
From Logic to Theoretical Computer Science –
An Update�

Boris A. Trakhtenbrot

School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel

1 Foreword

In October 1997, whilst touching up this text, exactly 50 years had past since
I was accepted for graduate studies under P.S. Novikov. I started then to study
and do research in logic and computability, which developed, as time will show,
into research in Theoretical Computer Science (TCS).

After my emigration (in December 1980) from the Soviet Union (SU), I was
encouraged by colleagues to experience the genre of memoirs. That is how [67,68]
appeared, and more recently [72], conceived as contributions to the history of
TCS in the SU. The present paper is intended as a more intimate perspective on
my research and teaching experience. It is mainly an account of how my interests
shifted from classical logic and computability to TCS, notably to Automata and
Computational Complexity. Part of these reminiscences, recounting especially
the scientific, ideological and human environment of those years (roughly 1945–
67), were presented earlier at a Symposium (June 1991) on the occasion of my
retirement. Occasionally, I will quote from [67,68,72], or will refer to them.

Before starting the main narrative I would like to recall some important cir-
cumstances which characterized those years.

First of all, the postwar period was a time of ground-breaking scientific devel-
opments in Computability, Information Theory, and Computers. That is widely
known and needs no comment. The subjects were young and so were their
founders. It is amazing that at that time the giants, Church, Kleene, Turing,
and von Neumann, were only in their thirties and forties!

Now, about the specific background in the Soviet Union.
The genealogical tree of TCS in the SU contains three major branches, rooted

in A.N. Kolmogorov (1903–87), A.A. Markov (1903–79) and P.S. Novikov (1901–
75). In those troublesome times, these famous mathematicians also had the
reputation of men with high moral and democratic principles. Their scientific
interests, authority and philosophies influenced the development of mathemati-
cal logic, computability for several generations, and subsequently TCS in the SU.

Whereas Markov and Kolmogorov contributed directly to TCS, Novikov’s
involvement occurred through his strong influence on his disciples and collabo-
rators. The most prominent of them – A.A. Lyapunov (1911–1973) – became a
� This chapter is an expanded and updated version of “From logic to theoretical com-

puter science”, which appeared in People and Ideas in Theoretical Computer Science,
Cristian S. Calude, ed., Springer-Verlag, Singapore, pp. 314–342, 1998.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 1–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B.A. Trakhtenbrot

Fig. 1. Three generations of scientists (from left to right): A. Slissenko, A.A. Markov,
Jr., B.A. Kushner, B.A. Trakhtenbrot (from the archive of the Markov family)

widely recognized leader of “Theoretical Cybernetics” – the rubric which covered
at that time most of what is considered today to belong to TCS.

As a matter of fact, for many offspring of those three branches, including
myself, the perception of TCS was as of some kind of applied logic, whose con-
ceptual sources belong to the theoretical core of mathematical logic. The affilia-
tion with Logic was evident at the All-Union Mathematical Congress (Moscow,
1956), where Theoretical Cybernetics was included in the section on mathemat-
ical logic. Other examples: books on Automata [17,13] appeared in the series
Mathematical Logic and Foundations of Mathematics; also, my first papers on
Computational Complexity were published in Anatoly I. Maltsev’s (1909-67)
journal Algebra and Logic.

The early steps in TCS coincided with attacks of the official establishment
on various scientific trends and their developers. In particular, Cybernetics was
labeled a “pseudo-science”, and Mathematical Logic – a “bourgeois idealistic
distortion”. That was the last stage of the Stalin era with persecution and vic-
timization of “idealists”, “cosmopolitans”, etc. The survival and the long overdue
recognition of Mathematical Logic and Cybernetics is in many respects indebted
to Lyapunov, Markov, Novikov, Kolmogorov and S.A. Yanovskaya (1896–1966).
But even after that, academic controversies often prompted such bureaucratic
repression as the prevention of publications and the denial of degrees. Difficulties

From Logic to Theoretical Computer Science – An Update 3

with publications also happened because of the exactingness and self-criticism
of the authors and/or their mentors, or because the community was far from
prepared to appreciate them. I told about that in [67] and [68].

Above, the emphasis was on the Soviet side; now, some remarks on the inter-
national context in which research in TCS was conducted in the SU.

The chronology of events reveals that quite a number of ideas and results in
TCS appeared in the SU parallel to, independent of, and sometimes prior to,
similar developments in the West. This parallelism is easy to explain by the fact
that these were natural ideas occurring at the right time. In particular, that
is how comprehensive theories of Automata and of Computational Complexity
emerged in the 50s and 60s; I will elaborate on this subject in the next sections.
But for a variety of reasons, even in those cases where identical or similar re-
sults were obtained independently, the initial motivation, the assessment of the
results and their impact on the development and developers of TCS did not nec-
essarily coincide. In particular, in the SU specific interest in complexity theory
was aroused by discussions on the essence of brute force algorithms (perebor – in
Russian). However, despite this difference in emphasis from the motivating con-
cerns of the American researchers, after a few years these approaches virtually
converged.

In the past, the priority of Russian and Soviet science was constantly pro-
pounded in Soviet official circles and media. This unrestrained boasting was
cause for ironic comments in the West and for self-irony at home. But, as a mat-
ter of fact, the West was often unaware of developments in the SU, and some of
them went almost entirely unnoticed. To some extent this was a consequence of
the isolation imposed by language barriers and sociopolitical forces. In particu-
lar, travels abroad were a rare privilege, especially to the “capitalist” countries.
My first trip abroad, for example, took place in 1967, but visits to the West
became possible only in 1981 after my emigration to Israel.

Against this unfavorable background it is worth mentioning also the encour-
aging events and phenomena, which eased the isolation.

The International Mathematical Congress in Moscow (1966) was attended by
the founders of our subject, namely, Church, Kleene, Curry, Tarski and other
celebrities. It was an unforgettable and moving experience to have first-hand
contact with these legendary characters. Later, Andrey P. Ershov (1931–1988)
managed to organize a series of International Symposia on “Theoretical Pro-
gramming”, attended also by people from the West, and among them F. Bauer,
E. Dijkstra, E. Engeler, C.A.R. Hoare, D. Knuth, J. McCarthy, R. Milner,
M. Nivat, D. Park, M. Paterson, J. Schwartz, and A. van Wijngaarden. For
many years, A. Meyer used to regularly send me proceedings of the main TCS
symposia, a way to somehow compensate for the meetings my colleagues and my-
self were prevented from attending. This was part of our unusual and long-term
contact by correspondence, which – after my emigration – switched to direct col-
laboration. All this reinforced our sense of belonging to the international TCS
community.

4 B.A. Trakhtenbrot

2 Early Days

2.1 Brichevo

I was born in Brichevo, a village in Northern Bessarabia (now Moldova). Though
my birth place has nothing to do with my career or with other events I am going
to write about, let me begin with the following quotation:

Brichevka, a Jewish agricultural settlement, founded in 1836. According
to the general (1897) census of the population – 1644 inhabitants, 140
houses. . . (from vol. 5 of The Jewish Encyclopedia, St. Petersburg, 1912;
translated from Russian).

Among the first settlers were Eli and Sarah Helman, the grandparents of my
maternal grandfather. World War II brought about the collapse of Brichevo (or
Brichevka). The great majority of the population did not manage to flee and were
deported to the notorious Transnistria camps; only a small number survived and
they dispersed over countries and continents. For years I used “Brichevo” as a
reliable password: easy for me to remember, apparently impossible for outsiders
to guess, and still a way to retain the memory of a vanished community.

After completing elementary school in Brichevo I attended high school in the
neighboring towns of Belts and Soroka, where I was fortunate to have very good
teachers of mathematics. My success in learning, and especially in mathematics,
was echoed by the benevolence of the teachers and the indulgence of my fel-
low pupils. The latter was even more important to me, since it to some degree
compensated for the discomfort and awkwardness caused by my poor vision.

2.2 Kishinev

In 1940 I enrolled in the Faculty of Physics and Mathematics of the newly-
established Moldavian Pedagogical Institute in Kishinev. The curriculum covered
a standard spectrum of teachers’ training topics. In particular, mathematical
courses presented basics in Calculus, Linear Algebra and Algebra of Polynomials,
Analytical Geometry, Projective Geometry, Foundations of Geometry (including
Lobachevski Geometry), Elements of Set Theory and Number Theory.

On June 22, 1941, Kishinev (in particular the close neighbourhood of our
campus) was bombed by German air forces. In early July, I managed to escape
from the burning city. Because of vision problems, I was released from military
service and, after many mishaps, arrived as a refugee in Chkalov (now Oren-
burg) on the Ural River. Here, I enrolled in the local pedagogic institute. A year
later we moved to Buguruslan in the Chkalov region, to where the Kishinev In-
stitute was evacuated to in order to train personnel for the forthcoming return
home as soon as our region would be liberated. Almost all the lecturers were
former high school teachers – skilled people whose interests lay in the pedagogic
aspects of mathematics and physics. (There were no recipients of academic de-
grees among them, but one of the instructors in the Chkalov institute bore the
impressive name Platon Filosofov). Nikolai S. Titov, a former Ph.D. student of

From Logic to Theoretical Computer Science – An Update 5

the Moscow University, who happened to flee to Buguruslan, lectured on Set
Theory. I was deeply impressed by the beauty and novelty of this theory. Un-
fortunately, this was only a transient episode in those hard and anxious days.
Actually, during the war years 1941–1944, my studies were irregular, being com-
bined with employment in a felt boot factory, a storehouse and, finally, in the
Kuybyshev-Buguruslan Gas Trust.

In August 1944 the institute was evacuated to Kishinev and I returned to
my native regions for a position in the Belts college to train elementary school
teachers. Only a year later did I take my final examinations and qualify as a
high school mathematics teacher. That was my mathematical and professional
background in September 1945 when (already at the age of 24 1

2) I decided to
take a chance and seriously study mathematics.

2.3 Chernovtsy

I enrolled at the University of Chernovtsy (Ukraine) to achieve the equivalent
of a master’s degree in mathematics. In that first postwar year the university
was involved in the difficult process of restoration. Since my prior education
covered only some vague mathematical-pedagogical curriculum with examina-
tions partially passed without having attended lectures, I did not know much to
start off with. But there were only a few students and the enrollment policy of
the administration was quite liberal. There were also only a few academic staff
in our Faculty of Physics and Mathematics and soon I became associated with
Alexander A. Bobrov, a prominent character on the general background. A.A.
(b. 1912), who completed his Ph.D. thesis in 1938 under Kolmogorov, gave an
original course in Probabilities. The distinguishing quality was not so much in
the content of the course as in his style (completely new to me) of teaching and
of involving the audience. A.A. did not seem to be strongly committed to his
previously prepared lectures; during class he would try to examine new ideas and
to improvise alternative proofs. As such trials did not always succeed, he would
not hesitate to there and then loudly criticize himself and appeal to the audience
for collaboration. This challenging style was even more striking in a seminar he
held on Hausdorff’s famous book on Set Theory, with the participation of both
students and academic staff. Due to the “Bobrovian” atmosphere dominating
the seminar, I started to relish the idea of research in this fascinating area. A.A.
also helped me secure a job in the newly founded departmental scientific library.
My primary task was to take stock of the heaps of books and journals extracted
earlier from basements and temporary shelters, and to organize them into some
bibliographical service. I remember reverently holding volumes of the Journal
fuer reine und angewandte Mathematik with authentic papers and pictures of
Weierstrass and other celebrities. As I later understood, the mathematical library
was exclusively complete, and, as a matter of fact, disposed of all the important
journals before WWII. As there was only a handful of graduate students it soon
turned out that my library was not in much demand – in truth, for days there
were no visitors at all; so most of the time I shared the roles of supplier and
user of the library services. Through self study I mastered a significant amount

6 B.A. Trakhtenbrot

of literature and reached some scientific maturity. I soon identified Fundamenta
Mathematicae to be the journal closest to my interests in Descriptive Set Theory.
All the volumes, starting with the first issue dated 1921, were on my table and
I would greedily peruse them.

After considering some esoteric species of ordered sets, I turned to the study
of delta-sigma operations, a topic promoted by Andrei N. Kolmogorov and also
tackled in Fundamenta. At this stage, Bobrov decided that it was the right time
to bring me together with the appropriate experts and why not with Kolmogorov
himself! In the winter of 1946 Kolmogorov was expected to visit Boris V. Gne-
denko (1912–1995) at the Lvov university. So far so good, except that at the last
moment Kolmogorov canceled his visit. Gnedenko did his best to compensate
for that annoying failure. He showed me exclusive consideration, invited me to
lunch at his home and attentively inquired about all my circumstances. It was
the first time that I had talked to a full professor and I felt somehow shy in
his presence and in the splendour of his dwelling. B.V. listened to me patiently
and, I guess, was impressed not as much by my achievements (which were quite
modest, and after all, beyond the field of his main interests) but by my enthu-
siastic affection for Descriptive Set Theory. Anyway, he explained to me that
for the time-being Kolmogorov had other research preferences and it would be
very useful to contact Piotr S. Novikov and Alexei A. Lyapunov who, unlike
Kolmogorov and other descendants of the famous Lusin set-theoretical school,
were mostly still active in the field.

During this period I met Berta I. Rabinovich, who was to become my wife.
In the summer of 1946, I visited Moscow for the first time. Because it was

vacation time and since no prior appointments had been set up, it was very diffi-
cult to get hold of people. Nevertheless, I managed to see Kolmogorov for a short
while at the university and to give him my notes on delta-sigma operations. He
was in a great hurry, so we agreed to meet again in a couple of weeks on my way
back home; unfortunately this did not work out. Novikov was also unreachable,
being somewhere in the countryside. I was more fortunate with A.A. Lyapunov,
in whose house I spent a wonderful evening of scientific discussions alternated
with tea-drinking with the whole family. A.A. easily came to know my case and
presented me with a deeper picture of the Moscow set-theoretical community
with a stress on the current research done by Novikov and by himself. He offered
to inform Novikov in detail about my case and suggested that I visit Moscow at
a more appropriate time for further discussions.

My second trip to Moscow was scheduled for May 1947 on the very eve of my
graduation from the Chernovtsy University, when, beyond pure mathematics,
the question of my forthcoming (if any) Ph.D. studies was on the agenda. All
in all I had to stay in Moscow for at least a couple of weeks and that required
appropriate logistics – a very nontrivial task at that time, in particular, because
of the food rationing system and the troublesome train connections. Alas, at the
first connection of the Lvov railroad station, local pickpockets managed to cut
out the pocket with all my money. Despite this most regrettable incident, the
trip ultimately turned out to be quite successful. The meetings with Novikov

From Logic to Theoretical Computer Science – An Update 7

were very instructive and warm. And again, as in the case of the Lyapunovs,
the atmosphere in the Novikov family was friendly and hospitable. Occasionally,
Novikov’s wife, Ludmila V. Keldysh (1904–1976), a prominent researcher in set
theory in her own right, as well as A.A. Lyapunov, would also participate in the
conversations. Counterbalancing my interests and efforts towards Descriptive
Set Theory, Novikov called my attention to new developments I was not aware
of in provincial Chernovtsy. He pointed to the path leading from a handful of
hard set theoretical problems to modern concepts of mathematical logic and
computability theory. He also offered his support and guidance should I agree to
follow this path. I accepted Novikov’s generous proposal, although with a sense
of regret about my past dreams about Descriptive Set Theory.

Novikov held a permanent position at the Steklov Mathematical Institute of the
USSR Academy. At that time, departments of mathematical logic did not yet exist
in the USSR, but Novikov, together with Sofia A. Yanovskaya, had just started a
research seminar “Mathematical Logic and Philosophical problems of Mathemat-
ics” in Moscow University, unofficially called The Bolshoy (great) Seminar. So, it
was agreed that wherever other options might arise, Novikov would undertake my
supervision and would do his best to overcome bureaucratic barriers.

3 Ph.D. Studies

In October 1947, I began my Ph.D. studies at the Kiev Mathematical Institute
of the Ukrainian Academy of Sciences. The director of the institute, Mikhail A.
Lavrentiev (1900–81), approved my petition to specialize in mathematical logic
under P.S. Novikov and agreed to grant me long-term scientific visits to Moscow
where I would stay with my advisor.

In Moscow, the Bolshoy seminar was then the main medium in which research
and concomitant activities in that area were conducted. In particular, it was the
forum where mathematical logicians from the first post-war generation (mostly
students of P.S. Novikov, S.A. Yanovskaya and A.N. Kolmogorov) joined the
community, reported on their ongoing research, and gained primary approval of
their theses; and that is also what happened to me.

The atmosphere dominating the meetings of the seminar was democratic and
informal. Everybody, including the students, felt and behaved at ease without
strong regulations and formal respect for rank. I was happy to acquire these
habits and later to promote them at my own seminars.

Actually the seminar was the successor of the first seminar in the USSR
for mathematical logic, which was founded by Ivan I. Zhegalkin (1869–1947).
After Zhegalkin’s death it became affiliated with the Department of History of
Mathematical Sciences of the Moscow University, whose founder and head was
Yanovskaya. Its exceptional role in the development of mathematical logic in the
USSR is a topic of its own and I will touch on it only very briefly.

The seminar usually engaged in a very broad spectrum of subjects from math-
ematical logic and its applications as well as from foundations and philosophy
of mathematics. Here are some of the topics pursued by the senior participants:

8 B.A. Trakhtenbrot

Novikov – consistency of set-theoretical principles; Yanovskaya – philosophy of
mathematics and Marx’s manuscripts; Dmitri A. Bochvar (a prominent chemist
in his main research area) – logic and set-theoretical paradoxes; Victor I. Shes-
takov (professor of physics) – application of logic to the synthesis and analysis
of circuits.

Among the junior participants of the seminar I kept in close contact with the
three Alexanders:

Alexander A. Zykov (1922–), also a Ph.D. student of Novikov, was at that
time investigating the spectra of first order formulas. A.A. called my attention
to Zhegalkin’s decidability problem, which became the main topic of my Ph.D.
thesis. He also initiated the correspondence, with me sending lengthy letters to
Kiev with scientific Moscow news. This epistolary communication, followed later
by correspondence with Kuznetsov and Sergey V. Yablonski (1925–1998). was a
precious support in that remote time.

Alexander V. Kuznetsov (1927–87) was the secretary of the Bolshoy Seminar
and conducted regular and accurate records of all meetings, discussions and prob-
lems. For years he was an invaluable source of information. For health reasons,
A.V. did not even complete high school studies. As an autodidact in extremely
difficult conditions, he became one of the most prominent soviet logicians. I had
the good fortune to stay and to collaborate with him.

Alexander S. Esenin-Volpin (1924–) (the son of the famous Russian poet
Sergey A. Esenin) was a Ph.D. student in topology under Pavel A. Alexan-
drov, but he early on became involved in logic and foundations of mathematics.
A.S. became most widely known as an active fighter for human rights, and al-
ready in the late forties the KGB was keeping an eye on him. In the summer of
1949, we met in Chernovtsy, where he had secured a position after defending his
thesis. Shortly thereafter he disappeared from Chernovtsy and we later learned
that he had been deported to Karaganda (Kazakhstan). A couple of years later,
I received a letter from him through his mother. I anxiously opened the let-
ter, fearful of what I was about to learn. The very beginning of the letter was
characteristic of Esenin-Volpin’s eccentric character – “Dear Boris, let f be a
function. . . ”.

During the years of my Ph.D. studies (1947–50), I actively (though not regu-
larly) participated in the seminar meetings. Also the results which made up my
thesis, “The decidability problem for finite classes and finiteness definitions in
set theory” were discussed there. S. A. Yanovskaya offered the official support of
the department in the future defense at the Kiev Institute of Mathematics; the
other referees were A. N. Kolmogorov, A. A. Lyapunov and B. V. Gnedenko.

My thesis [43] included the finite version of Church’s Theorem about the
undecidability of first order logic: the problem of whether a first order formula
is valid in all finite models is, like the general validity problem, undecidable,
but in a technically different way. The novelty was in the formalization of the
algorithm concept. Namely, I realized that, in addition to the process of formal
inference, the effective process of (finite) model checking could also be used
as a universal approach to the formalization of the algorithm concept. This

From Logic to Theoretical Computer Science – An Update 9

observation anticipated my future concern with constructive processes on finite
models.

Other results of the thesis which are seemingly less known, deal with the
connection between deductive incompleteness and recursive inseparability.

In 1949 I proved the existence of pairs of recursively enumerable sets which
are not separable by recursive sets. I subsequently learned that P.S. Novikov
had already proved this, but, as usual, had not taken the trouble to publish
what he considered to be quite a simple fact. (Note, that in 1951, Kleene who
independently discovered this fact, published it as “a symmetric form of Godel’s
theorem”.) In the thesis I showed that the recursive inseparability phenomenon
implies that the means of any reasonably defined set theory are not enough to
answer the question of whether two different finiteness definitions are equivalent.
This incompleteness result was also announced in my short note [42] presented
by A. N. Kolmogorov to the Doklady, but after Novikov’s cool reaction to “in-
separability”, I refrained from explicitly mentioning that I had used these very
techniques. Clearly, A. N. had forgotten that these techniques were in fact de-
veloped in the full text of my thesis and he later proposed the problem to his
student Vladimir A. Uspenski (1930–) . Here is a quotation from History of
Mathematics [40, p. 446]: “A. N. Kolmogorov pointed to the possible connection
between the deductive incompleteness of some formal systems and the concept
of recursive inseparability (investigated also by Trakhtenbrot). V. A. Uspenski
established (1953) results, which confirm this idea. . . .”

Those early years were a period of fierce struggle for the legitimacy and sur-
vival of mathematical logic in the USSR. Therefore the broad scope of the agen-
das on the Bolshoy seminar was beneficial not only for the scientific contacts
between representatives of different trends, but also, in the face of ideological
attacks, to consolidate an effective defense line and to avoid isolation and dis-
credit of mathematical logic. For us, the junior participants of the seminar, it
was also a time when we watched the tactics our mentors adopted to face or
to prevent ideological attacks. Their polemics were not free of abundant quo-
tations from official sources, controlled self-criticism and violent attacks on real
and imaginary rivals.

It was disturbing then (and even more painful now) to read S.A. Yanovskaya’s
notorious prefaces to the 1947–1948 translations of Hilbert and Ackermann’s
Principles of Mathematical Logic and Tarski’s Introduction to Logic and the
Methodology of Deductive Sciences in which Russell was blamed as a warmonger
and Tarski, as a militant bourgeois. Alas, such were the rules of the game and
S.A. was not alone in that game. I remember the hostile criticism of Tarski’s book
by A.N. Kolmogorov (apparently at a meeting of the Moscow Mathematical
Society): “Translating Tarski was a mistake, but translating Hilbert was the
correct decision,” he concluded. This was an attempt to grant some satisfaction
to the attacking philosophers in order to at least save the translation of Hilbert-
Ackermann’s book. I should also mention that S.A. was vulnerable – she was
Jewish – a fact of which I was unaware for a long time. I learned about it in the

10 B.A. Trakhtenbrot

summer of 1949 during Novikov’s visit to Kiev. He told me then with indignation
about official pressure on him “to dissociate from S.A. and other cosmopolitans”.

However difficult the situation was, we – the students of that time – were not
directly involved in the battle which we considered to be only a confrontation of
titans. As it turned out this impression was wrong.

4 Toward TCS

In December 1950 after the defense of my thesis, I moved to Penza, about 700
km. SE of Moscow, for a position at the Belinski Pedagogical Institute.

At the beginning it was difficult for me to appropriately pattern my behaviour
to the provincial atmosphere so different from the informal, democratic surround-
ings of the places I came from. These circumstances unfavorably influenced my
relationships with some of the staff and students (in particular because of the
constant pressure and quest for high marks). Because of this, though I like teach-
ing, at the beginning, I did not derive satisfaction from it.1 The situation was
aggravated after a talk on mathematical logic I delivered to my fellow math-
ematicians. The aim of the talk entitled “The method of symbolic calculi in
mathematics”, was to explain the need and the use of exact definitions for the
intuitive concepts “algorithm” and “deductive system”. I was then accused of
being “an idealist of Carnap-species”. In that era of Stalin paranoia such accusa-
tions were extremely dangerous. At diverse stages of the ensuing developments,
P.S. Novikov and A.A. Lyapunov (Steklov Mathematical Institute) and to some
degree A.N. Kolmogorov and Alexander G. Kurosh (1908–1971) (Moscow Math-
ematical Society) were all involved in my defense, and S.A. Yanovskaya put my
case on the agenda of the Bolshoy seminar. This story is told in [72].

My health was undermined by permanent tension, fear and overwork (often
more than 20 hours teaching weekly). It goes without saying that for about
two years I was unable to dedicate enough time to research. It was in those
circumstances that only the selfless care and support of my wife Berta saved
me from collapse. I should also mention the beneficial and calming effect of
the charming middle-Russian landscape which surrounded our dwelling. Cycling
and skiing in the nearby forest compensated somewhat for our squalid housing.
(Actually, until our move to Novosibirsk in 1961, we shared a communal flat,
without water and heating facilities, with another family.)

But despite all those troubles I remember this period mainly for its happy
ending. In the summer of 1992, forty years after this story took place, Berta and
I revisited those regions. The visit to Penza was especially nostalgic. Most of the
participants of those events had already passed away. Only the recollections and
of course the beautiful landscape remained.

1 Of course, I also had good students and one of them, Ilya Plamennov (1924–), was
admitted through my recommendation to Ph.D. studies at the Moscow University.
Later he became involved in classified research and was awarded the most prestigious
Lenin Prize (1962).

From Logic to Theoretical Computer Science – An Update 11

Returning to the “Idealism” affair, the supportive messages I received from
Moscow stressed the urgent need for a lucid exposition of the fundamentals
of symbolic calculi and algorithms for a broad mathematical community. They
insisted on the preparation of a survey paper on the topic, which “should be
based on the positions of Marxism-Leninism and contain criticism of the foreign
scientists-idealists”. There was also an appeal to me to undertake this work which
would demonstrate my philosophical ideological loyalty. Nevertheless I did not
feel competent to engage in work which covered both a mathematical subject
and official philosophical demands. These demands were permanently growing
and changing; they could bewilder people far more experienced than myself. So
it seemed reasonable to postpone the project until more favorable circumstances
would allow separation of logic from official philosophy. Indeed, such a change
in attitude took place gradually, in particular due to the growing and exciting
awareness of computers.

In 1956 the journal Mathematics in School published my tutorial paper
“Algorithms and automated problem solving”. Its later revisions and exten-
sions appeared as books which circulated widely in the USSR and abroad [50].
(Throughout the years I was flattered to learn from many people, including
prominent logicians and computer scientists, that this tutorial monograph was
their own first reading on the topic as students and it greatly impressed them.)

Meanwhile, I started a series of special courses and seminars over and above
the official curriculum, for a group of strong students. These studies covered
topics in logic, set theory and cybernetics, and were enthusiastically supported
by the participants. Most of them were later employed in the Penza Computer
Industry where Bashir I. Rameev, the designer of the “Ural” computers, was a
prominent figure. Later, several moved with me to Novosibirsk. They all contin-
ued to attend the seminar after graduating from their studies. We would gather
somewhere in the institute after a full day of work in Rameev’s laboratories
(the opposite end of town), inspired and happy to find ourselves together. Here
is a typical scene – a late winter’s evening, frosty and snowy, and we are clos-
ing our meeting. It is time to disperse into the lonely darkness, and Valentina
Molchanova, a most devoted participant of our seminar, has still to cross the
frozen river on her long walk home.

The publication of my tutorial on algorithms and the above-mentioned work
with students increased my pedagogical visibility to such a degree that I was
instructed by the Education Ministry, to compile the program of a course “Al-
gorithms and Computers” for the pedagogical institutes. Moreover, the Ministry
organized an all-Russian workshop in Penza, dedicated to this topic, with the
participation of P.S. Novikov, A.I. Maltsev, and other important guests from
Moscow.

In Penza there was a lack of scientific literature, not to mention normal con-
tacts with well established scientific bodies. This obvious disadvantage was par-
tially compensated by sporadic trips to Moscow for scientific contacts (and food
supply), as well by correspondence with Kuznetsov, Sergey V. Yablonsky and
Lyapunov.

12 B.A. Trakhtenbrot

I continued the work on recursive nonseparability and incompleteness of for-
mal theories [44,48], started in the Ph.D. thesis. At the same time, I was attracted
by Post’s problem of whether all undecidable axiomatic systems are of the same
degree of undecidability. This super-problem in Computability and Logic, with
a specific flavour of descriptive set theory, was for a long time on the agenda
of the Bolshoy Seminar. It inspired also my work on classification of recursive
operators and reducibilities [45]. Later, A. V. Kuznetsov joined me and we ex-
tended the investigation to partial recursive operators in the Baire space [18].
These issues, reflected our growing interest in relativized algorithms (algorithms
with oracles) and in set-descriptive aspects of computable operators, I worked
then on a survey on this subject, but the (uncompleted) manuscript was never
published. Nevertheless, the accumulated experience helped me later in the work
on relativized computational complexity.

In 1956 Post’s problem was solved independently by Albert A. Muchnik (1934–)
– a young student of P. S. Novikov – and by the American Richard Friedberg. Their
solutions were very similar and involved the invention of the priority method of
computability theory. At that point it became clear to me that I had exhausted my
efforts and ambitions in this area, and, that I am willing to switch to what nowa-
days would be classified as “Theoretical Computer Science”. From the early 50’s
this research was enthusiastically promoted by A. A. Lyapunov and S. V. Yablon-
ski under the general rubric “Theoretical Cybernetics”; it covered switching the-
ory, minimization of boolean functions, coding, automata, program schemes, etc.
Their seminars at the Moscow University attracted many students and scholars,
and soon became important centers of research in these new and exciting topics.
I was happy to join the cybernetics community through correspondence and trips
to Moscow. The general atmosphere within this fresh and energetic community
was very friendly, and I benefited much from it. Many “theoretical cybernetists”
started with a background in Mathematical Logic, Computability and Descriptive
Set Theory and were considerably influenced by these traditions. So, no wonder
that, despite my new research interests in Switching and Automata Theory, I con-
sidered myself (as did many others) to be a logician. My formal “conversion” to
Cybernetics happened on Jan. 9, 1960 when Sergey L. Sobolev (1908–1989) in-
vited me to move to the Novosibirsk Akademgorodok and to join the cybernetics
department of the new Mathematical Institute.

Topics in combinational complexity were largely developed by the Yablonski
school, which attributed exceptional significance to asymptotic laws governing
synthesis of optimal control systems. The impetus for these works was provided
by Shannon’s seminal work on synthesis of circuits. However, the results of S.
V. Yablonski, Oleg B. Lupanov and their followers surpassed all that was done
in the West at that time, as can be seen from Lupanov’s survey [19]. But focus-
ing on asymptotic evaluations caused the oversight of other problems for which
estimates up to a constant factor are still important.

A perebor algorithm, or perebor for short, is Russian for what is called in
English a “brute force” or “exhaustive search” method. Work on the synthesis
and minimization of boolean functions led to the realization of the role of perebor

From Logic to Theoretical Computer Science – An Update 13

as a trivial optimization algorithm, followed by Yablonski’s hypothesis of its non-
elimination. In 1959 he published a theorem which he considered proof of the
hypothesis [77]. However the interpretation of the problem given in his results
was not universally convincing – a presage of future controversies in the TCS
community. I told this story in detail in [67], and will touch it briefly in the next
section.

In the winter of 1954, I was asked to translate into Russian a paper by A. Burks
and J. Wright, two authors I didn’t know earlier. Unexpectedly, this episode
strongly influenced my “Cybernetical” tastes and provided the impetus to re-
search in Automata Theory. A curious detail is that in [7], the authors don’t even
mention the term “automaton”, and focus on Logical Nets as a mathematical
model of physical circuits. Afterwards. “Logical Nets” would also appear in the
titles of my papers in Automata Theory, even though the emphasis was not so
much on circuitry, as on operators, languages and logical specifications.

The use of propositional logic, promoted independently by V.I. Shestakov
and C. Shannon, turned out to be fruitful for combinational synthesis, because
it suffices to precisely specify the behaviour of memoryless circuits. However, for
the expression of temporal constraints one needs other, appropriate, specification
tools, which would allow to handle synthesis at two stages: At the first, behavioral
stage, an automaton is deemed constructed once we have finite tables defining its
next-state and output functions, or, equivalently, its canonical equations. This
serves as raw material for the next stage, namely for structural synthesis, in
which the actual structure (circuit) of the automaton is designed. (Note, that
in [20] Kleene does not yet clearly differentiate between the stages of behavioural
and structural synthesis.) After some exercises in structural synthesis I focused
on behavioral synthesis and began to collaborate with Nathan E. Kobrinsky
(1910–85), who at that time held a position in the Penza Polytechnical Institute.
Our book “Introduction to the Theory of Finite Automata” [17] was conceived
as a concord of pragmatics (N.E.’s contribution) and theory (summary of my
results). The basic text was written in 1958, but the book was typeset in 1961,
and distributed only in early 1962, when both of us had already left Penza.

5 Automata

5.1 Languages and Operators

The concept of a finite automaton has been in use since the 1930s to describe
the growing automata now known as Turing machines. Paradoxically, though
finite automata are conceptually simpler than Turing machines, they were not
systematically studied until the Fifties, if we discount the early work of McCul-
loch and Pitts. A considerable part of the collection “Automata Studies [20] was
already devoted to finite automata. Its prompt translation into Russian, marked
the beginning of heightened interest by Soviet researchers in this field. In partic-
ular, the translation included a valuable appendix of Yuri T. Medvedev (one of
the translators), which simplified and improved Kleene’s results, and anticipated
some of Rabin and Scott’s techniques for nondeterministic automata.

14 B.A. Trakhtenbrot

As in the West, the initial period was characterized by absence of uniformity,
confusion in terminology, and repetition of basically the same investigations with
some slight variants. The subject appeared extremely attractive to many Soviet
mathematicians, due to a fascination with automata terminology with which
people associated their special personal expectations and interests. Automata
professionals who came from other fields readily transferred their experience and
expertise from algebra, mathematical logic, and even physiology to the theory of
finite automata, or developed finite-automata exercises into approaches to other
problems.

Kleene’s regular expressions made evident that automata can be regarded as
certain special algebraic systems, and that it is possible to study them from
an algebraic point of view. The principal exponents of these ideas in the SU
were Victor M. Glushkov (1923–1982) and his disciples, especially Alexander
A. Letichevski, Vladimir N. Red’ko, Vladimir G. Bodnarchuk. They advocated
also the use of regular expressions as a primary specification language for the
synthesis of automata. Later, adherents of this trend in the SU and abroad
developed a rich algebraic oriented theory of languages and automata (see [34]).

Counterbalancing this “algebra of languages” philosophy, I followed a “logic of
operators” view on the subject, suggested by A. Burks and J. Wright. In [7] they
focused on the input-output behaviour of logical nets, i.e. on operators that con-
vert input words in output words of the same length, and infinite input sequences
into infinite output sequences.2 Apparently, they were the first to study infinite
behaviour of automata with output, and to (implicitly) characterize input-output
operators in terms of retrospection and memory. Furthermore, they considered
Logical Nets as the basic form of interaction between input-output agents.

To summarize, Burks and Wright suggested the following ideas I adopted and
developed in my further work on the subject:

1. Priority of semantical considerations over (premature) decisions concerning
specification formalisms.

2. Relevance of infinite behaviour; hence, ω-sequences as an alternative to finite
words.

3. The basic role of operators as an alternative to languages.

Accordingly to those ideas, I focused on two set-theoretical approaches to the
characterization of favorite operators and ω-languages (i.e. sets of ω-sequences).
The first is in terms of memory; hence, operators and languages with finite
memory. The second one, follows the spirit of Descriptive Set Theory (DST),
and selects operators and ω-languages by appropriate metrical properties and
2 Compare this with D. Scott’s argumentation in [38]: “The author (along with many

other people) has come recently to the conclusion that the functions computed by
the various machines are more important – or at least more basic – than the sets
accepted by these devices. The sets are still interesting and useful, but the functions
are needed to understand the sets. In fact by putting the functions first, the rela-
tionship between various classes of sets becomes much clearer. This is already done
in recursive function theory and we shall see that the same plan carriers over the
general theory.”

From Logic to Theoretical Computer Science – An Update 15

set-theoretical operations. (Note, that the set of all ω-sequences over a given
alphabet can be handled as a metrical space with suitably chosen metrics.)

My first reaction on the work of Burks and Wright was [49], submitted in 1956
even before the collection Automata Studies was available. A footnote added in
proof mentions: “the author learned about Moore’s paper in [20], whose Russian
translation is under print”.

The paper [49] deals with operators, and distinguishes between properties re-
lated to retrospection, which is nothing but a strong form of continuity, and
those related to finite memory. In [55] a class of finite-memory ω-languages is
defined which is proved to contain exactly those ω-languages, that are defin-
able in second order monadic arithmetic. Independently Büchi found for them a
characterization in terms of the famous “Büchi automata”.

In the paper [51], I started my main subject – synthesis of automata, developed
later in the books [17] and [63].

6 Experiments and Formal Specifications

Usually, verbal descriptions are not appropriate for the specification of input-
output automata. Here are two alternative approaches:

1. Specification by examples. This amounts to assembling a table which indi-
cates for each input word x, belonging to some given set M , the correspond-
ing output word z. Further, the synthesis of the automaton is conceived as an
interpolation, based on that table. This approach was very popular among
soviet practitioners, and suggested the idea of algorithms for automata-
identification. Such an algorithm should comprise effective instructions as
to:
(a) What questions of the type “what is the output of the black box for

input x?” should be asked?
(b) How should the answers to these questions be used to ask other ques-

tions?
(c) How to construct an automaton which is consistent with the results of

the experiment?
In his theory of experiments [20], Moore proved that the behavior of an au-
tomaton with k states can be identified (restored) by a multiple experiment
of length 2k − 1. Independently, I established in [49] the same result, and
used it in [17] to identify automata, with an a priori upper bound of mem-
ory. I conjectured also in [49] that the restorability degree of “almost” all
automata is of order log k, i.e. essentially smaller than 2k − 1. This conjec-
ture was proved by Barzdins and Korshunov [63]. Barzdin also developed
frequency identification algorithms [63], which produce correct results with
a guaranteed frequency, even when there is no a priori upper bound of the
memory. The complexity estimation for such algorithms relies on the proof
of the log k conjecture. Later Barzdin and his collective in Riga significantly
developed these ideas into a comprehensible theory of inductive learning.

16 B.A. Trakhtenbrot

2. Formal Specifications. The second approach, initiated by S.C. Kleene in [20],
amounts to designing special specification formalisms, which suitably use
logical connectives. However the use of only propositional connectives runs
into difficulties, because they cannot express temporal relationships.
Actually, Kleene’s paper in [20] contains already some hints as to the advis-
ability and possibility of using formulas of the predicate calculus as temporal
specifications. Moreover, Church [10] attributes to Kleene the following:

Characterization Problem: Characterize regular events directly in
terms of their expression in a formalized language of ordinary kind,
such as the usual formulations of first or second order arithmetic.

6.1 Towards Logical Specifications

The years 1956–61 marked a turning point in the field, and Church reported
about that at the 1962-International Mathematical Congress. Here is a quota-
tion from [10]: “This is a summary of recent work in the application of math-
ematical logic to finite automata, and especially of mathematical logic beyond
the propositional calculus.”

Church’s lecture provides a meticulous chronology of events (dated when pos-
sible up to months) and a benevolent comparison of his and his student J. Fried-
man’s results with work done by Büchi, Elgot and myself. Nevertheless, in the
surveyed period (1956–62) the flow of events was at times too fast and thus
omission prone. That is why his conclusion: “all overlaps to some extent, though
more in point of view and method than in specific content” needs some reex-
amination. Actually, the reference to Büchi’s paper [6], as well as the discussion
of my papers [51,53], were added only “in proof” to the revised edition of the
lecture (1964). My other Russian papers [54,55] were still unknown to Church
at that time.

Independently, I, myself [51], and somewhat later A. Church [9] developed
languages based on the second order logic of monadic predicates with natural
argument. Subsequently, another variant was published by R. Büchi [5].

In those works the following restrictions were assumed:

– Trakhtenbrot (1958) [51]: restricted first order quantification;
– Church (1959) [9]: no second order quantification;
– Büchi (1960) [5]: restriction to predicates that are true only on a finite set

of natural numbers.

All these languages are particular cases of a single language, widely known
now as S1S – Second Order Monadic Logic with One Successor, in which all the
restrictions above are removed.

Various arguments can be given in favor of choosing one language or an-
other, or developing a new language. Nevertheless, two requirements seem to be
quite natural: The first one (expressiveness) represents the interest of the client,
making easier for him the formulation of his intention. The second requirement
reflects the viewpoint of the designer; there must be an (fairly simple (?)) algo-
rithm for the synthesis problem in the language.

From Logic to Theoretical Computer Science – An Update 17

These two requirements are contradictory. The more comprehensive and ex-
pressive the language, the more universal and so more complex is the algorithm.
Moreover, if the language is too comprehensive the required algorithm may not
exist at all. It turned out that the choice of S1S supports the demand of expres-
siveness and still guarantees a synthesis algorithm. Indeed, one can show, that
all other known specification formalisms can be embedded naturally into S1S.
However, this process is in general irreversible.

6.2 Synthesis

Church’s lecture focuses on four problems, namely: 1) simplification; 2) synthesis;
3) decision; 4) Kleene’s Characterization Problem.3

Problem 2, better known as the Church-synthesis problem, amounts roughly
to the following: Given a S1S-formula A(x, y):

a) Does there exist an automaton M with input x and output y, whose be-
haviour satisfies A(x, y)?

b) If yes, construct such an automaton.

By solutions are understood algorithms that provide the correct answers and/or
constructions.

Problem 4 presumes the invention of a logical formalism L (actually – a rich
sublanguage of S1S), which expresses exactly the operators (or events) definable
by finite automata, and is equipped with two translation algorithms: (i) from
formulas to automata (Kleene-synthesis) and (ii) from automata to formulas
(Kleene-analysis).

In accordance with the above classification, [17] deals with Kleene-synthesis
and Kleene-analysis.

Actually, in [17] we used the following three formalisms to specify input-output
operators:

1. At the highest level – formulas of S1S.
2. At the intermediate level – finite input-output automata represented by their

canonical equations.
3. At the lower level – logical nets.

Note that in [17] regular expressions are not considered!
Correspondingly, we dealt there with both behavioral synthesis (from 1 to 2)

and with structured synthesis (from 2 to 3).
Büchi was the first to use automata theory for logic and proved [6] that S1S

is decidable. These achievements notwithstanding, the general Church-synthesis
problem for specifications in full S1S remained open, not counting a few special
classes of S1S-formulas, for which the problem was solved by Church and myself
(see [8] and [54]). The game theoretic interpretation of Church-synthesis is due to
McNaughton [22]. R. Büchi and L. Landweber used this interpretation to solve
3 Of course there is also the problem of efficiency: estimate and improve the complexity

of the algorithms and/or the succinctness of the results they provide.

18 B.A. Trakhtenbrot

the general Church-synthesis problem. Note, that the original proof in [22] was
erroneous. Unfortunately, I did not detect this error, which was reproduced in
the Russian edition of [63], and corrected later by L. Landweber in the English
translation.

Part 1 of the book [63] constitutes a revised version of my lectures at Novosi-
birsk University during the spring semester of 1966. It summarizes the results of
Church, Büchi-Landweber, McNaughton and myself, as explained above. Part 2,
written by Barzdin, covers his results on automaton identification.

6.3 About the Trinity

The choice of the three formalisms in [17] is the result of two decisions. The
first identifies three levels of specifications; one can refer to them respectively as
the declarative, executable and interactive levels. The second chooses for each of
these levels a favorite formalism. In [17] those were, respectively, S1S-Formulas,
Automata and Logical Nets; these three are collectively called “The Trinity”
in [70]. The first decision is more fundamental, and is recognizable also in com-
putational paradigms beyond finite automata. The second decision is flexible
even for finite automata; for example, the Trinity does not include Regular Ex-
pression (in [17], they are not even mentioned!) After Pnueli’s seminal work,
Linear Temporal Logics (LTL) became very popular as a declarative formalism.
But note that the various versions of LTL are in fact just the friendly syntactical
sugar of S1S-fragments, and that the most extended one, called ETL, has the
same expressive power as the whole S1S. In this sense, one can argue that S1S
is the genuine temporal logic, and that the Trinity has a basic status. More-
over, recent computational paradigms are likely to revive interest in the original
Trinity and its appropriate metamorphoses.

7 Complexity

7.1 Entering the Field

In 1960, I moved to the Akademgorodok, the Academic Center near Novosibirsk,
where, through the initiative and guidance of Lyapunov, the Department of
Theoretical Cybernetics was established within the Mathematical Institute.

I continued to work on automata theory, which I had begun at Penza, at
first focusing mainly on the relationship between automata and logic, but also
doing some work in structural synthesis [46,52,57]. At that time automata theory
was quite popular, and that is what brought me my first Ph.D. students in
Novosibirsk: M. Kratko, Y. Barzdin, V. Nepomnyashchy.

However, this initial interest was increasingly set aside in favor of computa-
tional complexity, an exciting fusion of combinatorial methods, inherited from
switching theory, with the conceptual arsenal of the theory of algorithms. These
ideas had occurred to me earlier in 1955 when I coined the term “signalizing func-
tion” which is now commonly known as “computational complexity measure”.

From Logic to Theoretical Computer Science – An Update 19

(But note that “signalizing” persisted for a long time in Russian complexity
papers and in translations from Russian, puzzling English-speaking readers.)
In [47] the question was about arithmetic functions f specified by recursive
schemes R. I considered there the signalizing function that for a given scheme
R and nonnegative x, returns the maximal integer used in the computation of
f(x) according to R. As it turned out, G.S. Tseytin (1936–), then a student of
A.A. Markov at Leningrad University, began in 1956 to study time complexity
of Markov’s normal algorithms. He proved nontrivial lower and upper bounds
for some concrete tasks, and discovered the existence of arbitrarily complex 0-
1 valued functions (Rabin’s 1960 results became available in the SU in 1963).
Unfortunately, these seminal results were not published by Tseytin; later, they
were reported briefly (and without proofs) by S.A. Yanovskaya in the survey [78].

Because of my former background, my interest in switching theory, automata,
etc. never did mean a break with Mathematical Logic and Computability. In
fact, the Sixties marked a return to those topics via research in complexity of
computations.

I profited from the arrival of Janis M. Barzdins (1937–) and Rusins V.
Freivalds (1942–) in Novosibirsk as my postgraduate students. These two, both
graduates of the Latvian University in Riga, engaged actively and enthusias-
tically in the subject. Alexey V. Gladkiy (1928–) and his group in mathe-
matical linguistics also became interested in complexity problems, concerning
grammars and formal languages. Soon other people joined us, mainly students
of the Novosibirsk University. My seminar “Algorithms and Automata” was the
forum for the new complexity subjects, and often hosted visitors from other
places. This is how research in computational complexity started in Novosibirsk;
a new young generation arose, and I had the good fortune to work with these
people over a lengthy period.

Subsequently, I joined forces with A.V. Gladkiy in a new department of our
Mathematical Institute, officially called the Department of Automata Theory
and Mathematical Linguistics. Its staff in different periods included our for-
mer students Mikhail L. Dekhtyar, (1946–), Mars K. Valiev (1943–), Vladimir
Yu. Sazonov (1948–), Aleksey D. Korshunov (1936–), Alexander Ya. Dikovski
(1945–), Miroslav I. Kratko (1936–) and Valeriy N. Agafonov (1943–1997).

The basic computer model we used was the Turing machine with a variety of
complexity measures; for example, besides time and space, also the number of
times the head of the machine changes its direction. Along with deterministic
machines we considered also nondeterministic machines, machines with oracles,
and probabilistic machines.

It is not surprising that we were attracted by the same problems as our col-
leagues in the West, notably – J. Hartmanis and R. Stearns. Independently and
in parallel we worked out a series of similar concepts and techniques: complexity
measures, crossing sequences, diagonalization, gaps, speed-up, relative complex-
ity, to cite the most important ones.

Blum’s machine-independent approach to complexity was new for us, and it
aroused keen interest in our seminar. But, when later, at a meeting with Tseytin,

20 B.A. Trakhtenbrot

I began telling him about Blum’s work, he interrupted me almost at once and
proceeded to set forth many basic definitions and theorems. As it turned out,
he had realized it for some time already, but had never discussed the subject in
public!

My “gap” theorem [61] was stimulated by Blum’s theory. It illustrated a set
of pathological time-bounding functions which need to be avoided in developing
complexity theory. Meyer and McCreight’s “Honesty Theorem” [21] showed how
this can be done through the use of appropriate “honest” functions.

In 1967, I published a set of lecture notes [61] for a course “Complexity of
Algorithms and Computations” that I had given in Novosibirsk. The notes con-
tained an exposition of results of Blum and Hartmanis-Stearns, based on their
published papers, as well as results of our Novosibirsk group: my “gap” theo-
rem, Barzdin’s crossing sequences techniques [2], and my other results reported
on our seminar [58,59,60].

I sent a copy of these notes to M. Blum (by then at Berkeley). Further I am
quoting Albert Meyer [24]:

Blum passed on a copy of the Trakhtenbrot notes to me around 1970
when I was at MIT since I knew of a graduate student who was interested
in translating them. His work was not very satisfactory, but then Filloti
came to MIT to work as a post-doc with me and did a respectable job.
By this time the notes began to seem dated to me (about five years old
in 1972!) and I decided that they needed to be revised and updated. This
youthful misjudgment doomed the project since I was too impatient and
perfectionist to complete the revision myself, and the final editing of the
translation was never completed.

In the academic year 1970–71, V.N. Agafonov continued my 1967-course, and
published the lecture notes [1] as Part 2 of “Complexity of Algorithms and
Computations”. But, unlike Part 1, which focused on complexity of computa-
tions (measured by functions) Part 2 was dedicated to descriptive complexity
of algorithms (measured by numbers). It contained a valuable exposition of the
literature around bounded Kolmogorov complexity and pseudo-randomness, in-
cluding contributions of Barzdin and of Valery himself.

7.2 Towards Applications

In the SU it was fully in the tradition of Algorithm Theory to handle applica-
tions of two kinds: (i) Proving or disproving decidability for concrete problems,
(ii)Algorithmic interpretation of mathematical concepts (for example – along the
line of constructive analysis in the Markov School). So, it seemed natural to look
for similar applications in the complexity setting.

The attitude of the “classical” cybernetics people (notably, Yablonski) to
the introduction of the theory of algorithms into complexity affairs was quite
negative. The main argument they used was that the theory of algorithms is
essentially a theory of diagonalization, and is therefore alien to the complex-
ity area that requires combinatorial constructive solutions. And indeed, except

From Logic to Theoretical Computer Science – An Update 21

some simple lower bounds supported by techniques of crossing sequences, all our
early results rested on the same kind of “diagonalization” with priorities, as in
classical computability theory.

But whereas in Algebra and Logic there were already known natural examples
for undecidability phenomena which were earlier analyzed in the classical the-
ory, no natural examples of provable complexity phenomena were known. This
asymmetry was echoed by those who scoffed at the emptiness of the diagonal
techniques with respect to applications of complexity theory. In particular, they
distrusted the potential role of algorithm based complexity in the explanation
of perebor phenomena, and insisted on this view even after Kolmogorov’s new
approach to complexity of finite objects.

In the summer of 1963, during a visit by A.N. Kolmogorov to the Novosi-
birsk University, I learned more about his new approach to complexity and the
development of the concepts of information and randomness by means of the
theory of algorithms. In the early cybernetics period, it was already clear that
the essence of problems of minimization of boolean functions was not in the
particular models of switching circuits under consideration. Any other natural
class of ‘schemes’, and ultimately any natural coding of finite objects (say, fi-
nite texts) could be expected to exhibit similar phenomena, and, in particular,
those related to perebor. But, unlike former pure combinatorial approaches, the
discovery by Kolmogorov (1965), and independently by Solomonoff (1964) and
Chaitin (1966), of optimal coding for finite objects occurred in the framework
of algorithm and recursive function theory. (Note that another related approach
was developed by A.A. Markov (1964) and V. Kuzmin (1965).)

7.3 Algorithms and Randomness

I became interested in the correlation between these two paradigms back in
the Fifties, when P.S. Novikov, called my attention to algorithmic simulation
of randomness in the spirit of von Mises-Church strategies. Ever since, I have
returned to this topic at different times and for various reasons, including the
controversies around perebor. Since many algorithmic problems encounter essen-
tial difficulties (non existence of algorithms or non existence of feasible ones),
the natural tendency is to use devices that may produce errors in certain cases.
The only requirements are that the probability or frequency of the errors does
not exceed some acceptable level and that the procedures are feasible. In the
framework of this general idea, two approaches seemed to deserve attention:
probabilistic algorithms and frequential algorithms.

In the academic year 1969–70, I gave a course “Algorithms and Randomness”
which covered these two approaches, as well as algorithmic modeling of of Mizes-
Church randomness.

The essential features of a frequential algorithm M are generally as follows.

1. M is deterministic, but each time it is applied, it inputs a whole suitable
sequence of inputs instead of an individual one, and then inputs the corre-
sponding sequence of outputs.

22 B.A. Trakhtenbrot

2. The frequency of the correct outputs must exceed a given level.

The idea of frequency computations is easily generalized to frequency enu-
merations, frequency reductions, etc.

I learned about a particular such model from a survey by McNaughton (1961),
and soon realized that as in the probabilistic case, it is impossible to compute
functions that are not computable in the usual sense [56].

Hence, the following questions [65]:

1. Is it possible to compute some functions by means of probabilistic or frequen-
tial algorithms with less computational complexity than that of deterministic
algorithms?

2. What reasonable sorts of problems (not necessarily computation of func-
tions) can be solved more efficiently by probabilistic or frequential algo-
rithms than by deterministic ones? Do problems exist that are solvable by
probabilistic or frequential algorithms but not by deterministic algorithms?

These problems were investigated in depth by Barzdin [3], Freivald [12] and
their students.

7.4 Relativized Complexity

Computations with oracles are a well established topic in the Theory of Algo-
rithms, especially since Post’s classical results and the solution of his famous
problem by Muchnik and Friedberg. So it seemed to me quite natural to look
how such issues might be carried to the complexity setting [62]. At this point
I should mention that Meyer’s confession, about the translation of my lecture
notes, points only on a transient episode in our long-time contacts. Let me quote
Albert again [24]:

Repeatedly and independently our choices of scientific subareas, even
particular problems, and in one instance even the solution to a prob-
lem, were the same. The similarity of our tastes and techniques was so
striking that it seemed at times there was a clairvoyant connection be-
tween us. Our relationship first came about through informal channels –
communications and drafts circulated among researchers, lecture notes,
etc. These various links compensated for the language barrier and the
scarcity of Soviet representation at international conferences. Through
these means there developed the unusual experience of discovering an in-
tellectual counterpart, tackling identical research topics, despite residing
on the opposite side of the globe. . . . Today . . . we find ourselves collab-
orating firsthand in an entirely different area of Theoretical Computer
Science than complexity theory to which we were led by independent
decisions reflecting our shared theoretical tastes.

As to computations with oracles, we both were attracted by the question:to
what extent can be simplified a computation by bringing in an oracle, and how
accurately can the reduction of complexity be controlled depending on the choice

From Logic to Theoretical Computer Science – An Update 23

of the oracle? This was the start point for a series of works of our students (mainly
M. Dekhtyar, M. Valiev in Novosibirsk and N. Lynch at MIT) with similar results
of two types: about oracles which do help (including the estimation of the help)
and oracles which cannot help. The further development of the subject by Meyer
and M. Fischer ended with a genuine complexity-theoretic analog to the famous
Friedberg-Muchnik theorem. It reflects the intuitive idea that problems might
take the same long time to solve but for different reasons! Namely:

There exist nontrivial pairs of (decidable!) sets, such that neither member
of a pair helps the other be computed more quickly.

Independently of Meyer and Fisher, and using actually the same techniques,
I obtained an improvement of this theorem. That happened in the frame of my
efforts to use relative algorithms and complexity in order to formalize intuitions
about mutual independence of tasks and about perebor.

7.5 Formalizing Intuitions

Autoreducibility. When handling relativized computations it is sometimes
reasonable to analyze the effect of restricted access to the oracle. In particular,
this is the case with the algorithmic definition of “collectives”, i.e. of random
sequences in the sense of von Mises-Church. This definition relies on the use
of “selection strategies”, which are relative algorithms with restricted access to
oracles. A similar situation arises with the intuition about mutual independence
of individual instances which make up a general problem [64]. Consider, for
example, a first order theory T . It may well happen that there is no algorithm,
which, for an arbitrary given formula A, decides whether A is provable or not
in T . However, there is a trivial procedure W which reduces the question about
A to similar questions for other formulas; W just inquires about the status of
the formula (¬(¬A)). The procedure W is an example of what may be called
autoreduction. Now, assume that the problem is decidable for the theory T , and
hence the correct answers can be computed directly (without autoreduction). It
still might happen that one cannot manage without very complex computations,
whereas the autoreduction above is simple.

A guess strategy is a machine M with oracle, satisfying the condition: for
every oracle G and natural number n, the machine M , having been started with
n as input, never addresses the oracle with the question “n ∈ G?” (although it
may put any question “ν ∈ G?” for ν �= n). A set G is called autoreducible if
it possesses an autoreduction, i.e. a guess strategy which, having been supplied
with the oracle G, computes the value G(n) for every n. Otherwise G is non-
autoreducible, which should indicate that the individual queries “n ∈ G?” are
mutual independent.

It turned out that:

– (i) The class of non-autoreducible sequences is essentially broader than the
class of random sequences.

24 B.A. Trakhtenbrot

– (ii) There are effectively solvable mass problems M of arbitrary complexity
with the following property: autoreductions of M are not essentially less
complex than their unconditional computations.

Understanding Perebor. Disputes about perebor, stirred by Yablonski’s pa-
per [77], had a certain influence on the development, and developers of complex-
ity theory in the Soviet Union. By and large, reflections on perebor spurred my
interest in computational complexity and influenced my choice of special top-
ics, concerning the role of sparse sets, immunity, oracles, frequency algorithms,
probabilistic algorithms, etc. I told this story in detail in [67]; below I reproduce
a small fragment from [67].

The development of computational complexity created a favorable background
for alternative approaches to the perebor topics: the inevitability of perebor
should mean the nonexistence of algorithms that are essentially more efficient.
My first attempt was to explain the plausibility of perebor phenomena related to
the “frequential Yablonski-effect”; it was based on space complexity considera-
tions. Already at this stage it became clear that space complexity was too rough
and that time complexity was to be used. Meanwhile I began to feel that an-
other interpretation of perebor was worth considering, namely, that the essence
of perebor seemed to be in the complexity of interaction with a “checking mech-
anism”, as opposed to the checking itself. This could be be formalized in terms
of oracle machines or reduction algorithms as follows. Given a total function
f that maps binary strings into binary strings, consider Turing machines, to
compute f , that are equipped with the oracle G that delivers (at no cost!) the
correct answers to queries “f(x) = y?” (x, y may vary, but f is always the same
function). Among them is a suitable machine Mperebor that computes f(x) by
subsequently addressing the oracle with the queries

f(x) = B(0)?, f(x) = B(1)?, . . . , f(x) = B(i)? . . .

where B(i) is the i-th binary string in lexicographical order. Hence, in the com-
putation of the string f(x) the number of steps spent by Mperebor is that rep-
resented by the string f(x). I conjectured in 1966 that for a broad spectrum of
functions f , no oracle machine M can perform the computation essentially faster.
As for the “graph predicates” G(x, y) =def f(x) = y, it was conjectured that
they would not be too difficult to compute. From this viewpoint, the inevitabil-
ity of perebor could be explained in terms of the computational complexity of
the reduction process. The conjecture was proved by M. I. Dekhtyar in his mas-
ter’s thesis (1969) for different versions of what “essentially faster” should mean.
Using modern terminology, one can say that Dekhtyar’s construction implicitly
provides the proof of the relativized version of the NP �= P conjecture. For the
first time, this version was explicitly announced by Baker, Gill and Soloway
(1975) together with the relativized version of the NP = P conjecture. Their
intention was to give some evidence to the possibility that neither NP = P nor
NP �= P is provable in common formalized systems. As to my conjecture, it
had nothing to do with the ambitious hopes to prove the independence of the

From Logic to Theoretical Computer Science – An Update 25

NP = P conjecture. As a matter of fact, I then believed (and to some extent do so
even now) that the essence of perebor can be explained through the complexity
of relative computations based on searching through the sequence of all binary
strings. Hence, being confident that the true problem was being considered (and
not its relativization!), I had no stimulus to look for models in which perebor
could be eliminated.

To the Perebor account [67] it is worth adding the following quotations from
my correspondence with Mike Sipser (Feb. 1992):

S. You write that Yablonski was aware of perebor in the early 50’s,
and that he even conjectured that perebor is inevitable for some prob-
lems in 1953–54. But the earliest published work of Yablonski that you
cite is 1959. Is there a written publication which documents Yablonski’s
awareness of these issues at the earlier time? This seems to be an im-
portant issue, at least from the point of establishing who was the first
to consider the problem of eliminating brute force search. Right now the
earliest document I have is Godel’s 1956 letter to Von-Neumann.

T. I cannot remember about any publication before 1959 which doc-
uments Yablonski’s awareness of these issues but I strongly testify and
confirm that (a quotation follows from my paper [59]): “Already in 1954
Yablonski conjectured that the solution of this problem is in essence
impossible without complex algorithms of the kind of perebor searching
through all the versions. . . .” He persistently advocated this conjecture
on public meetings (seminars and symposia).

S. Second, is it even clear that Yablonski really understands what we
presently mean by eliminating brute force search? He claimed to have
proven that it could not be eliminated in some cases back in 1959. So
there must be some confusion.

T. That is indeed the main point I am discussing in Section 1 of my pere-
bor paper [67]. The conclusion there is that there is no direct connection
between Yablonski’s result and what we presently mean by eliminating
perebor. Hence the long year controversy with Yablonski.

S. I’d appreciate your thoughts on how to handle Yablonski’s contribu-
tion to the subject.

T. I would mention three circumstances:
– 1. In Yablonski’s conjecture the notion of perebor was a bit vague and

did not anticipate any specific formalization of the idea of complexity.
Nevertheless (and may be just due to this fact) it stimulated the
investigation of different approaches to such a formalization, at least
in the USSR.

– 2. Yablonski pointed from the very beginning on very attractive can-
didates for the status of problems which need essentially perebor.
See Sect. 1 of [67], where synthesis of circuits is considered in this
context.

26 B.A. Trakhtenbrot

– 3. Finally, he made the point that for his candidates the disaster
caused by perebor might be avoided through the use of probabilistic
methods.

. . . Let me mention that as an alternative to Yablonski’s approach I
advocated the idea of complexity of computations with oracles. In these
terms, I formulated a conjecture which presently could be interpreted as
the relativised version of P not equal NP. This conjecture was proved by
my student M. Dekhtyar [11].

Turning Points. The controversies around perebor were exacerbated by the
emergence of the new approach to complexity of algorithms and computations.
And it was precisely this approach which was relevant for the genuine advance
in the investigation of perebor in the seminal works of Leonid Levin in the SU
and the Americans, Steven Cook and Richard Karp.

The discovery of NP-complete problems gave evidence to the importance
of the Theory of Computational Complexity. Soon another prominent result
strengthened this perception. In 1972, A. Meyer and Stockmeyer (see [23]) found
the first genuine natural examples of inherently complex computable problems.
This discovery was particularly important for me because the example came
from the area of automata theory and logic in which I had been involved for a
long time. Clearly, for the adherents of the algorithmic approach to complexity,
including myself, these developments confirmed the correctness of their views on
the subject and the worthwhileness of their own efforts in the past. However the
time had also come for new research decisions.

In the 70s, certain trends began to develop, which ultimately resulted in fun-
damental changes. Part of my group (Agafonov, Lomazova, Sazonov, Valiev) and
other participants of our seminar became increasingly interested and involved
in the investigation of the theory of programming. On the other side, people
previously engaged in complexity started to lose interest in this subject.

Against this background, our relationship improved with the Department of
Theoretical Programming, headed in the Computer Center by Andrei P. Ershov
(1931–1988) – one of the most prominent leaders of programming in the SU.
Many of his collaborators and students participated in our seminar. Quoting
V.E. Kotov: “In years of stagnation Ershov managed to create around himself a
healthy political and humane situation, completely different than that outside; it
made our life and work easier.” I benefited from his liberal, benevolent, position;
then it was very important. Unfortunately, it did not work against the devising
of a hostile official mathematical establishment (I told this story in [75]).

In 1979, I came to the difficult decision about emigration to Israel. We de-
parted in December 1980 with the traumatic prospect of separation (in those
times most likely for ever) with relatives, friends, colleagues, students. Most of
the remaining staff members left the Mathematics Institute, and our department
fell apart.

Since January 1, 1981, I am affiliated with Tel Aviv University. But this is
another story!

From Logic to Theoretical Computer Science – An Update 27

8 Epilogue

For a long time, I was not actively involved in automata and computational com-
plexity, being absorbed in other topics. During that period both areas underwent
impressive development, which is beyond the subject of this account.

My entry into the field happened at an early stage, when formation of concepts
and asking the right questions had high priority, at least as far as solving well es-
tablished problems. This is also reflected in my exposition above, in which the
emphasis was rather on the conceptual framework in the area. Some of those con-
cepts and models occurred in very specific contexts, or were driven by curiosity
rather than by visible applications. Did they anticipate problems beyond their
first motivation? I would like to conclude with some remarks about this.

The first is connected to the new and very attractive paradigms of Timed Au-
tomata and Hybrid Systems (HS). Nowadays, despite significant achievements,
the area is still dominated by an explosion of models, concepts and ad hoc no-
tation, a reminder of the situation in Automata Theory in the Fifties. However,
I believe that the classical conceptual framework can still help to elucidate the
intuitions underlying the new paradigms, and to avoid reinvention of existing
ideas [31].

One way to do so is to start with two separate and orthogonal extensions of
the basic model of a finite automaton M . The first one is by interconnecting M
with an oracle N , which is also an automaton, but, in general, with an infinite
set of states. Typically, think about a logical net over components M and N ,
with subsequent hiding of N . Whatever M can do while using N is called its
relativization with respect to this oracle. The other extension is with continuous
time (instead of discrete time, as in the classical case) but without oracles.

For each of these extensions, considered apart, it becomes easier to clarify
how (if any) and to what extent the heritage of classical Automata Theory can
be adapted.

Appropriate combinations of the two might facilitate the adaptation of clas-
sical heritage, whenever it makes sense.

The next remark is about a resurgence of interest in autoreducibility and
frequency computations.

It was instructive to learn that the idea of restricting access to oracles, now
underlies several concepts, which are in fact randomized and/or time bounded
versions of autoreducibility: coherence, checkability, self-reducibility, etc. Most of
these concepts were identified independently of (though later than) my original
autoreducibility, and have occupied a special place in connection with program
checking and secure protocols (see [4] for details and references).

On the other hand, the idea of frequency computation was extended to
bounded query computations and parallel learning. Also, interesting relation-
ships were discovered between autoreducibility, frequency computations and var-
ious other concepts.

My final remark is about the continuous conceptual succession since my
youthful exercises in Descriptive Set Theory (DST), which should be clear from
the previous exposition. In particular, it is quite evident that computational

28 B.A. Trakhtenbrot

complexity is inspired by computability. But the succession can be traced back
even to DST; just keep in mind the ideas which lead from classification of sets
and functions to classification of what is computable, and ultimately to hierar-
chies within computational complexity.

9 Addendum – November 2007

These sketchy notes address three additional research topics I have pursued since
the 1970s. Theory of Programming is the last project I was involved in before
leaving the SU. I developed it further while in Tel Aviv University through
collaboration with Albert Meyer and Joseph Halpern [76] at MIT. Research on
the next two topics, Concurrency and Continuous-Time Paradigms, started in
Tel Aviv, where I managed to attract to these subjects some of my colleagues
and students. In particular, Alex Rabinovich became my main collaborator and
coauthor.

These notes are mainly compiled from non-technical parts of texts adopted
from previous publications. I am aware of the imperfection of such undertakings.
Unfortunately, at this moment, I have no possibility to provide a more compre-
hensive and lucid account and to give tribute to those who shared the efforts
with me.

9.1 Theory of Programming

Introductory Remarks. In the 70s a broad spectrum of topics was on the
agenda of the SU community and, in particular of our group. Investigation (and
even the primary definitions) of program schemes started long ago in the SU
with the works of Lyapunov, Yanov, Ershov and others. Other developments,
such as comparative schematology, program logic, as well as verification and
specification of programs came mainly from the West.

On the other hand, our interests were significantly inspired by Algol-68, the
Scott-Strachey theory of denotational semantics [39] and the importance of
lambda-calculus for the theory of programming (see the essay [69]).

Functional languages. The thesis that lambda-calculus underlies programming
languages. was first extensively argued by Peter Landin (the author of ISWIM)
in his 1965–1966 papers. As a major innovation to lambda-calculus, ISWIM in-
cludes the additional binding mechanisms through the let and letrec constructs,
which permit the statement of declarations (definitions) in a convenient pro-
gramming style. Scott’s language LCF [37] is ISWIM enriched with fixed point
operators and conditionals; PCF is that part to which an appropriate arith-
metical signature is added. Whereas lambda-calculus is usually recognized as a
sequential language, Scott raised the idea to enrich PCF with parallelism facili-
ties, say with the parallel function OR. Hence, the distinction between sequential
and parallel functions and the comparative power of parallel functions suggested
themselves.

From Logic to Theoretical Computer Science – An Update 29

Imperative languages. However, this was a purely functional approach not as-
suming the imperative features of real programming languages like FORTRAN,
Algol, and Pascal. These languages allow constructs that are alien to the spirit
of lambda-calculus, e.g. assignments and goto’s. Such constructs, directly in-
herited from the von Neumann computer architecture, were nicknamed “dirty
features” by adepts of pure functional programming. Especially goto’s were long
ago recognized as a troublesome control mechanism by the pioneers of structured
programming (Dijkstra’s “goto’s considered harmful”). Note that John Backus,
the designer of FORTRAN, later joined the criticism of “dirty features”. He
called for the liberation of programming from the von Neumann style and out-
lined a new functional language. Hence, the question: to what extent and in what
form can Landin’s thesis be adopted to imperative languages? That is what I
became interested in.

Presented below is a summary of research performed by our group.

Work on Program Schemes, Program Logic, and Specification and
Verification of Programs

– V. N. Agafonov:
• Syntactical analysis in compilation.
• Typology (semantics) of programming languages and verification of pro-

grams.
• Specification of programs.

– I. A. Lomazova:
• Inductive conditions in Hoare’s logic for programs with loops (indepen-

dent of Apt, Bergstra, Tucker).
• Semantics and complete Hoare-type algorithmic logic for programs with

goto.
– B. A. Trakhtenbrot:

• Universality of classes of program schemes.
• Recursive program schemes and computable functionals.
• Relaxation rules and completeness of algorithmic logic.

– M. K. Valiev:
• Axiomatization and decision complexity for variants of PDL (indepen-

dent of Halpern).

Work on LCF-PCF

– V. Yu. Sazonov [35,36]: All the results below were obtained independently
(and even prior) to G. Plotkin’s “LCF as a programming language” [26] and
related works on semantics of type-free lambda calculus by M. Hyland and
C. Wadsworth.

• Precise characterization of the expressive power of the programming part
of Scott’s language LCF (currently known as PCF). This was given in
terms of computational strategies – a precursor of currently widely used
game semantics.

30 B.A. Trakhtenbrot

• Exact correspondence between operational and denotational semantics in
terms of computational strategies (in both typed and type-free settings).

• Characterization of degrees of parallelism in computations.

Work on Algol-Like Languages [66,76,14]
My view on the essence of Algol-like languages was crystallized in discussions
with V. Sazonov. The never-published technical report [66] is my first account
on the subject. As I learnt later, J. C. Reynolds promoted similar ideas on the
essence of what he called “Idealized Algol” [32,33].

The main idea is to face the impediments of the original Algol through the
design of an appropriate Algol-like language (Idealized Algol) that can be ex-
plained in the lambda-calculus core and supported with denotational semantics.
Here are some of the principles that characterize this class of languages:

– Exclude goto’s but preserve assignments.
– The language is fully typed.
– Higher order procedures of all finite types are allowed.
– There is a clear distinction between locations and storable values (integers,

say).
– Blocks with local storage, and sharing (aliasing) are allowed.

Actually, these languages preserve as much as possible of the rich expressive
power of the original Algol, and have sufficient structure to yield a rich algebra
and proof theory. Moreover, the denotational semantics of a program is provided
by a two-step process:

1. A purely syntactic translation of the program into an ISWIM expression.
This step provides the “true” ISWIM syntax for the program – a worthy
alternative for the Algol-jargon which came down through history.

2. Assignment of semantics to ISWIM in the standard way, assuming an ade-
quate choice of domains, which is consistent with the underlying intuition.

Thus, programs simply inherit their semantics from the ISWIM-terms into which
they are translated. In this way, procedures are entirely explained at a purely
functional level – independent of the interpretation of program constructs – by
continuous models for lambda-calculus. However, the usual (complete partial
order) models are not adequate to model local storage allocation. New domains
of store models are offered to solve this problem and partial correctness theory
over store models is developed.

9.2 Concurrency

Introductory Remarks. Before the emergence of modern theory of concur-
rency, logical nets presented the main model of concurrency in automata theory
(see Sect. 5). The interaction of components in a logical net is often called syn-
chronous (we would prefer “simultaneous”) interaction. Our concern below is
about asynchronous nets and we call them simply nets.

From Logic to Theoretical Computer Science – An Update 31

Nets are widely used in the theory of concurrency. One evident reason for
that is the convenience of visualizing the communication structure of systems,
as it comes to light for example in Petri nets or in data flow nets. On the other
hand, as emphasized by Pratt, nets seem to cover almost any situation which
involves “sharing” or communication. For an engineer it could mean sharing
of component terminals by connecting them electrically; a mathematician can
consider sharing of variables in a system of equations.

Modularity reflects the Frege Principle: any two expressions expr1 and expr2
that have the same meaning (semantics) can be replaced by each other in ev-
ery appropriate context without changing the meaning of the overall expression.
In a conventional syntax with signature Σ (call it “textual” as opposed to the
graphical syntax of nets), a complex piece of syntax expr may be uniquely de-
composed into simpler sub-pieces: expr = op(expr1, . . . , exprk), where op is in Σ.
Typically, a denotational semantics is formulated in such a compositional style
and hence supports modularity. However, often one starts with an operational
semantics that lacks a compositional structure. Then a standard way to prove
modularity is to discover a compositional semantics which is equivalent to the
operational one.

In net models of concurrency, a syntax is provided by some specific class NN
of labeled graphs called nets, and a semantics is usually defined globally either
in an operational style through appropriate firing (enabling) rules, as in the case
of Petri nets, or as a solution of a system of equations. However, the notion of
context makes sense for nets and therefore modularity of nets may be defined
and investigated.

For a long time, despite the rich and suggestive information of the Petri
pictorial approach, the question of compositionality or modularity had not
been raised. For elementary Petri nets modularity was established by Antoni
Mazurkiewicz. Namely, he discovered a compositional semantics which is equiv-
alent to the original “token game” semantics. This compositional approach to
Petri nets provided the initial stimulus to our work.

Challenges that we Addressed:

– Unification of concepts and approaches for the numerous models and seman-
tics proposed for nets [27].

– The “causal (called also true) vs. interleaving semantics” dilemma for Petri
nets.

– Modularity issues for nets (especially, for data flow nets).
– The close subject of compositional proof systems for nets ([71]).

Below we consider in more detail our work on causality and modularity issues.
Petri nets and data flow nets are the fundamental paradigms we focused on.

Discerning Causality. The question here is: to what extent is the causal
(partial order) semantics relevant for concurrent computational problems?

It appears that usually one starts with a common interleaving semantics sem1
for the system under consideration. Yet, at a later stage, a causal semantics sem2

32 B.A. Trakhtenbrot

is chosen which is consistent with sem1 in a natural sense. In [16], we studied
possible choices of causal semantics for C/E Petri nets. Modularity arguments
are used to show that there is a unique such semantics satisfying some sim-
ple and necessary modularity and consistency conditions. Moreover, this is true
also for other formalisms, such as Milner’s CCS and Hoare’s CSP. However, in
other situations the proper choice of causal semantics still has to be justified by
extra conditions. This is illustrated for P/T nets, i.e. Petri nets with bounded
capacities (a model that reflects distribution of resources).

Data Flow Nets [28,29]. Unlike other types of nets, here the main concern
is the I(nput)/O(utput) behavior of a system (under appropriate topological
restrictions). Kahn’s Principle states that for special deterministic agents (Kahn
automata) the I/O behavior of a net can be obtained from the I/O behaviors
of its components as the solution of an appropriate system of equations. This
implies I/O compositionality (and hence also modularity) for such nets. In an
attempt to generalize Kahn’s result to the nondeterministic agent merge, Brock
and Ackermann observed that I/O modularity fails. This is the so called Brock-
Ackermann anomaly. Hence, two problems are raised by the pioneering works of
Kahn and of Brock-Ackermann:

1. Why do data flow nets behave compositionally for Kahn-automata but not
for Brock-Ackermann automata?

2. What are the fundamental limits for the applicability of Kahn’s Principle?

We carried out an extensive development of dataflow semantics which pro-
vides very precise answers to these questions. We showed that modularity may
fail even for components with functional I/O behavior. We gave a characteriza-
tion of functional agents (“smoothness”) which is both sufficient and necessary to
support modularity and Kahn’s Principle. Moreover, the class SMOOTH of these
automata is the unique largest I/O-modular class of automata with functional
behavior. Any extension of the class of Kahn automata by a component with
“ambiguous” I/O-behavior – not necessarily merge – spoils modularity [29,28].
Analyzing the possible deviations from Kahn’s Principle we identified two kinds
of anomalies. The “meagerness” anomaly may occur even for functional agents
and not only for ambiguous ones, as sometimes is misunderstood the original
Brock-Ackermann example. On the other hand, the “ambiguity”-anomaly is in-
deed rooted in the semantics of nondeterminism. These results were credited as
an essential progress towards an “ultimate Kahn’s Principle”.

Nets of Relations. A conceptual and technical novelty we started is the idea
to consider semantics of nets of relations [30]. We identified observable relations
and nets of observable relations as appropriate tools for the investigation of
data flow nets over nondeterministic agents. We showed that the main source
of the Brock-Ackermann anomaly is in the semantics of nets of relations. If one
considers nets over a subclass of observable relations, it may happen that the
semantics over such nets is modular.

From Logic to Theoretical Computer Science – An Update 33

9.3 Continuous-Time Paradigms

In Sect. 5 we briefly discussed the status of, and the relationship between, three
basic formalism of automata theory: automata, logic and circuits. These are
collectively called there “The Trinity”. As emphasized in the position paper [70],
more recent developments in the theory of real-time systems put forward the
task of lifting the classical trinity to continuous time. Some of the work in this
direction is summarized in a special issue of Fundamenta Informaticae ([73]).
Below I quote the contents of, and the preface to this issue.

The Papers in [73]:

[HR] Hirshfeld, Y., and Rabinovich, A.: Logics for Real Time: Decidability
and Complexity [15].

[S] Slissenko, A.: A Logic Framework for Verification of Timed Algo-
rithms [41].

[T] Trakhtenbrot, B. A.: Understanding Automata Theory in the Continuous
Time Setting [74].

[PRD] Pardo, D., Rabinovich, A., and Trakhtenbrot, B. A.: Synchronous Cir-
cuits over Continuous Time: Feedback Reliability and Completeness [25].

From the Preface of the Editor: In the last 15 years, research in Computer
Science has involved many paradigms in which continuous time appears whether
in a pure way or in cooperation with discrete time. In particular, this is evident
in subjects concerning Automata, Circuits and Logic. This issue of FI consists
of four papers dedicated to such subjects. The papers will be referred to below
as [HR], [S], [PRT], [T] (the initials of the authors). [HR] and [S] are about
continuous-time logics, whereas in [T] and [PRT] the focus is on automata and
circuits (logical nets).

In [HR] the concern is about Monadic Logics of Order (MLO) and their re-
lationship to Temporal Logics. For discrete time, decidability of Second Order
Monadic Logic (SOML) follows from the connection between SOML and au-
tomata theory. It is well known that SOML covers numerous temporal logics
(TL). Ultimately, these TL may be considered as syntactically sugared versions
of SOML fragments. In [HR] further facts of this kind are established for con-
tinuous time. However, in this case, instead of traditional automata-theoretic
techniques one needs to use properly general theorems from logic.

The logic framework developed in [S] is based on First Order Timed Logic
(FOTL), that allows functions and predicates with more than one argument;
moreover, it allows also some arithmetic. This makes the logic expressive enough
to represent, more or less directly, continuous-time properties of distributed algo-
rithms. But, on the other hand, it makes the logic undecidable. The fundamental
observation that, nevertheless, permits the efficient use this logic for verification
is as follows: the underlying theories of continuous time (e.g. the theory of real
addition, Tarski algebra, etc.) are decidable or have much better complexity than

34 B.A. Trakhtenbrot

the corresponding theories of discrete time. Interesting decidable classes of the
verification problem are based on appropriate properties of FOTL.

The companion papers [T] and [PRT] draw their initial motivation from the
literature on Hybrid Automata, Circuits and related control problems. Concrete
problems about circuits (feedback reliability, completeness) and control (sample-
and-hold architectures in continuous time) are also the subject of [T] and [PRT].
Yet, a more general contribution is the development of a conceptual framework
that allows one to highlight the genuine distinctions and similarities between the
discrete-time and continuous-time tracks.

There is a growing feeling in the community that the literature on these
subjects, as well on the related logics, is plagued by a Babel of models, constructs
and formalisms with an amazing discord of terminology and notation. Further
models and formalisms are engendered, and it is not clear where to stop. Hence,
appeals like:

look back to sort out what has been accomplished and what needs
to be done. . . by surveying logic-based and automata-based real-time
formalisms and putting them into a perspective. (R. Alur and T.
Henzinger).

. . . isolate the right concepts, . . . formulate the right models, and discard
many others, that do not capture the reality we want to understand. . . .
(J. Hartmanis).

[HR], [T] and [PRT] are strongly committed to the analysis in depth of the
various continuous-time paradigms and to their robust conceptual integration in
mainstream Automata Theory and Logic. These papers come to the following
conclusions about some misconceptions in the previously suggested models and
logics:

1. The standard continuous-time model for logic was ignored as a yardstick;
instead, different kinds of sequences of continuous-time bits were used. This
may have been an attempt to pursue the connection with automata the-
ory since automata were traditionally associated with sequences. This was
the main cause in the rejection of the classical model. It complicated the
subsequent research. The choice of the temporal logic became an arbitrary
decision [HR].

2. Input/output behavior of automata was ignored in favor of generating de-
vices. Functions (in particular, input/output behavior of automata) are more
fundamental than sets (say, languages accepted by automata). Accordingly,
circuits and feedback should be defined explicitly as generic concepts. Sur-
prisingly, it has been left unobserved in the literature that some flaws in the
conceptual decisions concerning continuous time are identifiable already at
the level of discrete-automata theory [T].

From Logic to Theoretical Computer Science – An Update 35

References

1. Agafonov, V.N.: Complexity of algorithms and computations (part 2). Lecture
Notes, p. 146. Novosibirsk State University (1975)

2. Barzdin, J.M.: Complexity of the recognition of the symmetry predicate in Turing
machines. Problemy Kibernetiki 15, 245–248 (1965)

3. Ja Barzdin, M.: On computability on probabilistic machines. DAN SSSR 189, 699–
702 (1969)

4. Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Compu-
tational Complexity 2, 1–17 (1992)

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
of the 1960 Intl. Cong. on Logic, Philosophy and Methodology of Sciences, pp.
1–11. Stanford Univ. Press (1962)

7. Burks, A., Wright, J.: Theory of logical nets. Proc. IRE 41(4) (1953)
8. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.

In: Summaries of the Summer Institute of Symbolic Logic, vol. 1, pp. 3–50. Cornell
Univ., Ithaca, NY (1957)

9. Church, A.: Application of recursive arithmetic to the theory of computers and
automata, notes, summer conference course. In: Advanced Theory of the Logical
Design of Digital Computers, pp. 1–68. University of Michigan (1959)

10. Church, A.: Logic, arithmetic and automata. In: Proceedings of Intl. Congress of
Mathematicians, pp. 23–35 (1962)

11. Dekhtyar, M.I.: The impossibility of eliminating complete search in computing
functions from their graphs. In: DAN SSSR 189, pp. 748–751 (1969)

12. Freivald, R.V.: Fast probabilistic algorithms. LNCS, vol. 74, pp. 57–69 (1979)
13. Glushkov, V.M.: Synthesis of digital automata, Fizmatgiz, Moscow (1962)
14. Halpern, J., Meyer, A., Trakhtenbrot, B.A.: The semantics of local storage, or what

makes the free list free (preliminary report). In: Conference Record of the XI ACM
Symposium on Principles of Programming Languages (POPL), pp. 245–257 (1984)

15. Hirshfeld, Y., Rabinovich., A.: Logics for real time: decidability and complexity.
Fundamenta Informatica 62(1), 1–28 (2004)

16. Hirshfeld, Y., Rabinovich, A., Trakhtenbrot, B.A.: Discerning causality in inter-
leaving behavior. In: Proceedings of Logic at Botic 1989, Pereslavl Zalessky, USSR
(July 1989)

17. Kobrinski, N.E., Trakhtenbrot, B.A.: Introduction to the Theory of Finite Au-
tomata, Fizmatgis, Moscow, pp. 1–404 (1962), English translation. In: Studies in
Logic and the Foundations of Mathematics, North-Holland(1965)

18. Kuznetsov, A.V., Trakhtenbrot, B.A.: Investigation of partial recursive operators
by techniques of Baire spaces. Doklady AN SSR 105 6, 896–900 (1955)

19. Lupanov, O.B.: An approach to systems synthesis – a local coding principle. Prob-
lems of Cybernetics 14, 31–110 (1965)

20. McCarthy, J., Shannon, C. (eds.): Automata Studies, Princeton (1956)
21. McCreight, E.M., Meyer, A.R.: Classes of computable functions defined by bounds

on computation. In: Proc. of 1st STOC, pp. 79–88 (1969)
22. McNaughton, R.: Finite-state infinite games. In: Project MAC Rep., September

1965, MIT, Cambridge (1965)
23. Meyer, A.R.: Weak monadic second order theory of successor is not elementary

recursive. In: Proj. MAC, MIT, Cambridge (1973)

36 B.A. Trakhtenbrot

24. Meyer, A.R.: unpublished memo; see the second chapter of this collection
25. Pardo, D., Rabinovich, A., Trakhtenbrot, B.A.: Synchronous circuits over contin-

uous time: feedback reliability and completeness. Fundamenta Informatica 62(1),
123–137 (2004)

26. Plotkin, G.: LCF considered as a programming language. Theoretical Comp. Sci-
ence 5, 223–257 (1977)

27. Rabinovich, A., Trakhtenbrot, B.A.: Behavior structures and nets of processes.
Fundamenta Informaticae 11, 357–403 (1988)

28. Rabinovich, A., Trakhtenbrot, B.A.: Nets of processes and data-flow. In: de Bakker,
J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 574–602.
Springer, Heidelberg (1989)

29. Rabinovich, A., Trakhtenbrot, B.A.: Nets and data-flow interpreters. In: Proceed-
ings of LICS (1989)

30. Rabinovich, A., Trakhtenbrot, B.A.: Communication among relations. In: Proceed-
ings of the 17th Colloquium on Automata, Languages and Programming, Warwick,
England (1990)

31. Rabinovich, A., Trakhtenbrot, B.A.: From finite automata toward hybrid systems.
In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 411–422.
Springer, Heidelberg (1997)

32. Reynolds, J.C.: Idealized Algol and its specification logic, Technical Report, Syra-
cuse University pp. 1-81 (1981)

33. Reynolds, J.C.: The essence of Algol. In: de Bakker, van Vliet (eds.) International
Symposium on on Algorithmic Languages, North-Holland, pp. 345–372 (1981)

34. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. pp. I–III,
Springer, Berlin (1997)

35. Sazonov, V.Yu., Expressibility of functions in Scott’s LCF language, Algebra i
Logika 15, 308–320 (in Russian); 192–206 in English edition, 1976.

36. Sazonov, V.Y.: Functionals computable in series and in parallel. Siberian Math.
Journal 17(3), 648–672 (1976) (in Russion); 498–516 in English edition

37. Scott, D.A.: Type-theoretical alternative to CUCH, OWHY, ISWIM. Theoretical
Computer Science 121, 411–440 (1993) Reprint of a manuscript, Oxford University
(1969)

38. Scott, D.: Some definitional suggestions in automata theory.J. of Computer and
Syst. Sci., 187–212 (1967)

39. Scott, D., Strachey, C.: Toward a mathematical semantics of computer languages.
In: Proceedings of a Symposium on Computer and Automata, New York (1971)

40. Shtokalo, I.Z. (ed.): History of Mathematics, Kiev (in Russian, 1970)
41. Slissenko, A.: A logic framework for verification of timed algorithms. Fundamenta

Informaticae 62(1) (August 2004)
42. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decidability problem

on finite classes. Doklady AN SSR 70(4), 569–572 (1950)
43. Trakhtenbrot, B.A.: Decidability problems for finite classes and definitions of finite

sets. Ph.D. Thesis, Math. Inst. of the Ukrainian Academy of Sciences, Kiev (1950)
44. Trakhtenbrot, B.A.: On recursive separability. Doklady AN SSR 88(6), 953–956

(1953)
45. Trakhtenbrot, B.A.: Tabular representation of recursive operators. Doklady AN

SSR 101(4), 417–420 (1955)
46. Trakhtenbrot, B.A.: The synthesis of non-repetitive schemas. Doklady AN

SSR 103(6), 973–976 (1955)

From Logic to Theoretical Computer Science – An Update 37

47. Trakhtenbrot, B.A.: Signalizing functions and tabular operators. Uchionnye Zapiski
Penzenskogo Pedinstituta (Transactions of the Penza Pedagogoical Institute) 4,
75–87 (1956)

48. Trakhtenbrot, B.A.: On the definition of finite set and the deductive incompleteness
of set theory. Izvestia AN SSR 20, 569–582 (1956)

49. Trakhtenbrot, B.A.: On operators, realizable by logical nets. Doklady AN
SSR 112(6), 1005–1006 (1957)

50. Trakhtenbrot, B.A.: Algorithms and Computing Machines, Gostechizdat (1957)
second edition by Fizmatgiz, 1960; English translation in the series: Topics in
Mathematics, D.C. Heath and Company, Boston, pp. 1–101 (1963)

51. Trakhtenbrot, B.A.: The synthesis of logical nets whose operators are described in
terms of monadic predicates. Doklady AN SSR 118(4), 646–649 (1958)

52. Trakhtenbrot, B.A.: The asymptotic estimate of the logical nets with memory.
Doklady AN SSR 127(2), 281–284 (1959)

53. Trakhtenbrot, B.A.: Some constructions in the monadic predicate calculus. Dok-
lady AN SSR 138(2), 320–321 (1961)

54. Trakhtenbrot, B.A.: Finite automata and the monadic predicate calculus. Doklady
AN SSR 140(2), 326–329 (1961)

55. Trakhtenbrot, B.A.: Finite automata and the monadic predicate calculus. Siberian
Math. Journal 3(1), 103–131 (1962)

56. Trakhtenbrot, B.A.: On the frequency computation of recursive functions. Algebra
i Logika, Novosibirsk 1(1), 25–32 (1963)

57. Trakhtenbrot, B.A.: On the complexity of schemas that realize many-parametric
families of operators. Problemy Kibernetiki 12, 99–112 (1964)

58. Trakhtenbrot, B.A.: Turing Computations with Logarithmic Delay. Algebra i
Logika, Novosibirsk 3(4), 33–48 (1964)

59. Trakhtenbrot, B.A.: Optimal computations and the frequency phenomena of
Yablonski. Algebra i Logika, Novosibirsk 4(5), 79–93 (1965)

60. Trakhtenbrot, B.A.: On normalized signalizing functions for Turing computations.
Algebra i Logika, Novosibirsk 5(6), 61–70 (1966)

61. Trakhtenbrot, B.A.: The Complexity of Algorithms and Computations, Lecture
Notes, ed. by Novosibirsk University, pp. 1–258 (1967)

62. Trakhtenbrot, B.A.: On the complexity of the mutual-reduction algorithms in the
construction of Novikov and Boone. Algebra i Logika 8, 50–71 (1969)

63. Trakhtenbrot, B.A., Barzdin, J.M.: Finite Automata (Behavior and Synthesis),
Nauka, Moscow, pp. 1–400 (1970) English translation in: Fundamental Studies in
Computer Science 1, North-Holland (1973)

64. Trakhtenbrot, B.: On autoreducibility. Doklady AN SSR 192(6), 1224–1227 (1970)
65. Trakhtenbrot, B.A.: Notes on the complexity of probabilistic machine computa-

tions. In: Theory of Algorithms and Mathematical Logic, ed. by the Computing
Center of the Academy of Sciences, pp. 159–176 (1974)

66. Trakhtenbrot, B.A.: On denotational semantics and axiomatization of partial cor-
rectness for languages with procedures as parameters and with aliasing (extended
abstract), Technical Report, Tel Aviv University, p. 20 (August 1981)

67. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing 6(4), 384–400 (1984)

68. Trakhtenbrot, B.A.: Selected Developments in Soviet Mathematical Cybernetics,
Monograph Series, sponsored by Delphic Associates, Washington, XIV + 122 pages
(1985)

38 B.A. Trakhtenbrot

69. Trakhtenbrot, B.A.: Comparing the Church and Turing approaches: two prophet-
ical messages. In: The Turing Universal Machine – A Half Century Survey, pp.
603–630. Oxford University Press, Oxford (1988)

70. Trakhtenbrot, B.A.: Origins and metamorphoses of the Trinity: logic, nets, au-
tomata. In: Proc. of the 10th IEEE Symposium on LICS, San Diego (1995)

71. Trakhtenbrot, B.A.: On the power of compositional proofs. Fundamenta Informat-
icae 30(1), 83–95 (1997)

72. Trakhtenbrot, B.A.: In memory of S.A. Yanovskaya (1896–1966) on the centenary
of her birth. Modern Logic 7(2), 160–187 (1997)

73. Trakhtenbrot, B.A.(ed.): Special Issue on Continuous-Time Paradigms in Logic
and Automata. Fundamenta Informaticae 62(1) (August 2004)

74. Trakhtenbrot, B.A.: Understanding Basic Automata Theory in the Continuous
Time Setting. Fundamenta Informaticae 62(1), 69–121 (2004)

75. Trakhtenbrot, B.A.: In memory of Andrei P. Ershov. In: Ershov, a Scientist and
Human Being (in Russian), Publishing House of the Russian Academy of Sciences
in Novosibirsk (2006)

76. Trakhtenbrot, B.A., Halpern, J., Meyer, A.R.: From denotational to operational
and axiomatic semantics for Algol-like languages (an overview). In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 474–500. Springer,
Heidelberg (1984)

77. Yablonski, S.V.: Algorithmic difficulties in the synthesis of minimal contact net-
works (in Russian), Problems of Cybernetics, vol. 2, Moscow (1959)

78. Yanovskaya, S.: Mathematical logic and fundamentals of mathematics. In: Mathe-
matics in the USSR for 40 Years, Moscow, Fizmatgiz, pp. 13–120 (1959)

	From Logic to Theoretical Computer Science – An Update
	Foreword
	Early Days
	Brichevo
	Kishinev
	Chernovtsy

	Ph.D. Studies
	Toward TCS
	Automata
	Languages and Operators

	Experiments and Formal Specifications
	Towards Logical Specifications
	Synthesis
	About the Trinity

	Complexity
	Entering the Field
	Towards Applications
	Algorithms and Randomness
	Relativized Complexity
	Formalizing Intuitions

	Epilogue
	Addendum -- November 2007
	Theory of Programming
	Concurrency
	Continuous-Time Paradigms

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

