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Abstract. The history of stereo analysis of pairs of images dates back
more than one hundred years, but stereo analysis of image stereo se-
quences is a fairly recent subject. Sequences allow time-propagation of
results, but also come with particular characteristics such as being of
lower resolution, or with less contrast. This article discusses the applica-
tion of belief propagation (BP), which is widely used for solving various
low-level vision problems, for the stereo analysis of night-vision stereo se-
quences. For this application it appears that BP often fails on the original
frames for objects with blurry borders (trees, clouds, . . . ). In this paper,
we show that BP leads to more accurate stereo correspondence results if
it is applied on edge images, where we have decided for the Sobel edge
operator, due to its time efficiency. We present the applied algorithm and
illustrate results (without, or with prior edge processing) on seven, ge-
ometrically rectified night-vision stereo sequences (provided by Daimler
research, Germany).

Keywords: Stereo analysis, belief propagation, Sobel operator, image
sequence analysis.

1 Introduction

Stereo algorithms often use a Markov Random Field (MRF) model for describing
disparity images. The basic task of an MRF algorithm is then to find the most
likely setting of each node in an MRF by applying an inference algorithm. Belief
propagation (BP) is one of the possible inference algorithms; it can be applied for
calculating stereo disparities, or for other labeling processes defined by finite sets
of labels. [4] shows that BP is such an algorithmic strategy for solving various
problems. BP is recommended for finding minima over large neighborhoods of
pixels, and it produces promising results in practice (see, e.g., evaluations at the
Middlebury Stereo Vision website http://vision.middlebury.edu/stereo/).

A belief propagation algorithm applies a sum-product or max-product pro-
cedure, and in this paper we choose the max-product option. The max-product
procedure computes the Maximum A-Posteriori (MAP) estimate over a given
MRF [10].

[5] reports about the general task of evaluating stereo and motion analysis
algorithms on a given test set of seven rectified night-vision image sequences
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(provided by Daimler research, Germany). In this article we consider the appli-
cation of BP algorithms on these seven sequences, each defined between 250 and
300 pairs of stereo frames. We show that a straight application of BP fails, but
it leads to promising results after prior application of an edge operator.

The article is structured as follows. In Section 2, we briefly introduce the
BP algorithm, which includes the definition of an energy function, max-product,
message passing, Potts model, and also of some techniques to speed up the stan-
dard BP algorithm, following [3]. In Section 3 we calculate Sobel edge images,
and show that subsequent BP analysis leads to improvements compared to re-
sults on the original sequences, verified by results for those seven test sequences
mentioned above. Some conclusions are presented in Section 4.

2 BP Algorithm

Solving the stereo analysis problem is basically achieved by pixel labeling: The
input is a set P of pixel (of an image) and a set L of labels. We need to find a
labeling

f : P → L

(possibly only for a subset of P ). Labels are, or correspond to disparities which
we want to calculate at pixel positions. It is general assumption that labels should
vary only smoothly within an image, except at some region borders. A standard
form of an energy function, used for characterizing the labeling function f , is
(see [1]) as follows:

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈A

Vp,q(fp, fq)

Since we aim at minimizing the energy, this approach corresponds to the Maxi-
mum A-Posteriori (MAP) estimation problem.

Dp(fp) is the cost of assigning a label fp to pixel p. We use the differences in
intensities between corresponding pixel (i.e., defined to be corresponding when
applying disparity fp). To be precise, in our project we use absolute differences.
A is an assumed symmetric and irreflexive adjacency relation on P .

Each pixel p (say, in the left image at time t) may take one disparity at that
position, out of a final subset of L (e.g., defined by a maximum disparity). The
corresponding pixel is then in the right image at time t. Because the given image
sequences are rectified, we can simply search in identical image rows. The given
gray-level (or intensity) images allow that differences in gray-levels define the
cost Dp(fp). The smaller an intensity difference, the higher the compatibility.

Vp,q(fp, fq) is the cost of assigning labels fp and fq to two adjacent pixel p and
q, respectively. It represents a discontinuity cost. The cost V in stereo analysis
is typically defined by the difference between labels; each label is a non-negative
disparity. Thus, it is common to use the formula

Vp,q(fp, fq) = V (fp − fq)
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The resulting energy is (see [3]) as follows:

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈A

Vp,q(fp − fq)

The task is a minimization of E(f).

2.1 Max-Product

A max-product algorithm is used to approximate the MAP solution to MRF
problems. J. Pearl showed 1988 that the max-product algorithm is guaranteed
to converge, and guaranteed to give optimal assignment values of a MAP solution
based on messages at time of convergence [9]. The max-product BP algorithm
is approached by passing messages (belief) around in an image grid with 4-
adjacency. Messages are updated in iterations, and messages pass in one iteration
step is in parallel (from any node).

Fig. 1. Illustration for a message update step in the 4-adjacency graph: the circles
represent pixel in an image, and the arrows indicate directions of message passing

Figure 1 illustrates message passing in the 4-adjacency graph. If node i is
left of node j, then node i sends a message to node j at each iteration. The
message from node i contains the messages already received from its neighbors.
In parallel, each node of the adjacency graph computes its message, and then
those messages will be send to adjacent nodes in parallel. Based on these received
messages, we compute the next iteration of messages. In other words, for each
iteration, each node uses the previous iteration’s messages from adjacent nodes,
in order to compute its messages send to those neighbors next. Meanwhile, the
larger Dp(fp) is, the more difficult it is to pass a message to an adjacent node.
That means, the influence of an adjacent node decreases when the cost at this
node increases.

Each message is represented as an array; its size is determined by the max-
imum disparity (assuming that disparities start at zero, and are subsequent
integers), denoted by K.

Assume that mt
p→q is the message, send from node p to adjacent node q at

iteration step t. For each iteration, the new message is now given by (see [3]) the
following:

mt
p→q(fp) = min

fp

⎛

⎝Vp,q(fp − fq) + Dp(fp) +
∑

s∈A(p)\q

mt−1
s→p(fp)

⎞

⎠
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where A(p)\q is the adjacency set of p except node q. The message array contains
at its nodes the following

bq(fq) = Dq(fq) +
∑

p∈A(q)

mt
p→q(fq)

after T iterations; see [3]. Each iteration computes O(n) messages, where n is
the cardinality of set P .

2.2 Potts Model

The Potts model [6] is a (simple) method for minimizing energy; see, for example,
[2]. In this model, discontinuities between labels are penalized equally, and we
only consider two states of nodes: equality and inequality. We measure differences
between two labels; the cost is 0 if the labels are the same; the cost is a constant
otherwise. Let the cost function between labels be V (xi, xj). Then, (see [8]) we
have that

V (xi, xj) =
{

0 if xi = xj

d otherwise

The Potts model is useful when labels are “piecewise constant”, with disconti-
nuities at borders. It was suggested to apply this cost function to the message
update formula. The formula is now rewritten (see [3]) as follows

mt
p→q(fq) = min

fp

(
Vp,q(fp − fq) + h(fp)

)

where
h(fp) = Dp(fq) +

∑

s∈A(p)\q

mt−1
s→p(fp)

This form is very similar to that of a minimum convolution. After applying the
cost function, the minimization over fp yields a new equation in the following
way (see [3]):

mt
p→q(fq) = min

(
h(fp), min

fp

h(fp) + d

)

Except the fp minimization, the message computation time reduces to O(K),
see [3]. At first we compute minfp h(fp), then we use the result to compute the
message in constant time.

2.3 Speed-Up Techniques

In this section, we recall some techniques that may be used to speed up a BP
analysis. We start with a technique called multi-grid method in [3]. This tech-
nique allows to obtain good results with just a small number of message passing
iterations.

[7] shows that message propagation over long distances takes more message
update iterations. To circumvent this problem, a common data pyramid was
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used. (All nodes in one 2 × 2 array in one layer are adjacent to one node in the
next layer; all 2n × 2n pixel (nodes) at the bottom layer zero are connected this
way with a single node at layer n). Using such a pyramid, long distances between
pixels are shortened, what makes message propagation more efficient. We do not
reduce the image resolution, but aggregate data over connections defined in this
pyramid. Such a coarse to fine approach allows that a small number of iterations
(dependent on the level of the pyramid) is sufficient for doing a BP analysis.

The red-black algorithm provides a second method for speeding up the BP
message update algorithm of Section 2.1; see [3]. The message passing scheme
adopts a red-black algorithm which allows that only half of all messages are
updated at a time. Such a red-black technique is also used for Gauss-Seidel re-
laxations. A Gauss-Seidel relaxation attempts to increase the convergence rate by
using values computed for the kth iteration in subsequent computations within
the kth iteration.

We can think of the image as being a checkerboard, so each pixel is differently
“colored” compared to its 4-adjacent pixel. The basic idea is that we just update
the message send from a “red” pixel to a “black” pixel at iteration t; in the next
iteration t+1, we only update the message send from a “black” pixel to a “red”
pixel.

We recall this message updating scheme at a more formal level: assume that B
and C represent nodes of both defining classes in a bipartite graph, at iteration
t, we know message M1 which is send from nodes in B to those in C; based on
message M1, we can compute message M2 send from nodes in C to those in B
at iteration t + 1. That means, we can compute message M3 from nodes in B
at iteration t + 2 without knowing the message send from nodes in B at itera-
tion t+1. Thus, we only compute half the messages at each iteration. See Figure 2

Fig. 2. These two images illustrate the message passing scheme under a red-black
algorithm; the left image shows messages only send from a “black” (dark gray) to a
“red” (light gray) pixel at iteration t; at iteration t + 1, “red” sends messages back to
“black” in the right image
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for further illustration. This alternating message updating algorithm is described
as follows:

m =
{

mt
p→q if p ∈ B

mt−1
p→q otherwise

This concludes the specification of the BP algorithm as implemented for our ex-
periments. We aimed at using a standard approach, but with particular attention
of ensuring time efficiency.

3 Experiments

The image sequences used for stereo analysis are as described in [5], provided
by Daimler research, Germany. These night vision stereo sequences are rectified.
The following figures address each exactly one of those seven sequences, and each
figure shows one unprocessed representative frame of the sequence at its upper
left.

These seven sequences are already geometrically rectified, and stereo matching
is reduced to a search for corresponding pixels along the same horizontal line in
both images. For explaining the following test results, the used test environment
was as follows: AMD 64 Bit 4600 2.4 GHz, 2 Gigabyte memory, NVIDIA Geforce
7900 video card, WinXP operation system. BP has the potential to allow real
time processing in driver assistance systems, because the BP message update
in each iteration can be in parallel, that means some multi-CPU hardware may
reduce the system running time.

The following figures use a uniform scheme of presentation, and we start with
explaining Figure 3. A sample of the original unprocessed sequence is shown
in the upper left. The described BP stereo analysis algorithm was applied, and
the resulting depth map is shown in the upper right. The maximum disparity
for the illustrated pair of images (being “kind of representative” for the given
stereo sequence) is 70, and 7 message iterations have been used. Table 1 shows
these values, also the size of the used area in the given 640 × 480 frames (called
“image size” in this table), which were the parameters used in our test, and
finally the run time rounded to seconds. Note that no particular efforts have
been made for run-time optimization besides those mentioned in the previous
section.

The experiments indicated (quickly) two common problems in stereo match-
ing, namely bad matching due to lack of texture (such as at the middle of the
road), and mismatching due to “fuzzy depth discontinuities” (such as in sky or
in trees).

For the other six image sequences, see a “typical” frame of a stereo pair
(documented in Table 1) at the upper left of Figures 7 to 9. The depth maps
shown at the upper right (BP analysis as described, for the original sequence)
all illustrate similar problems.

As a result of our analysis of those problems, we expected that the use of some
edge enhancement (contrast improvement) could support the message passing
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Fig. 3. Image 0001 c0 of Sequence 1 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

mechanism. Surprisingly, we can already recommend the use of the simple Sobel
edge operator. The resulting Sobel edge image are certainly “noisy”, but pro-
vide borders or details of the original images which allow the message passing
mechanism to proceed more in accordance to the actual data.

The applied idea was inspired by Figure 14 in [7]. From that figure, we can see
two important properties of a BP algorithm: Firstly, information from highly tex-
tured regions can be propagated into textureless regions; secondly, information
propagation should stop at depth discontinuities. In other words, the influence
of a message in a textureless region can be passed along a long distance, and
the influence in “discontinuous regions” will fall off quickly. That means, if we
emphasize the discontinuous regions (i.e., edges), then this improves the accu-
racy of the BP algorithm. For example, see the lower left in Figure 7. Sobel edge

Table 1. Table of parameter used for BP algorithm and program running time

Figure Max-disparity Iterations Image size Running time
3 70 pixel 7 633 × 357 pixel 9 s
4 55 pixel 7 640 × 353 pixel 7 s
5 40 pixel 5 640 × 355 pixel 4 s
6 60 pixel 7 640 × 370 pixel 8 s
7 30 pixel 5 631 × 360 pixel 3 s
8 35 pixel 6 636 × 356 pixel 4 s
9 40 pixel 5 636 × 355 pixel 4 s
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Fig. 4. Image 0001 c0 of Sequence 2 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 5. Image 0001 c0 of Sequence 3 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

enhancement “highlights” the border of the road, or changes in vegetation, such
as a border of a tree. Messages within a tree propagate from its upper, highly
textured region to its more textureless region further below; on the other hand,
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Fig. 6. Image 0227 c0 of Sequence 4 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 7. Image 0001 c0 of Sequence 5 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

the influence of messages outside the tree’s border (in regions of sky or road, etc.)
falls off quickly; this “outside influence” should end at the border. See Figures 3
to 9 for “key frames” of these test sequences and calculated disparity maps.
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Fig. 8. Image 0001 c0 of Sequence 6 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 9. Image 0184 c0 of Sequence 7 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

The lower right images in Figures 3 to 9 show the result of the specified
BP analysis algorithm, after applying the Sobel operator to the given images.
Obviously, the new result is much better than our preliminary result (upper right
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images). In general comparison with the BP analysis for the original image pairs
of those seven sequences, major discontinuities are now often correctly detected.

For example, the visual border of a tree may be recovered despite of an ob-
vious fuzziness of its intensity edge. Especially the road and the sky are now
often accurately located. In most cases, a car is also detected if at a reasonable
distance. But there are still remaining problems.

For example, in Figure 8, the traffic light is not matching correctly, we can
see that there are “two ghost traffic lights” in the depth map. The use of the
ordering constraint could help in such circumstances.

In some images, we can not identify depth details accurately, especially in
images showing many trees. See again Figure 8 for an example. Vertical edges
disappeared in the depth map image. The reason might be that we have chosen
a small discontinuity penalty only (see Section 2.2, the Potts model) to do these
tests illustrated in the figures. (When using a higher discontinuity penalty in
BP, this produces more edges or details in depth maps, but also more noise or
matching errors.)

Adaptation might be here a good subject, for identifying a balance point. In
Figure 6, the road is in the depth map (lower right) not a smooth, even, leveled
surface; this is caused by the shadows of the trees on the road which cause about
horizontal stripes in the images. This means that pixel intensities in an epipolar
line are about constant, what makes mismatching more likely.

4 Conclusions

In this paper, we propose the use of a simple edge detector prior to using belief
propagation for stereo analysis. The proposed method is intended for BP stereo
correspondence analysis where borders in given scenes or images are fuzzy. We
detailed the used BP algorithm by discussing the max-product algorithm of
belief propagation, and how messages propagate in the graph, especially also
under the circumstances of the used two strategies for run-time optimization.
One of both techniques reduced the number of message passing iterations, the
second technique halved message computation.

Recently we integrate the ordering constraint into the BP algorithm, and we
also plan to design an adaptive algorithm which calculates discontinuity penalties
based on image intensities of frames.

The provided image sequences allowed a much more careful analysis than just
by using a few image pairs. This improved the confidence in derived conclu-
sions, but also showed more cases of unsolved situations. This is certainly just a
beginning of utilizing such a very useful data set for more extensive studies.

Acknowledgment. We acknowledge the support of Daimler research, Germany
(research group of Uwe Franke) by providing those seven rectified night-vision
stereo sequences.
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