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Abstract. Church’s Problem, stated fifty years ago, asks for a finite-
state machine that realizes the transformation of an infinite sequence α
into an infinite sequence β such that a requirement on (α, β), expressed
in monadic second-order logic, is satisfied. We explain how three fun-
damental techniques of automata theory play together in a solution of
Church’s Problem: Determinization (starting from the subset construc-
tion), appearance records (for stratifying acceptance conditions), and
reachability analysis (for the solution of games).

1 Introduction

Around 1960, a core of automata theory had been established which led to the
first comprehensive expositions, such as the volume Sequential Machines – Se-
lected Papers edited by Moore [15] and the monograph [11] of Hopcroft and Ull-
man. In these early books three essential aspects of automata theory are either
underrepresented or missing: the view of automata as transducers (computing
functions rather than accepting languages), the use of automata in the study
of infinite computations, and the close connection between automata and logic.
These directions of study are a focus in the work of B.A. Trakhtenbrot. In the de-
velopment of automata theory the three aspects often appeared in combination,
offered most beautiful results and – as we know today – are highly significant and
even indispensable for many applications in the design and analysis of computer
systems.

The breakthrough on the relation between automata and logic was the proof of
the expressive equivalence between finite automata and weak monadic second-
order arithmetic over the natural number ordering, established by Büchi and
Elgot (see the joint announcement [3] of 1958 and the two papers [1,8]) and
independently by Trakhtenbrot [27] (submitted in July 1957). The Büchi-Elgot-
Trakhtenbrot Theorem was extended soon after by Büchi [2] to the full monadic
second-order theory of the natural number ordering, together with an expressive
model of finite automaton over infinite sequences (“Büchi automaton”). Later
Rabin showed how to generalize this theory to cover also infinite trees [20].
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The equivalence between formulas of monadic second-order logic and finite
automata opened a way to establish algorithms that can test sentences for truth
in the standard model of arithmetic. After decades of work on variants of the
original question and on improving the efficiency of decision procedures, this
approach became the origin of “model-checking”, today a vast field which offers
techniques for verifying highly nontrivial software and hardware systems.

Regarding the infinite behavior of automata and the use of automata as trans-
ducers, a master problem was raised by Church in 1957 [5] (see also [6]). He asked
for the synthesis of automata that realize functions over infinite words rather
than languages. Church posed the problem whether certain transformations of
infinite words that are specified in a system of arithmetic are computable by
finite automata (in his words: by circuits):

Given a requirement which a circuit is to satisfy, we may suppose the
requirement expressed in some suitable logistic system which is an exten-
sion of restricted recursive arithmetic. The synthesis problem is then to
find recursion equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no such circuit).
([5, p.8-9])

Church’s Problem was solved by Büchi and Landweber [4] for specifications
in monadic second-order logic over (N, <), building on a fundamental result by
McNaughton [13] on the determinization of Büchi automata. These two results,
the Büchi-Landweber Theorem and the McNaughton Theorem, are the origin
of a field which might be called “synthesis of reactive systems” (rather than
“verification”), with the algorithmic theory of infinite games as a core discipline.
Today the area attracts much attention – it is concerned with refined studies on
Church’s synthesis problem and the extension to more general questions (e.g.,
on infinite stochastic games or multiplayer games).

At a very early stage, it was again Trakhtenbrot who merged the fundamental
constructions of the subject in his pioneering monograph with Barzdin [28]. The
part due to Trakhtenbrot (namely, Chapters I to III) covers both key results
indicated above; it is based on lecture notes of his of 1966, with more material
(on the Büchi-Landweber Theorem) added with the translation. It is remarkable
to see that the authors call (in the preface to [28]) the Chapters I-III the “old”
parts of the theory, while just the Chapters IV and V, which focus on statistical
aspects, are mentioned as the “first encouraging steps of a new trend”. This
judgment was prophetic in the sense that today it is true as it was more than
30 years ago; probably the use of statistical methods will be a key in developing
efficient approaches to the present demanding challenges in verification and syn-
thesis. However, for the remainder of this paper, our objective is rather to reflect
on the “old” theory. We single out basic ingredients that are relevant to Church’s
Problem, taking a view as it developed over the past twenty years. We call these
methods “determinization”, “appearance records”, and “reachability analysis”.
The first two deal with approaches to set up memory structures in finite au-
tomata, and the last one is concerned with techniques for exploring transition
graphs. The purpose of this paper is to present the integration of these ideas in
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a solution of Church’s problem. Since the details of these constructions are well-
known, our exposition focusses on methodological issues rather than offering a
full technical treatment1.

In Sect. 2, we begin with a presentation of Church’s Problem. Section 3 briefly
discusses the issue of determinization and subset constructions. Determinization
is the key construction for transforming Church’s Problem into a problem of
state-based infinite games, namely into the question of solving so-called “Muller
games”.

Sections 3 and 4 are the main part of the paper; they are devoted to the
solution of Muller games in two stages, following an idea proposed in [24] (as
an alternative to the original proof in [4]). The first stage is a stratification of
the Muller winning condition; it leads to the so-called “parity condition”. We
explain how this stratification is obtained by a simple memory structure that we
call “appearance records”. We present it in two versions (for weak and strong
Muller games).

The last step is the solution of parity games (again in their weak and strong
version), showing memoryless determinacy of these games. This completes the
solution of Church’s Problem. We explain (in Sect. 4) that the core of the proof
of memoryless determinacy of parity games is provided by (a subtle iteration
of) simple reachability tests. In the present game theoretical framework, we deal
with alternating reachability.

Of course, this emphasis on three essential constructions just points to some
selected central ideas. Automata theory is much too rich to be reducible to these
simple principles. For example, we do not touch the large area of automaton
minimization. Our exposition is also more motivated by didactic aspects than
by claims on practical applicability. For applications in program verification or
program synthesis, one often has to find refinements or even alternatives for the
basic constructions in order to ensure algorithmically satisfactory solutions.

2 Church’s Problem

Let us start with an example. Our objective is to construct a finite automaton
that transforms an input stream α of bits into an output stream β of bits such
that the following three conditions are satisfied. (We write, e.g., α(t) for the t-th
bit of α (t = 0, 1, . . .), and ∃ω for the quantifier “there exist infinitely many”.)

1. ∀t(α(t) = 1 → β(t) = 1)
2. ¬∃t β(t) = β(t + 1) = 0
3. ∃ωt α(t) = 0 → ∃ωt β(t) = 0

The desired automaton has to produce the output bit β(t) without delay
upon receipt of α(t). More specifically, we work with transducers in the for-
mat of deterministic Mealy automata. A Mealy automaton has the format M
= (S, Σ, Γ, s0, δ, τ) where S is the finite set of states, Σ and Γ are the input

1 Readers who want to see a self-contained exposition are referred to the tutorial [25].
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alphabet and output alphabet, respectively, s0 the initial state, δ : S × Σ → S
the transition function and τ : S × Σ → Γ the output function. In a graphical
presentation we label a transition from p to δ(p, a) by a/τ(p, a). The definition
of the function fM : Σω → Γ ω computed by M is then obvious.

For our example, the first two conditions are satisfied easily by producing
output 1 at each moment t. But the last condition, which has the form of a
fairness constraint, excludes this simple solution; we cannot ignore the zero bits
in α. A natural idea is to alternate between outputs 0 and 1 if the inputs are
only 0. We arrive at the following procedure:

– for input 1 produce output 1
– for input 0 produce

• output 1 if last output was 0
• output 0 if last output was 1

This procedure is executable by the following Mealy automaton. (As initial state
we take, for example, the left-hand state.)

last
output

0

last
output

1
1/1

1/1
0/1

0/0

Let us present the specification language and the task of synthesis in more
detail. For the formulation of “requirements” we consider the system of monadic
second-order logic (MSO) over the successor structure (N, +1, <), also called S1S
(for “second-order theory of one successor”) or “sequential calculus”. This case
was emphasized by Church as an open problem in [6], and today it is under-
stood that “Church’s Problem” refers to S1S. In short words, this language uses
variables s, t, . . . for time instances (natural numbers) and variables X, Y, . . . for
sequences. Sequences are identified here with unary predicates over the natural
numbers: The bit sequence α is identified with the predicate that holds for t iff
α(t) = 1; so in S1S one writes X(t) rather than α(t) = 1. The atomic formulas
are equalities and inequalities between number terms (e.g. s + 1 + 1 = t, s < t)
and formulas X(τ) with number term τ ; the S1S-formulas are built from atomic
ones by applying Boolean connectives and the quantifiers ∀, ∃ to both kinds
of variables. In general, we have S1S-specifications ϕ(X, Y ) that speak about
tuples of predicates (sequences). For an m1-tuple X and an m2-tuple Y this
means that the input alphabet under consideration is {0, 1}m1 and the output
alphabet {0, 1}m2. In our explanations and examples we only refer to the case
m1 = m2 = 1.

Church’s Problem can now be stated as follows:

Given an S1S-specification ϕ(X, Y ), decide whether a Mealy automaton
exists that transforms each input sequence α ∈ ({0, 1}m1)ω into an output
sequence β ∈ ({0, 1}m2)ω such that (N, +1, <) |= ϕ[α, β] – and if this is
the case, construct such an automaton.
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Among the many concepts of transformations of sequences, only a very special
form is admitted for Church’s Problem. Two aspects are relevant, as was at an
early stage clarified by Trakhtenbrot [26]: First, the transformation should be
“causal” (or: “nonanticipatory”), which means that the output β(t) only depends
on the prefix α(0) . . . α(t) of α. (Thus we have a much sharper requirement than
continuity in the Cantor space, where β(t) is determined by some finite prefix
of α, possibly longer than α(0) . . . α(t).) The second aspect is the computability
of the transformation by a finite-state machine (and here we take the above-
mentioned format of Mealy automata, to be specific).

As an illustration consider the two transformations T− and T + which “divide
by 2”, respectively “double” a given sequence α. The transformation T− maps α
to the sequence β that contains every second letter of α (so β(t) = α(2t)). Clearly
T− is not causal. T +(α) is defined to be the sequence β which repeats each α-
letter once; so we have α(t) = β(2t) = β(2t + 1) for all t. This transformation
is causal but not computable by a Mealy automaton; an unbounded memory
is needed to store for outputs from time 2t onwards the relevant α-segment
α(t) . . . α(2t), for increasing t. Note that we exclude the possibility to produce
outputs of length greater than 1 in one step.

Before we enter the solution of Church’s Problem in the framework of au-
tomata over infinite sequences, it should be mentioned that an alternative ap-
proach has been developed by Rabin [21] via automata on infinite trees. Tree
automata allow to deal directly with the space of all sequence pairs (α, β) of
input- and output-sequences. In the present paper we pursue the “linear” ap-
proach as in [4].

3 From Logic to Games

It is useful to study Church’s Problem in the framework of infinite games, fol-
lowing an idea that was proposed by McNaughton [12]. A specification ϕ defines
an infinite two-person game between players A and B who contribute the input-,
respectively the output-bits in turn. A play of this game is the sequence of pairs
(α(t), β(t)) of bits supplied for t = 0, 1, . . . by A and B in alternation, and the
play (α(0), β(0)) (α(1), β(1)) (α(2), β(2)) . . . is won by player B iff ϕ is satisfied
by the pair (α, β). So the formula ϕ serves as a winning condition (for player B).
A Mealy automaton as presented above defines a winning strategy for player B
in this game; so we speak of a finite-state winning strategy.

In this section the game theoretic form of Church’s Problem is developed,
in two steps: First, the S1S-specifications are transformed into deterministic
automata over infinite words (“ω-automata”), and secondly these automata are
converted into arenas of infinite games.

3.1 Determinization and Muller Automata

The first step for solving Church’s Problem consists of a transformation of a
specification ϕ(X, Y ) into a semantically equivalent but “operational” form. The
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idea is to introduce a finite number of “states” that are visited while a play
evolves and at the same time to radically simplify the logical condition to be
satisfied. As it turns out, this condition only takes into account which states
are visited infinitely often during an infinite play that is built up by players A
and B.

This transformation puts Church’s Problem into the framework of automata
theory. It is remarkable that we do not have any solution of Church’s Problem
that avoids this transformation at the start – e.g., by an inductive approach of
synthesis that is guided by the structure of the original formula ϕ.

The appropriate model of automaton into which S1S-formulas are to be trans-
formed was introduced by Muller [17] and is called Muller automaton. In the
present context, a Muller automaton scans deterministically a play (α(0), β(0))
(α(1), β(1)) . . . as a sequence from Σ = ({0, 1}2)ω ; the automaton is called equiv-
alent to ϕ if precisely the plays are accepted that satisfy ϕ. Its unique run 
 on a
given play between A and B can be viewed as the working of a referee watching
the play. The acceptance condition for the run 
 refers to the “infinity set of 
”,
which is defined as follows (denoting the set of states by Q):

Inf(
) := {q ∈ Q | ∃ωi 
(i) = q}

The acceptance component of the Muller automaton is a collection F of state
sets, and a run 
 is declared to be accepting if Inf(
) belongs to F . Since a set
Inf(
) clearly constitutes a strongly connected subset of the transition graph of
the Muller automaton, it suffices to include only strongly connected subsets in
F , which we call “accepting loops”.

The transformation from S1S to Muller automata can be established by an
induction on the construction of S1S-formulas. While the cases of atomic formu-
las and Boolean operations are straightforward, the quantifier step (without loss
of generality regarding the existential second-order quantifier) is of intriguing
difficulty. The projection operation involved in an application of the existential
quantifier leads immediately to nondeterministic Muller automata, which then
have to be determinized.

The determinization problem requires to condense the different runs of a given
nondeterministic automaton A into a single run of a new (deterministic) automa-
ton such that this run allows to decide the existence of a successful run of A.
Over a finite word w, acceptance is decided by inspecting the last states of the
different A-runs on w. To compute the states reachable by A via w, it suffices
to record the reachable states for each of the prefixes of w. Since the update of
this set from one prefix to the next is possible without a reference to previously
visited states, the “subset construction” (introduced by Myhill [19] and by Rabin
and Scott [22]) suffices, in which a deterministic automaton is built with states
that are sets of states of A.

For the determinization of ω-automata one needs additional memory, since
repeated visits to certain states on individual runs of the given nondeterministic
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automaton A have to be recorded. We consider here the case of nondeterministic
Büchi automata (to which the case of nondeterministic Muller automata is easily
reduced); a run 
 of a Büchi automaton is called successful if for infinitely many
t the state 
(t) belongs to a designated set F of accepting states. To check the
existence of a successful run of a Büchi automaton deterministically, there are (at
least) three types of appropriate memory structures. Such a structure S should
be finite, and it should be usable for the test whether an A-run exists on a given
ω-word in which a state from F occurs infinitely often; moreover, the test should
involve just the information which memory states of S are visited infinitely often
and which only finitely often when processing the ω-word under consideration.

The first idea, pursued by McNaughton in [13] and also in the book [28], is to
start new computation threads whenever the nondeterminism of A requires this,
to record whether visits of states in F occur, and to devise a policy of merging
runs when they reach the same A-state. A different approach is the construction
of Muller and Schupp in [18]. Here a version of the run tree of a nondeterministic
Büchi automaton is built up while an input word is scanned. The finite prefixes
of the run tree (corresponding to the prefixes of the input word) are compressed
so that only finitely many different compressed trees can arise. The subset con-
struction is applied in each step, however dividing the reached states into two
parts (consisting of the F -states and non-F -states, respectively), which leads to
two son nodes of a leaf of the previous tree. A bound on the height and the
width of the trees is realized by a compression of paths without branching and
by the deletion of double occurrences of a state. A vertex coloring with three
colors serves to keep track of repeated visits to states in F . Finally, the cele-
brated construction of Safra [23] involves a somewhat sparser use of the subset
construction; here a new branch of the run tree is opened only when F -states
are encountered (so a new son vertex is only created with F -states). Again, a
compression policy ensures that the size of the “Safra trees” stays bounded, and
a subtle mechanism serves to record repeated visits to F .

There is no space here to discuss these intriguing constructions in further de-
tail. Even today the subject is not closed; and a major open problem is to devise
procedures that substantially reduce (or even minimize) the size of deterministic
ω-automata.

3.2 Muller Games

For an analysis of Church’s Problem in a game theoretic setting it is useful to
distinguish the contribution of bits (in the general case: bit vectors) by the two
players A and B. Rather than processing a bit pair (α(t), β(t)) in one step of
the Muller automaton, we introduce two steps, each processing a single bit, and
using an intermediate state. Then we have two kinds of states, called A- and
B-states. In an A-state, the next bit is to be picked by player A, in a B-state
by player B. In a graph theoretical presentation we indicate A-states by boxes
and B-states by circles. Thus the transitions of a Muller automaton from a given
state are dissolved as follows:
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The result is a “game graph”. For our example specification above, we obtain
the following game graph from a corresponding Muller automaton (the reader
should ignore for the moment the boldface notation of some arrows).

1 2 6 7

3 4

5

1

1
01

0 0, 1

0, 1

0

0

0

1

1

The three conditions of our example formula (Sect. 2) can indeed be captured
by this graph, by providing an appropriate list of accepting loops. The first
condition requires that a bit 1 chosen by A has to be answered by the bit 1
chosen by B. If this is violated (starting from the initial state 1), state 6 (and
hence the loop consisting of states 6 and 7) is entered. The second condition
says that player B should not pick two zeroes in succession. If this is violated,
we would reach 6 and 7 again. We thus exclude states 6 and 7 from the accepting
loops. The third condition on fairness means that if A chooses 0 infinitely often
(which happens by going to 4 or 5), then B has to choose 0 infinitely often
(which is only possible by going from 4 to 3). Altogether we declare a loop F as
accepting if it does not contain 6 or 7 and satisfies (4 ∈ F ∨ 5 ∈ F → 3 ∈ F ).

How should player B pick his bits to ensure that the play visits precisely the
states of one of these loops F infinitely often? We have to fix how to move from
states 2, 4, 5, 7. From 7 player B has to move to 6 since there is no other choice.
The other choices can be fixed as follows: From 2 to 1, from 4 to 3, and from
5 to 1 (see boldface arrows). Then, depending on what Player A does, a play
starting in 1 will visit infinitely often the states 1 and 2, or the states 1 to 4, or
the states 1, 3, 4, 5, or the states 1 to 5. Each of these loops is accepting.

We see that player B has a winning strategy by fixing his moves as stated
above. This winning strategy can be converted into a Mealy automaton when
we combine again each pair of two successive moves (by player A and then B)
into a single transition. We get an automaton with the states 1 and 3 and the
following transitions: From 1 via

(1
1

)
back to 1, from 1 via

(0
0

)
to 3, and from 3

via
(0
1

)
and via

(1
1

)
back to 1. Up to names of states (and the irrelevant initial

state) this is precisely the Mealy automaton mentioned in Sect. 2.
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In the remainder of the paper, we shall outline a “solution” of Muller games
(and some weaker variants like “‘weak Muller games”). By a solution we mean
two algorithms: The first decides for each state q (A-state or B-state) whether
for plays starting in q player B has a winning strategy, and – in this case – the
second algorithm allows to construct a Mealy automaton that executes such a
winning strategy. In this analysis we may cancel the labels on the transitions.
This is motivated by the fact that the winning condition is formulated in terms of
visits of states only, regardless of the labels that are seen while traversing edges.
When a winning strategy over the unlabelled game graph is to be constructed,
it will be easy to re-introduce the labels and use them for a Mealy automaton
as required in the original formulation of Church’s Problem.

As a preparation, we now summarize the relevant definitions in some more
detail.

3.3 Finite-State Games: The Framework

A game graph has the form G = (Q, QA, E) where QA ⊆ Q and E ⊆ Q×Q is the
transition relation. We assume that ∀q ∈ Q : qE �= ∅ (i.e. ∀q∃q′ : (q, q′) ∈ E); so
plays cannot end in a deadlock (and hence a subset Q0 of Q induces again a game
graph if from each q ∈ Q0 there is an edge back to Q0). We set QB := Q \ QA.
In this paper edges will always lead from QA-states to QB-states or conversely.
A play over G from q is an infinite sequence 
 = q0q1q2 . . . with q0 = q and
(qi, qi+1) ∈ E for i ≥ 0. We assume that player A chooses the next state from a
state in QA, and player B from a state in QB. The set Q will always be finite in
the sequel; so we speak of finite-state games.

For the formulation of winning conditions, we add a further item to the game
graph, depending on the format of the condition. We use either a collection
F ⊆ 2Q of sets R ⊆ Q, or a coloring c : Q → {0, . . . , k} for some natural number
k. In the special case c : Q → {0, 1} we also consider the subset F = {q ∈ Q |
c(q) = 1} instead. For a collection F ⊆ 2Q we introduce two winning conditions.
The first is the Muller winning condition mentioned above; it refers to the set of
states visited infinitely often in a play 
:

Inf(
) := {q ∈ Q | ∃ωi 
(i) = q}

Player B wins the play 
 if Inf(
) ∈ F . With these conventions we speak of
a Muller game (G, F). Another use of a system F leads to the weak Muller
condition (also called Staiger-Wagner condition). Here we refer to the visited
states in a play (“occurrence set”):

Occ(
) := {q ∈ Q | ∃i 
(i) = q}

Player B wins a play 
 according to the weak Muller condition if Occ(
) ∈ F .
We speak of the weak Muller game (G, F). From the example in Sect. 2 we
obtain a weak Muller game if we delete the third requirement. The items 1 and
2 are captured over the presented game graph (with the states 1, . . . , 7) by the
condition that none of the states 6 or 7 is ever visited; this is expressed by the
weak Muller condition with the system F that contains all subsets of {1, . . . , 5}.
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An important special case of weak Muller games is the reachability game, given
a set F ⊆ Q of states of the game graph (Q, QA, E). The reachability condition
for player B is satisfied for a play 
 if some state of 
 belongs to F . We speak of
the reachability game (G, F ). One obtains an equivalent weak Muller condition
by setting F = {R ⊆ Q | R∩F �= ∅}. The reachability game (for player B) yields
a game with complemented winning condition for player A, namely to stay in
the set Q \ F throughout. Such a condition is called a safety condition. Taking
up our example again, we see that the weak Muller condition mentioned above
(covering items 1 and 2 of the requirement) amounts to the safety condition,
now for player B, to stay in the set {1, . . . , 5} during the whole play.

We now turn to the solution of games, starting with the central concept of
strategy. A strategy for player B from q is a function f : Q+ → Q, specifying
for any play prefix q0 . . . qk with q0 = q and qk ∈ QB some vertex r ∈ Q with
(qk, r) ∈ E (otherwise the value of f is chosen arbitrarily). A play 
 = q0q1 . . .
from q0 = q is played according to strategy f if for each qi ∈ QB we have
qi+1 = f(q0 . . . qi). A strategy f for player B from q is called winning strategy
for player B from q if any play from q which is played according to f is won by
player B. In the analogous way, one introduces strategies and winning strategies
for player A. We say that A (resp. B) wins from q if there is a winning strategy
for A (resp. B) from q.

For a game over the graph G = (Q, QA, E), the winning regions of players
A and B are the sets WA := {q ∈ Q | A wins from q} and WB := {q ∈ Q |
B wins from q}. It is obvious that a state cannot belong to both WA and WB ;
so the winning regions WA, WB are disjoint. But whether these sets exhaust the
whole game graph is a more delicate question. One calls a game determined if
WA∪WB = Q, i.e. from each vertex one of the two players has a winning strategy.
Determinacy of infinite games is a central topic in descriptive set theory; with the
axiom of choice one can construct games that are not determined. For the games
considered in this paper (i.e. games defined in terms of the operators Occ and
Inf), determinacy is well-known. Nevertheless we state this claim in the results
below, since determinacy is the natural way to show that envisaged winning
strategies are complete: In order to show that the domain D of a strategy covers
the entire winning region of one player, one verifies that from each state outside
D the other player has a winning strategy.

To “solve” a game over the graph G = (Q, QA, E) involves two tasks:

1. to decide for each q ∈ Q whether q ∈ WB or q ∈ WA,
2. and depending on q to construct a suitable winning strategy from q (for

player B, respectively A).

For item 2 two kinds of strategies will be employed, the memoryless and the
finite-state strategies. A strategy f : Q+ → Q is memoryless if the value of
f(q1 . . . qk) only depends on the “current state” qk. For the definition of finite-
state strategies, we first observe that over a finite set Q, a strategy f : Q+ → Q
can be considered as a word function. We say that f is a finite-state strategy if it
is computed by a Mealy automaton. In the present context we use the format S =
(S, Q, Q, s0, δ, τ) with state set S, input alphabet Q, output alphabet Q, initial
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state s0, transition function δ : S ×Q → S, and output function τ : S ×QA → Q
for player A (respectively τ : S × QB → Q for player B). The strategy fS
computed by S is now defined by fS(q0 . . . qk) = τ(δ∗(s0, q0 . . . qk−1), qk) (where
δ∗(q, w) is the state reached from q after processing the input word w and τ is
chosen for the player under consideration).

Now we state the main theorem on weak Muller games and Muller games.

Theorem 1. Weak Muller games and Muller games are determined, and for a
weak Muller game, respectively Muller game (G, F) one can effectively compute
the winning regions of the two players, and one can construct, for each state q
of G, a finite-state winning strategy from q for the respective winning player.

The part concerning Muller games is the Büchi-Landweber Theorem and gives
the desired solution of Church’s Problem. For this, one proceeds as in the previ-
ous section, i.e. one transforms a given S1S-formula ϕ into a Muller automaton
M which is then converted to a game graph G with Muller winning condition.
Note that the game graph G inherits an initial state from M. Using the Büchi-
Landweber Theorem, one checks whether this initial state belongs to the winning
region of player B, and in this case one obtains a Mealy automaton S that real-
izes a winning strategy from the initial state. The desired finite-state strategy for
the original formula ϕ is then easily constructed as a product automaton from
M and S. Its memory thus combines the state space of the Muller automaton
M with that of the strategy automaton S. It is not yet well understood how
these two aspects play together in general. Our example in Sect. 2 illustrates the
case that in addition to the states of M no additional memory is necessary.

3.4 Reachability Games

As a preparatory step for Theorem 1 we solve reachability games. Recall that a
reachability game (G, F ) involves the winning condition (for player B) that the
play should reach somewhere a state of the set F . The solution relies on a simple
backward search of the game graph, starting with the set F .

Theorem 2. A reachability game (G, F ) with G = (Q, QA, E) and F ⊆ Q is
determined, and the winning regions WA, WB of players A and B, respectively,
are computable, as well as corresponding memoryless winning strategies.

Proof. We compute, for i = 0, 1, . . ., the vertices from which player B can force
a visit in F within i moves. We call this set the i-th “attractor” (for B):

Attri
B(F ) := {q ∈ Q | from q player B can force a visit of F

in ≤ i moves}
Its computation for increasing i is known from the theory of finite games (and
corresponds to the well-known analysis of AND-OR-trees):

Attr0B(F ) = F ,
Attri+1

B (F ) = Attri
B(F )

∪{q ∈ QB | ∃(q, r) ∈ E : r ∈ Attri
B(F )}

∪ {q ∈ QA | ∀(q, r) ∈ E : r ∈ Attri
B(F )}
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So for step i + 1 we include a state of QB if from it some edge can be chosen
into Attri

B(F ). We can fix such a choice for each QB-state in Attri+1
B (F ) (i =

0, 1, . . .) in order to build up a memoryless strategy. We include a state in QA

in Attri+1
B (F ) if all edges from it lead to Attri

B(F ). The sequence Attr0B(F ) ⊆
Attr1B(F ) ⊆ Attr2B(F ) ⊆ . . . becomes stationary for some index k since Q is
finite. Since k ≤ |Q| we can define AttrB(F ) :=

⋃|Q|
i=0 Attri

B(F ).
Later we shall also use the set AttrA(F ), defined in the analogous way for

player A.
With the inductive construction it was explained that AttrB(F ) ⊆ WB ; fur-

thermore we have defined a uniform memoryless winning strategy which can be
applied to any state in WB regardless of the start of the play. (For states in
QB ∩ F the choice of the next state is arbitrary.)

For the converse inclusion WB ⊆ AttrB(F ) we have to show that AttrB(F )
exhausts the winning region WB. For this, we show that from each state in
the complement of AttrB(F ), player A has a winning strategy (which is again
memoryless). It suffices to verify that from any state q in Q \AttrB(F ) player A
can force to stay outside AttrB(F ) also in the next step. This is checked by a case
distinction: If q ∈ QA, there must be an edge back into Q \ AttrB(F ), otherwise
all edges from q would go to AttrB(F ) whence q would belong to AttrB(F ). If
q ∈ QB, all edges from q must lead to Q \ AttrB(F ), because otherwise there
would be an edge to AttrB(F ) and q would again belong to AttrB(F ).

4 Appearance Records and Game Simulations

4.1 Appearance Records

For Muller games, both in the weak and the unrestricted form, memoryless
strategies are not enough. A simple example illustrates this. Consider the fol-
lowing game graph G and the set F = {{1, 2, 3}}.

1 2 3

The weak Muller game (G, F) requires for player B to visit all states in order
to win. From vertex 2 there is no memoryless winning strategy: Neither the choice
to move to 1 nor the choice to move to 3 will ensure to reach each vertex. On the
other hand, a one-bit memory will do: When coming back to 2 we should know
whether 1 or 3 was visited before, and then we should move to 3, respectively 1
(and maybe do this perpetually from that moment onwards). A general principle
derivable from this solution is to “remember where we have been already”. This
principle corresponds to a simple experience of every-day life: When there is a
task ahead consisting of several items, keep a list of what was done already (and
thus of what still has to be done).

For the strong Muller game (G, F), both vertices 1 and 3 have to be visited
again and again. Clearly it does not suffice just to remember where we have been
already: After the visits of 1 and 3 it is necessary to switch from 1 to 3 and back
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again and again. The natural solution is to “remember where we went last time”
– and then to do the choice accordingly, going to the respective “other” vertex.

In the first case (of weak Muller games), we are led to a memory structure that
allows to store in an accumulative way the vertices that were already visited in
a play. Given a weak Muller game (G, F) with G = (Q, QA, E) and F ⊆ 2Q, we
define the transition structure of an automaton S with the power set 2Q of Q as
its set of states and Q as its input alphabet. Having read the input word q1 . . . qk,
its state will be {q1, . . . , qk}. So the initial state is ∅ and the transition function
δ : 2Q × Q → 2Q is defined by δ(R, p) = R ∪ {p}. This memory of subsets of Q
with the mentioned update rule is called appearance record. We shall show that
this memory structure suffices for winning strategies in arbitrary weak Muller
games over G. What remains is to fix the output function for S.

Let us now treat the case of (strong) Muller games. Our example above moti-
vates to keep a refined record of the states visited in a play, taking into account
the order in which states were “visited last time”. A naive way to realize this
kind of memory is to arrange the set of visited states in a list where the first
entry is the currently visited state q, the second one the state q′ �= q visited last
before q, the third one the state q′′ different from q, q′ visited last before q, q′,
and so on until the set of previously visited states is exhausted. It will be useful
to work with a slight (but essential) refinement of this list structure, which goes
back to McNaughton [12] and is today known as latest appearance record, short
“LAR”.

Consider a Muller game (G, F) with G = (Q, QA, E) and Q = {1, . . . , n}.
A LAR is a pair ((i1, . . . , ir), h) where the ij are distinct states from Q and
0 ≤ h ≤ r. Following Büchi, we call the index h the hit of the LAR. Again we
define the transition structure of an automaton S, now with the set of LAR’s
over Q as its set of states. The initial state is (( ), 0) (empty list and hit 0). The
transition function changes a given LAR upon input q ∈ Q by listing the new
state q at the front: If it was not present in the previous LAR, then it is added
(and h is set to be 0); if it occurs in the previous LAR, then it is shifted to the
front and the position where it was taken from is the value of h.

We give an example for a set Q of four states, which we name A, B, C, D to
avoid confusion with the hit values 1, . . . , 4. Also we indicate the hit value h
by underlining the h-th position of the corresponding list (if h > 0). Suppose a
play 
 starts with the states A, C, C, D, B, D, C, D, D, . . .. Then we obtain the
following sequence of LAR’s (where we skip the initial LAR (( ), 0)):

Suppose that the play goes on only by states C and D (and both are chosen
again and again). Then the states A, B will not be touched anymore, and the
hit will assume 2 as maximal value thereafter again and again: It will no more
be 3 or 4 (since A, B stay where they are), and it cannot finally stay with value
1 (since then only a single state, namely the leading one of the LAR, would be
visited from some point onwards). The maximal hit visited infinitely often thus
indicates the cardinality of the set Inf(
).
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Visited state Reached LAR
A (A)
C (CA)
C (CA)
D (DCA)
B (BDCA)
D (DBCA)
C (CDBA)
D (DCBA)
D (DCBA)

LetussummarizethedefinitionoftheautomatonS = (S, Q, s0, δ)whichrealizes,
given a play prefix i1 . . . ik ∈ Q∗, the computation of the resulting LAR. The state
set S is the set of LAR’s over Q, we have s0 = (( ), 0), and the transition function
δ : S×Q → S realizestheupdateoftheLARasfollows:Wehaveδ(((i1 . . . ir), h), i) =
((ii1 . . . ir), 0)ifidoesnotoccurin(i1 . . . ir);otherwise,ifi = ikcancelifrom(i1 . . . ir)
to obtain (j1 . . . jr−1) and set δ(((i1 . . . ir), h), i) = ((ij1 . . . jr−1), k).

Note that we obtain the (simple) appearance record if we discard the order
in the state-lists and delete the h-value. We shall show that the LAR memory
structure over Q will suffice for realizing winning strategies in Muller games over
Q. Again, it only remains to supply the output function τ for the automaton S
in order to obtain the complete definition of a Mealy automaton.

We add a historical remark. The paper [12] in which McNaughton introduced
the fundamental data structure of LAR is a technical report that was not pub-
lished as a journal paper (it contained an error in an attempted solution of
Muller games). McNaughton used the name “order-vector”; the term “latest ap-
pearance record” (LAR) was introduced by Gurevich and Harrington in their
landmark paper [10] on automata over infinite trees.

4.2 Game Simulations and Parity Conditions

The two versions of appearance record introduced in the previous section allow
to reformulate the winning conditions (weak Muller condition, strong Muller
condition) in a form that makes the solutions of the corresponding games much
easier.

First let us consider weak Muller games. For a play 
, consider the sequence
of associated appearance records, as assumed in the run of the Mealy automaton
that realizes the necessary updates. The set of visited states increases weakly
monotonically during the play and finally reaches the value Occ(
) on which it
stays fixed. Similarly the cardinality of the set of visited states increases until
it reaches the value |Occ(
)|. This observation enables us to express the weak
Muller winning conditon “Occ(
) ∈ F” in different way. We associate a number
c(R) with each subset R of Q, also called its color, which conveys two informa-
tions: the size of R, and whether R belongs to F or not. In the first case, we
take the even color 2 · |R|, otherwise the odd color 2 · |R| − 1 (assuming R �= ∅):



Church’s Problem and a Tour through Automata Theory 649

c(R) :=

{
2 · |R| if R ∈ F
2 · |R| − 1 for R �∈ F

For R = ∅ let c(R) = 0. – The following claim is then obvious:

Remark 3. Let 
 be a play and R0, R1, R2, . . . be the sequence of the associated
appearance records. Then Occ(
) ∈ F iff the maximal color in the sequence
c(R0)c(R1)c(R2) . . . is even.

This remark motivates a new winning condition over game graphs G=(Q, QA, E)
that are equipped with a coloring c : Q → {0, . . . , k}. The weak parity condition
with respect to coloring c says: Player B wins the play 
 = r0r1r2 . . . iff the
maximum color in the sequence c(r0)c(r1)c(r2) . . . is even. Given a game graph
G and a coloring c with the weak parity winning condition, we speak of the weak
parity game (G, c).

Using this, one transforms a weak Muller game (G, F) into a weak parity
game (G′, c): Given G = (Q, QA, E) let G′ = (2Q × Q, 2Q × QA, E′) where
((P, p), (R, r)) ∈ E′ iff (p, r) ∈ E and R = P ∪ {p}, and let c(R, r) := 2 · |R|
if R ∈ F , otherwise 2 · |R| − 1. Each play 
 = r0r1 . . . in G induces the play

′ = (∅, r0)({r0}, r1) . . . in G′, which is built up according to the definition of
E′. We have by construction that 
 satisfies the weak Muller condition w.r.t. F
iff 
′ satisfies the weak parity condition w.r.t. c.

This transformation of (G, F) into (G′, c) (with a change of the winning con-
dition) is a “game simulation”. (We skip a general definition since we only apply
it for the present case and the case of Muller games.)

The simulation has an interesting consequence when the latter game (the
weak parity game) allows memoryless winning strategies. Namely, a memory-
less strategy over G′ immediately determines the output function for the Mealy
automaton that computes the appearance records: If the memoryless strategy
(say for player B) requires to proceed from position (R, q) (where q ∈ QB) to
(R′, q′), then the output function value τ(R, q) of the Mealy automaton is set
to be q′ (and the new state is R′ = R ∪ {q}). Also the decision whether a state
q of G belongs to the winning region of B is provided by the analysis of the
corresponding weak parity game over G′, since for each state of a weak parity
game we shall determine the winner. Applying this to the state (∅, q) of G′ we
obtain the answer also for q in the graph G.

In the next section we shall show that weak parity games can indeed be solved
with memoryless winning strategies. Using the previous remark this completes
the solution of weak Muller games in Theorem 1.

Let us turn to the case of Muller games. We proceed as before, now using
the latest appearance record structure LAR in place of the appearance record.
Consider a play 
 over Q and the associated sequence 
′ of LAR’s. We collect
the entries of a LAR ((i1 . . . ir), h) up to position h as the hit set {i1, . . . , ih}
of the LAR. If h is the maximal hit assumed infinitely often in 
′, we may pick
a position (time instance) in 
′ where no unlisted state enters any more later
in the play and where only hit values ≤ h occur afterwards. From that point
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onwards the states listed after position h stay fixed, and thus also the hit set
for the hit value h stays fixed. We call this set the hit set for the maximal hit
occurring infinitely often in 
′. The following statement is now easily verified:

Remark 4. Let 
 be a sequence over Q and 
′ be the associated sequence of
LAR’s. The set Inf(
) coincides with the hit set H for the maximal hit h occur-
ring infinitely often in 
′.

For the proof, consider the point in 
 from where no new states will occur and
where all visits of states that are visited only finitely often are completed. After
a further visit of all the states in Inf(
), these states will stay at the head of the
LAR’s (in various orders), and the hit values will be ≤ k := |Inf(
)|. It remains
to show that the hit value in 
′ reaches k again and again (so that k is the
maximal hit occurring infinitely often in 
′). If the hit was < k from some point
onwards, the state q listed on position k would not be visited later and thus not
be in Inf(
).

Remark 4 allows to transform the Muller winning condition for a play 
 into
a different winning condition applied to the associated play 
′. By Remark 4 we
know that the Muller winning condition holds for the play 
 iff the hit set for
the maximal hit occurring infinitely often in 
′ belongs to F . This allows us to
extract two data from the LAR’s which are sufficient to decide whether the play

 satisfies the Muller condition: the hit value and the information whether the
corresponding hit set belongs to F . We combine these two data in the definition
of a coloring of the LAR’s. Define

c(((i1 . . . ir), h)) :=

{
2h if {i1, . . . , ih} ∈ F
2h − 1 if {i1, . . . , ih} �∈ F

for h > 0 and let c(((i1 . . . ir), 0)) = 0. Then the Muller condition Inf(
) ∈ F is
satisfied iff the maximal color occurring infinitely often in c(
′(0))c(
′(1)) . . . is
even. This is a “parity condition” (as introduced by Mostowski [16] and Emerson
and Jutla [9]2). The only difference to the weak parity condition is the reference
to colors occurring infinitely often rather than to those which occur at all.

In general, the parity condition refers to a coloring c : Q → {0, . . . , k} of a
game graph G; it is the following requirement on a play 
:∨

j even

(∃ωi : c(
(i)) = j ∧ ¬∃ωi : c(
(i)) > j)

The pair (G, c) with this convention for the winning condition for player B is
called a parity game.

In complete analogy to the case of weak Muller games, one can set up a game
simulation of a Muller game (G, F) by a parity game (G′, c). A state of G′ is a
pair consisting of a LAR � and a state q from Q. An edge is introduced from (�, q)

2 Other names appearing in the literature are “Mostowski condition” and “Rabin
chain condition”.
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to (�′, q′) if the edge (q, q′) exists in G and �′ results from � by the LAR-update
that lists q at the head. A play 
 over G then corresponds to a play 
′ over G′.
The coloring c is defined as above.

We shall show that parity games can be solved with memoryless winning
strategies. As for the case of weak Muller and weak parity games, a memoryless
winning strategy of player B in the parity game over G′ yields a finite-state
winning strategy of player B in the Muller game over G. The decision whether
for a state q of G such a winning strategy exists is done by testing whether player
B wins from position ((( ), 0), q) in the parity game over G′.

5 Solving Weak and Strong Parity Games

A central difficulty in the solution of weak Muller games and Muller games is
the possibly complicated structure of the system F of “winning state-sets”. The
first proof of the Büchi-Landweber Theorem [4] involves an intriguing analysis
of the partial order (by set inclusion) of the power set of the set Q of states of
the game graph. The transformation to a game with a (weak or strong) parity
condition stratifies the winning condition by introducing the total order of colors.
As we shall see, this order can be exploited for an inductive construction, again
for both the weak parity games and the parity games. In both cases, an iterated
application of attractor computations suffices; thus, the game solution ultimately
rests on simple reachability tests.

Theorem 5. A weak parity game (G, c) is determined, and one can compute the
winning regions WA, WB and also construct corresponding memoryless winning
strategies for the players A and B.

It may be noted that we suppressed the initial states q when speaking about
memoryless winning strategies. In the proof we shall see that – as for reachability
games – the strategies can be defined independently of the start state (as long
as it belongs to the winning region of the respective player).

Proof. Let G = (Q, QA, E) be a game graph (we do not refer to the special
graph G′ above), c : Q → {0, . . . , k} a coloring (w.l.o.g. k even, otherwise switch
players). Set Ci = {q ∈ Q | c(q) = i}.

We first compute the attractor for B of the states with maximal color, which
is even. When player B reaches such a state the play is won whatever happens
later. So Ak := AttrB(Ck) is a part of the winning region of player B.

The remaining vertices form the set Q \ Ak; the subgraph induced by Q \ Ak

in G is again a game graph. (Note that from each state q in Q \ Ak there is at
least one edge back to Q \ Ak, otherwise – as seen by case distinction whether
q ∈ QA or q ∈ QB – q would belong to Ak = AttrB(Ck).)

Now in the subgame over Q\Ak we compute Ak−1 := AttrA(Ck−1 \Ak); from
these vertices player A can reach the highest odd color k − 1 and guarantee to
stay away from Ak, in the same way as explained above for reachability games
(see Sect. 4.1).



652 W. Thomas

In both sets we can choose memoryless winning strategies, over Ak for B, and
over Ak−1 for A. In this way we continue to adjoin “slices” of the game graph,
taking B- and A-attractors in alternation, in order to obtain the winning regions
of B and A. The next set Ak−2 is the set of all states q ∈ Q \ (Ak−1 ∪ Ak) from
which player B can force the play to Ck−2 \ (Ak−1 ∪ Ak). We denote this set
by AttrQ\(Ak−1∪Ak)

B (Ck−2 \ (Ak−1 ∪ Ak)). The exponent indicates the (domain
of) the game graph in which the attractor computation takes place. In order to
facilitate the notation for the general case, set Qi := Q \ (Ai+1 ∪ . . . ∪ Ak).

So we compute the sets Ak, Ak−1, . . . , A0 inductively as follows:

Ak := AttrB(Ck)
Ak−1 := AttrQk−1

A (Ck−1 \ Ak)

and for i = k − 2, . . . , 0:

Ai :=

{
AttrQi

B (Ci \ (Ai+1 ∪ . . . ∪ Ak)) if i even
AttrQi

A (Ci \ (Ai+1 ∪ . . . ∪ Ak)) if i odd

The memoryless strategies for A and B are chosen as explained for the initial
cases Ak, Ak−1. Now we have

WB =
⋃

i even

Ai and WA =
⋃

i odd

Ai

For the correctness, one verifies by induction on j = 0, . . . , k:

k⋃
i=k−j

i even

Ai ⊆ WB

k⋃
i=k−j

i odd

Ai ⊆ WA

Returning to the solution of weak Muller games, we note that a finite-state
winning strategy can be realized with 2n memory states over a game graph with
n states, due to the introduction of appearance records.

Let us turn to the case of parity games, following a proof of McNaughton [14].

Theorem 6. A parity game (G, c) is determined, and one can compute the
winning regions WA, WB and also construct corresponding memoryless winning
strategies for the players A and B.

Proof. Given G = (Q, QA, E) with coloring c : Q → {0, . . . , k} we proceed by
induction on |Q|, the number of states of G.

The induction start (Q is a singleton) is trivial. In the induction step assume
that the maximal color k is even (otherwise switch the roles of players A and B).
Let q be a state of the highest (even) color k and define A0 = AttrB({q}). As
the complement of an attractor, the set Q\A0 defines a subgame. The induction
hypothesis applied to the game over the subgraph induced by Q \ A0 ensures
a partition of Q \ A0 into the winning regions UA, UB of the two players (with
corresponding memoryless winning strategies) in the game over Q \ A0.
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We now distinguish two cases:

1. From q, player B can ensure to be in UB ∪ A0 in the next step,
2. From q, player A can ensure to be in UA in the next step.

Let us first verify that one of the two cases applies (which gives a kind of local
determinacy). Assume Case 1 fails. If q ∈ QB, then all transitions from q have
to go to UA, otherwise we would be in Case 1. By the same reason, if q ∈ QA,
then some transition from q goes to UA; so Case 2 applies.

In Case 1, one shows that the winning region WB of B in G is UB ∪AttrB({q})
and that WA = UA. For player B, the memoryless winning strategy is composed
of the memoryless strategy over UB by induction hypothesis in the game over
Q\A0, of the attractor strategy over AttrB({q}), and possibly of the edge choice
in q according to “Case 1”; for player A just the memoryless strategy over UA

is taken. For the claim UB ∪ AttrB({q}) ⊆ WB note that a play from a state
in UB ∪ AttrB({q}) either remains in UB from some point onwards, whence
Player B wins by induction hypothesis, or it visits (due to moves of player A)
the attractor A0 and hence q again and again, so that player B wins by seeing
the highest color (even!) repeatedly. The claim UA ⊆ WA is clear by induction
hypothesis.

We turn to Case 2. From our analysis above we know that q ∈ AttrA(UA).
We consider the set A1 = AttrA(UA ∪ {q}), clearly of cardinality ≥ 1. So we
can apply the induction hypothesis to the domain Q \A1. We obtain a partition
of this domain into winning regions VA, VB for A and B in the subgame over
Q \ A1, with corresponding memoryless winning strategies. Now it is easy to
verify WB = VB and WA = VA ∪ A1; memoryless winning strategies for B,
respectively A, are provided by the induction hypothesis and by the attractor
strategy over A1.

Finally we note that the inductive construction can be turned into a recur-
sive procedure which produces, given G and the coloring c, the desired winning
regions and memoryless strategies.

The recursive procedure appearing in this proof involves a nested call of the
inductive hypothesis, which means that for each induction step the computa-
tional effort doubles, resulting in an overall exponential runtime. It is known
that the problem “Given a parity game (G, c) and a state q, does q belong to
the winning region of B?” is in the complexity class NP ∩ co-NP. Whether this
problem is decidable in polynomial time is one of the major open problems in
the algorithmic theory of infinite games.

For the memory size of Mealy automata that realize winning strategies, we
obtain a higher bound than for weak Muller games. Over a graph with n states
the bound n! · n states suffices. This bound can be met by simplifying the LAR
construction introduced above, in the sense that only state lists of length n (and
no shorter lists) are used. It is easy to adapt our construction to this format.
That the factorial function also provides a lower bound for the memory size was
shown in [7].
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6 Conclusion

We have presented an approach to Church’s Problem that involves three basic
ingredients, namely determinization, the stratification of Muller and weak Muller
games by different versions of appearance records, and an iterated application
of simple reachability tests in the solution of games.

Today, we see that Church’s Problem was the starting point for a highly active
area of research in computer science, in the last 20 years even with a great influence
in practical verification and program synthesis. Thus the “old” parts of automata
theory for infinite computations, as addressed by Boaz Trakhtenbrot in the Pref-
ace of the book [28], turned out extremely fruitful. It seems certain that the vision
of “new trends” as proposed in [28] already decades ago will lead to many more
results that share both beauty and an even wider range of applicability.
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