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Abstract. To be effective in the human world robots must respond to
human emotional states. This paper focuses on the recognition of the six
universal human facial expressions. In the last decade there has been suc-
cessful research on facial expression recognition (FER) in controlled con-
ditions suitable for human–computer interaction [1,2,3,4,5,6,7,8]. How-
ever the human–robot scenario presents additional challenges including
a lack of control over lighting conditions and over the relative poses and
separation of the robot and human, the inherent mobility of robots, and
stricter real time computational requirements dictated by the need for
robots to respond in a timely fashion.

Our approach imposes lower computational requirements by specif-
ically adapting model-based techniques to the FER scenario. It contains
adaptive skin color extraction, localization of the entire face and facial
components, and specifically learned objective functions for fitting a de-
formable face model. Experimental evaluation reports a recognition rate
of 70% on the Cohn–Kanade facial expression database, and 67% in a
robot scenario, which compare well to other FER systems.

1 Introduction

The desire to interpret human gestures and facial expressions is making in-
teraction with robots more human-like. This paper describes our model–based
approach for automatically recognizing facial expressions, and its application to
human-robot interaction.

Knowing the human user’s intentions and feelings enables a robot to re-
spond more appropriately during tasks where humans and robots must work
together [9,10,11], which they must do increasingly as the use of service robots
continues to grow. In robot-assisted learning, a robot acts as the teacher by
explaining the content of the lesson and questioning the user afterwards. Being
aware of human emotion, the quality and success of these lessons will rise because
the robot will be able to progress from lesson to lesson just when the human is
ready [12]. Studies of human-robot interaction will be improved by automated
emotion interpretation. Currently the humans’ feelings about interactions must
be interpreted using questionnaires, self-reports, and manual analysis of recorded
video. Robots will need to detect deceit in humans in security applications, and
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facial expressions may help [13]. Furthermore, natural human-robot interaction
requires detecting whether or not a person is telling the truth. Micro expressions
within the face express these subtle differences. Specifically trained computer vi-
sion applications would be able to make this distinction.

Today’s techniques for detecting human emotion often approach this challenge
by integrating dedicated hardware to make more direct measurements of the hu-
man [14,15,16]. Directly connected sensors measure blood pressure, perspiration,
brain waves, heart rate, skin temperature, electrodermal activity, etc. in order
to estimate the human’s emotional state. In practical human-robot interactions,
these sensors would need to be portable, wearable and wireless. However, hu-
mans interpret emotion mainly from video and audio information and it would
be desirable if robots could obtain this information from their general purpose
sensing systems, in the visual and audio domains. Furthermore, these sensors do
not interfere with the human being by requiring direct connections to the human
body. Our approach interprets facial expressions from video information.

Section 2 explains the state of the art in facial expression recognition (FER)
covering both psychological theory and concrete approaches. It also elaborates on
the specific challenges in robot scenarios. Section 3 describes our model-based
approach which derives facial expressions from both structural and temporal
features of the face. Section 4 presents results on a standard test set and in a
practical scenario with a mobile robot.

2 Facial Expression Recognition: State of the Art

Ekman and Friesen [18] find six universal facial expressions that are expressed
and interpreted in the same way by humans of any origin all over the world.
They do not depend on the cultural background or the country of origin. Fig-
ure 1 shows one example of each facial expression. The Facial Action Coding
System (FACS) precisely describes the muscle activity within a human face [19].
So-called Action Units (AUs) denote the motion of particular facial parts and
state the involved facial muscles. Combinations of AUs assemble facial expres-
sions. Extended systems such as the Emotional FACS [20] specify the relation
between facial expressions and emotions.

The Cohn–Kanade Facial Expression Database (CKDB) contains a number of
488 short image sequences of 97 different persons showing the six universal facial
expressions [17]. It provides researchers with a large dataset for experiment and
benchmarking. Each sequence shows a neutral face at the beginning and then

happiness anger disgust sadness fear surprise

Fig. 1. The six universal facial expressions as they occur in [17]
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Fig. 2. Procedure for recognizing facial expressions according to Pantic et al. [3]

develops into the peak expression. Furthermore, a set of AUs has been manually
specified by licensed FACS experts for each sequence. Note that this database
does not contain natural facial expressions, but volunteers were asked to act
them. Furthermore, the image sequences are taken in a laboratory environment
with predefined illumination conditions, solid background and frontal face views.
Algorithms that perform well with these image sequences are not necessarily
appropriate for real-world scenes.

2.1 The Three-Phase Procedure

The computational task of FER is usually subdivided into three subordinate
challenges shown in Figure 2: face detection, feature extraction, and facial ex-
pression classification [3]. Others add pre– and post–processing steps [4].

In Phase 1, the human face and the facial components must be accurately
located within the image. On the one hand, sometimes this is achieved automat-
ically, as in [1,21,22]. Most automatic approaches assume the presence of a frontal
face view. On the other hand, some researchers prefer to specify this information
by hand, and focus on the interpretation task itself, as in [23,24,25,26].

In Phase 2, the features relevant to facial expressions are extracted from the
image. Michel et al. [21] extract the location of 22 feature points within the face
and determine their motion between a neutral frame and a frame representa-
tive for a facial expression. These feature points are mostly located around the
eyes and mouth. Littlewort et al. [27] use a bank of 40 Gabor wavelet filters
at different scales and orientations to extract features directly from the image.
They perform convolution and obtain a vector of magnitudes of complex valued
responses.

In Phase 3, the facial expression is derived from the extracted features. Most
often, a classifier is learned from a comprehensive training set of annotated ex-
amples. Some approaches first compute the visible AUs and then infer the facial
expression by rules stated by Ekman and Friesen [28]. Michel et al. [21] train
a Support Vector Machine (SVM) that determines the visible facial expression
within the video sequences of the CKDB by comparing the first frame with the
neutral expression to the last frame with the peak expression. Schweiger and
Bayerl [25] compute the optical flow within 6 predefined face regions to extract
the facial features. Their classification uses supervised neural networks.
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2.2 Challenges of Facial Expression Recognition

FER is a particularly challenging problem. Like speech, facial expressions are
easier to generate than to recognize. The three phases represent different chal-
lenges. While Phase 1 and Phase 2 are confronted with image interpretation
challenges, Phase 3 faces common Machine Learning problems. The challenge of
one phase increases if the result of the previous one is not accurate enough.

The first two phases grasp image components of different semantic levels.
While human faces have many similarities in general shape and layout of features,
in fact all faces are different, and vary in shape, color, texture, the exact location
of key features, and facial hair. Faces are often partially occluded by spectacles,
facial hair, or hats. Lighting conditions are a significant problem as well. Usually,
there are multiple sources of light, and hence multiple shadows on a face.

The third phase faces typical Machine Learning challenges. The features must
be representative for the target value, i.e. the facial expression. The inference
method must be capable to derive the facial expression from the facial features
provided. The learning algorithm has to find appropriate inference rules. Being
the last phase, it depends most on accurate inputs from the preceding phases.

Cohen et al. [24] use a three-dimensional wireframe model consisting of 16 dif-
ferent surface patches representing different parts of the face. Since these patches
consist of Bézier volumes, the model’s deformation is expressed by the Bézier
volume parameters. These parameters represent the basis for determining the
visible facial expression. Cohen et al. integrate two variants of Bayesian Net-
work classifiers, a Naive Bayes classifier and a Tree-Augmented-Naive Bayes
classifier. Whereas the first one treats the motion vectors to be independent,
the latter classifier assumes dependencies between them, which facilitate the in-
terpretation task. Further improvements are achieved by integrating temporal
information. It is computed from measuring different muscle activity within the
face, which is represented by Hidden Markov Models (HMMs).

Bartlett et al. [29] compare recognition engines on CKDB and find that a
subset of Gabor filters using AdaBoost followed by training on Support Vector
Machines gives the best results, with 93% correct for novel subjects in a 7–way
choice of expressions in real time. Note that this approach is tuned to the specifics
of the images within CKDB. In contrast, approaches for a robot scenario must
be robust to the variety of real-world images.

2.3 Additional Challenges in a Robot Scenario

In contrast to human–machine interactions with say desktop computers, during
interactions with robots the position and orientation of the human is less con-
strained, which makes facial expression recognition more difficult. The human
may be further from the robot’s camera, e.g he or she could be on the other side
of a large room. The human may not be directly facing the robot. Furthermore,
he or she may be moving, and looking in different directions, in order to take part
in the robot’s task. As a result it is difficult to ensure a good, well illuminated
view of the human’s face for FER.
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To make matters worse, robots are mobile. There is no hope of placing the
human within a controlled space, such as a controlled lighting situation, because
the human must follow the robot in order to continue the interaction. Most image
subtraction approaches cannot cope, because image subtraction is intended to
separate facial activity from the entire surrounding that is expected to be static.
In contrast, our model-based approach copes with this challenge, because of the
additional level of abstraction (the model).

A technical challenge is to meet the real time computational constraints for
human-robot interaction. The robot must respond to human emotions within a
fraction of a second, to have the potential to improve the interaction.

Many researchers have studied FER for robots. Some model–based methods
cannot provide the real time performance needed for human–robot interaction,
because model fitting is computationally expensive and because the required
high resolution images impose an additional computational burden [30]. Kim et
al [30] use a set of rectangular features and train using AdaBoost. Yoshitomi et
al fuse speech data, face images and thermal face images to help a robot recog-
nize emotional states [31]. An HMM is used for speech recognition. Otsuka and
Ohya [32] use HMMs to model facial expressions, for recognition by robots. Zhou
et al use an embedded HMM and AdaBoost for real-time FER by a robot [33].

3 Model-Based Interpretation of Facial Expressions

Our approach makes use of model-based techniques, which exploit a priori knowl-
edge about objects, such as their shape or texture. Reducing the large amount
of image data to a small set of model parameters facilitates and accelerates the
subsequent facial expression interpretation, which mitigates the computational

Fig. 3. Model-based image interpretation splits the challenge of image interpretation
into computationally independent modules
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problems often associated with model–based approaches to FER. According to
the usual configuration [34], our model-based approach consist of seven compo-
nents, which are illustrated in Figure 3.

This approach fits well into the three-phase procedure of Pantic et al. [3],
where skin color extraction represents a pre-processing step, mentioned by Chi-
belushi et al. [4]. Phase 1 is contains by the core of model-based techniques: the
model, localization, the fitting algorithm, and the objective function. Phase 2
consists of the facial feature extraction, and Phase 3 is the final step of facial
expression classification.

3.1 The Deformable Face Model

The model contains a parameter vector p that represents its possible configura-
tions, such as position, orientation, scaling, and deformation. Models are mapped
onto the surface of an image via a set of feature points, a contour, a textured
region, etc. Our approach makes use of a statistics-based deformable model, as
introduced by Cootes et al. [35]. Its parameters p = (tx, ty, s, θ, b)T comprise
the affine transformation (translation, scaling factor, and rotation) and a vector
of deformation parameters b = (b1, . . . , bB)T . The latter component describes
the configuration of the face, such as the opening of the mouth, the direction of
the gaze, and the raising of the eye brows, compare to Figure 4. In this work,
B = 17 to cover all necessary modes of variation.

3.2 Skin Color Extraction

Skin color, as opposed to pixel values, represents highly reliable information
about the location of the entire face and the facial components and their bound-
aries. Unfortunately, skin color occupies a cluster in color space that varies with

b1

b3

b10

−2σ −σ 0 +σ +2σ

Fig. 4. Our deformable model of a human face consists of 134 contour points that rep-
resent the major facial components. The deformation by a change of just one parameter
is shown in each row, ranging from −2σ and 2σ, as in Cootes et al. [36]. b1 rotates the
head. b3 opens the mouth. b10 changes the direction of the gaze.
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the scenery, the person, and the camera type and settings. Therefore, we con-
duct a two-step approach as described in our previous publication [37]. We first
detect the specifics of the image, describe the skin color as it is visible in the
given image. In a second step, the feature values of the pixels are adjusted by
these image specifics. This results a set of simple and quick pixel features that
are highly descriptive for skin color regions of the given image.

This approach facilitates distinguishing skin color from very similar colors such
as those of the lips and eyebrows. The borders of the skin regions are clearly
extracted, and since most of these borders correspond to the contour lines of our
face model, see Figure 4, this supports model fitting in the subsequent steps.

3.3 Localization of the Face and the Facial Components

The localization algorithm computes an initial estimate of the model parame-
ters. The subsequent fitting algorithm is intended to refine these values further.
Our system integrates the approach of Viola and Jones [38], which detects a
rectangular bounding box around the frontal face view. From this information,
we derive the affine transformation parameters of our face model.

Additionally, rough estimation of the deformation parameters b improves ac-
curacy. A second iteration of the Viola and Jones object locator is used on the
previously determined rectangular image region around the face. We specifi-
cally learn further algorithms to localize the facial components, such as eyes and
mouth.1 In the case of the eyes, the positive training data contains images of
eyes, whereas the negative training data consists of image patches that are taken
from the vicinity of the eyes, such as the cheek, the nose, or the brows. Note that
the learned eye locator is not able to accurately find the eyes within a complex
image, because images usually contain a lot of information that was not part
of our specific training data. However, the eye locator is highly appropriate to
determine the location of the eyes given a pure face image or a facial region
within a complex image.

3.4 The Objective Function

The objective function f(I, p) yields a comparable value that specifies how ac-
curately a parameterized model p describes an image I. It is also known as the
likelihood, similarity, energy, cost, goodness, or quality function. Without loss
of generality, we consider lower values to denote a better model fit. The fitting
algorithm, as described in Section 3.5, searches for the model that describes the
image best by determining the global minimum of the objective function.

Traditionally, the calculation rules of objective functions are manually speci-
fied by first selecting a small number of image features, such as edges or corners,
and then combining them by mathematical operators, see Figure 5. Afterwards,
the appropriateness of the function is subjectively investigated by inspecting its
1 Locators for facial components, which are part of our system, can be downloaded

at: http://www9.in.tum.de/people/wimmerm/se/project.eyefinder
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Fig. 5. The traditional procedure for designing objective functions is elaborate and
error-prone

results on example images and example model parameterizations. If the result is
not satisfactory the function is modified or designed from scratch. This heuristic
approach relies on the designer’s intuition about a good measure of fitness. Our
earlier works [39,40] show that this methodology is erroneous and tedious.

To avoid these shortcomings, our former publications [39,40] propose to learn
the objective function from training data generated by an ideal objective func-
tion, which only exists for previously annotated images. This procedure enforces
the learned function to be approximately ideal as well. Figure 6 illustrates our
five-step methodology. It splits the generation of the objective function into
several partly automated independent pieces. Briefly, this provides several ben-
efits: first, automated steps replace the labor-intensive design of the objective
function. Second, the approach is less error-prone, because annotating example
images with the correct fit is much easier than explicitly specifying calculation
rules that need to return the correct value for all magnitudes of fitness while
considering any facial variation at the same time. Third, this approach does not
need any expert knowledge in computer vision and no skills of the application
domain and therefore, it is generally applicable. This approach yields robust
and accurate objective functions, which greatly facilitate the task of the fitting
algorithms.

3.5 The Fitting Algorithm

The fitting algorithm searches for the model that best describes the face visible in
the image, by finding the model parameters that minimize the objective function.
Fitting algorithms have been the subject of intensive research and evaluation,

Fig. 6. The proposed method for learning objective functions from annotated training
images automates many critical decision steps
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see Hanek [41] for an overview and categorization. Since we adapt the objective
function rather than the fitting algorithm to the specifics of the application,
our approach is able to use any of these standard methods. Due to real-time
requirements, the experiments in Section 4 have been conducted with a quick
hill climbing algorithm. Carefully specifying the objective function makes this
local optimization method nearly as accurate as a global optimization strategy.

3.6 Facial Feature Extraction

Two aspects characterize facial expressions: They turn the face into a distinc-
tive state [27] and the muscles involved show a distinctive motion [21,25]. Our
approach considers both aspects in order to infer the facial expression, by ex-
tracting structural and temporal features. This large set of features provides a
fundamental basis for the subsequent classification step, which therefore achieves
high accuracy.

Structural Features. The deformation parameters b of the model describe the
constitution of the visible face. The examples in Figure 4 illustrate their relation
to the facial configuration. Therefore, b provides high-level information to the
interpretation process. In contrast, the model’s transformation parameters tx,
ty, s, and θ do not influence the facial configuration and are not integrated into
the interpretation process.

Temporal Features. Facial expressions emerge from muscle activity, which
deforms the facial components involved. Therefore, the motion of particular fea-
ture points within the face is able to give evidence about the facial expression
currently performed. In order to meet real-time requirements, we consider a
small number of facial feature points only. The relative location of these points
is derived from the structure of the face model. Note that these locations are not
specified manually, because this assumes the designer is experienced in analyzing

Fig. 7. Model-based techniques greatly support the task of facial expression interpre-
tation. The parameters of a deformable model give evidence about the currently visible
state of the face. The lower section shows G = 140 facial feature points that are warped
in the area of the face model, showing example motion patterns from facial expressions.
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Table 1. Confusion matrix and recognition rates of our approach

ground truth classified as recognition rate
surprise happiness anger disgust sadness fear

surprise 28 1 1 0 0 0 93.33%
happiness 1 26 1 2 3 4 70.27%
anger 1 1 14 2 2 1 66.67%
disgust 0 2 1 10 3 1 58.82%
sadness 1 2 2 2 22 1 73.33%
fear 1 5 1 0 2 13 59.09%
mean recognition rate 70.25%

facial expressions. In contrast, a moderate number of G equally distributed fea-
ture points is generated automatically, shown in Figure 7. These points should
move uniquely and predictably for any particular facial expression. The sum of
the motion of each feature point i during a short time period is (gx,i, gy,i) for the
motion in (x, y), 1≤i≤G. In our proof-of-concept, the period is 2 seconds, which
covers slowly expressed emotions. Furthermore, the motion of the feature points
is normalized by subtracting the model’s affine transformation. This separates
the motion that originates from facial expressions from the rigid head motion.

In order to acquire robust descriptors, Principal Component Analysis deter-
mines the H most relevant motion patterns (Principal Components) that are
contained within the training sequences. A linear combination of these motion
patterns describes each observation approximately. Since H � 2G, this reduces
the number of descriptors by enforcing robustness towards outliers as well. As
a compromise between accuracy and runtime performance, we set G = 140 and
H = 14. Figure 7 visualizes the obtained motion of the feature points for some
example facial expressions.

3.7 Facial Expression Classification

With the knowledge of the B structural and the H temporal features, we con-
catenate a feature vector t, see Equation 1. It represents the basis for facial
expression classification. The structural features describe the model’s configu-
ration within the current image and the temporal features describe the muscle
activity during a small amount of time.

t = (b1, ..., bB, h1, ..., hH)T (1)

A classifier is intended to infer the correct facial expression visible in the
current image from the feature vector t. 67% of the image sequences of the
CKDB form the training set and the remainder the test set. The classifier used
is a Binary Decision Tree [42], which is robust and efficient to learn and execute.

4 Experimental Evaluation

We evaluate the accuracy of our approach by applying it to the unseen fraction
of the CKDB. Table 1 shows the recognition rate and the confusion matrix of
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Table 2. Recognition rate of our system compared to state-of-the-art approaches

facial Results of Results of Results of
expression our approach Michel et al. [21] Schweiger et al. [25]
Anger 66.7% 66.7% 75.6%
Disgust 64.1% 58.8% 30.0%
Fear 59.1% 66.7% 0.0%
Happiness 70.3% 91.7% 79.2%
Sadness 73.3% 62.5% 60.5%
Surprise 93.3% 83.3% 89.8%
Average 71.1% 71.8% 55.9%

each facial expression. The results are comparable to state of the art approaches,
shown in Table 2. The facial expressions happiness and fear are confused most
often. This results from similar muscle activity around the mouth, which is also
indicated by the sets of AUs in FACS for these two emotions.

The accuracy of our approach is comparable to that of Schweiger et al. [25],
also evaluated on the CKDB. For classification, they favor motion from different
facial parts and determine Principal Components from these features. However,
Schweiger et al. manually specify the region of the visible face whereas our ap-
proach performs an automatic localization via model-based image interpretation.
Michel et al. [21] also focus on facial motion by manually specifying 22 feature
points predominantly located around the mouth and eyes. They utilize a Support
Vector Machine (SVM) for determining one of six facial expressions.

4.1 Evaluation in a Robot Scenario

The method was also evaluated in a real robot scenario, using a B21r robot,
shown in Figure 8 [43,44]. The robot LCD panel shows a robot face, which is
able to make facial expressions, and moves its lips in synchronization with the
robot’s voice The goal of this work is to provide a robot assistant that is able to
express feelings and respond to human feelings.

The robot’s 1/3in Sony cameras are just beneath the face LCD, and one is
used to capture images of the human in front of the robot. Since the embedded
robot computer runs Linux and our model based facial expression recognizer
runs under Windows, a file transfer protocol server provided images across a
wireless network to a desktop Windows PC.

The robot evaluation scenario was controlled to ensure good lighting condi-
tions, and that the subject’s face was facing the camera and forming a reason-
able sized part of the image (at a distance of approximately 1m). 120 readings
of three facial expressions were recorded and interpreted. Figure 8 shows the
results, which are very similar to the bench test results above. The model based
FER was able to process images at 12 frames per second, although for the test
the speed was reduced to 1 frame per second, in order to eliminate confusion
when the human subject changed.
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ground truth classified as recognition rate
neutral happiness surprise

neutral 85 11 19 71%
happiness 18 83 25 69%
surprise 17 26 76 63%
mean recognition rate 67%

Fig. 8. Set up of our B21 robot and the confusion matrix and recognition rates in a
robot scenario

5 Summary and Conclusion

To be effective in the human world robots must respond to human emotional
states. This paper focuses on the recognition of the six universal human facial
expressions. Our approach imposes lower computational requirements by special-
izing model-based techniques to the face scenario. Adaptive skin color extraction
provides accurate low-level information. Both the face and the facial components
are localized robustly. Specifically learned objective functions enable accurate fit-
ting of a deformable face model. Experimental evaluation reports a recognition
rate of 70% on the Cohn–Kanade facial expression database, and 67% in a robot
scenario, which compare well to other FER systems. The technique provides a
prototype suitable for FER by robots.
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