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Abstract. In this paper a sequence of model transformation languages
L0, L1, L2 is defined. The first language L0 is very simple, and for this
language it is easy to build an efficient compiler to C++. The next lan-
guage L1 is an extension of L0, and it contains powerful pattern definition
facilities. The last language L2 is of sufficiently high level and can be used
for implementation of traditional pattern-based high level model trans-
formation languages, as well as for the development of model transfor-
mations directly. For languages L1 and L2 efficient compilers have been
built using the bootstrapping method: L1 to L0 in L0, and L2 to L1 in
L1. The results confirm the efficiency of model transformation approach
for domain specific compiler building.

1 Introduction

A well known fact is that the heart of the most advanced software engineering
technology MDA [1] is model transformation languages. In recent years the main
emphasis has been on the development of industrial transformation languages
[2,3,4,5,6,7]. For most of the transformation languages there is an implementa-
tion. However, there has been no thorough research on transformation language
implementation, especially on the efficiency aspects. On the other hand, there
have been only a few attempts to use transformation languages for defining their
compilers (to use bootstrapping) [5,7,8]. It is a little bit strange taking into the
account that the main idea of MDA is to use transformation languages for trans-
forming formal design models also a sort of language. Most of the MDA success
stories are related to Domain Specific Languages there the corresponding trans-
formations are in fact compilers. One of the goals of this paper is demonstrate
the usability and efficiency of transformation languages namely for defining com-
pilers for transformation languages.

The other goal is to propose a very simple, but at the same time sufficiently
high level, transformation language L2 which can be used in practice for direct
development of model transformations.
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The main results of this paper are the following:

– a sequence of transformation languages L0, L1, L2 is offered and each lan-
guage is obtained from the previous one by adding some features. The final
language L2 is of pretty high level (it contains a kind of patterns, loops, etc.)

– the first of languages L0 is very simple. It contains only the basic trans-
formation facilities and its complete description can be given in less than
two pages (see Section 2). For this language it is easy to build an efficient
compiler to C++

– a compiler from Li+1 to Li (i = 0,1) can be easily specified in Li (this can
be done also in L0). This acknowledges the efficiency of using transforma-
tion languages for building their compilers as long as an appropriate for
bootstrapping language sequence has been found

– the last language in the sequence L2 is of sufficiently high level for traditional
pattern-based high level model transformation languages (such as MOLA [6])
to be compiled to it in a natural way, with the compiler also being easily
definable in L2.

The language L0 and henceforth also Li include also the basic facilities for
defining metamodels, in order to make these languages self-contained.

2 The Base Language L0

The purpose of this section is to give a brief overview of the transformation
language L0. This language is a rather low level procedural textual language,
with control structures mostly taken from assembler-like languages (and syntax
influenced by C++). The basic setting of L0 is as for any transformation language
- we process a model, which is an instance of metamodel (MOF style). But
the language constructs which are specific to model transformations have been
chosen to be as simple as possible.

Basically these constructs give the programmer the ability to:

– iterate through instances (both links and objects),
– create/delete objects and links,
– read/write (change) object attribute values.

An elementary unit of L0 transformation program is a command (an imper-
ative statement). L0 transformation program itself is a transformation, which
contains several parts:

– global variable definition part
– native subprogram (function or procedure) declaration part (used C++ li-

brary function headers)
– L0 subprogram definition part. It is expected that exactly one subprogram

in this part is labeled with the reserved word main. The subprogram labeled
with main defines the entry point of the transformation. An L0 subprogram
definition also consists of several parts:
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• Subprogram header
• Local variable definitions
• Keyword begin;
• Subprogram body definition
• Keyword end;

L0 contains the following kinds of commands:

1. transformation <transformationName>; This command starts a transfor-
mation definition.

2. endTransformation; The command ends a transformation definition.
3. pointer <pointerName> : <className>; Defines a pointer to objects of

class <className>.
4. var <varName> : <ElementaryTypeName>; <ElementaryTypeName> is

one of Boolean, Integer, Real, String. Defines a variable of elementary type.
5. procedure <procName>(<paramList>); Subprogram header, the (formal)

parameter list can be empty. Parameter list consists of formal parameter
definitions separated by “,”. A parameter definition consists of its name, the
parameter type (the type can be an elementary type or a class from the
metamodel), and the passing method (parameters can be passed by refer-
ence or by value). If the parameter is passed by reference, its type name is
preceded by the & character.

6. function <funcName>(<paramList>): <returnType>; Return type name
can be an elementary type name or class name.

7. begin; Starts subprogram body definition.
8. end; Ends subprogram body definition.
9. return; Returns execution control to caller.

10. return <identifier>; Return the value of <identifier> to the caller, the type
must coincide with the function return type. <identifier> is an elementary
variable name or pointer name.

11. call <subProgName>(<actPrmList>); The actual parameter list, which can
be empty, consists of identifiers separated by “,”. An identifier can be a
variable name, a pointer name, or a subprogram parameter name.

12. setVarF <variable>=<funcName>(<actPrmList>); This command can be
used to obtain the value of the function result. The result is of an elementary
type and is assigned to a variable. The variable type must coincide with the
function return type.

13. first <pointer> : <className> else <label>; Positions <pointer> to an
arbitrary (the first one in an implementation dependent ordering) object
of <className>. Typically, this command in combination with the next
command is used to traverse all objects of the given class (including subclass
objects). If <className> does not have objects, <pointer> becomes null,
and execution control is transferred to the <label>. The <className> in
this command must be the same as (or a subclass of) the class used in pointer
definition; if it is a subclass, then the pointer value set is narrowed (for the
subsequent executions of next).
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14. first <pointer1> : <className> from <pointer2> by <roleName> else
<label>; Similar to the previous command, the difference is that it positions
<pointer1> to an arbitrary class object, which is reachable from <pointer2>
by the link <roleName>. Similarly, this command in combination with the
next command is used to traverse all objects linked to an object by the
given link type.

15. next <pointer> else <label>; Gets the next object, which satisfies condi-
tions, formulated during the execution of the corresponding first and which
has not been visited (iterated) with this variable yet. If there is no such
object, the <pointer> becomes null, and execution control is transferred to
<label>.

16. goto <label>; Unconditionally transfers control to <label>, <label> should
be located in the current subprogram.

17. label <labelName>; Defines a label with the given name.
18. addObj <pointer>:<className>; Creates a new object of the class

<className>.
19. addLink <pointer1>.<roleName>.<pointer2>; Creates a new link (of type

specified by <roleName>) between the objects pointed to by the <pointer1>
and <pointer2> , respectively.

20. deleteObj <pointer>; Deletes the object, which is pointed to by <pointer>.
21. deleteLink <pointer1>.<roleName>.<pointer2>; Deletes link, whose type

is specified by <roleName>, between objects pointed to by <pointer1> and
<pointer2>, respectively.

22. setPointer <pointer1>=<pointer2>; Sets <pointer1> to the object, which
is pointed to by <pointer2>; in place of <pointer2> the null constant can
be used.

23. setPointerF <pointer>=<funcName>(<actPrmList>); Sets <pointer> to
the object, which is returned by <funcName>.

24. setVar <variable> = <binExpr>; Sets <variable> to <binExpr> value.
<binExpr> is a binary expression consisting of the following elements: el-
ementary variables, subprogram parameters (of elementary types), literals,
object attributes and standard operators (+, -, *, /, &&, ‖, !).

25. setAttr <pointer>.<attrName>=<binExpr>; Sets the value of attribute
<attrName> (of the object, pointed to by <pointer>) to the <binExpr>
value.

26. type <pointer> == <className> else <label>; If the type of the pointed
object is identical to the <className>, then control is transferred to the
next command, else control is transferred to <label>. In place of the equality
symbol == an inequality symbol != can be used. This command is used for
determining the exact subclass of an object.

27. var <variable>==<binExpr> else <label>; If the condition is not true
then control is transferred to <label>. In place of equality symbol other (<,
<=, >, >=, !=) relational operators compatible with argument types can
be used.

28. attr <pointer>.<attrName> == <binExpr> else <label>; If condition is
not true then control is transferred to <label>. Other relational operators
(<, <=, >, >=, !=) can be used too.
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29. link <pointer1>.<roleName>.<pointer2> else <label>; Checks whether
there is a link (with the type specified by <roleName>) between the objects
pointed to by <pointer1> and <pointer2>, respectively.

30. pointer <pointer1>==<pointer2> else <label>; Checks whether the ob-
jects pointed to by <pointer1> and <pointer2>, respectively, are identical.
Instead of <pointer2> null can be used, and the inequality symbol can be
used too.

Actually L0 contains also commands for building the relevant metamodel; for
details see http://Lx.mii.lu.lv/.

It is easy to see that the language L0 contains only the very basic facilities
for defining transformations. At the same time, it obviously is complete in
the sense of its functional capabilities. This is confirmed by the fact that high
level transformation languages such as MOLA can be successfully compiled to
it. We omit this result in the form of a theorem, but all informal justifications of
this thesis are in place. Namely this is why we call L0 the basic transformation
language. We start our bootstrap approach with this language.

We conclude this section with a very simple example of L0 - a transformation
which builds a representation B of a directed graph (where edge connection
points are also objects) from the simplest one A (where only nodes and edges
are present). Figure 1 presents the metamodel for both representations.

BNodeANode

Start End

BEdgeAEdge

outgoing

startNode

 *

 1

incoming

endNode

 *

 1

mappedA

mappedB 1

 1

connectedStart
node
 *

 1

incoming

eEnd

 1

 1

connectedEnd
node
 *

 1

outgoing

eStart

 1

 1

Fig. 1. Metamodel for the example

The L0 program performing the transformation:

transformation Graphs;
main procedure Graph2Graph();
pointer a : ANode;
pointer b : BNode;
pointer aEd : AEdge;
pointer bEd : BEdge;
pointer edgeStart : Start;
pointer edgeEnd : End;
pointer aEdgeStNode : ANode;

http://Lx.mii.lu.lv/


Model Transformation Languages and Their Implementation 135

pointer aEdgeEnNode : ANode;
pointer mapBNode : BNode;
begin;
//copy nodes;
first a : ANode else aNodeProcessed;
label loopANode;
addObj b : BNode;
addLink a . mappedB . b;
next a else aNodeProcessed;
goto loopANode;
label aNodeProcessed;
//copy edges;
first aEd : AEdge else aEdgesProc;
label loopAEdge;
addObj bEd : BEdge;
addObj edgeStart : Start;
addObj edgeEnd : End;
addLink bEd.eStart.edgeStart;
addLink bEd.eEnd.edgeEnd;
//quit if not found;
first aEdgeStNode:ANode from aEd by startNode else aEdgesProc;
first mapBNode:BNode from aEdgeStNode by mappedB else
aEdgesProc;
addLink edgeStart.node.mapBNode;
first aEdgeEnNode:ANode from aEd by endNode else aEdgesProc;
first mapBNode:BNode from aEdgeEnNode by mappedB else
aEdgesProc;
addLink edgeEnd . node. mapBNode;
next aEd else aEdgesProc;
goto loopAEdge;
label aEdgesProc;
end;
endTransformation;

3 Implementation of L0

The language L0 can be implemented in several ways. The first problem is how to
store and access the persistent data the metamodel and its instances. Obviously,
a kind of data store is required for this. A traditional relational database could
be used, but they typically have no adequate low level API. Another alternative
could be an in-memory data store, such as RDF-oriented Sesame [9] or an MOF-
oriented one (EMF [10], MDR [11]). However, for this approach we have selected
our own metamodel-based in-memory repository [12], which has an appropriate
low level API. Being developed over many years for other goals - generic meta-
model based tool building [13], this repository occurred to be efficient enough
for implementing L0.
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The API of this repository is implemented as a C++ function library. This
library offers: a) a system of low-level data retrieval functions that is complete
for low-level data query programming; b) a selected set of more complicated
widely usable data searching functions. By means of a sophisticated indexing
mechanism, these more complicated functions are also efficiently implemented.

The API of this repository includes two groups of functions:

1. Meta-model management functions for creating, modifying, and deleting
classes, attributes and associations, querying about their properties, class
inheritance, etc. However, meta-model management functions are used rela-
tively seldom, the most heavily used functions belong to the next group.

2. Instance management. This group of functions, in its turn, also can be sub-
divided in two groups:
(a) functions for creating instances, assigning attribute values, creating links

between instances, modifying and deleting instances and links, querying
about instance attributes and links. For example:
long CreateObject(long ObjTypeId); // returns objId
int DeleteObjectHard(long ObjId);
int CreateLink(long LinkTypeId, long ObjId1, long ObjId2);
int DeleteLink(long LinkTypeId, long ObjId1, long ObjId2);

(b) efficient searching functions (internally these functions use sophisticated
indexing mechanisms):
int GetObjectNum(long ObjTypeId);
long GetObjectIdByIndex(long ObjTypeId, int Index);
int GetLinkedObjectNum(long ObjId, long LinkTypeId);
long GetLinkedObjectIdByIndex(long ObjId, long LinkTypeId,

int Index);

If a repository with such API is available, then building an L0 compiler (to
C++) is quite a straightforward job. Such a compiler has been built by one
of the authors of this paper (S. Rikacovs) in two months (not including L0
debugging facilities). The main advantage of using this repository is that the
instance management functions in L0 (first and next, including the by link
options) have close counterparts in the repository API.

The implementation efficiency is also sufficiently high. First, some experiments
show that efficiency loss with respect to the same transformation manually coded
in C++ is no more than 1.5 times. Another aspect is efficiency of the selected
repository for typical transformations, where another group of experiments [12]
show that the selected repository is at least as efficient as Sesame [9] data store
for typical instance retrieval operations.

4 The Language L1

The crucial component of any advanced transformation language is some sort of
pattern definition facilities. This way, the transformation language L1 is obtained
from L0 by adding pattern definition facilities of a specific new form. In selecting
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the pattern definition method we were guided by two conflicting requirements.
On the one hand, the pattern concept must be practically usable. On the other
hand, it must have a simple and efficient implementation by compiler (tradi-
tional patterns, e.g. in [4,5,6] not always have this property). One of the main
results of this paper is the proposed pattern definition facility, which satisfies
both requirements. The main component of pattern specification is a facility for
defining expressions over environments of model objects. Our approach is based
on a new kind of expressions - begin-end expressions, which are defined as
command blocks of the kind:

begin <commandSequence> end.

Namely, if we execute the block on the given object environment, and reach
the end command, then the expression value is defined to be true, otherwise it
is false.

For example, the expression (block):

begin
attr p.age==23;
attr p.occupation=="Student";

end

has the value true if and only if the pointer p (of type Person) points to an
instance, whose attribute age has the value 23 and the attribute occupation has
the value “Student”.

Some more comments on begin-end expressions must be given - what is meant
by not reaching the end. If during the block execution we reach an undefined else
branch of a command (there is no else keyword or it is not followed by a label,
this is permitted for all else-containing commands of L0) then the expression is
defined to have the value false. A similar way is to use a goto command without
label (but it is forbidden to use a label not defined in the block).

Now, when the begin-end expressions are described, it is possible to define
the language L1 precisely.

The language L1 differs from L0 in commands first and next extended by
suchthat part containing a begin-end expression:

first <pointer> : <className> suchthat <BeginEndExpression>
else <label>;

next <pointer> suchthat <BeginEndExpression>
else <label>;

Now we will explain in some details the role of begin-end expressions for
pattern definition and compare them to other facilities for pattern definition.
Let us assume that we have the class diagram (“metamodel”) in Figure 2. Such
a class diagram can be treated also as a signature for formula definition in
many-sorted first order logic (MS FOL) - an association corresponds to a binary
predicate and an attribute to a function. We want to define certain patterns
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Person
age : Integer

Company
name : String

parent

child

0..2

 *

hasChild

employee

employer *

 *worksFor

Fig. 2. Metamodel for pattern examples

for p:Person, i.e., constraints which should be satisfied by appropriate Person
instances.

To get a deeper insight into the situation, we will define these patterns in sev-
eral languages, starting from the natural language. Let us consider an example:

p is a Person, whose age is 50 and who works for (i.e., its employer is) the
Company “UniBank”.

The same pattern can be specified graphically in the MOLA transformation
language:

x : Company
{name="UniBank"}

p : Person
{age=50} employer

(in other transformation languages this can be done in a similar way).
In MS FOL the same pattern can be represented by the following formula

F(p) (the free variable p has the type Person):

p.age = 50 &
∃x : Company(x.name = “UniBank” & worksFor(p, x)) . (1)

The same pattern can be specified also by a begin-end expression, where p is
a pointer variable with the type Person:

begin
attr p.age==50;
first x:Company suchthat
begin
attr x.name=="UniBank";
link p.employer.x;

end;
end;

Let us note that in this context “first x: suchthat ” is equivalent to “exists
x: suchthat ”.

Now let us consider a more complicated example:
p is a Person, who has a child working for the Company “UniBank”.
This corresponds to the following MOLA pattern:



Model Transformation Languages and Their Implementation 139

s : Personp : Person x : Company
{name="UniBank"}child employer

The corresponding MS FOL formula F(p) is:

∃s : Person(hasChild(p, s) &
∃x : Company(x.name = “UniBank” & worksFor(s, x))) . (2)

The corresponding begin-end expression is:

begin
first s:Person suchthat
begin
link p.child.s;
first x:Company suchthat
begin
attr x.name=="UniBank";
link s.employer.x;

end;
end;

end;

Now let us consider a significantly more complicated example:
p is a Person, whose all adult (not younger than 18) children work for the

Company “UniBank”.
It is difficult to specify such a pattern in a graphical pattern definition lan-

guage. At the same time it can be specified quite easily as a MS FOL formula
and also as a begin-end expression.

The corresponding MS FOL formula F(p) is:

∀s : Person(s.age >= 18 & hasChild(p, s) ⊃
∃x : Company(x.name = “UniBank”) & worksFor(s, x)) . (3)

The corresponding begin-end expression is:

begin
first s:Person suchthat
begin
link p.child.s;
attr s.age>=18;
first x:Company suchthat
begin
attr x.name=="UniBank";
link s.employer.x;

end
else L1;
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goto;
label L1;

end else L0;
goto;
label L0;

end;

It is easy to check that we can reach the final end iff p points to a Person,
which satisfies the abovementioned constraint. This begin-end expression actu-
ally corresponds to the following MS FOL formula (which is equivalent to the
formula above):

¬∃s : Person(hasChild(p, s) & s.age >= 18 &
¬∃x : Company(x.name = “UniBank” & worksFor(s, x))) . (4)

MS FOL apparently is one of the most universal languages for defining pat-
terns. However, existing transformation languages avoid the use of MS FOL
formulas for pattern definition. The reason is that for such a universal pattern
specification no satisfactory (non-exponential) pattern matching algorithm is
known (most probably, such an algorithm does not exist). Therefore existing
transformation languages limit in a natural way their pattern definition mecha-
nisms in accordance with their graphical capabilities.

A natural question arises about the relation between our begin-end expressions
and MS FOL formulas in the context of pattern definition. The answer is that for
pattern definition the power of begin-end expressions is not less than that of MS
FOL formulas. We will not go into details of this problem. Let us note only that
the proof of this assertion (after the corresponding concepts are made precise
enough) is not complicated - it is sufficient to trace the inductive definition of
MS FOL formulas.

However, in order to give a deeper insight into begin-end expressions, we
explain a small fragment of this proof. Let F (p) and G(p) be MS FOL formulas
with p as the free variable. We assume that we have already built begin-end
expressions EF (p) and EG(p) which define the same patterns. Namely,

EF (p) ≡ begin <commandSequence for F> end

and

EG(p) ≡ begin <commandSequence for G> end.

Let us consider the formula F (p)&G(p). It is easy to see that the following
begin-end expression defines an equivalent pattern:

begin <commandSequence for F> <commandSequence for G> end

Now let us consider the formula ¬F (p). The corresponding begin-end expres-
sion can be obtained in the following way. Those else-branches inside EF (p) which
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have no label are completed by a certain fixed label, let’s say L. The same action
is applied to goto’s without label (such commands are permitted in L1). This
action is not applied to begin-end expressions which are inside nested suchthat
parts. Let us denote the transformed begin-end sequence by <commandSequence
for ¬F>. The sought for begin-end expression has the following form:

begin <commandSequence for ¬F> goto; label L; end.

It is easy to see that we can reach the label L (which is the last one in this
block and therefore reaching it means that the whole expression assumes the
value true) iff the original expression for F had the value false.

The other inductive steps for MS FOL formula definition can be treated in a
similar way.

In reality begin-end expressions are even more powerful than pure MS FOL,
since begin-end expressions can contain also operations on elementary variables.

A question arises why our begin-end expressions are superior to MS FOL for
specifying patterns. There are three essential reasons for this:

1. A begin-end expression specifies the command execution order during the
pattern matching (i.e., the order in which the instances are traversed).

2. When a pattern is matched all its elements are assigned an identity which
can be used further for referencing these elements (a similar approach is used
in all graphical pattern languages).

3. Begin-end expressions can be easily compiled to L0 (the obtained L0 frag-
ment directly implements the pattern matching for the expression).

5 The Final Language L2 and Its Usage

The language L2 is obtained from L1 by extending it with a foreach command
(loop) and the if-then-else command:

foreach <loopVariable> : <className> suchthat
<BeginEndExpression> do <L2commSequence> end;

if <BeginEndExpression> then do <L2commSequence> end else do
<L2commSequence> end;

The loop semantics is quite natural: the loop variable traverses all instances
of the class, which satisfy the suchthat condition, for each such instance the
do-end block is executed (explicit jumping out of the loop body is prohibited).
The foreach command may be used also inside a suchthat block.

The metamodel of L languages is given in Figure 3 (dashed association cor-
responds to element of L1, bold classes/associations to L2).
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The language L2 has at least two important usage areas. On the one hand, it
can be used as a practical model transformation language. On the other hand,
practical high level model transformation languages can be adequately compiled
to it, and the compiler itself can be written in L2 (we consider this kind of
usage the main one). Currently such a schema has been successfully applied
for building an efficient implementation of MOLA [6], but the same approach
could be applied also for implementing MOF QVT [2] and other transforma-
tion languages. The main issue for such compilations is how to map “com-
pletely declarative” traditional patterns to patterns with the specified search
order in L languages. In some sense the basic idea for such a mapping is given
in [14].

6 Implementation of L1 and L2

The languages L1 and L2 have been implemented according to the bootstrapping
principles described in the introduction.

A compiler from L1 to L0 has been implemented in L0 (as a set of recursive
procedures). It contains about 200 lines of L0 and has been written in one month
(by E. Rencis). Though L1 includes a pattern definition mechanism even more
powerful than that of MS FOL, implementation of L1 patterns is relatively simple
since the search order of pattern elements is precisely specified in the language.
Actually the command sequence defining a begin-end expression can quite easily
be transformed into an equivalent sequence of L0 commands, using recursion for
nested expressions.

To illustrate the idea, we will show briefly the schema how the L1 command

first <pointer> : <className> suchthat <BeginEndExpression>
else <label>;

can be compiled to L0 commands. By means of first, next and goto commands
a simple loop is organized which scans all instances of the given class. The
“body” of this loop contains slightly modified commands form the begin-end
expression commands with missing (or empty) else-branch are “redirected” to
a new label in the else-case. Then reaching this new label would mean that this
suchthat fails on the given instance and the next instance must be tried. If, on
the contrary, the end of the loop body is reached, the given instance satisfies the
whole suchthat and the job is done. If a command within the expression body
is not an L0 command, but a true L1 command, the same procedure is applied
recursively. This compilation schema is illustrated in Table 1.

The compiler from L2 to L1 is also relatively simple (about 560 lines of L0).
Both L1 and L2 compilers rely on the metamodel of L languages (Figure 3).

Compilation of Li+1 to Li actually converts into a transformation of models
(i.e., Li+1 programs) corresponding to the given metamodel. As it was already
mentioned, this transformation occurrs to be relatively simple.
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Attr
name: String
class: String
expr: String

Call
name: String

DeleteObj
name: String

DeleteLink
name1: String
name2: String
assoc: String

El
name: String
expr: String

Label
labName: String

Ecom
text: String
else: String

First
class: 
String
from: 
String
by: 
String

Next

SetPointer
name: String
expr: String

Defin
name: String
type: String
text: String

Scom
text: String

Gotocom
labName: String

FNcom
type: String
name: String
text: String
else: String

Command

Comblock

Type 
name: String
class: String

Pointer
name: String
expr: String

NoLink
name1: String
name2: String
assoc: String

AddObj
name: String
class: String

AddLink
name1: String
name2: String
assoc: String

SetAttr
name: String
class: String
expr: String

SetEl
name: String
expr: String

Defblock
name: String

Parameter
name: String
type: String
byRef: Boolean

Transformation
name: String

Ifthencom

Procfunct
name: String
return type: String
is main: Boolean
is native: Boolean
text: String

Foreachcom
name: String
text: String

Return
varName: String

Link
name1: String
name2: String
assoc: String

ownerpf
param

 0..1
 0..1

pf

block

 0..1

 0..1

procfunct 
block 0..1
 0..1

dbdef  0..1

 *

prev

 next

 0..1

 0..1

prev

 next

 0..1

 0..1

name

start 

 0..1

 0..1

then1

ifthencom1

 0..1

 0..1

transf

pf

 0..1

 *

name

suchthat1

 *

 0..1

name2

suchthat2

 0..1

 0..1

if1
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 0..1

 0..1

else1
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Fig. 3. Metamodel of L languages
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Table 1. Compilation schema from L1 to L0

L1 L0
first <objName> : <className> first <objName> : <className>
suchthat else <labelName>;
begin label L i;
command 1; command 1 [else L i+1];
command 2; command 2 [else L i+1];
... ...
command n; command n [else L i+1];
end goto L i+2;
else <labelName>; label L i+1;

next <objName> else <labelName>;
goto L i;
label L i+2;

7 Conclusions

It was many years ago, when the first author of this paper was a PhD student
of B. A. Trakhtenbrot and studied the most general concept of automata (so
called growing automata [15]), based on Kolmogorov-Uspenskii machines [16].
The Kolmogorov-Uspenskii machine, in contrast to Turing machine, can process
arbitrary constructive objects (“colored graphs”), which can change their topol-
ogy during the processing. At that time it was merely an instrument for studying
theoretical capabilities of algorithms and automata.

Several decades have passed until similar ideas have reified into a powerful
software engineering tool, now named Model Transformation Languages. Trans-
formation languages can be regarded also as practical languages for programming
Kolmogorov-Uspenskii machines.
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