but there is no guarantee that the new
approximation computed is an improvement.

If the states leading to satisfiability can be eliminated, the formula will again
be unsatisfiable and the method can progress. In particular, we want a counter-
example-free approximation, an approximate set of states, which excludes viola-
tions but retains enough information to conclude if violations exist [12]. Figure 1
illustrates the relationship precise and approximate counterexample-free forward
approximations. We define the set of counterexample-free reachable states, SI,F ,
to contain all states reachable from I by a path that never visits F . Define CI,F

to be the states backward-reachable from F by a path that never visits I.

SI,F = μQ.[(I ∪ post(Q)) ∩ F ] CI,F = μQ.[(F ∪ pre(Q)) ∩ I]

The counterexample-free approximations of SI,F and CI,F in terms of the oper-
ators ˆpostF (Q) = [ ˆpost(Q) ∩ F ] and ˆpreI(Q) = [ ˆpre(Q) ∩ I] and are as below.

ŜI,F =
⋃

i≥0

ˆpost
i

F (I) ĈI,F =
⋃

i≥0

ˆprei
I(F )

The approximation computed using an ˆpostP , for a set of states P , is contained
in P . Therefore, we obtain a new approximation, which is not worse than the
previous one as desired. If there is a counterexample, the sets post(SI,F )∩F and
pre(CI,F ) ∩ I are not empty. If M |= 〈I, F 〉, then RI = SI,F and BF = CI,F .
The sets ŜI,F and ĈI,F are approximations which do not contain violations but
may have states leading to a violation.
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Counterexample−Free

Failure

Reachable

Counterexample−free Approximation

Init

Fig. 1. Counterexample-free forward approximation

Lemma 3. Let 〈I, F 〉 be an assertion, RI and BF be forward- and backward-
reachable states, and SI,F , CI,F , ŜI,F and ĈI,F be as above.

1. RI ∩ F = ∅ if and only if RI = SI,F

2. BF ∩ I = ∅ if and only if BF = CI,F

3. SI,F ⊆ ŜI,F and CI,F ⊆ ĈI,F

Assume, for now, that we can compute ŜI,F and ĈI,F using an interpolation-
based method. If post(ŜI,F ) ⊆ ŜI,F , we have an inductive invariant, which con-
tains RI and can conclude that the property holds. This can be determined using
a SAT solver to see if [ŜI,F (x0) ∧ T (x0, x1) ∧ F (x1)] is unsatisfiable. A similar
check applies for ĈI,F and fails if pre(ĈI,F ) ∩ I is not empty.

Further, if M |= 〈I, F 〉, then ŜI,F and ĈI,F contain RI and BF , respectively.
If M �|= 〈I, F 〉, then ŜI,F and ĈI,F must contain a state on a path to and from a
violation, respectively. The sets ŜI,F and ĈI,F lose no information about whether
M |= 〈I, F 〉 and we can refine the verification problem to 〈I ∩ pre(ĈI,F )), F ∩
post(ŜI,F )〉. Theorem 2 formalizes these intuitive arguments.

Theorem 2. Let SI,F and CI,F be counterexample-free sets of forward- and
backward-reachable states.

1. The problem 〈I ∩ pre(CI,F ), F ∩ post(SI,F )〉 is sufficient for 〈I, F 〉.
2. Let G(〈X, Y 〉) = 〈I ∩ X ∩ pre(CX,Y ), F ∩ Y ∩ post(SX,Y )〉. Then, 〈I ∩

pre(CI,F ), F ∩ post(SI,F )〉 is the greatest fixed point of G.

The proof is available in an electronic version of the paper. We can now use
approximate operators and define an iterative sequence to compute refinements
of 〈I, F 〉, which over-approximate the greatest fixed point of G (the design and
soundness of such an iteration follow from fixed point approximation [18]). We
still need a method to improve subsequent approximations because ˆpost and
ˆpre are not monotone. The approximations ŜX,Y and ĈX,Y contain sufficient

information to decide M |= 〈I, F 〉 and can thus be used to soundly constrain
new approximations.
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4 Approximation Refinement with Interpolation

We present an interpolation-based model checking algorithm. Novel aspects of
this algorithm are that:

1. It computes counterexample-free approximations, thus avoiding satisfiability
until a fixed point is reached.

2. If an approximation leads to an inconclusive answer, a new approximation
is computed, which is guaranteed to refine the previous approximation.

3. The approximation is improved using previously computed approximations,
ensuring that computed information is not lost.

An additional feature is that we combine forward and backward analysis. Such
combinations are by now standard in the model checking literature and have the
benefits of both analyzes such as faster convergence to a result.

4.1 Interpolant-Based Approximation Refinement

Our algorithm is shown in Figure 2. It is provided a verification problem 〈I, F 〉
as input. We assume that I ∩ F is the empty set. The pair 〈Ij , Fj〉 is a sufficient
refinement of 〈I, F 〉 obtained after j iterations. S̃j and C̃j are counterexample-
free approximations of the reachable and backward reachable states from Ij and
Fj , respectively. On Line 3, if a counterexample of length kj exists, an error is
returned. If not, two counterexample-free approximations are computed.

Recall that ˆpostF is an approximate operator returning [ ˆpost(Q) ∩ F ] for any
Q. The approximate operator ˆpreI similarly returns [ ˆpre(Q) ∩ I] for any Q. We
can compute counterexample-free approximations using ˆpostFj

and ˆpreIj
, but

they are not guaranteed to refine S̃j−1 and C̃j−1 because ˆpost and ˆpre are not
monotone. Instead, on Line 8, we use the function [ ˆpostFj

(Q) ∩ S̃j−1], to obtain
a counterexample-free approximation which does refine S̃j−1. On Line 9, we
compute a similar approximation, C̃j , which refines C̃j−1.

We then check, on Line 10, if either set leads to counterexample. If not,
we know that the approximation is an inductive set with no counterexamples,
containing the reachable states, and we return No Counterexample. If this
check fails, there are states in S̃j and C̃j , which lead to counterexamples. These
states may be introduced by the approximation. We progress by refining the
verification problem and incrementing the bound kj .

We need to implement all computations and checks in the algorithm using
a SAT solver as shown on Line 3. To determine if S̃j and C̃j lead to coun-
terexamples on Line 10, we check if either [S̃j(x0) ∧ T (x0, x1) ∧ Fj(x1)] or
[Ij(x0) ∧ T (x0, x1) ∧ C̃j(x1)] is unsatisfiable. The main challenge is to compute
the sets S̃j and C̃j . We propose two methods, each making a trade-off between
efficiency and accuracy. Given sets Q, F, S̃, we need to compute ˆpost(Q)∩F ∩ S̃.
We recall the interpolation formula.

A ≡ Q(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk))
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Verify(M, 〈I, F 〉)
Input: Transition system M , Verification problem 〈I, F 〉

1: I1 = I, F1 := F, S̃0 := F, C̃0 := I, k1 = 1
2: for j = 1, 2, 3 . . . do
3: if Sat(Ij ∧ T (x0, x1) · · · T (xkj−1, xkj ) ∧ Fj) then
4: return Counterexample

5: end if
6: Let ˆpost provide the guarantee (Ij , kj).
7: Let ˆpre provide the guarantee (Fj , kj).
8: S̃j :=

⋃
i≥0[ ˆpostFj

(Ij) ∩ S̃j−1]

9: C̃j :=
⋃

i≥0[ ˆpreIj
(Fj) ∩ C̃j−1]

10: if post(S̃j) ∩ Fj = ∅ or pre(C̃j) ∩ Ij = ∅ then
11: return No Counterexample

12: else
13: Ij+1 := Ij ∩ pre(C̃j)
14: Fj+1 := Fj ∩ post(S̃j)
15: kj+1 := kj + 1
16: end if
17: end for

Fig. 2. Interpolation-based Approximation Refinement

A possible counterexample exists if this formula is satisfiable. One possibility
is to compute all satisfying assignments to identify the states P ⊆ Q, which
lead to failures. If Q(x0) is replaced by Q(x0) ∧ ¬P (x0), the formula becomes
unsatisfiable and we can proceed. This process is repeated to obtain a sequence
of sets P1, P2, . . . of states leading to counterexamples. This method amounts
to computing pre-images of F contained in Q. If the approximation introduced
by the interpolant is small, the number of satisfying instances is small and this
procedure is feasible. We emphasize that this is not the same as computing
images using a SAT-solver. We compute states in the approximation leading to
satisfiability, rather than states in an image. If the set of reachable states is large,
but the spurious counterexamples introduced by the approximation are small,
this method is still feasible, whereas computing images this way is not.

Our second method uses the counterexample guarantee provided with Q. Any
spurious counterexample must be of length at least k. Thus, if we constrain the
formula above to be B ∧ ¬F (xk), the formula again becomes unsatisfiable. We
can compute Q′(x1) = Int(A, B ∧ ¬F (xk)), a set of states satisfying that every
path of length k − 1 from s either (a) never visits a failure state, or (b) visits a
failure state exactly after k − 1 steps. The possibilities are mutually exclusive. If
in the next iteration, the formula is unsatisfiable, we can compute the interpolant
and proceed as before. If the formula is satisfiable, the counterexample may be of
length k or k−1. We first add the constraint ¬F (xk−1) to the formula B above. If
it is unsatisfiable, we can proceed. Otherwise, we also add the constraint ¬F (xk).
The formula must now be unsatisfiable and we can compute the interpolant.



Approximation Refinement for Interpolation-Based Model Checking 79

With each constraint that is added, we obtain an approximate image which
provides us weaker counterexample guarantees.

Forcing unsatisfiability by adding constraints can be adopted every time the
formula becomes satisfiable. In the worst case, we may have to add ¬F (xi) for
all 2 ≤ i ≤ k. If the formula is still satisfiable, we can add the constraint ¬F (x1)
to the formula A of the pair. In this case, the interpolant is just ¬F (x1), which
is also the largest counterexample-free approximation we can obtain. A formal
statement of correctness follows.

Theorem 3. If the algorithm returns Counterexample, then M �|= 〈I, F 〉. If
the algorithm returns No Counterexample, then M |= 〈I, F 〉.

Proof. The proof of the negative case is straightforward, because an unwinding
of the transition relation is used to detect the counterexample.

To prove the positive case, consider the sets S̃j and C̃j . We have established in
Theorem 2 that 〈I∩pre(CI,F ), F ∩post(SI,F )〉 is sufficient for 〈I, F 〉. It is enough
to show that 〈Ij , Fj〉 in the algorithm is an over-approximation of this pair. Let
〈Xj , Yj〉 be the sequence generated by the fixed point iteration in Theorem 2.
The sequence is decreasing, so SXj ,Yj ⊆ SXj+1,Yj+1 . The pair 〈Xj+1, Yj+1〉 is
computed using postYj and preXj . The corresponding sets computed using ˆpostYj

and ˆpreXj
must therefore be over-approximations. Further, each set S̃j is only

constrained using S̃j−1, which is an over-approximation of SIj ,Fj , therefore S̃j

over-approximates SIj ,Fj . The same applies for C̃j . The pair 〈Ij , Fj〉 computed
from this pair of sets is sufficient for 〈I ∩pre(CI,F ), F ∩post(SI,F )〉. Correctness
follows. �

To complete the formal analysis, we have a statement about termination.

Theorem 4. The algorithm always terminates with a positive or negative result.

Proof. If M �|= 〈I, F 〉, then, because the sequence 〈Ij , Fj〉 computed by the al-
gorithm is sufficient for 〈I, F 〉, the pair Ij and Fj never becomes empty. In each
iteration, the bound kj is increased until it reaches the length of the counterex-
ample, when the failure is reported.

If M |= 〈I, F 〉, the bound kj is eventually increased to either rd(M) + 1
or bd(M) + 1. Recall from Theorem 1 that such a counterexample guarantee
is adequate, meaning that it does not introduce any spurious counterexamples.
Thus, in the next iteration, either Ij+1 or Fj+1 computed by the algorithm is
the empty set and the algorithm terminates. �

Optimizations. The algorithm as presented admits several optimizations.
These include standard methods such as frontier set simplification and logic
minimization. A standard check to make after Line 3 is to see if the new bound
is k-inductive [20]. Recent developments which may enhance our method are
dynamic abstraction and redundancy elimination for interpolants [15] and in-
terpolant strengthening [7]. Our current implementation is näıve and is based
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on the blocking clauses algorithm for AllSAT. Minimal inductive sub-clauses
extracted from counterexamples [21] may reduce the effort required to obtain an
unsatisfiable formula.

4.2 Experience

We have implemented a preliminary version of this algorithm and experimented
with some hardware benchmarks. We have proposed obtaining an unsatisfi-
able formula by either constraining the satisfiable formula using either blocking
clauses or the set of failure states. The second method being symbolic showed
more promise, but we are unable to present an evaluation due to technical prob-
lems (which we are rectifying). Thus, we can only present results for our algo-
rithm where the approximations are computed using AllSAT.

Given the preliminary nature of our implementation, our conclusions are, for
the moment, primarily qualitative.1 If the interpolation formula never becomes
satisfiable, our method essentially reduces to doing standard interpolation-based
model checking. The hardware benchmarks we considered can be divided into
three categories:

1. Small. Such circuits either have a small depth or result in approximations
which preserve unsatisfiability. Examples include the ITC ’99 benchmarks
[22]. The basic interpolation algorithm is able to prove properties of these
circuits using a small unwinding, so our method was never invoked.

2. Medium. These circuits compute arithmetic and Boolean functions. The over-
approximation introduced does lead to satisfiability and our technique does
help to reach a fixed point.

3. Large. These include processor benchmarks and satisfiable instances occur of-
ten. The enumerative procedure usually exhausts the memory or time limits
set. Our experience with such circuits is that the approximation introduced
by interpolation is extremely coarse, yielding no useful information.

It appears that our method is superfluous for small circuits, but may yield useful
invariants for intermediate circuits, though it is unclear if there will be a per-
formance improvement. With large circuits, the interpolants appear to be too
coarse and computing a fixed point provides no benefits. It is an open question
if methods for interpolant strengthening will help [7].

5 Conclusion

To summarize, we initiated a study of interpolation-based model checking using
fixed point approximation. We introduced counterexample-free approximations
to reduce the number of restarts and to enable the reuse of approximations during
model checking. Our verification algorithm progresses by iteratively strengthen-
ing counterexample guarantees and refining approximations.

1 The implementation is available at: http://www.verify.ethz.ch/ebmc/
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The new method yields useful invariants and reduces the restarts required
when model checking medium sized circuits but is unnecessary for small cir-
cuits. On large circuits, it is inconclusive, as it appears that the interpolants are
extremely coarse, so computing a fixed point does not yield much information.
This highlights the need for computing tighter interpolants, and other techniques
to force unsatisfiability, the focus of our current research.
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Abstract. Cellular signalling pathways, where proteins can form com-
plexes and undergo a large array of post translational modifications
are highly combinatorial systems sending and receiving extra-cellular
signals and triggering appropriate responses. Process-centric languages
seem apt to their representation and simulation [1,2,3]. Rule-centric lan-
guages such as κ [4,5,6,7,8] and BNG [9,10] bring in additional ease of
expression.

We propose in this paper a method to enumerate a superset of the
reachable complexes that a κ rule set can generate. This is done via the
construction of a finite abstract interpretation. We find a simple criterion
for this superset to be the exact set of reachable complexes, namely that
the superset is closed under swap, an operation whereby pairs of edges
of the same type can permute their ends.

We also show that a simple syntactic restriction on rules is sufficient to
ensure the generation of a swap-closed set of complexes. We conclude by
showing that a substantial rule set (presented in Ref. [4]) modelling the
EGF receptor pathway verifies that syntactic condition (up to suitable
transformations), and therefore despite its apparent complexity has a
rather simple set of reachables.

1 Introduction

Biological signalling pathways are large, natural, quantitative concurrent systems
in charge of sending and receiving extra-cellular signals and triggering appropri-
ate responses in the cell —eg differentiation, migration, or growth. They involve
multiple proteins, from membrane bound receptors to adapters and relays to
transcription factors. As thorough a description as possible of these pathways
is key to their understanding and control. Such a task is difficult for a variety
of reasons, one being of a purely representational nature. Those networks are
highly combinatorial, meaning that their agents can assemble and be modified
in a huge number of ways —about 1019 unique complexes for the EGF recep-
tor pathway model we consider later. Usual representations based on reactions
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between structureless entities must inevitably sample down this combinatorial
complexity, and obtain models which stand in no clear relation to biological facts
and are hard to keep abreast of new developments. Regev et al. have proposed
using π-calculus [11] to avoid the combinatorial explosion besetting differential
equations [1,2]. Other process-based languages have been proposed [3,12,13,14].
The rule-based languages κ [4,5,6,7] and BNG [9,10] bring additional ease in the
building and modification of models [8].

The object of this paper is to explain and illustrate on a sizable example a
method to explore the set of complexes that can be generated by a κ rule set,
aka the system’s reachable complexes. Although κ models can be run with no
prior enumeration of reachable complexes [5], a convenient method for describing
those can be used to:

- detect dead rules (which is useful when developing large models)
- coarsen rules (ie get rid of superfluous conditions while preserving the un-

derlying qualitative transition system)
- refine rules (eg for kinetic reasons)
- determine whether a rule may activate another (which brings down the cost

of stochastic simulations [5])
- generate the underlying ground system (or a truncated version thereof if too

large), and equip it with a differential equation semantics for the purpose of
fast calibration of a model on available data (not implemented yet).

The very combinatorial nature of signalling systems manifests itself in that
computing reachables by transitive closure is unfeasible for any but the simplest
networks. Our method works around this problem by defining a finite interpreta-
tion of rule sets. This finitisation is based on an approximation of complexes as
sets of radius 1 neighbourhoods, which we call views, and a pair of adjoint maps
to break down complexes into views, and recombine views into complexes. Thus
one can generate efficiently a superset of the reachable views, and decide whether
the corresponding set of complexes is infinite by detecting repeatable patterns
(section 3). This begs the question when the reachable views recombine to form
exactly the reachable complexes, not just a super-set. This happens when the
set of reachables is closed under swap, an operation whereby pairs of edges of
the same type can permute their ends (section 4). We call such sets local, and by
extension say a model is local if its set of reachables is. The definition of locality
for a model is not syntactical, since it is a condition on the set of associated
reachables, but one can guarantee locality by placing syntactical restrictions on
the model’s rule set (section 5). Our EGF receptor network example satisfies that
syntactical condition —up to some reachables-preserving transformations— and
is local despite its apparent complexity (section 6).

This touches on an interesting and more speculative question. Situations can be
expressed in κ which have little to do with biological signalling (eg it is straightfor-
ward to represent Turing machines). One would like to think, as the EGF example
model indicates, that we have delineated a fragment of κ —that of local rule sets—
where natural signalling pathways predominantly fall. What that may mean bio-
logically is briefly discussed in the conclusion together with leads for future work.
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E ::= ∅ | a, E (expression) s ::= nλ
ι (site)

a ::= N(σ) (agent) n ::= x ∈ S (site name)
N ::= A ∈ A (agent name) ι ::= ε | m ∈ V (internal state)
σ ::= ∅ | s, σ (interface) λ ::= ε | i ∈ N (binding state)

Fig. 1. Syntax

E,A(σ, s, s′, σ′), E′ ≡ E, A(σ, s′, s, σ′), E′

E,a, a′, E′ ≡ E, a′, a, E′
i, j ∈ N and i does not occur in E

E[i/j] ≡ E

Fig. 2. Structural equivalence

2 κ

We first briefly present a simplified core κ using a process-like notation which
facilitates the reachability analysis of the next section. This is in contrast with
the equivalent graph-theoretical presentation chosen in Ref. [5] for the definition
of the quantitative (stochastic) semantics.

We suppose given a finite set of agent names A, representing different kinds of
proteins; a finite set of sites S, corresponding to protein domains and modifiable
residues; a finite set of values V, representing the modified states. The syntax of
agents and expressions is given in Fig. 1.

An interface is a sequence of sites with internal and binding states; specifically
one writes xλ

ι for a site x with internal state ι, and binding state λ. If the binding
state is ε, the site is free; otherwise it is bound. On the other hand, if the internal
state is ε, this means the internal state is left unspecified. In the concrete notation
both εs are omitted.

An agent is given by a name in A and an interface.
A well-formed expression is a sequence of agents such that:

- a site name can occur only once in an interface,
- a binding state occurs exactly twice if it does at all.

We suppose hereafter all expressions to be well-formed.
Sites sharing a same binding state are said to be bound.
The structural equivalence ≡ defined as the smallest binary equivalence be-

tween expressions that satisfies the rules given in Fig. 2 stipulates that: neither
the order of sites in interfaces, nor the order of agents in expressions matters,
and that bindings states can be injectively renamed.

Equivalence classes of ≡ are called solutions and one writes [E] for the class
of expression E. One says a solution [E] is reducible whenever E ≡ E′, E′′ for
some non empty expressions E′, E′′. A complex is an irreducible solution.

Complexes and solutions can equivalently be presented graphically. Fig. 3
shows an example for the following expression:

EGF(r1), EGF(r2), EGFR(l1, r3, Y10484
p, Y1148p), EGFR(l2, r3, Y1048u, Y11485

p),
GRB2(SH24, SH36), SOS(a6), SHC(PTB5, Y3177

p), GRB2(SH27, SH3)

A rule is a pair of expressions El , Er .
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Fig. 3. A complex from the EGF receptor pathway: sites correspond to protein domains
SH2, SH3, . . . and modifiable amino-acid residues Y317, Y1048, . . . edges correspond
to bindings, solid black stands for phosphorylated tyrosine residues

nλ
ι |= nλ

ι nλ
ι [nλr

ιr ] = nλr
ιr

nλ
ι |= nλ nλ

ι [nλr ] = nλr
ι

σ |= ∅ σ[∅] = σ
s |= sl σ |= σl

s, σ |= sl , σl
s, σ[sr , σr ] = s[sr ], σ[σr ]

σ |= σl

N(σ) |= N(σl )
N(σ)[N(σr )] = N(σ[σr ])

E |= ∅ E[∅] = E
a |= al E |= El

a,E |= al , El
(a, E)[ar , Er ] = a[ar ], E[Er ]

Fig. 4. Definition of matching |= (left), and replacement (right)

The left hand side El describes the agents taking part in the event and various
conditions on their internal and binding states for the event to actually happen.
The right hand side Er describes the rule’s effect which is either:

- a binding (unbinding):Er (El ) is obtained by binding two free sites in El (Er ),
- or a modification: Er is obtained by modifying some internal state in El .

Note that bindings and unbindings are symmetric, while modifications are
self-symmetric.

In order to apply a rule El , Er to a solution [E], one uses structural equivalence
(Fig. 2) to bring the participating agents at the beginning of the expression,
with their sites in the same order as in El , and renames bindings to obtain an
equivalent expression E′ that matches El (Fig. 4, left). One then replaces E′

with E′[Er ] (Fig. 4, right).
This yields a transition system between solutions defined as [E] →El ,Er [E[Er ]]

whenever E |= El .
Note that sites not occurring in El are not constrained in any way, and that

matching only uses structural equivalence on E, not El .
Our implementation also allows rules for agent creation and deletion. The

methods and results presented here can be readily extended to this richer setting.
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Fig. 5. Receptor ‘cross-phosphorylation’ (left): site Y1148 is modified (phosphoryla-
tion induced by the receptor kinase domain represented as a solid white circle, and
inducing a state change represented as a solid black circle); and receptor ‘dimerisation’
(right): the dotted edge represent binding, both ends of the link are modified

Here is an example of a modification, and a binding (see also Fig. 5):

EGF(r1), EGFR(l1, r2, Y1148u), EGFR(r2, l3), EGF(r3) →
EGF(r1), EGFR(l1, r2, Y1148p), EGFR(r2, l3), EGF(r3)
EGF(r1), EGFR(l1, r), EGFR(r, l2), EGF(r2) →
EGF(r1), EGFR(l1, r3), EGFR(r3, l2), EGF(r2)

3 Reachability

Let Σ denotes the set of all solutions, and Γ be the set of all complexes. Given
R a set of rules and S0 an initial solution, the set of reachable solutions is given
as the least fixpoint in ℘(Σ) greater than S0, written lfpS0

post, of the map
post(X) := X ∪ {S′ | ∃S ∈ X, ∃r ∈ R, S →r S′}.

Write [F ] ∈ [E] if there is an expression E′ such that E ≡ F, E′.
Define the maps αc : ℘(Σ) → ℘(Γ ), γc : ℘(Γ ) → ℘(Σ) as:

αc(X) := {c ∈ Γ | ∃S ∈ X : c ∈ S}
γc(Y ) := {S ∈ Σ | c ∈ S ⇒ c ∈ Y }

The pair αc, γc form a Galois connection and the set Γ ∗ of reachable complexes
is αc(lfpS0

post). The most precise counterpart to post, postc := αc post γc

can be written postc(X) = X ∪ {c ∈ Γ | ∃[c1], . . . , [cm] ∈ X ∃r ∈ R ∃S ∈ Σ :
[c1, . . . , cm] →r S ∧ c ∈ S}. Clearly Γ ∗ ⊆ lfpαc(S0)postc.

This abstraction is not always exact since it does not take into account the
number of occurences of a complex in a solution. In practice rules are rarely
asking for many occurrences of a same agent or complex, and it is safe to consider
that each kind of agent occurs an unbounded number of time in S0.

One thing that does matter in the application is that Γ ∗ may be large (even
infinite in case of polymerisation) and this is why we set up now a finite approx-
imation of this set. The idea is to only retain from a solution the information
which is local to the agents and which we call agents views (as in Ref. [15]).
Specifically, we replace each binding state in an expression with its associated
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v ::= N(σ) (View) n ::= x ∈ S (site name)
N ::= A ∈ A (Agent name) ι ::= ε | m ∈ V (Internal state)

σ ::= ∅ | nλ
ι , σ (Interface) λ ::= ε | n.N (Binding state)

Fig. 6. Syntax for views

A(σ, s, s′, σ′) ≡ A(σ, s′, s, σ′)

Fig. 7. Structural congruence

typed link, ie the site and agent names of the opposite end of the link, and call
β the obtained transformation.

An example is:

β(EGF(r1), EGFR(l1, r2), EGFR(r2, l3), EGF(r3)) =
EGF(rl.EGFR), EGFR(lr.EGF, rr.EGFR), EGFR(lr.EGF, rr.EGFR), EGF(rl.EGFR)

The syntax of views is given in Fig. 6, and the structural congruence which
allows to reorder sites in a view is given in Fig. 7.

Operations on solutions transfer naturally to sequences of views. In particular
one can define an abstract transition step between sequences of views (Fig. 8)
that tests some conditions over the view relation |=�, and either changes the in-
ternal state of a site, or adds/removes the appropriate typed links in the binding
state of two modified views.

Fig. 9 shows the graphical representation (repetitions are omitted) of the
phosphorylation and dimerisation abstract rules (Fig. 5).

Thus one may now define the abstraction that collects the set of views that
can be built during a computation sequence.

Define Δ to be the set of views and the map α : ℘(Γ ) → ℘(Δ) as α(X) :=
{[vi] | ∃[c] ∈ X, β(c) = v1, . . . , vn}. By construction α is a ∪-complete morphism
of complete lattices, and has therefore an adjoint concretization γ : ℘(Δ) →
℘(Γ ), defined as γ(Z) = ∪{X ∈ ℘(Γ ) | α(X) ⊆ Z}, which maps a set of views

nλ
ι |=� nλ

ι nλ
ι [nλr

ιr ]� = nλr

ιr

nλ
ι |=� nλ nλ

ι [nλr ]� = nλr
ι

σ |=� ∅ σ[∅]� = σ

s |=� sl σ |=� σl

s, σ |=� sl , σl
s, σ[sr , σr ]

� = s[sr ]
�, σ[σr ]

�

σ |=� σl

N(σ) |=� N(σl )
N(σ)[N(σr )]

� = N(σ[σr ]
�)

r = El → Er β(El) = v1
l , . . . , vn

l β(Er ) = v1
r , . . . , vn

r vi |=� vi
l

[v1], . . . , [vn] →�
r [v1[v1

r ]�], . . . [vn[vn
r ]�]

Fig. 8. Abstract semantics
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Fig. 9. The partial views associated to the ‘cross-phosphorylation’ and ‘dimerisation’
patterns (multiplicities are not shown); arrows represent the result of the rule action
on views (only modified views are shown)

to the set of complexes that can be built from these, and verifies α(X) ⊆ Z
iff X ⊆ γ(Z). It is easy to see that α, γ are monotonic, αγ is a lower closure
operator (anti-extensive, monotonic, and idempotent), and γα an upper closure
operator (extensive, monotonic, and idempotent) [16].

Let us consider a couple of examples of upper and lower closure:

γα({[A(a1, b1)]}) = {[A(an, b1), . . . , A(an−1, bn)]; n ∈ N}
αγ({[A(ab.A, ba.A)], [B(ab.A, ba.A)]}) = {[A(ab.A, ba.A)]}

In the first example the upper operator constructs rings of all lengths; in the
second one the typed link B(ba.A) has no corresponding dual typed link A(ab.B)
in the view set, so its view cannot be combined with an other one.1

Define postv(Z) := Z ∪ {ui ∈ Δ | ∃v1, . . . , vn ∈ Z ∃r ∈ R : v1, . . . , vn →�
r

u1, . . . , un}. This map is a ∪-complete endomorphism and it satisfies postcγ ≤
γ postv for the pointwise ordering. As a consequence, lfpα(Γ0)postv the least
fixpoint of postv containing α(Γ0) exists and we can state the soundness of our
abstraction as follows: lfpΓ0

postc ⊆ γ(lfpα(Γ0)postv). Thus the views generated
by the abstract system reconstruct, via γ, a superset of the generated complexes.
Note that while lfpα(Γ0)postv is certainly finite, its image under γ may not be.

One may wonder how efficient that finite computation is, and how precise.
Regarding efficiency, we use decision diagrams [17] to manipulate view sets. To
avoid an exponential blow up (the number of views of an agent is exponential
in its number of sites), we use ‘packing’ techniques [18], splitting the interface
of agents into smaller subinterfaces, and then considering only relations between
states of sites belonging to a common subset. Our syntactic analysis ensures that
the result is unchanged. The next section answers accuracy concerns.

1 A trickier example is αγ({[A(a, ba.A)], [A(ab.A, ba.A)]}) = {[A(ab.A, ba.A)]}, since a
finite chain with a free a must have a free b at the other end.
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Fig. 10. The main swap involution (top row); if the names A and B are the same,
some agents can be identified (bottom row); orientations are shown for clarity

4 Local Sets

Say X ⊆ Γ is local if X ∈ Im(γ), or equivalently γα(X) = X . We prove first
that for such local sets, the finite interpretation is exact.

Theorem 1. Consider Inv ∈ ℘(Γ ), a set of complexes such that: Γ0 ⊆ Inv,
postc(Inv) ⊆ Inv, and Inv = γα(Inv), then γ(lfpα(Γ0)postv) ⊆ Inv.

The map postv is not the most precise counterpart of postc, because the relation
|=� does not require views to be embeddable in complexes. However we shall see
below that postvα = αpostcγα which means that postv is the most precise
counterpart of postc when applied to abstract elements that are closed with
respect to αγ. Assuming this for the moment we can prove Th. 1.

Proof. We first prove post
n
v α(Γ0) ∈ α(℘(Γ )) and post

n
v α(Γ0) ⊆ α(Inv):

- α(Γ0) ∈ α(℘(Γ )), and Γ0 ⊆ Inv, so α(Γ0) ⊆ α(Inv);
- If Z ∈ α(℘(Γ )) and Z ⊆ α(Inv), then Z = αγ(Z), so postv(Z) = postvαγ(Z),

and since postvα = αpostcγα, postv(Z) = αpostcγ(Z) ⊆ αpostcγα(Inv) =
αpostc(Inv) ⊆ α(Inv). Because ℘(Δ) is finite, lfpα(Γ0)postv = post

n
v α(Γ0) for

some n, so lfpα(Γ0)postv ⊆ α(Inv), hence γ(lfpα(Γ0)postv) ⊆ γα(Inv) = Inv.
��

By setting Inv = lfpΓ0
postc, one gets the immediate corollary:

Corollary 1. If lfpΓ0
postc ∈ γ(℘(Γ )), then lfpΓ0

postc = γ(lfpα(Γ0)postv).

In words, if lfpΓ0
postc is local, the finite interpretation is exact. Likewise, taking

Inv to be the local closure of lfpΓ0
postc, one obtains the slightly more general

result that γ(lfpα(Γ0)postv) is the smallest local set containing lfpΓ0
postc, sup-

posing that closure is itself closed under postc (it does not have to be).
We proceed now to the characterisation of local sets.
We call a swap any of the three transformations over solutions given Fig. 10.

Note that swapped links have to be of the same A, a, B, b type.

Theorem 2. X ∈ is local iff the set of solutions over X is closed under swaps.
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Clearly views are invariant under swaps, which gives the left to right implication.
To prove the other implication we introduce an ‘assembly grammar’ to describe
γ(Z) for Z ⊆ Δ. This grammar also allows the enumeration (and the counting)
of the elements of γ(Z). It will also help in proving that postvα = αpostcγα
by taking Z ∈ Im(α).

The assembly grammar ⇒Z where E, E′ stand for hybrid expressions (ie
expressions mixing ordinary binding states and typed links), σ, σ′ for hybrid
interfaces, and x is a fresh binding, is given as:

- E ⇒Z E′ if E ≡ E′

- ⇒Z v for v ∈ Z
- A(ab.B

ι , σ), E ⇒Z A(ax
ι , σ), B(bx

ι′ , σ′), E for B(ba.A, σ′) ∈ Z
- A(ab.B

ι , σ), B(ba.A
ι′ , σ′), E ⇒Z A(ax

ι , σ), B(bx
ι′ , σ′), E

- A(ab.A
ι , ba.A

ι′ , σ), E ⇒Z A(ax
ι , bx

ι′ , σ), E

The third clause states that a typed link in a view can be connected to any view
taken from Z showing the dual typed link. Similarly, the last two clauses show
how dual typed links may be connected to form a link.

We write ⇒∗
Z for the transitive closure of ⇒Z .

Say a hybrid expression c embeds in a complex [c∗] if c is the prefix of a hybrid
expression E′ obtained from an expression E ≡ c∗ by replacing some bindings
with their corresponding typed links.

Clearly ⇒∗
Z c implies that c is connected, and γ(Z) is the set of all classes [c]

such that ⇒∗
Z c and c has no typed links.

Proof (Th. 2, continued). We want γα(X) ⊆ X , supposing X is closed under
swap. It is enough to prove that whenever ⇒∗

α(X) c, c embeds in some [c∗] ∈ X .
Indeed if c ∈ γα(X) embeds in some [c∗] ∈ X , then c ≡ c∗, since c has no typed
links. We prove this by induction on ⇒α(X):

- The base case is by definition of α.
- Suppose c is obtained from c1 by replacing a typed link b.B with a binding

to a view v of type B; by induction we have [c∗1], and [v∗] ∈ X containing
respectively c1 and v; we can assume that expressions c1 and v do not share
bindings; therein A, a and B, b must be connected to say B′, b, and A′, a. One
can therefore swap the bindings in the expression c∗1, v

∗, and connect A, a
and B, b; since c1 is connected, it is contained in the post-swap connected
component of A which is in X (because X is closed under swap), and so
is c.

- Suppose c is obtained from c1 by fusing two typed links b.B and a.A in two
distinct agents; by induction there is [c∗1] which embeds c1, if A, a, B, b are
connected in [c∗1] we are done, else consider B′, and A′ as above (those may
be the same agent). Again one can swap the bindings in [c∗1], and connect
A, a and B, b, and their common component after the swap contains c and
is in X .

- Suppose c is obtained from c1 by fusing two typed links b.B and a.A within
the same agents; by induction there is [c∗1] which embeds c1, if A, a is con-
nected to A, b we are done, else A, a, A, b are connected in [c∗1] to say A′, b,
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A′′, a (which may belong to the same agent), so one can swap the bindings,
and the resulting connected component of A contains c and is in X . ��

Using the proof above for the local set γα(X) obtains a stronger statement:

Theorem 3. If ⇒∗
α(X) c, then c embeds in some c∗ ∈ γα(X).

One may use the grammar ⇒Z to obtain either an enumeration or a counting of
γ(Z), when Z ∈ Im(α) (which is the one case we are interested in in the applica-
tion). In general, ⇒Z has either finitely many rewrite sequences or, by a simple
combinatorial argument, there must be a sequence of derivations that form a
hybrid expression with a path connecting two instances of a typed link b.B. By
Theorem 3, any such sequence can be completed so as to produce a complex (with
no typed links), so one can effectively decide whether γ(Z) is infinite (and prac-
tically stop the enumeration on derivations showing a repeatable pattern). Note
that one may also infer from the same theorem that postv(Z) = αpostcγ(Z)
when Z ∈ Im(α) (the equation does not hold in general).

5 Local Rule Sets

At this stage, we know that local sets can be exactly counted or enumerated via
the abstraction if they are finite, and neatly described if they are not.

Say a rule set R is local if given any set of disconnected agents, R generates
a local set of complexes.

Proposition 1. A rule set R is local if the following holds:
- (acyclicity) complexes in γα(Γ ∗) are acyclic;
- (local tests) rules only test the views of the agents they modify;
- (non interference) binding rules do not interfere, that is to say:
– whenever A(aι1 , σ1), B(bι2 , σ2) → A(a1

ι1 , σ1), B(b1
ι2 , σ2)

– and A(aι3 , σ3), B(bι4 , σ4) → A(a1
ι3 , σ3), B(b1

ι4 , σ4)
– then A(aι1 , σ1), B(bι4 , σ4) → A(a1

ι1 , σ1), B(b1
ι4 , σ4)

Before we sketch the proof, let us comment on the acyclicity condition which is
the only non syntactical one.

Define the contact map of a rule set R, written χ(R), and defined as: a graph
with nodes the agent names used in R, with sites those occurring in R, and
where sites are connected iff they are bound by some r ∈ R. Note that χ(R) is
not a (graphical) solution, since sites can be connected more than once; rather
it is a constraint on generated complexes.

Say a complex is compatible with χ(R) if it projects to it.
Fig. 11 shows the contact map of an early EGF model, and the complex shown

Fig. 3 does project to it.
One can test whether a rule set R is acyclic by inspecting χ(R).

Proposition 2. Given R, and Γ0 compatible with χ(R), if Γ ∗ contains a cyclic
complex, then there exists s : Z2n → S such that for all p ∈ Zn: s(2p), s(2p + 1)
belong to the same agent in χ(R), s(2p) = s(2p + 1), and s(2p − 1), s(2p) is an
edge in χ(R).
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Fig. 11. The early EGF receptor cascade model contact map; some sites can change
their internal states (solid black)

In Fig. 11, one sees that the contact map may be cyclic, but every cycle has to
use twice the same site, so no complex in this model can be cyclic, provided one
picks a compatible initial set of complexes.

Note also that the non-interference condition is only concerning binding op-
erations and there is no comparable constraint on unbinding rules. The intuition
is that both agents that want to connect have to do it on the sole basis of their
views and are not allowed to communicate prior to context. This is reminiscent
of synchronisation in CCS [19].

Proof (Prop. 1 sketch). Given [E] a solution of complexes in Γ ∗, and a swap s
between links l1, l2 in [E], one wants to prove that the obtained [Es] is still a
solution of complexes in Γ ∗. Call [c1], [c2] the connected components of l1, l2
in [E]; clearly, it is enough to prove it in the cases when E ≡ c1, c2 or when
E ≡ c1 ≡ c2.

Suppose that E ≡ c1 ≡ c2, then l1, l2 are connected via a unique path in c1
(by acyclicity). Suppose they have the same orientation along this path, then
[cs

1] splits in two components, one of them, call it [d1], containing a cycle; on
the other hand, [d1] ∈ γα(Γ ∗), which contradicts acyclicity. So l1, l2 must have
opposite orientations. Pick a copy of [c1], say [c′1], with links l′1, l′2; it is easy
to see that swapping (l1, l′2), and (l′1, l2) obtains two copies of [cs

1], so one can
reduce that case to the other one where E ≡ c1, c2.

So suppose that E ≡ c1, c2 and pick separate traces leading to solutions
which contains respectively [c1], and [c2] (there must be some, by definition of
Γ ∗). Because initial complexes are single agents, both l1, l2 have to be created
along those traces; consider the last such event in both traces, say [T1] →r1 [S1],
and [T2] →r2 [S2] creating respectively l1, and l2. By atomicity the views of the
agents involved in l1, say [A1], [B1], are the same before and after r1, except of
course for the typed links associated to l1; the same thing holds of [A2], [B2],
therefore in [T1, T2], one can permute the bindings and apply r1 to [A1], [B2],
and r2 to [A2], [B1] (by non interference). Using the final condition namely that
tests are local, it is easy to see that all computation steps onward commute to
that permutation. ��

We illustrate now each condition of Prop. 1 in turn.
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A(au), B(au) → A(a1
u), B(a1

u)
A(a1

u), B(a1
u) → A(a1

p), B(a1
u)

A(a1
u), B(a1

u) → A(a1
u), B(a1

p)

(a)

A(au) ↔ A(ap)
A(au), A(ap) → A(a1

u), A(a1
p)

(c)

R(a, b), R(a) → R(a, b1), R(a1)

(b)

A(l, xu, r) → A(l, xp, r)
A(xp, r), A(l, xu) → A(xp, r1), A(l1, xu)
A(xp, r

1), A(l1, xu) → A(xu, r1), A(l1, xp)
A(xu, r1), A(l1, xp) → A(xp, r

1), A(l1, xu)

(d)

Fig. 12. Rule systems

Local tests: consider the initial complexes A(au) and B(au) and the rules in
Fig. 12.(a), A(a1

p), B(a1
p) is in γα(Γ ∗)\Γ ∗; indeed the last two rules include non

local tests.

Acyclicity: take as an initial complex R(a, b) with the rule in Fig. 12.(b), all
R-rings, eg R(a1, b1), are in γα(Γ ∗) \ Γ ∗.

Non-interference: consider the initial complex A(au) and the rules in Fig. 12.(c),
A(a1

u), A(a1
u) is in γα(Γ ∗) \ Γ ∗; indeed the rule set does not verify non-inter-

ference, since A(au) should also be allowed to bind with A(au).
In any of the above examples, the finite interpretation could be made exact by

suitably extending the agent view radii. In Fig. 12.(d) gives an example which no
finite radius approximation can interpret exactly. Indeed it is easy to see that,
with A(l, xu, r) as the only initial complex, all generated chains of length > 1
have exactly one A(xp); whereas any < n radius abstraction α will have A-chains
with no A(xp), and length ≥ 2n in γα(Γ ∗). We shall refer to this model as the
GLO model in the next section.

6 Examples

We have considered three examples:

- the early EGF receptor pathway model [20],
- the early FGF (fibroblast growth factor) receptor pathway model [21],
- and the EGF model of Ref. [4].

Those are referred to hereafter as the EGF, FGF, and SBF models.2

Proposition 3. The sets of reachable complexes in the EGF, FGF and SBF
models are local.

All the above models can be shown to be acyclic using their contact maps as
shown above for the EGF case. Furthermore the rule sets in these models can
2 The models and relevant outputs of the analysis used in this proof are available

at www.di.ens.fr/∼feret/proplx.

www.di.ens.fr/~feret/proplx
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EGF FGF SBF GLO

Number of rules 39 42 66 4
Abstraction time 0.08 s 0.06 s 0.08 s 0.01 s
Number of complexes 356 79 080 � 1019 ∞
Complex counting time <0.01 s 0.09 s 0.04 s <0.01 s
Enumeration time 0.06 s 85 s ∗ ∗
Number of complexes (non relational analysis) 14 374 709698 � 1025 ∞
Decontextualization time 0.17 s 0.25 s 0.88 s 0.01
Local (by conjugation) true true true false

Fig. 13. Times refer to a run on a 2GHz Intel Centrino Duo, 2G RAM. We also give
the number of complexes obtained by using a non-relational analysis to show the loss of
precision. We skip the enumeration step when the set of complexes is too large. Recall
the GLO model is explicitly designed to be non local.

be made to verify the other assumptions of Prop. 1. This is done by using two
transformations on the rule set.

The first transformation is decontextualization. One groups rules that perform
the same action. Then, for each group, one computes a Boolean encoding of
the set of solutions that 1) may match the left hand side of rules and 2) may
be reachable –according to the view-based analysis (Section 3). In good cases
redundant conditions in left hand side expressions are revealed and one can
simplify the rules. This operation of decontextualization is fully automatic and
does not modify the transition system (it does change the kinetics of the system
when merged rules have different rates but that is not of concern here).

The second transformation of conjugation comes into play to deal with the
few non local rules that may remain. One adds rules that are in the transitive
closure of the transition system (so that the set of reachable complexes remains
the same) and invoke decontextualization again. More precisely, whenever an
action can only be applied in a specific context, one looks for sequences of rules
that allows to simulate the same action in any other reachable context. This
second stage is not automated at the moment.

As noted in the introduction, the use of the view-based abstraction is not
limited to proving that complex sets are local. The inverse operation of con-
textualization where one enumerates extensions of complexes in a rule is also
useful to get rid of non-contextual rule involving agent deletions, or to extract
ground rules from a rule set. Another noteworthy application is the approxi-
mation of causations and conflict relations between events as static relations
between rules; that is useful for simulation [5], and abstracting those at the level
of views accelerates greatly their computation.

7 Conclusion

Biological signalling networks are large and generate combinatorial and high-
dimensional transition systems which are computationally unwieldy. We have
presented in this paper an abstraction of such systems, as represented as κ rule
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sets, which is a prerequisite for a certain number of tasks to become feasible.
Perhaps the most intriguing finding is that this leads naturally to the definition
of a class of local networks, a rather weak fragment of the set of all κ systems,
where one would not a priori expect real models to sit. We could prove that
previously and independently constructed models actually fall into that class.

Obviously, more examples need to be studied, before one can claim this is
the class of natural signalling networks. Suppose however, for the sake of the
argument, that biological networks are indeed predominantly local, one wonders
why. Our favourite speculation is that a local network can be brought to process
signals reasonably well in a variety of circumstances, placing only low demand
on the accuracy of the setup (eg kinetic rates), or the reliability of the signal.

One can unfold the hierarchy of classes which has been left implicit in this
paper, by investigating larger radii approximations, which would cover a larger
class of networks, although we know that no finite radius approximation can
cover all cases (see the GLO example). One has to see if a nice characterisation
of say 2-local complex sets can be obtained.

Note that there is no need for our views to be of uniform radii, and one could
even refine this classification of dimension sets, using collections of non uniform
views. Such a theory, which still needs to be developed, would likely characterize
the closure and covering properties one needs for soundness. Our present local
views would be just one particularly simple instance that is a good computation
trade-off between too poor an abstraction (eg that based on discrete coverings)
which is fast but retains little information, and the richer ones we just suggested.

Another tempting avenue for future research is to articulate quantitative ex-
tensions of those ideas. Specifically, one can use the multiset version of the ab-
straction map, and derive an approximate differential or stochastic operational
model, to be compared with concrete exact simulations. One is looking for a
manifestation of locality at the level of quantitative dynamics.
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Abstract. Lazy abstraction builds up an abstract reachability tree by
locally refining abstractions in order to eliminate spurious counterexam-
ples in smaller and smaller subtrees. The method has proven useful to
verify systems code. It is still open how good the method is as a deci-
sion procedure, i.e., whether the method terminates for already known
decidable verification problems. In this paper, we answer the question
positively for broadcast protocols and other infinite-state models in the
class of so-called well-structured systems. This extends an existing result
on systems with a finite bisimulation quotient.

1 Introduction

Lazy abstraction [1] is an interesting verification method that deserves a study
on its own right. It defines the de-facto standard for verification based on the
scheme coined counterexample-guided abstraction refinement (CEGAR) in [2].
While lazy abstraction has demonstrated its practical usefulness [3,4], it is still
open whether its practical performance is matched by its theoretical qualities.

In this paper, we investigate the suitability of lazy abstraction as a deci-
sion procedure. The general question is for what (already known) decidable
verification problems the method is guaranteed to terminate. We give a posi-
tive answer for the case of so-called well-structured systems. This class, which
contains broadcast protocols and other interesting infinite-state models, is well-
investigated [5,6,7,8,9]. The corresponding verification problem (called coverabil-
ity) is known to be decidable [10]. We prove that lazy abstraction is guaranteed
to terminate for every well-structured system; i.e., lazy abstraction is a decision
procedure for coverability.

The high-level formulation of lazy abstraction given in [1] specifies no control
for building up the abstract reachability tree. Strictly speaking, our positive
answer refers to a version of lazy abstraction with control. The control (for
building up the abstract reachability tree) implements a breadth-first strategy.
This corresponds to the default choice in the implementation of lazy abstraction,
e.g., in the tool BLAST [1,3].

We also give a negative answer. If the lazy abstraction is implemented by a
non-deterministic algorithm (the control for choosing the branches for building
up the abstract reachability tree is non-deterministic choice), then there exists

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 98–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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an example of a well-structured system, an instance of the coverability problem
and a sequence of non-deterministic choices that results in non-termination.

In summary, the contribution of the paper is the comprehensive answer to the
question whether lazy abstraction is a decision procedure for broadcast protocols.

Related Work. Our result relates to two lines of work: the investigation of various
notions of completeness for lazy abstraction and other CEGAR methods, and,
respectively, the design of specific CEGAR methods as complete tests for well-
structured systems.

Completeness of CEGAR for finite-state systems is established in [2]. Sys-
tems with finite trace equivalence include finite-state systems but also timed
automata; lazy abstraction was shown complete for this class in [1]. The com-
pleteness proof exploits the termination guarantee of the finite-quotient con-
struction in [11]. Weaker notions of completeness are investigated in [12] (for
general CEGAR schemes) and in [13] (for lazy abstraction). The proofs em-
ploy combinatorial arguments which, again, are unrelated to the proof methods
employed in this paper.

The design of two specific CEGAR methods as complete tests for well-struc-
tured systems is presented in [6]. The two methods differ from lazy abstraction.
They lack its main characteristics, the incremental construction of an abstract
reachability tree with localized abstraction refinement for subtrees. The proofs
of the termination guarantee given in [6] and, respectively, in this paper, both
rely on the property defining well-structured systems. In [6], the proofs are based
on the saturation of the set of possible refinements. This is not sufficient here,
already because refinements refer to the (a priori unbounded) number of subtrees
in the abstract reachability tree.

To our knowledge, we are the first to investigate the logical intersection of the
two lines of work described above: the question of whether lazy abstraction is
already a complete test for well-structured systems.

2 Preliminaries

2.1 Well-Structured Systems and Coverability

Here we introduce the class of well-structured transition systems(WSS) following
the conceptual frameworks from [5] and [10]. The preorder � on a set S is
called a well-quasi order if for every infinite sequence s0, s1, s2, . . . of elements
of S, there exist indices i and j such that i is strictly less than j and si �
sj . Let (S, �) be a well-quasi ordered set. A subset A of S is upward-closed
if for every element s of A and for every element t of S such that s � t, it
holds that t is an element of A. The existence of such an order on the set of
states of an infinite-state system, combined with some compatibility property of
the transition relation with respect to this order, guarantees the termination of
certain fixpoint computations.

A labeled transition system S is a tuple 〈S, I, C, δ〉 where S is a possibly
infinite set of states, I ⊆ S is a set of initial states, C is a finite set of labels and
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δ ⊆ S × C × S is a labeled transition relation. Transition systems are usually
represented symbolically using formulas over some set of atoms. Let V = X ∪X ′

be a set of variables. The set X ′ consists of the primed versions of the variables
in X . Let AP be a fixed infinite set of atomic formulas over the variables from
V . The language L is the closure of AP under Boolean connectives. For a finite
subset P of AP, we write L(P ) for the closure of P under Boolean connectives.
The set of atomic formulas that appear in a formula ϕ we denote with atoms(ϕ).
A program is specified by a tuple 〈X, init, D〉 where X = {x1, . . . , xn} ⊆ X is
a finite set of program variables (including program counters), each of which
is associated with a domain, init(X) is a formula that denotes the set of initial
states, and D is a set of guarded commands that describes the transition relation.
Each guarded command is of the form ci : gi(X)∧x′

1 = ei
1(X)∧ . . .∧x′

n = ei
n(X)

where ci is the label of the command, gi is the guard and the other conjuncts
are the updates of the variables (the primed variables stand for the next-state
program variables). With each program S = 〈X, init, D〉 we associate a transition
system S = 〈S, I, C, δ〉, which describes its semantics, in the usual way. Each
formula ϕ over the variables in X denotes a set of states: the states in which
ϕ evaluates to true. From now on, we identify formulas over the variables in X
and the sets of states denoted by them. The symbolic operators post and pre
that map a label of a guarded command and a set of states to a set of states are
defined in the usual way.

Consider a transition system S equipped with some well-quasi order � on
the set of states S. Let the transition relation satisfy the following notion of
strong compatibility w.r.t. the labeled transitions, which is the strong compatibility
notion from [5]. That is: for every three states s1, s2 and t1 such that s1 � t1 and
(s1, c, s2) ∈ δ for some label c ∈ C, there exists a state t2 such that s2 � t2 and
(t1, c, t2) ∈ δ. Such labeled transition systems we call well-structured systems.

Let S be a WSS and the formula unsafe denote a set of error states which
is upward-closed w.r.t. the corresponding order �. The coverability problem is
to check whether the upward-closed set of error states is reachable in S. This
problem is known to be decidable for WSS [10].

2.2 Predicate Abstraction

We define abstraction and concretization functions w.r.t. some finite set of pred-
icates P in the usual way. Let |= denote entailment modulo some fixed theory.
The abstraction function αP is parameterized by the finite set of predicates P . It
maps a formula ϕ to the smallest w.r.t. |= formula over P that is greater than ϕ
w.r.t. |=, formally, αP (ϕ) = μ|=ψ ∈ L(P ).ϕ |= ψ. The concretization function γP

is defined to be the identity. The functions αP and γP form a Galois connection.
Hence, they are monotone and ϕ |= γP (αP (ϕ)). If L(P ) contains a formula that
is equivalent to a formula ϕ, then the abstraction of ϕ is equivalent to ϕ. If P is
a subset of the finite set of predicates Q then for every formula ϕ it holds that
γQ(αQ(ϕ)) |= γP (αP (ϕ)).
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2.3 Lazy Abstraction

We recall the lazy abstraction algorithm(LA) from [1]. The algorithm iteratively
explores the abstract state space by constructing an abstract reachability tree. If
it terminates, it returns either a genuine counterexample (a path in the concrete
system from an initial to an error state) or an overapproximation of the set
of reachable states whose intersection with the set of error states is empty. In
order to simplify the presentation, in this section we present the general scheme
of lazy abstraction. In the next section we present in more detail a particular
instantiation of that scheme and then state our contribution.

We describe an algorithm scheme LA[�] parameterized by: (1) the strategy
for exploring the abstract state space, namely the operator choose-element used
to select the node of the abstract reachability tree that is going to be processed,
(2) the predicate covered that determines whether the subtree below a node can
be discarded, (3) the abstract operator p̂ost used to compute the regions of the
nodes in the tree and (4) the operator Φ that is used to select the refinement
predicates.

Each edge in the abstract reachability tree is labeled by a label of a guarded
command. The finite sequences of labels of guarded commands we call traces.
We characterize a node n by the trace σ that labels the path from the root
to n. Each node n in the tree is labeled by a pair (ϕ, P ) called region, written
n:(ϕ, P ). P is a finite set of predicates over the variables in X and ϕ is a Boolean
formula over P . The formula ϕ, which we call the reachable region of n, denotes
an overapproximation of the set of states reachable via the corresponding trace
σ. If the conjunction of ϕ and the formula unsafe is satisfiable then n is an error
node, otherwise we call it a safe node.

The procedure constructs a sequence of trees. We denote the current tree
at iteration k with Tk. The initial tree T0 consists of a single node r labeled
with the region (init, P0), where P0 consists of the atoms that appear in the
formula init and the atoms that appear in the formula unsafe. Each node in the
current tree has a mark that can be one of the following: unprocessed, covered
or uncovered. The list L consists of all nodes in the current tree that are marked
as unprocessed. These are nodes that have been added to the tree but have
not been processed yet. At each step the algorithm chooses a node n from L,
unless L is empty, and deletes it from the list. Then it processes the node n and
constructs the next tree Tk+1 as explained below or returns a counterexample. If
L is empty, the algorithm terminates with the formula Reach as a result, where
the formula Reach is defined to be the disjunction of the reachable regions of all
nodes in the current tree that are marked as uncovered.

When n is a safe node, the algorithm LA[�] proceeds as follows. If n should be
marked as covered, i.e., covered(ϕ) is true for the reachable region ϕ of n (this
holds if ϕ is contained in the disjunction of the reachable regions of some of the
nodes in the current tree that are marked as uncovered), then n is marked as cov-
ered and its children are not generated. Otherwise, it is marked as uncovered and
for each command c, the algorithm does the following. If post(c, ϕ) is not empty,
it adds a new node as a child of n and labels it with the region p̂ost(c, (ϕ, P )).
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Algorithm 1. LA[�]
Input: a program S , a formula unsafe
Output: either “CORRECT” and a formula θ or
“NOT CORRECT” and counterexample σ
P0 := atoms(init) ∪ atoms(unsafe);
T consists of a single node r:(init, P0);
L := {r}; Reach = false;
repeat

n:(ϕ, P ) :=choose–element(L);
remove n:(ϕ, P ) from L;
if ϕ |= ¬unsafe then

if covered(ϕ) then
mark n as covered

else
mark n as uncovered;
Reach := Reach ∨ ϕ;
forall c ∈ C do

if post(c, ϕ) �= ∅ then
add m:p̂ost(c, (ϕ, P )) as a child of n in T ;
label the edge from n to m with c;
mark m as unprocessed and add m to L

end
end

end
else

m:(ψ, Q) is the pivot node for n;
if m= ⊥ then

return (“NOT CORRECT”,the trace from the root to n)
else

τ is the trace from m to n;
relabel m with (ψ, Q ∪ Φ(ψ, τ, unsafe));
mark m as unprocessed and add it to L;
delete the subtrees that start from the children of m;
all nodes that were marked as covered after the last time m was
processed are marked as unprocessed and added to L;
Reach :=

∨
n′:(ϕ′,P ′):uncovered ϕ′

end
end

until L = ∅ ;
return (“CORRECT”, Reach)

The edge from n to the new node is labeled with c. All the children of n are
marked as unprocessed and added to the list L.

When the processed node n:(ϕ, P ) is an error node, the procedure analyzes
the abstract counterexample backwards. The error region for a trace τ is defined
as pre(τ, unsafe). For each node n′ on the path, LA[�] computes the error region
for the trace from n′ to n until it finds the first (in backward direction) node
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on the path, for which the conjunction of the corresponding reachable and error
regions is unsatisfiable. This is the pivot node m:(ψ, Q). Then, m is refined w.r.t.
the trace τ , where τ is the error trace – the sequence of the labels of the edges
on the path from m to n. The set of predicates of the pivot node is enhanced
with the predicates in Φ(ψ, τ, unsafe). The subtrees that start at the children of
the pivot node m are deleted, m is marked as unprocessed and so are all nodes
marked as covered after m was last processed.

Provided that the operator p̂ost fulfills the requirement: if p̂ost(c, (ϕ, P )) =
(ϕ′, P ′), then P ′ = P and post(c, ϕ) |= ϕ′, the following two properties of the
labels of the nodes are direct consequences of the construction of the sequence
of trees.

Property 1. Let n:(ϕ, P ) be a node in the tree Ti. Let j be an index greater or
equal to i such that for every i ≤ k ≤ j, the node n is not deleted from the tree
Tk. Let m:(ψ, Q) be a node in Tj that is in the subtree rooted at n. Then, it
holds that P ⊆ Q.

Property 2. Let n:(ϕ, P ) and m:(ψ, Q) be two nodes in some tree Ti such that
m is in the subtree rooted at n. Let σ be the sequence of labels on the path
from n to m. The set denoted by ψ is an overapproximation of the set of states
that can be reached from a state in ϕ by executing the sequence of commands
σ, formally, post(σ, ϕ) |= ψ.

3 Lazy Abstraction with Breadth-First Strategy: LA[BF]

We obtain the procedure LA[BF] by instantiating the algorithm scheme LA[�].
In particular, we impose more control on the abstract state-space exploration
by fixing the search strategy. We restrict the non-deterministic choice, which
node to be processed at the current iteration, to the set min-depth(L) of un-
processed nodes with minimal depth. We instantiate choose-element with the
operator pick-min-element, which selects non-deterministically an element of min-
depth(L). This amounts to a breadth-first exploration of the abstract reachability
tree. We mark a safe node n with reachable region ϕ as covered, i.e., covered(ϕ)
is true, exactly when ϕ |= Reachn, where the formula Reachn is defined to be
the disjunction of the reachable regions of the nodes in the current tree with
depth less than the depth of n that are marked as uncovered. The parameter
p̂ost is instantiated with the abstract post operator post#, which is defined as
post#(c, (ϕ, P )) = (αP (post(c, ϕ)), P ).

Let m:(ψ, Q) be the pivot node that is to be refined by the procedure and τ be
the corresponding error trace. We define the focus operator Φ, which determines
the refinement predicates for the error trace τ , as follows. For a trace τ and
indices 1 ≤ i ≤ j ≤ |τ | + 1, we denote with τ [i, j) the subword of τ that starts
at position i and ends at position j − 1 (including the j − 1-th element). Then
Φ(ψ, τ, unsafe) =

⋃|τ |+1
i=1 atoms(pre(τ [i , |τ | + 1), unsafe)). The refinement consists

in enhancing the set of predicates of the pivot node m and deleting the subtrees
that originate from its children.
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At each iteration LA[BF] processes an unprocessed node with minimal depth.
Therefore, the refinement satisfies the following property.

Lemma 1. Let n be the node that is processed by the procedure in the tree Ti

at some iteration i. Let σ be a trace and m:(ϕ, P ) be a node in Ti such that the
sum of the length of σ and the depth of m is strictly less than the depth of the
node n. Then, ϕ ∧ pre(σ, unsafe) is not satisfiable.

Proof. The proof goes by induction on the length of σ.

Base case. The length of σ is 0. If we assume that for some node m:(ϕ, P ) with
the stated property, the formula ϕ ∧ pre(σ, unsafe) is satisfiable, then m is an
error node. Hence, it cannot be marked as covered or uncovered. Therefore, it is
marked as unprocessed. Hence, in Ti there is an unprocessed node with depth
strictly less than the depth of the node n. This is a contradiction to the fact
that n is a node of minimal depth marked as unprocessed.

Induction step. Let σ be of the form c · σ′. By the induction hypothesis, for
every node r, such that the sum of the depth of r and the length of σ′ is
strictly less than the depth of n, the conjunction of the reachable region of
r and the error region for σ′ is not satisfiable. Assume for contradiction that
for a node m:(ϕ, P ), the conjunction ϕ ∧ pre(σ, unsafe) is satisfiable and the
sum of the depth of m and the length of σ is strictly less than the depth of n.
Then, there is a state s that satisfies this conjunction. Hence, there is a state t,
such that there is a transition labeled by c from s to t and t is an element of
pre(σ′, unsafe).

Since the depth of the node m is strictly less than the depth of the node
n, which the procedure processes in the current iteration, m should be marked
either as covered or as uncovered. If we assume that m is marked as covered,
then there exists a node m′ with reachable region ψ′ in Ti that is marked as
uncovered, has depth less than the depth of the node m and is such that the
state s satisfies ψ′. As t satisfies post(c, ψ′), there is a node m′′ in Ti that is a
child of m′ and the edge between m′ and m′′ is labeled by c. Let the reachable
region of m′′ be ψ′′. It contains the state t. If, on the other hand, we assume
that m is marked as uncovered, there is a node m′′ in Ti that is a child of m
and the edge between m and m′′ is labeled by c. If ψ′′ is the reachable region
of m′′, then the state t satisfies ψ′′.

Hence, in both cases there is a node m′′ such that the state t belongs to its
reachable region ψ′′ and the sum of the depth of m′′ and the length of σ′ is less
than or equal to the sum of the depth of m and the length of σ which is strictly
less than the depth of n. Therefore, we can apply the induction hypothesis, which
yields that the intersection of ψ′′ and pre(σ′, unsafe) is empty. This contradicts
to the fact that the state t is an element of both of them. This concludes the
proof. 
�
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Algorithm 2. LA[BF]
Input: a program S , a formula unsafe
Output: either “CORRECT” and a formula θ or
“NOT CORRECT” and counterexample σ
P0 := atoms(init) ∪ atoms(unsafe);
T consists of a single node r:(init, P0);
L := {r}; Reach = false;
repeat

n:(ϕ, P ) :=pick-min-element(L);
remove n:(ϕ, P ) from L;
if ϕ |= ¬unsafe then

if ϕ |= Reachn then
mark n as covered

else
mark n as uncovered;
Reach := Reach ∨ ϕ;
forall c ∈ C do

if post(c, ϕ) �= ∅ then
add m:post#(c, (ϕ, P )) as a child of n in T ;
label the edge from n to m with c;
mark m as unprocessed and add m to L;

end
end

end
else

m:(ψ, Q) is the pivot node for n;
if m= ⊥ then

return (“NOT CORRECT”,the trace from the root to n)
else

τ is the trace from m to n;
Q′ :=

⋃|τ |+1
i=1 atoms(pre(τ [i , |τ | + 1), unsafe));

relabel m with (ψ, Q ∪ Q′);
mark m as unprocessed and add it to L;
delete the subtrees that start from the children of m;
all nodes that were marked as covered after the last time m was
processed are marked as unprocessed and added to L;
Reach :=

∨
n′:(ϕ′,P ′):uncovered ϕ′

end
end

until L = ∅ ;
return (“CORRECT”, Reach)

4 LA[BF] is a Decision Procedure

From now on, we assume that the program that is given as input to the procedure
LA[BF] denotes a WSS S with a well-quasi order � and that the set of error
states unsafe is upward-closed with respect to this order. We show that in this
case the procedure LA[BF] is guaranteed to terminate.
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It is easy to see that if the number of performed refinement operations is finite,
then the procedure terminates. This is because with finitely many predicates we
can generate only finitely many non-equivalent regions. To show that the number
of iterations, at which the procedure performs a refinement, is finite, we prove
that the following two properties hold. First, we prove that each particular node
cannot be refined as a pivot node infinitely often. Then, we show that it is also
impossible that the procedure refines infinitely many distinct pivot nodes. In
both cases the proof is by contradiction. We assume that the property under
consideration does not hold and show the existence of an infinite sequence of
states that are pairwise incomparable with respect to the order �. This can
not be true because � is a well-quasi order. To show the existence of such a
sequence, we make use of the fact that for each trace σ the set pre(σ, unsafe) is
upward-closed when unsafe is upward-closed. We first show several lemmas that
we use for proving the two main properties of LA[BF]. We begin with a lemma
that states the progress property of the refinement. Recall that if at the i-th
iteration, n is the pivot node and σ is the sequence of labels on the path from n
to the corresponding error node that is processed in the current tree Ti, we say
that n is refined w.r.t. σ in Ti.

Lemma 2. Let the node n:(ϕ, P ) be refined in the tree Ti w.r.t. the trace σ. Let
j be an index greater than i such that for every index k with i ≤ k ≤ j, the
node n is not deleted from the tree Tk. Assume that the node m:(ψ, Q) is in the
subtree rooted at n in Tj, ψ |= ¬pre(σ, unsafe), the node m′:(ψ′, Q′) is in the
subtree rooted at m and the path from m to m′ is labeled by σ[1, l) for some l,
i.e., with a prefix of σ. Then, ψ′ |= ¬pre(σ[l, |σ| + 1), unsafe).

Proof. The proof goes by induction. For l such that 1 ≤ l ≤ |σ|+1, let ml:(ψl, Ql)
be the node in Tj such that the path from m to ml is labeled by σ[1, l), if
such nodes exists in Tj . For every l we show that if 1 ≤ l ≤ |σ| + 1 then
ψl |= ¬pre(σ[l, |σ|+1), unsafe). For l = 1 we have ψl = ψ and ψ |= ¬pre(σ[1, |σ|+
1), unsafe). Let l + 1 ≤ |σ| + 1. By induction hypothesis we have that ψl |=
¬pre(σ[l, |σ|+1), unsafe). This yields post(σ[l], ψl) |= ¬pre(σ[l+1, |σ|+1), unsafe).
Since by Property 1 atoms(pre(σ[l + 1, |σ| + 1), unsafe)) ⊆ Ql, we have that
αQl

(post(σ[l], ψl)) |= ¬pre(σ[l + 1, |σ| + 1), unsafe). Thus, ψl+1 |= ¬pre(σ[l +
1, |σ| + 1), unsafe). 
�

This lemma implies that once a node n is refined w.r.t. a trace σ, no node in the
subtree rooted at n will be refined w.r.t. the same trace at the next iterations,
provided that n is not deleted meanwhile.

Lemma 3. Let the node n be refined in the tree Ti w.r.t. the trace σ. Assume
that for some index j strictly greater than i, it holds that for every index k with
i ≤ k ≤ j, the node n is not deleted from the tree Tk. Then, for every node m
that is in the subtree of n in the tree Tj, it holds that m cannot be refined in the
tree Tj w.r.t. the trace σ.

Proof. Let the label of the node m in Tj be (ψ, Q). Assume that m is refined
in Tj w.r.t. the trace σ. Therefore, ψ |= ¬pre(σ, unsafe). Also, an error node
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m′:(ψ′, Q′) is processed in Tj and the path from m to m′ is labeled with σ.
According to Lemma 2, ψ′ |= ¬pre(σ[|σ| + 1, |σ| + 1), unsafe), i.e. ψ′ |= ¬unsafe.
This contradicts to the fact that m′ is an error node. 
�

Now we are ready to prove that every node can be the refined as pivot node at
only finitely many iterations.

Proposition 1. A node n cannot be refined by LA[BF] infinitely often.

Proof. We first show that if some node is not deleted infinitely often from the
tree, then it cannot be refined infinitely often. Assume that the node n is refined
infinitely often and deleted only finitely often. Thus, there is an infinite sequence
of trees Tk0 , Tk1 , . . . such that the node n is refined in each tree Tki w.r.t. some
trace σi and for every index k greater or equal to k0, the node n is not deleted
from the tree Tk. According to Lemma 3, all traces in the sequence σ0, σ1, . . .
must be pairwise different. Since the set of labels C is finite, w.l.o.g. we can
assume that for some label c, for each index i, the first element of the trace σi

is exactly c. Let τi be the trace obtained from the trace σi by removing its first
element, and the node m be the child of n with edge from n to m labeled with
c. Let the sequence of formulas ψ0, ψ1, . . . consist of the reachable regions of the
node m in the trees Tk0 , Tk1 , . . . respectively. For every index i, the conjunction
ψi ∧ pre(τi, unsafe) is satisfiable because the node n is refined in the tree Tki

w.r.t. the trace σi. So, for each index i we can choose a state si that satisfies
ψi ∧ pre(τi, unsafe). Since � is a well-quasi order, for the sequence of states
s0, s1, . . ., there exist indices i and j such that i is strictly smaller than j and
si � sj . The set of states pre(τi, unsafe) is upward-closed. Therefore, the state sj

is an element of the set pre(τi, unsafe). According to Lemma 2, the intersection
of the sets ψj and pre(τi, unsafe) is empty. This contradicts to the fact that the
state sj is an element of both sets.

It now remains to show that a node cannot be deleted infinitely often. The
proof is by induction on the depth of the node. The root node is never deleted.
Consider a node n different from the root. By the induction hypothesis we have
that each of the nodes on the path from the root to the node n is deleted only
finitely many times. Hence, as we showed already, each of these nodes can be
refined only a finite number of times. Since a node is deleted only when some
node on the path from the root to this node is refined, n can be deleted only
finitely many times. 
�

To show that it is not possible that the procedure refines infinitely many different
pivot nodes we need the next lemma, which states that if this is the case then
we can construct an infinite sequence of different nodes that are refined by the
procedure with the property that they belong to the same branch.

Lemma 4. If the procedure refines infinitely many pivot nodes, then there is
an infinite sequence Tk0 , Tk1 , . . . of trees and an infinite sequence n0,n1, . . . of
corresponding nodes in those trees, such that the following two conditions hold.
In the tree Tki+1 the node ni+1 is in the subtree rooted at ni. Each node ni is
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refined in the tree Tki and for each index k strictly greater than ki, ni is not
deleted from or refined in Tk.

Proof. Assume that the procedure refines infinitely many different pivot nodes.
Since the number of children of each node is bounded by |C| and no node is
deleted infinitely often, there exists a sequence Tl0 , Tl1 , . . . of trees and a sequence
m0,m1, . . . of corresponding nodes such that mi+1 is a child of the node mi in
the tree Tli+1 . As we showed, each of these nodes is refined as a pivot node at
only finitely many iterations. If we assume that only finitely many of them are
refined, it follows that there exists an index j, such that mj is subsumed by some
mi with index i < j, which is not possible since mj+1 is a child of mj. Thus,
infinitely many among those nodes are refined. The fact that a node cannot be
refined infinitely often implies that there is an infinite sequence Tk0 , Tk1 , . . . of
trees and a corresponding subsequence n0,n1, . . . of m0,m1, . . . such that each
node ni is refined in the tree Tki and for each index k strictly greater than ki,
ni is not deleted from or refined in Tk. This concludes the proof. 
�

What remains now is to show the second property of the refinement, which is
stated below.

Proposition 2. The procedure LA[BF] refines only finitely many pivot nodes.

Proof. Assume that the procedure refines infinitely many pivot nodes and con-
sider an infinite sequence n0,n1, . . . of different nodes and an infinite sequence
Tk0 , Tk1 , . . . of trees that satisfy the conditions stated in Lemma 4. Let σi be the
trace, with respect to which the node ni is refined in the tree Tki . As every node
ni in the sequence is not deleted in any tree Tk with index k greater than ki,
by Lemma 3 the traces σ0, σ1, . . . are pairwise different. As the set of labels C is
finite, we can assume w.l.o.g. that we have chosen the sequences in a way that
each trace has length strictly less than the length of the next. For each trace
σi, we denote with τi the trace obtained from σi by removing its first element.
Let the sequence of nodes m0,m1, . . . be such that each node mi is the child of
the node ni in the tree Tki with the edge between them labeled with the first
element of σi. Let the formulas ϕi and ψi be the reachable regions in the tree Tki

of the nodes ni and mi respectively. The intersection of ψi and pre(τi, unsafe) is
not empty since the node ni is refined in the tree Tki w.r.t. σi. Therefore, there
exists a sequence of states s0, s1, . . . such that each state si is an element of the
corresponding intersection ψi∧pre(τi, unsafe). Since � is a well-quasi order, there
exist indices i and j such that i < j and si � sj . The set of states pre(τi, unsafe)
is upward-closed. Therefore, as the state si is an element of this set and si � sj ,
sj is also an element of pre(τi, unsafe). The node nj is refined in the tree Tkj

w.r.t. the trace σj . Hence, a node n with depth equal to the sum of the depth
of mj and the length of τj is processed in this tree. We can apply Lemma 1 to
the node n, the node mj and the trace τi, because the length of the trace τi is
strictly less than the length of the trace τj . Thus, for the reachable region of the
node mj it holds that the intersection of ψj and pre(τi, unsafe) is empty. This
contradicts to the fact that the state sj is an element of both these sets. This
completes the proof by contradiction. 
�
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Finally, the two propositions yield our main result.

Theorem 1. The procedure LA[BF] is a decision procedure for the coverability
problem for WSS.

5 LA[�] is Not a Decision Procedure

We use LA[�] to refer to lazy abstraction with completely non-deterministic
control for building up the the abstract reachability tree. In this section we give
an example of a system and a sequence of non-deterministic choices that results
in non-termination.

Consider the program given below that has three variables x, y and z, each
of which ranges over IN. The guarded commands are given in Table 1 (we use
”syntactic sugar” and list only the ”true” updates). The set of initial states
is given by x = 0 ∧ y = 0 ∧ z = 0 and the set of error states is denoted by
z ≥ 2. The order � between the states of the corresponding transition system
is the pointwise ordering between the elements of IN3 defined by ≤. It is a well-
quasi order according to Dickson’s lemma [14]. The resulting transition system S
equipped with the order � is a WSS and the set of error states is upward-closed
w.r.t. this order. The system S is safe.

If we execute LA[�] with a sequence of non-deterministic choices that never
refines the root node as pivot node, then it creates longer and longer counterex-
amples (and refines pivot nodes deeper and deeper in the abstract reachability
tree). It adds predicates of the form x ≥ 2, x ≥ 3, . . . and y ≥ 2, y ≥ 3, . . ..

Table 1. Guarded commands

Label Guard Update
c1 true y := 1

c2 y > 1 x := 1 ∧ y := 0

c3 x > 0 x := x + 1

c4 x > 0 x := x − 1 ∧ y := y + 1

c5 true z := x

c6 x > 0 y := y + 1

c7 y > 1 y := y − 1 ∧ x := x + 1

c8 true z := y

0, 0, 0 0, 1, 0 0, 1, 1
c1

c8

c5

c5, c8 c1, c5 c1

Fig. 1. Transition system S
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Thus, at each iteration it generates more and more non-subsumed regions. Since
it never refines the root, the initial overapproximation that occurs by approx-
imating y = 1 with y = 0 in the abstract execution of c1 is never eliminated.
Thus, the sequence of non-deterministic choices results in a non-terminating run
of the iterative refinement.

It is instructive to follow the execution of LA[BF] on this example. The initial
set of abstract predicates is P0 = {z ≥ 2, x = 0, y = 0, z = 0}. After a few
iterations the procedure LA[BF] refines the root node as pivot node w.r.t. the
trace c1c2c3c5 and adds the atoms y > 1 and x ≥ 2 to the set of predicates
for the root. After that there are no more abstract counterexamples and the
procedure LA[BF] terminates.

6 Conclusion

An abstraction-based algorithm trades higher efficiency with the loss of definite-
ness. It may return ”Don’t Know” answers in some cases; it implements only a
semi-test. A procedure based on counterexample-guided abstraction refinement
trades a higher degree of automation with the loss of the termination guaran-
tee. It may iterate forever without hitting a (“non-spurious”) counterexample
nor proving its absence; it implements only a semi-algorithm. Lazy abstraction
goes one step further towards trading a potential practical gain with the risk
of theoretical deficiencies (since it avoids redundant computations of abstract
subtrees by localizing refinements, with the risk of having to generate the same
predicate infinitely often). It is thus perhaps surprising that, as stated by our
result, lazy abstraction with deterministic control is a decision procedure for the
coverability problem for well-structured system.

It is not the point of this paper to advocate lazy abstraction as a promis-
ing practical alternative to existing decision algorithms for well-structured sys-
tems, including the other algorithms based on abstraction refinement. It is,
however, an outcome of the work presented in this paper that a thorough ex-
perimental comparison on the wide range of well-structured systems (see, e.g.,
http://www.ulb.ac.be/di/ssd/lvbegin/CST/#examples) has come to make
sense.
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Abstract. We endow action sets of transition systems with a partial order that
expresses the degree of specialization of actions, and with an intuitive but flexi-
ble consistency predicate that constrains the extension of such orders with more
specialized actions. We develop a satisfaction relation for such models and the
μ-calculus. We prove that this satisfaction relation is sound for Thomsen’s ex-
tended bisimulation as our refinement notion for models, even for consistent ex-
tensions of ordered action sets. We then demonstrate how this satisfaction relation
can be reduced, fairly efficiently, to classical μ-calculus model checking. These
results provide formal support for change management of models and their val-
idation (e.g. in model-centric software development), and enable verification of
concrete systems with respect to properties specified for abstract actions.

1 Introduction

Transition systems and their variants are popular models of state and behavior for pro-
grams and reactive systems alike. Transitions are triples (s, a, s′) specifying that action
a may cause the system to change from state s to state s′. Whenever transition systems
function as models we can validate these models, e.g. through property verification in
the form of model checking formulas of the μ-calculus [13] over the action set pertinent
to the model and property. Most popular and tool-supported branching-time temporal
logics embed into the μ-calculus so the latter is an ideal target for foundational studies.

Often one wishes to specify and verify properties that are more abstract than the
model itself. Consider a model for a stack-like data structure. An input action put(n)
puts value n ∈ IN on top of the stack; output action get(m) reads m ∈ IN as the top
value of the stack and then pops the top of the stack. A property that this model should
enjoy is that, at all states, there is a finite sequence of output actions whose execution
in sequence results in a state where no output actions are possible: the stack can always
be emptied completely. For the above infinite action set, this property can be expressed
in the μ-calculus if we extend it with infinite conjunctions and disjunctions:

νX.
(
(

∧

n∈IN

[put(n)]X∧[get(n)]X)∧μY.((
∨

m∈IN

〈get(m)〉Y )∨(
∧

n∈IN

[get(n)]ff))
)

(1)

where ff denotes falsity. The formula in (1) is a greatest fixed point (νX) whose body is
a conjunction. The first conjunct is a recursion and ensures that the second conjunct is
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SRC project Complete and Efficient Checks for Branching-Time Abstractions EP/E028985/1.
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true at all reachable states. The second conjunct states that, at the present state, there is a
finite (least fixed point μY ) sequence of transitions, labeled with possibly different out-
put actions get(m), to a state at which no such output actions are possible. Representing
this property in an idiom such as (1) has a number of disadvantages:

– The infinite conjunctions and disjunctions in (1) appeal to an infinite state space,
making model checking hard or undecidable.

– The encoding in (1) cannot be model checked on more abstract models, e.g. for
one in which get abstracts all instances of get(n), we cannot verify the subformula
〈get(0)〉 . . . as any transition labeled with get could be refined to get(1) instead.

– The encoding in (1) lacks flexibility and support for top down development; e.g. if
we extend the stack data type with a non-destructive output action read(n) for all
n ∈ IN, the formula in (1) has to be extended to

νX.
(
(

∧

n∈IN

· · ·∧[read(n)]X)∧μY.((
∨

m∈IN

· · ·∨〈read(m)〉Y )∨(
∧

n∈IN

· · ·∧[read(n)]ff))
)

The last two points state that property specifications have to change each time a
model changes its level of abstraction. This need for change management of property
specifications increases even more if a model has components expressed at different
levels of abstraction.

We address all these disadvantages by using an order on the set of actions. Consider
the action order in Fig. 1. It has a most abstract action anyAction, abstracts all finite or
infinite action sets of the same kind with an action for that kind (e.g. put abstracts all
put(n)), and introduces a new action out that is a common abstraction of the already
abstract output actions get and read. For this action order we can rewrite (1) in the
ordinary μ-calculus as

νX.([anyAction]X ∧ μY.(〈out〉Y ∨ [out]ff)) (2)

anyAction

put

put(0) put(1) · · ·

out

get

get(0) get(1) · · ·

out(0) out(1) · · · read

read(0) read(1) · · ·

��������
���������

�� ��
�������

�� ����
����������������

�� ��
			 



�������
�������

�������


Fig. 1. An infinite partial order of actions, depicted in a Hasse diagram. Action abstraction (resp.
specialization) is modeled by a decrease (resp. increase) in the order .

With a compact and abstract property such as (2) at hand, we now want to be able to
verify it for models that may express these actions at more concrete levels of abstraction,
without having to change the formula in (2). Moreover, we want such verification to be
sound for refinements of the model we check, even though the respective models and
their actions may be at different levels of abstraction. In particular more concrete models
may introduce new actions that are common specializations of actions. For example,
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put and out of Fig. 1 may obtain a common specialization swap that replaces the top
of the stack with another item but also outputs the value of the item at the top of the
stack as it was prior to that swap. This use of common specializations is familiar from
multiple inheritance if we dare to think for a moment of actions as objects.

The ability to specify abstract properties that capture potentially evolving action
structure then fits well with model-centric software development where models may
predate executable code, and so we can validate models with the same abstract property
without knowing the actual action structure of the source code.

In developing this approach, we employ two orthogonal ways of model refinement –
which can be applied in any order in a refinement process:

– the extension of ordered actions sets, similar in spirit to the introduction of (more)
multiple inheritance; and

– a co-inductive refinement, the extended bisimulation of Thomsen in [23] for tran-
sition systems with ordered action sets.

Our contributions. In this paper we make the following contributions:

1. Develop a satisfaction relation for action-ordered transition systems and formulas
of the μ-calculus. We show that this satisfaction relation is sound with respect to
Thomsen’s refinement of action-ordered transition systems.

2. Show that any sensible satisfaction relation is unsound for the unconstrained exten-
sion of pairs of actions with new common specialized actions.

3. Extend partial orders of actions with a consistency predicate, stating which pairs of
actions may obtain common specialized action, and adapt our satisfaction to ensure
its soundness for new common specializations of consistent pairs of actions.

4. Give a fairly efficient reduction of this satisfaction relation to the standard one over
transition systems with unordered actions and formulas of the ordinary μ-calculus,
in which actions are also interpreted without any appeal to an order.

The combination of the first and third contribution above guarantees that, once a
property has been verified for a model, its validity is preserved if that model then un-
dergoes a sequence of changes, where each single change extends the action set or
refines the model. The fourth contribution means we can reuse the knowledge and tool
support for μ−calculus model checking over transition systems to verify properties of
the action-ordered μ-calculus over action-ordered transition systems with consistency.

Outline. In Section 2 we show that extensions of ordered action sets with new ac-
tion specializations poses a problem for sound model checking of abstract models. In
Section 3 we present our models, their refinement, and consistent extensions of or-
dered action sets. A satisfaction relation for the μ-calculus over transition systems that
have partial orders with consistency as action sets is motivated, defined, and proved to
be sound in Section 4. A reduction of that satisfaction relation to classical μ-calculus
model checking is given in Section 5. Related work is discussed in Section 6 and we
conclude in Section 7.
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2 Naive Extension of Ordered Action Sets is Unsound

The stack-like data structure discussed in the introduction may be modeled with more
abstract labels as a state machine in Fig. 2. Transitions are triples of synchronization
event, guard, and side effects. For example, in states on the right hand side in Fig. 2
transition put(m) [tt] i := i + 1 specifies that any synchronization with a put(m) ac-
tion will increment the counter of the stack size as a side effect since the guard is
true.

Z:=0; x:=0 ��

put(m) [tt] i:=i+1

��

out [i>1] i:=i−1

��
out [i>1] skip��read [tt] skip

��

put(x) [tt] Z:=x; i:=i+1

��

out(Z) [i=1] Z:=0; i:=0

��

Fig. 2. Abstract model for the implementation of a stack-like data structure. Variable i ∈ IN
counts the stack size, and variable Z ∈ IN records the value found at the bottom of the stack. The
values of output actions read and out are unspecified. In particular, in an implementation read
could return the sum of all values stored in such a non-standard stack .

Example 1. 1. For the action order given in Fig. 3, the abstract model from Figure 2
is expected to satisfy 〈put〉[out(0)]ff, stating that it is possible to input a value such
that 0 cannot be output immediately thereafter. We expect this since out(0) has no
further specialization in its action set, the state on the right state side with i = 1
and Z = 1 is reached after the put(1)-action, and there is no transition from that
state that can be specialized to out(0).

2. But the same abstract model does not satisfy 〈put〉[out(0)]ff for the order given in
Fig. 1, since in a left hand state with i = 1 and any Z there is a transition with label
read that can be specialized to an action read(0) that also specializes out(0).

anyAction

put

put(0) put(1) · · ·

out

get out(0) out(1) · · · read

��������
���������

�� ��
�������

�� ����
����������������

Fig. 3. Possible partial order of the set of abstract actions for the system in Fig. 2

Since the partial order in Fig. 1 is intuitively an extension of the one in Fig. 3, Example 1
suggests that soundness of satisfaction is not preserved if two actions can always obtain
a common specialized action. To remedy this, we need to constrain such extensions. If
we ban the introduction of new upper bounds for pairs of actions in extensions, this is
simply too restrictive for modeling, validation, and code development. Yet, Example 1
mandates constraints on the introduction of new common upper bounds.
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· · ·...
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...
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put(0)
		

put(1) ��

read(0)





get(0)

��

read(1)




get(1)

��

put(0)
		

put(1) ��

read(0)





get(0)

��

read(1)




get(1)

��

put(0)
		

put(1) ��

read(0)





get(0)

��

read(1)




get(1)

��

Fig. 4. A transition system realizing a full implementation of the abstract model in Fig. 2

We suggest a consistency predicate – determined by the modeler – as a flexible policy
for introducing specialized actions, saying which pairs of actions a and a′ can have
common specialized versions. Natural requirements for such a policy are:

– pairs that already have an upper bound have to be consistent, and
– consistency of action pairs is closed under abstraction of either action.

The most restrictive change policy, for a given partial order, is to stipulate that pairs
are consistent iff they have an upper bound in that partial order. We use this policy for
the partial orders in Fig. 1 and 3. The partial order with consistency, depicted in Fig. 5
employs a more liberal change policy. That partial order is extended by both partial
orders in Fig. 1 and 3 and the term “extension” will be formalized in Definition 2.3.
Satisfaction of properties now needs to take this consistency predicate into account.

anyAction

put

put(0) put(1) · · ·

out

get out(0) out(1) · · · read

��������
���������

�� ��
�������

�� ����
����������������� � � � � � � � �

��� �  � � � � � � ���������� � �  

Fig. 5. A partial order of actions with a consistency predicate. Dashed bows connect pairs of
actions a and a′ that are consistent but have no common upper bound in this partial order already.
For example, the consistency of put and out allows an extension with an action swap (which
may swap the top of the stack but return the value of the top prior to that swap), but action swap
then cannot be a specialization of get since put and get are inconsistent .

Example 2. We expect property (2) not to hold in the system from Fig. 2 with respect to
the order with consistency of Fig. 5: On a state on the right hand side with i = 1 and any
Z there is a transition with label read but actions read and out(0) could have a common
specialization, since out(0) and read are specified to be consistent. This expectation on
a satisfaction relation will be fulfilled with our formal satisfaction relation developed in
Section 4.

3 Ordered Actions, Transition Systems, and Refinement

Preliminaries. |M | denotes the cardinality of a set M . For a ternary relation � ⊆
M1 × Act × M2 we write m1

a
� m2 for (m1, a, m2) ∈ �. For m1 ∈ M1 the
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expression m1.
a
� denotes {m2 ∈ M2 | m1

a
� m2}. Let � ⊆ M × M be a partial

order, i.e., a reflexive, antisymmetric, and transitive relation. The upper set of X ⊆ M
with respect to � is ↑�X = {m ∈ M | ∃m′ ∈ X : m′ � m} and the lower set of
X with respect to � is ↓�X = {m ∈ M | ∃m′ ∈ X : m � m′}. If X = {m},
we write ↑�m (resp. ↓�m) for ↑�X (resp. ↓�X). For x, y ∈ M we write x ⇑� y
to denote that x and y have an upper bound in M : ↑�x ∩ ↑�y �= {}. The inverse
relation of a binary relation R ⊆ M × M is R−1 = {(m1, m2) | (m2, m1) ∈ R}.
For R1 ⊆ M1 × M2 and R2 ⊆ M2 × M3 let R1 ◦ R2 be the relational composition
{(m1, m3) | ∃m2 : m1R1m2, m2R2m3}.

We formalize ordered action sets and their consistency predicate.

Definition 1. A partial order with consistency is a partial order (M, �) with a sym-
metric consistency predicate � ⊆ M × M that contains ⇑� and is preserved by
downward closure: � = �−1, ⇑� ⊆ �, and � ◦ � ⊆ �.

A partial order with consistency is illustrated in Fig. 5, where elements of � \ ⇑
(consistent pairs that are not deemed consistent by ⇑ alone) are drawn as dashed bows.

Definition 2. Let ((Mi, �i), �i), i = 1, 2, be partial orders with consistency. Then

1. ((M1, �1), �1) is finite if M1 is finite.
2. ((M1, �1), �1) is discrete if �1 = {(m, m) | m ∈ M1} = �1.
3. ((M1, �1, �1)) is an extension of ((M2, �2), �2) iff M2 ⊆ M1, �2 = �1

∩ (M2 × M2), and �1 ∩ (M2 × M2) ⊆ �2.

Example 3. The partial order with consistency of Fig. 1 is an extension of the one of
Fig. 5 (where new actions are added and a consistency dependency is removed), but not
of the one of Fig. 3.

We define transition systems as usual, but their set of actions may then be endowed with
any partial order and consistency predicate.

Definition 3 (Transition system).

1. A transition system T over a (possibly infinite) set of transition labels Act is a
tuple (S, si, −→) such that (s ∈)S is its set of states, si ∈ S its initial state, and
−→ ⊆ S × Act × S its transition relation.

2. We call T concrete with respect to a partial order with consistency ((Act, �), �) if
only maximal elements of Act with respect to � occur in −→ and these occurring
elements are consistent with their abstractions only, i.e., (s, a, s′) ∈ −→ implies
a ∈ max(Act, �) and {a}.� = ↓a (which equals {a}.⇑ as a is maximal).

Example 4. Fig. 6 depicts a transition system which is not concrete for the action order
from Fig. 5. This is so since, e.g., the non-maximal action out occurs or since, e.g.,
action read (which is consistent with another maximal element) occurs. The transition
system of Fig. 4 is concrete for the order from Fig. 1.

A transition system may be concrete for one action order but not for another one.
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· · ·...

��

put(0)

��

put(1) ��

read




out(0)



put(0),put(1),... ��

read,out




out

�� put(0),put(1),... ��

read,out




out

��

out(1)
��

read



 put(0),put(1),... ��

read,out




out

�� put(0),put(1),... ��

read,out




out

��

Fig. 6. The transition system corresponding to the state machine of Fig. 2

Table 1. Moves of �-refinement game at configuration (s1, s2) ∈ S1 × S2. The �-refinement
plays are sequences of configurations generated thus.

−→1: The Refuter chooses a1 ∈ Act and s′
1 ∈ s1.

a1−→1; Verifier responds with a2 ∈ ↓�a1 and
with s′

2 ∈ s2.
a2−→2; the next configuration is (s′

1, s
′
2).

−→2: Refuter chooses a2 ∈ Act and s′
2 ∈ s2.

a2−→2; Verifier responds with a1 ∈ ↑�a2 and with
s′
1 ∈ s1.

a1−→1; the next configuration is (s′
1, s

′
2).

Refinement for transition systems based on ordered actions were introduced by
Thomsen under the name “extended bisimulation” in [23]: To show that s refines t,
one keeps the “zig-zag” nature of the bisimulation game [16] but relaxes the burden
on Verifier: if Refuter moves with (s, a, s′) ∈ −→, then Verifier only has to find an
abstract version a′ of a and then reply with (t, a′, t′) ∈ −→. Dually, if Refuter moves
with some (t, a, t′) ∈ −→, Verifier needs only reply with (s, a′′, s′) ∈ −→ for an
action a′′ that is more specialized than a, where a′ = a and a′′ = a are legal replies.

This refinement notion does not appeal to any consistency predicates and assumes
that models have the same partial order of actions. This won’t constrain our approach.

Definition 4 (Refinement). Let (Act, �) be a partial order.

– �-refinement plays between a Refuter and a Verifier, for transition systems T1 and
T2 over Act, proceed as stated in Table 1. All infinite plays are won by Verifier.

– T1 �-refines T2, written T1�refT2, iff Verifier has a strategy for the corresponding
�-refinement game between T1 and T2 such that Verifier wins all refinement plays
started at (si

1, s
i
2) with her strategy.

We note that �-refinement corresponds to bisimulation between transition systems
whenever � is discrete. The complexity of deciding refinement is bounded by the prod-
uct of the respective sizes of the transition relation, assuming that there are at least as
many transitions as states in models.

Example 5. The transition system in Fig. 4 is a refinement of the one in Fig. 6 with
respect to the order from Fig. 1.

If the partial order (Act, �) is an extension of (Act′, �′), then �′
ref equals �ref re-

stricted to transition systems over Act′. This is vital for our approach since it implies
that refinement checks won’t render conflicting results if such checks are conducted for
different extensions of the systems under check.
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4 Satisfaction

We present our action-ordered μ-calculus and its semantics through tree automata and
games, respectively. This presentational choice simplifies proofs and anticipates future
extensions of this work to fairness constraints in refinements as seen, e.g., in [6,7].

Definition 5 (Tree automata). An alternating tree automaton A with respect to a set of
actions Act is a tuple (Q, qi, δ, Θ) such that

– (q ∈)Q is a finite, nonempty set of states with initial element qi ∈ Q,
– δ is a transition relation mapping automaton states to one of the following forms,

where q ∈ Q, Q̃ ⊆ Q, and a ∈ Act: ∨̃Q̃ | ∧̃Q̃ | [a]q | 〈a〉q and
– Θ : Q → IN is an acceptance condition whose finite image has non-empty inter-

section with {0, 1}. An infinite sequence of automaton states is accepted iff the
maximal acceptance number occurring infinitely often in that sequence is even.

The formulas tt and ff are expressible as empty conjunctions and disjunctions in our
setting (resp.) and will be used subsequently whenever convenient.

An intuitive semantics for the diamond (〈a〉) and box ([a]) modalities, where labels
are ordered by a partial order with consistency ((Act, �), �), is a possibly infinite
disjunction and conjunction (resp.):

〈a〉q′ ≡
∨

{〈| a′ |〉 q′ | a � a′} [a]q′ ≡
∧

{[| a′ |] q | a � a′} (3)

where 〈| a′ |〉 and [| a′ |] are the diamond and box modalities defined in the classical,
unordered, setting for a′ (resp.). Quantification over actions is implicit within actions.
Consequently, properties such as ∀n ∈ IN: AG(put(n) → AFget(n)) have no finite
representation in our approach to action abstraction.

These intuitive equations would indeed be formal equivalences if we were to extend
the μ-calculus with infinite conjunctions and disjunctions. Note that a � a′ implies
a′ � a and so the box modality [a]φ will imply the diamond modality 〈a〉φ on transition
systems that are serial for each action a. We emphasize that formulas [a]φ and ¬〈a〉¬φ
are not equivalent for our satisfaction relation over action-ordered transition systems in
general. However, for any partial order with consistency that contains a these formulas
turn out to be equivalent if the transition system is concrete.

The constraint that the image of Θ contains 0 or 1 is a convenience so that the dual
of the dual automaton of A is A again.

Definition 6 (Dual automaton). The dual automaton of an automaton A, written Ad,
is (Q, qi, δd, Θd), where

∀q : Θd(q) =
{

Θ(q) + 1 if 0 ∈ Θ(Q)
Θ(q) − 1 otherwise

and δd swaps ∧̃ with ∨̃, and swaps 〈a〉 with [a].

An alternating tree automaton and its dual one are depicted in Fig. 7. Next we introduce
some technical notation needed for defining our satisfaction relation. For any bounded
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Fig. 7. Left: alternating tree automaton for the conjunction of the formula in (2) and
〈put〉[out(0)]ff. Right: its dual automaton. Accepting values and some state names are depicted
to the right (resp. left) of states.

Table 2. Moves of (�, �)-satisfaction game at configuration (s, q) ∈ S × Q, by a case analysis
on δ(q). The (�, �)-satisfaction plays are sequences of configurations generated thus .

∨̃Q̃: Verifier picks a q′ from Q̃; the next configuration is (s, q′).
∧̃Q̃: Refuter picks a q′ from Q̃; the next configuration is (s, q′).

〈a〉q′: Verifier picks a′ ∈ ↑�a and s′ ∈ s.
a′

−→; the next configuration is (s′, q′).

[a]q′: Refuter picks a′ ∈ Act with a′ � a and picks s′ ∈ s.
a′

−→; the next configuration is
(s′, q′).

sequence n of elements in IN we write sup(n) for the largest m that occurs in n in-
finitely often. Let map(f, Φ) be the sequence obtained from the sequence Φ by applying
function f to all elements of Φ in situ. We write Φ[2] for the sequence obtained from Φ
by projecting to the second coordinate of each configuration.

We can now define satisfaction formally.

Definition 7. Let ((Act, �), �) be a partial order with consistency.

– Finite (�, �)-satisfaction plays for transition system T over Act and alternating
tree automaton A over Act have the rules as stated in Table 2. An infinite play Φ is
a win for Verifier iff sup(map(Θ, Φ[2])) is even; otherwise it is won by Refuter.

– T (�, �)-satisfies A, written T |=�
� A, iff Verifier has a strategy for the corre-

sponding satisfaction game between T and A such that Verifier wins all satisfaction
plays started at (si, qi) with her strategy.

The decision problem of whether T (�, �)-satisfies A is in UP∩coUP [12], as the rules
for the (�, �)-satisfaction game specify a parity game. If ((Act, �), �) is discrete,
(�, �)-satisfaction corresponds to the classical μ-calculus satisfaction [13]. Note that
at a state 〈a〉q′ Verifier has to pick a more or equally specialized action, whereas at a
[a]q′ state Refuter may pick any action that is consistent to a with respect to �, i.e.,
Refuter may pick any action a′ that may have a common specialization with a. This
semantics of the box modality is reasonable and even necessary since such labels a′

may be subsequently specialized to some a′′ with a � a′′ and so need to be under the
scope of [a]q′.

A transition system may satisfy neither an alternating tree automaton nor its dual:

Example 6. The transition system in Fig. 6 satisfies the automaton Âq̂ , which is Â but
with initial state q̂. But it does not satisfies the automata Â from Fig. 7 nor its dual for
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the order of Fig. 5. For the disjunct 〈put〉[out(0)]ff we saw in Section 2 that this is false.
The disjunct [put]〈out(0)〉tt is not satisfied since, after put(1) no out(0) is guaranteed,
the transition labeled with read can be specialized to read(0) only.

Satisfaction checks are inherently three-valued. A fourth truth value for “inconsis-
tency”, as found in Belnap’s four-valued bilattice [2], is not required.

Proposition 1. For any transition system T and alternating tree automata A over the
partial order with consistency ((Act, �), �) as actions, T cannot (�, �)-satisfy A as
well as its dual: never do T |=�

� A and T |=�
� Ad hold at the same time.

We prove that order extensions provide sound extensions of satisfaction and that our
notion of satisfaction is closed under all ordered refinements. Both are essential meta-
properties for our modeling and validation framework for systems at varying abstraction
levels. In particular, we secure soundness for any finite sequence of refinement steps
where each refinement step extends the action order or refines the transition system.

Theorem 1. 1. If T1, T2 are transition systems over Act, and A an automaton over
Act such that T1 (�, �)-refines T2, and T2 (�, �)-satisfies A, then transition
system T1 (�, �)-satisfies A.

2. Let ((Act, �), �) be an extension of ((Act′, �′), �′). Then
(a) |=�′

�′ implies (i.e. is contained in) |=�
� for all transition systems over Act′.

(b) if T1 is a transition system over Act, T2 a transition system over Act′, and A
an automaton over Act′ such that T1 �-refines T2 and T2 (�′, �′)-satisfies A,
then T1 (�, �)-satisfies A.

We next illustrate this soundness of order extensions and model refinement.

Example 7. Let ((Act, �), �) be the partial order with (most restrictive) consistency
from Fig. 1. Let ((Act′, �′), �′) be the partial order with consistency from Fig. 5. The
former is an extension of the latter as seen in Example 3. Let T1 be the transition system
over Act given in Fig. 4. Let T2 be the transition system over Act′, and therefore also
over Act, given in Figure 6. Let A be the automaton on the left in Fig. 7, except that the
initial state is q̂. Then T1 �-refines T2 by Example 5. Also, T2 (�′, �′)-satisfies A by
Example 6. So by Theorem 1(2) we know that T1 (�, �)-satisfies A.

The usage of a consistency predicate, operative in Theorem 1(2), is not only sufficient
but also necessary as already illustrated in Section 2.

5 Reduction

In this section we show that our satisfaction relation for ordered actions reduces to the
usual one for transition systems and the μ-calculus. This enables the reuse of existing
theory, algorithms, and tool support. Let T be a transitions system and A an automata
over the same partial order with consistency ((Act, �), �). The reduction of their sat-
isfaction check will be done in several stages, each illustrated with the transition system
from Fig. 6, the automata Â from Fig. 7, and the action order with consistency of Fig. 5.
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Restriction to relevant actions. This is an optimization and does not affect the correct-
ness of the reduction. We therefore defer its description to a full version of this paper.

Derived order. Let ActA be the set of actions occurring in A. We built a finite quotient
of ((Act, �), �): each a ∈ Act determines an equivalence class that identifies actions
with a if they behave in the same manner with respect to the ordering and consistency
for elements of ActA. Formally, we define an equivalence relation ≡ ⊆ Act × Act by

a1 ≡ a2 iff ∀a ∈ ActA : ∀R ∈ {�, �−1, �} : a1Ra ⇔ a2Ra (4)

and define the quotient order with consistency ((Act′, �′), �′) of ((Act, �), �) by

Act′ = {[a]≡ | a ∈ Act} with [a]≡ = {a′ ∈ Act | a ≡ a′}
Λ1 �′ Λ2 iff ∀a2 ∈ Λ2 : ∃a1 ∈ Λ1 : a1 � a2

Λ1 �′ Λ2 iff ∃a1 ∈ Λ1 : ∃a2 ∈ Λ2 : a1 � a2

The derived order of our running example is illustrated in Fig. 8.

{anyAction}

{put}

{put(x) | x ∈ IN}

{out}

{out(0)} {get, read} {out(x) | x ∈ IN \ {0}}

     ������

%% &&& '' ����������� � ( � ) � �

 ��� � � � ( � ) � � �

Fig. 8. The derived order of the one of Fig. 5 with respect to the automata Â from Fig. 7

Derived transition system. Next, transition system T is transformed such that it has only
elements from the action set Act′ of the derived order: replace any transition (s, a, s′)
with (s, [a]≡, s′). This transformation won’t lose any precision. The derived transition
system of our running example is illustrated in Fig. 9.
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Fig. 9. The derived transition system T ′ of the one of Fig. 6 with respect to Act′, where a set of
representatives of the partition is {anyAction, put, put(0), out, out(0), read, out(1)}

To state the correctness of this reduction step, we have to rename actions in the
automata A so that they are interpretable with respect to T ′: let A′ be obtained from A
be replacing each action a occurring in A with [a]≡, which is {a}. Then we have

T ′ |=�′

�′ A′ ⇐⇒ T |=�
� A (5)
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Fig. 10. The discretization of the automata Â from Fig. 7 with respect to the transition system of
Fig. 9 and the order of Fig. 8. All acceptance values 0 are omitted.

Derived automaton. The model check T ′ |=�′

�′ A′ is now over a finite partial order
with consistency. Guided by (3) we exploit this finiteness to convert A′ into a discrete
automaton A′′ such that the classical model check T ′ |= A′′ captures the ordered model
check T ′ |=�′

�′ A′. In doing so, we optimize this discretization of A′ by slicing it with
respect to the subset ActT ′ of Act′ of those actions that occur in T ′. This is done by
letting any quantifier automata state 〈Λ〉q (resp. [Λ]q) become a ∨̃-state (resp. ∧̃-state)
that then points to newly added states (Λ′, q, �) (resp. (Λ′, q, �)), where Λ′ ranges over
all states from ActT ′ that are �′-above (resp. �′-consistent with) Λ. Such newly added
states (Λ′, q, �) (resp. (Λ′, q, �)) in turn point to q via 〈Λ′〉 (resp. via [Λ′]). Acceptance
values remain unaffected by this optimization. New states get acceptance value 0.

Formally, the ActT ′ -discretization of A′ with respect to ((Act′, �′), �′) is the al-
ternating tree automaton A′′ = (Q′ ∪ Qdis, qi′, δ′′, Θ′′) where

– Qdis = {(Λ′, q, �) | Λ′ ∈ ActT ′ & ∃Λ ∈ ↓�′Λ′, q̃ ∈ Q′ : δ′(q̃) = 〈Λ〉q} ∪
{(Λ′, q, �) | Λ′ ∈ ActT ′ & ∃Λ ∈ Act′, q̃ ∈ Q′ : Λ �′ Λ′ & δ′(q̃) = [Λ]q}

– δ′′(q̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨̃{(Λ′, q, �) | Λ′ ∈ ActT ′ ∩ ↑�′Λ} if q̃ ∈ Q′ & δ′(q̃) = 〈Λ〉q
∧̃{(Λ′, q, �) | Λ′ ∈ ActT ′ & Λ �′ Λ′} if q̃ ∈ Q′ & δ′(q̃) = [Λ]q
〈Λ′〉q if q̃ = (Λ′, q, �) ∈ Qdis

[Λ′]q if q̃ = (Λ′, q, �) ∈ Qdis

δ′(q̃) otherwise

– Θ′′(q̃) =
{

Θ′(q̃) if q̃ ∈ Q′

0 otherwise

The discretization automata of our running example is illustrated in Fig. 10.

Theorem 2. For the reduction described in this section we have

T ′ |= A′′ ⇐⇒ T ′ |=�′

�′ A′ ⇐⇒ T |=�
� A (6)

where |= denotes the ordinary satisfaction relation between transition systems and al-
ternating tree automata [24]. Thus, model checking property A on T with respect to
the partial order with consistency ((Act, �), �) reduces to classical model checking
of property A′′ on transition system T ′.

The complexity of this reduction is as follows: the size of the derived order is |Act′| ≤
min{4|ActA| + |ActA|, |Act|}. The size of the transition system does not increase.
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The size of the automaton is O(max{m1, m2} · |Q|) where m1 is the size of the largest
filter ↑�′a with a ∈ ActT ′ , and m2 the size of the largest set of actions in ActT ′ whose
elements are all consistent to the same singleton element in ActT ′ .

6 Related Work

Having a finite and compact (e.g. symbolic) description of concrete and abstract mod-
els enables automated abstraction and refinement methods (e.g. predicate abstraction).
If our transition systems are represented in such form, e.g. in a kind of state machine, we
would like to express the derived transition system defined in Section 5 in the same for-
malism. For state machines this can be achieved by extending their modeling language
with an operator for persistent choice [8].

In our treatment of consistency in action sets pairs with upper bounds must be con-
sistent, and pairs that are in the consistency predicate may be consistent. This is similar
to the interpretation of may- and must-transitions in modal transition systems [17]. It
is different to that interpretation, though, it that our box and diamond modalities are
not always duals whereas this is the case for modal transition systems. So our setting is
similar to that of intuitionistic modal logic [22] where, additionally, propositional logic
operators cannot be interdefined.

Lattice automata [14] map propositions and transitions to elements of a lattice, and
lattice elements are derived for computation paths through the algebraic operations on
the lattice. In our approach, elements of a partial order are annotated with subformulas
and no algebraic or lattice structure of elements is present or used. Our consistency
predicate ensures that we reason about an entire set of partial orders in a compact and
incremental fashion. Our approach is different to that of multi-valued model checking
[4] for essentially the same reasons. Latticed simulation [15] can be considered as the
simulation version of the refinement [23], presented here. The reduction of multi-valued
model checking to the ordinary one [3] exploits the representation theorem for finite
distributive lattices, structures we do not have in our approach.

The order on actions sets defined in this paper and our talk of “abstracting” and “spe-
cializing” actions suggests an alternative presentation of such orders through the use of
abstract interpretation [5]. For any action order, one can obtain a Galois connection be-
tween the set of bounded lower sets of that action order and the powerset of maximal
actions in that action order. The details of that construction are given in [11], but in a
completely different setting.

Let us dare to equate actions with objects and action orders with the transitive
subtype relationship between classes in an object-oriented language with inheritance,
interfaces and abstract classes. Then common lower bounds of actions are similar to
interfaces, and common upper bounds of actions are similar to multiple inheritance.
These similarities may be helpful in understanding our approach.

The abstraction of infinitely many actions a(n) to a single abstract action a may
suggest that our work has connections to parameterized model checking [25] and data
independence techniques [19]. In parameterized systems, parameters represent size in-
stances of finite-state modules (e.g. the number of layers in a bus architecture). Invisible
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auxiliary assertions and counting abstractions are two methods for addressing the un-
decidability of model checking that occurs for most of such systems. In our approach
actions such as put are like local parameters but they can’t function as global ones since
their disjunctive interpretation cannot be moved to the front of formulas that contain re-
cursion. As for data independence, this usually requires a polymorphic treatment of data
variables whereas actions such as put are evaluated over models that may specialize this
action and thereby expose implementation details for that data type.

We note that (weak) bisimulation [21,20] is not a suitable refinement notion for
ordered-labeled models, since abstract labels cannot be refined into concrete ones.

Our approach is not connected to action refinement [9,1,10]. In the latter an action
is being replaced by a unique process (possibly another action name) whereas, in our
setting, an action can be replaced by any number of concrete actions that are not yet
specified and where such replacements may differ from instance to instance.

Finally, our approach can be extended or adapted to other abstract models of systems,
e.g. to the aforementioned modal transition systems and disjunctive modal transition
systems [18]. Such extensions are routine matters and so not discussed here.

7 Conclusion

We considered transition systems as models of implementations and μ-calculus for-
mulas as validation properties of such models (and so of their implementations). We
then sought notions of model refinement and a satisfaction relation between models
and properties that can, at the same time, accommodate abstraction and the incremental
specialization of actions in models. We discovered the extended bisimulation in [23] as
a suitable candidate for refinement of models. We then saw that a naive satisfaction re-
lation cannot be sound for extending ordered action sets with novel specialized actions.
This led us to endow ordered action sets with a robust consistency predicate that pro-
vides sufficient constraints to such extensions so that a satisfaction relation that takes
action orders into account is indeed sound for refinement of models and for extension
of action orders. This consistency notion is flexible enough to be potentially useful for
model-driven development and validation. Finally, we demonstrated that this ordered
satisfaction problem can be, fairly efficiently, reduced to a standard model checking
problem for the μ-calculus and so to the use of standard tools.

Acknowledgments. We thank the anonymous referees and Nir Piterman for their com-
ments which helped with improving the presentation of this paper.
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Abstract. Simulation and formal verification are two complementary
techniques for checking the correctness of hardware and software designs.
Formal verification proves that a design property holds for all points
of the search space while simulation checks this property by probing
the search space at a subset of points. A known fact is that simulation
works surprisingly well taking into account the negligible part of the
search space covered by test points. We explore this phenomenon by the
example of the satisfiability problem (SAT). We believe that the success
of simulation can be understood if one interprets a set of test points not
as a sample of the search space, but as an “encryption” of a formal proof.
We introduce the notion of a sufficient test set of a CNF formula as a
test set encrypting a formal proof that this formula is unsatisfiable. We
show how sufficient test sets can be built. We discuss applications of tight
sufficient test sets for testing technological faults (manufacturing testing)
and design changes (functional verification) and give some experimental
results.

1 Introduction

Development of new methods of hardware and software verification is in growing
demand due to ever-increasing design complexity. Simulation and formal verifi-
cation are two complementary verification techniques. Given a design property
ξ, formal verification proves that ξ holds for every point of the search space.
Simulation verifies ξ by testing a small subset of the search space. The main
drawback of formal verification is its unscalability while an obvious flaw of sim-
ulation is its inability to prove that ξ holds for every point of the search space.
Nevertheless, the main bulk of verification is currently done by simulation: it is
scalable and works surprisingly well even though the set of test points (further
referred to as the test set) comprises a negligible part of the search space.

We study why simulation is so effective on the example of the satisfiability
problem (SAT). In terms of SAT, formal verification is to prove that a CNF
formula F (x1,.., xn) is unsatisfiable at every point p ∈ {0,1}n. On the other
hand, simulation is to give some guarantee that F is unsatisfiable by testing
it at a (small) set of points from {0,1}n. (Local search algorithms pioneered
in [5,6] can be viewed as solving SAT by “simulation”. While these algorithms
target satisfiable formulas, in this paper, we are mostly interested in applying
simulation to unsatisfiable formulas.) We believe that the success of simulation
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can be explained if one interprets a test set not as a sample of the search space
but as an “encryption” of a formal proof that the CNF formula under test is
unsatisfiable.

We introduce procedure Sat(T ,F ,L) that checks satisfiability of a CNF for-
mula F using a test set T and a set L of lemma clauses (or just lemmas for
short). Henceforth we will also refer to a set of lemma clauses L as a proof.
Sat(T ,F ,L) is not a practical procedure and is introduced just to formally define
what it means that a test set T encrypts a proof L . Namely, T encrypts L if
Sat(T ,F ,L) proves F to be unsatisfiable.

The set of lemma clauses L1,. . . ,Lk is ordered and the last clause Lk is empty.
The Sat(T ,F ,L) procedure is based on the fact that a CNF formula is unsatis-
fiable iff it has a stable set of points (SSP) [4]. In this paper, we introduce an
efficient procedure that, given a CNF formula F ′ and a set of points T , checks
if T contains an SSP of F ′. This procedure is used by Sat(T ,F ,L) to prove that
F implies Li. This is done by checking if the set T contains an SSP for a CNF
formula F ′ equivalent to F → Li. If F → Li holds, clause Li is added to F . Both
L and T are crucial for Sat(T ,F ,L). The set L specifies a “high-level structure”
of the proof by indicating the set of lemmas to prove. On the other hand, the
set T is necessary for proving the lemmas of L efficiently.

A test set T is called sufficient for a CNF formula F , if there is a set of lemma
clauses L for which Sat(T ,F ,L) proves unsatisfiability of F . The fewer lemmas
a sufficient test set T needs for proving unsatisfiability of F by Sat(T ,F ,L), the
larger the size and the higher the quality of T is. If the set L of lemma clauses
consists only of an empty clause, Sat(T ,F ,L) succeeds in proving unsatisfiability
of F only if T contains an SSP. So an SSP is a test set of the highest quality but
it usually contains an exponential number of points [4]. In [3], we introduced the
notion of a point image of resolution proof R that a CNF formula is unsatisfiable.
We show in this paper that if the clauses of L are the resolvents of R, the
procedure Sat(T ,F ,L) succeeds if T is a point image of R. A point image of a
resolution proof is a sufficient test set of lower quality but it contains dramatically
fewer points than an SSP.

A sufficient test set may occupy a negligible part of the search space. (For
example, a point image of a resolution proof is at most two times the size of
the proof.) This fact sheds light on why simulation works so well even though
it samples only a tiny portion of the search space. A cleverly selected set of
tests (e.g. tests exercising various corner cases) may specify a set of points that
encrypt a formal proof that the property in question holds (or a “significant
part” of such a proof).

Simulation can be used for two kinds of problems. We will refer to the problems
of the first kind as property checking. In the context of SAT, property checking by
simulation is to prove the satisfiability of a CNF formula F by probing the value
of F at a (small) set of points or to give some “guarantee” that F is unsatisfiable.
The problems of the second kind are referred to as property preservation. In
the context of SAT, property preservation is as follows. Suppose that F is an
unsatisfiable formula and we need to find a (small) set of points T such that a
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satisfiable formula F ′ obtained by a (small) variation of F most likely evaluates
to 1 for a point p of T . In other words, we want to find a set of points T that
will most likely identify satisfiable variations of F . Assuming that F describes
a design property, the variation of F may specify a design change (if we deal
with a software model of the design) or a technological fault (if F describes a
hardware implementation of the design).

Although the theory we develop can be applied to the problems of both kinds,
the main focus of this paper is property preservation. (Some insights into how
sufficient test sets can be used for property checking are given in [2].) The main
idea is as follows. Let R be a proof that F is unsatisfiable. To build a test set
that detects satisfiable variations of F we propose to extract tests from a tight
sufficient test set T specified by R. Informally, a sufficient test set is tight if
points of T falsify as few clauses of F as possible. (Since F is unsatisfiable,
obviously a point of T has falsify at least one clause of F ). “Regular” tests i.e.
input assignments are extracted from the points of T . (If F describes a property
of a circuit N , then a point p of T is a complete an assignment to the variables
of N . By dropping all the assignments of p but the input assignments of N we
obtain a regular test vector. In more detail, the relation between regular tests
and points is described in Section 5). If R is a resolution proof, then tests are
extracted from a tight point image of R.

As a practical application of our theory we study regular tests (i.e. input
assignments) extracted from a tight point image T of a resolution proof that
two copies of a circuit N are functionally equivalent. We show that such regular
tests detect the testable stuck-at faults of N . This result explains why the stuck-
at fault model is so successful. Besides, this result suggests that the success of this
model may have nothing to do with the assumption made by many practitioners
that the stuck-at fault model works so well because it correctly describes the
“real” faults. Interestingly, tests extracted from T may detect the same stuck-at
fault many times (i.e. for the same stuck-at fault different test vectors may be
generated). At the same time, in [8] it was shown experimentally, that test sets
where the same stuck-at fault was tested many times had the best performance
in identifying faulty chips.

In the experimental part of this paper, we apply tests extracted from a res-
olution proof that two copies of a circuit are identical to detection of literal
appearance faults (such faults are more subtle than stuck-at faults). Our results
show that tests extracted from resolution proofs have much higher quality than
random tests.

This paper is structured as follows. Section 2 describes a procedure for check-
ing if a set of points contains an SSP of a CNF formula. In Section 3, we describe
the procedure Sat(T ,F ,L) and introduce the notion of a sufficient test set. Gen-
eration of tight sufficient test sets is described in Section 4. In Section 5, we
discuss the specifics of testing formulas describing circuits. Section 6 describes
application of sufficient test sets for testing design changes and manufacturing
faults. We give some experimental results in Section 7 and conclude by Section 8.
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2 Checking if Test Set Contains SSP

In this section, we give some basic definitions, recall the notion of a stable set of
points (SSP) [4] and introduce a procedure that checks if a set of points contains
a stable subset.

2.1 Basic Definitions

Let F be a CNF formula (i.e. conjunction of disjunctions of literals) over a set
X of Boolean variables. The satisfiability problem (SAT) is to find a complete
assignment p (called a satisfying assignment) to the variables of X such
that F (p) = 1 or to prove that such an assignment does not exist. If F has a
satisfying assignment, F is called satisfiable. Otherwise, F is unsatisfiable. A
disjunction of literals is further referred to as a clause. A complete assignment
to variables of X will be also called a point of the Boolean space {0,1}|X|. A
point p satisfies clause C, if C(p)=1. If C(p)=0, p is said to falsify C. Denote
by Vars(C) and Vars(F ) the set of variables of C and F , respectively. We will
call a complete assignment p ∈ {0,1}|X| a test for F . We will call a set of points
T ⊆ {0,1}|X| a test set for F .

2.2 Stable Set of Points

Let a point p ∈ {0,1}|X| falsify a clause C of k literals. Denote by Nbhd(p ,C) the
set of k points obtained from p by flipping the value of one of k variables of C. For
example, let X={x1,.., x5} and C = x2 ∨ x3 ∨ x5 and p=(x1=0, x2=0, x3=0,
x4=1, x5=1). (Note that C(p)=0.) Then Nbhd(p ,C) ={p1, p2, p3} where
p1 = (.., x2=1,..), p2=(.., x3=1,..), p3 = (. . . , x5=0). (For each pi , the skipped
assignments are the same as in p .)

Let a CNF formula F over a set X of Boolean variables consist of clauses
C1,. . . ,Cs. Let T = {p1,. . . ,pm} be a non-empty set of points from {0,1}|X|

such that F (pi)=0, i=1,..,m. The set T is called a stable set of points (SSP)
of F if for each pi ∈ T , there is a clause Ck of F such that Ck(pi)=0 and
Nbhd(pi,Ck) ⊆ T . (In [4] we used a slightly different but equivalent definition
of SSP.)

Proposition 1. Let F={C1,..,Cs} be a CNF formula over a set X of Boolean
variables. Formula F is unsatisfiable iff there is a set T of points from {0,1}|X|

such that T is an SSP of F .

Proof is given in [4].

2.3 Checking if a Test Set Contains an SSP

Given a set of points T and a CNF formula F , checking if T is an SSP for F is
very simple. One just needs to check if for every point p of T there is a clause
C of F such that Nbhd(p,C)⊆ T . If the check passes, then T is an SSP for F
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and hence the latter is unsatisfiable. The complexity of this check is |T |∗|F|∗|X |
where X is the set of variables of F .

It is quite possible that a subset of T is an SSP of F while T itself is not. The
procedure of Figure 1 checks if there is a subset of T that is an SSP of F . For
every point p of T it checks

Stable subset check(T ,F )
{removed=true;
while (removed)

{removed=false;
for (every point p ∈ T )

if (no clause(p,F ,T ))
{T = T \ {p};
removed=true;
break;}}

if (T �= ∅) return (stable)
else return(unstable);}

if there is a clause C of F such
that Nbhd(p ,C) ⊆ T (the function
no clause(p ,F ,T )). If such a clause does
not exist, p is removed from T and every
point of T is checked again. (The reason for
starting over again is as follows. Suppose that
in the previous iterations a point p∗ was not
removed from T because for some clause C of
F , Nbhd(p∗,C)⊆ T . If p was in Nbhd(p∗,C)),
then removing p from T would break the
relation Nbhd(p∗,C)⊆ T . )

Fig. 1. Checking if T contains

an SSP

This repeats until no point is removed from T , which may happen only in two
cases: a) T is empty (and so the original set T did not contain a stable subset);
b) The remaining points of T form an SSP. The complexity of this procedure is
|T |2∗|F|∗|X |.

3 Procedure Sat(T ,F ,L) and Sufficient Test Sets

In this section, we describe a procedure Sat(T ,F ,L) that uses a test set T to prove
that a CNF formula F is unsatisfiable. Sat(T ,F ,L) is not a practical procedure.
We introduce it just to formally define what it means that T encrypts a proof L.
We also introduce the notion of a sufficient test set and describe how sufficient
test sets can be obtained.

3.1 Sat(T ,F ,L) Procedure

The pseudocode of the procedure Sat(T ,F ,L) is shown in Figure 2. Here L is
a set of lemma clauses L1,.., Lk where the clause Lk is empty. First, Sat(T,F,L)
checks if a point p of T satisfies F . If such a point exists, Sat(T ,F ,L) reports
that F is satisfiable. Then Sat(T ,F ,L) processes the clauses of L in the order
they are numbered. For every lemma clause Li of L, this procedure checks if
F implies Li, by calling the function implies(T ,F ,Li). If it succeeds in proving
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this implication, Li is added to F . To check if F implies Li, the function im-
plies(T ,F ,Li) uses the procedure Stable subset check of Figure 1 as follows.

Sat(T ,F ,L)
{if (satisfy(T ,F )) return(sat)
for (i=1,..,k))

{if (implies(T ,F ,Li)==false)
return(unknown)

F = F ∪ {Li} }}
return(unsat);}

First, the subformula FLi is obtained from
F by making the assignments setting all
the literals of Li to 0. Formula F im-
plies Li iff FLi is unsatisfiable. To check
if FLi is unsatisfiable, the procedure Sta-
ble subset check(TLi ,FLi) is called by the
function implies(T ,F ,Li) where TLi is

Fig. 2. Pseudocode of procedure SAT
(T ,F ,L)

the subset of points of T falsifying Li. This procedure checks if the set TLi con-
tains a subset that is an SSP with respect to FLi . The complexity of Sat(T ,F ,L)
is |T |2 ∗ |F | ∗ |X | ∗ |L| where X is the set of variables of F and |L| is the number
of lemma clauses. (In [2], we give a version of Sat(T ,F ,L) that is linear in |T |
but needs more information than the procedure of Figure 2.)

3.2 Sufficient Test Sets

We will say that a test set T is sufficient for F , if there is a set L of lemma
clauses such that Sat(T ,F ,L) succeeds in proving the unsatisfiability of F . That
is, T is a sufficient test set for F , if it has enough points to show that F is
unsatisfiable by proving a sequence of lemmas L.

In general, the fewer lemma clauses are in the set L, the larger test set T is
necessary for Sat(T ,F ,L) to succeed. In particular, if L contains only an empty
clause, then Sat(T ,F ,L) succeeds only if T contains an SSP. On the other hand,
as we show below, if L consists of the resolvents of a resolution proof R that F
is unsatisfiable, Sat(T, F, L) succeeds even if T is just a point image of R.

A resolution proof is an ordered set of resolution operations that proves
unsatisfiability of a CNF formula F by deriving an empty clause [9]. A resolu-
tion operation is performed over two clauses C′ and C′′ such that a) they have
opposite literals of some variable xi and b) there is only one such variable for C′

and C′′. The result of the resolution operation is a clause C called the resolvent
of C′ and C′′. The resolvent C consists of all the literals of C′ and C′′ but the
literals of xi. (C is said to be obtained by resolving C′ and C′′ in variable xi.)
For example, if C′=x2 ∨ x4 ∨ x20 and C′′=x4 ∨ x31 , then by resolving them in
variable x4 we obtain the resolvent C= x2 ∨ x20 ∨ x31.

The notion of a point image of a resolution proof R was introduced in [3]. A
set of points T is called a point image of R if for any resolution operation of
R over clauses C′ and C′′, there are points p′,p′′ ∈ T satisfying the following
two conditions: a) C′(p′)= C′′(p′′)=0; b) p′,p′′ are different only in the variable
in which clauses C′ and C′′ are resolved. Such two points are called a point
image of the resolution operation over C′ and C′′.
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Now we show that if R is a resolution proof that F is unsatisfiable and T is a
point image of R, then Sat(T, F, L) returns unsat where L is the set of resolvents
of R. Let C be a resolvent of R obtained by resolving C′ and C′′. Then C is
in L. When the Sat(T ,F ,L) procedure gets to proving that C is implied by the
current formula F , clauses C′ and C′′ are in F . Let FC be the formula obtained
from F (by making the assignments setting the literals of C to 0) for checking if
F implies C. In FC , clauses C′ and C′′ turn into unit clauses xi and xi (where
xi is the variable in which C′ and C′′ are resolved). Then the points p′,p′′ form
an SSP with respect to these unit clauses and hence with respect to FC . So the
procedure Sat(T ,F ,L) succeeds in proving unsatisfiability of F . A point image
is a weak sufficient test set, because it can be used only to prove very simple
lemmas (that the resolvent of C′ and C′′ is implied by C′ ∧ C′′).

3.3 Generation of Sufficient Test Sets

Given a CNF formula F , one can build its sufficient test set as a point image
T of a resolution proof R that F is unsatisfiable. Building T is very simple. For
every pair of clauses C′ and C′′ whose resolvent is in R one just needs to find
a point image of the resolution operation over C′ and C′′. The union of point
images of all resolution operations forms a point image of R (and so a sufficient
test set for F ). The size of such a point image is twice the size of R at most.

As we mentioned above, a point image of a resolution proof R is a weak
sufficient test set. However, one can always get a stronger test set by “rarefying”
R. The idea is to remove some resolvents from R (preserving an empty clause)
and use the remaining clauses as the set L of lemmas. Then for every clause
Li of L we build an SSP Si for FLi thus proving that F → Li . (We assume
that the lemma clauses L1,.., Li−1 proved before Li have been added to F .) A
procedure for building an SSP is described in [4]. Since some resolvents of R are
missing, now one may need more than two points to prove that F → Li. The set
T = S1∪ .. ∪Sk where k = |L| forms a sufficient test set that is stronger than a
point image of R (because T can prove more complex lemmas). If one removes
from R all the resolvents but an empty clause, T turns into an SSP.

4 Tight Sufficient Test Sets

The fact that a test set T is sufficient for a CNF formula F means that T is
complete in the sense that it encrypts a proof that F is unsatisfiable. However,
this completeness alone does not make T a high-quality test set for a property
preservation problem. Recall that we are interested in finding a test set such
that, given an unsatisfiable formula F , it will most likely “detect” satisfiable
variations of F . In other words, given a satisfiable formula F ′ obtained from F
by a small change, we want T to contain a point p that satisfies F ′ and so detects
this change. This can be done by making sufficient test sets tight. Informally, a
sufficient test set T is tight if every point p of T falsifies as few clauses of the
original formula F as possible. (Ideally, every point p of T should falsify only
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one original clause). The intuition here is that if p falsifies only clause Ci of F ,
then p may detect a variation of F that includes disappearance of Ci from F
(or adding to Ci a literal satisfied by p).

Let us consider building a tight point image T of a resolution proof R. Let
C be the resolvent of C′ and C′′. When looking for two points p′,p′′ forming a
point image of the resolution operation over clauses C′ and C′′ (and so forming
an SSP of sub formula FC) we have freedom in assigning variables of F that
are not in C′ and C′′. To make the test set T tight, these assignments should
be chosen to minimize the number of clauses falsified by p′,p′′. Note that since
p′,p′′ are different only in one variable (in which C′ and C′′ are resolved), picking
one point, say p′, completely determines the point p′′. This poses the following
problem. It is possible that no matter how well one picks the point p′ to falsify
only one clause of F , the corresponding point p′′ falsifies many clauses of F .

In [2], we describe a solution to the problem above. Namely we describe a
version of the procedure Sat(T ,F ,L) that slightly “relaxes” the definition of a
sufficient test set. (By changing procedure Sat(T ,F ,L), we essentially change the
definition of proof encryption we use. Obviously, the same proof can be encrypted
in many ways.) In this version, in points p′,p′′, only the parts consisting of the
assignments of the variables of Vars(C′) ∪ Vars(C′′) have to be at Hamming
distance 1 (i.e. one just needs to guarantee that both p′,p′′ falsify the resolvent
of C′ and C′′). Assignments to the variables that are not in C′ and C′′ can
be done independently in p′,p′′. (In [2], we also describe how to extract a tight
sufficient test set from a “rarefied” resolution proof introduced in subsection 3.3,
i.e. how to build tight sufficient tests sets that are stronger than those obtained
from resolution proofs.)

5 Circuit Testing

So far we have studied the testing of general CNF formulas. In this section,
we consider the subproblem of SAT called Circuit-SAT. In this subproblem,
CNF formulas describe combinational circuits. In this section, we discuss some
specifics of testing formulas of Circuit-SAT.

5.1 Circuit-SAT

Let N be a single-output combinational circuit. Let FN be a CNF formula
specifying N and obtained from it in a regular way. That is for every gate
Gi,i=1,..,k of the circuit N , a CNF formula F (Gi) specifying Gi is formed and
FN = F (G1) ∧ . . . ∧ F (Gk). For example, if Gi is an AND gate implementing
vi = vm ∧ vn (where vi, vm,vn describe the output and inputs of Gi), F (Gi) is
equal to (vm ∨vn ∨vi)∧ (vm ∨vi)∧ (vn ∨vi). Let variable z describe the output of
N . Then the formula FN ∧ z (where z is just a single-literal clause) is satisfiable
iff there is an assignment to input variables of N for which the latter evaluates
to 1. We will refer to testing the satisfiability of FN ∧ z as Circuit-SAT.
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5.2 Specifics of Testing Circuit-SAT Formulas

Let N(Y ,H ,z) be a circuit where Y , H are the set of input and internal variables
respectively. Let FN ∧z be a CNF formula describing the instance of Circuit-SAT
specified by N(Y ,H ,z). Let p be a test as we defined it for SAT (i.e. a complete
assignment to the variables of Y ∪H ∪{z}. We will denote by inp(p) the input
part of p that is the part consisting of the assignments of p to the variables
of Y .

The main difference between the definition of a test as a complete assignment
p that we used so far and the one used in circuit testing is that in circuit
testing the input part of p is called a test. (We will refer to inp(p) as a circuit
test.) The reason for that is as follows. Let N(Y ,H, z) be a circuit and FN ∧ z
be the CNF formula to be tested for satisfiability. A complete assignment p
can be represented as (y ,h ,z∗) where y , h are complete assignments to Y , H
respectively and z∗ is an assignment to variable z. Denote by F the formula
FN ∧ z. If F (p)=0, then no matter how one changes assignments h , z∗ in p , the
latter falsifies a clause of F . (So, in reality, inp(p) is a cube specifying a huge
number of complete assignments.) Then instead of enumerating the complete
assignments to Vars(F ) one can enumerate the complete assignments to the
set Y of input variables. In our approach, however, using cubes is unacceptable
because the complexity of Sat(T ,F ,L) is proportional to the size of T .

Note that, given a sufficient test set T= {p1,. . . ,pm}, one can always form
a circuit test set inp(T )= {y1,. . . ,yk}, k ≤ m, consisting of input parts of the
points from T . (Some points of T may have identical input parts, so inp(T ) may
be smaller than T .) In the case of manufacturing testing, transformation of T
into inp(T ) is mandatory. In this case, a hardware implementation of a circuit
N is tested and usually one has access only to the input variables of N . (In the
case of functional verification, one deals with a software model of N and so any
variable of F can be assigned an arbitrary value.)

A point pi of T has an interesting interpretation in Circuit-SAT if the value
of z is equal to 1 in pi. Let F ′ be the subset of clauses of FN falsified by pi.
(For a tight test set, F ′ consists of a very small number of clauses, most likely
one clause.) Suppose N has changed (or has a fault) and this change can be
simulated by removing the clauses of F ′ from FN or by adding to every clause
of F ′ a literal satisfied by pi . Then pi satisfies the modified formula F . So the
internal part of pi specifies the change that needs to be brought into circuit N
to make inp(pi) a circuit test that detects the satisfiability of the modified N .

6 Testing Design Changes/Manufacturing Faults

In this section, we consider the problem of property preservation (i.e. the problem
of testing design changes and manufacturing faults) in more detail. In terms of
SAT, the objective of property preservation is to detect a satisfiable variation
(fault) of an unsatisfiable CNF formula F . We assume here that F specifies a
property ξ of a circuit N . The idea of our approach is to build a resolution proof
R that F is unsatisfiable and then use R (possibly “rarefied”) to build a tight
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sufficient test set T . This test set is meant to detect changes/faults that break
the property ξ. Every point pi of T can be trivially transformed to a circuit test
by taking the input part of pi. For the sake of clarity, in the following write-up
we consider the testing of manufacturing faults (however the same approach can
be used for verifying design changes).

Usually, to make manufacturing test generation more efficient, a fault model
(e.g. the stuck-at fault model [1]) is considered. Then a set of tests detecting all
testable faults of this model is generated. An obvious flaw of this approach is that
one has to foresee what kind of faults may occur in the circuit. Nevertheless, some
fault models (especially the stuck-at fault model) are widely used in industry.
The reason for such popularity is that a set of tests detecting all testable stuck-at
faults also detects a great deal of faults of other types. An obvious advantage of
our approach is that it is fault model independent. So one does not need to guess
what may happen with the chip.

For the case of generality, we consider the

G
1

z

….
….

y
1

y
s

N’ N”

…. ….

G
m

G

….

Z’1 Z”
1

Z’q Z”
q

Fig. 3. Miter M of circuits N ′ and
N ′′

situation when one does not know any spe-
cific property of the circuit N to be tested.
In this case, one can employ the most funda-
mental property of a circuit which is its self-
equivalence. In this section, we show that a
tight sufficient test set T for the formula spec-
ifying self-equivalence of N contains tests for
detecting stuck-at faults. (In [2], we prove that
on the one hand, inp(T ) contains tests for de-
tecting all testable stuck-at faults, on the other
hand, inp(T ) is stronger than a set of tests
detecting all testable stuck-at faults.) These
results offer a good explanation of why test
sets detecting stuck-at faults work so well for
other types of faults.

Further exposition is structured as follows. First we describe a circuit (called
a miter) that is used for equivalence checking. Then we give the definition of a
stuck-at fault in circuit N . After that we show how one can build a test detecting
a stuck-at fault using a formula F that describes checking self-equivalence of N .
Finally, we show that a tight point image of a “natural” resolution proof that F
is unsatisfiable contains such tests.

6.1 Manufacturing Tests and Self-equivalence Check

Fig. 3 shows a circuit M (called a miter) composed of two s-input, q-output
circuits N ′ and N ′′. Here Gi is an XOR gate and G is an OR gate. The circuit
M evaluates to 1 iff N ′ and N ′′ produce different output assignments for the
same input assignment. So N ′ and N ′′ are functionally equivalent iff the CNF
formula FM ∧ z is unsatisfiable (here FM specifies the functionality of M and z
is the output variable of M).
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Suppose that we want to generate a set of manufacturing tests for a circuit
N . We can do this as follows. First we build the miter M of two copies of N .
(In this case, N ′ and N ′′ of Fig. 3 are just copies of N having the same input
variables and separate sets of internal variables.) After that we construct a proof
R that the formula F = FM ∧ z is unsatisfiable and then use R to build a tight
sufficient test set T . The idea is that being tight, T can be used for detection of
variations of F describing appearance of a fault in one of the copies of N .

6.2 Stuck-at Faults

A stuck-at fault in a circuit N , describes the situation when a line in N is stuck
at constant value 0 or 1. Let Gi(vm,vk) be a gate of N . Then appearance of a
stuck-at-1 fault φ on the input line vm of Gi, means that for every assignment
to the inputs of N the value of vm remains 1. (Suppose that the output of gate
Gm described by variable vm, in addition to an input of Gi, feeds an input of
some other gate Gp. In the single stuck-at fault model we use in this paper, only
the input vm of Gi or Gp is assumed to be stuck at a constant value. However,
if the output line of Gm is stuck at 1, then input lines vm of both Gi and Gp

are stuck at 1.) Let Gi be an AND gate. Then the functionality of Gi can be
described by CNF F (Gi) = (vm ∨vk ∨vi)∧(vm ∨vi)∧(vk ∨vi) where vi describes
the output of Gi. The fault φ above can be simulated by removing the clause
vm ∨ vi from F (Gi) (it is satisfied by vm=1) and removing the literal vm from
the clause vm ∨ vk ∨ vi of F (Gi).

6.3 Construction of Tests Detecting Stuck-at Faults

Suppose the stuck-at-1 fault φ above occurred in the copy N ′ of N (i.e. it oc-
curred on the input line v′m of the AND gate Gi(v′m,v′k) of N ′). Let us show how
this fault can be detected using the formula F=FM ∧ z. Let p be an assignment
falsifying the clause v′m ∨ v′i of F (G′

i) and satisfying every other clause of F .
Then the input assignment inp(p) is a circuit test detecting φ. Indeed, since p
satisfies all the clauses of F but v′m ∨v′i, then N ′′ (the correct copy of N) and N ′

(the faulty copy) produce different output assignments. Besides, since p falsifies
v′m ∨ v′i and satisfies the clause v′k ∨ v′i the assignments to the variables of G′

i are
v′m=0,v′k=1, v′i=1. That is the output of G′

i has exactly the value, that would
have been produced if v′m got stuck at 1. If there is no point p falsifying v′m ∨ v′i
and satisfying the rest of the clauses of F , the stuck-at-1 fault φ is untestable
(i.e. the input/output behavior of N does not change in the presence of φ).

6.4 Extracting a Tight Sufficient Test Set from a “Natural”
Resolution Proof

A “natural” proof Rnat that F is unsatisfiable is to derive clauses describing func-
tional equivalence of corresponding internal points of N ′ and N ′′. These clauses
are derived in topological order. First, the clauses describing the equivalence
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of outputs of corresponding gates of topological level 1 (whose inputs are in-
puts of N ′ and N ′′) are derived. Then using the equivalence clauses relating
outputs of gates of topological level 1, the equivalence clauses relating outputs
of corresponding gates of level 2 are derived and so on.

When building Rnat, we resolve clauses F (G′
i(v

′
m, v′k)) and F (G′′

i (v′′m, v′′k )) de-
scribing corresponding gates G′

i and G′′
i of N ′ and N ′′ and equivalence clauses

EQ(v′m,v′′m), EQ(v′k,v′′k ) relating inputs of G′
i and G′′

i . Here EQ(v′m,v′′m)=(v′m ∨
v′′m) ∧ (v′m ∨v′′m) if v′m and v′′m are internal variables. If v′m and v′′m are input vari-
ables of N ′ and N ′′, they denote the same input variable and EQ(v′m, v′′m) ≡ 1. By
resolving clauses of F (G′

i(v
′
m, v′k)) ∧ F (G′′

i (v′′m, v′′k )) ∧ EQ(v′m,v′′m) ∧ EQ(v′k,v′′k )
we generate new equivalence clauses EQ(v′i,v

′′
i ) relating the outputs of G′

i and
G′′

i . Let p1 and p2 be a tight point image of the resolution operation over
clauses C1 and C2 performed when deriving clauses of EQ(v′i,v

′′
i ) . Let, say C1,

be a clause of F (G′
i) , p1 falsify C1 and satisfy F \ {C1}. Then, using the

reasoning applied in the previous subsection, one can show that inp(p1) is a
circuit test detecting the stuck-at-fault corresponding to disappearance of C1
from F . More detailed description of building a tight point image of R and its
relation to stuck-at fault tests is given in [2]. In particular, we show that the set
inp(Tnat) where Tnat is a tight point image of Rnat contains tests detecting all
testable stuck-at faults. On the other hand, inp(Tnat) may have to contain tests
that detect the same stuck-at-fault in different ways. So, inp(Tnat) is stronger
than a test set detecting testable all stuck-at faults. Interestingly, the high qual-
ity of test sets detecting every stuck-at fault many times was observed in [8]
experimentally.

6.5 Brief Discussion

The size of Rnat and hence the size of Tnat is linear in the size of N . Moreover,
since different points of Tnat may have identical input parts, the size of inp(Tnat)
may be considerably smaller than that of Tnat. Importantly, Tnat is not meant
to detect stuck-at or any other type of faults. The fact that Tnat does contain
such tests suggests that tight test sets extracted from resolution proofs can be
successfully used in manufacturing testing.

One can always get a stronger test set (that detects more faults of various
kinds) by “rarefying” the proof Rnat. Suppose, for example, that a single-output
subcircuit K of circuit N is particularly prone to faults and requires some extra
testing. This can be achieved, for example, by dropping all the resolvents of Rnat

that were generated from clauses FK′ and FK′′ when obtaining the equivalence
clauses EQ(v′i,v

′′
i ). Here EQ(v′i,v

′′
i ) relate the outputs of K ′ and K ′′ in N ′ and

N ′′ and FK are the clauses specifying the functionality of subcircuit K. Let C
be a clause of EQ(v′i,v

′′
i ). Then an SSP S of the subformula FC (here FC is

the CNF formula built to check if F implies C) will contain more points then
the part of a point image of Rnat corresponding to resolution operations over
clauses of FK′ and FK′′ . So a test set containing S will provide better testing of
the subcircuit K.
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7 Experimental Results

In this section, we describe application of tight sufficient test sets to detect a
change in the functionality of a combinational circuit. Such a change may be
caused either by a manufacturing fault or by circuit re-synthesis.

In the experiments we compared the quality of circuit tests (i.e. complete
assignments to input variables) generated randomly and extracted from tight
sufficient test sets. Given a circuit N , a tight sufficient test set T was extracted
from a resolution proof R that a CNF formula F describing equivalence checking
of two copies of N is unsatisfiable. (The exact procedure for obtaining T from
R and many more experimental results are given in [2]. As we mentioned above
a resolution proof that two copies of N are functionally equivalent can be easily
generated manually. However, for the sake of generality, in experiments we used
resolution proofs generated by a SAT-solver, namely by the SAT-solver FI [3]. )
To form a circuit test set from T we randomly picked a subset of the set inp(T )
(where inp(T ) consists of the input parts of the points from T ).

Table 1 shows experimental results for four circuits of a MCNC benchmark
set. All circuits consist of two-input AND and OR gates inputs of which may
be negated. The columns 2-4 give the number of inputs, outputs and gates
of a circuit. The fifth column shows the size of the proof R (in the number
of resolution operations) that two copies of circuit N are equivalent. The last
column gives the size of a tight point image of R (in the number of points).

Table 1. The size of circuits, proofs and point images

Name #inp #out #gates #proof #point
image T

c432 36 7 215 10,921 5,407
c499 41 32 414 59,582 27,903
cordic 23 2 93 1,443 808
i2 201 1 233 1,777 1,435

Let F be a CNF for-
mula describing equivalence
checking of two copies N ′

and N ′′ of a circuit N . Here
F = FM ∧ z where z is the
variable describing the out-
put of the miter M of N ′ and
N ′′ (as shown in Fig. 3).

The fault we used in experiments was to add a literal to a clause of FM . This
fault is more subtle than a stuck-at fault in which an entire clause is removed
from FM . In [2] we give the interpretation of the literal appearance fault from
a technological point of view. Literal appearance in a clause of FM can be also
used to simulate small design changes that are hard to detect in functional
verification.

Let s be a circuit test (i.e. an assignment to the input variables of N). To
check if φ is detected by s we make the assignments specified by s in FM and
run Boolean Constraint Propagation (BCP) for FM . If z gets assigned 1 (or 0)
during BCP, then s detects (respectively does not detect) φ.

In general however, running BCP may not result in deducing the value of z. The
reason is that after adding a literal to a clause of FM , circuit behavior becomes
non-deterministic. For example, let C = v′i ∨v′j ∨v′k be a clause of the CNF F (G′

k)
describing the functionality of the AND gate G′

k(v′i, v
′
j). Suppose that φ is to add
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literal v′m to C. Normally, if v′i=1,v′j=1, the value v′k=1 is derived from the clause
C. However, if the value of v′m becomes equal to 1 during BCP (before the variable
v′k is assigned), then the clause v′i ∨ v′j ∨ v′k ∨ v′m is satisfied without assigning 1
to v′k. So the output of the gate G′

k remains unspecified under the input assign-
ment s. In this case, we run a SAT-solver trying to assign values to the unassigned
variables to satisfy F (and so set z to 1). If such an assignment exists (does not
exist), s is considered to detect (not to detect) φ. The reason is that if φ simulates
a manufacturing fault and we succeed in satisfying the faulty F , then s will detect
φ in case the output of G′

k is set to the wrong value (i.e. 0).

Table 2. Circuit testing

Name #tests SIS rand extr. from
#flts #flts inp(T )

#flts

c432
58 86 69.7(65) 79.7 (76)
100 - 77.1 (72) 86.7 (78)
200 - 88.7(85) 95.5 (90)

c499
93 90 78.7 (70) 85.9(83)
200 - 86.9 (84) 91.2 (89)
400 - 91 (88) 95.2 (92)

cordic
43 84 28.5 (23) 81.6 (74)
100 - 36.6 (29) 94.2 (87)
200 - 54.8 (36) 99 (98)

i2
221 71 7.8 (3) 66.4 (62)
400 - 9.2 (6) 74.6 (69)
600 - 11.6 (10) 82.4 (80)

Table 2 shows the results
of fault testing for the cir-
cuits of Table 1. In every ex-
periment we generated 100
testable faults (i.e. every fault
specified a satisfiable varia-
tion of F ). The second col-
umn of Table 2 gives the size
of a test set. The third column
gives the result for a test set
detecting all stuck-at faults in
N . This test set was generated
by the logic synthesis system
SIS [7]. Since we could not
vary the size of the test set
produced by SIS, only one test
set was used per circuit. For
example, for the circuit c432,
a test set of 58 tests was gen-

erated by SIS. These tests were able to detect 86 out of 100 faults of literal
appearance. The fourth column contains the results of fault detection using cir-
cuit tests generated randomly. In every experiment we used 10 test sets and
computed the average result.The value in parentheses shows the worst result
out of 10. For example, for the circuit c432, in the first experiment (first line
of Table 2) we generated 10 random test sets, each consisting of 58 tests. On
average, 69.7 faults were detected, 65 faults being the worst result out of 10.

The fifth column contains the result of fault detection using circuit tests ex-
tracted from the set inp(T ) where T is a point image of a proof R that F is
unsatisfiable. Namely, we randomly extracted a particular number of tests from
inp(T ). The corresponding sizes of T are given in Table 1. In every experiment
we also generated 10 test sets of a particular size and we give the average value
and the worst result out of 10. For example, in the first experiment, for the cir-
cuit c432, 10 test sets of 58 tests each were extracted from inp(T ). The average
number of detected faults was 79.7 and the worst result was 76 faults.
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Table 2 shows that tests extracted from a point image T of a resolution proof
R perform better than random tests. For circuits c432, c499 that are shallow
(i.e. have few levels of logic) and have relatively large number of outputs (7 and
32 respectively) tests extracted from resolution proofs performed only slightly
better. (Testing shallow circuits with many outputs is easy). However, for circuits
cordic and i2 that are also shallow but have only 2 and 1 outputs respectively
tests extracted from resolution proofs significantly outperformed random tests.

Table 2 also shows that the quality of a test set extracted from a resolution proof
depends on proof quality. As we mentioned above, tests detecting stuck-at faults is
a part of inp(Tnat) where Tnat is a point image of a natural resolution proof Rnat.
Table 2 shows that tests found by SIS performed better than tests extracted from
proofs found by FI (these proofs are significantly larger than Rnat).

8 Conclusion

In this paper, we develop a theory of sufficient test sets. The essence of our ap-
proach is to interpret a set of tests not as a sample of the search space but as an
encryption of a formal proof. We believe that this theory can have many appli-
cations. An obvious application is generation of high-quality tests. We show that
such tests can be extracted from resolution proofs (possibly rarefied). One more
interesting direction for research is extending the notion of stable sets of points
(which is the foundation of our approach) to domains other than propositional
logic. This may lead to developing new methods of generating high quality test
sets for more complex objects like sequential circuits or even programs.
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Abstract. In model-driven verification a model checker executes a pro-
gram by embedding it within a test harness, thus admitting program
verification without the need to translate the program, which runs as
native code. Model checking techniques in which code is actually exe-
cuted have recently gained popularity due to their ability to handle the
full semantics of actual implementation languages and to support verifi-
cation of rich properties. In this paper, we show that combination with
dynamic analysis can, with relatively low overhead, considerably extend
the capabilities of this style of model checking. In particular, we show
how to use the CIL framework to instrument code in order to allow the
SPIN model checker, when verifying C programs, to check additional
properties, simulate system resets, and use local coverage information to
guide the model checking search. An additional benefit of our approach is
that instrumentations developed for model checking may be used without
modification in testing or monitoring code. We are motivated by experi-
ence in applying model-driven verification to JPL-developed flight soft-
ware modules, from which we take our example applications. We believe
this is the first investigation in which an independent instrumentation
for dynamic analysis has been integrated with model checking.

1 Introduction

Dynamic analysis [1] is analysis of a running program, usually performed by
the addition of instrumentation code or execution in a virtual environment [2].
Model checking [3] is a technique for exploring all states of a program’s execution
space, which may be a static analysis of an extracted model, as in CBMC [4] or
SLAM [5], or a dynamic analysis in which a program is executed, as in CMC [6]
or SPIN’s model-driven verification. In model-driven verification [7] (our focus
in this work) a harness embeds code and the model checker runs the program
being verified in order to take a transition in its state space.
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In this paper we show that the power and ease of use of model-driven verifi-
cation can be significantly enhanced using dynamic analysis. Our approach ex-
tends the capabilities of the model checker by introducing instrumentation into
the executed code — instrumentation which interacts with the model checker
to perform property checks, modify control flow of the program, compute cov-
erage metrics, and to guide the state-space search. Our approach is motivated
by our experience with model-driven verification. In particular, our frustration
when debugging model-driven verification harnesses and our interest in proper-
ties requiring fine-grained observation or control of execution suggested the use
of automated instrumentation. Our examples are taken from JPL flight software
produced or tested by our group: NVDS, a module used to store critical space-
craft parameters on flash [8] (5K lines of C for the module, plus 2K lines for
a harness/reference), Launchseq, a model of the launch sequence for a recent
mission (1K lines), and a replacement for string.h. Another motivation was our
interest in random testing [8]: using independent dynamic analysis (rather than
modifying SPIN), we are able to use the same instrumentation during a model
checking run and a random test execution. We simply instrument and compile
the program to be tested, and link to the same instrumented binary.

A further interest in such a combination is based on a common objection
to dynamic analysis: it is fundamentally unsound. Model checking offers the
possibility of combining a dynamic analysis with a complete exploration of the
reachable state space (or an abstraction of that state space). It is true that, for
realistic programs, the state space is often too large for an exhaustive search
(even after abstraction); it is also often the case that analysis for a particular
property adds variables to the program state and increases the state space size.
Nonetheless, in some non-trivial cases, model checking offers an easy path to
sound dynamic analysis.

Below, we discuss the particular instrumentations we developed. We first
present a method for checking modifies clauses, also useful in debugging model-
driven verification harnesses (Sections 4.1 and 4.2). We then show how the same
framework supports a method for simulating software resets (Section 4.3), better
coverage measures during model checking (Section 4.4) and, perhaps most inter-
estingly, a novel search approach based on path coverage information produced
by instrumentation (Section 4.5). Experimental results confirm our intuition that
overhead will be low for most of these approaches (Section 4.6).

2 Model-Driven Verification

Model-driven verification [7] is a form of software model checking that works
by executing code embedded in a model1. The SPIN model checker [9] operates
by translating a model written in PROMELA into a (C) program to model
check that program: in a sense, SPIN is less a model checker than it is a model
1 In the current implementation, the executed code must be C, but this is not a

fundamental limitation of the technique; in fact, we occasionally make calls to C++
functions in embedded C code.
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1 c decl {
2 extern struct s t *arr;
3 extern int cnt;
4 extern int new n(void);
5 int tmp;
6 };
7 c track "arr" "sizeof(struct s t) * 100" "Matched"
8 c track "&cnt" "sizeof(int)" "Matched"
9 c track "&tmp" "sizeof(int)" "UnMatched"
10
11 int r;
12 active proctype harness () {
13 c code { cnt = 0; };
14 do
15 :: c expr {cnt < MAX} -> c code { tmp = cnt; now.r = new n(); };
16 assert(r != -1);
17 assert(c expr {cnt == tmp+1})
18 :: else -> break
19 od
20 }

Fig. 1. PROMELA Model with Embedded C Code

checker generator. Model-driven verification exploits this fact to embed C code
within PROMELA models2. With model-driven verification, it is possible to
check a C program against specifications written in linear temporal logic, using
all the features of SPIN, including bitstate hashing, abstraction, and multi-core
execution [9,7,10].

Figure 1 illustrates the use of SPIN’s primitives for embedding C code. The
c decl primitive is used to declare external C types and data objects that are
used in the embedded C code. The c track declarations are tracking statements,
which provide knowledge to SPIN of what state is being manipulated by the C
program. We describe c track statements in more detail below. The PROMELA
process defined by the proctype declaration also uses the c expr construct to
embed C expressions that are used as guards and the c code construct to embed
blocks of C code within the PROMELA model.

During its depth first search3, the model checker may reach states with no
successors (e.g., the break from the do loop on line 18, which leads to a final
state) or states that have already been visited. In such cases, the model checker
backtracks to an earlier state to explore alternative successors. For variables in
the SPIN model, such as r, restoration of an earlier value when backtracking is
automatic. In order to restore data objects of the C program, however, the model
checker needs knowledge of the set of memory locations that can be modified by
the C code, which we call the tracked locations. For each data object modified

2 This feature was introduced in SPIN version 4.0.
3 Note that SPIN currently supports embedded C code only with DFS.
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by the C program, a c track statement is used (see lines 7-9) to indicate three
pieces of information needed by SPIN: the starting address in memory where the
data object is stored, the size (in bytes) of the C representation of the data, and
whether or not the data should be matched, i.e., whether it should be included
in the check determining if a state has been seen before.

2.1 Tracking and Matching

It is important to note the distinction between tracking and matching. Tracked
data objects are stored as part of the state on the stack used by depth first search
(DFS). This allows SPIN to properly restore data values on each backtracking
step during the DFS. As a rule, all data objects that can be modified by a C
program should be tracked (with some exceptions, as discussed below).

Matching, on the other hand, allows SPIN to recognize when a state has been
seen before. The set of matched data objects therefore constitutes the state
descriptor, which is examined whenever a state is generated, to determine if the
state has been seen before. The ‘‘Matched’’ and ‘‘UnMatched’’ keywords are
used in a c track declaration to indicate whether an object is matched or not.

Since the amount of data modified by a C program can be large, declaring all
data objects as matched makes the state descriptor very large, and increases the
size of the state space to be explored. In such cases, careful distinction between
matched and unmatched data allows on-the-fly abstractions to be applied during
model checking. A simple example is symmetry reduction: e.g., if program states
are equivalent (with respect to verification of a property φ) up to any ordering
of the items in a linked list, we may track the concrete variable but match only
on a sorted version of the list, greatly reducing the size of the state space needed
to verify φ. This approach to abstraction is discussed at length in the original
paper on model-driven verification [7].

Note that not all data needs to be tracked. Data that does not change after
a deterministic initialization process, or data that is not relevant to the search,
does not require tracking. We refer to such data as ignored data.4 There is
no memory overhead for ignored data, but of course such data is not restored
when backtracking occurs. Program state that is not modified in a way that is
visible to SPIN can be ignored. It is also important to ignore memory that stores
cumulative or statistical information over an entire model checking run.

2.2 Limitations of Previous Work

Each fragment of C code embedded in a SPIN model (using either the c expr
or c decl constructions) is executed as a (deterministic) atomic step. This leads
to several limitations of the SPIN approach to model-driven verification: (a) we
cannot check properties (such as program invariants) within embedded C code,
(b) we cannot interrupt control flow within a C function (for instance to simulate

4 There are also situations where it is useful to declare matched data that is untracked;
however, these are beyond the scope of this paper.
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an asynchronous interrupt or an unexpected reset), and (c) we cannot interleave
different fragments of C code (to check multithreaded C programs).

In this paper, we discuss how to address the first two limitations by using
program instrumentation. In particular, we describe (i) how we check properties
within C code, for instance on every write to global data, (ii) how we check C
programs against unexpected events, for instance a warm reboot in which the
program stack is cleared, but global data and the heap are not affected, (iii) how
we can dynamically check modifies clauses [11], which constrain what data can
be modified by a C function, (iv) how we can compute various coverage metrics
(such as predicate coverage) of a C program over a model checking run, and (v)
how we can dynamically apply various (sound and unsound) abstractions (for
instance, a dynamic form of path coverage).

3 Dynamic Analysis Via CIL Instrumentation

We insert instrumentation for dynamic analysis via source-to-source transfor-
mation. Our applications do not involve binaries without source, and we enjoy
the benefits of adding instrumentation before optimization. Running the model
checker itself under instrumentation is too expensive (and in some cases im-
possible), and it is very easy to instrument only certain compilation units. Our
interest is in the use of instrumentation for analysis during model checking, not
in the specific method used for inserting instrumentation.

3.1 Instrumentation with CIL

CIL (the C Intermediate Language) is a high-level intermediate language for
representing C programs, and includes a set of tools that enable analysis and
transformation of C programs [12]. CIL rewrites C programs in a semantically
clean subset of C. User-written modules may modify the code as it is rewritten.
The CIL distribution includes modules providing points-to analysis, array heapi-
fication, and other useful transformers and analyses. We use CIL because we find
it to be a robust and easy-to-use tool for C source-to-source transformations.

Most of our analysis tools are adapted from the logwrites.ml module pro-
vided with CIL. This module “logs” all writes to non-stack-local memory, seen
in CIL as Set or Call instructions. Because CIL analyzes program source, it can
conservatively avoid instrumenting writes to stack local variables in a function.
Our adaptation is to change logwrites.ml to call, in place of a logging function

void checkWrite (void *p, /* Address of the memory */
size t size, /* Size (in bits) of the write */
const char* lv, /* Pretty-print of source lval */
const char* f, /* Name of the file */
unsigned int ln /* Line number of the write */ );

Fig. 2. Prototype for checkWrite
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in stack(p) = ((p > stack beg loc) && (p < &stack end)) ||
((p > &stack end) && (p < stack beg loc))

Fig. 3. Definition for in stack

expecting a string, a function checkWrite that expects more information. The
prototype for checkWrite is shown in Figure 2.

3.2 Tracking the Location of the Stack

Our most common instrumentation involves checking writes to global memory.
CIL distinguishes between local and global variables when this is possible, but
cannot statically determine if certain pointers always target the stack. In order to
determine the location of the stack, we add a global variable (stack beg loc) to
the model checker, containing the address of a local variable of the main function,
and declare another local variable (stack end) in the scope of checkWrite. We
assume that stack variables lie in the region formed by these boundaries, and
define in stack (p) to handle different stack orientations (Figure 3).

3.3 Replacing Memory Modification and Allocation Library Calls

Unfortunately, accesses visible to CIL as Sets and Calls to lvalues do not cap-
ture all memory writes. C programs also modify state by calls to system libraries
— in particular, by using memset, memcpy, memmove, and the destructive string
library functions (strncpy, strcat, etc.). We do not wish to recompile these
libraries with CIL, but do wish to instrument the writes they produce. We there-
fore use another CIL module to rewrite these calls, making the memory writes
visible.

We use a similar CIL module to replace calls to the malloc family with calls
to spin malloc, in order to make dynamic allocation visible. The spin malloc
functions use a static region that is tracked. This method also optionally pro-
vides checks for common memory-safety properties (no use after free, etc.) and
ensures that tracked and allocated regions are equivalent if they overlap.

4 Applications and Experimental Results

We now present the uses we have made of dynamic analysis during model check-
ing, and present experimental results indicating the utility and efficiency of our
approach. Significantly, we show that the relative overhead for our instrumenta-
tion is quite low: the model checking engine is not instrumented, and tends to
consume a large portion of runtime during model-driven verification.

Our applications include novel ideas specific to model checking (Sections 4.2
and 4.5). We also present more common analyses applicable in testing, in order
to show the degree of reusability provided by independent analysis and to com-
pare analysis overheads for testing and model checking. The range of possible
applications is potentially that of most runtime analyses for C programs.
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4.1 Checking Modifies Clauses

Modifies clauses are used in ESC/Java [13], JML [14], Larch [15], and other
languages to specify which variables a function may alter. We take a lower level
approach and consider a specification of which memory locations a C function
or block may change. These (named) locations are specified as a set of ranges,
which may be dynamically computed during execution. A checkWrite function
determines the correctness of each memory write:

void checkWrite (void* p, ...)
forall (range ∈ modifiable ranges)
if (p ∈ range ∧ allowed(range))

return; /* Ok, p is in a modifiable range */
/* p is not in any modifiable range! */
ERROR;

A range is not statically defined, but is a dynamically evaluated region spec-
ified by expressions for starting and ending address. Whether a range can be
written to can by dynamically toggled, depending on conditions. E.g., the stack
will typically be included in the allowed ranges, but not in all cases. In our
test harness for a replacement version of the C string library used in a JPL
flight module, the r strncat range is computed based on the arguments to the
n strncat function — r strncat = (t+strlen(t), t+strlen(t)+n). Code
that calls n strncat (the module’s version of strncat) is rewritten with CIL to
set up the restrictions:

disallow all ranges(); /* Clear set of modifiable ranges */
allow range(r strncat); /* Allow range for n strncat */
char *result = n strncat(t, s, n);

An advantage of our approach to combining model checking and dynamic
analysis is that the analysis can be used in other kinds of testing or as a runtime
monitor in deployment. We used the same instrumentation to check modifies
clauses in a randomized differential testing harness [8] for the string library,
comparing results of operations on randomly generated strings to those returned
by the standard string library. These tests detected a minor error in argument
checking in one function.

Extending Modifies Clause Checking to Library Calls. In addition to
restrictions on memory writes, we also support limitations on which libraries
can be called. The most common application may be to restrict write access
to devices (such as flash storage in our case) accessed through driver calls. In
addition to device access properties, this also allows us to check performance
properties, e.g. that no expensive library calls occur while interrupts are disabled
on the flight CPU.
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4.2 Debugging SPIN Models with Embedded C Code

One application of modifies clause checking is to assist in developing the harness
for model-driven verification. A common error in such cases is to leave an impor-
tant variable untracked, resulting in spurious counterexamples when the model
checker backtracks but only partially restores a previous state. Our approach to
debugging memory tracking during model-driven verification is to automatically
generate a checkWrite function from the c track statements in the SPIN har-
ness. Our tool also supports a c ignore statement, used to indicate modifiable
memory that does not require tracking. During model checking, checkWrite acts
as a modifies clause checker, ensuring that the program being verified does not
modify any locations that are not tracked or ignored.

If the model checked program does write to untracked/ignored locations, SPIN
will produce a warning for each such write — e.g. in the NVDS example:

UNTRACKED WRITE: 0x73b980 (nvds npart) at nvds init.c:377
UNTRACKED WRITE: 0x73b9d0 (nvds ptsem[pt]) at nvds init.c:258

In addition to c track and c ignore, we support a c constant declaration.
Unlike the C const type attribute, this does not indicate that an address is
never assigned to (in which case we could simply leave the value out of our
declarations). Instead, it produces a check that the value written to an address
is always the same as the previous contents of that address. Because many of
our models include simulations of system resets, we often call initialization code
(such as would be called when a spacecraft reboots) setting global parameters,
such as the size of a file system’s memory region. The c constant declaration
provides warnings if this initialization code is faulty and changes the previous
value of such a parameter, while avoiding spurious warnings about non-modifying
assignments. Such declarations incur the additional overhead of a memcpy, but
only before assignments to these addresses.

We used this approach to detect three untracked writes in a SPIN harness
for a critical piece of flight software (the NVDS system), and to confirm that
these writes were safe. We also verified the tracking of state for launch sequence
modeling code derived from an upcoming mission.

4.3 Simulating Warm Resets

Another application of instrumentation is to return control to the model checker
to simulate system resets. This is useful in two cases: simulation of cold resets on
systems with a persistent hardware state that survives reboot, and simulation
of warm resets, used in some experimental flight software at JPL.

In a warm reset, all data on the program stack is cleared and the program is
restarted, but global data is not cleared. In some applications, this memory may
need to be recovered, if possible, even after the software has been terminated
in mid-operation and re-started. Because stack memory is lost on a reset we
can reduce the state space of possible reset points by only considering resets at
global writes. Again, we make use of a checkWrite function:
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if (in stack(p))
return; /* p on stack, no need to consider reset */

if (reset trap > 0)
reset trap--;

else if (reset trap == 0) /* Trap goes off, reset */
reset trap = -1; /* Clear the trap */
longjmp (context, code);

As with modifies clauses, this checkWrite requires the model checker to
set certain variables before calling the tested code. In particular, it expects
reset trap to indicate if a warm reset is scheduled (-1 indicates no trap, a
positive number n indicates that a warm reset is to take place on the nth write).
A setjmp call to establish the context for longjmp to control to SPIN is also
required. The model checking harness places resets nondeterministically.

We use this module in both model checking and random testing. The method
has exposed subtle errors, including a very low probability scenario arising from
the precise placement of a reset during a memcpy in a spacecraft RAM file system
— a checksum used to detect memory corruption was too weak [8]. Detecting
the error required a precisely placed reset during a memory copy.

4.4 Granularity of Coverage Measurements

Dynamic analysis also allows us to compute (abstraction) coverage at a finer
granularity than atomic step boundaries. In our model checking of flash storage
systems we use a number of unsound abstractions, as the state spaces for the
rich properties we wish to check (essentially full functional correctness) are not
amenable to sound abstraction and are large for even small flash devices. We
may abstract the state of the flash device by only considering, e.g., the state of
each block on the device (used, free, bad) and the number of live, dirty, and free
pages on that block [16,8]. When SPIN reaches a state in which the abstract state
has previously been visited, it will backtrack. Because it may not be possible,
under this abstraction, to reach all abstract states (indeed, certain states are
defined as errors), we compute the coverage in cumulative fashion as we model
check the file system. Unfortunately, computing coverage after every call to the
file system does not measure actual abstraction coverage. Before an operation
returns control to the harness, it may perform multiple writes to the flash device.
In this case, our coverage is a measure of “stable states” of the flash with respect
to the storage API, but is an underestimate of all covered states. We remedy
this by instrumenting all driver calls for the flash device to recompute coverage
after each modification. Again, this coverage instrumentation is as useful in
randomized testing as in model checking.

4.5 Using Local Path Coverage to Guide Exploration

Another useful CIL module instruments every branch choice to update a bit
vector representing the program path as shown in Figure 4. Before each entry
into the tested program the model checking harness clears pathBV. At the end of
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if (buff == NULL) {
return;

} else {
copy(x, buff);

}

(a) Before

if (buff == NULL) {
add to bv(pathBV, 1);
return;

} else {
add to bv(pathBV, 0);
copy(x, buff);

}

(b) After

Fig. 4. Before and after insertion of path tracking

each call, pathBV contains information sufficient to reproduce the control path
taken by the tested function, e.g. [] for branch-free code, and [1] or [0, . . . ] for
our example, (where . . . represents any branching taken inside copy). We limit
the size of pathBV in some fashion — in our case, simply by taking only the first
k bits of history, though other schemes, such as a sliding window, might also
yield useful results.

Making pathBV a matched location adds path coverage of tested functions
to the state space abstraction used in SPIN. This provides no benefit if we are
matching on all aspects of the program state, but produces a new exploration
strategy when combined with coarse abstractions. Consider the extreme case
where we match on no program state. Without path information, no path will
involve more than one entry-point function from the test-harness loop and will
never discover any error requiring more than one function call. However, if we
match on pathBV, SPIN will explore deeper paths, until such exploration fails
to cover new paths in the tested functions. In the extreme case, this is unlikely
to provide significantly deeper coverage, but for even very coarse abstractions
may reach deeper state without the need to guess what additional program state
should be tracked.

We applied this approach to our NVDS example, removing all matched state
(other than the SPIN variables controlling inputs to tested functions) from the
model, and adding matched path information. We ranged k from 0 to 20 bits (at
20 bits, the state space was large enough to exhaust memory on our 8GB ma-
chine). As expected, statement coverage of the module increased monotonically
with the number of bits – but only by a few statements. The number of states
explored increased dramatically — from 607K states for the 0-bit (no coverage)
experiment to 48,100K states with 20 bits of path information. Most interest-
ingly, coverage of the abstraction discussed above, approximating the physical
state of the flash device (with respect to storage semantics of live and dirty
pages) also increased. This increase was not monotonic, but showed a general
upwards trend with k, ranging from 39 states at 0 bits to 53 states at 18 bits
(falling back to 52 states at 21 bits). Matching the abstract state itself (and
thus preventing backtracking whenever a new abstract state was reached) only
improved on this by one state, covering 54 of the 55 reachable abstract states.
In other words, considering only path information when determining whether
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to backtrack was almost as effective (in covering the abstract state space) as
explicitly basing the search on abstract coverage5.

Calculating coverage of another coarse abstraction (the ordering of writes to
locations) showed even better results — in the two configurations we examined,
the path-based approach quickly improved on matching the abstraction in ques-
tion. With only 3 bits of path information, we were able to cover 87 abstract
states, vs. 72 when matching on the abstract state. Figure 5 shows the general
trend of increased coverage for both abstractions. Of course, given the high sen-
sitivity of DFS to ordering of transitions [17], these results are at best suggestive.
However, given the low overhead of the instrumentation and the difficulty of for-
mulating useful (even unsound) abstractions for rich properties of systems with
large state spaces, we believe this strategy merits further investigation.

4.6 Impact of Instrumentation on Model Checking Performance

Table 1 shows the overhead of instrumentation for model checking on our JPL ex-
amples. NVDS-1 and NVDS-2 designate different harness configurations. For the
string library, two modes of verification were used — exhaustive model checking
tests for each function and a random test system for the entire library. We report

5 Coverage is incomplete in these cases because the abstraction is unsound and does
not over-approximate successors.
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Table 1. Impact of instrumentation on performance

Uninstrumented Instrumented

Model Checking

Program Time SPIN Time SPIN Check Slowdown Type

NVDS-1 123.8 95% 137.1 88% 5.2% 10.5% track
NVDS-1 (bitstate) 581.9 93% 621.3 86% 3.03% 6.8% track

NVDS-2 437.4 93% 490.8 89.7% 2.08% 12.2% pathBV(20)

Launchseq 97.6 99% 98.3 98% 0.06% 0.7% track

n strncpy 34.6 99.5% 34.9 99.4% 0.22% 0.86% modifies
n strncat 29.3 99.6% 29.4 99.5% 0.04% 0.34% modifies

Random Testing

Program Time Test Time Test Check Slowdown Type

stringtest 202.9 80% 250.3 41.1% 24.4% 23.4% modifies

All times in seconds. SPIN/Test are % time spent in core SPIN or in generating tests. Check is

% time spent in checkWrite or in the pathBV update functions. Experiments performed on dual-core

Xeon (3.2 GHz) with 8 GB of RAM, under Red Hat FC 4.

on modifies clause and path coverage instrumentations as representative — reset
simulation instruments the same program points as modifies clause checking.

The slowdown for introducing instrumentation in no case exceeded 12.2%,
whether instrumenting every global memory write or every branch, during model
checking (stringtest is a random tester). For some of the programs, the over-
head was below 1%. The overhead for modifies clause instrumentation is low
enough that it can be used throughout the development of a SPIN harness to
refine tracking statements, even when directly model checking flight software
modules. The reason for the low (relative) overhead is clear: profiling shows that
the time spent running instrumented code is trivial compared to the time spent
hashing and storing states in the model checker. The percent of time executing
checkWrite is typically an order of magnitude or more less than the percent
spent executing the SPIN verifier. In unusual cases, it might happen that pro-
gram execution dominates model checking state storage time, but we have never
observed such a profile, even with complex modules such as NVDS. Note that
the (relative) overhead for random testing (stringtest) of the string library is
much higher than the other examples, as the generation of random tests is not
computationally intensive. We also note that there was no overhead for checking
n strlen and n strncmp, as CIL observes no global writes.

5 Related Work

Musuvathi et al. note that it should be possible to use a dynamic analysis, such
as Purify [18] or StackGuard [19], in combination with CMC, a model checker
that, like SPIN, executes C code [6]. In their experience, however, the overhead
of binary instrumentation is too high to be practical, which supports our decision
to rely on source-to-source instrumentation [20].
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In a sense, any analysis performed in an explicit-state model checker in which
code is executed can be considered to be an instance of dynamic analysis during
model checking. For example, the Java Pathfinder model checker [21] has been
used to generate Daikon [22] traces to detect invariants [23]. Our contribution is
to combine model checking with independent dynamic analysis, introduced via
traditional source-to-source transformations. Our approach stands in contrast
to the more common approach to applying a “dynamic” analysis during model
checking, in which the model checker itself is extended to carry out the analysis,
as with JPF [23]. We preserve a separation of concerns in which code may be
instrumented just as in testing or regular execution, without substantial change
to the model checker. Any analysis developed for model checking can also be used
during normal testing or as a monitor for execution (as well as the reverse —
instrumentation developed during testing can be applied while model checking).
Perhaps more importantly, instrumented native code executes much faster than
code executed in a virtual environment, such as JPF’s JVM, and the techniques
described in this paper should be applicable (with similar overhead) to any of
the numerous model checkers featuring actual execution of C code, including
CMC [6], VeriSoft [24], and CRunner [25].

6 Conclusions and Future Work

Applying independent dynamic analysis during model checking enables a large
number of useful checks and measurements and saves effort by making it possible
to use the same analyses during model checking, testing, and monitoring after
deployment. Dynamic analysis can be at least as useful in execution-based model
checking as it is in testing, especially given that relative overheads are typically
much lower than in testing. We are exploring a number of other applications.

In runtime verification, certain program events are observed by a monitor,
and temporal properties of program execution are checked [26]. We hope to reuse
monitoring specifications developed for testing or deployed execution. We plan
to integrate the RMOR runtime verification system [27] with SPIN to analyze
properties of flight software. RMOR’s instrumentation is already implemented
as a CIL module, and uses only static structures for monitoring, which makes
producing c track statements to support monitoring relatively easy.

Another application is the inference, rather than checking, of properties.
Daikon [22] infers state invariants of program execution and Perracotta [28,29]
infers temporal properties of program paths. The information necessary for these
tools can be produced using our instrumentation approach. With Perracotta, it
is critical to track path information and backtrack it during the search, to avoid
inference of spurious properties. This idea also raises a question: when a tool
examines traces offline, which traces should we generate during model checking?
The most conservative approach would only produce traces at final states of
the model. Given that an unbounded loop is the most common structure for a
verification harness this is not useful. The opposite extreme would be to pro-
duce a trace at each state reached. This would produce a very large (and highly
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redundant) set of traces. We suggest producing a trace every time the model
checker backtracks due to reaching a final state or due to reaching an already
visited state (but not after exploring all successors): this would produce one
trace for each path by which the model checker reached any particular program
state, even if that state was produced many times during model checking; no
trace which is a prefix of another trace would be generated. Only empirical
investigation can determine if such a strategy produces too many traces.
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Abstract. In this paper we analyze the problem of transforming parti-
tions in order to satisfy completeness in the standard abstract interpre-
tation framework. In order to obtain this, we exploit the relation existing
between completeness and the Paige-Tarjan notion of stability, already
detected in the particular context of refining partitions for completeness.
Here we extend this relation in order to cope not only with the exist-
ing notions of completeness, but also with the simplification of domains
for completeness (the so called core). Then we show that completeness
lies, under the stability form, in two fields of computer science security:
abstract non-interference and opacity.

1 Introduction

The notion of bisimilarity [13] has turned out to be one of the most fundamental
notions of operational equivalences in the field of process algebra. The widespread
study of bisimulation in several fields of computer science is due to the fact that
bisimulation is a behaviour equivalence, which goes beyond trace equivalence by
comparing systems also on their capability of simulating each others. This no-
tion became important also in abstract model checking (AMC for short), where
it has been proved that bisimulation corresponds to strong preservation [15],
i.e., there are not counterexamples to the model which do not correspond to
concrete examples. In other words, a strong preserving model does not contain
false negatives. In particular, it turned out that bisimulation precisely models
the observational equivalence between a concrete system and a strong preserving
abstraction of it. This important connection was discovered through the analysis
of the Paige and Tarjan (PT for short) algorithm [14], a well-known partition
refinement algorithm. More precisely, this algorithm finds the coarsest partition
refinement leading to a stable partition, i.e., a partition of the system states such
that the post image of its blocks (i.e., equivalence classes) is still the union of
some of its blocks. It corresponds to the closest partition strong preserving for
the underlying concrete system [16]. Hence, this algorithm finds a refinement
of the original partition, which in AMC [3] means to move towards the risk of
state explosion of the model. In fact, in abstract model checking the abstract
model usually represents a compromise between precision and simplicity of the
model. Clearly, whenever strong preservation fails, it means that we have to
loose one of these constraints. The standard refinement approach weakens sim-
plicity by making more precise the model, but also the other direction could be

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 157–171, 2008.
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taken into account. If we can simplify partitions for stability, then we can also
weaken precision by making simpler the model, and nevertheless reaching strong
preservation. The possibility of considering also the simplification direction is
made even more intuitive if we consider the strong relation existing between
strong preservation and completeness [9], where both the directions, i.e., refine-
ment (shell) and simplification (core), are possible [11]. In particular, it has been
proved that a strong preserving abstraction, which corresponds to a stable parti-
tion of states, coincides with a complete abstraction of the powerset of concrete
states. Abstract domain completeness means that no loss of precision is gener-
ated by abstracting a concrete computation. Therefore, if we can instantiate the
complete core, existing for abstract domains, to partitions then we find a way
for simplifying partitions in order to get strong preservation.

Note that this result would not be interesting only in AMC. Indeed, another
field of computer science, where abstract domain completeness is important,
is abstract non-interference in language based security [8]. In this model the
security policy can be characterized by either an abstraction or a partition of
program states [12]. The program is secure if there is no release of information,
which corresponds to completeness [1]. In this case to refine the abstract domain
corresponds to consider more powerful observers, since the more concrete is the
model of the observer and the more it can distinguish concrete states, inducing
a more precise and therefore dangerous observation of the system to protect.
Therefore, if we have a program that doesn’t satisfy a given security policy it
is clear that a useful thing to do is to characterize how we can weaken the
policy in order to make the program secure. In other words, we are interested
in looking for the strongest policy that the program, as it is written, is able to
satisfy. This clearly provides a security certification of the program wrt a given
model of observers/attackers. At this point, if we model attackers as abstract
domains, then the abstract domain completeness framework provides all the
tools for generating these certifications. The things are slightly different if the
policy is modelled by using partitions, since we would need a technique for
making partitions complete by simplifying them. As suggested in [12], due to
the strong correspondence between abstract domains and partitions, we could
complete a partition in the following way: (1) transform the partition in the
corresponding abstract domain, (2) complete it, (3) derive the corresponding
partition. Clearly this way is writhed and, above all, the completing technique
cannot exploit the fact that in practice we are working on partitions and not
on domains. In fact, partitions corresponds to particular abstract domains that
admit a compressed representation, the partition itself. This clearly implies that,
working with the corresponding abstract domain means to deal with a consistent
amount of redundant information. For this reason we are interested in studying
directly completeness on partitions.

As underlined before, the PT algorithm corresponds to a completeness refine-
ment technique for partitions, hence what is missing is a corresponding simplifi-
cation technique. Consider the following example. Let f = λx. 2x be on natural
numbers and R = {Odd, Even}. This partition is not stable/complete since the



Deriving Bisimulations by Simplifying Partitions 159

images of its equivalence classes under f are not unions of blocks in R, for exam-
ple f(Odd) ⊂ Even. The problem is that there are no simplifications of R which
are stable. In particular the only possible partition coarser than R is All (i.e., all
the numbers are in the same equivalence class), which again is not stable since
f(All) = Even ⊂ All. This simple example shows that the best stable simpli-
fication does not always exist. Hence, we are interested in understanding when
this completeness core exists. We will show that the core exists for a partition
on a concrete system, whenever forward completeness can be rewritten also as a
problem in the dual notion of backward completeness [11], for which, exactly as
it happens for abstract domains, the completeness core always exists. Note that,
the difference between these completeness notions depends on how we abstract
the computation: either by directly abstracting the result of the concrete com-
putation (backward) or by performing the computation on the abstract values
(forward).

In this paper we rewrite completeness for partitions in terms of stability,
defining a new notion which corresponds to backward completeness. We show
that, while the shell always exists for both the notions of completeness, the core
needs some restrictions in the forward case. Then, we recall the PT algorithm
for refining partitions and we show how we can dualize it in order to simplify
partitions for completeness. Finally, we propose a discussion on the results where
we show an example of well-known notion in language based security which is an
instantiation of the new notion of stability, and we propose the non-interference
example, where the characterization of the most powerful harmless attacker is
an instantiation of the simplification algorithm for stability.

2 Domain Completeness

Completeness in abstract interpretation is a property of abstract domains rel-
ative to a fixed computation. In particular, an abstract domain is complete for
a concrete function f if we do not lose precision by computing the function in
the abstract domain. This means that for that particular function the domain is
precise enough. Let C be a complete lattice, f : C → C and ρ ∈ uco(C) an upper
closure operator1. Then backward completeness (B-completeness for short), for-
mally ρ ◦ f ◦ ρ = ρ ◦ f , means that the domain ρ is expressive enough such that
no loss of precision is accumulated by abstracting in ρ the arguments of f . Con-
versely, forward completeness (F -completeness) [9], formally ρ ◦ f ◦ ρ = f ◦ ρ,
means that no loss of precision is accumulated by approximating the result of the
function f computed in ρ. While B-completeness corresponds to the standard
notion of completeness [11], the notion of F -completeness is less known [9].

The domain of partitions (equivalence relations) on C, Eq(C), is an ab-
straction of uco(℘(C)) [12]. Namely, with each partition we can associate a

1 An upper closure operator (uco) ρ is a monotone, extensive, i.e. ∀x. x ≤ ρ(x), and
idempotent function on C. uco(C) denotes the domain of all the ucos on C. An uco
is closed by concrete greatest lower bound and contains the concrete top.
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set of closures, those that induce the given partition on C. Consider an ab-
stract domain η ∈ uco(℘(C)). We define Relη ⊆ C × C as follows: ∀x, y ∈
C . x Relη y ⇔ η({x}) = η({y}). Relη is an equivalence relation. Consider
now an equivalence relation R ⊆ C × C. We define CloR ∈ uco(℘(C)) as follows:
∀X ⊆ C.CloR(X) =

⋃
x∈X [x]R. CloR is an upper closure operator, in the following

called partitioning. Finally, we consider f : C −→ C and its additive lift, defined
as f(X) =

⋃
x∈X f(x). In the following we abuse notation by identifying any

function with its additive lift.
At this point, let us define backward completeness of equivalence relations in

terms of completeness of the corresponding closure operators. Let R, S ∈ Eq(C)
and f : C −→ C, then S ◦ f ◦ R = S ◦ f iff CloS ◦ f ◦ CloR = CloS ◦ f iff

[f([x]R)]S = [f(x)]S iff ∀w ∈ [x]R. f(w) ∈ [f(x)]S [12] (1)

Analogously, we can define forward completeness in terms of completeness of
the corresponding closure operators. Let R, S ∈ Eq(C), and f a map on C, then
S ◦ f ◦ R = f ◦ R iff CloS ◦ f ◦ CloR = f ◦ CloR iff [f([x]R)]S = f([x]R). In the
following we denote respectively by � and id the equivalence relations induced
by the corresponding ucos.

A pattern for domain transformation. The problem of making abstract
domains B-complete and F -complete has been solved [11,9] constructively for
continuous functions. The key point in these constructions is that both F - and
B-completeness are properties of the underlying abstract domain A relative to
the concrete function f . In a more general setting let f : C → D be a function
on the complete lattices C and D, and ρ ∈ uco(D) and η ∈ uco(C) be abstract
domains. 〈ρ, η〉 is a pair of B[F ]-complete abstractions for f if ρ ◦ f = ρ ◦ f ◦ η
[f ◦ η = ρ ◦ f ◦ η]. A pair of domain transformers can be associated with any
completeness problem. We define a domain refinement [simplification] as any
monotone function τ : uco(L) → uco(L) such that X ⊆ τ(X) [τ(X) ⊆ X ] [10].
The shell of a domain is the closest complete refinement of the domain, while the
core is the closest complete simplification. For making a domain F -complete we
can refine the domain by adding all the direct images of the concrete function
to the output abstract domain (F-complete shell) [9], or simplify the domain
by removing all the elements whose direct image is outside the output domain
(F-complete core). On the other hand, for B-completeness we can add all the
maximal elements of the inverse images of the function to the input domain (B-
complete shell), or remove all the elements whose inverse image is outside the
input domain (B-complete core) [11]. Formally, the constructive characterization
of completeness is the following: ρ is F -complete iff ∀x ∈ ρ. f(x) ∈ ρ [9]; ρ is B-
complete iff ∀x ∈ ρ .

⋃
max(f−1(↓ x)) =

⋃
max

{
y

∣
∣f(y) ≤ x

}
⊆ ρ [11]. If f is

additive max
{

x
∣
∣ f(x) ≤ y

}
=

∨ {
x

∣
∣f(x) ≤ y

}
= f+(y) is the right adjoint2,

and therefore η ◦ f = η ◦ f ◦ ρ ⇔ f+ ◦ η = ρ ◦ f+ ◦ η.

2 Let us recall that, if α : C −→ A is an additive map, then it admits right adjoint
γ = λx ∈ A.

∨ {
y ∈ C

∣
∣α(y) ≤A x

}
, i.e, 〈C,α, γ, A〉 is a Galois insertion.
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3 Stability vs Completeness

At this point, our aim is to find a characterization of partition completeness
that can be exploited in a constructive way. The idea to follow comes from
the relation existing between partition stability [14] and F -completeness [15,9].
Namely, the idea is to generalize the notion of stability in order to cope also with
B-completeness.

Consider a concrete domain C, a function f : C −→ C, and two partitions
of C, induced by the two equivalence relations R ⊆ C × C and S ⊆ C × C. In
the following we abuse notation by identifying the equivalence relation with the
induced partition.

Let us first consider the notion of stability introduced for the PT algorithm
[14] generalized to arbitrary additive functions.

Definition 1 (f-Fstability )
X ∈ S is f -Fstable wrt Y ∈ R if X ∩ f(Y ) �= ∅ ⇒ X ⊆ f(Y ). S is f -Fstable
wrt Y ∈ R if ∀X ∈ S we have X f -Fstable wrt Y . S is f -Fstable wrt R if ∀Y ∈ R
we have that S is f -Fstable wrt Y . If R = S, then we say S f -Fstable.

Namely, if S is f -Fstable wrt R, the image by f of an equivalence class (also
referred as block) of R can only be mapped in a block (or union of blocks) in
S. Ranzato and Tapparo [15] showed that this notion corresponds to a form of
F -completeness for f , for this reason we call it Fstability.

Moreover, we prove that transforming partitions for stability corresponds pre-
cisely to the Fcompleteness characterization [9] instantiated to partitioning clo-
sures. Namely, we show that f -Fstable partitions corresponds to partitioning
domains closed under direct images of f .

Theorem 2. Let f : C −→ C, and S, R ⊆ ℘(C) be partitions of C. Then the
following statements are equivalent

1. S is f -Fstable wrt R;
2. [f([x]R)]S = f([x]R);
3. ∀X ∈ CloR ⇒ f(X) ∈ CloS;

Note that this theorem holds also for generic functions f : ℘(C) −→ ℘(C), i.e.
not only for additive functions.

At this point, we can think of “reversing” the stability constraint, namely we
ask the image of a block to be completely contained in a block. In other words, we
require the image of elements, which are in the relation, to be still in the relation.
Note that, this corresponds exactly to the B-completeness formalization given in
Eq. 1, for this reason we call it Bstability. As the previous notion, it is defined
parametric on a function f :

Definition 3 (f-Bstability)
X ∈ S is f -Bstable wrt Y ∈ R if X ∩ f(Y ) �= ∅ ⇒ f(Y ) ⊆ X. S is f -Bstable
wrt Y ∈ R if ∀X ∈ S we have X f -Bstable wrt Y . S is f -Bstable wrt R if ∀Y ∈ R
we have that S is f -Bstable wrt Y . If R = S, then we say S is f -Bstable.
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The next theorem formally relates the new notion of Bstability with the notion
of Bcompleteness for partitions. Moreover, as for Fstability, we also show that
we can constructively characterize Bstability exactly as B-completeness [11], but
clearly restricted to partitioning closures. Namely, Bstable partitions correspond
to partitioning domains closed under maximal inverse images of f .

Theorem 4. Let f : C −→ C (additive), and S, R ⊆ ℘(C) be partitions of C.
Then the following statements are equivalent

1. S is f -Bstable wrt R;
2. [f([x]R)]S = [f(x)]S;
3. ∀X ∈ CloS ⇒ max

{
Y

∣
∣f(Y ) ⊆ X

}
∈ CloR;

Note that, the theorem above holds only for f : ℘(C) −→ ℘(C) obtained as
additive lifting of f : C −→ C, or in general for additive functions. Indeed, as
we can see in the following example, it is sufficient to take f : C −→ ℘(C) not
additive to lose the equivalence.

Example 5. Consider C = {a, b, c, x, y}, and the partitions R = {{a, c, x}, {b, y}}
and S = {{a, b}, {c, x}, {y}}. Consider f : C −→ ℘(C) such that f(a) = {a},
f(b) = {b}, f(c) = {c}, f(x) = {x} and f(y) = {a, x}. Then

[f([y]R)]S = [f(b, y)]S = [{a, b, x}]S = {a, b, c, x} = [f(y)]S = [{a, x}]S

Hence, it is complete on y. Consider now stability, and in particular consider
the blocks [x]S and [y]R. Note that, [x]S ∩ f([y]R) = {c, x} ∩ {a, b, x} = {x} �= ∅,
while f([y]R) = {a, b, x} �⊆ {c, x} = [x]S.

Note that, both these definitions of stability are parametric on a function, ex-
plicitly given; in sake of simplicity, in the following, whenever the function is
clear from the context or it is not relevant, we omit it.

The parallelism with completeness is clearly quite deep, and in particular,
exactly as it happens for completeness, we can note a strong relation between the
functions f that make a partition Fstable and those making a partition Bstable.
In the adjoint framework [5], it is well known that f(Y ) ⊆ X is equivalent to X ⊆
f+(Y ), where f+ is the right adjoint of f , which exists since we are considering
only additive f : ℘(C) −→ ℘(C). Hence, it is clear that R is f -Bstable wrt S iff
S is f+-Fstable wrt R. The problem is that f+ is co-additive by construction,
but in general it is not additive, hence it does not fit in the framework we are
considering. For this reason we need to weaken this inversion. In particular we
can show that the equivalence between Fstability and Bstability holds also if
we consider the pre-image of f (which is additive by construction) instead of its
right adjoint. Consider f : C → C, let us define, f−1 = λX.

{
y ∈ C

∣
∣f(y) ∈ X

}
,

then we have the following result for all the partitions R and S on C.

Proposition 6. R is f -Bstable wrt S iff S is f−1-Fstable wrt R.

Note that the process of transforming a Fstability problem in a Bstability one,
is much more delicate, as the following proposition shows.
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Proposition 7. If R is f−1-Bstable wrt S then S is f -Fstable wrt R. If S is
f -Fstable wrt R and f injective, then R is f−1-Bstable wrt S.

These propositions are important for underlying that the two stability prob-
lems are different, in particular any Bstability problem can be translated in a
Fstability one, but the vice versa is not always possible. Formally, the difference
between the two propositions is due to the fact that, while Y ⊆ f−1(X) ⇒
f(Y ) ⊆ X always holds, X ⊆ f(Y ) ⇒ f−1(X) ⊆ Y requires the injectivity of f .

4 Characterizing Stability Transformations

In the standard abstract interpretation framework, and hence whenever we need
to approximate properties, completeness is an important property, since it guar-
antees that the approximation is precise enough for what we need to observe.
Namely, the approximation loses only those aspects which are indeed not useful
for the computation of interest. For this reason it is important to have a sys-
tematic method for minimally transforming abstract domains in order to make
them complete, and hence precise, for the function we have to compute. These
kinds of abstract domain transformers are completely characterized, both for
refining and simplifying domains, for backward completeness [11] and partially
characterized (only in the refinement direction) for forward completeness [9].

On the other hand, partitions form an important abstraction of closure op-
erators, used in many fields of computer science where also completeness has a
relevant role, such as abstract model checking or language-based security. More-
over, partitions become quite useful also in practice, for implementations, due to
their simplicity. Hence, it becomes interesting to have also a systematic method
for transforming partitions in order to make them complete. In the following sec-
tions, given a partition, we analyze the existence of the closest stable partition
for both F and Bstability. We focus now our attention only on problems of sta-
bility where the input relation coincides with the output one, i.e., S = R. Hence,
our aim is to characterize given a partition R on C, its best approximation, from
above or from below, which is stable.

Let us first consider the problem of refining partitions, which corresponds, for
Fstability, to well known stability refinement [14,15]. The following proposition
corresponds to saying that the coarsest Fstable refinement of a given partition
always exists, exactly as it happens in the context of the PT algorithm [14].
Moreover, we show that the same holds for Bstability, meaning that from the
refinement point of view the two notions are perfectly equivalent.

Proposition 8. Given the map f : C −→ C

•
{

Π ∈ Eq(C)
∣
∣Π is f -Fstable

}
∈ lco(Eq(C))3

•
{

Π ∈ Eq(C)
∣
∣Π is f -Bstable

}
∈ lco(Eq(C)).

3 The domain lco(D) denotes the set of all the lower closure operators on D. An lco
η is a monotone, reductive, i.e. ∀x. x ≥ η(x), and idempotent function on D. An lco
is closed by concrete least upper bound and it contains the concrete bottom.
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This result is immediate from the well known results on abstract domains [11],
and it means exactly that, given a partition R there always exists a unique
coarsest Fstable [Bstable] partition among the partitions more concrete than R.

On the other hand, in order to guarantee the existence of the best approxi-
mation by simplifying the partition, we have to prove that Fstable and Bstable
partitions are closed under greatest lower bound. Namely, given a partition R, we
have to prove that there always exists a unique most precise Fstable [Bstable]
partition, coarser than R. In this case, while the best Bstable simplification al-
ways exists, the same does not hold for Fstability.

Proposition 9. Given the map f : C −→ C

•
{

Π ∈ Eq(C)
∣
∣Π is f -Fstable

}
∈ uco(Eq(C)) if f : C −→ C is both in-

jective and onto, namely if its additive lift is co-additive on ℘(C) and � is
Fstable.

•
{

Π ∈ Eq(C)
∣
∣Π is f -Bstable

}
∈ uco(Eq(C)).

This proposition tells us that the conditions that make the simplification for
Fstability exist are very restrictive. In particular, the Fstability “core” exists
only for injective functions and only when also the �, i.e., the partition where
all the elements are in the same equivalence class, is Fstable. In particular, this
last condition means that f(�) = �, being obviously f(�) ⊆ �. These two
conditions correspond exactly to the two conditions that characterize abstract
domains, i.e., uco, which always hold for Bstability. In fact an abstract domain
is an uco if it is closed under concrete greatest lower bound and if it contains the
top. It is worth noting that this last condition is implied by injectivity only if the
considered concrete domain is finite. The next example shows that, in general,
injectivity is not sufficient for guaranteeing the existence of the core.

Example 10. Consider the function f = λx. 2x defined on natural numbers N.
The function is trivially injective, but f(N) = 2N ⊂ N, namely � = N is not
Fstable. Consider now the partition R = {2N, 2N+1}, of even and odd numbers.
Then we have for instance that 2N ∩ f(2N + 1) �= ∅, since for example 6 = f(3)
is in both sets, but 2N �⊆ f(2N+1) since 4 is an even number but is not obtained
as the f image of an odd number. Clearly, the only possible simplification of R
is the � partition which is not stable, either.

On the other hand, while the condition on the top is necessary by definition of
uco, in general it is not sufficient alone in the infinite case, as we can see in the
following example.

Example 11. Consider the function f defined as follows:

2

3

6

4

5

9 27

36

16

25

1
7

8

10

11
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First of all note that f is clearly not injective (f(3) = f(6)) while f(N) = N. Con-
sider the partitions Π1 = {{1, 2}, {3, 4}, N� [1, 4]} and Π2 = {{1, 2}, {3, 5}, N�

{1, 2, 3, 5}}. They are both Fstable since f({1, 2}) = {1, 2} = f({3, 4}) and
f(N � [1, 4]) = N, and f({3, 5}) = {1, 2} and f(N � {1, 2, 3, 5}) = N. On the
other hand, their glb Π contains the blocks {1, 2} and {3} which are such that
f({3}) = {1} ∩ {1, 2} �= ∅ but {1, 2} �⊆ f({3}), hence Π is not Fstable.

5 Making Partitions Complete

In the previous section, we have seen that it is always possible to refine partitions
for making them stable, and that it is always possible to simplify partitions for
Bstability, whereas the same does not hold for Fstability. Due to the strong
requirements for the existence of the F -complete core for a given partition, in
the following we will focus only on Bstability simplifications.

5.1 Refining for Completeness: Generalised PT Algorithm

Ranzato and Tapparo [15] proved that the PT algorithm (PT-Algorithm) for
characterizing the coarsest bisimilar partition of a given one [14] wrt the pre
function of a transition system, corresponds to the forward complete shell of
the abstract domain associated to the partition. In particular, the authors prove
that the PT-Algorithm can be generalized in order to cope with the completeness
shell of any abstraction of closure operators (not only the partition abstraction),
wrt any function (not only the pre of a transition system). Our idea follows a
quite different direction of generalization than [15]. Instead of describing the
PT-Algorithm in terms of completeness, we are interested in describing com-
pleteness “by means of the PT-Algorithm” and in terms of a generalized notion
of stability.

Let us recall that, the generalized PT-Algorithm [15] (Fig. 1) is an efficient
algorithm for computing the coarsest bisimulation of a given partition. Consider
a function f and a partition P. PTSplitf (S, P) splits each unstable block B of
a partition P wrt f(S) into B ∩ f(S) and B � f(S), while PTRefinersf (P) is
the set of all the blocks in P, or obtained as union of blocks in P, which make

P : Partition

PTSplitf (S, P) :

{
Partition obtained from P by replacing
each block B ∈ P with B ∩ f(S) and B � f(S)

PTRefinersf (P)
def
=

{
S

∣
∣ P 
= PTSplitf (S,P) ∧ ∃{Bi}i ⊆ P. S =

⋃
i Bi

}

PT-Algorithmf :

⎧
⎪⎪⎨

⎪⎪⎩

while (P is not f -Fstable) do
choose S ∈ PTRefinersf (P);
P := PTSplitf (S, P);

endwhile

Fig. 1. A generalized version of the PT algorithm
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other blocks unstable. The intuition behind the described algorithm is given in
the picture (b1). Namely, if the image of a block S does not contain completely
one of the blocks X , then we split X in X �f(S) and X ∩f(S). Analogously, we
can think of deriving an algorithm for refining partitions for Bstability. The idea
is given in the picture (a1). In fact, if the image of a block S is not completely
contained in one block X , then we split S in order to isolate the elements whose
image is completely contained in X . At this point, we could derive directly an
algorithm for Bstability, but this algorithm is exactly the one given above wrt

f−1, by Prop. 6. This means that,
whenever we have to refine a partition
for f -Bstability, since we consider addi-
tive maps only, we can solve the prob-
lem for f−1-Fstability with the algo-
rithm given above.

S

X

SX

(a1) (b1)

5.2 Simplifying for Completeness: A Dualized PT Algorithm

In the previous subsection, we have seen how the algorithm known for Fstability
[14] can be used also for refining partitions for Bstability, i.e., for B-completeness.
At this point we are interested in simplifying domains for making them complete,
and therefore in simplifying partitions for making them stable.

In this case the idea is to merge blocks. Bstability requires that the image
by f of any block is completely contained in a block. Hence, as we can see in
Fig.(a2), Fig.(b2) for making stability hold we have to merge each block whose
image by f is contained in X . This informal

if f(S) �⊆ X , we merge together all
the blocks which have some elements in
common with f(S), forcing f(S) to be
contained in a block of the new parti-
tion so far obtained. On the other hand,
Fstability requires that the inverse im-
age by f of any block is obtained as
union of blocks. Hence, as we can see in

S

X
S

X

(a2) (b2)

description is sufficient for noting that the simplification for Fstability is not so
straightforward. Indeed, if there exists one element in X which is not image by
f of any other element, then there is no way of inducing Fstability by merging
blocks. This intuition is exactly a consequence of the conditions required in
Prop. 94. On the other hand, the best approximation of a given partition towards
Bstability always exists. Note that, in this way we solve a Bstability problem
on f , nevertheless, by Prop. 6, we are also solving a Fstability problem, and
therefore a bisimulation problem for the inverse map f−1.
4 Note that it is not possible to transform F problems in B problems unless the

hypotheses of Prop. 7 hold, but this corresponds to the existence of F simplification.
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At this point, the idea is to formalize in an algorithm the intuition given before.
In this way, we can generate an algorithm corresponding to the PT-Algorithm
where PTRefinersf (P) and PTSplitf (S, P) are respectively substituted by the fol-
lowing functions: Let P be a partition and B ∈ P

PTSimplifiersBf (S) def=
{

X
∣
∣X ∩ f(S) �= ∅

}

PTMergeBf (S, P) :

⎧
⎨

⎩

Partition obtained from P by replacing
all the blocks X ∈ PTSimplifiersBf (S) with
⋃
PTSimplifiersBf (S)

PTSimplifiers identifies all the elements that break stability, i.e., those ele-
ments intersecting f(S), for any S ∈ P, and PTMerge substitutes all these blocks
with their union. Exactly as the PT-Algorithm [14] does, this algorithm ex-
ploits several properties of the PTmerge operation and of the Bstability notion.
In particular, we can note that the effect of the simplification step is to replace
a partition, not Bstable wrt a block S, by a simplified partition Bstable wrt S.
Since Bstability is inherited by simplification, a given block S can be a simplifier
only once. This observation leads us to the following important result.

Theorem 12. The simplification algorithm is correct and terminating.

In the following, we have an example of a partition (thin circles) not bisimilar
to the underlying system. The dashed lines form an abstract trace which does
not correspond to any concrete trace, i.e., a spurious counterexample. Then, on
the left the thick line denotes the most precise refinement, of the given partition,
bisimilar to the concrete underlying system, on the right the thick lines denote
the coarsest simplification.

Split Merge

The algorithm given above has the same complexity of the naive refinement
one, i.e., the PT-Algorithm. Even if this simplifying algorithm seems quite naive,
we think that it can be made faster and that an efficient version would be surely
interesting in particular for using it for implementations in the contexts described
in the following section. Moreover, it could be interesting also to combine this
work with the Ranzato and Tapparo work in order to dualize completely their
generalized algorithm [15].

6 A Discussion: Bstability in SW Security

In this paper, we analyze the problem of making partitions complete, namely
stable. In order to characterize completely the framework for completeness, we
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introduce a new notion of stability, corresponding to B-completeness. Moreover,
in order to cope with both the possible ways of transforming partitions (shell and
core), we characterize a new algorithm for simplifying partitions for Bstability.
In the following sections, we provide two examples of Bstability problems. These
examples are not real applications, but aim to give an idea of two computer
science fields where the results we provided can afford new points of view leading
to the realization of new links, between also well-known fields, which deserves
further research.

6.1 Transforming Partitions for Bstability: Non-Interference

Non-interference in language-based security (NI) corresponds to requiring that
secret inputs have not to affect public outputs, otherwise it is possible that some
secret information is released. Abstract non-interference (ANI) is a weakened
NI notion parametric on the public observation [8]. In this model, data are
distinguished in public (VL) and private (VH), and the attacker is modelled by
two abstractions, the observation of the public input η and the observation of the
public output ρ. Then, a program P satisfies ANI if: ∀l1, l2V

L, h1, h2 ∈ V
H.η(l1) =

η(l2) ⇒ ρ(�P �(h1, l1)L) = ρ(�P �(h2, l2)L). Namely, whenever the attacker can
observe η in input and ρ in output, no change of the private input can interfere
with the observation of the public output.

The general notion of ANI, modelling input and output observations as ab-
stract domains, allows us not only to model attackers depending on what they
are supposed to observe, but provide a framework where, given a program se-
mantics, it is possible to characterize which is the most concrete public output
observation unable to disclose secret information.

This characterization is made by means of a predicate Secr whose intuition
is the following (see [8] for details). If the attacker can observe in output a
set X of values (which means that it cannot distinguish values inside X), then
the attacker is harmless if X does not allow the attacker to discern values that
should not be distinguished for guaranteeing ANI, namely values due to different
private inputs. Hence, ANI is satisfied by P if, whenever we need to require,
for instance, �P �(2, 3)L = �P �(5, 3)L, then if �P �(2, 3)L ∈ X , it also must be
�P �(5, 3)L ∈ X and vice versa, otherwise ANI is violated. Therefore, we define
Υ (η(l)) def= �P �(VH, η(l))L, which, for each l ∈ V

L, consists in all the values that
must not be distinguished by an attacker observing η in input. At this point
we can say that X satisfies Secr if it does not “break” any of these Υ (η(l)),
i.e., ∀l ∈ V

l.X ∩ Υ (η(l)) �= ∅ ⇒ Υ (η(l)) ⊆ X . From this last observation it
is clear that the predicate Secr can be intuitively characterized as a Bstability
problem. Finally, the most concrete harmless attacker corresponds to the domain
obtained by collecting all the sets of values satisfying Secr [8], and together with
the considerations above we obtain the following result.

Proposition 13. The domain
{

X ∈ ℘(VL)
∣
∣X is Bstable wrt the function Υ

}

characterizes a possible abstraction of the most concrete harmless attacker. If P
is deterministic, than this domain precisely characterizes it.
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In this way, the problem of finding the most powerful harmless attacker can
be approximated as a problem of simplifying partitions for getting Bstability.
We would like to underline that this approximation of the strongest harmless
attacker by means of Bstability becomes important in our task of implement-
ing the certification of program security, since it allows us to use the PTMerge
algorithm instead of the theoretical completeness framework.

For instance, consider the program P
def= while h do l := l ∗ 2; h := 0; endw.

The maximal harmless observer, obtained as the collection of all the sets X such
that Secr(X) holds, is the one unable to distinguish values differing only in the
exponent of the factor 2, i.e., 2 ∗ 3 = 6 ≡ 24 = 23 ∗ 3 [8].

This relation between ANI and stability is even stronger if, whenever we model
the attacker by means of equivalence relations, we consider the more general case
where there is no distinction between private and public data [12]. In this case
we can rewrite ANI as ∀x, y ∈ V. y R x ⇒ f(y) S f(x). Namely, if the attacker
observes R in input, then it cannot observe anything more than S in the output
of f [17]. In [12], the authors provide a characterization of this notion of ANI as
a B-completeness problem, and hence as a Bstability problem.

Proposition 14. A pair 〈R, S〉 of equivalence relations make f secure with re-
spect to equivalence relation based ANI, iff S is f -Bstable wrt R.

In particular, the operation of modifying the input observation by fixing the
output one [12] corresponds to PTSplit, whereas, the operation of fixing the
input by transforming the output observation [12] corresponds to PTMerge.

6.2 A Bstability Example: Opacity

Opacity is a well known notion in the context of software security for program
obfuscation. In particular, it is usually introduced as a property of predicates
whose value is known at “obfuscation time”, i.e., a priori to the program trans-
formation, but it is “difficult” for an observer to distinguish its real value [4].
It is used for making more difficult the understanding of the control structure
of a program, and hence reverse engineering on the program itself. This kind of
predicates are usually considered from a very practical point of view, and often
they are derived “ad hoc” for a particular problem. The notion of opacity has
been treated from a more theoretical point of view by Bryans et al. [2] in order
to cope with transition systems.

Definition 15 (Opaque predicate [2]). A predicate φ over a trace semantics
of a transition system is opaque wrt the observation function obs if, for every
execution t1 ∈ φ there is an execution t2 /∈ φ such that obs(t1) = obs(t2).

This notion tells us that a predicate is opaque for an observer if the observer
cannot distinguish when the predicate holds and when it doesn’t. Hence, if we
model a predicate as the set of all the computations satisfying the predicate, then
it is a partition splitting the domain in two blocks: the set of all the computations
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satisfying the predicate and those which don’t satisfy the predicate. On the other
hand, the observation is a function mapping a concrete computation t in the set
of those computations that the observer is not able to distinguish from t. In this
context we can rewrite the opacity above in the following way.

Proposition 16. Opacity can be rewritten as ∀t. obs(t) ∩ φ �= ∅ ∧ obs(t) �⊆ φ,
and hence it corresponds to a lack of obs-Bstability/B-completeness.

Dalla Preda et al. [7] characterized the opacity of a particular set of opaque
predicates as a lack of completeness, i.e., only attackers whose observation is
complete wrt the predicate are able to break the opacity of the predicate. By
using the formalization above we can say that this relation between complete-
ness and opacity always holds. In particular, opacity is a lack of Bstability, and
hence we can exploit the stability framework for analyzing if and how we can
transform the predicate for making it opaque wrt the given observation. This
formalization of opacity, that we will call abstract opacity is, indeed, coherent
with the informal definition [4] corresponding to the standard notion of opacity,
that we will call (concrete) opacity, used in practice. Let us explain this corre-
spondence by means of an example. Consider, for instance, the opaque predicate
3|(x3 − x) (which is always true with x ∈ Z) and the observation (modelled
as an abstract domain) α = {Z, 3Z, Z � 3Z, ∅}. In this case we don’t observe
computations but evaluations of the predicate. A possible observation of the
predicate on the domain α is φ# = F#(α(x)) ⊆ 3Z, where F#(3Z) = 3Z and
F#(Z � 3Z) = Z is an abstraction of f obtained as the composition of the
best correct approximations in α of the functions composing f (see [7] for de-
tails). Hence, if this abstract predicate satisfies abstract opacity, then the real
predicate satisfies (concrete) opacity. In [7] the authors prove that the obser-
vation is incomplete for the abstract predicate which therefore is opaque for
the observation. We show here that the partition induced by the abstract pred-
icate is indeed not Bstable. Note that the partition induced by the predicate
is

{
x

∣
∣F#(α(x)) ⊆ 3Z

}
= 3Z and

{
x

∣
∣F#(α(x)) �⊆ 3Z

}
= Z � 3Z, while the

observation of the function involved in the predicate is obs = F# ◦ α, hence for
example obs(2) = F#(Z � 3Z) = Z ∩ φ �= ∅ and obs(2) �⊆ φ. Clearly, depending
on how we model the ability of the attacker of analyzing the concrete predicate,
we characterize its observation obs, characterizing the abstract opacity of the
predicate.

This characterization of opacity is important because it allows to stress the
strong connection between opacity and the lack of completeness. In this way
completeness can be exploited for certifying the resilience of opaque predicate to
reverse engineering, whereas opacity can provide new insights and expectations
in the seeking for new domain transformers increasing the degree of incomplete-
ness of domains.
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Abstract. Finding useful sharing information between instances in obj-
ect-oriented programs has recently been the focus of much research.
The applications of such static analysis are multiple: by knowing which
variables definitely do not share in memory we can apply conventional
compiler optimizations, find coarse-grained parallelism opportunities, or,
more importantly, verify certain correctness aspects of programs even
in the absence of annotations. In this paper we introduce a framework
for deriving precise sharing information based on abstract interpreta-
tion for a Java-like language. Our analysis achieves precision in various
ways, including supporting multivariance, which allows separating differ-
ent contexts. We propose a combined Set Sharing + Nullity + Classes
domain which captures which instances do not share and which ones are
definitively null, and which uses the classes to refine the static informa-
tion when inheritance is present. The use of a set sharing abstraction
allows a more precise representation of the existing sharings and is cru-
cial in achieving precision during interprocedural analysis. Carrying the
domains in a combined way facilitates the interaction among them in the
presence of multivariance in the analysis. We show through examples and
experimentally that both the set sharing part of the domain as well as
the combined domain provide more accurate information than previous
work based on pair sharing domains, at reasonable cost.

1 Introduction

The technique of Abstract Interpretation [8] has allowed the development of so-
phisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been
traditionally applied to high- and low-level optimizations during program compi-
lation, including program transformations. More recently, promising applications
of such semantic approximations have been demonstrated in the more general
context of program development, such as verification and static debugging.

Sharing analysis [14,20,26] aims to detect which variables do not share in
memory, i.e., do not point (transitively) to the same location. It can be viewed
as an abstraction of the graph-based representations of memory used by certain
classes of alias analyses (see, e.g., [31,5,13,15]). Obtaining a safe (over-) approx-
imation of which instances might share allows parallelizing segments of code,

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 172–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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improving garbage collection, reordering execution, etc. Also, sharing informa-
tion can improve the precision of other analyses.

Nullity analysis is aimed at keeping track of null variables. This allows for
example verifying properties such as the absence of null-pointer exceptions at
compile time. In addition, by combining sharing and null information it is pos-
sible to obtain more precise descriptions of the state of the heap.

In type-safe, object-oriented languages class analysis [1,3,10,22], (sometimes
called type analysis) focuses on determining, in the presence of polymorphic calls,
which particular implementation of a given method will be executed at run-
time, i.e., what is the specific class of the called object in the hierarchy. Multiple
compilation optimizations benefit from having precise class descriptions: inlining,
dead code elimination, etc. In addition, class information may allow analyzing
only a subset of the classes in the hierarchy, which may result in additional
precision.

We propose a novel analysis which infers in a combined way set sharing, nul-
lity, and class information for a subset of Java that takes into account most of its
important features: inheritance, polymorphism, visibility of methods, etc. The
analysis is multivariant, based on the algorithm of [21], which allows separating
different contexts, thus increasing precision. The additional precision obtained
from context sensitivity has been shown to be important in practice in the anal-
ysis of object-oriented programs [30].

The objective of using a reduced cardinal product [9] of these three abstract
domains is to achieve a good balance between precision and performance, since
the information tracked by each component helps refine that of the others. While
in principle these three analyses could be run separately, because they interact
(we provide some examples of this), this would result in a loss of precision or
require an expensive iteration over the different analyses until an overall fix-
point is reached [6,9]. In addition note that since our analysis is multivariant,
and given the different nature of the properties being tracked, performing anal-
yses separately may result in different sets of abstract values (contexts) for each
analysis for each program point. This makes it difficult to relate which abstract
value of a given analysis corresponds to a given abstract value of another anal-
ysis at a given point. At the other end of things, we prefer for clarity and
simplicity reasons to develop directly this three-component domain and the op-
erations on it, rather than resorting to the development of a more unified domain
through (semi-)automatic (but complex) techniques [6,7]. The final objectives of
our analysis include verification, static debugging, and optimization.

The closest related work is that of [26] which develops a pair-sharing [27]
analysis for object-oriented languages and, in particular, Java. Our description
of the (set-)sharing part of our domain is in fact based on their elegant for-
malization. The fundamental difference is that we track set sharing instead of
pair sharing, which provides increased accuracy in many situations and can
be more appropriate for certain applications, such as detecting independence for
program parallelization. Also, our domain and abstract semantics track addition-
ally nullity and classes in a combined fashion which, as we have argued above, is
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prog ::= class decl∗

class decl ::= class k1 [extends k2] decl∗ meth decl∗

meth decl ::= vbty (tret|void) meth decl∗ com
vbty ::= public | private
com ::= v = expr | v.f = expr

| decl | skip
| return expr | com;com
| if v (== |! =) (null|w) com else com

decl ::= v:t
var lit ::= v | a
expr ::= null | new k | v.f | v.m(v1, . . . vn) | var lit

Fig. 1. Grammar for the language

particularly useful in the presence of multivariance. In addition, we deal directly
with a larger set of object features such as inheritance and visibility. Finally, we
have implemented our domains (as well as the pair sharing domain of [26]), in-
tegrated them in our multivariant analysis and verification framework [17], and
benchmarked the system. Our experimental results are encouraging in the sense
that they seem to support that our contributions improve the analysis precision
at reasonable cost.

In [23,24], the authors use a distinctness domain in the context of an abstract
interpretation framework that resembles our sharing domain: if two variables
point to different abstract locations, they do not share at the concrete level.
Their approach is closer to shape analysis [25] than to sharing analysis, which
can be inferred from the former. Although information retrieved in this way
is generally more precise, it is also more computationally demanding and the
abstract operations are more difficult to design. We also support some language
constructs (e.g., visibility of methods) and provide detailed experimental results,
which are not provided in their work.

Most recent work [28,18,30] has focused on context-sensitive approaches to
the points-to problem for Java. These solutions are quite scalable, but flow-
insensitive and overly conservative. Therefore, a verification tool based on the
results of those algorithms may raise spurious warnings. In our case, we are able
to express sharing information in a safe manner, as invariants that all program
executions verify at the given program point.

2 Standard Semantics

The source language used is defined as a subset of Java which includes most of its
object-oriented (inheritance, polymorphism, object creation) and specific (e.g.,
access control) features, but at the same time simplifies the syntax, and does
not deal with interfaces, concurrency, packages, and static methods or variables.
Although we support primitive types in our semantics and implementation, they
will be omitted from the paper for simplicity.
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class Element {
int value;
Element next;}

class Vector {
Element first;

public void add(Element el) {
Vector v = new Vector();
el.next = null;
v.first = el;
append(v);

}
}

public void append(Vector v) {

if (this != v) {
Element e = first;
if (e == null)

first = v.first;
else {

while (e.next != null)
e = e.next;

e.next = v.first;
}

}
}

Fig. 2. Vector example

The rules for the grammar of this language are listed in Fig. 1. The skip
statement, not present in the Java standard specification [11], has the expected
semantics. Fig. 2 shows an example program in the supported language, an
alternative implementation for the java.util.Vector class of the JDK in which
vectors are represented as linked lists. Space constraints prevent us from showing
the full code here,1 although the figure does include the relevant parts.

2.1 Basic Notation

We first introduce some notation and auxiliary functions used in the rest of the
paper. By �→ we refer to total functions; for partial ones we use →. The powerset
of a set s is P(s); P+(s) is an abbreviation for P(s) \ {∅}. The dom function
returns all the elements for which a function is defined; for the codomain we
will use rng. A substitution f [k1 �→ v1, . . . , kn, �→ vn] is equivalent to f(k1) =
v1, . . . , f(kn) = vn. We will overload the operator for lists so that f [K �→ V ]
assigns f(ki) = vi, i = 1, . . . , m, assuming |K| = |V | = m. By f |−S we denote
removing S from dom(f). Conversely, f |S restricts dom(f) to S. For tuples
(f1, . . . , fm)|S = (f1|S , . . . , fm|S). Renaming in the set s of every variable in S

by the one in the same position in T (|S| = |T |) is written as s|TS . This operator
can also be applied for renaming single variables. We denote by B the set of
Booleans.

2.2 Program State and Sharing

With M we designate the set of all method names defined in the program. For
the set of distinct identifiers (variables and fields) we use V . We assume that V
also includes the elements this (instance where the current method is executed),

1 Full source code for the example can be found in
http://www.clip.dia.fi.upm.es/∼mario

http://www.clip.dia.fi.upm.es/~mario
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and res (for the return value of the method). In the same way, K represents
the program-defined classes. We do not allow import declarations but assume
as member of K the predefined class Object.

K forms a lattice implied by a subclass relation ↓: K → P(K) such that if
t2 ∈ ↓t1 then t2 ≤K t1. The semantics of the language implies ↓Object = K.
Given def : K × M �→ B, that determines whether a particular class provides
its own implementation for a method, the Boolean function redef : K × K ×
M �→ B checks if a class k1 redefines a method existing in the ancestor k2:
redef(k1, k2, m) = true iff ∃k s.t. def(k, m), k1 ≤K k<K k2.

Static types are accessed by means of a function π : V �→ K that maps variables
to their declared types. The purpose of an environment π is twofold: it indicates
the set of variables accessible at a given program point and stores their declared
types. Additionally, we will use the auxiliary functions F (k) (which maps the
fields of k ∈ K to their declared type), and typeπ(expr), which maps expressions
to types, according to π.

The description of the memory state is based on the formalization in [26,12].
We define a frame as any element of Frπ = {φ | φ ∈ dom(π) �→ Loc ∪ {null}},
where Loc = I

+ is the set of memory locations. A frame represents the first level
of indirection and maps variable names to locations except if they are null. The
set of all objects is Obj =

{
k � φ | k ∈ K, φ ∈ FrF (k)

}
. Locations and objects

are linked together through the memory Mem = {μ | μ ∈ Loc �→ Obj}. A new
object of class k is created as new(k) = k � φ where φ(f) = null ∀f ∈ F (k).
The object pointed to by v in the frame φ and memory μ can be retrieved via
the partial function obj(φ�μ, v) = μ(φ(v)). A valid heap configuration (concrete
state φ � μ) is any element of Σπ = {(φ � μ) | φ ∈ Frπ, μ ∈ Mem}. We will
sometimes refer to a pair (φ � μ) with δ.

The set of locations Rπ(φ � μ, v) reachable from v ∈ dom(π) in the particular
state φ � μ ∈ Σπ is calculated as Rπ(φ � μ, v) = ∪

{
Ri

π(φ � μ, v)
∣
∣ i ≥ 0

}
, the

base case being R0
π(φ � μ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ �
μ, v) = ∪

{
rng(μ(l).φ))|Loc | l ∈ Ri

π(φ � μ, v)
}
. Reachability is the basis of two

fundamental concepts: sharing and nullity. Distinct variables V = {v1, . . . , vn}
share in the actual memory configuration δ if there is at least one common
location in their reachability sets, i.e., shareπ(δ, V ) is true iff ∩n

i=1Rπ(δ, vi) = ∅.
A variable v ∈ dom(π) is null in state δ if Rπ(δ, v) = ∅. Nullity is checked by
means of nilπ : Σπ×dom(π) �→ B, defined as nilπ(φ�μ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by ψπ : Σπ×dom(π) �→ K,
which associates variables with their dynamic type, based on the information
contained in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and ψπ(δ, v) =
π(v) otherwise. In a type-safe language like Java runtime types are congruent
with declared types, i.e., ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π), ∀δ ∈ Σπ. Therefore,
a correct approximation of ψπ can always be derived from π. Note that at the
same program point we might have different run-time type states ψ1

π and ψ2
π

depending on the particular program path executed, but the static type state is
unique.
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Denotational (compositional) semantics of sequential Java has been the sub-
ject of previous work (e.g., [2]). In our case we define a simpler version of
that semantics for the subset defined in Sect. 2, described as transformations
in the frame-memory state. The descriptions are similar to [26]. Expression
functions EI

π�� : expr �→ (Σπ �→ Σπ′) define the meaning of Java expres-
sions, augmenting the actual scope π′ = π[res �→ typeπ(exp)] with the tem-
poral variable res. Command functions CI

π�� : com �→ (Σπ �→ Σπ) do the
same for commands; semantics of a method m defined in class k is returned
by the function I(k.m) : Σinput(k.m) → Σoutput(k.m). The definition of the re-
spective environments, given a declaration in class k as tret m(this : k, p1 :
t1 . . . pn : tn) com, is input(k.m) = {this �→ k, p1 �→ t1, . . . , pn �→ tn} and
output(k.m) = input(k.m)[out �→ tret].

Example 1. Assume that, in Figure 2, after entering in the method add of the
class Vector we have an initial state (φ0 � μ0) s.t. loc1 = φ0(el) = null. After
executing Vector v = new Vector() the state is (φ1 � μ1), with φ1(v) = loc2,
and μ1(loc2).φ(first) = null. The field assignment el.next = null results in
(φ2 � μ2), verifying μ2(loc1).φ(next) = null. In the third line, v.first = el
links loc1 and loc2 since now μ3(loc2).φ(first) = loc1. Now v and el share,
since their reachability sets intersect at least in {loc1}. Finally, assume that
append attaches v to the end of the current instance this resulting in a memory
layout (φ4 � μ4). Given loc3 = obj((φ4 � μ4)(this)).φ(first), it should hold that
μ4(. . . μ4(loc3).φ(next) . . .).φ(next) = loc2. Now this shares with v and therefore
with el, because loc1 is reachable from loc2.

3 Abstract Semantics

An abstract state σ ∈ Dπ in an environment π approximates the sharing, nullity,
and run-time type characteristics (as described in Sect. 2.2) of set of concrete
states in Σπ. Every abstract state combines three abstractions: a sharing set
sh ∈ DSπ, a nullity set nl ∈ DN π, and a type member τ ∈ DT π, i.e., Dπ =
DSπ × DN π × DT π.

The sharing abstract domain DSπ ={{v1, . . . , vn} | {v1, . . . , vn} ∈ P(dom(π)),
∩n

i=1Cπ(vi) = ∅} is constrained by a class reachability function which retrieves
those classes that are reachable from a particular variable: Cπ(v) = ∪{Ci

π(v) | i ≥
0}, given C0

π(v) =↓π(v) and Ci+1
π (v) = ∪{rng(F (k)) |k ∈ Ci

π(v)}. By using class
reachability, we avoid including in the sharing domain sets of variables which
cannot share in practice because of the language semantics. The partial order
≤DSπ

is set inclusion.
We define several operators over sharing sets, standard in the sharing litera-

ture [14,19]. The binary union � : DSπ × DSπ �→ DSπ, calculated as S1 �
S2 = {Sh1 ∪ Sh2 | Sh1 ∈ S1, Sh2 ∈ S2} and the closure under union ∗ : DSπ �→
DSπ operators, defined as S∗ = {∪SSh | SSh ∈ P+(S)}; we later filter their re-
sults using class reachability. The relevant sharing with respect to v is shv =
{s ∈ sh | v ∈ s}, which we overloaded for sets. Similarly, sh−v ={s ∈ sh | v /∈ s}.
The projection sh|V is equivalent to {S | S = S′ ∩ V, S′ ∈ sh}.
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SEI
π�null�(sh, nl, τ ) = (sh, nl′, τ ′)
nl′ = nl[res �→ null]
τ ′ = τ [res �→ ↓object]

SEI
π�new k�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = sh ∪ {{res}}
nl′ = nl[res �→ nnull]
τ ′ = τ [res �→ {κ}]

SEI
π�v�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = ({{res}} � shv) ∪ sh−v

nl′ = nl[res �→ nl(v)]
τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(sh, nl, τ ) =

{
⊥ if nl(v) = null
(sh′, nl′, τ ′) otherwise

sh′ = sh−v ∪
⋃

{P+(s|−v ∪ {res}) � {{v}} | s ∈ shv}
nl′ = nl[res �→ unk, v �→ nnull]
τ ′ = τ [res �→↓ F (π(v)(f))]

SEI
π�v.m(v1, . . . , vn)�(sh, nl, τ ) =

{
⊥ if nl(v) = null
σ′ otherwise

σ′ = SEI
π�call(v, m(v1, . . . , vn))�(sh, nl′, τ )

nl′ = nl[v �→ nnull]

Fig. 3. Abstract semantics for the expressions

The nullity domain is DN π = P(dom(π) �→ NV), where NV = {null, nnull,
unk}. The order ≤NV of the nullity values (null ≤NV unk, nnull ≤NV unk)
induces a partial order in DN π s.t. nl1 ≤DNπ

nl2 if nl1(v) ≤NV nl2(v) ∀v ∈
dom(π). Finally, the domain of types maps variables to sets of types congruent
with π: DT π= {(v, {t1, . . . , tn}) ∈ dom(π) �→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpretation as defined in [8]
in terms of Galois insertions. The concretization function γπ : Dπ �→ P(Σπ) is
γπ(sh, nl, τ) = {δ ∈ Σπ | ∀V ⊆ dom(π), shareπ(δ, V ) and �W, V ⊂ W ⊆ dom(π)
s.t. shareπ(δ, W ) ⇒ V ∈ sh, and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) =

∅ if nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) , ∀v ∈ dom(π)}.
The abstract semantics of expressions and commands is listed in Figs. 3 and

4. They correctly approximate the standard semantics, as proved in [16]. As
their concrete counterparts, they take an expression or command and map an
input state σ ∈ Dπ to an output state σ′ ∈ Dσ

π′ where π = π
′
in commands and

π
′
= π[res �→ typeπ(expr)] in expression expr. The semantics of a method call

is explained in Sect. 3.1. The use of set sharing (rather than pair sharing) in the
semantics prevents possible losses of precision, as shown in Example 2.

Example 2. In the add method (Fig. 2), assume that σ = ({{this, el} , {v}},
{this/nnull, el/nnull, v/nnull}) right before evaluating el in the third line (we
skip type information for simplicity). The expression el binds to res the location
of el, i.e., forces el and res to share. Since nl(el) = null the new sharing is sh′ =
({{res}}�shel)∪sh−el = ({{res}}�{{this, el}})∪{{v}} = {{res, this, el} , {v}}.
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SCI
π�v=expr�σ = ((sh′|−v)|vres, nl′|vres, τ

′′ |−res)

τ
′′

= τ ′[v �→ (τ ′(v) ∩ τ ′(res))]
(sh′, nl′, τ ′) = SEI

π�expr�σ

SCI
π�v.f=expr�σ = (sh

′′
, nl

′′
, τ ′)|−res

sh
′′

=

⎧
⎨

⎩

⊥ if nl′(v) = null
sh′ if nl′(res) = null
shy ∪ sh′

−{v,res} otherwise

nl
′′

= nl′[v �→ nnull]
shy = (

⋃
{P(s|−v ∪ {res}) � {{v}} | s ∈ sh′

v} ∪⋃
{P(s|−res ∪ {v}) � {{res}} | s ∈ sh′

res})∗

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π� if v==null com1

else com2

�σ =

⎧
⎨

⎩

σ′
1 if nl(v) = null

σ′
2 if nl(v) = nnull

σ1 
 σ2 if nl(v) = unk

σ′
i = SCI

π�comi�σ
σ1 = SCI

π�com1�(sh|−v, nl[v �→ null], τ [v �→↓π(v)])
σ2 = SCI

π�com2�(sh, nl[v �→ nnull], τ )

SCI
π� if v==w com1

else com2

�(sh, nl, τ ) =

⎧
⎨

⎩

σ′
1 if nl(v) = nl(w) = null

σ′
2 if sh|{v,w} = ∅

σ′
1 
 σ′

2 otherwise
σ′

i = SCI
π�comi�(sh, nl, τ )

SCI
π�com1;com2�σ = SCI

π�com2�(SCI
π�com1�σ)

Fig. 4. Abstract semantics for the commands

In the case of pair-sharing, the transfer function [26] for the same initial state
sh = {{this, el} , {v, v}} returns sh′

p = {{res, el}, {res, this} , {this, el} , {v, v}},
which translated to set sharing results in sh′′ = {{res, el}, {res, this} , {res, this,
el}, {this, el} , {v}}, a less precise representation (in terms of ≤DSπ) than sh′.

Example 3. Our multivariant analysis keeps two different call contexts for the
append method in the Vector class (Fig. 2). Their different sharing informa-
tion shows how sharing can improve nullity results. The first context corre-
sponds to external calls (invocation from other classes), because of the public
visibility of the method: σ1 = ({{this} , {this, v} , {v}}, {this/nnull, v/unk} ,
{this/ {vector} , v/ {vector}}). The second corresponds to an internal (within
the class) call, for which the analysis infers that this and v do not share:
σ2 = ({{this} , {v}}, {this/nnull, v/unk} , {this/ {vector} , v/ {vector}}). In-
side append, we avoid creating a circular list by checking that this = v. Only
then is the last element of this linked to the first one of v. We use com to rep-
resent the series of commands Element e = first; if (e==null)...else..
and bdy for the whole body of the method. Independently of whether the in-
put state is σ1 or σ2 our analysis infers that SCI

π�com�σ1 = SCI
π�com�σ2 =

({{this, v}}, {this/nnull, v/nnull}, {this/ {vector} , v/ {vector}}) = σ3. How-
ever, the more precise sharing information in σ2 results in a more precise analysis



180 M. Méndez-Lojo and M.V. Hermenegildo

Algorithm 1. Extend operation
input : state before the call σ, result of analyzing the call σλ

and actual parameters A
output: resulting state σf

if σλ = ⊥ then
σf = ⊥

else
let σ = (sh, nl, τ ), and σλ = (shλ, nlλ, τλ), and AR = A ∪ {res}

star = (shA ∪ {{res}})∗

shext = {s | s ∈ star, s|AR ∈ shλ}
shf = shext ∪ sh−A

nlf = nl[res �→ nlλ(res)]
τf = τ [res �→ τλ(res)]
σf = (shf , nlf , τf )

end

of bdy, because of the guard (this!=v). In the case of the external calls,
SCI

π�bdy�σ1= SCI
π�com�σ1 � SCI

π�skip�σ1= σ1 �σ3 = σ1. When the entry state
is σ2, the semantics at the same program point is SCI

π�bdy�σ2= SCI
π�com�σ2

= σ3 < σ1. So while the internal call requires v = null to terminate, we cannot
infer the final nullity of that parameter in a public invocation, which might finish
even if v is null.

3.1 Method Calls

The semantics of the expression call(v, m(v1, . . . , vn)) in state σ = (sh, nl, τ) is
calculated by implementing the top-down methodology described in [21]. We will
assume that the formal parameters follow the naming convention F in all the im-
plementations of the method; let A = {v, v1, . . . , vn} and F = dom(input(k.m))
be ordered lists. We first calculate the projection σp = σ|A and an entry state
σy = σp|FA. The abstract execution of the call takes place only in the set of classes
K = τ(v), resulting in an exit state σx =

⊔
{SCI

π�k′.m�σy |k′ = lookup(k, m), k ∈
K}, where lookup returns the body of k’s implementation of m, which can be
defined in k or inherited from one of its ancestors. The abstract execution of
the method in a subset K ⊆ ↓π(v) increases analysis precision and is the ul-
timate purpose of tracking run-time types in our abstraction. We now remove
the local variables σb = σx|F∪{out} and rename back to the scope of the caller:
σλ = σb|A∪{res}

F∪{out}; the final state σf is calculated as σf = extend(σ, σλ, A). The
extend : Dπ × Dπ × P(dom(π)) �→ Dπ function is described in Algorithm 1.

In Java references to objects are passed by value in a method call. Therefore,
they cannot be modified. However, the call might introduce new sharing between
actual parameters through assignments to their fields, given that the formal
parameters they correspond to have not been reassigned. We keep the original
information by copying all the formal parameters at the beginning of each call,
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as suggested in [23]. Those copies cannot be modified during the execution of
the call, so a meaningful correspondence can be established between A and F .

We can do better by realizing that analysis might refine the information about
the actual parameters within a method and propagating the new values discov-
ered back to σf . For example, in a method foo(Vector v){if v!=null skip
else throw null}, it is clear that we can only finish normally if nlx(v) = nnull,
but in the actual semantics we do not change the nullity value for the corre-
sponding argument in the call, which can only be more imprecise. Note that the
example is different from foo(Vector v){v = new Vector}, which also finishes
with nlx(v) = nnull. The distinction over whether new attributes are preserved
or not relies on keeping track of those variables which have been assigned inside
the method, and then applying the propagation only for the unset variables.

Example 4. Assume an extra snippet of code in the Vector class of the form if
(v2!=null) v1.append(v2) else com, which is analyzed in state σ = ({{v1} ,
{v2}}, {v1/nnull, v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nul-
lity information, it is possible to identify the block com as dead code. In con-
trast, sharing-only analyses can only tell if a variable is definitely null, but never
if it is definitely non-null. The call is analyzed as follows. Let A = {v1, v2}
and F = {this, v}, then σp = σ|A = σ and the entry state σy is σ|FA =
({{this} , {v}} , {this/nnull, v/nnull} , {this/ {vector} , v/ {vector}}). The only
class where append can be executed is Vector and results (see Example 3) in an
exit state for the formal parameters and the return variable σb = ({{this, v}} ,
{this/nnull, v/nnull, out/null}, {this/ {vector} , v/ {vector} , out/ {void}}),
which is further renamed to the scope of the caller obtaining σλ = ({{v1, v2}} ,
{v1/ nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} , res/ {void}}).
Since the method returns a void type we can treat res as a primitive (null)
variable so σf = extend(σ, σλ, {v1, v2}) = ({{v1, v2}} , {v1/nnull, v2/nnull, res/
null}, {v1/ {vector} , v2/ {vector} , res/{void}}).

Example 5. The extend operation used during interprocedural analysis is a point
where there can be significant loss of precision and where set sharing shows its
strengths. For simplicity, we will describe the example only for the sharing com-
ponent; nullity and type information updates are trivial. Assume a scenario
where a call to append(v1,v2) in sharing state sh = {{v0, v1} , {v1} , {v2}} re-
sults in shλ = {{v1, v2}}. Let A and AR be the sets {v1, v2} and {v1, v2, res}
respectively. The extend operation proceeds as follows: first we calculate star
as (shA ∪ {{res}})∗ = (sh ∪ {{res}})∗ = ({{v0, v1} , {v1} , {v2} , {res}})∗ =
{{v0, v1} , {v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v1} , {v1, v2} , {v1, v2, res} ,
{v1, res} , {v2} , {v2, res} , {res}}, from which we delete those elements whose
projection over AR is not included in shλ, obtaining shext = {{v0, v1, v2} ,
{v1, v2}}. The resulting sharing component is the union of that shext with
sh−A = ∅, so shf1 = shext = {{v0, v1, v2} , {v1, v2}}.

When the same sh and shλ are represented in their pair sharing versions
shp = {{v0, v1} , {vo, v0} , {v1, v1} , {v2, v2}} and shp

λ = {{v1, v2} , {v1, v1} , {v2,
v2}}, the extend operation in [26] introduces spurious sharings in shf because of
the lower precision of the pair-sharing representation. In this case, shp

f2 = (sh ∪
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shp
λ)∗A = {{v0, v1} , {v0, v2} , {v1, v2} , {v0, v0} , {v1, v1} , {v2, v1}}. This informa-

tion, expressed in terms of set sharing, results in shf2 = {{v0, v1} , {v0, v2} , {v0,
v1, v2}, {v1, v2} , {v0} , {v1} , {v2}}, which is much less precise that shf1.

4 Experimental Results

In our analyzer the abstract semantics presented in the previous section is evalu-
ated by a highly optimized fixpoint algorithm, based on that of [21]. The algorithm
traverses the program dependency graph, dynamically computing the strongly-
connected components and keeping detailed dependencies on which parts of the
graph need to be recomputed when some abstract value changes during the anal-
ysis of iterative code (loops and recursions). This reduces the number of steps and
iterations required to reach the fixpoint, which is specially important since the al-
gorithm implements multivariance, i.e., it keeps different abstract values at each
program point for every calling context, and it computes (a superset of) all the
calling contexts that occur in the program. The dependencies kept also allow re-
lating these values along execution paths (this is particularly useful for example
during error diagnosis or for program specialization).

We now provide some precision and cost results obtained from the imple-
mentation in the framework described in [17] of our set-sharing, nullity, and
class (SSNlTau) analysis. In order to be able to provide a comparison with the
closest previous work, we also implemented the pair sharing (PS) analysis pro-
posed in [26]. We have extended the operations described in [26], enabling them
to handle some additional cases required by our benchmark programs such as
primitive variables, visibility of methods, etc. Also, to allow direct comparison,
we implemented a version of our SSNlTau analysis, which is referred to simply
as SS, that tracks set sharing using only declared type information and does not
utilize the (non-)nullity component. In order to study the influence of tracking
run-time types we have implemented a version of our analysis with set sharing
and (non-)nullity, but again using only the static types, which we will refer to
as SSNl. In these versions without dynamic type inference only declared types
can affect τ and thus the dynamic typing information that can be propagated
from initializations, assignments, or correspondence between arguments and for-
mal parameters on method calls is not used. Note however that the version that
includes tracking of dynamic typing can of course only improve analysis results
in the presence of polymorphism in the program: the results should be identical
(except perhaps for the analysis time) in the rest of the cases. The polymorphic
programs are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous literature on either
abstract interpretation for Java or points-to analysis [26,24,23,29]. We added
two different versions of the Vector example of Fig. 2. Our experimental results
are summarized in Tables 5, 6, and 7.

The first column (#tp) in Tables 5 and 6 shows the total number of program
points (commands or expressions) for each program. Column #rp then pro-
vides, for each analysis, the total number of reachable program points, i.e., the
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PS SS
#tp #rp #up #σ t #rp #up #σ t %Δt

dyndisp (*) 71 68 3 114 30 68 3 114 29 -2
clone 41 38 3 42 52 38 3 50 81 55
dfs 102 98 4 103 68 98 4 108 68 0
passau (*) 167 164 3 296 97 164 3 304 120 23
qsort 185 142 43 182 125 142 43 204 165 32
integerqsort 191 148 43 159 110 148 43 197 122 10
pollet01 (*) 154 126 28 276 196 126 28 423 256 30
zipvector (*) 272 269 3 513 388 269 3 712 1029 164
cleanness (*) 314 277 37 360 233 277 37 385 504 116

overall 1497 1330 167 2045 1299 1330 167 2497 2374 82.75

Fig. 5. Analysis times, number of program points, and number of abstract states

SSNl SSNlTau
#tp #rp #up #σ t %Δt #rp #up #σ t %Δt

dyndisp (*) 71 61 10 103 53 77 61 10 77 20 -33
clone 41 31 10 34 100 92 31 10 34 90 74
dfs 102 91 11 91 129 89 91 11 91 181 166
passau (*) 167 157 10 288 117 18 157 10 270 114 17
qsort 185 142 43 196 283 125 142 43 196 275 119
integerqsort 191 148 43 202 228 107 148 43 202 356 224
pollet01 (*) 154 119 35 364 388 98 98 56 296 264 35
zipvector (*) 272 269 3 791 530 36 245 27 676 921 136
cleanness (*) 314 276 38 383 276 38 266 48 385 413 77

overall 1497 1294 203 2452 2104 61.97 1239 258 2227 2634 102.77

Fig. 6. Analysis times, number of program points, and number of abstract states

number of program points that the analysis explores, while #up represents the
(#tp − #rp) points that are not analyzed because the analysis determines that
they are unreachable. It can be observed that tracking (non-)nullity (Nl) reduces
the number of reachable program points (and increases conversely the number
of unreachable points) because certain parts of the code can be discarded as
dead code (and not analyzed) when variables are known to be non-null. Track-
ing dynamic types (Tau) also reduces the number of reachable points, but, as
expected, only for (some of) the programs that are polymorphic. This is due
to the fact that the class analysis allows considering fewer implementations of
methods, but obviously only in the presence of polymorphism.

Since our framework is multivariant and thus tracks many different contexts at
each program point, at the end of analysis there may be more than one abstract
state associated with each program point. Thus, the number of abstract states
inferred is typically larger than the number of reachable program points. Column
#σ provides the total number of these abstract states inferred by the analysis.
The level of multivariance is the ratio #σ/#rp. It can be observed that the simple
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PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

overall 20363 73.39 15439 80.24

Fig. 7. Sharing precision results

set sharing analysis (SS) creates more abstract states for the same number of
reachable points. In general, such a larger number for #σ tends to indicate more
precise results (as we will see later). On the other hand, the fact that addition
of Nl and Tau reduces the number of reachable program points interacts with
precision to obtain the final #σ value, so that while there may be an increase in
the number of abstract states because of increased precision, on the other hand
there may be a decrease because more program points are detected as dead code
by the analysis. Thus, the #σ values for SSNl and SSNlTau in some cases
actually decrease with respect to those of PS and SS.

The t column in Tables 5 and 6 provides the running times for the different
analyses, in milliseconds, on a Pentium M 1.73Ghz, 1Gb of RAM, running Fedora
Core 4.0, and averaging several runs after eliminating the best and worst values.
The %Δt columns show the percentage variation in the analysis time with respect
to the reference pair-sharing (PS) analysis, calculated as Δdom%t = 100∗(tdom−
tPS)/tPS . The more complex analyses tend to take longer times, while in any
case remaining reasonable. However, sometimes more complex analyses actually
take less time, again because the increased precision and the ensuing dead code
detection reduces the amount of program that must be analyzed.

Table 7 shows precision results in terms of sharing, concentrating on the SP
and SS domains, which allow direct comparison. A more usage-oriented way of
measuring precision would be to study the effect of the increased precision in
an application that is known to be sensitive to sharing information, such as, for
example, program parallelization [4]. On the other hand this also complicates
matters in the sense that then many other factors come into play (such as, for
example, the level of intrinsic parallelism in the benchmarks and the paralleliza-
tion algorithms) so that it is then also harder to observe the precision of the
analysis itself. Such a client-level comparison is beyond the scope of this paper,
and we concentrate here instead on measuring sharing precision directly.

Following [6], and in order to be able to compare precision directly in terms
of sharing, column #sh provides the sum over all abstract states in all reachable
program points of the cardinality of the sharing sets calculated by the analysis.
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For the case of pair sharing, we converted the pairs into their equivalent set
representation (as in [6]) for comparison. Since the results are always correct,
a smaller number of sharing sets indicates more precision (recall that � is the
power set). This is of course assuming σ is constant, which as we have seen is not
the case for all of our analyses. On the other hand, if we compare PS and SS,
we see that SS has consistently more abstract states than PS and consistently
lower numbers of sharing sets, and the trend is thus clear that it indeed brings
in more precision. The only apparent exception is pollet01 but we can see that
the number of sharing sets is similar for a significantly larger number of abstract
states.

An arguably better metric for measuring the relative precision of sharing is
the ratio %Max = 100∗ (1−#sh/(2#vo −1)) which gives #sh as a percentage of
its maximum possible value, where #vo is the total number of object variables
in all the states. The results are given in column %sh. In this metric 0% means
all abstract states are � (i.e., contain no useful information) and 100% means all
variables in all abstract states are detected not to share. Thus, larger values in
this column indicate more precision, since analysis has been able to infer smaller
sharing sets. This relative measure shows an average improvement of 7% for SS
over PS.

5 Conclusions

We have proposed an analysis based on abstract interpretation for deriving pre-
cise sharing information for a Java-like language. Our analysis is multivariant,
which allows separating different contexts, and combines Set Sharing, Nullity,
and Classes: the domain captures which instances definitely do not share or are
definitively null, and uses the classes to refine the static information when in-
heritance is present. We have implemented the analysis, as well as previously
proposed analyses based on Pair Sharing, and obtained encouraging results: for
all the examples the set sharing domains (even without combining with Nullity
or Classes) offer more precision than the pair sharing counterparts while the
increase in analysis times appears reasonable. In fact the additional precision
(also when combined with nullity and classes) brings in some cases analysis time
reductions. This seems to support that our contributions bring more precision
at reasonable cost.
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Abstract. Assertion checking is the restriction of program verification to validity
of program assertions. It encompasses safety checking, which is program verifi-
cation of safety properties, like memory safety or absence of overflows. In this pa-
per, we consider assertion checking of program parts instead of whole programs,
which we call modular assertion checking. Classically, modular assertion check-
ing is possible only if the context in which a program part is executed is known.
By default, the worst-case context must be assumed, which may impair the veri-
fication task. It usually takes user effort to detail enough the execution context for
the verification task to succeed, by providing strong enough preconditions. We
propose a method to automatically infer sufficient preconditions in the context of
modular assertion checking of imperative pointer programs. It combines abstract
interpretation, weakest precondition calculus and quantifier elimination. We in-
stantiate this method to prove memory safety for C and Java programs, under
some memory separation conditions.

1 Introduction

Modular program verification is the application of program verification to a known
subset of some unknown larger program, and the composition of such verifications.
This issue arises e.g., for the verification of libraries and third-party software compo-
nents, as well as an easy means to perform program verification on large programs by a
divide-and-conquer approach. Safety checking is the restriction of program verification
to safety properties, mostly language-bound safety properties, like non-null checking or
array bound checking for Java and C programs. Our target is modular safety checking,
which is modular program verification of safety properties. Actually, we consider in
this paper the problem of modular assertion checking, to which modular safety check-
ing reduces in many cases.

Deductive verification makes program verification possible in an essentially mod-
ular way. Indeed, deductive verification builds on annotations provided by a user at
procedure boundaries (pre- and postconditions) and loop dominators (loop invariants)
to generate verification conditions at the level of a procedure or a loop, computed as
weakest preconditions or strongest postconditions. A verification condition (VC) is a
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formula whose validity, checked by an automatic or interactive theorem prover, implies
validity of the desired property at some specific program point. The problem with this
approach is that it requires a large amount of work from the user, namely writing all the
necessary logical annotations for deductive verification to apply.

In the context of global program analyses, where the whole program is known, it is
common to use abstract interpretation techniques (or other dataflow static analyses) as
a preliminary step to build invariants at given program points. An invariant is a formula
whose validity holds whenever the execution of a program reaches the associated pro-
gram point. Abstract interpretation is much harder to apply in a modular setting [1].
Without further knowledge of the calling context of procedures, the worst-case context
must be assumed, e.g., all reference (resp. pointer) parameters may be null or aliased
in Java (resp. in C). Aliasing is particularly problematic, since non-aliasing is usually
relied upon implicitly by the programmer where program correctness depends on it, and
thus not checked against in the program.

We show in this paper that assertion checking for pointer programs can be reduced
to assertion checking for integer programs plus memory separation conditions. Our first
result (Theorem 1) is a method that solves the modular assertion checking problem for
imperative integer programs. Given some part of a program with assertions and without
knowledge of the execution context, our method infers a sufficient precondition for
these assertions to hold. Our second result (Theorem 2) shows how to reduce memory
safety for an imperative pointer program to assertion checking on an integer program,
thus building on our first result. Our third result (Theorem 3) extends applicability of
our method to the modular assertion checking problem for imperative pointer programs,
under the hypothesis that aliasing is restricted (Rule 1). Conformance to Rule 1 can be
translated into additional preconditions on memory separation. All proofs can be found
in an extended version of the paper [2].

Although we are only concerned in this paper with the generation of such sufficient
preconditions, and not with their use in a particular program verification framework, we
present the results of our preliminary experiments in verifying programs with WHY [3],
a platform for deductive verification of C and Java programs.

We start with reviewing related work in Section 2. We describe our inference method
for imperative integer programs in Section 3. We show how to lift it to pointer programs
in Section 4. We report on the results of our experiments in Section 5. We finally con-
clude and discuss ongoing work in Section 6.

2 Related Work

Array Bound Checking and Loop Invariant Inference. Historically, array bound
checking has been one of the first difficult properties about programs that people tried
to prove, the hardest part of the verification task being the automatic inference of loop
invariants. In 1978, Cousot and Halbwachs [4] applied abstract interpretation over poly-
hedrons and managed to check memory safety of an implementation of heapsort, using
manual preconditions. A year later, Suzuki and Ishihata [5] devised a method based
on weakest preconditions to check memory safety of an implementation of tree sort.
They used Fourier-Motzkin elimination at loop entrance as a heuristic to make their
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induction-iteration method converge. More recently, Xu et al. [6,7] have refined with
success the induction-iteration method for safety checking of machine code. They rely
on user-provided preconditions too. Our method directly builds upon these works.

Modular Program Verification and Precondition Inference. Bourdoncle defines ab-
stract debugging [8] as backward abstract interpretation from assertions. Along the way,
he generates loop invariants and preconditions in order to prove these assertions. He fo-
cuses on array bound checking too. His backward propagation merges the conditions to
reach the program point where the assertion is checked and the conditions to make this
assertion valid. The dual approach of propagating backward a superset of the forbidden
states is described by Rival [9]. We show in this paper problematic cases in which our
approach performs better.

Gulwani and Tiwari [10] consider the problem of assertion checking for the special
case of equalities in a restricted language with only non-deterministic branching. Using
a method based on unification, they manage to generate necessary and sufficient precon-
ditions for assertions to hold. Unfortunately, unification does not work for the relations
that arise most often in practice for safety checking, namely less-than and greater-than
relations. Our method only generates sufficient preconditions, but it applies to any kind
of assertions.

Memory Separation and Precondition Inference. The necessity for some logical
specification of pointer separation in C dates back to the C99 standard [11], with
the addition of the restrict keyword. Various authors have described annotation-based
systems to help programmers specify pointer separation [12,13]. Our treatment of
separation with a dedicated first-order predicate is inspired from these works. It is sim-
ple enough that inferring sufficient separation preconditions is possible and general-
purpose automatic theorem provers correctly handle our separation annotations. It may
come to a surprise that we do not need a deeper understanding of the heap to analyze
programs with lists, trees, or other pointer-based data structures. This is because we
only consider here safety checking, which is not so much concerned with the shape
of the heap, contrary to program termination and verification of behavioral proper-
ties. In particular, we do not relate to separation logic or shape analysis. Calcagno
et al. [14] present an analysis to infer sufficient preconditions for list manipulating
programs.

Abstract Interpretation and Deductive Verification Combined. Recent works com-
bine abstract interpretation and deductive verification. Leino and Logozzo [15] build
a real feedback loop between a theorem prover and an abstract interpretation module.
Although very promising, their method suffers from the high cost of calling the theorem
prover repeatedly and it cannot generate preconditions.

In [16], the same authors present an embedding of the abstract interpretation tech-
nique of widening inside a theorem prover. The opposite approach of performing ab-
stract interpretation on logic formulas has been presented by Tiwari and Gulwani [17].
Our method is a different way of combining abstract interpretation and deductive veri-
fication techniques (weakest precondition, quantifier elimination).
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3 Modular Assertion Checking for Integer Programs

In both Section 3 and Section 4, we define an imperative language L and we assume we
are given a program in this language with an assertion A at some program point. A can
be seen equivalently as a statement that some boolean side-effect free expression of the
language holds or as the corresponding logic formula. Our goal is to infer a sufficient
precondition P for the program such that, if P holds when the program starts executing,
assertion A holds whenever execution reaches the program point of A.

In the following, program statements make use of the C programming language oper-
ators (e.g., <= or &&), while logic statements make use of mathematical operators (e.g.,
≤ or ∧). We allow chained comparisons in our logic formulas (e.g., i = 0 < j ≤ k) with
the meaning that it is equivalent to the conjunction of the individual comparisons (here,
i = 0 ∧0 < j ∧ j ≤ k).

Our simple imperative integer language Li is a subset of C, and we borrow C syntax
and semantics (note that on the simple subset we present, such semantics are well de-
fined by the C standard). We could have made it an equivalent subset of Java instead, so
that the results presented in this paper apply equally to C and Java programs. The only
base type is int, the type of integers, so that all variables are of integer type. We make
the target program part a function that takes integer parameters and returns nothing.
For simplicity, function parameters are special local variables that are never assigned to
(which can always be obtained with a simple program transformation).

Side-effect free expressions (denoted by e) contain integer constants, variables, and
basic operations on those, like arithmetic operations and comparison operations.

e ::= 0, 1, 2, ... constant
| x, y, z, ... variable
| e + e, e - e, e * e, ... arithmetic operation
| e <= e, e == e, e > e, ... comparison operation

Statements (denoted by s) contain assignments, conditionals, branchings, loops, asser-
tions, and sequences of those.

s ::= x = e; assignment
| if (e) { s } conditional
| if (e) { s } else { s } branching
| while (e) { s } loop
| assert (e); assertion
| s s sequence

3.1 State-of-the-Art Is Not Enough

We consider a very simple program foo in this language. We apply state-of-the-art
methods to infer a precondition P sufficient to prove an assertion A. As seen from this
simplified example, we are not concerned here with program termination.
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void foo(int s, int n) {
int i = 0;
while (1) {

if (i < n) {
assert (0 <= i && i < s);

}
i = i + 1;

}
}

With a worst-case assumption for the calling context of foo, this assertion is trivially
false. Here, the worst-case assumption means that parameters s and n could be any inte-
gers in the allowed range for integers. Take for example s = 1 and n = 2 at function start.
When control reaches the assertion for the second time, i = s = 1, which violates the
assertion. A coarse precondition for function foo that is sufficient to prove the assertion
is false. We aim at finding a better sufficient precondition, that should be implied by the
calling context of foo.

Finding such a precondition is a backward propagation problem. Therefore, we
should first expose problems encountered by classical backward propagation methods,
namely weakest precondition and backward abstract interpretation. Actually, we con-
sider refinements of these techniques that have been developed in order to generate suf-
ficient loop invariants for checking assertions. These are the induction-iteration method
of Suzuki and Ishihata [5,6] and the abstract debugging method of Bourdoncle [8].

Let us start with classical weakest precondition. First of all, one should notice that
the assertion we are trying to prove is enclosed in a loop. Then, the problem is that we
cannot propagate the necessary condition to the start of the function, as this backward
propagation is stopped at loop start: Hoare-style weakest precondition imposes that the
invariant, which is true here, implies the validity of the propagated formula i < n ⇒ 0 ≤
i < s, which is not the case here. The induction-iteration method requires us to define the
formula W (0) = i < n ⇒ 0 ≤ i < s as a preliminary invariant candidate and propagate
it backward through the loop, generating formula W (1) = i + 1 < n ⇒ 0 ≤ i + 1 < s.
After a theorem prover fails to prove that W (0) ⇒W (1), it is possible to either continue
propagating backward the candidate invariant W (0)∧W (1) or to generalize the formula
W (0) ⇒ W (1) to eliminate induction variables, i.e. variables modified in the loop body.
This generalization proceeds by universally quantifying the variables to eliminate, and
then calling a quantifier elimination procedure to produce an equivalent qantifier-free
formula. Here, the formula ∀ i ∈ Z. W (0) ⇒ W (1) is false, therefore the quantifier
elimination procedure, e.g., Fourier-Motzkin as in [5,6], gives the result false. We get
an interesting result only if we consider separately each conjunct 0 ≤ i and i < s in
the original assertion. Then, generalization still produces false starting from assertion
0 ≤ i, but it now produces loop invariant candidate n ≤ s starting from assertion i < s.
This formula can then be propagated backward to give the precondition n ≤ s which is
sufficient to prove the last part of the assertion.

Induction-iteration method cannot generate a precondition for the first part of the
assertion because it lacks knowledge of what precedes the loop, as already noted by Xu
et al. [6]. To alleviate this problem, they advocate the use of preliminary forward static
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analyses. It makes it possible to prove both parts of the assertion here under the pre-
condition n ≤ s. With or without preliminary static analyses, induction-iteration suffers
from two crucial problems. First, it repeatedly calls a theorem prover to check tautolo-
gies, which is very time-consuming. Secondly, it does not take into account information
from outside of the loop, which leads to a precondition too restrictive here.

Let us now turn to backward abstract interpretation. Here, we assume our starting
point is the output of a forward abstract interpretation pass, operating on convex ab-
stract domains. Thus we assume that the invariant produced at the point of assertion is
0 ≤ i∧ i < n. Abstract debugging [8] then proceeds with backward abstract interpreta-
tion from the program point of the assertion, with initial invariant 0 ≤ i∧ i < n ∧ i < s.
It already does not look as if we can get to a sufficient precondition for the asser-
tion to hold, as n and s get symmetric roles in this formula, although they have quite
opposite responsibilities w.r.t. the assertion holding or not. If we keep working with
convex domains, the best we can get at loop beginning is the formula 0 ≤ i, which
does not improve on the forward pass. If we relax this requirement, and allow some
kind of trace partitioning based on the branching condition i < n, we get the formula
(0 ≤ i∧n ≤ i)∨ (0 ≤ i∧ i < n ∧ i < s). Any further backward propagation through the
loop body does not improve on this formula. Backward propagating this formula out
of the loop leads to the formula (i = 0 ∧n ≤ 0)∨ (i = 0 ∧0 < n ∧0 < s), which yields
precondition (n ≤ 0)∨ (0 < n ∧ 0 < s) after i has been projected out as the result of
backward propagation over i initialization. Backward propagation of forbidden states
instead of desired states, as in [9], suffers from the same problem when joining states
around the loop. Starting from forbidden states 0 ≤ i < n ∧ s ≤ i, it produces states
0 ≤ i < n−1∧ s−1 ≤ i after one iteration backward through the loop, and so on. Join-
ing all these states produces the forbidden states 0 ≤ i < n at loop entry, which result in
the overly restrictive precondition n ≤ 0.

Although the resulting precondition (n ≤ 0)∨ (0 < n ∧ 0 < s) is an interesting case
distinction (see Section 3.2), it is not sufficient to prove the assertion correct, e.g., it
does not rule out the case s = 1 and n = 2 that we mentioned above. We are going to
show that by combining induction-iteration and abstract interpretation, we get a better
precondition than the one obtained by weakest precondition and abstract interpretation
separately.

3.2 A Solution by Combining Methods

Forward Abstract Interpretation + Quantifier Elimination. In our attempt to pro-
vide a better solution to this precondition inference problem, we assume as in the back-
ward abstract interpretation attempt that we can run a forward abstract interpretation
pass that provides us with an invariant at each program point. Ideally, we would like
that the invariant at an assertion point implies the assertion correctness. In our exam-
ple, assuming convex abstract domains, the most precise invariant obtained by forward
abstract interpretation at the assertion point is 0 ≤ i < n. Therefore, we would like the
following formula to be valid (variables are implicitly universally quantified):

0 ≤ i < n ⇒ 0 ≤ i < s. (1)
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Formula (1) is trivially invalid, as a theorem prover would easily show by outputting
an assignment of variables that falsifies it, e.g., s = 1, n = 2 and i = 1. But notice all
variables do not play the same role in this formula: some variables (n and s) are in fact
parameters of function foo, which we should keep in the final precondition we seek,
while other variables (only i here) are local variables which should not appear in the
precondition. Then, we rewrite Formula (1) by quantifying over local variables:

∀ i ∈ Z. 0 ≤ i < n ⇒ 0 ≤ i < s. (2)

If the first-order logic fragment we are working in has a quantifier elimination proce-
dure, it is possible to get rid of the local variables we do not want to keep in the precon-
dition. Indeed, quantifier elimination procedures take a quantified formula and return
an equivalent formula without quantifiers (thus removing the quantified variables). In
our case, quantifier elimination over the integers in Presburger arithmetic, using e.g.,
Cooper’s method or Fourier-Motzkin elimination here (as coefficients are all ±1), re-
sults in the following formula which is equivalent to Formula (2):

n ≤ 0 ∨n ≤ s. (3)

First, Formula (3) is a valid precondition for function foo, as it only mentions pa-
rameters and constants. Furthermore, it is by construction a sufficient precondition for
assertion A to hold. Indeed, it is equivalent to Formula (2) whose validity implies that
the assertion holds. In particular, it rules out the case s = 1 and n = 2 mentioned above.

Notice that Formula (3) is stronger than the insufficient precondition (n ≤ 0)∨ (0 <
n ∧ 0 < s) obtained by abstract debugging, and weaker than the overly restrictive pre-
condition n ≤ s obtained by induction-iteration. For such a simple example, it is even
a necessary and sufficient precondition for the assertion to hold, but in general we can
only assure it is a sufficient precondition.

Same + Weakest Precondition. It is not always the case that the method we described
in the previous section constructs the desired sufficient precondition. In particular, the
invariant at the assertion point obtained by forward abstract interpretation may not be
precise enough. This happens frequently due to a merge of paths through the function
before control reaches the assertion point. Recovering this path-sensitive information
is precisely the purpose of weakest precondition. Therefore, we propose to postpone
calling the quantifier elimination procedure on inductive variables until the loop head
is reached by weakest precondition. This is similar to performing the generalization of
induction-iteration [5,6] at the very first iteration. It is not possible in their setting, as
they use the second pass through the loop body to gather information on the code after
the assertion point. In our setting, we can rely on the forward abstract interpretation
pass to compute this information.

Figure 1 describes our method in details. It consists in two phases. In a first phase,
we compute an invariant at each program point using forward abstract interpretation
(line 2). In a second phase, we consider each assertion in turn, weaken it by the com-
puted invariant and propagate it backwards in the program using a combination of weak-
est precondition (WP) and quantifier elimination (QE) (lines 4-23).
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1 let
→
a be the variables local to the function

2 perform forward abstract interpretation
3 P := true
4 for each assertion A do
5 f := A and pp := program point of A
6 while pp enclosed or preceded by a loop L do
7 let I pp be the forward invariant at pp
8 let IL be the invariant of loop L
9 let C be the looping condition of loop L
10 if pp is enclosed in L then
11 f wp := (IL ∧ C) ⇒ WPL,pp(I pp ⇒ f )
12 else
13 f wp := (IL ∧ ¬ C) ⇒ WPL,pp(I pp ⇒ f )
14 fi
15 let

→
x be the variables modified in L

16 f qe := QE(
→
x , f wp)

17 IL := IL ∧ f qe

18 f := f qe and pp := program point before loop L
19 done
20 f wp := WPbegin,pp(I pp ⇒ f )

21 f qe := QE(
→
a , f wp)

22 P := P ∧ f qe

23 done
24 return P

Fig. 1. Precondition Inference Method

During backward propagation, we consider the DAG created by the control-flow
graph whose back edges are removed. Our method works by reverse crawling the unique
path from the top of the DAG to the assertion point. Each propagation step reaches the
next closest loop dominator on this path, which can be defined either as the program
point that dominates a loop or the target of the back edge in the control flow that creates
the loop. We say that the current program point is enclosed in a loop if the first loop
dominator encountered in this reverse crawl is reached from inside the loop. Otherwise,
if the first loop dominator is reached from outside the loop, we say that the current
program point is preceded by a loop. In the last case, no loop dominator is reached. An
invariant at a loop dominator is a loop invariant.

First, we form the implication formula Ipp ⇒ f. It weakens formula f by the computed
forward invariant at pp (lines 11 and 13). Then, we compute the weakest precondition
at loop entry or loop exit starting from f at pp, that we denote WPL,pp(Ipp ⇒ f) (lines 11
and 13). We weaken this formula by the conjunction of the loop invariant and the loop
entry test C or loop exit test ¬ C, as appropriate (lines 11 and 13). In order to proceed
with the next propagation phase, we need to eliminate from fwp the variables modified
in the loop. Thus we call QE on fwp, which produces the formula fqe (line 16). This
formula is used to strengthen the loop invariant (line 17) and as a starting point for
the next propagation step (line 18). Finally, when the current program point is neither
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enclosed nor preceded by a loop, we compute the weakest precondition of the implica-
tion formula Ipp ⇒ f at function entry, that we denote fwp (line 20). Eliminating from
this formula the variables local to the function produces a sufficient precondition for-
mula fqe (line 21) that we add to the function precondition. The process repeats for all
assertions.

Applying this method to function foo computes the loop invariant and function pre-
condition n ≤ 0 ∨n ≤ s (i.e. Formula (3)).

Theorem 1. Given an imperative integer program in Li, our method produces a suffi-
cient precondition that solves the assertion checking problem for this program.

Notice that our method also gives valid loop invariants under the same assumption that
the sufficient precondition is respected. The proof proceeds by structural induction on
the control-flow graph and presents no difficulty.

Our method combines the strengths of induction-iteration and abstract debugging.
Like abstract debugging, it builds on invariants known by abstract interpretation. Like
induction-iteration, it is path-sensitive and it allows the generation of arbitrary complex
formulas, possibly with many disjunctions (that usually correspond to execution paths).

4 Modular Safety and Assertion Checking for Pointer Programs

We now extend our simple language Li into Lp, which adds support for pointers to
integers. The results presented here extend to multi-level pointers as well. Expressions
now contain dereferences. Statements contain allocations, for which we borrow the
keyword new from Java and C++, to avoid introducing the low-level memory allocation
of C. Here are the additional rules in Lp w.r.t. Li:

e ::= *e dereference
e ::= e + e, e - e pointer arithmetic

s ::= x = new int[e]; allocation

Pointer arithmetic adds or subtracts an integer expression from a pointer expression.
Allocation new int[e] returns a new uninitialized memory block of size e.

4.1 Memory Safety as Assertion Checking for Integer Programs

We show here the reduction of memory safety for pointer programs to assertion check-
ing for integer programs. This makes it possible to use the method developed in Sec-
tion 3 to solve modular memory safety for pointer programs.

A program in Lp is memory safe if all pointers that are dereferenced point inside the
bounds of a previously allocated memory block. In the simplest case, the size of the
memory block pointed-to can be statically known. E.g., it is the case for arrays in C, for
which the static type contains the array size. Then, memory safety is easily expressed as
assertions in the language of integer linear inequalities. E.g., safety of access *(arr + i)
in C, where arr is an array of size 10, reduces to validity of assertion 0 ≤ i < 10. This
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simple approach is used, e.g., in the already mentioned works [4,5,8]. In general, the
actual value for the size of an allocated block as well as the precise block pointed-to
by a pointer are only known at runtime. Therefore, the best we can do statically is to
model this size as a ghost or model integer variable associated to every pointer. This
is the approach taken by various verification tools like BOON [18], CSSV [19] and
Overlook [20]. This effectively reduces the problem of checking memory safety for
pointer programs to the problem of checking assertions for integer programs.

In practice, one has to choose both a model for pointers and a suitable represen-
tation for this model in the verification framework. E.g., a model some authors used
in past work on verification of C programs [21] defines, for each allocated pointer, a
base address, that points to the beginning of the allocated memory block, a block size,
that contains the size of the allocated block, and an integer offset, that corresponds to
the difference between the pointer and its base address. In more recent work [22], we
describe a different model for pointers better suited to inference of annotations and au-
tomatic verification. It defines a left and a right integer bounds for pointers, such that
adding an integer between these bounds to the pointer and dereferencing it is safe. This
is the model we adopted in our current work. Our representation for this pointer model
is different in the inference tool we describe in this paper and in the deductive verifi-
cation platform WHY which uses the annotations inferred to perform verification. On
the inference side, we model left and right integer bounds as meta-variables that ab-
stract interpretation transfer functions and weakest precondition take into account. On
the deductive verification side, the same model variables are treated like uninterpreted
functions, for which an appropriate axiomatization is given. These functions take two
parameters: the pointer for which they provide a bound and the current heap. The heap
is modeled by a functional array which is updated at each allocation statement. For the
moment, we consider that our inference method deals with dereferenced values like *p
by assuming these can be any integer.

Using the above mentioned model and representation for pointers, we can solve the
modular memory safety problem for programs in Lp. Associativity of pointer arithmetic
allows us to rewrite each memory access in Lp into a unique normal form *(p + e)
where p is a pointer variable and e an integer offset expression. Call offset_min_p (resp.
offset_max_p) the left (resp. right) integer bound variable associated to p. Safety of
access *(p + e) reduces to validity of assertion offset_min_p ≤ e ≤ offset_max_p.

Theorem 2. Given an imperative pointer program in Lp, our method produces a suffi-
cient precondition that solves the memory safety problem for this program.

The proof derives from our model and representation of pointers. It basically says that if
you check that every pointer dereference is in bounds, then you achieve memory safety.
Memory safety for function bar below reduces to assertion checking for a function very
similar to our running example function foo. For this function, our inference method
generates the sufficient precondition

n ≤ 0 ∨ (offset_min_p ≤ 0 ∧n ≤ offset_max_p + 1). (4)
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void bar(int* p, int n) {
int i = 0;
while (1) {

if (i < n) {
*(p + i) = 0;

}
i = i + 1;

}
}

4.2 Modular Assertion Checking for Pointer Programs

We consider now the broader problem of assertion checking for pointer programs. Say
we would like to verify the validity of assertion *p < *q. The simple solution we
adopted in Section 4.1 is not enough.

The problem of aliasing arises when applying our method to check memory safety
of programs in real languages like C or Java. Aliasing is the possibility that two distinct
names in the program refer to the same memory location. At worst, any two names
in the program may refer to the same memory location, which makes it impossible to
apply our method precisely. This problem appears readily in our toy language Lp: just
change the type of n in example bar from int to int* and change the test to i < *n.
Then, nothing prevents pointer n from being an alias of p+ i for some value of i, which
makes it possible to change the value pointed-to by n in statement *(p + i) = 0;.

Our criterion for separating pointers comes from a simple observation, related to the
fact we target the verification of source code programs written, read and maintained
by human programmers. The natural idiom we impose on the programs we analyze is
the following: if, in a function, a read to some memory location x follows a write to
some memory location with a different name y, we impose that x and y refer to different
memory locations. Similarly, two consecutive writes to memory locations with different
names x and y without an intermediate read to x should refer to different memory loca-
tions. Otherwise, the second write invalidates the first one. To make it more concrete,
compare now the programs below.

void plusminus(int* x, int* y,
int* z, int* t) {

*z = *x + *y;
*t = *x − *y;

}

void id(int* p, int* q) {
}
void opp(int* p, int* q) {

*q = − *q;
}

It is not clear to see that functions id and opp are direct specializations of function
plusminus, using specific aliasing between parameters x, y, z and t. Indeed, id can be
defined as plusminus(p,q,p,p) and opp as plusminus(p,q,q,q), whenever p and
q point to different memory locations. Other choices of aliasing lead to many more dif-
ferent functions, which is probably not the intent of the author of function plusminus.

To avoid considering all such unintended possible aliasing of the parameters when
analyzing a function in isolation, we therefore restrict our attention to the functions that
obey the following rule.
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Rule 1 (write-read-rule). Between a write to memory through pointer variable x (or
the beginning of the function if there is no such write) and a read from memory through
the same variable x (or the end of the function if there is no such read), and unless x
is redefined in-between, all other writes to memory should not write to the location
pointed-to by x.

Function plusminus follows Rule 1 if and only if variable z is not aliased to any of
the variables x, y and t. Indeed, between the beginning of the function and the last line
where x and y are read, the write to z should not modify x and y underlying values. And
before the write to z on the first line and the end of the function, the write to t should
not modify z just written value. This rules out in particular the odd specializations id
and opp that we considered above.

The immediate consequence of analyzing only programs that follow Rule 1 is that
memory locations can be treated almost like normal integer variables by our analy-
ses. Indeed, whenever value *p is read, it can only be a value obtained by previously
writing to *p (or the value at function entry), or else by redefining p, in which case
all information on *p is lost. Modifying *p by aliasing would break Rule 1. Adapting
our abstract interpretation and weakest precondition to these pseudo-variables is quite
straightforward. The main difference is that modifying p also destroys the value of *p.
Another twist is that mentioning the value of *p in an invariant computed by abstract
interpretation counts as a read of *p for Rule 1.

Theorem 3. Given an imperative pointer program in Lp that follows Rule 1, our
method produces a sufficient precondition that solves the assertion checking problem
for this program.

The proof derives from the above remark that *p cannot be modified by aliasing, and
from our adjustment of abstract interpretation and weakest precondition.

4.3 Sufficient Separation Preconditions for Pointer Programs

Ideally, we would like to be able to detect that a program does not follow Rule 1. It
is easy to see this is undecidable. Therefore, in practice, we settle for a stronger con-
dition than Rule 1. Let base pointers be pointer parameters and pointers returned by
new. Let cursor pointers be pointer values syntactically aliased to some offset from a
base pointer. First, we rewrite cursor pointers in the program as integer offsets from
base pointers. Then, we impose that pointers that are written to in the function must be
separated, so that writes cannot interfere. In function plusminus, this forbids z and t
from being aliased. We also impose that pointers that are only read from must be sepa-
rated from those that are written to, so that reads and writes cannot interfere. In function
plusminus, this forbids z from being aliased to x or y.

To express these requirements in the logic, we adopt here a simple binary predicate
separated(p,q) which expresses the separation of pointers p and q, i.e. the memory
blocks pointed to by p and q do not overlap. In particular, separated(p,p + 1) holds.
This predicate is a basic predicate in our logic, that is not defined in terms of simpler
ones. The postcondition of the allocation operation uses it to express that a newly al-
located block does not overlap with previously allocated blocks. In practice, we use
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predicates derived from the simple separated predicate, in order to express, e.g., non-
overlapping of arrays.

On function plusminus, the over-approximation of Rule 1 gives the same results as
strict conformance to Rule 1, which can be expressed as the precondition

separated(x,z) ∧ separated(y,z) ∧ separated(z, t). (5)

5 Experimental Results
Implementation Details. We have implemented the algorithm of Figure 1 for Jessie
programs. Jessie is an internal intermediate language in our platform WHY [3], that is
suitable for deductive verification and a target of translation from C and Java. We per-
form abstract interpretation on the interval, octagon and polyhedral domains from the
APRON library [23]. We chose Fourier-Motzkin as quantifier elimination for formulas
in Presburger arithmetic. After inferring preconditions, we prove assertions or memory
safety in WHY, which generates verification conditions and calls automatic provers on
them. On our running example, function foo, our implementation infers a precondition
equivalent to Formula (3):

(1 ≤ s∧n ≤ s)∨ (n ≤ 0 ∧n ≤ s)∨ (n ≤ 0 ∧ s ≤ −1). (6)

Indeed, Formula (6) is equivalent to n ≤ 0 ∨n ≤ s on integers.

Inference in Practice: Calls and Structures. We did not discuss the two main features
of structured languages which allow modular development, and thus deserve special at-
tention in modular verification: control-flow modularity through function calls and data-
flow modularity through structured types. Although not directly related to modularity,
we also support exception handling.

We support calls by extending the algorithm of Figure 1 to propagate assertion for-
mulas beyond function boundaries. When analyzing a module (e.g., a file in C or a class
in Java), we distinguish external functions, which can be called from outside the current
module, from internal functions. In the first phase of our method, the forward abstract
interpretation step, external functions are taken as root whereas internal function calls
are analyzed. In particular, recursive internal functions lead to a fixpoint computation.
In the second phase of our method, backward propagation of assertions, we begin with
assertions in leaf functions of the call-graph and continue with assertions higher in the
call-graph. For each such assertion in an internal function, the precondition inferred is
further propagated higher in the call-graph, starting from the function call sites. Cur-
rently, we do not treat recursion specially in this backward propagation.

We naturally support structures without further modification of our method. The
problem of annotating structured types with invariants given some policy to check these
invariants is an orthogonal issue [24]. In the WHY platform, the frontends for C and Java
programs both allow a user to annotate its structured types with such invariants. WHY

then generates verification conditions that take these invariants into account.

Preliminary Experiments. During our experiments, we focused on C programs, es-
pecially on string manipulating functions which account for a large number of memory
safety vulnerabilities. We successfully generated correct annotations and automatically
proved memory safety in WHY for 20 functions of the C standard string library im-
plemented in the Minix 3 operating system [25]. This is to contrast with a previous
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work on sufficient preconditions inference [22] in which we could only prove 18 of
these functions because the preconditions we could infer were not expressive enough.
With the method we present in this paper, any kind of formula can be inferred using the
appropriate combination of abstract domains and quantifier elimination.

We also analyzed several functions from the Verisec buffer overflow benchmark [26].
This benchmark is issued from real-world vulnerabilities on popular open source appli-
cations like sendmail or wu-ftpd. It provides simplified versions of the real vulnera-
bilities. Each test consists in a program containing a vulnerability and a patched version
of the same program. In order to test our method, we considered each function as ex-
ternal. We successfully generated sufficient preconditions for various patched versions
while failing to prove correct the vulnerable versions.

Finally, we generated sufficient preconditions for checking absence of integer over-
flows when adding or subtracting integers, which can be expressed as linear inequality
assertions. We applied it successfully to the well-known binary-search program, which
got some more attention recently after a possible overflow was spotted in its Java library
implementation [27].

6 Conclusion and Ongoing Work

In this paper, we have described a method to solve the modular assertion checking
problem for imperative integer programs. Given a function with assertions, our method
infers a sufficient precondition for these assertions to hold. The method consists in a
special arrangement of existing well-established techniques in program analysis: ab-
stract interpretation, weakest precondition, quantifier elimination. This plugin architec-
ture allows both reuse of existing building blocks and specialization to specific asser-
tions, programs and languages, which makes our method powerful and customizable.

More importantly, we have shown that the same method can be applied to the mod-
ular assertion checking problem for imperative pointer programs that follow a simple
aliasing restricting rule. Rule conformance can be expressed as separation precondi-
tions that must be respected too. Finally, we have shown how to reduce memory safety
to assertion checking.

We present convincing preliminary results that our method is effective for modular
safety checking of C programs. We are currently working on applying our method to
larger real-world programs in C and Java.
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Abstract. Separation logic is a popular approach for specifying properties of
recursive mutable data structures. Several existing systems verify a subclass of
separation logic specifications using static analysis techniques. Checking data
structure specifications during program execution is an alternative to static verifi-
cation: it can enforce the sophisticated specifications for which static verification
fails, and it can help debug incorrect specifications and code by detecting concrete
counterexamples to their validity.

This paper presents Separation Logic Invariant ChecKer (SLICK), a runtime
checker for separation logic specifications. We show that, although the recur-
sive style of separation logic predicates is well suited for runtime execution, the
implicit footprint and existential quantification make efficient runtime checking
challenging. To address these challenges we introduce a coloring technique for ef-
ficiently checking method footprints and describe techniques for inferring values
of existentially quantified variables. We have implemented our runtime checker
in the context of a tool for enforcing specifications of Java programs. Our expe-
rience suggests that our runtime checker is a useful companion to a static verifier
for separation logic specifications.

1 Introduction

Linked structures are ubiquitous in modern software. Such structures appear both in
container implementations of software libraries and in application code as the form of
syntax trees, XML data, and other application-specific relationships. The diversity of
linked structures implies that there is a wide range of invariants that they satisfy. Auto-
mated verification of these invariants is an active area of research and includes verifica-
tion of shape properties [19, 2, 13] as well as properties that extend shape descriptions
with specifications of size, balancing, sortedness, and content change [20,26,30,17,22].
The specification language for expressing these properties has a significant impact on
the effectiveness of the analysis and its ability to interact with the developer. Separation
logic with inductively defined predicates [27, 3, 22] has emerged as a popular approach
to specify properties that involve linked structures. In Hoare logic based on separation
logic [16], a precondition specifies not only the condition on the initial heap but also
the operation’s footprint [5]. As a result, a precondition simultaneously plays the role of
a ‘modifies’ clause [14] and leads to a frame rule that enables modular reasoning [16].
The footprint of an operation in a program heap is the part of the heap that the operation
may access. The footprint of a separation logic formula in a program heap is the part of
the heap that satisfies the formula.
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Runtime checking as complementary technique. We expect that many operations
and properties in practice can be checked statically, but some will remain beyond the
reach of current analysis tools. In this paper we describe a system called SLICK which
can check properties during program execution and can therefore serve as a fall-back of
static analysis. Such runtime checking has long been recognized as useful [7, 1]. Run-
time checking detects violations of desired properties in individual runs, and, unlike
many static analyses, can identify cases when code or specification definitely contain
an error. Other benefits of runtime checking include interfacing to unverified code, au-
tomated checking of input data that cannot be trusted, and detecting errors that result
from violating design-time assumptions (for example, operating system corruption or
hardware malfunction).

Previous work on runtime checking. Despite the long history of runtime assertion
checking [10], to the best of our knowledge, our work is the first runtime checker for
separation logic specifications. Most existing runtime assertion checkers either check
assertions in classical logic [1, 11, 31, 9], weave global checks into code at multiple
program points [8, 4], address blame assignment for properties expressed in the pro-
gramming language [12], or explore incremental checking of assertions [28].

The closest to our system is a checker for heap contracts expressed in linear logic
[25], whose authors observe the usefulness of checking contracts in separation logic,
but proceed to check assertions in linear logic instead. Note that [25] does not deal
with the problem of checking that the footprint of the code executed is contained in the
footprint of the assertion. The footprint checking is one of the main problems addressed
in our paper: it makes precondition checking more than just evaluating formulas in a
fixed program state and requires the checking of fine-grained modifies clauses. Another
difference with [25] is that, instead of invoking a modified interpreter for a linear logic
programming language, our system emits Java code that can be compiled and executed
using existing virtual machines. In translation from separation logic into Java our sys-
tem exploits the deterministic flavor found in most common data structure descriptions.
The generated code executes using standard environments and benefits from just-in-
time compilation of the Java virtual machine.

Contributions. The paper makes the following contributions:

– A translation of declarative predicate definitions, method preconditions and post-
conditions expressed in separation logic specification language [22] into executable
Java code.

– Efficient runtime mechanism for checking separation logic assertions based on
coloring heap objects and method invocations. Our approach avoids the memory
blow up of naı̈ve implementations of separation logic semantics.

– Mode analysis for existentially quantified variables. In most specifications we en-
countered, existentially bound variables are ultimately given as a function of other
variables. SLICK includes mode analysis that determines the place where predicate
parameters are bound, classifying them into input and output parameters. SLICK
also identifies conditionally bound parameters for parameters whose binding time
depends on the invocation context of the predicate. SLICK uses a boxed representa-
tion to instantiate such parameters at runtime at the point of their first use.
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– Integration of static and runtime checking. SLICK ensures that annotated, but
statically unverified, methods conform to their specifications at runtime, providing
a fall-back for the static analyzer and enabling the interface to unverified code.
Conversely, the static checker can act as an optimizer for the code generated from
runtime checks.

2 Example

This section illustrates our run-time checking techniques through an example that ma-
nipulates (possibly sorted) doubly-linked lists. A list is created in a region of code
that was not annotated or statically verified. Therefore, our system performs a run-time
check to ensure that the subsequent code can safely use the created list. Depending on
the complexity of subsequent data manipulation, the system ensures invariants in subse-
quent piece of code either statically, using entailment checker for separation logic [22],
or dynamically, using further run-time checks.

class Node { int val; Node next, prev; }

root::dll〈p,n〉 ≡ (root = null ∧ n=0) ∨ (root::Node〈v,r,p〉 ∗ r::dll〈root, m〉 ∧ n=m+1)
inv n ≥ 0;

root::sdll〈p,n,s〉 ≡ (root = null ∧ n = 0)∨(root::Node〈s,r,p〉 ∗ r::sdll〈root,m,rs〉 ∧ n=m+1 ∧ s≤rs)
inv n ≥ 0;

Fig. 1. Predicate definitions for unsorted and sorted doubly-linked list

Figure 1 shows predicate definitions used by the example. Predicate
root::dll〈p,n〉 means root points to a doubly-linked list of length n;
root::sdll〈p,n,s〉 means root points to a sorted doubly-linked list of
length n. root is a reserved name which denotes a pointer to the data structure from
which all objects of the data structure are reachable. The first nodes of these lists has a
prev field pointing to p. The sdll definition ensures that the list is sorted using the s
parameter to check that values of subsequent list elements are greater than the value of
the first element, where s is the value of the first element in the list. The specification
of the predicate uses the connectives of classical logic such as ∧, ∨ as well as the
separating conjunction operator * which requires that its two arguments hold for two
disjoint partitions of the heap [27]. In our system, a fresh variable, such as r in the
definition of dll is implicitly existentially quantified. The underscore denotes a fresh
variable whose name is omitted.

Figure 2 shows the Java code of our example along with specifications of precon-
ditions and postcondition in separation logic with inductive definitions and numerical
constraints. The loadData method loads a list from a file, sorts it, and returns the
sorted list. Its postcondition ensures that the returned value is a sorted doubly-linked
list. loadData ensures this condition by calling the sort procedure that accepts a
doubly-linked list and returns a sorted list. The expectation is that getFromFile
method will produce a doubly-linked list. However, getFromFile procedure in our
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1 class Process {
2 static Node loadData()
3 requires emp
4 ensures res::sdll〈 , , 〉
5 { Node l = getFromFile();
6 Node sl = sort(l);
7 return sl; }
8 static Node sort(Node l)
9 requires l::dll〈 ,n〉

10 ensures res::sdll〈 ,n, 〉

1 { if (l != null) {
2 Node tmp = sort(l.next);
3 tmp = insert(tmp, l);
4 return tmp; }
5 return l; }
6 static Node insert(Node l, Node v)
7 requires l::sdll〈p,n,s〉 ∗ v::Node〈vv, , 〉
8 ensures (res::sdll〈 ,n+1,min(s,vv)〉 ∧ l!=null)
9 or (res::sdll〈 ,1,rs〉 ∧ rs=vv ∧ l=null)

10 { ... } }

Fig. 2. Annotated code for loading a list from a file and sorting it

example is not statically verified and we cannot guarantee statically that it will indeed
produce a doubly-linked list structure expected by sort. In such a situation SLICK per-
forms a runtime check to ensure that the data structure invariant holds. Consequently,
we can still assume when reasoning about the body of sort that the data structure given
is a doubly-linked list; and when reasoning about the body of loadData that the result
returned by sort is a sorted list. When reasoning about callers of loadData, we can
also make use of its postcondition.

Outline. In the rest of this paper we define our specification language and the desired
semantics of runtime checks, we then describe the compile-time and runtime techniques
that SLICK uses to generate the checks, discuss the issues in combining static and run-
time checking and present preliminary experience with the system.

3 Specification Language

We designed our specification language for preconditions and postconditions to enable
simultaneously runtime checking and static analysis [22], so it largely follows the syn-
tax and semantics of languages in previous separation logic system.

Specification language syntax. Figure 3 shows the grammar for our specification lan-
guage. Shape predicate spred is the main specification construct that provides data
structure descriptions. Formulas are canonicalized into an internal representation akin
to the superhomogeneous form [29], namely arguments for heap formulas are distinct
and fresh. Additional existentially quantified variables are introduced if necessary to
obtain the above form. The semantics of our specification language is included in the
accompanying technical report [23].

Recursive shape predicate definitions need to satisfy certain syntactic restrictions,
namely well-formed and well-founded conditions, to ensure soundness and termina-
tion of static reasoning [22]. Well-formed conditions ensure that shape predicates and
formulas do not admit garbage (consequently, code generated for runtime checks can
traverse the entire footprint of the formula). Well-founded conditions disallow root to
be passed as argument to a recursive predicate invocation. That means root either is
null, dangles, or points to an object. Well-foundedness ensures that the generated run-
time checking code terminates when executed on any given heap, since every invocation
of the generated code either fails/succeeds or recolors at least one object.
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spred ::= [root::]c〈(v [μ])∗〉 ≡ Φ [inv π0]
μ ::= @in | @out
Φ ::=

∨
∃v∗ · (κ ∧ π)

π ::= γ ∧ φ
γ ::= v1 = v2 | v = null | v1 �= v2 | v �= null | γ1 ∧ γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

φ ::= arith | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃v · φ | ∀v · φ
arith ::= a1 = a2 | a1 �= a2 | a1 < a2 | a1 ≤ a2

a ::= k | v | k × a | a1 + a2 | −a | max(a1, a2) | min(a1, a2)
k ∈ Integer constants

v,c ∈ Identifiers

Fig. 3. Grammar for Shape Predicates

Predicate parameter modes. To make the execution of predicates at runtime more
efficient, we assign modes to predicate parameters, following the approaches in logic
programming [29, 24]. We currently support two modes: in and out. These modes can
be inferred using a constraint-based analysis. In the current paper, we assume that the
developer specifies mode annotations (implicitly or explicitly). For example, the param-
eters of the dll predicate can be annotated as dll〈p@out, n@out〉. Both parameters
p and n have out mode.

We use several conventions for default modes, which allows developers to omit most
mode declarations in practice. Most of the parameters are out, so we make out the
default mode. Next, a data structure is typically given as the set of objects obtained
by traversing the data structure starting from the root node and terminating at either
null or at some of the in parameters. root is therefore always an in parameter; the
out parameters are values computed by traversing the data structures. SLICK considers
method parameters as in parameters for their preconditions and postconditions. out
parameters from preconditions are in parameters for corresponding postconditions.

4 Semantics of Run-Time Checking

In this section we present the semantics for run-time checking separation logic speci-
fications and outline challenges in implementing this semantics. We then describe how
we approach these challenges in our runtime checker.

4.1 Abstract Description of Run-Time Checks

The intended meaning of runtime checking is as follows. Given a stack s, an initial
partial map L from logical variable names to values, and a heap h, we define the set of
pairs (h0, L0) where h0 is subheap of h and L0 is partial map extending L such that
formula Φ is true for h0, L0:

submodelsFor(s, h, L, Φ) = {(h0, L0) | (s ∪ L0), h0 |= Φ ∧ L ⊆ L0 ∧ h0 ⊆ h}

A procedure with precondition Φ should succeed when Φ ∗ true holds in the caller,
which happens when submodelsFor(s, h, ∅, Φ) is nonempty. Let h denote the current
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heap. Consider a procedure call of procedure f with precondition pref , body bodyf ,
and postcondition postf . Taking into account the usual semantics of logic variables that
can relate pre- and postcondition, the execution of a procedure call with runtime checks
is the following. Note that bodyf may update the current heap h.

let M = submodelsFor(s, h, ∅, pref ); // subheaps satisfying precondition
if M = ∅ then error ”Precondition failed”;
let (h0, L) ∈ M ; // pick subheap and logic var. bindings
let h1 = h \ h0; // save context
h := h0; // narrow heap to footprint
bodyf ; // actual body of the method
let M ′ = submodelsFor(s, h, L, postf ); // check post in current h,L
if M ′ = ∅ then error ”Postcondition failed”;
let (hR, ) ∈ M ′; // pick subheap to return
h := hR ∪ h1; // restore context

4.2 Separation Logic Runtime Checking Challenges

Given the semantics of separation logic formulas and the semantics of checks in Sec-
tion 4.1, there are two main challenges in making runtime checking feasible. We next
discuss the challenges specific to separation logic execution.

Evaluating spatial conjunction inside formulas. Consider first the problem of check-
ing whether a given state satisfies a formula without numerical constraints. This model
checking problem has been studied for first-order logic (with or without inductive def-
initions) [15] and, more recently, for separation logic [6]. Separation connective in-
creases the complexity of the model checking problem because it essentially involves
second-order quantification [18]. In general it is not clear how to split a heap into two
parts each of which satisfies the corresponding conjunct, so each separation logic for-
mula could in principle admit an exponential number of sets of locations that denote its
footprint.

Approach: marking the footprint. Our approach stems from the observation that, in
practice, data structure specifications often contain formulas that have a small number
of possible footprints that can be computed while evaluating the formula. Moreover,
separation logic connective does not appear under a negation in our system. Therefore,
instead of maintaining an explicit container containing objects in the footprint, we mark
objects that participate in the footprint of the formula. An attempt to mark an object
twice makes the entire formula disjunct unsatisfiable.

Representing method footprints. A naı̈ve implementation of the semantics in Sec-
tion 4.1 would associate with each method invocation a set of references that covers the
method’s footprint. For a call stack of depth n, it would need n copies of these footprints
to maintain the information about all contexts h1 for procedures on the call stack. In the
worst case this would cause an n-fold increase in memory consumption. Next, we need
a mechanism to adjust the heap h for each procedure call and check each individual
field read or write, to ensure that they perform operations only on the current footprint.
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Approach: maintaining marking across procedure calls. When a precondition suc-
ceeds, our system retains the marking of nodes, which is unique for a procedure invo-
cation. Reads, writes and procedure calls check the marking and adjust it accordingly.
Postcondition check restores the marking.

5 The Runtime Engine

We now present in more detail the runtime mechanisms of our checker. SLICK aug-
ments each object with a field named color, which indicates the object’s availability
to different method invocations. The color of an object may change during program
execution. Each method invocation is also associated with a unique color, maintained
on a global stack. A method invocation can access an object if and only if their colors
match. Newly allocated objects belong to the current method invocation’s footprint; the
objects receive the color of the current invocation via instrumented object constructors.
An invocation of method m is permitted if the footprint F of m’s precondition is a sub-
set of the caller’s footprint at the call site. In that case, the system colors the footprint F
to match the color of the invocation of m. A return from invocation of m is permitted if
the footprint F ′ of the postcondition of m is a subset of the current execution footprint
at the end of m. The system then recolors the postcondition footprint F ′ to the color of
the caller.

Checking formulas. Runtime checking of formulas consists in verifying the formula
footprint and computing out parameters. SLICK translates each formula to executable
code in the form of a class with a method traverse that, when executed, traverses the
footprint of the formula in the current heap. traverse accepts two input parameters,
curColor and newColor and returns boolean. traverse recolors each object it
visits to newColor if the current color of the object is curColor. If traverse
succeeds in recoloring all visited objects and all pure constraints are also satisfied, it
sets out parameters and returns true. Otherwise it fails.

Checking formulas with disjunction. The recursive definition of predicates such as
dll and sdll contain the disjunction operator to differentiate the base case and the
recursive case of the definition. When evaluating the truth of a pure classical logic
formula F1 ∨ F2 in a given heap, it is possible to simply evaluate F1 first, and, if it
fails, proceed with the evaluation of F2. In the case of our separation logic formulas,
however, evaluation changes the coloring of the heap. Therefore, if the evaluation of F1
fails, SLICK must undo the coloring performed by F1. Based on the recursive predicates
we have examined, we expect the failure of false disjuncts to occur quickly. SLICK
therefore undoes the coloring by re-executing the evaluation of F1 with opposite color
parameters. This approach avoids additional bookkeeping that would be required to
maintain the set of marked objects. In our example of dll and sdll, the footprint
of the first disjunct is empty, which means that its execution performs no marking and
there is nothing to undo.

Computing bindings for existential quantifiers. Existentially quantified variables in
program specifications are often either determined by variables in program state, or they
do not affect the truth value of the formula at all. Consider, for example, the precondition
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of sort, given by the formula l::dll〈p,n〉. The root parameter of dll predicate
is bound to the value of the local variable l. The n parameter, on the other hand, is
existentially quantified, but is given as the length of the list. The p parameter of dll
is given as the prev field of the first node whenever the list is non-empty. When the
list is empty, the p parameter is left unconstrained, but the truth value of dll does not
depend on it either. Therefore, the value of p is either given by the context where dll
is called, as in the recursive invocation inside dll definition, or it is not used anywhere,
as in the precondition of sort. SLICK uses mode analysis, described in Section 6, to
determine how to compute values of such existentially quantified variables.

Precondition. SLICK invokes precondition checking code in the caller prior to method
invocation. If a precondition check succeeds, it also provides values for the out param-
eters of the formula. These values can then be used by the postcondition of the same
invocation. Note that pre- and postcondition checks are performed in the caller to facil-
itate integration with the static verifier. More details are provided in section 7.

As an illustration, consider the sortmethod from Figure 2. Figure 4 shows the run-
time checking code that SLICK generates for sort. SLICK compiles the precondition to
a class with fields to store all free logic variables of the formula (in this case, variables
l and n). In callers of sort, SLICK also generates instructions to create an instance
of the generated class (the checker object), initialize the in parameter (l) and then
invoke traverse on the initialized checker object. traverse receives two colors
as arguments: the current method invocation’s color is passed to curColor, a freshly
generated color to newColor. Upon successful completion of traverse, SLICK sets
n to the length of the list. SLICK stores a reference to the checker object in a local
variable that is visible to the code that verifies the postcondition.

1 class sort pre { Node l; int n;
2 boolean traverse(color curColor,
3 color newColor) { ... }
4 }
5 Node loadData() {
6 Node l = getFromFile();
7 /// generated code
8 sort pre prchk = new sort pre();
9 prchk.l = l;

10 SLICK.pushCurrentColor();
11 SLICK.setCurrentColor(
12 SLICK.freshColor());
13 prchk.traverse(SLICK.topColor(),
14 SLICK.currentColor());
15 /// end of generated code
16 Node sl = sort(l);
17 ...

Fig. 4. Compiled precondition of sort

1 class sort post {
2 Node res;
3 int n;
4 boolean traverse(...)
5 }
6 Node loadData() {
7 ...
8 Node sl = sort(l);
9 /// generated code

10 sort post pockr = new sort post();
11 pockr.res = sl;
12 pockr.n = prchk.n;
13 color c = SLICK.popColor();
14 pockr.traverse(SLICK.currentColor(), c);
15 SLICK.setCurrentColor(c);
16 /// end of generated code
17 return sl; }

Fig. 5. Compiled postcondition of sort
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Postcondition. When a method returns, SLICK checks postcondition against the current
method’s footprint. SLICK then makes the objects covered by the postcondition acces-
sible to the caller. As an example, Figure 5 shows the translation of the postcondition
of sort, whose internal representation is ∃r1 · res::sdll〈r1〉 ∧ r1 = n.

Note that it is possible that the postcondition does not cover all objects of the current
invocation’s footprint. The uncovered objects, even if reachable from the caller, are not
accessible under separation logic semantics. The use of coloring in SLICK correctly en-
forces this semantics. Indeed, observe that any objects in the footprint of the returning
method, if not covered by the postcondition thereof, will retain the color of the return-
ing method invocation. This color is unique for the dynamic method invocation, so no
current or future method invocations will be able to access these objects.

Unannotated code. When a method has no annotations, as is the case of
getFromFile in Figure 2, both precondition and postcondition are true. This means
that the footprint of the precondition is the same as the caller’s current footprint and that
the entire footprint of the callee is returned to the caller. SLICK thus executes the callee
without any recoloring of the heap and with the callee invocation having the same color
as the caller invocation.

6 From Separation Logic to Executable Code

We now present our translation from separation logic formula to executable code. The
basic idea is to compile a separation logic formula into a function that checks if a given
program state (s, h) is a model of the formula. The translation consists of mode analysis
and Java code generation. In addition to checking that the formula holds in the current
program state, the translated code recolors the formula’s footprint and computes the val-
ues of out parameters. Each formula is translated to a class with a method traverse
and fields representing the free variables of the formula. The fields have the same names
as the free variables they represent. Fields for in parameters need to be initialized before
each invocation of traverse; fields for out parameters are set by traverse upon
successful completion of checking.

Mode analysis. At compile time, variables in a formula are classified into two main
groups: bound and unbound. Initially, unbound variables include out parameters and
existentially quantified variables of the present formula. Bound variables include in
parameters of the present formula and out arguments of recursive predicate invocations.
If an out argument is not unified with a value in all disjuncts of a predicate definition,
we further classify it as conditionally bound.

Conditionally bound variables use a boxed representation of their underlying types.
Each boxed value has a flag indicating whether the underlying value is bound. The first
time when the compiled formula uses a conditionally bound variable v at runtime, it
binds v to a concrete value. When v is used in an equality v = t and the value of term
t is known, v is bound to t; otherwise both v and t are bound to the same value by
instantiating unbound variables in t. If used in a disequality or inequality, v is bound to
a random value such that the constraint holds. This treatment is incomplete, but sound.

The translation consists of two passes. The first pass determines subformulas that
generate bindings for the unbound variables. The second one compiles the selected
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subformulas to assignments and the rest of the formulas to tests. To make it easier
to read the formalization, the following names have dedicated meanings in our rules.
vmap is the binding map of unbound variables. vmap also keeps track of which vari-
ables and terms are conditionally bound to help the code generator to invoke correct
operations on these values. ins and outs are in and out parameter sets, respectively.
INS(c) returns all the in parameters of predicate c. uvars is the set of unbound vari-
ables. Function UVAR returns the set of unbound variables of a term. Note that ins and
outs are the same for all disjuncts of a formula, whereas vmap and uvars are computed
anew for each disjunct. || C || marks C as executable code emitted by the compilation.

The first pass computes a mapping from unbound variables to terms, where a term
can be either constant, variable, field access, or combination of terms using arithmetic
operations. This pass also produces a partial ordering, which determines the order in
which assignments are generated by means of a topological sort. There are three sources
of bindings for unbound variables, namely i) in parameters of the present formula,
ii) out parameters of predicate invocations, and iii) object fields. The computation is
formalized as the genMap function in the technical report [23]. As genMap generates
the bindings, it also removes from the input formula all unifications v = t that it uses
in bindings generation.

Translation of disjunction. SLICK compiles a DNF formula
∨

Fi as follows:
1 boolean traverse(color curColor, color newColor) {
2 ...
3 boolean r i = disji(curColor, newColor);
4 if (r i) return true;
5 disji(newColor, curColor);
6 ...
7 return false; }

Translation of conjunction. SLICK compiles a formula Fi = ∃v∗ ·κ∧π into a function
boolean disji(color curColor, color newColor). Figure 6 formalizes the compilation of
the body of disji as a function that takes a formula and emits executable code.

TR[[p::c〈v∗〉]] | IsObj(c)
def
=

|| if p �= null ∧ curColor = p.color
then p.color = newColor
else return false; ||

TR[[p::c〈v∗〉]] | IsPred(c)
def
=

|| p = new c Checker; ||
genInitialization p::c〈v∗

i 〉;
|| if not(p.traverse(curColor, newColor))

then return false; ||

TR[[κ1 ∗ κ2]]
def
= TR[[κ1]]; TR[[κ2]]

TR[[∃v∗ · κ ∧ π]]
def
=

let uvars = v∗ ∪ outs in
let π′ = genMap (κ ∧ π) in

TR[[κ]];
|| if || TR[[π′]] || then ||

genAssign;
|| return true; ||

|| else return false; ||

TR[[p = t]] | p is conditionally bound, t is bound def
= || p.EQ(t) ||

Fig. 6. Translation Rules
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The translation also makes use of the following functions. The genInitialization
function emits assignments to initialize in parameters of the formula, subject to the
constraint that all in parameters must be initialized.

genInitialization p::c〈v∗i 〉 def=
foreach fi in INS(c) do : || p.fi =|| genBinding vi

The genAssign function emits assignments to out parameters of the predicate. If
a variable does not have a binding from the formula, it is assigned an unbound boxed
value. The genBinding function computes the closure of the bindings to get bound
terms.

genAssign def=
foreach p in outs do :

|| p =|| genBinding p
if genBinding failed then

|| p = new (boxed(p)) ||

genBinding v
def=

if v /∈ uvars then || v ||
else genBinding (lookUp v vmap)

If the first argument is a term, genBindings performs the obvious recursion on the
structure of the term and emits a term with identical structure, except for the translated
variables. If lookUp fails to find an entry for an unbound variable, genBinding fails.

7 Integrating Static and Runtime Verification

In this section we discuss the integration of static and runtime verification. The general
idea is that assertions that can be statically verified need not be checked at runtime.
However, such combination is more difficult for analysis domains based on spatial con-
junction of facts than for analysis domains based on classical conjunction of facts. In-
deed, to ensure that assertion F1 ∧F2 holds after a given program point, it is possible to
ensure F1 statically and then check F2 dynamically. On the other hand, given assertion
F1 ∗ F2, it is necessary to communicate to both the run-time and the static time checker
the footprints of individual formulas in order to enable separation of these two checks.
In the rest of the paper, we describe optimizations that are nevertheless possible in our
runtime checking approach; more fine-grained combinations are possible but beyond
the scope of the current paper.

Field access. If the static verifier proves a field access safe, no runtime check is re-
quired. This is because field access does not affect the coloring of the objects or method
invocations. On the other hand, if the static verifier fails to verify a field read, it emits
runtime check for the pointer and continues with a suitably modified symbolic state.

Δ � x::c〈f∗〉
� {Δ}v = x.f{∃v · Δ}

If it fails to verify a field write, it stops static verification and emits runtime check for
all subsequent code. As an optimization, once a field access has been issued a run-
time check, it needs not be checked again until the pointer itself or its color may have
changed. In many cases this information can be obtained statically.
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Method contract. Method contract checks, on the contrary, cannot be as readily elimi-
nated since they change the heap coloring. Let us consider a method g that calls another
method f with precondition pref and postcondition postf :

1 void g()
2 { g1; f(); g2; }

1 void f()
2 requires pref ensures postf { ... }

There are the following possibilities:

1. f is statically verified.
– pref is statically proved: if the part g2 of g following the call to f is statically

verified by assuming postf , g need not emit runtime checks for pref and postf .
Otherwise, as g2 may attempt to access objects that do not belong to postf ’s
footprint, runtime checks for pref and postf (and certainly for g2) are needed.

– pref is not statically proved: g issues runtime checks for pref and postf . Static
verification of g2 can assume postf .

2. f is not statically verified: g issues runtime checks for pref and postf . Static veri-
fication of g2 can assume postf .

The static verifier can take advantage of the fact that after a method call, the callee’s
postcondition holds. Even if it cannot verify the callee’s precondition, it can still assume
the postcondition, and continues static verification after issuing appropriate runtime
checks. When the precondition is a pure formula, static verification proceeds as follows:

Δ � pre(mn) IsPure(pre(mn))
� {Δ}mn(v∗){(Δ ∧ pre(mn)) ∗ post(mn)}

On the other hand, if the precondition has a nonempty heap component, the static ver-
ifier assumes the postcondition as the current program state. Note that we cannot simply
∗-conjoin the postcondition with the current program state, as they may cover overlap-
ping footprints. Replacing the entire program state by the postcondition is sound, but
may result in loss of precision if the callee’s postcondition covers only parts of data
structures.

Δ � pre(mn) HasHeap(pre(mn))
� {Δ}mn(v∗){post(mn)}

Integration in the example. In the example of section 2, sort and insert are
both statically verifiable. loadData fails to verify the precondition of sort because
the information is simply not available, so it emits runtime check, but by assuming
postcondition of sort, the postcondition of loadData can be statically verified, a
fact that callers of loadData can exploit. Note that the runtime checking is localized
within loadData only, so the overhead is small.

8 Implementation

We implemented SLICK in the context of a system for checking data structure proper-
ties [22]. We report our experience with the system on several examples.
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Memory overhead. Memory overhead consists of one field per object to store the ob-
ject’s color and a single stack of live colors which has the same height as the program
call stack. Since the color type can be implemented as long, memory overhead de-
creases if the program uses larger objects. traverse method also creates a number
of intermediate objects, but they exist only during the formula traversal and do not per-
manently accumulate in the memory overhead of the code instrumented with runtime
check. Consequently, we were not able to measure any significant difference in memory
consumption for our examples.

Runtime overhead. We evaluate the runtime overhead of our approach by running
experiments with different levels of runtime checking: 1) no runtime checking, 2) all
operations runtime checked, 3) all field accesses runtime checked, 4) and checking at
boundaries of data structure operations. In case 3), the entire program runs with a single
color, hence no precondition or postcondition check is performed. This case measures
the overhead of checking field accesses. In case 4), SLICK checks only the first precon-
dition and the last postcondition of a data structure operation at runtime since the static
verifier can assert that checks for recursive calls and field accesses are statically safe.
This case simulates a scenario where these data structures are used in conjunction with
unverified or untrusted inputs. In order to minimize the timing effects of class loading
and JIT compilation, we repeat the experiments and ignore the timings of the first two
runs.

Timings for the experiments, measured with JVM 1.5 on Linux 2.6 running on a PC
having a 3GHz CPU and 2GB RAM, are reported in Figure 7. The data structures used
in our experiments have sizes ranging from 1000 to 5000 elements. The first experiment
sorts a list using insertion sort. The “Full” check for sort causes very large increases
in running time. However, the “Boundary” version, which we expect to be used in prac-
tice, causes insignificant increases since the data structure is traversed only two more
times. The second example performs an in-order traversal of a binary search tree to
produce a sorted list. The “Full” check incurs large overhead since it forces the entire
subtree to be traversed at each recursive invocation. The other two checks are signifi-
cantly cheaper. The third example performs the following two operations 1000 times:
inserting a random element to and deleting the maximum element from a priority queue.
The “Native” and “Field” timings reflect the logarithmic complexity of operations on
priority queues. The “Full” and “Boundary” timings are linear in data structure size as
expected, since every insert and deletemax operation traverses the entire heap,
rather than just a path with logarithmic length from root to leaf. The fourth example is a
popular operation in data mining algorithms. It traverses a table containing the iterative
patterns used in software specification mining and calculates the support of a mined pat-
tern [?]. The operation is repeated 10 times. Note that the computation of support itself
does not need to traverse the entire table, since the table provides caching of most of
the subcomputations. Precondition and postcondition checking therefore causes a sig-
nificantly larger number of objects to be visited, causing the large increase in running
time. A common property across all the examples is that “Field” check timings show
that the overhead of checking every heap access in SLICK is small.
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Insertion Sort
Size Native Full Field Boundary

1,000 6 49,235 10 7
2,000 28 >50,000 44 31
3,000 69 >50,000 108 81
4,000 127 >50,000 183 135
5,000 209 >50,000 296 211

Binary Search Tree
Native Full Field Boundary

0.03 181 0.06 0.93
0.07 866 0.12 4.50
0.11 2,253 0.18 10.45
0.14 4,965 0.24 8.62
0.18 9,360 0.30 9.07

Priority Queue
Size Native Full Field Boundary

1,000 0.93 2,585 1.62 765
2,000 0.99 5,171 2.68 1,521
3,000 1.02 7,767 1.79 2,321
4,000 1.01 10,320 2.69 3,032
5,000 1.03 13,070 1.89 3,827

Support Calculation
Native Full Field Boundary

0.22 12,205 0.30 25
0.45 >50,000 0.63 61
0.68 >50,000 0.94 111
0.93 >50,000 1.40 169
1.18 >50,000 1.73 173

Fig. 7. Performance Measurements (in milliseconds)

9 Conclusion

We presented SLICK, the first runtime checker for separation logic program specifi-
cations. We have identified several challenges that make separation logic specification
seemingly more difficult to check at run time than for classical logic. The notable fea-
tures of SLICK include runtime mechanism that avoids memory blow up and a compila-
tion of separation logic specification to executable code that runs natively on the JVM.
Overall, the run-time checking cost can be significant for large data structure instances
when all intermediate states are checked, but even in those cases the absolute perfor-
mance is sufficiently good for debugging the code and the specifications. Performing
only “boundary checks” is an appealing alternative to all intermediate checks: because
specifications capture operation footprint, boundary checks ensure data structure con-
sistency at the end of an operation regardless of the internal behavior of the operation.
In some cases (such as the insertion sort example), the overhead when performing only
boundary checks appears acceptable even for deployed applications. Preliminary results
demonstrate that running time can be significantly reduced using static verification to
remove most of the runtime checks.
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Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, Springer, Heidelberg (2007)

6. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for a spatial as-
sertion language for data structures. In: FSTTCS 2001 (2001)

7. Cartwright, R., Fagan, M.: Soft typing. In: PLDI 1991, pp. 278–292 (1991)
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Abstract. Applications in software verification and interactive theorem
proving often involve reasoning about sets of objects. Cardinality con-
straints on such collections also arise in these scenarios. Multisets arise for
analogous reasons as sets: abstracting the content of linked data structure
with duplicate elements leads to multisets. Interactive theorem provers
such as Isabelle specify theories of multisets and prove a number of theo-
rems about them to enable their use in interactive verification. However,
the decidability and complexity of constraints on multisets is much less
understood than for constraints on sets.

The first contribution of this paper is a polynomial-space algorithm
for deciding expressive quantifier-free constraints on multisets with car-
dinality operators. Our decision procedure reduces in polynomial time
constraints on multisets to constraints in an extension of quantifier-
free Presburger arithmetic with certain “unbounded sum” expressions.
We prove bounds on solutions of resulting constraints and describe a
polynomial-space decision procedure for these constraints.

The second contribution of this paper is a proof that adding quanti-
fiers to a constraint language containing subset and cardinality opera-
tors yields undecidable constraints. The result follows by reduction from
Hilbert’s 10th problem.

1 Introduction

Collections of objects are fundamental and ubiquitous concepts in computer
science and mathematics. It is therefore not surprising that they often arise in
software analysis and verification [1], as well as in interactive theorem proving
[19]. Moreover, such constraints often involve cardinality bounds on collections.
Recent work describes decision procedures for constraints that involve sets and
their cardinalities [10, 12], characterizing the complexity of both quantified and
quantifier-free constraints.

In many applications it is more appropriate to use multisets (bags) rather
than sets as a way of representing collections of objects. It is therefore interesting
to consider constraints on multisets along with cardinality bounds. There is a
range of useful operations and relations on multisets, beyond the traditional
disjoint union and difference. These operations are all definable using quantifier-
free Presburger arithmetic (QFPA) formulas on the number of occurrences of
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each element in the multiset. This paper describes such a language that admits
reasoning about integers, sets and multisets, supports standard set and multiset
operations as well as any QFPA-definable operation on multisets (including the
conversion of a multiset into a set), and supports a cardinality operator that
counts the total number of elements. We present a decision procedure for this
language, provide a PSPACE upper bound on the decision problem, and show
that its extension with quantifiers is undecidable.

Our language can express sets as a special kind of multisets, so our new de-
cision procedure is also a decision procedure for constraints in [12]. However,
multisets introduce considerable additional difficulty compared to the original
problem. For example, while the number of non-equivalent set terms is finite
(they are unions of Venn regions), the number of non-equivalent multiset terms
is infinite due to non-idempotent operators such as multiset sum �. Instead of
considering Venn regions, our new algorithm reduces multiset constraints to an
extension of Presburger arithmetic with a particular sum expression. To decide
this extension, we rely on the fact that solutions of formulas of Presburger arith-
metic are semilinear sets [8] and use bounds on generators of such sets [23] to
establish small model property for this extension.

Previously, Zarba [25] considered decision procedures for quantifier-free mul-
tisets but without the cardinality operator, showing that it reduces to quantifier-
free pointwise reasoning. However, the cardinality operator makes that reduction
impossible. More recently Lugiez [13] showed (in the context of a more general
result on multitree automata) the decidability of quantified constraints with a
weaker form of cardinality operator that counts only distinct elements in a multi-
set, and shows decidability of certain quantifier-free expressible constraints with
cardinality operator. Regarding quantified constraints with the general cardi-
nality operator, [13, Section 3.4] states “the status of the complete logic is still
an open problem”. We resolve this question, showing that the quantified con-
straints with cardinality are undecidable (Section 6). The decidable quantified
constraints in [13] allow quantifiers that can be eliminated to obtain quantifier-
free constraints, which can then be expressed using the decidable constraints in
the present paper. We analyze the complexity of the decision problem for our
quantifier-free constraints, and show that it belongs to PSPACE, which is the
first complexity bound for constraints on multisets with a cardinality operator.

Contributions. We summarize our contributions as follows.

1. We show how to decide expressive quantifier-free constraints on multisets
and cardinality operators in polynomial space, and

2. We show that adding quantifiers to a constraint language containing subset
and cardinality operators yields undecidable constraints.

Overview. We continue by presenting examples that motivate the constraints
we consider in this paper. We then outline our decision procedure through an
example. The main part of the paper describes the decision procedure and its
correctness. We then show that an extension of our constraints with quantifiers
is undecidable.
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1.1 Multisets in Interactive Verification

As an example of using multisets with cardinalities in interactive verification,
consider the Multiset library [20] of the interactive theorem prover Isabelle [19].
This library represents a multiset as a function f from some (parameter) type
to the set of natural numbers, such that the set S of elements x with f(x) > 0 is
finite. It defines the size function on multisets as the sum of f(x) over all x ∈ S.
Several lemmas proved in the library itself mention both multisets and the size
function, such as the size union lemma (size(M + N) = size M + size N),
where + on the left-hand side is resolved as the disjoint multiset union. Other
Isabelle theories build on the Multiset library, including the Permutation library
for reasoning about permutations, formalization [22] of the UNITY parallel pro-
gramming approach [17], and example specifications of sorting algorithms.

This paper considers such a theory of multisets with size constraints. For
simplicity, we fix the set E from which multiset elements are drawn. We assume
E to be finite, but of unknown cardinality. If m is a multiset, we call size(m) the
cardinality of m, and denote it |m| in this paper. As an example, the size union
lemma in our notation becomes |M � N | = |M | + |N |.

1.2 Multisets in Software Analysis and Verification

It is often desirable to abstract the content of mutable and immutable data
structures into collections to raise the level of abstraction when reasoning about
programs. Abstracting linked structures as sets and relations enables high-level
reasoning in verification systems such as Jahob [9]. For collections that may
contain duplicates, abstraction using multisets is more precise than abstraction
using sets. The decision procedure described in this paper would therefore en-
able reasoning about such precise abstractions, analogously to the way current
decision procedures enable reasoning with set abstraction.

To illustrate the role of the cardinality operator, note that data structure
implementations often contains integer size fields. If s is a data structure size field
and L an abstract multiset field denoting data structure content, data structure
operations need to preserve the invariant s = |L|. When verifying an insertion of
an element x into a container, we therefore obtain verification conditions such as
|L|=s → |L � x|=s+1. When verifying deletion of an element from a container
we obtain verification conditions such as

x ⊆ L ∧ |x| = 1 → |L\x| = |L| − 1 (1)

The decision procedure described in this paper can prove such verification
conditions.

To describe data structure operations it is useful to have not only operations
such as disjoint union � and set difference, but also an operation that, given
multisets m1 and m2 produces a multiset m0 which is the result of removing from
m1 all occurrences of elements that occur in m2. Let mi(e) denote the number of
occurrences of an element e in multiset mi. Then we can specify such a removal
operation with ∀e.(m2(e) = 0 =⇒ m0(e) = m1(e))∧ (m2(e) > 0 → m0(e) = 0).
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We introduce a shorthand m0 = m1 \\m2 for this formula. Our constraints
support any such operation definable pointwise by QFPA formula.

Multisets have already been used in the verification system for data structures
with bag and size properties [18], which invokes Isabelle to prove the generated
multiset constraints. Our paper describes a decision procedure for a language of
multisets with cardinalities, which could be used both within program verifica-
tion systems and within interactive theorem provers, obtaining completeness and
improved efficiency for a well-defined class of formulas. In addition to reasoning
about abstractions of data structures, our constraints can be used directly to
specify properties in programming languages such as SETL [24], which has built
in set data type, and in the Gamma parallel programming paradigm [2, Page
103] based on multiset transformations.

2 Decision Procedure Through an Example

We next outline our decision procedure by applying it informally to the con-
straint (1) from the previous section. This section demonstrates only the main
idea of the algorithm; Sections 4 and 5 give the detailed description (the reader
may wish to revisit this example after reading those details). To prove validity
of (1), we show that its negation,

x ⊆ L ∧ |x| = 1 ∧ |L\x| 	= |L| − 1, (2)

is unsatisfiable. Our algorithm expresses a given formula through quantifier-free
Presburger arithmetic (QFPA) extended with sum expressions

∑
t over other

QFPA terms t. In such sum expressions, the number of occurrences of an element
e in a multiset m is denoted by m(e). Every sum ranges over all elements e of
some fixed domain E of unknown size. For example, our algorithm converts
|x| = 1 into

∑
x(e) = 1.

We also allow conditional expressions ite in our formulas. If c is a QFPA for-
mula and t1 and t2 two QFPA terms, then ite(c, t1, t2) has value t1 when c holds,
and t2 otherwise. A multiset inclusion x ⊆ L becomes ∀e. x(e) ≤ L(e) which
in turn is transformed into the sum

∑
ite(x(e) ≤ L(e), 0, 1) = 0. By introducing

fresh variables x1 for L\x, we obtain formula x1 = L\x. The formula x1 = L\x
becomes the sum

∑
ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e) − x(e)), 0, 1) = 0. For-

mula (2) therefore becomes
∑

ite(x(e) ≤ L(e), 0, 1) = 0 ∧
∑

x(e) = 1 ∧
∑

x1(e) 	=
∑

L(e) − 1 ∧
∑

ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e) − x(e)), 0, 1) = 0 (3)

Because every sum ranges over the same set of elements e ∈ E, we can combine
all sums into one sum with vector summands. Introducing k1 for |x1|, and k2 for
|L|, we obtain the formula

k1 	= k2 − 1 ∧ (k1, k2, 1, 0, 0) =
∑ (

x1(e), L(e), x(e),

ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e) − x(e)), 0, 1), ite(x(e) ≤ L(e), 0, 1)
)

(4)
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Because the set of index elements E is of arbitrary size and each summand
satisfies the same QFPA formula, formula (4) is equisatisfiable with the following
formula (5), which uses a different sum operator that computes the set of all
sums of solution vectors of the given QFPA formula F :

k1 	= k2 − 1 ∧ (k1, k2, 1, 0, 0) ∈
∑

F

(x1, L, x, z1, z2), (5)

Here F is z1 = ite(x1 = ite(L ≤ x, 0, L − x), 0, 1) ∧ z2 = ite(x ≤ L, 0, 1). We next
show that (u1, . . . , un) ∈

∑
F (x1, . . . , xc) can be replaced with the equisatisfiable

QFPA formula. This will reduce the entire problem to QFPA satisfiability.
We first characterize satisfying assignments for F using semilinear sets [8].

This construction is always possible, as described in Section 5. The satisfying

assignments for our formula F are given by
7⋃

i=1
(Ai + B∗

i ) where

A1 = {(0, 0, 0, 0, 0)}, B1 = {(0, 1, 1, 0, 0)}
A2 = {(1, 0, 0, 1, 0)}, B2 = {(0, 1, 1, 0, 0), (1, 0, 0, 0, 0)}
A3 = {(0, 0, 1, 0, 1)}, B3 = {(0, 1, 1, 0, 0), (0, 0, 1, 0, 0)}
A4 = {(1, 0, 1, 1, 1)}, B4 = {(0, 1, 1, 0, 0), (0, 0, 1, 0, 0)}
A5 = {(1, 1, 0, 0, 0)}, B5 = {(1, 1, 0, 0, 0), (0, 1, 1, 0, 0)}
A6 = {(2, 1, 0, 1, 0)}, B6 = {(1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 0, 0, 0)}
A7 = {(0, 0, 1, 1, 0)}, B7 = {(1, 1, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 1, 0)}

Here A + B∗ denotes the set of sums with exactly one element from A and any
number of elements from B.

The meaning of the sum expression then reduces to the condition
(k1, k2, 1, 0, 0) ∈ (

⋃7
i=1(Ai +B∗

i ))∗. In general, this condition is definable using a
QFPA formula that uses the finite vectors from Ai and Bi. In our particular case,
(k1, k2, 1, 0, 0) can only be a linear combination of elements from A1 + B∗

1 and
A5 + B∗

5 . Such considerations ultimately result in formula (k1, k2) = (λ, λ + 1),
so the overall constraint becomes

k1 	= k2 − 1 ∧ (k1, k2) = (λ, λ + 1) (6)

Because (2) and (6) are equisatisfiable and (6) is unsatisfiable, we conclude that
(1) is a valid formula.

3 Multiset Constraints

Figure 1 defines constraints whose satisfiability we study in this paper. Our
constraints combine multiset expressions and two kinds of QFPA formulas: outer
linear arithmetic formulas, denoting relationship between top-level integer values
in the constraint, and inner linear arithmetic formulas, denoting constraints
specific to a given index element e ∈ E. Note that the syntax is not minimal; we
subsequently show how many of the constructs are reducible to others.
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top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= M=M | M ⊆ M | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
∑

Fin
(tin, . . . , tin)

tout ::= k | |M| | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | C | tin + tin | C · tin | ite(Fin, tin, tin)
multiset expressions:

M ::= m | ∅ | M ∩ M | M ∪ M | M 	 M | M \ M | M \\ M | setof(M)
terminals:

m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant

Fig. 1. Quantifier-Free Multiset Constraints with Cardinality Operator

Formulas (F ) are propositional combinations of atomic formulas (A). Atomic
formulas can be multiset equality and subset, pointwise linear arithmetic con-
straint ∀e.Fin, or atomic outer linear arithmetic formulas (Aout). Outer linear
arithmetic formulas are equalities and inequalities between outer linear arith-
metic terms (tout), as well as summation constraints of the form (u1, . . . , un) =∑

F (t1, . . . , tn), which compute the sum of the vector expression (t1, . . . , tn) over
all indices e ∈ E that satisfy the formula F . Outer linear arithmetic terms (tout)
are built using standard linear arithmetic operations starting from: 1) integer
variables (k), 2) cardinality expressions applied to multisets (|M |), and 3) integer
constants (C). The ite(F, t1, t2) expression is the standard if-then-else construct,
whose value is t1 when F is true and t2 otherwise. Inner linear arithmetic formu-
las are linear arithmetic formulas built starting from constants (C) and values
m(e) of multiset variables at the current index e.

Multiset constraints contain some common multiset operations such as disjoint
union, intersection, and difference, as well as the setof operation that computes
the largest set contained in a given multiset. Additionally, using the constraints
∀e.Fin it is possible to specify any multiset operation defined pointwise using
a QFPA formula. Note also that it is easy to reason about individual elements
of sets at the top level by representing them as multisets s such that |s| = 1.
If s is such a multiset representing an element and m is a multiset, we can
count the number of occurrences of s in m with, for example, the expression∑

ite(s(e)=0, 0, m(e)).

4 Reducing Multiset Operations to Sums

We next show that all operations and relations on multisets as a whole can
be eliminated from the language of Figure 1. To treat operations as relations,
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INPUT: multiset formula in the syntax of Figure 1
OUTPUT: formula in sum-normal form (Definition 1)

1. Flatten expressions that we wish to eliminate:
C[e] � (x = e ∧ C[x])

where e is one of the expressions ∅, m1 ∪m2, m1 ∪m2, m1 	m2, m1 \m2, setof(m1),
|m1|, and where the occurrence of e is not already in a top-level conjunct of the
form x = e or e = x for some variable x.

2. Reduce multiset relations to pointwise linear arithmetic conditions:
C[m0 = ∅] � C[∀e. m0(e) = 0]
C[m0 = m1 ∩ m2] � C[∀e. m0(e) = ite(m1(e) ≤ m2(e), m1(e), m2(e))]
C[m0 = m1 ∪ m2] � C[∀e. m0(e) = ite(m1(e) ≤ m2(e), m2(e), m1(e))]
C[m0 = m1 	 m2] � C[∀e. m0(e) = m1(e) + m2(e)]
C[m0 = m1 \ m2] � C[∀e. m0(e) = ite(m1(e) ≤ m2(e), 0, m1(e) − m2(e))]
C[m0 = m1 \\ m2] � C[∀e. m0(e) = ite(m2(e) = 0, m1(e), 0)]
C[m0 = setof(m1)] � C[∀e. m0(e) = ite(1 ≤ m1(e), 1, 0)]
C[m1 ⊆ m2] � C[∀e. (m1(e) ≤ m2(e))]
C[m1 = m2] � C[∀e. (m1(e) = m2(e))]

3. Express each pointwise constraint using a sum:
C[∀e.F ] � C[

P

¬F

1 = 0]

4. Express each cardinality operator using a sum:
C[ |m| ] � C[

P

true
m(e)]

5. Flatten any sums that are not already top-level conjuncts:

C[ (u1, . . . , un)=
P

F

(t1, . . . , tn) ] � (w1, . . . , wn)=
P

F

(t1, . . . , tn) ∧ C[
nV

i=1
ui=wi ]

6. Eliminate conditions from sums:
C[

P

F

(t1, . . . , tn) ] � C[
P

true
(ite(F, t1, 0), . . . , ite(F, tn, 0)) ]

7. Group all sums into one:

P∧
qV

i=1
(ui

1, . . . , u
i
ni

) =
P

true
(ti

1, . . . , t
i
ni

) �

P∧ (u1
1, . . . , u

1
n1 , . . . , uq

1, . . . , u
q
nq

) =
P

true
(t11, . . . , t

1
n1 , . . . , tq

1, . . . , t
q
nq

)

Fig. 2. Algorithm for reducing multiset formulas to sum normal form

we flatten formulas by introducing fresh variables for subterms and using the
equality operator. Figure 2 summarizes this process.

Definition 1 (Sum normal form). A multiset formula is in sum normal form
iff it is of the form P ∧ (u1, . . . , un) =

∑

true
(t1, . . . , tn), where P is a quantifier-free

Presburger arithmetic formula without any multiset variables, and the variables
in t1, . . . , tn occur only as expressions of the form m(e) for m a multiset variable
and e the fixed index variable.

Theorem 1 (Reduction to sum normal form). Algorithm in Figure 2 re-
duces in polynomial time any formula in the language of Figure 1 to a formula
in sum normal form.
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4.1 From Multisets to Sum Constraints

We next argue that formulas in sum normal form (Definition 1) are equisatisfi-
able with formulas of linear arithmetic extended with sum constraints (Figure 3).
Sum constraints are of the form (u1, . . . , un)∈

∑
F (t1, . . . , tn) and they test mem-

bership in the set of vectors generated using vector addition starting from the set
{(t1, . . . , tn) | ∃k1, . . . , kn.F} where k1, . . . , kn is the set of all variables occurring
in F but not occurring in t1, . . . , tn.

top-level, outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)∈
∑

Fin
(tin, . . . , tin)

tout ::= kout | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= kin | C | tin + tin | C · tin | ite(Fin, tin, tin)
terminals:

kin, kout - integer variable (two disjoint sets); C - integer constants

Fig. 3. Syntax of Linear Arithmetic with Sum Constraints

Theorem 2 (Multiset elimination). Consider a sum normal form formula
F of the form

P ∧ (u1, . . . , un) =
∑

true

(t1, . . . , tn)

where free variables of t1, . . . , tn are multiset variables m1, . . . , mq. Let k1, . . . , kq

be fresh integer variables. Then F is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈
∑

true

(t′1, . . . , t
′
n) (7)

where t′i = ti[m1(e) := k1, . . . , mq(e) := kq] (t′i results from ti by replacing
multiset variables with fresh integer variables).

The equisatisfiability follows by bijection between the satisfying assignments
where ki is interpreted as mi(e) and E has as many elements as there are sum-
mands under the sum in (7).

5 Deciding Linear Arithmetic with Sum Constraints

Having reduced in polynomial time multiset constraint satisfiability to satis-
fiability for linear arithmetic with sum constraints, this section examines the
decidability and the complexity of the resulting satisfiability problem.
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5.1 Preliminary Transformations

We assume that the constraint whose satisfiability we wish to check is in the
form given by Theorem 2. This is sufficient for deciding multiset constraints. We
therefore consider a formula of the form

P ∧ (u1, . . . , un) ∈
∑

true

(m1, . . . , mn) (8)

Let x1, . . . , xq be the set of variables in m1, . . . , mn and let y1, . . . , yq and
z1, . . . , zn be fresh variables. We then represent (8) as the formula P ∧ S where
S is the formula

(u1, . . . , un, y1, . . . , yq) ∈
∑

F

(z1, . . . , zn, x1, . . . , xq) (9)

Here F is the formula
q∧

i=1
mi = zi. (The values y1, . . . , yq are not used in P ;

their purpose is to ensure proper dimensionality of the resulting vector, so that
we can assume that all variables of F appear in vector (z1, . . . , zn, x1, . . . , xq).)
Note that the formula S says that some number of solutions of QFPA formula F
sums up to a given vector. We next show that S is equisatisfiable with a QFPA
formula.

5.2 Formula Solutions as Semilinear Sets and Their Bounds

To show that QFPA formulas are closed under unbounded sum constraints, we
use representations of solutions of QFPA formulas as semilinear sets. We first
review some relevant results from [23]. For an integer vector x = (x1, . . . , xn) let
||x||1 denote

∑n
i=1 |xi|. For a matrix A = [aij ] let ||A||1,∞ denote supi(

∑
j aij).

Definition 2 (Sum and Iteration of Sets of Vectors). Let C1, C2 ⊆ N
k be

sets of vectors of non-negative integers. We define

C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {0} ∪ {x1 + . . . + xn | x1, . . . , xn ∈ C1}

When x ∈ N
n and C2 ⊆ N

n is finite, we call {x} + C∗
2 a linear set. A semilinear

set is a union of some finite number of linear sets.

If C1, C2 ⊆ N
n are finite, then C1 + C∗

2 is a particular kind of a semilinear set.
Such semilinear sets are solutions of systems of linear equations, which follows
from the proof of [23, Corollary 1] and [23, Theorem 1]:

Fact 1 (Pottier 1991). Consider a system of equations Ax = b where A ∈
N

m,n and b ∈ N
m. Let A1 = [A; −b], let r be the rank of A1, and let B0 =

(1 + ||A1||1,∞)r. Then there exist two finite sets C1, C2 ⊆ N
n such that
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1. for all x ∈ N
n, Ax = b iff x ∈ C1 + C∗

2 , and
2. ∀h ∈ C1 ∪ C2, ||h||1 ≤ B0.

Consequently, |C1| ≤ B0 and |C2| ≤ B0. Moreover, if in Ax = b we replace some
of the equations with inequations, the statement still holds if B0 is weakened to
(2 + ||A1||1,∞)m.

Note that each QFPA formula F can be converted into an equivalent disjunction
of systems of equations and inequations. The number of such systems is singly
exponential in the number of atomic formulas in F . Moreover, the elements of A
and b in the resulting systems are polynomially bounded by the coefficients and
constants in the original QFPA formula. Consequently, the B0 bound for each of
these systems is at most singly exponential in the size s of the formula F . We
denote this bound by 2p(s), where p is some polynomial that follows from details
of the algorithm for generating all systems of equations and inequations whose
disjunction is equivalent to F . We thus obtain the following lemma.

Lemma 1. Let F be a QFPA formula of size s with n free variables. Then there
exist finite sets Ai, Bi ⊆ N

n for 1 ≤ i ≤ d for some d ≤ 2p1(s) such that the set
of satisfying assignments for F is given as

d⋃

i=1

(Ai + B∗
i )

and such that ||h||1 ≤ 2p(s) for each h ∈
d⋃

i=1
(Ai ∪ Bi).

If A = {a1, . . . , aq} and B = {b1, . . . , br} for ai, bj ∈ N
n, then the condition

u ∈ A+B∗ is given by the formula
∨q

i=1(u = ai+
∑r

j=1 λjbj) where λ1, . . . , λr are
existentially quantified variables ranging over N. This view leads to the following
formulation of Lemma 1.

Lemma 2 (Semilinear normal form for linear arithmetic). Let F be a
QFPA formula of size s with n free variables. Then there exist vectors ai and bij,
1 ≤ j ≤ qi, 1 ≤ i ≤ d for d ≤ 2p1(s), with ||ai||1, ||bij ||1 ≤ 2p(s) such that F is
equivalent to

∃λ1, . . . , λq.

d∨

i=1

(u = ai +
qi∑

j=1

λjbij) (10)

where u = (u1, . . . , un) are the free variables in F and q is the maximum of all
qi.

5.3 Formulas Representing Unbounded Sums

Having obtained semilinear normal form for QFPA formulas, we can characterize
the set of all sums of solutions of a formula. This corresponds to taking the set of
solutions C and computing a representation of C∗. We next give a QFPA formula
for C∗ (this was also obtained in [14, Section 3.2]).
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Lemma 3. Given a formula F in normal form (10), if x denotes vector of
variables (x1, . . . , xn) then the condition x ∈

∑

F

(u1, . . . , un) is equivalent to

∃μi, λij . x =
d∑

i=1

(μiai +
qi∑

j=1

λijbij) ∧
d∧

i=1

(μi = 0 =⇒
qi∑

j=1

λij = 0) (11)

The existentially quantified variables μi, λij become free variables in the satis-
fiability problem. We have therefore reduced the original formula P ∧ S where
S is given by (8) to conjunction of P and (11), which is a QFPA formula. Along
with the algorithm in Figure 2, this shows the decidability of the satisfiability
problem for multiset constraints in Figure 1.

5.4 Bounds on Solutions for Formulas with Sums

The algorithm described so far produces exponentially large QFPA formulas,
so it would only give a non-deterministic exponential bound on the satisfiability
problem. To improve this complexity upper bound, we establish bounds on values
of variables (u1, . . . , un) in (8). As the first step, we rewrite (11) by applying case
analysis, for each i, on whether μi = 0 or μi ≥ 1. We obtain the formula

∃μi, λij .
∨

I⊆{1,...,d}
x =

∑

i∈I

((1 + μi)ai +
qi∑

j=1

λijbij) (12)

The key property of (12) is that, although it can still have exponentially large
number of variables in the size of the original formula S, each of the disjuncts
in disjunctive normal form of (12) has a polynomial number of atomic formu-
las. In other words, the formula can be represented as a disjunction of systems
of equations whose matrices A have polynomially many rows (and potentially
exponentially many columns). Consequently, the same property holds for the
conjunction P∧(12). This allows us to proceed similarly as in [15, Section 3]. We
apply the well-known bound on integer linear programming problems.

Fact 2 (Papadimitriou [21]). Let A be an m × n integer matrix and b an m-
vector, both with entries from [−a..a]. Then the system Ax = b has a solution in
N

m if and only if it has a solution in [0..M ]m where M = n(ma)2m+1.

Given that all coefficients appearing in (12) are bounded by 2p(s) and that m is
polynomial in s as well, we obtain the desired bound.

Theorem 3. There exists a polynomial p(s) such that for every formula F of
Figure 3 of the form (8), of size s, F has a solution iff F has a solution in which
the number of bits needed to represent the values of outer integer variables is
bounded by p(s).

By Theorem 3 there is a non-deterministic polynomial time algorithm that

1. guesses the values c1, . . . , cn+q of variables u1, . . . , un, y1, . . . , yq in (9) such
that P holds, and then
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2. checks whether the constraint (c1, . . . , cn+q) ∈
∑

F (z1, . . . , zn, x1, . . . , xq) has
a solution.

We have therefore reduced the satisfiability problem to testing whether a given
vector of non-negative integers is a sum of some number of solutions of F . This
test is the subject of the next section.

5.5 PSPACE Algorithm for Sum Membership

This section examines the problem of checking for a given constant vector c ∈ N

and a given QFPA formula F , whether c ∈ {v | F (v)}∗ holds, that is, whether
there exists some number q ≥ 0 of vectors v1, . . . , vq ∈ N

n such that
∑q

i=1 vi = c
and F (c) holds forall 1 ≤ i ≤ q. In principle, this problem could be solved by
checking the satisfiability of formula (11). However, the number and size of
vectors ai and bij is exponential. The techniques that we know for constructing
them are based on computing Hilbert basis of homogeneous systems of equations
over natural numbers (Ax = 0) [23,4]. In [5] the authors show that counting the
number of solutions of Hilbert basis of a system of equations is complete for the
counting class #coNP.

We therefore adopt a more direct approach to checking c ∈ {v | F (v)}∗, which
does not attempt to compute semilinear sets for F . A simple non-deterministic
polynomial-space algorithm would guess non-zero solutions of the formula F
that are bounded by c and subtract them from c until it reaches the zero vector.
Figure 4 we presents a refinement of this algorithm that uses divide and conquer
approach and can easily be implemented deterministically in polynomial space.
Note that in invocations of depth up to t the algorithm will find sums v1 +
. . .+vq = c for all q ≤ 2t. Because the coordinates of solutions are non-negative
integers, it suffices to consider sums of length up to ||c||1, which is bounded by
2p(s). Therefore, the bound p(s) on the depth of recursion suffices.

The algorithm in Figure 4 also gives a natural encoding of the problem
into Presburger arithmetic with bounded quantifiers, which is PSPACE com-
plete. Namely, we can rewrite the two recursive calls in generated(c1, t − 1) ∧
generated(c2, t − 1) as

∀a. (a = c1 ∨ a = c2) =⇒ generated(a, t − 1) (13)

Given a formula F of size s, we then unroll the recursion p(s) times, which
eliminates all recursive calls and the parameter t. Because (13) contains only
one recursive call, the resulting unrolling is polynomially large and it can be
encoded as a QFPA formula. This formula contains universal quantification over
the a vectors and existential quantifiers over the c1, c2 vectors in each step of
the recursion. It has polynomial size and p(s) quantifier alternations.

Theorem 4 (Membership test). The algorithm in Figure 4 is correct and
runs in polynomial space.

From Theorem 1, Theorem 2, and Theorem 4, we obtain our main result.
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INPUT: A vector c ∈ N
n, and a QFPA formula F of size s with free variables

k = (k1, . . . , kn).
OUTPUT: true iff c ∈ {v | F (v)}∗

TOP LEVEL: return generated(c, p(s));

proc generated(c, t) :
if(c = 0) then return true;
if(F (c) = true) then return true;
if(t = 0) then return false;
non-deterministically guess c1, c2 ∈ N

n \ {0} such that c1 + c2 = c;
return (generated(c1, t − 1) ∧ generated(c2, t − 1));

Fig. 4. PSPACE Algorithm for testing whether a vector is a sum of solutions of a
QFPA formula

Corollary 1. The satisfiability problems for languages in Figure 1 are decidable
and belong to PSPACE.

6 Undecidability of Quantified Constraints

We next show that adding quantifiers to the language of Figure 1 (and to many
of its fragments) results in undecidable constraints.

The language in Figure 1 can be seen as a generalization of quantifier-free
Boolean algebra with Presburger arithmetic (QFBAPA) [12]. Given that QF-
BAPA admits quantifier elimination [7,10], it is interesting to ask whether mul-
tiset quantifiers can be eliminated from constraints of the present paper. Note
that a multiset structure without cardinality operator can be viewed as a prod-
uct of Presburger arithmetic structures. Therefore, Feferman-Vaught theorem [7]
(see also [3], [11, Section 3.3]) gives a way to decide the first-order theory of mul-
tiset operations extended with the ability to state cardinality of sets of the form
|{e | F (e)}|. This corresponds to multiset theory with counting distinct elements
of multisets, which is denoted FO#D

M in [13]. However, this language is strictly
less expressive than a quantified extension of the language in Figure 1 that con-
tains summation expressions

∑
F (e) t(e) and that corresponds to FO#

M in [13].

The decidability of FO#
M was stated as open in [13]. We next show that this

language is undecidable.
The undecidability follows by reduction from Hilbert’s 10th problem [16], be-

cause quantified multiset constraints can define not only addition (using disjoint
union �) but also multiplication. To define x · y = z, we introduce a new set p
that contains x distinct elements, each of which occurs y times. The following
formula encodes this property.

x · y = z ⇔ ∃p. z = |p| ∧ x = |setof(p)| ∧
(∀m. |m| = z ∧ |setof(m)| = 1 ∧ setof(m) ⊆ p =⇒ |m ∩ p| = y)

Because we can define multiplication, we can express satisfiability of Diophan-
tine equations, so by [16] we conclude that satisfiability of multiset constraints
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with quantifiers and cardinality is undecidable. Similarly, we obtain undecidable
constraints if in the quantified expressions ∀e.F we admit the use of outer in-
teger variables as parameters. This justifies the current “stratified” syntax that
distinguishes inner and outer integer variables.

The reader may wonder whether the presence of the built-in setof operator is
needed for undecidability of quantified constraints. However, the setof operator
is itself definable using quantifiers. For example, a = setof(b) iff a is the smallest
set that behaves the same as b with respect to simple set membership. Behaving
same with respect to simple set membership is given by

memSame(a, b) ⇐⇒ (∀x. |x| = 1 =⇒ (x ⊆ a ⇐⇒ x ⊆ b))

so a = setof(b) ⇐⇒ (memSame(a, b) ∧ (∀a1. memSame(a1, b) =⇒ a ⊆ a1)).
Moreover, note that, as in any lattice, ∩ and ⊆ are inter-expressible using quan-
tifiers. Therefore, adding quantifiers to a multiset language that contains ⊆ and
cardinality constructs already gives undecidable constraints. This answers neg-
atively the question on decidability of FO#D

M posed in [13, Section 3.4].

7 Conclusions

Motivated by applications in verification, we introduced an expressive class of
constraints on multisets. Our constraints support arbitrary multiset operations
defined pointwise using QFPA as well as the cardinality operator. We presented
a decision procedure for the satisfiability of these constraints, showing that they
efficiently reduce to an extension of QFPA with unbounded sum expressions.
For the later problem we presented a decision procedure based on semilinear set
representation of quantifier-free Presburger arithmetic formulas. We established
small bounds on solutions of such formulas and then showed that the overall
problem can be solved in polynomial space. The satisfiability problem for our
constraints is therefore NP-hard and belongs to PSPACE.1 Finally, we showed
that adding quantifiers to these constraints makes them undecidable by defining
multiplication in the language.
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Abstract. The paper presents a new deductive rule for verifying response prop-
erties under the assumption of compassion (strong fairness) requirements. It im-
proves on previous rules in that the premises of the new rule are all first order. We
prove that the rule is sound, and present a constructive completeness proof for the
case of finite-state systems. For the general case, we present a sketch of a relative
completeness proof. We report about the implementation of the rule in PVS and
illustrate its application on some simple but non-trivial examples.

1 Introduction

An important component of the formal model of reactive systems is a set of fairness
requirements. As suggested by Lamport [13], these should come in two flavors: weak
fairness (to which we refer as justice requirements) and strong fairness (to which we
refer as compassion). Originally, these two distinct notions of fairness were formulated
in terms of enableness and the activation of transitions within a computation, as follows:

• The requirement that transition τ is just implies that if τ is continuously enabled
from a certain position on, then it is taken (activated) infinitely many times.
An equivalent formulation is that every computation should contain infinitely many
positions at which τ is disabled or has just been taken.

• The requirement that transition τ is compassionate implies that if τ is enabled
infinitely many times in a computation σ, then it is taken infinitely many times.

Justice requirements are used in order to guarantee that, in a parallel composition of
processes, no process is neglected forever from a certain point on. Compassion, which
is a more stringent requirement, is often associated with coordination statements such as
semaphore request y (equivalently lock y) operations or message passing instructions. It
implies fair arbitration in the allocation of an atomic resource among several competing
processes.

In a more abstract setting, a justice requirement is associated with an assertion (first-
order state formula) J , while a compassion requirement is associated with a pair of
assertions 〈p, q〉. With these identifications, the requirements are:

• A computation σ is just with respect to the requirement J , if σ contains infinitely
many occurrences of states that satisfy J .
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• A computation σ is compassionate with respect to the requirement 〈p, q〉, if either
σ contains only finitely many p-positions or σ contains infinitely many q-positions.

To see that these definitions are indeed generalizations of the transition-oriented def-
inition, we observe that the requirement that transition τ be just can be expressed by
the abstract justice requirement Jτ = (¬En(τ)∨Taken(τ)), while the requirement that
transition τ be compassionate can be expressed by the abstract compassion requirement
Cτ = 〈En(τ), Taken(τ)〉. In these assertions, En(τ) is true at all states on which τ is
enabled. Similarly, Taken(τ) is true at all states that can result by taking transition τ .

An important observation is that justice is a special case of compassion. This is
because the justice requirement J can also be expressed as the degenerate compassion
requirement 〈1, J〉, where we write 1 to denote the assertion True which holds at every
state. In view of this observation, one may raise the natural question of the necessity of
keeping these two separate notions of fairness.

Several answers can be given to this question. On the modeling level, the argument is
that these two notions represent different phenomena. Justice represents the natural in-
dependence of parallel processes in a multi-processing system. Compassion is typically
used to provide an abstract representation of queues and priorities which are installed by
the operating system in order to guarantee fairness in coordination services provided to
parallel processes. There is also a different cost associated with the implementation of
these two notions. In a multi-processor system, justice comes for free and is a result of
the independent progress of parallel processes. In a multi-programming system, where
concurrency is simulated by scheduling, justice can be implemented by any scheduling
scheme that gives each process a fair chance to progress, such as round-robin schedul-
ing. Compassion, in both types of systems, is usually implemented by maintenance of
queues and use of priorities.

There is also a proof-theoretic answer to this question which is based on the fact that,
up to now, all the proposed deductive rules for proving properties under the assumption
of compassion were significantly more complex than the rule under the assumption of
justice alone. The main claim of this paper is this need not necessarily be the case, and
there exist deductive rules for verification in which the price of compassion is compa-
rable to that of justice.

1.1 The Legacy Recursive Rule

In the way of a background, we present rule F-WELL which is derived from the proof
rule presented in [15] and is representative of the different prices traditionally associated
with the distinct notions of fairness. It is modified in order to represent the transition
from the computational model of fair transition systems (used in [15]) to that of fair
discrete systems (FDS) which we use here. The rule is presented in Fig. 1.

The FDS (D\{〈pi, qi〉}) is obtained by removing from D the compassion require-
ment 〈pi, qi〉. Thus, (D\{〈pi, qi〉}) has one compassion requirement less than D.

The rule considers a system (FDS) which has both justice requirements (J )
and compassion requirements (C). It establishes for this system the temporal property
p =⇒ � q claiming that every p-state is followed by a q-state. The rule relies on
“helpful” fairness requirements F1, . . . , Fn which may be either justice or compassion
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Rule F-WELL

For a well-founded domain A : (W,�),
assertions p, q, ϕ1, . . . , ϕn,
fairness requirements F1, . . . , Fn ∈ J ∪ C,
and ranking functions Δ1 , . . . , Δn where each Δi : Σ �→ W

W1. p =⇒ q ∨
∨n

j=1 ϕj

For each i = 1, . . . , n,

W2. ϕi ∧ ρ =⇒ q′ ∨ (ϕ′
i ∧ Δi = Δ′

i) ∨
(∨n

j=1(ϕ
′
j ∧ Δi � Δ′

j)
)

W3. If Fi = 〈pi, qi〉 ∈ C then
C3. ϕi =⇒ ¬qi

C4. (D\{〈pi, qi〉}) |= (ϕi =⇒ � (pi ∨ ¬ϕi)
)

Otherwise (Fi = Ji ∈ J ),
J3. ϕi =⇒ ¬Ji

D |= (p =⇒ � q
)

Fig. 1. Legacy (recursive) rule F-WELL

requirements. Premise W3 imposes different conditions on each fairness requirement
Fi according to whether Fi is a compassion or a justice requirement.

Consider first the special case in which all the helpful requirements are justice re-
quirements. In this case, we only invoke premise J3 as an instance of W3. For such a
case, the rule provides a real reduction by establishing a temporal property, based on
premises which are all first-order.

On the other hand, if some of the helpful requirements are compassionate, then some
of the premises will include instances of C3 and C4. In this case, some of the premises
are temporal and have a syntactic form similar to that of the conclusion. In such a case,
one may ask whether this is not a circular rule in which the premises are not necessarily
simpler than the conclusion. As observed above, the rule is not really circular because
the premise C4 requires the establishment of a similar temporal property but over a
system with fewer compassion requirements. So while the methodology is still sound, it
appears cumbersome and its application often requires explicit induction on the number
of compassion requirements in the analyzed system.

This explanation serves to illustrate that the application of this rule is significantly
more complex and cumbersome in the case that we have compassion requirements, and
the situation is mush simpler if all the fairness requirements are of the justice type. We
refer to this phenomenon by saying that the application of this rule is recursive in the
presence of compassion requirements.

1.2 A New Flat Rule

The main result of this paper is based on a new deductive rule for response properties
which does not need any recursion in order to handle compassion requirements. The
rule, called RESPONSE, is presented in Fig. 2.

For simplicity, we presented the rule for the case that the system contains only com-
passion requirements but no justice requirements. This is not a serious restriction since



236 A. Pnueli and Y. Sa’ar

Rule RESPONSE

For a well-founded domain A : (W, �),
assertions p, q, ϕ1, . . . , ϕn,
compassion requirements 〈p1, q1〉, . . . , 〈pn, qn〉 ∈ C,
and ranking functions Δ1 , . . . , Δn where each Δi : Σ �→ W

R1. p =⇒ q ∨
∨n

j=1(pj ∧ ϕj)

For each i = 1, . . . , n,
R2. pi ∧ ϕi ∧ ρ =⇒ q′ ∨

∨n
j=1(p

′
j ∧ ϕ′

j)

R3. ϕi ∧ ρ =⇒ q′ ∨ (ϕ′
i ∧ Δi = Δ′

i) ∨
∨n

j=1(p
′
j ∧ ϕ′

j ∧ Δi � Δ′
j)

R4. ϕi =⇒ ¬qi

p =⇒ � q

Fig. 2. Deductive rule RESPONSE

any original justice requirement J ∈ JD can be represented by an equivalent compas-
sion requirement 〈1, J〉. Similarly to the previous version of this rule, the rule relies
on a set of premises guaranteeing that a computation which contains a p-state that is
not followed by a q-state leads to an infinite chain of descending ranks. Since the ranks
range over a well-founded domain A : (W, �), this leads to a contradiction.

In view of the simple form of the rule, it appears that, in many cases, the study
and analysis of fair discrete systems can concentrate on the treatment of compassion
requirements, and deal with justice requirements as a special case of a compassion
requirement. This does not imply that we suggest giving up the class of justice require-
ments altogether. For modeling and implementation of reactive systems, we should keep
these two classes of fairness requirements distinct. However, the main message of this
paper is that, when verifying temporal properties of FDS’s, the treatment of compas-
sion requirements is conceptually not more complex than the treatment of justice re-
quirements. Computationally, though, justice is simpler in the same way that checking
emptiness of generalized Büchi automata is simpler than checking emptiness of Street
automata.

The new rule has been implemented in the theorem prover PVS [18]. In fact, it has
been added as an additional rule (and associated strategy) within the PVS-based tem-
poral prover TLPVS [19]. In order to do so, we had to prove the soundness of the RE-
SPONSE rule within PVS.

The rest of the paper is organized as follows. In Section 2 we introduce the com-
putational model of fair discrete systems with its related notions of fairness. We then
illustrate the application of the new rule to three examples of increasing complexity
in Section 3. The soundness of the rule is stated and proved in Section 4. Section 5
discusses the question of completeness. For finite-state systems, we present a construc-
tive proof of completeness which can be used in order to obtain the auxiliary con-
structs required for an application of the rule. For infinite-state systems, we sketch
a proof of completeness which is based on a reduction to the proof of completeness
of rule F-WELL, as presented in [15]. Finally, in Section 6 we discuss some related
work.
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2 The Computational Model

As a computational model, we take a fair discrete system (FDS) S = 〈V, Θ, ρ, J , C〉,
where

• V — A set of system variables. A state of S provides a type-consistent interpreta-
tion of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in an D-successor state s′ ∈ Σ. For a subset
U ⊆ V we define pres(U) as

∧
v∈U (v′ = v). We assume that the system can

always idle, that is, we assume that ρ has the disjunct pres(V ).
• J — A set of justice (weak fairness) requirements (assertions); A computation

must include infinitely many states satisfying each of the justice requirements.
• C — A set of compassion (strong fairness) requirements: Each compassion require-

ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ. A computation of an FDS

S is an infinite sequence of states σ : s0, s1, s2, ..., satisfying the requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For each � = 0, 1, ..., state s�+1 is a D-successor of s�. I.e., 〈s�, s�+1〉

|= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as s�+1[v].
• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion: for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

A state s is called accessible if there exists a path of ρ-steps leading from some initial
state to s.

A system with no compassion requirements is called a just discrete system (JDS). A
system with no justice requirements is called a compassionate discrete system (CDS).
As previously observed, every FDS is equivalent to a CDS. Therefore, we do not lose
generality if we present the verification rule RESPONSE for CDS’s.

As a specification language specifying properties of systems we use linear temporal
logic (LTL) as presented, for example in [16]. In particular, we are interested in response
formulas of the form p =⇒ � q (abbreviating � (p → � q)). This formula states that
every p-state is followed by a q-state. Given an FDS D and an LTL formula ϕ, we say
that ϕ is valid over D (is D-valid) if every computation of D satisfies ϕ.

Reconsider rule RESPONSE as presented in Fig. 2. The rule assumes a well founded
domain A : (W, �). Such a domain consists of a non-empty set W and a partial order �
over W , such that there does not exists an infinite descending chain α0 � α1 � a2 �
· · · , of elements ai ∈ W . The rule establishes the validity of the response property
p =⇒ � q over a CDS D, where p and q are assertions (first-order state formulas).
In order to do so, the rule focuses on a list of (not necessarily disjoint) compassion
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requirements 〈p1, q1〉, . . . 〈pn, qn〉 ∈ C. With each compassion requirement 〈pi, qi〉 we
associate a helpful assertion ϕi and a ranking function Δi : Σ 
→ W , mapping states
of D into elements of A.

One of the differences between the application of rule RESPONSE and that of rule
F-WELL is that, in applications of F-WELL, the helpful assertions are typically dis-
joint. That is, every state satisfies at most one helpful assertion. In applications of rule
RESPONSE there is typically an overlap among the helpful assertions. Typically, for a
compassion requirement 〈pi, qi〉, where pi is not identically true, every state satisfying
ϕi ∧ ¬pi satisfies at least one more helpful assertion ϕj for j �= i.

3 Examples of Verification

In this section we present three examples illustrating the application of rule RESPONSE

to proofs of response properties of simple programs. In all cases we assume that the
programs are represented as CDS in which we encoded the justice requirements as de-
generate compassion requirement of the form 〈1, J〉.

Example 1 (Conditional Termination)
Consider program COND-TERM presented in Fig. 3.

x, y : natural init x = 0⎡

⎢
⎢
⎣

�1 : while y > 0 do[
�2 : x := {0, 1}
�3 : y := y + 1 − 2x

]

�4 :

⎤

⎥
⎥
⎦

Fig. 3. Conditionally Terminating Program COND-TERM

This program has three standard justice requirements J1, . . . , J3, associated with the
statements �1, . . . , �3. The justice requirement associated with �i is Ji : ¬at−�i which
requires that the program makes infinitely many visits to a location which is differ-
ent from �i, thus guaranteeing that execution does not get stuck at location �i. Such
a requirement is necessary in the context of concurrent programs. In addition to these
three justice requirements, we also append to the system the compassion requirement
〈at−�3 ∧ x = 0, 0〉, requiring that there will be only finitely many states satisfying
at−�3 ∧ x = 0. This implies that, from a certain point on, all visits to �3 must be with
a positive value of x. Obviously, under these fairness requirements, program COND-
TERM must terminate.

To prove this fact, using rule RESPONSE, we choose the following constructs for
n = 4, where Fi is the i’th compassion requirement appearing in the list:

i Fi ϕi Δi

1 〈1, ¬at−�1〉 at−�1 (y, 2)
2 〈1, ¬at−�2〉 at−�2 ∧ y > 0 (y, 1)
3 〈1, ¬at−�3〉 at−�3 ∧ y > 0 ∧ x = 1 (y, 0)
4 〈at−�3 ∧ x = 0, 0〉 at−�1..3 ∧ y ≥ at−�2,3 ∧ x ∈ {0, 1} (0, 0)
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As assertions p and q we take at−�1 and at−�4, respectively. The well-founded domain
is the domain of pairs of natural numbers. The application of this rule already demon-
strates the phenomenon of overlap among the helpful assertions. For example, every
state satisfying ϕ4 satisfies also ϕi for some i ∈ [1..3].

The validity of the premises of rule RESPONSE for this choice has been verified using
the theorem prover PVS [18]. ��

Next we consider the example of mutual exclusion by semaphores.

Example 2 (Muxsem)
Consider program MUX-SEM presented in Fig. 4.

local y : boolean init y = 1

n

i=1
P [i] ::

⎡

⎢
⎢
⎢
⎢
⎣

loop forever do⎡

⎢
⎢
⎣

�1 : NonCritical
�2 : request y
�3 : Critical
�4 : release y

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎦

Fig. 4. Mutual Exclusion by Semaphores. Program MUX-SEM.

For this program we wish to prover the response property

at−�2[1] =⇒ � at−�3[1]

To prove this property, using rule RESPONSE, we choose the following constructs:

i Fi ϕi Δi

1 〈at−�2[1] ∧ y, at−�3[1]〉 at−�2[1] 0
(3, j), j > 1 〈1, ¬at−�3[j]〉 at−�2[1] ∧ at−�3[j] 2
(4, j), j > 1 〈1, ¬at−�4[j]〉 at−�2[1] ∧ at−�4[j] 1

We also use the following auxiliary invariant:

ϕ : y +
n∑

i=1

at−�3,4[i] = 1

��

Finally, we consider the example of dining philosophers.

Example 3 (Dining Philosophers)
Consider program DINE-PHIL presented in Fig. 5.
For this program we wish to prove the response property

at−�1[2] =⇒ � at−�3[2]
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local f : array [1..n] of boolean init f = 1

n−1

i=1
P [i] ::

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

loop forever do⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�0 : NonCritical
�1 : request f [i]
�2 : request f [i + 1]
�3 : Critical
�4 : release f [i]
�5 : release f [i + 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

‖ P [n] ::

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

loop forever do⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�0 : NonCritical
�1 : request f [1]
�2 : request f [n]
�3 : Critical
�4 : release f [1]
�5 : release f [n]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 5. Dining Philosophers. Program DINE-PHIL.

which captures the property of accessibility for process P [2]. According to this property,
whenever P [2] exits its non-critical section �0, it will eventually enter its critical section
at location �3.

In order to enumerate the fairness requirements (as well as transitions) for this system
we use the indexing scheme (j, k), where j : 1..n ranges over process indices, and
k : 0..5 ranges over locations. To prove this property, using rule RESPONSE, we choose
the following constructs:

(j, k) F(j,k) ϕ(j,k) Δ(j,k)

(2, 2) 〈at−�2[2] ∧ f [3], at−�3[2]〉 at−�2[2] 0
(j : [3..n], k : [3..4]) 〈1,¬at−�k[j]〉 at−�k[j] ∧

∧j−1
i=2 at−�2[i] (0, j, 5 − k)

(j : [3..n − 1], 2) 〈at−�2[j] ∧ f [j + 1], at−�3[j]〉
∧j

i=2 at−�2[i] (0, j, 3)
(n, 5) 〈1,¬at−�5[n]〉 at−�5[n] ∧

∧n−1
i=2 at−�2[i] (0, n, 0)

(2, 1) 〈at−�1[2] ∧ f [2], at−�2[2]〉 at−�1[2] 1
(1, k : [3..5]) 〈1,¬at−�k[1]〉 at−�1[2] ∧ at−�k[1] (1, 1, 5 − k)

We also use the following auxiliary invariant:

∧n−2
i=1 (at−�3..5[i] + at−�2..4[i + 1] + f [i + 1] = 1) ∧

at−�3..5[n − 1] + at−�3..5[n] + f [n] = 1 ∧
at−�2..4[1] + at−�2..4[n] + f [1] = 1

The validity of the premises of rule RESPONSE for this choice has been verified using
the theorem prover PVS. In Appendix A of [21] we present the program in the format
accepted by TLPVS. Appendix B of [21] presents the TLPVS proof of accessibility ac-
cording to the previously presented constructs. ��

It is interesting to compare the proof of accessibility for the Dining Philosophers (pro-
gram DINE-PHIL) to previous deductive proofs of the same property. Due to the re-
cursiveness of the previous rule, such proofs would necessarily be based on an ex-
plicit induction, proceeding from process P [n] down to lower indexed processes. Such
a proof is presented, for example, in [17]. In view of this, it is fair to say that the proof
presented here is the first mechanically assisted deductive proof of accessibility for pro-
gram DINE-PHIL for arbitrary n > 1 number of processes.
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Alternative formal proofs of this property can be given, based on various abstraction
methods. For example, the papers [12] and [9] show how to prove this property, using
the network invariant method of [28].

4 Soundness of the Rule

We will now prove the soundness of rule RESPONSE for proving the response property
p =⇒ � q.

Claim 1. Rule RESPONSE is sound. That is, if the premises of the rule are valid over an
CDS D, then so is the conclusion.

Proof
Assume, for a proof by contradiction, that the premises of the rule are valid but the con-
clusion is not. This means that there exists a computation σ : s0, s1, . . . and a position
j ≥ 0 such that sj |= p and no state sk, for k ≥ j satisfies q. With no loss of generality,
we can take j = 0.

According to premises R1 and R2 and the assumption that no state satisfies q, any
state sr satisfies pi ∧ϕi for some i ∈ [1..n]. Since there are only finitely many different
i’s, there exists a cutoff index t ≥ 0 such that for every i and r ≥ t, sr |= pi ∧ ϕi iff σ
contains infinitely many (pi ∧ ϕi)-positions.

Consider position r1 = t. Choose i1 to be the index such that sr1 |= pi1 ∧ ϕi1 .
According to R3 and the assumption that σ contains no q-position, then either ϕi1 holds
at all positions r ≥ r1, or there exists a position r2 ≥ r1 and an index i2 such that
sr2 |= pi2 ∧ ϕi2 and Δi1(sr1) � Δi2(sr2). We will show that ϕi1 cannot hold at all
positions r ≥ r1.

If ϕi1 holds continuously beyond r1, then due to premise R4 so does ¬qi1 . This
violates the requirement of compassion 〈pi1 , qi1〉, since pi1 ∧ ϕi1 holding at r1 ≥ t
implies that pi1 ∧ ϕi1 (and therefore pi1 ) holds at infinitely many positions.

We conclude that there exists a position r2 ≥ r1 and an index i2 such that sr2 |=
pi2 ∧ ϕi2 and Δi1(sr1) � Δi2 (sr2).

We now repeat the argument previously applied to i1 in order to conclude the exis-
tence of a position r3 ≥ r2 and an index i3 such that sr3 |= pi3 ∧ ϕi3 and Δi2(sr2) �
Δi3(sr3).

Continuing in this manner, we derive an infinite sequence such that

Δi1(sr1) � Δi2 (sr2) � Δi3(sr3) � · · ·

which is impossible due to the well-foundedness of A.
We conclude that there cannot exist a computation σ violating the response property

p =⇒ � q if the premises of rule RESPONSE are all valid.

This proof of soundness has been formalized and mechanically verified, using PVS. In
Appendix C of [21] we present the PVS theory of a variant of the rule. Appendix D
presents the proof of soundness of this variant.
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5 Completeness of the Rule

In this section we consider the completeness of rule RESPONSE. Completeness means
that, whenever a response property p =⇒ � q is valid over a CDS D, there exist aux-
iliary constructs consisting of a list of compassion requirements 〈p1, q1〉, . . . , 〈pn, qn〉
and associated lists of helpful assertions ϕ1, . . . , ϕn and ranking functions Δ1, . . . , Δn

which, together, satisfy the premises of rule RESPONSE.

5.1 Finite-State Systems

We consider first the case of finite-state systems. Here, we actually present an algorithm
that produces the auxiliary constructs for the case that the CDS D satisfies the response
property p =⇒ � q.

We assume that the reader is familiar with the rudiments of model checking. In
particular, we will be using the following formulas as representing elementary model-
cheking computations:

• For assertions p and q, the formula E(pSq) captures the set of all states that are
reachable from a q-state by a (ρ-)path all of whose states, except possibly the first,
satisfy q. In this expression we use the Since temporal operator S . A special case
is E � q = E(1Sq) characterizing all states that are reachable from a q-state.

• The formula E(pU q) captures the set of states which originate a path leading to a
q-state, such that all the states in the path, except possibly the last, satisfy p.

Model Checking Response Under Compassion. Consider a finite-state CDS D and a
response property p =⇒ � q. The following algorithm can be used in order to model
check whether the response property is valid over D.

Algorithm mc resp(D, p, q)
Let X := E((¬q)S (accessibleD ∧ p ∧ ¬q))
Fix(X)

Let X := X ∧
∧n

i=1(¬pi ∨ E(X U (X ∧ qi)))
end-Fix(X)
if (X = 0) then return 1 else return 0

The algorithm contains several expressions using the model-checking formulas intro-
duced above. The expression accessibleD = E � Θ captures the set of all accessible
states within CDS D. The expression E((¬q)S (accessibleD ∧ p ∧ ¬q)) describes all
states which are reachable from an accessible p-state by a finite q-free path. Finally,
the expression E(X U (X ∧ qi)) describes all states from which there exists an X-path
within D leading to a qi-state.

Thus, the algorithm places in X the set of all states which are reachable from an
accessible p-state via a q-free path. Then it successively remove from X all pi-states
which do not initiate an X-path leading to a qi-state.

Finally, the property is D-valid iff the final value of X is empty.
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Extracting the Auxiliary Constructs. We will now present an algorithm which ex-
tracts a deductive proof according to rule RESPONSE from a successful model checking
verification of a response property p =⇒ � q. The algorithm can be viewed as an
interleaving of algorithm mc resp interspersed with steps that incrementally construct
ranks {1, . . . , f} and, for each rank i ∈ [1..f ], identifies an associated compassion
requirement 〈pi, qi〉, and a helpful assertion ϕi.

Algorithm Extract constructs
0 : Let X := E((¬q)S (accessibleD ∧ p ∧ ¬q))
1 : Let d := 0
2 : fix(X)⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 : For i ∈ [1...n] do⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 : Let ψ := X ∧ ¬E(X U (X ∧ qi))
5 : If ψ ∧ pi �= 0 then⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 : Let d := d + 1
7 : Let Kd := ψ ∧ pi

8 : Let ϕd := E(ψ S (ψ ∧ pi))
9 : Let Fd := (pi, qi)

10 : Let Δd := d
11 : Let X := X ∧ ¬Kd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In line 4 we compute in ψ the set of all X-states from which there exists no X-path
leading to a qi-state. In line 5 we check whether there exists a pi-state belonging to ψ.
If we find at least one such state then we have discovered a new assertion ϕd. In line 7
we place in Kd the set of states which form the kernel of the newly discovered assertion.
In line 8 we define ϕd to consist of all the states reachable from a pi-state by a ψ-path.
In lines 9 and 10 we define Fd and Δd to be (pi, qi) and d, respectively. Finally, in line
11 we remove from X all states satisfying ψ ∧ pi = pd ∧ ϕd = Kd.

The following claim states the correctness of this extraction algorithm.

Claim 2. If the response property p =⇒ � q is valid over CDS D, then Algorithm
Extract constructs produces auxiliary constructs which satisfy the premises of rule
RESPONSE.

Proof
Assume that the response property p =⇒ � q is valid over CDS D, and we successfully
apply Algorithm Extract constructs. Let us denote by X0 ⊃ X1 ⊃ · · · ⊃ Xf−1 ⊃
Xf = 0 the successive values assumed by variable X in the application of the al-
gorithm. Note that we view the values of the variables appearing in the program as
assertions (represented as BDD’s) as well as the sets of state defined by these assertions.
For example, Xf = 0 means that this assertion is equivalent to false and also that it
denotes the empty set.

Note that X0 denotes the set of pending states. These are the states that can be
reached from an accessible p-state by a q-free path. Observe that the successor of an
X0-state is either another X0-state, or is a state satisfying q. Also note that, for each
r = 1, . . . , f, Xr = Xr−1 − Kr = Xr−1 − (pr ∧ ϕr). We will consider in turn each of
the premises and show that it holds for the extracted constructs.
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Premise R1 claims that every (accessible) p-state s satisfies q or pj ∧ ϕj , for some
j ∈ [1..f ]. Indeed, if s does not satisfy q, it belongs to X0, and since all X0-states are
eliminated by the algorithm, s must belong to some Kj = (pj ∧ ϕj).

Premise R2 requires that every successor of an (accessible) state s that satisfies pi∧ϕi

must satisfy q or pj ∧ ϕj for some j ∈ [1..f ]. Obviously state s belongs to X0. Let sb

be any successor of s. As previously observed, sb must satisfy q or belong to X0. In the
latter case, by an argument similar to the one presented for premise R1, sb must belong
to Kj = (pj ∧ ϕj), for some j ∈ [1..f ].

Premise R3 considers an (accessible) state sa that satisfies ϕi and its successor sb. It
requires showing that sb satisfies q, or satisfies ϕi and has the same rank as sa, or satis-
fies pj ∧ ϕj for some j and has a rank lower than that of sa. Since, in our construction,
every state that satisfies ϕr has a rank Δr = r, this is equivalent to requiring that sb

must satisfy q or ϕi or pj ∧ ϕj for some j < i. The fact that s belongs to ϕi implies
that s can be reached from a pi-state by a Xi−1-path π such that no state in π initiates
an Xi−1-path leading to a qi-state. Consider sb the successor of sa. If sb belongs to
Xi−1, then it satisfies ϕi. Otherwise, sb may satisfy q which is also acceptable by R3.
The remaining option is that sb belongs to X0 − Xi−1. In this case, sb must have been
removed from X in some earlier stage and, therefore must satisfy pj ∧ ϕj for some
j < i.

Finally, we consider premise R4 which requires showing that every accessible ϕi-
state s cannot satisfy qi. By the definition of ϕi, s can be reached from a pi-state by a
Xi−1-path π such that no state in π initiates an Xi−1-path leading to a qi-state. Since s
itself is a member of π, it cannot satisfy qi.

5.2 The General Case

Next, we consider the general case of systems with potentially infinitely many states.
Here, we can only claim relative completeness. Completeness is relative to assertional
validity. That is, we prove that if the temporal conclusion is valid over a CDS, then
there exist appropriate constructs expressible in an assertional language L such that the
premises of the rule are assertionally valid ,i.e. state valid. Furthermore, as shown in
[26], the language L should contain the expressive power of the μ-calculus over the
underlying domain.

The approach we present here for establishing this relative completeness is based on
a reduction of rule RESPONSE to the legacy rule F-WELL which, as shown in [15], is
complete relative to assertional validity.

Claim 3. Rule RESPONSE is complete relative to assertional validity for proving re-
sponse properties of arbitrary CDS’s.

Proof Sketch
Assume that the response property p =⇒ � q is valid over the CDS D. We prove that
there exist constructs satisfying the premises of rule RESPONSE. The proof is by induc-
tion on the number of compassion requirements in CDS D. Let D contain C compassion
requirements. Assume by induction that the theorem is correct for all systems with a
number of compassion requirements that is smaller than C. We invoke the complete-
ness theorem for rule F-WELL which has been established in [15]. This yields constructs
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which satisfy the premises of rule F-WELL. In particular, for each i ∈ [1..n], premise
C4 guarantees the validity of the entailment Di |= (ϕi =⇒ � (pi ∨ ¬ϕi)), where CDS

Di stands for D\{〈pi, qi〉}, and is obtained by removing the compassion requirement
〈pi, qi〉 from D.

Since each Di has fewer compassion requirements than C, we apply the complete-
ness claim of rule RESPONSE assumed by induction. This yields the identification
of compassion requirements F i

1, . . . , F
i
ni and their associated helpful assertions ϕi

1,
. . . , ϕi

ni and ranking functions Δi
1, . . . , Δ

i
ni . We are now ready to identify the con-

structs necessary for the proof for CDS D.
These consist of the compassion requirements F1, . . . , Fn associated with the help-

ful assertions ϕ1, . . . , ϕn, and the ranking functions (Δ1, 0), . . . , (Δn, 0). The ranking
functions are obtained by lexicographic tuples formed by padding the rankings Δi on
the right by zeros.

In addition, for each i = 1, . . . , n, we add the compassion requirements F i
1, . . . , F

i
ni

and their associated helpful assertions ϕi ∧ ϕi
1, . . . , ϕi ∧ ϕi

ni and ranking functions
(Δi, Δ

i
1), . . . , (Δi, Δ

i
ni). Note that the helpful assertions are obtained by conjuncting

the original helpful assertions with ϕi, and the ranking functions are obtaining by a
lexicographic tuple that prefixes the original ranking with Δi.

The entire treatment in this paper focused on the special progress property of response.
However, as shown in [11], once we know how to verify response properties, we can
use the same methodology for proving an arbitrary LTL property. Let ϕ be an arbitrary
LTL formula. In order to verify D |= ϕ, it is sufficient to verify the response property
(D ‖| T [¬ϕ]) |= (Θ =⇒ � 0), where T [¬ϕ] is a temporal tester whose computations
are all state sequences that satisfy ¬ϕ. This tester is composed in parallel with D to
form a CDS whose computations are all computations of D which violate ϕ.

6 Related Work

There has been much work dealing with deductive verification of liveness properties
under fairness. However, only a small fraction of this work considered compassion and
suggested direct approaches for dealing with this special kind of fairness. In most cases,
fairness has been reduced away, often by coupling it with the temporal property to be
proven. This is the standard treatment of multiple justice requirements, and certainly
that of compassion, in model checking, in particular, the automata theoretic approach
in which the property is described by a non-deterministic Büchi automata. We refer the
reader to [27] and [4] for a description of this reduction method.

The key reference upon which this work improves is [15] which formulated the first
complete rule for liveness under compassion. Much work has been done on the deduc-
tive verification of liveness properties inspired by the STeP project [14]. Representative
contributions of this work is presented in [25] and [3]. However, very little attention
has been paid in this work to the special case of compassion, which has always been
considered a specially difficult case.

Much work has also been invested in methods for automatically finding ranking func-
tions for proving liveness properties and termination. Representative contributions are
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[8], [5], and [2]. Again, the context of this work when addressing systems with fairness
has usually been that of justice.

Another approach to the verification of liveness properties can be based on abstrac-
tion. In this approach, we abstract a system into a finite-state system and verify the
property on the abstract system. As pointed out in [10], the usual state abstraction if
often inadequate in order to capture liveness properties. Therefore the paper introduces
the notion of ranking abstraction which abstracts also changes in ranking. This concept
has been further elaborated in [1]. Another solution to the problem has been proposed
by Podelski and Rybalchenko who in [23] extend predicate abstraction ([24]) by em-
ploying predicates over program transitions, rather than states. In this way, the abstrac-
tion preserves the argument for proving termination (general liveness is handled by a
reduction to fair termination). An elaboration of this work is [7], where Cook, Podelski,
and Rybalchenko present a framework for verifying termination, which formalizes dual
refinements – of transition predicate abstraction and of transition invariants [22]. The
framework as presented in [7] lacks any notion of fairness. Therefore, [20,6] extend it
to allow for fairness requirements.
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Abstract. Abstraction refinement-based model checking has become a standard
approach for efficiently verifying safety properties of hardware/software systems.
Abstraction refinement algorithms can be guided by counterexamples generated
from abstract transition systems or by fixpoints computed in abstract domains.
Cousot, Ganty and Raskin recently put forward a new fixpoint-guided abstraction
refinement algorithm that is based on standard abstract interpretation and improves
the state-of-the-art, also for counterexample-driven methods. This work presents
a new fixpoint-guided abstraction refinement algorithm that enhances the Cousot-
Ganty-Raskin’s procedure. Our algorithm is based on three main ideas: (1) within
each abstraction refinement step, we perform multiple forward-backward abstract
state space traversals; (2) our abstraction is a disjunctive abstract domain that is
used both as an overapproximation and an underapproximation; (3) we maintain
and iteratively refine an overapproximation M of the set of states that belong to
some minimal (i.e. shortest) counterexample to the given safety property so that
each abstract state space traversal is limited to the states in M .

1 Introduction

Abstraction techniques are widely used in model checking to blur some properties of the
concrete model and then to design a reduced abstract model where to run the verification
algorithm [3]. Abstraction provides a successful solution to the state-explosion problem
that arises in model checking systems with parallel components [4]. CounterExample-
Guided Abstraction Refinement (CEGAR), pionereed by Clarke et al. [5], is become
the standard methodology for applying abstraction to model checking. The basic idea
of the CEGAR approach is as follows: if the abstract model checker return “YES”
then the system satisfies the property; otherwise the abstract model checker returns an
abstract counterexample to the property, that is checked to determine whether it cor-
responds to a real counterexample or not; it it does then return “NO” otherwise refine
the abstract model in order to remove that spurious counterexample. Many different
algorithms that implement the CEGAR approach have been suggested. Most CEGAR-
based model checkers — like BLAST [16,17], MAGIC [5,2] and SLAM [1] — deal
with counterexamples that are paths of abstract states, i.e. paths in an abstract transi-
tion system defined by an abstract state space and an abstract transition relation. Most
often, model checkers aim at verifying so-called safety properties, i.e., states that can
be reached from an initial state are always safe. Hence, safety verification consists in
automatically proving that systems cannot go wrong.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 248–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Recently, Cousot, Ganty and Raskin [10] (more details are given by the PhD the-
sis [12]) put forward a new fixpoint-guided abstraction refinement algorithm, here
called CGR, for checking safety properties. The CGR algorithm is based on a num-
ber of interesting features. (1) CGR maintains and refines generic abstract domains that
are defined within the standard abstract interpretation framework, as opposed to most
other CEGAR-based algorithms that consider as abstract models a partition of the state
space. (2) The refinement of the current abstract domain A is driven by the abstract
fixpoint computed within A and not by a path-based counterexample. (3) CGR com-
putes overapproximations of both least and greatest fixpoints, and these two analyses
are made iteratively synergic since the current abstract fixpoint computation is limited
by the abstract value provided by the previous abstract fixpoint computation.

We isolated a number of examples where the behavior of the CGR algorithm could
be improved, in particular where one could abstractly conclude that the system is safe
or unsafe without resorting to abstraction refinements. This work puts forward a new
fixpoint-guided abstraction refinement algorithm for safety verification, called FBAR
(Forward-Backward Abstraction Refinement), that is designed as an enhancement of
the CGR procedure that integrates some new ideas.

(i) FBAR maintains and refines a disjunctive abstract domain μ that overapproxi-
mates any set S of states by μ(S) ⊇ S. While a generic abstract domain can be
viewed as a set of subsets of states that is closed under arbitrary intersections, a
disjunctive abstract domain must also be closed under arbitrary unions. The ad-
vantage of dealing with a disjunctive abstraction μ is given by the fact that μ can
be simultaneously used both as an over- and under-approximating abstraction. As
an additional advantage, it turns out that disjunctive abstractions can be efficiently
represented and refined, as shown in [20].

(ii) FBAR computes and maintains an overapproximation M of the set of states that
occur in some minimal safety counterexample. A safety counterexample is simply
a path from an initial state to an unsafe state. However, counterexamples may be
redundant, namely may contain shorter sub-counterexamples. A counterexample
is thus called minimal when it cannot be reduced. It can be therefore helpful to
focus on minimal counterexamples rather than on generic counterexamples. In
FBAR, abstract fixpoints are always computed within the overapproximation M
and other than being used for safety checking they are also used for refining M .

(iii) Each abstraction refinement step in FBAR consists of two loops that check
whether the system can be proved safe/unsafe by using the current abstraction.
The safety loop is based on a combined forward-backward abstract exploration
of the portion of the state space limited by M . This combined forward-backward
abstract computation was first introduced by Cousot [6]. The unsafety loop relies
on an iterated combination of two abstract fixpoints: the first one is an overap-
proximation of the states in M that are globally safe and is computed by using the
current abstraction μ as an overapproximation; the second one is instead an under-
approximation of the states in M that can reach an unsafe state and is computed
by viewing μ as an underapproximating abstraction.

We prove that FBAR is a correct algorithm for safety verification and that, analo-
gously to CGR, it terminates when the concrete domain satisfies the descending chain
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condition. We formally compare FBAR and CGR by showing that FBAR improves
CGR in the following sense: if CGR terminates on a given disjunctive abstraction μ
with no refinement then FBAR also terminates on μ, while the converse is not true.

Related Work. We discussed above the relationship with the CGR algorithm in [10].
Gulavani and Rajamani [15] also describe a fixpoint-driven abstraction refinement algo-
rithm for safety verification. This algorithm relies on using widening operators during
abstract fixpoint computations. When the abstract fixpoint is inconclusive, this algo-
rithm does not refine the abstract domain but determines which iteration of the abstract
fixpoint computation was responsible of the loss of precision so that widening is re-
placed with a concrete union and the abstract computation is re-started from that iter-
ation. Manevich et al. [18] put forward an abstraction refinement algorithm for safety
verification that runs over disjunctive abstract domains. However, this algorithm does
not compute abstract fixpoints but instead computes paths of abstract values so that the
abstraction refinement is based on counterexamples defined as sequences of abstract
values.

2 Background

Notation and Orders. Let Σ be any set. If S ⊆ Σ then ¬S denotes the complement
set Σ � S when Σ is clear from the context. A set S of one-digit integers is often
written in a compact form without brackets and commas like S = 1357 that stands for
{1, 3, 5, 7}. Part(Σ) denotes the set of partitions of Σ. If R ⊆ Σ × Σ is any relation
then R∗ ⊆ Σ×Σ denotes the reflexive and transitive closure of R. Posets and complete
lattices are denoted by P≤ where ≤ is the partial order. A function f between complete
lattices is additive (co-additive) when f preserves least upper (greatest lower) bounds.
If f : P → P then lfp(f) and gfp(f) denote, resp., the least and greatest fixpoints of
f , when they exist.

Abstract Domains. In standard Cousot and Cousot’s abstract interpretation, abstract
domains (or abstractions) can be equivalently specified either by Galois connection-
s/insertions through α/γ abstraction/concretization maps or by upper closure operators
(uco’s) [7]. These two approaches are equivalent, modulo isomorphic representations of
domain’s objects. The closure operator approach has the advantage of being indepen-
dent from the representation of domain’s objects and is therefore appropriate for rea-
soning on abstract domains independently from their representation. Given a state space
Σ, the complete lattice ℘(Σ)⊆, i.e. the powerset of Σ ordered by the subset relation,
plays the role of concrete domain. Let us recall that an operator μ : ℘(Σ) → ℘(Σ) is a
uco on ℘(Σ), that is an overapproximating abstract domain of ℘(Σ), when μ is mono-
tone, idempotent and extensive (i.e., overapproximating:X ⊆ μ(X)). Each closure μ is
uniquely determined by its image img(μ) = {μ(X) ∈ ℘(Σ) | X ∈ ℘(Σ))} as follows:
for any X ⊆ Σ, μ(X) = ∩{Y ∈ img(μ) | X ⊆ Y }. On the other hand, a set of subsets
A ⊆ ℘(Σ) is the image of some closure on ℘(Σ) iff A is closed under arbitrary inter-
sections, i.e. A = Cl∩(A) def= {∩S | S ⊆ A} (in particular, note that Cl∩(A) always
contains Σ = ∩∅). This makes clear that an abstract domain μ guarantees that for any
concrete set of states X , μ(X) is the best (i.e., more precise) overapproximation of X
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in μ. We denote by Abs(Σ) the set of abstract domains of ℘(Σ)⊆. Capital letters like
A, A′ ∈ Abs(Σ) are sometimes used for denoting abstract domains. By a slight abuse
of notation, a given abstract domain A ∈ Abs(Σ) can be viewed and used both as a set
of subsets of Σ and as an operator on ℘(Σ) when the context allows us to disambiguate
this use. If A1, A2 ∈ Abs(Σ) then A1 is more precise than (or is a refinement of) A2
when A1 ⊇ A2. Abs(Σ)⊇ is called the (complete) lattice of abstract domains of ℘(Σ).

Let f : ℘(Σ) → ℘(Σ) be a concrete semantic function, like a predicate trans-
former, and, given an abstraction μ ∈ Abs(Σ), let f � : μ → μ be a correspond-
ing abstract function on μ. Then, f � is a correct approximation of f in μ when for
any X ∈ ℘(Σ), μ(f(X)) ⊆ f �(μ(X)). The abstract function fμ : μ → μ defined as
fμ def= μ ◦ f is called the best correct approximation of f in μ because for any correct

approximation f �, for any X ∈ μ, fμ(X) ⊆ f �(X) always holds.

Disjunctive Abstract Domains. An abstract domain μ ∈ Abs(℘(Σ)) is disjunctive
(or additive or a powerset abstract domain) when μ is additive, i.e. μ preserves arbi-
trary unions. This happens exactly when the image img(μ) is closed under arbitrary
unions, i.e., μ = Cl∪(μ) def= {∪S | S ⊆ μ} (in particular, note that Cl∪(μ) always con-
tains ∅ = ∪∅). Hence, a disjunctive abstract domain is a set of subsets of states that
is closed under both arbitrary intersections and unions. The intuition is that a disjunc-
tive abstract domain does not loose precision in approximating concrete set unions. We
denote by dAbs(℘(Σ)) ⊆ Abs(℘(Σ)) the set of disjunctive abstract domains. A dis-
junctive abstraction μ can be specified just by defining how any singleton {x} ⊆ Σ is
approximated by μ({x}), because the approximation of a generic subset X ⊆ Σ can
be obtained through set unions as μ(X) = ∪x∈Xμ({x}). We exploit this property for
representing disjunctive abstractions through diagrams. As an example, the following
diagram:

1 2 3 4 5 6

denotes the disjunctive abstract domain μ that is determined by the following behaviour
on singletons: μ(1) = 1, μ(2) = 12, μ(3) = 123, μ(4) = 4, μ(5) = 45, μ(6) = 6, so
that μ is the closure under unions of the set {1, 12, 123, 4, 45, 6}.

Underapproximating Abstract Domains. It turns out that a disjunctive abstract do-
main μ ∈ Abs(℘(Σ)⊆) can be also viewed as an underapproximating abstract domain,
namely an abstraction of the concrete domain ℘(Σ)⊇ where the approximation order is
reversed. Formally, this is specified by the closure μ̃ ∈ Abs(℘(Σ)⊇) that is defined as
the adjoint of μ as follows: for any X ⊆ Σ, μ̃(X) def= ∪{Y ⊆ Σ | Y = μ(Y ) ⊆ X}.
An underapproximating abstraction is thus determined by the behaviour on the sets
¬x

def= Σ � {x} because, for any X ⊆ Σ, μ̃(X) = ∩x 
∈X μ̃(¬x). For example, for
the above disjunctive abstraction μ, we have that μ̃(¬1) = 456, μ̃(¬2) = 1456,
μ̃(¬3) = 12456, μ̃(¬4) = 1236, μ̃(¬5) = 12346 and μ̃(¬6) = 12345.

Transition Systems. A transition system T = (Σ, R) consists of a set Σ of states and
a transition relation R ⊆ Σ × Σ, that is also denoted in infix notation by � . As usual
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in model checking, we assume that the relation R is total, i.e., for any s ∈ Σ there
exists some t ∈ Σ such that s � t. The set of finite and infinite paths in T is denoted by
Path(T ). For any Π ⊆ Path(T ), states(Π) ⊆ Σ denotes the set of states that occur
in some path π ∈ Π . If π ∈ Path(T ) is finite then first(π), last(π) ∈ Σ denote, resp.,
the first and last states of π.

Standard predicate transformers pre, p̃re, post, p̃ost : ℘(Σ) → ℘(Σ) are defined as
usual:

– pre(X) def= {a ∈ Σ | ∃b ∈ X. a � b};

– post(X) def= {b ∈ Σ | ∃a ∈ X. a � b};

– p̃re(X) def= ¬pre(¬X) = {a ∈ Σ | ∀b. a � b ⇒ b ∈ X};

– p̃ost(X) def= ¬post(¬X) = {b ∈ Σ | ∀a. a � b ⇒ a ∈ X}.

Let us remark that pre and post are additive while p̃re and p̃ost are co-additive. We
use the notation pre∗, p̃re∗, post∗, p̃ost∗ when the reflexive-transitive closure R∗ is
considered instead of R. Let us recall the following standard fixpoint characterizations:

pre∗(X) = lfp(λZ.X ∪ pre(Z)); post∗(X) = lfp(λZ.X ∪ post(Z));

p̃re∗(X) = gfp(λZ.X ∩ p̃re(Z)); p̃ost∗(X) = gfp(λZ.X ∩ p̃ost(Z)).

Safety Verification Problems. Let Init ⊆ Σ be a set of initial states and Safe ⊆ Σ a
set of safe states. We denote by NInit def= ¬Init the set of noninitial states and by Bad =
¬Safe the set of bad (i.e. unsafe) states. The set of reachable states is post∗(Init).
The set of states that are globally safe is p̃re∗(Safe). The set of states that can reach
a bad state is pre∗(Bad ). The set of states that can be reached only from noninitial
states is p̃ost∗(NInit). Note that pre∗(Bad) = ¬p̃re∗(Safe) and p̃ost∗(NInit) =
¬post∗(Init).

A system T is safe when any reachable state is safe, i.e. post∗(Init) ⊆ Safe , or,
equivalently, when one of the following equivalent conditions holds: Init ⊆ p̃re∗(Safe)
⇔ pre∗(Bad) ⊆ NInit ⇔ Bad ⊆ p̃ost∗(NInit). A safety verification problem is then
specified by a transition system T = 〈Σ, R, Init ,Safe〉 that also defines initial and safe
states and consists in checking whether T is safe (OK) or not (KO).

3 Cousot-Ganty-Raskin’s Algorithm

The Cousot-Ganty-Raskin’s algorithm, here denoted by CGR, is recalled in Fig. 1. In
each abstraction refinement step i ≥ 0, CGR abstractly computes two overapproxima-
tions Ri and Si of least/greatest fixpoints and a concrete value Zi+1 that is added to the
current abstract domain μi for the purpose of refining it. The correctness of CGR fol-
lows from the following three main invariants: for all i ≥ 0: (1) Zi+1 ⊆ Si ⊆ Ri ⊆ Zi;
(2) if the system is safe then post∗(Init) ⊆ Ri, i.e. Ri overapproximates the reachable
states; (3) Ri ⊆ p̃rei(Safe), i.e. Ri underapproximates the states that remain inside
Safe along paths of length ≤ i.

CGR admits a dual version, denoted by CGR�, where the transition relation is re-
versed, namely where R is replaced by R−1, Init by Bad and Safe by NInit (so that
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Data: Init initial states, Safe safe states such that Init ⊆ Safe
Data: μ0 ∈ uco(℘(Σ)) initial abstract domain such that Safe ∈ μ0

begin1
Z0 := Safe;2
for i := 0, 1, 2, ... do3

Ri := lfp(λX.μi(Zi ∩ (Init ∪ post(X))));4
if μi(Init ∪ post(Ri)) ⊆ Zi then return OK;5
else6

Si := gfp(λX.μi(Ri ∩ fpre(X));7

if μi(Init) �⊆ Si then return KO;8
else9

Zi+1 := Si ∩ fpre(Si);10

μi+1 := Cl∩(μi ∪ {Zi+1});11

end12

Fig. 1. CGR Algorithm

post and p̃re become, respectively, pre and p̃ost). Thus, while CGR performs a forward
abstract exploration of the state space through post, CGR� proceeds instead backward
through pre.

3.1 Where CGR Could Be Improved

We isolated a number of examples where the CGR algorithm could be improved.

Example 3.1. Let us consider the safety problem represented by the following diagram
that also specifies a disjunctive abstract domain μ0 ∈ Abs(℘(Σ)).

Init Bad

0 1 2 3

CGR computes the following sequence: Z0 = 012, R0 = 012, S0 = 012, Z1 =
01, R1 = 01 and then outputs OK. Let us observe that S0 = 012 because μ0(R0 ∩
p̃re(R0)) = μ0(01) = 012. Thus, CGR needs to refine the abstraction μ0 by adding
the singleton {1} to μ0. However, one could abstractly conclude that the system is safe
already through the abstraction μ0. In fact, one could abstractly explore backward the
state space by computing the following fixpoint: T0 = lfp(λX.μ0(NInit ∩ (Bad ∪
pre(X)))). Thus, T0 = 23 and since μ0(Bad ∪ pre(T0)) ⊆ T0 one can conclude that
the system is safe. Thus, the dual algorithm CGR� is able to conclude that the system
is safe with no abstraction refinement.

Along the same lines, it turns out that CGR even does not terminate when applied to
the following infinite state system, although the abstraction is finite, while a backward
abstract exploration would allow to conclude that the system is safe.
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Init Bad

i 1 · · · 4 3 2 b

In fact, CGR does not terminate because it would compute the following infinite se-
quence: Z0 = i ∪ 12345..., R0 = i ∪ 12345..., S0 = i ∪ 12345..., Z1 = i ∪ 1345...,
R1 = i ∪ 1345..., S1 = i ∪ 1345..., Z2 = i ∪ 145.... Instead, one could proceed back-
ward by computing the following abstract fixpoint: T0 = lfp(λX.μ0(NInit ∩ (Bad ∪
pre(X)))) = b ∪ 2345.... Hence, since μ0(Bad ∪ pre(T0)) ⊆ T0 we can conclude that
the system is safe. Thus, here again, CGR� is able to infer that the system is safe with
no abstraction refinement.

Let us consider now the following infinite state system.

Init Bad

i

2′

1

3′

· · ·

4′

4

· · ·

3

1′

2

b

In this case, it turns out that neither CGR nor CGR� terminate. In fact, similarly to the
above examples, it is simple to check that both CGR and CGR� would compute infinite
sequences of abstract values. However, it is still possible to derive that the system is
safe with no abstraction refinement. In fact, we can first compute the following forward
abstract fixpoint U0 = lfp(λX.μ0(Safe ∩ (Init ∪ post(X)))) = i ∪ 1234... ∪ 2′3′4′....
Then, we can explore backward starting from Bad but remaining inside U0 ∪ Bad ,
namely we compute the following backward abstract fixpoint V0 = lfp(λX.μ0((U0 ∪
Bad) ∩ (Bad ∪ pre(X)))) = b ∪ 234.... We can now conclude that the system is safe
because μ0(Bad ∪ pre(V0)) ⊆ V0. ��

Example 3.2. Let us consider the following safety problem and disjunctive abstract do-
main μ0 ∈ Abs(℘(Σ)).

Init Bad

0 1 2 3

In this case, CGR computes the following sequence: Z0 = 012, R0 = 012, S0 = 012,
Z1 = 01, R1 = 01, S1 = ∅ and then outputs KO. Thus, CGR needs to refine the ab-
straction μ0 by adding the singleton {1} to μ0. However, one could abstractly conclude
that the system is not safe already through the abstraction μ0 by viewing μ0 as an un-
derapproximating abstraction, i.e. by considering the underapproximating abstraction
μ̃0. In fact, one could abstractly explore the state space backward by computing the
following abstract fixpoint: T0 = lfp(λX.μ̃0(Bad ∪ pre(X))) = 0123. Since T0 is an
underapproximation of the set of states that can reach a bad state and T0 contains some
initial state we can conclude that the system is unsafe. ��
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These examples suggested us to design an abstraction refinement algorithm that im-
proves the CGR algorithm by integrating a combined forward-backward abstract explo-
ration of the state space and by using disjunctive abstract domains that can be exploited
both as overapproximating and underapproximating abstractions.

4 Restricted Predicate Transformers

Let M ⊆ Σ be a fixed set of states of interest. In our context, M will play the role of
a portion of the state space that limits the abstract search space of our abstraction re-
finement algorithm. Let us define the following restricted (to the states in M ) predicate
transformers preM , postM , p̃reM , p̃ostM : ℘(Σ) → ℘(Σ) as follows:

– preM (X) def= M ∩ pre(M ∩ X);

– postM (X) def= M ∩ post(M ∩ X);

– p̃reM (X) def= ¬preM (¬X) = ¬M ∪ p̃re(¬M ∪ X)
= {a ∈ Σ | ∀b. (a � b & a, b ∈ M) ⇒ b ∈ X};

– p̃ostM (X) def= ¬postM (¬X) = ¬M ∪ p̃ost(¬M ∪ X)
= {b ∈ Σ | ∀a. (a � b & a, b ∈ M) ⇒ a ∈ X}.

Thus, M -restricted predicate transformers only consider states that belong to M . In
fact, if preM , postM , p̃reM , p̃ostM are viewed as mappings ℘(M) → ℘(M) — i.e.,
both the argument and the image of the M -restricted transformers are taken as subsets
of M — then they coincide with the corresponding standard predicate transformers on
the M -restricted transition system T/M = 〈M, R/M 〉. Let us remark that, analogously
to the unrestricted case, preM , postM are additive functions and p̃reM , p̃ostM are co-
additive functions. We also consider the following fixpoint definitions:

– pre∗M (X) def= lfp(λZ. (X ∩ M) ∪ preM (Z))
= {x ∈ Σ | ∃y ∈ X. x�∗ y & states(x�∗ y) ⊆ M};

– post∗M (X) def= lfp(λZ. (X ∩ M) ∪ postM (Z))
= {y ∈ Σ | ∃x ∈ X. x�∗ y & states(x�∗ y) ⊆ M};

– p̃re∗M (X) def= gfp(λZ. (X ∪ ¬M) ∩ p̃reM (Z))
= {x ∈ Σ | ∀y. (x�∗ y & states(x�∗ y) ⊆ M) ⇒ y ∈ X};

– p̃ost∗M (X) def= gfp(λZ. (X ∪ ¬M) ∩ p̃ostM (Z))
= {y ∈ Σ | ∀x. (x�∗ y & states(x�∗ y) ⊆ M) ⇒ x ∈ X}.

Hence, we have that x ∈ pre∗M (X) iff x may reach X through a path inside M ,
while x ∈ p̃re∗M (X) iff x inside M can only reach states in X . Let us note that,
analogously to the unrestricted case, p̃re∗M (¬X) = ¬pre∗M (X) and p̃ost∗M (¬X) =
¬post∗M (X). Moreover, pre∗M (X) ⊆ pre∗(X) and post∗M (X) ⊆ post∗(X) while
p̃re∗(X) ⊆ p̃re∗M (X) and p̃ost∗(X) ⊆ p̃ost∗M (X).

Example 4.1. Consider the safety verification problem depicted in Fig. 2 where the gray
states determine the restricted space M = 0134568. It turns out that post∗M (Init) =
013468, pre∗M (Bad) = 01368, p̃ost∗M (NInit) = 2579 and p̃re∗M (Safe) = 24579.
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Init Bad

2

1

0
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4

3

7

6

9

8

Fig. 2. Restricted predicated transformers

Note, for example, that 9 ∈ post∗(Init) = 0134689 but 9 �∈ post∗M (Init). Also,
4 ∈ p̃re∗M (Safe) but 4 �∈ p̃re∗(Safe) = 257 because there is no path that begins with 4
and remains inside M . ��

Thus, when using a M -restricted predicate transformer instead of a standard (i.e. unre-
stricted) predicate transformer it is enough to consider only the states belonging to M .
It should be clear that when M is much smaller than the whole state space Σ such a
restriction to states in M may induce space and time savings.

5 Minimal Counterexamples

One main idea of our abstraction refinement algorithm consists in overapproximating
the set of states that belong to some safety counterexample, i.e. a finite path from an
initial state to a bad state. However, a counterexample π may be redundant, namely π
might contain a shorther sub-path that still is a safety counterexample. For example, in
the transition system in Fig. 2, the path π = 103688 is a safety counterexample because
it begins with an initial state and ends with a bad state although π is redundant because
it contains a sub-path π′ = 0368 that is a counterexample. Our algorithm will compute
and maintain an overapproximation of the states that belong to counterexamples that
are not reducible. Such counterexamples are called minimal counterexamples.

Let us formalize the above notions. Let T = 〈Σ, R, Init ,Safe〉 specify a safety
problem. A (safety) counterexample is a finite path π ∈ Path(T ) such that first(π) ∈
Init and last(π) ∈ Bad . A minimal counterexample is a counterexample π ∈ Path(T )
such that states(π)� {first(π), last(π)} ⊆ Safe ∩NInit . We define MinCex def= {π ∈
Path(T ) | π is a minimal counterexample}.

Assume that M is an overapproximation of the states that occur in some minimal
counterexample, i.e. states(MinCex) ⊆ M . Then, we provide a characterization of
safe systems that only considers states in M : it turns out that a system is safe iff any
state that is reachable from an initial state through a path inside M is safe.

Lemma 5.1. If states(MinCex) ⊆ M and Init ⊆ Safe then the system T is safe iff
post∗M (Init) ⊆ M ∩ Safe iff pre∗M (Bad) ⊆ M ∩ NInit .
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6 A Forward-Backward Abstraction Refinement Algorithm

The Forward-Backward Abstraction Refinement algorithm FBAR is defined in Fig. 3.
FBAR takes as input a safety verification problem T = 〈Σ, R, Init ,Safe〉 and a dis-
junctive abstraction μ0 ∈ dAbs(℘(Σ)). The main ideas and features of FBAR are
summarized in the following list.

Data: Init initial states, Safe safe states such that Init ⊆ Safe
Data: Bad = Σ � Safe bad states, NInit = Σ � Init noninitial states
Data: μ0 ∈ dAbs(℘(Σ)) initial disjunctive abstract domain such that

Safe,Bad , Init ,NInit ∈ μ0

begin1
M := Σ; U := Safe; V := NInit ; X := Safe; Y := Bad ;2
for i := 0, 1, 2, ... do3

while true do4
U ′ := lfp(λZ.μi(M ∩ U ∩ (Init ∪ post(Z))));5
if μi(M ∩ (Init ∪ post(U ′))) ⊆ U then return OK;6
M := U ′ ∪ μi(V ∩ Bad ∩ post(U ′));7
V ′ := lfp(λZ.μi(M ∩ V ∩ (Bad ∪ pre(Z))));8
if μi(M ∩ (Bad ∪ pre(V ′))) ⊆ V then return OK;9
M := V ′ ∪ μi(U

′ ∩ Init ∩ pre(V ′));10
if (U ′ = U and V ′ = V ) then break;11
U, V := U ′, V ′;12

X := M ∩ X; Y := M ∩ Y ;13
while true do14

X := X ∩ μi(M � Y );15
X ′ := gfp(λZ.μi(X ∩ fpreM (Z)));16

if Init ∩ M �⊆ X ′ then return KO;17
Y := Y ∪ eμi(M � X ′);18
Y ′ := lfp(λZ.eμi(Y ∪ preM (Z)));19
if Y ′ �⊆ NInit then return KO;20
if (X ′ = X and Y ′ = Y ) then break;21
X, Y := X ′, Y ′;22

X := X ∩ fpreM (X);23

if X = X ′ then return OK;24
μi+1 := Cl∩,∪(μi ∪ {X});25

end26

Fig. 3. FBAR Algorithm

(A) The loop at lines 4-12 computes and maintains an overapproximation M of the
states that occur in some minimal counterexample by relying on a combined for-
ward-backward abstract exploration of the state space. Such a combined forward-
backward abstract computation was first described by Cousot [6] and further
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investigated and applied in [8,9,19]. The following procedure is iterated: we start
from M ∩ Init and abstractly go forward within M through postM (line 5); then,
we come back by starting from M ∩ Bad and abstractly going backward within
M through preM (line 8). The abstract sets U and V are the results of these,
resp., forward and backward abstract fixpoint computations. The following invari-
ant properties hold (cf. Lemma 6.2 (1)): U is an overapproximation of the safe
states that can be reached through a path within M , while V is an overapproxi-
mation of the noninitial states that can reach a bad state through a path within M .
The combined forward-backward computation of U and V allows us to iteratively
refine the overapproximation M of states(MinCex) (lines 7 and 10).

(B) The OK condition at line 6 implies that post∗M (Init) ⊆ U , so that post∗M (Init) ⊆
M ∩ Safe , and therefore, by Lemma 5.1, the system is safe. Analogously, for the
“backward” OK condition at line 9.

(C) The loop at lines 14-22 computes iteratively the abstract sets X and Y as fol-
lows. X is an overapproximation of the states in M that are globally safe and
is computed at line 16 as a greatest fixpoint of the best correct approximation in
μi of p̃reM . On the other hand, Y is an underapproximation of the states in M
that can reach a bad state and is computed at line 19 as a least fixpoint of the
best correct approximation of preM w.r.t. the underapproximating abstraction μ̃i.
This is formally stated by Lemma 6.2 (3). While the sequence of computed X’s
forms a descending chain of abstract sets, the Y ’s give rise to an ascending chain
of abstract sets. These abstract computations are iterated because the abstract set
Y may help in refining X and, vice versa, X may help in refining Y . In fact,
observe that the states in M � Y form a superset of the states in M that are glob-
ally safe, so that the overapproximation X can be refined by intersection with the
abstract set μi(M � Y ). A dual reasoning holds for Y , where we exploit the
fact that μi is a disjunctive abstraction and therefore μ̃i is an underapproximating
abstraction.

(D) Since X ′ ⊇ M ∩ p̃re∗(Safe), the KO condition at line 17 implies that Init ∩M �⊆
M ∩ p̃re∗(Safe), namely that Init �⊆ p̃re∗(Safe), so that the system is unsafe.
Analogously, for the “underapproximating” KO condition at line 20.

(E) At the exit of the loop at lines 14-22, we perform a concrete step of computation at
line 23 by calculating a refiner set Ref = X ∩ p̃reM (X). In contrast to the algo-
rithm CGR where the refiner Zi+1 cannot already be in the abstraction μi, here it
may happen that X = Ref . In this case (line 24), we obtain that post∗M (Init) ⊆ X
and this allows us to conclude that the system is safe. Otherwise, Ref � X is
used to refine μi to μi+1 that is obtained by closing μi ∪ {Ref } both under in-
tersections — in order to have an abstraction — and unions — in order to have a
disjunctive abstraction.

Let us now illustrate how FBAR works on a simple finite example.

Example 6.1. Let us consider the safety verification problem represented by the follow-
ing diagram, where μ0 = Cl∪({1, 12, 3, 35, 3456, 6, 7}).
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Init Bad

2

1

4

3

6

5 7

Then, FBAR allows to derive that the system is unsafe with no refinement. In fact,
FBAR gives rise to the following “execution trace”:

[line 2]: M = 1234567; U = 123456; V = 34567; X = 123456; Y = 7;
[line 5]: U ′ = 123456;
[line 6]: 1234567 = μ0(M ∩ (Init ∪ post(U ′))) �⊆ U = 123456;
[line 7]: M = 1234567;
[line 8]: V ′ = 3567;
[line 9]: 13567 = μ0(M ∩ (Bad ∪ pre(V ′))) �⊆ V = 34567;
[line 10]: M = 13567;
[line 11]: U ′ = U & V ′ �= V ;
[line 12]: U = 123456; V = 3567;
[line 5]: U ′ = 135;
[line 6]: 1357 = μ0(M ∩ (Init ∪ post(U ′))) �⊆ U = 123456;
[line 7]: M = 1357;
[line 8]: V ′ = 357;
[line 9]: 1357 = μ0(M ∩ (Bad ∪ pre(V ′))) �⊆ V = 3567;
[line 10]: M = 1357;
[line 11]: U ′ �= U & V ′ �= V ;
[line 12]: U = 135; V = 357;
[lines 5-10]: a further iteration that does not change U ′, V ′ and M
[line 11]: U ′ = U & V ′ = V ;
[line 13]: X = 135; Y = 7;
[line 15]: X = 135;
[line 16]: X ′ = ∅;
[line 16]: Init ∩ M �⊆ X ′ ⇒ KO

Thus, FBAR needs no abstraction refinement and seven abstract fixpoint computations.
On the other hand, CGR needs three abstraction refinements and eight abstract fixpoint
computations in order to conclude that the system is unsafe. In fact, it computes the
following sequence: Z0 = 123456, R0 = 123456, S0 = 123456, Z1 = 12346, R1 =
12346, S1 = 12346, Z2 = 124, R2 = 124, S2 = 124, Z3 = 24, R3 = 24, S3 = 24
and then concludes KO.

It can be also checked that the dual algorithm CGR� needs one abstraction refine-
ment in order to conclude that the system is unsafe while in this case CGR� performs
just four abstract fixpoint computations. ��

The above described properties of the FBAR procedure are stated precisely as
follows.

Lemma 6.2. The following properties are invariant in the algorithm FBAR in Fig. 3:



260 F. Ranzato, O.R. Doria, and F. Tapparo

(1) post∗M∩Safe(Init) ⊆ U ′ ⊆ U ⊆ M & pre∗M∩NInit (Bad) ⊆ V ′ ⊆ V ⊆ M .
(2) states(MinCex) ⊆ M .
(3) M ∩ p̃re∗(Safe) ⊆ X ′ ⊆ X ⊆ M & Y ⊆ Y ′ ⊆ M ∩ pre∗(Bad).

These invariant properties allows us to show that FBAR is a correct algorithm for safety
checking.

Theorem 6.3 (Correctness). If FBAR outputs OK/KO then T is safe/unsafe.

6.1 Termination

Termination of FBAR is similar to that of CGR.

Theorem 6.4 (Termination)

(1) If μ0 is finite and there exists X ⊆ ℘(Σ) such that for all i ≥ 0, Xi ∈ X and
〈X , ⊆〉 satisfies the descending chain condition then FBAR terminates.

(2) If T is unsafe then FBAR terminates.

Hence, if the refiner sets Xi’s at line 23 all belong to a subset of the state space that
satisfies the descending chain condition then FBAR terminates. This obviously implies
termination when the state space Σ is finite. Ganty et al. [13,14] show that this descend-
ing chain condition allows to show that the instantiation of the CGR algorithm to the
class of well-structured transition systems (WSTSs) always terminates. This is an im-
portant result because WSTSs are a broad and relevant class of infinite-state transition
systems that include, among others, Petri Nets, broadcast protocols and lossy-channel
systems [11]. Since this termination condition works for FBAR exactly in the same way
as for CGR, we conjecture that the descending chain condition should allow to show
that FBAR terminates on WSTSs.

6.2 Relationship with CGR

We made a formal comparison between the FBAR and CGR algorithms and showed
that when no abstraction refinement is needed, FBAR is better than CGR, i.e., if CGR
terminates with a given abstraction μ with no abstraction refinement then this also hap-
pens for FBAR. As shown by the examples in Section 3, the converse is not true.

Theorem 6.5. If CGR for some disjunctive abstract domain μ outputs OK/KO with no
abstraction refinement then FBAR for μ outputs OK/KO with no abstraction refinement.

We did not succeed in comparing formally FBAR and CGR when abstraction refine-
ments indeed happen. This does not appear to be an easy task mainly because FBAR
and CGR use both different refiners — FBAR refines using p̃reM while CGR uses p̃re
— and different ways of refining the abstraction — FBAR needs a refined disjunctive
abstraction while CGR needs a mere abstraction. We can only report that we were not
able to find an example where CGR terminates while FBAR does not.

Let us also remark that Cousot-Ganty-Raskin [10] described how some acceleration
techniques that compute underapproximations of the reflexive-transitive closure R∗ of
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the transition relation R can be integrated into CGR. The correctness of this technique
basically depends on the fact that replacing the transition relation R with a relation T
such that R ⊆ T ⊆ R∗ is still correct in CGR. This also holds for FBAR so that these
same techniques can be applied.

6.3 Implementation of Disjunctive Abstractions

An implementation of FBAR is subject for future work. However, let us mention that
disjunctive abstractions can indeed be efficiently implemented through a state partition
and a relation defined over it.

Let us recall from [20] the details of such a representation. Let μ ∈ dAbs(℘(Σ)).
The partition par(μ) ∈ Part(Σ) induced by μ is defined by the following equivalence
relation ∼μ ⊆ Σ × Σ: x ∼μ y iff μ({x}) = μ({y}). Moreover, let us define the
following relation �μ on par(μ): ∀B1, B2 ∈ par(μ), B1 �μ B2 iff μ(B1) ⊆ μ(B2). It
turns out that 〈par(μ), �μ〉 is a poset. For example, consider the disjunctive abstraction
μ depicted in Section 2, where μ = Cl∪({1, 12, 123, 4, 45, 6}). The poset 〈par(μ), �μ〉
is then as follows:

1

2

3

4

5

6

This allows us to represent the abstraction μ as follows: for any S ⊆ Σ, μ(S) = ∪{B ∈
par(μ) | ∃C ∈ par(μ). C ∩ S �= ∅ & B �μ C}.

As shown in [20], it turns out that this partition/relation-based representation pro-
vides an efficient way for representing and maintaining disjunctive abstractions. More-
over, [20] also shows that the abstraction refinement step μi+1 = Cl∩,∪(μi ∪ {X}) at
line 25 can be efficiently implemented by a procedure that is based on partition splitting
and runs in O(| par(μi)|2 + |X |)-time.

7 Future Work

A number of tasks are left for future research. Firstly, it would be interesting to complete
the formal comparison between FBAR and CGR by investigating whether and how their
refinements and final outputs can be related in the general case when the abstraction is
refined. We also left open our conjecture that, analogously to CGR, the FBAR algorithm
terminates when applied to well-structured transition systems. After the completion of
such a comparison with CGR, it would be worth to develop a prototype of FBAR that
can reuse the implementation of disjunctive abstraction refinements already available
from [20].
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d’opèrateurs monotones sur un treillis, analyse sèmantique de programmes. PhD Thesis,
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Abstract. We show that every abstract interpretation possesses an in-
ternal logic, whose proof theory is defined by the partial ordering on the
abstract domain’s elements and whose model theory is defined by the do-
main’s concretization function. We explain how program validation and
transformation depend on this logic.

Next, when a logic external to the abstract interpretation is imposed,
we show how to synthesize a sound, underapproximating, set-based vari-
ant of the external logic and give conditions when the underapproximat-
ing logic can be embedded within the original abstract domain, inverted.
We show how model-checking logics depend on this construction.

The intent of this paper is tutorial, to integrate little-publicized results
into a standard framework that can be used by practitioners of static
analysis.

Perhaps the central issue in program validation and transformation is how to
apply the results of a static program analysis to prove that a desired valida-
tion/transformation property holds true: How does the domain of logical prop-
erties “connect” to the domain of values used in the static analysis?

Here are three examples: (i) we use data-flow analysis to compute sets of avail-
able expressions and use the sets to decide properties of register allocation [20];
(ii) we complete a state-space exploration and use it to model check a temporal-
logic formula that defines a safety property [4] or program-transformation cri-
terion [15]; (iii) we apply predicate abstraction with counter-example-guided
refinement (CEGAR) to generate an assertion set that proves a safety property
[1,2,19,28].

This paper asserts that the value domain used by a static analysis and the
logic used for validation and transformation should be one and the same — the
logic should be internal to the value domain. If the values and logical properties
differ, then the logic must be defined externally, and this paper shows how.

Let Σ be the states/stores generated by a program; let A be an abstract
domain for static analysis (e.g., sign values or sets of available expressions or
names of state partitions); and let γ : A → P(Σ) be the concretization function
that maps each a ∈ A to the values it models in Σ.
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In this paper, we demonstate that
– γ defines a logic internal to A for Σ. The elements of A act both as com-

putational values and as logical assertions. (Data-flow analysis, predicate
abstraction, and CEGAR-based model checking exploit this coincidence.)

– The internal logic’s model theory, |=, is defined by γ; its proof theory, �, is
defined by A’s partial ordering, � . (This is the beauty of partial-order-based
static analysis — a computable � defines the deduction system.)

– The notion of (forwards) completeness from abstract interpretation theory
[17,25,29] characterizes A’s internal logic — it tells us from the start what
we can express and prove.

– When a logic for Σ is proposed independently from A and γ, then an ex-
ternal logic must be fashioned, using a powerset completion. But, when γ
preserves both meets and joins, the external logic can be embedded within A
by inverting A’s partial ordering!

We conclude, in the last case, that every abstract domain A with such a γ has
two interpretations: an overapproximating, computational interpretation, used
to compute the results of a static analysis, and an underapproximating, logical
interpretation, used to prove logical properties of the results. In this formal sense,
we “overapproximate the model and underapproximate the logic.”

These developments are implicit in virtually all applications of static analysis
to program validation and transformation, and this paper aims to present the
principles as directly as possible.

1 Abstract Interpretation

A program is a discrete dynamic system [6]: there is a domain of possible program
states, Σ, and one or more transition functions, f : Σ → Σ, that are repeatedly
applied to an initial state selected from Σ.

For a program written in declarative notation the state might be the program’s
source text, and the transition function is a rewriting engine. For “flowchart
programs,” there is a control-flow graph, whose nodes are program points, and a
transition function is attached to each arc in the graph; the transition function
updates the state that traverses the arc. (See Figure 1 for such an example.) Or,
there is a single, global transition function, written as a “case” command, that
updates the state that is depicted as a program-point, storage pair.

A static analysis is a finitely computed estimate of the states generated by the
transition functions. The estimate is typically phrased as a superset of the actual,
concrete states that are reached. Based on the estimate, a program validation
or transformation might be undertaken.

To compute finitely these state-set estimates, we define a set, A, of abstract
representations of those subsets of Σ of interest.

To relate A to Σ, we define a concretization function, γ : A → P(Σ), such
that for S ⊆ Σ and a ∈ A, S is approximated by a if S ⊆ γ(a).

For a variety of implementational reasons [7,20,22], we partially order the
abstract values as (A, � ) such that (i) � is finitely computable and (ii) γ is
monotone. (For some applications, a discrete ordering on A works fine.)
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Example program and its flowgraph annotated by transition functions:

p0 : readInt(x)
p1 : if x > 0 :
p2 : x:= pred(x)
p3 : x:= succ(x)
p4 : writeInt(x)

succ

0

p1

p2

p3

p4

gzT gzF

pred

p

Let Σ = Int be the domain of program states.
(Here, the state remembers x’s value.)

The transition functions (standard semantics) for pred, succ, and > 0 have arity,
Σ → Σ⊥:

pred(n) = n − 1
succ(n) = n + 1

gzT (n) = n, if n > 0
gzT (n) = ⊥, if n ≤ 0

gzF (n) = n, if n ≤ 0
gzF (n) = ⊥, if n > 0

(Note: gzT and gzF act as “filter functions”; all transition functions are ⊥-strict
— ⊥ is not propagated in a concrete execution trace.)

The collecting semantics transition functions have arity, P(Σ) → P(Σ); let S ⊆ Σ:

pred(S) = {n − 1 | n ∈ S}
succ(S) = {n + 1 | n ∈ S}

gzT (S) = {n ∈ S | n > 0}
gzF (S) = {n ∈ S | n ≤ 0}

Fig. 1. Sample program and its transition functions

Figure 1 introduces an example program that uses transition functions succ
and pred to manipulate integer input. Perhaps we wish to estimate the output
sets from this program for the cases when the input sets are all the negatives,
or all the positives, or just the integer, 0 — the information might enable useful
validations or transformations.

To do this, we define an abstract domain, Sign, with representatives for the
previously mentioned data sets, along with representatives for the empty set and
Int , partially ordered (so that � is defined). γ maps the representations to the
sets they represent. See Figure 2.

We might ask if γ has an inverse, which maps a state set, S ⊆ Σ, to the
A-value that most precisely approximates S. If so, a Galois connection results:

Definition 1. For partially ordered sets, (P(Σ), ⊆) and (A, � ), a pair of mono-
tone functions, α : P(Σ) → A and γ : A → P(Σ), form a Galois connection iff
(i) for all S ∈ P(Σ), S ⊆ γ(α(S)), and (ii) for all a ∈ A, α(γ(a))� a.

Equivalently, there is a Galois connection when S ⊆ γ(a) iff α(S)� a, for all
S ∈ P(Σ) and a ∈ A.

γ is called the upper adjoint and α is the lower adjoint of the Galois connection.
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Sign

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{−4,−1,0}

{...,−3,−2,−1}

{−2}
{−4,−1}

{0}

{}
none

any

pos

zero
neg

α

P(Int)

γ

γ(neg) = {· · · , −3, −2, −1}
γ(zero) = {0}
γ(pos) = {1, 2, 3, · · ·}
γ(any) = Int
γ(none) = ∅

α{2, 4, 6, 8, ...} = pos
α{−4, −1, 0} = any
α{0} = zero
α{} = none , etc.

α and γ form a Galois connection: γ interprets the properties, and α(S) = �{a | S ⊆
γ(a)} maps state set, S, to the property that best describes it [7].

Fig. 2. Abstract domain of signed values, placed within a Galois connection

Galois connections enjoy many properties [12,16]; here are a key few. First, α
and γ are inverses on each other’s ranges: for all S ∈ γ[A], γ(α(S)) = S, and for
all a ∈ α[Σ], α(γ(a)) = a. Next, every upper (lower) adjoint has a unique lower
(upper) adjoint mate, and when we say that γ “is an upper adjoint,” we imply
the existence of the uniquely defined α. Third, γ preserves meets: for all T ⊆ A,
γ(� T ) = ∩a∈T γ(a) (similar for α and joins). Conversely, when A is a complete
lattice and function γ preserves meets, then γ is an upper adjoint. In Figure 2,
γ is an upper adjoint.

1.1 Abstracting State Transition Functions

Now that concrete state sets are approximated by elements of A, we can approx-
imate the transition functions. For generality, say that each transition function
has arity, f : P(Σ) → P(Σ), so that f can express nondeterminism as well as
pre- and post-images of state sets (“collecting semantics” [21] — cf. Figure 1).

For each f , the corresponding abstract transition function, f � : A → A, must
soundly overestimate f ’s post-images:

Definition 2. f � : A → A is sound for f : P(Σ) → P(Σ), if for all a ∈ A,
f(γ(a)) ⊆ γ(f �(a)), that is, f ◦ γ �A→P(Σ) γ ◦ f �.

When γ is an upper adjoint, the above is equivalent to α(f(S))� f �(α(S)), for
all S ∈ P(Σ). The most precise (“best”) sound f � for f is f �

best = α ◦ f ◦ γ. See
Figure 3 for succ� and pred� and an example static analysis.

When the inequalities that define soundness are strengthened to equalities,
we have:

Definition 3. f � is γ-complete (forwards complete) for f iff f ◦ γ = γ ◦ f �

[17,29]. f � is α-complete (backwards complete) for f iff α ◦ f = f � ◦ α [11,18]
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Abstractly interpret P(Int) by Sign = {neg , zero, pos , any ,none}; the abstracted
program and flowgraph are

p0 : readSign(x)
p1 : if gzT �(x):
p2 : x:= pred�(x)
p3 : x:= succ�(x)
p4 : writeSign(x)

gzT

0

p1

p3

p4

p2

#

#

#

#

pred

succ

gzF

p

The abstract transition functions are

succ�(pos) = pos
succ�(zero) = pos
succ�(neg) = any
succ�(any) = any

pred�(neg) = neg
pred�(zero) = neg
pred�(pos) = any
pred�(any) = any

gzT �(neg) = none
gzT �(zero) = none
gzT �(pos) = pos
gzT �(any) = pos

gzF �(neg) = neg
gzF �(zero) = zero
gzF �(pos) = none
gzF �(any) = any (!)

(All functions, f �,
are strict:
f �(none) = none .)

We now calculate a static analysis, which applies the abstracted transition functions
to the abstracted inputs (at p0), computing the abstracted outputs (at p4):

{zero 	→ pos , neg 	→ any , pos 	→ any , }

Fig. 3. Static analysis that calculates sign properties of example program

These notions will be explained, developed, and shown useful in Section 3, where
we see the relation between logic and the transition functions.

2 Elements of A are Logical Properties

In Figure 2, note how neg and pos are both names of state sets as well as
logical assertions (“isNeg,” “isPos”). In data-flow analysis, this “pun” — state-
set approximations are logical properties — is critical to program transformation,
because an estimated state set, S ⊆ Σ, has property S′ ⊆ Σ if S ⊆ S′ holds.

In an analysis like the one in Figure 3, we say that an output, a ∈ Sign, has
property a′ ∈ Sign if a� a′. (For example, zero has properties zero and any.)
Thus, all the concrete states modelled by a have property a′, too.

In predicate-abstraction-based static analysis, the abstract data values are
sets of primitive propositions (e.g., {x > 0, x ≤ y}), which can also be read as
propositions (x > 0 ∧ x ≤ y) that denote concrete-state sets ({(x, y) ∈ Σ | x >
0 and x ≤ y}).
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This idea is exploited in counter-example-guided refinement [1,2,19,28], which
enriches the abstract domain with additional primitive propositions as needed
to validate a logical property. This idea also underlies the definition of Kripke
structure, used in abstract model checking [4], where each state partition is
married to the set of primitive propositions that hold true for the partition.

These observations are hardly novel — they harken back to Cousot’s Ph.D.
thesis [5] and his tutorial paper [6]. Now we develop the consequences.

2.1 Model Theory of A

Treat A as a set of logical propositions. Define the entailment relation, |= ⊆
P(Σ) × A, as S |= a iff S ⊆ γ(a). (When γ is an upper adjoint, S |= a iff
α(S)� a as well.) One key consequence is that S′ ⊆ S and S |= a imply S′ |= a.

An abstract transition function is exposed as a postcondition transformer:
S |= a implies f(S) |= f �(a), and this makes f �

best the strongest postcondition
transformer for f in the language of propositions expressible in A.

2.2 Proof Theory of A

For a, a′ ∈ A, define a � a′ iff a � a′. (Recall that we require that � be finitely
computable, and the “proof” that a � a′ is the computation that affirms a � a′.)

As is standard [14], assert a |= a′ iff for all S ⊆ Σ, S |= a implies S |= a′.
Evidently, a |= a′ iff γ(a) ⊆ γ(a′).

Proposition 4. (soundness) For all a, a′ ∈ A, a � a′ implies a |= a′ (which
implies S |= a′, for all S ⊆ γ(a)).

Proof. Immediate from γ’s monotonicity. �

Soundness justifies validations and transformations based on a static analyis.

Proposition 5. (completeness) When γ is an upper adjoint and an injective
(1-1) function, then a |= a′ implies a � a′ for all a, a′ ∈ A.

Proof. Assume γ(a) ⊆ γ(a′). By the definition of Galois connection, this gives
α(γ(a)))� a′. Since γ is injective, α(γ(a))) = a. �

The best abstract transition function computes post-images that are complete:

Theorem 6. (image completeness) When γ is an upper adjoint, then f �
best =

α ◦ f ◦ γ is image complete in the sense that, for all a, a′ ∈ A,

1. f �
best(a) |= a′ iff f �

best(a) � a′

2. f(γ(a)) |= a′ iff f �
best(a) � a′

Proof. For 1., we need to prove the only-if part: Assume γ(f �
best(a)) ⊆ γ(a′). By

the definition of f �
best and the Galois connection, we have f ◦ γ(a) ⊆ γ ◦ α ◦ f ◦

γ(a) ⊆ γ(a′). By applying monotone α to the previous inclusions and appealing
to the definition of Galois connection, we get f �

best(a) = α◦f◦γ(a)� α◦γ(a′)� a′.
The proof of 2. is similar. �
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Image completeness does not ensure completeness upon multiple applications of
transition functions, which static analysis must do in practice. In Figure 2, note
that pred(succ{0}) |= zero, yet pred�(succ�(zero)) � zero — the problem is that,
although {0} = γ(zero) falls in the range of γ, succ(γ(zero)) = {1} does not and
cannot be expressed precisely within Sign .

For the remainder of this subsection, assume that γ is an upper adjoint. First,
say that f : P(Σ) → P(Σ) is γ-complete if there exists some f � : A → A that is
γ-complete for f (cf. Defn. 3): evidently, f ◦γ = γ ◦f �

best. It is well known that f
is γ-complete iff for all a ∈ A, f(γ(a)) ∈ γ[A], that is, f stays in γ’s range [17].

When f is γ-complete, then its repeated application to an initial argument in
γ’s range can be precisely approximated by f �

best.
1

An inappropriate choice of A can prevent a transition function from
γ-completeness, e.g., succ : P(Int) → P(Int) is not γ-complete for Sign. The
repeated applications of succ to {0} = γ(zero) require that we add to Sign new
elements, I, for each {i}, i > 0, so that γ(I) = {i} and succ is γ-complete.
This is too expensive of a price to pay, but we see in the next section that
γ-completeness plays a critical role in determining a domain’s internal logic.

3 Internal Logic of A

We understand a logic as an inductively defined assertion set, an inductively
defined interpretation, and (an inductively defined) proof theory, typically pre-
sented as a set of deduction rules. We now explore the logic that is internal to
domain A and concretization map γ.

First, we treat the elements of A as primitive propositions and we use φ
and ψ to represent elements from A. γ : A → P(Σ) interprets the primitive
propositions.

Definition 7. Abstract domain A’s internal logic has conjunction when

S |= φ1 �φ2 iff S |= φ1 and S |= φ2, for all S ⊆ Σ.

Proposition 8. When γ preserves binary meet as set intersection — γ(φ� ψ) =
γ(φ) ∩ γ(ψ), for all φ, ψ ∈ A — then A’s internal logic has conjunction.

Recall that when γ is an upper adjoint, it preserves meets; this is a major benefit
of structuring A so that it admits a Galois connection.

Now, we have this inductively defined assertion set, the internal logic of A:

φ ::= a | φ1 � φ2

γ interprets the logic, and it satisfies these inductively defined laws:
1 It is also true that precise approximation of multiple applications of f will be main-

tained if some f � is α-complete for f . (f is α-complete iff for all S, S′ ∈ P(S),
α(S) = α(S′) implies α(f(S)) = α(f(S′)) — f maps α-related arguments to α-
related answers. Alas, when a function is not α-complete, the cost of adding extra
elements to A can be just as expensive as when γ-completeness is desired.
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γ(a) = given
γ(φ�ψ) = γ(φ) ∩ γ(ψ)

This logic of primitives and conjunction is already strong enough to express
most predicate abstractions and CEGAR structures. The internal logic for Sign
in Figure 2 possesses conjunction.

Sign ’s proof theory is defined by the finitely computable � , which obviates
the usual set of deduction rules. A static analysis proves its facts, φ � ψ, using
� , and this is one of the beauties of the subject.

Now that conjunction exists, we can read the earlier definition of |= ⊆ A × A
in the classical way: For Δ ⊆ A, define Δ |= ψ iff for all S ⊆ Σ, if (for all ψ ∈ Δ,
S |= ψ) then (S |= φ) as well. Evidently, Δ |= ψ iff γ(�Δ) ⊆ γ(ψ).

We can explore for other propositional connectives:

Proposition 9. If γ preserves binary join as set union, then A’s internal logic
has disjunction: S |= φ�ψ iff S |= φ or S |= ψ, where γ(φ�ψ) = γ(φ) ∪ γ(ψ).

The Sign domain in Figure 2 lacks disjunction: zero |= neg � pos (because
neg � pos = any but zero |= neg and zero |= pos). If we add new elements to
Sign, namely, ≤ 0, = 0, and ≥ 0, we have disjunction for the expanded domain.2

We can search for intuitionistic (Heyting) implication: Complete lattice A is
distributive if a � (b � c) = (a � b) � (a � c), for all a, b, c ∈ A; this makes the set,
{a ∈ A | a �φ� ψ}, directed, and when � is Scott-continuous, then

φ⇒ ψ ≡ � {a ∈ A | a �φ� ψ}

defines implication in A, where a � φ⇒ ψ iff a �φ � ψ [13].

Proposition 10. If A is a complete distributive lattice where � is Scott-conti
nuous and upper adjoint γ is injective, then A’s internal logic has Heyting im-
plication: S |= φ⇒ ψ iff γ(α(S)) ∩ γ(φ) ⊆ γ(ψ), where

γ(φ⇒ ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}.

Proof. Let T = {a | a �φ� ψ}. First, by [13], �T ∈ T ; This implies γ(�T ) =
∪a∈T γ(a) = ∪{γ(a) | a� φ�ψ}. Consider the predicate, a � φ� ψ; since γ
is injective, the predicate is equivalent to γ(a �φ) ⊆ γ(ψ) (cf. Proposition 5),
which is equivalent to γ(a)∩γ(φ) ⊆ γ(ψ), because γ preserves meets. So we have
γ(φ⇒ ψ) = ∪{γ(a) | γ(a) ∩ γ(φ) ⊆ γ(ψ)} = ∪{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)} ∈
γ[A].

Next, S |= φ⇒ ψ iff S ⊆ γ(� T ), implying S ⊆ γ(α(S)) ⊆ γ(α(γ(� T ))) =
γ(� T ). So, S |= φ⇒ ψ iff γ(α(S)) |= φ⇒ ψ. Finally, because γ(α(S)) ∈ γ[A] and
pointwise reasoning on set union, γ(α(S)) |= φ⇒ ψ iff γ(α(S))∩γ(φ) ⊆ γ(ψ). �

Heyting implication is weaker than classical implication (where S |= φ⇒ ψ iff
S ∩ γ(φ) ⊆ γ(ψ) iff for all c ∈ S, if {c} |= φ, then {c} |= ψ).

2 By adding these elements, we computed the disjunctive completion of Sign [10].
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As an immediate consequence, we have a Deduction Theorem: Δ, ψ � φ iff
Δ � ψ ⇒ φ. And if γ(⊥A) = ∅ ∈ P(Σ), we have falsity (⊥); this gives us

φ ::= a | φ1 �φ2 | φ1 �φ2 | φ1 ⇒ φ2 | ⊥

In particular, ¬φ abbreviates φ⇒ ⊥ and defines the refutation of φ within A, such
as is done with a three-valued static analyzer such as TVLA [27]. In practice,
most static analyses do not require all this structure — conjunction alone (cf.
Figure 2) often suffices.

3.1 The General Principle is γ-Completeness

There is a general principle for determining when an operation is “logical” and
is present in A’s internal logic as a connective. To expose this principle, consider
again the interpretation of conjunction, where both the connective (� ) and its
concrete interpretation (∩) are stated as binary functions:

γ(� (φ, ψ)) = ∩(γ(φ), γ(ψ))

γ-completeness is exactly the criterion for determining which connectives are
embedded in A:

Corollary 11. For f : P(Σ) × P(Σ) × · · · → P(Σ), A’s internal logic has
connective f � iff f is γ-complete: For all φ ∈ A, γ(f �(φ1, φ2, · · ·)) = f(γ(φ1),
γ(φ2), · · ·).

Example: reconsider Sign in Figure 2, and note that negate : P(Int) → P(Int),
where negate(S) = {−n | n ∈ S}, is γ-complete. We have that negate� : A → A
(where negate�(pos) = neg , negate�(neg) = pos , etc.) exists in Sign ’s logic:

φ ::= a | φ1 �φ2 | negate�(φ)

We can state “negate” assertions, e.g., pos � negate�(neg � any). negate� is a
connective, a modality, a predicate transformer.

3.2 Predicate Transformers in the Internal Logic

We saw from the example for Sign that the absence of γ-completeness for transi-
tion functions succ (and pred) made it impossible to prove pred�(succ�(zero)) �
zero — the two transition functions cannot be connectives in Sign ’s logic.

But even when a transition function, f : P(Σ) → P(Σ), is γ-complete, it is
not used as a connective — for program analysis and transformation, it is not
useful to know a � f �(φ), that is, state set γ(a) falls in f ’s postimage of γ(φ). It
is more useful to know f �(a) � φ, that is, f ’s postimage of γ(a) lies within γ(φ).

In programming logic, f �(a) � φ is written a � [f �]φ, using a precondition
predicate transformer. To formalize, for S ⊆ P(Σ), define

[f ](S) = p̃ref (S) =
⋃

{S′ ∈ Σ | f(S′) ⊆ S}

We wish to add [f ] to the internal logic, so we must show it is γ-complete:
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Theorem 12. Assume that γ is an upper adjoint and preserves joins. Then,
p̃ref is γ-complete iff f is α-complete.

Proof. To prove the if part, we show that p̃ref (γ(a)) = ∪{S | f(S) ⊆ γ(a)}
is in γ[A]. By definition of Galois connection, f(S) ⊆ γ(a) iff α ◦ f(S)� a,
and because f is α-complete, this is equivalent to α ◦ f ◦ γ ◦ α(S) � a. Again,
by the Galois connection, we have the equivalent f ◦ γ ◦ α(S)� γ(a). Thus,
p̃ref (γ(a)) = ∪{S | f ◦ γ ◦ α(S)� γ(a)}. Now, when some S ∈ P(Σ) belongs to
the set, then so must γ ◦ α(S) (which is a superset of S): we have p̃ref (γ(a)) =
∪{S ∈ γ[A] | f(S) ⊆ γ(a)}. Finally, because γ preserves joins, the union of the
set must be itself be in γ[A].

For the only-if part, assume that p̃ref is γ-complete, that is, for all a ∈ A,
∪{S | α(f(S))� a} ∈ γ[A]. To show f is α-complete, we must prove that if
α(S0) = α(S1), then α(f(S0)) = α(f(S1)). Assume α(S0) = α(S1); we first
show α(f(S0))� α(f(S1)). Consider the set, T1 = {S | α(f(S))� α(f(S1))}.
First, note that S1 ⊆ ∪T1, implying that α(S1)� α(∪T1). Since α(S0) = α(S1),
we have α(S0)�α(∪T1) as well, and this implies S0 ⊆ γ(α(S0)) ⊆ γ(α(∪T1)) =
∪T1, since ∪T1 ∈ γ[A]. Within P(Σ), it must be that S0 ∈ T1, implying
α(f(S0))�α(f(S1)). Identical reasoning with T0 = {S | α(f(S))� α(f(S0))}
yields the other inclusion, meaning that f is α-complete. �

Similar developments are possible with the other common variants of predicate
transformers, but the technicalities increase [30].

Because of their dependence on α-γ-completeness, predicate transformers
might not appear in an internal logic. In this case, we must underapproximate
the transformers with a logic that is external to the abstract domain.

4 External Logic

This paper argues that the logical reasoning one uses with a static analysis
should be based on the abstract domain’s internal logic. Yet, transition functions
that lack α- and γ-completeness can make such reasoning hugely imprecise, and
adding additional elements to make the abstract domain complete can be too
expensive or destroy finite computability — One might be forced to work with
a less-precise logic that lives “outside” the internal logic.

Also, it is not uncommon to be presented with a set of assertions, L, and an
interpretation, [[ · ]] : L → P(Σ), already fixed for the concrete domain, P(Σ),
prior to the selection of A. For Figure 3, Sign lacks disjunction and both succ�

and pred� and neither α- nor γ-complete, but perhaps the logic in Figure 4 is
demanded, nonetheless. How do we deal with this?

Common sense suggests, for each assertion form, φ, that we collect all the
a ∈ A that satisfy φ and define an abstract interpretation of [[φ]] as follows:

[[φ]]� = {a | γ(a) ⊆ [[φ]]}

Then, we can use the results of a static analysis based on A to prove properties:
assert a � φ iff a ∈ [[φ]]�. This defines a logic that is external to A.
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φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f ]φ for a ∈ Sign and f ∈ {succ, pred}

[[ · ]] : L → P(Σ)

[[a]] = γ(a)
[[φ1 ∧ φ2]] = [[φ1 ]] ∩ [[φ2 ]]
[[φ1 ∨ φ2]] = [[φ1 ]] ∪ [[φ2 ]]
[[[f ]φ]] = p̃ref [[φ]] = ∪{S | f(S) ⊆ [[φ]]}

Fig. 4. Sample logic for sign properties

Underlying this informal development is a Galois connection whose abstract
domain is P↓(A)op — downclosed subsets of A, ordered by superset:

P↓(A)op = ({T ⊆ A | T is downclosed}, ⊇)
where T is downclosed iff T = {a ∈ A | ∃b ∈ T , a � b}

Elements of P↓(A)op serve as denotations of [[φ]]� ∈ P↓(A)op.3

Here is the Galois connection: Let A be a partially ordered set and P(Σ)op =
(P(Σ), ⊇). Then, for any monotone γ : A → P(Σ), the functions α : P(Σ)op →
P↓(A)op and γ : P↓(A)op → P(Σ)op form a Galois connection, where

γ(T ) =
⋃

{γ(a) | a ∈ T}
α(S) =

⋃
{T | S ⊇ γ(T )} = {a | γ(a) ⊆ S}

op
γ UI

[[ ]]ϕ

[[ ]]ϕ #γ UI

P(   )Σ

α

P (A)[[ ]]ϕ #

[[ ]]ϕα

op

Upper adjoint γ “lifts” from γ and preserves unions; when γ is an upper adjoint,
then γ preserves intersections, too [30]. α is exactly the approximation we guessed
earlier: [[φ]]� = α[[φ]]. The inverted ordering gives underapproximation: [[φ]] ⊇
γ[[φ]]�. We have soundness — a ∈ [[φ]]� implies γ(a) ⊆ [[φ]] — because we used
the adjoint to define the abstract interpretation of the logic.4

P↓(A)op is itself an abstract domain, a complete lattice, and its internal logic
contains disjunction (set union) and conjunction (set intersection) when γ is
an upper adjoint. The domain is distributive, but γ might not be injective, so
Heyting implication is not ensured (cf. Proposition 10). But it is the existence
of disjunction that is the key to defining a sound [[·]]�. To summarize,

Proposition 13. For all choices of partially ordered set, A, monotone γ : A →
P(Σ), and [[ · ]] : L → P(Σ), there is a sound external logic, [[·]]� : L → P↓(A), in
the sense that, for all a ∈ A, a ∈ [[φ]]� implies γ(a) ⊆ [[φ]], for all φ ∈ L. (Indeed,
the most precise such logic is α ◦ [[ · ]].)

This proposition underlies “abstract model checking” [3], where A holds the
names of partitions of Σ and γ maps each state-partition name to its members.

But we are not finished — we want an inductively defined abstract interpre-
tation. This is readily obtained from the inductively defined concrete interpre-
tation, whose equations take the form,
3 Clearly, all [[φ]]� are downclosed sets.
4 Precisely stated, the best approximation of [[ · ]] : L → P↓(A) is α ◦ [[ · ]] ◦ idL.
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[[a]]�best = α(γ(a))

[[φ1 ∧ φ2]]
�
best = α (γ[[φ1 ]]

�
best ∩ γ[[φ2 ]]

�
best)

[[φ1 ∨ φ2]]
�
best = α (γ[[φ1 ]]

�
best ∪ γ[[φ2 ]]

�
best)

[[[f ]φ]]�best = α (p̃ref (γ[[φ]]�best)) = {a | f(γ(a)) ⊆ γ[[φ]]�best}

[[a]]�fin = α(γ(a))

[[φ1 ∧ φ2]]
�
fin = [[φ1 ]]

�
fin ∩ [[φ2]]

�
fin

[[φ1 ∨ φ2]]
�
fin = [[φ1 ]]

�
fin ∪ [[φ2]]

�
fin

[[[f ]φ]]�fin = p̃ref� [[φ]]�fin = {a ∈ A | f �(a) ∈ [[φ]]�fin}, where f � is sound for f

Fig. 5. Inductively defined logics for Sign: best and finitely computable

[[f(φ1, φ2, · · ·)]] = f([[φ1 ]], [[φ2 ]], · · ·)

We use the adjoints to abstract each logical operation, f : P(Σ)×P(Σ)× · · · →
P(Σ), by f �

best = α ◦ f ◦ (γ × γ × · · ·). The most precise, inductively defined,
abstract logic is therefore

[[f(φ1, φ2, · · ·)]]�best = f �
best([[φ1 ]]

�
best, [[φ2 ]]

�
best, · · ·)

Because the fixed-point operators are well behaved, we can also define abstract
recursion operators [11,26].

An issue that arises with sets of abstract values is that the synthesized f �
best :

P↓(A)×P↓(A)×· · · → P↓(A) might not be finitely computable — we must locate
a computable approximation of it. Consider again [[·]] in Figure 4; its most precise
inductively defined logic, [[·]]�best, and a finitely computable approximation, [[·]]�fin ,
are stated in Figure 5. We see that ∩ = (α◦∩◦(γ ×γ)) — precision is preserved
— but this is not true for ∪ : For example, any ∈ [[neg ∨ zero ∨ pos ]]�best = Sign
but any ∈ [[neg ]]�fin ∪ [[zero ]]�fin ∪ [[pos ]]�fin = {neg, zero, pos ,none}.5

For predicate transformers, it is well known that p̃ref� is sound for p̃ref , for
any f � sound for f . But it is grossly imprecise. We can improve it by replacing
f � : A → A by f �

∨ : A → P↓(A), where f �
∨(a) =↓{α{c} | c ∈ f(γ(a))}.6 For

example, from Figure 3, succ�(neg) = any, but succ�
∨(neg) = {neg, zero,none},

which gives the more precise p̃resucc�
∨
.7

These technicalities let us prove that p̃ref�
∨

= (α ◦ p̃ref ◦ γ) [30].

5 The problem is that {none, neg , zero, pos} and Sign both concretize to neg∨zero∨pos
and are candidates to represent it in P↓(Sign). We must eliminate one of the sets.

6 where ↓S = {s | ∃s′ ∈ S, s� s′}
7 Underlying f �

∨’s definition is yet another Galois connection, between complete lat-
tices (P(Σ),⊆) and (P↓(A), ⊆ ), where the upper adjoint is γ and the lower adjoint
is αo(S) = ∩{T | S ⊆ γ(T )} =↓{α{c} | c ∈ S}. Then, f �

∨ = αo ◦ f ◦ γ. This Galois
connection is possible when γ is an upper adjoint.
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4.1 Provability, Soundness, Completeness

Entailment and provability for an inductively defined external logic is defined as
expected: a |= φ iff γ(a) ⊆ [[φ]], and a � φ iff a ∈ [[φ]]�fin .8

Soundness (that is, � implies |=) is immediate, and completeness (|= implies
�) follows when α ◦ [[ · ]] = [[·]]�fin . This is called logical best preservation or logical
α-completeness [11,29].

There is another, independent, form of completeness, logical strong preserva-
tion or logical γ-completeness: γ ◦ [[·]]�fin = [[ · ]] [17,26,29].9 For inductively defined
[[·]]�fin , if all the mentioned abstract logical operations are α-complete, then [[·]]�fin
has best preservation; when all abstract logical operators are γ-complete, then
[[·]]�fin has strong preservation. (The converses might not hold [26].)

5 When the Upper Adjoint Preserves Joins, the External
Logic Lies Within the Inverted Abstract Domain

The “lift” of abstract domain A to P↓(A) is a disjunctive completion [10], where
an element, {a0, a1, a2, · · ·} ∈ P↓(A) is meant to be read as the disjunction,
a0 ∨ a1 ∨ a2 ∨ · · ·, and this is confirmed by the definition, γ{a0, a1, a2, · · ·} =
γ(a0) ∪ γ(a1) ∪ γ(a2) ∪ · · ·.

But say that γ is an upper adjoint and that it preserves joins, that is,

γT =
⋃

a∈T γ(a) = γ(
⊔

a∈T a) = γ(�T )

So, γ[P↓(A)] = γ[A] — their ranges are equal — and there is no new expressivity
gained by using sets of A-elements to model subsets of Σ. So, when upper adjoint
γ preserves joins, an external logic can be modelled internally within A. The key
is to invert A and define an underapproximating Galois connection:

Proposition 14. If A is a complete lattice and γ : A → P(Σ) preserves joins
(as unions) and meets (as intersections), then

– γ is the upper adjoint of a Galois connection between (P(Σ), ⊆) and (A, � ),
where the lower adjoint, αo, is defined αo(S) = �{a | S ⊆ γ(a)}.

– γ is the upper adjoint of a Galois connection between (P(Σ), ⊇) and (A, � ),
where the lower adjoint, αu, is defined αu(S) = � {a | S ⊇ γ(a)}.

The first Galois connection defines an overapproximation relationship; the second
defines an underapproximation relationship.

When we approximate a state-transition function, f : P(Σ) → P(Σ), we
apply the first Galois connection to define f �

best = αo ◦ f ◦ γ. We call this the
computational interpretation of f .
8 These notions are equivalently stated with sets: for T ∈ P↓(A), T |= φ iff γ(T ) ⊆ [[φ]],

and T � φ iff T ⊆ [[φ]]�fin .
9 Strong preservation asserts, for all c ∈ Σ, that c ∈ [[φ]] iff α{c} � φ. In contrast,

best preservation states, for all a ∈ A, that γ(a) ⊆ [[φ]] iff a � φ. See [29] for criteria
when one implies the other.
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When we are given a logical interpretation function, [[ ·]] : L → P(Σ), we apply
the second Galois connection to define [[·]]�u = αu◦[[·]]. If [[·]] is inductively defined,
that is, has form [[f(φ1, φ2, · · ·)]] = f([[φ1 ]], [[φ2 ]], · · ·), we apply the second Galois
connection to define f �

best = αu ◦ f ◦ (γ × γ × ...), giving [[f(φ1, φ2, · · ·)]]�best =
f �

best([[φ1 ]]
�
best, [[φ2 ]]

�
best, · · ·)) We call this the logical interpretation of f .

When all the fs are αu-complete, then [[·]]�u = [[·]]�best. We can also show that
the logical interpretation proves the same assertions as the external logic:

First, for [[φ]]� = α[[φ]] ∈ P↓(A), recall that a � φ iff a ∈ [[φ]]�.
Next, for [[φ]]�u = αu[[φ]] ∈ A, define a � φ iff a � [[φ]]�u.

Theorem 15. For all a ∈ A, a � [[φ]]�u iff a ∈ [[φ]]�.

Proof. First, note that a ∈ [[φ]]� iff γ(a) ⊆ [[φ]]. Next, a � [[φ]]�u iff a � �P , where
P = {a′ | γ(a′) ⊆ [[φ]]}.

To prove the if-part, assume γ(a) ⊆ [[φ]]. This places a ∈ P , hence a � �P .
To prove the only-if part, assume a � � P . Now, for all a′ ∈ P , γ(a′) ⊆

[[φ]], implying ∪a′∈P γ(a′) ⊆ [[φ]]. But γ preserves joins, meaning γ(�P ) ⊆ [[φ]],
implying that �P ∈ P as well. Since a� �P , we have γ(a) ⊆ γ(�P ) ⊆ [[φ]]. �

So, when γ preserves meets and also joins, we embed the external logic as an
underapproximation in Aop, retaining the logic’s proof theory and model theory.

6 Conclusion

Abstract interpretations are fundamentally “logical” — as Cousot and Cousot
have stated in key papers [5,6,8,9,11] — an abstract interpretation estimates
function pre- and post-images, which are represented as finitely-sized assertions.
The same idea underlies Kripke structures and abstract model checking [3,4].

In this paper, we showed that the connection between abstract interpretation
and symbolic logic is fundamental: A static analysis computes proofs (via � )
that are sound (via |=) within the internal/external logic.

Acknowledgements. This paper was inspired by earlier work of Alan My-
croft and Neil Jones [23,24]. I would like to thank Alan for his interest in inter-
nal/external logics and his suggestion that I write this paper.
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5. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes
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28. Säıdi, H.: Model Checking Guided Abstraction and Analysis. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000)

29. Schmidt, D.A.: Comparing Completeness Properties of Static Analyses and Their
Logics. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 183–199.
Springer, Heidelberg (2006)

30. Schmidt, D.A.: Underapproximating Predicate Transformers. In: Yi, K. (ed.) SAS
2006. LNCS, vol. 4134, pp. 127–143. Springer, Heidelberg (2006)



From LTL to Symbolically Represented

Deterministic Automata

Andreas Morgenstern and Klaus Schneider

University of Kaiserslautern
P.O. Box 3049

67653 Kaiserslautern, Germany
{morgenstern,schneider}@informatik.uni-kl.de

Abstract. Temporal logics like LTL are frequently used for the specifi-
cation and verification of reactive systems. For verification, LTL formulas
are typically translated to generalized nondeterministic Büchi automata
so that the verification problem is reduced to checking the emptiness
of automata. While this can be done symbolically for nondeterminis-
tic automata, other applications require deterministic automata, so that
a subsequent determinization step is required. Unfortunately, currently
known determinization procedures for Büchi automata like Safra’s pro-
cedure are not amenable to a symbolic implementation.

It is well-known that ω-automata that stem from LTL formulas
have special properties. In this paper, we exploit such a property in a
new determinization procedure for these automata. Our procedure avoids
the use of complicated tree structures as used in Safra’s procedure and
it generates symbolic descriptions of equivalent deterministic parity au-
tomata which was so far not possible for full LTL.

1 Introduction

Finite automata on infinite words (called ω-automata) [27] are nowadays used
for the specification and verification of all kinds of reactive systems [31,25]. In
particular, model checking of the temporal logic LTL [21,7] became one of the
most popular verification techniques. To check whether a system M satisfies a
LTL property ϕ, the negation ¬ϕ is usually first translated to an equivalent non-
deterministic ω-automaton A¬ϕ so that the emptiness of the product M × A¬ϕ

can be checked in a second step. Algorithms that translate the LTL formulas
to symbolically1 represented nondeterministic ω-automata have been developed
[29,6,12,24,25,3] to benefit from symbolic set representations [4]. As the use of
symbolic methods in verification was the major breakthrough to handle real-
world problems, the computation of symbolic descriptions of the automata is,
1 For an LTL formula ϕ, these procedures compute in time O(|ϕ|) a symbolic de-

scription of a nondeterministic ω-automaton Aϕ. The symbolic description of the
automaton Aϕ has size O(|ϕ|) and encodes O(2|ϕ|) states. Symbolically represented
nondeterministic ω-automata are related to alternating ω-automata [28] (but are not
the same).
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from a practical point of view, very important to deal with large automata. To
summarize, symbolic descriptions are already successfully used for implementa-
tions of algorithms on nondeterministic automata.

In contrast, many algorithms like the synthesis of winning strategies that
are formulated in LTL [22,14,11] or the analysis of Markov decision processes
[30] are based on deterministic automata. Many of these algorithms have not
yet made their way to industrial practice, although they would solve important
problems in the design of reactive systems. We believe that one reason for this
situation is the lack of efficient algorithms to compute deterministic automata:
Determinization procedures are usually based on data structures that do not
make use of symbolic set representations.

In particular, the linear time temporal logic LTL is still one of the most con-
venient specification logic, and essentially all state-of-the-art translations of LTL
formulas to ω-automata yield nondeterministic Büchi automata. If determinis-
tic automata are required, Safra’s well-known determinization procedure [23] is
usually employed to compute a deterministic (Rabin) automaton. Unfortunately,
Safra’s algorithm is difficult to implement [10,26,13], and the underlying data
structures (trees of subsets of states) do not allow the use of symbolic set represen-
tations. As a consequence, the related tools are limited to small LTL formulas. We
believe that an efficient algorithm to compute deterministic automata for given
LTL formulas is the key to push several other algorithms towards industrial use.

In this paper, we therefore present a new determinization procedure for (gen-
eralized) Büchi automata that stem from the translation of LTL formulas by the
‘standard’ translation. To this end, we make use of the fact that these automata
have a special property that we call non-confluence (see Definition 1 for a precise
definition):

An automaton is non-confluent if whenever two runs of the same infinite
word meet at a state q, then they must share the entire finite prefix up to
state q.

It is well-known that the ω-automata that stem from LTL formulas are a special
class that has already found several characterizations. Due to results of [16], the
automata can be characterized as non-counting automata, and in terms of alter-
nating automata, the class of linear weak or very weak automata has been defined
[17,9,19,18]. Moreover, many translation procedures from LTL generate unam-
biguous automata [5] where every accepted word has a unique accepting run [25,1]
(although there may be additional non-accepting runs for the same word). With-
out useless states, unambiguity implies the above non-confluence property, but not
vice versa; and non-confluence has nothing to do with the non-counting property.

The above non-confluence property allows us to develop a determinization pro-
cedure that exploits symbolic set representations. In particular, it does not rely on
Safra trees as used by Safra’s original procedure [23] or by the improved version of
Piterman [20]. The states of the deterministic automata obtained by these proce-
dures are trees of subsets of states of the original automaton. In contrast, our proce-
dure generates deterministic automata whose states consist of n-tuples of subsets
of states, where n is the number of states of the nondeterministic automaton.
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The non-confluence property has already been used in [8] to obtain a deter-
ministic (Rabin) automaton from a nondeterministic Büchi automaton. However,
the algorithm of [8] still uses a tree structure and is therefore not well suited for a
symbolic implementation. In contrast, our automata are amenable to a symbolic
implementation and are additionally defined with the simpler parity acceptance
condition which further reduces the complexities for game solving and emptiness
checks.

The outline of the paper is as follows: In the next section, we list basic defi-
nitions on ω-automata and we describe the ‘standard’ translation from LTL to
generalized nondeterministic Büchi automata. The core of the paper is the de-
terminization procedure described in Section 3 that is a specialization of Safra’s
procedure for non-confluent automata. In Section 4, we discuss a symbolic im-
plementation of our algorithm.

2 Preliminaries

2.1 Non-confluent ω-Automata

A nondeterministic ω-automaton is a tuple A = (Σ, Q, δ, I, F), where Σ is
a finite alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is the transition
function, I ⊆ Q is the set of initial states, and F ⊆ Q is the acceptance condition
of the ω-automaton. A run ξ of A on an infinite word α = α(0)α(1) . . . ∈ Σω is
an infinite sequence of states ξ = ξ(0)ξ(1) . . . ∈ Qω such that ξ(0) ∈ I and for all
i ≥ 0, we have ξ(i+1) ∈ δ(ξ(i), α(i)). For a run ξ = ξ(0)ξ(1) . . . , let inf ξ := {q ∈
Q |

∣
∣{i ∈ � | q = ξ(i)}

∣
∣ = ∞} be the set of all states that occur infinitely often

on the run. In the following, we consider different kinds of acceptance conditions
[27,25] that are defined as follows:

– A Büchi condition is specified by a set of accepting (marked) states F ⊆ Q.
A run ξ is accepting according to the Büchi condition if inf ξ ∩ F �= ∅. That
is, the run visits at least one state of F infinitely often.

– A generalized Büchi condition is defined by a set of sets of accepting (marked)
states {F0, . . . , Fn} where Fi ⊆ Q. A run ξ is accepting according to the
Büchi condition if inf ξ ∩Fi �= ∅ holds for all i ∈ {0, . . . , n}. That is, the run
visits at least one state of each Fi infinitely often.

– A parity condition is specified by a coloring function c : Q → {0, . . . k} that
assigns a color λ(c) ∈ � to each state q ∈ Q of the automaton. The coloring
function induces a partition {F0, F1, . . . Fk} of Q where Fi := {q ∈ Q |
λ(q) = i}. The number of colors k is called the index of the parity condition.
A run is accepting according to the parity condition if for some even number
i, we have inf ξ ∩ Fi �= ∅ and for all i′ < i, we have inf ξ ∩ F ′

i = ∅. That is,
the minimal color i whose set Fi is infinitely often visited is even.

A word α is accepted by A if there exists an accepting run of A over α. The
language Lang(A) of A is the set of words accepted by A. Two automata are
equivalent if they accept the same language. An automaton is deterministic if
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for every state q ∈ Q and input σ ∈ Σ, we have |δ(q, σ)| = 1 and |I| = 1. In
the definition of the determinization construction, we will need the existential
successors of a state set. For every S ⊆ Q define sucδ,σ

∃ (S) := {q′ ∈ Q | ∃q ∈
S. q′ ∈ δ(q, σ)}

The following property is the basis of our determinization procedure:

Definition 1 (Non-Confluent Automata)
An ω-automaton A = (Σ, Q, δ, I, F) is called non-confluent if for every word
α the following holds: if ξ1 and ξ2 are two runs of A on α that intersect at a
position t0 (i.e. ξ

(t0)
1 = ξ

(t0)
2 holds), then we have ξ

(t)
1 = ξ

(t)
2 for every t ≤ t0.

Note that deterministic automata are trivially non-confluent, since the run is
uniquely determined. Moreover, the product of a non-confluent automaton with
another automaton is non-confluent.

In Section 2.2 and Section 4 we will additionally need symbolic representations
of ω-automata. Since both the alphabet Σ and the state set Q are finite sets,
we can encode them by boolean variables VΣ and use variables VQ. Introducing
new variables v′ for each variable v ∈ VQ ∪VΣ , we can moreover also encode the
transition relation:

Definition 2 (Symbolic Representation of ω-Automata). Given a finite
set of variables VQ with VQ ∩ VΣ = {}, a propositional formula I over VQ ∪ VΣ,
a propositional formula R over VQ ∪ VΣ ∪ {v′ | v ∈ VQ ∪ VΣ}, and formu-
las F0, . . . , Fk over VQ ∪ VΣ , then A∃ (VQ, I, R, F0, . . .Fk) is an (existential)
automaton formula.

It is easily seen [25] that for automaton formulas A∃ (VQ, I, R, F0, . . . , Fk), we
can demand that the formulas I and Fi contain only state variables VQ (yield-
ing state-based instead of edge-based automata). In these cases, it is clear that
an automaton formula describes a nondeterministic ω-automaton in a symbolic
way: We identify any set ϑ ⊆ VQ ∪ VΣ ∪ {v′ | v ∈ VQ ∪ VΣ} with a propositional
interpretation that exactly assigns the variables of ϑ to true. Having this view,
the formula I describes the set of the initial states ϑ ⊆ VQ that satisfy I. Simi-
larly, R describes the set of transitions. Finally, the tuple F0, . . . , Fk represents
the acceptance condition (either generalized Büchi or parity).

2.2 From LTL to Non-confluent Bühi Automata

A construction from LTL to non-confluent Büchi automata has already been pre-
sented in [8]. Moreover, recent algorithms for the translation of LTL to Büchi au-
tomata like the symbolic constructions of [29,6,12,24,25] also yield non-confluent
automata. In this section, we briefly review these procedures and prove that their
results are non-confluent automata. To this end, we consider LTL with the tem-
poral operators X (next), U (weak until), and U (strong until). Notice that in
this section we use the symbolic representation of ω-automata.

As explained in [24,25], the ‘standard’ translation procedure from LTL to
ω-automata traverses the syntax tree of the LTL formula in a bottom-up man-
ner and abbreviates each subformula that starts with a temporal operator. The
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subformula [ϕ U ψ] is thereby abbreviated by a new state variable q, and the pre-
liminary transition relation R is replaced with R ∧ (q ↔ ψ ∨ ϕ ∧ q′). Moreover,
we have to add the fairness constraint Fi :≡ (q → ψ) as a new set of accepting
states. The subformula [ϕ U ψ] is also abbreviated by a new state variable q
with the same update of the transition relation. However, we add the fairness
constraint Fi :≡ (ϕ → q). Finally, a subformula Xϕ introduces two new state
variables q1 and q2. The subformula Xϕ is replaced by q2, the transition relation
R is updated to R∧(q1 ↔ ϕ)∧(q′1 ↔ q2) and no fairness constraint is generated.
For more information, see the detailed explanations in Chapter 5.4.1 of [25].

q1 q2 q1 q2

q1 q2 q1 q2

ϕ

ϕϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ (q1 ↔ ϕ) ∧ (q′
1 ↔ q2)

0 (q1 ↔ 0) ∧ (q′
1 ↔ q2)

1 (q1 ↔ 1) ∧ (q′
1 ↔ q2)

Fig. 1. ω-Automaton with Transition Relation (q1 ↔ ϕ) ∧ (q′
1 ↔ q2)

q q

ϕ ∧ ψ

ψ

ψ ϕ ∨ ψ

ψ ϕ q ↔ ψ ∨ ϕ ∧ q′

0 0 q ↔ 0
0 1 q ↔ q′

1 0 q ↔ 1
1 1 q ↔ 1

Fig. 2. ω-Automaton with Transition Relation q ↔ ψ ∨ ϕ ∧ q′

Hence, the transition relation of the ω-automaton obtained by this translation
is a conjunction of equations q ↔ ψ ∨ ϕ ∧ q′ and (q1 ↔ ϕ) ∧ (q′1 ↔ q2). We only
consider the first equation in more detail: As can be seen by Figure 2, the input
ϕ∧¬ψ demands that the current state is maintained, but allows the automaton to
be in any of the two states. The other three classes of inputs uniquely determine
the current state, but leave the successor state completely unspecified. As a
consequence, input words that infinitely often satisfy ¬(ϕ∧¬ψ), i.e., ¬ϕ∨ψ, do
only have one (infinite) run, while the remaining input words that satisfy ϕ∧¬ψ
from a certain point of time on do have two runs that are of the form ξqω and ξqω

with the same finite prefix ξ. Hence, the automaton is non-confluent. A similar
consideration shows that the automaton of Figure 1 is also non-confluent.

An example run tree (that encodes all the runs of a given word) is shown
in Fig. 3. It is seen that there is a uniquely determined run, since all other
nondeterministic choices lead to finite paths. Another example run tree that
contains two infinite runs is shown in Fig. 4.
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Fig. 3. Run Tree with a Uniquely Determined Run of the Automaton of Fig. 2
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Fig. 4. Run Tree with a Two Runs of the Automaton of Fig. 2

As every automaton Aϕ obtained by the translation of a LTL formula ϕ is a
product of the non-confluent automata shown in Figures 1 and 2, and as the prod-
uct automaton of non-confluent automata is also non-confluent, it follows that the
automata Aϕ obtained by the above ‘standard’ translation are non-confluent.

The resulting automaton of the above translation is a generalized Büchi au-
tomaton, since we obtain an accepting set of states (actually edges) for every
occurrence of an until-operator. It is however straightforward to replace a con-
junction of fairness constraints with a single Büchi automaton [25]. Again, as
the product of a non-confluent automaton with another automaton is still non-
confluent, this reduction also yields a non-confluent Büchi automaton. In the
following section, we will show how this non-confluent Büchi automaton can be
determinized.

3 The Determinization Procedure

The well-known subset construction collects the sets of states that the nondeter-
ministic automaton A = (Σ, Q, I, δ, F) can reach after having read a finite input
word from one of its initial states I. Thus, every state s̃ ⊆ Q of the deterministic
automaton Ã is a set of states of Q. The final states F̃ are those states s̃ ⊆ Q
that contain an accepting state of A, i.e. where s̃ ∩ F �= ∅ holds.

The acceptance condition of a Büchi automaton A = (Σ, Q, I, δ, F) is also
specified with a set of accepting states F . However, the subset construction is not
sufficient to handle the Büchi acceptance, so that the more complex construction
of Safra [23] is often used instead. The idea of Safra’s construction is to define
so-called breakpoints on the path ξ̃ of a word α through Ã so that all paths ξ
contained in ξ̃ must visit at least once the accepting states F in between two
subsequent breakpoints. A path ξ̃ is then accepting iff it visits infinitely often
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breakpoints with non-empty state sets. To this end, the states of the automaton
obtained by Safra’s construction are trees of subsets of states.

Our determinization procedure is a specialization of Safra’s procedure for non-
confluent automata. The states of the constructed automaton are n-tuples of pairs
(Si, mi) where Si ⊆ Q and mi ∈ {false, true} holds. We start with the initial state
((I, false), (∅, false), . . . , (∅, false)). To compute the successor of a state ((S0, m0),
. . . , (Sn−1, mn−1)), we compute the existential successors S′

i := sucδ,σ
∃ (Si) for the

subsets of states. Hence, the first state set S0 of a tuple state is the result of the
subset construction, i.e., it contains the sets of states that A can reach after having
read a finite input word from one of its initial states I. The other sets Si with
i > 0 are subsets of S0 that are generated as follows: Whenever we generate a
new tuple where S′

0 := sucδ,σ
∃ (S0) contains accepting states, we add the new state

set S′
M+1 := S′

0 ∩ F at the ‘rightmost free’ entry in the tuple to remember that
those paths that lead to states S′

0 ∩ F already visited F .
We can however cleanup the states S1,. . . ,Sn−1, so that not all combinations

of state sets can occur: Whenever we find that a state set Si with i > 0 contains
only states that also occur in sets Sj with j > i, we mark Si as accepting by
setting its mark mi := true and remove the states Si from the state sets Sj .
As a consequence, for every state set Si with i > 0, there must be at least one
state that does not occur in the sets Sj with i < j, and therefore n-tuples are
sufficient for the construction (we use empty sets ∅ for currently unused entries).
Moreover, we can delete empty State sets by simply moving each entry that is
on the right of the first empty set one index to the left.

As A is non-confluent, we know that a finite run is uniquely characterized by
its final state. Hence, if a state occurs in two sets Si and Sj , then we know that
both sets follow the same run. New state sets are only introduced on the ‘right’
of the tuple, i.e., at position M + 1 where M is the maximal entry with Si �= ∅.
Hence, we know that all runs that end in SM+1 now visit an accepting state. If
an entry Si never becomes empty after a certain position on a path ξ̃ and is
marked infinitely often, then we know that ξ̃ is introduce infinitely often on the
right of Si, nameley in set SM+1 and hence ξ̃ contains an accepting run of A.

Definition 3 (Determinization of Non-Confluent Automata). Given a
nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) with |Q| = n, we con-
struct a deterministic parity automaton P = (Σ, S, sI , ρ, λ) as follows:
– The states of the parity automaton are n-tuples of subsets of Q augmented

with a boolean flag: S = {((S0, m0), . . . , (Sn−1, mn−1)) | Si ⊆ Q ∧ mi ∈
{false, true}}.

– The initial state is sI = ((I, false), (∅, false), . . . , (∅, false)).
– The successor state of a state s = ((S0, m0), . . . , (Sn−1, mn−1)) of automaton

P when reading input σ is determined by the function Successor given in
Figure 5 2.

2 Notice that if M = n − 1, each entry is filled with exactly one state. This can be
deduced from property 2 of lemma 1. Thus each final state leads to the marking
of its corresponding state set, which means that the set S[M+1] would be removed
anyway. Thus we skip the introduction of S[M+1] at that point.
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fun Successor(stateset S[n],bool m[n],input σ) {
int m,M; stateset P;
// compute minimal m with S[m]==∅
m = 0;
while((S[m]!=∅)&(m<n-1)) m = m+1;
// compute maximal M with S[M]!=∅
M = n-1;
while((S[M]==∅)&(M>0)) M = M-1;
// compute existential successors and skip the empty set S[m]
for i=0 to m-1 do S[i] = sucδ,σ

∃ (S[i]);

for i=m to M do S[i] = sucδ,σ
∃ (S[i + 1]);

// add new set of states S[M+1] that reached F
if (M<(n-1)) {
S[M+1] = S[0]∩F;

}
// clean up sets S1,. . . ,Sn−1 and compute marking of new state sets
for i=0 to n-1 do {
P = ∅;
for j=i+1 to M do P = P ∪ S[j];
if((S[i]\F ⊆ P) & S[i]!=∅) {
m[i] = true;
for j=i+1 to M do S[j]=(S[j] \ S[i]);

}
}

}

Fig. 5. Computation of the Successor State for Input σ

fun Color(stateset S[n],bool m[n]) {
int c;
if(S[0]==∅) return 1;
c=2*n+1;
for i=0 to n-1 do {
if(S[i]==∅) c=min(c,2*i-1);
if(m[i]) c=min(c,2*i);

}
return c;

}

Fig. 6. Computing the Color of a State

– The color of a state s = ((S0, m0), . . . , (Sn−1, mn−1)) of automaton P is
determined by function Color given in Figure 63.

As an example of the construction, consider the non-confluent Büchi automaton
given in Figure 7 (accepting states have double lines) together with its equivalent
3 If S0 = ∅, we have a rejecting sink state, since this state can never be left. This state

corresponds to a situation in the nondeterministic automaton where all runs lead to
a dead end.
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2

0 1

b,
c

a

a

c

a
b

b, c

Fig. 7. Nondeterministic non-confluent automaton that accepts every word that either
ends with suffix abω or cbω or that contains infinitely many occurrences of a

deterministic parity automaton in Figure 8. To improve readability, we omitted
the boolean flags, and instead overlined those state sets Si in the tuples that are
marked, i.e., whose flags mi are true.

Lemma 1. Given a non-confluent Büchi automaton A = (Σ, Q, I, δ, F), and
the corresponding deterministic automaton P = (Σ, S, sI , ρ, λ) as given in Def-
inition 3. Then, for every infinite word α : � → Σ, and the corresponding run
(S(0)

0 , . . . , S
(0)
n−1),. . . of P on α, the following holds:

1. For all i > 0 and t ∈ �, we have S
(t)
i ⊆ S

(t)
0 .

2. For all i and t ∈ � with S
(t)
i �= ∅, there exists a q ∈ S

(t)
i such that q /∈ S

(t)
j

for all i < j < n. This property implies that n subsets are sufficient.
3. For every t0 ∈ � and for every 0 ≤ i < n, we have:

q ∈ S
(t0)
i ⇒

(
∃ξ : �→ Q.

[
ξ(0) ∈ I

]
∧

[
ξ(t0) = q

]
∧[

∀t < t0.ξ
(t+1) ∈ δ(ξ(t), α(t))

]
)

4. Let t0 < t1 be positions such that
– S

(t0)
i and S

(t1)
i are marked, i.e. m

(t0)
i = true and m

(t1)
i = true

– S
(t)
i �= ∅ for t0 ≤ t ≤ t1

– S
(t)
j is not marked and S

(t)
j �= ∅ for i > j and t0 ≤ t ≤ t1

Then, each finite run ξ of A with ξ(t0) ∈ S
(t0)
i and ξ(t1) ∈ S

(t1)
i must have

visited F at least once between t0 and t1.

Proof. Properties 1 and 2 follow directly from the definition of the transition
function of P. Property 3 holds trivially for S0: as long as the run continues (i.e.
it does not end in a deadend state), we have S0 �= ∅ according to the definition
of ρ. Thus S

(t+1)
0 = sucδ,α(t)

∃ (S(t)
0 ) for every t ∈ �. For i > 0 the result follows

from property 1.
To prove property 4, consider a run ξ of A with ξ(t0) ∈ S

(t0)
i and ξ(t1) ∈ S

(t1)
i .

For every position t between t0 and t1 we have (1) S
(t)
i �= ∅, (2) S

(t)
j �= ∅ for

every j < i, and (3) m
(t)
j = false for every j < i.
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({0, 2}, ∅, ∅)

({0, 1, 2}, {0, 1}, ∅) ({0, 1, 2}, ∅, ∅) ({0, 2}, {0}, ∅)

({0, 1, 2}, {1}, {0}) ({0, 1, 2}, ∅, {0, 1}) ({0, 2}, ∅, {0})

ba, c

b

a

c

a

c

b
c

a

a, b, c

a
c

b

b

b

c

Fig. 8. Deterministic Parity Automaton obtained from the Automaton of Figure 7

We thus have S
(t+1)
i = sucδ,α(t)

∃ (S(t)
i ) for every t ∈ {t0, . . . , t1 − 1}. Thus, we

have ξ(t) ∈ S
(t)
i for every t ∈ {t0, . . . , t1}. Since m

(t0)
i = true, we have ξ(t0) /∈ S

(t0)
j

for every j > i according to the definition of m. Let t′ > t0 be the first position
after t0 where ξ(t′+1) ∈

⋃n−1
j=i+1 S

(t′)
j . Such a position t′ must exist in the run of P,

since Si is marked at position t1. There must either exist an index j > i such that

ξ(t′+1) ∈ δ(S(t′)
j , α(t′)) or ξ(t′+1) ∈ F ∩sucδ,α(t′)

∃ (S(t′)
0 ). We will now show that the

first case is impossible, leading to our desired result that ξ visits F at least once

between t0 and t1. Assume by contradiction that ξ(t′+1) ∈ sucδ,α(t′)

∃ (S(t′)
j ). Then

there must exist a state q ∈ S
(t′)
j such that ξ(t′+1) ∈ δ(q, α(t′)). Thus according

to property 3 there does exist a run ξ′ that leads to q, i.e. ξ′(t
′) = q. However,

continuing this run with δ(q, α(t′)) leads to ξ′(t
′+1). Either ξ′ and ξ coincide

which leads to a contradition to t′ + 1 being the first position where ξ(t′+1) is
introduced in some Sj , j > i or they do not coincide which is a contradiction to
A being non-confluent. ��

With the help of this lemma we are prepared to show correctness of our deter-
minization procedure:

Theorem 1. The deterministic parity automaton P constructed for an arbitrary
non-confluent Büchi automaton A as described in Definition 3 is equivalent to
A.

Proof.

Lang(P) ⊆ Lang(A): Let α ∈ Lang(P) and π = (S(0)
0 , . . . S

(0)
n−1), (S(1)

1 , . . . S
(1)
n−1),

. . . be the corresponding run of P. Since α is accepted, there does exist t0
such that λ(π(t)) = 2i for infinitely many t and λ(π(t)) ≥ 2i for every t > t0.
Thus we have that S

(t)
j �= ∅ and m

(t)
j = false for every j < i and every t > t0.

Let t1 < t2 < · · · be the i-breakpoints, i.e. positions where S
(tj)
i is marked.

Define Q(0) = I = S
(0)
0 and for each t > 1 define Q(j) = S

(tj)
i . For each
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initial state, we construct a tree as follows: the vertices are taken from the
set

{
(q, t) | q ∈ Q(t)

}
. As the parent of (q, t + 1) (with q ∈ Q(t+1)) we pick

one of the pairs (p, t) such that p ∈ Q(t) holds and that there is a run ξ of A
on α[t, t + 1] between p and q according to property 3 of lemma 1. Clearly,
these trees are finitely branching, since each Si is finite. Moreover, for at least
one initial state q0 the corresponding tree must have an infinite number of
vertices, because we have an infinite sequence of breakpoints and S

(t)
j �= ∅

for every j ≤ i. Therefore, we conclude by Königs lemma that there is an
initial state such that there is an infinite path (q0, 0), (q1, 1), · · · through the
tree we have constructed for q0. This infinite path corresponds to an infinite
run of A on α. Recall now that according to the construction of the tree the
finite pieces of the run that connect qi to qi+1 while consuming the word
α(ti), · · ·α(ti+1−1) visit, at least once, the set of accepting states between ti
and ti+1 due to property 4. Since we have an infinite number of breakpoints,
we have constructed an accepting run of A.

Lang(A) ⊆ Lang(P): Given a word α ∈ Lang(A) with an accepting run ξ. We
must prove that the corresponding run π of P is also accepting, i.e. there
does exist an index i such that for all j ≤ i Si is empty only finitely many
times and Si is marked infinitely many times. Since ξ is an accepting run of
α we have S

(t)
0 �= ∅ for every t. If S0 is marked infinitely often, we are done.

Otherwise, let t0 be the first visit of ξ of a marked state after the last time
where S0 is marked. According to the definition of the transition relation,
there must exist a minimal index j > 0 such that ξ(t0) ∈ S

(t0)
j . Let i(t) be

the minimal index i > 0 such that ξ(t) ∈ S
(t)
i for every t > t0. We first show

that such an index must exist for all positions t > t0: since ξ is introduced in
a set S

(t0)
j′ with minimal index, ξ can only be removed from Sj′ iff either the

state set moves to the left (in case a set on the left is empty) or it is removed
due to the fact that some Si is marked for i < j. However, both cases do
not apply to S

(t)
0 after position t0. Thus after finitely many steps the i gets

constant and i > 0. Let i1 be the smallest index i1 > 0 to which the i(t)

converges and t′1 be the position after which i(t) = i
(t)
1 for every t > t′1. Then

necessarily, we have S
(t)
j �= ∅ for every j < i1 and every t > t′0. We apply

the same argument on Si1 . We again distinguish two cases: either infinitely
often Si1 is marked (so that we have constructed an accepting run), or there
exists a position t1 after which S

(t)
i1

is not marked for every t > t1. But then
there must exist another index i2 > i1 which does (after finitely many steps)
contain run ξ and never gets empty. Repeating this argumentation n = |S|
times means that all Si, i ∈ {0, . . . , n − 1} follow run ξ and never get empty
according to our assumption. According to lemma 1 every state set contains
at least one unique state. Thus S

(t)
n can possess no more than one state in

every position t > t′n. But then S
(t)
n is marked in those positions where this

uniquely defined state q ∈ S
(t)
n is a marked state of the nondeterministic

automaton. ��
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Concerning the complexity, we have the following result:

Theorem 2. Given a non-confluent Büchi automaton with n states, the con-
struction given in Definition 3 yields a deterministic parity automaton with at
most 2(n+n2) states and index 2n.

Proof. There are 2n possibilities for the marking variables mi. Moreover, the
membership of a state q in one of the n state sets of a tuple can be represented
with n boolean variables, which requires n2 variables for the n states. All in all,
this yields the upper bound 2(n+n2) for the possible states of P. ��

The above upper bound is worse that the best known complexity results for
determinization, which is typical for algorithms that allow symbolic set represen-
tations: For example, the best known (explicit) algorithm to solve parity games
is much better than the best known symbolic algorithm. In our case, we have an
additional blowup compared to Piterman’s (explicit) determinization procedure
that only needs n2n states and index 2n. However, it is nearly impossible to store
such a huge state space explicitely.

The same blowup also occurs when using the approach of [15] for the solution
of LTL games or decision procedures: the constructed nondeterministic Büchi
tree automaton (that may also be implemented symbolically) has O(2n2

) states.
In the context of LTL synthesis, the approach of [11] can also be applied that
yields parity automata with 2n · n2n states and index 2n. Their automata can
also be represented symbolically. However, they also need n state sets and thus
an efficient symbolic implementation will need n2 state variables as well. The
drawback of the approach of [11] is that it can not be used for decision prob-
lems as already mentioned there. Moreover, it is unclear wether one of the two
approaches can be used for the verification of Markov decision processes.

4 Symbolic Implementation

For the symbolic implementation of our algorithm, we introduce n state variables
q0, . . . .qn−1 together with their next version q′0, . . . , q

′
n−1 for each state q ∈ Q

of A to encode the n state sets of the deterministic automaton P. Thus, the
interpretation of qi = true is that q is contained in Si. Additionally, we have to
introduce variables mi to calculate the coloring function. The initial condition
is specified by the following equation:

ΦI =
∨

q∈I
q0 ∧

∧

q/∈I
¬q0 ∧

∧

q∈S

n−1∧

i=1

¬qi ∧
n−1∧

i=0

¬mi

To define the transition relation, we assume that we have already calculated
a equation for the set S0. Such an equation can be obtained for example by
techniques presented in [2] where it is shown how to represent the Rabin-Scott
subset construction symbolically. We thus assume that we have an equation
Δ0 =

∧
q∈Q Xq ↔ ϕq

0 that determines for each q whether q is present in the next
step in state set S0. In the following, we write ϕq

j to denote the formula that is
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obtained from ϕq
0 by replacing each state variable p0 with pj . Notice that in ϕq

0
only variables of the current step appear, and no next-variables appear in that
formula. To define the transition relation, we need some definitions in advance:
we will first need a formula that checks wether i is smaller than M as well as
a formula that determines whether or not the current index is bigger than m.
Remember that M is the maximal index that represents a nonempty set and m
is the minimal index with an empty set. Both formulas that check the position
of i between M and m can be defined as follows:

Γ(i=M) =
(∨

p∈Q pi

)
∧

(
¬

∨
j>i

∨
p∈Q pj

)

Γ(i≥m) =
∨

j≤i ¬
∨

p∈Q pj

We will start by introducing the equations for the variables mi: a state set Si

is marked, iff every non-marked state q /∈ F would appear in a state set Sj for
j > i. Thus, we get the following equation:

Ξi = m′
i ↔

∧

q∈Q\F

⎛

⎝q′i →
n−1∨

j=i+1

ϕq
j

⎞

⎠

To define the equations for the state variables, we have to distinguish the case
that Si moves to the left because of an empty state set on the left of the current
index, or it stays at its position. For q ∈ Q \ F , we obtain:

Φq
i = q′i ↔

(
¬Γ(i≥m) ∧ ϕq

i ∨ Γ(i≥m) ∧ ϕq
i+1

)
∧ ¬

i−1∨

j=0

(
q′j ∧ m′

j

)

If i ≥ m, then Si contains the successors of Si+1, i.e. sucδ,σ
∃ (Si+1) which is re-

flected by the different ϕq
i+1. Otherwise, the presence depends on the successor

obtained from Si which is represented by the different ϕq
i . Notice that the term

¬
∨i−1

j=0

(
q′j ∧ m′

j

)
removes those states that are contained in a marked state set

on the left of the current index.
For marked states p ∈ F , we have to handle the case when the state is

introduced at position M + 1 because it appears in S′
0.

Ψp
i = p′i ↔

(
¬Γ(i≥m) ∧ ϕp

i ∨ Γ(i≥m) ∧ ϕp
i+1 ∨ Γ(i−1=M) ∧ ϕp

0

)
∧ ¬

i−1∨

j=0

(
q′j ∧ m′

j

)

The overall transition relation is now given by:

ρ = Δ0 ∧
n−1∧

i=1

⎛

⎝Ξi ∧
∧

q∈Q\F
Φq

i ∧
∧

p∈F
Ψp

i

⎞

⎠

5 Conclusions

In this paper, we presented a translation of non-confluent nondeterministic Büchi
automata to equivalent deterministic parity automata. As non-confluent Büchi
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automata are obtained by the ‘standard’ translation from LTL formulas, we ob-
tain an efficient translation from LTL to deterministic parity automata. The
outstanding feature of our determinization procedure is that it can be imple-
mented with symbolic set representations and that it directly yields a symbolic
description of the generated deterministic parity automaton, which is not possi-
ble using previously published procedures.
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Monitoring Temporal Properties of Stochastic

Systems�

A. Prasad Sistla and Abhigna R. Srinivas

Abstract. We present highly accurate deterministic and randomized
methods for monitoring temporal properties of stochastic systems. The
deterministic algorithms employ timeouts that are set dynamically to
achieve desired accuracy. The randomized algorithms employ coin tossing
and can give highly accurate monitors when the system behavior is not
known.

1 Introduction

Designing and developing correct concurrent systems is a challenging process.
An alternative to developing such components is to use an existing off-the-shelf
component even if it does not exactly satisfy the user requirements. In our ear-
lier works [7,8,16], we proposed an approach for customizing such components
to user requirements. The approach proposed there uses a run time monitor that
continuously monitors the executions of the component and reports any viola-
tions of the desired property. In this paper, we develop methods that make such
monitors highly accurate using the information about the underlying system.
We also develop alternate highly accurate randomized algorithms for monitor-
ing such systems.

We assume that the correctness of the system is specified by a LTL formula or
by an automaton on infinite strings. The monitoring problem consists of observ-
ing the computation of the system in real-time and reporting a violation if it does
not satisfy the formula. This is complicated by the fact that the computations
are non-terminating, i.e., infinite, and property violation needs to be detected by
observing only the prefixes of computations. It is well known that the only prop-
erties that can be monitored exactly are the safety properties [1,14,4]. However,
an arbitrary property can still be monitored by erring sometimes. That is, not
reporting a violation when there is one (called false acceptances), or reporting a
violation when there is none (false rejections).

Two different techniques have been employed, in the literature, to monitor
a general property f . In the first approach [2], call it a liberal approach, one
monitors for the violations of the safety part of the property f (note that any
property f is equivalent to the conjunction of a safety and a liveness property
[1]. ). In this case, the monitor exhibits false acceptances, but not false rejections.
In the case of false acceptances, the computation violates the liveness part of f .

� This research is partly supported by the NSF grants CCF-0742686 and CCR-
0205365.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 294–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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An alternate approach, called conservative approach [7,8,16], is to take a safety
property h that implies f and to monitor for its violations. This method allows
false rejections, but not false acceptances. The number of false rejections can be
reduced by taking h to be as weak as possible, although in general there is no
weakest such property h [7,8,16]. Note that one can also have monitors that
exhibit false rejections as well as acceptances.

We model the system being monitored as a stochastic system and define two
different accuracy measures for monitors of stochastic systems— acceptance ac-
curacy and rejection accuracy. The acceptance accuracy is defined to be the prob-
ability that a good computation of the system ,i.e., one satisfying the formula
f , is accepted by the monitoring algorithm. The rejection accuracy is defined to
be the probability that a bad computation, i.e., one not satisfying the formula
f , is rejected by the algorithm. Ideally, both the accuracies should have value 1.
Note that the acceptance accuracy of a liberal algorithm is always 1 while the
rejection accuracy of a conservative algorithm is always 1.

In this paper, we consider systems modeled by Hidden Markov Chains (HMC)
[3], which are Markov chains that have outputs associated with each state; only
the outputs are observable but not the states. HMCs are widely used for mod-
eling systems whose states can not be fully observed. We present a conservative
monitor for such systems whose acceptance accuracy can be made as close to 1 as
possible. This algorithm dynamically resets the timeouts to achieve the desired
accuracy. We show that the timeouts can be reset so that their values increase
only linearly with each reset and such that the desired accuracy is achieved.
Both the accuracies of the monitor have value 1 when the states of the HMC are
fully visible.

The above methods for achieving accuracy assume that the underlying Markov
Chain defining the system is known. In this paper we propose probabilistic al-
gorithms for monitoring systems when their possible behaviors are not known
in advance. Actually, we use the standard automata based approach [14] for
monitoring the safety part of the property and the probabilistic approach for
monitoring the liveness part. A probabilistic monitor for a property is a random-
ized algorithm (i.e., one that use random choices) that rejects with probability
1 every computation that does not satisfy the property. A strong probabilistic
monitor for a property is a probabilistic monitor that accepts, with non-zero
probability, every computation that satisfies the property. We say that a prop-
erty is strongly monitorable if there is a strong monitor for it. For example, a
strong monitor for the liveness property ♦P rejects with some probability p after
each input until P is satisfied.

We show that the class of strongly monitorable properties is exactly the class
of properties that can be recognized by deterministic, possibly infinite state,
Buchi automata. This implies that that the property �♦P is not strongly mon-
itorable. Although, �♦P is not strongly monitorable, we present a probabilis-
tic monitor for this property that satisfies some nice properties. We present
such probabilistic monitors for the LTL formula �♦P → �♦Q and conjunc-
tions of such formulas. These algorithms together with traditional deterministic
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algorithms for safety properties give us probabilistic monitors for deterministic
Buchi automata as well as deterministic Streett automata.

We also give hybrid algorithms that combine the probabilistic methods with
the conservative approaches of [7,8,16], that employ counters, to obtain highly
accurate monitors. For example, the accuracy of a conservative monitor (for ♦P )
employing a counter of size k can be improved by a factor of 2k by combining
with randomized techniques. We present experimental results demonstrating the
high accuracy of the hybrid algorithms.

In summary, the following are the main contributions of the paper:

– A conservative deterministic monitor employing counters, for monitoring
properties specified by deterministic Buchi automata, for systems modeled
as HMCs. These monitors can be designed to achieve a desired accuracy and
have accuracy 1 when the HMC is fully visible.

– A number of probabilistic monitoring techniques for liveness properties.
– Introduction of strong monitors and the result showing that the class of

languages having strong monitors is exactly the class of languages whose
complement is recognized by possibly infinite state Buchi automata.

– Highly accurate hybrid techniques that combine deterministic and proba-
bilistic methods.

The paper is organized as follows. Section 2 contains definitions. Section 3
presents a highly accurate deterministic monitor when system behavior is known.
Section 4 describes probabilistic and hybrid methods. Section 5 describes exper-
imental results. Section 6 has concluding remarks and comparison to related
work. The proofs of lemmas can be found in the longer version [15] of the paper.

2 Definitions and Notation

Sequences. Let S be a finite set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, denoted as |σ|, is defined to be the number of elements
in σ if σ is finite, and ω otherwise. For any i ≥ 0, σ[0, i] denotes the prefix of
σ up to si. If α1 is a finite sequence and α2 is a either a finite or a ω-sequence
then α1α2 denotes the concatenation of the two sequences in that order. We let
S∗, Sω denote the set of finite sequences and the set of infinite sequences over
S. If C ⊆ Sω and α ∈ S∗ then αC denotes the set {αβ : β ∈ C}.

Automata and LTL. A Büchi automaton (NBA for short) A on infinite strings
is a quintuple (Q, Σ, δ, q0, F ) where Q is a possibly infinite set of states; Σ is
a finite alphabet of symbols; δ : Q × Σ → 2Q is a transition function; q0 ∈ Q
is an initial state; F ⊆ Q is a set of accepting/final automaton states. The
generalized transition function δ∗ : Q×Σ∗ → 2Q is defined in the usual way, i.e.,
for every state q, δ∗(q, ε) = {q}, and for any σ ∈ Σ∗ and a ∈ Σ, δ∗(q, σa) =
∪q′∈δ∗(q,σ)δ(q′, a). If for every (q, a) ∈ Q × Σ, |δ(q, a)| = 1, then A is called a
deterministic Büchi automaton (or DBA for short). Let σ : a1, . . . be an infinite
sequence over Σ. A run r of A on σ is an infinite sequence r0, r1, . . . over Q
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such that r0 = q0 and for every i > 0, ri ∈ δ(ri−1, ai). The run r of a Büchi
automaton is accepting if there exists an infinite set I of indices such that, for
each i ∈ I, qi ∈ F . The automaton A accepts the ω-string σ if it has an accepting
run over σ (for the case of DBAs, the automaton has a single run over σ). The
language accepted by A, denoted by L(A), is the set of ω-strings that A accepts.
A language L′ is called ω-regular if it is accepted by some Büchi automaton.
A Streett automaton is like a Buchi automaton excepting that its accepting
condition is given by a set of pairs of states the form (U, V ) where U, V ⊆ Q.
In this case, a run r = r0, ..., ri, ... is accepting if for every pair (U, V ) in the
accepting condition, if the set {i : ri ∈ U} is infinite then the set {i : ri ∈ V }
is also infinite. A finite state Buchi or Streett automaton is one that has only
a finite number of states. LTL is the standard Propositional Linear Temporal
Logic proposed by Pnueli. It uses the temporal operators � (always),♦ (some
time), U (until), © (next-time) together with standard boolean connectives
including →(implication).

Hidden Markov Chains. We assume that the reader is familiar with basic prob-
ability theory and random variables and Markov chains. We consider stochastic
systems given as Markov Chains [9] and monitor their computations for satis-
faction of a given property specified by an automaton or a temporal formula.
A Markov chain G = (S, R, φ) is a triple satisfying the following: S is a set
of countable states; R ⊆ S × S is a total binary relation (i.e., for every s ∈ S,
there exists some t ∈ S such that (s, t) ∈ R); and φ : R → (0, 1] is a probability
function such that for each s ∈ S,

∑
(s,t)∈R φ((s, t)) = 1. Note that, for every

(s, t) ∈ R, φ((s, t)) is non-zero. Intuitively, if at any time the system is in a
state s ∈ S, then in one step, it goes to some state t such that (s, t) ∈ R with
probability φ((s, t)). A finite path p of G is a sequence s0, s1, ..., sn of states such
that (si, si+1) ∈ R for 0 ≤ i < n. We extend the probability function to such
paths, by defining φ(p) =

∏
0≤i<n φ((si, si+1)).

We assume that there is a finite set P of atomic propositions that represent
conditions on system states. Let Σ denote 2P , the power set of P . Each member
of Σ denotes the set of atomic propositions that are true in a state of the system.
From here onwards, we assume that Σ is the input alphabet of the property
automata that we consider. If the property is given by a temporal formula then
the atomic propositions appearing in the formula are drawn from P . For any
C ⊆ Σω, let C̄ denote the set Σω − C. For an atomic proposition P ∈ Σ,
when used in a sequence, P represents the set of elements of Σ that contain P ;
similarly ¬P represents the set of elements that do not contain P .

A Hidden Markov Chain (HMC) [3] H = (G, O, r0) is a triple where G =
(S, R, φ) is a Markov chain, O : S → Σ is the output function and r0 ∈ S is
the initial state. Intuitively, for any s ∈ S, O(s) is the output generated in state
s and is the set of atomic propositions true in s; this output is generated when
ever a transition entering state s is taken. The generated symbols become inputs
to the monitor. H is called Hidden Markov chain because, one only observes the
outputs generated in each state but not the actual state. We extend the output
function O to paths of G as follows. For any finite path p = s0, s1, ..., sn in G,
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O(p) = O(s0), O(s1), ..., O(sn). The probability distribution on the single step
state transition of G induces a probability distribution on the sets of sequences of
outputs generated. To define these distributions formally, let E be the smallest
class of subsets of Σω satisfying the following properties: for every α ∈ Σ∗,
αΣω ∈ E ; E is closed under countable union (i.e., if C0, ...Ci, ... is a finite or
infinite sequence of elements in E , then

⋃
i≥0 Ci is also in E); it is closed under

complementation (i.e., for every C ∈ E , C̄ is also in E). The elements of E are
called measurable subsets of Σω. It is not difficult to see that E is also closed
under countable intersections. It can be shown that, for any automaton A with
input alphabet Σ, L(A) is measurable.

Now, for any system state r ∈ S, we define a probability function Fr defined
on E as follows. Intuitively, for any C ∈ E , Fr(C) denotes the probability that
an output sequence generated from the system state r, is in C. Fr is the unique
probability measure satisfying all the probability axioms [9], such that for every
α ∈ Σ∗ and C = αΣω, Fr(C) is the sum of φ(p), for all finite paths p of G
starting from the state r such that O(p) = α. For the HMC chain given in
figure 1 and for α = ({Q}, {Q}, {Q}), there are two paths p, i.e., s0, s0, s0 and
s0, s0, s2, such that O(p) = α and hence Fs0(C) = 2

9 .
Let D ∈ E be such that Fr(D) 	= 0. We let Fr|D denote the conditional

probability function given D; formally, for any C ∈ E , Fr|D(C) = Fr(C∩D)
Fr(D) . For

any LTL formula g, we let Fr|g denote the conditional distribution Fr|D where D
is the set of input sequences that satisfy g. For any α ∈ Σ∗ and C = αΣω, we let
Fr(α) denote the probability Fr(C) and Fr|α denote the conditional probability
function Fr|C . For a set C ⊆ Σ∗, we let Fr(C) denote Fr(CΣω).

Example 1. Consider the HMC S1 given in figure 1. Here the set of atomic
propositions P = {P, Q}. It should be easy to see that Fs0(♦P ) = 1

2 .

0
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1

Q

P,Q

Q

1/3

1/3

1/3

s

s

s
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Fig. 1. System S1

Deterministic Monitors. A monitor M : Σ∗ → {0, 1} is a computable function
with the property that, for any α ∈ Σ∗, if M(α) = 0 then M(αβ) = 0 for every
β ∈ Σ∗. For an α ∈ Σ∗, we say that M rejects α, if M(α) = 0, otherwise we say
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M accepts α. Thus if M rejects α then it rejects all its extensions. For an infinite
sequence σ ∈ Σω, we say that M rejects σ iff there exists a prefix α of σ that is
rejected by M ; we say M accepts σ if it does not reject it. Let L(M) denote the
set of infinite sequences accepted by M . It is not difficult to see that L(M) is
a safety property and is measurable. The acceptance accuracy of M for A with
respect to the HMC H is defined to be the probability Fr0|L(A)(L(M)) where r0 is
the initial state of H . Intuitively, it is the conditional probability that a sequence
generated by the system is accepted by M , given that it is in L(A). Roughly
speaking, it is the fraction of the sequences in L(A), generated from r0, that are
accepted by M . Let C, D be the complements of L(A) and L(M) respectively,
i.e., C = Σω −L(A) and D = Σω −L(M). Then the rejection accuracy of M for
A (also for L(A)) with respect to H is defined to be the probability Fr0|C(D).
This is the probability that a sequence generated by the system is rejected by
M , given that it is not in L(A). It is easy to see that this rejection accuracy is
equal to (1 − acceptance accuracy of M for C with respect to H).

We say that M is a conservative monitor for a language L′ ⊆ Σω, if L(M) ⊆
L′, i.e., it rejects every sequence not in L′. We say that M is a conservative
monitor for an automaton A (resp., for a LTL formula φ) if it is a conservative
monitor for L(A) (resp., for C where C is the set of sequences that satisfy φ).
Note that the rejection accuracy of a conservative monitor is 1.

Example 2. Consider the following conservative monitor M1 for the LTL for-
mula ♦P . It accepts all finite sequences of length ≤ 2. It accepts a finite sequence
of length greater than two only if it has a P in the first three symbols. Clearly,
L(M1) = {(¬P )iPβ : i ≤ 2, β ∈ Σω}. Now consider the system HMC of Exam-
ple 1. The first input produced by S1 from state s0 is ¬P , the probability that
either the second or the third symbol is a P is 4

9 . From this, it should be easy
to see that Fs0|♦P (L(M1)) = 8

9 . Hence the acceptance accuracy of M1 for ♦P

with respect to the system S1 is 8
9 .

Probabilistic Monitors. We also define probabilistic monitors. A probabilistic
monitor M : Σ∗ → [0, 1] is a function that associates a probability M(α) with
each α ∈ Σ∗ such that for every α, β ∈ Σ∗, M(αβ) ≤ M(α). Intuitively, M(α)
denotes the probability that α is accepted by M . We extend M to infinite se-
quences as follows. For any σ ∈ Σω, M(σ) = limi→∞ M(σ[0, i]). M(σ) repre-
sents the probability of acceptance of σ by M . We say that M is a probabilistic
monitor for a language L′ if M(σ) = 0 for all σ ∈ Σω − L′. That is every se-
quence not in L′ is rejected with probability 1. Although we defined monitors
as functions, many times monitors are given by algorithms (deterministic or
probabilistic) that take inputs and reject some input sequences. With each such
algorithm there is an implicitly defined unique monitor function.

The definition of acceptance accuracy for probabilistic monitors is a little
more involved. Let M be a probabilistic monitor for an automaton A with input
alphabet Σ. Let Fr0|L(A) be the conditional probability distribution function
on the set of input sequences generated by the system. For any n > 0, let
Yn =

∑
α∈Σn(Fr0|L(A)(α)M(α)); note Σn is the set of all sequences of length n.



300 A.P. Sistla and A.R. Srinivas

Because of the monotonicity of the function M , it is easy to see that Yn ≥ Yn+1
for all n > 0. We define the acceptance accuracy of M for A with respect to the
given system to be limn→∞ Yn. The rejection accuracy of M for A with respect
to the HMC H , is defined to be the limn→∞ Zn where Zn is obtained from the
expression for Yn by replacing L(A) by its complement and M(α) by 1 − M(α).

Example 3. Consider the following probabilistic monitor M2 for ♦P . M2 looks
at the current symbol. If it is a P it accepts and it will accept all subsequent
inputs. If the current symbol is ¬P and it has not seen a P since the beginning,
then it rejects with probability 1

3 and accepts with probability 2
3 . Formally,

M2((¬P )n−1Pβ) = (2
3 )n−1 for all n ≥ 1 and for all β ∈ Σ∗. Now consider the

HMC S1 given in Example 1. It can be shown by simple probabilistic analysis
that Yn = 2

∑n−1
1 (2

3 )i(1
3 )i. From this, we see that the accuracy of M2 for ♦P

with respect to system S1 , which is limn→∞ Yn, is 4
7 . In general if the rejection

probability at each step used is p, it can be shown that the acceptance accuracy
of M2 for ♦P with respect to S1 is 2 1−p

2+p . Thus the acceptance accuracy can be
increased arbitrarily close to 1 by decreasing p.

A useful function. Let Z≥2 denote the set of integers greater than or equal to
two. Let c ≥ 2 be an integer. Consider a monitor which reads an infinite sequence
of inputs. After the ith input, it rejects with probability 1

ci and stops, otherwise
it continues. The probability that it never rejects is given by the value G(c)
defined as follows. For any integer c ≥ 2, G(c) =

∏∞
i=1(1 − 1

ci ). More precisely,
G(c) = limn→∞

∏n
i=1(1 − 1

ci ). Observe that each term in the product increases
with i and goes to 1 as i → ∞. Lemma 1 gives bounds on G(c).

Lemma 1. For every c ≥ 2, exp (−(2·c3+3·c2+c+1)
2·c2·(c2−1) ) ≤ G(c) ≤ (1 − 1

c ).

Using the above bound, it can be shown that G(2) > 0.26, G(3) > 0.55, G(4) >
0.68, etc. From the above bound, we see that limc→∞ G(c) = 1.

3 Accurate Deterministic Monitors

In this section we give methods for designing highly accurate deterministic moni-
tors that monitor the executions of a system, given as a HMC, against a property
specified by a deterministic finite state Buchi automaton. Here we assume that
we know the initial system state and the output sequence generated by the
system, but we can not observe the system state.

Let H = (G, O, r0) be a HMC where G = (S, R, φ) is a finite Markov chain
and A = (Q, Σ, δ, q0, F ) be the given deterministic finite state Buchi automaton.
For any q ∈ Q, let Aq be the automaton obtained by changing the initial state of
A to q. Let (s, q) ∈ S × Q. We call each such pair as a product state. Note that,
for any such (s, q), Fs(L(Aq)) is the probability that an infinite output sequence
generated from the system state s is accepted by the automaton A when started
in the state q. We say that (s, q) is an accepting product state if Fs(L(Aq)) = 1.
We say that it is a rejecting product state if Fs(L(Aq)) = 0. Later we show how
the accepting and rejecting product states can be determined.
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Our monitoring algorithm works as follows. As the monitor gets inputs from
the system, it simulates the automaton A on the input sequence using the vari-
able a state. It also keeps a set s states which is the set of states the system
can be in. If at any time all states in s states × {a state} are accepting prod-
uct states then it accepts. If all these states are rejecting product states then
it rejects. Otherwise, it continues. In addition, it also maintains a counter, de-
noted by counter variable, which is initialized to some value. In each iteration,
counter is decremented. If counter is zero before an accepting automaton state
is reached then, it rejects. When ever an accepting automaton state is reached
then this counter is reset to a new value using the function f . The algorithm
for the monitor is given below. The variable x denotes the current input symbol
and the variable i records the number of times the counter has been reset. Here
r0 is the initial state of the system.

a state := q0; s states := {r0};
i := 1; counter := f(s states, i, a state);
x := O(r0);
Loop forever

a state := δ(a state, x);
x := get nextinput();
s states := {s′ : (s, s′) ∈ R, s ∈ s states, O(s′) = x};
If every state in s states × {a state} is an accepting product state

accept();
If every state in s states × {a state} is a rejecting product state

reject();
counter := counter − 1;
If counter = 0 and a state /∈ F reject();
If a state ∈ F

{i := i + 1; counter := f(s states, i, a state)}

When ever the monitor rejects (or accepts) then it immediately stops; in this
case, it is assumed that it rejects (or accepts) all future inputs.

It is easy to see that the monitor rejects any input sequence that is not in L(A)
since after certain point, a state is never in F . The accuracy of the monitor is
highly dependent on the function f used in resetting the counter. One possibility,
as indicated in [7,8], is to reset it to a constant k. In this case, it can be shown
that the accuracy of the resulting monitor is going to be zero many times. The
following theorem shows that by increasing the reset value of counter linearly
with i, we can achieve a desired accuracy.

Theorem 1. For any given rational y such that 0 ≤ y ≤ 1, there exists a
constant a such that if f(X, i, q) = a · i, for every X ⊆ S and q ∈ Q, then the
accuracy of the above monitor is at least y. Further more such a constant a is
computable in time polynomial in the sizes of H, A.

Proof Sketch: Let y be as given in the statement of the theorem and c be an
integer such that G(c) ≥ y and c ≥ 2. We show that there exists an efficiently
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computable constant a such that by setting f(X, i, q) = a · i, the probability
that an accepting state of the automaton is not reached with in f(X, i, q) inputs
is at most 1

ci ; that is this probability decreases exponentially with i.
For an automaton state q ∈ Q and α ∈ Σ∗, we say that α is a minimal

acceptable sequence for q if |α| > 0, δ∗(q, α) ∈ F and for every proper prefix
α′ of α, δ∗(q, α′) /∈ F ; that is α is a minimal finite sequence accepted from the
automaton state q. For an integer k > 0, for any q ∈ Q, let MINSEQ(q, k)
denote {α : α is a minimal acceptable sequence for q and |α| ≤ k}. It is easy to
see that no sequence in MINSEQ(q, k) is a proper prefix of another sequence
in it.

We say that a product state (s, q) is good if Fs(L(Aq)) > 0. For any good prod-
uct state (s, q), integer k > 0, define h(s, q, k) = Fs|L(Aq)(MINSEQ(q, k)). In-
tuitively, h(s, q, k) is the conditional probability that an infinite output sequence
β ∈ L(Aq) generated from s has a prefix in MINSEQ(q, k); i.e., starting from
q an accepting automaton state is reached with in k outputs. Note that for a
good product state (s, q), h(s, q, k) monotonically increases with k and goes to
1 in the limit.

Lemma 2. 1. There exists a constant a that is efficiently computable from
G, A and c such that for every good product state (s, q) and every i > 0,
h(s, q, a · i) ≥ (1 − 1

ci ).
2. The set of accepting states and rejecting product states can be computed in

time linear in the sizes of H and A.

Lemma 3. For any X, q, if f(X, i, q) = a · i where a is as given in lemma 2,
then the accuracy of the above monitor is at least y.

The complete version of the paper [15] gives an efficient method for computing
the value of a of theorem 1. For an interesting subclass of HMCs, called fully
visible HMCs, we can obtain a much simpler monitoring algorithm. We say that
the HMC H = (G, O, r0) where G = (S, R, φ), is fully visible if O is a one-one
function, i.e. for any two distinct s, s′ ∈ S, O(s) 	= O(s′). This means that one
can uniquely determine the current state of the system by its output. In this
case, the set s states is always a singleton set. If at any time, s denotes the
unique state in the set s states, then from the property of Markov chains, it
can be shown that eventually (s, a state) is either an accepting or a rejecting
product state. Thus for fully visible HMCs, we simplify the loop body of the
monitoring algorithm by simply checking whether s states × {a state} contains
either an accepting or a rejecting state; thus accepting or rejecting respectively.

Theorem 2. For a fully visible HMC, the simplified algorithm is correct and its
acceptance and rejection accuracies are both equal to one.

Example 4. Now consider the example of a HMC given in Figure 2. In this
example, initially the system is in state s which is non-critical region (labeled by
the proposition N). From s, it may loop there or go to s′ or go to state t which
is the trying region where the user sends a request for the resource. From t, the
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system may loop, or go to state v denoting that the resource server crashed or
go to state w where the resource is granted. Note both states t, v are labeled by
T . Thus we can not tell whether the system is in state t or in v. In state s′, it
can loop or go to u′ where it requests for the resource. In u′, it may loop or go
to w′. In state w′ the resource is allocated. Note that the resource server does
not crash when requested from u′. This is because, here, a more reliable server is
employed. Now our monitoring algorithm can be used to monitor for the desired
property g = �(T → ♦C). Using the approach given in the proof of lemma 2,
we get f(X, i, q) to be a · i where a = max{2, � ln c

ln 3�} and c is an integer such
that G(c) ≥ y.

Fig. 2. Resource Acquisition

4 Probabilistic Monitors

In this section we consider probabilistic monitors that can be used to monitor
any system for which the underlying HMC is not known.

Recall that if M is a probabilistic monitor for a language L′ then for every
σ /∈ L′, M(σ) = 0. (Note that the rejection accuracy of a probabilistic monitor
for a property with respect to HMC is one.) We say that M is a strong monitor
for L′ if M is a probabilistic monitor for L′, and in addition, for every σ ∈ L′,
M(σ) > 0.

Existence of Strong Monitors

Lemma 4. There is a strong monitor for a language L iff L̄ is recognized by a
possibly infinite state deterministic Buchi automaton.

The above lemma has the following implications. Since the sets of sequences
satisfying ¬♦P, ¬♦�P are recognizable by deterministic Buchi automata, it
follows that there are strong monitors for ♦P and ♦�P . On the contrary, it is
well known that the set of sequences satisfying ¬�♦P is not recognizable by
any finite or infinite state deterministic Buchi automaton. Hence we have the
following lemma.



304 A.P. Sistla and A.R. Srinivas

Lemma 5. There are no strong monitors for the LTL formulas �♦P and �♦P →
�♦Q.

We have already given in section 2, Example 3, a probabilistic monitor M3 for
♦P . This monitor acts as follows. In the beginning, after it sees each input
symbol, if the symbol is not P then it rejects with probability p. This behavior
continues until the first P is seen. Once it sees a P , it does not reject any more
from then onwards. Suppose that the first P occurs as the ith input symbol, then
the probability that this sequence is accepted by M is (1 − p)i. Clearly, M is a
strong monitor for ♦P .

Monitors with Desirable Properties
The above monitor for ♦P can be modified to obtain a monitor for �♦P which
acts like M3 until the first P and repeats this algorithm immediately after each
subsequent P until the another P is seen. Unfortunately, the resulting monitor
rejects any sequence that has infinite occurrences of ¬P even if it satisfies �♦P .
This problem can be mitigated to a large extent by reducing the probability of
rejection in geometric progression after each occurrence of a P .

Monitor for �♦P . We construct a simple probabilistic monitor M5 for the LTL
formula �♦P . Let c ≥ 2 be any integer. M5 rejects with probability 1

c after each
input until the first P is seen. After the occurrence of the first P and before
the occurrence of the second P , it rejects with probability 1

c2 after each input
symbol. In general, in the period between the occurrence of the ith P and the
(i + 1)st P , after each input symbol, it rejects with probability 1

ci+1 . It is easy
to see that M5 rejects every input sequence that does not satisfy �♦P with
probability 1 since P never occurs after some point, and after this point, M5
rejects continuously with the same probability. Now consider any sequence σ
that satisfies �♦P . We say that such a sequence is well behaving, if the distance
between any two successive P s is bounded. For such a sequence σ, let bound(σ)
be the smallest value of m such that the first P occurs with in the first m input
symbols and the distance between any successive P s is bounded by m.

Lemma 6. The monitor M5 accepts every well behaving sequence with non-zero
probability.

It is to be noted that no deterministic monitor can accept all well behaving
sequences that satisfy �♦P , even those that use dynamically increasing counters.
This is because for any well behaving sequence σ, the value of bound(σ) is not
known in advance. It is fairly straightforward to obtain a similar monitoring
algorithm for any deterministic Buchi automaton.

Monitor for �♦P → �♦Q. Now we give the description of probabilistic monitor
M7 for the LTL formula �♦P → �♦Q. Let c ≥ 2 be an integer. M7 behaves as
follows. Through out its operation, whenever it sees a symbol which is a symbol
other than P it continues. Whenever it sees a P , M7 rejects with probability 1

ci+1

where i is the number of occurrences of Q before the current input. This scheme
can be implemented by keeping a variable p initialized to 1

c . When ever a P
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occurs M7 rejects with probability p. When ever a Q occurs p is set to p
c . It is not

difficult to see that M7 is a probabilistic monitor for �♦P → �♦Q. A sequence
not satisfying the formula, has infinitely many P s and only finitely many Qs. If
the number of Qs is m, then M7 rejects infinitely often with the same probability
which is 1

cm+1 . Hence the input will be rejected with probability 1. Any sequence
that has only a finite number of P s will be accepted with non-zero probability.
Consider a sequence that satisfies the formula and that has infinitely many P s.
It also has infinitely many Qs. We say that such a sequence σ is well behaving if
the number of P s between successive Qs is bounded. Using the same reasoning
as before, we can conclude that M7 accepts every well behaving sequence with
non-zero probability.

We can extend the above monitor for formulas of the form
∧m

i=1(�♦Pi →
�♦Qi). For each i = 1, ..., m, we build a monitor M

(i)
7 that monitors the for-

mula �♦Pi → �♦Qi. They all coordinate so that if any of them rejects then all
of them reject and stop. It is easy to see that the resulting monitor is a prob-
abilistic monitor for the main formula. If a sequence satisfying the formula is
well behaving with respect to each of the conjuncts of the formula then such a
sequence will be accepted with non-zero probability. It is fairly straightforward
to see how we can construct monitor for a deterministic Street automaton us-
ing the above approach by simulating the automaton on the input string and
by monitoring the run of the automaton for the acceptance condition using the
above monitor.

Hybrid Algorithms
The accuracy of the monitoring algorithms given earlier for ♦P , �♦P and
�♦P → �♦Q can be improved substantially by combining with the determinis-
tic counter based algorithms.

We illustrate this by constructing such a monitor for the formula ♦P . (The
construction can be adopted easily for �♦P and �♦P → �♦Q.) A deterministic
monitor D for ♦P , uses counter k, and accepts an input if a P occurs in the
first k inputs. Otherwise it rejects. We can also combine the above deterministic
algorithm with the probabilistic monitor M3 to get a hybrid algorithm H that
works as follows: if a P occurs in the first k inputs then it never rejects; if a
P does not occur in the first k symbols then after reading the kth symbol, it
rejects with probability p; it repeats this process for ever; that is, if a P occurs
in the next k inputs then it does not reject any more, otherwise it rejects with
probability p after the second k input symbols, and so on.

We first compare the above three simple algorithms with respect to their
acceptance accuracies on uniformly distributed inputs. For n > 0, let Hn be a
HMC that generates a sequence of outputs such that the first P occurs with
equal probability (i.e., with probability 1

n ) in any of the n outputs starting with
the second output. The complete version of the paper gives the formal definition
of Hn.

Lemma 7. Let ρprob,n denote the ratio of the acceptance accuracy of the proba-
bilistic algorithm to that of the deterministic algorithm for the property ♦P with
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respect to the HMC Hn. Similarly let ρhybrid,n denote the ratio of the acceptance
accuracy of the hybrid algorithm to that of the deterministic algorithm. Then, in
the limit as n → ∞, ρhybrid,n → 1

p and ρprob,n → 1−p
(k−1)p .

The above lemma shows that for large values of n, the hybrid algorithm is
more accurate than the deterministic algorithm for all values of p, while the
probabilistic algorithm is more accurate than the deterministic algorithm for
values of p ≤ 1

k .

Generating low probabilities. We see that both the probabilistic and hybrid algo-
rithms can be made more accurate by decreasing p, the probability of rejection.
In case of the hybrid algorithm, p can be made as low as 1

2k , where k is the
counter value, by using a coin tossing scheme as follows. In each step, i.e., af-
ter reading each input symbol, the algorithm tosses an unbiased coin. If no P
occurs in the first k inputs and all the previous k coin tosses turned “head”
then it rejects, otherwise it continues; note that the probability, that all k coin
tosses result in “head”, is 1

2k . (If we take k = 100 then this probability is less
than 10−30). This process is repeated. In this case, the hybrid algorithm is more
accurate than the deterministic one by a factor of 2k. Note that here k serves a
dual purpose— as a counter and also for generating low probabilities.

5 Experimental Results

We conducted some simple experiments to evaluate the acceptance accuracy of
the different algorithms. We evaluated the algorithms for monitoring ♦P and
�♦P . We generated strings of length 106. Each symbol is from {P, ¬P}. We
used two different types of inputs. The first type of inputs is where the distance
between successive P symbols is uniformly distributed between 1 and 1000. The
second type of input is where this distance is normally distributed with different
means (μ) and standard deviations (σ). We considered three different combi-
nations of μ, σ; these are (200, 20), (300, 30) and (500, 50). We evaluated the
deterministic, hybrid and probabilistic methods. For deterministic and hybrid
algorithms we used counters of length 200,300 and 500. For probabilistic algo-
rithms we used probabilities of 1

100 , 1
500 and 1

1000 .
For the property �♦P , for the probabilistic method, we started with an initial

probability of rejection and decreased it by a factor of 1
2 in each successive period.

For the hybrid algorithm, we used a biased coin where the probability of getting
“heads” is given by this probability. Thus if this probability is 1

100 then the
probability of rejection in the hybrid algorithm is as low as ( 1

100 )200 if a counter
of length 200 is chosen.

For �♦P , for uniform distribution, all algorithms excepting the hybrid algo-
rithm rejected every input (all false rejections). This is because all of them have
some probability of rejection before the next P and this gets amplified with suc-
cessive P s. For the hybrid algorithms,the probability of rejection is so low that
none of the inputs strings is rejected, i.e., all are accepted.
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For normal distribution, the deterministic algorithm with counter 200 rejected
all inputs; with counter 300 accepted all inputs where μ = 200 and σ = 20
but rejected all others and so on. The hybrid algorithm accepted all while the
probabilistic algorithm rejected all.

This shows that the hybrid algorithm is best for high acceptance accuracy
for �♦P . We carried out similar experiments for ♦P for uniform and normal
distributions. As predicted, the hybrid algorithm fared well always and has the
best acceptance accuracy. The deterministic algorithm fared well for normal
distribution if μ + 3σ < k.

6 Conclusion

In this paper, we have proposed algorithms for accurate monitoring of liveness
properties. These algorithms combined with traditional algorithms for safety
properties can be used for monitoring any ω-regular property. We presented a
simple deterministic method that can be tuned to appropriate accuracy for a sys-
tem given by Hidden Markov Chain. We proposed randomized algorithms when
system behavior is not known. Among these algorithms the hybrid algorithms
are extremely accurate.

As has been indicated in the introduction, our earlier works [7,8,16] gave dif-
ferent techniques for synthesizing conservative deterministic monitors for mon-
itoring temporal properties. Deterministic liberal monitoring algorithms have
been proposed in [2]. Runtime monitoring has also been used for interface syn-
thesis in [10] where the interactions between the module and the interface are
considered as a two person game.

In [5,6] Larsen et.al. propose a method which, given a context specification
and an overall specification, derive a temporal safety property characterizing the
set of all implementations which, together with the given context, satisfy the
overall specification. There has been much work in the literature on monitoring
violations of safety properties in distributed systems. In these works, the safety
property is typically explicitly specified by the user. A method for monitoring
and checking quantitative and probabilistic properties of real-time systems has
been given in [13]. These works take specifications in a probabilistic temporal
logic (called CSL) and monitors for its satisfaction. The probabilities are deduced
from the repeated occurrence of events in a computation.

None of the above works employ accuracy measures for monitors and none
of them use randomization for monitoring liveness properties as we do. Our
techniques are entirely new and have been experimentally validated.

Model checking probabilistic systems models as Markov chains was considered
in the works of [17,11,12]. There they also construct a product of the Markov
chain and the automata/tableaux associated with the LTL formula. While they
concentrate on verification, we concentrate on the corresponding monitoring
problem. Further more, we assume that during the computation the state of
the system is not fully visible.
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Abstract. In the game theoretic approach to the synthesis of reactive systems,
specifications are often given in linear time logic (LTL). Computing a winning
strategy to an infinite game whose winning condition is the set of LTL properties
is the main step in obtaining an implementation. We present a practical hybrid
algorithm—a combination of symbolic and explicit algorithm—for the computa-
tion of winning strategies for unrestricted LTL games that we have successfully
applied to synthesize reactive systems with up to 1011 states.

1 Introduction

Great progress has been made in the verification of reactive systems over the last twenty
years. The combination of sophisticated algorithms, powerful abstraction techniques,
and rigorous design methodologies has made the verification of large hardware and
software systems possible. Synthesis from specifications given as (temporal) logic for-
mulae or automata [7, 11, 39] has proved a more difficult problem and has enjoyed less
success in spite of the important applications that depend on efficient solutions of the
synthesis problem. In particular, debugging and repair are promising fields in which
techniques based on synthesis algorithms have found employment [23, 25].

Recent algorithmic advances in the determinization of Büchi automata and in the
solution of parity games have renewed hope that realistic systems may be synthesized
from their temporal specifications. In this paper we propose a hybrid approach to this
problem that combines symbolic algorithms (operating on the characteristic functions
of sets) and explicit algorithms (that manipulate individual set members).

Specifications are often made up of several relatively simple components—for in-
stance, a collection of LTL properties. If that is the case, our approach scales well be-
cause it applies the expensive explicit processing steps to the individual components
of the specification, and adopts symbolic techniques where they matter most—in the
solution of the final generalized parity game. Preliminary experiments demonstrate that
the approach is effective in dealing with rather large systems even in its current proto-
typical form. For instance, we were able to synthesize an optimal Nim player from a
description of the game bookkeeping and the property that requires victory from each
winning position.
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Our approach converts each component of the specification into either a Büchi
automaton or a parity automaton of minimum index. The Büchi automaton can be non-
deterministic if it fair simulates the deterministic parity automaton obtained from its
determinization by Piterman’s procedure. We show that in that case the parity automa-
ton must have a parity index less than or equal to two. The reactive system implementing
the specification is derived by symbolically computing the winning strategies of a non-
deterministic concurrent parity game obtained by composition of the several automata.

The rest of this paper is organized as follows. Section 2 recalls the notions on ω
automata and games that are pertinent to this paper. Section 3 summarizes the algo-
rithm. Section 4 discusses algorithmic choices for symbolic implementations. Section 5
discusses related work. Section 6 presents our experiment results and Sect. 7 concludes.

2 Automata and Games

A finite automaton on ω-words 〈Σ, Q, qin, δ, α〉 is defined by a finite alphabet Σ, a finite
set of states Q, an initial state qin ∈ Q, a transition function δ : Q × Σ → 2Q that maps
a state and an input letter to a set of possible successors, and an acceptance condition
α that describes a subset of Qω, that is, a set of infinite sequences of states. A run of
automaton M on ω-word w = w0w1 . . . is a sequence q0, q1, . . . such that q0 = qin,
and for i ≥ 0, qi+1 ∈ δ(qi, wi). A run is accepting iff (if and only if) it belongs to the
set described by α, and a word is accepted iff it has an accepting run in M . The subset
of Σω accepted by M is the (ω-regular) language of M . A deterministic automaton is
such that δ(q, σ) is a singleton for all states q ∈ Q and all letters σ ∈ Σ.

Several ways of specifying the acceptance condition α are in use. In this paper we
are concerned with Büchi [6], co-Büchi, parity [36, 13], Rabin [40], and Streett [46]
acceptance conditions. All these conditions are concerned with the sets of states that
occur infinitely often in a run; for run ρ, this set is written inf(ρ). Büchi and co-Büchi
acceptance conditions are both given as a set of states F ⊆ Q. A run ρ is accepting for
a Büchi (co-Büchi) condition iff inf(ρ) ∩ F 	= ∅ (inf(ρ) ∩ F = ∅). A parity acceptance
condition is given as a function assigning a priority to each state of the automaton.
Letting [k] = {i | 0 ≤ i < k}, a parity condition of index k is a function π : Q → [k].
A run ρ is accepting iff max{π(q) | q ∈ inf(ρ)} is odd; that is, if the highest recurring
priority is odd.

Rabin and Streett are given as a set of pairs of sets of states: {(U1, E1), . . . , (Uk, Ek)};
k is called the index of the condition. A run ρ is accepted according to a Rabin (Streett)
condition iff there exists i such that inf(ρ) ∩ Ui 	= ∅ and inf(ρ) ∩ Ei = ∅ ( for all
i, inf(ρ) ∩ Ui = ∅ or inf(ρ) ∩ Ei 	= ∅). Rabin and Streett acceptance conditions are
complementary just as Büchi and co-Büchi are. A parity condition π : Q → [k] such
that k is even can be easily converted to a Rabin condition with k/2 pairs; hence, parity
conditions are also known as Rabin chain conditions. It is also easy to translate π to
a Streett condition. A parity condition πc complementary to π is obtained by letting
πc(q) = π(q) + 1 for all q ∈ Q.

Büchi, co-Büchi, and parity acceptance conditions may be generalized. A general-
ized Büchi condition consists of a collection F ⊆ 2Q of Büchi conditions. A run ρ is
accepting for a generalized Büchi (co-Bc̈hi) condition iff it is accepting according to
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each F ∈ F (some F ∈ F). A generalized parity condition may be either conjunctive
or disjunctive and is given as a collection Π of priority functions. A run ρ is accepting
according to a conjunctive (disjunctive) condition Π iff it is accepting according to each
(some) π ∈ Π . Disjunctive and conjunctive generalized parity conditions are dual in
the same sense in which Rabin and Streett conditions are and extend them just as Rabin
and Streett conditions extend generalized co-Büchi and Büchi conditions.1

An ω-regular automaton equipped with a Büchi acceptance condition is called a
Büchi automaton; likewise for the other acceptance conditions. In this paper, we adopt
popular three-letter abbreviations to designate different types of automata. The first
letter of each abbreviation distinguishes nondeterministic (N) from deterministic (D)
structures. The second letter denotes the type of acceptance condition: Büchi (B), co-
Büchi (C), Rabin (R), Streett (S), and parity (P). The final letter indicates that the
automata read infinite words (W). As examples, NBW designates a nondeterministic
Büchi automaton (on infinite words), while DPW is the acronym for a deterministic
parity automaton (also on infinite words).

Despite their similarity to automata on finite words DBWs are less expressive than
NBWs and are not closed under complementation; accordingly, determinization is only
possible in general by switching to a more powerful acceptance condition and com-
plementation of NBWs cannot be accomplished by determinization followed by com-
plementation of the acceptance condition. Piterman [37] has recently improved Safra’s
procedure [43] so as to produce a DPW (instead of a DRW) from an NBW. The con-
struction extends the well-known subset construction for automata on finite words.
Rather than labeling each state of the deterministic automaton with a subset of states of
the NBW, it labels it with a tree of subsets. As a result, the upper bound on the number
of states of the DPW derived from an NBW with n states is n2n+2. This fast-growing
function discourages determinization of large NBWs. Concerning determinization, it
should be noted that generalizing Büchi and co-Büchi conditions provides convenience
and conciseness, but does not increase expressiveness. On the other hand, generalized
Büchi games, just like Streett games, do not always admit memoryless strategies, to be
discussed shortly.

Linear Time Logic (LTL) [49, 31] is a popular temporal logic for the specification
of nonterminating reactive systems. LTL formulae are built from a set of atomic propo-
sitions, Boolean connectives, and basic temporal operators X (next), U (until), and R
(releases). Derived operators G (always) and F (eventually) are usually included for
convenience. Procedures exist (e.g., [17]) to translate an LTL formula into an NBW
that accepts the language defined by the formula. On the one hand, if not all ω-regular
languages can be expressed in LTL, DBWs are not sufficient to translate all of LTL.2

Piterman’s determinization procedure provides a way to find a DBW equivalent to
an NBW whenever it exists. A set of states in an ω-regular automaton M is essential
if it equals inf(ρ) for some run ρ of M . A positive chain of length m is a sequence of
m essential sets R1 ⊂ · · · ⊂ Rm such that Ri satisfies the acceptance condition of M

1 Specifically, Rabin and Streett pairs can be seen as parity conditions with three colors, while
co-Büchi and Büchi conditions can be seen as parity conditions with two colors.

2 In fact, LTL formulae exist that describe ω-regular languages with arbitrarily large Rabin in-
dices. [30].
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iff i is odd. The Rabin index of an ω-regular language L is the minimum k such that
there exists a DRW with k pairs recognizing L. The Rabin index I(L) of language L
is related to the maximal length Ξ(M) of a positive chain in a deterministic automaton
ML accepting L by the equation I(L) = (Ξ(ML) + 1)/2� [48]. Carton and Ma-
ceiras have devised an algorithm that finds I(L) given a DPW that recognizes L in time
O(|Q|2|Σ|) [9]. Moreover, every DPW M that recognizes L can be equipped with a
new parity condition π : Q → [Ξ(M) + 1] without changing the accepted language.
The following procedure therefore yields a DBW from an NBW if one exists: Convert
NBW N to an equivalent DPW D by Piterman’s procedure. Compute Ξ(D) with the
algorithm of Carton and Maceiras. If Ξ(D) ≤ 1 the equivalent parity condition with
≤ 2 priorities computed together with Ξ(D) can be interpreted as a Büchi acceptance
condition; otherwise no DBW equivalent to N exists. (If Ξ(D) = 0, N accepts the
empty language.)

Deterministic ω-regular automata can be used to define infinite games [47] in several
ways. Here we consider turn-based and input-based two-player games, in which Player
0 (the antagonist) and Player 1 (the protagonist) move a token along the transitions of
the automaton. If the resulting infinite sequence of states is accepted by the automaton,
Player 1 wins, otherwise Player 0 wins. In turn-based games the set of states Q is
partitioned into Q0 (antagonist states) and Q1 (protagonist states). Each player moves
the token from its states by choosing a letter from Σ and the corresponding successor
according to δ. In input-based games, the alphabet Σ is the Cartesian product Σ0 × Σ1
of an antagonist alphabet and a protagonist alphabet. In state q, Player i chooses a letter
σi ∈ Σi. The token is then moved to δ(q, (σ0, σ1)). Turn-based games are games of
perfect information, whereas in input-based games a player may have full, partial, or no
advance knowledge of the other player’s choices. The amount of information available
to one player obviously affects its ability to win the game. If one player has knowledge
of the move of the other, then input-based games are easily reduced to turn-based games
and are therefore determinate. In our input-based games we assume that Player 1 has
no advance knowledge of the other player’s choices, while Player 0 sees the opponent’s
moves.

The existence and computation of winning strategies are central problems in the
study of infinite games. A strategy is a function that defines which letter a player should
choose at each move. A strategy for Player i in a turn-based game can be defined equiv-
alently as either a function τi : Q∗ ×Qi → Σ, or as a function: τi : Qi ×Si → Σ ×Si.
The set Si is the player’s memory; according to its cardinality, strategies are classi-
fied as infinite memory, finite memory, and memoryless (or positional). For input-based
games in which Player 1 plays without knowing the opponent’s choices but Player 0
knows what Player 1 has chosen, a strategy for Player 1 is defined as either a func-
tion τ1 : Q∗ × Q → Σ1 or a function τ1 : Q × S1 → Σ1 × S1 and a strategy
for Player 0 is defined as either a function τ0 : Q∗ × Q × Σ1 → Σ0 or a function
τ0 : Q×S0 ×Σ1 → Σ0 ×S0. A strategy τi is winning for Player i from a given state of
the automaton iff victory is secured from that state regardless of the opponent’s choices
if Player i plays according to τi.

The acceptance condition of the automaton translates into the winning condition
of the game. We consider Büchi, co-Büchi, and parity games, their counterparts with
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generalized winning conditions, as well as Rabin and Streett games. All these games
are determinate [32]; that is, from each state of the automaton if a player has no win-
ning strategy then the opponent has a winning strategy. Büchi, co-Büchi, generalized
co-Büchi, Rabin, parity, and disjunctive generalized parity games admit memoryless
strategies. The others—generalized Büchi, Streett, and conjunctive generalized parity
games—admit finite memory strategies [50].

If the winning condition of an infinite game is given as an LTL formula on the states
of the automaton we have an LTL game. Such a game can be solved by translating the
formula into an equivalent deterministic ω-automaton and composing it with the graph
of the given automaton. As recalled above, not all LTL formulae have an equivalent
DBW (or DCW for that matter). Therefore, determinization to some more powerful
type of automaton is required in general. With Piterman’s improvement of Safra’s con-
struction [37], the parity condition is the natural choice.

If an NBW derived from the given LTL formula is used in solving an LTL game,
there is in general no guarantee that a winning solution will be found if one exists.
(See [19] for an example.) Henzinger and Piterman [21, Theorem 4.1] have shown,
however, that a nondeterministic automaton may still be used with the guarantee of a
winning solution if it fair simulates an equivalent deterministic automaton. (This result
subsumes [19, Theorem 1] about trivially determinizable NBWs.)

An ω-regular automaton P = 〈Σ, QP , qP in, δP , αP 〉 fair simulates [20] another such
automaton A = 〈Σ, QA, qAin, δA, αA〉 with the same alphabet if Player 1 has a winning
strategy for the following turn-based game: Initially, the protagonist token is placed on
qP in and the antagonist token is placed on qAin. At each turn, let p ∈ QP be the state
with the protagonist token and let a ∈ QA be the state with the antagonist token. Player
0 chooses a letter σ ∈ Σ and moves the A token to one of the states in δA(a, σ).
Player 1 then moves the P token to one of the states in δP (p, σ). Player 1 wins if
either the run of A is not in αA or the run of P is in αP . A winning strategy for
Player 1 is a function τ : (QA × QP × Σ)+ → QP that is consistent with δP (∀a ∈
QA, p ∈ QP , σ ∈ Σ . τ(a, p, σ) ∈ δP (p, σ)) and that guarantees victory regardless of
the opponent’s choices.

When a game played on an ω-regular automaton has nondeterministic transitions
one needs to define which player is in charge of resolving nondeterminism. In an input-
based game derived from an LTL game, Player 1, whose objective is to force the run
of the automaton to satisfy the LTL formula, chooses the next state from δ(q, (σ0, σ1)).
A nondeterministic automaton for a given language can be much more compact than
a deterministic one. Hence, [21, Theorem 4.1] may lead to considerable savings in
the computation of winning strategies. On the negative side, we offer the following
theorem, which implies that an NBW can only be used if an equivalent DBW exists.

Theorem 1. Let N be an NBW and D an equivalent DPW. Let D be of minimum index
k > 2. Then N does not fair simulate D.

Proof. We assume that N has a strategy τ to simulate D and show that this leads to a
contradiction. Since the winning condition of the simulation game is the disjunction of
two parity conditions, we can assume that τ is memoryless. Since k > 2 there is a chain
of essential sets

R1 ⊂ R2 ⊂ · · · ⊂ Rk−1
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with R2i+1 accepting and R2i rejecting. Let p be a state of D in R1. (By the chain
property, p is also in R2.) Let u ∈ Σ∗ be a word that takes D from the initial state to
p. Let v ∈ Σ∗ \ {ε} be a word that takes D from p back to p while visiting all states
of R1 at least once. Finally, let w ∈ Σ∗ \ {ε} be a word that takes D from p back to p
while visiting all states of R2 at least once. The existence of p, u, v, and w is guaranteed
because R1 and R2 are essential sets.

We construct an ultimately periodic word x as follows. We initialize x to u and
Γ = ∅. Let q1

0 be the state reached by N when reading x and following τ . Append
copies of v to x and extend the run of x in D and N . The run of D will reach p every
time a copy of v is added. The run of N will go through states q1

1 , q
1
2 , . . .. Stop as soon

as, for some j > 0 and i < j, q1
i = q1

j . Call q1 this repeating state, and add it to
Γ . (Repetition is inevitable because N is finite.) Append w to x and call q2

0 the state
reached by N after running over the updated x. (D will be in p.) Now append more
copies of v to x until there are j and i < j such that q2

i = q2
j . Call q2 this repeating

state. If q2 is not in Γ add it, append w to x and repeat; otherwise stop.
This process must terminate because |Γ | grows at each iteration. At termination,

qn
i = qm for some qm ∈ Γ and m < n. We let x = yzω, with y the prefix of x up to

the first occurrence of qm and z the segment between the first and second occurrence.
D rejects x because its essential set is R2, but accepts x′ = yvω whose essential

set is R1. Consider now N . We know that the run of N on x′ according to τ must
repeatedly go through qm. Since x′ is accepted by D, the segments of the run in N
between occurrences of qm must visit some accepting state of N . However, this implies
that x is also accepted because the run of x also goes through qm when D is in p, and
qm is in Γ because it was seen twice in conjunction with p while applying v repeatedly.
Since D and N are equivalent the assumption that τ exists is contradicted and the
theorem is proved. ��

For lack of space we do not present the extension of Theorem 1 to simulations between
two arbitrary parity automata.

3 Algorithm

We describe an algorithm that takes as input a collection of LTL formulae and NBWs
over an alphabet Σ = Σ0 × Σ1. The input is converted into a conjunctive general-
ized parity game with one parity function for each formula and automaton. At each
turn, Player 0 chooses a letter from Σ0 and Player 1 chooses a letter from Σ1. The
objective of Player 1 is to satisfy the conjunctive generalized parity acceptance con-
dition. A winning strategy for Player 1 from the initial state of the parity automaton
thus corresponds to an implementation of a reactive system that reads inputs from
alphabet Σ0 and produces outputs from alphabet Σ1. The reactive system satisfies all
the linear-time properties given as LTL formulae or Büchi automata from its initial
state. If no such winning strategy exists, there exists no implementation of the given
specification.

As an initial step, all LTL formulae are converted to NBWs (using Wring [45]).
The objective of the algorithm is to be efficient for practical specifications, which
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often consist of the conjunction of many simple properties. While in theory one could
conjoin all the NBWs to obtain one large NBW and then determinize it, the high
complexity of determinization makes this approach infeasible. Instead, each NBW that
is not also a DBW is converted to a DPW individually with Piterman’s procedure [37].
This keeps the size of the resulting DPWs reasonably small, as discussed in Sect. 6. A
parity condition of minimum index is then computed for each DPW by the procedure
of [9].

If the parity index is 2, then fair simulation between the NBW and the DPW (which
is in fact in this case a DBW), is checked with the algorithm of [26] (implemented
as in [14, 18]). If the DPW is simulated by the NBW, the latter replaces the former.
(See Theorem 1. From a practical standpoint it should be noted that the NBW is made
complete before checking for fair simulation, because otherwise the check is guaranteed
to fail.) If there is no fair simulation, the DPW is optionally simplified. (This is done
after reducing the index, to increase the chance of simplification.) All the processing
up to this point is done by explicit (i.e., non-symbolic) algorithms. At the end of this
phase, each specification has been translated into one of the following: a DBW, a DPW,
or an NBW that simulates an equivalent DBW.

The next step of processing reduces the collection of automata to a generalized parity
game [10]. The transition structures of the automata are converted into one symbolic
transition relation—as is customary in symbolic model checking. Effective ways of
avoiding blow-up in the composition of the transition relations are well-known [15,
41, 35]. The parity (or Büchi) conditions for all the automata collectively form the
generalized parity condition.

We use the “classical” algorithm described in [10] to compute winning strategies for
generalized parity conditions. This algorithm is based on [22], which in turn extends
Zielonka’s algorithm for parity conditions [50].3 The generalized parity algorithm se-
lects one parity condition and tries to prove all states winning for Player 1, using the
maximum color from the selected priority function and recurring on a subgame for the
remaining colors and parity conditions.

If Player 1 wins in all the states, the algorithm proceeds to the next parity condition.
If, on the other hand, Player 0 has some winning states, the algorithm restarts on a game
graph that is pruned of the winning states of Player 0.

At a given recursion level, each parity condition produces a sub-strategy for Player 1.
Therefore, Player 1 uses a counter to rotate among these sub-strategies. For a fixed order
in the priority conditions, the total memory required is bound by

∏
1≤i≤k(k − i + 1)di ,

where 2di + 1 is the number of colors of the i-th priority condition.
The choice of this algorithm over the dominion-based algorithm in [10, 27] is for

two reasons. The first is the unsuitability of the dominion-based algorithm to symbolic
implementation as discussed in Sect. 4. The second is that the dominion-based algo-
rithm has better asymptotic bounds only when the number of colors is comparable to
the number of states. However, in our application, this is seldom, if ever, the case.

The basic attractor computation for each player in the generalized parity algorithm
is based on an extension of the MX operator discussed in [23]. Specifically, the set of

3 The algorithm in [10] contains a bug that is easily fixed by reverting the termination condition
of the inner loop to the one given in [22].



316 S. Sohail, F. Somenzi, and K. Ravi

states that Player i can control to a target set of states T ⊆ Q (the attractor of T for
Player i) is given by:

MX1 T = {q | ∃σ1 ∈ Σ1 . ∀σ0 ∈ Σ0 . ∃q′ ∈ δ(q, (σ0, σ1)) . q′ ∈ T }
MX0 T = {q | ∀σ1 ∈ Σ1 . ∃σ0 ∈ Σ0 . ∀q′ ∈ δ(q, (σ0, σ1)) . q′ ∈ T } .

This formulation implies that Player 1 chooses σ1 from Σ1 first, then Player 0 chooses
σ0 from Σ0, and finally nondeterminism is resolved in favor of Player 1. (That is, all
nondeterminism is due to the NBWs representing the properties.) Since Player 1 has
no knowledge of the upcoming opponent’s move, it has a winning strategy only if a
Moore-style implementation of the specification exists.

4 Practical Symbolic Algorithms

In the context of verification and synthesis of reactive systems, symbolic algorithms are
broadly defined as those algorithms that employ characteristic functions to represent
sets. The use of Binary Decision Diagrams [5] to manipulate Boolean functions, in par-
ticular, is typically associated with the idea of symbolic algorithms. Techniques like the
symbolic model checking algorithm of McMillan [33] have significantly contributed to
the success of formal verification thanks to their ability to deal—albeit not with uniform
efficiency—with sets of size well beyond the capabilities of more conventional, explicit
algorithms. While such successes encourage the use of symbolic algorithms, not all al-
gorithms are amenable to symbolic implementation, leading to a conflict between the
choice of one with lowest complexity and one that is symbolic-friendly. Our approach
is to use the best algorithm in terms of worst-case complexity that is efficiently imple-
mentable in a symbolic manner. In this Section, we try to identify some algorithmic
features that are best suited to symbolic implementations.

Obviously, algorithms that process the elements of a large set one by one draw only
modest benefit from representing such a set symbolically and are limited to manipulat-
ing relatively small sets. Some algorithms resort to picking a (hopefully) small number
of seed elements from a large set. Examples are provided by the subquadratic symbolic
algorithms for Strongly Connected Component (SCC) analysis [2, 16] that grow an
SCC with symbolic techniques starting from an individual seed state. (In this context,
complexity refers to the number of images and preimages computed.) While these algo-
rithms are rightfully considered symbolic, it should be noted that for cycle detection in
very large graphs they tend to be outperformed by “more symbolic” algorithms based
on computing a hull of the SCCs [42] in spite of their better complexity bounds. Closer
to the subject of this paper, one can compare two variants of McNaughton’s algorithm
[34] (adapted to parity automata by Zielonka [50]) that appear in [47] and [27]. The
algorithm in [27] is “more symbolic” than the one in [47] because it computes the at-
tractor of all states of maximum priority at once instead of picking one state from that
set and computing its attractor. Notice that the computation of the attractor, which is at
the heart of the generalized parity algorithm, is very similar to the fixpoint computations
performed in symbolic model checking, and therefore eminently suitable for symbolic
implementation. Consequently, one can also leverage various techniques to speed up
symbolic model checking in the implementation of the algorithms in [50, 22, 10].
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Both variants of McNaughton’s algorithm, on the other hand, are far more amenable
to symbolic implementation than the algorithms that have superseded them in terms of
asymptotic performance. Consider the small progress measure algorithm of Jurdziński
[26]. If an SCC of the game graph contains a losing position, the number of iterations
is bounded from below by the number of states of a certain priority in the SCC. For a
large graph that number may be large enough to prevent termination in practice, even
with the optimization of [12]. Another problem with the algorithm of [26] is the need
to attach and manipulate a vector of integers to every state of the game graph. As the
number of distinct measures increases in the course of the computation, the size of the
decision diagrams representing the map from states to measures may easily blow up.
Similar observations apply to the algorithms of [1] and the small dominion versions of
the ones in [10, 27]. Therefore, we use an explicit implementation of the algorithm of
[26] to check fair simulations of small automata derived from individual properties, but
prefer the algorithm in [10] for the analysis of large games obtained compositionally.

Besides avoiding explicit enumeration of the elements of large sets, successful sym-
bolic algorithms also limit the arity of relations that are represented symbolically. Even
ternary relations, as encountered in the computation of the transitive closure of a graph,
tend to impact performance significantly. Finally, the need to represent arbitrary sub-
sets of the powerset of a large set puts a very severe limit on the size of the problems
that can be handled by a symbolic algorithm. While 1020 states have become a rather
conservative estimate of what can be done in model checking, algorithms that allocate
one BDD variable to each state in a set so as to represent collections of subsets by the
characteristic functions of their occurrence vectors (as required by the algorithms of
[30, 21]) are limited in most cases to a hundred states or less. For such reasons we pre-
fer an explicit implementation of Piterman’s improved determinization procedure [37]
to the approach of [21].

5 Related Work

In Sect. 4 we have discussed the relation and indebtedness of our work to [26, 1, 27, 22,
21, 10]. An alternative to our approach is to translate the set of parity conditions arising
out of the Piterman’s procedure to Streett conditions that are then converted to a single
parity condition with the algorithm of [8]. However, the algorithm of [22, 10] has better
worst-case complexity.

The approaches of [19] and [38, 3] are symbolic, but are restricted in the class of
specifications that can be dealt with. In [38] it is noted that checking the realizability of
a formula of the form

∧

1≤i≤m

(GFJ1
i ) →

∧

1≤i≤n

(G FJ2
i ) , (1)

where each Jj
i is propositional (a generalized Reactivity(1) formula) can be done in

time proportional to (nm|Σ|)3, where Σ is the set of atomic propositions in (1). More-
over, formulae of the form ∧

1≤i≤p

GBi , (2)
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where the only temporal operator allowed in each Bi is the next-time operator X, effec-
tively correspond to the description of transition relations and can be directly regarded
as the description of the game graph. This second observation applies also to our ap-
proach, while a specification like (1), can be translated into a DPW with O(mn) states,
O(mn|Σ|) transitions, and 3 colors. Therefore, the class of specifications handled by
[38] can be handled efficiently by our algorithm, which on the other hand, can deal with
full LTL.

An approach to LTL synthesis that does not require determinization was introduced
in [30, 29]. An implementation is described in [24]. From an LTL formula one derives
a universal co-Büchi tree automaton (UCT), and transforms it into an NBT. A witness
to language nonemptiness, if it exists, corresponds to a winning strategy. While this
“Safraless” approach has the same worst-case complexity as the “Safraful” approach
based on determinization, its proponents claim three main advantages for it. First, that
its implementation is simpler than that of the determinization procedure. Second, that
the Safraless approach lends itself to symbolic implementation. Third, that optimiza-
tions can be applied at various steps of the Safraless approach to combat the state ex-
plosion. Our implementation of Piterman’s procedure, however, is only a few hundred
lines of code and took only a few days to write and debug. Concerning the symbolic im-
plementation, the Safraless approach requires the manipulation of sets of sets of states.
As discussed in Sect. 4, this greatly reduces the effectiveness of a symbolic implemen-
tation. The ability to apply intermediate optimizations is beneficial, and the approach
is efficient when the UCT is weak. On the other hand, for strong UCT, the approach is
practically unable to prove nonrealizability [24]. It appears that only a thorough experi-
mental comparison, beyond the scope of this paper, could ascertain the relative practical
strengths of the Safraless and determinization-based approaches.

The work of Jobstmann et al. [25] addresses the extraction of efficient implementa-
tions from the winning strategies, which is something we do not address in this paper.

Sebastiani and Tonetta [44] present a procedure that strives to produce a deterministic
Büchi automaton from an LTL formula. Their approach may improve the performance
of our translator by reducing the number of instances in which Piterman’s determiniza-
tion procedure is invoked. The procedure of [44], however, is heuristic. Consider the
following LTL formula:

ϕ = p ∧ (p UG((¬p → X p) ∧ (p → X¬p))) .

Let ψ = G((¬p → X p) ∧ (p → X¬p)) and θ = p U ψ. Expansion yields

ψ = (p ∧ X(¬p ∧ ψ)) ∨ (¬p ∧ X(p ∧ ψ))
ϕ = (p ∧ X(¬p ∧ ψ)) ∨ (p ∧ X θ)

¬p ∧ ψ = ¬p ∧ X(p ∧ ψ)
p ∧ ψ = p ∧ X(¬p ∧ ψ)

θ = (p ∧ X(¬p ∧ ψ)) ∨ (¬p ∧ X(p ∧ ψ)) ∨ (p ∧ X θ) .

This is a set of closed covers. The cover for ϕ is nondeterministic and branch postpone-
ment is not applicable. Hence, the MoDeLLA algorithm would (initially) produce a
nondeterministic automaton. However, there exists a deterministic Büchi automaton for
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¬pp p

Fig. 1. Deterministic automaton for ϕ = p ∧ (pU G((¬p → X p) ∧ (p → X ¬p)))

ϕ, shown in Fig. 1. Even though the procedure of [44] does not guarantee a determin-
istic automaton whenever one exists for the given LTL formula, branch postponement
tends to increase the chances that the NBW will fair-simulate the DBW produced by
determinization.

6 Experiments

The procedure described in Sect. 3 has been implemented as an extension of Wring [45]
and Vis [4]. In this section we report on some preliminary experiments intended to test
the claim of practicality and scalability of the proposed approach. Each of the following
specifications was synthesized, and the the resulting model was verified against the
specification. In these experiments we disabled the use of NBWs in the parity game.

Generalized Büchi. In this experiment, Player 1 seeks to satisfy a generalized Büchi
condition (GF b)∧ (GF c) in a simple automaton. The strategy uses one bit of memory.

NBW7. In this experiment the specification is an NBW for (F G p) ∧ (GF q). The lan-
guage is not in DBW or DCW and as a result the NBW is translated into a DPW of
index 3. In the game, Player 1 controls both p and q and wins from all states of the
automaton. Since there is only one parity condition, the strategy is memoryless.

Simple Arbiter. Three DBWs specify this simple synchronous arbiter that grants request
even if they are not persistent, guarantees fairness, and produces no spontaneous grants.
Player 0 chooses the values of the two request signals and Player 1 chooses the values
of the grant signals. The specification is symmetric with respect to the two clients, and
the strategies computed by the program come in symmetric pairs.

Round Robin Arbiter. This experiment synthesizes an arbiter from a collection of 10
safety properties from [28]. This is a more detailed specification than the one of the
simple arbiter, as it prescribes, for example, how ties should be broken. Once again,
Player 1 controls the grant signals, while the opponent controls the requests.

Combination Lock. In this experiment the objective is to synthesize the finite state
machine controller of a combination lock. Given a counter that can be incremented or
decremented by a user and represents the dial of the lock, and a set of seven properties
that prescribe that the lock opens iff the correct combination is entered, Player 1 seeks
a strategy for the update of the control machine of the lock, while Player 0 operates the
counter under a fairness constraint.
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Nim Player. The game of Nim is played with several piles of counters. A move consists
of taking one or more counters from one pile. The player who removes the last counter
wins. The Sprague-Grundy theory of impartial games applies to it and it is known which
player has a winning strategy from a given position and how to play according to such
strategy. In this experiment, the specification is split between a model that does the
game bookkeeping and plays one side of the game, and an LTL property:

G((¬turn ∧ winning) → F win) ,

which says that when the environment moves from a winning position, it always wins.
Satisfying this property entails synthesizing an optimal player. The bookkeeper has a
fixed number of piles, but chooses nondeterministically how many counters to place on
each pile at the start of a play. This choice is given to Player 0 in the game, while Player
1 plays the environment.

Table 1. Experimental data

name Spec Int colors bits σ σo CPU (s)
LTL NBW DBW DPW edges nodes edges nodes pp sol

GB 0 2 2 0 4 1 10 8 8 3 0 0
NBW7 0 1 0 1 3 0 10 7 6 1 0 0
simple 0 3 3 0 6 6 44 53 398 12 0 0.01
rrobin 10 0 10 0 20 17 250 112 16588800 66 13.55 0.1
lock 7 0 5 2 16 13 3196 302 1277280 178 2.71 1.35
nim 0 1 1 0 2 1 8.29e+11 3410 1.87e+11 298 0 22.63

The results of the experiments are summarized in Table 1. For each game the num-
ber of LTL formulae and NBWs in the specification are given, followed by two columns
that give the statistics of processing each formula or automaton. The remaining columns
describe the resulting generalized parity game and its solution by reporting the total
number of different priorities (or colors) of the parity acceptance condition, the number
of binary state variables of the strategy automaton, the number of edges in the union of
all winning strategies computed for Player 1 (σ), the size of the corresponding BDD,
the number of edges in an optimized winning strategy (σo), and the size of the corre-
sponding BDD. Finally, the time to preprocess (pp) and solve the game and compute
the optimized strategy (sol) is given. (The optimization of the strategy [3] never takes
more than 0.17 s in the experiments of Table 1.) The number of edges in the optimized
strategy may be higher than in the bundle of strategy returned by the algorithm because
edges from positions that are losing for Player 1 may be added if they help reduce the
size of the BDD. Our algorithm does not yet optimize the number of bits in the strategy
automaton, which is therefore far from optimal.

7 Conclusion

We have presented an algorithm for the computation of strategies for LTL games and,
in general, for games whose winning conditions are given by a set of LTL formulae
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and Büchi automata. The solution involves determinization, but only on the individual
components of the specification. Since these components are typically small, our ap-
proach appears to scale well and is capable of handling games with large numbers of
states. To that effect symbolic techniques are applied where it matters most—after the
individual automata have been composed. The initial experimental results encourage us
to continue in the development of this algorithm so that it may address larger and more
realistic problems.
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[6] Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings
of the 1960 International Congress on Logic, Methodology, and Philosophy of Science,
pp. 1–11. Stanford University Press (1962)
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[26] Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
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