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Abstract. Generalized Categorial Dependency Grammars (gCDG)
studied in this paper are genuine categorial grammars expressing pro-
jective and discontinuous dependencies, stronger than CF-grammars and
non-equivalent to mild context-sensitive grammars. We show that gCDG
are parsed in polynomial time and enjoy good mathematical properties.

1 Introduction

Dependency grammars (DGs) are formal grammars assigning dependency struc-
tures to the sentences of the language they define. A dependency structure (DS)
of a sentence is an oriented graph whose nodes are the words of the sentence
and whose arcs are labelled with dependency names. In other words, they are
structures on sentences in terms of various binary relations on words. If two

words v1 and v2 are related by dependency d (denoted v1
d−→ v2), then v1 is

the governor and v2 is the subordinate. Intuitively, the dependency d encodes
constraints on lexical and grammatical features of v1 and v2, on their prece-
dence, pronominalization, context, etc. which together mean that “v1 licenses
v2” (see [24] for a detailed presentation). For instance, in the DS of the sentence

In the beginning was the Word in Fig. 1, was
pred−→ Word stands for the predica-

tive dependency between the copula was and the subject Word . From such ba-
sic dependency relations some derived relations are defined, e.g. the dependency

Fig. 1.
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relation v1 −→ v2 ≡ ∃d (v1
d−→ v2) and its reflexive-transitive closure

(dominance) v1
∗−→ v2. For instance, in the DS in Fig. 1, both occurrences of

the article the are dominated by was: was
∗−→ the2, was

∗−→ the5, but only
the first one is dominated by in: in

∗−→ the2.
The idea of such explicit representation of syntactic relations in sentences is by

far more ancient than that of the constituent structure and goes back at least to
the early grammars of the Arabic language, which used the notions of governor
and subordinate (Kitab al-Usul of Ibn al-Sarrang, (d. 928)). Modern theories of
syntax use various DSs. Prevailing is the tradition, going back to L. Tesnire [29],
to use only the tree-like DS: dependency trees (DTs). There are also approaches
where general dependency structures are used (cf. [17,28]). Sometimes (this is
the case of [17]), it is due to combining in the same structure several relations of
different nature, for instance, the surface syntactic relations and the co-reference
relations. Another difference point is the word order (WO) included or not into
the DSs. Some important properties of DSs cannot be expressed without the
WO, first of all, projectivity. This property is defined in terms of the projection
D(v) of a word v in DS D of a sentence w: D(v) = {v′ ∈ D || v

∗−→ v′}. D is pro-
jective if the projections of all words in w are continuous intervals of w. So the
DS in Fig. 1 is projective. Meanwhile, non projective DSs are frequent in natu-
ral languages. E.g., both DTs in Fig. 2 are non projective. The non projectivity is

(a)

(b)
(French: she gave itfem to him)

Fig. 2.

always due to discontinuous dependencies, i.e. the dependencies in which the
governor vg is separated from the subordinate vs by a word not dominated
by vg (see [13] for more details). In Fig. 2, the discontinuous dependencies are
represented by dotted arrows. When the dependencies are emancipated from the
WO (cf. [6]), it is only done to define more exactly the WO constraints. Contrary
to this, we suppose that the DSs are linearly ordered by the WO.

There is a great many definitions of DGs: from generating to constraint based
(see [20,21] for references and discussion). Our definition goes back to the early
valency/precedence style definitions [16,14] having much in common with those
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of the classical categorial grammars [1,2]. Both are lexicalized, use syntactic
types in the place of rewriting rules, naturally fit compositional semantic struc-
tures and are equivalent to CF-grammars if only the weak expressive power
is concerned and the core syntax is considered. But as far as it concerns the
strong expressive power, many fundamental differences appear between these
formalisms. It is true that there is a simple translation from phrase structures
with head selection to projective DTs and back (see [15,27] or [13] for more de-
tails), which conforms with the direct simulation of core dependency grammars
by the classical CGs [14]. Unfortunately, this technical resemblance does not
preserve the intended syntactic types. The reason is that the syntactic functions
corresponding to the dependencies are different from those of the heads in the
syntagmatic structures originating from the X-bar theory [18]. Basically, the dif-
ference is that the type of a constituent head determines its syntagmatic (phrase)
valencies, whereas a dependency represents a valency of the governor word in
one subordinate word. It reflects its lexical and syntactic class, its position with
respect to the governor, its semantic role, pronominalization, etc. (see [24] for
more details). In particular, this means that the dependency types should be
more numerous and specific than the syntagmatic ones and not prone to type
raising. Essential distinctions are also in treating verb and noun modifiers, which
in dependency surface syntax are subordinate and iterated. The canonical CGs’
elimination rules imply dependencies from the functional type words to the ar-
gument type words. So, in the absence of type raising, the adjectives, whose
canonical type in English is [n/n], must govern the modified nouns and not vice
versa as in DGs. This also explains the difference in treating the modifiers. In
DGs (cf. [28,23]) the modifiers are iterated and not recursed. Another important
difference is that DTs, in contrast with phrase structures, naturally capture dis-
continuous surface word order. Rather expressive and complex extensions of CGs
are needed to cope with the discontinuous and naturally oriented dependencies
simulation (e.g. multi-modal extensions of Lambek calculus [26,25]). Meanwhile,
as it was shown in [9,10], both can be naturally and feasibly expressed in DGs in
terms of polarized dependency valencies controlled by a simple principle, which
enables a discontinuous dependency between two closest words having the same
valency with the opposite signs (“first available” (FA) principle).

Below, we study a class of generalized categorial dependency grammars es-
tablished on the base of the FA principle. These grammars prove to be very
expressive. At the same time, they are parsed in practical polynomial time and
can be naturally linked with the underspecified semantics defined in [11] (this
subject will be treated elsewhere).

2 Syntactic Types

Dependency type of a word (to be called category) represents its governor-
subordinate valencies. There are two basic ideas of how to transform
dependencies into categories. The first idea, proposed in [12], consists in decom-

posing each dependency Gov
d−→ Sub into two parts: Gov and Sub. The first
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Fig. 3.

becomes the argument-type d, whereas the second, the value-type d (see Fig. 3).
Grouping together, for a word H, the value type f corresponding to the incoming
dependency f and the argument types corresponding to the outgoing left depen-
dencies al1, . . . , alm and right dependencies ar1, . . . , arm (in this order) we ob-
tain the category [alm\...\al1\f/ar1/.../arn] of H (denoted H �→ [alm\...\al1\f
/ar1/.../arn]). For instance, the DT in Fig. 1 determines the types:

in �→ [c−copul/prepos−in], the �→ [det],
beginning �→ [det\prepos−in], was �→ [c−copul\S/pred],
Word �→ [det\pred]

The second idea put forward in [9,10], consists in interpreting discontinuous
dependencies as polarized valencies using four polarities: left and right positive
↖, ↗ and left and right negative ↙, ↘ . For each polarity v, there is the unique
“dual” polarity v̆: ↖̆ = ↙, ↙̆ =↖, ↗̆ =↘, ↘̆ =↗. Intuitively, the argument
type ↖ d can be seen as the valency of a word whose subordinate through
dependency d is situated somewhere on the left. The dual value type ↙d can be
seen as the valency of a word whose governor through the same dependency d
is situated somewhere on the right. Together, the paired dual valencies ↙d, ↖d
(respectively, ↗d, ↘d) define the discontinuous dependency d. For instance, the
DT in Fig. 2b determines the types:

elle �→ [pred], la �→ [↙clit−dobj],
lui �→ [↙clit−iobj], a �→ [pred\S/aux],
donne �→ [↖clit−iobj\ ↖clit−dobj\aux]

Speaking about generalized categories, we will factor out from them the polar-
ized subtypes. For instance, [↖clit−iobj\ ↖clit−dobj\aux] and [↙clit−iobj] will
become respectively [aux]↖clit−iobj↖clit−dobj and [ε]↙clit−iobj. Here is a definition
of the generalized categories.

Definition 1. Let C be a set of elementary (dependency) categories. S ∈ C is
the selected category of sentences. For each d ∈ C, the category d∗ is iterated.

All elementary categories and ε are neutral. If a category C is neutral and
a category α is elementary or iterated, then the categories [α\C] and [C/α] are
also neutral. There are no other neutral categories. The set of neutral categories
over C is denoted nCat(C).
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Polarized valencies are expressions ↙d, ↘d, ↖d, ↗d, where d ∈ C. The set of
polarized valencies over C is denoted V (C). Strings of valences P ∈ Pot(C)=df

V (C)∗ are called potentials. A generalized category is either neutral or has the
form CP , where P is a potential and C is a neutral category. We will omit the
empty potential. The set of generalized categories over C is denoted gCat(C).

We suppose that the constructors \ and / are associative. So every generalized
category has the form [αlm\...\αl1\f/αr1/.../αrn]P , where f ∈ C ∪ {ε}, each
αli and αrj is an elementary category d ∈ C or its iteration d∗, m, n ≥ 0 and
P ∈ Pot(C).

In [9] a simple and natural principle of pairing dual polarized valencies was
proposed called First Available (FA)-principle: the closest dual valences with
the same name are paired.

Definition 2. An occurrence of dual polarized valencies v and v̆ in a potential
P1vP v̆P2 satisfies the FA-principle if P has no occurrences of v and v̆.

3 Generalized Categorial Dependency Grammar

Categorial dependency grammars are lexicalized in the same sense as the conven-
tional categorial grammars: they have a few language non-specific rules consti-
tuting a dependency calculus and a language specific lexicon defining the words
using dependency types.

Definition 3. A generalized categorial dependency grammar (gCDG) is a sys-
tem G = (W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected category S, and δ - called lexicon -
is a finite substitution on W such that δ(a) ⊂ gCat(C) for each word a ∈ W.

The generalized dependency calculus consists of the following rules.1

Ll. CP1 [C\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P
Dl. αP1(↙C)P (↖C)P2 � αP1PP2 , if (↙C)P (↖C) satisfies FA

Intuitively, the rule Ll corresponds to the classical elimination rule of categorial
grammars. Eliminating the argument subtype C it constructs the (projective)
dependency C in which the governor is the word with the functional type and the
subordinate is the word with the argument type. At the same time, it concate-
nates the potentials of these types (if any). The rules Il,Ωl derive the iterated
(projective) dependencies. Il, analogous to the rule Ll, may derive k > 0 depen-
dencies C and Ωl corresponds to the case k = 0. It is the rule Dl which derives
discontinuous dependencies. It pairs and eliminates dual valencies ↙ C, ↖ C
(or ↗C, ↘C) and creates the discontinuous dependency C between the words
whose types have these polarized valencies. This calculus naturally induces the
immediate provability relation � on the strings of generalized dependency types
Γ1 � Γ2 underlying the following definition of languages.
1 We show only left argument rules. The right argument rules are symmetric.



Generalized Categorial Dependency Grammars 235

Definition 4. For a gCDG G = (W,C, S, δ), let G(D, w) denote the relation:
D is the DS of a sentence w constructed in the course of a proof Γ � S for some
Γ ∈ δ(w). In particular, we will use notation w = w(D) for the DS D of w. The
DS-language generated by G is the set of dependency structures

Δ(G)=df {D | ∃w G(D, w)}

and the language generated by G is the set of sentences

L(G)=df {w | ∃D G(D, w)}.

D(gCDG) and L(gCDG) will denote the families of DS-languages and languages
generated by these grammars.

Example 1. For instance, in the gCDG Gabc :

a �→ A↙A, [A\A]↙A, b �→ [B/C]↖A, [A\S/C]↖A, c �→ C, [B\C],

Gabc(D(3), a3b3c3) holds for the DS D(3) in Fig. 4 and the string a3b3c3 due to
the types assignment

a3b3c3 �→ A↙A[A\A]↙A[A\A]↙A[A\S/C]↖A[B/C]↖A[B/C]↖AC[B\C][B\C]

and the proof in Fig. 5.

Fig. 4.

It is not difficult to prove:

[A]↙A[A\A]↙A

(Ll)
[A]↙A↙A [A\A]↙A

(Ll)
[A]↙A↙A↙A

[A\S/C]↖A

[B/C]↖A

[B/C]↖AC
(Lr)

B↖A [B\C]
(Ll)

C↖A

(Lr)
B↖A↖A [B\C]

(Ll)
C↖A↖A

(Ll)
[A\S]↖A↖A↖A

(Ll)
[S]↙A↙A↙A↖A↖A↖A

(Dl × 3)
S

Fig. 5.
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Proposition 1. L(Gabc) = {anbncn | n > 0}.

Remark 1. It should be noted that a type assignment to a string may have
multiple correctness proofs. As a consequence, even a rigid gCDG, i.e. a gCDG
assigning one type per word, may generate various DSs for the same string, as
it is shown in the next example.

Example 2. The rigid gCDG Gr : x �→ [S/S], y �→ S, z �→ [S\S] generating
the regular language x∗yz∗, has two different proofs for [S/S]S[S\S] � S. As a
result, the string xyz has the two DTs shown in Fig. 6.

Fig. 6.

An important particularity of gCDG is the property of independence of neu-
tral and polarized valencies in the proofs, expressed using two projections of
generalized categories.

Definition 5. Local and valency projections ‖γ‖l, ‖γ‖v are defined as follows:
1. ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l and ‖αγ‖v = ‖α‖v‖γ‖v for α ∈
gCat(C) and γ ∈ gCat(C)∗.
2. ‖CP ‖l = C and ‖CP ‖v = P for CP ∈ gCAT (C).

To speak about “well-bracketing” of potentials, we interpret ↙d and ↗d as left
brackets and ↖d and ↘d as right brackets. The sets of all left and right bracket
valencies are denoted V l(C) and V r(C). V (C)=df V l(C) ∪ V r(C).

Definition 6. Pairs (α, ᾰ) are called correct. For a dependency d and a poten-
tial P, let P � d be the result of deleting the occurrences of all valencies but ↙d,
↗ d, ↖ d and ↘ d. Then P is balanced if P � d is well bracketed in the usual
sense for every d.

This property can be incrementally checked using the following values.

Definition 7. For a (neutral or polarized) valency v and a category projection
γ, |γ|v will denote the number of occurrences of v in γ. For a potential P, a
left-bracket valency v ∈ V l(C), and the dual right-bracket valency v̆ ∈ V r(C),

Δv(P ) = max{|P ′|v − |P ′|v̆ || P ′ is a suffix of P}
Δv̆(P ) = max{|P ′|v̆ − |P ′|v || P ′ is a prefix of P},

express respectively the deficit of right and left v−brackets in P (i.e. the maximal
number of right and left bracket v-valencies which need to be added to P on the
right (left) so that it became balanced.2

The following facts are easy to prove:
2 Having in mind that there is P ′ = ε, the values Δv̆(P ) and Δv(P ) are non-negative.
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Lemma 1. 1. A potential P is balanced iff
∑

v∈V (C)
Δv(P ) = 0.

2. For all potentials P1, P2, and every v ∈ V l(C), v̆ ∈ V r(C),

Δv(P1P2) = Δv(P2) + max{Δv(P1) − Δv̆(P2), 0},
Δv̆(P1P2) = Δv̆(P1) + max{Δv̆(P2) − Δv(P1), 0}

3. A potential P is balanced iff for every category αP there is a proof αP � α
using only the rules Dl and Dr.

Finally, we will denote by c the projective core of the generalized dependency
calculus, consisting of the rules L, I and Ω. �c will denote the provability relation
in this sub-calculus. Now we can state the property of projections independence.

Theorem 1. Let G = (W,C, S, δ) be a gCDG. x ∈ L(G) iff there is a string of
categories γ ∈ δ(x) such that:
1. ‖γ‖l �c S,
2. ‖γ‖v is balanced.

Proof. The theorem is proved by induction on the proof length. We will prove
(⇒), the inverse being similar. Let x ∈ L(G) due to an assignment δ : x �→ γ ∈
gCat(C)∗ and a proof γ � S. Let n be the length of this proof.
I. n = 0. Then γ = ‖γ‖l = S, ‖γ‖v = ε and the statement is trivially true.
II. n > 0. Then the proof has the form γ �R γ′ � S, where R is the first rule
applied in the proof.
Case 1. R = D. In this case, R does not affect the local projection. So ‖γ‖l =
‖γ′‖l and, therefore, ‖γ‖l �c S by induction hypothesis. On the other hand,
‖γ′‖v results from ‖γ‖v by elimination of a correct pair of polarized valencies
satisfying the FA-principle. This means that ‖γ′‖v is balanced iff ‖γ‖v is so.
Case 2. R �= D. In this case, R does not affect the valency projection. So
‖γ‖v = ‖γ′‖v and, therefore, ‖γ‖v is balanced. On the other hand, γ′ � S
implies ‖γ′‖l �c S by induction hypothesis. So ‖γ‖l �R ‖γ′‖l �c S. ��

4 Expressive Power of GCDG

gCDG are very expressive. The Example 1 shows that they can generate non-CF
languages. In fact, they have the same weak expressive power as the Dependency
Structure Grammars (DSG), a class of generating rule based dependency gram-
mars introduced in [9,10] and simplified and studied in [3]. Below we cite the
key definitions from [3].

The DSG use generalized DS over a mixed vocabulary of terminals W and
nonterminals N. In these DS, one connected component3 is selected as head
component and some node in this component is selected as DS head. We will
call headed the DS with such selection (hDS). In the two-component hDS in

3 Slightly abusing the standard graph-theoretic terminology, we call connected compo-
nent of a DS D any its maximal subgraph corresponding to connected components
of the non-oriented graph resulting from D after cancellation of its arcs’ orientation.
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Fig. 7, the underlined node is head. The following composition D[v\D1] (and
simultaneous composition D[v1, . . . , vn\D1, . . . , Dn]) is defined on hDS.

Definition 8. Let δ1 = {D0, D1, . . . , Dk} be a hDS. Let a nonterminal A have
an occurrence in δ1: w(δ1) = xAy and δ2 be a hDS with the head n0. Then the
composition of δ2 into δ1 in the selected occurrence of A, denoted δ1[A\δ2], is
the hDS δ resulting from the union of δ1 and δ2 by unifying A and n0 and by
defining the order and labeling by the string substitution of w(δ2) in the place of
A in w(δ1). Formally:
1. nodes(δ)=df (nodes(δ1) − {A}) ∪ nodes(δ2).
2. arcs(δ)=df arcs(δ2)∪( arcs(δ1)−{d ∈ arcs(δ1)||∃n(d = (A, n)∨d = (n, A))} ) ∪
{(n0, n)||∃n((A, n) ∈ arcs(δ1))} ∪ {(n, n0)||∃n((n, A) ∈ arcs(δ1))}.
3. The order of nodes(δ) is uniquely defined by equation w(δ) = xw(δ2)y.

b B cD3 =

a b b B c ca A

D2 = a ABD1 = A

D1[A, B\D2[A\D2], D3[B\D3]] =

Fig. 8.

In Fig. 8 is shown an example of such composition.4 The FA-principle is used
in DSG in the form of valency neutralization:

Definition 9. For potentials Γ = Γ1vΓ2v̆Γ3 and Γ ′ = Γ1Γ2Γ3 such that v =
(↗A), v̆ = (↘A) or v = (↙A), v̆ = (↖A) , v is neutralized by v̆ in Γ (denoted
Γ�FAΓ ′) if Γ2 has no occurrences of v and v̆. This reduction of potentials �FA

is terminal and confluent. So each potential Γ has a unique FA-normal form
denoted [Γ ]FA. The product � of potentials defined by: Γ1 � Γ2=df [Γ1Γ2]FA is
clearly associative. So we obtain the monoid of potentials P = (Pot(C), �) with
the unit ε.

Definition 10. A Dependency Structure Grammar (DSG) G has the
rules r = (A → D) with A ∈ N and hDS D with assigned potentials: [Γ L

X ]X [Γ R
X ]

4 We use nonterminals label(v) in the place of v when no conflicts.
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(the left and right potentials Γ L
X and Γ R

X may be assigned to each nonterminal
X in D 5).

Derivation trees of G result from the derivation trees T of the cf-grammar
{A → w(D) || A → D ∈ G} by defining potentials π(T, n) of nodes n :
1. π(T, n) = ε for every terminal node n;
2. π(T, n) = Γ1 � . . . � Γk, for every node n with sons n1, ..., nk derived by rule
r = (A → D), in which w(D) = X1...Xk and Γi = Γ L

i � π(T, ni) � Γ R
i , where

[Γ L
i ]Xi[Γ R

i ] are the rule potential assignments. A hDS is generated in the node
n by the composition: hDS(T, n) = D[X1 . . .Xk\hDS(T, n1), . . . , hDS(T, nk)].
Every pair of dual valencies neutralized at this step corresponds to a discontin-
uous dependency added to this hDS.

A derivation tree T is complete if the potential of its root S is neutral:
π(T, S) = ε. We set G(D, w) if there is a complete derivation tree T of G from
the axiom S such that D = hDS(T, S) and w = w(D).

Δ(G) = {D | ∃w ∈ W+ G(D, w)} is the DS-language generated by G.
L(G) = {w ∈ W+ | ∃D G(D, w)} is the language generated by G.

For instance, the following four-rule DSG:

A cS → a[↙a] SG1 : A → [↖a]b c [↖a]b||A||

generates the language L(G1) = {anbncn||n > 0}. Its complete derivation tree of
the string a3b3c3 is shown in Fig. 9.

Clearly, L(CF ) ⊆ L(DSG). So this example shows that L(CF ) � L(DSG).
In [3] it is shown that DSG have Greibach normal form. Using this fact, it is
shown that L(DSG) ⊆ L(gCDG).6 On the other hand, it is also proved that
D(gCDG) ⊆ D(DSG). In particular, this means that the gCDG and the DSG
have the same weak generative power:

Theorem 2. [3] L(CF ) � L(gCDG) = L(DSG).

In [9] a measure of discontinuity σ was defined which will be called valency
deficit. Intuitively, its value is the maximal potential size in a derivation. For
instance, for the gCDG it is defined as follows.

Definition 11. Let G = (W,C, S, δ) be a gCDG. For a proof p = (Γ � S),
where Γ ∈ δ(w) and w ∈ W+, its valency deficit σ(Γ, p) is the maximal size of a
potential used in p. σG(w) is the minimal value of σ(Γ, p) among all Γ ∈ δ(w).
Finally, σG(n) = max{σG(w) || |w| ≤ n}.

The examples of gCDG Gabc and DSG G1 show that the valency deficit of
these grammars cannot be bounded by a constant. As it is shown in [9], the
dependency grammars with bounded valency deficit generate CF-languages. This
theorem can be easily extended to gCDG and DSG. Let Lσ<const(gCDG) and
Lσ<const(DSG) denote the classes of languages generated respectively by gCDG
and DSG with bounded valency deficit.
5 For instance, A → [↘ d1]B[↗ d2] C denotes the rule A → B C with assignment

[↘d1]B[↗d2]. We omit empty potentials.
6 In [3] is used an equivalent notational variant of gCDGs.
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a[↙a] a[↙a] c c c[↖a]ba[↙a] [↖a]b

S

A

[↖a]b

S

S

S

A

A

a

a

a

[ε]

[↖a]

[↖a]

[↖a ↖a]

[↖a ↖a]

[↖a ↖a ↖a]

[↖a ↖a ↖a]

Fig. 9.

Theorem 3. Lσ<const(gCDG) = Lσ<const(DSG) = L(CF ).

Let us consider some more examples.

Example 3. Let W = {a1, . . . , am} and L(m) = {an
1an

2 ...an
m || n ≥ 1}. Let us

consider the gCDG

G(m) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 �→ [S/A1]↗A2 , [A1/A1]↗A2 , [A1/A2]↗A2 ,
... ... ...
ai �→ [Ai/Ai]↘Ai↗Ai+1 , [Ai/Ai+1]↘Ai↗Ai+1 , 2 ≤ i < m,
... ... ...
am �→ [Am/Am]↘Am , [Am]↘Am

It is not difficult to prove the proposition

Proposition 2. L(G(m)) = L(m) for all m ≥ 2.

Meanwhile, as it is well known, the languages L(m) are mild context sensitive
and cannot be generated by basic TAGs starting from m > 4 (see [19]).

Example 4. Let us consider the language MIX consisting of all permutations
of the strings anbncn, n > 0 : MIX = {w ∈ {a, b, c}+ || |w|a = |w|b = |w|c}.
Emmon Bach conjectures that MIX is not a mild CS language. At the same
time, this language is generated by the following gCDG:

gCDG GMIX

left right middle
a �→ [S]↖B↖C a �→ [S]↗C↗B a �→ [S]↖B↗C , [S]↖C↗B

a �→ [S \ S]↖B↖C a �→ [S \ S]↗C↗B a �→ [S \ S]↖B↗C , [S \ S]↖C↗B

b �→ [ε]↙B b �→ [ε]↘B

c �→ [ε]↙C c �→ [ε]↘C
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Proposition 3. [3]. L(GMIX) = MIX.

As it is well known, the copy language Lcopy = {ww || w ∈ {a, b}+} is generated
by a basic TAG. On the other hand, it is conjectured in [12,3] that Lcopy cannot
be generated by gCDG and DSG. As we will see below, the gCDG-language are
parsed in polynomial time. This means that this family of grammars represents
an interesting alternative for the mild CS grammars (see the diagram in Fig. 10
presenting a comparison of the two families in weak generative power). The
gCDG-languages have good operation closure properties. In particular, they form
an AFL. To show this fact, we need some preliminary propositions.

Lcopy /∈? gCDG
TAG ≡w LinIG ≡w CombCG

L=5

gCDG ≡w CDG

MIX /∈? MCTAG

CF ≡w CDGσ<c ≡w gCDGσ<cMCTAG ≡w MinG ≡w MCFG

Fig. 10.

Lemma 2. For each gCDG G there is a weakly equivalent gCDG G′ in which
the axiom type S is not an argument subtype of a category.

Proof. Otherwise, just add a new axiom S′ and double the categories [α\S/β]
with new categories [α\S′/β]. ��

Lemma 3. For each gCDG G there is a weakly equivalent gCDG G′ in which
there are no categories with empty value type: [α\ε/β]P .

Proof. If there is one: t = [α\ε/β]P , then add a new elementary type dt, replace
t in all type assignments with the new category t′ = [α\dt/β]P and then, in
the resulting grammar, substitute the new category [dt ∗ \Al\ . . . A1\dt ∗ \V/dt ∗
/Bk . . . /B1/dt∗]P1 for each category [Al\ . . . A1\V/Bk . . . /B1]P1 . Regardless of
the fact that the resulting gCDG is greater than G, it is weakly equivalent to G
and has one empty value type less. ��

Theorem 4. The family L(gCDG) is an AFL.

Proof. We suppose that gCDGs satisfy the conditions of Lemmas 2,3.
1. L(gCDG) is closed under ε-free homomorphisms. Let G = (W,C, S, δ) be a
gCDG with W = {a1, . . . , an} and h : W → X+ be a homomorphism such that
h(ai) = xi0...ximi , mi ≥ 0, xij ∈ X, for all 0 ≤ j ≤ mi, 1 ≤ i ≤ n. The new gCDG
Gh keeps all elementary types of G including S which is also its axiom. Besides
them, it has a new elementary type dij for all 0 ≤ j ≤ mi, 1 ≤ i ≤ n. Its lexicon
δh is defined as follows: if h(ai) = xi0...ximi , then for every category α ∈ δ(ai),
it has the assignment δh : xi0 �→ [α/dimi/.../di1]. In particular, δh : xi0 �→ α,
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if mi = 0. Besides that, there are also the assignments δh : xij �→ dij for all
1 ≤ j ≤ mi, 1 ≤ i ≤ n. Clearly, L(Gh) = h(L(G)). ��
2. L(gCDG) is closed under the inverses of homomorphisms. First of all, let us
remark that to prove this proposition it suffices to prove it for the homomor-
phisms h : X → W ∗, X ∩ W = ∅, differing from a bijection h : X ↔ W by no
more than one assignment which is either of the form h(x) = ab, a, b ∈ W, or
of the form h(x) = ε. Let G = (W,C, S, δ) be the original gCDG and gCDG
Gh−1 = (X,C1, S, δh−1) the gCDG to construct.
2.1. Let h(x) = ab, a, b ∈ W, C1 ∈ δ(a) and C2 ∈ δ(b). Then δh−1 = δ∪δx, where
δx is defined below depending on the form of categories C1, C2. The following
five cases are possible for some u, v ∈ C :
2.1.(i). C1 = [α/u]P1 , C2 = [v/β]P2 .
2.1.(ii). C1 = [α\u]P1 , C2 = [v\β]P2 . Symmetric.
2.1.(iii). C1 = [α/u∗]P1 , C2 = [v/β]P2 .
2.1.(iv). C1 = [α\u]P1 , C2 = [v ∗ \β]P2 . Symmetric.
2.1.(v). C1 = [α\u]P1 , C2 = [v/β]P2 .
Construction of δx:
2.1.(i). In this case, are added to C1 the new elementary types dv for all elemen-
tary types d ∈ C and is added to δx the assignment:
x �→ [α/β]P1P2 if u = v, and whatever are u, v (u = v included), are also added
the following assignments:
x �→ [α/uv/β]P1P2 ,
y �→ [α′\dv/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\ev\dv/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ.
2.1.(iii). The only difference with the preceding case is in the form of the second
assignment:
x �→ [α/uv ∗ /β]P1P2 .
2.1.(v). In this case, three subsets are added to δ : δx,fork, δx,left and δx,right.
We will construct δx,fork and δx,right (δx,left is symmetric to δx,right).
Construction of δx,fork:
Are added to C1 new elementary types: flr, da(b) and d(a)b for all elementary
types l, r, d ∈ C, and are added the following assignments:
x �→ [α\la(b)\flr/r(a)b/β]P1P2 for all l, r ∈ C,
y �→ [α′\da(b)/β′]P for each assignment y �→ [α′\d/u/β′]P ∈ δ,
y �→ [α′\d(a)b/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\da(b)/ea(b)/β′]P for each assignment y �→ [α′\d/e/β′]P ∈ δ,
y �→ [α′\e(a)b\d(a)b/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′/flr/β′]P for each assignment y �→ [α′/r/l/β′]P ∈ δ, where α′ �= ε,
y �→ [α′\flr\β′]P for each assignment y �→ [α′\r\l\β′]P ∈ δ, where β′ �= ε,
y �→ [α′/fdd ∗ /β′]P for each assignment y �→ [α′/d ∗ /β′]P ∈ δ, where α′ �= ε and
d = l = r,
y �→ [α′\fdd ∗ \β′]P for each assignment y �→ [α′\d ∗ \β′]P ∈ δ, where β′ �= ε and
d = l = r.
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Construction of δx,right:
For all d ∈ C, are added to C1 new elementary types: d(ε)ab and d(ε)a|b (symmet-
ric types dab(ε) and da|b(ε) for δx,left), and are added the following assignments:
x �→ [α\d(ε)ab/β]P1P2 for all d ∈ C (x �→ [α\dab(ε)/β]P1P2 for δx,left),
y �→ [α′\d(ε)ab/β′]P for each assignment y �→ [α′\v\u\d/β′]P ∈ δ,
y �→ [α′\e(ε)ab\d(ε)ab/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′\d(ε)a|b/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\e(ε)a|b\d(ε)a|b/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′\e(ε)a|b\d(ε)ab/β′]P for each assignment y �→ [α′\u\d/β′]P ∈ δ,
y �→ [α′\d(ε)ab\β′]P for each assignment y �→ [α′\d\β′]P ∈ δ,
y �→ [α′/d(ε)ab/β′]P for each assignment y �→ [α′/d/β′]P ∈ δ,
y �→ [α′\d(ε)ab ∗ \β′]P for each assignment y �→ [α′\d ∗ \β′]P ∈ δ,
y �→ [α′/d(ε)ab ∗ /β′]P for each assignment y �→ [α′/d ∗ /β′]P ∈ δ.
2.2. Let h(x) = ε. Then C1 = C ∪ {dx}, δh−1(x) = dx and each assign-
ment δ : c �→ [lm\ . . . \l1\v/r1/ . . . /rn], c ∈ W, is replaced by the assignment
δh−1 : c �→ [dx ∗ \lm\ . . . \l1\dx ∗ \v/dx ∗ /r1/ . . . /rn/dx∗]. ��

3. L(gCDG) is closed under intersection with regular languages. Let G =
(W,C, S, δ) be a gCDG and A be a FA with states Q = {qin, q1, ..., qk, qfin},
where qin is initial, qfin �= qin is final and in every transition a q → q′,
a ∈ W, q �= qfin and q′ �= qin. Then in the new gCDG GA = (W,CA, S, δA)
CA = C∪Q and for every assignment δ : a �→ CP and every transition a q → q′,
the new assignments δA are defined as δA : a �→ CPP1P2 , where:

P1 =

⎧
⎨

⎩

(↗qin)(↗q′), if q = qin

(↘q)(↘qfin), if q = qfin

(↘q)(↗q′), otherwise
P2 =

{
(↘qin)(↗qfin), if C = [α\S/β]
ε, otherwise

��

4-6. The proofs of closure under union, concatenation and Kleene + are standard
and obvious. ��

5 Categorial Dependency Grammars

Generalized CDG are useful for formal study of the grammars and languages.
However, they are not flexible enough for designing real application grammars.
Their main drawback is that in order to fix the exact position of a distant
subordinate, one needs to violate the tree-likeness of the DS (cf. the DS in Fig. 4).
In order to eliminate this defect, we will use two more valency types: that of the
anchored distant subordinate # and that of the host word �. When a distant right
subordinate s through a dependency d should be positioned immediately on the
left of its host word h, the latter must have in its type the argument �l(↘ d) :
h �→ [�l(↘ d)\β] whereas the former must have the value type #l(↘ d) : s �→
[β1\#l(↘d)/β2]. After the argument valencies β1 and β2 of s will be saturated,
the value type #l(↘ d) becomes adjacent to the category [�l(↘ d)\β], the host
argument �l(↘ d) of this category is eliminated and the polarized valency ↘ d
loses its anchor marker and falls under the FA-principle. These new types need
a change in the dependency calculus. Below we present an extended calculus we
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call sub-commutative. The new DGs using this calculus will be called Categorial
Dependency Grammars (CDG). We constrain the dependency types in order
that the CDG generate only the DSs with the single governor per word.

Type constraints: In the categories [L1 \ · · · \ Li \ C / Rj / · · · / R1] :
(i) the value type C can be neutral, or negative (↙ C, ↘ C) or anchored
(#l(↙C), #r(↙C), #l(↘C), #r(↘C)),
(ii) the argument types Li, (Rj) can be neutral or positive (↖C, ↗C) or host
(�l(↙C), �l(↘C), respectively �r(↙C), �r(↘C)).

Definition 12. Sub-commutative dependency calculus.7 [8]
Ll. C[C\β] � [β]
Il. C[C∗\β] � [C∗\β]

Ωl. [C∗\β] � [β]
Vl. [α\β] � α[β], α ∈ {(↖C), �l(↙C), �l(↘C)}
Al. #l(α)�l(α) � α, α ∈ {(↙C), (↘C)}
Cl. αβ � βα, α ∈ {(↙C), (↖C), (↗C), (↘C)}, where

β = �(v) or β has no occurrences of α, ᾰ, #(α), �(α)
Dl. (↙C)(↖C) � ε

In this calculus, the new rule Dl creates a discontinuous dependency for adjacent
dual dependencies. At the same time, the rule Cl permutes the polarized valen-
cies with other types when the permutation does not violate the FA-principle.
The rule Vl decomposes complex types and the rule Al eliminates the anchor
markers if the corresponding anchor and host types are adjacent.

Remark 2. In contrast with the CDGs of [12], which generate only DTs, the
DSs generated by the sub-commutative CDGs may have cycles, as shows the
following example:

[(↙A)/(↗B)]1[(↖A)\(↘B)]2S3 � (↙A)1(↗B)1[(↖A)\(↘B)]2S3 �
(↙A)1(↗B)1(↖A)2(↘B)2S3 � (↙A)1(↖A)2(↗B)1(↘B)2S3 � S3.

A simple sufficient condition of acyclicity of CDGs can be formulated in terms
of a well-founded order on dependency types. But more important is that these
CDGs can naturally express adjacency of distant subordinates without violation
of the single governor condition.

Example 5

G2 =

⎧
⎨

⎩

a �→ #l(↙A), [�l(↙A)\#l(↙A)]
b �→ [(↖A)\B / C], [�l(↙A)\(↖A)\S/C]
c �→ C, [B\C]

It is not difficult to prove that L(G2) = {anbncn || n > 0}. For instance, a3b3c3 ∈
L(G2) due to the types assignment:

a3b3c3 �→ #l(↙A)[�l(↙A)\#l(↙A)][�l(↙A)\#l(↙A)][�l(↙A)\(↖A)\S/C][(↖A)\B/C][(↖A)\B/C]C[B\C][B\C]

and the proof shown in Fig. 11. This proof determines the DT shown in Fig. 12.

7 We show only left rules. The right rules are symmetric.
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#(↙A), [�(↙A)\#(↙A)], [�(↙A)\#(↙A)]

[�(↙A)\ ↖A\S/C]
(Vr,Cl)+

�(↙A),↖A, [S/C]

[↖A\B/C]
(Vl)

↖A, [B/C]

[↖A\B/C]C
(Lr)

[↖A\B]
(Vl)

↖A, B [B\C]
(Ll)

↖A,C
(Cl,Lr)

↖A,↖A,B [B\C]
(Ll)

↖A,↖A,C
(Cl)+, (Lr)

�(↙A),↖A,↖A,↖A,S
(Vl)+, (Ar)+

S

Fig. 11.

Fig. 12.

CDGs also enjoy the property of projections independence. The local projec-
tion of CDGs, preserves elementary and host argument subtypes. Intuitively,
it reflects not only projective dependencies of words, but also their adjacency
through anchor-host relations. The valency projection of CDGs, similar to that
of gCDGs, preserves only polarized valency argument and value subtypes. Intu-
itively, it reflects only discontinuous dependencies.
Let V −(C) and V +(C) denote the sets of all negative polarized types: ↙d, ↘d
(respectively, all positive polarized types: ↖d, ↗d), where d ∈ C. We set:
Hostl(C)=df {�l(α) | α ∈ V −(C)},
Hostr(C)=df {�r(α) | α ∈ V −(C)},
Host(C)=df Hostl(C) ∪ Hostr(C),

Ancl(C)=df {#l(α) | α ∈ V −(C)},
Ancr(C)=df {#r(α) | α ∈ V −(C)},
Anc(C)=df Ancl(C) ∪ Ancr(C).

Definition 13. Local projection ‖γ‖l of γ ∈ Cat(C)∗ is defined as follows:
l1. ‖ε‖l = ε; ‖Cγ‖l = ‖C‖l‖γ‖l for C ∈ Cat(C) and γ ∈ Cat(C)∗.
l2. ‖C‖l = C for C ∈ C ∪ C∗ ∪ Anc(C).
l3. ‖C‖l = ε for C ∈ V +(C) ∪ V −(C).
l4. ‖[α]‖l = ‖α‖l for all α ∈ Cat(C).
l5. ‖[a\α]‖l = [a\ ‖α‖l] and ‖[α/a]‖l = [‖α‖l/a] for a ∈ C ∪ C∗ ∪ Host(C)
and α ∈ Cat(C).
l6. ‖[(↖a)\α]‖l = ‖[α/(↗a)]‖l = ‖α‖l for all a ∈ C and α ∈ Cat(C).
Valency projection ‖γ‖v of γ ∈ Cat(C)∗ is defined as follows:
v1. ‖ε‖v = ε; ‖Cγ‖v = ‖C‖v‖γ‖v for C ∈ Cat(C) and γ ∈ Cat(C)∗.
v2. ‖C‖v = ε for C ∈ C ∪ C∗.
v3. ‖C‖v = C for C ∈ V +(C) ∪ V −(C).
v4. ‖#(C)‖v = C for C ∈ V −(C).
v5. ‖[α]‖v = ‖α‖v for all [α] ∈ Cat(C).
v6. ‖[a\α]‖v = ‖[α/a]‖v = ‖α‖v for a ∈ C ∪ C∗ ∪ Host(C).
v7. ‖[a\α]‖v = a ‖α‖v, if a ∈ V +(C).
v8. ‖[α/a]‖v = ‖α‖v a, if a ∈ V +(C).
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Example 6. According to these definitions,
‖[�l(↘c)\(↖a)\b\#r(↙d)]‖l = [�l(↘c)\b\#r(↙d)],
‖[�l(↘c)\(↖a)\b\(↙d)/e]‖l = [�l(↘c)\b\ε/e],
‖[�l(↘c)\(↖a)\b\d]‖v = ↖a, ‖[�l(↘c)\(↖a)\b\#l(↙d)/e]‖v = ↖a ↙d.

For technical reasons, it will be convenient to extend the common projective core
c of the generalized and sub-commutative dependency calculus by the rule
El. #l(α)[�l(α)\β] � β for α ∈ V −(C).
The resulting extension will be denoted by p and the corresponding provability
relation will be denoted by �p .

Now we can state the projections independence criterion for the CDGs.

Theorem 5. Let G = (W,C, S, δ) be a CDG. x ∈ L(G) iff there is a string of
categories γ ∈ δ(x) such that:
1. ‖γ‖l �p S,
2. ‖γ‖v is balanced.

Proof. Evidently, we can ignore the dependencies.
(⇒) Let x ∈ L(G) and δ : x �→ γ be an assignment for which there exists a proof
γ � . . . � γk � γn = S for some n ≥ 0. We will prove by induction on k that for
each 0 ≤ k ≤ n the following two assertions hold:
(i) ‖γ‖l �p ‖γk‖l,
(ii) each correct pair (α, ᾰ) is eliminated in ‖γk‖v iff it is eliminated in ‖γ‖v.

Let us suppose that the conditions (i) and (ii) are satisfied for some k < n
and prove that they will be satisfied for k + 1 as well.

Let γk �R γk+1 (immediately derived by rule R).
If R = Ll, then γk = Γ1C[C\β]Γ2 and γk+1 = Γ1βΓ2 for some Γ1, Γ2 and β.

Passing to their local projections, we obtain: ‖γk‖l = ‖Γ1‖lC[C\‖β‖l]‖Γ2‖l �p

‖Γ1‖l‖β‖l‖Γ2‖l = ‖γk+1‖l and ‖γk‖v = ‖γk+1‖v. Then ‖γ‖l �p ‖γk‖l �Ll

‖γk+1‖l and both conditions (i) and (ii) are satisfied for k + 1.
If R = Al, then γk = Γ1#l(α)[�l(α)\β]Γ2 and γk+1 = Γ1(α)βΓ2 for some

Γ1, Γ2 and #l(α) ∈ Anc(C), �l(α) ∈ Host(C). Then by definition of projections,
we get: ‖γk‖l = ‖Γ1‖l#l(α)[�l(α)\‖β‖l]‖Γ2‖l �El

p ‖Γ1‖l‖β‖l‖Γ2‖l = ‖γk+1‖l and
‖γk‖v = ‖Γ1‖v (α)‖β‖v‖Γ2‖v = ‖γk+1‖v. So (i) and (ii) are satisfied for k + 1.

If R = Cl, then γk = Γ1 Cα Γ2 and γk+1 = Γ1 αC Γ2 for some α ∈
(↖ C ∪ ↘ C) and C ∈ Cat(C). Clearly, in this case ‖γk‖l = ‖γk+1‖l. Now,
since C has no occurrences of α, #(α) or ᾰ, then the correct pair (α, ᾰ) is
eliminated in ‖γk+1‖v by rule Dl iff it is eliminated in ‖γk‖v by this rule. The
projections of ‖γk+1‖v and ‖γi‖v on any other pair (β, β̆) of polarized valencies
are not affected by this step, so they do not change. Therefore, both conditions
(i) and (ii) are satisfied for k + 1.

If R = Dl, then γk = Γ1(↙ C)(↖ C)Γ2 and γk+1 = Γ1Γ2. Clearly, ‖γk‖l =
‖γk+1‖l. As to the valency projection ‖γk+1‖v = ‖Γ1‖v‖Γ2‖v, it is obtained
from the projection ‖γk‖v = ‖Γ1‖v(↙C)(↖C)‖Γ2‖v by eliminating the correct
valency pair (↙ C)(↖ C). Therefore, this pair is eliminated in ‖γk+1‖v iff it is
eliminated in ‖γk‖v. The projections of ‖γk+1‖v and ‖γk‖v on any other pair
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(β, β̆) of polarized valencies rest intact. Therefore, both conditions (i) and (ii)
are satisfied for k + 1.

The proof steps via “right” rules Lr, Ar, Pr, Cr, and Dr are proved similarly.
Iterative dependency rule Il is treated as the rule Ll. The case of the rule Ωl is
trivial and the rules Vl,Vr just do not affect the projections.

So we prove that (i) and (ii) are satisfied for each k = 0, . . . , n. Since ‖γn ‖l =
S and ‖γn ‖v = ε, the assertions 1 and 2 of the theorem are true.
(⇐) Now let us suppose that
1. ‖γ‖l �p S and
2. each correct pair (α, ᾰ) is eliminated in ‖γ‖v for an assignment δ : x �→ γ.

We will show that γ � S, which implies that x ∈ L(G). To do this, we will
suppose that ‖γ‖l �n

p S for some n ≥ 0 and show the existence of a proof γ � S
by induction on n.

If n = 0, then γ = Γ1SΓ2 for some balanced potentials Γ1 and Γ2. Then, the
needed proof has the form γ = Γ1SΓ2 � Γ1Γ2S � S. In the first part of this proof
only the commutativity rules are used. The second part exists by Lemma 1.3.
Suppose that the assertion is valid for n ≤ k. Let us prove it for n = k + 1. Let
‖γ‖l �k+1

p S = ‖γ‖l �R
p γ′

l �k
p S, where R is the first applied rule.

If R = Ll, then ‖γ‖l = Γ1C[C\β]Γ2 and γ′
l = Γ1βΓ2 for some Γ1, Γ2, β.

Clearly, γ = Γ̃1CΔ[C\β̃]Γ̃2, where ‖Γ̃1‖l = Γ1, ‖β̃‖l = β, ‖Γ̃2‖l = Γ2 and Δ is a
potential. Now we can construct the proof γ = Γ̃1CΔ[C\β̃]Γ̃2 � Γ̃1ΔC[C\β̃]Γ̃2

�Ll
Γ̃1Δβ̃Γ̃2 = γ′, where in the first part of the proof only commutativity rules

are used in order to permute C and Δ. Regarding the projections of γ′, we can
see that ‖γ′‖l = γ′

l and ‖γ′‖v = ‖γ‖v. Therefore, ‖γ′‖v is balanced and the
assertion follows by induction.

If R = El, then ‖γ‖l = Γ1#l(α)[�l(α)\β]Γ2 and γ′
l = Γ1βΓ2 for some Γ1, Γ2,

β and #l(α) ∈ Anc(C), �l(α) ∈ Host(C). By definition of projections, γ =
Γ̃1#l(α)Δ[�l(α)\β̃]Γ̃2, ‖γ‖v = ‖Γ̃1‖vα‖Δ‖v‖β̃‖v‖Γ̃2‖v is balanced, ‖Γ̃1‖l =
Γ1, ‖Γ̃2‖l = Γ2, ‖β̃‖l = β, and Δ ∈ (V +(C) ∪ V −(C))∗.

Let us consider the proof:
(1) γ = Γ̃1#l(α)Δ[�l(α)\β̃]Γ̃2 �Vl

Γ̃1#l(α)Δ�l(α)β̃Γ̃2 � Γ̃1#l(α)�l(α)Δβ̃Γ̃2

�Al
Γ̃1αΔβ̃Γ̃2,

in which in the part � only the commutativity rules are used in order to permute
�l(α) and Δ. This means that ‖Γ̃1αΔβ̃Γ̃2‖l = Γ1βΓ2 = γ′

l and ‖Γ̃1αΔβ̃Γ̃2‖v =
‖Γ̃1‖vα‖Δ‖v‖β̃‖v‖Γ̃2‖v = ‖γ‖v is balanced. Therefore, by induction the proof
(1) can be completed with a proof Γ̃1αΔβ̃Γ̃2 � S. ��

Corollary 1. L(CDG) ⊆ L(gCDG).

Proof. This corollary follows from Theorems 1,5 using the type simulation, in
which the types #l(α), �l(α) are replaced by the new primitive type <#l(α)>,
in the place of each assignment δ : x �→ [β1\#l(α)/β2]P there is the assignment
δ : x �→ [β1\ < #l(α) > /β2]Pα and in the place of δ : x �→ [�l(α)\β]P there is
the assignment δ : x �→ [<#l(α)> \β]Pα (similar for other orientations). ��
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6 Parsing Complexity

The general parsing problem pars(G, s, w) ≡ “w ∈ L(G) and s is a syntac-
tic structure assigned to w by G” is not necessarily polynomial time when all
problems parsG0(s, w) ≡ pars(G0, s, w) for particular G0 are so (as this is the
case of CF-grammars). If there is no uniform bound on the number of polarized
valencies, then the general parsing problem for gCDGs is hard.

Theorem 6. The general parsing problem G(D, w) for gCDGs is NP-complete.

Proof. The NP-hardness can be proved by the following polynomial reduc-
tion of 3−CNF. Let Φ = C1 ∧ . . . ∧ Cm be a CNF with clauses Cj including
three literals lj1, l

j
2, l

j
3 and ljk ∈ {x1, ¬x1, . . . , xn, ¬xn}. We define from Φ the

CDG G(Φ) = (W,C, S, δ), in which W = {Φ, C1, . . . , Cm, x1, . . . , xn, y1, . . . yn},
C = {S, A, 10, 11, 20, 21, . . . , n0, n1} and δ(Φ) = [(A\)n\S], δ(xi) = {[A/(↗ i0)],
[A/(↗ i1)]}, δ(yi) = {(↘ i0), (↘ i1)}, δ(Cj) = {cat(lj1), cat(lj2), cat(lj3)},
where cat(xi) = [(↘ i1)/(↗ i1)], cat(¬xi) = [(↘ i0)/(↗ i0)]. Let also w(Φ) =
x1x2 . . . xnΦC1C2 . . . Cmy1y2 . . . yn.

Assertion. Φ is satisfiable iff (∃D : DT ) G(Φ)(D, w(Φ)).

This assertion follows from the fact that G(Φ)(D, w(Φ)) does not hold iff at
least for one i, 1 ≤ i ≤ n, the category [A/(↗ i0)] is chosen in some δ(Cj) and
[A/(↗ i1)] is chosen in some other δ(Ck). On the other hand, this conflict cannot
be avoided iff Φ is not satisfiable. ��
In practice, the inventory of polarized valencies is finite and fixed for DGs of
particular languages. Due to the projections independence property, each par-
ticular gCDG parsing problem turns out to be polynomial time. In [8] we have
described a polynomial time parsing algorithm for CDGs. It was implemented in
Lisp by Darin and Hristian Todorov.8 Below we will present a parsing algorithm
for gCDG. It was implemented in C# and optimized by Ilya Zaytsev.

Preliminaries. Let us fix for the rest a gCDG G = (W,C, S, δ). We will first
define two failure functions used for the algorithm optimization.

Let w = w1w2...wn ∈ W+, α ∈ V l(C) and 1 ≤ i ≤ n. Then

πL(α, i) = max{Δα(‖Γ‖v) || Γ ∈ δ(w1...wi)}

is the left failure function and for α ∈ V r(C),

πR(α, i) = max{Δα(‖Γ‖v) || Γ ∈ δ(wn−i+1...wn)}

is the right failure function. We set πL(α, 0) = πR(α, 0) = 0. It is not difficult to
prove the following properties of these functions.

Lemma 4. (i) Let 1 ≤ i ≤ n − 1. Then
πL(α, i + 1) =
8 The analyses shown in the figures are carried out by this algorithm.
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max{Δα(P ) + max{πL(α, i) − Δᾰ(P ), 0} || P = ‖γ‖v, γ ∈ δ(wi+1)},
πR(α, i + 1) =

max{Δᾰ(P ) + max{πR(α, i) − Δα(P ), 0} || P = ‖γ‖v, γ ∈ δ(wn−i+1)}.
(ii) If Γ � S for some Γ = γ1...γn ∈ δ(w), then

Δα(‖γi...γj‖v) ≤ πR(ᾰ, n − j), Δᾰ(‖γi...γj‖v) ≤ πL(α, i − 1)
for all 1 ≤ i ≤ j ≤ n, all α ∈ V l(C) and ᾰ ∈ V r(C).

Algorithm description. gCdgAnalyst is a standard dynamic programming
parsing algorithm. It applies to a gCDG G = (W,C, S, δ) with left polarized
valencies V l(C) = {v1, . . . , vp} and dual right valencies V r(C) = {v̆1, . . . , v̆p}
and to a string w = w1w2...wn ∈ W+ and fills up a n × n triangle matrix M
with items. Each cell M [i, j], i ≤ j, corresponds to the string interval wi...wj

and contains a finite set of items. Each item codes a generalized type CP and
has the form 〈C, ΔL, ΔR, I l, Ir〉, where:

• C is a neutral category C ∈ nCat(C),
• ΔL = (Δv1 , . . . , Δvp) and ΔR = (Δv̆1 , . . . , Δv̆p) are integer vectors whose

component i contains the corresponding deficits of right (left) non-paired
v-brackets in the potential P (see Definition 7),

• I l, Ir are left and right angle items from which I is calculated (for I in
diagonal M [i, i], I l = Ir = ∅).

Algorithm gCdgAnalyst
//Input: gCDG G, string w = w1...wn

//Output: 〈“yes”, DSD〉 iff w ∈ L(G)
{

CalcFailFuncL();
CalcFailFuncR();
for (k = 1, . . . , n)
{

Propose( k )
}
for (l = 2, . . . , n)

{
for (i = 1, . . . , n − l)
{

j := i + l − 1;
for (k = i, . . . , j − l)
{

SubordinateL(i, k, j);
SubordinateR(i, k, j);

}
}

}
if (I = 〈S, (0, 0, . . . , 0), (0, 0, . . . , 0), I l, Ir〉 ∈ M [1, n])

return 〈“yes”, Expand(I)〉;
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//procedure Expand( I ) calculates the output DS
else

return 〈“no”, ∅〉;
}

CalcFailFuncL()
{

foreach (v ∈ V l(C))
{

πL[v, 0] := 0;
for (i = 1, . . . , n)
{

πmax := 0;
foreach (CP ∈ δ(wi))
{

πmax := max{πmax, Δv(P ) + max{πL[v, i − 1] − Δv̆(P ), 0}};
}
πL[v, i] := πmax;

}
}

}

CalcFailFuncR()
{

foreach (v̆ ∈ V r(C))
{

πR[v, 0] := 0;
for (i = 1, . . . , n)
{

πmax := 0;
foreach (CP ∈ δ(wn−i+1))
{

πmax := max{πmax, Δv̆(P ) + max{πR[v, i − 1] − Δv(P ), 0}};
}
πR[v, i] := πmax;

}
}

}

AddItem( M [i, j], 〈C, ΔL, ΔR, I l, Ir〉 )
{

M [i, j] := M [i, j] ∪ {〈C, ΔL, ΔR, I l, Ir〉};
if (C = [C′ ∗ \β])
{

AddItem( M [i, j], 〈[β], ΔL, ΔR, I l, Ir〉 );
}
if (C = [β/C′∗])
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{
AddItem( M [i, j], 〈[β], ΔL, ΔR, I l, Ir〉 );

}
}

//For 1 ≤ i ≤ n
Propose( i )
{

(loop) foreach (CP ∈ δ(wi)
{

foreach (v ∈ V l(C))
{

ΔL[v] := Δv(P );
if (ΔL[v] > πR[v̆, n − j]) next (loop);
ΔR[v̆] := Δv̆(P );
if (ΔR[v̆] > πL[v, i − 1]) next (loop);

}
AddItem( M [i, i], 〈C, ΔL, ΔR, ∅, ∅〉 );

}
}

//For 1 ≤ i ≤ k ≤ j ≤ n
SubordinateL( i, k, j )
{

(loop) foreach (I1 = 〈α1, Δ
L
1 , ΔR

1 , I l
1, I

r
1 〉 ∈ M [i, k],

I2 = 〈α2, Δ
L
2 , ΔR

2 , I l
2, I

r
2 〉 ∈ M [k + 1, j])

{
foreach (v ∈ V l(C))
{

ΔL[v] := ΔL
2 (v) + max{ΔL

1 (v) − ΔR
2 (v), 0};

if (ΔL[v] > πR[v̆, n − j]) next (loop);
ΔR[v̆] := ΔR

1 (v̆) + max{ΔR
2 (v̆) − ΔL

1 (v̆), 0};
if (ΔR[v̆] > πL[v, i − 1]) next (loop);

}
if ( α1 = C and α2 = [C\β] )
{

AddItem( M [i, j], 〈[β], ΔL, ΔR, I1, I2〉 );
}
elseif ( (α1 = C and α2 = [C ∗ \β]) or α1 = [ε] )
{

AddItem( M [i, j], 〈α2, Δ
L, ΔR, I1, I2〉 );

}
}

}
SubordinateR( i, k, j ) is similar.
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Correctness. Correctness of CalcFailFuncL() and CalcFailFuncR() follows from
Lemma 4.

Example 7. Let W = {a, b},C = {A, B}, δ(a) = {[A/A]↙B↙B, [B ∗ \A]↘A↘A},
δ(b) = {[B]↗A↖B, [ε]↗A↙B}. Then V l(C) = {↗A, ↙B}, V r(C) = {↘A, ↖B}.

For the string w = abba, the category potentials are presented in the table:

a b b a
↙B ↙B ↗A ↖B ↗A ↖B ↙B ↙B
↘A ↘A ↗A ↙B ↗A ↙B ↘A ↘A

CalcFailFuncL() and CalcFailFuncR() will calculate the following values:

i 0 1 2 3 4
πL[↗A, i] 0 0 1 2 2
πL[↙B, i] 0 2 3 4 6

i 4 3 2 1 0
πR[↘A, i] 2 0 1 2 0
πR[↖B, i] 2 2 1 0 0

Theorem 7. Let G = (W,C, S, δ) be a gCDG and w = w1w2...wn ∈ W+. Then
for any 1 ≤ i ≤ k ≤ j ≤ n, an item I = 〈θ, ΔL, ΔR, I l, Ir〉 falls to M [i, j] iff
there is Γ = Γ1γi . . . γjΓ2 ∈ δ(w) such that γi . . . γj ∈ δ(wi . . . wj) and
(i) γi . . . γj � θ,
(ii) ΔL[α] = Δα(‖γi . . . γj‖v), ΔR[α] = Δᾰ(‖γi . . . γj‖v) for all α ∈ V l(C),
ᾰ ∈ V r(C),
(iii) γi . . . γj satisfies the condition (ii) of Lemma 4.

Proof. Let l = j − i + 1.
(⇒) Let I ∈ M [i, j]. We will show that there is Γ satisfying the conditions of
the theorem by induction on l.
1. If l = 1, then I is put to M [i, i] by Propose( i ). In this case, the conditions
(i) − (iii) are trivially satisfied.
2. Let us suppose that the theorem is true for all l′ < l. Then i < j. In
this case, I ∈ M [i, j] implies that there is i ≤ k < j such that I was put
in M [i, j] by SubordinateL( i, k, j ) or by SubordinateR( i, k, j ). Let it be by
SubordinateL( i, k, j ). Then there must be I1 = 〈θ1, Δ

L
1 , ΔR

1 , I l
1, I

r
1 〉 ∈ M [i, k]

I2 = 〈θ2, Δ
L
2 , ΔR

2 , I l
2, I

r
2 〉 ∈ M [k +1, j] satisfying (i)− (iii). Therefore, γi . . . γk �

θ1, γk+1 . . . γj � θ2 and by definition of SubordinateL( i, k, j ), θ1 = C, θ2 =
[C\β], θ = β or θ1 = C, θ2 = [C ∗ \β], θ = θ2, or θ1 = ε, θ = θ2. In all of these
cases, γi . . . γkγk+1 . . . γj � θ. Given that Γ ′

1γi . . . γkΓ ′
2 ∈ δ(w), Γ ′′

1 γk+1 . . . γjΓ
′′
2 ∈

δ(w), γi . . . γk ∈ δ(wi . . . wk), γk+1 . . . γj ∈ δ(wk+1 . . . wj), we see that Γ ′
1γi . . .

γjΓ
′′
2 ∈ δ(w), γi . . . γj ∈ δ(wi . . . wj) and γi . . . γj � θ. Point (ii) directly follows

from Lemma 4(i). Finally, I ∈ M [i, j] means that I does not violate the neces-
sary condition in Lemma 4(ii).
(⇐) By induction on l immediately following the definition of gCdgAnalyst. ��

Complexity. For a gCDG G = (W,C, S, δ), let lG = |δ| be the number of
category assignments in the lexicon, aG = max{k || ∃x ∈ W ([αk\...\α1\C/β]P ∈
δ(x) ∨ [β\C/α1/.../αk]P ∈ δ(x))} be the maximal number of argument subtypes
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in assigned categories, pG = |V l(C)| = |V r(C)| be the number of polarized
valencies and ΔG = max{Δα(P ) || ∃x ∈ W (CP ∈ δ(x) ∨ α ∈ V (C))} be the
maximal valency deficit in assigned categories. In the complexity bound below
n will denote the length of the input string n = |w|.
Theorem 8. Algorithm gCdgAnalyst has time complexity

O(lG · a2
G · (ΔG · n)2pG · n3).

Proof. A category γ ∈ δ(x) may be cancelled to no more than a2
G different cat-

egories. So the maximal number of matrix cell elements is lG · a2
G. The valency

deficits are bounded by the maximal value of the failure functions. So the max-
imal deficit of a polarized valency is ΔG · n. Therefore, the number of different
valency deficit vectors is bounded by (ΔG · n)2pG . Filling one matrix cell needs
visiting n cells. There are n2

2 cells in M. This proves the time bound. ��
Remark 3. 1. When G has no polarized valencies, the parsing time is evidently
O(n3). Due to Theorem 3, every gCDG G with bounded valency deficit σ < c can
be translated into an equivalent gCDG Gc without polarized valencies (so with
parsing time O(n3)). Of course, the size of Gc is exponential: |Gc| = O(|G| · cpG).
2. In practice, the failure functions significantly lower the time complexity.

7 Concluding Remarks

The main advantage of gCDG as compared to other formal models of surface
syntax is that they allow to define the dependencies of all kinds, local and long,
projective and discontinuous, in the same elegant and completely local manner.
On the one hand, they are genuine categorial grammars and, as such, they are
completely lexicalized and use types in the place of rules. On the other hand,
they keep the traditional valency / polarity style peculiar to all dependency
grammars. The CDG which, in fact, constitute a subclass of gCDG, can be used
in real applications. As we have shown, gCDG have a practical polynomial time
parsing algorithm and enjoy good mathematical properties. They are learnable
from positive data (see [4]) and equivalent to rule based DSG [3]. At the same
time, a more detailed study of their expressiveness is needed, in particular, a
comparison with the mild CS grammars [19] and the pregroup grammars [22].9.

Very important is the question, whether the FA-principle is universal. There
are evidences that it is adequate for many languages with, so to say, rigid WO,
e.g. English, French, Spanish, Italian, German, Japan and many others. It seems
adequate even for the languages with elaborated morphology and flexible WO,
such as Russian, Turkish and some others. However, this principle does not apply
to the constructions with serial infinitive phrase subjects (so called cross-serial
dependencies [5]) in Dutch. The gCDGs with the FA-principle can be seen as
uni-modal DGs. To cover these complex constructions, one should use other
polynomially implementable modes and pass to multimodal gCDGS.
9 The pregroup grammars are weakly equivalent to CF-grammars [7] At the same

time, the types they assign to words are often close to the projective dependency
types of the CDG.



254 M. Dekhtyar and A. Dikovsky

References

1. Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Lan-
guage 29(1), 47–58 (1953)

2. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure gram-
mars. Bull. Res. Council Israel 9F, 1–16 (1960)
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24. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany, NY (1988)
25. Moortgat, M., Morrill, G.V.: Heads and phrases. Type calculus for dependency

and constituent structure. Ms OTS, Utrecht (1991)
26. Morrill, G.V.: Type Logical Grammar. Categorial Logic of Signs. Kluwer Academic

Publishers, Dordrecht (1994)
27. Robinson, J.J.: Dependency structures and transformational rules. Language 46(2),

259–285 (1970)
28. Sleator, D., Temperly, D.: Parsing English with a Link Grammar. In: Proc. IWPT

1993, pp. 277–291 (1993)
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