

Lecture Notes in Computer Science 4800
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Arnon Avron Nachum Dershowitz
Alexander Rabinovich (Eds.)

Pillars
of Computer Science

Essays Dedicated to Boris (Boaz) Trakhtenbrot
on the Occasion of His 85th Birthday

13

Volume Editors

Arnon Avron
Nachum Dershowitz
Alexander Rabinovich
Tel Aviv University
School of Computer Science
Ramat Aviv, Tel Aviv, 69978 Israel
E-mail: {aa; nachumd; rabinoa}@post.tau.ac.il

Library of Congress Control Number: 2008920893

CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, F.3, D.2.4, D.2-3, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78126-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78126-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12227471 06/3180 5 4 3 2 1 0

Dedicated to

Boris (Boaz) Trakhtenbrot

in honor of his eighty-fifth birthday,
with deep admiration and affection.

A mighty man of valor . . . his name was Boaz
��� ���� � � � �	
 ���� �	

(Book of Ruth, 2:1)

Wishing him many,
many happy returns.

Boris Abramovich Trakhtenbrot
(b. 1921)

Preface

The Person

Boris Abramovich Trakhtenbrot1 (Борис Абрамович Трахтенброт) – his
Hebrew given name is Boaz (����) – is universally admired as a founding fa-
ther and long-standing pillar of the discipline of computer science. He is the
field’s preeminent distinguished researcher and a most illustrious trailblazer and
disseminator. He is unmatched in combining farsighted vision, unfaltering com-
mitment, masterful command of the field, technical virtuosity, æsthetic expres-
sion, eloquent clarity, and creative vigor with humility and devotion to students
and colleagues.

For over half a century, Trakhtenbrot has been making seminal contributions
to virtually all of the central aspects of theoretical computer science, inaugurat-
ing numerous new areas of investigation. He has displayed an almost prophetic
ability to foresee directions that are destined to take center stage, a decade or
more before anyone else takes notice. He has never been tempted to slow down or
limit his research to areas of endeavor in which he has already earned recognition
and honor. Rather, he continues to probe the limits and position himself at the
vanguard of a rapidly developing field, while remaining, as always, unassuming
and open-minded.

Trakhtenbrot is a grand visionary who pioneered many fascinating directions
and innovative concepts. Even when working on his doctoral dissertation (in the
late 1940s), while every logician was thinking about infinite structures, he proved
that the set of first-order formulæ valid on finite structures is not recursively
enumerable. This result, which bears his name, precludes the possibility of any
completeness theorem for first-order predicate calculus on finite structures. As
such, it was the first important result in “finite model theory”, and heralded a
field that rose dramatically in popularity over the subsequent decades, as more
and more researchers realized its centrality and multitudinous applications.

This was just an early instance of very many ideas of genius that Trakht-
enbrot brought to the field. He was the first to introduce the use of monadic
second-order logic as a specification formalism for the infinite behavior of finite
automata. This logic turned out to be very fundamental; various temporal log-
ics are just “sugared” fragments of the monadic logic. The classic theorem that
finite automata and weak monadic second-order logic are expressively equiva-
lent was established by Trakhtenbrot, and independently by Büchi and Elgot, in
1958. Trakhtenbrot also initiated the study of topological aspects of ω-languages

1 Boris/Boaz Abramovich/Avramovich/Avraamovich Trakhtenbrot/Trahtenbrot/
Trachtenbrot/Trajtenbrot.

X Preface

and operators and provided a characterization of operators computable by finite
automata. Furthermore, he provided solutions to special cases of the Church
synthesis problem, which was later solved by Büchi and Landweber. The equiva-
lence between the monadic logic and automata and the solvability of the Church
problem have provided the necessary underlying mathematical framework for the
development of formalisms for the description of interactive systems and their
desired properties, for the algorithmic verification and the automatic synthesis
of correct implementations given logical specifications, and for the advanced al-
gorithmic techniques that are now embodied in industrial tools for verification
and validation.

Trakhtenbrot was among the very first to consider time and space efficiency
of algorithms (using what he called “signalizing functions”) and speak about ab-
stract complexity measures, at a time when most others cast doubt on the very
notion. His justly famous and truly elegant “Gap Theorem” and his development
– with his student, Janis Barzdins – of the “crossing sequence” method were
groundbreaking in this regard. His paper on “auto-reducibility” provided a turn-
ing point in abstract complexity. In the USSR, these works quickly became very
influential, and, in the US, complexity took over as the central preoccupation of
theoretical computer scientists.

Early on, Trakhtenbrot recognized that the classic conceptual view of compu-
tation as a sequential process does not suffice to capture the operation of modern
computers. Computer networks, reactive systems, and concurrent computation
are all not describable in traditional terms. Accordingly, many of his more recent
works deal with various aspects of concurrency, including data flow networks,
Petri nets, partial-order versus branching-time equivalence, bi-simulation, real-
time automata, and hybrid systems. His operative style remains classic Trakht-
enbrot: patient in-depth survey of existing literature, uncompromising evaluation
and critical comparison of existing approaches, followed by his own extraordinary
and prescient contributions.

The list of topics upon which Trakhtrenbrot has made a lasting impression is
breathtaking in its scope: decidability problems in logic, finite automata theory,
the connection between automata and monadic second-order logic, complexity
of algorithms, abstract complexity, algorithmic logic, probabilistic computation,
program verification, the lambda calculus and foundations of programming lan-
guages, programming semantics, semantics and methodology for concurrency,
networks, hybrid systems, and much more. Despite this prolificacy of subjects,
the entire body of his work demonstrates the same unique melding of supreme
mathematical prowess, with profound depth and thoroughness.

A roll call of Trakhtenbrot’s students reads like the “Who’s Who” of comput-
er science in the USSR. (See his academic genealogy in the first chapter of this
volume.) Trakhtenbrot was instrumental in the building of the computer science
department in Novosibirsk, he collaborated with computer designers in the So-
viet Union, and he helped in the establishment of a department of theoretical

Preface XI

informatics in Jena.2 The Latvian school of computer science flourished under
the tutelage of his students, Brazdins and Rūsiņs̆ Freivalds. In 1980, he emigrated
from the Soviet Union and joined Tel Aviv University’s School of Mathematical
Sciences. There he was instrumental in the growth phase of its computer science
department, now a School of Computer Science in its own right, a leading aca-
demic center in the Mideast. Though nominally long-retired, he remains vitally
active.

Trakhtenbrot is a master pedagogue and expositor. He consistently sets aside
time and effort for writing surveys and textbooks. His book, Algorithms and Auto-
matic Computing Machines, first written in Russian in 1957, was translated into
English and a dozen other languages, and is universally recognized as the first
important text in the field. Two major contributions to computer-science educa-
tion were his 1965 book, Introduction to the Theory of Finite Automata, and his
1973 book on Finite Automata (Behavior and Synthesis), both widely translated.
A whole generation of computer scientists was shaped by his books. Moreover,
he played the key rôle in the dissemination of Soviet computer science research
in the West, writing surveys on such topics as Soviet approaches to brute force
search (perebor). (See his publication list in the first chapter of this volume.)

On several occasions, Trakhtenbrot has treated his readers to glimpses of his
life under totalitarian rule. (See Chapter 2 of this volume for a detailed scientific
autobiography.) While in the USSR, he was barred from attending most of the
international congresses to which he had been invited. He suffered under the last
stages of the Stalin era, plagued as it was with persecution and victimization of
“idealists”, “cosmopolitans”, etc. Philosophers and logicians of the like of Russel,
Carnap, and Tarski (= Tajtelbaum) were taboo, and anyone who respected
their ideas was suspect, especially Jews like Trakhtenbrot.3 His contributions
are astounding under any measure; how much more so when consideration is
given to the fact that he worked under the most adverse conditions: persecution,
lack of support, almost no access to foreign meetings, and so on. His undaunted
spirit should serve as an inspiration to the rest of the world.

Celebrating his Birthdays

Zeroeth Birthday

Boris Abramovich Trakhtenbrot was born on 20 February 1921 (Gregorian), ac-
cording to official records, in Brichevo, a small North Bessarabian shtetl (present-
ly in Moldova).

2 The Friedrich Schiller University in Jena bestowed a degree of doctor honoris causa
on Trakhtenbrot in October 1997.

3 Boaz and other “idealists” did receive the support and encouragement of enlightened
people like Andrei Kolmogorov, Alexey Lyapunov, Piotr Novikov (his advisor), An-
drey Markov, and Sophia Yanovskaya, all great scientists whom Trakhenbrot always
mentions with deep affection and gratitude.

XII Preface

Sixtieth Birthday

In the summer of 1979, Zdzislaw Pawlak proposed “to publish a collection of
contributions by outstanding scientists in the field of theoretical computer sci-
ence and foundations of mathematics in order to honor the 60th anniversary of
Professor B. A. Trachtenbrot from Novosibirsk.” He, along with Calvin Elgot,
Erwin Engeler, Maurice Nivat, and Dana Scott were to edit the festschrift. How-
ever, with the untimely death of Cal Elgot, and Boaz’s impending immigration
to Israel with his family,4 the project had to be abandoned. Boaz arrived in
Israel on 26 December 1980.

Seventieth Birthday

In June 1991, Zvi Galil, Albert Meyer, Amir Pnueli, and Amiram Yehudai orga-
nized “An International Symposium on Theoretical Computer Science in honor
of Boris A. Trakhtenbrot on the occasion of his Retirement and Seventieth Birth-
day”. The event took place in Tel Aviv and brought together many of the world’s
foremost scientists, including: Samson Abramsky, Georgy Adelson-Velsky, Arnon
Avron, Val Breazu-Tannen, Manfred Broy, Bob Constable, Nachum Dershowitz,
Zvi Galil, Rob van Glabbeek, Yuri Gurevich, Leonid Levin, Jean-Jacques Lévy,
Gordon Plotkin, Amir Pnueli, Vaughan Pratt, Alex Rabinovich, Wolfgang Reisig,
Vladimir Sazanov, Eli Shamir, Michael Taitslin, and Klaus Wagner. At that time,
Albert Meyer eloquently highlighted his enormous debt to Trakhtenbrot, the sci-
entist, and appreciation of Trakhtenbrot, the person, a debt and appreciation
that countless other scientists share.

On this occasion, very many well-wishers who could not attend sent their
blessings by other means:

– Bob McNaughton wrote, “We were colleagues in research. . . since our work
in logic and automata theory in the 1960’s was so close. Since very early in
my own career (dating back to 1950) and continuing to the present I have
always had reason to admire your contributions.”

– Vitali Milman: “The name of Trakhtenbrot I heard first time in the 60s when
I was still a student in Kharkov. We studied his book on “Automata” and
considered him to be a “father” of Russian computer science. I was very
proud when in ’80 it was said he will join our department, and was very
happy that he spent the last decade working with us.”

– Robin Milner said, “You are one of the founders of our subject. Every time a
new decade of computer scientists come along, they re-invent the subject. I
hope you stay with us a long time, to make sure that we re-invent it properly.”

4 We would be remiss if we did not take this opportunity to acknowledge the crucial
rôle of Berta Isakovna (née Rabinovich), Boaz’s wife of many years, who has lovingly,
selflessly, and steadfastly supported Boaz “through fire and water”. Berta was also a
motherly figure for his many students, whom she always welcomed warmly and for
whom she invariably prepared the most delicious meals.

Preface XIII

– John Shepherdson wrote to Albert Meyer, saying, “Please tell Boris that, for
over 40 years I have enjoyed reading his highly significant and beautifully
written papers. I would like to thank him for the help he has given me in
correspondence. . . . I regard him not only as one of the most significant and
elegant logicians of the generation after Goedel, Church and Kleene, but also
as a very warm, friendly and helpful human being.”

– Dana Scott: “My heartfelt thanks for all the scientific contributions you have
made over your career. . . . Your discoveries and insights, and your encourage-
ment and stimulation of others have been exceptional and invaluable. You
have lots of admirers.”

– Jerzy Tiuryn: “You are one of the unquestionable fathers of theoretical com-
puter science in the USSR.”

For details of that event, see the report by Val Breazu-Tannen in SIGACT
News (vol. 22, no. 4, Fall 1991, pp. 27–32). The hope was that the talks at
this meeting would lead to a festschrift, but – despite concerted efforts at the
time – that hope never materialized. Still, Trakhtenbrot’s colleagues and for-
mer students from Latvia did publish a volume, “Dedicated to Professor B. A.
Trakhtenbrot, father of Baltic Computer Science, on the occasion of his 70th
birthday,” entitled, Baltic Computer Science, in this same series (Lecture Notes
in Computer Science, vol. 502, Springer-Verlag, May 1991).

Eightieth Birthday

In July 2001, in honor of his eightieth birthday and his “very important contri-
bution to Formal Languages and Automata”, Trakhtenbrot was invited to give
a keynote address on “Automata, Circuits, and Hybrids: Facets of Continuous
Time” at the joint session of the International EATCS Colloquium on Automata,
Languages and Programming (ICALP) and of the ACM Symposium on Theory
of Computing (SIGACT), held on the island of Crete.

Eighty-Fifth Birthday

On Friday, 28 April 2006, the School of Computer Science at Tel Aviv University
held a “Computation Day Celebrating Boaz (Boris) Trakhtenbrot’s Eighty-Fifth
Birthday”. At a gala birthday party in Jaffa, some of the messages we received
were read, including those from Samson Abramsky, Leonid Levin (“Allow me,
from afar, to express my great admiration of deep insight and technical power
that was always so characteristic of your work, and that have been combined
with human decency and fairness that was not always easy to find in the en-
vironment in which you spent a big part of your life.”), Maurice Nivat, Robin
Milner, Grisha Mints (“Your name is known to every [even beginning] logician.”),
Gordon Plotkin, Dana Scott, Wolfgang Thomas (“I would like to express my feel-
ings of deep thanks for your guidance of our research community, and also of
amazement about your unfailing energy which pushed us over many decades.”),
and Igor Zaslavsky together with his Armenian colleagues (“We, the Armenian

XIV Preface

mathematical logicians and computer scientists, congratulate you with profound
reverence on your 85th anniversary. . . . Your human nobleness and total devotion
to science always served as an inspiring example for us.”).

The scientific program included the following lectures:

1. “Introductory Remarks”, Dany Leviatan (Rector, Tel Aviv University).
2. “Provably Unbreakable Encryption in the Limited Access Model”, Michael

Rabin (Hebrew University and Harvard University).
3. “Verification of Software and Hardware”, Zohar Manna (Stanford University).
4. “Why Sets? On Foundations of Mathematics and Computer Science”, Yuri

Gurevich (Microsoft, Redmond).
5. “Models of Bounded Complexity in Describing Decidable Classes in Predicate

Logics with Time”, Anatol Slissenko (Université de Paris 12).
6. “Linear Recurrences for Graph Polynomials”, Janos Makowsky (Technion).
7. “Unusual Methods for Executing Scenarios”, David Harel (Weizmann Insti-

tute).
8. “The Church Synthesis Problem with Parameters”, Alex Rabinovich (Tel

Aviv University).
9. “Concluding Remarks”, Boaz Trakhtenbrot (Tel Aviv University).

This Volume

As a follow-up to that 85th birthday event, we asked Boaz’s students and col-
leagues (those who did not attend, as well as those who did) to contribute to
a volume in his honor. This book is the result of that effort. More precisely, it
is the culmination of an effort that has been brewing for almost thirty years,
sometimes on a high flame, other times on low.

The collection of articles in this book begins with historical overviews by
Trakhtenbrot and Albert Meyer. These are followed by 34 technical contributions
(each of which was reviewed by one or two readers), which cover a broad range
of topics:5

– Foundations: Papers by Arnon Avron; by Andreas Blass and Yuri Gurevich;
and by Udi Boker and Nachum Dershowitz.

– Mathematical logic: Papers by Sergei Artemov; by Matthias Baaz and
Richard Zach; by Moti Gitik and Menachem Magidor; and by Grigori Mints.

– Logics for computer science: Papers by Johan van Benthem and Daisuke
Ikegami; by Dov Gabbay; by Daniel Lehmann; by Alexander Rabinovich
(student of Boaz) and Amit Shomrat; and by Moshe Vardi.

– Mathematics for computer science: Papers by Jan Bergstra, Yoram
Hirshfeld, and John Tucker; by Leonid Levin; by Johann Makowsky and
Eldar Fischer; and by Boris Plotkin and Tatjana Plotkin.

5 Our assignment of authors to categories is of necessity somewhat haphazard, because
many of the contributions themselves span more than one topic.

Preface XV

– Automata, formal languages, and logic: Papers by Michael Dekhtyar
(student) and Alexander Dikovsky; by Rūsiņs̆ Freivalds (student); by Michael
Kaminski and Tony Tan; and by Wolfgang Thomas.

– Asynchronous computation: Papers by Irina Lomazova (student); by
Antoni Mazurkiewicz; and by Wolfgang Reisig.

– Semantics of programming languages: Papers by David Harel, Shahar
Maoz, and Itai Segall; by Masahito Hasegawa, Martin Hofmann, and Gordon
Plotkin; and by Vladimir Sazonov (student).

– Verification: Papers by Michael Dekhtyar (student), Alexander Dikovsky,
and Mars Valiev (student); by Daniel Leivant; by Oded Maler, Dejan Nick-
ovic, and Amir Pnueli; by César Sánchez, Matteo Slanina, Henny Sipma,
and Zohar Manna; and by Valery Nepomniaschy (student).

– Software engineering: Papers by Mikhail Auguston (“grand-student” of
Boaz) and Mark Trakhtenbrot (son of Boaz); and by Janis Barzdins (stu-
dent), Audris Kalnins (grand-student), Edgars Rencis, and Sergejs Rikacovs.

We offer this modest volume to Boaz in honor of his birthday and in recog-
nition of his grand contributions to the field.

5 December 2007
25 Kislev 5768

������ ����
 �

Arnon Avron
Nachum Dershowitz

Alexander Rabinovich
Tel Aviv

Organization

Reviewers

The editors were aided by the following individuals, to whom they are most
grateful:

Gul Agha Rajesh Karmani
Matthias Baaz Menachem Kojman
Johan van Benthem Sumit Nein
Andreas Blass Wojciech Penczek
Stan Burris Wolfgang Reisig
Bruno Courcelle Shmuel Tyshberowitz
Yuri Gurevich Moshe Vardi
Yoram Hirshfeld Greta Yorsh
Tirza Hirst Anna Zamansky

About the Cover

The cover illustration is from Architectura civil, recta y obliqua, considera-
da y dibuxada en el Templo de Jerusalem (Viglevani [= Vigevano], 1678) by
Juan Caramuel y Lobkowitz (b. Madrid, 1606). It is a rendition of the Jachin
(right) and Boaz (left) ornamental bronze columns of King Solomon’s Temple in
Jerusalem, cast by Hiram of Tyre (I Kings 7:13–22), and is reproduced courtesy
of Antiquariat Turszynski, Herzogstr. 66, 80803 München, Germany.

Table of Contents

From Logic to Theoretical Computer Science – An Update 1
Boris A. Trakhtenbrot

Reminiscences . 39
Albert R. Meyer

Boris A. Trakhtenbrot: Academic Genealogy and Publications 46
Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich

Symmetric Logic of Proofs . 58
Sergei Artemov

Synthesis of Monitors for Real-Time Analysis of Reactive Systems 72
Mikhail Auguston and Mark Trakhtenbrot

A Framework for Formalizing Set Theories Based on the Use of Static
Set Terms . 87

Arnon Avron

Effective Finite-Valued Approximations of General Propositional
Logics . 107

Matthias Baaz and Richard Zach

Model Transformation Languages and Their Implementation by
Bootstrapping Method . 130

Janis Barzdins, Audris Kalnins, Edgars Rencis, and Sergejs Rikacovs

Modal Fixed-Point Logic and Changing Models . 146
Johan van Benthem and Daisuke Ikegami

Fields, Meadows and Abstract Data Types . 166
Jan Bergstra, Yoram Hirshfeld, and John Tucker

Why Sets? . 179
Andreas Blass and Yuri Gurevich

The Church-Turing Thesis over Arbitrary Domains 199
Udi Boker and Nachum Dershowitz

Generalized Categorial Dependency Grammars . 230
Michael Dekhtyar and Alexander Dikovsky

Temporal Verification of Probabilistic Multi-Agent Systems 256
Michael I. Dekhtyar, Alexander Ja. Dikovsky, and Mars K. Valiev

XX Table of Contents

Linear Recurrence Relations for Graph Polynomials 266
Eldar Fischer and Johann A. Makowsky

Artin’s Conjecture and Size of Finite Probabilistic Automata 280
Rūsiņš Freivalds

Introducing Reactive Kripke Semantics and Arc Accessibility 292
Dov M. Gabbay

On Partially Wellfounded Generic Ultrapowers . 342
Moti Gitik and Menachem Magidor

Some Results on the Expressive Power and Complexity of LSCs 351
David Harel, Shahar Maoz, and Itai Segall

Finite Dimensional Vector Spaces Are Complete for Traced Symmetric
Monoidal Categories . 367

Masahito Hasegawa, Martin Hofmann, and Gordon Plotkin

Tree Automata over Infinite Alphabets . 386
Michael Kaminski and Tony Tan

Connectives in Cumulative Logics . 424
Daniel Lehmann

Reasoning in Dynamic Logic about Program Termination 441
Daniel Leivant

The Grace of Quadratic Norms: Some Examples . 457
Leonid A. Levin

Nested Petri Nets for Adaptive Process Modeling . 460
Irina A. Lomazova

Checking Temporal Properties of Discrete, Timed and Continuous
Behaviors . 475

Oded Maler, Dejan Nickovic, and Amir Pnueli

Token-Free Petri Nets . 506
Antoni Mazurkiewicz

Proof Search Tree and Cut Elimination . 521
Grigori Mints

Symbolic Verification Method for Definite Iterations over Tuples of
Altered Data Structures and Its Application to Pointer Programs 537

Valery Nepomniaschy

Categories of Elementary Sets over Algebras and Categories of
Elementary Algebraic Knowledge . 555

Boris Plotkin and Tatjana Plotkin

Table of Contents XXI

Selection and Uniformization Problems in the Monadic Theory of
Ordinals: A Survey . 571

Alexander Rabinovich and Amit Shomrat

The Scholten/Dijkstra Pebble Game Played Straightly, Distributedly,
Online and Reversed . 589

Wolfgang Reisig

The Reaction Algebra: A Formal Language for Event Correlation 596
César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna

On Natural Non-dcpo Domains . 620
Vladimir Sazonov

Church’s Problem and a Tour through Automata Theory 635
Wolfgang Thomas

From Monadic Logic to PSL . 656
Moshe Y. Vardi

Author Index . 683

From Logic to Theoretical Computer Science –

An Update�

Boris A. Trakhtenbrot

School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel

1 Foreword

In October 1997, whilst touching up this text, exactly 50 years had past since
I was accepted for graduate studies under P.S. Novikov. I started then to study
and do research in logic and computability, which developed, as time will show,
into research in Theoretical Computer Science (TCS).

After my emigration (in December 1980) from the Soviet Union (SU), I was
encouraged by colleagues to experience the genre of memoirs. That is how [67,68]
appeared, and more recently [72], conceived as contributions to the history of
TCS in the SU. The present paper is intended as a more intimate perspective on
my research and teaching experience. It is mainly an account of how my interests
shifted from classical logic and computability to TCS, notably to Automata and
Computational Complexity. Part of these reminiscences, recounting especially
the scientific, ideological and human environment of those years (roughly 1945–
67), were presented earlier at a Symposium (June 1991) on the occasion of my
retirement. Occasionally, I will quote from [67,68,72], or will refer to them.

Before starting the main narrative I would like to recall some important cir-
cumstances which characterized those years.

First of all, the postwar period was a time of ground-breaking scientific devel-
opments in Computability, Information Theory, and Computers. That is widely
known and needs no comment. The subjects were young and so were their
founders. It is amazing that at that time the giants, Church, Kleene, Turing,
and von Neumann, were only in their thirties and forties!

Now, about the specific background in the Soviet Union.
The genealogical tree of TCS in the SU contains three major branches, rooted

in A.N. Kolmogorov (1903–87), A.A. Markov (1903–79) and P.S. Novikov (1901–
75). In those troublesome times, these famous mathematicians also had the
reputation of men with high moral and democratic principles. Their scientific
interests, authority and philosophies influenced the development of mathemati-
cal logic, computability for several generations, and subsequently TCS in the SU.

Whereas Markov and Kolmogorov contributed directly to TCS, Novikov’s
involvement occurred through his strong influence on his disciples and collabo-
rators. The most prominent of them – A.A. Lyapunov (1911–1973) – became a
� This chapter is an expanded and updated version of “From logic to theoretical com-

puter science”, which appeared in People and Ideas in Theoretical Computer Science,
Cristian S. Calude, ed., Springer-Verlag, Singapore, pp. 314–342, 1998.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 1–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B.A. Trakhtenbrot

Fig. 1. Three generations of scientists (from left to right): A. Slissenko, A.A. Markov,
Jr., B.A. Kushner, B.A. Trakhtenbrot (from the archive of the Markov family)

widely recognized leader of “Theoretical Cybernetics” – the rubric which covered
at that time most of what is considered today to belong to TCS.

As a matter of fact, for many offspring of those three branches, including
myself, the perception of TCS was as of some kind of applied logic, whose con-
ceptual sources belong to the theoretical core of mathematical logic. The affilia-
tion with Logic was evident at the All-Union Mathematical Congress (Moscow,
1956), where Theoretical Cybernetics was included in the section on mathemat-
ical logic. Other examples: books on Automata [17,13] appeared in the series
Mathematical Logic and Foundations of Mathematics; also, my first papers on
Computational Complexity were published in Anatoly I. Maltsev’s (1909-67)
journal Algebra and Logic.

The early steps in TCS coincided with attacks of the official establishment
on various scientific trends and their developers. In particular, Cybernetics was
labeled a “pseudo-science”, and Mathematical Logic – a “bourgeois idealistic
distortion”. That was the last stage of the Stalin era with persecution and vic-
timization of “idealists”, “cosmopolitans”, etc. The survival and the long overdue
recognition of Mathematical Logic and Cybernetics is in many respects indebted
to Lyapunov, Markov, Novikov, Kolmogorov and S.A. Yanovskaya (1896–1966).
But even after that, academic controversies often prompted such bureaucratic
repression as the prevention of publications and the denial of degrees. Difficulties

From Logic to Theoretical Computer Science – An Update 3

with publications also happened because of the exactingness and self-criticism
of the authors and/or their mentors, or because the community was far from
prepared to appreciate them. I told about that in [67] and [68].

Above, the emphasis was on the Soviet side; now, some remarks on the inter-
national context in which research in TCS was conducted in the SU.

The chronology of events reveals that quite a number of ideas and results in
TCS appeared in the SU parallel to, independent of, and sometimes prior to,
similar developments in the West. This parallelism is easy to explain by the fact
that these were natural ideas occurring at the right time. In particular, that
is how comprehensive theories of Automata and of Computational Complexity
emerged in the 50s and 60s; I will elaborate on this subject in the next sections.
But for a variety of reasons, even in those cases where identical or similar re-
sults were obtained independently, the initial motivation, the assessment of the
results and their impact on the development and developers of TCS did not nec-
essarily coincide. In particular, in the SU specific interest in complexity theory
was aroused by discussions on the essence of brute force algorithms (perebor – in
Russian). However, despite this difference in emphasis from the motivating con-
cerns of the American researchers, after a few years these approaches virtually
converged.

In the past, the priority of Russian and Soviet science was constantly pro-
pounded in Soviet official circles and media. This unrestrained boasting was
cause for ironic comments in the West and for self-irony at home. But, as a mat-
ter of fact, the West was often unaware of developments in the SU, and some of
them went almost entirely unnoticed. To some extent this was a consequence of
the isolation imposed by language barriers and sociopolitical forces. In particu-
lar, travels abroad were a rare privilege, especially to the “capitalist” countries.
My first trip abroad, for example, took place in 1967, but visits to the West
became possible only in 1981 after my emigration to Israel.

Against this unfavorable background it is worth mentioning also the encour-
aging events and phenomena, which eased the isolation.

The International Mathematical Congress in Moscow (1966) was attended by
the founders of our subject, namely, Church, Kleene, Curry, Tarski and other
celebrities. It was an unforgettable and moving experience to have first-hand
contact with these legendary characters. Later, Andrey P. Ershov (1931–1988)
managed to organize a series of International Symposia on “Theoretical Pro-
gramming”, attended also by people from the West, and among them F. Bauer,
E. Dijkstra, E. Engeler, C.A.R. Hoare, D. Knuth, J. McCarthy, R. Milner,
M. Nivat, D. Park, M. Paterson, J. Schwartz, and A. van Wijngaarden. For
many years, A. Meyer used to regularly send me proceedings of the main TCS
symposia, a way to somehow compensate for the meetings my colleagues and my-
self were prevented from attending. This was part of our unusual and long-term
contact by correspondence, which – after my emigration – switched to direct col-
laboration. All this reinforced our sense of belonging to the international TCS
community.

4 B.A. Trakhtenbrot

2 Early Days

2.1 Brichevo

I was born in Brichevo, a village in Northern Bessarabia (now Moldova). Though
my birth place has nothing to do with my career or with other events I am going
to write about, let me begin with the following quotation:

Brichevka, a Jewish agricultural settlement, founded in 1836. According
to the general (1897) census of the population – 1644 inhabitants, 140
houses. . . (from vol. 5 of The Jewish Encyclopedia, St. Petersburg, 1912;
translated from Russian).

Among the first settlers were Eli and Sarah Helman, the grandparents of my
maternal grandfather. World War II brought about the collapse of Brichevo (or
Brichevka). The great majority of the population did not manage to flee and were
deported to the notorious Transnistria camps; only a small number survived and
they dispersed over countries and continents. For years I used “Brichevo” as a
reliable password: easy for me to remember, apparently impossible for outsiders
to guess, and still a way to retain the memory of a vanished community.

After completing elementary school in Brichevo I attended high school in the
neighboring towns of Belts and Soroka, where I was fortunate to have very good
teachers of mathematics. My success in learning, and especially in mathematics,
was echoed by the benevolence of the teachers and the indulgence of my fel-
low pupils. The latter was even more important to me, since it to some degree
compensated for the discomfort and awkwardness caused by my poor vision.

2.2 Kishinev

In 1940 I enrolled in the Faculty of Physics and Mathematics of the newly-
established Moldavian Pedagogical Institute in Kishinev. The curriculum covered
a standard spectrum of teachers’ training topics. In particular, mathematical
courses presented basics in Calculus, Linear Algebra and Algebra of Polynomials,
Analytical Geometry, Projective Geometry, Foundations of Geometry (including
Lobachevski Geometry), Elements of Set Theory and Number Theory.

On June 22, 1941, Kishinev (in particular the close neighbourhood of our
campus) was bombed by German air forces. In early July, I managed to escape
from the burning city. Because of vision problems, I was released from military
service and, after many mishaps, arrived as a refugee in Chkalov (now Oren-
burg) on the Ural River. Here, I enrolled in the local pedagogic institute. A year
later we moved to Buguruslan in the Chkalov region, to where the Kishinev In-
stitute was evacuated to in order to train personnel for the forthcoming return
home as soon as our region would be liberated. Almost all the lecturers were
former high school teachers – skilled people whose interests lay in the pedagogic
aspects of mathematics and physics. (There were no recipients of academic de-
grees among them, but one of the instructors in the Chkalov institute bore the
impressive name Platon Filosofov). Nikolai S. Titov, a former Ph.D. student of

From Logic to Theoretical Computer Science – An Update 5

the Moscow University, who happened to flee to Buguruslan, lectured on Set
Theory. I was deeply impressed by the beauty and novelty of this theory. Un-
fortunately, this was only a transient episode in those hard and anxious days.
Actually, during the war years 1941–1944, my studies were irregular, being com-
bined with employment in a felt boot factory, a storehouse and, finally, in the
Kuybyshev-Buguruslan Gas Trust.

In August 1944 the institute was evacuated to Kishinev and I returned to
my native regions for a position in the Belts college to train elementary school
teachers. Only a year later did I take my final examinations and qualify as a
high school mathematics teacher. That was my mathematical and professional
background in September 1945 when (already at the age of 24 1

2) I decided to
take a chance and seriously study mathematics.

2.3 Chernovtsy

I enrolled at the University of Chernovtsy (Ukraine) to achieve the equivalent
of a master’s degree in mathematics. In that first postwar year the university
was involved in the difficult process of restoration. Since my prior education
covered only some vague mathematical-pedagogical curriculum with examina-
tions partially passed without having attended lectures, I did not know much to
start off with. But there were only a few students and the enrollment policy of
the administration was quite liberal. There were also only a few academic staff
in our Faculty of Physics and Mathematics and soon I became associated with
Alexander A. Bobrov, a prominent character on the general background. A.A.
(b. 1912), who completed his Ph.D. thesis in 1938 under Kolmogorov, gave an
original course in Probabilities. The distinguishing quality was not so much in
the content of the course as in his style (completely new to me) of teaching and
of involving the audience. A.A. did not seem to be strongly committed to his
previously prepared lectures; during class he would try to examine new ideas and
to improvise alternative proofs. As such trials did not always succeed, he would
not hesitate to there and then loudly criticize himself and appeal to the audience
for collaboration. This challenging style was even more striking in a seminar he
held on Hausdorff’s famous book on Set Theory, with the participation of both
students and academic staff. Due to the “Bobrovian” atmosphere dominating
the seminar, I started to relish the idea of research in this fascinating area. A.A.
also helped me secure a job in the newly founded departmental scientific library.
My primary task was to take stock of the heaps of books and journals extracted
earlier from basements and temporary shelters, and to organize them into some
bibliographical service. I remember reverently holding volumes of the Journal
fuer reine und angewandte Mathematik with authentic papers and pictures of
Weierstrass and other celebrities. As I later understood, the mathematical library
was exclusively complete, and, as a matter of fact, disposed of all the important
journals before WWII. As there was only a handful of graduate students it soon
turned out that my library was not in much demand – in truth, for days there
were no visitors at all; so most of the time I shared the roles of supplier and
user of the library services. Through self study I mastered a significant amount

6 B.A. Trakhtenbrot

of literature and reached some scientific maturity. I soon identified Fundamenta
Mathematicae to be the journal closest to my interests in Descriptive Set Theory.
All the volumes, starting with the first issue dated 1921, were on my table and
I would greedily peruse them.

After considering some esoteric species of ordered sets, I turned to the study
of delta-sigma operations, a topic promoted by Andrei N. Kolmogorov and also
tackled in Fundamenta. At this stage, Bobrov decided that it was the right time
to bring me together with the appropriate experts and why not with Kolmogorov
himself! In the winter of 1946 Kolmogorov was expected to visit Boris V. Gne-
denko (1912–1995) at the Lvov university. So far so good, except that at the last
moment Kolmogorov canceled his visit. Gnedenko did his best to compensate
for that annoying failure. He showed me exclusive consideration, invited me to
lunch at his home and attentively inquired about all my circumstances. It was
the first time that I had talked to a full professor and I felt somehow shy in
his presence and in the splendour of his dwelling. B.V. listened to me patiently
and, I guess, was impressed not as much by my achievements (which were quite
modest, and after all, beyond the field of his main interests) but by my enthu-
siastic affection for Descriptive Set Theory. Anyway, he explained to me that
for the time-being Kolmogorov had other research preferences and it would be
very useful to contact Piotr S. Novikov and Alexei A. Lyapunov who, unlike
Kolmogorov and other descendants of the famous Lusin set-theoretical school,
were mostly still active in the field.

During this period I met Berta I. Rabinovich, who was to become my wife.
In the summer of 1946, I visited Moscow for the first time. Because it was

vacation time and since no prior appointments had been set up, it was very diffi-
cult to get hold of people. Nevertheless, I managed to see Kolmogorov for a short
while at the university and to give him my notes on delta-sigma operations. He
was in a great hurry, so we agreed to meet again in a couple of weeks on my way
back home; unfortunately this did not work out. Novikov was also unreachable,
being somewhere in the countryside. I was more fortunate with A.A. Lyapunov,
in whose house I spent a wonderful evening of scientific discussions alternated
with tea-drinking with the whole family. A.A. easily came to know my case and
presented me with a deeper picture of the Moscow set-theoretical community
with a stress on the current research done by Novikov and by himself. He offered
to inform Novikov in detail about my case and suggested that I visit Moscow at
a more appropriate time for further discussions.

My second trip to Moscow was scheduled for May 1947 on the very eve of my
graduation from the Chernovtsy University, when, beyond pure mathematics,
the question of my forthcoming (if any) Ph.D. studies was on the agenda. All
in all I had to stay in Moscow for at least a couple of weeks and that required
appropriate logistics – a very nontrivial task at that time, in particular, because
of the food rationing system and the troublesome train connections. Alas, at the
first connection of the Lvov railroad station, local pickpockets managed to cut
out the pocket with all my money. Despite this most regrettable incident, the
trip ultimately turned out to be quite successful. The meetings with Novikov

From Logic to Theoretical Computer Science – An Update 7

were very instructive and warm. And again, as in the case of the Lyapunovs,
the atmosphere in the Novikov family was friendly and hospitable. Occasionally,
Novikov’s wife, Ludmila V. Keldysh (1904–1976), a prominent researcher in set
theory in her own right, as well as A.A. Lyapunov, would also participate in the
conversations. Counterbalancing my interests and efforts towards Descriptive
Set Theory, Novikov called my attention to new developments I was not aware
of in provincial Chernovtsy. He pointed to the path leading from a handful of
hard set theoretical problems to modern concepts of mathematical logic and
computability theory. He also offered his support and guidance should I agree to
follow this path. I accepted Novikov’s generous proposal, although with a sense
of regret about my past dreams about Descriptive Set Theory.

Novikov held a permanent position at the Steklov Mathematical Institute of the
USSR Academy. At that time, departments of mathematical logic did not yet exist
in the USSR, but Novikov, together with Sofia A. Yanovskaya, had just started a
research seminar “Mathematical Logic and Philosophical problems of Mathemat-
ics” in Moscow University, unofficially called The Bolshoy (great) Seminar. So, it
was agreed that wherever other options might arise, Novikov would undertake my
supervision and would do his best to overcome bureaucratic barriers.

3 Ph.D. Studies

In October 1947, I began my Ph.D. studies at the Kiev Mathematical Institute
of the Ukrainian Academy of Sciences. The director of the institute, Mikhail A.
Lavrentiev (1900–81), approved my petition to specialize in mathematical logic
under P.S. Novikov and agreed to grant me long-term scientific visits to Moscow
where I would stay with my advisor.

In Moscow, the Bolshoy seminar was then the main medium in which research
and concomitant activities in that area were conducted. In particular, it was the
forum where mathematical logicians from the first post-war generation (mostly
students of P.S. Novikov, S.A. Yanovskaya and A.N. Kolmogorov) joined the
community, reported on their ongoing research, and gained primary approval of
their theses; and that is also what happened to me.

The atmosphere dominating the meetings of the seminar was democratic and
informal. Everybody, including the students, felt and behaved at ease without
strong regulations and formal respect for rank. I was happy to acquire these
habits and later to promote them at my own seminars.

Actually the seminar was the successor of the first seminar in the USSR
for mathematical logic, which was founded by Ivan I. Zhegalkin (1869–1947).
After Zhegalkin’s death it became affiliated with the Department of History of
Mathematical Sciences of the Moscow University, whose founder and head was
Yanovskaya. Its exceptional role in the development of mathematical logic in the
USSR is a topic of its own and I will touch on it only very briefly.

The seminar usually engaged in a very broad spectrum of subjects from math-
ematical logic and its applications as well as from foundations and philosophy
of mathematics. Here are some of the topics pursued by the senior participants:

8 B.A. Trakhtenbrot

Novikov – consistency of set-theoretical principles; Yanovskaya – philosophy of
mathematics and Marx’s manuscripts; Dmitri A. Bochvar (a prominent chemist
in his main research area) – logic and set-theoretical paradoxes; Victor I. Shes-
takov (professor of physics) – application of logic to the synthesis and analysis
of circuits.

Among the junior participants of the seminar I kept in close contact with the
three Alexanders:

Alexander A. Zykov (1922–), also a Ph.D. student of Novikov, was at that
time investigating the spectra of first order formulas. A.A. called my attention
to Zhegalkin’s decidability problem, which became the main topic of my Ph.D.
thesis. He also initiated the correspondence, with me sending lengthy letters to
Kiev with scientific Moscow news. This epistolary communication, followed later
by correspondence with Kuznetsov and Sergey V. Yablonski (1925–1998). was a
precious support in that remote time.

Alexander V. Kuznetsov (1927–87) was the secretary of the Bolshoy Seminar
and conducted regular and accurate records of all meetings, discussions and prob-
lems. For years he was an invaluable source of information. For health reasons,
A.V. did not even complete high school studies. As an autodidact in extremely
difficult conditions, he became one of the most prominent soviet logicians. I had
the good fortune to stay and to collaborate with him.

Alexander S. Esenin-Volpin (1924–) (the son of the famous Russian poet
Sergey A. Esenin) was a Ph.D. student in topology under Pavel A. Alexan-
drov, but he early on became involved in logic and foundations of mathematics.
A.S. became most widely known as an active fighter for human rights, and al-
ready in the late forties the KGB was keeping an eye on him. In the summer of
1949, we met in Chernovtsy, where he had secured a position after defending his
thesis. Shortly thereafter he disappeared from Chernovtsy and we later learned
that he had been deported to Karaganda (Kazakhstan). A couple of years later,
I received a letter from him through his mother. I anxiously opened the let-
ter, fearful of what I was about to learn. The very beginning of the letter was
characteristic of Esenin-Volpin’s eccentric character – “Dear Boris, let f be a
function. . . ”.

During the years of my Ph.D. studies (1947–50), I actively (though not regu-
larly) participated in the seminar meetings. Also the results which made up my
thesis, “The decidability problem for finite classes and finiteness definitions in
set theory” were discussed there. S. A. Yanovskaya offered the official support of
the department in the future defense at the Kiev Institute of Mathematics; the
other referees were A. N. Kolmogorov, A. A. Lyapunov and B. V. Gnedenko.

My thesis [43] included the finite version of Church’s Theorem about the
undecidability of first order logic: the problem of whether a first order formula
is valid in all finite models is, like the general validity problem, undecidable,
but in a technically different way. The novelty was in the formalization of the
algorithm concept. Namely, I realized that, in addition to the process of formal
inference, the effective process of (finite) model checking could also be used
as a universal approach to the formalization of the algorithm concept. This

From Logic to Theoretical Computer Science – An Update 9

observation anticipated my future concern with constructive processes on finite
models.

Other results of the thesis which are seemingly less known, deal with the
connection between deductive incompleteness and recursive inseparability.

In 1949 I proved the existence of pairs of recursively enumerable sets which
are not separable by recursive sets. I subsequently learned that P.S. Novikov
had already proved this, but, as usual, had not taken the trouble to publish
what he considered to be quite a simple fact. (Note, that in 1951, Kleene who
independently discovered this fact, published it as “a symmetric form of Godel’s
theorem”.) In the thesis I showed that the recursive inseparability phenomenon
implies that the means of any reasonably defined set theory are not enough to
answer the question of whether two different finiteness definitions are equivalent.
This incompleteness result was also announced in my short note [42] presented
by A. N. Kolmogorov to the Doklady, but after Novikov’s cool reaction to “in-
separability”, I refrained from explicitly mentioning that I had used these very
techniques. Clearly, A. N. had forgotten that these techniques were in fact de-
veloped in the full text of my thesis and he later proposed the problem to his
student Vladimir A. Uspenski (1930–) . Here is a quotation from History of
Mathematics [40, p. 446]: “A. N. Kolmogorov pointed to the possible connection
between the deductive incompleteness of some formal systems and the concept
of recursive inseparability (investigated also by Trakhtenbrot). V. A. Uspenski
established (1953) results, which confirm this idea. . . .”

Those early years were a period of fierce struggle for the legitimacy and sur-
vival of mathematical logic in the USSR. Therefore the broad scope of the agen-
das on the Bolshoy seminar was beneficial not only for the scientific contacts
between representatives of different trends, but also, in the face of ideological
attacks, to consolidate an effective defense line and to avoid isolation and dis-
credit of mathematical logic. For us, the junior participants of the seminar, it
was also a time when we watched the tactics our mentors adopted to face or
to prevent ideological attacks. Their polemics were not free of abundant quo-
tations from official sources, controlled self-criticism and violent attacks on real
and imaginary rivals.

It was disturbing then (and even more painful now) to read S.A. Yanovskaya’s
notorious prefaces to the 1947–1948 translations of Hilbert and Ackermann’s
Principles of Mathematical Logic and Tarski’s Introduction to Logic and the
Methodology of Deductive Sciences in which Russell was blamed as a warmonger
and Tarski, as a militant bourgeois. Alas, such were the rules of the game and
S.A. was not alone in that game. I remember the hostile criticism of Tarski’s book
by A.N. Kolmogorov (apparently at a meeting of the Moscow Mathematical
Society): “Translating Tarski was a mistake, but translating Hilbert was the
correct decision,” he concluded. This was an attempt to grant some satisfaction
to the attacking philosophers in order to at least save the translation of Hilbert-
Ackermann’s book. I should also mention that S.A. was vulnerable – she was
Jewish – a fact of which I was unaware for a long time. I learned about it in the

10 B.A. Trakhtenbrot

summer of 1949 during Novikov’s visit to Kiev. He told me then with indignation
about official pressure on him “to dissociate from S.A. and other cosmopolitans”.

However difficult the situation was, we – the students of that time – were not
directly involved in the battle which we considered to be only a confrontation of
titans. As it turned out this impression was wrong.

4 Toward TCS

In December 1950 after the defense of my thesis, I moved to Penza, about 700
km. SE of Moscow, for a position at the Belinski Pedagogical Institute.

At the beginning it was difficult for me to appropriately pattern my behaviour
to the provincial atmosphere so different from the informal, democratic surround-
ings of the places I came from. These circumstances unfavorably influenced my
relationships with some of the staff and students (in particular because of the
constant pressure and quest for high marks). Because of this, though I like teach-
ing, at the beginning, I did not derive satisfaction from it.1 The situation was
aggravated after a talk on mathematical logic I delivered to my fellow math-
ematicians. The aim of the talk entitled “The method of symbolic calculi in
mathematics”, was to explain the need and the use of exact definitions for the
intuitive concepts “algorithm” and “deductive system”. I was then accused of
being “an idealist of Carnap-species”. In that era of Stalin paranoia such accusa-
tions were extremely dangerous. At diverse stages of the ensuing developments,
P.S. Novikov and A.A. Lyapunov (Steklov Mathematical Institute) and to some
degree A.N. Kolmogorov and Alexander G. Kurosh (1908–1971) (Moscow Math-
ematical Society) were all involved in my defense, and S.A. Yanovskaya put my
case on the agenda of the Bolshoy seminar. This story is told in [72].

My health was undermined by permanent tension, fear and overwork (often
more than 20 hours teaching weekly). It goes without saying that for about
two years I was unable to dedicate enough time to research. It was in those
circumstances that only the selfless care and support of my wife Berta saved
me from collapse. I should also mention the beneficial and calming effect of
the charming middle-Russian landscape which surrounded our dwelling. Cycling
and skiing in the nearby forest compensated somewhat for our squalid housing.
(Actually, until our move to Novosibirsk in 1961, we shared a communal flat,
without water and heating facilities, with another family.)

But despite all those troubles I remember this period mainly for its happy
ending. In the summer of 1992, forty years after this story took place, Berta and
I revisited those regions. The visit to Penza was especially nostalgic. Most of the
participants of those events had already passed away. Only the recollections and
of course the beautiful landscape remained.

1 Of course, I also had good students and one of them, Ilya Plamennov (1924–), was
admitted through my recommendation to Ph.D. studies at the Moscow University.
Later he became involved in classified research and was awarded the most prestigious
Lenin Prize (1962).

From Logic to Theoretical Computer Science – An Update 11

Returning to the “Idealism” affair, the supportive messages I received from
Moscow stressed the urgent need for a lucid exposition of the fundamentals
of symbolic calculi and algorithms for a broad mathematical community. They
insisted on the preparation of a survey paper on the topic, which “should be
based on the positions of Marxism-Leninism and contain criticism of the foreign
scientists-idealists”. There was also an appeal to me to undertake this work which
would demonstrate my philosophical ideological loyalty. Nevertheless I did not
feel competent to engage in work which covered both a mathematical subject
and official philosophical demands. These demands were permanently growing
and changing; they could bewilder people far more experienced than myself. So
it seemed reasonable to postpone the project until more favorable circumstances
would allow separation of logic from official philosophy. Indeed, such a change
in attitude took place gradually, in particular due to the growing and exciting
awareness of computers.

In 1956 the journal Mathematics in School published my tutorial paper
“Algorithms and automated problem solving”. Its later revisions and exten-
sions appeared as books which circulated widely in the USSR and abroad [50].
(Throughout the years I was flattered to learn from many people, including
prominent logicians and computer scientists, that this tutorial monograph was
their own first reading on the topic as students and it greatly impressed them.)

Meanwhile, I started a series of special courses and seminars over and above
the official curriculum, for a group of strong students. These studies covered
topics in logic, set theory and cybernetics, and were enthusiastically supported
by the participants. Most of them were later employed in the Penza Computer
Industry where Bashir I. Rameev, the designer of the “Ural” computers, was a
prominent figure. Later, several moved with me to Novosibirsk. They all contin-
ued to attend the seminar after graduating from their studies. We would gather
somewhere in the institute after a full day of work in Rameev’s laboratories
(the opposite end of town), inspired and happy to find ourselves together. Here
is a typical scene – a late winter’s evening, frosty and snowy, and we are clos-
ing our meeting. It is time to disperse into the lonely darkness, and Valentina
Molchanova, a most devoted participant of our seminar, has still to cross the
frozen river on her long walk home.

The publication of my tutorial on algorithms and the above-mentioned work
with students increased my pedagogical visibility to such a degree that I was
instructed by the Education Ministry, to compile the program of a course “Al-
gorithms and Computers” for the pedagogical institutes. Moreover, the Ministry
organized an all-Russian workshop in Penza, dedicated to this topic, with the
participation of P.S. Novikov, A.I. Maltsev, and other important guests from
Moscow.

In Penza there was a lack of scientific literature, not to mention normal con-
tacts with well established scientific bodies. This obvious disadvantage was par-
tially compensated by sporadic trips to Moscow for scientific contacts (and food
supply), as well by correspondence with Kuznetsov, Sergey V. Yablonsky and
Lyapunov.

12 B.A. Trakhtenbrot

I continued the work on recursive nonseparability and incompleteness of for-
mal theories [44,48], started in the Ph.D. thesis. At the same time, I was attracted
by Post’s problem of whether all undecidable axiomatic systems are of the same
degree of undecidability. This super-problem in Computability and Logic, with
a specific flavour of descriptive set theory, was for a long time on the agenda
of the Bolshoy Seminar. It inspired also my work on classification of recursive
operators and reducibilities [45]. Later, A. V. Kuznetsov joined me and we ex-
tended the investigation to partial recursive operators in the Baire space [18].
These issues, reflected our growing interest in relativized algorithms (algorithms
with oracles) and in set-descriptive aspects of computable operators, I worked
then on a survey on this subject, but the (uncompleted) manuscript was never
published. Nevertheless, the accumulated experience helped me later in the work
on relativized computational complexity.

In 1956 Post’s problem was solved independently by Albert A. Muchnik (1934–)
– a young student of P. S. Novikov – and by the American Richard Friedberg. Their
solutions were very similar and involved the invention of the priority method of
computability theory. At that point it became clear to me that I had exhausted my
efforts and ambitions in this area, and, that I am willing to switch to what nowa-
days would be classified as “Theoretical Computer Science”. From the early 50’s
this research was enthusiastically promoted by A. A. Lyapunov and S. V. Yablon-
ski under the general rubric “Theoretical Cybernetics”; it covered switching the-
ory, minimization of boolean functions, coding, automata, program schemes, etc.
Their seminars at the Moscow University attracted many students and scholars,
and soon became important centers of research in these new and exciting topics.
I was happy to join the cybernetics community through correspondence and trips
to Moscow. The general atmosphere within this fresh and energetic community
was very friendly, and I benefited much from it. Many “theoretical cybernetists”
started with a background in Mathematical Logic, Computability and Descriptive
Set Theory and were considerably influenced by these traditions. So, no wonder
that, despite my new research interests in Switching and Automata Theory, I con-
sidered myself (as did many others) to be a logician. My formal “conversion” to
Cybernetics happened on Jan. 9, 1960 when Sergey L. Sobolev (1908–1989) in-
vited me to move to the Novosibirsk Akademgorodok and to join the cybernetics
department of the new Mathematical Institute.

Topics in combinational complexity were largely developed by the Yablonski
school, which attributed exceptional significance to asymptotic laws governing
synthesis of optimal control systems. The impetus for these works was provided
by Shannon’s seminal work on synthesis of circuits. However, the results of S.
V. Yablonski, Oleg B. Lupanov and their followers surpassed all that was done
in the West at that time, as can be seen from Lupanov’s survey [19]. But focus-
ing on asymptotic evaluations caused the oversight of other problems for which
estimates up to a constant factor are still important.

A perebor algorithm, or perebor for short, is Russian for what is called in
English a “brute force” or “exhaustive search” method. Work on the synthesis
and minimization of boolean functions led to the realization of the role of perebor

From Logic to Theoretical Computer Science – An Update 13

as a trivial optimization algorithm, followed by Yablonski’s hypothesis of its non-
elimination. In 1959 he published a theorem which he considered proof of the
hypothesis [77]. However the interpretation of the problem given in his results
was not universally convincing – a presage of future controversies in the TCS
community. I told this story in detail in [67], and will touch it briefly in the next
section.

In the winter of 1954, I was asked to translate into Russian a paper by A. Burks
and J. Wright, two authors I didn’t know earlier. Unexpectedly, this episode
strongly influenced my “Cybernetical” tastes and provided the impetus to re-
search in Automata Theory. A curious detail is that in [7], the authors don’t even
mention the term “automaton”, and focus on Logical Nets as a mathematical
model of physical circuits. Afterwards. “Logical Nets” would also appear in the
titles of my papers in Automata Theory, even though the emphasis was not so
much on circuitry, as on operators, languages and logical specifications.

The use of propositional logic, promoted independently by V.I. Shestakov
and C. Shannon, turned out to be fruitful for combinational synthesis, because
it suffices to precisely specify the behaviour of memoryless circuits. However, for
the expression of temporal constraints one needs other, appropriate, specification
tools, which would allow to handle synthesis at two stages: At the first, behavioral
stage, an automaton is deemed constructed once we have finite tables defining its
next-state and output functions, or, equivalently, its canonical equations. This
serves as raw material for the next stage, namely for structural synthesis, in
which the actual structure (circuit) of the automaton is designed. (Note, that
in [20] Kleene does not yet clearly differentiate between the stages of behavioural
and structural synthesis.) After some exercises in structural synthesis I focused
on behavioral synthesis and began to collaborate with Nathan E. Kobrinsky
(1910–85), who at that time held a position in the Penza Polytechnical Institute.
Our book “Introduction to the Theory of Finite Automata” [17] was conceived
as a concord of pragmatics (N.E.’s contribution) and theory (summary of my
results). The basic text was written in 1958, but the book was typeset in 1961,
and distributed only in early 1962, when both of us had already left Penza.

5 Automata

5.1 Languages and Operators

The concept of a finite automaton has been in use since the 1930s to describe
the growing automata now known as Turing machines. Paradoxically, though
finite automata are conceptually simpler than Turing machines, they were not
systematically studied until the Fifties, if we discount the early work of McCul-
loch and Pitts. A considerable part of the collection “Automata Studies [20] was
already devoted to finite automata. Its prompt translation into Russian, marked
the beginning of heightened interest by Soviet researchers in this field. In partic-
ular, the translation included a valuable appendix of Yuri T. Medvedev (one of
the translators), which simplified and improved Kleene’s results, and anticipated
some of Rabin and Scott’s techniques for nondeterministic automata.

14 B.A. Trakhtenbrot

As in the West, the initial period was characterized by absence of uniformity,
confusion in terminology, and repetition of basically the same investigations with
some slight variants. The subject appeared extremely attractive to many Soviet
mathematicians, due to a fascination with automata terminology with which
people associated their special personal expectations and interests. Automata
professionals who came from other fields readily transferred their experience and
expertise from algebra, mathematical logic, and even physiology to the theory of
finite automata, or developed finite-automata exercises into approaches to other
problems.

Kleene’s regular expressions made evident that automata can be regarded as
certain special algebraic systems, and that it is possible to study them from
an algebraic point of view. The principal exponents of these ideas in the SU
were Victor M. Glushkov (1923–1982) and his disciples, especially Alexander
A. Letichevski, Vladimir N. Red’ko, Vladimir G. Bodnarchuk. They advocated
also the use of regular expressions as a primary specification language for the
synthesis of automata. Later, adherents of this trend in the SU and abroad
developed a rich algebraic oriented theory of languages and automata (see [34]).

Counterbalancing this “algebra of languages” philosophy, I followed a “logic of
operators” view on the subject, suggested by A. Burks and J. Wright. In [7] they
focused on the input-output behaviour of logical nets, i.e. on operators that con-
vert input words in output words of the same length, and infinite input sequences
into infinite output sequences.2 Apparently, they were the first to study infinite
behaviour of automata with output, and to (implicitly) characterize input-output
operators in terms of retrospection and memory. Furthermore, they considered
Logical Nets as the basic form of interaction between input-output agents.

To summarize, Burks and Wright suggested the following ideas I adopted and
developed in my further work on the subject:

1. Priority of semantical considerations over (premature) decisions concerning
specification formalisms.

2. Relevance of infinite behaviour; hence, ω-sequences as an alternative to finite
words.

3. The basic role of operators as an alternative to languages.

Accordingly to those ideas, I focused on two set-theoretical approaches to the
characterization of favorite operators and ω-languages (i.e. sets of ω-sequences).
The first is in terms of memory; hence, operators and languages with finite
memory. The second one, follows the spirit of Descriptive Set Theory (DST),
and selects operators and ω-languages by appropriate metrical properties and
2 Compare this with D. Scott’s argumentation in [38]: “The author (along with many

other people) has come recently to the conclusion that the functions computed by
the various machines are more important – or at least more basic – than the sets
accepted by these devices. The sets are still interesting and useful, but the functions
are needed to understand the sets. In fact by putting the functions first, the rela-
tionship between various classes of sets becomes much clearer. This is already done
in recursive function theory and we shall see that the same plan carriers over the
general theory.”

From Logic to Theoretical Computer Science – An Update 15

set-theoretical operations. (Note, that the set of all ω-sequences over a given
alphabet can be handled as a metrical space with suitably chosen metrics.)

My first reaction on the work of Burks and Wright was [49], submitted in 1956
even before the collection Automata Studies was available. A footnote added in
proof mentions: “the author learned about Moore’s paper in [20], whose Russian
translation is under print”.

The paper [49] deals with operators, and distinguishes between properties re-
lated to retrospection, which is nothing but a strong form of continuity, and
those related to finite memory. In [55] a class of finite-memory ω-languages is
defined which is proved to contain exactly those ω-languages, that are defin-
able in second order monadic arithmetic. Independently Büchi found for them a
characterization in terms of the famous “Büchi automata”.

In the paper [51], I started my main subject – synthesis of automata, developed
later in the books [17] and [63].

6 Experiments and Formal Specifications

Usually, verbal descriptions are not appropriate for the specification of input-
output automata. Here are two alternative approaches:

1. Specification by examples. This amounts to assembling a table which indi-
cates for each input word x, belonging to some given set M , the correspond-
ing output word z. Further, the synthesis of the automaton is conceived as an
interpolation, based on that table. This approach was very popular among
soviet practitioners, and suggested the idea of algorithms for automata-
identification. Such an algorithm should comprise effective instructions as
to:
(a) What questions of the type “what is the output of the black box for

input x?” should be asked?
(b) How should the answers to these questions be used to ask other ques-

tions?
(c) How to construct an automaton which is consistent with the results of

the experiment?
In his theory of experiments [20], Moore proved that the behavior of an au-
tomaton with k states can be identified (restored) by a multiple experiment
of length 2k − 1. Independently, I established in [49] the same result, and
used it in [17] to identify automata, with an a priori upper bound of mem-
ory. I conjectured also in [49] that the restorability degree of “almost” all
automata is of order log k, i.e. essentially smaller than 2k − 1. This conjec-
ture was proved by Barzdins and Korshunov [63]. Barzdin also developed
frequency identification algorithms [63], which produce correct results with
a guaranteed frequency, even when there is no a priori upper bound of the
memory. The complexity estimation for such algorithms relies on the proof
of the log k conjecture. Later Barzdin and his collective in Riga significantly
developed these ideas into a comprehensible theory of inductive learning.

16 B.A. Trakhtenbrot

2. Formal Specifications. The second approach, initiated by S.C. Kleene in [20],
amounts to designing special specification formalisms, which suitably use
logical connectives. However the use of only propositional connectives runs
into difficulties, because they cannot express temporal relationships.
Actually, Kleene’s paper in [20] contains already some hints as to the advis-
ability and possibility of using formulas of the predicate calculus as temporal
specifications. Moreover, Church [10] attributes to Kleene the following:

Characterization Problem: Characterize regular events directly in
terms of their expression in a formalized language of ordinary kind,
such as the usual formulations of first or second order arithmetic.

6.1 Towards Logical Specifications

The years 1956–61 marked a turning point in the field, and Church reported
about that at the 1962-International Mathematical Congress. Here is a quota-
tion from [10]: “This is a summary of recent work in the application of math-
ematical logic to finite automata, and especially of mathematical logic beyond
the propositional calculus.”

Church’s lecture provides a meticulous chronology of events (dated when pos-
sible up to months) and a benevolent comparison of his and his student J. Fried-
man’s results with work done by Büchi, Elgot and myself. Nevertheless, in the
surveyed period (1956–62) the flow of events was at times too fast and thus
omission prone. That is why his conclusion: “all overlaps to some extent, though
more in point of view and method than in specific content” needs some reex-
amination. Actually, the reference to Büchi’s paper [6], as well as the discussion
of my papers [51,53], were added only “in proof” to the revised edition of the
lecture (1964). My other Russian papers [54,55] were still unknown to Church
at that time.

Independently, I, myself [51], and somewhat later A. Church [9] developed
languages based on the second order logic of monadic predicates with natural
argument. Subsequently, another variant was published by R. Büchi [5].

In those works the following restrictions were assumed:

– Trakhtenbrot (1958) [51]: restricted first order quantification;
– Church (1959) [9]: no second order quantification;
– Büchi (1960) [5]: restriction to predicates that are true only on a finite set

of natural numbers.

All these languages are particular cases of a single language, widely known
now as S1S – Second Order Monadic Logic with One Successor, in which all the
restrictions above are removed.

Various arguments can be given in favor of choosing one language or an-
other, or developing a new language. Nevertheless, two requirements seem to be
quite natural: The first one (expressiveness) represents the interest of the client,
making easier for him the formulation of his intention. The second requirement
reflects the viewpoint of the designer; there must be an (fairly simple (?)) algo-
rithm for the synthesis problem in the language.

From Logic to Theoretical Computer Science – An Update 17

These two requirements are contradictory. The more comprehensive and ex-
pressive the language, the more universal and so more complex is the algorithm.
Moreover, if the language is too comprehensive the required algorithm may not
exist at all. It turned out that the choice of S1S supports the demand of expres-
siveness and still guarantees a synthesis algorithm. Indeed, one can show, that
all other known specification formalisms can be embedded naturally into S1S.
However, this process is in general irreversible.

6.2 Synthesis

Church’s lecture focuses on four problems, namely: 1) simplification; 2) synthesis;
3) decision; 4) Kleene’s Characterization Problem.3

Problem 2, better known as the Church-synthesis problem, amounts roughly
to the following: Given a S1S-formula A(x, y):

a) Does there exist an automaton M with input x and output y, whose be-
haviour satisfies A(x, y)?

b) If yes, construct such an automaton.

By solutions are understood algorithms that provide the correct answers and/or
constructions.

Problem 4 presumes the invention of a logical formalism L (actually – a rich
sublanguage of S1S), which expresses exactly the operators (or events) definable
by finite automata, and is equipped with two translation algorithms: (i) from
formulas to automata (Kleene-synthesis) and (ii) from automata to formulas
(Kleene-analysis).

In accordance with the above classification, [17] deals with Kleene-synthesis
and Kleene-analysis.

Actually, in [17] we used the following three formalisms to specify input-output
operators:

1. At the highest level – formulas of S1S.
2. At the intermediate level – finite input-output automata represented by their

canonical equations.
3. At the lower level – logical nets.

Note that in [17] regular expressions are not considered!
Correspondingly, we dealt there with both behavioral synthesis (from 1 to 2)

and with structured synthesis (from 2 to 3).
Büchi was the first to use automata theory for logic and proved [6] that S1S

is decidable. These achievements notwithstanding, the general Church-synthesis
problem for specifications in full S1S remained open, not counting a few special
classes of S1S-formulas, for which the problem was solved by Church and myself
(see [8] and [54]). The game theoretic interpretation of Church-synthesis is due to
McNaughton [22]. R. Büchi and L. Landweber used this interpretation to solve
3 Of course there is also the problem of efficiency: estimate and improve the complexity

of the algorithms and/or the succinctness of the results they provide.

18 B.A. Trakhtenbrot

the general Church-synthesis problem. Note, that the original proof in [22] was
erroneous. Unfortunately, I did not detect this error, which was reproduced in
the Russian edition of [63], and corrected later by L. Landweber in the English
translation.

Part 1 of the book [63] constitutes a revised version of my lectures at Novosi-
birsk University during the spring semester of 1966. It summarizes the results of
Church, Büchi-Landweber, McNaughton and myself, as explained above. Part 2,
written by Barzdin, covers his results on automaton identification.

6.3 About the Trinity

The choice of the three formalisms in [17] is the result of two decisions. The
first identifies three levels of specifications; one can refer to them respectively as
the declarative, executable and interactive levels. The second chooses for each of
these levels a favorite formalism. In [17] those were, respectively, S1S-Formulas,
Automata and Logical Nets; these three are collectively called “The Trinity”
in [70]. The first decision is more fundamental, and is recognizable also in com-
putational paradigms beyond finite automata. The second decision is flexible
even for finite automata; for example, the Trinity does not include Regular Ex-
pression (in [17], they are not even mentioned!) After Pnueli’s seminal work,
Linear Temporal Logics (LTL) became very popular as a declarative formalism.
But note that the various versions of LTL are in fact just the friendly syntactical
sugar of S1S-fragments, and that the most extended one, called ETL, has the
same expressive power as the whole S1S. In this sense, one can argue that S1S
is the genuine temporal logic, and that the Trinity has a basic status. More-
over, recent computational paradigms are likely to revive interest in the original
Trinity and its appropriate metamorphoses.

7 Complexity

7.1 Entering the Field

In 1960, I moved to the Akademgorodok, the Academic Center near Novosibirsk,
where, through the initiative and guidance of Lyapunov, the Department of
Theoretical Cybernetics was established within the Mathematical Institute.

I continued to work on automata theory, which I had begun at Penza, at
first focusing mainly on the relationship between automata and logic, but also
doing some work in structural synthesis [46,52,57]. At that time automata theory
was quite popular, and that is what brought me my first Ph.D. students in
Novosibirsk: M. Kratko, Y. Barzdin, V. Nepomnyashchy.

However, this initial interest was increasingly set aside in favor of computa-
tional complexity, an exciting fusion of combinatorial methods, inherited from
switching theory, with the conceptual arsenal of the theory of algorithms. These
ideas had occurred to me earlier in 1955 when I coined the term “signalizing func-
tion” which is now commonly known as “computational complexity measure”.

From Logic to Theoretical Computer Science – An Update 19

(But note that “signalizing” persisted for a long time in Russian complexity
papers and in translations from Russian, puzzling English-speaking readers.)
In [47] the question was about arithmetic functions f specified by recursive
schemes R. I considered there the signalizing function that for a given scheme
R and nonnegative x, returns the maximal integer used in the computation of
f(x) according to R. As it turned out, G.S. Tseytin (1936–), then a student of
A.A. Markov at Leningrad University, began in 1956 to study time complexity
of Markov’s normal algorithms. He proved nontrivial lower and upper bounds
for some concrete tasks, and discovered the existence of arbitrarily complex 0-
1 valued functions (Rabin’s 1960 results became available in the SU in 1963).
Unfortunately, these seminal results were not published by Tseytin; later, they
were reported briefly (and without proofs) by S.A. Yanovskaya in the survey [78].

Because of my former background, my interest in switching theory, automata,
etc. never did mean a break with Mathematical Logic and Computability. In
fact, the Sixties marked a return to those topics via research in complexity of
computations.

I profited from the arrival of Janis M. Barzdins (1937–) and Rusins V.
Freivalds (1942–) in Novosibirsk as my postgraduate students. These two, both
graduates of the Latvian University in Riga, engaged actively and enthusias-
tically in the subject. Alexey V. Gladkiy (1928–) and his group in mathe-
matical linguistics also became interested in complexity problems, concerning
grammars and formal languages. Soon other people joined us, mainly students
of the Novosibirsk University. My seminar “Algorithms and Automata” was the
forum for the new complexity subjects, and often hosted visitors from other
places. This is how research in computational complexity started in Novosibirsk;
a new young generation arose, and I had the good fortune to work with these
people over a lengthy period.

Subsequently, I joined forces with A.V. Gladkiy in a new department of our
Mathematical Institute, officially called the Department of Automata Theory
and Mathematical Linguistics. Its staff in different periods included our for-
mer students Mikhail L. Dekhtyar, (1946–), Mars K. Valiev (1943–), Vladimir
Yu. Sazonov (1948–), Aleksey D. Korshunov (1936–), Alexander Ya. Dikovski
(1945–), Miroslav I. Kratko (1936–) and Valeriy N. Agafonov (1943–1997).

The basic computer model we used was the Turing machine with a variety of
complexity measures; for example, besides time and space, also the number of
times the head of the machine changes its direction. Along with deterministic
machines we considered also nondeterministic machines, machines with oracles,
and probabilistic machines.

It is not surprising that we were attracted by the same problems as our col-
leagues in the West, notably – J. Hartmanis and R. Stearns. Independently and
in parallel we worked out a series of similar concepts and techniques: complexity
measures, crossing sequences, diagonalization, gaps, speed-up, relative complex-
ity, to cite the most important ones.

Blum’s machine-independent approach to complexity was new for us, and it
aroused keen interest in our seminar. But, when later, at a meeting with Tseytin,

20 B.A. Trakhtenbrot

I began telling him about Blum’s work, he interrupted me almost at once and
proceeded to set forth many basic definitions and theorems. As it turned out,
he had realized it for some time already, but had never discussed the subject in
public!

My “gap” theorem [61] was stimulated by Blum’s theory. It illustrated a set
of pathological time-bounding functions which need to be avoided in developing
complexity theory. Meyer and McCreight’s “Honesty Theorem” [21] showed how
this can be done through the use of appropriate “honest” functions.

In 1967, I published a set of lecture notes [61] for a course “Complexity of
Algorithms and Computations” that I had given in Novosibirsk. The notes con-
tained an exposition of results of Blum and Hartmanis-Stearns, based on their
published papers, as well as results of our Novosibirsk group: my “gap” theo-
rem, Barzdin’s crossing sequences techniques [2], and my other results reported
on our seminar [58,59,60].

I sent a copy of these notes to M. Blum (by then at Berkeley). Further I am
quoting Albert Meyer [24]:

Blum passed on a copy of the Trakhtenbrot notes to me around 1970
when I was at MIT since I knew of a graduate student who was interested
in translating them. His work was not very satisfactory, but then Filloti
came to MIT to work as a post-doc with me and did a respectable job.
By this time the notes began to seem dated to me (about five years old
in 1972!) and I decided that they needed to be revised and updated. This
youthful misjudgment doomed the project since I was too impatient and
perfectionist to complete the revision myself, and the final editing of the
translation was never completed.

In the academic year 1970–71, V.N. Agafonov continued my 1967-course, and
published the lecture notes [1] as Part 2 of “Complexity of Algorithms and
Computations”. But, unlike Part 1, which focused on complexity of computa-
tions (measured by functions) Part 2 was dedicated to descriptive complexity
of algorithms (measured by numbers). It contained a valuable exposition of the
literature around bounded Kolmogorov complexity and pseudo-randomness, in-
cluding contributions of Barzdin and of Valery himself.

7.2 Towards Applications

In the SU it was fully in the tradition of Algorithm Theory to handle applica-
tions of two kinds: (i) Proving or disproving decidability for concrete problems,
(ii)Algorithmic interpretation of mathematical concepts (for example – along the
line of constructive analysis in the Markov School). So, it seemed natural to look
for similar applications in the complexity setting.

The attitude of the “classical” cybernetics people (notably, Yablonski) to
the introduction of the theory of algorithms into complexity affairs was quite
negative. The main argument they used was that the theory of algorithms is
essentially a theory of diagonalization, and is therefore alien to the complex-
ity area that requires combinatorial constructive solutions. And indeed, except

From Logic to Theoretical Computer Science – An Update 21

some simple lower bounds supported by techniques of crossing sequences, all our
early results rested on the same kind of “diagonalization” with priorities, as in
classical computability theory.

But whereas in Algebra and Logic there were already known natural examples
for undecidability phenomena which were earlier analyzed in the classical the-
ory, no natural examples of provable complexity phenomena were known. This
asymmetry was echoed by those who scoffed at the emptiness of the diagonal
techniques with respect to applications of complexity theory. In particular, they
distrusted the potential role of algorithm based complexity in the explanation
of perebor phenomena, and insisted on this view even after Kolmogorov’s new
approach to complexity of finite objects.

In the summer of 1963, during a visit by A.N. Kolmogorov to the Novosi-
birsk University, I learned more about his new approach to complexity and the
development of the concepts of information and randomness by means of the
theory of algorithms. In the early cybernetics period, it was already clear that
the essence of problems of minimization of boolean functions was not in the
particular models of switching circuits under consideration. Any other natural
class of ‘schemes’, and ultimately any natural coding of finite objects (say, fi-
nite texts) could be expected to exhibit similar phenomena, and, in particular,
those related to perebor. But, unlike former pure combinatorial approaches, the
discovery by Kolmogorov (1965), and independently by Solomonoff (1964) and
Chaitin (1966), of optimal coding for finite objects occurred in the framework
of algorithm and recursive function theory. (Note that another related approach
was developed by A.A. Markov (1964) and V. Kuzmin (1965).)

7.3 Algorithms and Randomness

I became interested in the correlation between these two paradigms back in
the Fifties, when P.S. Novikov, called my attention to algorithmic simulation
of randomness in the spirit of von Mises-Church strategies. Ever since, I have
returned to this topic at different times and for various reasons, including the
controversies around perebor. Since many algorithmic problems encounter essen-
tial difficulties (non existence of algorithms or non existence of feasible ones),
the natural tendency is to use devices that may produce errors in certain cases.
The only requirements are that the probability or frequency of the errors does
not exceed some acceptable level and that the procedures are feasible. In the
framework of this general idea, two approaches seemed to deserve attention:
probabilistic algorithms and frequential algorithms.

In the academic year 1969–70, I gave a course “Algorithms and Randomness”
which covered these two approaches, as well as algorithmic modeling of of Mizes-
Church randomness.

The essential features of a frequential algorithm M are generally as follows.

1. M is deterministic, but each time it is applied, it inputs a whole suitable
sequence of inputs instead of an individual one, and then inputs the corre-
sponding sequence of outputs.

22 B.A. Trakhtenbrot

2. The frequency of the correct outputs must exceed a given level.

The idea of frequency computations is easily generalized to frequency enu-
merations, frequency reductions, etc.

I learned about a particular such model from a survey by McNaughton (1961),
and soon realized that as in the probabilistic case, it is impossible to compute
functions that are not computable in the usual sense [56].

Hence, the following questions [65]:

1. Is it possible to compute some functions by means of probabilistic or frequen-
tial algorithms with less computational complexity than that of deterministic
algorithms?

2. What reasonable sorts of problems (not necessarily computation of func-
tions) can be solved more efficiently by probabilistic or frequential algo-
rithms than by deterministic ones? Do problems exist that are solvable by
probabilistic or frequential algorithms but not by deterministic algorithms?

These problems were investigated in depth by Barzdin [3], Freivald [12] and
their students.

7.4 Relativized Complexity

Computations with oracles are a well established topic in the Theory of Algo-
rithms, especially since Post’s classical results and the solution of his famous
problem by Muchnik and Friedberg. So it seemed to me quite natural to look
how such issues might be carried to the complexity setting [62]. At this point
I should mention that Meyer’s confession, about the translation of my lecture
notes, points only on a transient episode in our long-time contacts. Let me quote
Albert again [24]:

Repeatedly and independently our choices of scientific subareas, even
particular problems, and in one instance even the solution to a prob-
lem, were the same. The similarity of our tastes and techniques was so
striking that it seemed at times there was a clairvoyant connection be-
tween us. Our relationship first came about through informal channels –
communications and drafts circulated among researchers, lecture notes,
etc. These various links compensated for the language barrier and the
scarcity of Soviet representation at international conferences. Through
these means there developed the unusual experience of discovering an in-
tellectual counterpart, tackling identical research topics, despite residing
on the opposite side of the globe. . . . Today . . . we find ourselves collab-
orating firsthand in an entirely different area of Theoretical Computer
Science than complexity theory to which we were led by independent
decisions reflecting our shared theoretical tastes.

As to computations with oracles, we both were attracted by the question:to
what extent can be simplified a computation by bringing in an oracle, and how
accurately can the reduction of complexity be controlled depending on the choice

From Logic to Theoretical Computer Science – An Update 23

of the oracle? This was the start point for a series of works of our students (mainly
M. Dekhtyar, M. Valiev in Novosibirsk and N. Lynch at MIT) with similar results
of two types: about oracles which do help (including the estimation of the help)
and oracles which cannot help. The further development of the subject by Meyer
and M. Fischer ended with a genuine complexity-theoretic analog to the famous
Friedberg-Muchnik theorem. It reflects the intuitive idea that problems might
take the same long time to solve but for different reasons! Namely:

There exist nontrivial pairs of (decidable!) sets, such that neither member
of a pair helps the other be computed more quickly.

Independently of Meyer and Fisher, and using actually the same techniques,
I obtained an improvement of this theorem. That happened in the frame of my
efforts to use relative algorithms and complexity in order to formalize intuitions
about mutual independence of tasks and about perebor.

7.5 Formalizing Intuitions

Autoreducibility. When handling relativized computations it is sometimes
reasonable to analyze the effect of restricted access to the oracle. In particular,
this is the case with the algorithmic definition of “collectives”, i.e. of random
sequences in the sense of von Mises-Church. This definition relies on the use
of “selection strategies”, which are relative algorithms with restricted access to
oracles. A similar situation arises with the intuition about mutual independence
of individual instances which make up a general problem [64]. Consider, for
example, a first order theory T . It may well happen that there is no algorithm,
which, for an arbitrary given formula A, decides whether A is provable or not
in T . However, there is a trivial procedure W which reduces the question about
A to similar questions for other formulas; W just inquires about the status of
the formula (¬(¬A)). The procedure W is an example of what may be called
autoreduction. Now, assume that the problem is decidable for the theory T , and
hence the correct answers can be computed directly (without autoreduction). It
still might happen that one cannot manage without very complex computations,
whereas the autoreduction above is simple.

A guess strategy is a machine M with oracle, satisfying the condition: for
every oracle G and natural number n, the machine M , having been started with
n as input, never addresses the oracle with the question “n ∈ G?” (although it
may put any question “ν ∈ G?” for ν �= n). A set G is called autoreducible if
it possesses an autoreduction, i.e. a guess strategy which, having been supplied
with the oracle G, computes the value G(n) for every n. Otherwise G is non-
autoreducible, which should indicate that the individual queries “n ∈ G?” are
mutual independent.

It turned out that:

– (i) The class of non-autoreducible sequences is essentially broader than the
class of random sequences.

24 B.A. Trakhtenbrot

– (ii) There are effectively solvable mass problems M of arbitrary complexity
with the following property: autoreductions of M are not essentially less
complex than their unconditional computations.

Understanding Perebor. Disputes about perebor, stirred by Yablonski’s pa-
per [77], had a certain influence on the development, and developers of complex-
ity theory in the Soviet Union. By and large, reflections on perebor spurred my
interest in computational complexity and influenced my choice of special top-
ics, concerning the role of sparse sets, immunity, oracles, frequency algorithms,
probabilistic algorithms, etc. I told this story in detail in [67]; below I reproduce
a small fragment from [67].

The development of computational complexity created a favorable background
for alternative approaches to the perebor topics: the inevitability of perebor
should mean the nonexistence of algorithms that are essentially more efficient.
My first attempt was to explain the plausibility of perebor phenomena related to
the “frequential Yablonski-effect”; it was based on space complexity considera-
tions. Already at this stage it became clear that space complexity was too rough
and that time complexity was to be used. Meanwhile I began to feel that an-
other interpretation of perebor was worth considering, namely, that the essence
of perebor seemed to be in the complexity of interaction with a “checking mech-
anism”, as opposed to the checking itself. This could be be formalized in terms
of oracle machines or reduction algorithms as follows. Given a total function
f that maps binary strings into binary strings, consider Turing machines, to
compute f , that are equipped with the oracle G that delivers (at no cost!) the
correct answers to queries “f(x) = y?” (x, y may vary, but f is always the same
function). Among them is a suitable machine Mperebor that computes f(x) by
subsequently addressing the oracle with the queries

f(x) = B(0)?, f(x) = B(1)?, . . . , f(x) = B(i)? . . .

where B(i) is the i-th binary string in lexicographical order. Hence, in the com-
putation of the string f(x) the number of steps spent by Mperebor is that rep-
resented by the string f(x). I conjectured in 1966 that for a broad spectrum of
functions f , no oracle machine M can perform the computation essentially faster.
As for the “graph predicates” G(x, y) =def f(x) = y, it was conjectured that
they would not be too difficult to compute. From this viewpoint, the inevitabil-
ity of perebor could be explained in terms of the computational complexity of
the reduction process. The conjecture was proved by M. I. Dekhtyar in his mas-
ter’s thesis (1969) for different versions of what “essentially faster” should mean.
Using modern terminology, one can say that Dekhtyar’s construction implicitly
provides the proof of the relativized version of the NP �= P conjecture. For the
first time, this version was explicitly announced by Baker, Gill and Soloway
(1975) together with the relativized version of the NP = P conjecture. Their
intention was to give some evidence to the possibility that neither NP = P nor
NP �= P is provable in common formalized systems. As to my conjecture, it
had nothing to do with the ambitious hopes to prove the independence of the

From Logic to Theoretical Computer Science – An Update 25

NP = P conjecture. As a matter of fact, I then believed (and to some extent do so
even now) that the essence of perebor can be explained through the complexity
of relative computations based on searching through the sequence of all binary
strings. Hence, being confident that the true problem was being considered (and
not its relativization!), I had no stimulus to look for models in which perebor
could be eliminated.

To the Perebor account [67] it is worth adding the following quotations from
my correspondence with Mike Sipser (Feb. 1992):

S. You write that Yablonski was aware of perebor in the early 50’s,
and that he even conjectured that perebor is inevitable for some prob-
lems in 1953–54. But the earliest published work of Yablonski that you
cite is 1959. Is there a written publication which documents Yablonski’s
awareness of these issues at the earlier time? This seems to be an im-
portant issue, at least from the point of establishing who was the first
to consider the problem of eliminating brute force search. Right now the
earliest document I have is Godel’s 1956 letter to Von-Neumann.

T. I cannot remember about any publication before 1959 which doc-
uments Yablonski’s awareness of these issues but I strongly testify and
confirm that (a quotation follows from my paper [59]): “Already in 1954
Yablonski conjectured that the solution of this problem is in essence
impossible without complex algorithms of the kind of perebor searching
through all the versions. . . .” He persistently advocated this conjecture
on public meetings (seminars and symposia).

S. Second, is it even clear that Yablonski really understands what we
presently mean by eliminating brute force search? He claimed to have
proven that it could not be eliminated in some cases back in 1959. So
there must be some confusion.

T. That is indeed the main point I am discussing in Section 1 of my pere-
bor paper [67]. The conclusion there is that there is no direct connection
between Yablonski’s result and what we presently mean by eliminating
perebor. Hence the long year controversy with Yablonski.

S. I’d appreciate your thoughts on how to handle Yablonski’s contribu-
tion to the subject.

T. I would mention three circumstances:
– 1. In Yablonski’s conjecture the notion of perebor was a bit vague and

did not anticipate any specific formalization of the idea of complexity.
Nevertheless (and may be just due to this fact) it stimulated the
investigation of different approaches to such a formalization, at least
in the USSR.

– 2. Yablonski pointed from the very beginning on very attractive can-
didates for the status of problems which need essentially perebor.
See Sect. 1 of [67], where synthesis of circuits is considered in this
context.

26 B.A. Trakhtenbrot

– 3. Finally, he made the point that for his candidates the disaster
caused by perebor might be avoided through the use of probabilistic
methods.

. . . Let me mention that as an alternative to Yablonski’s approach I
advocated the idea of complexity of computations with oracles. In these
terms, I formulated a conjecture which presently could be interpreted as
the relativised version of P not equal NP. This conjecture was proved by
my student M. Dekhtyar [11].

Turning Points. The controversies around perebor were exacerbated by the
emergence of the new approach to complexity of algorithms and computations.
And it was precisely this approach which was relevant for the genuine advance
in the investigation of perebor in the seminal works of Leonid Levin in the SU
and the Americans, Steven Cook and Richard Karp.

The discovery of NP-complete problems gave evidence to the importance
of the Theory of Computational Complexity. Soon another prominent result
strengthened this perception. In 1972, A. Meyer and Stockmeyer (see [23]) found
the first genuine natural examples of inherently complex computable problems.
This discovery was particularly important for me because the example came
from the area of automata theory and logic in which I had been involved for a
long time. Clearly, for the adherents of the algorithmic approach to complexity,
including myself, these developments confirmed the correctness of their views on
the subject and the worthwhileness of their own efforts in the past. However the
time had also come for new research decisions.

In the 70s, certain trends began to develop, which ultimately resulted in fun-
damental changes. Part of my group (Agafonov, Lomazova, Sazonov, Valiev) and
other participants of our seminar became increasingly interested and involved
in the investigation of the theory of programming. On the other side, people
previously engaged in complexity started to lose interest in this subject.

Against this background, our relationship improved with the Department of
Theoretical Programming, headed in the Computer Center by Andrei P. Ershov
(1931–1988) – one of the most prominent leaders of programming in the SU.
Many of his collaborators and students participated in our seminar. Quoting
V.E. Kotov: “In years of stagnation Ershov managed to create around himself a
healthy political and humane situation, completely different than that outside; it
made our life and work easier.” I benefited from his liberal, benevolent, position;
then it was very important. Unfortunately, it did not work against the devising
of a hostile official mathematical establishment (I told this story in [75]).

In 1979, I came to the difficult decision about emigration to Israel. We de-
parted in December 1980 with the traumatic prospect of separation (in those
times most likely for ever) with relatives, friends, colleagues, students. Most of
the remaining staff members left the Mathematics Institute, and our department
fell apart.

Since January 1, 1981, I am affiliated with Tel Aviv University. But this is
another story!

From Logic to Theoretical Computer Science – An Update 27

8 Epilogue

For a long time, I was not actively involved in automata and computational com-
plexity, being absorbed in other topics. During that period both areas underwent
impressive development, which is beyond the subject of this account.

My entry into the field happened at an early stage, when formation of concepts
and asking the right questions had high priority, at least as far as solving well es-
tablished problems. This is also reflected in my exposition above, in which the
emphasis was rather on the conceptual framework in the area. Some of those con-
cepts and models occurred in very specific contexts, or were driven by curiosity
rather than by visible applications. Did they anticipate problems beyond their
first motivation? I would like to conclude with some remarks about this.

The first is connected to the new and very attractive paradigms of Timed Au-
tomata and Hybrid Systems (HS). Nowadays, despite significant achievements,
the area is still dominated by an explosion of models, concepts and ad hoc no-
tation, a reminder of the situation in Automata Theory in the Fifties. However,
I believe that the classical conceptual framework can still help to elucidate the
intuitions underlying the new paradigms, and to avoid reinvention of existing
ideas [31].

One way to do so is to start with two separate and orthogonal extensions of
the basic model of a finite automaton M . The first one is by interconnecting M
with an oracle N , which is also an automaton, but, in general, with an infinite
set of states. Typically, think about a logical net over components M and N ,
with subsequent hiding of N . Whatever M can do while using N is called its
relativization with respect to this oracle. The other extension is with continuous
time (instead of discrete time, as in the classical case) but without oracles.

For each of these extensions, considered apart, it becomes easier to clarify
how (if any) and to what extent the heritage of classical Automata Theory can
be adapted.

Appropriate combinations of the two might facilitate the adaptation of clas-
sical heritage, whenever it makes sense.

The next remark is about a resurgence of interest in autoreducibility and
frequency computations.

It was instructive to learn that the idea of restricting access to oracles, now
underlies several concepts, which are in fact randomized and/or time bounded
versions of autoreducibility: coherence, checkability, self-reducibility, etc. Most of
these concepts were identified independently of (though later than) my original
autoreducibility, and have occupied a special place in connection with program
checking and secure protocols (see [4] for details and references).

On the other hand, the idea of frequency computation was extended to
bounded query computations and parallel learning. Also, interesting relation-
ships were discovered between autoreducibility, frequency computations and var-
ious other concepts.

My final remark is about the continuous conceptual succession since my
youthful exercises in Descriptive Set Theory (DST), which should be clear from
the previous exposition. In particular, it is quite evident that computational

28 B.A. Trakhtenbrot

complexity is inspired by computability. But the succession can be traced back
even to DST; just keep in mind the ideas which lead from classification of sets
and functions to classification of what is computable, and ultimately to hierar-
chies within computational complexity.

9 Addendum – November 2007

These sketchy notes address three additional research topics I have pursued since
the 1970s. Theory of Programming is the last project I was involved in before
leaving the SU. I developed it further while in Tel Aviv University through
collaboration with Albert Meyer and Joseph Halpern [76] at MIT. Research on
the next two topics, Concurrency and Continuous-Time Paradigms, started in
Tel Aviv, where I managed to attract to these subjects some of my colleagues
and students. In particular, Alex Rabinovich became my main collaborator and
coauthor.

These notes are mainly compiled from non-technical parts of texts adopted
from previous publications. I am aware of the imperfection of such undertakings.
Unfortunately, at this moment, I have no possibility to provide a more compre-
hensive and lucid account and to give tribute to those who shared the efforts
with me.

9.1 Theory of Programming

Introductory Remarks. In the 70s a broad spectrum of topics was on the
agenda of the SU community and, in particular of our group. Investigation (and
even the primary definitions) of program schemes started long ago in the SU
with the works of Lyapunov, Yanov, Ershov and others. Other developments,
such as comparative schematology, program logic, as well as verification and
specification of programs came mainly from the West.

On the other hand, our interests were significantly inspired by Algol-68, the
Scott-Strachey theory of denotational semantics [39] and the importance of
lambda-calculus for the theory of programming (see the essay [69]).

Functional languages. The thesis that lambda-calculus underlies programming
languages. was first extensively argued by Peter Landin (the author of ISWIM)
in his 1965–1966 papers. As a major innovation to lambda-calculus, ISWIM in-
cludes the additional binding mechanisms through the let and letrec constructs,
which permit the statement of declarations (definitions) in a convenient pro-
gramming style. Scott’s language LCF [37] is ISWIM enriched with fixed point
operators and conditionals; PCF is that part to which an appropriate arith-
metical signature is added. Whereas lambda-calculus is usually recognized as a
sequential language, Scott raised the idea to enrich PCF with parallelism facili-
ties, say with the parallel function OR. Hence, the distinction between sequential
and parallel functions and the comparative power of parallel functions suggested
themselves.

From Logic to Theoretical Computer Science – An Update 29

Imperative languages. However, this was a purely functional approach not as-
suming the imperative features of real programming languages like FORTRAN,
Algol, and Pascal. These languages allow constructs that are alien to the spirit
of lambda-calculus, e.g. assignments and goto’s. Such constructs, directly in-
herited from the von Neumann computer architecture, were nicknamed “dirty
features” by adepts of pure functional programming. Especially goto’s were long
ago recognized as a troublesome control mechanism by the pioneers of structured
programming (Dijkstra’s “goto’s considered harmful”). Note that John Backus,
the designer of FORTRAN, later joined the criticism of “dirty features”. He
called for the liberation of programming from the von Neumann style and out-
lined a new functional language. Hence, the question: to what extent and in what
form can Landin’s thesis be adopted to imperative languages? That is what I
became interested in.

Presented below is a summary of research performed by our group.

Work on Program Schemes, Program Logic, and Specification and
Verification of Programs

– V. N. Agafonov:
• Syntactical analysis in compilation.
• Typology (semantics) of programming languages and verification of pro-

grams.
• Specification of programs.

– I. A. Lomazova:
• Inductive conditions in Hoare’s logic for programs with loops (indepen-

dent of Apt, Bergstra, Tucker).
• Semantics and complete Hoare-type algorithmic logic for programs with

goto.
– B. A. Trakhtenbrot:

• Universality of classes of program schemes.
• Recursive program schemes and computable functionals.
• Relaxation rules and completeness of algorithmic logic.

– M. K. Valiev:
• Axiomatization and decision complexity for variants of PDL (indepen-

dent of Halpern).

Work on LCF-PCF

– V. Yu. Sazonov [35,36]: All the results below were obtained independently
(and even prior) to G. Plotkin’s “LCF as a programming language” [26] and
related works on semantics of type-free lambda calculus by M. Hyland and
C. Wadsworth.

• Precise characterization of the expressive power of the programming part
of Scott’s language LCF (currently known as PCF). This was given in
terms of computational strategies – a precursor of currently widely used
game semantics.

30 B.A. Trakhtenbrot

• Exact correspondence between operational and denotational semantics in
terms of computational strategies (in both typed and type-free settings).

• Characterization of degrees of parallelism in computations.

Work on Algol-Like Languages [66,76,14]
My view on the essence of Algol-like languages was crystallized in discussions
with V. Sazonov. The never-published technical report [66] is my first account
on the subject. As I learnt later, J. C. Reynolds promoted similar ideas on the
essence of what he called “Idealized Algol” [32,33].

The main idea is to face the impediments of the original Algol through the
design of an appropriate Algol-like language (Idealized Algol) that can be ex-
plained in the lambda-calculus core and supported with denotational semantics.
Here are some of the principles that characterize this class of languages:

– Exclude goto’s but preserve assignments.
– The language is fully typed.
– Higher order procedures of all finite types are allowed.
– There is a clear distinction between locations and storable values (integers,

say).
– Blocks with local storage, and sharing (aliasing) are allowed.

Actually, these languages preserve as much as possible of the rich expressive
power of the original Algol, and have sufficient structure to yield a rich algebra
and proof theory. Moreover, the denotational semantics of a program is provided
by a two-step process:

1. A purely syntactic translation of the program into an ISWIM expression.
This step provides the “true” ISWIM syntax for the program – a worthy
alternative for the Algol-jargon which came down through history.

2. Assignment of semantics to ISWIM in the standard way, assuming an ade-
quate choice of domains, which is consistent with the underlying intuition.

Thus, programs simply inherit their semantics from the ISWIM-terms into which
they are translated. In this way, procedures are entirely explained at a purely
functional level – independent of the interpretation of program constructs – by
continuous models for lambda-calculus. However, the usual (complete partial
order) models are not adequate to model local storage allocation. New domains
of store models are offered to solve this problem and partial correctness theory
over store models is developed.

9.2 Concurrency

Introductory Remarks. Before the emergence of modern theory of concur-
rency, logical nets presented the main model of concurrency in automata theory
(see Sect. 5). The interaction of components in a logical net is often called syn-
chronous (we would prefer “simultaneous”) interaction. Our concern below is
about asynchronous nets and we call them simply nets.

From Logic to Theoretical Computer Science – An Update 31

Nets are widely used in the theory of concurrency. One evident reason for
that is the convenience of visualizing the communication structure of systems,
as it comes to light for example in Petri nets or in data flow nets. On the other
hand, as emphasized by Pratt, nets seem to cover almost any situation which
involves “sharing” or communication. For an engineer it could mean sharing
of component terminals by connecting them electrically; a mathematician can
consider sharing of variables in a system of equations.

Modularity reflects the Frege Principle: any two expressions expr1 and expr2

that have the same meaning (semantics) can be replaced by each other in ev-
ery appropriate context without changing the meaning of the overall expression.
In a conventional syntax with signature Σ (call it “textual” as opposed to the
graphical syntax of nets), a complex piece of syntax expr may be uniquely de-
composed into simpler sub-pieces: expr = op(expr1, . . . , exprk), where op is in Σ.
Typically, a denotational semantics is formulated in such a compositional style
and hence supports modularity. However, often one starts with an operational
semantics that lacks a compositional structure. Then a standard way to prove
modularity is to discover a compositional semantics which is equivalent to the
operational one.

In net models of concurrency, a syntax is provided by some specific class NN
of labeled graphs called nets, and a semantics is usually defined globally either
in an operational style through appropriate firing (enabling) rules, as in the case
of Petri nets, or as a solution of a system of equations. However, the notion of
context makes sense for nets and therefore modularity of nets may be defined
and investigated.

For a long time, despite the rich and suggestive information of the Petri
pictorial approach, the question of compositionality or modularity had not
been raised. For elementary Petri nets modularity was established by Antoni
Mazurkiewicz. Namely, he discovered a compositional semantics which is equiv-
alent to the original “token game” semantics. This compositional approach to
Petri nets provided the initial stimulus to our work.

Challenges that we Addressed:

– Unification of concepts and approaches for the numerous models and seman-
tics proposed for nets [27].

– The “causal (called also true) vs. interleaving semantics” dilemma for Petri
nets.

– Modularity issues for nets (especially, for data flow nets).
– The close subject of compositional proof systems for nets ([71]).

Below we consider in more detail our work on causality and modularity issues.
Petri nets and data flow nets are the fundamental paradigms we focused on.

Discerning Causality. The question here is: to what extent is the causal
(partial order) semantics relevant for concurrent computational problems?

It appears that usually one starts with a common interleaving semantics sem1

for the system under consideration. Yet, at a later stage, a causal semantics sem2

32 B.A. Trakhtenbrot

is chosen which is consistent with sem1 in a natural sense. In [16], we studied
possible choices of causal semantics for C/E Petri nets. Modularity arguments
are used to show that there is a unique such semantics satisfying some sim-
ple and necessary modularity and consistency conditions. Moreover, this is true
also for other formalisms, such as Milner’s CCS and Hoare’s CSP. However, in
other situations the proper choice of causal semantics still has to be justified by
extra conditions. This is illustrated for P/T nets, i.e. Petri nets with bounded
capacities (a model that reflects distribution of resources).

Data Flow Nets [28,29]. Unlike other types of nets, here the main concern
is the I(nput)/O(utput) behavior of a system (under appropriate topological
restrictions). Kahn’s Principle states that for special deterministic agents (Kahn
automata) the I/O behavior of a net can be obtained from the I/O behaviors
of its components as the solution of an appropriate system of equations. This
implies I/O compositionality (and hence also modularity) for such nets. In an
attempt to generalize Kahn’s result to the nondeterministic agent merge, Brock
and Ackermann observed that I/O modularity fails. This is the so called Brock-
Ackermann anomaly. Hence, two problems are raised by the pioneering works of
Kahn and of Brock-Ackermann:

1. Why do data flow nets behave compositionally for Kahn-automata but not
for Brock-Ackermann automata?

2. What are the fundamental limits for the applicability of Kahn’s Principle?

We carried out an extensive development of dataflow semantics which pro-
vides very precise answers to these questions. We showed that modularity may
fail even for components with functional I/O behavior. We gave a characteriza-
tion of functional agents (“smoothness”) which is both sufficient and necessary to
support modularity and Kahn’s Principle. Moreover, the class SMOOTH of these
automata is the unique largest I/O-modular class of automata with functional
behavior. Any extension of the class of Kahn automata by a component with
“ambiguous” I/O-behavior – not necessarily merge – spoils modularity [29,28].
Analyzing the possible deviations from Kahn’s Principle we identified two kinds
of anomalies. The “meagerness” anomaly may occur even for functional agents
and not only for ambiguous ones, as sometimes is misunderstood the original
Brock-Ackermann example. On the other hand, the “ambiguity”-anomaly is in-
deed rooted in the semantics of nondeterminism. These results were credited as
an essential progress towards an “ultimate Kahn’s Principle”.

Nets of Relations. A conceptual and technical novelty we started is the idea
to consider semantics of nets of relations [30]. We identified observable relations
and nets of observable relations as appropriate tools for the investigation of
data flow nets over nondeterministic agents. We showed that the main source
of the Brock-Ackermann anomaly is in the semantics of nets of relations. If one
considers nets over a subclass of observable relations, it may happen that the
semantics over such nets is modular.

From Logic to Theoretical Computer Science – An Update 33

9.3 Continuous-Time Paradigms

In Sect. 5 we briefly discussed the status of, and the relationship between, three
basic formalism of automata theory: automata, logic and circuits. These are
collectively called there “The Trinity”. As emphasized in the position paper [70],
more recent developments in the theory of real-time systems put forward the
task of lifting the classical trinity to continuous time. Some of the work in this
direction is summarized in a special issue of Fundamenta Informaticae ([73]).
Below I quote the contents of, and the preface to this issue.

The Papers in [73]:

[HR] Hirshfeld, Y., and Rabinovich, A.: Logics for Real Time: Decidability
and Complexity [15].

[S] Slissenko, A.: A Logic Framework for Verification of Timed Algo-
rithms [41].

[T] Trakhtenbrot, B. A.: Understanding Automata Theory in the Continuous
Time Setting [74].

[PRD] Pardo, D., Rabinovich, A., and Trakhtenbrot, B. A.: Synchronous Cir-
cuits over Continuous Time: Feedback Reliability and Completeness [25].

From the Preface of the Editor: In the last 15 years, research in Computer
Science has involved many paradigms in which continuous time appears whether
in a pure way or in cooperation with discrete time. In particular, this is evident
in subjects concerning Automata, Circuits and Logic. This issue of FI consists
of four papers dedicated to such subjects. The papers will be referred to below
as [HR], [S], [PRT], [T] (the initials of the authors). [HR] and [S] are about
continuous-time logics, whereas in [T] and [PRT] the focus is on automata and
circuits (logical nets).

In [HR] the concern is about Monadic Logics of Order (MLO) and their re-
lationship to Temporal Logics. For discrete time, decidability of Second Order
Monadic Logic (SOML) follows from the connection between SOML and au-
tomata theory. It is well known that SOML covers numerous temporal logics
(TL). Ultimately, these TL may be considered as syntactically sugared versions
of SOML fragments. In [HR] further facts of this kind are established for con-
tinuous time. However, in this case, instead of traditional automata-theoretic
techniques one needs to use properly general theorems from logic.

The logic framework developed in [S] is based on First Order Timed Logic
(FOTL), that allows functions and predicates with more than one argument;
moreover, it allows also some arithmetic. This makes the logic expressive enough
to represent, more or less directly, continuous-time properties of distributed algo-
rithms. But, on the other hand, it makes the logic undecidable. The fundamental
observation that, nevertheless, permits the efficient use this logic for verification
is as follows: the underlying theories of continuous time (e.g. the theory of real
addition, Tarski algebra, etc.) are decidable or have much better complexity than

34 B.A. Trakhtenbrot

the corresponding theories of discrete time. Interesting decidable classes of the
verification problem are based on appropriate properties of FOTL.

The companion papers [T] and [PRT] draw their initial motivation from the
literature on Hybrid Automata, Circuits and related control problems. Concrete
problems about circuits (feedback reliability, completeness) and control (sample-
and-hold architectures in continuous time) are also the subject of [T] and [PRT].
Yet, a more general contribution is the development of a conceptual framework
that allows one to highlight the genuine distinctions and similarities between the
discrete-time and continuous-time tracks.

There is a growing feeling in the community that the literature on these
subjects, as well on the related logics, is plagued by a Babel of models, constructs
and formalisms with an amazing discord of terminology and notation. Further
models and formalisms are engendered, and it is not clear where to stop. Hence,
appeals like:

look back to sort out what has been accomplished and what needs
to be done. . . by surveying logic-based and automata-based real-time
formalisms and putting them into a perspective. (R. Alur and T.
Henzinger).

. . . isolate the right concepts, . . . formulate the right models, and discard
many others, that do not capture the reality we want to understand. . . .
(J. Hartmanis).

[HR], [T] and [PRT] are strongly committed to the analysis in depth of the
various continuous-time paradigms and to their robust conceptual integration in
mainstream Automata Theory and Logic. These papers come to the following
conclusions about some misconceptions in the previously suggested models and
logics:

1. The standard continuous-time model for logic was ignored as a yardstick;
instead, different kinds of sequences of continuous-time bits were used. This
may have been an attempt to pursue the connection with automata the-
ory since automata were traditionally associated with sequences. This was
the main cause in the rejection of the classical model. It complicated the
subsequent research. The choice of the temporal logic became an arbitrary
decision [HR].

2. Input/output behavior of automata was ignored in favor of generating de-
vices. Functions (in particular, input/output behavior of automata) are more
fundamental than sets (say, languages accepted by automata). Accordingly,
circuits and feedback should be defined explicitly as generic concepts. Sur-
prisingly, it has been left unobserved in the literature that some flaws in the
conceptual decisions concerning continuous time are identifiable already at
the level of discrete-automata theory [T].

From Logic to Theoretical Computer Science – An Update 35

References

1. Agafonov, V.N.: Complexity of algorithms and computations (part 2). Lecture
Notes, p. 146. Novosibirsk State University (1975)

2. Barzdin, J.M.: Complexity of the recognition of the symmetry predicate in Turing
machines. Problemy Kibernetiki 15, 245–248 (1965)

3. Ja Barzdin, M.: On computability on probabilistic machines. DAN SSSR 189, 699–
702 (1969)

4. Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Compu-
tational Complexity 2, 1–17 (1992)

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
of the 1960 Intl. Cong. on Logic, Philosophy and Methodology of Sciences, pp.
1–11. Stanford Univ. Press (1962)

7. Burks, A., Wright, J.: Theory of logical nets. Proc. IRE 41(4) (1953)
8. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.

In: Summaries of the Summer Institute of Symbolic Logic, vol. 1, pp. 3–50. Cornell
Univ., Ithaca, NY (1957)

9. Church, A.: Application of recursive arithmetic to the theory of computers and
automata, notes, summer conference course. In: Advanced Theory of the Logical
Design of Digital Computers, pp. 1–68. University of Michigan (1959)

10. Church, A.: Logic, arithmetic and automata. In: Proceedings of Intl. Congress of
Mathematicians, pp. 23–35 (1962)

11. Dekhtyar, M.I.: The impossibility of eliminating complete search in computing
functions from their graphs. In: DAN SSSR 189, pp. 748–751 (1969)

12. Freivald, R.V.: Fast probabilistic algorithms. LNCS, vol. 74, pp. 57–69 (1979)
13. Glushkov, V.M.: Synthesis of digital automata, Fizmatgiz, Moscow (1962)
14. Halpern, J., Meyer, A., Trakhtenbrot, B.A.: The semantics of local storage, or what

makes the free list free (preliminary report). In: Conference Record of the XI ACM
Symposium on Principles of Programming Languages (POPL), pp. 245–257 (1984)

15. Hirshfeld, Y., Rabinovich., A.: Logics for real time: decidability and complexity.
Fundamenta Informatica 62(1), 1–28 (2004)

16. Hirshfeld, Y., Rabinovich, A., Trakhtenbrot, B.A.: Discerning causality in inter-
leaving behavior. In: Proceedings of Logic at Botic 1989, Pereslavl Zalessky, USSR
(July 1989)

17. Kobrinski, N.E., Trakhtenbrot, B.A.: Introduction to the Theory of Finite Au-
tomata, Fizmatgis, Moscow, pp. 1–404 (1962), English translation. In: Studies in
Logic and the Foundations of Mathematics, North-Holland(1965)

18. Kuznetsov, A.V., Trakhtenbrot, B.A.: Investigation of partial recursive operators
by techniques of Baire spaces. Doklady AN SSR 105 6, 896–900 (1955)

19. Lupanov, O.B.: An approach to systems synthesis – a local coding principle. Prob-
lems of Cybernetics 14, 31–110 (1965)

20. McCarthy, J., Shannon, C. (eds.): Automata Studies, Princeton (1956)
21. McCreight, E.M., Meyer, A.R.: Classes of computable functions defined by bounds

on computation. In: Proc. of 1st STOC, pp. 79–88 (1969)
22. McNaughton, R.: Finite-state infinite games. In: Project MAC Rep., September

1965, MIT, Cambridge (1965)
23. Meyer, A.R.: Weak monadic second order theory of successor is not elementary

recursive. In: Proj. MAC, MIT, Cambridge (1973)

36 B.A. Trakhtenbrot

24. Meyer, A.R.: unpublished memo; see the second chapter of this collection
25. Pardo, D., Rabinovich, A., Trakhtenbrot, B.A.: Synchronous circuits over contin-

uous time: feedback reliability and completeness. Fundamenta Informatica 62(1),
123–137 (2004)

26. Plotkin, G.: LCF considered as a programming language. Theoretical Comp. Sci-
ence 5, 223–257 (1977)

27. Rabinovich, A., Trakhtenbrot, B.A.: Behavior structures and nets of processes.
Fundamenta Informaticae 11, 357–403 (1988)

28. Rabinovich, A., Trakhtenbrot, B.A.: Nets of processes and data-flow. In: de Bakker,
J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 574–602.
Springer, Heidelberg (1989)

29. Rabinovich, A., Trakhtenbrot, B.A.: Nets and data-flow interpreters. In: Proceed-
ings of LICS (1989)

30. Rabinovich, A., Trakhtenbrot, B.A.: Communication among relations. In: Proceed-
ings of the 17th Colloquium on Automata, Languages and Programming, Warwick,
England (1990)

31. Rabinovich, A., Trakhtenbrot, B.A.: From finite automata toward hybrid systems.
In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 411–422.
Springer, Heidelberg (1997)

32. Reynolds, J.C.: Idealized Algol and its specification logic, Technical Report, Syra-
cuse University pp. 1-81 (1981)

33. Reynolds, J.C.: The essence of Algol. In: de Bakker, van Vliet (eds.) International
Symposium on on Algorithmic Languages, North-Holland, pp. 345–372 (1981)

34. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. pp. I–III,
Springer, Berlin (1997)

35. Sazonov, V.Yu., Expressibility of functions in Scott’s LCF language, Algebra i
Logika 15, 308–320 (in Russian); 192–206 in English edition, 1976.

36. Sazonov, V.Y.: Functionals computable in series and in parallel. Siberian Math.
Journal 17(3), 648–672 (1976) (in Russion); 498–516 in English edition

37. Scott, D.A.: Type-theoretical alternative to CUCH, OWHY, ISWIM. Theoretical
Computer Science 121, 411–440 (1993) Reprint of a manuscript, Oxford University
(1969)

38. Scott, D.: Some definitional suggestions in automata theory.J. of Computer and
Syst. Sci., 187–212 (1967)

39. Scott, D., Strachey, C.: Toward a mathematical semantics of computer languages.
In: Proceedings of a Symposium on Computer and Automata, New York (1971)

40. Shtokalo, I.Z. (ed.): History of Mathematics, Kiev (in Russian, 1970)
41. Slissenko, A.: A logic framework for verification of timed algorithms. Fundamenta

Informaticae 62(1) (August 2004)
42. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decidability problem

on finite classes. Doklady AN SSR 70(4), 569–572 (1950)
43. Trakhtenbrot, B.A.: Decidability problems for finite classes and definitions of finite

sets. Ph.D. Thesis, Math. Inst. of the Ukrainian Academy of Sciences, Kiev (1950)
44. Trakhtenbrot, B.A.: On recursive separability. Doklady AN SSR 88(6), 953–956

(1953)
45. Trakhtenbrot, B.A.: Tabular representation of recursive operators. Doklady AN

SSR 101(4), 417–420 (1955)
46. Trakhtenbrot, B.A.: The synthesis of non-repetitive schemas. Doklady AN

SSR 103(6), 973–976 (1955)

From Logic to Theoretical Computer Science – An Update 37

47. Trakhtenbrot, B.A.: Signalizing functions and tabular operators. Uchionnye Zapiski
Penzenskogo Pedinstituta (Transactions of the Penza Pedagogoical Institute) 4,
75–87 (1956)

48. Trakhtenbrot, B.A.: On the definition of finite set and the deductive incompleteness
of set theory. Izvestia AN SSR 20, 569–582 (1956)

49. Trakhtenbrot, B.A.: On operators, realizable by logical nets. Doklady AN
SSR 112(6), 1005–1006 (1957)

50. Trakhtenbrot, B.A.: Algorithms and Computing Machines, Gostechizdat (1957)
second edition by Fizmatgiz, 1960; English translation in the series: Topics in
Mathematics, D.C. Heath and Company, Boston, pp. 1–101 (1963)

51. Trakhtenbrot, B.A.: The synthesis of logical nets whose operators are described in
terms of monadic predicates. Doklady AN SSR 118(4), 646–649 (1958)

52. Trakhtenbrot, B.A.: The asymptotic estimate of the logical nets with memory.
Doklady AN SSR 127(2), 281–284 (1959)

53. Trakhtenbrot, B.A.: Some constructions in the monadic predicate calculus. Dok-
lady AN SSR 138(2), 320–321 (1961)

54. Trakhtenbrot, B.A.: Finite automata and the monadic predicate calculus. Doklady
AN SSR 140(2), 326–329 (1961)

55. Trakhtenbrot, B.A.: Finite automata and the monadic predicate calculus. Siberian
Math. Journal 3(1), 103–131 (1962)

56. Trakhtenbrot, B.A.: On the frequency computation of recursive functions. Algebra
i Logika, Novosibirsk 1(1), 25–32 (1963)

57. Trakhtenbrot, B.A.: On the complexity of schemas that realize many-parametric
families of operators. Problemy Kibernetiki 12, 99–112 (1964)

58. Trakhtenbrot, B.A.: Turing Computations with Logarithmic Delay. Algebra i
Logika, Novosibirsk 3(4), 33–48 (1964)

59. Trakhtenbrot, B.A.: Optimal computations and the frequency phenomena of
Yablonski. Algebra i Logika, Novosibirsk 4(5), 79–93 (1965)

60. Trakhtenbrot, B.A.: On normalized signalizing functions for Turing computations.
Algebra i Logika, Novosibirsk 5(6), 61–70 (1966)

61. Trakhtenbrot, B.A.: The Complexity of Algorithms and Computations, Lecture
Notes, ed. by Novosibirsk University, pp. 1–258 (1967)

62. Trakhtenbrot, B.A.: On the complexity of the mutual-reduction algorithms in the
construction of Novikov and Boone. Algebra i Logika 8, 50–71 (1969)

63. Trakhtenbrot, B.A., Barzdin, J.M.: Finite Automata (Behavior and Synthesis),
Nauka, Moscow, pp. 1–400 (1970) English translation in: Fundamental Studies in
Computer Science 1, North-Holland (1973)

64. Trakhtenbrot, B.: On autoreducibility. Doklady AN SSR 192(6), 1224–1227 (1970)

65. Trakhtenbrot, B.A.: Notes on the complexity of probabilistic machine computa-
tions. In: Theory of Algorithms and Mathematical Logic, ed. by the Computing
Center of the Academy of Sciences, pp. 159–176 (1974)

66. Trakhtenbrot, B.A.: On denotational semantics and axiomatization of partial cor-
rectness for languages with procedures as parameters and with aliasing (extended
abstract), Technical Report, Tel Aviv University, p. 20 (August 1981)

67. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing 6(4), 384–400 (1984)

68. Trakhtenbrot, B.A.: Selected Developments in Soviet Mathematical Cybernetics,
Monograph Series, sponsored by Delphic Associates, Washington, XIV + 122 pages
(1985)

38 B.A. Trakhtenbrot

69. Trakhtenbrot, B.A.: Comparing the Church and Turing approaches: two prophet-
ical messages. In: The Turing Universal Machine – A Half Century Survey, pp.
603–630. Oxford University Press, Oxford (1988)

70. Trakhtenbrot, B.A.: Origins and metamorphoses of the Trinity: logic, nets, au-
tomata. In: Proc. of the 10th IEEE Symposium on LICS, San Diego (1995)

71. Trakhtenbrot, B.A.: On the power of compositional proofs. Fundamenta Informat-
icae 30(1), 83–95 (1997)

72. Trakhtenbrot, B.A.: In memory of S.A. Yanovskaya (1896–1966) on the centenary
of her birth. Modern Logic 7(2), 160–187 (1997)

73. Trakhtenbrot, B.A.(ed.): Special Issue on Continuous-Time Paradigms in Logic
and Automata. Fundamenta Informaticae 62(1) (August 2004)

74. Trakhtenbrot, B.A.: Understanding Basic Automata Theory in the Continuous
Time Setting. Fundamenta Informaticae 62(1), 69–121 (2004)

75. Trakhtenbrot, B.A.: In memory of Andrei P. Ershov. In: Ershov, a Scientist and
Human Being (in Russian), Publishing House of the Russian Academy of Sciences
in Novosibirsk (2006)

76. Trakhtenbrot, B.A., Halpern, J., Meyer, A.R.: From denotational to operational
and axiomatic semantics for Algol-like languages (an overview). In: Clarke, E.,
Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 474–500. Springer,
Heidelberg (1984)

77. Yablonski, S.V.: Algorithmic difficulties in the synthesis of minimal contact net-
works (in Russian), Problems of Cybernetics, vol. 2, Moscow (1959)

78. Yanovskaya, S.: Mathematical logic and fundamentals of mathematics. In: Mathe-
matics in the USSR for 40 Years, Moscow, Fizmatgiz, pp. 13–120 (1959)

Reminiscences�

Albert R. Meyer

Massachusetts Institute of Technology, Cambridge, MA

In his early memoirs, Trakhtenbrot told several stories. The greater part is an
intellectual history of Soviet research in theoretical computer science from the
1950’s to the late 70’s. A second story – of academic and political disputes that
shaped the course of Soviet research in the area – is briefly indicated. Finally,
there is a laconic suggestion of the scientific life of a gifted, prolific mathematician
and scholar.

Of course the emphasis in each story is on the Soviet side, but the international
context in which research in theoretical computer science has been conducted
for several decades is very apparent. The parallel between Soviet and Ameri-
can research is especially visible to me personally because, long before I had
the pleasure of meeting and later collaborating with Trakhtenbrot, I was first
delighted and then warmly thrilled to watch through the medium of research
papers and notes the thinking of a scholarly soul mate. Repeatedly and inde-
pendently, Trakhtenbrot’s and my choices of scientific sub-areas, even particular
problems, and in one instance even the solution to a problem, were the same.
The similarity of our tastes and techniques was so striking that it seemed at
times there was a clairvoyant connection between us.

This personal story offers an alternative, more intimate perspective on the
nature of Soviet/Western research interaction in the area of theoretical computer
science, as well as some additional biographical information about the author of
these memoirs.

Trakhtenbrot probably became most widely known in America because of his
tutorial monograph on Algorithms and Automatic Computing Machines. I did
not become aware of Trakhtenbrot for another half a dozen years, and actually
realized only much later that I had studied this book as a graduate student in
1963 when it first became available in translation. I remembered it well as an
exceptionally clear and elegant introduction to the basic ideas of computability
theory. It was another decade before I learned first hand from the author some-
thing of the circumstances under which it was written: the new Ph.D. Trakht-
enbrot, who arrived in 1950 in the University at Penza, was certainly not of
proletarian background – a Jew who spoke eight languages, whose research was
decidedly abstract and “pure”, and who, if his present manner may accurately
be extrapolated back over fifty years, must have seemed to the casual observer
an easy fit to the stereotype of an absent-minded professor. Whispered accu-
sations of bourgeois idealism were heard: in that era of Stalinist paranoia they
were gravely threatening. The book was written to demonstrate that this ap-
parently unworldly scholar could produce an object at least of pedagogical value

� This contribution is based on a draft written already in 1985.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 39–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 A.R. Meyer

to the Socialist state. It succeeded admirably not only in increasing its author’s
professional visibility, but possibly in keeping him out of prison.

Trakhtenbrot is also fortunate to have found a basic theorem of mathematical
logic which is now named after him. Trakhtenbrot’s Theorem is a finitary vari-
ant of the undecidablity of first-order logic: the problem of whether a first-order
formula is valid in all finite models is, like the general validity problem, undecid-
able, but in a technically different way (co-r.e. as opposed to r.e.). Although this
result is accepted as a core result of classical logic, it already reveals Trakhten-
brot’s concerns with constructive processes on finite structures. Not bourgeois
idealism at all, really.

It was through my own exposure to the pioneering research on computational
complexity theory by Hartmanis & Stearns at GE research in Schenectedy and
Manuel Blum at MlT in the late 60’s that I learned about Trakhtenbrot. There
were only a few published papers and no books documenting this exciting new
area. Trakhtenbrot had written a set of lecture notes for a course on complexity
theory he gave in Novosibirsk and had sent a copy of these notes to Blum (by
then at Berkeley). The notes contained a valuable exposition of the results of
Blum and Hartmanis-Stearns – based on their published papers in American
journals – as well as new results by Trakhtenbrot: his “gap” theorem and his
automaton-theoretic analysis using “crossing sequences” of the complexity of
transferring information on a linear storage tape. The concern with problems
of perebor which led Trakhtenbrot and his group to these interests are outlined
in his memoir and differed slightly in emphasis from the motivating concerns of
the American researchers, but within a couple of years after publication of the
basic results in the West, the approaches of Trakhtenbrot’s and the American
groups had virtually converged. Indeed, a principal result of Borodin’s Ph.D un-
der Hartmanis at Cornell in 1969 was his independent version of Trakhtenbrot’s
“gap theorem”. Likewise, the method of crossing sequences was developed inde-
pendently by the Israeli Rabin (then at Harvard), Hartmanis at GE and Hennie
at MlT. The roots of the crossing sequence technique lie directly in the classic
papers of 1959 by Rabin and Scott and by Shepherdson on finite automata; these
papers were well known to the world research community, so there is no mys-
tery at the independent duplication of the results. Still, I noted at the time that
Trakhtenbrot (and Hennie’s) development of the “crossing sequence” technique
went an extra elegant step beyond Hartmanis’. This was my first hint of the flair
and penetrating quality of Trakhtenbrot’s style.

Trakhtenbrot’s “gap theorem” showed similar quality. Its technical details are
immaterial here, but its general nature reveals Trakhtenbrot’s refined mathe-
matical aesthetics. There is an easily satisfied side-condition which was needed
in the proofs by Hartmanis-Stearns and Blum of their fundamental results es-
tablishing the existence of inherently complex problems. I remember myself as a
student pointing out after an early lecture by Hartmanis that he had neglected
to mention the need for the side-condition in his presentation, and he acknowl-
edged that it was technically necessary but didn’t seem worth highlighting. The
scientific significance of the results was not impaired by the side-condition. But

Reminiscences 41

mathematically, it is intellectually wasteful if not exasperating to use a hypoth-
esis that is not strictly necessary. The “gap theorem” demonstrated that the
side-condition was absolutely necessary, and dramatically illustrated a set of
pathological time-bounding functions which needed to be avoided in developing
complexity theory.

In fact, the gap theorem was the principal stimulus for joint research carried
out by my first student, Ed McCreight, and myself. Our “Honesty Theorem”
showed how the pathological “dishonest” time-bounding functions of the “gap
theorem” could always be replaced by “honest” functions satisfying the side-
condition. This method of proof involved one of the most elaborate applications
up to that time of the priority method of recursion complexity theory.

It’s worth interjecting here an early instance of the astonishing parallels be-
tween Soviet and Western research in logic and the theory of computation. The
fundamental problem of Post about whether all undecidable axiomatic systems
were of the same degree of undecidability was solved in 1956, a dozen years
after its formulation. This was achieved, independently, by Mucnik in the So-
viet Union and Freidberg, a Harvard undergraduate, within a few months of
each other. Their solutions were very similar and involved the invention of the
priority method of computability theory.

At the time of this work with McCreight, we had not seen any Soviet writings.
Perhaps Hartmanis, a Latvian emigré, was a Russian reader who saw Trakhten-
brot’s notes, or perhaps Blum’s Romanian emigré student Filloti, who was fluent
in Russian, read them. In any case, we learned of the results of Trakhtenbrot’s
notes by word-of-mouth from Borodin, Hartmanis, and Blum.

Blum passed on a copy of the Trakhtenbrot notes to me around 1970, when I
was at MIT, since I knew of a graduate student who was interested in translating
them. His work was not very satisfactory, but then Filloti came to MIT to work
as a post-doc with me, and did a respectable job. By this time the notes began to
seem dated to me (about five years old in 1972) and I decided that they needed to
be revised and updated. This youthful misjudgment doomed the project, since
I was too impatient and too much of a perfectionist to complete the revision
myself, and the final editing of the translation was never completed.

Some very personal issues arise at this point in my story which are nevertheless
appropriate to Trakhtenbrot’s account. Other neurotic attitudes of mine also
undermined the project of publishing Trakhtenbrot’s notes. I was at the time
enmeshed in a pained marriage with two small children – a marriage which ended
in divorce a few years later – and the depression I suffered during those years,
which I carefully concealed from my professional colleagues, carried over into
doubts about my own research and the significance of the field of complexity
theory in general. These doubts, and perhaps other invidious feelings about the
productivity of other researchers who seemed more prolific and less depressed
than myself, left me inhibited at the final stages of several publishing projects,
of which the Trakhtenbrot notes were, I regret to report, just one instance.

As the reader will learn, two of the principal characters on the Soviet
side, the prodigies Tseitin and Levin, suffered in one way or another severe

42 A.R. Meyer

inhibitions about communicating their results, and Trakhtenbrot indicates that
Tseitin suffered doubts similar to mine about the value of his own outstanding
contributions. Whether this is coincidental or a typical reflection of the personal-
ity factors that lead young mathematicians into their vocation I remain unsure,
but the psychological parallels here are as striking as the intellectual ones.

It amazes me in retrospect how I was actually able to make good scientific
use of my doubts to suggest new questions to test the adequacy of our theories.
One aspect of complexity theory which had dissatisfied me from the beginning
was that in the theory “complexity” was essentially synonymous with “time-
consuming to calculate”. This definition was inconsistent with certain intuitive
ideas about complexity; in particular, it seemed that there ought to be compu-
tational problems that were time-consuming, but were nevertheless intuitively
not complex in that they merely involved a very simple computation for their
solution, though the simple computational procedure might need a very large
number of repetitions to produce its result. Thus, there ought to be distinctions
among equally time-consuming computational problems reflecting the intuitive
idea that two problems might take the same long length of time to solve but for
different reasons.

There is no obvious formulation of what a “reason” for complexity in a prob-
lem might be, but the famous solution to Post’s problem by Friedberg/Mucnik
mentioned above offered what seemed to me a straightforward formulation of a
precise conjecture which captured the idea. If one could construct two equally
time-consuming problems with the property that, even given the ability to com-
pute solutions to instances of one problem in no time at all, the other problem
remained as time-consuming to solve as without this instantaneous ability, and
vice-versa given the other problem, then it seemed legitimate to say the prob-
lems were difficult for different reasons. Once the conjecture was formulated, the
construction of such sets became a matter of making suitable modifications of
the “classical” priority methods of recursion theory. Working with my expert
colleague Fischer, it took only a few weeks to polish the details, leaving one
purely æsthetic flaw which seemed amateurish: the construction of the two sets
involved defining two of each kind of bell and whistle needed in the construc-
tion, one for each set. This seemed wasteful and clogged up the reasoning with
subscripts i = 1, 2.

Complexity theory was still a new, small field in 1972, and I was hungry for
the excitement and reassurance that hearing new results in my area provided.
The American Mathematical Society at that time offered a computer search
service of journal abstracts to which one could subscribe and specify a rather
sophisticated protocol to generate titles, abstracts, and even reprints of articles
depending on the degree of match with the subscribers interest profile, and I
was an enthusiastic subscriber. The service brought me many of the abstracts
published in the Doklady by the characters in Trakhtenbrot’s memoir.

One day, an abstract from Trakhtenbrot himself turned up of which I needed
to read only the title, “On auto-reducibility”. Here was the simple repair for the
æsthetic flaw: don’t construct two sets, neither of which helps the other be

Reminiscences 43

computed more quickly; construct one set such that answering membership
questions about one part of the set does not help in computing solutions to
membership questions about any other parts – a set that is not auto-reducible.
Trakhtenbrot had thus come to look for similar results to ours, had obtained them
with similar methods, and had added the final elegant touch we had missed. This
was the event which confirmed my growing admiration for his ability. It also again
reassured me that these abstract, speculative, positively obscure preoccupations
of mine were not utterly narcissistic – or at least not uniquely narcissistic, be-
cause they were shared by an older, experienced researcher whose abilities had
been certified by an altogether different establishment. I loved Trakhtenbrot for
that reassurance. And given my secret depression and self-doubts, it helped to
have a beloved mentor whom I hadn’t met and who worked half a world away –
little risk of rejection or disappointment that way.

Trakhtenbrot has emphasized that Westerners were too frequently unaware of
the contributions of their Soviet counterparts, but as the story above suggests,
this was not my own experience at the time. The failure of the AMS abstracting
service, which I found so valuable, was an event that surprised and disappointed
me at the time, but which helps explain Trakhtenbrot’s impression of what he
worried was a parochial neglect of Eastern research by Western researchers in
theoretical computer science. The service, I was told, failed for lack of sub-
scribers; I was one of the few who actually made use of it. Today, as a senior
scientist in the now much larger and better known area of theoretical computer
science, the failure of the AMS service seems much more understandable: there
are far too many interesting results being discovered and far too many ingenious
and significant papers to keep up with. The problem is not to find papers to read
but to avoid being overwhelmed by them. I would not be a subscriber today.

The story of the parallels between Trakhtenbrot’s and my research areas has
too many more chapters to spell out much further. Suffice it to say that we found
ourselves happily and fruitfully collaborating firsthand in an entirely different
area of theoretical computer science than complexity theory to which we were
led by independent decisions reflecting our shared theoretical tastes.

But there is one more personal epiphany which adds some perspective on
Trakhtenbrot’s story of the academic disputes between the Moscow establish-
ment personified by Yablonskii versus Kolmogorov and Trakhtenbrot’s own
Novosibirsk group. The doubts that plagued me about the significance of com-
plexity theory – with an emotional force which undoubtedly sprang from intimate
aspects of my personal life – also were reinforced by external criticism from logi-
cians and computer scientists alike. The problem was that, however provocative
the theorems of complexity sounded, in the final analysis all the early results
rested on the same kind of “diagonalization with priorities” which formed the
core of classical computability theory. But unlike the classical theory for which
natural instances of the kind of undecidability phenomena analyzed in the the-
ory were well-known elsewhere in Logic and Algebra, no instances of provable
complexity phenomena were known. For example, I remember presenting my re-
sults on sets that were complex-for-different-reasons at a 1971 logicians’ meeting.

44 A.R. Meyer

During the question period after my talk I received one cool question from an
eminent logician: “Do your results give any information about the complexity of
deciding propositional tautologies?” The lay reader should read this question as
“What does what you’re doing have to do with the price of eggs?” I had nothing
to say about eggs.

These criticisms were echoed by those of Yablonskii, who scoffed at the empti-
ness of the diagonal technique. But let there be no misinterpretation of Trakhten-
brot’s softly toned account of the disputes with Yablonskii. The man was clever
enough to fasten on a weak point of complexity theory at that stage, but his
actions in attacking the proponents of the theory to the extent of destroying
careers and denying students their degrees cannot be accounted for out of sin-
cere intellectual doubt; this was a villainous careerism which the Soviet system
seems to have fostered. My feelings were hurt that the mainstream community
of logicians and computability theorists were initially cool to my interests, but
my career was never in jeopardy, and if I could not find support – moral or fi-
nancial – among them, there were other communities of engineers and computer
scientists with positions and grants. With Yablonskii in centralized charge in
Moscow of higher degree granting, promotions, and even scheduling of research
meetings, working in an area he opposed proved to be a perilous professional
choice for my Soviet counterparts.

Shortly after my admission of ignorance about the economic principles of egg
pricing, an American, Cook, at Toronto (and independently, though without
comparable recognition, Levin in Moscow) discovered them. The precise com-
putational complexity of deciding propositional tautologies remains open, but
it is now understood to be the central problem of theoretical computer science,
known, through the development of a rich theory, to be equivalent in complexity
to hundreds of other apparently unrelated problems.

The excitement of Cook’s discovery and its elaboration a few months later by
Karp reawakened my interest in research at a time when I was actually taking
some first steps towards leaving a scientific career altogether. In 1972, jointly with
a very talented student, named Stockmeyer, I found the first genuinely natural
examples of inherently complex computable problems. I knew there were only a
small handful of people who understood the field deeply enough to appreciate
immediately the significance of our examples, so it was with pride and anticipa-
tion that I sent the earliest draft of our results to Trakhtenbrot in Novosibirsk,
where they were indeed received with immediate celebration. Sending these re-
sults first to Trakhtenbrot was doubly appropriate, because, though I did not
know it at the time, Trakhtenbrot was one of the seminal researchers in the area
of automata theory and logic from which Stockmeyer’s and my first example
came.

We come now to the question of to what degree these individual anecdotes
represent a pattern of East/West scientific collaboration in the theoretical com-
puter science. Trakhtenbrot – as noted above – was concerned that Western
researchers were too unaware of Eastern research and may therefore have mis-
takenly underestimated their ability and the potential that would exist, were the

Reminiscences 45

stifling climate under Yablonskii’s stewardship to abate, for dramatic contribu-
tions to be made. But while I agree that the names and contributions of several
Soviet scholars, perhaps especially Barzdin, were not as prominent in the West
as they may have deserved, nevertheless when I review the major scientific dis-
coveries in the area in the 70s and 80s, I find major Soviet contributions widely
and quickly recognized in the West. Thus, the ingenious tree manipulation algo-
rithm of Adelson-Velsky was widely taught in undergraduate computer science
courses throughout the world, the theoretically efficient algorithm for linear pro-
gramming of V’jugin, Nemirovsky and Khachian was the focus of more than one
entire scientific colloquium in the West after it was noticed (after, I should add,
an uncertain delay) in the Soviet literature in 1979, and a major advance in the
study of combinational complexity by a student of Kolmogorov named Razborov
captured the imagination of the American research community.

So, I do not find great underestimation or neglect of Soviet activity, though
the collegial connections with the West are rarely very close, as one might expect
given the obstacles to travel and communication imposed. So, the names of East-
ern researchers are not especially audible in informal conversation in Western
scientific circles.

As Trakhtenbrot once said, “There can be no question but that in terms of
sheer magnitude of pioneering efforts, the work of Western computer scientists
exceeds that of their Soviet colleagues.” The history of parallels confirms the
abilities and contributions of the Soviet research community, but, on the other
hand, can be read as showing that the West did not particularly need the Eastern
contributions, since they would undoubtedly have been forthcoming anyway from
corresponding Western work.

Nevertheless, Trakhtenbrot has called attention to potentially outstanding
results such as those of Barzdins and Tseitin, which may have been unduly
neglected in the West. It is in the last analysis impressive – and a testament to
the vitality of theoretical ideas – that valuable contributions were continually
made by Soviet researchers within an academic bureaucracy that would have
overwhelmed a Western researcher.

Boris A. Trakhtenbrot�:

Academic Genealogy and Publications

Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich

1 Trakhtenbrot’s Genealogy

According to the Mathematics Genealogy Project (at http://genealogy.
math.ndsu.nodak.edu), Trakhtenbrot’s ancestral dag is rooted in Otto Mencke
(who received his degree in 1666, but whose advisor is not listed):

Boris Abramovich Trakhtenbrot

Petr Sergeevich Novikov

Nikolai Nikolayevich Luzin

Dimitri Fedorowitsch Egorov

Nicolai Bugaev

Karl Theodor Wilhelm
Weierstraß

Christoph Gudermann

Ernst Eduard
Kummer

Heinrich Ferdinand
Scherk

Friedrich Wilhelm
Bessel

Carl Friedrich Gauß

Johann Friedrich Pfaff

Abraham Gotthelf Kästner

Christian August Hausen

Johann Christoph Wichmannshausen

Otto Mencke

Heinrich Wilhelm
Brandes

Georg Christoph
Lichtenberg

� Sometimes transcribed as Trahtenbrot, Trachtenbrot, Trajtenbrot. His patronymic
“A.” is variously spelled: Abramovich, Avraamovich, Avramovich.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 46–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://genealogy.math.ndsu.nodak.edu
http://genealogy.math.ndsu.nodak.edu

Boris A. Trakhtenbrot: Academic Genealogy and Publications 47

The next section enumerates Trakhtenbrot’s 16 doctoral students, the titles
of their dissertations, and their own academic progeny. It is followed by a bibli-
ography of Trakhtenbrot’s hundred-plus publications, including 7 books.

2 Trakhtenbrot’s Progeny

There follows a list of Trakhtenbrot’s 16 doctoral students, their 56 students, and
their 13 students, in turn, for a grand total of 85 known academic descendants –
to date.

1. Miroslav Kratko, Unsolvability of Completeness Problem in Automata The-
ory, Institut of Mathematics, Siberian Branch of the USSR Academy of
Sciences, Novosibirsk (1964)
(a) Oleg Revin (1974)
(b) Valery Pavlenko (1979)
(c) Miroslav Pritula (1983)
(d) Yuri Yatsyshyn (1988)
(e) Igor Yanovich (1989)
(f) Andrei Nazarok (1989)
(g) Andrei Khruzin (1990)

2. Nikolai Beljakin, About the External Memory of Turing Machines, Institut
of Mathematics, Siberian Branch of the USSR Academy of Sciences, Novosi-
birsk (co-supervised with Petr Novikov) (1964)
(a) Valery A. Ganov (1975)
(b) Elena G. Nikiforova (1987)
(c) Alla N. Gamova (1992)
(d) Leonid N. Pobedin (1993)
(e) Ruslana V. Ganova (1998)
(f) Evgeniya V. Gailit (2004)

3. Janis Barzdins, Universality Problems in the Theory of Growing Automata,
Institute of Mathematics, Siberian Branch of the USSR Academy of Sciences,
Novosibirsk (1965)
(a) Audris Kalnins (1971)

i. Edgars Celms (2007)
ii. Valdis Vitolins (2007)

(b) Evalds Ikaunieks (1973)
(c) Janis Kalnins (1974)
(d) Jānis Bičevskis (1979)

i. Guntis Arnicans
ii. Girts Karnitis
iii. Viesturs Vezis
iv. Jānis Zuters

(e) Karlis Podnieks (1979)
(f) Mihails Augustons (1983)
(g) Andrejs Auzins (1988)

48 A. Avron, N. Dershowitz, and A. Rabinovich

Fig. 1. On the occasion of the “Logic at Botik ’89” symposium in Pereslavl-Zalesski
(from left to right): V. Yu. Sazonov, J. M. Barzdins, R. V. Freivalds, A. Ja. Dikovsky,
B. A. Trakhtenbrot, M. K. Valiev, M. I. Kratko, V. A. Nepomnyashchy

(h) Maris Treimanis (1988)
(i) Juris Strods (1988)
(j) Alvis Brazma (1989)
(k) Juris Borzovs (1989)

i. Guntis Urtāns (unofficial advisor) (2003)
ii. Baiba Apine (2003)
iii. Mārtiņš Gils (2005)
iv. Darja Šmite (2007)

(l) Ilona Etmane (1990)
(m) Karlis Cerans (1992)
(n) Ugis Sarkans (1998)
(o) Girts Linde (2004)

4. Valery Nepomnyaschy, Investigation of Bases and Sufficient Classes of Re-
cursive Functions, Institute of Mathematics, Siberian Branch of the USSR
Academy of Sciences, Novosibirsk (1967)
(a) Kostovsky Valery (1986)
(b) Sergey Vorobyov (1987)
(c) Nikolay Shilov (1987)

i. Natalia Garanina (2004)

Boris A. Trakhtenbrot: Academic Genealogy and Publications 49

Fig. 2. On the banks of the Volga, after the (followup) “Logical Foundations of Com-
puter Science” symposium, held near Tver in July 1992 (from left to right): M. N.
Sokolovskiy, M. I. Dekhtyar, M. K. Valiev, B. A. Trakhtenbrot, V. Yu. Sazonov, I. A.
Lomazova, V. N. Agafonov

(d) Alexander Sulimov (1991)
(e) Alexander Ustimenko (1997)
(f) Igor Anureev (1998)
(g) Tatiana Churina (2000)
(h) Vitaly Kozura (2004)
(i) Elena Okunishnikova (2004)
(j) Aleksey Promsky (2004)

5. Alexei Korshunov, An Investigation of Weight, Diameter and Ranks of Au-
tomata with a Big Memory, Institute of Mathematics, Siberian Branch of
the USSR Academy of Sciences, Novosibirsk (1967)
(a) Miron N. Sokolovskiy (1979)

6. Mars K. Valiev, On Complexity of Word Problem for Finitely Presented
Groups, Institute of Mathematics, Siberian Branch of the USSR Academy
of Sciences, Novosibirsk (1969)

50 A. Avron, N. Dershowitz, and A. Rabinovich

7. Valery Agafonov, On Algorithms, Frequency and Probability, Institute of
Mathematics, Novosibirsk (1969)

8. Djavkathodja Hodjaev, On Complexity of Computations on Turing Machines
with Oracles, Institute of Cybernetics, Tashkent (1970)

9. Zoya Litvintseva, Complexity of Some Algorithmic Problems for Groups and
Semigroups, Novosibirsk State University (1970)

10. Rūsiņs̆ Freivalds, Completeness up to Coding for Systems of Multiple-Valued
Functions, Institute of Mathematics, Siberian Branch of the USSR Academy
of Sciences, Novosibirsk (1972)
(a) Efim Kinber (1974)
(b) Agnis Andzans (1983)

i. L̄ıga Rāmana (2004)
ii. Ilze France (2005)

(c) Maris Alberts (1989)
(d) Daina Taimina (1990)
(e) Janis Kaneps (1991)
(f) Juris Viksna (1994)
(g) Andris Ambainis (1997)
(h) Juris Smotrovs (1999)
(i) Dainis Geidmanis (1999)
(j) Marats Golovkins (2003)
(k) Maksims Kravcevs (2006)
(l) Arnolds Kikusts (2007)

11. Anatoli Vaisser, Problems of the Complexity and Stability of Probabilistic
Algorithms, Tomsk (Vladimir P. Tarasenko served as de jure advisor1) (1976)

12. Vladimir Sazonov, On the Semantics of Applicative Algorithmic Languages,
Novosibirsk State University (1976)
(a) Alexei Lisitsa (1997)

13. Michael Dekhtyar, On the Complexity of Relativized Computations, Moscow
State University (1977)
(a) Sergej Dudakov (2000)

14. Irina Lomazova, Semantics and Algorithmic Logic for Programs with goto,
Institute of Mathematics of the USSR Academy of Sciences (Andrei P. Er-
shov served as de jure advisor1) (1981)
(a) Vladimir Bashkin (2003)

15. Alex Barel, On Collective Behavior of Automata, Tel Aviv University (co-
supervised with Ilya Piatetski-Shapiro) (1984)

16. Alexander Rabinovich, Nets and Processes, Tel Aviv University (1989)
(a) Greta Yorsh (co-supervised with Shmuel Sagiv) (2007)

1 Tarasenko and Ershov genrously volunteered to serve as official supervisors, so as to
circumvent bureaucratic repression on the part of the official mathematical estab-
lishment, which would have endangered the careers of Trakhtenbrot’s students.

Boris A. Trakhtenbrot: Academic Genealogy and Publications 51

3 Trakhtenbrot’s Publications

Trakhtenbrot’s books have been very influential and were translated into a wide
range of languages, including English, French, German, and Japanese. His 96
additional publications span the period from 1950 until the present and have
left indelible marks all over the field of theoretical computer science.

3.1 Books

1. Algoritmy i mashinnoe reshenie zadach (in Russian) [Algorithms and Auto-
matic Computing Machines = ��������	 � �
����� ���� �
�
���
Gostekhizdat, 1st ed., Moscow, 95 pages. Issue 26 of the series Popular Lec-
tures in Mathematics, 1957.

(a) Wieso konnen Automaten Rechnen: Eine Einführung in die logisch-
mathematischen Grundlagen programmgesteuerter Rechenautomaten
(German, translated from Russian), Deutscher Verlag der Wis-
senschaften, Berlin, 1959.

(b) Los Algorirmos y la Resolucion Automatica de Problemas (Spanish,
translated from Russian), Editorial Mir, Moscow, 1977.

(c) (Japanese translation), Shigeo Kawano, Tokio-Toshio, 1959.
(d) Algorytmy i automatyczne rozwiazyvanie zadan, Panstwowe

Wydawnictwo Naukowe, Warszawa (Polish), 1961.
(e) Algorithme et Resolution de Problemes par des Machines (French, trans-

lated from Russian), Editions Mir, Moscow; appears as part 2 of I. Ya-
glom, B. Trakhtenbrot, H. Ventsel, A. Solodovnikov, Nouvelles Orienta-
tions des Mathematiques, Editions Mir, Moscow, 1975.

2. Algoritmy i mashinnoe reshenie zadach (in Russian) [Algorithms and Auto-
matic Computing Machines = ��������	 � �
����� ���� �
�
���
2nd ed., Fizmatgiz, Moscow, 120 pages, 1960.

(a) Algoritmy a strojove reseni ulokh (Czech, translated from Russian),
Nakladatelstvi Ceskoslovenske akademie ved, Praha, 1963.

(b) Algorithmes et machines a calculer (French, translated by A. Chauvin
from Russian), Dunod, Paris, 1963.

(c) Algorytmy i mashinno resavane na zadachi (Bulgarian, translated from
Russian), Dyrzhavno Izdatelstvo “Tekhnika”, Sofia, 1963.

(d) Algorithms and Automatic Computing Machines (translated and
adapted from Russian by J. Kristian, J. D. McCawley, and S. A.
Schmitt), in the series Topics in Mathematics, D. C. Heath and Com-
pany, Boston, 1963.

(e) Japanese translation, Tosho, Tokyo, 1964.
(f) Algoritmi e Macchine Calcolatrici Automatiche (Italian, translated from

English), Progresso TecnicoEditoriale, Milano, 1964.
(g) Algoritmalar ve Otomatik Hesap Makinalari (Turkish), Turk Matematik

Dernegi Yaynlari, Istanbul, 1964.

52 A. Avron, N. Dershowitz, and A. Rabinovich

(h) Introduction a la Teoria Matematica de las Computadoras y de la Pro-
gramacion (Spanish, translated from Russian), Siglo Veintiuno Editores
SA, Mexico, 1967.

3. N. E. Kobrinski and B. A. Trakhtenbrot, Vvedenie v Teoriiu Konech-
nykh Avtomatov (in Russian) [Introduction to the Theory of Finite Au-
tomata = ����� � ����� �����	�
����
���� ���������� !"#!$� %&%
'��("�)*+,-

(a) Introduction to the Theory of Finite Automata (translated from Rus-
sian; translation edited by J. C. Shepherdson), in: Studies in Logic and
the Foundations of Mathematics, North-Holland Publishing Company,
Amsterdam, 1965.

(b) Uvod do Teorie Konecnych Automatu (Czech, translated from Russian),
Nakladatelstvi Technicke Literatury, Praha, 1967.

(c) Einfuhrung in die Theorie endlicher Automaten (German, translated
from Russian), Akademie-Verlag, Berlin, 1967.

4. Slozhnost’ Algoritmov i Vychislenii (in Russian) [The Complexity of Al-
gorithms and Computations = .��/��0�1
��������� � �	��0���2��
Lecture Notes, edited by Novosibirsk University, 258 pages, 1967.

5. B. A. Trakhtenbrot and Ya. M. Barzdin, Konechnye Avtomaty (Povede-
nie i Sintez) (in Russian) [Finite Automata (Behavior and Synthesis) =
3����	
����
�	 45����� � 0����6�� 7�89�� !"#!$� %&& '��("�
)*:&-

(a) Finite Automata: Behavior and Synthesis (translated from Russian by D.
Louvish; translation edited by E. Shamir and L. H. Landweber) in: Series
Fundamental Studies in Computer Science, North-Holland, Amsterdam,
and Elsevier, New York, 1973.

6. Algoritmy i Vychislitelnye Avtomaty (in Russian) [Algorithms and Com-
putational Automata = ��������	 � �	��0�����	
����
�	��
Sovetskoe Radio, Moscow, 200 pages, 1974.

(a) Algorithmen und Rechenautomaten (German, translated from Russian),
Deutcher Verlag der Wissenschaften, Berlin, 1977.

(b) Sto SU Algoritmi: Algoritmi i racunski automati. Skolska Knjiga
(Horvat-Serbian, translated from Russian), Zagreb, 1978.

(c) Algoritmusok es absztrak Automatak (Hungarian, translated from Rus-
sian), Muszaki Konivkiado, Budapest, Mir Konivkiado, Moszkva, 1978.

7. Selected Developments in Soviet Mathematical Cybernetics: Finite automata,
combinational complexity, algorithmic complexity, in: Monograph Series on
Soviet Union, Delphic Associates, Falls Church, VA, xiv + 122 pages, 1985.

Boris A. Trakhtenbrot: Academic Genealogy and Publications 53

References

1. The impossibility of an algorithm for the decidability problem on finite classes.
Doklady AN SSR 70(4), 569–572 (1950)

2. Decidability problems for finite classes and definitions of finite sets, Ph.D. Thesis,
Math. Inst. of the Ukrainian Academy of Sciences, Kiev (1950)

3. On recursive separability. Doklady AN SSR 88(6), 953–956 (1953)
4. Tabular representation of recursive operators. Doklady AN SSR 101(4), 417–420

(1955)
5. Modelling functions on finite set. Uchionnye Zapiski Pennenskogo Pedinstituta

(Transactions of the Pensa Pedagogical Institute), (2), 61–78 (1955)
6. The synthesis of non-repetitive schemas. Doklady AN SSR 103(6), 973–976 (1955)
7. Kuznetsov, A.V., Trakhtenbrot, B.A.: Investigation of partial recursive operators

by techniques of Baire spaces. Doklady AN SSR 105(6), 896–900 (1955)
8. On the definition of finite set and the deductive incompleteness of set theory.

Izvestia AN SSR 20, 569–582 (1956)
9. Signalizing functions and tabular operators. Uchionnye Zapiski Penzenskogo Pedin-

stituta (Transactions of the Penza Pedagogoical Institute) (4), 75–87 (1956)
10. On effective operators and their properties connected to continuity. In: Proceedings

of the Third All-Union Mathematical Congress, Moscow, vol. 2, pp. 147–148 (1956)
11. Algorithms and automatic solution of problems. Mathematics in the School, (4–5)

(1956)
12. Descriptive classifications in recursive arithmetic. In: Proceedings of the Third All-

Union Mathematical Congress, Moscow, vol. 1, p. 185 (1956)
13. Applying some topological invariants to the synthesis of two-polar switching

schemes. In: Proceedings of the Third All-Union Mathematical Congress, Moscow,
vol. 1, p. 136 (1956)

14. On operators, realizable by logical nets. Doklady AN SSR 112(6), 1005–1006 (1957)
15. The synthesis of logical nets whose operators are described in terms of monadic

predicates. Doklady AN SSR 118(4), 646–649 (1958)
16. On the theory of non-repetitive schemes. Trudy Mathem. Instituta im. Steklova

(Transactions of the Steklov Mathem. Institute) 51, 226–269 (1958)
17. The asymptotic estimate of the logical nets with memory. Doklady AN SSR 127(2),

281–284 (1959)
18. Kobrinski, N.E., Trakhtenbrot, B.A.: Fundamentals of the theory of logical nets.

In: Computing Techniques and Their Application, Moscow, pp. 248–268 (1959)
19. Sketching of a general theory of logical nets. In: Logical Investigations, The Insti-

tute of Philosophy of the Academy of Sciences, Moscow, pp. 352–378 (1959)
20. Some constructions in the monadic predicate calculus. Doklady AN SSR 138(2),

320–321 (1961)
21. Finite automata and the monadic predicate calculus. Doklady AN SSR 140(2),

326–329 (1961)
22. Finite automata and the monadic predicate calculus. Siberian Mathematical Jour-

nal 3(1), 103–131 (1962)
23. Investigations on the synthesis of finite automata, Doctoral Thesis, Math. Inst. of

the Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1962)
24. On the frequency computation of recursive functions. Algebra i Logika 1(1), 25–32

(1963)
25. Finite automata. In: Proceedings of the Fourth All-Union Math. Congress, 1961,

Nauka, Moscow, vol. 2, pp. 93–101 (1964)

54 A. Avron, N. Dershowitz, and A. Rabinovich

26. On an estimate for the weight of a finite tree. Siberian Mathematical Journal 5(1),
186–191 (1964)

27. On the complexity of schemas that realize many-parametric families of operators.
Problemy Kibernetiki 12, 99–112 (1964)

28. Turing computations with logarithmic delay. Algebra i Logika 3(4), 33–48 (1964)
29. Automata theory. Automation of Electronic Industries Encyclopedia 1 (1964)
30. Optimal computations and the frequency phenomena of Yablonski. Algebra i

Logika 4(5), 79–93 (1965)
31. On normalized signalizing functions for Turing computation. Algebra i Logika 5(6),

61–70 (1966)
32. On complexity of computations. In: Abstracts of the International Mathematical

Congress, Section 1, Moscow, p. 26 (1966)
33. Barzdin, Y.M., Trakhtenbrot, B.A.: On the current situation in the behavioral the-

ory ofautomata. In: Abstracts of the Conference on Automata Theory and Artificial
Intelligence, Tashkent, Computing Center of the USSR Academy of Sciences, pp.
10–11 (1968)

34. Trakhtenbrot, B.A., Valiev, M.: On the complexity of the mutual reduction of the
identity-problem for finite definable groups and the decidability of enumerable sets.
In: Abstracts of the IX All-Union Symposium on Algebra, Gomel, pp. 41–42 (1968)

35. On the complexity of the mutual-reduction algorithms in the construction of
Novikov and Boone. Algebra i Logika 8, 50–71 (1969)

36. The theory of algorithms in the USSR. In: History of Mathematics in our Country,
Kiev, pp. 409–431 (1970)

37. On autoreducibility. Doklady AN SSR 192(6), 1224–1227 (1970)
38. Some applications of the theory of complexity of computations. Inform. Bulletin

of the Cybernetics Scientific Council, Academy of Sciences (5), 61–74 (1970)
39. Complexity of computations on discrete automata. Studien zur Algebra und ihre

Anwendungen, p. 152. Akademie Verlag, Berlin (1972)
40. On autoreducible and non-autoreducible predicates and sets. Investigations in the

Theory of Algorithms and Mathematical Logic, Computer Center, Academy of Sci.
1, 211–235 (1973)

41. Frequency computations, Trudy Matem. Instituta im. Steklova Transactions of the
Steklov Mathematical Institute 133, 221–232 (1973)

42. Formalization of some notions in terms of computation complexity. In: Proceedings
of the 1st International Congress for Logic,Methodology and Philosophy of Science,
Studies in Logic and Foundations of Mathematics, vol. 74, pp. 205–214 (1973)

43. On universal classes of program-schemes, International Symposium on Theoretical
Programming, Novosibirsk, Lecture Notes in Computer Science, vol. 5, Springer-
Verlag, Berlin, pp. 144–151 (1974)

44. Notes on the complexity of probabilistic machine computations. In: The Computing
Center of the Academy of Sciences (ed.) Theory of Algorithms and Mathematical
Logic. pp. 159–176 (1974)

45. Alexey Andreevich Lyapunov (in Russian), Mathematics in the School (3) (1974)
(a) German translation in: Mathematik in der Schule, Jg 13, no. 4, pp. 203–209,
Berlin (1975) (b) Alexey Andreevich Lyapunov. In: Essays on the History of Infor-
matics in Russia, Nauchno-Izdatel’skiy Tsentr Sibirskogo Otdeleniya Rossiyskoy
Akademii Nauk, Novosibirsk, pp. 470–480 (1998)

46. Abstraktnaya teoriya avtomatov (Abstract automata theory; in Russian). Ency-
clopedia Kibernetika 1, 11–12 Kiev (1974)

47. Avtomatov teorija (Theory of automata; in Russian), Encyclopedia of Cybernetics,
vol. 1, pp. 57–60, Kiev (1974)

Boris A. Trakhtenbrot: Academic Genealogy and Publications 55

48. Mery slozhnosti v teorii avtomatov (Complexity measures in automata theory; in
Russian). Encyclopedia of Cybernetics 1, 588–590 (1974)

49. Povedenie avtomatov (Behavior of automata; in Russian). Encyclopedia of Cyber-
netics 2, 166–169 (1974)

50. Yazyk logicheskiy dlya zadaniya avtomatov (Logical language for specifications
of automata; in Russian). Encyclopedia of Cybernetics, Kiev, vol. 1, pp. 595–596
(1974)

51. On problems solvable by successive trials. In: Becvar, J. (ed.) MFCS 1975. LNCS,
vol. 32, pp. 125–138. Springer, Heidelberg (1975)

52. Recursive program schemas and computable functionals. In: Mazurkiewicz, A. (ed.)
MFCS 1976. LNCS, vol. 45, pp. 137–151. Springer, Heidelberg (1976)

53. Frequency algorithms and computations. In: Gruska, J. (ed.) MFCS 1977. LNCS,
vol. 53, pp. 148–161. Springer, Heidelberg (1977)

54. On the semantics of algorithmic languages. In: Proceedings of the Symposium on
Development Perspectives in System and Theoretical Programming, Novosibirsk,
pp. 77–84 (1978)

55. Semantics and logic of algorithm languages. Semiotika i Informatika, Moscow 13,
47–85 (1979)

56. On the completeness of algorithmic logic. Kibernetika, Kiev (2), 6–11 (1979)

57. Relaxation rules of algorithmic logic. In: Schlender, B., Frielinghaus, W. (eds.)
GI-Fachtagung 1974. LNCS, vol. 7, pp. 453–462. Springer, Heidelberg (1974)

58. Vospitanie matematiko-logicheskoy kultury uchashchikhs’a (On mathematical-
logical education; in Russian), In: Olimpiada, Algebra, Kombinatorika, Nauka,
Novosibirsk, pp. 26–52 (1979)

59. Some reflections on the connection between computer science and the theory of al-
gorithms. In: Knuth, D.E., Ershov, A.P. (eds.) Algorithms in Modern Mathematics
and Computer Science. LNCS, vol. 122, pp. 461–462. Springer, Heidelberg (1981)

60. On denotational semantics and axiomatization of partial correctness for languages
with procedures as parameters and with aliasing (Extended abstract), Technical
Report, Tel Aviv University, 20 pages (August 1981)

61. Trakhtenbrot, B.A., Halpern, J., Meyer, A.: From denotational to operational and
axiomatic semantics for Algol-like languages (An overview). In: Clarke, E., Kozen,
D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 474–500. Springer, Heidel-
berg (1984)

62. Halpern, J., Meyer, A., Trakhtenbrot, B.A.: The semantics of local storage, or what
makes the free list free (preliminary report). In: Conference Record of the XI ACM
Symposium on Principles of Programming Languages (POPL), pp. 245–257 (1984)

63. A survey on Russian approaches to perebor (brute force search algorithms). Annals
of the History of Computing 6(4), 384–400 (1984)

64. On logical relations in program semantics. In: Proceedings of the Conference on
Mathematical Logic and its Applications, Dedicated to the 80th Anniversary of
Kurt Gödel, Druzhba, Bulgaria, pp. 213–229. Plenum Press, New York (1987)

65. Comparing the Church and Turing approaches: Two prophetical messages. In: The
Universal Turing Machine – A Half-Century Survey, pp. 603–630. Oxford University
Press, Oxford (1988) (a) 2nd edn. Springer-Verlag, Wien, pp. 557–582 (1995)

66. Editor’s foreword, Special Issue on Concurrency, Fundamenta Informaticae, vol. xi,
pp. 327–329. North-Holland, Amsterdam (1988)

67. Rabinovich, A., Trakhtenbrot, B.A.: Behavior structures and nets of processes,
Fundamenta Informaticae, vol. xi, pp. 357–403. North-Holland, Amsterdam (1988)

56 A. Avron, N. Dershowitz, and A. Rabinovich

68. Hirshfeld, Y., Rabinovich, A., Trakhtenbrot, B.A.: Discerning causality in interleav-
ing behavior. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS,
vol. 363, pp. 146–162. Springer, Heidelberg (1989)

69. Understanding nets. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS,
vol. 379, pp. 133–134. Springer, Heidelberg (1989)

70. Rabinovich, A., Trakhtenbrot, B.A.: Nets of processes and data flow. In: de Bakker,
J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 574–602.
Springer, Heidelberg (1989)

71. Rabinovich, A., Trakhtenbrot, B.A.: Nets and data flow interpreters. In: Proceed-
ings of Fourth Annual Symposium on Logic in Computer Science (LICS), Asilomar,
CA, pp. 164–174 (June 1989)

72. Rabinovich, A., Trakhtenbrot, B.A.: Communication among relations. In: Paterson,
M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 294–307. Springer, Heidelberg (1990)

73. Mazurkiewicz, A., Rabinovich, A., Trakhtenbrot, B.A.: Connectedness and syn-
chronization. In: Bjørner, D., Kotov, V. (eds.) Images of Programming. IFIP Se-
ries, North-Holland, Amsterdam (1991) Mazurkiewicz, A., Rabinovich, A., Trakht-
enbrot, B.A.: Connectedness and synchronization. Theoretical Computer Sci-
ence 90(1), 171–184 (1991)

74. Rabinovich, A., Trakhtenbrot, B.A.: On nets, algebras and modularity. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 176–203. Springer, Heidelberg
(1991)

75. Compositional proofs for networks of processes. Fundamenta Informaticae 20, 231–
275 (1994)

76. Origins and metamorphoses of the Trinity: Logic, nets, automata. In: Proceedings
of the 10th IEEE Symposium on Logic in Computer Science, San Diego, pp. 506–
507 (1995)

77. On the power of compositional proofs. Fundamenta Informaticae 30(1), 83–95
(1997)

78. In memory of S.A. Yanovskaya (in Russian), Researches in History of Mathemat-
ics, series 2, vol. 2(37), Russian Academy of Sciences, The Institute for History
of Natural Sciences and Technology, pp. 109–127 (1997) (a) In memory of S.A.
Yanovaskaya (1896–1966) on the centenary of her birth, Modern Logic 7(2), 160–
187 (1997)

79. Rabinovich, A.M., Trakhtenbrot, B.A.: From finite automata toward hybrid sys-
tems. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 411–422.
Springer, Heidelberg (1997)

80. Automata and hybrid systems (seven-lecture mini-course), Technical Report no.
153, UPMAIL, Uppsala University, pp. 1–89 (1998)

81. From logic to theoretical computer science. In: Calude, C.S. (ed.) People and Ideas
in Theoretical Computer Science, pp. 314–342. Springer, Heidelberg (1998)

82. Automata and their interaction: Definitional suggestions. In: Ciobanu, G., Păun,
G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 54–89. Springer, Heidelberg (1999)

83. Automata, circuits and hybrids: Facets of continuous time. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 4–23. Springer,
Heidelberg (2001) Automata, circuits and hybrids: Facets of continuous time (Ex-
tended abstract). In: Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing, Hersonissos, Crete, Greece, pp. 754–755 (July 2001)

84. Automata, logic, circuits: The impact of continuous time, Abstracts of the Inter-
national Conference Mathematical Logic, Algebra and Set Theory, Dedicated to
the 100th Anniversary of P. S. Novikov, p. 48 (August 2001)

Boris A. Trakhtenbrot: Academic Genealogy and Publications 57

85. Remembering Alexey Andreevich. In: Proceedings of the Conference Dedicated to
the 90th Anniversary of A. A. Lyapunov, Joint Institute of Informatiques, Novosi-
birsk, Siberian Branch of the Russian Academy of Sciences (2001)

86. Editor’s preface, Special Issue on Continuous Time Paradigms in Logic and Au-
tomata. Fundamenta Informaticae 62(1) v–vii (2004)

87. Understanding basic automata theory in the continuous time setting. Fundamenta
Informaticae, 62(1), 69–121 (2004)

88. Pardo, D., Rabinovich, A., Trakhtenbrot, B.A.: Synchronous circuits over continu-
ous time: Feedback reliability and completeness. Fundamenta Informaticae 62(1),
123–137 (2004)

89. In memory of Andrey Petrovich Ershov (in Russian). In: Marchuk, A.G. (ed.)
Andrey Petrovich Ershov, Scientist and Man, pp. 343–351 Publishing House of
Siberian Branch of the Russian Academy of Sciences (2006)

90. Avron, A., et al. (eds.): From logic to theoretical computer science. LNCS, vol. 4800.
Springer, Heidelberg

Symmetric Logic of Proofs

Sergei Artemov

CUNY Graduate Center, 365 Fifth Ave., New York, NY 10016, USA
SArtemov@gc.cuny.edu

Dedicated to B.A. Trakhtenbrot on the occasion of his 85th birthday.

Abstract. The Logic of Proofs LP captures the invariant propositional
properties of proof predicates t is a proof of F with a set of operations
on proofs sufficient for realizing the whole modal logic S4 and hence
the intuitionistic logic IPC. Some intuitive properties of proofs, however,
are not invariant and hence not present in LP. For example, the choice
function ‘+’ in LP, which is specified by the condition s:F∨t:F → (s+t):F ,
is not necessarily symmetric. In this paper, we introduce an extension of
the Logic of Proofs, SLP, which incorporates natural properties of the
standard proof predicate in Peano Arithmetic:

t is a code of a derivation containing F,
including the symmetry of Choice. We show that SLP produces Brouwer-
Heyting-Kolmogorov proofs with a rich structure, which can be useful
for applications in epistemic logic and other areas.

1 Introduction

In [15], Gödel used the modal logic S4 to axiomatize classical provability and
provide the formal provability semantics to the intuitionistic propositional logic
IPC by reducing IPC to S4. The question of the provability semantics of S4 itself
was left open and found its resolution in [1,2] via the Logic of Proofs LP1 which
provided a complete axiomatization of the proof predicate

t is a proof of F

in a propositional language with a sufficiently rich system of operations on proofs.
On the other hand, LP can realize every S4 derivation by recovering correspond-
ing proof terms at every occurrence of the modality (the Realization Theorem
from [1,2], cf. Theorem 1). The combination of these two features renders LP a
bridge between intuitionistic logic and the realm of formal mathematical proofs
in the style of Brouwer-Heyting-Kolmogorov:

IPC ↪→ S4 ↪→ LP ↪→ Gödelian proof predicates.
1 The first (incomplete) sketch of the logic of proofs was given by Gödel in one of

his lectures of 1938 [16]. This lecture was published only in 1995; by that time, the
complete system LP for the Logic of Proofs had already been discovered and shown
to provide a desired provability semantics for intuitionistic logic (cf. [1,2]).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 58–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Symmetric Logic of Proofs 59

In this diagram, IPC ↪→ S4 denotes Gödel’s faithful embedding of IPC into S4
[15], S4 ↪→ LP signifies the Realization Theorem which faithfully embeds S4
into LP [1,2], and LP ↪→ Gödelian proof predicates refers to the arithmetical
soundness (and completeness) theorem ([1,2]) for the Logic of Proofs. We refer
the reader to [2] and surveys [6,7] for detailed discussion of these matters.

2 LP Basics

The Logic of Proofs has three basic operations on proofs: Application ‘·’ (binary),
Choice ‘+’ (binary), and Proof Checker ‘!’(unary). Proof polynomials are terms
built by these operations from proof variables x, y, z, . . . and proof constants
a, b, c, The formulas of LP are defined by the grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | t:A

where t stands for any proof polynomial and S for any sentence letter. As usual,
we shorten s · t to st when convenient. The binding priority from strong to weak
is !, ·, +, :, ¬, ∧, ∨,→ . In particular, t(u + v):F → tu:F ∨tv:F denotes

{[t·(u + v)]:F} → {[(t·u):F]∨[(t·v):F]}.

The postulates of the Logic of Proofs LP are

1. a fixed set of axioms for classical propositional logic with Modus Ponens as
its only rule of inference, e.g., the set from [18];

2. s:(F →G) → (t:F →(s·t):G) (Application);
3. t:F → !t:(t:F) (Proof Checker);
4. s:F →(s+t):F , t:F →(s+t):F (Choice);
5. t:F →F (Reflection);
6. Constant Specification Rule: If c is a proof constant and A is an axiom

from 1-5, then infer c:A.

LP is closed under substitutions of proof polynomials for proof variables and
formulas for propositional variables, and enjoys the deduction theorem.

Constant Specification CS is a set of formulas {c1:A1, c2:A2, . . .} where each
Ai is an axiom and each ci is a proof constant. Each derivation in LP naturally
generates a (finite) constant specification CS introduced in this derivation by the
Constant Specification Rule. By LPCS, we mean a subsystem of LP where the
Constant Specification Rule is only allowed to produce formulas from a given
constant specification CS. If CS contains all formulas c:A where A is an axiom
and c is a proof constant, then LPCS is LP itself.

The principal feature of the Logic of Proofs is the Internalization Principle2

which states that

whenever � F , there is a proof polynomial p such that � p:F ,
2 In his brief sketch of the logic of proofs in [16], Gödel cited the Internalization

Principle as one of its features.

60 S. Artemov

which is nothing more than the explicit version of the modal Necesitation Rule

� F

� �F.

The following Theorem 1 discloses a connection between the Logic of Proofs LP
and Gödel’s provability logicS4; this result has been crucial for providing intuition-
istic logic with the intended Brouwer-Heyting-Kolmogorov semantics of proofs.
This theorem shows that the provability modality in S4 can indeed be read as

�F = there is proof of F

using the language of Skolem-style operations on proofs rather than quantifiers.
For example, a sentence

�F → �G

in the logic of formal provability3 reads as

∃x(‘x is a proof of F’) → ∃y(‘y is a proof of G’),

whereas, by the Realization Theorem, this reads as an LP sentence

x:F → t(x):G,

for an appropriate proof polynomial t(x).
The usual Skolemization does not work for quantifiers on proofs, and a totally

new technique has been invented here.

Theorem 1. [Realization Theorem for LP ([1,2])] There is an algorithm which,
given S4 � F , substitutes each occurrence of the modality in F by an appropriate
proof polynomial such that the resulting formula F r is derivable in LP. Moreover,
such a realization can be made in a way that respects Skolem-style reading of
�X as ‘there is a proof of X’: each negative occurrence of � can be realized by a
proof variable, and each positive occurrence of � is realized by a proof polynomial
depending of those variables.

The size of realizing proof polynomials can be limited by a quadratic function
in the length of a cut-free derivation of F in S4 ([12]). A semantical proof of the
Realization theorem which is not based on cut-elimination in S4 was suggested
in [14]. R. Kuznets in [12] showed that S4 cannot be realized in LP without using
self-referential proof assertions of the sort t:F (t).

Corollary 1. S4 is the forgetful projection of LP.

Proof. It is straightforward that the forgetful projection of LP is S4-compliant;
it suffices to notice that the forgetful projections of all axioms of LP are provable
in S4 and the rules of LP are S4-sound. By Theorem 1, every theorem of S4 is a
forgetful projection of some LP-theorem. ��
3 This approach led to the well-known Provability Logic GL (cf. [11,27]).

Symmetric Logic of Proofs 61

3 Symmetric Provability Interpretation

The intended provability semantics of LP is given by interpreting t :F as the
arithmetical proof predicate

t is a proof of F,

where ‘proofs’ are understood in a multi-conclusional way, i.e., a proof can yield
more than one theorem (think of a Hilbert-style proof sequence that proves all
formulas occurring in this sequence).

A body of work in this area shows that proof realization of modality necessarily
requires the multi-conclusion reading of proof predicates. What follows is a light
informal argument which hints at what is going on. Imagine a variant LP of
the logic of proofs capable of realizing S4. Then LP should be able to realize
the modality in an easy S4 theorem �A where A is a propositional modal-free
axiom (e.g., P → (Q→P) for propositional letters P and Q). Such a realization
should be of the form t:A for some proof term t and LP � t:A. Assume that
LP is closed under the substitution of propositional formulas for propositional
letters; all provability logics have this feature since they describe schemas valid
under all arithmetical interpretations, and this property survives substitution.
Let A′ be a substitutional instance of A, syntactically different from the latter.
By the substitution closure, LP � t:A′. Hence LP � t:A ∧ t:A′ and t represents
a proof of two different theorems.

Moreover, the logic of single-conclusion proofs contains some principles which
are inconsistent with modal logic. For example (cf. [2]), the principle ¬(x:	 ∧ x:
(∧)) is valid for single-conclusion proofs whereas its natural modal language
presentation via the ‘forgetful projection,’ ¬(�	 ∧ �(∧)), is false in any
modal logic. The logic of single-conclusion proofs has been axiomatized in [10]
(without operations) and in [20,21] (with the operations Application and Proof
Checker4). For further progress in this direction cf. [22].

In the context of the Logic of Proofs, one has to consider the whole class of
proof predicates and axiomatize only invariant properties, i.e., those that hold
for all proof predicates (from a given class). There is a good reason for this.
The language of the Logic of Proofs is rather expressive and captures individual
properties of proofs which should not count as general logic laws. For example,
the formula x:(∧) → x:	 claims that any (multi-conclusion) proof of the
conjunction 	 ∧ 	 should prove 	 as well. Apparently, this ‘principle’ is not
invariant since by changing an axiom system, one can obtain two proof predicates
in which this formula both holds and does not hold, respectively.

The soundness and completeness theorems from [1,2] state that the Logic
of Proofs LP captures exactly all invariant properties of multi-conclusion proof
predicates with natural computable operations on proofs corresponding to Ap-
plication, Proof Checker, and Choice5. We refer the reader to [6,7,3] for more
details.
4 The operation Choice ‘+’ is incompatible with single-conclusion proof semantics
5 E. Goris suggested in [17] a natural interpretation of LP in Bounded Arithmetic

where all of these operations are PTIME-computable.

62 S. Artemov

In the rest of this section, we introduce a symmetric version of the standard
provability semantics for the Logic of Proofs which differs slightly from the one
given in [2], Sect. 6 and is more convenient for revealing the natural structure of
proof operations.

Consider the proof predicate PROOF (x, y) for Peano Arithmetic PA which
is a natural arithmetical formalization of the usual Hilbert-style definition of
proofs:

x is a number of a proof sequence which contains a formula with a number y .

An interpretation of the language of LP maps propositional letters to sentences of
PA, and proof variables and constants to Gödel numbers of Hilbert-style proofs in
PA. This is the only difference between the symmetric semantics and the standard
provability semantics from [2], Sect. 6, where proof variables and constants are
mapped to arbitrary natural numbers, and not necessarily the codes of PA-
derivations. Note that each proof sequence in PA is a complete proof of each
sentence occurring within it.

For the proof predicate PROOF (x, y) , s·t can be interpreted as the operation
which concatenates the codes of proofs corresponding to s and t and adds to the
right all formulas G such that for some F , F → G and F occur in s and t
respectively.

Here is a more formal description. Let s′, t′, . . . denote arithmetical interpre-
tations of s, t, etc., i.e., Gödel numbers of Hilbert-style proofs in PA. Let also ∗
denote the concatenation on Gödel numbers of finite sequences. Then we define

(s · t)′ = s′ ∗ t′ ∗ �G1� ∗ . . . ∗ �Gn� (1)

where �G1�, . . . , �Gn� are Gödel numbers of single-formula sequences for each
Gi for which there exists F such that F →Gi and F are in the proofs with the
numbers s′ and t′ respectively. For example, if s′ = �F →G� and t′ = �F�, then

(s · t)′ = �F →G� ∗ �F� ∗ �G�, (t · s)′ = �F� ∗ �F →G�.

The Choice operation s+t can be interpreted as the concatenation of proof
sequences corresponding to s and t respectively:

(s + t)′ = s′ ∗ t′. (2)

The Proof Checker is a primitive recursive operation that takes a proof t
and, for each F such that t:F holds, produces a proof of all such t:F ’s; such
an operation can be traced back to the proof of Gödel’s Second Incompleteness
Theorem (cf. [26]).

We call PROOF (x, y) with operations (1), (2), and Proof Checker as above
the symmetric arithmetical semantics of the Logic of Proofs.

We can see that within the standard semantics, the Choice function is sym-
metric:

(s+t):F ↔ (t+s):F ;

moreover, it satisfies the principles

Symmetric Logic of Proofs 63

(s+t):F ↔ s:F ∨t:F,

u(s+t):F ↔ (us+ut):F,

(s+t)u:F ↔ (su+tu):F.

None of these principles is derivable in LP. The point is that these principles
are not invariant! For example, one can easily devise an interpretation where
(s+t):F →s:F ∨t:F does not hold. Indeed, interpret s+t and s · t as follows:

(s · t)� = s� ∗ t� ∗ �G1� ∗ . . . ∗ �Gn�,

as in (1), and
(s + t)� = (s · t)�.

It is clear that s:F ∨t:F →(s+t):F holds, since (s+t)� contains the concatenation
of s� and t�. However, (s + t)� and (t + s)� can very well prove different sets of
theorems, cf. an example about (s · t)′ and (t · s)′ above. In this case, neither
(s + t):F ↔ (t + s):F nor (s + t):F ↔ s:F ∨t:F holds.

Under yet another interpretation:

(s · t)� = s� ∗ t� ∗ �G1� ∗ . . . ∗ �Gn�,

as in (1), and
(s + t)� = (s · t)� ∗ (t · s)�.

Choice ‘+’ becomes symmetric,

(s+t):F ↔ (t+s):F,

but (s + t):F →s:F ∨ t:F generally does not hold.

4 Justification and Epistemic Semantics

A formal justification semantics for LP was offered by Mkrtychev in [25]. This
helped to establish the decidability of LP ([25]), find complexity bounds ([23,24]),
and establish the disjunctive property of LP ([19]).

A Mkrtychev model is a pair M = (A, �), where

– � is the usual truth evaluation of propositional letters;
– A is an admissible evidence predicate A(t, F) defined on pairs (term, for-

mula). The intuition behind A is that A(t, F) means

t is an admissible evidence for F.

The admissible evidence predicate respects operations on proofs, i.e., A sat-
isfies the natural closure conditions copied from the axioms of LP:
Application: A(s, F →G) and A(t, F) implies A(s·t, G);
Proof Checker: A(t, F) implies A(!t, t:F);
Choice: A(s, F) or A(t, F) implies A(s+t, F).

64 S. Artemov

Given a model, the truth relation � is extended to all formulas by stipulating
that

– � respects classical Boolean connectives;
– � t:F iff ‘ �F and A(t, F).’

For a given constant specification CS, a model M = (A, �) is a CS-model iff
A(c, B) holds for any c:B ∈ CS. It is an easy exercise to check, by induction on
derivations in LPCS , the soundness of LP with respect to Mkrtychev semantics:

If LPCS � F , then F holds in each CS-model.

In particular, all formulas from CS are true in all CS-models.
We present here a different (from that shown in [25]) proof of the completeness

theorem for LP with respect to Mkrtychev models by the standard maximal
completeness sets construction. Let W be the collection of all maximal consistent
sets over LPCS. For each Γ ∈ W , we define the truth relation�Γ on propositional
letters as

�Γ p iff p ∈ Γ

and the admissible evidence predicate as

AΓ (t, F) iff t:F ∈ Γ .

The aforementioned closure conditions on AΓ are obviously met. Let us check
Choice. Suppose AΓ (s, F) holds. Then s:F ∈ Γ . Since s:F →(s+t):F ∈ Γ (as an
LP-axiom) and Γ is maximal consistent, (s+t):F ∈ Γ , too. Hence AΓ (s+t, F).
Moreover, c:B ∈ Γ for all c:B from CS, by maximality and consistency of Γ .
Therefore, for each Γ , M = (AΓ , �Γ) is an LPCS-model.

The next step is to establish the Truth Lemma: for each formula F ,

�Γ F iff F ∈ Γ .

Induction on F . The base case is given by the definition of the model. The
Boolean cases are straightforward. Consider the case when F is t:G. If t:G ∈ Γ ,
then G ∈ Γ as well, since t :G → G ∈ Γ and Γ is deductively closed. By the
induction hypothesis, �Γ G. Moreover, AΓ (t, G) also holds, by the definition of
AΓ . Hence �Γ t:G.

Now let t :G ∈ Γ . Then AΓ (t, G) does not hold, by the definition. Hence
�Γ t:G.

To finish the completeness theorem, it suffices to note that if LPCS � F , then
{¬F} is a consistent set. By the standard Lindenbaum construction, find its
maximal consistent extension Γ . Since ¬F ∈ Γ , F ∈ Γ . By the Truth Lemma,
for AΓ and �Γ , �Γ F .

There are several useful refinements of Mkrtychev semantics known:

1. Exact Evidence Model ([25]): For every model M = (A, �), there is a model
M ′ = (A′, � ′) such that
– M and M ′ are equivalent, i.e., for each F , �F iff � ′F ;
– A′ is exact, i.e., A′(t, F) iff � ′t:F .

Symmetric Logic of Proofs 65

2. Minimal Model ([19]): For each constant specification CS, there is an exact
evidence model M = (A, �) such that for each t:F , M � t:F iff LPCS � t:F .

The minimal model theorem yields the Disjunctive Property ([19]):

LPCS � s:F ∨ t:G iff (LPCS � s:F or LPCS � t:G).

An epistemic Kripke-style semantics for LP was offered by Fitting [14,13].
A Fitting model may be regarded as a Kripke model, each node of which is a
Mkrtychev model with a monotone admissible evidence function:

if uRv then Au ⊆ Av.

The new condition which specifies the truth of proof assertions at a given node
is as follows

u� t:F iff Au(t, F) holds and v�F for every v with uRv.

Proper modifications of Fitting semantics can accommodate multiple modalities
and proof assertions and are playing a key role connecting the Logic of Proofs
with epistemic modal logics ([4,5,8,9]).

5 Choice Function ‘+’ in LP

The operation ‘+’ which is called Choice, Union, Sum, or Plus indeed performs
something which can be described as choice. The behavior of ‘+’ is governed by
the logical principle

s:F ∨ t:F →(s+t):F,

which states that ‘+’ takes two proofs s and t, at least one of which is indeed
a proof of F , and produces the output s + t, which is a proof of F . ‘Under the
hood,’ this operation chooses a proof of F between s and t.

The following theorem was established in [19]; it showed that the Choice
operation in LP is weakly symmetric and weakly equivalent to a disjunction.

Theorem 2. [19] For any constant specification CS, the following are equiva-
lent:

1. LPCS � (s+t):F
2. LPCS � (t+s):F
3. LPCS � s:F ∨ t:F .

Theorem 3 below shows that none of these properties hold in LP in a strong
sense, i.e., internally.

Theorem 3. Let x,y be proof variables and P a propositional letter. Then

1. LP � (x+y):P →(y+x):P
2. LP � (x+y):P →x:P ∨y:P

66 S. Artemov

3. LP � x(y+z):P → (xy+xz):P
4. LP � (y+z)x:P → (yx+zx):P.

Proof. In principle, these statements could be proven by proper use of the
arithmetical counterexamples. However, since not all details about the prov-
ability semantics of LP were given here, we present a proof based on Mrktychev
models.

To establish (1), consider a Mkrtychev model M = (A, �) where � P and
A(t, F) holds iff t is different from x, y, and y+x. To verify that M is a legitimate
model, it suffices to check the closure properties of A. The only relevant case
is Choice in a configuration when A(y+x, G) does not hold. In this situation,
neither A(y, G) nor A(x, G) holds, which does not constitute a violation of the
closure property of A. It is easy to see that in this model,�(x+y):P since both
A(x+y, P) and �P hold. On the other hand, � (y+x):P since A(y+x, P) does
not hold. Overall,

�(x+y):P →(y+x):P.

Item (2) immediately follows from (1) since LP � x:P ∨y:P →(y+x):P .
Item (3). Similar to 1. Consider a Mkrtychev model M = (A, �) where

� P and A(t, F) holds iff t is different from any subterm of xy+xz, i.e., t ∈
{xy+xz, xy, xz, x, y, z}. The closure property holds since in all applicable
clauses when A can be false in the conclusion, the assumptions are also false,
by the definition of A. In this model, x(y+z):P is true since x(y+z) is not a
subterm of xy+xz, but (xy+xz):P is false.

Item(4) can be treated similarly to (3). ��

6 Symmetric Logic of Proofs

As we have already discussed, the Logic of Proofs LP has two prominent fea-
tures which determine its foundational significance: it has a natural provability
semantics6, and it suffices for realizing S4, hence IPC, thus making LP a kind of
Brouwer-Heyting-Kolmogorov semantics for intuitionistic logic.

In this chapter, we introduce the Symmetric Logic of Proofs, SLP, extending
LP itself by postulating a property borrowed from the symmetric arithmetical
interpretation.

SLP has all the postulates of LP and one additional principle:

Symmetry Principle:

t(u+v):F ↔ tu:F ∨tv:F, (3)

(u+v)t:F ↔ ut:F ∨vt:F. (4)

6 Moreover, LP provides a complete axiomatization of the class of all multi-conclusion
proof predicates.

Symmetric Logic of Proofs 67

Notational conventions. We assume that this principle also covers the case when
there is no multiplication by t at all, i.e.

(u+v):F ↔ u:F ∨v:F. (5)

With this convention, the Symmetry Principle subsumes the Choice Axiom of
LP and hence may be considered a generalization of the latter.

Clearly,
LP ⊂ SLP.

Theorem 4. SLP is soundwith respect to the symmetric provability interpretation.

Proof. We have to establish soundness of the Symmetry Principle.
Let us start with tu:F ∨tv:F → t(u+v):F . Fix the (symmetric arithmetical)

interpretation t′, u′, v′, F ′ of s, u, v, and F respectively and suppose that (tu:F)′

holds. By the definition of the symmetric arithmetical interpretation, at least
one of the following cases holds:

1. F ′ ∈ t′;
2. F ′ ∈ u′;
3. there is X such that X →F ′ ∈ t′ and X ∈ u′.

In cases (1) and (2), F ′ ∈ [t(u+v)]′, by the definition of the symmetric arithmeti-
cal interpretation. In case (3), X ∈ u′∗v′, hence X ∈ (u+v)′, hence F ′ ∈ [t(u+v)]′

as well. The case when [tv:F]′ holds is symmetric.
Let us examine t(u+v):F →tu:F∨tv:F. Suppose F ′ ∈ [t(u+v)]′. By the definition

of the symmetric arithmetical interpretation, at least one of the following cases
holds:

1. F ′ ∈ t′;
2. F ′ ∈ (u + v)′, i.e., F ′ ∈ u′ ∗ v′;
3. there is X such that X →F ′ ∈ t′ and X ∈ u′ ∗ v′.

In case (1), both (tu:F)′ and (tv:F)′ hold. In case (2), either F ′ ∈ u′, and then
(tu:F)′, or F ′ ∈ v′, and then (tv:F)′. In case (3), either X ∈ u′, hence (tu:F)′;
or X ∈ v′, hence (tv:F)′. In any case, (tu:F ∨tv:F)′ holds.

The cases ut:F ∨vt:F ↔ (u+v)t:F and u:F ∨v:F ↔ (u+v):F are treated
similarly. ��

Theorem 5. SLP is closed under substitution and enjoys the Internalization
Property.

Proof. Trivial from the definition of SLP and the fact that no new rules of
inference were added to SLP as compared to LP. ��

Theorem 6. SLP enjoys the Realization Theorem with respect to S4.

Proof. Indeed, suppose F is derivable in S4. By the Realization Theorem for LP
(Theorem 1), there is a realization of F , F r by proof polynomials in the basis
{·, +, !} which is derivable in LP. Since SLP extends LP, SLP � F r. ��

68 S. Artemov

Theorem 7. S4 is the forgetful projection of SLP.

Proof. It suffices to note that the Symmetry Principle has forgetful projections
of the sort �X ↔ �X ∨�X , trivially provable in S4. By Theorem 6, every
theorem of S4 is a forgetful projection of some SLP-theorem. ��

These results, along with the provability semantics for SLP, show that the latter
gives a Brouwer-Heyting-Kolmogorov-style semantics for S4 and IPC as well.

IPC ↪→ S4 ↪→ SLP ↪→ Gödelian proof predicates.

Theorem 8. Let CS be a constant specification. Let s ∼ t mean that for any
formula F , s:F ↔ t:F is provable in SLP with this CS. Then the following holds:

1. s + t ∼ t + s (commutativity of Choice);
2. s + (t + u) ∼ (s + t) + u (associativity of Choice);
3. s + s ∼ s (idempotency of Choice);
4. t(u + v) ∼ tu + tv (left distributivity);
5. (u + v)t ∼ ut + vt (right distributivity).

Proof. All the derivations below are in SLP.

1. (s + t):F → s:F ∨t:F → t:F ∨s:F → (t + s):F
2. [s + (t + u)]:F ↔ s:F ∨t:F ∨u:F ↔ [(s + t) + u]:F
3. (s + s):F ↔ s:F ∨s:F ↔ s:F
4. t(u + v):F ↔ tu:F ∨tv:F ↔ tu + tv:F
5. (u + v)t:F ↔ ut:F ∨vt:F ↔ ut + vt:F ��

Mkrtychev models for SLP are the usual Mkrtychev LP-models with admissible
evidence predicates which respect the Symmetry Principle:

A(t(u + v), F) iff ‘A(tu, F) or A(tv, F)’ (6)

A((u + v)t, F) iff ‘A(ut, F) or A(vt, F)’ (7)

A(u + v, F) iff ‘A(u, F) or A(v, F).’ (8)

Theorem 9. For each constant specification CS, SLP is sound and complete for
SLP Mkrtychev models.

Proof. Soundness of SLP is straightforward. We have only to check that Sym-
metry holds in each SLP-model. Let us consider (3). Let � t(u+v):F . Then �F
and A(t(u+v), F). By (6), A(tu, F) holds or A(tv, F) holds, hence � tu:F or
� tv:F . In either case, � tu:F ∨ tv:F . The remaining clauses for soundness are
checked in the same manner.

Completeness can be established by a maximal consistent set construction as
in Sect. 4. One need only check that the canonical model (the set of maximal
consistent sets with A and � as in Sect. 4) is indeed an SLP-model. For this, is

Symmetric Logic of Proofs 69

suffices to check that for each maximal consistent set Γ , conditions (6), (7), and
(8) hold. Let us check (6).

Suppose A(t(u+v), F) holds for this Γ . This means that t(u+v):F ∈ Γ . Since
t(u+v):F → tu:F ∨ tv:F ∈ Γ , by maximality of Γ , either tu:F ∈ Γ or tv:F ∈ Γ ,
hence ‘A(tu, F) or A(tv, F)’ holds for this Γ .

Now let ‘A(tu, F) or A(tv, F)’ hold in Γ . Then either tu:F ∈ Γ or tv:F ∈ Γ .
By the Symmetry Principle (3), since Γ is deductively closed, t(u+v):F ∈ Γ ,
which yields that A(t(u + v), F) holds for this Γ .

The remaining clauses are checked similarly. ��

Fitting models for SLP are obtained from those for LP by adding conditions (6),
(7), and (8), respectively. The following theorem can be easily established along
the lines of Theorem 9:

Theorem 10. For each constant specification CS, SLP is sound and complete
for SLP Fitting models.

7 Discussion

Note that Application in SLP is neither associative nor commutative since neither
of these properties hold for the symmetric arithmetical interpretation (Sect. 3).

A natural attempt to add more ring structure to SLP by introducing a constant
0 for the empty derivation does not work well with the symmetric provability
interpretation. In particular, t + 0 = t, but t · 0 is t rather than 0 here7. This
could be fixed to t ·0 = 0 by bending the provability semantics a little. However,
under any modification of semantics, the identity ¬0:	 holds, which spoils the
connection to modal logic. Indeed, the forgetful projection of the latter formula
is ¬�	, which is false in any normal modal logic. This observation alone should
not discourage us from considering the addition of 0 to a version of SLP, though.
The language of proof polynomials should then be extended by a special constant
0 which cannot be used as ‘c’ in the Constant Specification Rule (Sect. 2). A
new axiom schema ¬0:F should also be added.

Note that the relation ‘∼’ from Theorem 8 is an equivalence relation on proof
polynomials. However, ‘∼’ is not a congruence, e.g., s ∼ t does not generally
yield !s ∼!t. For example, x ∼ x + x (Theorem 8.3), but not !x ∼!(x + x).
Indeed, in the symmetric provability interpretation, !x should contain proofs of
x:F for all F ∈ x, whereas !(x + x) contains proofs of (x + x):F for all such
F ’s. This observation still leaves an opportunity for ‘∼’ to be a congruence in
some !-free variant of SLP. It is easy to check that in SLP, s ∼ t and u ∼ v yield
s+u ∼ t+v. It is not known whether the same holds for ‘·’, i.e., su ∼ tv as well.
Such a rule for ‘·’ is sound for the standard symmetric provability interpretation,
which suggests that a proper version of this rule either holds in, or can be safely
added to, SLP. Answers to these questions could lead to an adequate notion of
the equality of proofs in Justification Logic in general. We leave this, however,
for future studies.
7 This observation is due to V.N. Krupski.

70 S. Artemov

Other natural steps in this direction would be to clarify the questions of
decidability and complexity for SLP, to check the disjunctive property, and to
describe adequate Gentzen and tableaux proof systems.

We conjecture that SLP is arithmetically complete with respect to the class of
proof predicates for which the Symmetry Principle holds. An intriguing question
remains open about the logic of proofs for the standard symmetric provability
interpretation.

Acknowledgements

This paper was inspired by discussions with Joan and Yiannis Moschovakis at
the 6th Panhellenic Logic Symposium, Volos, Greece, 5-8 July 2007. The author
is very grateful to Mel Fitting, Evan Goris, Vladimir Krupski, Roman Kuznets,
and Elena Nogina whose advice helped with this paper. Many thanks to Karen
Kletter for editing this text.

References

1. Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell Uni-
versity (1995)

2. Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic
Logic 7(1), 1–36 (2001)

3. Artemov, S.: Operations on proofs that can be specified by means of modal logic.
In: Advances in Modal Logic., vol. 2, pp. 59–72. CSLI Publications, Stanford Uni-
versity (2001)

4. Artemov, S.: Evidence-based common knowledge. Technical Report TR-2004018,
CUNY Ph.D. Program in Computer Science (2005)

5. Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1–3),
4–22 (2006)

6. Artemov, S.: On two models of provability. In: Gabbay, M.Z.D.M., Goncharov,
S.S. (eds.) Mathematical Problems from Applied Logic II, pp. 1–52. Springer, New
York (2007)

7. Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F.
(eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer,
Dordrecht (2004)

8. Artemov, S., Nogina, E.: Introducing justification into epistemic logic. Journal of
Logic and Computation 15(6), 1059–1073 (2005)

9. Artemov, S., Nogina, E.: On epistemic logic with justification. In: van der Mey-
den, R. (ed.) Theoretical Aspects of Rationality and Knowledge. Proceedings of
the Tenth Conference (TARK 2005), Singapore, June 10–12, 2005, pp. 279–294.
National University of Singapore (2005)

10. Artemov, S., Strassen, T.: Functionality in the basic logic of proofs. Technical Re-
port IAM 93-004, Department of Computer Science, University of Bern, Switzer-
land (1993)

11. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge
(1993)

12. Brezhnev, V., Kuznets, R.: Making knowledge explicit: How hard it is. Theoretical
Computer Science 357(1–3), 23–34 (2006)

Symmetric Logic of Proofs 71

13. Fitting, M.: A semantics for the logic of proofs. Technical Report TR-2003012,
CUNY Ph.D. Program in Computer Science (2003)

14. Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied
Logic 132(1), 1–25 (2005)

15. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse
Math. Kolloq. 4, 39–40 (1933) English translation In: Feferman, S. et al. (eds.)
Kurt Gödel Collected Works, vol. 1, pp 301–303. Oxford University Press, Oxford,
Clarendon Press, New York (1986)

16. Gödel, K.: Vortrag bei Zilsel. In: Feferman, S. (ed.) Kurt Gödel Collected Works,
vol. III, pp. 86–113. Oxford University Press, Oxford (1995)

17. Goris, E.: Logic of proofs for bounded arithmetic. In: Grigoriev, D., Harrison, J.,
Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 191–201. Springer, Heidelberg
(2006)

18. Kleene, S.: Introduction to Metamathematics. Van Norstrand (1952)
19. Krupski, N.V.: On the complexity of the reflected logic of proofs. Theoretical Com-

puter Science 357(1), 136–142 (2006)
20. Krupski, V.N.: Operational logic of proofs with functionality condition on proof

predicate. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 167–
177. Springer, Heidelberg (1997)

21. Krupski, V.N.: The single-conclusion proof logic and inference rules specification.
Annals of Pure and Applied Logic 113(1–3), 181–206 (2001)

22. Krupski, V.N.: Referential logic of proofs. Theoretical Computer Science 357(1),
143–166 (2006)

23. Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwicht-
enberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg
(2000)

24. Milnikel, R.: Derivability in certain subsystems of the Logic of Proofs is Πp
2-

complete. Annals of Pure and Applied Logic 145(3), 223–239 (2007)
25. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)

LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)
26. Smoryński, C.: The incompleteness theorems. In: Barwise, J. (ed.) Handbook of

Mathematical Logic, pp. 821–865. North Holland, Amsterdam (1977)
27. Solovay, R.M.: Provability interpretations of modal logic. Israel Journal of Mathe-

matics 28, 33–71 (1976)

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 72–86, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Synthesis of Monitors for
Real-Time Analysis of Reactive Systems

Mikhail Auguston1 and Mark Trakhtenbrot2

1 Naval Postgraduate School, Monterey, CA, USA
2 Holon Institute of Technology, Holon, Israel

auguston@cs.nps.navy.mil,markt@hit.ac.il

To Boaz – with love and respect, and with thanks for the great privilege to
learn so much from the "first hands". – M.T.

Abstract. In model-driven development of reactive systems, statecharts are
widely used for formal description of their behavior, providing a sound basis for
verification, testing and code generation. The paper presents an approach for
dynamic analysis of reactive systems via run-time monitoring of code generated
from statechart-based models. The core of the approach is automatic creation
of monitoring statecharts from formulas that specify system's behavioral
properties (including real-time constraints) in a proposed assertion language.
Such monitors are then translated into code together with the system model, and
executed concurrently with the system code. The approach allows for a realistic
analysis of reactive systems (and in particular of their real-time aspects), as
monitoring is supported in system's actual operating environment. This
especially relates to design-oriented models that include mapping of abstract
model elements into those of the underlying operating system. This way, the
natural restrictions inherent to simulation and verification are overcome.

1 Introduction

Development of reliable reactive systems is a significant challenge, especially due to
their complex behavior. There has been a great deal of research on the development of
formal methods for specification, design, analysis and verification of reactive
systems.

For precise specification of system behavioral properties, various types of temporal
logic are widely used. These include linear temporal logic [17], which offers special
temporal operators for reasoning about past and future properties of behavioral
sequences, and MTL [6], which supports expression of real-time constraints through
definition of durations for future temporal operators. Some specification formalisms
suggest various kinds of syntax sugar that make the specification task more user friendly
for designers who are not logicians. For example, with the LA language in [21], temporal
properties look as a combination of stylized English with C-like expressions.

In [3], the temporal logic details are hidden "behind the scenes", and instead, patterns
are used that allow to specify common properties (such as existence, absence, response,
precedence, etc.) and scope in which the property should hold. This approach is used, for

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 73

example, in the Statemate ModelCertifier verification tool [20] that offers a rich library of
pre-defined property patterns, where each pattern looks as a parameterized natural
language sentence. Paper [7] introduces a language for pattern definition as a way to
create extendable sets of property patterns. Sugar [4], that evolved from the temporal
logic CTL, provides several layers for property specification and verification; in
particular, extended regular expressions are used to describe execution sequences on
which temporal properties are checked.

On the other hand, model-based system development has become the way to
design, implement and validate reactive systems. Statecharts, first introduced in [11],
have become a standard for behavior design in popular model-based methodologies
such as structured and object-oriented design [8]. Various tools (e.g., Statemate [13],
[16]), Rhapsody [10], BetterState [23]) support the creation of executable models
using statecharts, and their analysis through simulation, execution of automatically
generated code, and, in Statemate, verification. Ongoing research on model-based
testing covers, among other issues, test generation from statechart models [5].

A powerful method of dynamic analysis is run-time monitoring of system
execution. While monitoring relates to testing (where a system is examined on
selected test scenarios), it is common to consider it as run-time verification whereas
each test execution is checked against a formally defined system property. A number
of tools have been developed for monitoring various types of programs (including
real-time systems); see, for example [1], [2], [21]. The relevant assertion languages
allow for expressing a wide range of properties in terms of events that occur in the
running code, and for defining tool reactions when a violation is found or when the
run was successful. An important problem here is the gap between the system
specification, which usually refers to high-level objects, and monitors, which refer to
implementation-level events (such as function calls, etc.). Some issues related to
derivation of monitors from system specification are considered in [19].

Model-based development leads to narrowing of this gap, as monitoring can be
performed on the model (rather than the implementation) level. Statemate [13,16]
supports the use of the so-called testbench (watchdog) statechart. Such a chart is not part
of the system model; rather, it is used aside of the model to play either the role of a
driver (acting as an environment and producing system inputs) or a monitor (watching
the system for proper behavior or abnormalities). To perform its role, the testbench is
executed in parallel with the model. Testbench charts are used in a variety of Statemate
tools for model analysis: simulation, model checking, and with generated code.

Violation of the monitored property can be expressed and observed as entering an
error state in the monitor chart. For example, Fig. 1 shows a simple statechart for
monitoring of the following property: "Processing of a request must be accomplished
within 5 seconds and before receiving the next request".

An important feature of monitor statecharts is that they have access to all elements
in the system model. In other words, visibility from the monitor is supported both for
observable elements (events, conditions and data items) that belong to system's
interface with the environment, and for internal elements such as states or events used
for internal communication between system components. This allows for both black-
box and more detailed white-box monitoring, and makes localization of design
problems easier.

74 M. Auguston and M. Trakhtenbrot

Fig. 1. A simple monitor chart

2 Dynamic Analysis with Synthesized Monitors

This paper presents an approach to dynamic analysis of reactive systems modeled
with statecharts.

The analysis is based on run-time monitoring of code generated from the system
model. The code is checked against the system specification describing the required
and forbidden behaviors; these are expressed in a proposed assertion language
described below in Section 5. The main idea underlying this approach is the automatic
synthesis of monitors directly from system specification. This is achieved through
translation of the specification into an equivalent testbench statechart(s). This step is
followed by generating C code from the system model and from the created monitor,
and by their simultaneous execution. Appropriate diagnostics is produced during the
execution and/or upon its completion.

An important advantage of our approach is that it allows for a realistic analysis of
reactive systems, as monitoring is supported in system's actual operating environment.
In particular, analysis of real-time aspects in system behavior becomes feasible, as
opposed to usual analysis tools that deal with simulated time (this is detailed in the
next section).

Note that even though such realistic analysis of generated code is the primary goal
of this work, having the intermediate stage at which monitor charts are synthesized
(instead of direct translation of assertions into code) has an added value. Namely, the
obtained charts can be also used by both Statemate simulation and model checker as
monitor testbenches.

3 Underlying Semantics

Check of real-time constraints is of special interest in run-time monitoring. For
systems derived from statechart-based models, it directly relates to the underlying
time model.

The monitor synthesis approach suggested in this paper adopts an operational
semantics of statecharts, as described in [14]. This semantics is the basis for
simulation, code generation and model checking tools in the Statemate working
environment for modeling and analysis of reactive systems [13].

Over years, a number of different versions for statechart semantics were suggested,
starting from [15,18] and including more recent [12] (for UML statecharts). The main

Wait Process Error
Request

Processing
Done

Request or
Timeout(5)

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 75

focus of these papers is on “what is in a step”, i.e. how to accurately define system’s
basic reaction to external stimuli.

Statemate semantics [14] was the first to address also the time-related constructs in
statecharts: timeouts and scheduled actions. It considers two time models: synchronous
(for clock-driven systems, like pure hardware) and asynchronous (for event-driven
systems, like typical software).

In the synchronous model, duration of all steps is assumed to be the same, regardless
of how "heavy" the executed actions are. In fact, this model doesn’t distinguish between
concepts of step and time: at each clock cycle, a step is performed.

As for the asynchronous model, it clearly makes such a distinction: steps are
considered to take zero time, and the system executes a chain of steps until stabilization
(a super-step); only then the clock is advanced and new inputs are accepted.

The above time models are based on the assumption that the system is fast enough
to complete its reactions to external stimuli before the next stimulus arrives.

4 Real-Time Monitoring vs. Other Analysis Methods

Existing analysis tools (such as the Statemate model checker called ModelCertifier
[20]) follow this abstraction, and simulate the time passage accordingly.

However, in reality every single action takes some real time. Hence, when
verification of a system model (based on simulated time) concludes that the system
fulfils its timing constraints, this may turn out to be wrong in the real world.

There are also other limitations in addressing time-related properties by tools such
as ModelCertifier. As noticed in [20], “choosing time model has a strong impact on
complexity and expressiveness for the further verification process”. Analysis with
synchronous time model is easier, while “there are semantic aspects coming with the
asynchronous model which are sometimes very difficult for the verification process”.

We consider the run-time monitoring of code generated from the system model as
a way to overcome the various limitations of the verification process:

(1) Generated code for the system and its monitor are executed in real time. Even
though such code is often considered as having only prototype quality, it is fast
enough and allows for meaningful checks of time constraints. In particular, this way it
is possible to check whether the system indeed reacts faster than inputs are arriving to
it. Such checks are beyond the scope of simulation and model checking tools.

(2) There is no restriction related to the state space of the tested model, and
execution of compiled code (for the model and the monitor) is fast. The reason is that
every test execution of generated code explores states of one particular scenario. On
the other hand, model checking has to explore (in the worst case) the entire state
space of the system. Hence it becomes slow (and in fact unfeasible) for large real-
world models.

(3) Our approach allows monitoring of code generated from models augmented by
attributes that reflect the various implementation oriented decisions. Such attributes
are used to define how the various abstract features of the model are mapped into
specific elements of the target real-time operating system. They may describe division
of the system into tasks of various types (periodic, etc.), mapping of model elements
into events of the target RTOS, etc. For example, code generator described in [22]

76 M. Auguston and M. Trakhtenbrot

automatically translates statechart models augmented with design attributes into a
highly optimized production quality code for the OSEK operating system widely used
in the automotive industry for embedded microcontroller development. With our
approach, code generated with this and similar tools can be executed and monitored in
its realistic hardware-in-the-loop operating environment. This kind of analysis is
impossible with model checking.

(4) Model checking requires that all data be properly restricted, to guarantee that a
finite state model is analyzed. This requirement is problematic for input data, if there
is not enough information about the system environment. No such restrictions are
relevant for monitoring, and moreover, monitored code derived from the system
model can be connected to real sources of input data.

5 Assertion Language

To specify and monitor real-time properties of reactive systems, we use an assertion
language that integrates a number of powerful features found in temporal logic and in
the FORMAN language (introduced in [1], [2], and used in a number of tools).

(1) Boolean expressions can refer to any element in the system model, and express
properties of system configurations. For example: in(S) and (x>5) means that
currently the system is in state S and x is greater than 5.

(2) Regular expressions allow for description of state and event sequences.
Consider for example, the expression:

 Open (Read | Write)* Close

It describes executions in which all Read and Write operations are executed, in any
order, strictly after Open but before Close.

(3) Temporal formulas express order properties fulfilled by system execution
sequences. They are built using unrestricted future temporal operators NEXT,
ALWAYS, EVENTUALLY, UNTIL and their past counterparts: PREVIOUS,
ALWAYS_WAS, SOMETIME_WAS, SINCE. Following [17], we consider formulas for
the following types of properties:

 Safety: ALWAYS (P)
 Guarantee: EVENTUALLY (P)
 Obligation: Boolean combination of safety and guarantee
 Response: ALWAYS (EVENTUALLY (P))
 Persistence: EVENTUALLY (ALWAYS (P))
 Reactivity: Boolean combination of response and persistence.

According to [17], any temporal formula is equivalent to a reactivity formula; the
other five types of formulas are allowed for more flexibility.

(4) Real-time constraints are expressed with a version of the above operators
obtained by attaching appropriate time characteristics. For example, ALWAYS (10) P
means that P is continuously true in the 10 time units interval that starts at the current
moment, while SOMETIME_WAS (10) P denotes that P was true at least once during

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 77

the last 10 time units. With this extension, P in the above formulas is now allowed to
be a restricted (future or past) formula. Note that we don't allow an unrestricted
temporal operator to be nested within a restricted one.

(5) Actions define what should be done when a property violation is found, or when
the property holds for the checked run. Typically, this includes sending an appropriate
message. In general, any user-defined function can be used here to provide a meaningful
report that may include, for example, interesting statistics and other profiling infor-
mation (frequency of occurrence for a certain event, total time spent by the system in a
certain state, etc.). For this, actions can use the appropriate attributes of the referred
objects (e.g., the time at which a certain interval was entered).

The examples in Section 6 illustrate the use of this assertion language. Since the
language is based on constructs described elsewhere (see [1], [16] and [17]), detailed
description of its syntax and semantics is omitted here.

Nevertheless, there is a delicate semantic issue that should be mentioned here. System
specification usually expresses properties of infinite execution sequences (as a reactive
system performs an ongoing interaction with its environment). Correspondingly, the
traditional semantics of temporal operators is also defined for infinite execution seq-
uences. However, monitoring usually deals with finite (truncated) runs, and this requires
a proper definition of the semantics for cases when there is a doubt as to what would
have been the property formula value if the execution had not been stopped. Paper [9]
studies several ways of reasoning with temporal logic on truncated executions. We
follow the so called neutral view discussed in [9]; this is illustrated by the following
example. Consider the assertions:

 ALWAYS (P EVENTUALLY (10) Q)
 ALWAYS (P ALWAYS (10) Q)

and suppose that the run is completed (truncated) 4 seconds after the last occurrence
of event P (we assume that each of the properties held for all earlier occurrences of
P). If there was no Q after the last P, then the first assertion is considered to be false
for this run (even though continuation of the run could reveal that Q does occur in 10
seconds after P, as required). On the contrary, if Q held continuously after the last P
and until the end of the run, then the second assertion is considered to be true. In
general, it is the user's responsibility to make the on-satisfy and on-failure actions
detailed enough, so that he can better understand the monitoring results (e.g. whether
a real violation was found, or it is in doubt due to the state at which the execution was
truncated).

6 Examples

To illustrate our approach, we consider the Early Warning System (EWS) example
from [16]. We present its verbal description followed by the statechart presenting the
behavioral design of the system. We then give examples of assertions and, for one of
them, show its translation into a monitor statechart according to our translation
scheme.

78 M. Auguston and M. Trakhtenbrot

The EWS receives a signal from an external source. When the sensor is connected,
the EWS performs signal sampling every 5 seconds; it processes the sampled signal
and checks whether the resulting value is within a specified range. If the value is out
of range, the system issues a warning message on the operator display. If the operator
does not respond to this warning within a given time interval (15 seconds), the system
prints a fault message and stops monitoring the signal. The range limits are set by the
operator. The system is ready to start monitoring the signal only after the range limits
are set. The limits can be redefined after an out-of-range situation has been detected,
or after the operator has deliberately stopped the monitoring.

Fig. 2 shows a statechart describing the EWS, similar to the one in [16]. The main part
of EWS behavior is detailed in the state ON. It contains two AND-components that
represent the EWS controller (upper component) and the sensor (lower component) acting
concurrently. Events DO_SET_UP, EXECUTE, and RESET represent the commands that
can be issued by the operator. Timing requirements are represented by delays that trigger
the corresponding transitions. The AND-components can communicate; for example, see
event CONNECT_OFF sent from the controller to the sensor.

Following are four examples of assertions that reflect some of the above
requirements for EWS:

1) ALWAYS (EXECUTE SOMETIME_WAS (DO_SET_UP))
Monitoring of signal should be preceded by setting range limits.

2) ALWAYS (OUT_OF_RANGE
 EVENTUALLY (15) (RESET or started(PRINT_ALARM))

This assertion requires that in the out-of-range situation, within 15 seconds either the
operator responds or a fault message is printed. In fact, it is too weak as it allows

Fig. 2. Statechart for Early Warning System

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 79

printing of alarm even when less than 15 time units elapsed without a reset. The next
assertion addresses this requirement properly.

3) ALWAYS (
 ALWAYS_WAS (15) (in(DISPLAY_ALARM) & not RESET)
 started(PRINT_ALARM))

If during 15 time units the system displays an alarm but there is no operator respond,
then a fault message is printed.

4) ALWAYS (SAMPLING_DONE
 ALWAYS (5) in(WIAT) or EVENTUALLY (5) CONNECT_OFF)

After signal sampling is finished, there is a 5-second pause before the next sampling,
unless the sensor is disconnected.

Note that the first assertion is violated for the given statechart; this happens in the
following scenario: POWER_ON; CONNECT_ON; EXECUTE.

As for the other assertions, they are valid as long as the system remains in its ON
state (i.e., POWER_OFF doesn't occur); otherwise they can be violated. Consider, for
example the second of the assertions. Fig. 3 shows how it is translated into a monitor
statechart (here, as in any other monitor chart, F denotes an accepting state and D
denotes a rejecting state). Now consider a 15-seconds interval that follows occurrence
of OUT_OF_RANGE, such that:

- there is no RESET in this interval
- event POWER_OFF occurs 7 seconds after occurrence of OUT_OF_RANGE.
- the system remains in state OFF for the following 8 seconds.

In this scenario, the assertion is violated (no reset and no message printed in 15
seconds after OUT_OF_RANGE), and the monitor enters its rejecting state D.

7 Implementation Outline

Statemate boolean expressions obtained from basic predicates (like in(DISPLAY_
ALARM)), guarding conditions, and event occurrences are directly visible from monitor
statechart; in this sense, their monitoring is trivial. In monitors such expressions can be
used just as transition triggers, similar to the example in Fig.1.

In the rest of this section, we present an outline of the translation scheme for
restricted and unrestricted temporal formulas allowed by our assertion language (see
Section 5 above). Though not fully formalized here, the presentation clearly shows
the technique used for synthesis of monitors from assertions.

Let P, S be basic boolean formulas that do not contain any temporal operators, and
let Q denote any formula.

The general idea behind the presented translation patterns is as follows:

- P Q means that P is used as a trigger to start monitoring of formula Q ; for
each occurrence of P, a new thread of Q monitoring is started.

- absence of the trigger (P …) means that start of execution is the only trigger
event.

80 M. Auguston and M. Trakhtenbrot

Fig. 3. Monitor chart for the assertion
ALWAYS (OUT_OF_RANGE EVENTUALLY (15) (RESET or started(PRINT_ALARM)))

7.1 Translation of Restricted Operators

If a formula includes only restricted future temporal operators, like in

FRM ≡ P TL_Operator (N1) TL_Operator (N2) …. TL_Operator (Nk) S

then its value becomes known after (i.e. it needs to be monitored during), at most,
t(FRM) = N1 + N2 + … + Nk time units from the triggering event P. For example:

P ALWAYS (5) EVENTUALLY (10) S

is monitored during, at most, 15 time units from the moment when event P was
triggered. Namely, for each time point within the 5-seconds interval that follows
occurrence of P, a new monitoring thread is started that checks whether S occurs
during the next 10 time units.

As an illustration, Fig. 4 schematically shows the translation pattern for FRM ≡
EVENTUALLY (N) P, where P itself is either a basic or a restricted future formula.

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 81

Fig. 4. Translation pattern for the formula EVENTUALLY (N) P

Translation is defined by structured induction, starting from the case when P is a
basic formula. Note that each advance of the clock by one time unit causes a new
thread of computation for P to be started. Each thread is represented in the chart by a
separate AND-component; there are N such components. This number is known based
on an analysis of the translated formula.

Note that every restricted future formula is translated into a chart containing two
designated states: accepting state F, and rejecting state D; there are no transitions
exiting from F and D in such a chart. The value of the formula is true when
computation ends in F, and false when it ends in D. If execution of the monitored
system is truncated before completion of the formula computation, then (in the spirit
of the neutral view as defined in [9]) the value is decided to be true for the ALWAYS-
formula and false for the EVENTUALLY-formula.

For restricted past formulas, only a finite segment of the execution should be
monitored in order to decide whether the formula is true or false. Consider, for
example, ALWAYS_WAS (N) P that means "during N time units preceding the current
moment, P was continuously true". The implementation uses a counter CP associated
with the formula; on each advance of the clock, if P is true then CP is incremented,

82 M. Auguston and M. Trakhtenbrot

and if P is false then CP is set to 0. Now ALWAYS_WAS (N) P is true at the current
moment, iff CP=N.

Similarly, for SOMETIME_WAS (N) P that means "from the current moment in at
least N previous steps P was true at least once", the implementation will use the
counter CP in the following way: On each advance of the clock, if P is true then CP is
set to N, and if P is false then CP is decremented by 1. Now, SOMETIME_WAS (N) P
is true at the current moment, iff CP > 0 at the current moment.

7.2 Translation of Unrestricted Operators

Fig. 5 shows the translation pattern for a liveness assertion where the unrestricted
operator EVENTUALLY is applied to the restricted formula P (the actual structure of
state P in each thread is defined by translation rules for restricted formulas). In this
case, as long as P holds the value false, the ongoing computation of P should be
continued. Whenever the monitor enters its state F, the value of the formula becomes
true; otherwise (including the case of truncated execution), the value is false.

EVENTUALLY P

P is a basic formula

/RES:=false

IDLE

not p p

D
p

F

RESTART_P_i = dly(N - nod(CURR_TIME-Ti, N))

To make RESTART transitions structured (self-loop from-to state P):
RESTART_P_i = tn(en(COMP_i.P.D), N-mode(CURR_TIME-Ti, N))

P is a resticted formula: t(P) = N/RES:=false

COMP_0 COMP_1 COMP_2 COMP_N

/TO:=
CURR_TIME

dly(1)/
T1:=CURR_TIME T2:=CURR_TIME TN:=CURR_TIME

IDLE IDLE IDLE

dly(2)/ dly(N)/

START_P

START_P START_P START_P

P

D F D F D F D F

RESTART_P_1/ RESTART_P_2/ RESTART_P_N/RES:=false
RES:=false RES:=false RES:=false

RESTART_P_0/

F

At least one
component is in F/

RES:=true

P P P

Fig. 5. Translation pattern for the formula EVENTUALLY P

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 83

ALWAYS (EVENTUALLY P)

RESTART_P_i = dly(N - nod(CURR_TIME-Ti, N))

To make RESTART transitions structured (self-loop from-to state P):
RESTART_P_i = tn(en(COMP_i.P.D), N-mode(CURR_TIME-Ti, N))

P is a resticted formula: t(P) = N/RES:=false

COMP_0 COMP_1 COMP_2 COMP_N

/TO:=
CURR_TIME

dly(1)/
T1:=CURR_TIME T2:=CURR_TIME TN:=CURR_TIME

IDLE IDLE IDLE

dly(2)/ dly(N)/

START_P

START_P START_P START_P

P

D F D F D F D F

RESTART_P_1/ RESTART_P_2/ RESTART_P_N/RES:=false
RES:=false RES:=false RES:=false

RESTART_P_0/

At least one
component is in F/

RES:=true

P P P
not P P

P

D F

not P

not P P

C

P is a basic formula

Fig. 6. Translation pattern for the formula ALWAYS (EVENTUALLY P)

Note that since obtaining a value of P may require up to t(P) time units, there are
t(P) threads computing P. When a cycle of P computation is completed with the value
false (the component reaches its state D), it is restarted again.

Also note the delays: RESTART_P_i is defined in such a way that with each advance
of the clock by one time unit, a new cycle of P computation is started. Restarting P
immediately upon its completion in state D would have caused a violation of such
synchronization in case that a certain cycle takes less time than t(P). This, in turn, could
lead to wrong computation of the entire formula. Note that for proper evaluation of
RESTART_P_i, each thread “remembers” the time at which it starts computation of P. To
make the statechart more structured (so that the restarting transition will exit from state P
itself, and not from its sub-state D), a proper modification in definition of event
RESTART_P_i should be done; see details in Fig.5).

Fig. 6 shows the translation pattern for property ALWAYS (EVENTUALLY (P)).
Here, computation of EVENTUALLY (P) is restarted whenever it gets the value true,
i.e., when the chart in Fig. 5 enters state F (at the top level of the hierarchy). In other
words, such implementation can be obtained by redirecting the transition from F back
to the AND-state.

84 M. Auguston and M. Trakhtenbrot

Implementation of dual formulas (where ALWAYS is replaced by EVENTUALLY
and vice versa) is similar to the described above, with appropriate replacement of F-
states by D-states and vice versa.

8 Conclusions and Future Work

The paper presents an approach to dynamic analysis of reactive systems via run-time
verification of code generated from Statemate models. The approach is based on the
automatic synthesis of monitoring statecharts from formulas that specify the system's
temporal and real-time properties in a proposed assertion language. The promising
advantage of this approach is in its ability to analyze real-world models (with attributes
reflecting the various design decisions) in the system's realistic environment. This
capability is beyond the scope of model checking tools.

Several experiments have been carried out, that included manual creation of
monitor charts from assertion formulas and their use with C code generated from
Statemate models (EWS considered in Section 6, and some others). This helped in a
more accurate definition of the translation scheme.

The natural next step is actual implementation of the translation from the assertion
language into statechart monitors, which is the core of the suggested approach, and
use of created monitors with real-world system models.

The assertion language needs to be more convenient for designers. A possible way
to achieve this is to adopt some of the ideas discussed in [3], [4], [7], [21]. This will
require an appropriate adaptation of the translation scheme.

A tool for run-time monitoring of reactive systems based on the described
approach is currently under development. The suggested translation scheme provides
a uniform mechanism for automatic creation of monitors, although some examples
show that, in certain cases, more compact and optimized monitors can be produced.
Further research is needed to define a more efficient translation scheme, both for
synchronous and asynchronous time models.

Finally, an interesting challenge is to check a similar approach with a UML-based
design paradigm that uses an object-oriented version of statecharts for behavior
description. Here an additional advantage could be in monitoring of systems where
objects are created dynamically such that their amount is not limited in advance
(model checking analysis of such systems is clearly problematic).

Acknowledgments

This work has been supported in part by the U.S. Office of Naval Research Grant #
N00014-01-1-0746.

References

1. Auguston, M.: Program Behavior Model Based on Event Grammar and its Application for
Debugging Automation. In: 2nd Int’l Workshop on Automated and Algorithmic
Debugging, AADEBUG 1995, pp. 277–291 (May 1995)

 Synthesis of Monitors for Real-Time Analysis of Reactive Systems 85

2. Auguston, M., Gates, A., Lujan, M.: Defining a Program Behavior Model for Dynamic
Analyzers. In: 9th International Conference on Software Engineering and Knowledge
Engineering, SEKE 1997, pp. 257–262 (June 1997)

3. Avrunin, G.S., Corbett, J.C., Dwyer, M.B.: Property Specification Patterns for Finite-State
Verification. In: 2nd Workshop on Formal Methods in Software Practice, pp. 7–15 (March
1998)

4. Beer, I., et al.: The Temporal Logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001)

5. Bogdanov, K., Holcombe, M., Singh, H.: Automated Test Set Generation for Statecharts.
In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 107–121.
Springer, Heidelberg (1999)

6. Chang, E.S., Manna, Z., Pnueli, A.: Compositional Verification of Real-time Systems. In:
Proceedings of the 9th IEEE Symposium Logic in Computer Science (LICS 1994), pp.
458–465. IEEE Computer Society Press, Los Alamitos (1994)

7. Corbett, J.C., Dwyer, M.B., Hatcliff, J.R.: A Language Framework for Expressing
Checkable Properties of Dynamic Software. In: Havelund, K., Penix, J., Visser, W. (eds.)
SPIN 2000. LNCS, vol. 1885, pp. 205–223. Springer, Heidelberg (2000)

8. Douglass, B.P., Harel, D., Trakhtenbrot, M.: Statecharts in Use: Structured Analysis and
Object-Orientation. In: Rozenberg, G. (ed.) EEF School 1996. LNCS, vol. 1494, pp. 368–
394. Springer, Heidelberg (1998)

9. Eisner, C., et al.: Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

10. Gery, E., Harel, D., Palatchi, E.: Rhapsody: A Complete Lifecycle Model-Based
Development System. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS,
vol. 2335, pp. 1–10. Springer, Heidelberg (2002)

11. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8, 231–274 (1987)

12. Harel, D., Kugler, H.: The Rhapsody Semantics of Statecharts (or, On the Executable Core
of the UML). In: Ehrig, H., et al. (eds.) INT 2004. LNCS, vol. 3147, pp. 325–354.
Springer, Heidelberg (2004)

13. Harel, D., et al.: STATEMATE: A Working Environment for the Development of
Complex Reactive Systems. IEEE Trans. on Software Engineering 16(4), 403–414 (1990)

14. Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Trans. on
Software Engineering Method 5(4), 293–333 (1996)

15. Harel, D., et al.: On the Formal Semantics of Statecharts. In: Proc. 2nd IEEE Symp. on
Logic in Computer Science, Ithaca, NY, pp. 54–64 (1987)

16. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The STATEMATE
Approach. McGraw-Hill, New York (1998)

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer,
Heidelberg (1991)

18. Pnueli, A., Shalev, M.: What is in a Step: On the Semantics of Statecharts. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 244–264. Springer, Heidelberg
(1991)

19. Richardson, D., Leif Aha, S., Owen O’Malley, T.: Specification-based Test Oracles for
Reactive Systems. In: Proc. Fourteens Intl. Conf. on Software Engineering, Melbourne, pp.
105–118 (1992)

20. Bienmüller, T., Damm, W., Wittke, H.: The STATEMATE Verification Environment -
Making It Real. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
561–567. Springer, Heidelberg (2000)

86 M. Auguston and M. Trakhtenbrot

21. Strichman, O., Goldring, R.: The ’Logic Assurance (LA)’ System - A Tool for Testing and
Controlling Real-Time Systems. In: Proc. 8th Israeli Conference on Computer Systems
and Software Engineering, pp. 47–56 (1997)

22. Thanne, M., Yerushalmi, R.: Experience with an Advanced Design Flow with OSEK
Compliant Code Generation for Automotive ECU’s. Dedicated Systems Magazine, Special
Issue on Development Methodologies & Tools, pp. 6–11 (2001)

23. Wind River Systems, Inc. BetterState,
http://www.windriver.com/products/betterstate/index.html

A Framework for Formalizing Set Theories

Based on the Use of Static Set Terms

Arnon Avron

School of Computer Science
Tel Aviv University, Tel Aviv 69978, Israel

aa@math.tau.ac.il

To Boaz Trakhtenbrot: a scientific father, a friend, and a great man.

Abstract. We present a new unified framework for formalizations of
axiomatic set theories of different strength, from rudimentary set theory
to full ZF . It allows the use of set terms, but provides a static check of
their validity. Like the inconsistent “ideal calculus” for set theory, it is
essentially based on just two set-theoretical principles: extensionality and
comprehension (to which we add ∈-induction and optionally the axiom
of choice). Comprehension is formulated as: x ∈ {x | ϕ} ↔ ϕ, where
{x | ϕ} is a legal set term of the theory. In order for {x | ϕ} to be legal,
ϕ should be safe with respect to {x}, where safety is a relation between
formulas and finite sets of variables. The various systems we consider
differ from each other mainly with respect to the safety relations they
employ. These relations are all defined purely syntactically (using an
induction on the logical structure of formulas). The basic one is based on
the safety relation which implicitly underlies commercial query languages
for relational database systems (like SQL).

Our framework makes it possible to reduce all extensions by defini-
tions to abbreviations. Hence it is very convenient for mechanical manip-
ulations and for interactive theorem proving. It also provides a unified
treatment of comprehension axioms and of absoluteness properties of
formulas.

1 Introduction

The goal of this paper is to develop a unified, user-friendly framework for for-
malizations of axiomatic set theories of different strength, from rudimentary set
theory to full ZF. The work in a formal system that is constructed within such
a framework should be very close to the way work in set theories is practically
done in reality. In particular, it should be possible to employ in a natural way
all the usual set notations and constructs as found in textbooks on naive or
axiomatic set theory (and only such notations).

Our starting point is what is known as the “ideal calculus” for naive set
theory (see [10], Sect. III.1). This very simple calculus is based on just two
set-theoretical principles: extensionality and full comprehension. It thus exactly
reflects our initial, immediate intuitions concerning sets (before becoming aware

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 87–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 A. Avron

of the inconsistencies they involve). Now in its most transparent formal presen-
tation, the ideal calculus employs set terms of the form {x | ϕ}, where x is a
variable and ϕ is any formula in which x occurs free. Then the comprehension
principle is most succinctly formulated as follows:

x ∈ {x | ϕ} ↔ ϕ

Unfortunately, it is well known that this principle leads to paradoxes (like Rus-
sel’s paradox). Hence all set theories that are believed to be consistent impose
constraints on the use of this principle. In all textbooks the choice of these
constraints is guided by semantic intuitions (like the limitation of size doctrine
[10,16]), especially the question: what operations on sets are “safe”. Since it is
one of our main purposes to remain as close to the “ideal calculus” as possi-
ble, on one hand, and we aim at computerized systems, on the other, we shall
translate the various semantic principles into syntactic constraints on the logical
form of formulas. Given a set theory S, we shall call a formula ϕ(x) (which may
have free variables other than x) S-safe with respect to x if {x | ϕ} is a valid
term of S (which intuitively means that according to the principles accepted by
S, the set denoted by this term exists for all values of the other parameters).
Thus “safety” will basically be here a relation between formulas and variables.
(Actually, in order to define it syntactically we shall need to generalize it to a
relation between formulas and finite sets of variables.) The various systems we
consider differ from each other only with respect to the safety relations they
employ.

Another problem solved in our framework is that official formalizations of
axiomatic set theories in almost all textbooks are based on some standard first-
order languages. In such languages terms are variables, constants, and sometimes
function applications (like x ∩ y). What is usually not available in the official
languages of these formalizations is the use of set terms of the form described
above ({x | ϕ}). As a result, already the formulation of the axioms is quite
cumbersome, and even the formalization of elementary proofs becomes some-
thing practically incomprehensible. In contrast, all modern texts in all areas of
mathematics (including set theory itself) use such terms extensively. For the
purpose of mechanizing real mathematical practice and for automated or inter-
active theorem proving, it is therefore important to have formalizations of ZF
and related systems which allow the use of such terms. Now, set terms are used
in all textbooks on first-order set theories, as well as in several computerized sys-
tems. However, whenever they are intended to denote sets (rather than classes)
they are introduced (at least partially) in a dynamic way, based for example
on the “extension by definitions” procedure (see [20], Sect. 4.6): In order to be
able to introduce some set term for a set (as well as a new operation on sets)
it is necessary first to justify this introduction by proving a corresponding exis-
tence theorem. (The same is basically true in case set terms are officially used to
denote “classes”, as in [18], Sect. I.4.) The very useful complete separation we
have in first-order logic between the (easy) check whether a given expression is a
well-formed term or formula, and the (difficult) check whether it is a theorem, is

A Framework for Formalizing Set Theories 89

thus lost. By analogy to programs: texts in such dynamic languages can only be
“interpreted”, but not “compiled”. In contrast, a crucial feature of our frame-
work is that although it makes extensive use of set terms, the languages used in
it are all static: the task of verifying that a given term or formula is well-formed
is decidable, easily mechanizable, and completely separated from any task con-
nected with proving theorems (like finding proofs or checking validity of given
ones). Expanding the language is allowed only through explicit definitions (i.e.
new valid expressions of an extended language will just be abbreviations for ex-
pressions in the original language). This feature has the same obvious advantages
that static type-checking has over dynamic type-checking.1

Two other important features of the framework we propose are:

– It provides a unified treatment of two important subjects of set theory: ax-
iomatization and absoluteness (the latter is a crucial issue in independence
proofs and in the study of models of set theories – see e.g. [17]). In the
usual approaches these subjects are completely separated. Absoluteness is
investigated mainly from a syntactic point of view, axiomatizations – from
a semantic one. Here both are given the same syntactic treatment. In fact,
the basis of the framework is its formulation of rudimentary set theory,
in which only terms for absolute sets are allowed. The other set theories
are obtained from it by small changes in the definitions of the safety rela-
tions.2

– Most of our systems (including the one which is equivalent to ZF) have the
remarkable property that every set or function that is implicitly definable
in them already has a term in the corresponding language denoting it. More
precisely: if ϕ(x, y1, . . . , yn) is a formula such that ∀y1, . . . , yn∃!xϕ is prov-
able, then there is a term t(y1, . . . , yn) such that ϕ(y1, . . . , yn, t(y1, . . . , yn))
is provable. Hence, there is no need for the procedure of extension by def-
initions, and introduction of new symbols is reduced to using abbrevia-
tions.

1 The closest attempt I am aware of to develop a language for sets that employs
static set terms can be found Sect. 5.1 of [7]. However, the construction there is
rather complicated, and far remoted from actual mathematical practice. (The terms
have the form: {tn+1 : x0C0t0, x1C1t1, . . . , xnCntn | ϕ}, where each Ci is either ∈
or ⊆, ϕ is a formula, and t1, . . . , tn are terms such that Fv(ti) ∩ {x1, . . . , xn} ⊆
{x0, . . . , xi−1}). Moreover: the use of these terms does not have the two important
features described below, and cannot serve as a basis for a framework of the type
developed here.

2 It should perhaps be noted that the idea that existence of sets {x | ϕ} might be
connected with absoluteness properties of ϕ occurs also (though with a very different
formalization) in Ackermann’s set theory [1], which turned out to be equivalent (once
one adds regularity) to ZF [19]. The connections (if any) between Ackermann’s
approach and the present one are yet to be determined, and will be investigated
in the future. (I am grateful to an anonymous referee for bringing Ackermann’s set
theory to my attention).

90 A. Avron

2 A Description of the General Framework

2.1 Languages

Officially, every set theory S has in our formal framework its own language
L(S). L(S) is determined by the safety relation �S on which S is based. The
sets of terms and formulas of L(S) and �S are usually defined by a simultaneous
recursion. For every S the clauses for L(S) in this recursive definition are the
following (where Fv(exp) denotes the set of free variables of exp):

– Every variable is a term.
– The constant ω is a term.
– If x is a variable, and ϕ is a formula such that ϕ �S {x}, then {x | ϕ} is a

term (and Fv({x | ϕ}) = Fv(ϕ) − {x}).
– If t and s are terms then t = s and t ∈ s are atomic formulas.
– If ϕ and ψ are formulas, and x is a variable, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), and

∃xϕ are formulas.

Note. We have included the constant ω in all our languages in order to be
able to have in all of them closed terms for denoting constant sets (see e.g. the
definition of ∅ in Sect. 3.1). However, in most of our systems nothing is assumed
about ω and its interpretation. Only in systems that include the infinity axiom
we put the constant ω (which is available anyway) to the further use of denoting
the set whose existence is guaranteed by this axiom.

2.2 Logic

Basically, the logic we will use in most of our systems is the usual first-order logic
with equality. One should note however the following differences/additions:

1. Our languages provide much richer classes of terms than those allowed in
orthodox first-order systems. In particular: a variable can be bound in them
within a term. The notion of a term being free for substitution is generalized
accordingly (also for substitutions within terms!). As usual this amounts to
avoiding the capture of free variables within the scope of an operator which
binds them. Otherwise the rules/axioms concerning the quantifiers and terms
remain unchanged (for example: ϕ[x �→ t] → ∃xϕ is valid for every term t
which is free for x in ϕ).

2. The rule of α-conversion (change of bound variables) is included in the logic.
3. The substitution of equals for equals is allowed within any context (under

the usual conditions concerning bound variables).
4. In analogy to the previous rule concerning identity of terms, we assume

similar rule(s) allowing the substitution of a formula for an equivalent for-
mula in any context in which the substitution makes sense. In particular,
the following schema is valid whenever {x | ϕ} and {x | ψ} are legal terms:

∀x(ϕ ↔ ψ) → {x | ϕ} = {x | ψ}

A Framework for Formalizing Set Theories 91

2.3 Axioms

The main part of all our systems consists of the following axioms and axiom
schemes (our version of the ideal calculus, augmented with the assumption that
we are dealing with the cumulative universe):

Extensionality:

– ∀y(y = {x | x ∈ y})

Comprehension Schema:

– ∀x(x ∈ {x | ϕ} ↔ ϕ)

The Regularity Schema (∈-induction):

– (∀x(∀y(y ∈ x → ϕ[x �→ y]) → ϕ)) → ∀xϕ

Notes:

1. Thus the main parts of the various set theories we shall consider will differ
only with respect to the power of their comprehension scheme. This, in turn,
again depends only on the safety relation used by each. Hence also the differ-
ences in strength between the systems will mainly be due to the differences
between their safety relations.

2. It is easy to see (see [4]) that our assumptions concerning the underlying logic
and the comprehension schema together imply that the above formulation
of the extensionality axiom is equivalent to the more usual one:

∀z(z ∈ x ↔ z ∈ y) → x = y

3. The first two axioms immediately entail the following two principles (where
t is an arbitrary valid term):

– {x | x ∈ t} = t (provided x ∈ Fv(t))
– t ∈ {x | ϕ} ↔ ϕ[x �→ t] (provided t is free for x in ϕ)

These principles are counterparts of the reduction rules (η) and (β) (respec-
tively) from the λ-calculus. Like their counterparts, they are designed to be
used as simplification rules (at least in the solution of elementary problems).

The Axiom of Choice. The full set theory ZFC has one more axiom that does
not fit into the formal framework described above: AC (the axiom of choice).
It seems that the most natural way to incorporate it into our framework is by
further extending the set of terms, using Hilbert’s ε symbol, together with its
usual characterizing axiom (which is equivalent to the axiom of global choice):

∃xϕ → ϕ[x �→ εxϕ]

It should be noted that this move is not in line with our stated goal of employing
only standard notations used in textbooks, but some price should be paid for
including the axiom of choice in a system.

92 A. Avron

2.4 Safety Relations

As emphasized above, the core of each of our systems is the safety relation
it employs. Now the idea of using such relations is due to the similarity (noted
first in [4]) between issues of safety and domain independence in database theory
([2,24]), and issues of set-existence and absoluteness in set theory. This similarity
allows us to apply in the context of set theories the purely syntactic approach
to safety of formulas that has been developed in database theory.

From a logical point of view, a database of scheme D = {P1, . . . , Pn} is just a
given set of finite interpretations of the predicate symbols P1, . . . , Pn. A query
language for such a database is an ordinary first-order language with equality,
the signature of which includes {P1, . . . , Pn}. Ideally, every formula ψ of a query
language can serve as a query. If ψ has free variables then the answer to ψ is the
set of tuples which satisfy it in some intended structure, where the interpretations
of P1, . . . , Pn is given by the database. If ψ is closed then the answer to the query
is either “yes” or “no” (which can be interpreted as {∅} and ∅, respectively).
However, an answer to a query should be finite and computable, even if the
intended domain is infinite. Hence only “safe” formulas, the answers to which
always have these properties, should be used as queries. In fact, an even stronger
property of formulas is usually taken to be crucial. Safe queries should be domain
independent ([24,2]) in the following sense:

Definition 1. 3 Let σ be a signature which has no function symbols, and whose
set of predicate symbols includes D = {P1, . . . , Pn}. A query ϕ(x1. . . . , xn) in σ
is called D-d.i. (D-domain-independent) if whenever S1 and S2 are structures
for σ such that S1 is a substructure of S2, and the interpretations of {P1, . . . , Pn}
in S1 and S2 are identical, then for all a1 ∈ S2, . . . , an ∈ S2:

S2 |= ϕ(a1, . . . , an) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(a1, . . . , an)

Thus a domain-independent query is a query the answer to which depends only
on the information included in the database, and on the objects which are men-
tioned in the query. Practical database query languages are designed so that
only d.i. queries can be formulated in them. Unfortunately, it easily follows from
Trakhtenbrot’s Theorem (see [9]) that it is undecidable which formulas are d.i.
(or “safe” in any other reasonable notion of safety of queries, like “finite and
computable”). Therefore all commercial query languages (like SQL) allow to use
as queries only formulas from some syntactically defined class of d.i. formulas.
Many explicit proposals of decidable, syntactically defined classes of safe for-
mulas have been made in the literature. Perhaps the simplest among them is
the following class SS(D) (“syntactically safe” formulas for a database scheme
D) from [24] (originally designed for languages in which every term is either a
variable or a constant):4

3 This is a slight generalization of the usual definition ([24]), which applies only to free
Herbrand structures which are generated by adding to σ some new set of constants.

4 What we present below is both a generalization and a simplification of Ullman’s
original definition.

A Framework for Formalizing Set Theories 93

1. Pi(t1, . . . , tni) ∈ SS(D) in case Pi (of arity ni) is in D.
2. x = c and c = x are in SS(D) (where x is a variable and c is a constant).
3. ϕ ∨ ψ ∈ SS(D) if ϕ ∈ SS(D), ψ ∈ SS(D), and Fv(ϕ) = Fv(ψ).
4. ∃xϕ ∈ SS(D) if ϕ ∈ SS(D).
5. If ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕk then ϕ ∈ SS(D) if the following conditions are met:

(a) For each 1 ≤ i ≤ k, either ϕi is atomic, or ϕi is in SS(D), or ϕi is a
negation of a formula of either type.

(b) Every free variable x of ϕ is limited in ϕ. This means that there exists
1 ≤ i ≤ k such that x is free in ϕi, and either ϕi ∈ SS(D), or there
exists y which is already limited in ϕ, and ϕi ∈ {x = y, y = x}.

There is one clause in this definition which is somewhat strange: the last one,
which treats conjunction. The reason why this clause does not simply tell us
(like in the case of disjunction) when a conjunction of two formulas is in SS(D),
is the desire to take into account the fact that once the value of y (say) is known,
the formula x = y becomes safe. In order to replace this problematic clause by a
more concise one (which at the same time is more general) the formula property
of d.i. was turned in [4] into the following relation between a formula ϕ and finite
subsets of Fv(ϕ):

Definition 2. Let σ be as in Definition 1. A formula ϕ(x1, . . . , xn, y1, . . . , yk)
in σ is D-d.i. with respect to {x1, . . . , xn} if whenever S1 and S2 are structures
as in Definition 1, then for all a1 ∈ S2, . . . , an ∈ S2 and b1 ∈ S1, . . . , bk ∈ S1:

S2 |= ϕ(−→a ,
−→
b) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(−→a ,

−→
b)

Obviously, a formula ϕ is D-d.i. iff it is D-d.i. with respect to Fv(ϕ). On the
other hand the formula x = y is only partially D-d.i.: it is D-d.i. with respect
to {x} and {y}, but not with respect to {x, y}.

A particularly important observation is that a formula ϕ is D-d.i. with re-
spect to ∅, if whenever S1 and S2 are structures as in Definition 1, then for
all b1, . . . , bk ∈ S1, S2 |= ϕ(

−→
b) ↔ S1 |= ϕ(

−→
b). Such formulas may be called

D-absolute. Obviously, this notion of D-absoluteness is closely related to the
set-theoretical notion of absoluteness. However, as it is, it is not really a gen-
eralization of the notion used in set theory. In addition to =, the language of
set theory has only one binary predicate symbol: ∈. Now the notion of {∈}-
absoluteness is useless (since if the interpretations of ∈ in two standard models
S1 and S2 of ZF are identical, then S1 and S2 are identical). The notion of ∅-
absoluteness, in contrast, is identical to the most general notion of absoluteness
as defined e.g. in [17] (p. 117), but that notion is of little use in set theory. Thus
Δ0-formulas are not ∅-absolute. Indeed, in order for Δ0-formulas to be absolute
for structures S1 and S2 (where S1 is a substructure of S2), we should assume
that S1 is a transitive substructure of S2. This means that if b is an element of
S1, and S2 |= a ∈ b, then a belongs to S1, and S1 |= a ∈ b. In other words: the
formula x ∈ y should be d.i. with respect to {x} (but not with respect to {y}).
In [4] and [6] this observation was used for developing a general framework for

94 A. Avron

domain independence and absoluteness, and it was shown that this framework
has deep applications in computability theory.

The similarity between d.i. and absoluteness is also the crucial observation
on which the present framework for set-theories is based. However, in order to
exploit this similarity here we do not need the full general framework developed
in [4,6]. It suffices to introduce the following general, abstract notion of a safety
relation (which is based on Ullman’s notion of syntactic safety, but its use is not
confined to database theory):

Definition 3. A relation � between formulas ϕ and subsets of Fv(ϕ) is a safety
relation if it satisfies the following conditions:

1. If ϕ � X then X ⊆ Fv(ϕ).
2. If ϕ � X and Z ⊆ X, then ϕ � Z.
3. If ϕ � {x1, . . . , xn} and v1, . . . vn are n distinct variables not occurring in

ϕ, then ϕ[x1 �→ v1, . . . , xn �→ vn].
4. ϕ � ∅ if ϕ is atomic.
5. t = x � {x} and x = t � {x} if x ∈ Fv(t).
6. ¬ϕ � ∅ if ϕ � ∅.
7. ϕ ∨ ψ � X if ϕ � X and ψ � X.
8. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y , and Y ∩ Fv(ϕ) = ∅.
9. ∃yϕ � X − {y} if y ∈ X and ϕ � X.

Note. Recall that we are taking ∧, ∨, ¬ and ∃ as our primitives. Moreover:
we take ¬(ϕ → ψ) as an abbreviation for ϕ ∧ ¬ψ, and ∀x1, . . . , xkϕ as an ab-
breviation for ¬∃x1, . . . , xk¬ϕ. This entails the following important property of
“bounded quantification”: If � is a safety relation, ϕ � {x1, . . . , xn}, and ψ � ∅,
then ∃x1 . . . xn(ϕ ∧ ψ) � ∅ and ∀x1 . . . xn(ϕ → ψ) � ∅. The latter can easily be
generalized, and the generalization can be used for an alternative definition of
safety relations in case the negation connective may be used only before atomic
formulas, and the negation of ϕ, ϕ, is inductively defined for complex formulas
(a common procedure in proof theory): strengthen condition 4 above to ϕ � ∅
if ϕ is a literal, and replace condition 6 by: ∀x1 . . . xnϕ � ∅ if ϕ � {x1, . . . , xn}.

Examples

– For first order languages with equality, having no function symbols and no
predicate symbols other than those in D, partial D-d.i. (Definition 2) is a
safety relation. A syntactic counterpart � directly corresponding to SS(D)
is inductively defined by using the clauses of Definition 3 and the assumption
that ϕ � Fv(ϕ) for every atomic formula ϕ of the form Pi(t1, . . . , tni).

– Let L be the language of PA (Peano’s Arithmetic), and let N be the standard
model of PA. Define a relation �N on L by: ϕ(x1, . . . , xn, y1, . . . , yl) �N
{x1, . . . , xn} if the set {〈k1, . . . , kn〉 ∈ N n | ϕ(k1, . . . , kn, m1, . . . , ml)} is
finite and computable (as a function of m1, . . . , ml) for all m1, . . . , ml in N .5

5 In the case l = 0 an intentional meaning of “computable” is meant, but we shall not
get into details here. See [4,6] for more details.

A Framework for Formalizing Set Theories 95

Then �N is a safety relation, and ϕ �N ∅ iff ϕ defines a decidable predicate.
A useful syntactic approximation �b of �N can in this case inductively
be defined by using the clauses of Definition 3 and the assumption that
x < t �b x if x ∈ Fv(t). The set {ϕ | ϕ �b ∅} is a straightforward extension
of Smullyan’s set of Σ0 formulas (see [23], P. 41), which can serve as a basis
for the usual arithmetical hierarchy. It is interesting to note that a succinct
inductive definition of �b can be given which is almost identical to that of
the basic safety relation �RST of set theory (see Definition 5). The only
difference is that the condition x ∈ t �b x in Definition 5 should be replaced
by x < t �b x.

Next we describe the way safety relations are used in our framework for set
theories. The basic idea is that ϕ should be safe for {x} in a set theory S iff the
collection {x | ϕ} is accepted as a set by S. This leads to the following definition:

Definition 4. Let L be a language which has ∈ among its binary predicate sym-
bols. An ∈-safety relation for L is a safety relation � for L which satisfies the
following condition:

– x ∈ t � {x} if x is a variable such that x ∈ Fv(t).

All the safety relations used in our framework are ∈-safety relations.

3 The Rudimentary Set Theory RST

Our basic system is the one which corresponds to the minimal ∈-safety relation:

Definition 5. The relation �RST is inductively defined as follows:

1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x = t, t = x, x ∈ t}, and x ∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

It is easy to see that �RST is indeed an ∈-safety relation. We denote by RST
(Rudimentary Set Theory) the set theory it induces (within the framework de-
scribed above). The following theorem about RST can easily be proved:

Theorem 1. Given an expression E and a finite set X of variables, it is decid-
able in polynomial time whether E is a valid term of RST , whether it is a valid
formula of RST , and if the latter holds, whether E �RST X.

Note. The last theorem is of a crucial importance from implementability point
of view, and it obtains also for all the extensions of RST discussed (explicitly
or implicitly) below. In order to ensure it, we did not include in the definition of
safety relations the natural condition that if ϕ � X and ψ is (logically) equivalent
to ϕ (where Fv(ϕ) = Fv(ψ)) then also ψ � X . However, we obviously do have
that if �RST ϕ ↔ ψ then �RST x ∈ {x | ϕ} ↔ ψ, and so �RST ∃Z∀x.x ∈ Z ↔ ψ.

96 A. Avron

3.1 The Power of RST

In the language of RST we can introduce as abbreviations (rather than as exten-
sions by definitions) most of the standard notations for sets used in mathematics.
Again, all these abbreviations should be used in a purely static way: no justifying
propositions and proofs are needed. Here are some examples:

– ∅ =Df {x | x ∈ ω ∧ x = x}.
– {t1, . . . , tn} =Df {x | x = t1 ∨ . . . ∨ x = tn} (where x is new).
– 〈t, s〉 =Df {{t}, {t, s}}.
– 〈t1, . . . , tn〉 is ∅ if n = 0, t1 if n = 1, 〈〈t1, . . . , tn−1〉, tn〉 if n ≥ 2.
– {x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ}, provided ϕ �RST ∅. (where x ∈ Fv(t)).
– {t | x ∈ s} =Df {y | ∃x.x ∈ s ∧ y = t} (where y is new, and x ∈ Fv(s)).
– s × t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉} (where x, a and b are new).
– {〈x1, . . . , xn〉 | ϕ} =Df {z | ∃x1 . . . ∃xn.ϕ ∧ z = 〈x1, . . . , xn〉}, provided

ϕ �RST {x1, . . . , xn}, and z ∈ Fv(ϕ).
– s ∩ t =Df {x | x ∈ s ∧ x ∈ t} (where x is new).
– s ∪ t =Df {x | x ∈ s ∨ x ∈ t} (where x is new).
– s − t =Df {x | x ∈ s ∧ x ∈ t} (where x is new).
– S(x) =Df x ∪ {x}
–

⋃
t =Df {x | ∃y.y ∈ t ∧ x ∈ y} (where x and y are new).

–
⋂

t =Df {x | ∃y(y ∈ t ∧ x ∈ y) ∧ ∀y(y ∈ t → x ∈ y)} (where x, y are new).

It is straightforward to check that in all these abbreviations the right hand side is
a valid term of RST (provided that the terms/formulas occurring in it are valid
terms/well-formed formulas of RST). We explain s × t by way of example: since
a and b are new, a ∈ s �RST {a}, and b ∈ t �RST {b}. Since b ∈ Fv(a ∈ s), this
implies that a ∈ s ∧ b ∈ t �RST {a, b}. Similarly, a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉 �RST

{a, b, x}. It follows that ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉 �RST {x}. Hence our
term for s × t (which is the most natural one) is a valid term of RST .

Lemma 1. There is a formula OP (z, x, y) in the basic language of RST (i.e.:
without set terms) such that:

1. �RST OP (z, x, y) ↔ z = 〈x, y〉
2. OP (z, x, y) �RST {x, y}.

Proof: Let Pa(z, x, y) ≡Df x ∈ z ∧y ∈ z ∧∀w(w ∈ z → w = x∨w = y). Then
Pa(z, x, y) �RST {x, y}, and �RST Pa(z, x, y) ↔ z = {x, y}. Let OP (z, x, y) be
the formula ∃u∃v(Pa(z, u, v) ∧ Pa(u, x, x) ∧ Pa(v, x, y)). ��

With the help of OP we can define all the standard basic operations related to
relations and functions. For example:

– Dom(s) =Df {x | ∃z∃y(z ∈ s ∧ OP (z, x, y)}
– Rng(s) =Df {y | ∃z∃x(z ∈ s ∧ OP (z, x, y)}
– t � s =Df {x ∈ t | ∃z∃yOP (x, y, z) ∧ y ∈ s}

A Framework for Formalizing Set Theories 97

In RST we can also introduce as abbreviations the terms used in the λ-calculus
for handling explicitly defined functions which are sets (except that our terms
for functions should specify the domains of these functions, which should also
be explicitly definable sets). Moreover: the reduction rules of the λ-calculus for
these terms are easy theorems of RST . Thus the notation for λ-set and function
application are introduced as follows:

– λx ∈ s.t =Df {〈x, t〉 | x ∈ s} (where x ∈ Fv(s))
– f(t) =Df

⋃
Rng(f � {t})

(Note that f(t) is defined for every f and t, but when f denotes a function F ,
and t denotes an element a in F ’s domain, then f(t) indeed denotes the value
of F at a.) We can easily check now that rules β and η obtain in RST :

– �RST u ∈ s → (λx ∈ s.t)u = t[x �→ u] (if u is free for x in t).
– �RST u ∈ s → (λx ∈ s.t)u = ∅ (if u is free for x in t).
– �RST λx ∈ s.t(x) = t � s (in case x ∈ Fv(t)).

Exact characterizations of the operations that are explicitly definable in RST ,
and of the strength of RST , are given in the following theorems and corollary
(the proofs of which will be given in [6]).

Theorem 2

1. If F is an n-ary rudimentary function6 then there exists a formula ϕ s. t.:

(a) Fv(ϕ) = {y, x1, . . . , xn}
(b) ϕ �RST {y}
(c) F (x1, . . . , xn) = {y | ϕ}.

2. If ϕ is a formula such that:

(a) Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}
(b) ϕ �RST {y1, . . . , yk}
then there exists a rudimentary function F such that:

F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}.

Corollary 1. If Fv(ϕ) = {x1, . . . , xn}, and ϕ �RST ∅ then ϕ defines a rudi-
mentary predicate P . Conversely, if P is a rudimentary predicate then there is
a formula ϕ such that ϕ �RST ∅ and ϕ defines P .

Theorem 3. RST is equivalent to the system obtained from Gandy’s “Basic
Set Theory” BST ([12]) by the addition of the ∈ −induction schema.

6 The class of rudimentary set functions was introduced independently by Gandy ([12])
and Jensen ([15]). See also [8], Sect. IV.1.

98 A. Avron

3.2 Generalized Absoluteness

For simplicity of presentation, we assume the cumulative universe V of ZF , and
formulate our definitions accordingly. It is easy to see that V is a model of RST
(with the obvious interpretations of RST ’s terms).

Definition 6. Let M be a transitive model of RST . Define the relativization to
M of the terms and formulas of RST recursively as follows:

– tM = t if t is a variable or a constant.
– {x | ϕ}M = {x | x ∈ M ∧ ϕM}.
– (t = s)M = (tM = sM) (t ∈ s)M = (tM ∈ sM).
– (¬ϕ)M = ¬ϕM (ϕ ∨ ψ)M = ϕM ∨ ψM. (ϕ ∧ ψ)M = ϕM ∧ ψM.
– (∃xϕ)M = ∃x(x ∈ M ∧ ϕM).

Definition 7. Let T be an extension of RST such that V |= T .

1. Let t be a term, and let Fv(t) = {y1, . . . , yn}. We say that t is T -absolute if
the following is true (in V) for every transitive model M of T :

∀y1 . . .∀yn.y1 ∈ M ∧ . . . ∧ yn ∈ M → tM = t

2. Let ϕ be a formula, and let Fv(ϕ) = {y1, . . . , yn, x1, . . . , xk}. We say that ϕ
is T -absolute for {x1, . . . , xk} if {〈x1, . . . , xk〉 | ϕ} is a set for all values of the
parameters y1, . . . , yn, and the following is true (in V) for every transitive
model M of RST :

∀y1 . . . ∀yn.y1 ∈ M ∧ . . . ∧ yn ∈ M → [ϕ ↔ (x1 ∈ M ∧ . . . ∧ xk ∈ M ∧ ϕM)]

Thus a term is T -absolute if it has the same interpretation in all transitive models
of T which contains the values of its parameters, while a formula is T -absolute for
{x1, . . . , xk} if it has the same extension (which should be a set) in all transitive
models of T which contains the values of its other parameters. In particular: ϕ
is T -absolute for ∅ iff it is absolute relative to T in the usual sense of set theory
(see e.g. [17]), while ϕ is T -absolute for Fv(ϕ) iff it is domain-independent in
the sense of database theory (see Definition 1) for transitive models of T .

Theorem 4

1. Any valid term t of RST is RST -absolute.
2. If ϕ �RST X then ϕ is RST -absolute for X.

The proof is by a simultaneous induction on the complexity of t and ϕ.

4 Stronger Set Theories

The definability of {t, s} and of
⋃

t in the language of RST means that the
axioms of pairing and union are provable in RST . We turn now to the question
how to deal with the other comprehension axioms of ZF within the proposed
framework. We start first with the axioms that remain valid if we limit ourselves
to hereditarily finite sets. We show that the addition of each of them to RST
corresponds to adding to the definition of �RST a certain syntactic condition.

A Framework for Formalizing Set Theories 99

4.1 Basic ZF : The Full Separation and Replacement Schemes

Theorem 5. Let T be an extension of RST , based on some safety relation �T

which extends �RST .
1. If �T satisfies the condition:

(Sep) ϕ �T ∅ for every formula ϕ

then the axiom schema of separation is derivable in T .
2. If �T satisfies the condition:

(Rep) ∃yϕ ∧ ∀y(ϕ → ψ) �T X if ψ � X, and X ∩ Fv(ϕ) = ∅.
then the axiom schema of replacement is derivable in T .

Proof: In the presence of condition (Sep), {x | x ∈ z ∧ ϕ} is a valid term for
every ϕ, and this implies the separation schema.

Suppose now that �T Satisfies (Rep). The proof that the replacement schema
is derivable in T is more difficult than in the previous case, because unlike the
other comprehension axioms of ZF , the official formulation of replacement has
the form of a conditional:

(∀y∃v∀x(ϕ ⇔ x = v)) ⇒ (∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ ϕ))

where v, w, Z ∈ Fv(ϕ). To prove this in T , let A be the formula ∀x(ϕ ⇔ x = v).
Reasoning in T , assume ∀y∃vA (this is the left hand side of the implication
we want to prove). This and the definition of the formula A logically imply
(∃vA ∧ ∀v(A → x = v)) ⇔ ϕ. But by (Rep), ∃vA ∧ ∀v(A → x = v) �T {x}.
Hence ∃y.y ∈ w∧(∃vA∧∀v(A → x = v)) �T {x}. Thus the comprehension axiom
of T implies: ∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ (∃vA ∧ ∀v(A → x = v))). This and the
above conclusion of ∀y∃vA together entail ∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ ϕ). ��
Definition 8

1. The safety relation �BZF is obtained from �RST by replacing clauses 1 and
3 of its definition with (Sep) and (Rep).

2. The system BZF is defined like RST , using �BZF instead of �RST .

Note. Any formula ϕ is logically equivalent to ∃yϕ ∧ ∀y(ϕ → ∃x.x = ω), where
y is a dummy variable. Hence (Sep) is superfluous in the presence of (Rep) (This
corresponds to the well-known fact that separation is derivable from replace-
ment). In particular, to get BZF it suffices to add to �RST only (Rep).

Theorem 6. Let BZF ∗ be the system in the pure first-order fragment of the
language of BZF (i.e. with no set terms) which is obtained from BZF by re-
placing its comprehension axiom with the following safe comprehension schema:

(SCn) ∃Z(∀x.x ∈ Z ⇔ ϕ)

where ϕ is in the language of BZF ∗, ϕ �BZF {x}, and Z ∈ Fv(ϕ). Let ZF−−

be ZF without the powerset axiom and the infinity axiom. Then BZF , BZF ∗,
and ZF−− are all equivalent.7

7 Note again (see the note in Sect. 2.1) that although ZF −− can talk about ω, as far
as this theory is concerned, ω could be any set whatsoever.

100 A. Avron

Proof: Obviously, every theorem of BZF ∗ is also a theorem of BZF . That
every theorem of ZF−− is a theorem of BZF ∗ can be shown exactly like in the
proof of Theorem 5.

To complete the cycle, it remains to show that BZF is a conservative extension
of ZF−−. For this we define recursively for every formula ϕ of BZF a translation
ϕ(I) into the language of ZF−− such that Fv(ϕ(I)) = Fv(ϕ):

– If ϕ is an atomic formula in the language of ZF−− then ϕ(I) = ϕ.
– Suppose ϕ is an atomic formula which contains a set term. Let t = {x | ψ}

(where ψ �BZF x) be a maximal set term of ϕ. Define:

ϕ(I) = ∃Z(∀x(x ∈ Z ⇔ ψ(I)) ∧ (ϕ[t �→ Z])(I))

where Z is a new variable, and ϕ[t �→ Z] is the formula obtained from ϕ by
replacing every occurrence of t in ϕ by Z.

– Let (ϕ ∧ ψ)(I) = (ϕ)(I) ∧ (ψ)(I), (∃xϕ)(I) = ∃x(ϕ)(I) etc.

Next, we show how to express the safety relation �BZF within the language of
ZF−−. From Lemma 1 it easily follows that there is a formula Bn(x1, . . . , xn, z)
in the language of ZF−− such that Bn(x1, . . . , xn, z) �RST {x1, . . . , xn} and
Bn(x1, . . . , xn, z) is equivalent in RST to 〈x1, . . . , xn〉 ∈ z. Let setx1,...,xnϕ be
(ϕ → ϕ) for n = 0, ∃Z∀x1 . . . ∀xn(Bn(x1, . . . , xn, Z) ⇔ ϕ) for n > 0 (where
Z ∈ Fv(ϕ)) 8. Let Setx1,...,xnϕ be the universal closure of setx1,...,xnϕ. Note that
Setxϕ formalizes the application to ϕ of the comprehension principle. We show
by induction on the structure of a formula ϕ of BZF that if ϕ �BZF {x1, . . . , xn}
then Setx1,...,xnϕ(I) is a theorem of ZF−−.

1. The case n = 0 is trivial

2. (a) If t is a variable or a constant of BZF then

– setxx = t and setxt = x follow from the pairing axiom.

– setxx ∈ t is a logically valid formula.

(b) If t = {y | ψ} (where ψ �BZF y) and ϕ = p(x, t), where p(x, t) is in
{x = t, t = x, x ∈ t}, and x ∈ Fv(t) (= Fv(ψ) − {y}), then ϕ(I) is
∃Z(∀y(y ∈ Z ⇔ ψ(I)) ∧ p(x, Z)). By induction hypothesis for ψ we have
�ZF −− Setyψ

(I). This means that �ZF −− ∃Z(∀y(y ∈ Z ⇔ ψ(I)), and so
�ZF −− ∃!Z(∀y(y ∈ Z ⇔ ψ(I)). By part (a) also �ZF −− Setxp(x, Z). Now
it is easy to show that (∃!ZA ∧ ∀ZsetxB) → setx∃Z(A ∧ B) is logically
valid in case x ∈ Fv(A). This implies that �ZF −− Setxϕ(I).

3. setx1,...,xn(ϕ ∨ ψ)(I) follows from setx1,...,xnϕ(I) and setx1,...,xnψ(I) by the
axioms of union and pairing.

8 This is a generalization of the notation Setxϕ from [20], P. 240.

A Framework for Formalizing Set Theories 101

4. To simplify notation, assume that Fv(ϕ) = {x, z}, Fv(ψ) = {x, y, z}, and
that ϕ �BZF {x}, ψ �BZF {y} (and so ϕ ∧ ψ �BZF {x, y}). By induction
hypothesis, �ZF −− Setxϕ(I), and �ZF −− Setyψ

(I). Reasoning in ZF−−, this
means that there are sets Z(z) and W(x,z) such that x ∈ Z(z) ⇔ ϕ(I) and
y ∈ W (x, z) ⇔ ψ(I). It follows that

{〈x, y〉 | (ϕ ∧ ψ)(I)} =
⋃

x∈Z(z)

{x} × W (x, z)

Setx,y(ϕ ∧ ψ)(I) follows therefore by the axioms of replacement and union,
and the fact that the existence of Cartesian products is provable in ZF−−.

5. Deriving SetX−{y}∃yϕ(I) in ZF−− from SetXϕ(I) is left to the reader.

6. Assume that �ZF −− setx1,...,xnψ(I), and {x1, . . . , xn}∩Fv(ϕ) = ∅. We show
that �ZF −− setx1,...,xn(∃yϕ∧∀y(ϕ → ψ))(I). This is immediate from the fact
that if {x1, . . . , xn}∩Fv(ϕ) = ∅ then ∃y∀x1 . . . xn((∃yϕ∧∀y(ϕ → ψ)) → ψ)
is logically valid 9, together with the following lemma:

Lemma: Assume that {y1, . . . , yk} ∩ Fv(ϕ) = ∅, �ZF −− setx1,...,xnψ and
∃y1, . . . , yk∀x1, . . . , xn(ϕ → ψ) is logically valid. Then �ZF −− setx1,...,xnϕ.

Proof of the Lemma: ∃y1, . . . , yk∀x1, . . . , xn(ϕ → ψ) logically implies the
formula ∃y1, . . . , yk∀x1, . . . , xn(ϕ ↔ .ψ ∧ ϕ). It is easy however to see that
if {y1 . . . yk} ∩ Fv(ϕ) = ∅ then Setx1,...,xnϕ logically follows in first order
logic from Setx1,...,xnφ and ∃y1 . . . yk∀x1 . . . xn(ϕ ↔ φ). Hence we only need
to prove that setx1,...,xn(ψ ∧ ϕ) follows in ZF−− from setx1,...,xnψ. This is
immediate from the axiom of subsets.

Now we show that if �BZF ϕ then �ZF −− ϕ(I). Since obviously ϕ(I) = ϕ in
case ϕ is in the language of ZF−−, this will end the proof of the theorem. Now
the inference rules are identical in the two systems, and our translation preserves
applications of these rules. It suffices therefore to show that the translations of
the comprehension axioms of BZF are theorems of ZF−−. Well, if ϕ �BZF {x}
then the translation of the ϕ-instance of this schema is ∀x(∃Z(∀x(x ∈ Z ↔
ϕ(I)) ∧ x ∈ Z) ↔ ϕ(I)). It is easy to see that this formula follows in ZF−− from
Setxϕ(I). The latter formula, in turn, is provable in ZF−− by what we have
proved above (since ϕ �BZF {x}).

This completes the proof of Theorem 6. ��

As noted at the end of the introduction, in mathematical practice new symbols
for relations and functions are regularly introduced in the course of develop-
ing a theory. This practice is formally based on the “extensions by definitions”
procedure (see e.g. [20], Sect. 4.6). Now, while new relation symbols are intro-
duced just as abbreviations for (usually) longer formulas, new function sym-
bols are introduced in a dynamic way: once ∀y1, . . . , yn∃!xϕ is proved (where
9 For the proof of the validity of this formula show that it follows from ∃y1 . . . ykϕ as

well as from ¬∃y1 . . . ykϕ.

102 A. Avron

Fv(ϕ) = {y1, . . . , yn, x}) then a new n-ary function symbol Fϕ can conservatively
be introduced, together with a new axiom: ∀y1, . . . , yn(ϕ[x �→ Fϕ(y1, . . . , yn)]).
Now a particularly remarkable property of BZF and its extensions is that this
dynamic procedure is not needed for them. The required terms are available in
advance, and every new function symbol we might wish to use may be intro-
duced statically, as an abbreviation for an already existing term (in particular:
any set which has an implicit definition in some extension of BZF has an explicit
definition in that extension, using a set term):

Theorem 7. For any formula ϕ of BZF such that Fv(ϕ) = {y1, . . . , yn, x}),
there exists a term tϕ of BZF such that Fv(tϕ) = {y1, . . . , yn}, and

�BZF ∀y1, . . . , yn∃!xϕ → ∀y1, . . . , yn(ϕ[x �→ tϕ])

Proof: Define ιxϕ = {z | ∃xϕ∧∀x(ϕ → z ∈ x)} (where z is a new variable, not
occurring in ϕ). This is a valid term of BZF by the new clause in the definition
of �BZF . Now it can easily be proved that

�BZF ∀y1, . . . , yn(∃!xϕ → ∀x(ϕ ↔ x = ιxϕ))

It follows that ιxϕ is a term tϕ as required. ��

Corollary 2. Every instance of the replacement schema (in the language of
BZF) is derivable in BZF .10

Proof: From the last theorem (and the definition of �BZF) it follows that

�BZF ∀y∃!xϕ → ∀x(∃y.y ∈ w ∧ ϕ ↔ x ∈ {x | ∃y.y ∈ w ∧ x = ιxϕ}).

Note. ιxϕ intuitively denotes the unique x such that ϕ, in case such exists.
However, our ιxϕ is always meaningful, and denotes ∅ if there is no set that
satisfies ϕ, and the intersection of all the sets which satisfy ϕ in case there is
more than one such set.

4.2 The Powerset Axiom

Theorem 8

1. Let T be an extension of BZF , based on some safety relation �T which
extends �BZF . If �T satisfies the condition:

(Pow) ∀y(y ∈ x → ϕ) � (X − {y})∪{x} if ϕ � X, y ∈ X, and x ∈ Fv(ϕ).

Then the powerset axiom is derivable in T .
2. Let �BZFP be the safety relation obtained from �BZF by adding condition

(Pow) to its definition, and let the system BZFP be defined like RST , us-
ing �BZFP instead of �RST . Then BZFP is equivalent to ZF − Inf (ZF
without the infinity axiom).

10 This corollary provides a direct, short proof that BZF is an extension of ZF −−.

A Framework for Formalizing Set Theories 103

Proof: For the first part, note that in the presence of condition (Pow) the
powerset axiom immediately follows from the facts that y ∈ z �RST y, and that
P (z) = {x | ∀y(y ∈ x → y ∈ z)}. The proof of the second part is similar to that
of Theorem 6. ��

Another method (which may look more natural and is the one used in [5]) to add
the power of the powerset axiom to the systems described above, is to extend the
language by taking ⊆ as an extra primitive binary relation symbol. A definition
of a system which is equivalent to ZF − Inf can then be obtained from the
definition of BZF by making the following two changes:

– Replace �BZF with �ZF−I , where �ZF−I is defined like �BZF , but with
one extra condition:

x ⊆ t �ZF−I {x} if x is a variable, t is a term, and x ∈ Fv(t).

– Add the usual definition of ⊆ in terms of ∈ as an extra axiom:

∀x∀y(x ⊆ y ↔ ∀z(z ∈ x → z ∈ y))

Alternatively, since ⊆ is now taken as primitive, it might be more natural to use
it as such in our axioms. This means that instead of adding the above axiom, it
might be preferable to replace the single extensionality axiom of BZF with the
following three extensionality axioms:

(Ex1) x ⊆ y ∧ y ⊆ x → x = y

(Ex2) z ∈ x ∧ x ⊆ y → z ∈ y

(Ex3) x ⊆ y ∨ ∃z(z ∈ x ∧ z ∈ y)

4.3 The Axiom of Infinity

Finally we turn to the axiom of infinity — the only axiom that necessarily
takes us out of the realm of (hereditarily) finite sets. As long as we take FOL
(First-Order Logic) as the underlying logic, it seems impossible to incorporate
it into our systems by just imposing new simple syntactic conditions on the
safety relation. Instead the easiest and most natural way to add its power to the
systems discussed so far, is to add to them Peano’s Axioms as new axioms:

– ∅ ∈ ω

– ∀x(x ∈ ω → S(x) ∈ ω) (where S(x) is defined like in Sect. 3.1)

– ϕ[x �→ ∅] ∧ ∀x(ϕ → ϕ[x �→ S(x)]) → ∀x(x ∈ ω → ϕ)

Note that because we are assuming the ∈-induction schema, the above induction
schema can actually be replaced by the following single axiom:

(∅ ∈ y ∧ ∀x(x ∈ y → S(x) ∈ y)) → ω ⊆ y

Theorem 9. ([5]) Let ZF+ be the system obtained from RST by adding (Rep)
and (Pow) to the definition of the safety relation, and the above Peano’s axioms
to the set of axioms. Then ZF+ is equivalent to ZF .

104 A. Avron

5 Using Transitive Closure Logic

Introducing the infinity axioms into a system is a major step that from a com-
putational and proof-theoretical point of view takes us to a completely different
level. As is clear from the form we gave to this introduction, it incorporates in-
ductive reasoning into the systems. In order to introduce such reasoning already
on the logical level, and to keep as far as possible the uniformity of our framework,
it is most natural to use as the underlying logic a logic which is stronger than
FOL, but still reasonably manageable from a computational point of view. Now
in [3] it was argued that languages and logics with transitive closure operation
TC provide the best framework for the formalization of mathematics. Following
this suggestion seems particularly suitable in the present context, since with TC
the difference between set theories which assume infinity, and set theories which
are valid also in the universe of hereditarily finite sets, can again be reduced to
differences in the underlying syntactic safety relations.

Definition 9. ([14,22]) Let L be a (first-order) language. The language LTC is
obtained from L by adding the following clause to the definition of a formula: If
ϕ is a formula, x, y are distinct variables, and t, s are terms, then (TCx,yϕ)(t, s)
is a formula (in which every occurrence of x and y in ϕ is bound). The in-
tended meaning of (TCx,yϕ)(t, s) is the following “infinite disjunction”: (where
w1, w2, . . . , are all new):

ϕ[x �→ s, y �→ t] ∨ ∃w1(ϕ[x �→ s, y �→ w1] ∧ ϕ[x �→ w1, y �→ t])∨
∨∃w1∃w2(ϕ[x �→ s, y �→ w1]∧ϕ[x �→ w1, y �→ w2]∧ϕ[x �→ w2, y �→ t])∨. . .

The most important relevant facts shown in [3] concerning TC are:

1. If L contains a constant 0 and a (symbol for) a pairing function, then all
types of finitary inductive definitions of relations and functions (as defined
by Feferman in [11]) are available in LTC .

2. Let V0 be the smallest set including 0 and closed under the operation of
pairing. Let U be the smallest set of first-order terms in a language with a
constant for 0 and a function symbol for pairing. Let PT C+ be the smallest
set of formulas which includes all formulas of the form t = s for t, s ∈ U , and
is closed under ∨, ∧ and TC. Then a subset S of V0 is recursively enumerable
iff there exists a formula ϕ(x) of PT C+ such that S = {x ∈ V0 | ϕ(x)}.

3. By generalizing a particular case which has been used by Gentzen in [13],
mathematical induction can be presented as a logical rule of languages with
TC. Indeed, Using a Gentzen-type format, a general form of this principle
can be formulated as follows:

Γ, ψ, ϕ ⇒ Δ, ψ[x �→ y]
Γ, ψ[x �→ s], (TCx,yϕ)(s, t) ⇒ Δ, ψ[x �→ t]

where x and y are not free in Γ, Δ, and y is not free in ψ.

A Framework for Formalizing Set Theories 105

Now if we are interested in set theories which are valid under the assumption
that all sets are (hereditarily) finite, then the comprehension axiom remains
valid if TC is included in the language, and the following clause is added to the
definition of a safety relation in the extended language:

(TC-fin) (TCx,yϕ)(x, y) � X if ϕ � X , and {x, y} ⊆ X .

On the other hand, for set theories which assume the existence of infinite sets
the following stronger principle should be adopted:

(TC-inf) (TCx,yϕ)(x, y) � X if ϕ � X , and {x, y} ∩ X = ∅.

Let PST (for “Predicative Set Theory”) be the extension of RST which has
TC in its language, and is based on the safety relation �PST obtained from
�RST by adding (TC-inf) as a new clause. Then the infinity axiom is derivable
in PST , since one can introduce there the set N of natural numbers as follows:11

N = {x | x = ∅ ∨ ∃y.y = ∅ ∧ (TCx,y(x = S(y)))(x, y)}

It is not difficult to see that PST still has the properties of RST described in
Theorems 4 and 5.

Note. The set of valid formulas of TC-logic is not r.e. (or even arithmetical).
Hence no sound and complete formal system for it is possible. It follows that
PST and its extensions cannot be fully formalized, and so appropriate formal
approximations (yet to be determined) of the underlying logic should be used.

References

1. Ackermann, W.: Zur Axiomatik der Mengenlehre. Mathematische Annalen 131,
336–345 (1956)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

3. Avron, A.: Transitive closure and the mechanization of mathematics. In: Kamared-
dine, F. (ed.) Thirty Five Years of Automating Mathematics, pp. 149–171. Kluwer
Academic Publishers, Dordrecht (2003)

4. Avron, A.: Safety signatures for first-order languages and their applications. In:
Hendricks, et al. (eds.) First-Order Logic Revisited, pp. 37–58. Logos Verlag, Berlin
(2004)

11 We could then adopt N = ω as an axiom. Alternatively, we could omit the constant
ω from the language, add the clause x �= x �PST {x} to the definition of �PST ,
define ∅ in PST as {x | x �= x}, and then use the name ω rather than N . Note also
that if we start with BZF (or one of its extensions) as the basis, then ∅ (and so N)
may be defined in the language without the constant ω by the closed term:

∅ =DF {x | (∃y.y = y) ∧ ∀y(y = y → x ∈ y)}.

106 A. Avron

5. Avron, A.: Formalizing set theory as it is actually used. In: Asperti, A., Bancerek,
G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 32–43. Springer, Heidel-
berg (2004)

6. Avron, A.: Constructibility and decidability versus domain independence and ab-
sluteness. Theoretical Computer Science (2007), doi:10.1016/j.tcs.2007.12.008

7. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing. Springer, Hei-
delberg (2001)

8. Devlin, K.J.: Constructibility. Perspectives in Mathematical Logic. Springer, Hei-
delberg (1984)

9. Di Paola, R.A.: The recursive unsolvability of the decision problem for the class of
definite formulas. J. ACM 16(2), 324–327 (1969)

10. Fraenkel, A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. North-Holland,
Amsterdam (1973)

11. Feferman, S.: Finitary inductively presented logics. In: Logic Colloquium 1988, pp.
191–220. North-Holland, Amsterdam (1989)

12. Gandy, R.O.: Set-theoretic functions for elementary syntax. In: Axiomatic Set The-
ory, Part 2, pp. 103–126. AMS, Providence, Rhode Island (1974)

13. Gentzen, G.: Neue fassung des widerspruchsfreiheitsbeweises für die reine zahlen-
theorie. Forschungen zur Logik, N.S. (4), 19–44 (1938)

14. Immerman, N.: Languages which capture complexity classes. In: 15th Sympo-
sium on Theory of Computing, Association for Computing Machinery, pp. 347–354
(1983)

15. Jensen, R.B.: The fine structure of the constructible hierarchy. Annals of Mathe-
matical Logic 4, 229–308 (1972)

16. Hallett, M.: Cantorian Set Theory and Limitation of Size. Clarendon Press, Oxford
(1984)

17. Kunen, K.: Set Theory, An Introduction to Independence Proofs. North-Holland,
Amsterdam (1980)

18. Levy, A.: Basic Set Theory. Springer, Heidelberg (1979)
19. Reinhardt, W.R.: Ackermann’s set theory Equals ZF. Annals of Mathematical

Logic 2, 189–249 (1970)
20. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)
21. Shoenfield, J.R.: Axioms of set theory. In: Barwise, J. (ed.) Handbook of Mathe-

matical Logic, North-Holland, Amsterdam (1977)
22. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-order Logic.

Oxford University Press, Oxford (1991)
23. Smullyan, R.M.: The Incompleteness Theorems. Oxford University Press, Oxford

(1992)
24. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Sci-

ence Press (1988)

Effective Finite-Valued Approximations of

General Propositional Logics

Matthias Baaz1 and Richard Zach2,�

1 Technische Universität Wien, Institut für Diskrete Mathematik und
Geometrie E104, A–1040 Vienna, Austria

baaz@logic.at
2 University of Calgary, Department of Philosophy,

Calgary, Alberta T2N 1N4, Canada
rzach@ucalgary.ca

Dedicated to Professor Trakhtenbrot on the occasion of his 85th birthday.

Abstract. Propositional logics in general, considered as a set of sen-
tences, can be undecidable even if they have “nice” representations,
e.g., are given by a calculus. Even decidable propositional logics can be
computationally complex (e.g., already intuitionistic logic is PSPACE-
complete). On the other hand, finite-valued logics are computationally
relatively simple—at worst NP. Moreover, finite-valued semantics are
simple, and general methods for theorem proving exist. This raises the
question to what extent and under what circumstances propositional
logics represented in various ways can be approximated by finite-valued
logics. It is shown that the minimal m-valued logic for which a given
calculus is strongly sound can be calculated. It is also investigated under
which conditions propositional logics can be characterized as the inter-
section of (effectively given) sequences of finite-valued logics.

1 Introduction

The question of what to do when faced with a new logical calculus is an old
problem of mathematical logic. Often, at least at first, no semantics are available.
For example, intuitionistic propositional logic was constructed by Heyting only as
a calculus; semantics for it were proposed much later. Linear logic was in a similar
situation in the early 1990s. The lack of semantical methods makes it difficult
to answer questions such as: Are statements of a certain form (un)derivable?
Are the axioms independent? Is the calculus consistent? For logics closed under
substitution, many-valued methods have often proved valuable since they were
first used for proving underivabilities by Bernays [5] in 1926 (and later by others,
e.g., McKinsey and Wajsberg; see also [17, § 25]). The method is very simple.
Suppose you find a many-valued logic in which the axioms of a given calculus are
tautologies, the rules are sound, but the formula in question is not a tautology:
then the formula cannot be derivable.
� Research supported by the Natural Sciences and Engineering Research Council of

Canada.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 107–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 M. Baaz and R. Zach

Example 1. Intuitionistic propositional logic is axiomatized by the following cal-
culus IPC:

1. Axioms:
a1 A ⊃ A ∧ A
a2 A ∧ B ⊃ B ∧ A
a3 (A ⊃ B) ⊃ (A ∧ C ⊃ B ∧ C)
a4 (A ⊃ B) ∧ (B ⊃ C) ⊃ (A ⊃ C)
a5 B ⊃ (A ⊃ B)
a6 A ∧ (A ⊃ B) ⊃ B
a7 A ⊃ A ∨ B
a8 A ∨ B ⊃ B ∨ A
a9 (A ⊃ C) ∧ (B ⊃ C) ⊃ (A ∨ B ⊃ C)
a10 ¬A ⊃ (A ⊃ B)
a11 (A ⊃ B) ∧ (A ⊃ ¬B) ⊃ ¬A
a12 A ⊃ (B ⊃ A ∧ B)

2. Rules (in usual notation):

A A ⊃ B
B

MP

Now consider the two-valued logic with classical truth tables, except that ¬
maps both truth values to “true”. Then every axiom except a10 is a tautology
and modus ponens preserves truth. Hence a10 is independent of the other axioms.

To use this method to answer underivability question in general it is necessary
to find many-valued matrices for which the given calculus is sound. It is also
necessary, of course, that the matrix has as few tautologies as possible in order
to be useful. We are interested in how far this method can be automatized.

Such “optimal” approximations of a given calculus may also have applications
in computer science. In the field of artificial intelligence many new (proposi-
tional) logics have been introduced. They are usually better suited to model the
problems dealt with in AI than traditional (classical, intuitionistic, or modal)
logics, but many have two significant drawbacks: First, they are either given
solely semantically or solely by a calculus. For practical purposes, a proof the-
ory is necessary; otherwise computer representation of and automated search
for proofs/truths in these logics is not feasible. Although satisfiability in many-
valued propositional logics is (as in classical logic) NP-complete [16], this is still
(probably) much better than many other important logics.

On the other hand, it is evident from the work of Carnielli [6] and Hähnle [12]
on tableaux, and Rousseau, Takahashi, and Baaz et al. [2] on sequents, that
finite-valued logics are, from the perspective of proof and model theory, very
close to classical logic. Therefore, many-valued logic is a very suitable candidate
if one looks for approximations, in some sense, of given complex logics.

What is needed are methods for obtaining finite-valued approximations of
the propositional logics at hand. It turns out, however, that a shift of emphasis
is in order here. While it is the logic we are actually interested in, we always

Effective Finite-Valued Approximations of General Propositional Logics 109

are given only a representation of the logic. Hence, we have to concentrate on
approximations of the representation, and not of the logic per se.

What is a representation of a logic? The first type of representation that comes
to mind is a calculus. Hilbert-type calculi are the simplest conceptually and the
oldest historically. We will investigate the relationship between such calculi on
the one hand and many-valued logics or effectively enumerated sequences of
many-valued logics on the other hand. The latter notion has received consider-
able attention in the literature in the form of the following two problems: Given
a calculus C,

1. find a minimal (finite) matrix for which C is sound (relevant for non-derivabil-
ity and independence proofs), and

2. find a sequence of finite-valued logics, preferably effectively enumerable,
whose intersection equals the theorems of C, and its converse, given a se-
quence of finite-valued logics, find a calculus for its intersection (exempli-
fied by Jaśkowski’s sequence for intuitionistic propositional calculus, and by
Dummett’s extension axiomatizing the intersection of the sequence of Gödel
logics, respectively).

For (1), of course, the best case would be a finite-valued logic M whose tautolo-
gies coincide with the theorems of C. C then provides an axiomatization of M.
This of course is not always possible, at least for finite-valued logics. Lindenbaum
[15, Satz 3] has shown that any logic (in our sense, a set of formulas closed under
substitution) can be characterized by an infinite-valued logic. For a discussion
of related questions see also Rescher [17, § 24].

In the following we study these questions in a general setting. Consider a
propositional Hilbert-type calculus C. It is (weakly) sound for a given m-valued
logic if all its theorems are tautologies. Unfortunately, it turns out that it is
undecidable if a calculus is sound for a given m-valued logic. However, for natural
stronger soundness conditions this question is decidable; a finite-valued logic for
which C satisfies such soundness conditions is called a cover for C. The optimal
(i.e., minimal under set inclusion of the tautologies) m-valued cover for C can be
computed. The next question is, can we find an approximating sequence of m-
valued logics in the sense of (2)? It is shown that this is impossible for undecidable
calculi C, and possible for all decidable logics closed under substitution. This
leads us to the investigation of the many-valued closure MC(C) of C, i.e., the
set of formulas which are true in all covers of C. In other words, if some formula
can be shown to be underivable in C by a Bernays-style many-valued argument,
it is not in the many-valued closure. Using this concept we can classify calculi
according to their many-valued behaviour, or according to how good they can be
dealt with by many-valued methods. In the best case MC(C) equals the theorems
of C (This can be the case only if C is decidable). We give a sufficient condition
for this being the case. Otherwise MC(C) is a proper superset of the theorems
of C.

Axiomatizations C and C′ of the same logic may have different many-valued
closures MC(C) and MC(C′) while being model-theoretically indistinguishable.

110 M. Baaz and R. Zach

Hence, the many-valued closure can be used to distinguish between C and C′

with regard to their proof-theoretic properties.
Finally, we investigate some of these questions for other representations of

logics, namely for decision procedures and (effectively enumerated) finite Kripke
models. In these cases approximating sequences of many-valued logics whose
intersection equals the given logics can always be given.

Some of our results were previously reported in [4], of which this paper is a
substantially revised and expanded version.

2 Propositional Logics

Definition 2. A propositional language L consists of the following:

1. propositional variables: X1, X2, X3, . . .
2. propositional connectives of arity nj : �n1

1 , �n2
2 , . . . , �nr

r . If nj = 0, then �j

is called a propositional constant.
3. Auxiliary symbols: (,), and , (comma).

Formulas and subformulas are defined as usual. We denote the set of formulas
over a language L by Frm(L). By Var(A) we mean the set of propositional
variables occurring in A. A substitution σ is a mapping of variables to formulas,
and if F is a formula, Fσ is the result of simultaneously replacing each variable
X in F by σ(X).

Definition 3. The depth dp(A) of a formula A is defined as follows: dp(A) = 0
if A is a variable or a 0-place connective (constant). If A = �(A1, . . . , An), then
let dp(A) = max{dp(A1), . . . , dp(An)} + 1.

Definition 4. A propositional Hilbert-type calculus C in the language L is given
by

1. a finite set A(C) ⊆ Frm(L) of axioms.
2. a finite set R(C) of rules of the form

A1 . . . An

C
r

where C, A1, . . . , An ∈ Frm(L)

A formula F is a theorem of L if there is a derivation of F in C, i.e., a finite
sequence

F1, F2, . . . , Fs = F

of formulas s.t. for each Fi there is a substitution σ so that either

1. Fi = Aσ where A is an axiom in A(C), or
2. there are Fk1 , . . . , Fkn with kj < i and a rule r ∈ R(C) with premises A1,

. . . , An and conclusion C, s.t. Fkj = Ajσ and Fi = Cσ.

Effective Finite-Valued Approximations of General Propositional Logics 111

If F is a theorem of C we write C � F . The set of theorems of C is denoted
by Thm(C).

Remark 5. The above notion of a propositional rule is the one usually used
in axiomatizations of propositional logic. It is, however, by no means the only
possible notion. For instance, Schütte’s rules

A(�) A(⊥)
A(X)

C ↔ D
A(C) ↔ A(D)

where X is a propositional variable, and A, C, and D are formulas, does not
fit under the above definition. And not only do they not fit this definition, the
proof-theoretic behaviour of such rules is indeed significantly different from other
“ordinary” rules. For instance, the rule on the left allows the derivation of all
tautologies with n variables in number of steps linear in n; with a Hilbert-type
calculus falling under the definition, this is not possible [3].

Remark 6. Many logics are more naturally axiomatized using sequent calculi, in
which structure (sequences of formulas, sequent arrows) are used in addition to
formulas. Many sequent calculi can easily be encoded in Hilbert-type calculi in
an extended language, or even straightforwardly translated into Hilbert calculi
in the same language, using constructions sketched below:

1. Sequences of formulas can be coded using a binary operator ·. The sequent
arrow can simply be coded as a binary operator →. For empty sequences, a
constant Λ is used. We have the following rules, to assure associativity of ·:

X ·
((

U · (V · W)
)

· Y
)

→ Z

X ·
((

(U · V) · W
)

· Y
)

→ Z

(
X ·

(
U · (V · W)

))
· Y → Z

(
X ·

(
(U · V) · W

))
· Y → Z

as well as the respective rules without X , without Y , without both X and Y ,
with the rules upside-down, and also for the right side of the sequent (20 rules
total).

2. The usual sequent rules can be coded using the above constructions, e.g.,
the ∧-Right rule of LJ would become:

U → V · X U → V · Y
U → V · (X ∧ Y)

3. If the language of the logic in question contains constants and connectives
which “behave like” the Λ and · on the left or right of a sequent, and a condi-
tional which behaves like the sequent arrow, then no additional connectives
are necessary. For instance, instead of ·, Λ on the left, use ∧, �; on the right,
use ∨, ⊥, and use ⊃ instead of →. Addition of the rule

� ⊃ X
X

would then result in a calculus which proves exactly the formulas F for which
the sequent → F is provable in the original sequent calculus.

112 M. Baaz and R. Zach

4. Some sequent rules require restrictions on the form of the side formulas in a
rule, e.g., the �-right rule in modal logics:

�Π → A
�Π → �A

It is not immediately possible to accommodate such a rule in the translation.
However, in some cases it can be replaced with another rule which can. E.g.,
in S4, it can be replaced by

Π → A
�Π → �A

which can in turn be accommodated using rules such as

X ⊃ Y
�X ⊃ �Y

U ∧�(X ∧ Y) ⊃ V

U ∧ (�X ∧�Y) ⊃ V
U ∧��Y ⊃ V
U ∧�Y ⊃ V

(in the version with standard connectives serving as · and sequent arrow).

Definition 7. A propositional Hilbert-type calculus is called strictly analytic iff
for every rule

A1 . . . An

C
r

it holds that Var(Ai) ⊆ Var(C) and dp(Aiσ) ≤ dp(Cσ) for every substitution σ.

This notion of strict analyticity is orthogonal to the one employed in the context
of sequent calculi, where “analytic” is usually taken to mean that the rules have
the subformula property (the formulas in the premises are subformulas of those
in the conclusion). A strictly analytic calculus in our sense need not satisfy
this. On the other hand, Hilbert calculi resulting from sequent calculi using
the coding above need not be strictly analytic in our sense, even if the sequent
calculus has the subformula property. For instance, the contraction rule does
not satisfy the condition on the depth of substitution instances of the premises
and conclusion. The standard notion of analyticity does not entail decidability,
since for instance cut-free propositional linear logic LL is analytic but LL is
undecidable [14]. Our notion of strict analyticity does entail decidability, since
the depth of the conclusion of a rule in a proof is always greater or equal to the
depth of the premises, and so the number of formulas that can appear in a proof
of a given formula is finite.

Definition 8. A propositional logic L in the language L is a subset of Frm(L)
closed under substitution.

Every propositional calculus C defines a propositional logic, namely Thm(C),
since Thm(C) is closed under substitution. Not every propositional logic, how-
ever, is axiomatizable, let alone finitely axiomatizable by a Hilbert calculus. For
instance, the logic

{�k(�) | k is the Gödel number of a
true sentence of arithmetic}

is not axiomatizable, whereas the logic

Effective Finite-Valued Approximations of General Propositional Logics 113

{�k(�) | k is prime}

is certainly axiomatizable (it is even decidable), but not by a Hilbert calculus
using only � and �. (It is easily seen that any Hilbert calculus for � and � has
either only a finite number of theorems or yields arithmetic progressions of �’s.)

Definition 9. A propositional finite-valued logic M is given by a finite set of
truth values V (M), the set of designated truth values V +(M) ⊆ V (M), and a
set of truth functions �̃j : V (M)nj → V (M) for all connectives �j ∈ L with
arity nj .

Definition 10. A valuation v is a mapping from the set of propositional vari-
ables into V (M). A valuation v can be extended in the standard way to a function
from formulas to truth values. v satisfies a formula F , in symbols: v |=M F , if
v(F) ∈ V +(M). In that case, v is called a model of F , otherwise a countermodel.
A formula F is a tautology of M iff it is satisfied by every valuation. Then we
write M |= F . We denote the set of tautologies of M by Taut(M).

Example 11. The sequence of m-valued Gödel logics Gm is given by V (Gm) =
{0, 1, . . . , m − 1}, the designated values V +(Gm) = {0}, and the following truth
functions:

¬̃Gm(v) =

{
0 for v = m − 1
m − 1 for v = m − 1

∨̃Gm(v, w) = min(a, b)
∧̃Gm(v, w) = max(a, b)

⊃̃Gm(v, w) =

{
0 for v ≥ w

w for v < w

In the remaining sections, we will concentrate on the relations between propo-
sitional logics L represented in some way (e.g., by a calculus), and finite-valued
logics M. The objective is to find many-valued logics M, or effectively enumer-
ated sequences thereof, which, in a sense, approximate the the logic L.

The following well-known product construction is useful for characterizing the
“intersection” of many-valued logics.

Definition 12. Let M and M′ be m and m′-valued logics, respectively. Then
M×M′ is the mm′-valued logic where V (M×M′) = V (M)×V (M′), V +(M×
M′) = V +(M)×V +(M′), and truth functions are defined component-wise. I.e.,
if � is an n-ary connective, then

�̃M×M′(w1, . . . , wn) = 〈�̃M(w1, . . . , wn), �̃M′(w1, . . . , wn)〉.

For convenience, we define the following: Let v and v′ be valuations of M and
M′, respectively. v × v′ is the valuation of M × M′ defined by: (v × v′)(X) =
〈v(X), v′(X)〉. If v× is a valuation of M × M′, then the valuations π1v

× and
π2v

× of M and M′, respectively, are defined by π1v
×(X) = v and π2v

×(X) = v′

iff v×(X) = 〈v, v′〉.

114 M. Baaz and R. Zach

Lemma 13. Taut(M × M′) = Taut(M) ∩ Taut(M′)

Proof. Let A be a tautology of M × M′ and v and v′ be valuations of M and
M′, respectively. Since v × v′ |=M×M′ A, we have v |=M A and v′ |=M′ A by the
definition of ×. Conversely, let A be a tautology of both M and M′, and let v×

be a valuation of M × M′. Since π1v
× |=M A and π2v

× |=M′ A, it follows that
v× |=M×M′ A. ��

The definition and lemma are easily generalized to the case of finite products∏
i Mi by induction.
The construction of Lindenbaum [15, Satz 3] shows that every propositional

logic can be characterized as the set of tautologies of an infinite-valued logic.
M(L) is defined as follows: the set of truth values V (M(L)) = Frm(L), and the
set of designated values V +(M(L)) = L. The truth functions are given by

�̃(F1, . . . , Fn) = �(F1, . . . , Fn)

Since we are interested in finite-valued logics, the following constructions will be
useful.

Definition 14. Let Frmi,j(L) be the set of formulas of depth ≤ i containing
only the variables X1, . . . , Xj . The finite-valued logic Mi,j(L) is defined as
follows: The set of truth values of Mi,j(L) is V = Frmi,j(L)∪{�}; the designated
values V + = (Frmi,j(L) ∩ L) ∪ {�}. The truth tables for Mi,j(L) are given by:

�̃(v1, . . . , vn) =

=

⎧
⎪⎨

⎪⎩

�(F1, . . . , Fn) if vj = Fj for 1 ≤ j ≤ n

and �(F1, . . . , Fn) ∈ Frmi,j(L)
� otherwise

Proposition 15. Let v be a valuation in Mi,j(L). If v(X) /∈ Frmi,j(L) for some
X ∈ Var(A), then v(A) = �. Otherwise, v can also be seen as a substitution σv

assigning the formula v(X) ∈ Frmi,j(L) to the variable X. Then v(A) = A if
dp(Aσv) ≤ i and = � otherwise.

If A ∈ Frmi,j(L), then A ∈ Taut(Mi,j(L)) iff A ∈ L; otherwise A ∈ Taut
(Mi,j(L)). In particular, L ⊆ Taut(Mi,j(L)).

Proof. By induction on the depth of A. ��

When looking for a logic with as small a number of truth values as possible
which falsifies a given formula we can use the following construction.

Proposition 16. Let M be any many-valued logic, and A1, . . . , An be formulas
not valid in M. Then there is a finite-valued logic M′ = Φ(M, A1, . . . , An) s.t.

1. A1, . . . , An are not valid in M′,
2. Taut(M) ⊆ Taut(M′), and

Effective Finite-Valued Approximations of General Propositional Logics 115

3. |V (M′)| ≤ ξ(A1, . . . , An), where ξ(A1, . . . , An) =
∏n

i=1 ξ(Ai) and ξ(Ai) is
the number of subformulas of Ai + 1.

Proof. We first prove the proposition for n = 1. Let v be the valuation in M
making A1 false, and let B1, . . . , Br (ξ(A1) = r + 1) be all subformulas of A1.
Every Bi has a truth value ti in v. Let M′ be as follows: V (M′) = {t1, . . . , tr, �},
V +(M′) = V +(M) ∩ V (M′) ∪ {�}. If � ∈ L, define �̃ by

�̃(v1, . . . , vn) =

⎧
⎪⎨

⎪⎩

ti if Bi ≡ �(Bj1 , . . . , Bjn)
and v1 = tj1 , . . . , vn = tjn

� otherwise

(1) Since tr was undesignated in M, it is also undesignated in M′. But v is
also a truth value assignment in M′, hence M′ |= A1.

(2) Let C be a tautology of M, and let w be a valuation in M′. If no subformula
of C evaluates to � under w, then w is also a valuation in M, and C takes
the same truth value in M′ as in M w.r.t. w, which is designated also in M′.
Otherwise, C evaluates to �, which is designated in M′. So C is a tautology
in M′.

(3) Obvious.
Forn>1, theproposition followsbytakingΦ(M, A1, . . . , An)=

∏n
i=1 Φ(M, Ai) ��

3 Many-Valued Covers for Propositional Calculi

A very natural way of representing logics is via calculi. In the context of our
study, one important question is under what conditions it is possible to find,
given a calculus C, a finite-valued logic M which approximates as well as possible
the set of theorems Thm(C). In the optimal case, of course, we would like to
have Taut(M) = Thm(C). This is, however,not always possible. In fact, it is
in general not even possible to decide, given a calculus C and a finite-valued
logic M, if M is sound for C. In some circumstances, however, general results
can be obtained. We begin with some definitions.

Definition 17. A calculus C is weakly sound for an m-valued logic M provided
Thm(C) ⊆ Taut(M).

Definition 18. A calculus C is t-sound for an m-valued logic M if

(∗) All axioms A ∈ A(C) are tautologies of M, and for every rule r ∈ R(C)
and substitution σ: if for every premise A of r, Aσ is a tautology, then the
corresponding instance Cσ of the conclusion of r is a tautology as well.

Definition 19. A calculus C is strongly sound for an m-valued logic M if

(∗∗) All axioms A ∈ A(C) are tautologies of M, and for every rule r ∈ R(C): if
a valuation satisfies the premises of r, it also satisfies the conclusion.

M is then called a cover for C.

116 M. Baaz and R. Zach

We would like to stress the distinction between these three notions of soundness.
soundness. The notion of weak soundness is the familiar property of a calculus
to produce only valid formulas (in this case: tautologies of M) as theorems.
This “plain” soundness is what we actually would like to investigate in terms
of approximations. More precisely, when looking for a finite-valued logic that
approximates a given calculus, we are content if we find a logic for which C is
weakly sound. This is unfortunately not possible in general.

Proposition 20. It is undecidable if a calculus C is weakly sound for a given
m-valued logic M.

Proof. Let C be an undecidable propositional calculus, let F be a formula, and
let C and, for each Xi ∈ Var(F), Ci be new propositional constants (0-ary
connective) not occurring in C. Let σ : Xi �→ Ci be a substitution. Clearly,
C � F iff C � Fσ. Now let C′ be C with the additional rule

Fσ
C

and let M be an m-valued logic which assigns a non-designated value to C and
otherwise interprets every connective as a constant function with a designated
value. Then every formula except a variable of the original language is a tautol-
ogy, and C is not. M is then weakly sound for C over the original language, but
weakly sound for C′ iff C is not derivable. Moreover, C′ � C iff C′ � Fσ, i.e., iff
C � F . If it were decidable whether M is weakly sound for C′ it would then also
be decidable if C � F , contrary to the assumption that C is undecidable. ��

On the other hand, it is obviously decidable if C is strongly sound for a given
matrix M.

Proposition 21. It is decidable if a given propositional calculus is strongly
sound for a given m-valued logic.

Proof. (∗∗) can be tested by the usual truth-table method. ��

It is also decidable if C is t-sound for a matrix M, although this is less obvious:

Proposition 22. It is decidable if a given propositional calculus is t-sound for
a given m-valued logic M.

Proof. Let r be a rule with premises A1, . . . , An and conclusion C containing the
variables X1, . . . , Xk, and σ a substitution. If A1σ, . . . , Anσ are tautologies, but
C is not, then (∗) is violated and r is not weakly sound. Given σ, this is clearly
decidable. We have to show that there are only a finite number of substitutions
σ which we have to test.

Let Y1, . . . , Yl be the variables occurring in X1σ, . . . , Xkσ. We show first that
it suffices to consider σ with l = m. For if v is a valuation in which Cσ is false,
then at most m of Y1, . . . , Yl have different truth values. Let τ be a substitution
so that τ(Yi) = Yj where j is the least index such that v(Yj) = v(Yi). Then (1)

Effective Finite-Valued Approximations of General Propositional Logics 117

v(Cστ) = v(Cσ) and hence Cστ is not a tautology; (2) Aiστ is still a tautology;
(3) there are at most m distinct variables occurring in A1στ , . . . , Anστ , Cστ .

Now every Bi = Xiσ defines an m-valued function of m arguments. There are
mmm

such functions. Whether Aiσ is a tautology only depends on the function
defined by Bi, but it is not prima facie clear which functions can be expressed
in M. Nevertheless, we can give a bound on the depth of formulas Bi that have
to be considered. Suppose σ is a substitution of the required form with Bi = Xiσ
of minimal depth and suppose that the depth of Bi is greater than m′ = mmm

.
Now consider a sequence of formulas C1, . . . , Cm′+1 with C1 = Bi and each
Cj a subformula of Cj−1. Each Cj also expresses an m-valued function of m
arguments. Since there are only m′ different such functions, there are j < j′

so that Cj and Cj′ define the same function. The formula obtained from Bi by
replacing Cj by Cj′ expresses the same function. Since this can be done for every
sequence of Cj ’s of length > m′ we eventually obtain a formula which expresses
the same function as Bi but of depth ≤ m′, contrary to the assumption that it
was of minimal depth. ��

Now, if C is strongly sound for M, it is also t-sound; and if it is t-sound, it is
also weakly sound. The converses, however, are false:

Example 23. Let L be the language consisting of a unary connective � and a
binary connective �, and let C be the calculus consisting of the sole axiom
X � �X and the rules

X � Y Y � Z
X � Z

r1
X � X

Y
r2

It is easy to see that the only derivable formulas in C using only rule r1 are
substitution instances of ��X � �kX with 	 < k. In particular, no substitution
instance of the premise of r2, X � X , is derivable. It follows that rule r2 can never
be applied. We now show that if C is strongly sound for an m-valued matrix M,
Taut(M) = Frm(L), i.e., M is trivial. Suppose M is given by the set of truth
values V = {1, . . . , m}. Since X � �X must be a tautology, �̃(i, �̃(i)) ∈ V +

for i = 1, . . . , m. Since C is strongly sound for rule r1, and by induction,
�̃(i, �̃k(i)) ∈ V + for all k. Since V is finite, there are i and k such that i = �̃k(i).
Then �̃(i, i) ∈ V +. Since C is strongly sound for r2, we have V = V +. However,
C is weakly sound for non-trivial matrices, e.g., M′ with V ′ = {1, . . . , k}, V + =
{k}, �̃(i) = i + 1 for i < k and = k otherwise, and �̃(i, j) = k if i < j or j = k
and = 1 otherwise. C is, however, also not t-sound for this matrix.

Example 24. Consider the calculus with propositional constants T , F , and bi-
nary connective =, the axiom T = F and the rules

Y = X

X = Y
r1

X = T X = F

Y
r2

and the matrix with V = {0, 1, 2}, V + = {2}, T̃ = 2, F̃ = 0, and ˜=(i, j) = 2
if i = j and = 0 otherwise. Clearly, the only derivable formulas are T = F and

118 M. Baaz and R. Zach

F = T , which are also tautologies. The calculus is not strongly sound, since
for v(X) = 1, v(Y) = 0 the premises of r2 are designated, but the conclusion
is not. It is, however, t-sound: only a substitution σ with v(Xσ) = 1 for all
valuations v would turn both premises of r2 into tautologies, and there can be
no such formulas. Hence, we have an example of a calculus t-sound but not
strongly sound for a matrix.

Example 25. The IPC is strongly sound for the m-valued Gödel logics Gm. For
instance, take axiom a5: B ⊃ (A ⊃ B). This is a tautology in Gm, for assume we
assign some truth values a and b to A and B, respectively. We have two cases: If
a ≤ b, then (A ⊃ B) takes the value m−1. Whatever b is, it certainly is ≤ m−1,
hence B ⊃ A ⊃ B takes the designated value m − 1. Otherwise, A ⊃ B takes
the value b, and again (since b ≤ b), B ⊃ A ⊃ B takes the value m − 1.

Modus ponens passes the test: Assume A and A ⊃ B both take the value
m − 1. This means that a ≤ b. But a = m − 1, hence b = m − 1.

Now consider the following extension G�
m of Gm: V (G�

m) = V (Gm) ∪ {�},
V +(G�

m) = {m − 1, �}, and the truth functions are given by:

�̃G�
m

(v̄) =

{
� if � ∈ v̄

�̃Gm(v̄) otherwise

for � ∈ {¬, ⊃, ∧, ∨}. IPC is not strongly sound for G�
m, since a valuation with

v(X) = �, v(Y) = 0 would satisfy the premises of rule MP, X and X ⊃ Y ,
but not the conclusion Y . However, a calculus in which the conclusion of each
rule contains all variables occurring in the premises, is strongly sound (such as
a calculus obtained from LJ using the construction outlined in Remark 6).

Example 26. Consider the following calculus K:

X ↔̃©X
X ↔̃Y

X ↔̃©Y
r1

X ↔̃ X
Y

r2

It is easy to see that the corresponding logic consists of all instances of X ↔̃©kX
where k ≥ 1. This calculus is only strongly sound for the m-valued logic having
all formulas as its tautologies. But if we leave out r2, we can give a sequence of
many-valued logics Mi, for each of which K is strongly sound: Take for V (Mn) =
{0, . . . , n − 1}, V +(Mn) = {0}, with the following truth functions:

©̃v =

{
v + 1 if v < n − 1
n − 1 otherwise

v˜̃↔w =

{
0 if v < w or v = n − 1
1 otherwise

Obviously, Mn is a cover for K. On the other hand, Taut(Mn) = Frm(L), e.g.,
any formula of the form ©(A) takes a (non-designated) value > 0 (for n > 1).
In fact, every formula of the form ©kX ↔̃ X is falsified in some Mn.

Effective Finite-Valued Approximations of General Propositional Logics 119

4 Optimal Covers

By Proposition 21 it is decidable if a given m-valued logic M is a cover of C.
Since we can enumerate all m-valued logics, we can also find all covers of C.
Moreover, comparing two many-valued logics as to their sets of tautologies is
decidable, as the next theorem will show. Using this result, we see that we can
always generate optimal covers for C.

Definition 27. For two many-valued logics M1 and M2, we write M1 � M2

iff Taut(M1) ⊆ Taut(M2).
M1 is better than M2, M1 �M2, iff M1 �M2 and Taut(M1) = Taut(M2).

Theorem 28. Let two logics M1 and M2, m1-valued and m2-valued respec-
tively, be given. It is decidable whether M1 �M2.

Proof. It suffices to show the decidability of the following property: There is a
formula A, s.t. (*) M2 |= A but M1 |= A. If this is the case, write M1 �∗ M2.
M1 �M2 iff M1 �∗ M2 and not M2 �∗ M1.

We show this by giving an upper bound on the depth of a minimal for-
mula A satisfying the above property. Since the set of formulas of L is enu-
merable, bounded search will produce such a formula iff it exists. Note that the
property (*) is decidable by enumerating all assignments. In the following, let
m = max(m1, m2).

Let A be a formula that satisfies (*), i.e., there is a valuation v s.t. v |=M1

A. W.l.o.g. we can assume that A contains at most m different variables: if it
contained more, some of them must be evaluated to the same truth value in the
counterexample v for M1 |= A. Unifying these variables leaves (*) intact.

Let B = {B1, B2, . . .} be the set of all subformulas of A. Every formula Bj

defines an m-valued truth function f(Bj) of m variables where the values of the
variables which actually occur in Bj determine the value of f(Bj) via the matrix
of M2. On the other hand, every Bj evaluates to a single truth value t(Bj) in
the countermodel v.

Consider the formula A′ constructed from A as follows: Let Bi be a subfor-
mula of A and Bj be a proper subformula of Bi (and hence, a proper subformula
of A). If f(Bi) = f(Bj) and t(Bi) = t(Bj), replace Bi in A with Bj . A′ is shorter
than A, and it still satisfies (*). By iterating this construction until no two sub-
formulas have the desired property we obtain a formula A∗. This procedure
terminates, since A′ is shorter than A; it preserves (*), since A′ remains a tau-
tology under M2 (we replace subformulas behaving in exactly the same way
under all valuations) and the countermodel v is also a countermodel for A′.

The depth of A∗ is bounded above by mmm+1 − 1. This is seen as follows: If
the depth of A∗ is d, then there is a sequence A∗ = B′

0, B
′
1, . . . , B

′
d of subformulas

of A∗ where B′
k is an immediate subformula of B′

k−1. Every such B′
k defines a

truth function f(B′
k) of m variables in M2 and a truth valued t(B′

k) in M1 via v.
There are mmm

m-ary truth functions of m truth values. The number of distinct
truth function-truth value pairs then is mmm+1. If d ≥ mmm+1, then two of the
B′

k, say B′
i and B′

j where B′
j is a subformula of B′

i define the same truth function

120 M. Baaz and R. Zach

and the same truth value. But then B′
i could be replaced by B′

j , contradicting
the way A∗ is defined. ��

Corollary 29. It is decidable if two many-valued logics define the same set of
tautologies. The relation � is decidable.

Proof. Taut(M1) = Taut(M2) iff neither M1 �∗ M2 nor M2 �∗ M1. ��

Let � be the equivalence relation on m-valued logics defined by: M1 � M2

iff Taut(M1) = Taut(M2), and let MVLm be the set of all m-valued logics
over Lwith truth value set {1, . . . , m}. By Mm we denote the set of all sets
Taut(M) of tautologies of m-valued logics M. The partial order 〈Mm, ⊆〉 is
isomorphic to 〈MVLm/ �,� / �〉.

Proposition 30. The optimal (i.e., minimal under �) m-valued covers of C
are computable.

Proof. Consider the set Cm(C) of m-valued covers of C. Since Cm(C) is finite
and partially ordered by �, Cm(C) contains minimal elements. The relation �
is decidable, hence the minimal covers can be computed. ��

Example 31. By Example 25, IPC is strongly sound for G3. The best 3-valued
approximation of IPC is the 3-valued Gödel logic. In fact, it is the only 3-valued
approximation of any sound calculus C (containing modus ponens) for IPL
which has less tautologies than classical logic CL. This can be seen as follows:
Consider the fragment containing ⊥ and ⊃ (¬B is usually defined as B ⊃ ⊥).
Let M be some 3-valued strongly sound approximation of C. By Gödel’s double-
negation translation, B is a classical tautology iff ¬¬B is true intuitionistically.
Hence, whenever M |= ¬¬X ⊃ X , then Taut(M) ⊇ CL. Let 0 denote the value
of ⊥ in M, and let 1 ∈ V +(M). We distinguish cases:

1. 0 ∈ V +(M): Then Taut(M) = Frm(L), since ⊥ ⊃ X is true intuitionistically,
and by modus ponens: ⊥, ⊥ ⊃ X/X .

2. 0 /∈ V +(M): Let u be the third truth value.
(a) u ∈ V +(M): Consider A ≡ ((X ⊃ ⊥) ⊃ ⊥) ⊃ X . If v(X) is u or 1, then,

since everything implies something true, A is true (Note that we have
Y, Y ⊃ (X ⊃ Y) � X ⊃ Y). If v(X) = 0, then (since 0 ⊃ 0 is true, but
u ⊃ 0 and 1 ⊃ 0 are both false), A is true as well. So Taut(M) ⊇ CL.

(b) u /∈ V +(M), i.e., V +(M) = {1}: Consider the truth table for implication.
Since B ⊃ B, ⊥ ⊃ B, and something true is implied by everything, the
upper right triangle is 1. We have the following table:

⊃ 0 u 1
0 1 1 1
u v1 1 1
1 v0 v2 1

Clearly, v0 cannot be 1. If v0 = u, we have, by ((X ⊃ X) ⊃ ⊥) ⊃ Y ,
that v1 = 1. In this case, M |= A and hence Taut(M) ⊇ CL. So assume
v0 = 0.

Effective Finite-Valued Approximations of General Propositional Logics 121

i. v1 = 1: M |= A (Note that only the case of ((u ⊃ 0) ⊃ 0) ⊃ u has to
be checked).

ii. v1 = u: M |= A.
iii. v1 = 0: With v2 = 0, M would be incorrect (u ⊃ (1 ⊃ u) is false). If

v2 = 1, again M |= A. The case of v2 = u is the Gödel logic, where
A is not a tautology.

Note that it is in general impossible to effectively construct a �-minimal m-
valued logic M with L ⊆ Taut(M) if L is given independently of a calculus,
because, e.g., it is undecidable whether L is empty or not: e.g., take

L =

{
{�k(�)} if k is the least solution of D(x) = 0
∅ otherwise

where D(x) = 0 is the Diophantine representation of some undecidable set.

5 Effective Sequential Approximations

In the previous section we have shown that it is always possible to obtain the
best m-valued covers of a given calculus, but there is no way to tell how good
these covers are. In this section, we investigate the relation between sequences of
many-valued logics and the set of theorems of a calculus C. Such sequences are
called sequential approximations of C if they verify all theorems and refute all
non-theorems of C, and effective sequential approximations if they are effectively
enumerable. This is also a question about the limitations of Bernays’s method.
On the negative side, an immediate result says that calculi for undecidable logics
do not have effective sequential approximations. If, however, a propositional logic
is decidable, it also has an effective sequential approximation (independent of
a calculus). Moreover, any calculus has a uniquely defined many-valued closure,
whether it is decidable or not. This is the set of all sentences which cannot be
proved underivable using a Bernays-style many-valued argument. If a calculus
has an effective sequential approximation, then the set of its theorems equals
its many-valued closure. If it does not, then its closure is a proper superset.
Different calculi for one and the same logic may have different many-valued
closures according to their degree of analyticity.

Definition 32. Let L be a propositional logic and let A = 〈M1,M2,M3, . . . , 〉
be a sequence of many-valued logics s.t. (1) Mi �Mj iff i ≥ j.

A is called a sequential approximation of L iff L =
⋂

j∈ω Taut(Mj). If in addi-
tion A is effectively enumerated, then A is an effective sequential approximation.

If L is given by the calculus C, and each Mj is a cover of C, then A is a
strong (effective) sequential approximation of C (if A is effectively enumerated).

We say C is effectively approximable, if there is such a strong effective sequen-
tial approximation of C.

122 M. Baaz and R. Zach

Condition (1) above is technically not necessary. Approximating sequences of
logics in the literature (see next example), however, satisfy this condition. Fur-
thermore, with the emphasis on “approximation,” it seems more natural that
the sequence gets successively “better.”

Example 33. Consider the sequence G = 〈Gi〉i≥2 of Gödel logics and intuitionis-
tic propositional logic IPC. Taut(Gi) ⊃ Thm(IPC), since Gi is a cover for IPC.
Furthermore, Gi+1 � Gi. This has been pointed out by [10], for a detailed proof
see [11, Theorem 10.1.2]. It is, however, not a sequential approximation of IPC:
The formula (A ⊃ B)∨(B ⊃ A), while not a theorem of IPL, is a tautology of all
Gi. In fact,

⋂
j≥2 Taut(Gi) is the set of tautologies of the infinite-valued Gödel

logic Gℵ, which is axiomatized by the rules of IPC plus the above formula. This
has been shown in [8] (see also [11, Section 10.1]). Hence, G is a strong effective
sequential approximation of Gℵ = IPC + (A ⊃ B) ∨ (B ⊃ A).

Jaśkowski [13] gave an effective strong sequential approximation of IPC.
That IPC is approximable is also a consequence of Theorem 48, with the proof
adapted to Kripke semantics for intuitionistic propositional logic, since IPL has
the finite model property [9, Ch. 4, Theorem 4(a)].

The natural question to ask is: Which logics have (effective) sequential approx-
imations; which calculi are approximable?

First of all, any propositional logic has a sequential approximation, although
it need not have an effective approximation.

Proposition 34. Every propositional logic L has a sequential approximation.

Proof. A sequential approximation of L a is given by Mi = Mi,i(L) (see Defini-
tion 14). Any formula F /∈ L is in V (Mk) for k = max{dp(F), j} where j is the
maximum index of variables occurring in F . By Proposition 15, F is falsified in
Mk. Also, Taut(Mi) ⊇ L, and Mi �Mi+1. ��

Corollary 35. If L is decidable, it has an effective sequential approximation.

Proof. Using a decision procedure for L, we can effectively enumerate the Mi,i(L).
��

Proposition 36. If L has an effectively sequential approximation, then Frm(L)\
L is effectively enumerable.

Proof. Suppose there is an effectively enumerated sequence A = 〈M1,M2, . . .〉
s.t.

⋂
j≥2 Taut(Mj) = L. If F /∈ L then there would be an index i s.t. F is false

in Mi. But this would yield a semi-decision procedure for non-members of L:
Try for each j whether F is false in Mj . If F /∈ L, this will be established at
j = i. ��

Corollary 37. If C is undecidable, then it is not effectively approximable.

Proof. Thm(C) is effectively enumerable. If C were approximable, it would have
an effective sequential approximation, and this contradicts the assumption that
the non-theorems of C are not effectively enumerable. ��

Effective Finite-Valued Approximations of General Propositional Logics 123

Example 38. This shows that a result similar to that for IPC cannot be obtained
for full propositional linear logic.

If C is not effectively approximable (e.g., if it is undecidable), then the intersec-
tion of all covers for C is a proper superset of Thm(C). This intersection has
interesting properties.

Definition 39. The many-valued closure MC(C) of a calculus C is the set of
formulas which are true in every many-valued cover for C.

Proposition 40. MC(C) is unique and has an effective sequential approximation.

Proof. MC(C) is unique, since it obviously equals
⋂

M∈S Taut(M) where S is
the set of all covers for C. It is also effectively approximable, an approximating
sequence is given by

M1 = M′
1

Mi = Mi−1 × M′
i

where M′
i is an effective enumeration of S. ��

Since MC(C) is defined via the many-valued logics for which C is strongly sound,
it need not be the case that MC(C) = Thm(C) even if C is decidable. (An
example is given below.) On the other hand, it also need not be trivial (i.e.,
equal to Frm(L)) even for undecidable C. For instance, take the Hilbert-style
calculus for linear logic given in [1,19], and the 2-valued logic which interprets the
linear connectives classically and the exponentials as the identity. All axioms are
then tautologies and the rules (modus ponens, adjunction) are strongly sound,
but the matrix is clearly non-trivial.

Corollary 41. If C is strictly analytic, then MC(C) = Thm(C).

Proof. We have to show that for every F /∈ Thm(C) there is a finite-valued
logic M which is strongly sound for C and where F /∈ Taut(M). Let X1, . . . ,
Xj be all the variables occurring in F and the axioms and rules of C. Then set
M = Mdp(F),j(Thm(C)).

By Proposition 15, F /∈ Taut(M) and all axioms of C are in Taut(M). Now
consider a valuation v in M and suppose v(Ai) ∈ V + for all premises Ai of a
rule of C. We have two cases: if v(X) = � for some variable X appearing in a
premise Ai, then, since C is strictly analytic, X also appears in the conclusion C
and hence v(C) = �. Otherwise, let σv be the substitution corresponding to v.
If v(Ai) = � for some i, this means that dp(Aiσ) > dp(F). By strict analyticity,
dp(Cσ) ≥ dp(Aiσ) > dp(F) and hence v(C) = �. Otherwise, v(Ai) = Aiσ for
all premises Ai. Since v(Ai) is designated, Aiσ ∈ Thm(C), hence Cσ ∈ Thm(C).
Then either v(C) = Cσ or v(C) = �, and both are in V +. ��

124 M. Baaz and R. Zach

Example 42. The last corollary can be used to uniformly obtain semantics for
strictly analytic Hilbert calculi. Strict analyticity of the calculus is a necessary
condition, as Example 23 shows. The calculus given there is decidable, though
not strictly analytic, and has only trivial covers. Its set of theorems nevertheless
has an effective sequential approximation, i.e., it is the intersection of an infinite
sequence of finite-valued matrices which are weakly sound for C. For this it is
sufficient to give, for each formula A s.t. C � A, a matrix M weakly sound for
C with A /∈ Taut(M). Let the depth of A be k, and let

V0 = Var(A) ∪ {†}
Vi+1 = Vi ∪ {B � C | B, C ∈ Vi} ∪ {�B | B ∈ Vi}

Then set V = Vk, V + = {B � C | B � C ∈ V, C ≡ �lB} ∪ {†}. The truth
functions are defined as follows:

�̃(B) =

{
† if B ∈ Vk but B /∈ Vk−1, or B = †
�B otherwise

�̃(B, C) =

⎧
⎪⎨

⎪⎩

† if C ∈ Vk but C /∈ Vk−1, or B = †
† � C else if B ∈ Vk but B /∈ Vk−1

B � C otherwise

The axiom X � �X is a tautology. For if v(X) = †, then v(�X) = † and
hence v(X � �X) = † ∈ V +. If v(X) ∈ Vk but /∈ Vk−1, then v(�X) = † and
v(X � �X) = †. Otherwise v(�X) = �B for B = v(A) and v(X � �X) = † (if
�B ∈ Vk) or = B � �B ∈ V +.

If v(X) = †, then v(X � Z) = †. Otherwise v(X � Z) ∈ V + only if v(X) = B
and v(Y) = �lB and B /∈ Vk. Then, in order for v(Y � Z) to be ∈ V +, either
v(Y � Z) = †, in which case v(Z) ∈ Vk but /∈ Vk−1, and hence v(Y � Z) = †,
or v(Y � Z) = �lB � �l′B with l < l′, in which case v(Y � Z) = B � �l′B.

However, A /∈ Taut(M). For it is easy to see by induction that in the valuation
with v(X) = X for all variables X ∈ Var(A), v(B) = B as long as B ∈ Vk and so
v(A) can only be designated if A ≡ B � �B for some B, but all such formulas
are derivable in C.

However, there are substitution instances of X � X , viz., for any σ with Xσ
of depth > k, for which (X � X)σ is a tautology. Even though C is weakly
sound for M, it is not t-sound.

So far we have concentrated on approximations of logics given via calculi. How-
ever, propositional logics are also often defined via their semantics. The most
important example of such logics are modal logics, where logics can be character-
ized using families of Kripke structures. If these Kripke structures satisfy certain
properties, they also yield sequential approximations of the corresponding log-
ics. Unsurprisingly, for this it is necessary that the modal logics have the finite
model property, i.e., they can be characterized by a family of finite Kripke struc-
tures. The sequential approximations obtained by our method are only effective,
however, if the Kripke structures are effectively enumerable.

Effective Finite-Valued Approximations of General Propositional Logics 125

Definition 43. A modal logic L has as its language L the usual propositional
connectives plus two unary modal operators: � (necessary) and ♦ (possible). A
Kripke model for L is a triple 〈W, R, P 〉, where

1. W is any set: the set of worlds,
2. R ⊆ W 2 is a binary relation on W : the accessibility relation,
3. P is a mapping from the propositional variables to subsets of W .

A modal logic L is characterized by a class of Kripke models for L.

This is called the standard semantics for modal logics (see [7, Ch. 3]). The
semantics of formulas in standard models is defined as follows:

Definition 44. Let L be a modal logic, KL be its characterizing class of Kripke
models. Let K = 〈W, R, P 〉 ∈ KL be a Kripke model and A be a modal formula.

If α ∈ W is a possible world, then we say A is true in α, α |=L A, iff the
following holds:

1. A is a variable: α ∈ P (X)
2. A ≡ ¬B: not α |=L B
3. A ≡ B ∧ C: α |=L B and α |=L C
4. A ≡ B ∨ C: α |=L B or α |=L C
5. A ≡ �B: for all β ∈ W s.t. α R β it holds that β |=L B
6. A ≡ ♦B: there is a β ∈ W s.t. α R β and β |=L B

We say A is true in K, K |=L A, iff for all α ∈ W we have α |=L A. A is valid in
L, L |= A, iff A is true in every Kripke model K ∈ KL. By Taut(L) we denote
the set of all formulas valid in L.

Many of the modal logics in the literature have the finite model property (fmp):
for every A s.t. L |= A, there is a finite Kripke model K = 〈W, R, P 〉 ∈ K (i.e., W
is finite), s.t. K |=L A (where L is characterized by K). We would like to exploit
the fmp to construct sequential approximations. This can be done as follows:

Definition 45. Let K = 〈W, R, P 〉 be a finite Kripke model. We define the
many-valued logic MK as follows:

1. V (MK) = {0, 1}W , the set of 0-1-sequences with indices from W .
2. V +(MK) = {1}W , the singleton of the sequence constantly equal to 1.
3. ¬̃MK , ∨̃MK , ∧̃MK , ⊃̃MK are defined componentwise from the classical truth

functions
4. �̃MK is defined as follows:

�̃MK (〈wα〉α∈W)β =

{
1 if for all γ s.t. β R γ, wγ = 1
0 otherwise

5. ♦̃MK
is defined as follows:

♦̃MK
(〈wα〉α∈W)β =

{
1 if there is a γ s.t. β R γ and wγ = 1
0 otherwise

126 M. Baaz and R. Zach

Furthermore, vK is the valuation defined by vK(X)α = 1 iff α ∈ P (X) and = 0
otherwise.

Lemma 46. Let L and K be as in Definition 45. Then the following hold:

1. Every valid formula of L is a tautology of MK.
2. If K |=L A then vK |=MK A.

Proof. Let B be a modal formula, and K ′ = 〈W, R, P ′〉. We prove by induction
that vK′(B)α = 1 iff α |=L B:

B is a variable: P ′(B) = W iff vK(B)α = 1 for all α ∈ W by definition of vK .
B ≡ ¬C: By the definition of ¬̃MK , vK(B)α = 1 iff vK(C)α = 0. By induction

hypothesis, this is the case iff α |=L C. This in turn is equivalent to α |=K B.
Similarly if B is of the form C ∧ D, C ∨ D, and C ⊃ D.

B ≡ �C: vK(B)α = 1 iff for all β with α R β we have vK(C)β = 1. By
induction hypothesis this is equivalent to β |=L C. But by the definition of �
this obtains iff α |=L B. Similarly for ♦.

(1) Every valuation v of MK defines a function Pv via Pv(X) = {α | v(X)α =
1}. Obviously, v = vPv . If L |= B, then 〈W, R, Pv〉 |=L B. By the preceding
argument then v(B)α = 1 for all α ∈ W . Hence, B takes the designated value
under every valuation.

(2) Suppose A is not true in K. This is the case only if there is a world α at
which it is not true. Consequently, vK(A)α = 0 and A takes a non-designated
truth value under vK . ��

The above method can be used to construct many-valued logics from Kripke
structures for not only modal logics, but also for intuitionistic logic. Kripke
semantics for IPL are defined analogously, with the exception that α |= A ⊃ B
iff β |= A ⊃ B for all β ∈ W s.t. α R β. IPL is then characterized by the class
of all finite trees [9, Ch. 4, Thm. 4(a)]. Note, however, that for intuitionistic
Kripke semantics the form of the assignments P is restricted: If w1 ∈ P (X)
and w1 R w2 then also w2 ∈ P (X) [9, Ch. 4, Def. 8]. Hence, the set of truth
values has to be restricted in a similar way. Usually, satisfaction for intuitionistic
Kripke semantics is defined by satisfaction in the initial world. This means that
every sequence where the first entry equals 1 should be designated. By the above
restriction, the only such sequence is the constant 1-sequence.

Example 47. The Kripke tree with three worlds

w2 w3

↖ ↗
w1

yields a five-valued logic T3, with V (T3) = {000, 001, 010, 011, 111}, V +(T3) =
{111}, the truth table for implication

Effective Finite-Valued Approximations of General Propositional Logics 127

⊃ 000 001 010 011 111
000 111 111 111 111 111
001 010 111 010 111 111
010 001 001 111 111 111
011 000 001 010 111 111
111 000 001 010 011 111

⊥ is the constant 000, ¬A is defined by A ⊃ ⊥, and ∨ and ∧ are given by the
componentwise classical operations.

The Kripke chain with four worlds corresponds directly to the five-valued
Gödel logic G5. It is well know that (X ⊃ Y) ∨ (Y ⊃ X) is a tautology in all
Gm. Since T3 falsifies this formula (take 001 for X and 010 for Y), we know
that G5 is not the best five-valued approximation of IPL.

Furthermore, let

O5 =
∧

1≤i<j≤5

(Xi ⊃ Xj) ∨ (Xj ⊃ Xi) and

F5 =
∨

1≤i<j≤5

(Xi ⊃ Xj).

O5 assures that the truth values assumed by X1, . . . , X5 are linearly ordered
by implication. Since neither 010 ⊃ 001 nor 001 ⊃ 010 is true, we see that there
are only four truth values which can be assigned to X1, . . . , X5 making O5 true.
Consequently, O5 ⊃ F5 is valid in T3. On the other hand, F5 is false in G5.

Theorem 48. Let L be a modal logic characterized by a set of finite Kripke mod-
els K = {K1, K2, . . .}. A sequential approximation of L is given by 〈M1,M2, . . .〉
where M1 = MK1 , and Mi+1 = Mi ×MKi+1. This approximation is effective if
K is effectively enumerable.

Proof. (1) Taut(Mi)⊇Taut(L): By induction on i: For i=1 this is Lemma 46 (1).
For i > 1 the statement follows from Lemma 13, since Taut(Mi−1) ⊇ Taut(L)
by induction hypothesis, and Taut(MKi) ⊇ Taut(L) again by Lemma 46 (1).

(2) Mi �Mi+1 from A ∩ B ⊆ A and Lemma 13.
(3) Taut(L) =

⋂
i≥1 Taut(Mi). The ⊆-direction follows immediately from (1).

Furthermore, by Lemma 46 (2), no non-tautology of L can be a member of all
Taut(Mi), whence ⊇ holds. ��
Remark 49. Finitely axiomatizable modal logics with the fmp always have an ef-
fective sequential approximation, since it is then decidable if a given finite Kripke
structure satisfies the axioms. Urquhart [20] has shown that this is not true if the
assumption is weakened to recursive axiomatizability, by giving an example of an
undecidable recursively axiomatizable modal logic with the fmp. Since this logic
cannot have an effective sequential approximation, its characterizing family of fi-
nite Kripke models is not effectively enumerable. The preceding theorem thus also
shows that the many-valued closure of a calculus for a modal logic with the fmp
equals the logic itself, provided that the calculus contains modus ponens and ne-
cessitation as the only rules. (All standard axiomatizations are of this form.)

128 M. Baaz and R. Zach

6 Conclusion

Our brief discussion unfortunate must leave many interesting questions open,
and suggests further questions which might be topics for future research. The
main open problem is of course whether the approach used here can be extended
to the case of first-order logic. There are two distinct questions: The first is how
to check if a given finite-valued matrix is a cover for a first-order calculus. Is
this decidable? One might expect that it is at least for “standard” formulations
of first-order rules, e.g., where the rules involving quantifiers are monadic in
the sense that they only involve one variable per rule. The second question is
whether the relationship �∗ is decidable for n-valued first order logics. Another
problem, especially in view of possible applications in computer science, is the
complexity of the computation of optimal covers. One would expect that it is
tractable at least for some reasonable classes of calculi which are syntactically
characterizable.

We have shown that for strictly analytic calculi, the many-valued closure co-
incides with the set of theorems, i.e., that they are effectively approximable by
their finite-valued covers. Is it possible to extend this result to a wider class of
calculi, in particular, what can be said about calculi in which modus ponens is
the only rule of inference (so-called Frege systems)? For calculi which are not
effectively approximable, it would still be interesting to characterize the many-
valued closure. For instance, we have seen that the many-valued closure of linear
logic is not equal to linear logic (since linear logic is undecidable) but also not
trivial (since all classical non-tautologies are falsified in a 2-valued cover). What
is the many-valued closure of linear logic? For those (classes of) logics for which
we have shown that sequential approximations are possible, our methods of proof
also do not yield optimal solutions. For instance, for modal logics with the finite
model property we have shown that all non-valid formulas can be falsified in the
many-value logic obtained by coding the corresponding Kripke countermodel.
But there may be logics with fewer truth-values which also falsify these formu-
las. A related question is to what extent our results on approximability still hold
if we restrict attention to many-valued logics in which only one truth-value is
designated. The standard examples of sequences of finite-valued logics approxi-
mating, e.g., �Lukasiewicz or intuitionistic logic are of this form, but it need not
be the case that every approximable logic can be approximated by logics with
only one designated value.

References

1. Avron, A.: The semantics and proof theory of linear logic. Theoret. Comput. Sci. 57,
161–184 (1988)

2. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Labeled calculi and finite-valued
logics. Studia Logica 61, 7–33 (1998)

3. Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In:
Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35.
Springer, Heidelberg (1994)

Effective Finite-Valued Approximations of General Propositional Logics 129

4. Baaz, M., Zach, R.: Approximating propositional calculi by finite-valued logics. In:
24th International Symposium on Multiple-valued Logic. ISMVL 1994 Proceedings,
pp. 257–263. IEEE Press, Los Alamitos (1994)

5. Bernays, P.: Axiomatische Untersuchungen des Aussagenkalküls der “Principia
Mathematica”. Math. Z. 25, 305–320 (1926)

6. Carnielli, W.A.: Systematization of finite many-valued logics through the method
of tableaux. J. Symbolic Logic 52, 473–493 (1987)

7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

8. Dummett, M.: A propositional calculus with denumerable matrix. J. Symbolic
Logic 24, 97–106 (1959)

9. Gabbay, D.M.: Semantical Investigations in Heyting’s Intuitionistic Logic. In: Syn-
these Library, vol. 148, Reidel, Dordrecht (1981)

10. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien 69, 65–
66 (1932)

11. Gottwald, S.: A Treatise on Many-valued Logics. Research Studies Press, Baldock
(2001)

12. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University
Press, Oxford (1993)

13. Jaśkowski, S.: Recherches sur la système de la logique intuitioniste. In: Actes du
Congrès International de Philosophie Scientifique 1936, Paris, vol. 6, pp. 58–61
(1936)

14. Lincoln, P.D., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propo-
sitional linear logic. In: Proceedings 31st IEEE Symposium on Foundations of
Computer Science. FOCS 1990, pp. 662–671. IEEE Press, Los Alamitos (1990)

15. �Lukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes
rendus des séances de la Société des Sciences et des Lettres de Varsovie Cl III 23,
30–50 (1930), English translation in [18, 38–59]

16. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoret.
Comput. Sci. 52, 145–153 (1987)

17. Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)
18. Tarski, A.: Logic, Semantics, Metamathematics, 2nd edn. Hackett, Indianapolis

(1983)
19. Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes, vol. 29. CSLI,

Standford, CA (1992)
20. Urquhart, A.: Decidability and the finite model property. J. Philos. Logic 10, 367–

370 (1981)

Model Transformation Languages and Their

Implementation by Bootstrapping Method

Janis Barzdins, Audris Kalnins, Edgars Rencis, and Sergejs Rikacovs

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
janis.barzdins@mii.lu.lv, audris.kalnins@mii.lu.lv, edgars.rencis@lumii.lv,

sergejs.rikacovs@lumii.lv

Dear Boris, You are the father of Computer Science in Latvia.
Thank you for this.

Abstract. In this paper a sequence of model transformation languages
L0, L1, L2 is defined. The first language L0 is very simple, and for this
language it is easy to build an efficient compiler to C++. The next lan-
guage L1 is an extension of L0, and it contains powerful pattern definition
facilities. The last language L2 is of sufficiently high level and can be used
for implementation of traditional pattern-based high level model trans-
formation languages, as well as for the development of model transfor-
mations directly. For languages L1 and L2 efficient compilers have been
built using the bootstrapping method: L1 to L0 in L0, and L2 to L1 in
L1. The results confirm the efficiency of model transformation approach
for domain specific compiler building.

1 Introduction

A well known fact is that the heart of the most advanced software engineering
technology MDA [1] is model transformation languages. In recent years the main
emphasis has been on the development of industrial transformation languages
[2,3,4,5,6,7]. For most of the transformation languages there is an implementa-
tion. However, there has been no thorough research on transformation language
implementation, especially on the efficiency aspects. On the other hand, there
have been only a few attempts to use transformation languages for defining their
compilers (to use bootstrapping) [5,7,8]. It is a little bit strange taking into the
account that the main idea of MDA is to use transformation languages for trans-
forming formal design models also a sort of language. Most of the MDA success
stories are related to Domain Specific Languages there the corresponding trans-
formations are in fact compilers. One of the goals of this paper is demonstrate
the usability and efficiency of transformation languages namely for defining com-
pilers for transformation languages.

The other goal is to propose a very simple, but at the same time sufficiently
high level, transformation language L2 which can be used in practice for direct
development of model transformations.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 130–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Transformation Languages and Their Implementation 131

The main results of this paper are the following:

– a sequence of transformation languages L0, L1, L2 is offered and each lan-
guage is obtained from the previous one by adding some features. The final
language L2 is of pretty high level (it contains a kind of patterns, loops, etc.)

– the first of languages L0 is very simple. It contains only the basic trans-
formation facilities and its complete description can be given in less than
two pages (see Section 2). For this language it is easy to build an efficient
compiler to C++

– a compiler from Li+1 to Li (i = 0,1) can be easily specified in Li (this can
be done also in L0). This acknowledges the efficiency of using transforma-
tion languages for building their compilers as long as an appropriate for
bootstrapping language sequence has been found

– the last language in the sequence L2 is of sufficiently high level for traditional
pattern-based high level model transformation languages (such as MOLA [6])
to be compiled to it in a natural way, with the compiler also being easily
definable in L2.

The language L0 and henceforth also Li include also the basic facilities for
defining metamodels, in order to make these languages self-contained.

2 The Base Language L0

The purpose of this section is to give a brief overview of the transformation
language L0. This language is a rather low level procedural textual language,
with control structures mostly taken from assembler-like languages (and syntax
influenced by C++). The basic setting of L0 is as for any transformation language
- we process a model, which is an instance of metamodel (MOF style). But
the language constructs which are specific to model transformations have been
chosen to be as simple as possible.

Basically these constructs give the programmer the ability to:

– iterate through instances (both links and objects),
– create/delete objects and links,
– read/write (change) object attribute values.

An elementary unit of L0 transformation program is a command (an imper-
ative statement). L0 transformation program itself is a transformation, which
contains several parts:

– global variable definition part
– native subprogram (function or procedure) declaration part (used C++ li-

brary function headers)
– L0 subprogram definition part. It is expected that exactly one subprogram

in this part is labeled with the reserved word main. The subprogram labeled
with main defines the entry point of the transformation. An L0 subprogram
definition also consists of several parts:

132 J. Barzdins et al.

• Subprogram header
• Local variable definitions
• Keyword begin;
• Subprogram body definition
• Keyword end;

L0 contains the following kinds of commands:

1. transformation <transformationName>; This command starts a transfor-
mation definition.

2. endTransformation; The command ends a transformation definition.
3. pointer <pointerName> : <className>; Defines a pointer to objects of

class <className>.
4. var <varName> : <ElementaryTypeName>; <ElementaryTypeName> is

one of Boolean, Integer, Real, String. Defines a variable of elementary type.
5. procedure <procName>(<paramList>); Subprogram header, the (formal)

parameter list can be empty. Parameter list consists of formal parameter
definitions separated by “,”. A parameter definition consists of its name, the
parameter type (the type can be an elementary type or a class from the
metamodel), and the passing method (parameters can be passed by refer-
ence or by value). If the parameter is passed by reference, its type name is
preceded by the & character.

6. function <funcName>(<paramList>): <returnType>; Return type name
can be an elementary type name or class name.

7. begin; Starts subprogram body definition.
8. end; Ends subprogram body definition.
9. return; Returns execution control to caller.

10. return <identifier>; Return the value of <identifier> to the caller, the type
must coincide with the function return type. <identifier> is an elementary
variable name or pointer name.

11. call <subProgName>(<actPrmList>); The actual parameter list, which can
be empty, consists of identifiers separated by “,”. An identifier can be a
variable name, a pointer name, or a subprogram parameter name.

12. setVarF <variable>=<funcName>(<actPrmList>); This command can be
used to obtain the value of the function result. The result is of an elementary
type and is assigned to a variable. The variable type must coincide with the
function return type.

13. first <pointer> : <className> else <label>; Positions <pointer> to an
arbitrary (the first one in an implementation dependent ordering) object
of <className>. Typically, this command in combination with the next
command is used to traverse all objects of the given class (including subclass
objects). If <className> does not have objects, <pointer> becomes null,
and execution control is transferred to the <label>. The <className> in
this command must be the same as (or a subclass of) the class used in pointer
definition; if it is a subclass, then the pointer value set is narrowed (for the
subsequent executions of next).

Model Transformation Languages and Their Implementation 133

14. first <pointer1> : <className> from <pointer2> by <roleName> else
<label>; Similar to the previous command, the difference is that it positions
<pointer1> to an arbitrary class object, which is reachable from <pointer2>
by the link <roleName>. Similarly, this command in combination with the
next command is used to traverse all objects linked to an object by the
given link type.

15. next <pointer> else <label>; Gets the next object, which satisfies condi-
tions, formulated during the execution of the corresponding first and which
has not been visited (iterated) with this variable yet. If there is no such
object, the <pointer> becomes null, and execution control is transferred to
<label>.

16. goto <label>; Unconditionally transfers control to <label>, <label> should
be located in the current subprogram.

17. label <labelName>; Defines a label with the given name.
18. addObj <pointer>:<className>; Creates a new object of the class

<className>.
19. addLink <pointer1>.<roleName>.<pointer2>; Creates a new link (of type

specified by <roleName>) between the objects pointed to by the <pointer1>
and <pointer2> , respectively.

20. deleteObj <pointer>; Deletes the object, which is pointed to by <pointer>.
21. deleteLink <pointer1>.<roleName>.<pointer2>; Deletes link, whose type

is specified by <roleName>, between objects pointed to by <pointer1> and
<pointer2>, respectively.

22. setPointer <pointer1>=<pointer2>; Sets <pointer1> to the object, which
is pointed to by <pointer2>; in place of <pointer2> the null constant can
be used.

23. setPointerF <pointer>=<funcName>(<actPrmList>); Sets <pointer> to
the object, which is returned by <funcName>.

24. setVar <variable> = <binExpr>; Sets <variable> to <binExpr> value.
<binExpr> is a binary expression consisting of the following elements: el-
ementary variables, subprogram parameters (of elementary types), literals,
object attributes and standard operators (+, -, *, /, &&, ‖, !).

25. setAttr <pointer>.<attrName>=<binExpr>; Sets the value of attribute
<attrName> (of the object, pointed to by <pointer>) to the <binExpr>
value.

26. type <pointer> == <className> else <label>; If the type of the pointed
object is identical to the <className>, then control is transferred to the
next command, else control is transferred to <label>. In place of the equality
symbol == an inequality symbol != can be used. This command is used for
determining the exact subclass of an object.

27. var <variable>==<binExpr> else <label>; If the condition is not true
then control is transferred to <label>. In place of equality symbol other (<,
<=, >, >=, !=) relational operators compatible with argument types can
be used.

28. attr <pointer>.<attrName> == <binExpr> else <label>; If condition is
not true then control is transferred to <label>. Other relational operators
(<, <=, >, >=, !=) can be used too.

134 J. Barzdins et al.

29. link <pointer1>.<roleName>.<pointer2> else <label>; Checks whether
there is a link (with the type specified by <roleName>) between the objects
pointed to by <pointer1> and <pointer2>, respectively.

30. pointer <pointer1>==<pointer2> else <label>; Checks whether the ob-
jects pointed to by <pointer1> and <pointer2>, respectively, are identical.
Instead of <pointer2> null can be used, and the inequality symbol can be
used too.

Actually L0 contains also commands for building the relevant metamodel; for
details see http://Lx.mii.lu.lv/.

It is easy to see that the language L0 contains only the very basic facilities
for defining transformations. At the same time, it obviously is complete in
the sense of its functional capabilities. This is confirmed by the fact that high
level transformation languages such as MOLA can be successfully compiled to
it. We omit this result in the form of a theorem, but all informal justifications of
this thesis are in place. Namely this is why we call L0 the basic transformation
language. We start our bootstrap approach with this language.

We conclude this section with a very simple example of L0 - a transformation
which builds a representation B of a directed graph (where edge connection
points are also objects) from the simplest one A (where only nodes and edges
are present). Figure 1 presents the metamodel for both representations.

BNodeANode

Start End

BEdgeAEdge

outgoing

startNode

 *

 1

incoming

endNode

 *

 1

mappedA

mappedB 1

 1

connectedStart
node
 *

 1

incoming

eEnd

 1

 1

connectedEnd
node
 *

 1

outgoing

eStart

 1

 1

Fig. 1. Metamodel for the example

The L0 program performing the transformation:

transformation Graphs;
main procedure Graph2Graph();
pointer a : ANode;
pointer b : BNode;
pointer aEd : AEdge;
pointer bEd : BEdge;
pointer edgeStart : Start;
pointer edgeEnd : End;
pointer aEdgeStNode : ANode;

http://Lx.mii.lu.lv/

Model Transformation Languages and Their Implementation 135

pointer aEdgeEnNode : ANode;
pointer mapBNode : BNode;
begin;
//copy nodes;
first a : ANode else aNodeProcessed;
label loopANode;
addObj b : BNode;
addLink a . mappedB . b;
next a else aNodeProcessed;
goto loopANode;
label aNodeProcessed;
//copy edges;
first aEd : AEdge else aEdgesProc;
label loopAEdge;
addObj bEd : BEdge;
addObj edgeStart : Start;
addObj edgeEnd : End;
addLink bEd.eStart.edgeStart;
addLink bEd.eEnd.edgeEnd;
//quit if not found;
first aEdgeStNode:ANode from aEd by startNode else aEdgesProc;
first mapBNode:BNode from aEdgeStNode by mappedB else
aEdgesProc;
addLink edgeStart.node.mapBNode;
first aEdgeEnNode:ANode from aEd by endNode else aEdgesProc;
first mapBNode:BNode from aEdgeEnNode by mappedB else
aEdgesProc;
addLink edgeEnd . node. mapBNode;
next aEd else aEdgesProc;
goto loopAEdge;
label aEdgesProc;
end;
endTransformation;

3 Implementation of L0

The language L0 can be implemented in several ways. The first problem is how to
store and access the persistent data the metamodel and its instances. Obviously,
a kind of data store is required for this. A traditional relational database could
be used, but they typically have no adequate low level API. Another alternative
could be an in-memory data store, such as RDF-oriented Sesame [9] or an MOF-
oriented one (EMF [10], MDR [11]). However, for this approach we have selected
our own metamodel-based in-memory repository [12], which has an appropriate
low level API. Being developed over many years for other goals - generic meta-
model based tool building [13], this repository occurred to be efficient enough
for implementing L0.

136 J. Barzdins et al.

The API of this repository is implemented as a C++ function library. This
library offers: a) a system of low-level data retrieval functions that is complete
for low-level data query programming; b) a selected set of more complicated
widely usable data searching functions. By means of a sophisticated indexing
mechanism, these more complicated functions are also efficiently implemented.

The API of this repository includes two groups of functions:

1. Meta-model management functions for creating, modifying, and deleting
classes, attributes and associations, querying about their properties, class
inheritance, etc. However, meta-model management functions are used rela-
tively seldom, the most heavily used functions belong to the next group.

2. Instance management. This group of functions, in its turn, also can be sub-
divided in two groups:
(a) functions for creating instances, assigning attribute values, creating links

between instances, modifying and deleting instances and links, querying
about instance attributes and links. For example:
long CreateObject(long ObjTypeId); // returns objId
int DeleteObjectHard(long ObjId);
int CreateLink(long LinkTypeId, long ObjId1, long ObjId2);
int DeleteLink(long LinkTypeId, long ObjId1, long ObjId2);

(b) efficient searching functions (internally these functions use sophisticated
indexing mechanisms):
int GetObjectNum(long ObjTypeId);
long GetObjectIdByIndex(long ObjTypeId, int Index);
int GetLinkedObjectNum(long ObjId, long LinkTypeId);
long GetLinkedObjectIdByIndex(long ObjId, long LinkTypeId,

int Index);

If a repository with such API is available, then building an L0 compiler (to
C++) is quite a straightforward job. Such a compiler has been built by one
of the authors of this paper (S. Rikacovs) in two months (not including L0
debugging facilities). The main advantage of using this repository is that the
instance management functions in L0 (first and next, including the by link
options) have close counterparts in the repository API.

The implementation efficiency is also sufficiently high. First, some experiments
show that efficiency loss with respect to the same transformation manually coded
in C++ is no more than 1.5 times. Another aspect is efficiency of the selected
repository for typical transformations, where another group of experiments [12]
show that the selected repository is at least as efficient as Sesame [9] data store
for typical instance retrieval operations.

4 The Language L1

The crucial component of any advanced transformation language is some sort of
pattern definition facilities. This way, the transformation language L1 is obtained
from L0 by adding pattern definition facilities of a specific new form. In selecting

Model Transformation Languages and Their Implementation 137

the pattern definition method we were guided by two conflicting requirements.
On the one hand, the pattern concept must be practically usable. On the other
hand, it must have a simple and efficient implementation by compiler (tradi-
tional patterns, e.g. in [4,5,6] not always have this property). One of the main
results of this paper is the proposed pattern definition facility, which satisfies
both requirements. The main component of pattern specification is a facility for
defining expressions over environments of model objects. Our approach is based
on a new kind of expressions - begin-end expressions, which are defined as
command blocks of the kind:

begin <commandSequence> end.

Namely, if we execute the block on the given object environment, and reach
the end command, then the expression value is defined to be true, otherwise it
is false.

For example, the expression (block):

begin
attr p.age==23;
attr p.occupation=="Student";

end

has the value true if and only if the pointer p (of type Person) points to an
instance, whose attribute age has the value 23 and the attribute occupation has
the value “Student”.

Some more comments on begin-end expressions must be given - what is meant
by not reaching the end. If during the block execution we reach an undefined else
branch of a command (there is no else keyword or it is not followed by a label,
this is permitted for all else-containing commands of L0) then the expression is
defined to have the value false. A similar way is to use a goto command without
label (but it is forbidden to use a label not defined in the block).

Now, when the begin-end expressions are described, it is possible to define
the language L1 precisely.

The language L1 differs from L0 in commands first and next extended by
suchthat part containing a begin-end expression:

first <pointer> : <className> suchthat <BeginEndExpression>
else <label>;

next <pointer> suchthat <BeginEndExpression>
else <label>;

Now we will explain in some details the role of begin-end expressions for
pattern definition and compare them to other facilities for pattern definition.
Let us assume that we have the class diagram (“metamodel”) in Figure 2. Such
a class diagram can be treated also as a signature for formula definition in
many-sorted first order logic (MS FOL) - an association corresponds to a binary
predicate and an attribute to a function. We want to define certain patterns

138 J. Barzdins et al.

Person
age : Integer

Company
name : String

parent

child

0..2

 *

hasChild

employee

employer *

 *worksFor

Fig. 2. Metamodel for pattern examples

for p:Person, i.e., constraints which should be satisfied by appropriate Person
instances.

To get a deeper insight into the situation, we will define these patterns in sev-
eral languages, starting from the natural language. Let us consider an example:

p is a Person, whose age is 50 and who works for (i.e., its employer is) the
Company “UniBank”.

The same pattern can be specified graphically in the MOLA transformation
language:

x : Company
{name="UniBank"}

p : Person
{age=50} employer

(in other transformation languages this can be done in a similar way).
In MS FOL the same pattern can be represented by the following formula

F(p) (the free variable p has the type Person):

p.age = 50 &
∃x : Company(x.name = “UniBank” & worksFor(p, x)) . (1)

The same pattern can be specified also by a begin-end expression, where p is
a pointer variable with the type Person:

begin
attr p.age==50;
first x:Company suchthat
begin
attr x.name=="UniBank";
link p.employer.x;

end;
end;

Let us note that in this context “first x: suchthat ” is equivalent to “exists
x: suchthat ”.

Now let us consider a more complicated example:
p is a Person, who has a child working for the Company “UniBank”.
This corresponds to the following MOLA pattern:

Model Transformation Languages and Their Implementation 139

s : Personp : Person x : Company
{name="UniBank"}child employer

The corresponding MS FOL formula F(p) is:

∃s : Person(hasChild(p, s) &
∃x : Company(x.name = “UniBank” & worksFor(s, x))) . (2)

The corresponding begin-end expression is:

begin
first s:Person suchthat
begin
link p.child.s;
first x:Company suchthat
begin
attr x.name=="UniBank";
link s.employer.x;

end;
end;

end;

Now let us consider a significantly more complicated example:
p is a Person, whose all adult (not younger than 18) children work for the

Company “UniBank”.
It is difficult to specify such a pattern in a graphical pattern definition lan-

guage. At the same time it can be specified quite easily as a MS FOL formula
and also as a begin-end expression.

The corresponding MS FOL formula F(p) is:

∀s : Person(s.age >= 18 & hasChild(p, s) ⊃
∃x : Company(x.name = “UniBank”) & worksFor(s, x)) . (3)

The corresponding begin-end expression is:

begin
first s:Person suchthat
begin
link p.child.s;
attr s.age>=18;
first x:Company suchthat
begin
attr x.name=="UniBank";
link s.employer.x;

end
else L1;

140 J. Barzdins et al.

goto;
label L1;

end else L0;
goto;
label L0;

end;

It is easy to check that we can reach the final end iff p points to a Person,
which satisfies the abovementioned constraint. This begin-end expression actu-
ally corresponds to the following MS FOL formula (which is equivalent to the
formula above):

¬∃s : Person(hasChild(p, s) & s.age >= 18 &
¬∃x : Company(x.name = “UniBank” & worksFor(s, x))) . (4)

MS FOL apparently is one of the most universal languages for defining pat-
terns. However, existing transformation languages avoid the use of MS FOL
formulas for pattern definition. The reason is that for such a universal pattern
specification no satisfactory (non-exponential) pattern matching algorithm is
known (most probably, such an algorithm does not exist). Therefore existing
transformation languages limit in a natural way their pattern definition mecha-
nisms in accordance with their graphical capabilities.

A natural question arises about the relation between our begin-end expressions
and MS FOL formulas in the context of pattern definition. The answer is that for
pattern definition the power of begin-end expressions is not less than that of MS
FOL formulas. We will not go into details of this problem. Let us note only that
the proof of this assertion (after the corresponding concepts are made precise
enough) is not complicated - it is sufficient to trace the inductive definition of
MS FOL formulas.

However, in order to give a deeper insight into begin-end expressions, we
explain a small fragment of this proof. Let F (p) and G(p) be MS FOL formulas
with p as the free variable. We assume that we have already built begin-end
expressions EF (p) and EG(p) which define the same patterns. Namely,

EF (p) ≡ begin <commandSequence for F> end

and

EG(p) ≡ begin <commandSequence for G> end.

Let us consider the formula F (p)&G(p). It is easy to see that the following
begin-end expression defines an equivalent pattern:

begin <commandSequence for F> <commandSequence for G> end

Now let us consider the formula ¬F (p). The corresponding begin-end expres-
sion can be obtained in the following way. Those else-branches inside EF (p) which

Model Transformation Languages and Their Implementation 141

have no label are completed by a certain fixed label, let’s say L. The same action
is applied to goto’s without label (such commands are permitted in L1). This
action is not applied to begin-end expressions which are inside nested suchthat
parts. Let us denote the transformed begin-end sequence by <commandSequence
for ¬F>. The sought for begin-end expression has the following form:

begin <commandSequence for ¬F> goto; label L; end.

It is easy to see that we can reach the label L (which is the last one in this
block and therefore reaching it means that the whole expression assumes the
value true) iff the original expression for F had the value false.

The other inductive steps for MS FOL formula definition can be treated in a
similar way.

In reality begin-end expressions are even more powerful than pure MS FOL,
since begin-end expressions can contain also operations on elementary variables.

A question arises why our begin-end expressions are superior to MS FOL for
specifying patterns. There are three essential reasons for this:

1. A begin-end expression specifies the command execution order during the
pattern matching (i.e., the order in which the instances are traversed).

2. When a pattern is matched all its elements are assigned an identity which
can be used further for referencing these elements (a similar approach is used
in all graphical pattern languages).

3. Begin-end expressions can be easily compiled to L0 (the obtained L0 frag-
ment directly implements the pattern matching for the expression).

5 The Final Language L2 and Its Usage

The language L2 is obtained from L1 by extending it with a foreach command
(loop) and the if-then-else command:

foreach <loopVariable> : <className> suchthat
<BeginEndExpression> do <L2commSequence> end;

if <BeginEndExpression> then do <L2commSequence> end else do
<L2commSequence> end;

The loop semantics is quite natural: the loop variable traverses all instances
of the class, which satisfy the suchthat condition, for each such instance the
do-end block is executed (explicit jumping out of the loop body is prohibited).
The foreach command may be used also inside a suchthat block.

The metamodel of L languages is given in Figure 3 (dashed association cor-
responds to element of L1, bold classes/associations to L2).

142 J. Barzdins et al.

The language L2 has at least two important usage areas. On the one hand, it
can be used as a practical model transformation language. On the other hand,
practical high level model transformation languages can be adequately compiled
to it, and the compiler itself can be written in L2 (we consider this kind of
usage the main one). Currently such a schema has been successfully applied
for building an efficient implementation of MOLA [6], but the same approach
could be applied also for implementing MOF QVT [2] and other transforma-
tion languages. The main issue for such compilations is how to map “com-
pletely declarative” traditional patterns to patterns with the specified search
order in L languages. In some sense the basic idea for such a mapping is given
in [14].

6 Implementation of L1 and L2

The languages L1 and L2 have been implemented according to the bootstrapping
principles described in the introduction.

A compiler from L1 to L0 has been implemented in L0 (as a set of recursive
procedures). It contains about 200 lines of L0 and has been written in one month
(by E. Rencis). Though L1 includes a pattern definition mechanism even more
powerful than that of MS FOL, implementation of L1 patterns is relatively simple
since the search order of pattern elements is precisely specified in the language.
Actually the command sequence defining a begin-end expression can quite easily
be transformed into an equivalent sequence of L0 commands, using recursion for
nested expressions.

To illustrate the idea, we will show briefly the schema how the L1 command

first <pointer> : <className> suchthat <BeginEndExpression>
else <label>;

can be compiled to L0 commands. By means of first, next and goto commands
a simple loop is organized which scans all instances of the given class. The
“body” of this loop contains slightly modified commands form the begin-end
expression commands with missing (or empty) else-branch are “redirected” to
a new label in the else-case. Then reaching this new label would mean that this
suchthat fails on the given instance and the next instance must be tried. If, on
the contrary, the end of the loop body is reached, the given instance satisfies the
whole suchthat and the job is done. If a command within the expression body
is not an L0 command, but a true L1 command, the same procedure is applied
recursively. This compilation schema is illustrated in Table 1.

The compiler from L2 to L1 is also relatively simple (about 560 lines of L0).
Both L1 and L2 compilers rely on the metamodel of L languages (Figure 3).

Compilation of Li+1 to Li actually converts into a transformation of models
(i.e., Li+1 programs) corresponding to the given metamodel. As it was already
mentioned, this transformation occurrs to be relatively simple.

Model Transformation Languages and Their Implementation 143

Attr
name: String
class: String
expr: String

Call
name: String

DeleteObj
name: String

DeleteLink
name1: String
name2: String
assoc: String

El
name: String
expr: String

Label
labName: String

Ecom
text: String
else: String

First
class:
String
from:
String
by:
String

Next

SetPointer
name: String
expr: String

Defin
name: String
type: String
text: String

Scom
text: String

Gotocom
labName: String

FNcom
type: String
name: String
text: String
else: String

Command

Comblock

Type
name: String
class: String

Pointer
name: String
expr: String

NoLink
name1: String
name2: String
assoc: String

AddObj
name: String
class: String

AddLink
name1: String
name2: String
assoc: String

SetAttr
name: String
class: String
expr: String

SetEl
name: String
expr: String

Defblock
name: String

Parameter
name: String
type: String
byRef: Boolean

Transformation
name: String

Ifthencom

Procfunct
name: String
return type: String
is main: Boolean
is native: Boolean
text: String

Foreachcom
name: String
text: String

Return
varName: String

Link
name1: String
name2: String
assoc: String

ownerpf
param

 0..1
 0..1

pf

block

 0..1

 0..1

procfunct
block 0..1
 0..1

dbdef 0..1

 *

prev

 next

 0..1

 0..1

prev

 next

 0..1

 0..1

name

start

 0..1

 0..1

then1

ifthencom1

 0..1

 0..1

transf

pf

 0..1

 *

name

suchthat1

 *

 0..1

name2

suchthat2

 0..1

 0..1

if1

name3

 0..1

 0..1

else1

ifthencom2

 0..1

 0..1

name1

foreach1

 0..1

 0..1

Fig. 3. Metamodel of L languages

144 J. Barzdins et al.

Table 1. Compilation schema from L1 to L0

L1 L0
first <objName> : <className> first <objName> : <className>
suchthat else <labelName>;
begin label L i;
command 1; command 1 [else L i+1];
command 2; command 2 [else L i+1];
... ...
command n; command n [else L i+1];
end goto L i+2;
else <labelName>; label L i+1;

next <objName> else <labelName>;
goto L i;
label L i+2;

7 Conclusions

It was many years ago, when the first author of this paper was a PhD student
of B. A. Trakhtenbrot and studied the most general concept of automata (so
called growing automata [15]), based on Kolmogorov-Uspenskii machines [16].
The Kolmogorov-Uspenskii machine, in contrast to Turing machine, can process
arbitrary constructive objects (“colored graphs”), which can change their topol-
ogy during the processing. At that time it was merely an instrument for studying
theoretical capabilities of algorithms and automata.

Several decades have passed until similar ideas have reified into a powerful
software engineering tool, now named Model Transformation Languages. Trans-
formation languages can be regarded also as practical languages for programming
Kolmogorov-Uspenskii machines.

References

1. MDA Guide Version 1.0.1. OMG, document omg/03-06-01 (2003)
2. MOF QVT Final Adopted Specification, OMG, document ptc/05-11-01 (2005)
3. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
4. Agrawal, A., Karsai, G., Shi, F.: Graph Transformations on Domain-Specific Mod-

els. Technical report, Institute for Software Integrated Systems, Vanderbilt Uni-
versity, ISIS- 03-403 (2003)

5. Willink, E.D.: UMLX - A Graphical Transformation Language for MDA. In: 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture, OOPSLA 2003, Anaheim (2003)

6. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In:
Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp.
62–76. Springer, Heidelberg (2005)

7. Clark, T., et al.: Language Driven Development and MDA, BPTrends. MDA Jour-
nal (October 2004)

Model Transformation Languages and Their Implementation 145

8. Bezivin, J., et al.: The ATL Transformation-based Model Management Framework.
Research Report No 03.08, IRIN, Universite de Nantes (2003)

9. Broekstra, J., Kampman, A., Harmelan, F.V.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In: Proc. International Semantic
Web Conference, Sardinia, Italy (2002)

10. Budinsky, F., et al.: Eclipse Modeling Framework. Addison-Wesley, Reading (2003)
11. Metadata Repository (MDR), http://mdr.netbeans.org/
12. Barzdins, J., et al.: Towards Semantic Latvia. Communications of the 7th Inter-

national Baltic Conference on Databases and Information Systems (Baltic DB&IS
2006), Vilnius, pp. 203–218 (2006)

13. Kalnins, A., Barzdins, J., Celms, E., et al.: The first step towards generic modeling
tool. In: Proceedings of the 5th International Baltic Conference on Databases and
Information Systems, Tallin, vol. 2, pp. 167–180 (2002)

14. Kalnins, A., Barzdins, J., Celms, E.: Efficiency Problems in MOLA Implementa-
tion. In: 19th International Conference OOPSLA 2004, Workshop “Best Practices
for MDSD”, Vancouver, Canada (October 2004)

15. Barzdin, J.M.: Universality problems in the theory of growing automata. Dokl.
Akad. Nauk SSSR (in Russian) 157(3) (1964) (English translation in: Soviet Math.
Dokl. 9, 535–537 (1964)

16. Kolmogorov, A.N., Uspensky, V.A.: To the Definition of an Algorithm. Uspekhi.
Mat. Nauk (in Russian) 13(4), 3–28 (1958) (English translation in: AMS Transla-
tions, ser. 2, 21, 217–245 (1963))

http://mdr.netbeans.org/

Modal Fixed-Point Logic and Changing Models

Johan van Benthem1 and Daisuke Ikegami2

1 Universiteit van Amsterdam Plantage Muidergracht 24,
1018 TV, Amsterdam, The Netherlands

johan@science.uva.nl
http://staff.science.uva.nl/∼johan/

2 Universiteit van Amsterdam Plantage Muidergracht 24,
1018 TV, Amsterdam, The Netherlands

ikegami@science.uva.nl

This paper is dedicated to Professor Boris Trakhtenbrot, whose work and
spirit have inspired us and so many others in our field.

Abstract. We show that propositional dynamic logic and the modal
μ-calculus are closed under product modalities, as defined in current
dynamic-epistemic logics. Our analysis clarifies the latter systems, while
also raising some new questions about fixed-point logics.

1 Basic Closure Properties of Logics

Standard first-order logic has some simple but important closure properties.
First, it is closed under relativization : for every formula φ and unary predicate
letter P , there is a formula (φ)P which says that φ holds in the sub-model
consisting of all objects satisfying P . One usually thinks of relativization as
a syntactic operation which transforms the given formula by relativizing each
quantifier ∃x to ∃x(Px∧ and each quantifier ∀x to ∀x(Px →. But one can also
think of evaluating the original formula itself, but then in a changed semantic
model. The connection between the two viewpoints is stated in

Fact 1 (Relativization Lemma)

M, s � (φ)P ⇐⇒ M |P, s � φ.

where M | P is the restriction of the model M to its sub-model defined by
the predicate (or formula with one free variable) P . Relativization is a useful
property of abstract logics, and it is used extensively in proofs of Lindström
theorems. Also useful is closure under predicate substitutions [ψ/P]φ, which may
again be read as either a syntactic operation, or as a shift to evaluation in a
suitably changed model, via the following well-known

Fact 2 (Substitution Lemma)

M, s � [ψ/P]φ ⇐⇒ M[P := ψM], s � φ.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 146–165, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://staff.science.uva.nl/~johan/

Modal Fixed-Point Logic and Changing Models 147

where M[P := ψM] is the model M with the denotation of the predicate letter
P changed as indicated. Substitutions may be viewed as translations of basic
predicates into newly defined ones.

Even more ambitious operations on models occur in the theory of relative
interpretation between theories. E.g., embedding the first-order ordering theory
of the rational numbers into that of the integers requires taking rationals as
ordered pairs of relatively prime integers (a definable subset of the full Cartesian
product Z×Z), and redefining their order < accordingly. Thus, we now also have
a product construction where certain definable tuples become the new objects.
As is easy to see, the first-order language is also closed under such product
constructions - in a sense which we will not spell out. For our purpose here, we
will define a precise sense of ‘product closure’ in terms of modal logic below,
returning to the general situation at the end.

The three mentioned properties also hold of many languages extending first-
order logic, such as LFP(FO), first-order logic with added fixed-point operators.
But as we just said, our focus in this note will be on modal languages, which
are rather fragments of a full first-order logic over directed graphs with unary
predicates, although we also add fixed-point operators later on. For such modal
languages, and especially vividly, in their epistemic interpretation as logics of
knowledge and information flow, the above properties acquire special meanings
of independent interest.

2 Closure Properties of Modal Languages

2.1 Epistemic Logic

Take a modal language with proposition letters, Boolean operators, and uni-
versal modalities [i] which we read as stating what agent i knows, or maybe
better : what is true to the best of i’s information. More precisely, in epistemic
pointed graph models M with actual world s, representing the information of a
group of agents :

M, s � [i]φ ⇐⇒ for all t, if sRit, then M, t � φ.

2.2 Public Announcement and Definable Submodels

In this epistemic setting, taking the relativization of the current model M, s to
its sub-model M | P, s consisting of all points satisfying the formula P is the
natural rendering of an informational event !P of public announcement that P is
currently true. Thus, model change reflects information update. The language of
public announcement logic PAL extends epistemic logic, making these updates
explicit by adding modal operators [!P] for truthful announcement actions :

M, s � [!P]φ ⇐⇒ if M, s � P, then M |P, s � φ.

Here is the relevant completeness result.

148 J. van Benthem and D. Ikegami

Theorem 1. PAL is axiomatized by the minimal modal logic for the new oper-
ators [i] plus four reduction axioms :

[!P]q ↔ P → q for atomic facts q,

[!P]¬φ ↔ P → ¬[!P]φ,

[!P]φ ∧ ψ ↔ [!P]φ ∧ [!P]ψ,

[!P][i]φ ↔ P → [i](P → [!P]φ).

We can read these principles as a complete recursive analysis of what agents
know after they have received new information. But as was pointed out in van
Benthem 2000 [4], this completeness theorem due to Plaza and Gerbrandy really
just states the standard recursive clauses for performing syntactic relativization
of modal formulas. Thus the technical question becomes which modal languages
are closed under relativization.

This is not always the case. E.g., consider an epistemic language with an
operator of common knowledge (everyone knows that everyone knows that, and
so on · · · .), or semantically :

M, s � CGφ ⇐⇒ for all worlds t reachable from s by some finite
sequence of ∼i steps (i ∈ G),M, t � φ.

This amounts to adding an operator of reflexive-transitive closure over the union
of all individual accessibility relations. This infinitary operation takes us from
the basic modal language into a fragment of so-called propositional dynamic
logic (PDL). It can be shown that this fragment does not have the relativization
property: indeed, the formula [!p]CGq is not definable without modalities [!p].
Van Benthem, van Eijck & Kooi 2006 [5] proved this and go on to propose richer
epistemic languages, using richer fragments of PDL which do have relativization
closure, using so-called ‘conditional common knowledge’ CG(φ, ψ) which says
that φ is true in every world reachable with steps staying inside the ψ-worlds.

Remark 1. These observations are reminiscent of the fact that languages with
generalized quantifiers may lack relativization closure. An example is first-order
logic with the added quantifier “for most objects”. To get the closure, one needs
to add a truly binary quantifier “Most φ are ψ”.

2.3 General Observation and Product Update

Public announcement is just one mechanism of information flow. In real-life
scenarios, different agents often have different powers of observation. To model
this, dynamic-epistemic logic (DEL) works with event models

A = (E, {Ri}i, PRE).

Here the precondition function maps events e to precondition formulas PREe

which must hold in order for the event to occur. Just as worlds in epistemic
models, events can be related by accessibility relations {Ri} for agents. Now

Modal Fixed-Point Logic and Changing Models 149

‘product update’ turns a current model M, s into a model M×A, (s, e) recording
the information of different agents after some event e has taken place in the
epistemic setting represented by A. Product update redefines the universe of
relevant possible worlds, and the epistemic accessibility relations between them:

M×A has domain {(s, a) | s a world in M, a an event in A, (M, s) � PREa}.

The new uncertainties satisfy (s, a)Ri(t, b) if both sRit and aRib.

The valuation for proposition letters on (s, e) is just as that for s in M.

Here uncertainty among new worlds (s, a), (t, b) can only come from old un-
certainty among s, t via indistinguishable events a, b. In general, this product
construction can blow up the size of the input model M - it does not just go
to a definable sub-model. In what follows, we will assume that the event models
are finite, though infinitary versions are possible.

Despite the apparent complexity of this product construction, there is a nat-
ural matching dynamic epistemic language DEL with a new modality [A, e] :

M, s � [A, e]φ ⇐⇒ if M, s � PREe, then M×A, (s, e) � φ.

Theorem 2. DEL is completely axiomatizable.

Proof. The argument, due to Baltag, Moss & Solecki 1998 [2], is as follows. The
atomic and Boolean reduction axioms involved are like the earlier ones for public
announcement, but here is the essential clause for the knowledge modality :

[A, e][i]φ ⇐⇒ PREe →
∧

eRif in A

[i][A, f]φ.

By successive application of such principles, all dynamic modalities can be elim-
inated to obtain a standard epistemic formula. ��

We sum this up, somewhat loosely, by stating the following:

Fact 3. Basic epistemic logic is product-closed.

But again, the situation gets more complicated when we add common knowledge.
In this case, no reduction to the language without [A, e] modalities is possible.
Van Benthem, van Eijck & Kooi 2006 [5] solve this problem by moving to the
language E-PDL which is just the propositional dynamic logic version of epis-
temic logic, but now allowing the formation of arbitrary ‘complex agents’ using
the standard PDL program vocabulary:

basic agents i, tests ?φ on arbitrary formulas φ of the language,
unions, compositions, and Kleene iteration.

They provide an explicit axiomatization for the dynamic-epistemic version of
this with added modalities [A, e]φ. Thus E-PDL has a completeness theorem
like the earlier ones; but cf. Section 4 for remaining desiderata.

150 J. van Benthem and D. Ikegami

For present purposes, however, we summarize the gist of this result as follows:
‘E-PDL is closed under the product construction’. In what follows, for conve-
nience, we use obvious existential counterparts to the earlier universal modalities.
Here is the central observation of the above paper :

Theorem 3. For all φ ∈E-PDL, and all action models A with event a, the
formula 〈A, a〉φ has an equivalent formula in E-PDL.

Public announcements !P are special action models with just one event with
precondition P , equally visible to all agents. Thus, the theorem also says that
E-PDL, or PDL, is closed under relativization - as observed earlier in van Ben-
them 2000 [4]. In addition, E-PDL has been shown to be closed under predicate
substitutions in Kooi 2007 [10].

The point of the current paper is to analyze this situation more formally, in
terms of general closure properties of modal languages, and their fixed-point
extensions. In particular, we provide a new proof of Theorem 3 clarifying its
background in modal fixed-point logic.

3 Closure Under Relativization for Modal Standard
Languages

It is easy to see that the basic modal language is closed under relativization. The
procedure relativizes modalities, just as one does with quantifiers in first-order
logic. Likewise, we already mentioned that propositional dynamic logic is closed
under relativization. This requires an operation which also transforms program
expressions, as follows:

([π]φ)P = [π |P](φ)P .

Here one must also relativize programs π to programs π |P , as follows:

i |P = ?P ; i; ?P
?φ |P = ?(φ ∧ P)

(π ∪ θ) |P = π |P ∪ θ |P
(π; θ) |P = π |P ; θ |P
(π∗) |P = (π |P)∗.

Finally, consider the most elaborate modal fixed-point language, the so-called
μ-calculus. Formulas φ(q) with only positive occurrences of the proposition letter
q define a monotonic set transformation in any model M :

FM
φ (X) = {s ∈ M | (M[q := X], s) � φ.}

The formula μq • φ(q) defines the smallest fixed point of this transformation,
which can be computed in ordinal stages starting from the empty set as a first
approximation. Likewise, νq • φ(q) defines the greatest fixed point of FM

φ , with

Modal Fixed-Point Logic and Changing Models 151

ordinal stages starting from the whole domain of M as a first approximation.
Both exist for monotone maps, by the Tarski-Knaster theorem (Bradfield and
Stirling 2006 [8]). For convenience, we assume that each occurrence of a fixed-
point operator binds a unique proposition letter. Here is our first observation.

Fact 4. The modal μ-calculus is closed under relativization.

Proof. We show the universal validity of the following interchange law

〈!P 〉μq • φ(q) ↔ P ∧ μq • 〈!P 〉φ(q). (1)

Here the occurrences of q are still syntactically positive in 〈!P 〉φ(q) - in an
obvious sense. Now to prove (1), compare the following identities, for all sets
X ⊆ PM :

FM
〈!P 〉φ(X) ={s ∈ M | M[q := X], s � 〈!P 〉φ(q)}

={s ∈ M |P | (M |P)[q := X], s � φ(q)}

=F
M|P
φ (X).

It should be clear that the approximation maps on both sides now work in
exactly the same way. ��

Still, there is a difference with standard fixed-point logic. One usually thinks of,
e.g., a smallest fixed-point formula μq • φ(q) as defining the limit of a sequence
of ordinal approximations starting from the empty set, whose successor stages
are computed by substitution of earlier ones :

φ0 = ⊥, φα+1 = φ(φα/q).

But this analogy breaks down between the two sides of the above equation (2).
The approximation sequences defined in a direct manner will diverge. Consider
the modal formulas

φ(q) = �q, P = ♦�

in a model consisting of the numbers 1, 2, 3 in their natural order. Both sequences
in equation (2) start with the empty set, defined by ⊥, but then they diverge:

for 〈!♦�〉μq • �q : for ♦� ∧ μq • 〈!♦�〉�q :
〈!♦�〉�⊥, only true at 2 ♦� ∧ 〈!♦�〉�⊥, only true at 2
〈!♦�〉��⊥, true at 1, 2 ♦� ∧ 〈!♦�〉�〈!♦�〉�⊥, only true at 2.

The reason for the divergence is that the formula on the right-hand side keeps
prefixing formulas with dynamic model-changing modalities, so that we are now
evaluating in models of the form (M |P) |P , etc.

The general observation explaining this divergence involves another basic clo-
sure property of logical languages that we mentioned in Section 1, viz. closure
under substitutions :

152 J. van Benthem and D. Ikegami

Fact 5. The Substitution Lemma fails even for the basic modal language when
announcement modalities 〈!P 〉 are added.

E.g., consider again our three-point model M, with a proposition letter p true
at 2 only, and let φ be the formula 〈!♦�〉♦p. Now consider the substitution
[(〈!♦�〉�)/p]. First consider the model after performing this substitution: it will
assign p to {1, 2}. Hence [p := (〈!♦�〉�)M]〈!♦�〉♦p will be true in 1. Next per-
form the substitution syntactically to obtain the formula 〈!♦�〉♦

(
〈!♦�〉�

)
: this

is true nowhere in the model M.
Since the modal language is simply translatable into first-order logic, a similar

observation holds for first-order logic with relativization operators (φ)P added
as part of its syntax. The resulting language does not satisfy the usual Substitu-
tion Lemma, since the model-changing operators ()P create new contexts where
formulas can change their truth values. So, model-changing operators are nice
devices, but they exact a price.

Remark 2 (Alternative dynamic definitions of substitution)
Fact 5 holds for the straightforward operational definition of substitutions

[φ/p]ψ as syntactically replacing each occurrence of p in ψ by an occurrence of
φ. However, there is an alternative. In line with earlier approaches in ‘dynamic
semantics’ of first-order logic (cf. van Benthem 1996 [3]), Kooi 2007 [10] treats
substitutions [φ/p] as modalities changing the current model in its denotation for
p. These new modalities satisfy obvious recursive axioms pushing them through
Booleans and standard modal operators. To push them also through public an-
nouncement modalities, one can first rewrite the latter via their PAL recursion
axioms, and only then apply the substitution to the components. Van Eijck
2007 [9] shows how this provides an alternative syntactic operational definition
of substitution, working inside out. One first reduces innermost PAL or DEL
formulas to their basic modal equivalents, and then performs standard syntac-
tic substitution in these. Though not compositional, this procedure is effective.
When applied to the two approximation sequences in our earlier problematic
example, these would now come out being the same after all.

Thus, dynamic modal languages are closed under semantic substitutions, but
finding the precise corresponding syntactic operation in their static base language
requires some care.

4 Closure of Dynamic Logic Under Products

Theorem 3 said that the language E-PDL is closed under the product opera-
tion 〈A, e〉φ. The proof in van Benthem, van Eijck & Kooi 2006 [5] uses special
arguments involving Kleene’s Theorem for finite automata and program trans-
formations. We provide a new proof which provides further insight by restating
the situation within modal fixed-point logic.

First, consider the obvious inductive proof of Theorem 3, the ‘Main Re-
duction’. Its steps follow the construction of the formula φ. The atomic case,

Modal Fixed-Point Logic and Changing Models 153

Booleans ¬, ∨, and basic epistemic modalities 〈i〉 are taken care of by the stan-
dard DEL reduction axioms. The remaining case is that of formulas 〈A, a〉〈π〉ψ
with an E-PDL modality involving a complex epistemic program π. To proceed,
we need a deeper analysis of program structure. The following result can be
proved together with Theorem 3 by a simultaneous induction:

Theorem 4. For all A, a, and programs π′ ∈ E-PDL, there exist E-PDL pro-
grams T π′

a,b (for each b ∈ A) such that, for all E-PDL formulas ψ,

M, s � 〈A, a〉〈π′〉ψ ⇐⇒ M, s �
∨

b∈A

〈T π′

a,b〉〈A, b〉ψ.

Proof. We use induction on the construction of the program π′.
Case 1 : π′ = i.

〈A, a〉〈i〉ψ ⇐⇒ PREa and
∨

aRib in A

〈i〉〈A, b〉ψ.

This can be brought into our special form by setting

T i
a,b =?PREa; i if aRib in A, and T i

a,b = ⊥, otherwise.

Case 2 : π′ =?α for some formula α.

〈A, a〉〈?α〉ψ ⇐⇒ 〈A, a〉(α ∧ ψ) ⇐⇒
〈A, a〉α ∧ 〈A, a〉ψ ⇐⇒ 〈?(〈A, a〉α)〉〈A, a〉ψ.

Here the less complex formula 〈A, a〉α can be taken to be in the language of
E-PDL already, by the simultaneous induction proving Theorem 3. It is easy to
then define the correct transition predicates T ?α

a,b for all events b ∈ A.
Case 3 : π′ = α ∪ β for some formulas α, β.

〈A, a〉〈α ∪ β〉ψ ⇐⇒ 〈A, a〉(〈α〉ψ ∨ 〈β〉ψ) ⇐⇒

〈A, a〉〈α〉ψ ∨ 〈A, a〉〈β〉ψ ind.hyp.⇐⇒
∨

b∈A

〈T α
a,b〉〈A, b〉ψ ∨

∨

b∈A

〈T β
a,b〉〈A, b〉ψ

and, by recombining parts of this disjunction, using the valid PDL-equivalence
〈α〉ψ ∨ 〈β〉ψ ↔ 〈α ∪ β〉ψ, we get the required normal form.

Case 4 : π′ = α; β for some formulas α, β.

〈A, a〉〈α; β〉ψ ⇐⇒ 〈A, a〉〈α〉〈β〉ψ ind. hyp.1⇐⇒
∨

b∈A

〈T α
a,b〉〈A, b〉〈β〉ψ ind. hyp.2⇐⇒

∨

b∈A

(〈T α
a,b〉

∨

c∈A

〈T β
b,c〉〈A, c〉ψ)

and here, using the minimal logic of PDL again, substituting one special form
in another once more yields a special form. E.g., we have the equivalence
〈α〉(〈β〉p ∨ 〈γ〉q) ⇐⇒ 〈α; β〉p ∨ 〈α; γ〉q.

154 J. van Benthem and D. Ikegami

Case 5: π′ = π∗ for some program π.
The crux lies in this final case : combinations with Kleene iterations

〈A, a〉〈π∗〉ψ do not reduce as before. But even so, we can analyze them in the
same style, using a simultaneous fixed-point operator μqb• defining the propo-
sitions 〈A, b〉〈π∗〉ψ for all events b ∈ A in one fell swoop. The need for this si-
multaneous recursion explains earlier difficulties in the literature with reduction
axioms for common knowledge with product update. To find the right schema,
first recall the PDL fixed-point equation for Kleene iteration:

〈A, a〉〈π∗〉ψ ⇐⇒ 〈A, a〉(ψ ∨ 〈π〉〈π∗〉ψ) ⇐⇒

〈A, a〉ψ ∨ 〈A, a〉〈π〉〈π∗〉ψ ind. hyp.⇐⇒ 〈A, a〉ψ ∨
∨

b∈A

〈T π
a,b〉〈A, b〉〈π∗〉ψ.

Here, again because of the simultaneous inductive proof with Theorem 3, we
can think of the first disjunct as being some formula αa of E-PDL. The result
of this unpacking are simultaneous equivalences of the form (with propositional
variables qa for each a ∈ A) :

qa ↔ αa ∨
∨

b∈A

〈T π
a,b〉qb. (∗)

Lemma 1. The denotations of the modal formulas 〈A, a〉〈π∗〉ψ in a model M
are precisely the a-projections of the smallest fixed-point solution to the simulta-
neous equations (∗).

Proof (Lemma 1). Here, smallest fixed-points for simultaneous equations in the
μ−calculus are computed just as those for single fixed-point equations. lemma
1 follows by a simple induction, showing that the standard meanings of the
modal formulas 〈A, a〉〈π∗〉ψ in a model M are contained in any solution for the
simultaneous fixed-point equation.

We calculate the meaning of the least fixed-point of (∗) through the approxi-
mation procedure and show it is equal to that of 〈A, a〉〈π∗〉ψ (a ∈ A).

From now on, we identify formulas by their truth sets in M, reading φ as
{m ∈ M | (M, m) � φ}. For simplicity, we rewrite (∗) as follows:

qi = αi ∨
∨

1≤j≤n

〈T π
i,j〉qj (1 ≤ i ≤ n)

Let F be the monotone operator from P(M)n to itself induced by the right
hand side of (∗), where n is the number of elements in A. More precisely, for
X = (X1, · · · , Xn) ∈ P(M)n, F (X) = (Y1, · · · , Yn) where for each 1 ≤ i ≤ n,

Yi =
{
m ∈ M | (M[{qj := Xj}j=1,··· ,n], m) � αi ∨

∨

1≤j≤n

〈T π
i,j〉qj

}
.

Modal Fixed-Point Logic and Changing Models 155

Next, for X ∈ P(M)n, define 〈F ξ(X) | ξ ∈ On〉 as follows:

F 0(X) = X

F ξ+1(X) = F (F ξ(X))

F ξ(X) =
⋃

η<ξ

F η(X) if ξ is a limit ordinal.

For any m ∈ ω, we can prove the following equation by induction on m.

Fm(⊥) =
{ ∨

1≤j1,j2,··· ,jm−1≤n

[αi ∨ 〈T π
i,j1〉αj1 ∨ 〈T π

i,j1〉〈T
π
j1,j2〉αj2

∨ · · · ∨ 〈T π
i,j1〉〈T

π
j1,j2〉 · · · 〈T π

jm−2,jm−1
〉αjm−1]

}
1≤i≤n

.

Hence

Fω(⊥) =
{
(∃m < ω) (∃j1, · · · , jm−1) 〈T π

i,j1〉 · · · 〈T π
jm−2,jm−1

〉αjm−1

}

1≤i≤n
,

which implies Fω(⊥) = Fω+1(⊥) : the least fixed-point is reached in ω steps.
Therefore we only have to show that {〈A, ai〉〈π∗〉ψ}1≤i≤n = Fω(⊥).
Recall that, by the defining property of T π

i,j , for any E-PDL formula ψ′, any
1 ≤ i ≤ n and any state s in M,

M, s � 〈A, ai〉〈π〉ψ′ ⇐⇒ M, s �
∨

1≤j≤n

〈T π
i,j〉〈A, aj〉ψ′.

By using this condition repeatedly, we get the following equivalence: for any
n-tuple s of elements in M and any i with 1 ≤ i ≤ n,

M, si � 〈A, ai〉〈π∗〉ψ
⇐⇒ (∃m ∈ ω) M, si � 〈A, ai〉〈π〉mψ

⇐⇒ (∃m ∈ ω) (∃j1) M, si � 〈T π
i,j1〉〈A, aj1 〉〈π〉m−1ψ

⇐⇒ (∃m ∈ ω) (∃j1, j2) M, si � 〈T π
i,j1〉〈T

π
j1,j2〉〈A, aj2 〉〈π〉m−2ψ

⇐⇒ · · ·
⇐⇒ (∃m ∈ ω) (∃j1, · · · , jm) M, si � 〈T π

i,j1〉〈T
π
j1,j2〉 · · · 〈T π

jm−1,jm
〉〈A, ajm 〉ψ

⇐⇒ (∃m ∈ ω) (∃j1, · · · , jm) M, si � 〈T π
i,j1〉〈T

π
j1,j2〉 · · · 〈T π

jm−1,jm
〉αjm

⇐⇒ si ∈
(
Fω(⊥)

)
i

where
(
Fω(⊥)

)
i
is the i-th coordinate of Fω(⊥). Hence

(∀i)
(
M, si � 〈A, ai〉〈π∗〉ψ

)
⇐⇒ s ∈ Fω(⊥),

which is what we desired. ��

What really happens here is this. Computing the explicit solutions for the pred-
icates qi after ω steps, one gets the countable disjunction over all finite ‘path

156 J. van Benthem and D. Ikegami

formulas’ of the form 〈T π
i,ji

; T π
j1,j2

; · · · ; T π
jn,k〉αk. And the latter are exactly the

meanings of the original propositions 〈A, a〉〈π∗〉ψ.
But we are not done yet. What we need to show next is that the solutions

obtained in this way are actually in the language E-PDL! The following lemma
tells us the relevant fact about the μ-calculus. Simultaneous fixed-point equations
of the above special disjunctive shape (∗) can be solved one by one, and the
solutions lie inside dynamic logic.

Lemma 2. Any system of simultaneous fixed-point equations of (∗) has an ex-
plicit minimal solution for each qa in E-PDL. Moreover, the solutions retain the
special disjunctive form described in Theorem 4.

Proof (Lemma 2). The inductive procedure producing explicit E-PDL solutions
works line by line - like Gaussian Elimination in a system of linear equations.

– Case 1. There is only one q-variable, as with public announcements.
The line reads q1 ↔ α1 ∨ 〈β1,1〉q1. The explicit solution works just as in
standard dynamic logic, in the

q1 = 〈β∗
1,1〉α1.

– Case 2. There are n lines in the recursion schema, with n > 1.
We first solve for the variable q1 as in Case 1 - obtaining an explicit E-PDL
formula σ1(q2, · · · , qn) in the other recursion variables. We then substitute
this solution in the remaining n − 1 equations, and solve these inductively.
Finally, the solutions thus obtained for the q2, · · · , qn are substituted in
σ1(q2, · · · , qn) to also solve for q1.

Some syntactic checking will show that these solutions remain in the syntactic
format described in Theorem 4. But of course, we also need to show that this is
really a solution for the above fixed-point equations (∗), and indeed the smallest
one. To prove that, we formulate the algorithm more formally in the following
way (cf. Arnold & Niwinski [1] for a more extensive treatment).

For any monotone operator G, let G∗ denote the least fixed point of G.
Let F : P(M)n → P(M)n be the monotone operator induced by the n equa-
tions in (∗). Now take any X2, · · · , Xn ∈ P(M) and fix them. Next, define
FX2,··· ,Xn : P(M) → P(M) as follows:

FX2,··· ,Xn(X1) =
(
F (X1, · · · , Xn)

)
1
,

where (X)i is the i-th coordinate of X. Since F is monotone, FX2,··· ,Xn is also
monotone. Then define FX3,··· ,Xn : P(M) → P(M) :

FX3,··· ,Xn(X2) =
(
F ((FX2,··· ,Xn)∗, X2, · · · , Xn)

)
2
.

This is also monotone because F and the function (X2, · · · , Xn) �→ (FX2,··· ,Xn)∗
are both monotone. Continue this process until we define F∅. Then the solution
of the earlier ‘Gaussian’ algorithm is the unique F ′∗ such that

(F ′
∗)i =

(
F(F ′

∗)i+1,··· ,(F ′
∗)n

)
∗ (1 ≤ i ≤ n).

Modal Fixed-Point Logic and Changing Models 157

Note how we compute the rightmost fixed-point first here, and then substitute
leftward. Hence all we have to show is the following:

Claim 1. F∗ = F ′∗.

The proof is in Arnold & Niwinski [1] (see Section 1.4. in this book). To make
our paper self-contained, we will put a proof in an Appendix below. ��

This concludes the proofs of Theorems 3 and 4. ��

Illustration 1. We compute the solutions for the update model A =

�������	a

1

��
2 �� �������	b

1

��

2

��

PREa = p, PREb = �

This describes a security scenario where agent 1 correctly observes that event a
is taking place, while agent 2 mistakenly believes that b occurs. Here is a descrip-
tion of the non-trivial common knowledge for 1, 2 arising from this scenario, by
writing out the fixed point equation for 〈A, a〉 〈(1 ∪ 2)∗〉r.

By step 1 in the proof,

T 1
a,a =?PREa; 1 =?p; 1, T 1

a,b = ⊥
T 1

b,a = ⊥, T 1
b,b =?PREb; 1 = 1

T 2
a,a = ⊥, T 2

a,b =?PREa; 2 =?p; 2
T 2

b,a = ⊥, T 2
b,b =?PREb; 2 = 2.

Then by step 3,

T 1∪2
a,a = T 1

a,a ∪ T 2
a,a =?p; 1, T 1∪2

a,b = T 1
a,b ∪ T 2

a,b =?p; 2
T 1∪2

b,a = T 1
b,a ∪ T 2

b,a = ⊥, T 1∪2
b,b = T 1

b,b ∪ T 2
b,b = 1 ∪ 2.

Now put

qa = 〈A, a〉 〈(1 ∪ 2)∗〉r, qb = 〈A, b〉 〈(1 ∪ 2)∗〉r.

Then by (∗),

qa = 〈A, a〉r ∨ 〈T 1∪2
a,a 〉qa ∨ 〈T 1∪2

a,b 〉qb

= (PREa ∧ r) ∨ 〈?p; 2〉qb ∨ 〈?p; 1〉qa

= ((p ∧ r) ∨ 〈?p; 2〉qb) ∨ 〈?p; 1〉qa

and

qb = 〈A, b〉r ∨ 〈T 1∪2
b,a 〉qa ∨ 〈T 1∪2

b,b 〉qb

= r ∨ 〈1 ∪ 2〉qb

158 J. van Benthem and D. Ikegami

Since the order of eliminating variables does not influence the solutions, we
first solve qb as follows :

qb = 〈(1 ∪ 2)∗〉r.

By substituting this solution in the above equation for qa,

qa =
(
(p ∧ r) ∨ 〈?p; 2〉 〈(1 ∪ 2)∗〉r

)
∨ 〈?p; 1〉qa

=
(
(p ∧ r) ∨ 〈?p; 2; (1 ∪ 2)∗〉r

)
∨ 〈?p; 1〉qa.

Hence

qa = 〈(?p; 1)∗〉
(
(p ∧ r) ∨ 〈?p; 2; (1 ∪ 2)∗〉r

)

= 〈(?p; 1)∗〉(p ∧ r) ∨ 〈(?p; 1)∗; ?p; 2; (1 ∪ 2)∗〉r

We can easily check that these qa, qb satisfy the equations we gave by an in-
dependent semantic argument.

Remark 3. The calculation in this example is really just the following well-known
fact about the modal μ-calculus :

Let φ(q1, q2), ψ(q1, q2) be positive formulas in the modal μ-calculus. Then the
simultaneous least fixed points of these formulas is

(
μq1.φ(q1, μq2.ψ(q1, q2)), μq2.ψ(μq1.φ(q1, q2), q2)

)
.

In the proof of Claim 1 (cf. the Appendix), we only use the condition that F is
monotone. This means we can generalize the result as follows:

Corollary 1. The modal μ-calculus is closed under the formation of simultane-
ous fixed-point operators.

5 Closure of the μ-Calculus Under Products

Finally, we show how the preceding analysis also extends to the μ-calculus itself,
where it even becomes simpler.

Theorem 5. The μ-calculus is closed under product operators.

Proof. We prove the statement by induction on the complexity of formulas. We
only consider the fixed point case, as the others go like before.

Our main task is to analyze fixed-point computations in product models M×A
in terms of similar computations in the original model M. The following idea
turns out to work here. Let X be a subset of M × A. Modulo the event pre-
conditions possibly ruling out some pairs, we can describe X , without loss of
information, in terms of the sequence of its projections to the events in A,
viewed as a finite set of indices. Thus, we can describe the computation in M×A

Modal Fixed-Point Logic and Changing Models 159

by means of a finite set of computations in M . The following set of definitions
and observations makes this precise.

Take any Kripke model M and any event model A. Let n be the num-
ber of elements of A and let A = {aj}1≤j≤n. There are canonical mappings
π : P(M)n → P(M × A) and ι : P(M × A) → P(M)n with π ◦ ι = id:

π(X) =
⋃

1≤j≤n

(Xj × {aj}) ∩ (M × A),

ι(Y) ={Yj}1≤j≤n,

where Yj = {x ∈ M | (x, aj) ∈ Y }.
Given a positive formula φ(q) in the modal μ-calculus, let FM×A

φ : P(M × A)
→ P(M×A) be the monotone function induced by φ(q). Define Fφ(q) : P(M)n →
P(M)n as follows:

Fφ(q) = ι ◦ FM×A
φ ◦ π.

We claim that FM×A
φ is monotone if and only if Fφ(q) is monotone. Suppose

FM×A
φ is monotone. Since π, ι are monotone and compositions of monotone

functions are monotone, Fφ(q) is also monotone. To prove the converse, suppose
Fφ(q) is monotone. Pick any X, Y ∈ P(M × A) with X ⊆ Y . First note that
FM×A

φ (X) ⊆ FM×A
φ (Y) holds if and only if ι◦FM×A

φ (X) ⊆ ι◦FM×A
φ (Y) holds.

Hence all we have to check is ι ◦ FM×A
φ (X) ⊆ ι ◦ FM×A

φ (Y). But

ι ◦ FM×A
φ (X) = ι ◦ FM×A

φ

(
π ◦ ι(X)

)
= ι ◦ FM×A

φ ◦ π
(
ι(X)

)

= Fφ(q)
(
ι(X)

)
⊆ Fφ(q)

(
ι(Y)

)
= ι ◦ FM×A

φ ◦ π
(
ι(Y)

)

= ι ◦ FM×A
φ

(
π ◦ ι(Y)

)
= ι ◦ FM×A

φ (Y),

where the above inclusion follows from the monotonicity of Fφ(q) and ι.
Moreover, there is a further canonical correspondence: if X is an Fφ(q)-fixed

point, then π(X) is an FM×A
φ -fixed-point, and if Y is an FM×A

φ -fixed-point,
then ι(Y) is an Fφ(q)-fixed-point. Hence the least Fφ(q)-fixed-point corresponds
to the least FM×A

φ -fixed-point.

Remark 4 (Relating fixed-point computations in different models). The argument
above may be seen as a special case of the “Transfer Lemma” (Theorem 1.2.15)
in Arnold & Niwinski [1]. This lemma only uses our ι function, while we added
the function π for clarity, to restrict an input to the inverse image of ι – which
is why the equation π ◦ ι = id holds. For further background to this kind of
argument, cf. Bloom and Ésik [7].

So far, we have seen that the least FM×A
φ -fixed-point can be correlated with

the least Fφ(q)-fixed-point in a natural way. Our next task is to show that
〈A, a〉μq.φ(q) is actually definable in the modal μ-calculus. For that purpose,

160 J. van Benthem and D. Ikegami

first note that 〈A, aj〉 μq • φ(q) defines the j-th coordinate of the least FM×A
φ -

fixed-point. By the definition of ι, it is also the j-th coordinate of the least
Fφ(q)-fixed-point. Now, since the modal μ-calculus is closed under simultaneous
fixed-point operators by Corollary 1, if we can express Fφ(q) by a formula of the
modal μ-calculus with positive variables, we are done.

To prove this, we generalize the syntactic analysis employed in Section 4 to
formulas with many variables q = q1, · · · , qm. For any formula φ(q) in the modal
μ-calculus, define FM×A

φ(q) : P(M × A)m → P(M × A) as follows:

FM×A
φ(q) (Y) = {(s, a) |

(
(M × A)[qk := Yk], (s, a)

)
� φ(q)},

where Y ∈ (M × A)m.

Claim 2. For any formula φ(q) in the modal μ-calculus, there are formulas ψφ

such that Fφ(q) = FM
ψφ

where Fφ(q) : P(M)m·n → P(M)n and

(∗) For any 1 ≤ k ≤ m, if all the occurrences of qk in φ are positive (negative
resp.), then for each 1 ≤ j, j′ ≤ n, all the occurrences of pk,j in (ψφ)j′ are
positive (negative resp.),

Proof (Claim 2). In the following definitions, we only display the essential argu-
ment variables needed to understand the function values. We prove the statement
by induction on the complexity of φ. As in the proof of Lemma 1, we identify
formulas with their truth sets. Also, if ψ is a sequence of formulas, ψj is the j-th
coordinate of ψ.

– Case 1: φ = p (p is not in q).

Fφ(q) =
(
p ∧ PREa1 , · · · , p ∧ PREan

)
.

Hence (ψφ(q))j = p ∧ PREaj . It is easy to check (∗).
– Case 2: φ = qk (qk is the k-th coordinate of q).

Fφ(q)(X) = {Xk,j ∧ PREaj }1≤j≤n.

Hence (ψφ(q))j = pk,j ∧ PREaj , where pk,j is the j-th variable in the k-th
block corresponding to qk. It is also easy to check (∗).

– Case 3: φ = φ1 ∧ φ2.

Fφ(q) = ψφ1 ∧ ψφ2 .

Hence ψφ(q) = ψφ1 ∧ ψφ2 . It is easy to check (∗).
– Case 4: φ = ¬φ′.

Fφ(q) = {¬(ψφ′)j ∧ PREaj }1≤j≤n.

Hence (ψφ(q))j = ¬(ψφ′)j ∧ PREaj . It is easy to check (∗) by our induc-
tive hypothesis, and the simultaneous definition for positive and negative
occurrences.

Modal Fixed-Point Logic and Changing Models 161

– Case 5: φ = 〈i〉φ′.
For any 1 ≤ j ≤ n and x ∈ M ,

x ∈
(
Fφ(q)(X)

)
j

⇐⇒

(1 ≤ ∃j′ ≤ n) (∃y ∈ M)
(
xRiy ∧ ajRiaj′ ∧ y ∈

(
Fφ′(q)(X)

)
j′

)
.

To see that this is true, observe that the condition y ∈
(
Fφ′(q)(X)

)
j′ implies

(y, aj′) ∈ M × A. Therefore, we can put
(
ψφ(q)

)
j

=
∨

ajRiaj′

〈i〉
(
ψφ′(q)

)
j′ .

– Case 6: φ = μq′ • φ′, where all the occurrences of q′ are positive in φ′.

Fφ(q)(X) =
{(

FM×A
μq′•φ′(q′,q)(π(X))

)
j

}

1≤j≤n

=
{(

(FM×A
φ′(q′,q)(π(X)))∗

)
j

}

1≤j≤n

=
(
X′ �→ FM

ψφ′ (X
′, X)

)
∗,

where (F (·))∗ is the least F -fixed-point. By induction hypothesis, all the
occurrences of p′j are positive in (ψφ′)j′ for any 1 ≤ j, j′ ≤ n, where p′

corresponds to q′. Since the modal μ-calculus is closed under simultaneous
fixed-point operators, we can put ψφ(q) = μp′ • ψφ′(q), that are also in the
modal μ-calculus. Since μ-operators do not change the positivity (negativity)
of variables not bounded by them, (∗) also holds in this case. ��

The proof of the last case explains why we needed to ‘blow-up’ in the number of
variables in Claim 2. Also, we proved the claim for arbitrary formulas (not only
for positive ones) because otherwise we cannot use the induction hypothesis in
Case 4 (if φ is positive, then φ′ must be negative). ��

Remark 5 (Effective reduction axioms)
As in Fact 4, we could also an explicit reduction axiom for 〈A, aj〉μq.φ(q) by

taking the j-th coordinate of the simultaneous fixed-point expression μq.ψφ(q).
Since our proof is effective, we can effectively compute the shape of the axiom.

The common point of the proofs of Theorems 3,4 and Theorem 5 is that both
E-PDL and the modal μ-calculus are closed under simultaneous fixed point op-
erators (in the case of E-PDL, such operators have the special form of (∗)). The
proof of that fact is essentially the same (it is that of Claim 1) but the case
of the full μ-calculus is easier because we have arbitrary μ-operators, while in
E-PDL, we have to check if the solution is also in E-PDL.

6 Conclusions and Further Directions

T he preceding results place current modal logics of information update in a more
general light, relating their ‘reduction axiom’ approach for obtaining conservative

162 J. van Benthem and D. Ikegami

dynamic extensions of existing static logics to abstract closure properties of fixed-
point logics. Our observations also suggest a number of more general issues, of
which we mention a few.

Fine-structure of the μ-calculus. Our results show that product closure
holds for basic modal logic, propositional dynamic logic PDL, and the μ-calculus
itself. We think that there are further natural fragments with this property, in-
cluding the μ-ω-calculus, which only allows fixed-points whose computations stop
uniformly by stage ω. Another case to look for product closure is the hierarchy
of nested fixed-point alternation. Our proof removes modal product operators
by means of simultaneous fixed-points, which can then be removed by nested
single ones, but we have not yet analyzed its precise syntactic details.

On another matter, our proof method in Section 4 suggests that PDL is
distinguished inside the μ-calculus as the smallest fragment closed under some
very simple ‘additive’ fixed-point equations. This seems related to the fact that
the semantics of dynamic logic only describes linear computation traces, and
no more complex constructs, such as arbitrary finite trees. Can this equational
observation be turned into a characterization of PDL?

Connections with automata theory. The first proof of product closure for
PDL in van Benthem & Kooi 2004 [6] used finite automata to serve as ‘con-
trollers’ restricting state sequences in product models M×A. The second, differ-
ent proof in Van Benthem, van Eijck & Kooi 2006 [5] involved a non-trivial use
of Kleene’s Theorem for regular languages, and hence again a connection with
finite automata. What is the exact connection of this proof with our special
unwinding of simultaneous ‘disjunctive’ fixed-point equations inside PDL? Can
Kleene’s Theorem be interpreted as a normal-form result in fixed-point logic?

There may also be a more general automata-based take on our arguments,
given the strong connection between automata theory and μ-calculus.

Martin Otto (p.c.) has proposed using the product closure of MSOL and the
bisimulation invariance of the mu-calculus with added product modalities for
an alternative proof of our Theorem 5, by an appeal to the Janin - Walukiewiz
Theorem.

Logical languages and general product closure. Finally, we know now
that many modal languages are product-closed. What about logical systems in
general? We would like to have an abstract formulation which applies to a wider
class of logical systems, such as first-order logic and its extensions in abstract
model theory. We feel that product closure is a natural requirement on expressive
power, especially given its earlier motivation in terms of relative interpretability.
But the correct formulation may have to be stronger than our notion in this
paper. Even in the modal case, our proofs would also go through if we allowed,
say, definable substitutions for atomic proposition letters in product models.
Also, one might also try to split our modal notion into full product closure plus
predicate substitutions, treating our use of preconditions as a case of definable
domain relativization.

Modal Fixed-Point Logic and Changing Models 163

There may also be a connection here with the Feferman-Vaught Theorem,
and product constructions reducing truth in the product to truth of related
statements in the component models. After all, our proof of uniform definability
of dynamic modal operators 〈A, a〉φ induces an obvious translation relating truth
of φ in a product model M×A to that of some effective translation of φ in the
component model M.

Finally, one way of seeing how strong product closure really is would be to ask
a converse question. For instance, assume that a fragment of the μ-calculus is
product-closed. Does it follow that it is closed under simultaneous fixed-points?

In all, our results, though somewhat technical and limited in scope, seem to
provide a vantage point for raising many interesting new questions.

Acknowledgements

We thank Balder ten Cate, Jan van Eijck, Martin Otto, Olivier Roy, Luigi
Santocanale, and Yde Venema for their remarks and suggestions on this draft.

References

1. Arnold, A., Niwinski, D.: Rudiments of μ-calculus. Studies in Logic and the Foun-
dations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)

2. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions, vol. 30 (1999)

3. van Benthem, J.: Exploring Logical Dynamics. CSLI Publications, Stanford Uni-
versity (1996)

4. van Benthem, J.: Information update as relativization. Technical report, Institute
for Logic, Language and Computation, Universiteit van Amsterdam (2000)

5. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Inform. and Comput. 204(11), 1620–1662 (2006)

6. van Benthem, J., Kooi, B.: Reduction axioms for epistemic actions. In: Proceedings
Advances in Modal Logic, Department of Computer Science, pp. 197–211 (2004)
(University of Manchester, Report UMCS-04 9-1, R. Schmidt, I. Pratt-Hartmann,
M. Reynolds, H. Wansing (eds.)

7. Bloom, S.L., Ésik, Z.: Iteration theories: the equational logic of iterative prcesses.
Springer, Heidelberg (1993)

8. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic. Studies
in Logic and Practical Reasoning, vol. 3, Elsevier Science, Amsterdam (2006)

9. van Eijck, J.: The proper definition of substitution in dynamic logics. Working
note. CWI, Amsterdam (2007)

10. Kooi, B.: Expressivity and completeness for public update logics via reduction
axioms. J. Appl. Non-Classical Logic 17(2), 231–253 (2007)

Appendix

Proof (Claim 1) By the property of F ′
∗, it suffices to show the following:

(F∗)i =
(
F(F∗)i+1,··· ,(F∗)n

)
∗(1 ≤ i ≤ n).

We prove that by induction on i.

164 J. van Benthem and D. Ikegami

– Case 1: i = 1.
Since

F(F∗)2,··· ,(F∗)n
((F∗)1) = (F (F∗))1 = (F∗)1,

(F∗)1 is a fixed point of F(F∗)2,··· ,(F∗)n
. Since

(
F(F∗)2,··· ,(F∗)n

)
∗ is the least

fixed point of F(F∗)2,··· ,(F∗)n
,
(
F(F∗)2,··· ,(F∗)n

)
∗ ⊆ (F∗)1.

Since
(
F(F∗)2,··· ,(F∗)n

)
∗ ⊆ (F∗)1 and F is monotone,

F
(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

)
⊆ F ((F∗)1, (F∗)2, · · · , (F∗)n)
= F∗.

Hence
(
F

(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

))

j
⊆ (F∗)j (2 ≤ j ≤ n).

Combining this with
(
F

(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

))

1

=F(F∗)2,··· ,(F∗)n

(
(F(F∗)2,··· ,(F∗)n

)∗
)

= (F(F∗)2,··· ,(F∗)n
)∗,

we get
(
F

(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

))

j

⊆
((

(F(F∗)2,··· ,(F∗)n

)
∗, (F∗)2, · · · , (F∗)n

))

j

for any 1 ≤ j ≤ n, which means that
(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

)
is

an F -prefixed point.
Since F∗ is the least F -prefixed point, F∗ is a subset of(
(F(F∗)2,··· ,(F∗)n

)∗, (F∗)2, · · · , (F∗)n

)
, which implies (F∗)1 ⊆(F(F∗)2,··· ,(F∗)n

)∗.
– Case 2: i > 1.

By the induction hypothesis,

F(F∗)i+1,··· ,(F∗)n
((F∗)i) = (F (F∗))i = (F∗)i.

Therefore, (F∗)i is a fixed point of F(F∗)i+1,··· ,(F∗)n
. Since

(
F(F∗)i+1,··· ,(F∗)n

)
∗

is the least fixed point of F(F∗)i+1,··· ,(F∗)n
,
(
F(F∗)i+1,··· ,(F∗)n

)
∗ ⊆ (F∗)i.

Let Fj (1 ≤ j ≤ i) be the ones uniquely determined by the following
equations :

Fj =
(
FFj+1,··· ,Fi,(F∗)i+1,··· ,(F∗)n

)
∗, (1 ≤ j ≤ i − 1)

Fi =
(
F(F∗)i+1,··· ,(F∗)n

)
∗.

By the same argument as before, we can prove
(
F (F1, · · · , Fi, (F∗)i+1, · · · , (F∗)n)

)
j

⊆ Fj (1 ≤ j ≤ i),

Fj ⊆ (F∗)j (1 ≤ j ≤ i).

Modal Fixed-Point Logic and Changing Models 165

Hence

F
(
F1, · · · , Fi−1, (F(F∗)i+1,··· ,(F∗)n

)∗, (F∗)i+1, · · · , (F∗)n

)

⊆
(
F1, · · · , Fi−1, (F(F∗)i+1,··· ,(F∗)n

)∗, (F∗)i+1, · · · , (F∗)n

)
,

which means
(
F1, · · · , Fi−1, (F(F∗)i+1,··· ,(F∗)n

)∗, (F∗)i+1, · · · , (F∗)n

)
is an F -

prefixed point. Since F∗ is the least F -prefixed point,
F∗ ⊆

(
F1, · · · , Fi−1, (F(F∗)i+1,··· ,(F∗)n

)∗, (F∗)i+1, · · · , (F∗)n

)
, which implies

(F∗)i ⊆
(
F(F∗)i+1,··· ,(F∗)n

)
∗. ��

Fields, Meadows and Abstract Data Types

Jan Bergstra1, Yoram Hirshfeld2, and John Tucker3

1 University of Amsterdam
2 Tel Aviv University

3 University of Wales, Swansea

To Boaz, until 120!

Abstract. Fields and division rings are not algebras in the sense of
“Universal Algebra”, as inverse is not a total function. Mending the in-
verse by any definition of 0−1 will not suffice to axiomatize the axiom
of inverse x−1 · x = 1, by an equation. In particular the theory of fields
cannot be used for specifying the abstract data type of the rational num-
bers.

We define equational theories of Meadows and of Skew Meadows, and
we prove that these theories axiomatize the equational properties of fields
and of division rings, respectively, with 0−1 = 0 . Meadows are then used
in the theory of Von Neumann regular ring rings to characterize strongly
regular rings as those that support an inverse operation that turns it
into a skew meadow. To conclude, we present in this framework the
specification of the abstract type of the rational numbers, as developed
by the first and third authors in [2]

1 Universal Algebra

Model theory is the study of general structures and their logical properties. The
theory of Algebra studies the behavior of operations on a set. Abstract data types
are syntactical objects that were created for representing mathematical objects
to the computer in a language that it understands. The theory of Universal
Algebras is the playground where these seemingly unrelated disciplines meet
and interact.

Wikipedia defines Universal Algebra by: “Universal algebra studies common
properties of all algebraic structures,. . . the axioms in universal algebra often
take the form of equational laws” [15]. More traditional sources on the subjects
are [1,3,4,7,10]. In Universal Algebra, as in general model theory, we specify a
signature that declares the kind of constructs that are investigated. For universal
algebras there are only constant names and function names with prescribed arity
(and no relation names). We are interested in the class of all the structures where
these names are interpreted as individuals and functions of the appropriate arity.
Next we specify a collection T of (usually finitely many) equations among terms
with variables. The class of algebras (models) for these equational theory, is the
class M(T) of structures for which the equations hold universally.

There are two major features to an equational theory and its models:

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 166–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fields, Meadows and Abstract Data Types 167

– The class M(T) is closed under substructures, under homomorphism, and
under Cartesian products. In particular every algebra has a minimal subal-
gebra, in which every element interprets a fixed term (without variables). An
algebra in which every element interprets a term is called a prime algebra.

– Among the prime algebras there is one that is called the initial algebra, and
which is maximal among the prime algebras with respect to homomorphisms:
every prime algebra is a homomorphic image of the initial algebra, via a
unique homomorphism (in particular, the initial algebra is unique up to
isomorphism). A canonical way to represent the initial algebra is as the term
algebra modulo the congruence generated by the equations in the theory.

Here are some examples:

1. The signature has one constant “e” called “the unit element” one binary
operation “ ·” called “product”, and one unary operation called ”inverse”. T1

is the theory of groups, with the three equations: (x·y)·z = x·(y ·z), e ·x = x
and x−1 ·x = e. The theory T2 includes in addition the equation x ·y = y ·x.
M(T1) is the class of groups. M(T2) is the class of commutative groups. The
initial algebra in both cases is the trivial group, since the equations force all
the terms to be equal to e.

2. Add to the signature n new constants, and don’t change the axioms. The
two new classes M(T3) and M(T4) are the same classes as M(T1) and
M(T2), with arbitrary (not necessarily distinct) elements interpreting the
new constants. The initial algebras are the free group with n generators,
and the free commutative group with n generators, which are just the term
algebras modulo the congruence generated by the group equations.

3. The signature has two constants 0 and 1, two binary operations, addition
+ and multiplication ·, and one unary operation, “minus”, −. T5 is the set
of ring equations, and T6 is the set of equations for commutative rings. The
classes of algebras are the class of rings and the class of commutative rings,
respectively.

The initial algebra in both of the classes T5 and T6 is the ring Z of integers: It
is easy to prove by structural induction on the constant terms (without variables)
that the equational theory implies that each is equal to 0, some n or some −n,
where n is a sum of n copies of 1.

2 Algebraically Specified Abstract Data Types

The last example is suggestive: The initial structure for the ring equations is the
structure Z of the integers. Every integer has a name in the language (actually
many names), and the operations of addition, multiplication, and subtraction
have names in the language. The syntactical rules for generating constant terms
correspond to applying the operations on the integers. Thus we specified a no-
tation system for the integers and their operations, in the setting of a universal
algebra with its initial algebra. This is nice, as the equational theory on the one

168 J. Bergstram, Y. Hirshfeld, and J. Tucker

hand, and all the models of the theory, whether prime or general, can be used to
study and better understand the structure that is behind the formal definition
of the data type. Algebraic specification of abstract data types started with [5];
recent surveys are [8,9]; [16] is a comprehensive introduction to the subject.

Here are two more equational theories whose initial algebras are interesting
data types:

Example 1 (Equational number theory). The signature has one constant “0”,
one unary function symbol, the successor symbol “S”, and two binary function
symbols for addition and multiplication. The equational theory says:

1. x + 0 = x
2. x + S(y) = S(x + y)
3. x · 0 = 0
4. x · S(y) = x · y + x

(Following the formal rules of term construction would involve including more
parentheses in each of the terms, but we do not bother).

For every n we denote by n the term

SS · · ·S︸ ︷︷ ︸
n times

(0).

The proof that the initial algebra is the set of natural numbers, with the opera-
tions that we named, is done in two steps. First we show by induction on natural
numbers that n + m = n + m and n · m = n · m. Then we show by structural
induction over closed terms that every closed term is equal to some n in every
algebra in the class.

We can extend the signature by additional operations, and add equations that
will ensure that the initial algebra is the set of natural numbers with the familiar
operations. For example we can add predecessor P and the two equations:

P (0) = 0 and P (S(x)) = x

Or we can add the exponential function E(x, y) and the equations:

E(x, 0) = S(0) and E(x, S(y)) = E(x, y) · x

We note that this approach raises interesting questions about the types that are
specified, and the class of models of the theory that specifies them. In particular,
for the theory that specifies the integers (commutative ring theory) there are
different prime algebras, the different rings Zn of integers modulo n. The initial
algebra is Z, because all the other prime algebras are homomorphic images of Z.
In contrast, for the equational number theory, N is the unique prime structure.
What is the significance of this fact? Are the other algebras in the class of models
of equational number theory of any interest? Is the equational number theory
complete, in that it entails every equation that holds in the natural numbers
(or in all the first order models of Peano’s axioms)? For the particular case of

Fields, Meadows and Abstract Data Types 169

number theory the two last questions are items in an extensive body of research
into the nature of the natural numbers and the limitations of formal logic as
means to treat them.

Example 2 (String Equations (Lists)). Let a1, · · · , an be n letters. The signature
has one constant: Λ, and at least n + 1 unary functions, Pop and ai. Possibly
also a binary function Cat(,), and the equational theory says:

1. Pop(Λ) = Λ

2. Pop(ai(x)) = x
3. Cat(Λ, x) = x

4. Cat(ai(x), y) = ai(Cat(x, y))

This is just a minor variation of the previous example, starting with Λ instead
of 0, and with n different successor functions ai instead of S, Pop instead of
predecessor and Cat instead of +.

3 Fields, Meadows, and Skew Meadows

The most familiar abstract algebraic structure is a field. The most common
abstract data type, alongside strings and the natural numbers, is the type of the
rational numbers. Why didn’t we say anything about them until now?

The sad truth is that the class of fields is not, and cannot be made into a
class of models of an equational theory, simply because it is not closed under
cartesian product, as the product of two fields has zero divisors.

We have no satisfactory account of who noticed this problem first and how it
was dealt with in the past. Moore in 1920 [11] already discussed a weaker notion
of inverse, and Penrose [12] made it into the “Moore Penrose Pseodoinverse”.
Independently Von Neuman rings were discussed [13] and a similar weak inverse
was introduced in a different context. However the weak inverse was not intro-
duced to address the problem that in a field 0 has no inverse, but the problem
that in non fields elements that have no inverse may still poses something close
to inverse. The fact that also 0 happens to have a pseodoinverse was not con-
sidered to be of interest. In the theory of algebraic type specifications the fact
that a field was not a universal algebra was probably a major motive for the
attempts to extend the notion of Universal Algebra to many sorted universal
algebra, and try and replace equational theories by conditional equational the-
ories, where simple implications are permitted. Both notions are very sensible,
both as general concepts and with regards to fields: It is natural to treat 0 as
a special kind, and on the other hand the axioms of fields involve only a very
simple conditional statement. Unfortunately no modification of the notion of
Universal Algebra can retain the main features of Universal Algebras stated in
section 1. We prefer therefore to stay within the framework of universal algebra,
weakening the field axioms to an equational theory. This leads to the following
questions:

170 J. Bergstram, Y. Hirshfeld, and J. Tucker

– What is the equational theory of fields, what is the class of its models, and
what is the initial algebra in the class?

– Is this initial algebra the field of rational numbers? If not can we specify the
rational numbers as the initial algebra for some equational theory?

Chronologically the second question was answered first, in [2], defining the
notion of a meadow and using Lagrange four squares theorem. This is discussed
in section 6. The first issue produced a new interesting algebraic theory, the
theory of meadows (and of skew meadows), which fills in a gap between field (and
skew field) theory, and advanced ring theory. Meadows (and skew meadows) are
the main subject of the paper.

The commutative case of fields and meadows is simpler and it is the only
part that is relevant to equational axioms for fields and to the specification
of the type of rational numbers (or any other particular algebraic field). The
non commutative case, that of skew meadows, is harder, interesting, relevant to
division rings and to Von Neuman rings, and it includes the commutative case as
a special case. We will investigate algebras that are not necessarily commutative.

3.1 Meadows and Skew Meadows

Strictly speaking a field is not an algebra at all, since the inverse function is not
a total function, as 0 has no inverse. We intend to make the inverse function
total by defining 0−1. Since ring theory implies that 0 · x = 0 any definition
of 0−1 will fails to satisfy the equation x−1 · x = 1, and we must look for an
alternative equational theory. The key observation is that we can weaken the
inverse equation to one of “local inverse”, which will hold for 0 because of the
fact that x · 0 = 0.

The signature for fields and of meadows has two constants 0 and 1, two unary
functions , minus and inverse (written as x−1), and two binary functions for
addition and multiplication. We denote by Ring the ring equations. The addition
of the axiom of commutativity x · y = y · x makes it a commutative ring.

What can be said about the inverse function? The key observation is the fact
that no matter how 0−1 is defined, the following equations will hold in every
division ring:

(x−1 · x) · x = x and x · (x−1 · x) = x

Should we specify both of the equations, or does one of them imply the other?
If so, does it make a difference which one of the two we choose? With hindsight
we choose the first equation, and we will return to this question later.

From the rest of the properties of the inverse function in fields we choose
to specify reflexivity: (x−1)−1 = x. We note that we are now forced to define
0−1 = 0, because 0−1 = (0−1)−1 · 0−1 · 0−1 = 0 · 0−1 · 0−1 and 0 ·x = 0 is implied
by the ring equations.

This leads us to the following definition:

Definition 1. The theory of Skew meadows has the following equations:

1. Ring, the ring equations;

Fields, Meadows and Abstract Data Types 171

2. Ref , reflexivity, (x−1)−1 = x;
3. Ril, a restricted inverse equation, (x−1 · x) · x = x.

We denote by Ril′ the dual axiom x · (x−1 · x) = x.
The theory of meadows is the theory of skew meadows with the addition of

the axiom of commutativity, x · y = y · x. A model of the axioms will be called
a skew meadow, and a commutative skew meadow is called a meadow. Every
division ring, and every product of division rings is a skew meadow. To make this
statement precise, from now on, “a field” or “ a division ring” means a totalized
algebra, where the inverse function is is extended by the definition 0−1 = 0. We
will prove that an algebra in the signature of fields is a skew meadow if and only
if it is isomorphic to a substructure of division rings. From this we will deduce
that the equational theory of (skew) meadows equals to the equational theory of
(skew) fields, and that finite skew fields are commutative (and in fact products
of finite fields).

3.2 Some Properties of Skew Meadows

We list some properties that follow from the equations of skew meadows. Firstly,
since x−1 · x · x = x, we know that if x · x = 0 then x = 0, so that:

(1) There are no non trivial nilpotent elements in a skew meadow.

If e is idempotent (e·e = e), and x is arbitrary then simple computation shows
that e · x · (1 − e) and (1 − e) · x · e are idempotent. therefore e · x · (1 − e) = 0
and (1 − e) · x · e = 0, which shows that e · x = e · x · e and x · e = e · x · e. We
conclude that e · x = x · e, so that:

(2) Idempotent elements are central, they commute with every element.

In the following computation we underline the part that is modified according
to the axiom Ril:

x · x−1 · x · x−1 = x · x−1 · x−1 · x · x · x−1 = x−1 · x · x · x−1 = x · x−1

and we conclude that

(3) x · x−1 (and substituting x−1 for x also x−1 · x) is idempotent.

By (3) we have x · x−1 = x · x−1 · x · x−1, and also x−1 · x = x−1 · x · x−1 · x.
By (2) the first underlined expression commutes with its right neighbor and

the second underlined expression commutes with its left neighbor, and in both
cases we obtain the product x · x−1 · x−1 · x. Therefore

(4) x · x−1 = x−1 · x

In particular x · x−1 · x = x−1 · x · x = x, so that

(5) The equation Ril′, x · x−1 · x = x holds in every skew meadow.

172 J. Bergstram, Y. Hirshfeld, and J. Tucker

The following theorem will connect skew meadows (and in particular mead-
ows) with products of division rings (respectively, with products of fields).

Theorem 1. Let S be a skew meadow and x �= 0 an element. There is a homo-
morphism from S onto a division ring that respects addition, multiplication and
inverse, and that does not map x to 0.

Proof (outline). The proof has three ingredients:

1. Write e = x · x−1. By the axioms and by what was already established we
know that e is idempotent, e · x = x · e = x and e · x−1 = x−1 · e = x−1. It
follows that:
– e · R is a skew meadow in which x is invertible.
– The map H(z) = e · z is a ring homomorphism from R onto e · R, with

H(x) = x.
2. If J is a maximal two sided ideal in a meadow then the quotient ring is a ring

with division, and invertible elements are not mapped to 0. The significant
fact here is that if a is not in J then there is some b such that a·b is equivalent
to 1 modulo J , so that every element in the quotient is invertible. We denote
by f the idempotent a · a−1. If f ∈ J then also a /∈ J . Hence J + f · R is a
two sided ideal properly extending J , and therefore it is R. Therefore there
are i ∈ J and r ∈ R such that 1 = i + f · r = i + a · a−1 · r, which shows that
a−1 · r satisfies the requirement.

3. Composing H with the quotient mapping we obtain a ring homomorphism
onto a division ring that does not map x to 0. We then note that by can-
cellation in division rings every ring homomorphism from a meadow into a
division ring preserves also inverses. ��

3.3 Skew Meadows and Division Rings

From the previous theorem we conclude:

Theorem 2

1. A structure in the signature of meadows is a skew meadow if and only if
it is isomorphic to a substructure of a product of division rings, and it is
a meadow if and only if it is isomorphic to a substructure of a product of
fields.

2. The equational theory of skew meadows entails all the equations that are true
in division rings. The equational theory of meadows entails all the equations
that are true in fields.

Proof (outline). Every product of division rings, or substructure of one, is a skew
meadow, since division rings are skew meadows and products and substructures
preserve equations. On the other hand if R is a skew meadow, then for every
x ∈ R there is some division ring Dx and a homomorphism hx : R −→ Dx,
such that hx(x) �= 0. We combine these homomorphisms to a homomorphism
into the Cartesian product:

Fields, Meadows and Abstract Data Types 173

H : R −→
∏

x∈R

Dx

Such that H(z) has hx(z) at the xth entry. Since hz(z) �= 0 the kernel of the
homomorphism is trivial. This proves the first claim. Every equation that holds
universally in division rings holds also in products of division rings, and in sub-
structures of products of division rings. Therefore also in all the skew fields. ��

We can do a little better:

Theorem 3. Every finite skew meadow is commutative, and is in fact isomor-
phic to a finite product of finite fields.

Proof (outline). Assume that the skew meadow M is finite, and check the divi-
sion rings whose Cartesian product was used for the embedding of M. Each was
a homomorphic image of M, and hence a finite division ring. By Wedderburn’s
theorem [?] it is necessarily commutative. There was one component correspond-
ing to any element of M, so that it is a finite product of fields. It probably can
be shown that if the minimal number of components is taken then the isomor-
phism is onto the product. We took a different path, interesting for its own sake,
showing that a finite meadow is the Cartesian product of its minimal ideals,and
these ideals are fields (each with its private unit, which is an idempotent that
generates the ideal in the meadow). ��

4 Strongly Von Neumann Regular Rings

Long before Meadows were introduced, Von Neumann investigated function rings
[13], and he found that some of them, in particular every ring of matrices over
a field, satisfy the (Von Neumann) Regularity property:

∀x∃y(x · y · x = x)

Every skew meadow is necessarily a regular ring. The converse is not true: A
ring of matrices over a finite field is a finite regular ring which is not commutative,
and therefore it cannot support an inverse function that makes it a skew meadow.

Von Neumann regular rings were, and are, the subject of intensive investiga-
tion. Goodearl’s book [6], is a good source on the subject. The property which
is dual to regularity and which interests us is called strong regularity in [6]:

Definition 2. A ring is strongly regular if it satisfies the axiom:

∀x∃y(y · x · x = x)

Using ingredients from the proof of Theorem 3.5 of [6], we prove the analogue
to Theorem 32

Theorem 4. Let R be a strongly regular ring, and let a �= 0 be an element.
There is a ring homomorphism from R onto a division ring which does not map
a to 0.

174 J. Bergstram, Y. Hirshfeld, and J. Tucker

Proof (outline). The proof is quite different from the proof of theorem 32. We
note that in strongly regular rings there are no nilpotent elements; if x2 = 0
then x = 0 by ∀x∃y(y · x · x = x). It follows that an �= 0 for every n . Using
Zorn’s lemma we find a maximal two sided ideal J that does not contain any
power of a, and we show that it is a prime ideal, i.e, if x · R · y ⊆ J then x ∈ J
or y ∈ J . Indeed if xRy ⊆ J and x, y /∈ J then a has a power in either of the
two ideals generated by J and either one of x, y. Therefore there are j, j′ in J ,
and x1, · · · , xn, x′

1, · · · , x′
n and y1, · · · , yn′ , y′

1, · · · , y′
n′ such that

am = j + x1 · x · x′
1 + · · · + xn · x · x′

n

and
am′

= j′ + y1 · y · y′
1 + · · · + yn′ · y · y′

n′

Multiplying the two expressions on the right hand side we see that all the
summands that do not include j or j′ are of the form (xi · x · x′

i)(yi′ · y · y′
i′).

Since the inner subterm x · x′
i · yi′ · y is in J by x · R · y ⊆ J , these summands

are also in J , contradicting the fact that am+m′
is not in J .

The image of a in R/J is not 0 and it remains to show that R/J is a division
ring. We show first that it has no zero divisors. If [x] �= 0 and [y] �= 0 in R/J
then x /∈ J and y /∈ J . By primeness there is some z such that x ·z ·y /∈ J , so that
[x ·z ·y] �= 0. Strong regularity is preserved under homomorphisms, so that there
are no nilpotent elements, and the square is also not 0. I.e, [x · z · y] · [x · z · y] =
[x] · [z] · [y] · [x] · [z] · [y] �= 0. In particular [y] · [x] �= 0.

We conclude by observing that a strongly regular ring with no zero divisors
is a division ring. For every x �= 0 there is some y such that y · x · x = x and
therefore (y · x − 1) · x = 0. Since x �= 0 we conclude that y · x − 1 = 0. Thus
every non zero element has an inverse. This concludes the proof. ��

We note for further use that the last step in the proof shows that if in a ring R
we have y · x · x = x or x · y · x = x, and h(x) �= 0 for a homomorphism onto a
division ring, h : R → D then h(y) = (h(x))−1.

We have now the following characterization for strongly regular rings:

Theorem 5

1. A ring R is strongly regular if and only if it supports an inverse function
that makes the ring into a skew meadow.

2. Such an inverse function is unique.

Proof (outline). One direction is clear: A skew meadow is clearly a strongly
regular ring.

As before We choose for every element x of the ring a division ring Dx, such
that R is mapped onto Dx by a homomorphism hx with hx(x) �= 0. We denote by
H the monomorphism from R into the Cartesian product of the division rings,
that maps every element z to the sequence that has h(x)(z) as its xth entry. Let
R′ be the image of R:

H : R −→ R′ ⊆
∏

x∈R

Dx

Fields, Meadows and Abstract Data Types 175

R is isomorphic to a substructure of a product of division rings. But this
does not conclude our quest! The isomorphism is not with respect to the inverse
function, and it is not clear at all that R′ is closed under the inverse function.
However the particulars of the monomorphism are enough to prove the following
claim:

Assume that y · x · x = x in R. Then

– x · y · x = x.
– If we put y′ = y · x · y then x · y · x = x and y′ · x · y′ = y′

– H(y′) = (H(x))−1

All these facts hold easily in R′. For every z, hz(y · x) is 1 if hz(x) �= 0,
and it is 0 if hz(x) = 0. In either case H(y · x) is a sequence of zeros and ones
that commutes with every element in the Cartesian product. The second item
follows easily from the first one and we prove the third: For every z, if hz(x) �= 0
then hz(y′) = (hz(x))−1 by x · y · x = x. And if hz(x) = 0 then hz(y′) = 0 by
y′ = y′ · x · y′. Therefore in every entry hz(y′) = (hz(x))−1.

Thus R is ring isomorphic to a substructure of the product
∏

x∈R Dx that is
closed under the inverse function, and is therefore a skew meadow. The isomor-
phism induces an inverse operation on R and makes R into a skew meadow.

The uniqueness of the inverse function follows from the fact that a homomor-
phism of a skew meadow onto a division ring preserves also inverses. It follows
that if there are two inverse function on R then the homomorphism on each
Dx reduces both inverse functions to the inverse in Dx. Therefore under the
ring monomorphism into

∏
x∈R Dx both inverses are identified with the inverse

function of
∏

x∈R Dx. ��

5 What about Regular Rings and the Weaker Axiom,
Ril′?

With hindsight, it would be natural to declare that Ril is “the right axiom” and
discard Ril′ as a corollary which curiously is quite weaker than Ril. Because of
Von Neumann’s theory emphasis on the condition ∀x∃y[x·(x−1 ·x) = x], and not
on strong regularity, we cannot ignore the corresponding property x·(x−1 ·x) = x.
We know a little about it, and we mainly list open questions. We will call a ring
with an inverse function a “weak skew meadow” if it satisfies the axioms of skew
meadows with the axiom Ril′ replacing Ril.

1. Not every weak skew meadow is a skew meadow. In fact there are finite non
commutative weak skew meadows: By a careful choice of inverses we can
define a reflexive inverse function in the ring of two by two matrices, over a
field of characteristics different from 2, which satisfies x · x−1 · x = x.

2. We do not know if a ring has at most one inverse function that makes it a
weak skew meadow (we know that a skew meadow can not support a second
unary operation that makes it into a weak skew meadow because the proof
of Theorem 43 applies also in this case).

176 J. Bergstram, Y. Hirshfeld, and J. Tucker

3. We do not know if every regular ring supports an inverse function that makes
it into a weak skew meadow.

There are some natural properties that follow from the axioms of skew mead-
ows, and their status with respect to weak skew meadow axioms is unclear. For
each of these properties and for any combination of them, there are three pos-
sibilities: The property may be implied by the weak skew meadow axioms, or it
may complete the weak axioms and imply the strong skew meadow axioms, or
its addition may describe a new class that lies between the class of weak mead-
ows and that of strong meadow. In the last case the new axiom may or may not
imply the non existence of a finite non commutative algebra in the class. Here
are some natural properties that are taken for granted in division rings and skew
meadows and their status is unclear for weak skew meadows:

1. x · x−1 = x−1 · x.
2. (x · y)−1 = y−1x−1.
3. e−1 = e if e is idempotent (this property is not an equational property).
4. The inverse function is unique (not an equational property).

In weak skew meadows, item (1) implies, trivially, strong regularity. Items
(2,3) together imply a little less trivially strong regularity. It is not clear if
one of the items (2,3,4) by itself or if any combination other than (2,3) implies
regularity, or at least prevents the theory from having finite non commutative
models. We conclude that we are far from understanding the difference between
the seemingly similar axioms (x−1 · x) · x = x and x · x−1 · x = x.

6 Algebraic Specification of the Rational Field

We return to the question that started it all: Which equational theory has the
rational field as its initial structure? The answer was given by the first and the
third authors in [2]. We suggest to call it “the theory of Lagrange meadows”.
It is the equational theory of (commutative) skew meadows together with the
following equation

(1 + x2 + y2 + z2 + v2) · (1 + x2 + y2 + z2 + v2)−1 = 1 .

Theorem 6. The field Q of rational numbers is the initial algebra in the class
of Lagrange meadows, and moreover any prime algebra in the class is isomorphic
to Q.

Proof (outline). By Lagrange four squares theorem every natural number n can
be written as the sum of four squares so that if n �= 0 we can write 1 + · · · + 1

︸ ︷︷ ︸
n

in the form (1 + x2 + y2 + z2 + v2). This assures that for every natural n the
term n = 1 + · · · + 1

︸ ︷︷ ︸
n

is not 0. It is not hard to prove by structural induction

that in Lagrange meadows every fixed term equals to 0 or to a term of the

Fields, Meadows and Abstract Data Types 177

form n · (m)−1, which is different from 0. Therefore the prime algebra in every
Lagrange meadow is the field of rational numbers, and we conclude that the field
of rational numbers is the initial algebra for the equational theory of Lagrange
meadows. ��

Thus the abstract type of rational number is algebraically specified as an initial
algebra.

7 Conclusion

The definition of meadows and skew meadow enabled us to contribute in three
different areas:

– In the theory of Universal Algebras we identified the equational theory of
fields and rings with division, and proved that it was just the equational
theory for meadows and skew meadows.

– In Ring Theory we characterized the strongly regular Von Neuman rings
as those that support a (necessarily unique) inverse function that makes it
into a skew meadow. The inverse function is easily defined in term of any
choice function that associates with every element x a partner y for which
y · x · x = x.

– In the theory of Abstract Types we specified the type of the rational numbers
as the algebra specified by the axioms of Lagrange meadows.

This seems like an invitation to an interesting domain of research that can
shed light on the theories of universal algebras, of regular rings and of algebraic
specification of data types. In particular, what is the significance of the fact
that an algebraic theory has a single prime algebra, as in the case of Lagrange
meadows that specify the rational field, but in contrast to the theory of mead-
ows in general? Is there any additional importance to the equational theory of
meadows, and of Lagrange meadows?

References

1. Bergman, G.M.: An Invitation to General Algebra and Universal Constructions.
Henry Helson (1998)

2. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J.
ACM 54(2), Article 7 (April 2007)

3. Burris, S.N., Sankappanavar, H.P.: A Course in Universal Algebra, free online
edition. Springer, Heidelberg (1981)

4. Cohn, P.M.: Universal Algebra. D. Reidel Publishing, Dordrecht (1981)
5. Gougen, J.A., Thacher, J.W., Wagner, E.G.: An initial algebra approach to the

specification, correctness and implementation of abstract data types. In: Yeh, R.T.
(ed.) Current Trends in Programing Methodology, VI, Data Structuring, pp. 80–
149. Prentice Hall, Englewood Cliffs (1978)

6. Goodearl, K.R.: Von Neumann regular rings. Pitman, London, San Francisco, Mel-
burne (1979)

178 J. Bergstram, Y. Hirshfeld, and J. Tucker

7. Graetzer, G.: Universal Algebra. Hobby, David, and Ralph McKenzie (1988)
8. Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of Abstract Data Types. and

Teubner. Wiley and Teubner, Chichester (1996)
9. Loeckx, J., Ehrich, H.-D., Wolf, M.: Algebraic specification of abstract data types.

In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in
Computer Science, Oxford University Press, Oxford (2000)

10. Meinke, K., Tucker, J.V.: Universal Algebra. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of logic in computer science I, Mathematical struc-
tures, pp. 189–411 (1992)

11. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bulletin of the
American Mathematical Society 26, 394–395 (1920)

12. Penrose, R.: A generalized inverse for matrices. Proceedings of the Cambridge
Philosophical Society 51, 406–413 (1955)

13. von Neumann, J.: Continuous geometries. Princeton University Press, Princeton
(1960)

14. Maclagan-Wedderburn, J.H.: A theorem on finite algebras. Transactions of the
American Mathematical Society 6, 349–352 (1905)

15. Wikipedia, Universal Algebra,
http://en.wikipedia.org/wiki/Universal algebra

16. Wirsing, M.: Algebraic Specification. In: Leeuwen, J.v. (ed.) Handbook of Theo-
retical Computer Science. Formal Models and Sematics, vol. B, Elsevier and MIT
Press (1990)

http://en.wikipedia.org/wiki/Universal_algebra

Why Sets?�

Andreas Blass1,�� and Yuri Gurevich2

1 Mathematics Department, University of Michigan, Ann Arbor, MI 48109, USA
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Dedicated to Boaz Trakhtenbrot on the occasion of his 85th birthday.

Abstract. Sets play a key role in foundations of mathematics. Why?
To what extent is it an accident of history? Imagine that you have a
chance to talk to mathematicians from a far-away planet. Would their
mathematics be set-based? What are the alternatives to the set-theoretic
foundation of mathematics? Besides, set theory seems to play a signifi-
cant role in computer science; is there a good justification for that? We
discuss these and some related issues.

1 Sets in Computer Science

Quisani: I wonder why sets play such a prominent role in foundations of math-
ematics. To what extent is it an accident of history? And I have questions about
the role of sets in computer science.

Author1: Have you studied set theory?

Q: Not really but I came across set theory when I studied discrete mathemat-
ics and logic, and I looked into Enderton’s book [21] a while ago. I remember
that ZFC, first-order Zermelo-Fraenkel set theory with the axiom of choice, be-
came for all practical purposes the foundation of mathematics. I can probably
reconstruct the ZFC axioms.

A: Do you remember the intuitive model for ZFC.

Q: Let me see. You consider the so-called cumulative hierarchy of sets. It is a
transfinite hierarchy, so that you have levels 0, 1, . . . , ω, ω + 1, . . . On the level
zero, you have the empty set and possibly some atoms. On any other level α you
have the sets of objects that occur on levels < α. Intuitively the process never
ends. To model ZFC, you just go far enough in this hierarchy so that all axioms
are satisfied. Is that correct, more or less?
� This is a revised version of an article originally published in the Bulletin of the

European Association for Theoretical Computer Science, Number 84, October 2004,
and republished here with permission of the Association.

�� Blass was partially supported by NSF grant DMS–0070723 and by a grant from
Microsoft Research. This paper was written during a visit to Microsoft Research.

1 As in our previous conversations with Quisani, we simplified the record of the con-
versation by blending the two authors into one who prefers “we” to “I”.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 179–198, 2008.

180 A. Blass and Y. Gurevich

A: More or less. ZFC is intended to describe the whole, never-ending universe
of sets obtained in the cumulative hierarchy, but technically this universe is not
a model because it’s not a set. That’s the reason for stopping at a stage where
all the axioms are satisfied. (By Gödel’s second incompleteness theorem, the
existence of such a stage is an assumption that goes beyond ZFC, but it is a
rather mild additional assumption.)

You should be careful about the phrase “far enough . . . so that all axioms
are satisfied” because “far enough” seems to suggest that any sufficiently large
number of steps will do. But in fact, once you’ve got the axioms satisfied, you
can’t just go on for another step or two; you need to add many more levels to
get the axioms satisfied again. You should stop at some level where your model,
consisting of the sets created so far, has the closure properties required by the
axioms.

Q: OK. Turning to computer science, I read at the Z users website [58] the
following: “The formal specification notation Z (pronounced “zed”), useful for
describing computer-based systems, is based on Zermelo-Fraenkel set theory and
first order predicate logic.” And I was somewhat surprised.

A: Were you surprised that they use the ZF system rather than ZFC, the
Zermelo-Fraenkel system with the axiom of choice? As long as we consider only
finite families of sets, the axiom of choice is unnecessary. That is, one can prove
in ZF that, if X is a finite family of nonempty sets, then there is a function
assigning to each set S ∈ X one of its members. Furthermore, there is a wide
class of statements, which may involve infinite sets, but for which one can prove
a metatheorem saying that any sentence in this class, if provable in ZFC, is al-
ready provable in ZF; see [49, Sect. 1] for details. This class seems wide enough
to cover anything likely to arise in computer science, even in its more abstract
parts.

Q: That is an interesting issue in its own right but I was surprised by something
else. Set theory wasn’t developed to compute with. It was developed to be a
foundation of mathematics.

A: There are many things that were developed for one purpose and are used for
another.

Q: Sure. But, because set theory was so successful in foundations of mathematics,
there may be an exaggerated expectation of the role that set theory can play
in foundations of computer science. Let me try to develop my thought. What
makes set theory so useful in foundations of mathematics? I see two key aspects.
One aspect is that the notion of set is intuitively simple.

A: Well, it took time and effort to clarify the intuition about sets and to deal
with set-theoretic paradoxes; see for example [27] and [36]. But we agree that
the notion of set is intuitively simple.

Why Sets? 181

Q: The other aspect is that set theory is very expressive and succinct: mathemat-
ics can be faithfully and naturally translated into set theory. This is extremely
important. Imagine that somebody claims a theorem but you don’t understand
some notions involved. You can ask the claimer to define the notions more and
more precisely. In the final account, the whole proof can be reduced to ZFC, and
then the verification becomes mechanical.

Can sets play a similar role in computing? I see a big difference between the
reduction to set theory in mathematics and in computing. The mathematicians
do not actually translate their stuff into set theory. They just convince themselves
that their subject is translatable.

A: Bourbaki [10] made a serious attempt to actually translate a nontrivial por-
tion of mathematics into set theory, but it is an exception.

Q: Right. In computing, such translations have to be taken seriously. If you want
to use a high-level language that is compiled to some set-theoretic engine, then
a compiler should exist in real life, not only in principle. I guess all this boils
down to the question whether the datatype of sets can be the basic datatype in
computing. Can sets and set operations be implemented efficiently? Can other
data be succinctly interpreted in set theory.

A: There has been an attempt made in this direction [55].

Q: Yes, and most people remained unconvinced that this was the way to go.
Sequences, or lists, are appropriate as the basic datastructure.

A: We know one example where sets turned out to be more succinct than se-
quences as the basic datastructure.

Q: Tell me about it.

A: OK, but bear with us as we explain the background. We consider computa-
tions where inputs are finite structures, for example graphs, rather than strings.

Q: Every such structure can be presented as a string.

A: That is true. But we restrict attention to computing properties that depend
only on the isomorphism type of the input structure. For example, given a bi-
partite graph, decide whether it has a matching. Call such properties invariant
queries.

Q: Why the restriction?

A: Because we are interested in queries that are independent of the way the
input structure is presented or implemented. Consider, for example, a database
query. You want that the result depends on the database only and not on exactly
how it is stored.

Q: Fine; what is the problem?

182 A. Blass and Y. Gurevich

A: The original problem was this: Does there exist a query language L such that

(Restrained) every query that can be formulated in L is an invariant query
computable in polynomial time, and

(Maximally expressive) every polynomial-time computable invariant query
can be formulated in L.

Q: How can one ensure that all L-queries are invariant?

A: Think about first-order logic as a query language. Every first-order sentence
is a query. First-order queries are pure in the sense that they give you no means to
express a property of the input structure that is not preserved by isomorphisms.
Most restrained languages in the literature are pure in that same sense.

Q: But, in principle, can a restrained language allow you to have non-invariant
intermediate results? For example, can you compute a particular matching,
throw away the matching and return “Yes, there is a matching”?

A: Yes, a restrained language may have non-invariant intermediate results. In
fact, Ashok Chandra and David Harel, who raised the original problem in [11],
considered Turing machines M that are invariant in the following sense: If M
accepts one string representation of the given finite structure then it accepts them
all. They asked whether there is a decidable set L of invariant polynomial time
Turing machines such that, for every invariant polynomial time Turing machine
T1, there is a machine T2 ∈ L that computes the same query as T1 does. In
the case of a positive answer, such an L would be restrained and maximally
expressive.

Q: Hmm, a decidable set of Turing machines does not look like a language.

A: One of us conjectured [31] that there is no query language, even as ugly as a
decidable set of Turing machines, that is restrained and maximally expressive.

Q: But one can introduce, I guess, more and more expressive restrained lan-
guages.

A: Indeed. In particular, the necessity to deal with invariant database queries
led to the introduction of a number of restrained query languages [1] including
the polynomial-time version of the language while new. In [8], Saharon Shelah
and the two of us proposed a query language, let us call it BGS, that is based on
set theory. BGS is pure in the sense discussed above. A polynomial time bounded
version of BGS, let us call it Ptime BGS, is a restrained query language.

Q: In what sense is BGS set-theoretic?

A: It is convenient to think of BGS as a programming language. A state of a
BGS program includes the input structure A, which is finite, but the state itself
is an infinite structure. It contains, as elements, all hereditarily finite sets built
from the elements of A. These are sets composed from the elements of A by
repeated use of the pairing operation {x, y} and the union operation

⋃
(x) =

{y : ∃z (y ∈ z ∈ x)}. BGS uses standard set theoretic operations and employs

Why Sets? 183

comprehension terms {t(x) : x ∈ r ∧ ϕ(x)}. In any case, to make a long story
short, it turned out that Ptime BGS was more expressive than the Ptime version
of the language while new that works with sequences; see [9] for details. For the
purpose at hand, sets happened to be more efficient than sequences.

Q: I don’t understand this. A set s can be easily represented by a sequence of
its elements.

A: Which sequence?

Q: Oh, I see. You may have no means to define a particular sequence of the
elements of s and you cannot pick an arbitrary sequence because this would
violate the purity of BGS.

A: Right. You may want to consider all |s|! different sequences of the elements
of s. This does not violate the purity of BGS. But, because of the polynomial
time restriction, you may not have the time to deal with |s|! sequences.

On the other hand, a sequence [a1, a2, . . . , ak] can be succinctly represented
by a set {[i, ai] : 1 ≤ i ≤ k}. Ordered pairs have a simple set-theoretic repre-
sentation due to Kuratowski: [a, b] = {{a, b}, {a}}.

Q: I agree that, in your context, sets are more appropriate than sequences.

A: It is also convenient to have the datatype of sets available in software speci-
fication languages.

Q: But closer to the hardware level, under the hood so to speak, we cannot deal
with sets directly. They have to be represented e.g. by means of sequences.

A: You know hardware better than we do. Can one build computers that deal
with sets directly?

Q: A good question. The current technology would not support a set oriented
architecture.

A: What about quantum or DNA-based computing?

Q: I doubt that these new paradigms will allow us to deal with sets directly but
your guess is as good as mine.

2 Sets in Mathematics

Q: Let me return to the question why sets play such a prominent role in the
foundation of mathematics. But first, let me ask a more basic question: Why
do we need foundations at all? Is mathematics in danger of collapsing? Most
mathematicians that I know aren’t concerned with foundations, and they seem
to do OK.

A: Well, you already mentioned the fact that an alleged proof can be made more
and more detailed until it becomes mechanically verifiable.

184 A. Blass and Y. Gurevich

Q: Yes, but I’d hope that this could be done with axioms that talk about
all the different sorts of objects mathematicians use – real numbers, functions,
sequences, Hilbert spaces, etc. – and that directly reflect the facts that mathe-
maticians routinely use. What’s the advantage of reducing everything to sets?

A: We see three advantages. First, people have already explicitly written down
adequate axiomatizations of set theory. The same could probably be done for
the sort of rich theory that you described, but it would take a nontrivial effort.
Besides, new sorts of objects keep entering the mathematical world.

Second, when proving that a statement is consistent with ordinary mathe-
matics, one only has to produce a model of set theory in which the statement is
true. Without the set theoretic foundation, one would have to construct a model
of a much richer theory.

Third, the reduction of mathematics to set theory means that the philosopher
who wants to understand the nature of mathematical concepts needs only to
understand one concept, namely sets.

By the way, if someone developed mathematics on the basis of a simple concept
other than sets, then these advantages would apply to that alternative foundation
also.

Q: These advantages make sense but they also show why a typical mathematician
never has to use the reduction to set theory. Actually, the third advantage is not
entirely clear to me; it seems that by reducing mathematics to set theory the
philosopher can lose some of its semantic or intuitive content. Consider a proof
that complex polynomials have roots, and imagine a set-theoretic formalization
of it.

A: It’s not a matter of the philosopher’s understanding particular mathematical
results or the intuition behind them, but rather understanding the general nature
of abstract, mathematical concepts.

Q: Anyway, granting the value of a reduction of mathematics to a simple founda-
tion, why should it be set theory? For example, since sequences are so important
in computing, it’s natural to ask whether they could replace sets in the foun-
dations of mathematics. Similarly, Dijkstra has suggested that multisets, also
known as bags, are a natural, basic notion and should play a more prominent
role in mathematics [20].

A: Both transfinite sequences and multisets have recently been proposed as
foundations for mathematics in [19], where axiomatizations are given and the
basic theories developed. It is too soon to say how useful or how widely accepted
these foundations will be. The axiom systems proposed in [19] can be interpreted
in ZFC and vice versa, so they could be regarded as just providing an alternative
view of the usual universe of sets, but such alternatives may turn out to be useful
aids to the intuition and they may lead to technical simplifications in some topics
(and complications in others).

Why Sets? 185

2.1 Adequacy of Sets

Q: This notion of interpretations seems to be crucial for foundations. The way
we use set theory as a foundation is by interpreting into it the richer theories –
of real numbers, functions, sequences, Hilbert spaces, etc. – that mathematicians
really work with. So if another theory, say of transfinite lists, and set theory are
each interpretable in the other, then they can serve as foundations for exactly
the same body of mathematics, just by composing interpretations.

A: That’s right, but of course composing may lead to more complicated inter-
pretations.

Q: The crucial point, though, is that set theory can serve, via suitable, possibly
complicated interpretations, as a foundation for all of ordinary mathematics. So
it seems the problem of foundations for mathematics is completely solved; in
other words, the study of foundations of mathematics is dead.

A: Not so fast! There are things in ordinary mathematics that “stick out” of
the set-theoretic foundation.

Q: Like what?

A: If we take “stick out” in the strong sense of not even being expressible in the
usual set-theoretic framework, then category theory provides an example. One
wants the categories of all groups, all topological spaces, etc., and these aren’t
sets.

Q: So you would need proper classes, right.

A: Actually, you’d need more, since you also want things like the category of all
functors from topological spaces to groups. There have been various proposals
for reformulating category theory to fit into a set-like framework, ZFC with some
additional axioms, but they end up talking about the category of small groups,
small topological spaces, etc., where “small” amounts to considering only things
below a certain stage of the cumulative hierarchy. In one of these proposals, that
of Feferman [22], results proved about, say, small groups automatically imply
the same results about all groups, but there is still no category of all groups.

Q: You referred to the strong sense of “stick out”, so I suppose there’s a weak
sense.

A: That would refer to questions that can be formulated in the ZFC context but
cannot be settled on the basis of the ZFC axioms. There are a great many such
questions, not only in set theory itself but in topology, algebra, and analysis; see
[52] for a brief description of some examples. And sometimes even the inability
of ZFC to prove certain facts depends on assumptions beyond ZFC,

Q: That last statement is confusing. Give me an example.

A: Solovay [57] proved that the following theory is consistent: ZF (without the
axiom of choice) plus “all sets of real numbers are Lebesgue measurable” plus

186 A. Blass and Y. Gurevich

the axiom of dependent choice (a weak form of the axiom of choice that is suffi-
cient for all “nice” results in analysis, like the countable additiviity of Lebesgue
measure, but not for “pathology” like non-measurable sets). For people who
won’t give up the axiom of choice, he also showed the consistency of ZFC plus
all definable sets of real numbers are Lebesgue measurable (where “definable”
refers to definitions by formulas of set theory in which real numbers and ordinal
numbers can appear as parameters). But his proof for these results used the
assumption that ZFC is consistent with the existence of an inaccessible cardinal
(a certain sort of large cardinal, whose existence cannot be proved in ZFC). And
Shelah [56] proved that there is no way to eliminate the assumption about an
inaccessible cardinal from Solovay’s proof. So the inability of ZFC to explicitly
define (even with real and ordinal parameters) a specific set and prove that it
isn’t measurable is established subject to an assumption about cardinal numbers
that themselves go beyond what ZFC can provide.

Q: I find the stronger sort of sticking out to be more interesting, because it
seems to require new foundational concepts, not just new axioms.

A: New axioms are an interesting topic too. Are they really needed? And if so,
then what axioms are appropriate? And why? There’s a wide-ranging discussion
of such issues in the collection [26].

Q: Why is it that almost all mathematical concepts can be represented set-
theoretically, and even the exception you cited, category theory, seems to stick
out in a way that doesn’t suggest fundamental new concepts?

A: We don’t know. It might be a historical accident. That is, maybe it is just the
mathematics developed by human beings until now that is (almost) covered by
set theory, but not necessarily the mathematics of the future or of the inhabitants
of far-away planets. Or the set-theoretic interpretability of our mathematics
might be due to the structure of human brains; so the human race’s future
mathematics would admit a set-theoretic foundation but that of alien races might
not. Or set-theoretic interpretability might be a really intrinsic property of all
rigorous, mathematical thought. Or there might be other explanations; feel free
to dream some up.

2.2 Non-ZF Sets

Q: Returning to the intuitive idea of sets, is ZFC still the only game in town?

A: It’s the biggest game, but there are others. For example, there are theories
of sets and proper classes which extend ZFC. The most prominent ones are the
von Neumann-Bernays-Gödel theory (NBG) and the Morse-Kelley theory (MK).
In both cases the idea is to continue the cumulative hierarchy for one more step.
The collections created at that last step are called proper classes.

Q: Wait a minute! You said that ZFC is intended to describe the whole cumu-
lative hierarchy of sets. So how can there be another step? And if there is one
more step, why not two or many?

Why Sets? 187

A: We admit that this extra step doesn’t quite make sense philosophically, in the
light of the intended meaning of “set” in the ZFC axioms, but it is convenient
technically. Consider some property of sets, for example the property of having
exactly three members. It is convenient to refer to the multitude of the sets with
this property as a single object. If this object isn’t a set then it is a proper class.

There is also a less known but rather elegant extension of ZFC due to Ack-
ermann [2]. It uses a distinction between sets and classes, but not the same
distinction as in NBG or MK. For Ackermann, what makes a class a set is not
that it is small but rather that it is defined without reference to the totality of
all sets. It turns out [43,51] that, despite the difference in points of view, Acker-
mann’s set theory plus an axiom of foundation is equivalent to ZF in the sense
that they prove the same theorems about sets. Lévy [43] showed how to interpret
Ackermann’s axioms by taking an initial segment of the cumulative hierarchy as
the domain of sets and a much longer initial segment as the domain of classes.

Q: Are there set theories that contradict ZFC?

A: Yes. One is Quine’s “New Foundations” (NF), named after the article [50]
in which it was proposed. Another is Aczel’s set theory with the anti-foundation
axiom [3,6].

Quine’s NF is axiomatically very simple. It has the axiom of extensionality
(just as in ZF) and an axiom schema of comprehension, asserting the existence
of {x : ϕ(x)} whenever ϕ(x) is a stratified formula. “Stratified” means that one
can attach integer “types” to all the variables so that, if v ∈ w occurs in ϕ(x),
then type(v) + 1 = type(w), and if v = w occurs then type(v) = type(w).

Q: This looks just like simple type theory.

A: Yes, but the types aren’t part of the formula; stratification means only that
there exist appropriate types. The point is that this restriction of comprehension
seems sufficient to avoid the paradoxes.

Q: I see that it avoids Russell’s paradox, since ¬(x ∈ x) isn’t stratified, but how
do you know that it avoids all paradoxes?

A: We only said it seems to avoid paradoxes. Nobody has yet deduced a con-
tradiction in NF, but nobody has a consistency proof (relative to, say, ZFC or
even ZFC with large cardinals). But Jensen [34] has shown that NF becomes
consistent if one weakens the extensionality axiom to allow atoms. Rosser [53]
has shown how to develop many basic mathematical concepts and results in NF.
For lots of information about NF and (especially) the variant NFU with atoms,
see Randall Holmes’s web site [32].

Q: How does NF contradict the idea of the cumulative hierarchy?

A: The formula x = x is stratified, so it is an axiom of NF that there is a universal
set, the set of all sets. No such thing can exist in the cumulative hierarchy, which
is never completed.

Q: And what about anti-foundation?

188 A. Blass and Y. Gurevich

A: This theory is similar to ZFC, but it allows sets that violate the axiom of
foundation. For example, you can have a set x such that x ∈ x; you can even
have x = {x}.

Q: And you could have x ∈ y ∈ x and even x = {y} ∧ y = {x}, right?

A: Yes, but the anti-foundation axiom imposes tight controls on these things.
There is only one x such that x = {x}. Using that x as the value of both x and y
you get x = {y}∧y = {x}, and this pair of equations has no other solutions. The
axiom says, very roughly, that if you propose some binary relation to serve (up
to isomorphism) as the membership relation in a transitive set, then, as long as
it’s consistent with the axiom of extensionality, it will be realized exactly once. It
turns out that this axiomatic system and ZFC, though they prove quite different
things, are mutually interpretable. That is, one can define, within either of the
two theories, strange notions of “set” and “membership” that satisfy the axioms
of the other theory.

2.3 Categories

Q: What about possible replacements for sets as the fundamental concept for
mathematics? You mentioned that category theory sticks out of the standard set-
theoretic framework, and I’ve heard people say that category theory itself could
replace set theory as a foundation for mathematics. But I don’t understand them.
A category consists of a set (or class) of objects, plus morphisms and additional
structure. So category theory presupposes the notion of set. How can it serve as
a foundation by itself?

A: The idea that the objects (and morphisms) of a category must be viewed
as forming a set seems to be an artifact of the standard, set-theoretic way of
presenting general structures, namely as sets with additional structure. One can
write down the axioms of category theory as first-order sentences and then do
proofs from these axioms without ever mentioning sets (or classes).

Q: Sure, but unless you’re a pure formalist, you have to wonder what these first-
order sentences mean. How can you explain their semantics without invoking the
traditional notion of structures for first-order logic, a notion that begins with “a
non-empty set called the universe of discourse (or base set) . . . ”?

A: This seems like another artifact of the set-theoretic mind-set, insisting that
the semantics of first-order sentences must be expressed in terms of sets. People
understood first-order sentences long before Tarski introduced the set-theoretic
definition of semantics. Think of that set-theoretic definition as representing,
within set theory, a pre-existing concept of meaning, just as Dedekind cuts or
Cauchy sequences represent in set theory a pre-existing concept of real number.

Q: Hmmm. I’ll have to think about that. It still seems hard to imagine the
meaning of a first-order sentence without a set for the variables to range over.
But let’s suppose, at least for the sake of the discussion, that the axioms of

Why Sets? 189

category theory make sense without presupposing sets. Those axioms seem much
too weak to serve as a foundation; after all, they have a model with one object
and one morphism.

A: That’s right. For foundational purposes, one needs axioms that describe not
just an arbitrary category but a category with additional structure, so that its
objects can represent the entities that mathematicians study.

Q: That sounds reasonable but vague. What sort of axioms are we talking about
here?

A: There have been two approaches. One is to axiomatize the category of cate-
gories and the other is to axiomatize a version of the category of sets.

Q: The first of these sounds more like a genuinely category-theoretic foundation;
the second mixes categories and sets.

A: Yes, but the first has had relatively little success.

Q: Why? What’s its history?

A: The idea was introduced by Lawvere in [40]. He proposed axioms, in the
first-order language of categories, to describe the category of categories, and to
provide tools adequate for the formalization of mathematics. But three problems
arose. First, as pointed out by Isbell in his review [33], the axioms didn’t quite
accomplish what was claimed for them. That could presumably be fixed by
modifying the axioms. But there was a second problem: Although some of the
axioms were quite nice and natural, others were rather unwieldy, and there were
a lot of them. As a result, it looked as if the axioms had just been rigged to
simulate what can be done in set theory. That’s related to the third problem:
The representation of some mathematical concepts in terms of categories was
done by, in effect, representing them in terms of sets and then treating sets
as discrete categories (categories in which the only morphisms are the identity
morphisms, so the category is essentially just its set of objects). This third point
should not be over-emphasized; some concepts were given very nice category-
theoretic definitions. For example, the natural number system is the so-called
coequalizer of a pair of morphisms between explicitly described finite categories.
But the use of discrete categories for some purposes made the whole project look
weak.

Q: So what about the other approach, axiomatizing the category of sets?

A: That approach, also pioneered by Lawvere [39], had considerably more suc-
cess, for several reasons. First, many of the basic concepts and constructions
of set theory (and even of logic, which underlies set theory) have elegant de-
scriptions in the language of categories; specifically, they can be described as
so-called adjoint functors. In the category of sets, adjoint functors provide defi-
nitions of disjoint union, cartesian product, power set, function set (i.e., the set
of all functions from X to Y), and the set of natural numbers, as well as the
logical connectives and quantifiers.

190 A. Blass and Y. Gurevich

Q: That covers quite a lot. What other advantages does the category of sets
have – or provide?

A: There is a technical advantage, namely that the axioms admit a natural weak-
ening that describes far more categories than just the category of sets. These
categories, called topoi or toposes, resemble the category of sets in many ways
(including the availability of all of the constructions listed above, except that
the existence of the set of natural numbers is usually not included in the defi-
nition of topos) but also differ in interesting ways (for example, the connectives
and quantifiers may obey intuitionistic rather than classical logic), and there
are many topoi that look quite different from the category of sets (not only
non-standard models of set theory but also categories of sheaves, categories of
sets with a group acting on them, and many others). As a result, set-theoretic
arguments can often be applied in topoi in order to obtain results about, for
example, sheaves. These ideas were introduced by Lawvere and Tierney in [42];
see [35] and [44] for further information.

Q: I don’t know what sheaves are. In any case, I care mostly about foundations,
so this technical advantage doesn’t do much for me. What more can the category
of sets do for the foundations of mathematics?

A: One can argue that the notion of abstract set described in this category-
theoretic approach is closer to ordinary mathematical practice than the cumu-
lative hierarchy described by the Zermelo-Fraenkel axioms.

Q: What is this notion of abstract set? The ZF sets look pretty abstract to me.

A: The phrase “abstract set” refers (in this context) to abstracting from any
internal structure that the elements of a set may have. A typical set in the cumu-
lative hierarchy has, as elements, other sets, and there may well be membership
relations (or more complicated set-theoretic relations) between these elements.
Abstract set theory gets rid of all this. As described in [41], an abstract set “is
supposed to have elements, each of which has no structure, and is itself to have
no internal structure, except that the elements can be distinguished as equal or
unequal, and to have no external structure except for the number of elements.”

Q: How is this closer to ordinary mathematical practice than the cumulative
hierarchy view of sets?

A: One way to describe the difference is that the abstract view gets rid of
unnecessary structure.

Q: What unnecessary structure? Give me some examples.

A: The Kuratowski representation of ordered pairs [a, b] as {{a}, {a, b}} has the
side effect that a is an element of an element of the pair. This double-element
relationship is an artifact of the particular coding of pairs and is not intrinsic to
the notion of ordered pair.

For another example, in any of the usual set-theoretic representations of the
real numbers, the basic facts about R depend on information about, say, members

Why Sets? 191

of members of real numbers – information that mathematicians would never refer
to except when giving a lecture on the set-theoretic representation of the real
numbers. The abstract view discards this sort of information. Of course, some
structural information is needed – unlike abstract sets, the real number system
has internal structure. But the relevant structure is postulated directly, say by
the axioms for a complete ordered field, not obtained indirectly as a by-product
of irrelevant structure.

Q: So if an abstract-set theorist wanted to talk about a set from the cumulative
hierarchy, with all the structure imposed by that hierarchy, he would include
that structure explicitly, rather than relying on the hierarchy to provide it.

A: Exactly. If x is a set in the cumulative hierarchy, then one can form its tran-
sitive closure t, the smallest set containing x and containing all members of its
members. Then t with the membership relation ∈ (restricted to t) is an abstract
representation of t. It no longer matters what the elements of t were, because
any isomorphic copy of the structure (t, ∈) contains the same information and
lets you recover x.

Q: I have a couple of additional questions abbout the abstract approach to the
real number system. First, it seems that we’re getting farther from category
theory and closer to set theory, especially with the completeness axiom, which
talks about arbitrary subsets of R.

A: Sets are certainly an essential ingredient of the completeness axiom for the
reals, but they can still be abstract sets; we don’t need the cumulative hierarchy
here. As we already mentioned, it is possible to describe in category-theoretic
terms the notion of power set. So category theory, in particular the notion of
adjoint functor, allows one to formulate the notion of “real number system in a
topos” without importing any notion of cumulative hierarchy.

Q: My second question concerns the notion of simply postulating the desired
properties of R, rather than proving them as the traditional set-theoretic ap-
proach does. The postulational approach looks like cheating.

A: It’s not a matter of postulating rather than proving but rather postulating
separately from proving. What is involved here is a separation of two concerns.
The first concern is saying what the real number system is; here the abstract
approach says R is a complete ordered field (not, for example, that it is the set of
Dedekind cuts, or the set of equivalence classes of Cauchy sequences, or anything
of that sort). The second concern is proving that such a thing exists in suitable
categories. The suitable categories here are topoi, and the existence proof for
R would use a construction like Dedekind cuts. The work of constructing R

doesn’t disappear in the category-theoretic approach, but it is separated from
the definition of what R is.

Category-theorists often emphasize (not just for R but for all sorts of other
things) the distinction between “what is it?” and “how do you construct it?”

Q: Well if this category-theoretic view of abstract sets is so wonderful, why isn’t
everybody using it?

192 A. Blass and Y. Gurevich

A: There are (at least) four answers to your question. One is a matter of history.
The cumulative hierarchy view of sets has been around explicitly at least since
1930 [60], and Zermelo’s part of ZFC (all but the replacement and foundation
axioms) goes back to 1908 [59]. ZFC has had time to demonstrate its sufficiency
as a basis for ordinary mathematics. People have become accustomed to it as the
foundation of mathematics, and that includes people who don’t actually know
what the ZFC axioms are. There is, however, a chance that the abstract view of
sets will gain ground if students learn basic mathematics from books like [41].

A second reason is the simplicity of the primitive notion of set theory, the
membership predicate. Perhaps, we should say “apparent simplicity,” in view
of the complexity of what can be coded in the cumulative hierarchy. But still,
the idea of starting with just ∈ and defining everything else is philosophically
appealing. Another way to say this is that, in developing mathematics, one
certainly needs the concepts of “set” and “membership”; if everything else can
be developed from just an iteration of these (admittedly a transfinite iteration),
why not take advantage of it?

Third, there is a technical reason. Although topos theory provides an elegant
view of the set-theoretic constructions commonly used in mathematics, serious
uses of the replacement axiom don’t look so nice in category-theoretic terms.
(By serious uses of replacement, we mean something like the proof of Borel
determinacy [45], which provably [28] needs uncountably many iterations of the
power set operation.) But such serious uses are still quite rare.

Q: OK, what’s the fourth answer to why people aren’t using the category-
theoretic view of abstract sets?

A: The fourth answer is that they are using this point of view but just don’t
realize it. Mathematicians talk about ZFC as the foundation of what they do,
but in fact they rarely make explicit use of the cumulative hierarchy. That hier-
archy enters into their work only as an invisible support for the structures they
really use – like the complete ordered field R. When you look at what these peo-
ple actually say and write, it is entirely consistent with the category-theoretic
viewpoint of abstract sets equipped with just the actually needed structure.

2.4 Functions

Q: The discussion of categories, with their emphasis on morphisms alongside
objects, reminds me of a way in which functions could be considered more basic
than sets.

A: More basic? “As basic” seems reasonable, if one doesn’t insist on representing
functions set-theoretically (using ordered pairs), but in what sense do you mean
“more basic”?

Q: This came up when I was a teaching assistant for a discrete mathematics
class. Sets were one of the topics, and several students had trouble grasping the
idea that, for example, a thing a and the set {a} are different, or that the empty

Why Sets? 193

set is one thing, not nothing. They thought of a set as a physical collection,
obtained by bringing the elements together, not as a separate, abstract entity.

A: Undergraduate students aren’t the only people who had such difficulties; see
[36] for some relevant history. But what does this have to do with functions?

Q: Well, I found that I could clarify the problem for these students by telling
them to think of a set S as a black box, where you can put in any potential
element x and it will tell you “yes” if x ∈ S and “no” otherwise. So I was
explaining the notion of set in terms of functions, essentially identifying a set
with its characteristic function. The black-box idea, i.e., functions, seemed to
be something the students could understand directly, whereas sets were best
understood via functions.

A: It seems that functions are obviously abstract, so the students aren’t tempted
to identify them with some concrete entity, whereas they are tempted to do that
with sets.

Q: That may well explain what happened with my students.
If one takes seriously the idea of functions being more basic than sets, then it

seems natural to develop a theory of functions as a foundation for mathematics.
Has that been tried?

A: Yes, although sometimes the distinction between using sets and using func-
tions as the basic notion is rather blurred.

Q: Blurred how?

A: Well, the set theory now known as von Neumann-Bernays-Gödel (NBG) was
first introduced by von Neumann [47,48] in terms of functions. But he minimizes
the significance of using functions rather than sets. Not only do the titles of both
papers say “Mengenlehre” (i.e., “set theory”) with no mention of functions, but
von Neumann explicitly writes that the concepts of set and function are each
easily reducible to the other and that he chose functions as primitive solely for
technical simplicity.2 And when Bernays [7] recast the theory in terms of sets
and classes (the form in which NBG is known today), he described his work as “a
modification of a system due to von Neumann,” the purpose of the modification
being “to remain nearer to the structure of the original Zermelo system and to
utilize at the same time some of the set-theoretic concepts of the Schröder logic
and of Principia Mathematica.” Bernays doesn’t mention that the primitive con-
cept has been changed from function to set (and class). The tone of Bernays’s
introduction gives the impression that the change is not regarded as a significant
change in content but rather as a matter of connecting with earlier work (Zer-
melo, Schröder, Russell, and Whitehead) and of technical convenience (Bernays
mentions a “considerable simplification” vis à vis von Neumann’s system).
2 Wir haben statt dem Begriffe der Menge hier den Begriff der Funktion zum Grund-

begriffe gemacht: die beiden Begriffe sind ja leicht aufeinander zurückzuführen. Die
technische Durchführung gestaltet sich jedoch beim Zugrundelegen des Funktions-
begriffes wesentlich einfacher, allein aus diesem Grunde haben wir uns für denselben
entschieden. [48, page 676]

194 A. Blass and Y. Gurevich

Q: Von Neumann claimed that functions were technically simpler than sets, and
Bernays claimed the opposite?

A: Yes. Of course, the set-based system that von Neumann had in mind for his
comparison may have been more complex than Bernays’s system. Presumably
part of Bernays’s work was to make the set-based approach simpler.

By the way, Gödel [30] modified Bernays’s formulation slightly; in particu-
lar, he used a single membership relation, whereas Bernays had distinguished
between membership in sets and membership in classes. Gödel describes his
system as “essentially due to P. Bernays and . . . equivalent to von Neumann’s
system” In the announcement [29], Gödel stated his consistency result in
terms of von Neumann’s system.

Q: So it seems we can think of von Neumann’s function-based axiom system as
being in some sense the same as the set-based system now known as NBG. But
are there function-based foundations that aren’t just variants of more familiar
set-based systems?

A: The lambda calculus [4,5] and its variations fit that description. The idea
here is that one works in a world of functions, with application of a function
to an argument as a primitive concept. There is also the primitive notion of
lambda-abstraction; given a description of a function using a free variable v, say
some meaningful expression A involving v, one can produce a term λv A (which
most mathematicians would write as v �→ A), denoting the function whose value
at any v is given by A. In the untyped lambda calculus, one takes the functions
to be defined at all arguments. That way, one doesn’t need to specify sets as
the domains of the functions; every function has universal domain. The typed
lambda calculus is less antagonistic to sets; its functions have certain types as
their domains and codomains.

Q: I’ve seen that the lambda calculus is used in computer science. In particular,
Church’s original statement [13] of his famous thesis identified the intuitive con-
cept of computability with definability in the lambda calculus.3 Also, lambda
calculus plays a major role in denotational semantics. But how does it relate to
foundations of mathematics?

A: Church [12] originally intended the lambda calculus as an essential part (the
other part being pure logic) of a foundational system for mathematics. The other
pioneers of lambda calculus, albeit in the equivalent formulation using combina-
tors, were Schönfinkel [54] and Curry [16,17,18], and they also had foundational
objectives. Unfortunately, Church’s system turned out to be inconsistent [37],
and the system proposed by Curry was not strong enough to serve as a general

3 Church’s official formulation in [13, Sect. 7] is in terms of recursiveness rather than
lambda-definability, but these were proven equivalent earlier in the paper. Much ear-
lier in the paper, Church writes in footnote 3 that the definition can be given in two
ways, and he then lists lambda-definability before recursiveness. So whether Quisani
is right here depends on whether the footnote counts as the original statement of
the thesis or whether one must wait until Sect. 7.

Why Sets? 195

foundation for mathematics. (Schönfinkel’s system was also weak, being intended
just as a formulation of first-order logic.)

Q: So this approach to foundations was a dead end.

A: Not really; the task is neither dead nor ended. The original plans didn’t
succeed, but there has been much subsequent work, which has succeeded to
a considerable extent, and which may have more successes ahead of it. Church
himself developed not only the pure lambda calculus [15] (essentially the lambda
part of his earlier inconsistent system, but without the logical apparatus that
led to the inconsistency) but also a typed lambda calculus [14] that is essentially
equivalent to the simple theory of types but expressed in terms of functions and
lambda abstraction instead of sets and membership. The typed lambda calculus
also provides a good way to express the internal logic of topoi (and certain other
categories) [38]. It forms the underlying framework of the system developed by
Martin-Löf [46] as a foundation for intuitionistic mathematics. There is also a
considerable body of work by Feferman (for example [23,24,25]) on foundational
systems that incorporate versions of the lambda calculus and that have both
constructive and classical aspects.

Q: So if you meet mathematicians from a far-away planet, would you expect
their mathematics to be set-based?

A: Not necessarily but we wouldn’t be surprised if their mathematics is set-
based. We would certainly expect them to have a set theory, but it might be
quite different from the ones we know, and it might not be their foundation of
mathematics.

Acknowledgment

We thank Akihiro Kanamori and Jan Van den Bussche for promptly reading a
draft of the original version of this paper and making helpful remarks. We also
thank Nachum Dershowitz for some last-minute improvements of this revised
version.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Ackermann, W.: Zur Axiomatik der Mengenlehre. Math. Ann. 131, 336–345 (1956)
3. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes 14, Center for the Study of

Language and Information. Stanford Univ. (1988)
4. Barendregt, H.: The Lambda Calculus. Its Syntax and Semantics. Studies in Logic

and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984)
5. Barendregt, H.: The impact of the lambda calculus in logic and computer science.

Bull. Symbolic Logic 3, 181–215 (1997)
6. Barwise, J., Moss, L.: Vicious Circles. On the mathematics of non-wellfounded

phenomena. CSLI Lecture Notes 60, Center for the Study of Language and Infor-
mation. Stanford Univ. (1996)

196 A. Blass and Y. Gurevich

7. Bernays, P.: A system of axiomatic set theory – Part I. J. Symbolic Logic 2, 65–77
(1937)

8. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure
and Applied Logic 100, 141–187 (1999)

9. Blass, A., Gurevich, Y., Van den Bussche, J.: Abstract state machines and com-
putationally complete query languages. Information and Computation 174, 20–36
(2002)

10. Bourbaki, N.: Elements of Mathematics: Theory of Sets. Translation from French.
Addison-Wesley, Reading (1968)

11. Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput.
and System Sciences 25, 99–128 (1982)

12. Church, A.: A set of postulates for the foundation of logic. Ann. Math (2) 33,
346–366 (1933) and 34, 839–864 (1932)

13. Church, A.: An unsolvable problem of elementary number theory. Amer. J.
Math. 58, 345–363 (1936)

14. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68
(1940)

15. Church, A.: The Calculi of Lambda-Conversion. Annals of Mathematics Studies,
vol. 6. Princeton Univ. Press, Princeton (1941)

16. Curry, H.: Grundlagen der kombinatorischen Logik. Amer. J. Math. 52, 509–536,
and 789–834 (1930)

17. Curry, H.: The combinatory foundations of mathematical logic. J. Symbolic Logic 7,
49–64 (1942)

18. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)

19. Deiser, O.: Orte, Listen, Aggregate. Habilitationsschrift, Freie Universität Berlin
(2006)

20. Dijkstra, E.W.: Sets are unibags. Handwritten note EWD786 (April 1981),
http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD786a.PDF

21. Enderton, H.: Elements of Set Theory. Academic Press, London (1977)

22. Feferman, S.: Set-theoretical foundations of category theory. In: Mac Lane, S. (ed.)
Reports of the Midwest Category Seminar, III. Lecture Notes in Mathematics,
vol. 106, pp. 201–247. Springer, Heidelberg (1969)

23. Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J. (ed.)
Algebra and Logic. Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer,
Heidelberg (1975)

24. Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van
Dalen, D., McAloon, K. (eds.) Logic Colloquium 1978. Studies in Logic and the
Foundations of Mathematics, vol. 97, pp. 159–224. North-Holland, Amsterdam
(1980)

25. Feferman, S.: Toward useful type-free theories, I. J. Symbolic Logic 49, 75–111
(1984)

26. Feferman, S., et al.: Does mathematics need new axioms. Bull. Symbolic Logic 6,
401–446 (2000)

27. Fraenkel, A., Bar-Hillel, Y., Lévy, A.: Foundations of Set Theory. Studies in Logic
and the Foundations of Mathematics, vol. 67. North-Holland, Amsterdam (1973)

28. Friedman, H.: Higher set theory and mathematical practice. Ann. Math. Logic 2,
325–357 (1970)

29. Gödel, K.: The consistency of the axiom of choice and of the generalized continuum
hypothesis. Proc. Nat. Acad. Sci. U.S.A. 24, 556–557 (1938)

http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD786a.PDF

Why Sets? 197

30. Gödel, K.: The Consistency of the Axiom of Choice and the Generalized Continuum
Hypothesis with the Axioms of Set Theory. Annals of Mathematics Studies, vol. 3.
Princeton Univ. Press, Princeton (1940)

31. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)
Current Trends in Theoretical Computer Science, pp. 1–57. Computer Science
Press (1988)

32. Holmes, R.: New Foundations Home Page,
http://math.boisestate.edu/∼holmes/holmes/nf.html

33. Isbell, J.: Review of [40]. Mathematical Reviews 34, 7332 (1967)
34. Jensen, R.: On the consistency of a slight(?) modification of Quine’s NF.

Synthèse 19, 250–263 (1969)
35. Johnstone, P.T.: Topos Theory. London Math. Soc. Monographs, vol. 10. Academic

Press, London (1977)
36. Kanamori, A.: The empty set, the singleton, and the ordered pair. Bull. Symbolic

Logic 9, 273–298 (2003)
37. Kleene, S., Rosser, J.B.: The inconsistency of certain formal logics. Ann.

Math. 36(2), 630–636 (1935)
38. Lambek, J., Scott, P.: Introduction to Higher Order Categorical Logic. Cambridge

Studies in Advanced Mathematics, vol. 7. Cambridge Univ. Press, Cambridge
(1986)

39. Lawvere, F.W.: An elementary theory of the category of sets. Proc. Nat. Acad. Sci.
U.S.A. 52, 1506–1511 (1964)

40. Lawvere, F.W.: The category of categories as a foundation for mathematics. In:
Proc. Conf. Categorical Algebra (La Jolla, CA, 1995), pp. 1–20. Springer, Heidel-
berg (1966)

41. Lawvere, F.W., Rosebrugh, R.: Sets for Mathematicians. Cambridge University
Press, Cambridge (2003)

42. Lawvere, F.W., Tierney, M.: Quantifiers and sheaves. In: Actes du Congrès Inter-
national des Mathématiciens (Nice, 1970), Tome 1, pp. 329–334. Gauthier-Villars
(1971)

43. Lévy, A.: On Ackermann’s set theory. J. Symbolic Logic 24, 154–166 (1959)
44. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic. A first introduction to

topos theory. Universitext. Springer, Heidelberg (1994)
45. Martin, D.A.: Borel determinacy. Ann. Math (2) 102(2), 363–371 (1975)
46. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.E.,

Shepherdson, J.C. (eds.) Proceedings of the Logic Colloquium (Bristol, July, 1973).
Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73–118. North-
Holland, Amsterdam (1975)

47. von Neumann, J.: Eine Axiomatisierung der Mengenlehre. J. Reine Angew.
Math. 154, 219–240 (1925) (English translation in From Frege To Gödel. In: van
Heijenoort, J. (ed.) A Source Book in Mathematical Logic, 1879–1931, 393–413,
Harvard University Press (1967))

48. von Neumann, J.: Die Axiomatisierung der Mengenlehre. Math. Z. 27, 669–752
(1928)

49. Platek, R.: Eliminating the continuum hypothesis. J. Symbolic Logic 34, 219–225
(1969)

50. Van Orman Quine, W.: New foundations for mathematical logic. Amer. Math.
Monthly 44, 70–80 (1937)

51. Reinhardt, W.: Ackermann’s set theory equals ZF. Ann. Math. Logic 2, 189–249
(1970)

http://math.boisestate.edu/~holmes/holmes/nf.html

198 A. Blass and Y. Gurevich

52. Roitman, J.: The uses of set theory. Math. Intelligencer 14, 63–69 (1992)
53. Rosser, J.B.: Logic for Mathematicians. McGraw-Hill, New York (1953)
54. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92,

305–316 (1924)
55. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with

Sets: An Introduction to SETL. Springer, Heidelberg (1986)
56. Shelah, S.: Can you take Solovay’s inaccessible away. Israel J. Math. 48, 1–47 (1984)
57. Solovay, R.: A model of set theory in which every set of reals is Lebesgue measur-

able. Ann. Math. 92(2), 1–56 (1970)
58. Z users website, http://vl.zuser.org/
59. Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Mathema-

tische Annalen 65, 261–281 (1908)
60. Zermelo, E.: Über Grenzzahlen und Mengenbereiche, Neue Untersuchungen über

die Grundlagen der Mengenlehre. Fundamenta Mathematicae 16, 29–47 (1930)

http://vl.zuser.org/

The Church-Turing Thesis

over Arbitrary Domains�

Udi Boker and Nachum Dershowitz

School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
udiboker@tau.ac.il, nachum.dershowitz@cs.tau.ac.il

For Boaz, pillar of a new discipline.

Abstract. The Church-Turing Thesis has been the subject of many
variations and interpretations over the years. Specifically, there are ver-
sions that refer only to functions over the natural numbers (as Church
and Kleene did), while others refer to functions over arbitrary domains
(as Turing intended). Our purpose is to formalize and analyze the thesis
when referring to functions over arbitrary domains.

First, we must handle the issue of domain representation. We show
that, prima facie, the thesis is not well defined for arbitrary domains,
since the choice of representation of the domain might have a non-trivial
influence. We overcome this problem in two steps: (1) phrasing the thesis
for entire computational models, rather than for a single function; and
(2) proving a “completeness” property of the recursive functions and
Turing machines with respect to domain representations.

In the second part, we propose an axiomatization of an “effective
model of computation” over an arbitrary countable domain. This axiom-
atization is based on Gurevich’s postulates for sequential algorithms. A
proof is provided showing that all models satisfying these axioms, re-
gardless of underlying data structure, are of equivalent computational
power to, or weaker than, Turing machines.

1 Introduction

Background. In 1936, Alonzo Church and Alan Turing each formulated a claim
that a particular model of computation completely captures the conceptual no-
tion of “effective” computability. Church [5, p. 356] proposed that effective com-
putability of numeric functions be identified with Gödel and Herbrand’s general
recursive functions, or – equivalently, as it turned out [5] – with Church and
Kleene’s lambda-definable functions of positive integers. Similarly, Turing [31]
suggested that his computational model, namely, Turing machines, could com-
pute anything that might be mechanically computable, but his interests extended
beyond numeric functions.
� This research was supported by the Israel Science Foundation (grant no. 250/05)

and was carried out in partial fulfillment of the requirements for the Ph.D. degree
of the first author.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 199–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 U. Boker and N. Dershowitz

Church’s original thesis concerned functions over the natural numbers with
their standard interpretation [5, p. 346, including fn. 3] (emphasis ours):

The purpose of the present paper is to propose a definition of effective
calculability. As will appear, this definition of effective calculability can
be stated in either of two equivalent forms, (1) that a function of positive
integers will be called effectively calculable if it is λ-definable. . . , (2) that
a function of positive integers shall be called effectively calculable if it is
recursive. . . .

Kleene, when speaking about Church’s Thesis, also refers to functions over the
natural numbers [13, pp. 58, 60] (emphasis ours):

We entertain various proposition about natural numbers . . . This heuris-
tic fact [all recognized effective functions turned out to be general recur-
sive], as well as certain reflections on the nature of symbolic algorithmic
processes, led Church to state the following thesis. The same thesis is
implicit in Turing’s description of computing machines.
THESIS I. Every effectively calculable function (effectively decidable
predicate) is general recursive.

Turing, on the other hand, explicitly extends the notion of “effective” beyond
the natural numbers [32, fn. p. 166] (emphasis added):

We shall use the expression “computable function” to mean a function
calculable by a machine, and we let “effectively calculable” refer to the
intuitive idea without particular identification with one of these defini-
tions. We do not restrict the values taken by a computable function to
be natural numbers ; we may for instance have computable propositional
functions.

But for Turing, even numerical calculations operate on their string representation.
Turing’s model of computability was instrumental in the wide acceptance of

Church’s Thesis. As Trakhtenbrot explained [30]:

This is the way the miracle occurred: the essence of a process that can be
carried out by purely mechanical means was understood and incarnated
in precise mathematical definitions.

The Problem. Let f be some decision function (a Boolean-valued function) over
an arbitrary countable domain D. What does one mean by saying that “f is
computable”? One most likely means that there is a Turing machine M , such
that M computes f , using some string representation of the domain D. But
what are the allowed string representations? Obviously, allowing an arbitrary
representation (any injection from D to Σ∗) is problematic – it will make any
decision function “computable”. For example, by permuting the domain of ma-
chine codes, the halting function can morph into the simple parity function,
which returns true when the input number is even, representing a halting ma-
chine, and false otherwise). Thus, under a “strange” representation the function

The Church-Turing Thesis over Arbitrary Domains 201

becomes eminently “computable” (see Sect. 2.1). Another approach is to allow
only “natural” or “effective” representations. However, in the context of defin-
ing computability, one is obliged to resort to a vague and undefined notion of
“naturalness” or of “effectiveness”, thereby defeating the very purpose of char-
acterizing computability.

Our Solution. Our approach to overcoming the representation problem is to ask
about effectiveness of a set of functions over the domain of interest, rather than of
a single function. As Myhill observed [19], undecidability is a property of classes
of problems, not of individual problems. In this sense, the halting function is
undecidable in conjunction with an interpreter (universal machine) for Turing
machine programs that uses the same representation. The Church-Turing Thesis,
interpreted accordingly, asserts that there is no effective computational model
that is more inclusive than Turing machines.

Nonetheless, there remains a potentially serious problem. Let M be a compu-
tational model (computing a set of functions) over some countable domain D.
Might it be the case that the set of functions that M computes is equal to the
Turing-computable functions under one string representation, but strictly con-
tains it under a different representation? Generally speaking, this could indeed
be the case when comparing arbitrary computational models. For example, the
standard two-counter machine model (2CM) is strictly contained in some mod-
els, while it also strictly contains them – all depending on the choice of domain
representation.

Fortunately, this cannot be the case with Turing machines (nor with the re-
cursive functions), as we have demonstrated in [4], where we proved that Turing
machines are “complete” in the sense that if some model is equivalent to, or
weaker than, Turing machines under one representation, then no other represen-
tation (no matter how “strange”) can make it stronger than Turing machines.
Hence, the Church-Turing Thesis is well-defined for arbitrary computational
models.

Due to this completeness of Turing machines, we can also sensibly define what
it means for a string representation of an arbitrary domain to be “effective”.

Axiomatization. Equipped with a plausible interpretation of the Church-Turing
Thesis over arbitrary domains, we investigate the general class of “effective com-
putational models”. We proffer an axiomatization of this class, based on Yuri
Gurevich’s postulates for a sequential algorithm [11]. The thesis is then proved,
in the sense that a proof is provided that all models satisfying these axioms are
of equivalent power to, or weaker than, Turing machines.

Gurevich’s postulates are a natural starting point for computing over arbi-
trary domains. They are applicable for computations over any mathematical
structure and aim to capture any sequential algorithm. Nevertheless, while the
computation steps are guaranteed to be algorithmic, that is, effective, the initial
states are not. In addition, the postulates refer to a single algorithm, while
effectiveness should consider, as explained above, the whole computational
model. We address the effectiveness of the initial state by adding a fourth axiom

202 U. Boker and N. Dershowitz

to the three of Gurevich. The effectiveness of an entire computational model is
addressed by providing a minimal criterion for two sequential algorithms to be
in the same model.

This direction of research follows Shoenfield’s suggestion [25, p. 26]:

[I]t may seem that it is impossible to give a proof of Church’s Thesis.
However, this is not necessarily the case.. . . In other words, we can write
down some axioms about computable functions which most people would
agree are evidently true. It might be possible to prove Church’s Thesis
from such axioms.

In fact, Gödel has also been reported (by Church in a letter to Kleene cited
by Davis in [7]) to have thought “that it might be possible . . . to state a set
of axioms which would embody the generally accepted properties of [effective
calculability], and to do something on that basis”.

Thanks to Gurevich’s Abstract State Machine Theorem, showing that sequen-
tial abstract state machines (ASMs) capture all (ordinary, sequential) algorithms
(those algorithms that satisfy the three Abstract State Machine postulates), we
get a third definition of an effective computational model: A model that consists
of ASMs that share initial states satisfying the initial-state axiom.

The specifics of our effectiveness axiom may perhaps be arguable. Neverthe-
less, it demonstrates the possibility of such an axiomatization of effectiveness for
arbitrary domains, and provides evidence for the validity of the Church-Turing
Thesis, regardless of underlying data structure and internal mechanism of the
particular computational model.

The relationship of the three approaches to characterizing effectiveness over
arbitrary domains is summarized in Sect. 3.4 and depicted in Fig. 1.

Axioms of Effectiveness. We understand an “effective computational model” to
be some set of “effective procedures”. Since all procedures of a specific compu-
tational model should have some common mechanism, a minimal requirement is
that they share the same domain representation (“base structure”). Any “effec-
tive procedure” should satisfy four postulates (formally defined as Axioms 1–4
in Sects. 3.2–3.3):

1. Sequential Time. The procedure can be viewed as a set of states, specified
initial states, and a transition function from state to state.
This postulate reflects the view of a computation as some transition system,
as suggested by Knuth [14, p. 7] and others. Time is discrete; transitions are
deterministic; transfinite sequences are not relevant.

2. Abstract State. Its states are (first-order) structures sharing the same
finite vocabulary. States are closed under isomorphism, and the transition
function preserves isomorphism.
Formalizing the states of the transition system as logical structures follows
the proposal of Gurevich [11, p. 78]. This is meant to be fully general, al-
lowing states to contain all salient features.

The Church-Turing Thesis over Arbitrary Domains 203

Church-Turing
Thesis

A model A looks effective
if it can be represented by

a set of
Turing-computable functions

A � TM

(Sect. 2)

Effectiveness
Axiomatization

A model A looks effective
if it is co-extensive with

a model B satisfying
the effectiveness axioms

∃ effective B. [[A]] = [[B]]

(Sect. 3)

Effective
ASMs

A model A looks effective
if it is co-extensive with

ASMs with
effective initial data

∃ ESMB. [[A]] = [[B]]

(Appendix)

Theorem 4

Claim 1

Lemma 1

Lemma 2
Claim 2

Fig. 1. Equivalent characterizations of an extensional effectiveness of a computational
model over an arbitrary domain

3. Bounded Exploration. There is a finite bound on the number of
vocabulary-terms that affect the transition function.
This postulate ensures that the transition system has effective behavior.
Informally, this means that it can be described by a finite text that explains
the algorithm without presupposing any special knowledge.

4. Initial Data. The initial state comprises only finite data in addition to the
domain representation. The latter is isomorphic to a Herbrand universe.
The fourth postulate restricts procedures to be wholly effective by insisting
on the effectiveness of the initial data, in addition to the effectiveness of the
algorithm.

The freedom to add any finite data is obvious, but why do we limit the
domain representation to be isomorphic to a Herbrand universe? There are two
limitations here: (a) every domain element has a name (a closed term); and (b)
the name of each element is unique. Were we to allow unnamed domain elements,
then a computation could not be referred to, nor repeated, hence would not be

204 U. Boker and N. Dershowitz

effective. As for the uniqueness of the names, allowing a built-in equality notion
with an “infinite memory” of equal pairs is obviously non-effective. Hence, the
equality notion should be the result of some internal mechanism, one that can
be built up from scratch.

Previous Work. Usually, the handling of multiple domains in the literature is
done by choosing specific representations, like Gödel numbering, Church numer-
als, unary representation of numbers, etc. This is also true of the usual handling
of representations in the context of the Church-Turing Thesis.

Richard Montague [18] raises the problem of representation when applying
Turing’s notion of computability to other domains, as well as the circularity in
choosing a “computable representation”.

Stewart Shapiro [24] raises the very same problem of representation when
applying computability to number-theoretic functions. He suggests a defini-
tion of an “acceptable notation” (an acceptable string representation of nat-
ural numbers), based on some intuitive concepts. We discuss Shapiro’s notion in
Sects. 2.1 and 2.5.

Klaus Weihrauch [33,34] deals heavily with the representation of arbitrary
domains by numbers and strings. He defines computability with respect to a
representation, and provides justifications for the effectiveness of the standard
representations. We elaborate on his justifications in Sect. 2.5.

After overcoming the problem of defining the Church-Turing Thesis over ar-
bitrary domains, we suggest, in Sect. 2.5, a definition of an “effective representa-
tion”, resembling Shapiro’s notion of “acceptable notation” and along the lines
of Weihrauch’s justifications for the effectiveness of the standard representations.

Michael Rescorla claims in a recent paper [21] that the Church-Turing Thesis
has inherent circularity because of the above problem of representing numbers
by strings. He is not satisfied with Shapiro’s definition of an acceptable notation,
finding it insufficiently general.

A more general approach for comparing the power of different computational
models would be to allow any representation based on an injective mapping
between their domains. This is done, for example, by Rogers [22, p. 27], Som-
merhalder [29, p. 30], and Cutland [6, p. 24]. A similar approach is used for
defining the effectiveness of an algebraic structure by Froehlich and Shepherd-
son [9], Rabin [20], and Mal’cev [16]. Our notion of comparing computational
power is very similar to this.

To the best of our knowledge, our work in [2,4] was the first to point out
and handle the possible influence of the representation on the extensionality of
computational models.

As for the axiomatization of effectiveness, several different approaches have
been taken over the years. Turing [31] already formulated some principles for ef-
fective sequential deterministic symbol manipulation: finite internal states; finite
symbol space; external memory that can be represented linearly; finite observ-
ability; and local action.

Robin Gandy [10], and later Sieg and Byrnes [28], define a model whose
states are described by hereditarily finite sets. Effectiveness of Gandy machines

The Church-Turing Thesis over Arbitrary Domains 205

is achieved by bounding the rank (depth) of states, insisting that they be un-
ambiguously assemblable from individual “parts” of bounded size, and requiring
that transitions have local causes.1

In [3], we proposed effectiveness axioms, but gave no proof that the axioms
yield the same definition of effectiveness as does the Church-Turing Thesis.
Whereas Turing machine states involve a linear sequence of symbols, and Gandy
machine states are hereditarily finite sets, our axioms are meant to apply to ar-
bitrary (countable) domains.

In [8], Gurevich and the second author provide an axiomatization of Church’s
Thesis based on the Abstract State Machine Thesis. They handle only numeric
functions, ignoring the issue of effective computation over arbitrary domains,
but allowing the use of domains richer than just the numbers.

Overview. The first part of this paper, Sect. 2, deals with the issue of domain
representation. In Sect. 2.1, we show that checking for the computability of a
single function over an arbitrary domain is problematic due to the influence of
the domain representation. As a result, we interpret the Church-Turing Thesis
for entire computational models. In Sect. 2.2 we define the notion of power
comparison between computational models, required for the above interpretation
of the thesis. In Sect. 2.3 we show that the representation might generally have an
influence even on entire computational models. In Sect. 2.4 we solve the above
problem with relation to the Church-Turing Thesis, by taking advantage of a
“completeness” property enjoyed by the recursive functions and Turing machines
with respect to domain representations. We conclude this part by discussing, in
Sect. 2.5, what are in fact “effective representations”.

The second part, Sect. 3, proposes an axiomatization of an “effective model of
computation” over an arbitrary countable domain. In Sect. 3.2, we axiomatize
“sequential procedures” along the lines of Gurevich’s postulates for a sequential
algorithm. In Sect. 3.3, we axiomatize “effective models” on top of sequential
procedures by adding a fourth axiom, requiring the effectiveness of the initial
state. We then show, in Sect. 3.4, that Turing machines, which constitute an
effective model, are at least as powerful as any effective model. We conclude
with a brief discussion. The proofs of this part are given in the Appendix.

We employ Gurevich’s most general “Abstract State Machines” (ASMs) [11]
as our programming paradigm.2 Gurevich’s ASM Theorem [11] shows that (se-
quential) ASMs capture (sequential) algorithms, the latter defined axiomatically.
As a result, we get a third definition of an effective computational model over an
arbitrary domain, namely programmable as an ASM satisfying the extra initial
state axiom. See Sect. 3.4 and Fig. 1.

Terminology. When we speak of the recursive functions, denoted REC, we mean
the partial recursive functions. Similarly, the set of Turing machines, denoted
TM, includes both halting and non-halting machines; we use TM for the set of
1 The explicit bound on rank is removed in Sieg’s more recent work [26,27].
2 Some of the problems of incorporating the Gandy model under the abstract state

machine rubric are dealt with in [1].

206 U. Boker and N. Dershowitz

string functions computed by TMs. We use the term “domain” of a computa-
tional model and of a (partial) function to denote the set of elements over which
it operates, not only those for which it is defined. By “image”, we mean the
values that a function actually takes: Im f := {f(x) | x ∈ Dom f}.

2 Arbitrary Domains

Simply interpreted, the Church-Turing Thesis is not well defined for arbitrary
domains: the choice of domain representation might have a significant influence
on the outcome. We explore below the importance of the domain representation
and suggest how to overcome this problem.

2.1 Computational Model Versus Single Function

A single function over an arbitrary domain cannot be classified as computable
or not. Its computability depends on the representation of the domain.3 For
example, as mentioned above, the (uncomputable) halting function over the
natural numbers (sans the standard order) is isomorphic to the simple parity
function, under a permutation of the natural numbers that maps the usual codes
of halting Turing machines to strings ending in “0”, and the rest of the numbers
to strings ending with “1”. The result is a computable standalone “halting”
function.

An analysis of the classes of number-theoretic functions that are computable
relative to different notations (representations) is provided by Shapiro [24, p. 15]:

It is shown, in particular, that the class of number-theoretic functions
which are computable relative to every notation is too narrow, contain-
ing only rather trivial functions, and that the class of number-theoretic
functions which are computable relative to some notation is too broad
containing, for example, every characteristic function.

An intuitive approach is to restrict the representation only to “natural” map-
pings between the domains. However, when doing so in the scope of defining
“effectiveness” one must use a vague and undefined notion.

This problem was already pointed out by Richard Montague on 1960 [18, pp.
430–431]:

Now Turing’s notion of computability applies directly only to functions
on and to the set of natural numbers. Even its extension to functions
defined on (and with values in) another denumerable set S cannot be ac-
complished in a completely unobjectionable way. One would be inclined
to choose a one-to-one correspondence between S and the set of natural

3 There are functions that are inherently uncomputable, regardless of the domain
representation. For example, a permutation of some countable domain, in which the
lengths of the orbits are exactly the standard encodings of the non-halting Turing
machines.

The Church-Turing Thesis over Arbitrary Domains 207

numbers, and to call a function f on S computable if the function of
natural numbers induced by f under this correspondence is computable
in Turing’s sense. But the notion so obtained depends on what corre-
spondence between S and the set of natural numbers is chosen; the sets
of computable functions on S correlated with two such correspondences
will in general differ. The natural procedure is to restrict consideration
to those correspondences which are in some sense ‘effective’, and hence
to characterize a computable function on S as a function f such that, for
some effective correspondence between S and the set of natural numbers,
the function induced by f under this correspondence is computable in
Turing’s sense. But the notion of effectiveness remains to be analyzed,
and would indeed seem to coincide with computability.

Stewart Shapiro suggests a definition of “acceptable notation”, based on sev-
eral intuitive concepts [24, p. 18]:

This suggests two informal criteria on notations employed by algorithms:
(1) The computist should be able to write numbers in the notation. If

he has a particular number in mind, he should (in principle) be able
to write and identify tokens for the corresponding numeral.

(2) The computist should be able to read the notation. If he is given a
token for a numeral, he should (in principle) be able to determine
what number it denotes.

It is admitted that these conditions are, at best, vague and perhaps
obscure.

Michael Rescorla argues that the circularity is inherent in the Church-Turing
Thesis [21]:

My argument turns largely upon the following constraint: a success-
ful conceptual analysis should be non-circular I will suggest that
purported conceptual analyses involving Church’s thesis generate a sub-
tle yet ineliminable circularity: they characterize the intuitive notion of
computability by invoking the intuitive notion of computability. . . . So
that syntactic analysis can illuminate the computable number-theoretic
functions, we correlate syntactic entities with non-syntactic entities like
numbers. We endow the syntax with a primitive semantics. I submit
that, in providing this semantics, we must deploy the intuitive notion
of computability. Specifically, we must demand that the semantic cor-
relation between syntactic entities and non-syntactic entities itself be
computable. But then the proposed analysis does not illuminate com-
putability non-circularly.

A possible solution is to allow any representation (injection between domains),
while checking for the effectiveness of an entire computational model. That is, to
check for the computability of a function together with the other functions that

208 U. Boker and N. Dershowitz

are computable by that computational model. The purpose lying behind this idea
is to view the domain elements as arbitrary objects, deriving all their meaning
from the model’s functions. For example, it is obvious that the halting function
has a meaning only if one knows the order of the elements of its domain. In that
case, the successor function provides the meaning for the domain elements.

A variation of this solution is to allow any representation (injection between
domains), provided that the image of the injection is computable. We consider
both variations.

Adopting the above approach of checking for computability of an entire com-
putational model, we interpret the Church-Turing Thesis as follows:

Thesis A. All “effective” computational models are of equivalent power
to, or weaker than, Turing machines.

By “effective”, in quotes, we mean effective in its intuitive sense.
To understand this thesis, it remains for us to define what it means to be

“equivalent to, or weaker than”. That is, we must define a method by which to
compare computational power of computational models.

For maximum generality, we do not want to limit computational models to
any specific mechanism; hence, we allow a model to be any object, as long as
it is associated with the set of functions that it implements. We consider only
deterministic computations, as originally envisioned in Hilbert’s program (see
[8]). As models may have non-terminating computations, we deal with sets of
partial functions. For convenience, we assume that the domain and range (co-
domain) of functions are identical.

Definition 1 (Computational Model)

– A computational model B over domain D is any object associated with a set
of partial functions f : D → D. This set of functions is called the extension-
ality of the computational model, denoted [[B]].

– We write Dom B for the domain over which model B operates.

2.2 Comparing Computational Power

Since we are dealing with models that operate over different domains, we adopt
the quasi-ordering on extensional power developed in [2,4]. Basically, we say that
model A is at least as powerful as model B if there is some representation via
which A contains all the functions of B. A representation may be any injection
between the domains (a generalization to mappings other than injections can
be found in [2]). A variation of the above requires that the “stronger” model
would also be able to compute the image of the representation. We formalize the
comparison notion below.

A computational model is associated with a set of functions (see Definition 1),
and its representation over a different domain is just the result of some renaming
of the underlying domain elements.

The Church-Turing Thesis over Arbitrary Domains 209

Definition 2 (Representation)

Domain. Let DA and DB be two domains (arbitrary sets of atomic elements).
A representation of DB over DA is an injection ρ : DB → DA (i.e. ρ is total
and one-one). We write Im ρ for the image of the representation (the values
in DB that ρ takes).

Function and Relation. Representations naturally extend to func-
tions and relations, which are sets of tuples of domain elements: ρ(f) :=
{〈ρ(x1), . . . , ρ(xn)〉|〈x1 , . . . , xn〉 ∈ f}.

Model. Representations also naturally extend to (the extensionalities of) com-
putational models, which are sets of functions: ρ(B) := {ρ(f) | f ∈ [[B]]}.

Since representations are allowed to be arbitrary injections, they might not cover
the target domain. Hence, when we compare a model A with a representation of
some model B, we should restrict A to the image of the representation.

Definition 3 (Restriction)

1. A restriction of a function f over domain D to a subdomain C ⊆ D, denoted
f �C , is the subset of tuples of f in which all elements are in C. That is,
f�C := f ∩ Cn+1, for f of arity n.

2. We write ρ(f) ∈ [[A]] as shorthand for ∃g ∈ [[A]]. ρ(f) = g�Im ρ, meaning that
the function f belongs to the (restriction of) the computational model A via
representation ρ.

We can now provide the appropriate comparison notion.

Definition 4 (Computational Power)

– Model A is (computationally) at least as powerful as model B, denoted A �
B, if there is a representation ρ such that ρ(B) ⊆ {f �Im ρ | f ∈ [[A]]}. In
such a case, we also say that model A simulates model B (via representation
ρ).

– Models A and B are (computationally) equivalent if A � B � A.

This is the notion of “implemented” used in [12, p. 52] and of “incorporated”
used in [29, p. 29].

Proposition 1. The computational power relation � between models is a quasi-
order. Computational equivalence is an equivalence relation.

Turing-computable functions simulate the recursive functions via a unary repre-
sentation of the natural numbers. The (untyped) λ-calculus (Λ) is computation-
ally equivalent to the recursive functions (REC), via Church numerals, on the
one hand, and via Gödelization, on the other.

One may reasonably require that for a model A to be at least as powerful as
a model B it should also be able to compute the image of the representation
(see [2]). In such a case we get the following variation of the power comparison
notion:

210 U. Boker and N. Dershowitz

Definition 5 (Representational Power)

– Model A is (representationally) at least as powerful as model B, denoted
A 	 B, if there is a representation ρ such that ρ(B) ⊆ {f�Im ρ | f ∈ [[A]]}
and there is a total function f ∈ [[A]], such that Im f = Im ρ.

– Models A and B are (representationally) equivalent if A 	 B 	 A.

In what follows, we use both computational comparisons (�) and representa-
tional comparisons (), preferring the more general one whenever possible.4

Our interpretation of the Church-Turing Thesis (Thesis A) agrees with Ra-
bin’s definition of a computable group [20, p. 343]:

DEFINITION 3. An indexing of a set S is a one to one mapping i : S → I
such that i(S) is a recursive subset of I. . . .
DEFINITION 4. An indexing i of a group G is admissible if the function
m from i(G) × i(G) into i(G) . . . is a computable function. . . .
DEFINITION 5. A group is computable if it possesses at least one ad-
missible indexing.

Rabin defines computability for groups, fields, and rings; however, the idea
naturally generalizes to any algebraic structure, as done by Lambert [15, p. 594]:

Following Rabin . . . we let an (admissible) indexing for structure U be a
1-1 function κ : A → ω such that
(i) K = range κ is recursive;
(ii) each κ∗(Fa) and κ∗(Ra) are recursive relative to K . . . , where κ∗

applied to an (unmixed) operation or relation in A is the operation or
relation in ω naturally induced by κ.. . .
U is computable iff there is an indexing for U.

Similar notions were also presented by Froehlich and Shepherdson [9] and
Mal’cev [16].

2.3 Influence of Representations

It turns out that even when dealing with entire computational models, we are
not yet on terra firma. The representation of the domain still allows for the
possibility that a model be equivalent to one of its strict supermodels. That is, a
representation might allow to “enlarge” a model, adding some “new” functions
to it.
4 Specifically, the “completeness” property (Definition 6) is defined using �, which

makes it stronger. Accordingly, the theorem that Turing machines and recursive
functions are complete (Theorem 1) applies also to the analogous case with � instead.
Likewise, when we show that Turing machines are at least as powerful as any effective
model (Theorem 4, per Definition 17), we use the � notion, which provides a
stronger result. Thus, the theorem applies also to the analogue �. On the other
hand, Claims 1 and 2 are stated with respect to �, and do not necessarily hold
for �.

The Church-Turing Thesis over Arbitrary Domains 211

Consider two-counter machines. It is known that two-counter machines cannot
compute the function λx.2x.5 On the other hand, since two-counter machines
can simulate all the recursive functions via some proper injective representation
(viz. n
→ 2n; see, for example, [17]), it follows that two-counter machines can
“enlarge” their computational power via some representations.

A reasonable direction might have been to restrict the representation to bi-
jections between domains. However, while it works for this example, it turns out
that there are models equivalent to some of their supermodels even with bijective
representations [4]. Hence, there are models isomorphic to some of their strict
supermodels.

This places a question mark on the definition of Turing-computability and on
the meaning of the Church-Turing Thesis. Can it be that the recursive functions
are isomorphic to a larger set of functions?! Can we find a string representation
of the natural numbers via which we have Turing machines to compute all the
recursive functions plus some additional functions?

In the next section, we put firmer ground beneath the definition of the Church-
Turing Thesis, by showing that Turing machines, as well as the recursive func-
tions, enjoy a special “completeness” property.

2.4 Completeness

As seen above, a model can be of equivalent power to its strict supermodel.
There are, however, models that are not susceptible to such an anomaly; these
are referred to as “complete” models, among which are Turing machines and the
recursive functions.

Definition 6 (Completeness). A model is complete if it is not of equivalent
power to any of its strict supermodels. That is, A is complete if A � B and
[[B]] ⊇ [[A]] imply that [[A]] = [[B]] for any B.

A supermodel of the recursive functions (or Turing machines) is a “hypercom-
putational” model.

Definition 7 (Hypercomputational Model). A model H is hypercomputa-
tional if it simulates a model that strictly contains the recursive functions.

Theorem 1 ([4]). The recursive functions and Turing machines are complete.
They cannot simulate any hypercomputational model.

(The completeness of the recursive functions proved in [4] refers only to unary
functions, but it is quite straightforward to extend it to any arity.)

Note that the completeness property is defined with computational compar-
ison �, which makes it a stronger property. Accordingly, Turing machines and
the recursive functions are also complete with respect to representational com-
parison 	.
5 This was shown by Rich Schroeppel in [23], and independently by Frances Yao and

others.

212 U. Boker and N. Dershowitz

The Church-Turing Thesis, as interpreted in Sect. 2.1, matches the intuitive
understanding only due to this completeness of the recursive functions and Tur-
ing machines. Were the thesis defined in terms of two-counter machines (2CM),
for example, it would make no sense: a computational model is not necessarily
stronger than 2CM even if it computes strictly more functions.6

2.5 Effective Representations

What is an effective representation? We argued above that a “natural represen-
tation” must be a vague notion when used in the context of defining effectiveness.
We avoided the need of restricting the representation by checking the effective-
ness of entire computational models. But what if we adopt the Church-Turing
Thesis; can we then define what is an effective string representation?

Simply put, there is a problem here. Turing machines operate only over strings.
Thus a string representation, which is an injection from some domain D to Σ∗,
is not itself computable by a Turing machine. All the same, when we consider,
for example, string representations of natural numbers, we can obviously say
regarding some of them that they are effective. How is that possible? The point
is that we look at a domain as having some structure. For the natural numbers,
we usually assume their standard order. A function over the natural numbers
without their order is not really well-defined. As we saw, the halting function
and the simple parity function are exactly the same (isomorphic) function when
numbers are unordered.

Hence, even when adopting the Church-Turing Thesis, a domain without any
structure cannot have an effective representation. It is just a set of arbitrary
elements. However, if the domain comes with a generating mechanism (as the
natural numbers come with the successor) we can consider effective representa-
tions.

Due the completeness of the recursive functions and Turing machines, we can
define what is an effective string representation of the natural numbers (with
their standard structure). A similar definition can be given for other domains,
besides the natural numbers, provided that they come with some finite means
of generating them all, akin to successor for the naturals.

Definition 8. An effective representation of the natural numbers by strings is
an injection ρ : N → Σ∗, such that ρ(s) is Turing-computable (ρ(s) ∈ TM),
where s is the successor function over N.

That is, a representation of the natural numbers is effective if the successor
function is Turing-computable via this representation.

Remark 1. One may also require that the image of the representation ρ is totally
Turing computable, meaning, that the question whether some string is in Im ρ
is decidable.
6 In fact, the lambda calculus also suffers from incompleteness in this sense, and would,

therefore, not be a suitable candidate in terms of which to characterize generic
effectivity.

The Church-Turing Thesis over Arbitrary Domains 213

We justify the above definition of an effective representation by showing that:
(a) every recursive function is Turing-computable via any effective representa-
tion; (b) every non-recursive function is not Turing-computable via any effective
representation; and (c) for every non-effective representation there is a recursive
function that is not Turing-computable via it.

Theorem 2

(a) Let f be a recursive function and ρ : N → Σ∗ an effective representation.
Then ρ(f) ∈ TM.

(b) Let g be a non-recursive function and ρ : N → Σ∗ an effective representation.
Then ρ(g) /∈ TM.

(c) Let η : N → Σ∗ be a non-effective representation. Then there is a recursive
function f , such that η(f) /∈ TM.

Proof Let ξ : N → Σ∗ be some standard bijective representation via which
ξ(REC) = TM (see, for example, [12, p. 131]). The point is that, once ρ(s) ∈ TM,
there are Turing-computable functions for switching between the ρ and the ξ
representations. That is, ρ ◦ ξ−1, ξ ◦ ρ−1 ∈ TM. It can be done by a Turing
machine that enumerates in parallel over both representations until reaching the
required string.
(a) Since f ∈ REC, it follows that there is a function f ′ ∈ TM, such that
f = ξ−1(f ′) = ξ−1 ◦f ′ ◦ ξ. Thus, ρ(f) = ρ◦f ◦ρ−1 = ρ◦ ξ−1 ◦f ′ ◦ ξ ◦ρ−1. Hence,
ρ(f) ∈ TM by the closure of TM under functional composition.
(b) Assume by contradiction that g /∈ REC but ρ(g) ∈ TM. Let g′ be the
corresponding function under the ξ representation. That is, g′ = ξ ◦ ρ−1ρ(g) ◦
ρ ◦ ξ−1. We have by the closure of TM under functional composition that g′ ∈
TM. Since ξ−1(g′) ∈ REC, it is left to show that ξ−1(g′) = g for getting a
contradiction: ξ−1(g′) = ξ−1◦g′◦ξ = ξ−1◦ξ◦ρ−1ρ(g)◦ρ◦ξ−1◦ξ = ρ−1ρ(g)◦ρ =
ρ−1ρ ◦ g ◦ ρ−1 ◦ ρ = g.
(c) By the definition of recursive representation, the successor is such a function.

�

To see the importance of the completeness property for the definition of an
effective representation, one can check that an analogous definition cannot be
provided with two-counter machines as the yardstick.

Our definition of an effective representation resembles Shapiro’s notion of an
“acceptable notation”. He proposes three necessary “semi-formal” criteria for an
acceptable notation [24, p. 19]:

(la) If the computist is given a finite collection of distinct objects, then
he can (in principle) write and identify tokens for the numeral which
denotes the cardinality of the collection.

(lb) The computist can count in the notation. He is able (in principle)
to write, in order, tokens for the numerals denoting any finite initial
segment of the natural numbers.

(2a) If the computist is given a token for a numeral p and a collection
of distinct objects, then he can (in principle) determine whether the

214 U. Boker and N. Dershowitz

denotation of p is smaller than the cardinality of the collection and,
if it is, produce a subcollection whose cardinality is the denotation
of p.

Our notion coincides with Shapiro’s second criterion (1b). It also goes along
with Weihrauch’s justifications for the effectiveness of the standard “number-
ings” (representation by natural numbers). He defines a standard numbering
of a word set (the words over {a, b}, for example, are enumerated in the fol-
lowing order: ε, a, b, aa, ab, ba, bb, aaa, aab, . . .), and then proves three claims for
justifying the effectiveness of the numbering [33, p. 80–81]:

A numbering ν : N → W (Σ) is neither a word function nor a num-
ber function, hence neither of our two definitions of computability is
applicable to ν. Nevertheless standard numberings ν : N → W (Σ) are
intuitively effective. The following lemma expresses several effectivity
properties of standard numberings of word sets.

LEMMA (effectivity of standard numberings of word sets)
Let Σ, Γ and Δ be alphabets with Δ = Σ∪Γ . Let νΣ (νΓ) be a standard
numbering of W (Σ) (W (Γ)).
(l) Define S, V : N → N by S(x) := x + 1, V (x) := x · 1.

Define SΣ , VΣ : W (Σ) → W (Σ) by
SΣ := νΣSν−1

Σ , VΣ := νΣV ν−1
Σ .

Then SΣ and VΣ are computable.
(2) Let b ∈ Σ. Define hb : W (Σ) → W (Σ), Sb : W (Σ) → {1, 2}

and pop : W (Σ) → W (Σ) by
hb(w) = wb, Sb(w) := (1 if w = xb for some x ∈ W (Σ), 2 otherwise),
and pop(ε) := ε, pop(wc) := w.
Define hb

Σ : N → N, Sb
Σ : N → {1, 2} and popΣ : N → N by

hb
Σ := ν−1

Σ hbνΣ, popΣ := ν−1
Σ pop νΣ, Sb

Σ := SbνΣ .
Then hb

Σ , popΣ , and Sb
Σ are computable.

(3) The following functions p : W (Δ) → W (Δ) and q : N → N are
computable:

p(w) := (νΣν−1
Γ (w) if w ∈ W (Γ), ε otherwise),

q(j) := (ν−1
Γ νΣ(j) if νΣ(j) ∈ W (Γ), 0 otherwise).

Our notion resembles Weihrauch’s first and second claims (the second claim
concerns the construction of strings, and plays the rôle of the successor when
reversing the “numbering” for representing numbers by strings).

3 An Axiomatization of Effective Models

Section 2 formalized the Church-Turing Thesis over arbitrary domains. We now
provide additional evidence for the thesis by validating it against a class of
“effective computational models”, axiomatized on top of Gurevich’s postulates
for a sequential algorithm [11].

The Church-Turing Thesis over Arbitrary Domains 215

Gurevich’s postulates are applicable for computations over any mathematical
structure (of first order) and aim to capture any sequential algorithm. This makes
them a natural candidate for axiomatizing effectiveness over arbitrary domains.
Yet, there are several problems:

1. The postulates concern algorithms and not computations with input and
output.

2. Initial states are not limited; thus, they might not be effective.
3. The postulates consider a single algorithm and not an entire computational

model.

We address the first issue, in Sect. 3.2, by adding special input and output
constants, and allowing a single initial state, up to differences in input. The
second issue is addressed by adding Axiom 4, which limits the initial data. The
third issue is addressed, in Sect. 3.3, by requiring all functions of the same model
to share the same domain representation.

A proof is provided in the Appendix, showing that this axiomatization yields
the same definition of effectiveness as the Church-Turing Thesis does. It is based
on Gurevich’s Abstract State Machine Theorem [11], showing that sequential
abstract state machines (ASMs) capture sequential algorithm. As a result, we get
three equivalent definitions of an effective computational model over an arbitrary
domain. See Fig. 1.

We start in Sect. 3.2, with an axiomatization of “sequential procedures”,
along the lines of Gurevich’s sequential algorithms [11]. Next, we axiomatize,
in Sect. 3.3, “effective procedures” as a subclass, satifying an “effectivity ax-
iom”. We then show, in Sect. 3.4, the equivalence of Turing machines to the
class of effective models. We conclude this part with a brief discussion.

3.1 Structures

The states of a procedure should be a full instantaneous description of all its rel-
evant features. We represent them by (first order) structures, using the standard
notion of structure from mathematical logic. For convenience, these structures
will be algebras ; that is, having purely functional vocabulary (without relations).

Definition 9 (Structures)

– A domain D is a (nonempty) set of elements.
– A vocabulary F is a collection of function names, each with a fixed finite

arity.
– A term of vocabulary F is either a nullary function name (constant) in F

or takes the form f(t1, . . . , tk), where f is a function name in F of positive
arity k and t1, . . . , tk are terms.

– A structure S of vocabulary F is a domain D together with interpretations
[[f]]S over D of the function names f ∈ F .

– A location of vocabulary F over a domain D is a pair, denoted f(a), where
f is a k-ary function name in F and a is a k-tuple of elements of D. (If f
is a constant, then a is the empty tuple.)

216 U. Boker and N. Dershowitz

– The value of a location f(a) in a structure S, denoted [[f(a)]]S, is the domain
element [[f]]S(a).

– It is often useful to indicate a location by a (ground) term f(t1, . . . , tk),
standing for f([[t1]]S , . . . , [[tk]]S).

– Structures S and S′ with vocabulary F sharing the same domain coincide
over a set T of F-terms if [[t]]S = [[t]]S′ for all terms t ∈ T .

It is convenient to think of a structure S as a memory, or data-storage, of a kind.
For example, for storing an (infinite) two dimensional table of integers, we need
a structure S over the domain of integers, having a single binary function name
f in its vocabulary. Each entry of the table is a location. The location has two
indices, i and j, for its row and column in the table, marked f(i, j). The content
of an entry (location) in the table is its value [[f(i, j)]]S .

Definition 10 (Update). An update of location l over domain D is a pair,
denoted l := v, where v is an element of D.

Definition 11 (Structure Mapping). Let S be structure of vocabulary F over
domain D and ρ : D → D′ an injection from D to domain D′. A mapping of
S by ρ, denoted ρ(S), is a structure S′ of vocabulary F over D′, such that
ρ([[f(a)]]S) = [[f(ρ(a))]]S′ for every location f(a) in S.

Structures S and S′ of the same vocabulary over domains D and D′, respectively,
are isomorphic, denoted S � S′, if there is a bijection π : D ↔ D′, such that
S′ = π(S).

3.2 Sequential Procedures

Our axiomatization of a “sequential procedure” is very similar to that of Gure-
vich’s sequential algorithm [11], with the following two main differences, allowing
for the computation of a specific function, rather than expressing an abstract
algorithm:

– The vocabulary includes special constants “In” and “Out”.
– Initial states are identical, except for changes in In.

Axiom 1 (Sequential Time). The procedure can be viewed as a collection S
of states, a sub-collection S0 ⊆ S of initial states, and a transition function
τ : S → S from state to state.

Axiom 2 (Abstract State)

– States. All states are first-order structures of the same finite vocabulary F .
– Input. There are nullary function names In and Out in F . All initial states

(S0 ⊆ S) share a domain D, and are equal up to changes in the value of In.
(For convenience, the initial states can be referred to, collectively, as S0.)

– Isomorphism Closure. The procedure states are closed under isomorphism.
That is, if there is a state S ∈ S, and an isomorphism π via which S is
isomorphic to a F-structure S′, then S′ is also a state in S.

The Church-Turing Thesis over Arbitrary Domains 217

– Isomorphism Preservation. The transition function preserves isomorphism.
That is, if states S and S′ are isomorphic via π, then τ(S) and τ(S′) are
also isomorphic via π.

– Domain Preservation. The transition function preserves the domain. That
is, the domain of S and τ(S) is the same for every state S ∈ S.

Axiom 3 (Bounded Exploration). There exists a finite set T of “critical”
terms, such that Δ(S, τ(S)) = Δ(S′, τ(S′)) if S and S′ coincide over T , for all
states S, S′ ∈ S, where Δ(S, S′) = {l := v′ | [[l]]S �= [[l]]S′ = v′} is a set of
updates turning S into S′.

The isomorphism constraints reflects the fact that we are working at a fixed level
of abstraction. See [11, p. 89]:

A structure should be seen as a mere representation of its isomorphism
type; only the isomorphism type matters. Hence the first of the two state-
ments: distinct isomorphic structures are just different representations
of the same isomorphic type, and if one of them is a state of the given
algorithm A, then the other should be a state of A as well.

Domain preservation simply ensures that a specific “run” of the procedure is
over a specific domain. (Should it be necessary, one could always combine many
domains into one.) The bounded-exploration axiom ensures that the behavior of
the procedure is effective. This reflects the informal assumption that the program
of an algorithm can be given by a finite text [11, p. 90].

Definition 12 (Runs)

1. A run of procedure with transition function τ is a finite or infinite sequence
S0 �τ S1 �τ S2 �τ · · · , where S0 is an initial state and every Si+1 = τ(Si).

2. A run S0 �τ S1 �τ S2 �τ · · · terminates if it is finite or if Si = Si+1 from
some point on.

3. The terminating state of a terminating run S0 �τ S1 �τ S2 �τ · · · is its
last state if it is finite, or its stable state if it is infinite.

4. If there is a terminating run beginning with state S and terminating in state
S′, we write S �!

τ S′.

Definition 13 (Procedure Extensionality). Let P be sequential procedure
over domain D. The extensionality of P , denoted [[P]], is the partial function
f : D → D, such that f(x) = [[Out]]S′ whenever there’s a run S �!

τ S′ with
[[In]]S = x, and is undefined otherwise.

Equality, Booleans and Undefined. In contradistinction with Gurevich’s ASM’s,
we do not have built in equality, Booleans, or undefined in the definition of
procedures. That is, a procedure need not have Boolean values (True, False) or
connectives (¬, ∧, ∨) pre-defined in its vocabulary; rather, they may be defined
like any other function. It also should not have a special term for undefined
values, though the value of the function implemented by the procedure is not

218 U. Boker and N. Dershowitz

defined when its run doesn’t terminate. The equality notion is also not presumed
in the procedure’s initial state, as it compises infinite data. Nevertheless, since
every domain element has a unique construction, it follows that an effective
procedure may implement the equality notion with only finite initial data. A
detailed description of this implementation is given in Sect. A.3.

3.3 Effective Models

A sequential procedure may be equipped with any oracle, given as an operation
of the initial state. Hence, the extensionality of such a procedure might not
be effective. As a result, we are interested only in sequential procedures that
use effective oracles. Since we are defining effectiveness, we get an inductive
definition, allowing initial states to include functions that are the extensionality
of effective procedures. The starting point must be operations that are very
simple and inherently effective. These basic operations must then be finite. We
begin, then, with sequential procedures, in which the initial state has finite data
in addition to the domain representation (“base structure”). This constraint is
formalized in Axiom 4, below.

Different procedures of the same computational model have some common
mechanism. The level of shared configuration between the model’s procedures
may vary, but they must obviously share the same domain representation. Hence,
we define an “effective model” to be some set of “effective procedures” that share
the same “base structure”.

We formalize the finiteness of the initial data by allowing the initial state to
contain an “almost-constant structure”.

Definition 14 (Almost-Constant Structure). A structure F is almost con-
stant if all but a finite number of locations have the same value.

Since we are heading for a characterization of effectiveness, the domain over
which the procedure actually operates should have countably many elements,
which have to be nameable. Hence, without loss of generality, one may assume
that naming is via terms.

Definition 15 (Base Structure). A structure S of finite vocabulary F over a
domain D is a base structure if every domain element is the value of a unique
F-term. That is, for every element e ∈ D there exists a unique F-term t such
that [[t]]S = e.

A base structure is isomorphic to the standard free term algebra (Herbrand
universe) of its vocabulary.

Proposition 2. Let S be a base structure over vocabulary G and domain D,
then:

– The vocabulary G has at least one nullary function.
– The domain D is countable.
– Every domain element is the value of a unique location of S.

The Church-Turing Thesis over Arbitrary Domains 219

Example 1. A structure over the natural numbers with constant zero and unary
function successor, interpreted as the regular successor, is a base structure.

Example 2. A structure over binary trees with constant nil and binary function
cons, interpreted as in Lisp, is a base structure.

We are now in position to formalize the fourth axiom, requiring the effectiveness
of the initial state. It is an inductive definition, allowing any function that can
be implemented by a (simpler) effective procedure.

Definition 16 (Structure Union). Let S′ and S′′ be two structures with do-
main D and with vocabularies F ′ and F ′′, respectively. A structure S over D is
the union of S′ and S′′, denoted S = S′ � S′′, if its vocabulary is the disjoint
union F = F ′ � F ′′, and if [[l]]S = [[l]]S′ for locations l in S′ and [[l]]S = [[l]]S′′ for
locations in S′′.

Axiom 4 (Initial Data). The initial state consists of:

– a fixed base structure BS (the domain representation);
– a fixed almost-constant AS structure (finite initial data); and
– a fixed effective structure ES over the base structure BS (effective oracles);

in addition to an input value In over BS that varies from initial state to initial
state. That is, the initial state S0 is the union BS � AS � ES � {In}, for some
base structure BS, almost-constant structure AS, and effective structure ES.

The effective structure contains finite many functions that are the extensionality
of effective procedures over the same domain representation. This allows the
procedure to use an algorithm at any abstraction level, as long as we can assure
that the underlying oracles are effective.

As already mentioned, there are two aspects to the requirement that the
domain representation be isomorphic to a Herbrand universe: every domain el-
ement has a name, and names are unique. Were one to allow unnamed domain
elements, then a computation cannot be referred to, nor repeated, hence would
not be effective. As for the uniqueness of the names, allowing a built-in equality
notion with an “infinite memory” of equal pairs is obviously not effective. Hence,
the equality notion should be the product of some internal effective mechanism,
and thus needs to be a part of the computational model.

An effective procedure must satisfy Axioms 1–4.

Definition 17 (Effective Model). An effective model is a set of effective
procedures (objects satisfying Axioms 1–4) that share the same base structure.

To sum up:

Thesis B. All “effective” computational models are effective models (per
Definition 17).

220 U. Boker and N. Dershowitz

3.4 Effective Equals Computable

In the sense of our above definition of effectiveness (Definition 17) we have that:

Theorem 3. Turing machines are an effective model.

Furthermore,

Theorem 4. Turing machines are representationally at least as powerful as any
effective model.

That is, TM 	 E for every model E satisfying the effectiveness axioms.
Note that we use representational comparison 	, which provides a stronger re-

sult. Accordingly, Turing machines are also computationally at least as powerful
(�) as any effective model.

The proofs of Theorems 3 and 4 are quite straightforward but somewhat
lengthy, so are relegated to the appendix. They make usage of Abstract State
Machines, which operate over arbitrary domains, and are based on Gurevich’s
Abstract State Machine Theorem [11], showing that sequential abstract state
machines (ASMs) capture sequential algorithms, defined axiomatically.

Definition 18 (Effective State Model). An ASM model satisfying the initial
data restrictions is called an Effective State Model (or ESM).

This suggests the following variant thesis:

Thesis C. Every “effective” computational model is behaviorally equiv-
alent to an ESM.

If we adopt the variation of the comparison notion that requires the “stronger”
model to be able to compute the image of the representation (Definition 5), we
get a closer relationship between the three definitions of effectiveness (Theses
A–C): When considering only the extensionality of computational models (that
is, the set of functions that they compute) we have that the three effectiveness
criteria (Theses A–C) are equivalent.

Definition 19 (Effective Looks). A model A looks effective if the set of func-
tions that it computes may be represented by Turing-computable functions. That
is, if A � TM.

Claim 1. A model A looks effective if and only if there exists an effective model
B, such that [[A]] = [[B]].

Thanks to Gurevich’s Abstract State Machines Theorem [11], we have the anal-
ogous claim with respect to ASMs:

Claim 2. A model A looks effective if and only if there is an ESM B, such that
[[A]] = [[B]].

Claims 1 and 2 are not proved herein. (Their proofs are based on the proofs of
Theorems 3 and 4, as well as aspects of the proof of Theorem 2.)

The resulting relationship between the different characterizations of effective-
ness is depicted in Fig. 1.

The Church-Turing Thesis over Arbitrary Domains 221

3.5 Discussion

Necessity. An effective procedure should satisfy, by our definitions, Axioms 1–
4. In the introduction, we argued for the necessity of the postulates from the
intuitive point of view of effectiveness. Moreover, omitting any of them allows
for models that compute more than Turing machines:

1. The Sequential Time Axiom is necessary if we wish to analyze computation,
which is a step-by-step process. Allowing for transfinite computations, for
example, would allow a model to precompute all members of a recursively-
enumerable set.

2. In the context of effective computation, there is no room for infinitary func-
tions, for example. Without closure under isomorphism there would be no
value to the Bounded-Exploration Axiom, allowing the assigning of any de-
sired value to the Out location.

3. By omitting the Bounded-Exploration Axiom, a procedure need not have
any systematical behavior, hence may “compute” any function by simply
assigning the desired value at the Out location. That is, for each initial state
S there is a state S′, such that τ(S) = S′ and [[Out]]S′ is the “desired” value.

4. Omitting the Initial-Data Axiom, one may “compute” any function (e.g.
a halting oracle), by simply having all its values in the initial state. Such
functions could also be encoded in equalities between locations, were the
initial data not (isomorphic to) a free term algebra.

Algorithm versus Model. In [11], Gurevich proved that any algorithm satisfying
his postulates can be represented by an Abstract State Machine. But an ASM
is designed to be “abstract”, so is defined on top of an arbitrary structure that
may contain non-effective functions. Hence, it itself may compute non-effective
functions. We have adopted Gurevich’s postulates, but added an additional pos-
tulate (Axiom 4) for effectiveness: an algorithm’s initial state may contain only
finite data and known effective operations in addition to the domain represen-
tation. Different runs of the same procedure share the same initial data, except
for the input; different procedures of the same model share a base structure. We
proved that – under these assumptions – the class of all effective procedures is
of equivalent computational power to Turing machines.

Acknowledgement

The second author thanks Félix Costa for his gracious hospitality and for sub-
stantive comments on a draft of this work.

References

1. Blass, A., Gurevich, Y.: Background, Reserve, and Gandy Machines. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, Springer, Heidelberg
(2000)

222 U. Boker and N. Dershowitz

2. Boker, U., Dershowitz, N.: How to Compare the Power of Computational Models.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
54–64. Springer, Heidelberg (2005)

3. Boker, U., Dershowitz, N.: Abstract effective models. In: Fernández, M., Mackie,
I. (eds.) New Developments in Computational Models: Proceedings of the First
International Workshop on Developments in Computational Models (DCM 2005),
Lisbon, Portugal (July 2005), Electronic Notes in Theoretical Computer Science,
135(3), 15–23 (2006)

4. Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the
IGPL 14(5), 633–648 (2006)

5. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58, 345–363 (1936)

6. Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, Cambridge (1980)

7. Davis, M.: Why Gödel didn’t have Church’s Thesis. Information and Con-
trol 54(1/2), 3–24 (1982)

8. Dershowitz, N., Gurevich, Y.: A natural axiomatization of Church’s Thesis. Bul-
letin of the ASL (to appear), available as Technical report MSR-TR-2007-85, Mi-
crosoft Research, Redmond, WA (July 2007)

9. Froehlich, A., Shepherdson, J.: Effective procedures in field theory. Philosophical
Transactions of the Royal Society of London 248, 407–432 (1956)

10. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., et al.
(eds.) The Kleene Symposium. Studies in Logic and The Foundations of Mathe-
matics, vol. 101, pp. 123–148. North-Holland, Amsterdam (1980)

11. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1, 77–111 (2000)

12. Jones, N.D.: Computability and Complexity from a Programming Perspective. The
MIT Press, Cambridge, MA (1997)

13. Kleene, S.C.: Recursive predicates and quantifiers. Transactions of the American
Mathematical Society 53(1), 41–73 (1943)

14. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1.
Addison-Wesley, Reading, MA (1968)

15. Lambert Jr., W.M.: A notion of effectiveness in arbitrary structures. The Journal
of Symbolic Logic 33(4), 577–602 (1968)

16. Mal’cev, A.: Constructive algebras I. Russian Mathematical Surveys 16, 77–129
(1961)

17. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, NJ (1967)

18. Montague, R.: Towards a general theory of computability. Synthese 12(4), 429–438
(1960)

19. Myhill, J.: Some philosophical implications of mathematical logic. Three classes of
ideas 6(2), 165–198 (1952)

20. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Transactions of the American Mathematical Society 95(2), 341–360 (1960)

21. Rescorla, M.: Church’s thesis and the conceptual analysis of computability. Notre
Dame Journal of Formal Logic 48(2), 253–280 (2007)

22. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1966)

The Church-Turing Thesis over Arbitrary Domains 223

23. Schroeppel, R.: A two counter machine cannot calculate 2N. Technical report,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory (1972)
(viewed November 28, 2007),
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-257.pdf

24. Shapiro, S.: Acceptable notation. Notre Dame Journal of Formal Logic 23(1), 14–20
(1982)

25. Shoenfield, J.R.: Recursion Theory. Lecture Notes in Logic, vol. 1. Springer, Hei-
delberg (1991)

26. Sieg, W.: Church without dogma—Axioms for computability. In: Löwe, B., Sorbi,
A., Cooper, S.B. (eds.) New Computational Paradigms: Changing Conceptions of
What is Computable, pp. 18–44. Springer, Heidelberg (2007)

27. Sieg, W.: Computability: Emergence and analysis of a mathematical notion. In:
Irvine, A. (ed.) Handbook of the Philosophy of Mathematics (to appear)

28. Sieg, W., Byrnes, J.: An abstract model for parallel computations: Gandy’s thesis.
The Monist 82(1), 150–164 (1999)

29. Sommerhalder, R., van Westrhenen, S.C.: The Theory of Computability: Programs,
Machines, Effectiveness and Feasibility. Addison-Wesley, Workingham, England
(1988)

30. Trakhtenbrot, B.A.: Comparing the Church and Turing approaches: Two prophet-
ical messages. In: Herken, R. (ed.) The Universal Turing Machine: A half-century
survey, pp. 603–630. Oxford University Press, Oxford (1988)

31. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42, 230–265
(1936), Corrections in vol. 43, pp. 544–546 (1937), Reprinted in Davis, M. (ed.),
The Undecidable, Raven Press, Hewlett, NY (1965)

32. Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Math-
ematical Society 45, 161–228 (1939)

33. Weihrauch, K.: Computability. EATCS Monographs on Theoretical Computer Sci-
ence, vol. 9. Springer, Berlin (1987)

34. Weihrauch, K. (ed.): Computable Analysis – An introduction. Springer, Berlin
(2000)

A Proofs of Two Theorems

We provide here proofs of Theorems 3 and 4. First, we require some additional
definitions and lemmata.

A.1 Programmable Machines

In Sect. 3.2, we axiomatized sequential procedures. To link these procedures with
Turing machines, we define some mediators, named “programmable procedures,”
along the lines of Gurevich’s Abstract State Machines (ASMs) [11]. We then
show that sequential procedures and programmable procedures are equivalent
(Lemma 1).

A “programmable procedure” is like a sequential procedure, with the main
difference that its transition function should be given by a finite “flat program”
rather than satisfy some constraints.

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-257.pdf

224 U. Boker and N. Dershowitz

Definition 20 (Flat Program). A flat program P of vocabulary F has the
following syntax:
if x11

.= y11 and x12
.= y12 and . . . x1k1

.= y1k1

then l1 := v1

if x21
.= y21 and x22

.= y22 and . . . x2k2

.= y2k2

then l2 := v2

...

if xn1
.= yn1 and xn2

.= yn2 and . . . xnkn

.= ynkn

then ln := vn

where each .= is either ‘=’ or ‘�=’, n, k1, . . . , kn ∈ N, and all the xij , yij, li, and
vi are F-terms.

Each line of the program is called a rule. The part of a rule between the if
and the then is the condition, li is its location, and vi is its value.

The activation of a flat program P on an F-structure S, denoted P (S), is a
set of updates {l := v | there is a rule in P , whose condition holds (under the
standard interpretation), with location l and value v}, or the empty set if the
above set includes two values for the same location.

Coding Style. To make flat programs more readable, let

% comment
if cond-1

stat-1
stat-2

else
stat-3

stand for

if cond-1 then stat-1
if cond-1 then stat-2
if not cond-1 then stat-3

and, similarly, for other such abbreviations.

Definition 21 (Programmable Procedure). A programmable procedure is
composed of: F , In, Out, D, S, S0, and P , where all but the last component is as
in a sequential procedure (see Sect. 3.2), and P is a flat program of F .

The run of a programmable procedure and its extensionality are defined as for
sequential procedures (Definitions 12 and 13), where the transition function τ is
given by τ(S) = S′ ∈ S such that Δ(S, S′) = P (S).

A.2 Sequential Equals Programmable

We show that every programmable procedure is sequential (satisfying the three
axioms), and every sequential procedure is programmable. This result is derived
directly from the main lemma of [11].

The Church-Turing Thesis over Arbitrary Domains 225

Lemma 1. Every programmable procedure is sequential. That is, let A be a pro-
grammable procedure with states S and a flat program P , then there exists a
sequential procedure B with the same elements of A, except for having a transi-
tion function τ instead of the program P , such that Δ(S, τ(S)) = P (S) for every
S ∈ S.

Proof. Let A = 〈F , In, Out, D, S, S0, P 〉 be an arbitrary programmable proce-
dure. Define the finite set of critical F -terms T to include all terms and sub-
terms of P . Define a transition function τ : S → S by τ(S) = S′ such that
Δ(S, S′) = P (S). To show that B = 〈F , In, Out, D, S, S0, τ〉 is a sequential pro-
cedure such that Δ(S, τ(S)) = P (S) for every S ∈ S it remains to show that
B satisfies the constraints defined for τ in a sequential procedure. Since the flat
program P includes only terms in T (and doesn’t refer directly to domain ele-
ments), it obviously follows that τ satisfies the isomorphism constraint. Since T
includes all the terms of P , as well as the subterms of the location-terms of P , it
obviously follows that states that coincide over T have the same set of updates
by τ . Thus, τ satisfies the bounded-exploration constraint. �

Lemma 2. Every sequential procedure is programmable. That is, let B be a
sequential procedure with states S and a transition function τ , then there exists
a programmable procedure A with the same elements of B, except for having a
flat program P instead of τ , such that Δ(S, τ(S)) = P (S) for every S ∈ S.

This follows directly from Gurevich’s proof that for every sequential algorithm
there exists an equivalent sequential abstract state machine [11, Lemma 6.11].

A.3 Effective Equals Computable

We prove now that Turing machines are of equivalent computational power to
all effective models.

Turing Machines are Effective. First, we show that the class of effective
procedures is at least as powerful as Turing machines, as the latter is an effective
model.

Proof (of Theorem 3). We consider Turing machines with two-way infinite tapes.
By way of example, let the tape alphabet be {0, 1}. So domain elements are
comprised of an internal machine state and an infinite tape, containing finitely
many 0’s and 1’s, and the rest blank, and a read/write head somewhere along
the tape.

A Turing machine state (instantaneous description) contains three things:
Left, a finite string containing the tape section left of the reading head; Right,
a finite string with the tape section to the right to the read head; and q, the
internal state of the machine. The read head points to the first character of
Right.

Turing machines can be viewed as an effective model with the following com-
ponents:

226 U. Boker and N. Dershowitz

Domain: The domain consists of all finite strings over 0, 1. That is the domain
D = {0, 1}∗.

Base structure: Constructors for the finite strings: the constant symbol @ and
unary function symbols Cons 0 and Cons 1. Thus, @ has the empty string, ε,
as its permanent value.

Almost-constant structure:

– Input and Output (nullary functions): In, Out. The value of In at the initial
state is the content of the tape, as a string over {0, 1}∗.

– Constants for the alphabet characters and TM-states (nullary): 0, 1, q 0,
q 1, . . . , q k. Their actual values are of no significance, as long as they are
all different.

– Variables to keep the current status of the Turing machine (nullary): Left,
Right, and q. Their initial values are: Left = ε, Right = ε, and q = q 0.

Effective structure:

– Functions to examine the tape (unary functions): Head and Tail. Their initial
values are as in the standard implementation of Head and Tail. Their effective
implementation is given below, after the description of the Turing machine
model.

– The Boolean equality notion =. Note that the standard equality notion con-
tains infinite data, thus cannot be contained in the almost-constant struc-
ture, nor in the base structure. Nevertheless, since every domain element has
a unique construction, the equality notion can be effectively implemented
with only finite initial data. This implementation is explained after the im-
plementation of Head and Tail.

Transition function: By Lemma 1, every programmable procedure is a sequential
procedure. Thus, a programmable procedure that satisfies the initial-data pos-
tulate is an effective procedure. Every Turing machine is an effective procedure
with a flat program looking like this:

if q = q_0 % TM’s state q_0
if Head(Right) = 0

% write 1, move right, switch to q_3
Left := Cons_1(Left)
Right := Tail(Right)
q := q_3

if Head(Right) = 1
% write 0, move left, switch to q_1
Left := Tail(Left)
Right := Cons_0(Right)
q := q_1

if Right = @
% write 0, move left, switch to q_2

The Church-Turing Thesis over Arbitrary Domains 227

Left := Tail(Left)
Right := Cons_0(Right)
q := q_2

if q = q_1 % TM’s state q_1
...

if q = q_k % the halting state
Out := Right

In the above description of Turing machines as an effective model we’ve used
the functions Head and Tail. We show now their effectiveness.

The implementation sequentially enumerates all strings, assigning their Head
and Tail values, until encountering the input string. Note that it uses the equality
notion, which is shown to be effective afterwards.

It uses the same base structure and almost-constant structure described above,
with the addition of the following nullary functions (Name = initial value):
New = ε, Backward = 0, Forward = 1, AddDigit = 0, and Direction = ε.

% Sequentially constructing the Left variable
% until it equals to the input In, for filling
% the values of Head and Tail.
% The enumeration is: empty string, 0, 1, 00, 01, ...
if Left = In % Finished

Right := Left
Left := @

else % Keep enumerating
if Direction = New % default val

if Left = @ % @ -> 0
Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

if Head(Left) = 0 % e.g. 110 -> 111
Left := Cons_1(Tail(Left))
Head(Cons_1(Tail(Left)) := 1
Tail(Cons_1(Tail(Left)) := Tail(Left)

if Head(Left) = 1 % 01->10; 11->000
Direction := Backward
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Backward
if Left = @ % add rightmost digit

Direction := Forward
AddDigit := True

if Head(Left) = 0 % change to 1
Left := Cons_1(Tail(Left))
Direction := Forward

if Head(Left) = 1 % keep backwards
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Forward % Gather right 0s
if Right = @ % finished gathering

228 U. Boker and N. Dershowitz

Direction := New
if AddDigit = 1

Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left
AddDigit = 0

else
Left := Cons_0(Left)
Right := Tail(Right)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

The equality notion. The standard equality notion has infinite data, thus cannot
be given in the initial state. However, since the domain elements are uniquely
constructed, it follows that it can be effectively implemented using only finite
initial data. The implementation scheme is quite similar to the above imple-
mentation of Head and Tail. Initially, the value of the equality function is ⊥ at
all locations. The implementation sequentially enumerates the strings, assigning
True as the value of equality of each string with itself and False for comparisons
with all preceeding strings. This continues until the process gives one of the de-
fined values to the equality operation applied to the inputs. �

Effective Procedures are Computable. Next, we show that all effective
models are equal to or weaker than Turing machines by mapping every effective
model to a while-like computer program (CP). The computer program may
be of any programming language known to be of equivalent power to Turing
machines, as long as it operates over the natural numbers and includes the
syntax and semantics of flat programs.

Lemma 3. Every infinite base structure S of vocabulary F over a domain D is
isomorphic to a computable structure S′ of the same vocabulary over N. That
is, there is a bijection π : D ↔ N such that for every location f(a) of S we have
that [[f(a)]]S = π−1([[f(π(a))]]S′).

Proof. Let S be a base structure of vocabulary F over a domain D. Let T be the
domain of all F -terms, and S̃ the standard free term algebra (structure) of F .
Since all structure functions are total, it follows that every F -term has a value in
D, and by Proposition 2, every element e ∈ D is the value of a unique F -term.
Therefore, there is bijection ϕ : D ↔ T , such that ϕ−1(t) = [[t]]S for every t ∈ T .
Hence, S and S̃ are isomorphic via ϕ. Since F is finite, it follows that its set
of terms T is recursive. Define a computable enumeration η : T ↔ N. Define
a structure S′ of vocabulary F over N by the following computable recursion:
[[f(n1, . . . , nk)]]S′ = η(f(η−1(n1), . . . , η−1(nk))). That is, for computing the value
of a function f on a tuple n the program should recursively find the terms of n,
and then compute the enumeration of the combined term. By the construction of
S′ we have that S′ and S̃ are isomorphic via η. Hence, S′ and S are isomorphic
via ϕ ◦ η. �

The Church-Turing Thesis over Arbitrary Domains 229

Lemma 4. Computer programs (CP) are at least as powerful, representation-
ally, as any effective model.

Proof. We show that for every effective model E over domain D there is a
bijection π : D → N such that CP 	π E.

When the effective model E has a finite base structure, then the computability
is obvious due to the finite number of possible procedures. We consider then the
infinite case; let E be an effective model over a domain D with an infinite base
structure BS . By Lemma 3 there is a bijection π : D ↔ N, such that the structure
BS ′ := π(BS) is computable. Let PBS be a computer program implementing BS ′.
For each effective procedure e ∈ E, let ASe be its almost-constant structure. Since
ASe is almost constant, it follows that AS′

e := π(ASe) is computable; let PASe

be a computer program implementing AS′
e. Analogously, we have by induction a

computer program PESe implementing the effective structure of e. By Lemma 2,
the transition function of every effective procedure e ∈ E can be defined by a flat
program Pe. For every effective procedure e ∈ E, define a computer program P ′

e =
PBS ∪Pe ∪PASe ∪PESe . Since BS′ = π(BS), AS′

e = π(ASe) and ES′
e = π(ESe),

it follows that [[P ′
e]] = π([[e]]). Therefore, there is a bijection π : D ↔ N, such that

for every effective procedure e ∈ E there is a computer program P ′
e ∈ CP such

that [[P ′
e]] = π([[e]]). Hence, CP 	 E. �

We are now in position to prove that Turing machines are at least as powerful
as any effective model.

Proof (of Theorem 4). By Lemma 4, computer programs (CP) are representa-
tionally at least as powerful as any effective model, while Turing machines (TM)
are of equivalent power to computer programs. (There are standard bijections
between Σ∗ and N.) �

Generalized Categorial Dependency Grammars

Michael Dekhtyar1 and Alexander Dikovsky2,�

1 Dept. of Computer Science, Tver State University, Tver, Russia, 170000
Michael.Dekhtyar@tversu.ru

2 LINA CNRS 2729, Université de Nantes, 2, rue de la Houssinière BP 92208 F 44322
Nantes cedex 3 France

Alexandre.Dikovsky@univ-nantes.fr

To our dear Teacher Boris Trakhtenbrot.

Abstract. Generalized Categorial Dependency Grammars (gCDG)
studied in this paper are genuine categorial grammars expressing pro-
jective and discontinuous dependencies, stronger than CF-grammars and
non-equivalent to mild context-sensitive grammars. We show that gCDG
are parsed in polynomial time and enjoy good mathematical properties.

1 Introduction

Dependency grammars (DGs) are formal grammars assigning dependency struc-
tures to the sentences of the language they define. A dependency structure (DS)
of a sentence is an oriented graph whose nodes are the words of the sentence
and whose arcs are labelled with dependency names. In other words, they are
structures on sentences in terms of various binary relations on words. If two

words v1 and v2 are related by dependency d (denoted v1
d−→ v2), then v1 is

the governor and v2 is the subordinate. Intuitively, the dependency d encodes
constraints on lexical and grammatical features of v1 and v2, on their prece-
dence, pronominalization, context, etc. which together mean that “v1 licenses
v2” (see [24] for a detailed presentation). For instance, in the DS of the sentence

In the beginning was the Word in Fig. 1, was
pred−→ Word stands for the predica-

tive dependency between the copula was and the subject Word . From such ba-
sic dependency relations some derived relations are defined, e.g. the dependency

Fig. 1.

� This work was sponsored by the Russian Fundamental Studies Foundation (Grant
05-01-01006-a).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 230–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generalized Categorial Dependency Grammars 231

relation v1 −→ v2 ≡ ∃d (v1
d−→ v2) and its reflexive-transitive closure

(dominance) v1
∗−→ v2. For instance, in the DS in Fig. 1, both occurrences of

the article the are dominated by was: was
∗−→ the2, was

∗−→ the5, but only
the first one is dominated by in: in

∗−→ the2.
The idea of such explicit representation of syntactic relations in sentences is by

far more ancient than that of the constituent structure and goes back at least to
the early grammars of the Arabic language, which used the notions of governor
and subordinate (Kitab al-Usul of Ibn al-Sarrang, (d. 928)). Modern theories of
syntax use various DSs. Prevailing is the tradition, going back to L. Tesnire [29],
to use only the tree-like DS: dependency trees (DTs). There are also approaches
where general dependency structures are used (cf. [17,28]). Sometimes (this is
the case of [17]), it is due to combining in the same structure several relations of
different nature, for instance, the surface syntactic relations and the co-reference
relations. Another difference point is the word order (WO) included or not into
the DSs. Some important properties of DSs cannot be expressed without the
WO, first of all, projectivity. This property is defined in terms of the projection
D(v) of a word v in DS D of a sentence w: D(v) = {v′ ∈ D || v

∗−→ v′}. D is pro-
jective if the projections of all words in w are continuous intervals of w. So the
DS in Fig. 1 is projective. Meanwhile, non projective DSs are frequent in natu-
ral languages. E.g., both DTs in Fig. 2 are non projective. The non projectivity is

(a)

(b)
(French: she gave itfem to him)

Fig. 2.

always due to discontinuous dependencies, i.e. the dependencies in which the
governor vg is separated from the subordinate vs by a word not dominated
by vg (see [13] for more details). In Fig. 2, the discontinuous dependencies are
represented by dotted arrows. When the dependencies are emancipated from the
WO (cf. [6]), it is only done to define more exactly the WO constraints. Contrary
to this, we suppose that the DSs are linearly ordered by the WO.

There is a great many definitions of DGs: from generating to constraint based
(see [20,21] for references and discussion). Our definition goes back to the early
valency/precedence style definitions [16,14] having much in common with those

232 M. Dekhtyar and A. Dikovsky

of the classical categorial grammars [1,2]. Both are lexicalized, use syntactic
types in the place of rewriting rules, naturally fit compositional semantic struc-
tures and are equivalent to CF-grammars if only the weak expressive power
is concerned and the core syntax is considered. But as far as it concerns the
strong expressive power, many fundamental differences appear between these
formalisms. It is true that there is a simple translation from phrase structures
with head selection to projective DTs and back (see [15,27] or [13] for more de-
tails), which conforms with the direct simulation of core dependency grammars
by the classical CGs [14]. Unfortunately, this technical resemblance does not
preserve the intended syntactic types. The reason is that the syntactic functions
corresponding to the dependencies are different from those of the heads in the
syntagmatic structures originating from the X-bar theory [18]. Basically, the dif-
ference is that the type of a constituent head determines its syntagmatic (phrase)
valencies, whereas a dependency represents a valency of the governor word in
one subordinate word. It reflects its lexical and syntactic class, its position with
respect to the governor, its semantic role, pronominalization, etc. (see [24] for
more details). In particular, this means that the dependency types should be
more numerous and specific than the syntagmatic ones and not prone to type
raising. Essential distinctions are also in treating verb and noun modifiers, which
in dependency surface syntax are subordinate and iterated. The canonical CGs’
elimination rules imply dependencies from the functional type words to the ar-
gument type words. So, in the absence of type raising, the adjectives, whose
canonical type in English is [n/n], must govern the modified nouns and not vice
versa as in DGs. This also explains the difference in treating the modifiers. In
DGs (cf. [28,23]) the modifiers are iterated and not recursed. Another important
difference is that DTs, in contrast with phrase structures, naturally capture dis-
continuous surface word order. Rather expressive and complex extensions of CGs
are needed to cope with the discontinuous and naturally oriented dependencies
simulation (e.g. multi-modal extensions of Lambek calculus [26,25]). Meanwhile,
as it was shown in [9,10], both can be naturally and feasibly expressed in DGs in
terms of polarized dependency valencies controlled by a simple principle, which
enables a discontinuous dependency between two closest words having the same
valency with the opposite signs (“first available” (FA) principle).

Below, we study a class of generalized categorial dependency grammars es-
tablished on the base of the FA principle. These grammars prove to be very
expressive. At the same time, they are parsed in practical polynomial time and
can be naturally linked with the underspecified semantics defined in [11] (this
subject will be treated elsewhere).

2 Syntactic Types

Dependency type of a word (to be called category) represents its governor-
subordinate valencies. There are two basic ideas of how to transform
dependencies into categories. The first idea, proposed in [12], consists in decom-

posing each dependency Gov
d−→ Sub into two parts: Gov and Sub. The first

Generalized Categorial Dependency Grammars 233

Gov Gov Sub

d
d d

Sub

f

Lm...L1 Rn ... R1

al1 ar1

alm arn

H

Fig. 3.

becomes the argument-type d, whereas the second, the value-type d (see Fig. 3).
Grouping together, for a word H, the value type f corresponding to the incoming
dependency f and the argument types corresponding to the outgoing left depen-
dencies al1, . . . , alm and right dependencies ar1, . . . , arm (in this order) we ob-
tain the category [alm\...\al1\f/ar1/.../arn] of H (denoted H �→ [alm\...\al1\f
/ar1/.../arn]). For instance, the DT in Fig. 1 determines the types:

in �→ [c−copul/prepos−in], the �→ [det],
beginning �→ [det\prepos−in], was �→ [c−copul\S/pred],
Word �→ [det\pred]

The second idea put forward in [9,10], consists in interpreting discontinuous
dependencies as polarized valencies using four polarities: left and right positive
↖, ↗ and left and right negative ↙, ↘ . For each polarity v, there is the unique
“dual” polarity v̆: ↖̆ = ↙, ↙̆ =↖, ↗̆ =↘, ↘̆ =↗. Intuitively, the argument
type ↖ d can be seen as the valency of a word whose subordinate through
dependency d is situated somewhere on the left. The dual value type ↙d can be
seen as the valency of a word whose governor through the same dependency d
is situated somewhere on the right. Together, the paired dual valencies ↙d, ↖d
(respectively, ↗d, ↘d) define the discontinuous dependency d. For instance, the
DT in Fig. 2b determines the types:

elle �→ [pred], la �→ [↙clit−dobj],
lui �→ [↙clit−iobj], a �→ [pred\S/aux],
donne �→ [↖clit−iobj\ ↖clit−dobj\aux]

Speaking about generalized categories, we will factor out from them the polar-
ized subtypes. For instance, [↖clit−iobj\ ↖clit−dobj\aux] and [↙clit−iobj] will
become respectively [aux]↖clit−iobj↖clit−dobj and [ε]↙clit−iobj. Here is a definition
of the generalized categories.

Definition 1. Let C be a set of elementary (dependency) categories. S ∈ C is
the selected category of sentences. For each d ∈ C, the category d∗ is iterated.

All elementary categories and ε are neutral. If a category C is neutral and
a category α is elementary or iterated, then the categories [α\C] and [C/α] are
also neutral. There are no other neutral categories. The set of neutral categories
over C is denoted nCat(C).

234 M. Dekhtyar and A. Dikovsky

Polarized valencies are expressions ↙d, ↘d, ↖d, ↗d, where d ∈ C. The set of
polarized valencies over C is denoted V (C). Strings of valences P ∈ Pot(C)=df

V (C)∗ are called potentials. A generalized category is either neutral or has the
form CP , where P is a potential and C is a neutral category. We will omit the
empty potential. The set of generalized categories over C is denoted gCat(C).

We suppose that the constructors \ and / are associative. So every generalized
category has the form [αlm\...\αl1\f/αr1/.../αrn]P , where f ∈ C ∪ {ε}, each
αli and αrj is an elementary category d ∈ C or its iteration d∗, m, n ≥ 0 and
P ∈ Pot(C).

In [9] a simple and natural principle of pairing dual polarized valencies was
proposed called First Available (FA)-principle: the closest dual valences with
the same name are paired.

Definition 2. An occurrence of dual polarized valencies v and v̆ in a potential
P1vP v̆P2 satisfies the FA-principle if P has no occurrences of v and v̆.

3 Generalized Categorial Dependency Grammar

Categorial dependency grammars are lexicalized in the same sense as the conven-
tional categorial grammars: they have a few language non-specific rules consti-
tuting a dependency calculus and a language specific lexicon defining the words
using dependency types.

Definition 3. A generalized categorial dependency grammar (gCDG) is a sys-
tem G = (W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected category S, and δ - called lexicon -
is a finite substitution on W such that δ(a) ⊂ gCat(C) for each word a ∈ W.

The generalized dependency calculus consists of the following rules.1

Ll. CP1 [C\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P
Dl. αP1(↙C)P (↖C)P2 � αP1PP2 , if (↙C)P (↖C) satisfies FA

Intuitively, the rule Ll corresponds to the classical elimination rule of categorial
grammars. Eliminating the argument subtype C it constructs the (projective)
dependency C in which the governor is the word with the functional type and the
subordinate is the word with the argument type. At the same time, it concate-
nates the potentials of these types (if any). The rules Il,Ωl derive the iterated
(projective) dependencies. Il, analogous to the rule Ll, may derive k > 0 depen-
dencies C and Ωl corresponds to the case k = 0. It is the rule Dl which derives
discontinuous dependencies. It pairs and eliminates dual valencies ↙ C, ↖ C
(or ↗C, ↘C) and creates the discontinuous dependency C between the words
whose types have these polarized valencies. This calculus naturally induces the
immediate provability relation � on the strings of generalized dependency types
Γ1 � Γ2 underlying the following definition of languages.
1 We show only left argument rules. The right argument rules are symmetric.

Generalized Categorial Dependency Grammars 235

Definition 4. For a gCDG G = (W,C, S, δ), let G(D, w) denote the relation:
D is the DS of a sentence w constructed in the course of a proof Γ � S for some
Γ ∈ δ(w). In particular, we will use notation w = w(D) for the DS D of w. The
DS-language generated by G is the set of dependency structures

Δ(G)=df {D | ∃w G(D, w)}

and the language generated by G is the set of sentences

L(G)=df {w | ∃D G(D, w)}.

D(gCDG) and L(gCDG) will denote the families of DS-languages and languages
generated by these grammars.

Example 1. For instance, in the gCDG Gabc :

a �→ A↙A, [A\A]↙A, b �→ [B/C]↖A, [A\S/C]↖A, c �→ C, [B\C],

Gabc(D(3), a3b3c3) holds for the DS D(3) in Fig. 4 and the string a3b3c3 due to
the types assignment

a3b3c3 �→ A↙A[A\A]↙A[A\A]↙A[A\S/C]↖A[B/C]↖A[B/C]↖AC[B\C][B\C]

and the proof in Fig. 5.

Fig. 4.

It is not difficult to prove:

[A]↙A[A\A]↙A

(Ll)
[A]↙A↙A [A\A]↙A

(Ll)
[A]↙A↙A↙A

[A\S/C]↖A

[B/C]↖A

[B/C]↖AC
(Lr)

B↖A [B\C]
(Ll)

C↖A

(Lr)
B↖A↖A [B\C]

(Ll)
C↖A↖A

(Ll)
[A\S]↖A↖A↖A

(Ll)
[S]↙A↙A↙A↖A↖A↖A

(Dl × 3)
S

Fig. 5.

236 M. Dekhtyar and A. Dikovsky

Proposition 1. L(Gabc) = {anbncn | n > 0}.

Remark 1. It should be noted that a type assignment to a string may have
multiple correctness proofs. As a consequence, even a rigid gCDG, i.e. a gCDG
assigning one type per word, may generate various DSs for the same string, as
it is shown in the next example.

Example 2. The rigid gCDG Gr : x �→ [S/S], y �→ S, z �→ [S\S] generating
the regular language x∗yz∗, has two different proofs for [S/S]S[S\S] � S. As a
result, the string xyz has the two DTs shown in Fig. 6.

Fig. 6.

An important particularity of gCDG is the property of independence of neu-
tral and polarized valencies in the proofs, expressed using two projections of
generalized categories.

Definition 5. Local and valency projections ‖γ‖l, ‖γ‖v are defined as follows:
1. ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l and ‖αγ‖v = ‖α‖v‖γ‖v for α ∈
gCat(C) and γ ∈ gCat(C)∗.
2. ‖CP ‖l = C and ‖CP ‖v = P for CP ∈ gCAT (C).

To speak about “well-bracketing” of potentials, we interpret ↙d and ↗d as left
brackets and ↖d and ↘d as right brackets. The sets of all left and right bracket
valencies are denoted V l(C) and V r(C). V (C)=df V l(C) ∪ V r(C).

Definition 6. Pairs (α, ᾰ) are called correct. For a dependency d and a poten-
tial P, let P � d be the result of deleting the occurrences of all valencies but ↙d,
↗ d, ↖ d and ↘ d. Then P is balanced if P � d is well bracketed in the usual
sense for every d.

This property can be incrementally checked using the following values.

Definition 7. For a (neutral or polarized) valency v and a category projection
γ, |γ|v will denote the number of occurrences of v in γ. For a potential P, a
left-bracket valency v ∈ V l(C), and the dual right-bracket valency v̆ ∈ V r(C),

Δv(P) = max{|P ′|v − |P ′|v̆ || P ′ is a suffix of P}
Δv̆(P) = max{|P ′|v̆ − |P ′|v || P ′ is a prefix of P},

express respectively the deficit of right and left v−brackets in P (i.e. the maximal
number of right and left bracket v-valencies which need to be added to P on the
right (left) so that it became balanced.2

The following facts are easy to prove:
2 Having in mind that there is P ′ = ε, the values Δv̆(P) and Δv(P) are non-negative.

Generalized Categorial Dependency Grammars 237

Lemma 1. 1. A potential P is balanced iff
∑

v∈V (C)

Δv(P) = 0.

2. For all potentials P1, P2, and every v ∈ V l(C), v̆ ∈ V r(C),

Δv(P1P2) = Δv(P2) + max{Δv(P1) − Δv̆(P2), 0},
Δv̆(P1P2) = Δv̆(P1) + max{Δv̆(P2) − Δv(P1), 0}

3. A potential P is balanced iff for every category αP there is a proof αP � α
using only the rules Dl and Dr.

Finally, we will denote by c the projective core of the generalized dependency
calculus, consisting of the rules L, I and Ω. �c will denote the provability relation
in this sub-calculus. Now we can state the property of projections independence.

Theorem 1. Let G = (W,C, S, δ) be a gCDG. x ∈ L(G) iff there is a string of
categories γ ∈ δ(x) such that:
1. ‖γ‖l �c S,
2. ‖γ‖v is balanced.

Proof. The theorem is proved by induction on the proof length. We will prove
(⇒), the inverse being similar. Let x ∈ L(G) due to an assignment δ : x �→ γ ∈
gCat(C)∗ and a proof γ � S. Let n be the length of this proof.
I. n = 0. Then γ = ‖γ‖l = S, ‖γ‖v = ε and the statement is trivially true.
II. n > 0. Then the proof has the form γ �R γ′ � S, where R is the first rule
applied in the proof.
Case 1. R = D. In this case, R does not affect the local projection. So ‖γ‖l =
‖γ′‖l and, therefore, ‖γ‖l �c S by induction hypothesis. On the other hand,
‖γ′‖v results from ‖γ‖v by elimination of a correct pair of polarized valencies
satisfying the FA-principle. This means that ‖γ′‖v is balanced iff ‖γ‖v is so.
Case 2. R �= D. In this case, R does not affect the valency projection. So
‖γ‖v = ‖γ′‖v and, therefore, ‖γ‖v is balanced. On the other hand, γ′ � S
implies ‖γ′‖l �c S by induction hypothesis. So ‖γ‖l �R ‖γ′‖l �c S. ��

4 Expressive Power of GCDG

gCDG are very expressive. The Example 1 shows that they can generate non-CF
languages. In fact, they have the same weak expressive power as the Dependency
Structure Grammars (DSG), a class of generating rule based dependency gram-
mars introduced in [9,10] and simplified and studied in [3]. Below we cite the
key definitions from [3].

The DSG use generalized DS over a mixed vocabulary of terminals W and
nonterminals N. In these DS, one connected component3 is selected as head
component and some node in this component is selected as DS head. We will
call headed the DS with such selection (hDS). In the two-component hDS in

3 Slightly abusing the standard graph-theoretic terminology, we call connected compo-
nent of a DS D any its maximal subgraph corresponding to connected components
of the non-oriented graph resulting from D after cancellation of its arcs’ orientation.

238 M. Dekhtyar and A. Dikovsky

MORE

pred preposcompar

NGPp

preposrestr
dobj

prep−iobj

THANNGPpNG5Pnpers Vtr

Fig. 7.

Fig. 7, the underlined node is head. The following composition D[v\D1] (and
simultaneous composition D[v1, . . . , vn\D1, . . . , Dn]) is defined on hDS.

Definition 8. Let δ1 = {D0, D1, . . . , Dk} be a hDS. Let a nonterminal A have
an occurrence in δ1: w(δ1) = xAy and δ2 be a hDS with the head n0. Then the
composition of δ2 into δ1 in the selected occurrence of A, denoted δ1[A\δ2], is
the hDS δ resulting from the union of δ1 and δ2 by unifying A and n0 and by
defining the order and labeling by the string substitution of w(δ2) in the place of
A in w(δ1). Formally:
1. nodes(δ)=df (nodes(δ1) − {A}) ∪ nodes(δ2).
2. arcs(δ)=df arcs(δ2)∪(arcs(δ1)−{d ∈ arcs(δ1)||∃n(d = (A, n)∨d = (n, A))}) ∪
{(n0, n)||∃n((A, n) ∈ arcs(δ1))} ∪ {(n, n0)||∃n((n, A) ∈ arcs(δ1))}.
3. The order of nodes(δ) is uniquely defined by equation w(δ) = xw(δ2)y.

b B cD3 =

a b b B c ca A

D2 = a ABD1 = A

D1[A, B\D2[A\D2], D3[B\D3]] =

Fig. 8.

In Fig. 8 is shown an example of such composition.4 The FA-principle is used
in DSG in the form of valency neutralization:

Definition 9. For potentials Γ = Γ1vΓ2v̆Γ3 and Γ ′ = Γ1Γ2Γ3 such that v =
(↗A), v̆ = (↘A) or v = (↙A), v̆ = (↖A) , v is neutralized by v̆ in Γ (denoted
Γ�FAΓ ′) if Γ2 has no occurrences of v and v̆. This reduction of potentials �FA

is terminal and confluent. So each potential Γ has a unique FA-normal form
denoted [Γ]FA. The product � of potentials defined by: Γ1 � Γ2=df [Γ1Γ2]FA is
clearly associative. So we obtain the monoid of potentials P = (Pot(C), �) with
the unit ε.

Definition 10. A Dependency Structure Grammar (DSG) G has the
rules r = (A → D) with A ∈ N and hDS D with assigned potentials: [Γ L

X]X [Γ R
X]

4 We use nonterminals label(v) in the place of v when no conflicts.

Generalized Categorial Dependency Grammars 239

(the left and right potentials Γ L
X and Γ R

X may be assigned to each nonterminal
X in D 5).

Derivation trees of G result from the derivation trees T of the cf-grammar
{A → w(D) || A → D ∈ G} by defining potentials π(T, n) of nodes n :
1. π(T, n) = ε for every terminal node n;
2. π(T, n) = Γ1 � . . . � Γk, for every node n with sons n1, ..., nk derived by rule
r = (A → D), in which w(D) = X1...Xk and Γi = Γ L

i � π(T, ni) � Γ R
i , where

[Γ L
i]Xi[Γ R

i] are the rule potential assignments. A hDS is generated in the node
n by the composition: hDS(T, n) = D[X1 . . .Xk\hDS(T, n1), . . . , hDS(T, nk)].
Every pair of dual valencies neutralized at this step corresponds to a discontin-
uous dependency added to this hDS.

A derivation tree T is complete if the potential of its root S is neutral:
π(T, S) = ε. We set G(D, w) if there is a complete derivation tree T of G from
the axiom S such that D = hDS(T, S) and w = w(D).

Δ(G) = {D | ∃w ∈ W+ G(D, w)} is the DS-language generated by G.
L(G) = {w ∈ W+ | ∃D G(D, w)} is the language generated by G.

For instance, the following four-rule DSG:

A cS → a[↙a] SG1 : A → [↖a]b c [↖a]b||A||

generates the language L(G1) = {anbncn||n > 0}. Its complete derivation tree of
the string a3b3c3 is shown in Fig. 9.

Clearly, L(CF) ⊆ L(DSG). So this example shows that L(CF) � L(DSG).
In [3] it is shown that DSG have Greibach normal form. Using this fact, it is
shown that L(DSG) ⊆ L(gCDG).6 On the other hand, it is also proved that
D(gCDG) ⊆ D(DSG). In particular, this means that the gCDG and the DSG
have the same weak generative power:

Theorem 2. [3] L(CF) � L(gCDG) = L(DSG).

In [9] a measure of discontinuity σ was defined which will be called valency
deficit. Intuitively, its value is the maximal potential size in a derivation. For
instance, for the gCDG it is defined as follows.

Definition 11. Let G = (W,C, S, δ) be a gCDG. For a proof p = (Γ � S),
where Γ ∈ δ(w) and w ∈ W+, its valency deficit σ(Γ, p) is the maximal size of a
potential used in p. σG(w) is the minimal value of σ(Γ, p) among all Γ ∈ δ(w).
Finally, σG(n) = max{σG(w) || |w| ≤ n}.

The examples of gCDG Gabc and DSG G1 show that the valency deficit of
these grammars cannot be bounded by a constant. As it is shown in [9], the
dependency grammars with bounded valency deficit generate CF-languages. This
theorem can be easily extended to gCDG and DSG. Let Lσ<const(gCDG) and
Lσ<const(DSG) denote the classes of languages generated respectively by gCDG
and DSG with bounded valency deficit.
5 For instance, A → [↘ d1]B[↗ d2] C denotes the rule A → B C with assignment

[↘d1]B[↗d2]. We omit empty potentials.
6 In [3] is used an equivalent notational variant of gCDGs.

240 M. Dekhtyar and A. Dikovsky

a[↙a] a[↙a] c c c[↖a]ba[↙a] [↖a]b

S

A

[↖a]b

S

S

S

A

A

a

a

a

[ε]

[↖a]

[↖a]

[↖a ↖a]

[↖a ↖a]

[↖a ↖a ↖a]

[↖a ↖a ↖a]

Fig. 9.

Theorem 3. Lσ<const(gCDG) = Lσ<const(DSG) = L(CF).

Let us consider some more examples.

Example 3. Let W = {a1, . . . , am} and L(m) = {an
1an

2 ...an
m || n ≥ 1}. Let us

consider the gCDG

G(m) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 �→ [S/A1]↗A2 , [A1/A1]↗A2 , [A1/A2]↗A2 ,
...
ai �→ [Ai/Ai]↘Ai↗Ai+1 , [Ai/Ai+1]↘Ai↗Ai+1 , 2 ≤ i < m,
...
am �→ [Am/Am]↘Am , [Am]↘Am

It is not difficult to prove the proposition

Proposition 2. L(G(m)) = L(m) for all m ≥ 2.

Meanwhile, as it is well known, the languages L(m) are mild context sensitive
and cannot be generated by basic TAGs starting from m > 4 (see [19]).

Example 4. Let us consider the language MIX consisting of all permutations
of the strings anbncn, n > 0 : MIX = {w ∈ {a, b, c}+ || |w|a = |w|b = |w|c}.
Emmon Bach conjectures that MIX is not a mild CS language. At the same
time, this language is generated by the following gCDG:

gCDG GMIX

left right middle
a �→ [S]↖B↖C a �→ [S]↗C↗B a �→ [S]↖B↗C , [S]↖C↗B

a �→ [S \ S]↖B↖C a �→ [S \ S]↗C↗B a �→ [S \ S]↖B↗C , [S \ S]↖C↗B

b �→ [ε]↙B b �→ [ε]↘B

c �→ [ε]↙C c �→ [ε]↘C

Generalized Categorial Dependency Grammars 241

Proposition 3. [3]. L(GMIX) = MIX.

As it is well known, the copy language Lcopy = {ww || w ∈ {a, b}+} is generated
by a basic TAG. On the other hand, it is conjectured in [12,3] that Lcopy cannot
be generated by gCDG and DSG. As we will see below, the gCDG-language are
parsed in polynomial time. This means that this family of grammars represents
an interesting alternative for the mild CS grammars (see the diagram in Fig. 10
presenting a comparison of the two families in weak generative power). The
gCDG-languages have good operation closure properties. In particular, they form
an AFL. To show this fact, we need some preliminary propositions.

Lcopy /∈? gCDG
TAG ≡w LinIG ≡w CombCG

L=5

gCDG ≡w CDG

MIX /∈? MCTAG

CF ≡w CDGσ<c ≡w gCDGσ<cMCTAG ≡w MinG ≡w MCFG

Fig. 10.

Lemma 2. For each gCDG G there is a weakly equivalent gCDG G′ in which
the axiom type S is not an argument subtype of a category.

Proof. Otherwise, just add a new axiom S′ and double the categories [α\S/β]
with new categories [α\S′/β]. ��

Lemma 3. For each gCDG G there is a weakly equivalent gCDG G′ in which
there are no categories with empty value type: [α\ε/β]P .

Proof. If there is one: t = [α\ε/β]P , then add a new elementary type dt, replace
t in all type assignments with the new category t′ = [α\dt/β]P and then, in
the resulting grammar, substitute the new category [dt ∗ \Al\ . . . A1\dt ∗ \V/dt ∗
/Bk . . . /B1/dt∗]P1 for each category [Al\ . . . A1\V/Bk . . . /B1]P1 . Regardless of
the fact that the resulting gCDG is greater than G, it is weakly equivalent to G
and has one empty value type less. ��

Theorem 4. The family L(gCDG) is an AFL.

Proof. We suppose that gCDGs satisfy the conditions of Lemmas 2,3.
1. L(gCDG) is closed under ε-free homomorphisms. Let G = (W,C, S, δ) be a
gCDG with W = {a1, . . . , an} and h : W → X+ be a homomorphism such that
h(ai) = xi0...ximi , mi ≥ 0, xij ∈ X, for all 0 ≤ j ≤ mi, 1 ≤ i ≤ n. The new gCDG
Gh keeps all elementary types of G including S which is also its axiom. Besides
them, it has a new elementary type dij for all 0 ≤ j ≤ mi, 1 ≤ i ≤ n. Its lexicon
δh is defined as follows: if h(ai) = xi0...ximi , then for every category α ∈ δ(ai),
it has the assignment δh : xi0 �→ [α/dimi/.../di1]. In particular, δh : xi0 �→ α,

242 M. Dekhtyar and A. Dikovsky

if mi = 0. Besides that, there are also the assignments δh : xij �→ dij for all
1 ≤ j ≤ mi, 1 ≤ i ≤ n. Clearly, L(Gh) = h(L(G)). ��
2. L(gCDG) is closed under the inverses of homomorphisms. First of all, let us
remark that to prove this proposition it suffices to prove it for the homomor-
phisms h : X → W ∗, X ∩ W = ∅, differing from a bijection h : X ↔ W by no
more than one assignment which is either of the form h(x) = ab, a, b ∈ W, or
of the form h(x) = ε. Let G = (W,C, S, δ) be the original gCDG and gCDG
Gh−1 = (X,C1, S, δh−1) the gCDG to construct.
2.1. Let h(x) = ab, a, b ∈ W, C1 ∈ δ(a) and C2 ∈ δ(b). Then δh−1 = δ∪δx, where
δx is defined below depending on the form of categories C1, C2. The following
five cases are possible for some u, v ∈ C :
2.1.(i). C1 = [α/u]P1 , C2 = [v/β]P2 .
2.1.(ii). C1 = [α\u]P1 , C2 = [v\β]P2 . Symmetric.
2.1.(iii). C1 = [α/u∗]P1 , C2 = [v/β]P2 .
2.1.(iv). C1 = [α\u]P1 , C2 = [v ∗ \β]P2 . Symmetric.
2.1.(v). C1 = [α\u]P1 , C2 = [v/β]P2 .
Construction of δx:
2.1.(i). In this case, are added to C1 the new elementary types dv for all elemen-
tary types d ∈ C and is added to δx the assignment:
x �→ [α/β]P1P2 if u = v, and whatever are u, v (u = v included), are also added
the following assignments:
x �→ [α/uv/β]P1P2 ,
y �→ [α′\dv/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\ev\dv/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ.
2.1.(iii). The only difference with the preceding case is in the form of the second
assignment:
x �→ [α/uv ∗ /β]P1P2 .
2.1.(v). In this case, three subsets are added to δ : δx,fork, δx,left and δx,right.
We will construct δx,fork and δx,right (δx,left is symmetric to δx,right).
Construction of δx,fork:
Are added to C1 new elementary types: flr, da(b) and d(a)b for all elementary
types l, r, d ∈ C, and are added the following assignments:
x �→ [α\la(b)\flr/r(a)b/β]P1P2 for all l, r ∈ C,
y �→ [α′\da(b)/β′]P for each assignment y �→ [α′\d/u/β′]P ∈ δ,
y �→ [α′\d(a)b/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\da(b)/ea(b)/β′]P for each assignment y �→ [α′\d/e/β′]P ∈ δ,
y �→ [α′\e(a)b\d(a)b/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′/flr/β′]P for each assignment y �→ [α′/r/l/β′]P ∈ δ, where α′ �= ε,
y �→ [α′\flr\β′]P for each assignment y �→ [α′\r\l\β′]P ∈ δ, where β′ �= ε,
y �→ [α′/fdd ∗ /β′]P for each assignment y �→ [α′/d ∗ /β′]P ∈ δ, where α′ �= ε and
d = l = r,
y �→ [α′\fdd ∗ \β′]P for each assignment y �→ [α′\d ∗ \β′]P ∈ δ, where β′ �= ε and
d = l = r.

Generalized Categorial Dependency Grammars 243

Construction of δx,right:
For all d ∈ C, are added to C1 new elementary types: d(ε)ab and d(ε)a|b (symmet-
ric types dab(ε) and da|b(ε) for δx,left), and are added the following assignments:
x �→ [α\d(ε)ab/β]P1P2 for all d ∈ C (x �→ [α\dab(ε)/β]P1P2 for δx,left),
y �→ [α′\d(ε)ab/β′]P for each assignment y �→ [α′\v\u\d/β′]P ∈ δ,
y �→ [α′\e(ε)ab\d(ε)ab/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′\d(ε)a|b/β′]P for each assignment y �→ [α′\v\d/β′]P ∈ δ,
y �→ [α′\e(ε)a|b\d(ε)a|b/β′]P for each assignment y �→ [α′\e\d/β′]P ∈ δ,
y �→ [α′\e(ε)a|b\d(ε)ab/β′]P for each assignment y �→ [α′\u\d/β′]P ∈ δ,
y �→ [α′\d(ε)ab\β′]P for each assignment y �→ [α′\d\β′]P ∈ δ,
y �→ [α′/d(ε)ab/β′]P for each assignment y �→ [α′/d/β′]P ∈ δ,
y �→ [α′\d(ε)ab ∗ \β′]P for each assignment y �→ [α′\d ∗ \β′]P ∈ δ,
y �→ [α′/d(ε)ab ∗ /β′]P for each assignment y �→ [α′/d ∗ /β′]P ∈ δ.
2.2. Let h(x) = ε. Then C1 = C ∪ {dx}, δh−1(x) = dx and each assign-
ment δ : c �→ [lm\ . . . \l1\v/r1/ . . . /rn], c ∈ W, is replaced by the assignment
δh−1 : c �→ [dx ∗ \lm\ . . . \l1\dx ∗ \v/dx ∗ /r1/ . . . /rn/dx∗]. ��

3. L(gCDG) is closed under intersection with regular languages. Let G =
(W,C, S, δ) be a gCDG and A be a FA with states Q = {qin, q1, ..., qk, qfin},
where qin is initial, qfin �= qin is final and in every transition a q → q′,
a ∈ W, q �= qfin and q′ �= qin. Then in the new gCDG GA = (W,CA, S, δA)
CA = C∪Q and for every assignment δ : a �→ CP and every transition a q → q′,
the new assignments δA are defined as δA : a �→ CPP1P2 , where:

P1 =

⎧
⎨

⎩

(↗qin)(↗q′), if q = qin

(↘q)(↘qfin), if q = qfin

(↘q)(↗q′), otherwise
P2 =

{
(↘qin)(↗qfin), if C = [α\S/β]
ε, otherwise

��

4-6. The proofs of closure under union, concatenation and Kleene + are standard
and obvious. ��

5 Categorial Dependency Grammars

Generalized CDG are useful for formal study of the grammars and languages.
However, they are not flexible enough for designing real application grammars.
Their main drawback is that in order to fix the exact position of a distant
subordinate, one needs to violate the tree-likeness of the DS (cf. the DS in Fig. 4).
In order to eliminate this defect, we will use two more valency types: that of the
anchored distant subordinate # and that of the host word �. When a distant right
subordinate s through a dependency d should be positioned immediately on the
left of its host word h, the latter must have in its type the argument �l(↘ d) :
h �→ [�l(↘ d)\β] whereas the former must have the value type #l(↘ d) : s �→
[β1\#l(↘d)/β2]. After the argument valencies β1 and β2 of s will be saturated,
the value type #l(↘ d) becomes adjacent to the category [�l(↘ d)\β], the host
argument �l(↘ d) of this category is eliminated and the polarized valency ↘ d
loses its anchor marker and falls under the FA-principle. These new types need
a change in the dependency calculus. Below we present an extended calculus we

244 M. Dekhtyar and A. Dikovsky

call sub-commutative. The new DGs using this calculus will be called Categorial
Dependency Grammars (CDG). We constrain the dependency types in order
that the CDG generate only the DSs with the single governor per word.

Type constraints: In the categories [L1 \ · · · \ Li \ C / Rj / · · · / R1] :
(i) the value type C can be neutral, or negative (↙ C, ↘ C) or anchored
(#l(↙C), #r(↙C), #l(↘C), #r(↘C)),
(ii) the argument types Li, (Rj) can be neutral or positive (↖C, ↗C) or host
(�l(↙C), �l(↘C), respectively �r(↙C), �r(↘C)).

Definition 12. Sub-commutative dependency calculus.7 [8]
Ll. C[C\β] � [β]
Il. C[C∗\β] � [C∗\β]

Ωl. [C∗\β] � [β]
Vl. [α\β] � α[β], α ∈ {(↖C), �l(↙C), �l(↘C)}
Al. #l(α)�l(α) � α, α ∈ {(↙C), (↘C)}
Cl. αβ � βα, α ∈ {(↙C), (↖C), (↗C), (↘C)}, where

β = �(v) or β has no occurrences of α, ᾰ, #(α), �(α)
Dl. (↙C)(↖C) � ε

In this calculus, the new rule Dl creates a discontinuous dependency for adjacent
dual dependencies. At the same time, the rule Cl permutes the polarized valen-
cies with other types when the permutation does not violate the FA-principle.
The rule Vl decomposes complex types and the rule Al eliminates the anchor
markers if the corresponding anchor and host types are adjacent.

Remark 2. In contrast with the CDGs of [12], which generate only DTs, the
DSs generated by the sub-commutative CDGs may have cycles, as shows the
following example:

[(↙A)/(↗B)]1[(↖A)\(↘B)]2S3 � (↙A)1(↗B)1[(↖A)\(↘B)]2S3 �
(↙A)1(↗B)1(↖A)2(↘B)2S3 � (↙A)1(↖A)2(↗B)1(↘B)2S3 � S3.

A simple sufficient condition of acyclicity of CDGs can be formulated in terms
of a well-founded order on dependency types. But more important is that these
CDGs can naturally express adjacency of distant subordinates without violation
of the single governor condition.

Example 5

G2 =

⎧
⎨

⎩

a �→ #l(↙A), [�l(↙A)\#l(↙A)]
b �→ [(↖A)\B / C], [�l(↙A)\(↖A)\S/C]
c �→ C, [B\C]

It is not difficult to prove that L(G2) = {anbncn || n > 0}. For instance, a3b3c3 ∈
L(G2) due to the types assignment:

a3b3c3 �→ #l(↙A)[�l(↙A)\#l(↙A)][�l(↙A)\#l(↙A)][�l(↙A)\(↖A)\S/C][(↖A)\B/C][(↖A)\B/C]C[B\C][B\C]

and the proof shown in Fig. 11. This proof determines the DT shown in Fig. 12.

7 We show only left rules. The right rules are symmetric.

Generalized Categorial Dependency Grammars 245

#(↙A), [�(↙A)\#(↙A)], [�(↙A)\#(↙A)]

[�(↙A)\ ↖A\S/C]
(Vr,Cl)+

�(↙A),↖A, [S/C]

[↖A\B/C]
(Vl)

↖A, [B/C]

[↖A\B/C]C
(Lr)

[↖A\B]
(Vl)

↖A, B [B\C]
(Ll)

↖A,C
(Cl,Lr)

↖A,↖A,B [B\C]
(Ll)

↖A,↖A,C
(Cl)+, (Lr)

�(↙A),↖A,↖A,↖A,S
(Vl)+, (Ar)+

S

Fig. 11.

Fig. 12.

CDGs also enjoy the property of projections independence. The local projec-
tion of CDGs, preserves elementary and host argument subtypes. Intuitively,
it reflects not only projective dependencies of words, but also their adjacency
through anchor-host relations. The valency projection of CDGs, similar to that
of gCDGs, preserves only polarized valency argument and value subtypes. Intu-
itively, it reflects only discontinuous dependencies.
Let V −(C) and V +(C) denote the sets of all negative polarized types: ↙d, ↘d
(respectively, all positive polarized types: ↖d, ↗d), where d ∈ C. We set:
Hostl(C)=df {�l(α) | α ∈ V −(C)},
Hostr(C)=df {�r(α) | α ∈ V −(C)},
Host(C)=df Hostl(C) ∪ Hostr(C),

Ancl(C)=df {#l(α) | α ∈ V −(C)},
Ancr(C)=df {#r(α) | α ∈ V −(C)},
Anc(C)=df Ancl(C) ∪ Ancr(C).

Definition 13. Local projection ‖γ‖l of γ ∈ Cat(C)∗ is defined as follows:
l1. ‖ε‖l = ε; ‖Cγ‖l = ‖C‖l‖γ‖l for C ∈ Cat(C) and γ ∈ Cat(C)∗.
l2. ‖C‖l = C for C ∈ C ∪ C∗ ∪ Anc(C).
l3. ‖C‖l = ε for C ∈ V +(C) ∪ V −(C).
l4. ‖[α]‖l = ‖α‖l for all α ∈ Cat(C).
l5. ‖[a\α]‖l = [a\ ‖α‖l] and ‖[α/a]‖l = [‖α‖l/a] for a ∈ C ∪ C∗ ∪ Host(C)
and α ∈ Cat(C).
l6. ‖[(↖a)\α]‖l = ‖[α/(↗a)]‖l = ‖α‖l for all a ∈ C and α ∈ Cat(C).
Valency projection ‖γ‖v of γ ∈ Cat(C)∗ is defined as follows:
v1. ‖ε‖v = ε; ‖Cγ‖v = ‖C‖v‖γ‖v for C ∈ Cat(C) and γ ∈ Cat(C)∗.
v2. ‖C‖v = ε for C ∈ C ∪ C∗.
v3. ‖C‖v = C for C ∈ V +(C) ∪ V −(C).
v4. ‖#(C)‖v = C for C ∈ V −(C).
v5. ‖[α]‖v = ‖α‖v for all [α] ∈ Cat(C).
v6. ‖[a\α]‖v = ‖[α/a]‖v = ‖α‖v for a ∈ C ∪ C∗ ∪ Host(C).
v7. ‖[a\α]‖v = a ‖α‖v, if a ∈ V +(C).
v8. ‖[α/a]‖v = ‖α‖v a, if a ∈ V +(C).

246 M. Dekhtyar and A. Dikovsky

Example 6. According to these definitions,
‖[�l(↘c)\(↖a)\b\#r(↙d)]‖l = [�l(↘c)\b\#r(↙d)],
‖[�l(↘c)\(↖a)\b\(↙d)/e]‖l = [�l(↘c)\b\ε/e],
‖[�l(↘c)\(↖a)\b\d]‖v = ↖a, ‖[�l(↘c)\(↖a)\b\#l(↙d)/e]‖v = ↖a ↙d.

For technical reasons, it will be convenient to extend the common projective core
c of the generalized and sub-commutative dependency calculus by the rule
El. #l(α)[�l(α)\β] � β for α ∈ V −(C).
The resulting extension will be denoted by p and the corresponding provability
relation will be denoted by �p .

Now we can state the projections independence criterion for the CDGs.

Theorem 5. Let G = (W,C, S, δ) be a CDG. x ∈ L(G) iff there is a string of
categories γ ∈ δ(x) such that:
1. ‖γ‖l �p S,
2. ‖γ‖v is balanced.

Proof. Evidently, we can ignore the dependencies.
(⇒) Let x ∈ L(G) and δ : x �→ γ be an assignment for which there exists a proof
γ � . . . � γk � γn = S for some n ≥ 0. We will prove by induction on k that for
each 0 ≤ k ≤ n the following two assertions hold:
(i) ‖γ‖l �p ‖γk‖l,
(ii) each correct pair (α, ᾰ) is eliminated in ‖γk‖v iff it is eliminated in ‖γ‖v.

Let us suppose that the conditions (i) and (ii) are satisfied for some k < n
and prove that they will be satisfied for k + 1 as well.

Let γk �R γk+1 (immediately derived by rule R).
If R = Ll, then γk = Γ1C[C\β]Γ2 and γk+1 = Γ1βΓ2 for some Γ1, Γ2 and β.

Passing to their local projections, we obtain: ‖γk‖l = ‖Γ1‖lC[C\‖β‖l]‖Γ2‖l �p

‖Γ1‖l‖β‖l‖Γ2‖l = ‖γk+1‖l and ‖γk‖v = ‖γk+1‖v. Then ‖γ‖l �p ‖γk‖l �Ll

‖γk+1‖l and both conditions (i) and (ii) are satisfied for k + 1.
If R = Al, then γk = Γ1#l(α)[�l(α)\β]Γ2 and γk+1 = Γ1(α)βΓ2 for some

Γ1, Γ2 and #l(α) ∈ Anc(C), �l(α) ∈ Host(C). Then by definition of projections,
we get: ‖γk‖l = ‖Γ1‖l#l(α)[�l(α)\‖β‖l]‖Γ2‖l �El

p ‖Γ1‖l‖β‖l‖Γ2‖l = ‖γk+1‖l and
‖γk‖v = ‖Γ1‖v (α)‖β‖v‖Γ2‖v = ‖γk+1‖v. So (i) and (ii) are satisfied for k + 1.

If R = Cl, then γk = Γ1 Cα Γ2 and γk+1 = Γ1 αC Γ2 for some α ∈
(↖ C ∪ ↘ C) and C ∈ Cat(C). Clearly, in this case ‖γk‖l = ‖γk+1‖l. Now,
since C has no occurrences of α, #(α) or ᾰ, then the correct pair (α, ᾰ) is
eliminated in ‖γk+1‖v by rule Dl iff it is eliminated in ‖γk‖v by this rule. The
projections of ‖γk+1‖v and ‖γi‖v on any other pair (β, β̆) of polarized valencies
are not affected by this step, so they do not change. Therefore, both conditions
(i) and (ii) are satisfied for k + 1.

If R = Dl, then γk = Γ1(↙ C)(↖ C)Γ2 and γk+1 = Γ1Γ2. Clearly, ‖γk‖l =
‖γk+1‖l. As to the valency projection ‖γk+1‖v = ‖Γ1‖v‖Γ2‖v, it is obtained
from the projection ‖γk‖v = ‖Γ1‖v(↙C)(↖C)‖Γ2‖v by eliminating the correct
valency pair (↙ C)(↖ C). Therefore, this pair is eliminated in ‖γk+1‖v iff it is
eliminated in ‖γk‖v. The projections of ‖γk+1‖v and ‖γk‖v on any other pair

Generalized Categorial Dependency Grammars 247

(β, β̆) of polarized valencies rest intact. Therefore, both conditions (i) and (ii)
are satisfied for k + 1.

The proof steps via “right” rules Lr, Ar, Pr, Cr, and Dr are proved similarly.
Iterative dependency rule Il is treated as the rule Ll. The case of the rule Ωl is
trivial and the rules Vl,Vr just do not affect the projections.

So we prove that (i) and (ii) are satisfied for each k = 0, . . . , n. Since ‖γn ‖l =
S and ‖γn ‖v = ε, the assertions 1 and 2 of the theorem are true.
(⇐) Now let us suppose that
1. ‖γ‖l �p S and
2. each correct pair (α, ᾰ) is eliminated in ‖γ‖v for an assignment δ : x �→ γ.

We will show that γ � S, which implies that x ∈ L(G). To do this, we will
suppose that ‖γ‖l �n

p S for some n ≥ 0 and show the existence of a proof γ � S
by induction on n.

If n = 0, then γ = Γ1SΓ2 for some balanced potentials Γ1 and Γ2. Then, the
needed proof has the form γ = Γ1SΓ2 � Γ1Γ2S � S. In the first part of this proof
only the commutativity rules are used. The second part exists by Lemma 1.3.
Suppose that the assertion is valid for n ≤ k. Let us prove it for n = k + 1. Let
‖γ‖l �k+1

p S = ‖γ‖l �R
p γ′

l �k
p S, where R is the first applied rule.

If R = Ll, then ‖γ‖l = Γ1C[C\β]Γ2 and γ′
l = Γ1βΓ2 for some Γ1, Γ2, β.

Clearly, γ = Γ̃1CΔ[C\β̃]Γ̃2, where ‖Γ̃1‖l = Γ1, ‖β̃‖l = β, ‖Γ̃2‖l = Γ2 and Δ is a
potential. Now we can construct the proof γ = Γ̃1CΔ[C\β̃]Γ̃2 � Γ̃1ΔC[C\β̃]Γ̃2

�Ll
Γ̃1Δβ̃Γ̃2 = γ′, where in the first part of the proof only commutativity rules

are used in order to permute C and Δ. Regarding the projections of γ′, we can
see that ‖γ′‖l = γ′

l and ‖γ′‖v = ‖γ‖v. Therefore, ‖γ′‖v is balanced and the
assertion follows by induction.

If R = El, then ‖γ‖l = Γ1#l(α)[�l(α)\β]Γ2 and γ′
l = Γ1βΓ2 for some Γ1, Γ2,

β and #l(α) ∈ Anc(C), �l(α) ∈ Host(C). By definition of projections, γ =
Γ̃1#l(α)Δ[�l(α)\β̃]Γ̃2, ‖γ‖v = ‖Γ̃1‖vα‖Δ‖v‖β̃‖v‖Γ̃2‖v is balanced, ‖Γ̃1‖l =
Γ1, ‖Γ̃2‖l = Γ2, ‖β̃‖l = β, and Δ ∈ (V +(C) ∪ V −(C))∗.

Let us consider the proof:
(1) γ = Γ̃1#l(α)Δ[�l(α)\β̃]Γ̃2 �Vl

Γ̃1#l(α)Δ�l(α)β̃Γ̃2 � Γ̃1#l(α)�l(α)Δβ̃Γ̃2

�Al
Γ̃1αΔβ̃Γ̃2,

in which in the part � only the commutativity rules are used in order to permute
�l(α) and Δ. This means that ‖Γ̃1αΔβ̃Γ̃2‖l = Γ1βΓ2 = γ′

l and ‖Γ̃1αΔβ̃Γ̃2‖v =
‖Γ̃1‖vα‖Δ‖v‖β̃‖v‖Γ̃2‖v = ‖γ‖v is balanced. Therefore, by induction the proof
(1) can be completed with a proof Γ̃1αΔβ̃Γ̃2 � S. ��

Corollary 1. L(CDG) ⊆ L(gCDG).

Proof. This corollary follows from Theorems 1,5 using the type simulation, in
which the types #l(α), �l(α) are replaced by the new primitive type <#l(α)>,
in the place of each assignment δ : x �→ [β1\#l(α)/β2]P there is the assignment
δ : x �→ [β1\ < #l(α) > /β2]Pα and in the place of δ : x �→ [�l(α)\β]P there is
the assignment δ : x �→ [<#l(α)> \β]Pα (similar for other orientations). ��

248 M. Dekhtyar and A. Dikovsky

6 Parsing Complexity

The general parsing problem pars(G, s, w) ≡ “w ∈ L(G) and s is a syntac-
tic structure assigned to w by G” is not necessarily polynomial time when all
problems parsG0(s, w) ≡ pars(G0, s, w) for particular G0 are so (as this is the
case of CF-grammars). If there is no uniform bound on the number of polarized
valencies, then the general parsing problem for gCDGs is hard.

Theorem 6. The general parsing problem G(D, w) for gCDGs is NP-complete.

Proof. The NP-hardness can be proved by the following polynomial reduc-
tion of 3−CNF. Let Φ = C1 ∧ . . . ∧ Cm be a CNF with clauses Cj including
three literals lj1, l

j
2, l

j
3 and ljk ∈ {x1, ¬x1, . . . , xn, ¬xn}. We define from Φ the

CDG G(Φ) = (W,C, S, δ), in which W = {Φ, C1, . . . , Cm, x1, . . . , xn, y1, . . . yn},
C = {S, A, 10, 11, 20, 21, . . . , n0, n1} and δ(Φ) = [(A\)n\S], δ(xi) = {[A/(↗ i0)],
[A/(↗ i1)]}, δ(yi) = {(↘ i0), (↘ i1)}, δ(Cj) = {cat(lj1), cat(lj2), cat(lj3)},
where cat(xi) = [(↘ i1)/(↗ i1)], cat(¬xi) = [(↘ i0)/(↗ i0)]. Let also w(Φ) =
x1x2 . . . xnΦC1C2 . . . Cmy1y2 . . . yn.

Assertion. Φ is satisfiable iff (∃D : DT) G(Φ)(D, w(Φ)).

This assertion follows from the fact that G(Φ)(D, w(Φ)) does not hold iff at
least for one i, 1 ≤ i ≤ n, the category [A/(↗ i0)] is chosen in some δ(Cj) and
[A/(↗ i1)] is chosen in some other δ(Ck). On the other hand, this conflict cannot
be avoided iff Φ is not satisfiable. ��
In practice, the inventory of polarized valencies is finite and fixed for DGs of
particular languages. Due to the projections independence property, each par-
ticular gCDG parsing problem turns out to be polynomial time. In [8] we have
described a polynomial time parsing algorithm for CDGs. It was implemented in
Lisp by Darin and Hristian Todorov.8 Below we will present a parsing algorithm
for gCDG. It was implemented in C# and optimized by Ilya Zaytsev.

Preliminaries. Let us fix for the rest a gCDG G = (W,C, S, δ). We will first
define two failure functions used for the algorithm optimization.

Let w = w1w2...wn ∈ W+, α ∈ V l(C) and 1 ≤ i ≤ n. Then

πL(α, i) = max{Δα(‖Γ‖v) || Γ ∈ δ(w1...wi)}

is the left failure function and for α ∈ V r(C),

πR(α, i) = max{Δα(‖Γ‖v) || Γ ∈ δ(wn−i+1...wn)}

is the right failure function. We set πL(α, 0) = πR(α, 0) = 0. It is not difficult to
prove the following properties of these functions.

Lemma 4. (i) Let 1 ≤ i ≤ n − 1. Then
πL(α, i + 1) =
8 The analyses shown in the figures are carried out by this algorithm.

Generalized Categorial Dependency Grammars 249

max{Δα(P) + max{πL(α, i) − Δᾰ(P), 0} || P = ‖γ‖v, γ ∈ δ(wi+1)},
πR(α, i + 1) =

max{Δᾰ(P) + max{πR(α, i) − Δα(P), 0} || P = ‖γ‖v, γ ∈ δ(wn−i+1)}.
(ii) If Γ � S for some Γ = γ1...γn ∈ δ(w), then

Δα(‖γi...γj‖v) ≤ πR(ᾰ, n − j), Δᾰ(‖γi...γj‖v) ≤ πL(α, i − 1)
for all 1 ≤ i ≤ j ≤ n, all α ∈ V l(C) and ᾰ ∈ V r(C).

Algorithm description. gCdgAnalyst is a standard dynamic programming
parsing algorithm. It applies to a gCDG G = (W,C, S, δ) with left polarized
valencies V l(C) = {v1, . . . , vp} and dual right valencies V r(C) = {v̆1, . . . , v̆p}
and to a string w = w1w2...wn ∈ W+ and fills up a n × n triangle matrix M
with items. Each cell M [i, j], i ≤ j, corresponds to the string interval wi...wj

and contains a finite set of items. Each item codes a generalized type CP and
has the form 〈C, ΔL, ΔR, I l, Ir〉, where:

• C is a neutral category C ∈ nCat(C),
• ΔL = (Δv1 , . . . , Δvp) and ΔR = (Δv̆1 , . . . , Δv̆p) are integer vectors whose

component i contains the corresponding deficits of right (left) non-paired
v-brackets in the potential P (see Definition 7),

• I l, Ir are left and right angle items from which I is calculated (for I in
diagonal M [i, i], I l = Ir = ∅).

Algorithm gCdgAnalyst
//Input: gCDG G, string w = w1...wn

//Output: 〈“yes”, DSD〉 iff w ∈ L(G)
{

CalcFailFuncL();
CalcFailFuncR();
for (k = 1, . . . , n)
{

Propose(k)
}
for (l = 2, . . . , n)

{
for (i = 1, . . . , n − l)
{

j := i + l − 1;
for (k = i, . . . , j − l)
{

SubordinateL(i, k, j);
SubordinateR(i, k, j);

}
}

}
if (I = 〈S, (0, 0, . . . , 0), (0, 0, . . . , 0), I l, Ir〉 ∈ M [1, n])

return 〈“yes”, Expand(I)〉;

250 M. Dekhtyar and A. Dikovsky

//procedure Expand(I) calculates the output DS
else

return 〈“no”, ∅〉;
}

CalcFailFuncL()
{

foreach (v ∈ V l(C))
{

πL[v, 0] := 0;
for (i = 1, . . . , n)
{

πmax := 0;
foreach (CP ∈ δ(wi))
{

πmax := max{πmax, Δv(P) + max{πL[v, i − 1] − Δv̆(P), 0}};
}
πL[v, i] := πmax;

}
}

}

CalcFailFuncR()
{

foreach (v̆ ∈ V r(C))
{

πR[v, 0] := 0;
for (i = 1, . . . , n)
{

πmax := 0;
foreach (CP ∈ δ(wn−i+1))
{

πmax := max{πmax, Δv̆(P) + max{πR[v, i − 1] − Δv(P), 0}};
}
πR[v, i] := πmax;

}
}

}

AddItem(M [i, j], 〈C, ΔL, ΔR, I l, Ir〉)
{

M [i, j] := M [i, j] ∪ {〈C, ΔL, ΔR, I l, Ir〉};
if (C = [C′ ∗ \β])
{

AddItem(M [i, j], 〈[β], ΔL, ΔR, I l, Ir〉);
}
if (C = [β/C′∗])

Generalized Categorial Dependency Grammars 251

{
AddItem(M [i, j], 〈[β], ΔL, ΔR, I l, Ir〉);

}
}

//For 1 ≤ i ≤ n
Propose(i)
{

(loop) foreach (CP ∈ δ(wi)
{

foreach (v ∈ V l(C))
{

ΔL[v] := Δv(P);
if (ΔL[v] > πR[v̆, n − j]) next (loop);
ΔR[v̆] := Δv̆(P);
if (ΔR[v̆] > πL[v, i − 1]) next (loop);

}
AddItem(M [i, i], 〈C, ΔL, ΔR, ∅, ∅〉);

}
}

//For 1 ≤ i ≤ k ≤ j ≤ n
SubordinateL(i, k, j)
{

(loop) foreach (I1 = 〈α1, Δ
L
1 , ΔR

1 , I l
1, I

r
1 〉 ∈ M [i, k],

I2 = 〈α2, Δ
L
2 , ΔR

2 , I l
2, I

r
2 〉 ∈ M [k + 1, j])

{
foreach (v ∈ V l(C))
{

ΔL[v] := ΔL
2 (v) + max{ΔL

1 (v) − ΔR
2 (v), 0};

if (ΔL[v] > πR[v̆, n − j]) next (loop);
ΔR[v̆] := ΔR

1 (v̆) + max{ΔR
2 (v̆) − ΔL

1 (v̆), 0};
if (ΔR[v̆] > πL[v, i − 1]) next (loop);

}
if (α1 = C and α2 = [C\β])
{

AddItem(M [i, j], 〈[β], ΔL, ΔR, I1, I2〉);
}
elseif ((α1 = C and α2 = [C ∗ \β]) or α1 = [ε])
{

AddItem(M [i, j], 〈α2, Δ
L, ΔR, I1, I2〉);

}
}

}
SubordinateR(i, k, j) is similar.

252 M. Dekhtyar and A. Dikovsky

Correctness. Correctness of CalcFailFuncL() and CalcFailFuncR() follows from
Lemma 4.

Example 7. Let W = {a, b},C = {A, B}, δ(a) = {[A/A]↙B↙B, [B ∗ \A]↘A↘A},
δ(b) = {[B]↗A↖B, [ε]↗A↙B}. Then V l(C) = {↗A, ↙B}, V r(C) = {↘A, ↖B}.

For the string w = abba, the category potentials are presented in the table:

a b b a
↙B ↙B ↗A ↖B ↗A ↖B ↙B ↙B
↘A ↘A ↗A ↙B ↗A ↙B ↘A ↘A

CalcFailFuncL() and CalcFailFuncR() will calculate the following values:

i 0 1 2 3 4
πL[↗A, i] 0 0 1 2 2
πL[↙B, i] 0 2 3 4 6

i 4 3 2 1 0
πR[↘A, i] 2 0 1 2 0
πR[↖B, i] 2 2 1 0 0

Theorem 7. Let G = (W,C, S, δ) be a gCDG and w = w1w2...wn ∈ W+. Then
for any 1 ≤ i ≤ k ≤ j ≤ n, an item I = 〈θ, ΔL, ΔR, I l, Ir〉 falls to M [i, j] iff
there is Γ = Γ1γi . . . γjΓ2 ∈ δ(w) such that γi . . . γj ∈ δ(wi . . . wj) and
(i) γi . . . γj � θ,
(ii) ΔL[α] = Δα(‖γi . . . γj‖v), ΔR[α] = Δᾰ(‖γi . . . γj‖v) for all α ∈ V l(C),
ᾰ ∈ V r(C),
(iii) γi . . . γj satisfies the condition (ii) of Lemma 4.

Proof. Let l = j − i + 1.
(⇒) Let I ∈ M [i, j]. We will show that there is Γ satisfying the conditions of
the theorem by induction on l.
1. If l = 1, then I is put to M [i, i] by Propose(i). In this case, the conditions
(i) − (iii) are trivially satisfied.
2. Let us suppose that the theorem is true for all l′ < l. Then i < j. In
this case, I ∈ M [i, j] implies that there is i ≤ k < j such that I was put
in M [i, j] by SubordinateL(i, k, j) or by SubordinateR(i, k, j). Let it be by
SubordinateL(i, k, j). Then there must be I1 = 〈θ1, Δ

L
1 , ΔR

1 , I l
1, I

r
1 〉 ∈ M [i, k]

I2 = 〈θ2, Δ
L
2 , ΔR

2 , I l
2, I

r
2 〉 ∈ M [k +1, j] satisfying (i)− (iii). Therefore, γi . . . γk �

θ1, γk+1 . . . γj � θ2 and by definition of SubordinateL(i, k, j), θ1 = C, θ2 =
[C\β], θ = β or θ1 = C, θ2 = [C ∗ \β], θ = θ2, or θ1 = ε, θ = θ2. In all of these
cases, γi . . . γkγk+1 . . . γj � θ. Given that Γ ′

1γi . . . γkΓ ′
2 ∈ δ(w), Γ ′′

1 γk+1 . . . γjΓ
′′
2 ∈

δ(w), γi . . . γk ∈ δ(wi . . . wk), γk+1 . . . γj ∈ δ(wk+1 . . . wj), we see that Γ ′
1γi . . .

γjΓ
′′
2 ∈ δ(w), γi . . . γj ∈ δ(wi . . . wj) and γi . . . γj � θ. Point (ii) directly follows

from Lemma 4(i). Finally, I ∈ M [i, j] means that I does not violate the neces-
sary condition in Lemma 4(ii).
(⇐) By induction on l immediately following the definition of gCdgAnalyst. ��

Complexity. For a gCDG G = (W,C, S, δ), let lG = |δ| be the number of
category assignments in the lexicon, aG = max{k || ∃x ∈ W ([αk\...\α1\C/β]P ∈
δ(x) ∨ [β\C/α1/.../αk]P ∈ δ(x))} be the maximal number of argument subtypes

Generalized Categorial Dependency Grammars 253

in assigned categories, pG = |V l(C)| = |V r(C)| be the number of polarized
valencies and ΔG = max{Δα(P) || ∃x ∈ W (CP ∈ δ(x) ∨ α ∈ V (C))} be the
maximal valency deficit in assigned categories. In the complexity bound below
n will denote the length of the input string n = |w|.
Theorem 8. Algorithm gCdgAnalyst has time complexity

O(lG · a2
G · (ΔG · n)2pG · n3).

Proof. A category γ ∈ δ(x) may be cancelled to no more than a2
G different cat-

egories. So the maximal number of matrix cell elements is lG · a2
G. The valency

deficits are bounded by the maximal value of the failure functions. So the max-
imal deficit of a polarized valency is ΔG · n. Therefore, the number of different
valency deficit vectors is bounded by (ΔG · n)2pG . Filling one matrix cell needs
visiting n cells. There are n2

2 cells in M. This proves the time bound. ��
Remark 3. 1. When G has no polarized valencies, the parsing time is evidently
O(n3). Due to Theorem 3, every gCDG G with bounded valency deficit σ < c can
be translated into an equivalent gCDG Gc without polarized valencies (so with
parsing time O(n3)). Of course, the size of Gc is exponential: |Gc| = O(|G| · cpG).
2. In practice, the failure functions significantly lower the time complexity.

7 Concluding Remarks

The main advantage of gCDG as compared to other formal models of surface
syntax is that they allow to define the dependencies of all kinds, local and long,
projective and discontinuous, in the same elegant and completely local manner.
On the one hand, they are genuine categorial grammars and, as such, they are
completely lexicalized and use types in the place of rules. On the other hand,
they keep the traditional valency / polarity style peculiar to all dependency
grammars. The CDG which, in fact, constitute a subclass of gCDG, can be used
in real applications. As we have shown, gCDG have a practical polynomial time
parsing algorithm and enjoy good mathematical properties. They are learnable
from positive data (see [4]) and equivalent to rule based DSG [3]. At the same
time, a more detailed study of their expressiveness is needed, in particular, a
comparison with the mild CS grammars [19] and the pregroup grammars [22].9.

Very important is the question, whether the FA-principle is universal. There
are evidences that it is adequate for many languages with, so to say, rigid WO,
e.g. English, French, Spanish, Italian, German, Japan and many others. It seems
adequate even for the languages with elaborated morphology and flexible WO,
such as Russian, Turkish and some others. However, this principle does not apply
to the constructions with serial infinitive phrase subjects (so called cross-serial
dependencies [5]) in Dutch. The gCDGs with the FA-principle can be seen as
uni-modal DGs. To cover these complex constructions, one should use other
polynomially implementable modes and pass to multimodal gCDGS.
9 The pregroup grammars are weakly equivalent to CF-grammars [7] At the same

time, the types they assign to words are often close to the projective dependency
types of the CDG.

254 M. Dekhtyar and A. Dikovsky

References

1. Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Lan-
guage 29(1), 47–58 (1953)

2. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure gram-
mars. Bull. Res. Council Israel 9F, 1–16 (1960)

3. Béchet, D., Dikovsky, A., Foret, A.: Dependency structure grammars. In: Blache,
P., et al. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 18–34. Springer, Heidel-
berg (2005)

4. Béchet, D., et al.: On learning discontinuous dependencies from positive data. In:
Proc. of the 9th Intern. Conf. Formal Grammar 2004 (FG 2004), pp. 1–16 (2004),
http://cs.haifa.ac.il/∼shuly/fg04/

5. Bresnan, J., et al.: Cross-serial dependencies in Dutch. Linguistic Inquiry 13(4),
613–635 (1982)

6. Bröker, N.: Separating surface order and syntactic relations in a dependency gram-
mar. In: Proc. COLING-ACL, Montreal, pp. 174–180 (1998)

7. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, Springer, Heidelberg
(2001)

8. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Intern. Conf. on Categorial Grammars, Montpellier, pp.
76–91 (2004)

9. Dikovsky, A.: Grammars for local and long dependencies. In: Proc. of the Intern.
Conf. ACL 2001, Toulouse, France, pp. 156–163. ACL & Morgan Kaufman (2001)

10. Dikovsky, A.: Polarized non-projective dependency grammars. In: de Groote, P.,
Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 139–157.
Springer, Heidelberg (2001)

11. Dikovsky, A.: Linguistic meaning from the language acquisition perspective. In:
Jäger, G., et al. (eds.) Proc. of the 8th Intern. Conf. Formal Grammar 2003, FG
2003, Vienna, Austria, Vienna Techn. Univ. (2003)

12. Dikovsky, A.: Dependencies as categories. In: Duchier, D., Kruijff, G.J.M. (eds.)
Recent Advances in Dependency Grammars. COLING 2004 Workshop, pp. 90–97
(2004)

13. Dikovsky, A., Modina, L.: Dependencies on the other side of the curtain. Traitement
Automatique des Langues (TAL) 41(1), 79–111 (2000)

14. Gaifman, H.: Dependency systems and phrase structure systems. Report p-2315,
RAND Corp. Santa Monica (CA) (1961) (Published in: Information and Control
8(3), 304–337 (1965))

15. Gladkij, A.V.: Lekcii po Matematičeskoj Lingvistike dlja Studentov NGU [Course
of Mathematical Linguistics. Novosibirsk State University (Russ.)]. (French transl.
Leçons de linguistique mathématique. facs. 1, 1970, Dunod). Novosibirsk State
University (1966)

16. Hays, D.: Grouping and dependency theories. Research memorandum RM-2646,
The RAND Corporation (1960), Published in Proc. of the National Symp. on
Machine Translation, Englewood Cliffs (NY), pp. 258–266 (1961)

17. Hudson, R.A.: Word Grammar. Basil Blackwell, Oxford-New York (1984)
18. Jackendoff, R.: X’ Syntax: A Study of Phrase Structure. MIT Press, Cambridge,

MA (1977)
19. Joshi, A.K., Shanker, V.K., Weir, D.J.: The convergence of mildly context-sensitive

grammar formalisms. In: Sells, P., Shieber, S., Wasow, T. (eds.) Foundational issues
in natural language processing, pp. 31–81. MIT Press, Cambridge, MA (1991)

http://cs.haifa.ac.il/~shuly/fg04/

Generalized Categorial Dependency Grammars 255

20. Kahane, S. (ed.): Les grammaires de dépendance. In: Kahane, S. (ed.) Traitement
automatique des langues, Paris, Hermes, vol. 41, n. 1/2000 (2000)

21. Kruijff, J.J.M., Duchier, D. (eds.): Recent Advances in Dependency Grammars.
In: Kruijff, J.J.M., Duchier, D. (eds.) Proceedings of COLING Workshop, Geneva
(August 2004)

22. Lambek, J.: Type grammar revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

23. Lombardo, V., Lesmo, L.: An Earley-type recognizer for dependency grammar. In:
Proc. 16th COLING, pp. 723–728 (1996)

24. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany, NY (1988)
25. Moortgat, M., Morrill, G.V.: Heads and phrases. Type calculus for dependency

and constituent structure. Ms OTS, Utrecht (1991)
26. Morrill, G.V.: Type Logical Grammar. Categorial Logic of Signs. Kluwer Academic

Publishers, Dordrecht (1994)
27. Robinson, J.J.: Dependency structures and transformational rules. Language 46(2),

259–285 (1970)
28. Sleator, D., Temperly, D.: Parsing English with a Link Grammar. In: Proc. IWPT

1993, pp. 277–291 (1993)
29. Tesnière, L.: Éléments de syntaxe structurale. Librairie C. Klincksieck, Paris (1959)

Temporal Verification of Probabilistic

Multi-Agent Systems�

Michael I. Dekhtyar1, Alexander Ja. Dikovsky2, and Mars K. Valiev3

1 Dept. of CS, Tver St. Univ., Tver, Russia, 170000
Michael.Dekhtyar@tversu.ru

2 LINA, Université de Nantes, France
Alexandre.Dikovsky@univ-nantes.fr

3 Keldysh Inst. for Appl. Math., Moscow, Russia, 125047
valiev@keldysh.ru

To Boris Avraamovich, our teacher in life and research, on the occasion of his
85th Anniversary, with the deep gratitude.

Abstract. Probabilistic systems of interacting intelligent agents are
considered. They have two sources of uncertainty: uncertainty of commu-
nication channels and uncertainty of actions. We show how such systems
can be polynomially transformed to finite state Markov chains. This al-
lows one to transfer known results on verifying temporal properties of
the finite state Markov chains to the probabilistic multi-agent systems
of the considered type.

1 Introduction

Lately, there has been increasing interest in the area of software multi-agent
systems (MAS). The range of applications of MAS is very broad and extends
from operating system interfaces, processing of satellite imaging data and WEB
navigation to air traffic control, business process management and electronic
commerce. The states and interaction rules of agents in MAS may be very com-
plicate. This makes the behavior of MAS (as well as of other concurrent software
systems) badly predictable and leads to necessity of developing formal means to
analyze this behavior.

There is a number of papers on this matter in the literature which deal with
different models of agents, multi-agent systems and specification languages de-
scribing their behavior. In particular, in [17,19] a behavior is considered for ab-
stract agents with no internal structure, in [3,11] agents are specified by formulas
of some temporal logics. Another popular approach to describing agents is based
on “Believe-Desire-Intention” model initiated in [14] (see also [4,5,20]). In our
previous papers [8,9] we considered verification complexity for MAS constructed
on the base of IMPACT-architecture introduced in [16].

� This work was sponsored by the Russian Fundamental Studies Foundation (Grants
07-01-00637-a and 08-01-00241-a).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 256–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Temporal Verification of Probabilistic Multi-Agent Systems 257

In all these papers it is assumed that all agents operate with a complete and
certain view of the world, and information transfer from one agent to another
is lossless and takes some determined time. However, in many real-world ap-
plications, these assumptions are not satisfied, and agents have only a partial,
uncertain view of what is true in the world.

In [10] a model of probabilistic agents is proposed in which the main cause of
uncertainty in an agent is due to its state being uncertain. There may be also
other sources of uncertainty in MAS. Here we consider two of them: uncertainty
of communication channels between agents of the system and uncertainty of ac-
tions. Namely, we assume that times of delivering messages through channels
can be probabilistic, and some messages can be lost. Moreover, the actions can
have alternatives which are executed with some probabilities. However, we as-
sume that the choice of actions to execute at each step is deterministic, i.e. the
MAS considered here are not concurrent in the sense used by M.Vardi [18].

The main result of this paper is that any such probabilistic MAS can be effec-
tively transformed into a finite state Markov chain with polynomially computable
probabilities of transitions. There is a number of papers devoted to research of
complexity of verifying dynamic properties of finite state Markov chains. Our
transformation of MAS to Markov chains permits to apply results of these pa-
pers to the problem of verifying behavior of MAS with probabilistic channels
and actions.

Let us mention some of these papers. The research of complexity of verification
problem for finite state Markov chains was initiated in the abovementioned paper
by Vardi. His results on the complexity of verification of linear temporal logic
(LTL) formulas on Markov chains and decision processes were improved in [7].
Analogous results for probabilistic logics of branching time (PCTL and PCTL*)
were obtained in [12,2].

The paper is organized as follows. Section 2 contains a syntactic definition of
our variant of probabilistic MAS. In Sect. 3 we describe operational semantics
of these MAS. In Sect. 4 we present an algorithm of computing transition prob-
abilities for Markov chains corresponding to MAS. Section 5 contains the results
on the complexity of verification of probabilistic MAS obtained by applying the
results of [7,12].

2 Probabilistic MAS

There are a lot of readings and definitions of intelligent agents and multi-agent
systems (see e.g. [15,16,21]). Here we consider the verification of behavior prop-
erties for MAS which basically conform to the so called IMPACT architecture
introduced and described in detail in the book [16].

A multi-agent system A contains a finite set {A1, ..., An} of interacting in-
telligent agents. Any agent A has an internal database (DB) IA consisting of a
finite set of ground atoms (i.e. expressions of the form p(c1, . . . , ck), where p is a
predicate symbol, c1, . . . , ck are constants; we suppose that the set of constants
used by any MAS is bounded) and a message box MsgBoxA. Current contents

258 M.I. Dekhtyar, A. Ja Dikovsky, and M.K. Valiev

of the internal DB and the message box of the agent A constitute its local state
IM A =< IA, MsgBoxA >.

The agents of A interact by sending messages of the form msg(Sender, Receiver,
Msg) to other agents where Sender and Receiver are agents (the source and the
destination of the message), and Msg is a ground atom transferred.

For any pair of agents A and B in A there is a communication channel CH AB,
which receives messages sent to B by A. After some time these messages are
transferred to the message box of B. We consider the length of the transfer time
of the messages as a random variable identified by a discrete finite probability
distribution. pAB(t) denotes the probability that B receives a message sent to
B by A in exactly t ≥ 1 steps after its sending (so, a constant t0 is connected
with A such that pAB(t) = 0 for all A, B and t > t0).

We assume that random variables for different messages are independent, and∑∞
t=1 pAB(t) ≤ 1. The difference 1 −

∑∞
t=1 pAB(t) defines the probability that

the message will be lost in the channel. If pAB(1) = 1 then any message sent to B
by A will be received by the destination in the next time instant. If pAB(1) = 1
for all agents of MAS we have synchronous variant of multi-agent systems. Such
systems were considered in [8,9]. If pAB(1) = 0.5, pAB(2) = 0.4 and pAB(t) = 0
when t > 2, then the half of messages sent to B by A will be received in the
next time, 4/10 of them will be on the path 2 steps, and average 1/10 of them
will be lost in the channel.

The current state of CH AB contains all the messages sent to B by A which
are not received by B; they are marked by time they are in the channel. For
the current state of the channel we use the same notation as for the channel,
i.e. CH AB = {(Msg, t)| the message Msg is in this channel during t steps of
execution}. For brevity we use also notations CH ij and pij for CH AiAj and
pAiAj , respectively.

Each agent A is capable of performing a number of parameterized actions
constituting its action base ACTA. Any (parameterized) action has a name of
the form a(X1, . . . , Xm) and a set of alternatives: a1 =< ADD1

a(X1, . . . , Xm),
DEL1

a(X1, . . . , Xm), SEND1
a(X1, . . . , Xm) >, . . . , ak =< ADDk

a(X1, . . . , Xm),
DELk

a(X1, . . . , Xm), SENDk
a(X1, . . . , Xm) >. A probabilistic distribution pa(j),

1 ≤ j ≤ k, is defined on these alternatives for a such that
∑k

j=1 pa(j) = 1.
The sets ADD j

a(X1, . . . , Xm) and DELj
a(X1, . . . , Xm) consist of atoms of the

form p(t1, . . . , tr), where p is an r-ary predicate (for some r) in the signature
of the internal DB, t1, . . . , tr are variables X1, . . . , Xm or constants. These sets
determine updates of the internal DB (adding and deleting facts) when the
corresponding action is executed. The set SEND j

a(X1,. . . ,Xm) consists similarly
of atoms of the form msg(A, B, p(t1, . . . , tr)), determining messages which will
be sent by A to other agents. Let c1, . . . , cm be constants. Let us denote by
ADD j

a(c1, . . . , cm) the set of facts obtained by substitution of c1, . . . , cm instead
of X1, . . . , Xm into atoms of ADD j

a(X1, . . . , Xm). The sets DELj
a(c1, . . . , cm)

and SEND j
a(c1, . . . , cm) are defined similarly. The ground atoms a(c1, . . . , cm)

are called ground action names (or simply, ground actions).

Temporal Verification of Probabilistic Multi-Agent Systems 259

For example, let an agent Accountant works with a DB Salary, and 0.1 is a
probability that she misses a directive by Boss to change the salary to workers.
Then the probabilistic parameterized action

sc(Name, Position, OldSum, NewSum)
has two alternatives sc1 and sc2, the first alternative being executed with prob-
ability 0.9, and second with probability 0.1. The sets ADD2, DEL2, SEND2 are
empty, and

ADD1={salary(Name, Position, NewSum)},
DEL1 ={salary(Name, Position, OldSum)},
SEND1 = {(Boss, salary changed(Name, Position, NewSum))}
The policy of the agent A for choosing actions to execute depends on the

current local state of A and is determined by a pair < LPA, SelA >. Here
LPA is a logical program which determines a set Perm (= PermA,t) of ground
action names permitted for execution at current time t. The obligation operator
SelA selects from Perm a ground action a(c1, . . . , cq). We assume that SelA is
a polynomially computable function. Then one of alternatives for the action
a(c1, . . . , cq) (say, aj) should be chosen with probability pa(j) to be currently
executed.

This execution goes in the following way:

1) the next state of the internal base of A is obtained from the current state
by deleting all the facts belonging to DELj

a(c1, . . . , cq), and then adding all the
facts belonging to ADD j

a(c1, . . . , cq);
2) simultaneously with changing internal DB the executing of the alterna-

tive aj leads to changes of states of the communication channels. Namely, to
any channel CH AB, B �= A, pairs of the form (Ms, 0) are added such that
msg(A, B, Ms) ∈ SENDj

a(c1, . . . , cq) .
For example, let the Accountant agent has to execute the action
sc(smith, engineer,3500,5000).

Then 0.1 is the probability that Accountant does not nothing in this step, and
with probability 0.9 the fact

salary(smith, engineer, 3500)
will be deleted from the internal DB, and the fact

salary(smith, engineer, 5000)
will be added to it. Moreover, the entry

(salary changed(smith, engineer,5000),0)
will be placed into the channel CHaccountant boss.

To complete the definition of A and one-step semantics for it we should define
LPA, and how it does determine the current value of the set Perm.

As LPA we consider logic programs with the clauses of the form
H :- L1,...,Ln,

where n ≥ 0, the head H is an action atom, the literals Li are either action
literals, or (extensional) internal DB literals, or atoms of the form msg(Sender,
A, Msg) or their negations not msg(Sender, A, Msg), or calls of some built-in
polynomially computable predicates.

260 M.I. Dekhtyar, A. Ja Dikovsky, and M.K. Valiev

We suppose that the program clauses are safe in the sense that all variables in
the head H occur positively in the body L1,...,Ln, and, moreover, the program
LPA is stratified [1]. Then for any local state state= < IA, MsgBoxA > the
program

LPA,state = LPA ∪ IA ∪ MsgBoxA,

determining the set of actions which can be currently executed, is also stratified.
It is well known (see [1]) that stratified logic programs have a unique minimal

model. Let MA,state denote such a model for LPA,state. The standard fixpoint
computation procedure constructs this model in polynomial time with respect
to the size of groundization gr(LPA,state) of LPA,state (remember that we sup-
pose polynomial computability of all built-in predicates). Note that the size of
gr(LPA,state) can be exponential with respect to the size of LPA,state.

Then the set Perm of actions permitted for current execution is defined as the
set of ground action names contained in MA,state . Let Sem denote the function
defining Perm from LPA,state.

3 The Probabilistic MAS Behavior

The global state S of the system A includes local states of its agents and states
of all channels:

S =< I1, . . . , In; CH1,2, CH2,1, . . . , CHn−1,n, CHn,n−1 >.
Let SA denote the set of all the global states of A. Then the one-step semantics

of A defines a transition relation S ⇒A S′, and probabilities pi,j(t) induce
probabilities p(S, S′) of these transitions.

The transition S ⇒A S′ starts with changes in channels and message boxes.
Namely, the time counters of all the messages in channels are increased by 1,
then into message box MsgBox j of any agent Aj the facts msg(Ai, Aj ,Msg) are
placed with probability pi,j(t), for any Msg and i such that (Msg, t) ∈ CHi,j .
The pairs (Msg,t0) can be considered as lost and are deleted from CH i,j . After
this any agent Ai ∈ A determines the set PermAi = Sem(LPAi,state) of actions
permitted to be currently executed, and a ground action ai(c1, . . . , cq) to be
executed is selected from Permi by using the selection function SelAi . After
this an alternative aj

i for ai is chosen with probability pai(j), all the facts in
DELj

ai
(c1, . . . , cq) are deleted from Ii, and all the facts in ADD j

ai
(c1, . . . , cq)) are

added to it. Moreover, the communication channels CH i,m are complemented by
entries (ms, 0) such that messages msg(Ai, Am, ms) are in SEND j

ai
(c1, . . . , cq)).

The message boxes of all the agents are emptied (in fact this does not restrict
generality since all needed data can be transferred earlier from message boxes
into internal DBs).

So, the transition S ⇒A S’ is computed by the following probabilistic
algorithm:

A-step (Input: S ; Output: S′)
(1)FOR EACH Ai, Aj ∈ A (i �= j) DO
(2) FOR EACH (Msg, t) ∈ CHi,j DO
(3) BEGIN CH i,j := (CH i,j \{(Msg, t)});

Temporal Verification of Probabilistic Multi-Agent Systems 261

(4) IF t ≤ t0 THEN CH i,j := (CHi,j ∪ {(Msg, t + 1)} END;
(5)FOR EACH Ai, Aj ∈ A(i �= j) DO
(6) FOR EACH (Msg, t) ∈ CHi,j DO with probability pi,j(t)
(7) BEGIN CH i,j := (CHi,j \{(Msg, t)});
(8) MsgBoxj := MsgBoxj ∪ {msg(Ai, Aj , Msg)}
(9) END;
(10) FOR EACH Ai ∈ A DO
(11) BEGIN Permi := Sem(LPAi,state);
(12) Let SelAi(Permi) be ai(c1, . . . , cq);
(13) Let a1

i , . . . , a
k
i be all the alternatives of ai;

(14) Let us choose an alternative aj
i , 1 ≤ j ≤ k, for ai

with probability pai(j);
(15) I ′i := ((Ii \ DELj

ai
(c1, . . . , cq))

∪ ADDj
ai

(c1, . . . , cq));
(16) FOR EACH (m �= i) DO
(17) CH ′

i,m := (CHi,m

∪ {(ms, 0)|msg(Ai, Am, ms) ∈ SENDj
ai

(c1, . . . , cq)});
(18) MsgBoxi := ∅;
(19) END;
(20) RETURN S′.

This definition of semantics for MAS permits to connect a finite Markov chain
MC(A) with any MAS A. The states of MC(A) are global states from SA,
and probabilities pA(S, S′) of transitions from S to S‘ can be computed by the
algorithm described in the next section. The behavior of A for an initial global
state S0 is described by a tree tA(S0) of possible trajectories of this chain with
root labelled by S0. Nodes of this tree are labelled by global states of A, and
from any node on the level t labelled by S goes an edge labelled by pA(S, S′) to
a node labelled by S′ if pA(S, S′) > 0.

Note that the cardinality of the set of states of the Markov chain MC(A) is
exponential with respect to the size of A in the worse case, if A is ground, and
even double exponential if A is non-ground.

4 Probabilistic MAS as Finite Markov Chains

We note that all the stochastics in the program A-step is concentrated in lines 6-
9 and 14, which determine as messages transfer to message boxes with accord to
probabilities pi,j(t) and which alternative of the action ai is chosen. We assume
that all the probabilistic choices in these lines are independent.

The following effective procedure permits to compute the probability pA(S, S′)
of transition S ⇒A S′:

Algorithm Prob(S, S’)
(1) FOR EACH Ai, Aj ∈ A (i �= j) DO
(2) BEGIN M [i, j] := {(m, t)|((m, t) ∈ CHi,j) &

((m, t + 1) /∈ CH ′
i,j)};

262 M.I. Dekhtyar, A. Ja Dikovsky, and M.K. Valiev

(3) pi,j :=
∏

{pi,j(t)|((m, t) ∈ M [i, j]};
(4) END;
(5) FOR EACH Aj ∈ A DO
(6) BEGIN MsgBoxj := ∅;
(7) FOR EACH Ai ∈ A(i �= j) DO
(8) MsgBoxj := MsgBoxj

∪ {msg(Ai, Aj , m)|∃t((m, t) ∈ M [i, j])}
(9) END;
(10)FOR EACH Ai∈ A DO
(11) BEGIN Permi := Sem(LPAi,state);
(12) Let SelAi(Permi) be ai(c1, . . . , cq);
(13) Let a1

i , . . . , a
k
i be all the alternatives of ai;

(14) pi :=
∑

j{pai(j)|I ′i = ((Ii \ DELj
ai

(c1, . . . , cq))
∪ ADDj

ai
(c1, . . . , cq)) and (

∧
m �=i{ms|(ms, 0) ∈ CH ′

i,m}
= {ms|msg(Ai, Am, ms) ∈ SENDj

ai
(c1, . . . , cq))}};

(15) END;
(16) pA(S, S′) :=

∏
{pi,j |1 ≤ i, j ≤ n; j �= i} ∗

∏n
i=1 pi;

(17) RETURN pA(S, S′).

Note that M [i, j] in the line 2 is the set of entries of the channel CH i,j which
are put into MsgBoxAj . Then pi,j in the line 3 is the probability of the event:
the set of messages from Ai to Aj included into MsgBoxAj is equal to M [i, j].
Moreover, pi in the line 14 is the probability to obtain a new internal state I ′i
from Ii after applying the action ai(c1, . . . , cq).

Theorem 1. The algorithm Prob(S, S’) computes probability p(S, S′) of tran-
sition S ⇒A S′ in time polynomial on sum of sizes of MAS A and states S and
S′ , i.e. on |A| + |S| + |S′| (we include into the size |A| of MAS the sizes of
all signatures, of the set of constants, of the agent descriptions with their action
bases and groundizations of agents‘ programs and of probability distributions for
action alternatives and communication channels).

5 Complexity of Verifying Dynamic Properties of MAS

Traditionally behavior properties of discrete dynamic systems are specified in
some variants of temporal logics, see e.g [6]. There are two basic types of such
logics: of linear time and of branching time. Normally, states of Markov chains are
considered as non-structured. So, dynamic properties of such Markov chains can
be adequately represented by formulas of propositional versions of these logics.
States of MAS have a structure of finite models. Hence it is natural to extend
logics for specifying their dynamic properties by introducing first-order features
(as in [8,9]). Namely, the extension is that ordinary closed first-order formulas in
signature of internal databases of agents (called basic state formulas) can be used
in formulas instead of propositional variables. Then the possibility of transferring
results on complexity of verifying finite Markov chains to probabilistic MAS

Temporal Verification of Probabilistic Multi-Agent Systems 263

stems from the well-known fact that the basic state formulas can be verified
on finite models of states in polynomial space (or even in polynomial time for
formulas of bounded quantifier depth)..

The problem of verification of dynamic properties for logics of linear and
branching time are formulated in a somewhat different way.

- Linear time: for a given probabilistic MAS A, its initial state S0 and formula
F of FLTL describing a property of trajectories to find the measure (probability)
pA(S0, F) of the set of trajectories of the tree tA(S0) which satisfy F . If this
probability is equal to 1 we say that the pair (A, S0) satisfies F .

- Branching time: A main role in branching time logics play formulas ex-
pressing properties of states (not trajectories). The measure of satisfiability of
such formulas does not express stochastic properties of behavior of the system.
Because of this it was proposed in [12]: to replace in formulas quantifiers on
trajectories by probability bounds. E.g. formula [Gf]>p means that the measure
of trajectories starting in the current state with all their states satisfying f is
greater than p. The logic obtained is called PCTL.

Now we can state some of numerous results on complexity of verifying dynamic
properties of MAS which can be obtained by transferring corresponding results
from Markov chains.

- Linear time In this case we can apply Theorem 3.1.2.1 of the paper [7]. This
theorem states existence of two algorithms: 1) testing if a given finite Markov
chain M satisfies a formula F of PLTL in time O(|M |2|F |), or in space polynomial
in |F | and polylogarithmic in |M |, and 2) computing the probability pM (F) of
satisfaction F on M in time exponential in |F} and polynomial in |M |.

To apply this theorem we need only to use Theorem 1 and the remark from
the end of the Sect. 3 on estimates of the size of MC(A) with respect to the
size of A. We give here only few of corollaries.

Theorem 2. (1) There exists an algorithm which checks satisfiability of a for-
mula F from FLTL in a state S of a ground probabilistic MAS A in polynomial
space on |A| and |F |.

(2)There exists an algorithm which computes probability pA(S0, F) for any
ground probabilistic MAS A and formula F in time exponential both in |A| and
|F |.

(3) There exists an algorithm which computes probability pA(S0, F) for any
(non-ground) probabilistic MAS A and formula F in time exponential in |F | and
double exponential in |A|.

- Branching time: In [12] an algorithm is constructed which decides whether a
formula F of PCTL is satisfied in a Markov chain M . The time complexity of this
algorithm is O(|M |3 ∗ |F |. From this we obtain (using the first-order extension
FPCTL instead of PCTL)

Theorem 3. (1) There exists an algorithm which checks satisfiability of a for-
mula F from FPCTL in a state S of a ground probabilistic MAS A in exponential
time on |A| and linear time on |F |.

264 M.I. Dekhtyar, A. Ja Dikovsky, and M.K. Valiev

(2)There exists an algorithm which checks satisfiability of a formula F from
FPCTL in a state S of a (non-ground) probabilistic MAS A in time double
exponential on |A| and linear on |F |.

We note that the estimates for |MC(A)| above were given for worse case. How-
ever, in many cases these estimates can be drastically decreased (from exponen-
tial to polynomial or from double exponential to exponential). E.g., if arities of
predicates in internal DBs, action bases and messages are bounded, then the
cardinality of set of global states for nonground MAS is bounded by some ex-
ponential of a polynomial. So, in the assertion (3) of Theorem 2 words “double
exponential in |A|” can be replaced by “exponential of a polynomial of |A|”.
Moreover, it may happen under constructing MC(A) that many global states
of A are not reachable or not acceptable. This can also lead to a serious decreas-
ing of complexity of problem of verification.

6 Conclusion

In this paper we showed how probabilistic multi-agent systems can be trans-
formed to finite state Markov chains. This permitted to obtain some results on
complexity of verifying dynamic properties of MAS by applying corresponding
results for finite Markov chains known from the literature. Note that we con-
sidered here only MAS with deterministic selection of actions. Of course, it is
also interesting to consider verification problem for MAS with non-deterministic
selection of actions. It seems that in this case results on verifying concurrent
Markov chains (Markov decision processes) [18,7,13] can be applied.

References

1. Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, Formal Models and Semantics, ch. 10, vol. B, pp. 493–574.
Elsevier Science Publishers B.V, Amsterdam (1990)

2. Aziz, A., et al.: It usually works: The temporal logic of stochastic systems. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg
(1995)

3. Barringer, H., et al.: METATEM: An Introduction. Formal Aspects of Comput-
ing 7, 533–549 (1995)

4. Bordini, R., et al.: Model checking AgentSpeak. In: AAMAS 2003, pp. 409–416
(2003)

5. Benerecetti, M., Guinchiglia, F., Serafini, L.: Model checking multiagent systems.
Technical Report # 9708-07. Instituto Trentino di Cultura (1998)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(2000)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

8. Dekhtyar, M., Dikovsky, A., Valiev, M.: On feasible cases of checking multi-agent
Systems Behavior. Theoretical Computer Science 303(1), 63–81 (2003)

Temporal Verification of Probabilistic Multi-Agent Systems 265

9. Dekhtyar, M.I., Dikovsky, A.Ja., Valiev, M.K.: On complexity of verification of
interacting agents’ behavior. Annals of Pure and Applied Logic 141, 336–362 (2006)

10. Dix, J., Nanni, M., Subrahmanian, V.S.: Probabilistic agent reasoning. ACM Trans-
actions of Computational Logic 1(2), 201–245 (2000)

11. Giordano, L., Martelli, A., Schwind, C.: Verifying communication agents by model
checking in a temporal action Logic. In: Alferes, J.J., Leite, J.A. (eds.) JELIA
2004. LNCS (LNAI), vol. 3229, pp. 57–69. Springer, Heidelberg (2004)

12. Hansson, H., Jonsson, B.: A logic for reasning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

13. Marta, K.: Model Checking for probability and time: from theory to practice. In:
Proc. 18th IEEE Symposium on Logic in Computer Science, pp. 351–360 (2003)

14. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In:
Proc. 2nd Intern. Conf. on Principles of Knowledge Representation and Reasoning,
Morgan Kaufman Publishers, San Francisco (1991)

15. Shoham, Y.: Agent oriented programming. Artificial Intelligence 60, 51–92 (1993)
16. Subrahmanian, V.S., Bonatti, P., Dix, J., et al.: Heterogeneous agent systems. MIT

Press, Cambridge (2000)
17. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic

goals. In: AAMAS 2002, Bologna, Italy (2002)
18. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-

grams. In: Proceedings of 26th IEEE Symposium on Foundations of Computer
Science, pp. 327–338. IEEE, New York

19. Wooldridge, M., Dunne, P.E.: The Computational complexity of Agent Verifica-
tion. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
Springer, Heidelberg (2002)

20. Wooldridge, M., et al.: Model Checking Multiagent systems with MABLE. In:
Proc. of the First Intern. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2002), Bologna, Italy (July 2002)

21. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowl-
edge Engineering Review 10(2) (1995)

Linear Recurrence Relations

for Graph Polynomials

Eldar Fischer� and Johann A. Makowsky��

Department of Computer Science,
Technion–Israel Institute of Technology, Haifa, Israel

{eldar,janos}@cs.technion.ac.il

For Boaz (Boris) Abramovich Trakhtenbrot
on the occasion of his 85th birthday.

Abstract. A sequence of graphs Gn is iteratively constructible if it can
be built from an initial labeled graph by means of a repeated fixed suc-
cession of elementary operations involving addition of vertices and edges,
deletion of edges, and relabelings. Let Gn be a iteratively constructible
sequence of graphs. In a recent paper, [27], M. Noy and A. Ribò have
proven linear recurrences with polynomial coefficients for the Tutte poly-
nomials T (Gi, x, y) = T (Gi), i.e.

T (Gn+r) = p1(x, y)T (Gn+r−1) + . . . + pr(x, y)T (Gn).

We show that such linear recurrences hold much more generally for a
wide class of graph polynomials (also of labeled or signed graphs), namely
they hold for all the extended MSOL-definable graph polynomials. These
include most graph and knot polynomials studied in the literature.

1 Introduction

Among Boaz’ celebrated papers we find two papers dealing with Monadic Pred-
icate Calculus and finite automata [30,31,21], and therein the theorem known
today as the Büchi-Elgot-Trakhtenbrot Theorem. It states that the regular lan-
guages are exactly those sets of words which are definable in Monadic Predicate
Calculus, also known as Monadic Second Order Logic MSOL.

There are innumerous papers dealing the importance of Monadic Predicate
Calculus for algorithmic questions. One of the crucial properties of MSOL is the
fact that the MSOL-theories of two structures determine uniquely the MSOL-
theory of the disjoint union of the two structures, and also of many other sum-like

� Partially supported by a Grant of the Fund for Promotion of Research of the
Technion–Israel Institute of Technology.

�� Partially supported by a Grant of the Fund for Promotion of Research of the
Technion–Israel Institute of Technology and an ISF Grant 2007–2009.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 266–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Linear Recurrence Relations for Graph Polynomials 267

compositions of the two structures. This is generally known as the Feferman-
Vaught theorem for Monadic Second Order Logic MSOL.1 In [23] many algo-
rithmic applications of this property of MSOL are discussed. We present here
yet another application of Monadic Predicate Calculus to algorithmic ques-
tions, namely to graph polynomials. A sequence of graphs Gn is iteratively con-
structible2 if it can be built from an initial graph by means of a repeated fixed
succession of elementary operations involving addition of vertices and edges, and
deletion of edges. Let Gn be a iteratively constructible sequence of graphs. In
a recent paper, [27], M. Noy and A. Ribò have proven linear recurrences with
polynomial coefficients for the Tutte polynomials T (Gi, x, y), i.e. recurrences of
the form

T (Gn+r, x, y) = p1(x, y) · T (Gn+r−1, x, y) + . . . + pr(x, y) · T (Gn, x, y).

Particular cases were studied previously in [4]. We show in Theorem 1 that such
linear recurrences hold much more generally for a wide class of graph polynomials
(also of labeled or signed graphs), namely the MSOL-definable graph polynomials
introduced in [10] and further studied3 in [25,23,26,24]. These include the classi-
cal chromatic polynomial and the Tutte polynomial, the matching polynomials,
the interlace polynomials, the cover polynomial, certain Farrell polynomials, and
the various colored Tutte polynomials studied by Bollobás and Riordan, [6]. Be-
cause of the latter, our result can also be applied to the computation of the Jones
polynomials and Kauffman brackets for iteratively constructible knots and links.
Actually, a close inspection of the literature reveals that virtually all graph poly-
nomials studied in the literature fall into this class, [24]. Only the interlace polyno-
mials seem to be an exception. For those one has to use an extended logic CMSOL
obtained from MSOL by adding modular counting quantifiers, cf. [1,2,8].

Our proof is based on a further refinement of Makowsky’s Splitting Theo-
rem for MSOL-definable graph polynomials from [23]. All graphs and logical
structures in this paper are finite.

2 Guiding Examples

We consider six iteratively constructed graph sequences of undirected simple
graphs. These sequences are constructed from an initial graph by the repeated
application of a deterministic graph operation.

2.1 Six Graph Sequences and Their Iterative Constructions

For a graph G = (V, E) we denote by Ḡ the complement graph Ḡ = (V, V 2 −
E − Diag(V)), with Diag(V) = {(v, v) : v ∈ V } We look at the following six
graph sequences:
1 Strictly speaking the extension of the Feferman-Vaught theorem for First Order Logic

FOL to MSOL emerged explicitly only in later papers of H. Läuchli, Y. Gurevich
and S. Shelah [22,29,19].

2 In [27] they are called recursively constructible.
3 The papers [23,26,24] contain extensive bibliographies on graph polynomials.

268 E. Fischer and J.A. Makowsky

(i) The sequence En of empty graphs with vertex set V (En) = {0, . . . , n − 1}
and edge set E(En) = ∅. E1 = P1 is an isolated vertex {0}. En+1 is obtained
from En by the disjoint union of En � E1.

(ii) The sequence Kn of cliques on n vertices. K1 = E1 and Kn+1 = En+1.
Iteratively we have Kn+1 = Kn �� K1 where �� denotes the join operation.

(iii) The sequence Pn of paths on n vertices, i.e. the graphs with vertex set
V (Pn) = {0, . . . , n − 1} and edge set E(Pn) = {(i, i + 1) : 0 ≤ i ≤ n −
2}. E1 = P1 is an isolated vertex. Pn+1 is obtained from Pn by setting
V (Pn+1) = V (Pn)�{n} and E(Pn+1) = E(Pn)∪{(n−1, n)}. To specify this
sequence with an iterated graph operation we look at P̄n obtained from Pn

by distinguishing a vertex of degree one. Then we have P̄n+1 = η(P̄n � P̄1)
where η put an edge between the two distinguished elements, and leaves
only the vertex coming from P̄1 as the distinguished element, and Pn+1 is
obtained from P̄n+1 by ignoring the distinguished element.

(iv) The sequence Cn of circles on n vertices, i.e. the graphs with vertex set
V (Cn) = {0, . . . , n − 1} and edge set E(Cn) = {(i, i + 1) : 0 ≤ i ≤ n − 2} ∪
{(n − 1, 0)}. C1 is a single vertex with a loop. Cn+1 is obtained from Cn

by setting V (Cn+1) = V (Cn) � {n} and E(Cn+1 = E(Pn+1) ∪ {(0, n)}. To
specify this sequence with an iterated graph operation we can use a vertex
replacement operation where a distinguished vertex of Cn is replace by P̄2.

(v) The sequence Ln of ladders on 2n vertices, i.e. the graphs with vertex set
V (Ln) = {0, . . . , 2n − 1} and edge set

E(Ln) = {(2i, 2i + 2) : 0 ≤ i ≤ n − 2}∪
{(2i + 1, 2i + 3) : 0 ≤ i ≤ n − 2}∪

{(2i, 2i + 1) : 0 ≤ i ≤ n − 1}
The reader can easily describe how Ln+1 is obtained from Ln by a suitable
choice of distinguished elements and appropriate vertex replacements. A
formal definition is presented in Sect. 3, cf. Proposition 2.

(vi) Similarly, the sequence Wn of wheels on n + 1 vertices can be obtained.
Here Wn is the graph with vertex set V (Wn) = {0, . . . , n} and edge set

E(Wn) = {(i, i + 1) : 0 ≤ i ≤ n − 2} ∪ {(n − 1, 0)}
∪{(i, n) : 0 ≤ i ≤ n − 1}

For G = (V, E) let I(G) be the graph with V (I(G)) = V � E and E(I(G)) =
{(v, e) ∈ V × E : there is an u with (v, u) = e}. The sequence I(Gn) is often
much more complicated to describe iteratively than the sequence Gn. In partic-
ular we shall see in the next section, Corollary 1, that the sequence I(Kn) is not
iteratively constructible in the sense we have in mind. A general definition of
iteratively constructed and iteratively constructible classes is given in Sect. 3.4.

2.2 The Matching Polynomial

For a graph G, the matching polynomial μ(G, x) ∈ Z[x] is defined by

μ(G, x) =
∑

k

mk(G) · xk

Linear Recurrence Relations for Graph Polynomials 269

where mk(G) is the number of k-matchings of G.
To compute μ(Pn, x) we use auxiliary polynomials

μ+(Pn, x) =
∑

k

m+
k (Pn) · xk

and
μ−(Pn, x) =

∑

k

m−
k (Pn) · xk

where m+
k (Pn) and m−

k (Pn) is the number of k-matchings of Pn which includes,
respectively excludes the last vertex.

Clearly we have
mk(Pn) = m+

k (Pn) + m−
k (Pn)

hence
μ(Pn, x) = μ+(Pn, x) + μ−(Pn, x).

It is easy to see that

μ−(Pn+1) = μ−(Pn) + μ+(Pn)

μ+(Pn+1) = x · μ−(Pn)

Let4 μ̄n = (μ−(Pn), μ+(Pn))t. We get

Aμ̄n = μ̄n+1

with
a1,1 = 1, a1,2 = 1, a2,1 = x, a2,2 = 0

The characteristic polynomial of A is

det(λ1 − A) = λ2 − λ − x

so we get the linear recurrence relation (independent of n)

μ(Pn+2) = μ(Pn+1) + x · μ(Pn)

2.3 The Vertex-Cover Polynomial

For a graph G, the vertex-cover polynomial vc(G, x) ∈ Z[x] is defined by

vc(G, x) =
∑

k

vck(G) · xk

where vck(G) is the number of k-vertex-covers of G. In [12] the following recur-
rence relations are derived:

(i) vc(Pn+1, x) = x · vc(Pn, x) + x · vc(Pn−1, x)
4 āt denotes the transposed vector of the vector ā.

270 E. Fischer and J.A. Makowsky

(ii) vc(Cn+1, x) = x · vc(Cn, x) + x2 · vc(Cn−2, x)
(iii) Let Loopn be the graph which consists of n isolated loops.

vc(Loopn+1, x) = x · vc(Loopn, x) = xn

(iv) For the wheel graph Wn we have

vc(Wn+1, x) = x · vc(Wn, x) + xn =
x · vc(Wn, x) + x · vc(Loopn, x)

Using the characteristic polynomial of the matrix, A = (ai,j) with

a1,1 = a1,2 = a2,2 = x and a2,1 = 0

we get

vc(Wn+1, x) = 2x · vc(Wn, x) − x2 · vc(Wn−1, x)

2.4 The Tutte Polynomial

We deal now with multi-graphs (multiple edges and loops are allowed). For a
graph G = (V (G), E(G)) we denote by k(G) the number of connected compo-
nents of G. We define the rank r(G) of G by,

r(G) =| V (G) | −k(G)

and the nullity n(G) of G by

n(G) =| E(G) | − | V (G) | +k(G).

For F ⊆ E(G) we put 〈F 〉 = (V (G), F), the spanning subgraph of G with edges
in F . We write k〈F 〉G, r〈F 〉G, n〈F 〉G for the number of connected components,
the rank and the nullity of 〈F 〉G. We omit the G in 〈F 〉G, when the context is
clear.

The Tutte polynomial is now defined as

TG(x, y) =
∑

F⊆E

(x − 1)r〈E〉−r〈F 〉(y − 1)n〈F 〉

There is a rich literature on the Tutte polynomial, cf. [5]. In [4], the question was
studied, for which iteratively constructed sequences the Tutte polynomial can be
computed with linear recurrence relations. Positive answers and explicit formulas
were given for, among others, the paths Pn, the circles Cn, the ladders Ln, and
the wheels Wn. To describe this phenomenon the authors called these sequences
T -recursive, indicating that the Tutte polynomial T could be computed by a
linear recurrence relation. In [27], a fairly general method is described by which
one can obtain many iteratively constructed sequences of graphs, which are T -
recursive. This method is reminiscent of graph grammars. We shall see that is
no coincidence.

Instead of using the existing formal setting of graph grammars as described
in [28], Noy and Ribó give an ad hoc definition of repeated fixed succession of
elementary operations, which can be applied to a graph with a context, i.e. a
labeled graph.

Linear Recurrence Relations for Graph Polynomials 271

Definition 1. Let F denote such an operation. Given a graph (with context) G,
we put

G0 = G, Gn+1 = F (Gn)

Then the sequence
G = {Gn : n ∈ N}

is called iteratively constructible using F , or an F -iteration sequence.

A precise version of a generalization of this definition is given in the next section,
Definition 3.

2.5 The General Strategy

Given a graph polynomial P, such as the matching polynomial, the vertex-cover
polynomial or the Tutte polynomial, and a sequence of iteratively constructible
graphs Gn using an operation F , we want to compute P(Gn) for all n.

To compute P(Gn+1), we try to find, depending on P and, possibly, on G0 and
F , but independently of n, an m ∈ N, auxiliary polynomials Pi(Gn+1), i ≤ m,
and a matrix Q = (qi,j) ∈ Z[x̄]m×m, such that

Pj(Gn+1)(x̄) =
∑

i

qi,j(x̄) · Pi(Gn)(x̄)

Then we use the characteristic polynomial of Q to convert this into a linear
recurrence relation.

We shall give very general sufficient conditions on the definability of P and
F , which will allow us to carry through such an argument.

3 Enter Logic

3.1 The Logic MSOL

Let us define some basics for the reader less familiar with Monadic Second Or-
der Logic. A vocabulary τ is a set of constant, function and relation symbols.
A one-sorted τ-structure is an interpretation of a vocabulary over one fixed set,
the universe. Interpretations of constant symbols are elements of the universe,
interpretations of function symbols are functions, and interpretations of relation
symbols are relations of the prescribed arity. τ -terms are formed using individ-
ual variables, constant symbols and function symbols from τ . Interpretations of
terms are elements of the universe. In first order logic FOL we have atomic for-
mulas which express equality between terms and assert basic relations between
terms. We are allowed to form boolean combination of formulas and to quantify
existentially and universally over elements of the universe. In second order logic
SOL we are allowed, additionally, to quantify over relations and functions of
some fixed arity (number of arguments). In monadic second order logic MSOL,
quantification over relations is restricted to unary relations, and quantification
over functions is not allowed. The quantifier rank r of a formula in MSOL is
defined like for FOL and without distinguishing between first order and second
order quantification. An excellent reference for our logical background is [14].

272 E. Fischer and J.A. Makowsky

3.2 MSOL-Polynomials

To understand better what many of the graph polynomials have in common we
have to look closer at the way they are defined. Besides their recursive definition,
like in the case of the Tutte polynomial and its close relatives, cf. [5,6,7], they
usually also have an equivalent (up to some transformation) static definition as
some kind of generating function. The matching polynomial e.g. can be written
as ∑

M⊆E

x|M| =
∑

M⊆E

∏

e∈M

x

where M ranges over all subsets of edges which have no vertex in common i.e.
subsets of edges which are matchings. The property of being a matching can be
expressed in first order logic FOL with M a new relation variable, or in monadic
second order logic MSOL, where M is a unary set variable ranging over subsets
of edges.

Without going into the more delicate details, the MSOL-definable polynomials
are in a polynomial ring R[x̄] and are typically of the form

g(G, x̄) =
∑

A:φ(A)

∏

v:v∈A

t(v) (1)

where A is a unary relation variable, φ(A) is an MSOL-formula with A as a
parameter,5 and t(v) is a term in R[x̄] which may depend uniformly on v.

Alternatively, and more precisely, one can give an inductive definition of
MSOL-polynomials as follows: First one introduces MSOL-monomials as being
of the form

∏
v:v∈A t(v), and then one closes under addition and multiplication,

and under summations of the form
∑

A:φ(A) t(A) and multiplications of the form
∏

v:A(v) t(v̄). Note that this gives more polynomials than just those of the form
given in 1, due to nesting of summations and multiplications. To get a normal
form of the type 1 one has to allow full second order logic, rather than MSOL.

In [26] the class of extended MSOL-polynomials is introduced. In the extended
case the basic combinatorial polynomials are also included. More precisely, for
every φ(v̄) ∈ SOL(τ) and τ -structure M we define the cardinality of the set
defined by φ:

cardM,v̄(φ(v̄)) =| {ā ∈ Mm : 〈M, ā〉 |= φ(ā)}. |

The extended MSOL(τ)-polynomials are defined inductively by allowing as ex-
tended MSOL-monomials additionally:
For every φ(v̄) ∈ MSOL(τ) and for every x ∈ x, the polynomials

xcardM,v̄(φ(v̄), x(cardM,v̄(φ(v̄)),

(
x

cardM,v̄(φ(v̄)

)

5 It may be a subgraph or induced subgraph generated by A, or a spanning subgraph
generated by A, if A is a subset of edges. But the main point is that it be definable
and the definition is part of φ.

Linear Recurrence Relations for Graph Polynomials 273

are MSOL-definable M-monomials. The first two are the exponentiation and
the falling factorial respectively. The last is the real continuation of the number
of subsets of a fixed size, see [18].6

Example 1. For a graph G and a non-negative integer n, let P (G, n) denote
the number of proper vertex colorings of G. It is well known that P (G, n) is
a polynomial in n, which is called the chromatic polynomial of G. To see this
one uses a recursive definition. The static definition, given in [3,13] is not an
MSOL-definable polynomial, but it is an extended MSOL-definable polynomial.

The extended MSOL-polynomials play an important role in the study initiated
in [26]. The choice of extended MSOL-monomials was dictated by the charac-
terization theorems proved in [26].

It is straight forward to see that all the results of [23], stated for MSOL-
polynomials, are also valid for extended for MSOL-polynomials. In particular
this applies to Theorem 2 in the sequel.

3.3 MSOL-Smooth Operations

Let A and B be two τ -structures. We write A ≡MSOL
r B, if A and B cannot be

distinguished by MSOL(τ)-formulas of quantifier rank r.
A unary operation F on τ -structures is MSOL-smooth if whenever A ≡MSOL

r

B, then also F (A) ≡MSOL
r F (B).

The operation F should be MSOL-smooth for the presentation of the graphs,
for which the polynomial is MSOL-definable. The presentation matters. For
forming the cliques Kn we need the operation of adding a vertex connected
to all previous vertices. This is MSOL-smooth for graphs G = (V, E) with an
edge relation E, but not for two sorted graphs I(G) = (V ∪ E, R). with vertices
and edges as disjoint universes, and an incidence relation R.

3.4 Iteration Operations

We shall define inductively a large class of unary iteration operations which are
MSOL-smooth on τ -structures enhanced with a fixed number of labels or colors.

For k ∈ N, a k-τ -structure is a τ -structure with k additional unary relations
CA

1 , . . . CA
k , called colors. We denote by τk the vocabulary τ ∪ {C1, . . . , Ck}.

Definition 2. The following are the basic operations on k-τ-structures:

Addi(A): For i ≤ k, add a new element to A of color Ci.
ρi,j(A): For i, j ≤ k, recolor all elements of A of color i with color j.
ηR,i1,...,im(A): For an m-ary relation symbol R ∈ τ and for each a1 ∈

CA
i1

, . . . , am ∈ CA
im

add the tuple (a1, . . . , am) to RA.
δR,i1,...,im(A): For an m-ary relation symbol R ∈ τ and for each a1 ∈

CA
i1 , . . . , am ∈ CA

im
delete the tuple (a1, . . . , am) from RA.

6 The choice of these three combinatorial functions as the basic functions in the defini-
tion of extended MSOL-polynomials seems natural. However, we have not addressed
the question whether this choice is complete in a sense yet to be defined.

274 E. Fischer and J.A. Makowsky

Quantifier-free transductions: For each R ∈ τk of arity α(R) let
φR(x1, . . . , xα(R)) be a quantifier-free τk formula with free variables as indi-
cated. A quantifier free transduction redefines all the predicates RA in A by
φA

R.
Duplication: The unary operation which associates with a graph A the disjoint

union of two copies of A.

Remark 1. Note that the binary operation of the disjoint union of two τ -
structures is not a basic operation for the purpose of iteration operations. It
is, however, one of the basic operations in the induction definition of graphs of
tree-width at most k or clique-width at most k, cf. [23].

Proposition 1. All the basic operations are MSOL-smooth.

We now state the key definitions for our main result.

Definition 3

(i) An operation F on τk-structures is MSOL-elementary if F is a finite com-
position of any of the basic operations on τk-structures.

(ii) Let F be MSOL-elementary. Given a graph G, we put

G0 = G, Gn+1 = F (Gn)

Then the sequence
G = {Gn : n ∈ N}

is called iteratively constructed using F , or an F -iteration sequence.
(iii) A sequence of graphs Gn is iteratively constructible if it is an F -iteration

sequence for some MSOL-elementary operation F .

Proposition 2. All the sequences En, Kn, Pn, Cn, Ln, Wn are F -iteration
sequences for some MSOL-elementary operation.

Proof. We sketch the proof for the ladders Ln, and leave the remaining cases
to the reader. H1 is L1 with the vertices colored by the colors C1 and C2 re-
spectively. Hn will be the ladder Ln with the vertices 2n − 1 and 2n colored
with colors C1 and C2 respectively, and all the other vertices colored by C0. To
construct Hn+1 we add two isolated vertices colored with the colors C3 and C4

respectively. Then we connect the vertices colored by C1 and C3, C2 and C4,
and C3 and C4. Finally we recolor C1 and C2 by C0, and then C3 by C1 and C4

by C2. ��

The following is from [23, Sect. 2]:

Proposition 3. Let F be MSOL-elementary and A and B two τk structures
with A ≡MSOL

r B. Then F (A) ≡MSOL
r F (B), hence, F is a MSOL-smooth.

Proof. The proof is straightforward from our definitions. ��

Linear Recurrence Relations for Graph Polynomials 275

The basic operations Addi, ρi,j and ηE,i,j are the basic operations used to induc-
tively define the class of graphs of clique-width at most k. The other operations
are generalizations thereof. For the vocabulary of graphs, it was shown in [9] that
any class of graphs, defined inductively using these operations and starting with
a finite set of graphs, is of bounded clique-width. Hence we have the following:

Proposition 4. Let F be an MSOL-elementary operation for k-graphs, and G
be an F -iteration sequence. Then G has bounded clique-width.

Remark 2. If we exclude the use of duplication in Proposition 4, we get that G
has bounded linear clique-width. The notion of linear clique-width is introduced
in [20].

It was shown in [11,17] that the class of square grids and the class I(Kn) are of
unbounded clique-width. Therefore we conclude:

Corollary 1. The sequences I(Kn), Gridn,n are not F -iteration sequences for
any F which is MSOL-elementary.

Remark 3. The notion of a iteratively constructible sequence of graphs, as de-
fined in [27], cf. 1, is a special case of our F -iteration sequences for an MSOL-
elementary operation F .

Remark 4. We have not attempted here to classify all the MSOL-smooth unary
operations on τ -structures. Although we think that there are MSOL-smooth
unary operations which are provably not MSOL-elementary, we have no example
at hand. Related questions were studied in [9].

3.5 Main Result

Our main result can now be stated.

Theorem 1. Let

(i) F be an MSOL-smooth operation on τk-structures;
(ii) P be an extended MSOL(τ)-definable τ-polynomial;
(iii) A = {An : n ∈ N} be an F -iteration sequence of τ-structures.

Then A is P-iterative, i.e. there exists β ∈ N, and polynomials p1, . . . , pβ ∈ Z[x̄]
such that for sufficiently large n

P(Gn+β+1) =
β∑

i=1

pi · P(Gn+i)

3.6 Proof of Theorem 1

The proof of Theorem 1 uses first the splitting theorem for graph polynomials
from [23]. Its scenario is as follows.

276 E. Fischer and J.A. Makowsky

A binary operation on k − τ -structures ��X is MSOL-smooth, if whenever
A ≡MSOL

r B, and A′ ≡MSOL
r B′, then also

A ��X A′ ≡MSOL
r B ��X B′.

Here X is used to indicate the dependence on the particular choice of the MSOL-
smooth binary operation.

Let Pr
i , i ∈ Ir , the set of all extended MSOL-definable graph polynomials with

defining formulas of quantifier rank at most r. Ir is finite of size αr, as there are,
up to logical equivalence, only finitely many formulas of fixed quantifier rank r.

A sharpened form of the splitting theorem [23, Theorem 6.4] now states the
following:

Theorem 2 (Bilinear Splitting Theorem). Let ��X be an MSOL-smooth
binary operation. There exists A(X) = (ai,k,�(X)) ∈ {0, 1}αr×αr×αr such that

Pr
i (A ��X B) =

∑

k,�≤αr

ai,k,�(X) · Pr
k(A) · Pr

�(B)

Proof (Sketch). The Bilinear Splitting Theorem is a refinement of the Feferman-
VaughtTheoremforMSOL.Itsproof is exactlyas theproofof [23,Theorem6.4].The
generalization to extendedMSOL-definable polynomials is straight forward. ��

The next step in the proof consists of a characterization of the MSOL-elementary
operations F .

Proposition 5. Let F be an MSOL-elementary operation on τk-structures
where exactly m many new elements are added. Then there exists a τk-structure
CF of size m and a binary MSOL- smooth operation ��F such that for all τk-
structures A we have

F (A) = CF ��F A

Proof (Sketch). The proof is by induction on the sequence of basic operations
used in the definition of F . ��

Now we define
qi,� =

∑

k

ai,k,� · Pr
k(C)

and use the Bilinear Splitting Theorem. We obtain:

Pr
i (F (A)) =

∑

�≤αr

qi,� · Pr
�(B)

The matrix Q = (qi,�) is a matrix of polynomials. To obtain Theorem 1 we
compute the characteristic polynomial

χ(Q) =
αr∑

i=0

qiλ
i

Linear Recurrence Relations for Graph Polynomials 277

of Q and obtain the required linear recurrence relation with

β = αq and pi = −qi for i = 0, . . . αr − 1

where qi are the coefficients of χ(Q). Note that qαr = 1.
This completes the proof of Theorem 1.

4 Conclusions and Further Research

We have introduced the class of MSOL-elementary operations F of τ -structures
and their associated F -iteration sequences. We have shown that a very wide class
of graph polynomials, and even of polynomial invariants of general τ -structures,
can be computed on F -iteration sequences by linear recurrence relations. This
explains a widely observed, but not systematically studied phenomenon.

As a consequence of our method we get immediately the following.

Corollary 2. Let F be an MSOL-smooth operation, Gn be an F -iteration se-
quence and P an extended MSOL-definable graph polynomial. Then P(Gn) can
be computed in polynomial time in n.

Proof (Sketch). We first observe that the size of Gn is linear in n. besides that,
proof is the same as the one given in [10,23]. ��

Although our method is theoretically computable, it is not effective for several
reasons:

– The number αr is too large for practical use.
– The boolean array ai,k,� cannot be efficiently computed. In fact, its compu-

tation is non-elementary, cf. [16].

It is likely that in practice, for explicitly given F , a much smaller recurrence
relation can be found explicitly. This remains a challenging topic for further
research.

Our results can be extended in several ways:

(i) We can add one more MSOL-smooth basic operation, provided the vocabu-
lary τ contains only unary and binary relation symbols.
Fuse: The graph fusei(G) is obtained from G by identifying all vertices of

color Ci and leaving all the resulting edges with the exception of the
resulting loops.

A detailed discussion of this and further operations may be found in [23, Sect.
3] and in [9]. We do not go into further details, due to space limitations.

(ii) The logic MSOL can be extended to the logic CMSOL where we have addi-
tionally modular counting quantifiers Cm,nxφ(x) for each m, n ∈ N, which
say that there are, modulo m, exactly n elements satisfying φ(x). The Split-
ting Theorem in [23] is proven for CMSOL. Clearly CMSOL is a sublogic
of SOL. The interlace polynomials, [1,2] are CMSOL-definable, but it is not
known whether they are MSOL-definable.

278 E. Fischer and J.A. Makowsky

(iii) In [15] the notion of clique-width was generalized further and the notion
of patch-width was introduced. For F an MSOL-elementary operation the
F -iteration sequences of arbitrary τ -structures are of bounded patch-width.
It remains to be investigated whether there are interesting polynomial in-
variants of τ -structures, where our method leads to useful results.

Our method does not apply to square grids Gn,n. But they are obviously reg-
ularly constructed in some way, and it is to be expected that for most graph
polynomials P, some recurrence relation does exist to compute the values of
P(Gn,n). Can one find a general theorem which captures this intuition?

Acknowledgments

We would like to thank the referee for has very careful reading of the first version
of this paper. We would also like to thank the editors of this volume, Arnon
Avron, Nachum Dershowitz, and Alexander Rabinovich, for their encouragement
and patience.

References

1. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph
polynomial. Journal of Combinatorial Theory, Series B 92, 199–233 (2004)

2. Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Com-
binatorica 24(4), 567–584 (2004)

3. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cam-
bridge (1993)

4. Biggs, N.L., Damerell, R.M., Sand, D.A.: Recursive families of graphs. J. Combin.
Theory Ser. B 12, 123–131 (1972)

5. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)
6. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combinatorics,

Probability and Computing 8, 45–94 (1999)
7. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. Journal of

Combinatorial Theory, Ser. B 65(2), 273–290 (1995)
8. Courcelle, B.: A multivariate interlace polynomial (December 2006) (preprint)
9. Courcelle, B., Makowsky, J.A.: Fusion on relational structures and the verifica-

tion of monadic second order properties. Mathematical Structures in Computer
Science 12(2), 203–235 (2002)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second order logic. Discrete
Applied Mathematics 108(1–2), 23–52 (2001)

11. Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete
Applied Mathematics 101, 77–114 (2000)

12. Dong, F.M., et al.: The vertex-cover polynomial of a graph. Discrete Mathemat-
ics 250, 71–78 (2002)

13. Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of
Graphs. World Scientific, Singapore (2005)

14. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical
Logic, Springer, Heidelberg (1995)

Linear Recurrence Relations for Graph Polynomials 279

15. Fischer, E., Makowsky, J.A.: On spectra of sentences of monadic second order logic
with counting. Journal of Symbolic Logic 69(3), 617–640 (2004)

16. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic 130(1), 3–31 (2004)

17. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Internation Journal of Foundations of Computer Science 11, 423–443 (2000)

18. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-
Wesley, Reading (1994)

19. Gurevich, Y.: Modest theory of short chains, I. Journal of Symbolic Logic 44,
481–490 (1979)

20. Gurski, F., Wanke, E.: On the relationship between NLC-width and linear NLC-
width. Theoretical Computer Science 347(1–2), 76–89 (2005)

21. Kobrinski, N.E., Trakhtenbrot, B.A.: Introduction to the Theory of Finite Au-
tomata. In: Studies in Logic and the Foundations of Mathematics, North-Holland,
Amsterdam (1965)

22. Läuchli, H.: A decision procedure for the weak second order theory of linear order.
In: Logic Colloquium 1966, pp. 189–197. North-Holland, Amsterdam (1968)

23. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of
Pure and Applied Logic 126, 1–3 (2004)

24. Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph
polynomials. Theory of Computing Systems, published online first (July 2007)

25. Makowsky, J.A., Mariño, J.P.: Farrell polynomials on graphs of bounded treewidth.
Advances in Applied Mathematics 30, 160–176 (2003)

26. Makowsky, J.A., Zilber, B.: Polynomial invariants of graphs and totally categorical
theories. MODNET Preprint No. 21 server (2006),
http://www.logique.jussieu.fr/modnet/Publications/Preprint%20

27. Noy, M., Ribó, A.: Recursively constructible families of graphs. Advances in Ap-
plied Mathematics 32, 350–363 (2004)

28. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph trans-
formations, Foundations, vol. 1. World Scientific, Singapore (1997)

29. Shelah, S.: The monadic theory of order. Annals of Mathematics 102, 379–419
(1975)

30. Trakhtenbrot, B.: Finite automata and the logic of monadic predicates. Doklady
Akademy Nauk SSSR 140, 326–329 (1961)

31. Trakhtenbrot, B.: Some constructions in the monadic predicate calculus. Doklady
Akademy Nauk SSSR 138, 320–321 (1961)

http://www.logique.jussieu.fr/modnet/Publications/Preprint%20

Artin’s Conjecture and Size of Finite

Probabilistic Automata�

Rūsiņš Freivalds

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, R̄ıga, LV-1459, Latvia

I was Prof. Boris Trakhtenbrot’s doctoral student in Novosibirsk, 1968-1970. I
learned from him much, including the notion of probabilistic automata. I
thank him for getting me interested in Theoretical Computer Science.

Abstract. Size (the number of states) of finite probabilistic automata
with an isolated cut-point can be exponentially smaller than the size of
any equivalent finite deterministic automaton. The result is presented
in two versions. The first version depends on Artin’s Conjecture (1927)
in Number Theory. The second version does not depend on conjectures
but the numerical estimates are worse. In both versions the method of
the proof does not allow an explicit description of the languages used.
Since our finite probabilistic automata are reversible, these results imply
a similar result for quantum finite automata.

1 Introduction

M. O. Rabin proved in [14] that if a language is recognized by a finite probabilis-
tic automaton with n states, r accepting states and isolation radius δ then there
exists a finite deterministic automaton which recognizes the same language and
the deterministic automaton may have no more than (1 + r

δ)n states. However,
how tight is this bound? Rabin gave an example of languages in [14] where prob-
abilistic automata indeed had size advantages but these advantages were very
far from the exponential gap predicted by the formula (1 + r

δ)n . Unfortunately,
the advantage proved by Rabin’s example was only linear, not exponential. Is it
possible to diminish the gap? Is the upper bound (1 + r

δ)n tight or is Rabin’s
example the best possible?

R. Freivalds in [5] constructed an infinite sequence of finite probabilistic au-
tomata such that every automaton recognizes the corresponding language with
the probability 3

4 , and if the probabilistic automaton has n states then the lan-
guage cannot be recognized by a finite deterministic automaton with less than
Ω(2

√
n) states. This did not close the gap between the lower bound Ω(2

√
n)

and the purely exponential upper bound (1 + r
δ)n but now it was clear that

the size advantage of probabilistic versus deterministic automata may be super-
polynomial.
� Research supported by Grant No.05.1528 from the Latvian Council of Science and

European Commission, contract IST-1999-11234.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 280–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Artin’s Conjecture and Size of Finite Probabilistic Automata 281

A. Ambainis [1] constructed a new sequence of languages and corresponding
sequence of finite probabilistic automata such that every automaton recognizes
the corresponding language with the probability 3

4 and if the probabilistic au-
tomaton has n states then the language cannot be recognized by a finite deter-
ministic automaton with less than Ω(2

nloglogn
logn) states. On the other hand, the

languages in [5] were in a single-letter alphabet but for the languages in [1] the
alphabet grew with n unlimitedly.

This paper gives the first ever purely exponential distiction between the sizes
of probabilistic and deterministic finite automata. Existence of an infinite se-
quence of finite probabilistic automata is proved such that all of them recognize
some language with a fixed probability p > 1

2 and if the probabilistic automaton
has n states then the language cannot be recognized by a finite deterministic
automaton with less than Ω(an) states for a certain a > 1. This does not end
the search for the advantages of probabilistic finite automata over deterministic
ones. We still do not know the best possible value of a. Moreover, the best esti-
mate proved in this paper is proved under assumption of the well-known Artin’s
conjecture in Number Theory. Our final Theorem 3 does not depend on any open
conjectures but the estimate is worse, and the description of the languages used
is even less constructive. These seem to be the first results in Finite Automata
depending on open conjectures in Number Theory.

The essential proofs are non-constructive. Such an approach is not new. A
good survey of many impressive examples of non-constructive methods is by
J. Spencer [16]. Technically, the crucial improvement over existing results and
methods comes from our usage of mirage codes to construct finite probabilistic
automata. Along this path of proof, it turned out that the best existing result
on mirage codes (Theorem A below) is not strong enough for our needs. The
improvement of Theorem A is based on the notion of Kolmogorov complexity.
It is well known that Kolmogorov complexity is not effectively computable. It
turned out that non-computability of Kolmogorov complexity allows to prove
the existence of the needed mirage codes and it is enough for us to prove an ex-
ponential gap between the size of probabilistic and deterministic finite automata
recognizing the same language. On the other hand, some results of abstract al-
gebra (namely, elementary properties of group homomorphisms) are also used in
these proofs.

2 Number-Theoretical Conjectures

By p we denote an odd prime number, i.e. a prime greater than 2. To prove the
main theorems we consider several lemmas. Most of them are valid for arbitrary
p but we are going to use them only for odd primes of a special type.

Consider the sequence

20, 21, 22, . . . , 2p−2, 2p−1, 2p, . . .

and the corresponding sequence of the remainders of these numbers modulo p

r0, r1, r2, . . . , rp−2, rp−1, rp, . . . (1)

282 R. Freivalds

(rk ≡ 2k (mod p)). For arbitrary p, the sequence (1) is periodic. Since r0 = 1
and, by the Fermat Little Theorem, rp−1 ≡ 2p−1 ≡ 1 (mod p), one may think
that p − 1 is the least period of the sequence (1).

This is not the case. For instance, 27−1 ≡ 1 (mod 7). but also 23 ≡ 1
(mod 7). However, sometimes p − 1 can be the least period of the sequence
(1). In this case, 2 is called a primitive root modulo p. More generally, a number
a is called a primitive root modulo p if and only if a is a relatively prime to p and
p − 1 is the least period in the sequence of remainders modulo p of the numbers

a0 = 1, a1, a2, . . . , ap−2, ap−1, ap, . . .

Emil Artin made in 1927 a famous conjecture the validity of which is still an
open problem.

Artin’s Conjecture. [3] If a is neither -1 nor a square, then a is a primitive
root for infinitely many primes.

Moreover, it is conjectured that density of primes for which a is a primitive root
equals A = 0.373956 In 1967, C. Hooley [9] proved that Artin’s conjecture
follows from the Generalized Riemann hypothesis. D. R. Heath-Brown [10] proved
that Artin’s conjecture can be wrong no more than for 2 distinct primes a.

3 Linear Codes

Linear codes is the simplest class of codes. The alphabet used is a fixed choice
of a finite field GF (q) = Fq with q elements. For most of this paper we consider
a special case of GF (2) = F2. These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n matrix with
entries in the finite field Fq, whose rows are linearly independent. The linear code
corresponding to the matrix G consists of all the qk possible linear combinations
of rows of G. The requirement of linear independence is equivalent to saying that
all the qk linear combinations are distinct. The linear combinations of the rows in
G are called codewords. However we are interested in something more. We need
to have the codewords not merely distinct but also as far as possible in terms
of Hamming distance. Hamming distance between two vectors v = (v1, . . . , vn)
and w = (w1, . . . , wn) in Fqk is the number of indices i such that vi �= wi.

The textbook [7] contains

Theorem A. For any integer n ≥ 4 there is a [2n, n] binary code with a mini-
mum distance between the codewords at least n/10.

However the proof of the theorem in [7] has a serious defect. It is non-constructive.
It means that we cannot find these codes or describe them in a useful manner.
This is why P. Garret calls them mirage codes.

If q is a prime number, the set of the codewords with the operation
“component-wise addition” is a group. Finite groups have useful properties. We
single out Lagrange’s Theorem. The order of a finite group is the number of
elements in it.

Artin’s Conjecture and Size of Finite Probabilistic Automata 283

Lagrange’s Theorem (see e.g. [7]). Let GR be a finite group. Let H be a
subgroup of GR. Then the order of H divides the order of G.

Definition 1. A generating matrix G of a linear code is called cyclic if along
with an arbitrary row (v1, v2, v3, . . . , vn) the matrix G contains also a row
(v2, v3, . . . , vn, v1).

We would have liked to prove a reasonable counterpart of Theorem A for cyclic
mirage codes, but this attempt fails. Instead we consider binary generating ma-
trices of a bit different kind. Let p be an odd prime number, and x be a binary
word of length p. The generating matrix G(p, x) has p rows and 2p columns.
Let x = x1x2x3 . . . xp. The first p columns (and all p rows) make a unit matrix
with elements 1 on the main diagonal and 0 in all the other positions. The last
p columns (and all p rows) make a cyclic matrix with x = x1x2x3 . . . xp as the
first row, x = xpx1x2x3 . . . xp−1 as the second row, and so on.

Lemma 1. For arbitrary x, if h1h2h3 . . . hphp+1hp+2hp+3 . . . h2p is a codeword
in the linear code corresponding to G(p, x), then
hph1h2 . . . hp−1h2php+1hp+2 . . . h2p−1 is also a codeword.

There are 2p codewords of the length 2p. If the codeword is obtained as a linear
combination with the coefficients c1, c2, . . . , cp then the first p components of the
codeword equal c1c2 . . . cp. We denote by R(x, c1c2 . . . cp) the subword containing
the last p components of this codeword.

Lemma 2. If c1c2 . . . cp = 000 . . .0, then R(x, c1c2 . . . cp) = 000 . . .0, for arbi-
trary x.

Definition 2. We will call a word trivial if all its symbols are equal. Otherwise
we call the word nontrivial.

Lemma 3. If c1c2 . . . cp is trivial, then R(x, c1c2 . . . cp) is trivial for arbitrary
x.

Proof. Every symbol of R(x, c1c2 . . . cp) equals x1 + x2 + . . . + xp (mod 2).

Lemma 4. If x is trivial, then R(x, c1c2 . . . cp) is trivial for arbitrary c1c2 . . . cp.

Definition 3. A word x = x1x2 . . . xp is called a cyclic shift of the word y =
y1y2 . . . yp if there exists i such that x1 = yi, x2 = yi+1, . . . , xp = yi+p where the
addition is modulo p. If (i, p) = 1, then we say that this cyclic shift is nontrivial.

Lemma 5. If x is a cyclic shift of y, then R(x, c1c2 . . . cp) is a cyclic shift of
R(y, c1c2 . . . cp).

Lemma 6. If p is an odd prime, x is a nontrivial word and y is a nontrivial
cyclic shift of x, then x �= y.

Lemma 7. If p is an odd prime and c1c2 . . . cp is nontrivial, then the set Tc1c2...cp

= {R(x, c1c2 . . . cp)|x ∈ {0, 1}p and R(x, c1c2 . . . cp) nontrivial } has a cardinality
which is a multiple of p.

284 R. Freivalds

Proof. Immediately from Lemmas 5 and 6.

For arbitrary fixed c1c2 . . . cp, the set {R(x, c1c2 . . . cp)|x ∈ {0, 1}p} with alge-
braic operation “component-wise addition modulo z” is a group. We denote this
group by B. By D we denote the group of all 2p binary words of the length p
with the same operation.

Lemma 8. For arbitrary c1c2 . . . cp, x and y,
R(x, c1c2 . . . cp) + R(y, c1c2 . . . cp) = R(x + y, c1c2 . . . cp).

In other words, for arbitrary c1c2 . . . cp, the map D → B defined by x →
R(x, c1c2 . . . cp) is a group homomorphism. (Definition and properties of group
homomorphisms can be found in every textbook on group theory. See e.g. [4].)
The kernel of the group homomorphism is the set ker0 = {x|R(x, c1c2 . . . cp) =
000 . . .0}.

The image of the group homomorphism is the set B. For arbitrary z ∈ B, by
kerz we denote the set kerz = {x|R(x, c1c2 . . . cp) = z}.

From Lemma 8 we easily get

Lemma 9. For arbitrary z ∈ B, card(kerz) = card(ker0).

Lemma 10. For arbitrary z ∈ B, card(kerz) = card(D)
card(B) .

Lemma 11. If x contains (p−1) zeroes and 1 one, and c1c2 . . . cp is nontrivial,
then R(x, c1c2 . . . cp) is nontrivial.

Proof. For such an x, the number of ones in R(x, c1c2 . . . cp) is the same as the
number of ones in c1c2 . . . cp.

Lemma 12. If p is an odd prime such that 2 is a primitive root modulo p and
c1c2 . . . cp is nontrivial, then the set Sc1c2...cp = {R(x, c1c2 . . . cp)|x ∈ {0, 1}p} is
either of cardinality 1 or of cardinality 2.

Proof. By Lagrange’s Theorem the order 2p of the group B divides the order of
the group D. Hence the order of B is 2b for some integer b. The neutral element
of these groups is the word 000 . . .0. It belongs to every subgroup. There are
two possible cases:

1. 111 . . .1 is in B,
2. 111 . . .1 is not in B.

In the case 1 card(Tc1c2...cp) = card(B) − 2, and by Lemmas 7 and 10
card(Tc1c2...cp) is a multiple of p. Hence 2b = card(B) ≡ 2 (mod p) and
2b−1 ≡ 1 (mod p). Since 2 is a primitive root modulo p, either 2b−1 = 2p−1

or 2b−1 = 20. If 2b−1 = 2p−1, then 2b = 2p and for this fixed c1c2 . . . cp the
map x → R(x, c1c2 . . . cp) takes distinct x’es into distinct R(x, c1c2 . . . cp)’s. If
2b−1 = 20, then 2b = 2 and B = {000 . . .0, 111 . . .1}, but this is impossible by
Lemma 11.

Artin’s Conjecture and Size of Finite Probabilistic Automata 285

In the case 2 card(Tc1c2...cp) = card(B) − 1 and by Lemma 7 card(Tc1c2...cp)
is a multiple of p. Hence 2b ≡ 1 (mod p). Since 2 is a primitive root modulo p,
either 2b = 2p−1 or 2b = 20. If 2b = 2p−1, then card(B) = 2p−1 and, by Lemma
10, for arbitrary z ∈ Tc1c2...cp , card(kerz) = 2. If 2b = 20, then B = {000 . . .0}
but this is impossible by Lemma 11.

4 Kolmogorov Complexity

The theorems in this section are well-known results in spite of the fact that it is
not easy to find exact references for all of them.

Definition 4. We say that the numbering Ψ = {Ψ0(x), Ψ1(x), Ψ2(x), . . .} of 1-
argument partial recursive functions is computable if the 2-argument function
U(n, x) = Ψn(x) is partial recursive.

Definition 5. We say that a numbering Ψ is reducible to the numbering η if
there exists a total recursive function f(n) such that, for all n and x, Ψn(x) =
ηf(n)(x).

Definition 6. We say that a computable numbering ϕ of all 1-argument partial
recursive functions is a Gödel numbering if every computable numbering (of
any class of 1-argument partial recursive functions) is reducible to ϕ.

Theorem ([15]). There exists a Gödel numbering.

Definition 7. We say that a Gödel numbering ϑ is a Kolmogorov numbering
if for arbitrary computable numbering Ψ (of any class of 1-argument partial
recursive functions) there exist constants c > 0, d > 0, and a total recursive
function f(n) such that:

1. for all n and x, Ψn(x) = ϑf(n)(x),
2. for all n, f(n) ≤ c · n + d.

Kolmogorov Theorem ([11]). There exists a Kolmogorov numbering.

5 New Mirage Codes

In the beginning of Section 3 we introduced a special type generating matrices
G(p, x) where p is an odd prime and x is a binary word of length p. Now we
introduce two technical auxiliary functions. If z is a binary word of length 2p,
then d(z) is the subword of z containing the first p symbols, and e(z) is subword
of z containing the last p symbols. Then z = d(z)e(z).

There exist many distinct Kolmogorov numberings. We now fix one of them
and denote it by η. Since Kolmogorov numberings give indices for all partial
recursive functions, for arbitrary x and p, there is an i such that ηi(p) = x. Let

286 R. Freivalds

i(x, p) be the minimal i such that ηi(p) = x. It is easy to see that if x1 �= x2, then
i(x1, p) �= i(x2, p). We consider all binary words x of the length p and denote by
x(p) the word x such i(x, p) exceed i(y, p) for all binary words y of the length p
different from x. It is obvious that i ≥ 2p − 1.

Until now we considered generating matrices G(p, x) for independently chosen
p and x. From now on we consider only odd primes p such that 2 is a primitive
root modulo p and the matrices G(p, x(p)). We wish to prove that if p is suffi-
ciently large, then Hamming distances between two arbitrary codewords in this
linear code is at least 4p

19 .
We introduce a partial recursive function μ(z, ε, p) defined as follows. Above

when defining G(p, x) we considered auxiliary function R(x, c1c2 . . . cp). To define
μ(z, ε, p) we consider all 2p binary words x of the length p. If z is not a binary
word of length 2p, then μ(z, ε, p) is not defined. If ε is not in {0, 1}, then μ(z, ε, p)
is not defined. If z is a binary word of length 2p and ε ∈ {0, 1}, then we consider
all x ∈ {0, 1}p such that R(x, d(z)) = e(z). If there are no such x, then μ(z, ε, p)
is not defined. If there is only one such x, then μ(z, ε, p) = x. If there are two
such x, then

μ(z, ε, p) =
{

the first such x in the lexicographical order, for ε = 1
the second such x in the lexicographical order, for ε = 0

If there are more than two such x, then μ(z, ε, p) is not defined.
Now we introduce a computable numbering of some partial recursive func-

tions. This numbering is independent of p.
For each p (independently from other values of p) we order the set of all the

22p binary words z of the length 2p: z0, z1, z2, . . . , z22p−1. We define z0 as the
word 000 . . . 0. The words z1, z2, . . . , z22p−1 are words with exactly one symbol
1. We strictly follow a rule “if the word zi contains less symbols 1 than the
word zj, then i < j”. Words with equal number of the symbol 1 are ordered
lexicographically. Hence z22p−1 = 111 . . .1.

For each p, we define

Ψ0(p) = μ(z0, 0, p)
Ψ1(p) = μ(z0, 1, p)
Ψ2(p) = μ(z1, 0, p)
Ψ3(p) = μ(z1, 1, p)
Ψ4(p) = μ(z2, 0, p)
Ψ5(p) = μ(z2, 1, p)
. . .
Ψ22p+1−2(p) = μ(z22p−1, 0, p)
Ψ22p+1−1(p) = μ(z22p−1, 1, p)

For j ≥ 22p+1, Ψj(p) is undefined.
We have fixed a Kolmogorov numbering η and we have just constructed a

computable numbering Ψ of some partial recursive functions.

Artin’s Conjecture and Size of Finite Probabilistic Automata 287

Lemma 13. There exist constants c > 0 and d > 0 (independent of p) such that
for arbitrary i there is a j such that

1. Ψi(t) = ηj(t) for all t, and
2. j ≤ ci + d.

Proof. Immediately from Kolmogorov Theorem.

We consider generating matrices G(p, x(p)) for linear codes where p is an odd
prime such that 2 is a primitive root modulo p, and, as defined above, x(p) is a
binary word of length p such that ηi(p) = x(p) implies i ≥ 2p − 1. We denote
the corresponding linear code by LC2(p).

Now we prove several lemmas showing that, if p is sufficiently large, then
Hamming distances between arbitrary two codewords are no less than 4p

19 .

Lemma 14. For every linear code, there is a codeword 000 . . .0.

Proof. The codeword 000 . . .0 is obtained by using coefficients c1c2 . . . cp =
000 . . .0.

Lemma 15. For every linear code, if there exists a pair of distinct codewords
with Hamming distance less than d, then there is a codeword with less than d
symbols 1 in it.

Proof. If x1 and x2 are codewords, then x1 ⊕ x2 also is a codeword.

Lemma 16. If p is sufficiently large, and a codeword in LC2(p) contains less
than 4p

19 symbols 1, then the codeword is 000 . . . 0.

Proof. Assume from the contrary that there is a codeword z �= 000 . . .0 contain-
ing less than 4p

19 symbols 1. Above we introduced an ordering z0, z1, z2, . . . , z22p−1

of all binary words of the length 2p. Then z = zi where

i ≤
(

2p
0

)

+
(

2p
1

)

+
(

2p
2

)

+ · · · +
(

2p⌊
4p
19

⌋
)

.

Hence i = o(2p). On the other hand, the choice of x(p) implies that i ≥ 2p − 1.
Contradiction.

Lemma 17. If p is sufficiently large, then the Hamming distance between any
two distinct codewords in LC2(p) is no less than 4p

19 .

Proof. By Lemmas 16 and 15.

6 Probabilistic Reversible Automata

M. Golovkins and M. Kravtsev [8] introduced probabilistic reversible automata
(PRA) to describe the intersection of two classes of automata, namely, the classes
of the 1-way probabilistic and quantum automata. The paper [8] describes several

288 R. Freivalds

versions of these automata. We concentrate here on the simplest and the least
powerful class of PRA.

Σ = {a1, a2, . . . , am} is the input alphabet of the automaton. Every input
word is enclosed into end-marker symbols # and $. Therefore the working al-
phabet is defined as Γ = Σ ∪ {#, $}. Q = {q1, q2, . . . , qn} is a finite set of
states. Q is presented as a union of two disjoint sets: QA (accepting states) and
QR (rejecting states). At every step, the PRA is in some probability distribution
(p1, p2, . . . , pn) where p1+p2 + . . .+pn = 1. As the result of reading the input #,
the automaton enters the initial probability distribution (p1(0), p2(0), . . . , pn(0)).
M1, M2, . . . , Mm are doubly-stochastic matrices characterising the evolution of
probability distributions.

If at some moment t the probability distribution is

(p1(t), p2(t), . . . , pn(t))

and the input symbol is au, then the probability distribution

(p1(t + 1), p2(t + 1), . . . , pn(t + 1))

equals (p1(t), p2(t), . . . , pn(t)) ·Mu. If after having read the last symbol of the in-
put word x the automaton has reached a probability distribution (p1, p2, . . . , pn)
then the probability to accept the word equals

probx = Σi∈QApi

and the probability to reject the word equals

1 − probx = Σi∈QRpi.

We say that a language L is recognized with bounded error with an interval
(p1, p2) if p1 < p2 where p1 = sup{probx|x �∈ L} and p2 = inf{probx|x ∈ L}.

We say that a language L is recognized with a probability p > 1
2 if the language

is recognized with interval (1 − p, p).
In the previous section we constructed a binary generating matrix G(p, p(x))

for a linear code. Now we use this matrix to construct a probabilistic reversible
automaton R(p).

The matrix G(p, x(p)) has 2p columns and p rows. The automaton R(p) has
4p + 1 states, 2p of them being accepting and 2p + 1 being rejecting. The input
alphabet consists of 2 letters.

The (rejecting) state q0 is special in the sense that the probability to enter this
state and the probability to exit from this state during the work equals 0. This
state always has the probability 17

36 . The states q1, q2, . . . , g4p are related to the
columns of G(p, x(p)) and should be considered as 2p pairs (q1, q2), (q3, q4), . . . ,
. . . (q4p−1, q4p) corresponding to the 2p columns of G(p, x(p)). The states
q1, q3, q5, q7, . . . , q4p−1 are accepting and the states q2, q4, q6, q8, . . . , q4p are re-
jecting. The initial probability distribution is as follows:

⎧
⎨

⎩

17
36 , for q0,
19
72p , for each of q1, q3, . . . , q4p−1

0, for each of q2, q4, . . . , q4p.

Artin’s Conjecture and Size of Finite Probabilistic Automata 289

The processing of the input symbols a, b is deterministic. Under the input
symbol a the states are permuted as follows:

q1 → q3 q2 → q4 q2p+1 → q2p+3 q2p+2 → q2p+4

q3 → q5 q4 → q6 q2p+3 → q2p+5 q2p+4 → q2p+6

q5 → q7 q6 → q8 q2p+5 → q2p+7 q2p+6 → q2p+8

· · · · · · · · · · · ·
q2p−3 → q2p−1 q2p−2 → q2p q4p−3 → q4p−1 q4p−2 → q4p

q2p−1 → q1 q2p → q2 q4p−1 → q2p+1 q4p → q2p+2

The permutation of the states under the input symbol b depends on G(p, x(p)).
Let

G(p, x(p)) =

⎛

⎜
⎜
⎝

g11 g12 . . . g1 2p

g21 g22 . . . g2 2p

· · · · · · · · · · · ·
gp1 gp2 . . . gp 2p

⎞

⎟
⎟
⎠

For arbitrary i ∈ {1, 2, . . . , p},
⎧
⎪⎪⎨

⎪⎪⎩

q2i−1 → q2i−1 , if g1i = 0
q2i → q2i , if g1i = 0
q2i−1 → q2i , if g1i = 1
q2i → q2i−1 , if g1i = 1.

In order to understand the language recognized by the automaton R(p) we
consider the following auxiliary mapping W from the words in {a, b}∗ into the
set of binary 2p-vectors defined recursively:

1. CW (Λ) = g11g12 . . . g1 2p

2. if CW (w) = h1h2h3 . . . hphp+1hp+2hp+3 . . . h2p then
{

CW (wa) = hph1h2 . . . hp−1h2php+1hp+2 . . . h2p−1 and
CW (wb) = (h1 ⊕ g11)(h2 ⊕ g12)(h3 ⊕ g13) . . . (h2p ⊕ g1 2p).

The next two lemmas can be proved by induction over the length of w.

Lemma 18. For arbitrary word w ∈ {a, b}∗, CW (w) is a codeword in the linear
code corresponding to the generating matrix G(p, x(p)).

Lemma 19. Let w be an arbitrary word in {a, b}∗, and CW (w) = h1h2 . . . h2p.
Then the probability distribution of the states in R(p) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

17
36 , for g0,
19
72p , for g2i−1 if hi = 0,

0 , for g2i if hi = 0,
0 , for g2i−1 if hi = 1,
19
72p , for g2i if hi = 1.

We introduce a language

LG(p,x(p)) = {w|w ∈ {a, b}∗&CW (w) = 000 . . .0}.

290 R. Freivalds

Lemma 20. If 2 is a primitive root modulo p and p is sufficiently large, then
the automaton R(p) recognizes the language LG(p,x(p)) with the probability 19

36 .

Lemma 21. For arbitrary p and arbitrary deterministic finite automaton A rec-
ognizing LG(p,x(p)) the number of states of A is no less than 2p.

Lemmas 20 and 21 imply

Theorem 1. If 2 is a primitive root for infinitely many distinct primes then
there exists an infinite sequence of regular languages L1, L2, L3, . . . in a 2-letter
alphabet and a sequence of positive integers p(1), p(2), p(3), . . . such that for ar-
bitrary j:

1. any deterministic finite automaton recognizing Lj has at least 2p(j) states,
2. there is a probabilistic reversible automaton with (4p(j)+1) states recognizing

Lj with the probability 19
36 .

7 Without Conjectures

In 1989 D. R. Heath-Brown [10] proved Artin’s conjecture for “nearly all inte-
gers”. We use the following corollary from Heath-Brown’s Theorem:

Corollary from Heath-Brown Theorem ([10]). At least one integer a in
the set {3, 5, 7} is a primitive root for infinitely many primes p.

Above we constructed a binary linear code, the binary generating matrix
G(p, x(p)) of which incorporated a binary word x(p) with maximum complicity
in the Kolmogorov numbering η. Now we are going to modify the construction
to get generating matrices G3(p, x3(p)), G5(p, x5(p)), G7(p, x7(p)) for ternary,
pentary and septary linear codes LC3(p), LC5(p) and LC7(p), respectively. The
constructions remain essentially the same only the words x and c1c2 . . . cp now are
in {0, 1, 2}p, {0, 1, 2, 3, 4}p or {0, 1, . . . , 6}p, resp., and the summation is modulo
3, 5, 7, resp. Recall that by Heath-Brown’s Theorem [10] there exists u ∈ {3, 5, 7}
such that u is a primitive root for infinetely many distinct primes.

Theorem 1 can be re-formulated as follows.

Theorem 2. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with (z(j) states recognizing Lj

with the probability 19
36 ,

2. any deterministic finite automaton recognizing Lj has at least (21/4)z(j) =
= (1.1892071115 . . .)z(j) states.

Corollary from Heath-Brown’s Theorem allows us to prove the following coun-
terpart of Theorem 2.

Artin’s Conjecture and Size of Finite Probabilistic Automata 291

Theorem 3. There exists an infinite sequence of regular languages L1, L2, L3,
. . . in a 2-letter alphabet and an infinite sequence of positive integers z(1), z(2),
z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with z(j) states recognizing Lj

with the probability 68
135 ,

2. any deterministic finite automaton recognizing Lj has at least (7
1
14)z(j) =

= (1.1149116725 . . .)z(j) states.

References

1. Ambainis, A.: The complexity of probabilistic versus deterministic finite automata.
In: Nagamochi, H., et al. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–237.
Springer, Heidelberg (1996)

2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proc. IEEE FOCS 1998, pp. 332–341 (1998)

3. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Ham-
burg B.5, 353–363 (1927)

4. Aschbacher, M.: Finite Group Theory (Cambridge Studies in Advanced Mathe-
matics), 2nd edn. Cambridge University Press, Cambridge (2000)

5. Freivalds, R.: On the growth of the number of states in result of the determinization
of probabilistic finite automata. Avtomatika i Vichislitel’naya Tekhnika (Russian)
(3), 39–42 (1982)

6. Gabbasov, N.Z., Murtazina, T.A.: Improving the estimate of Rabin’s reduction
theorem. Algorithms and Automata, Kazan University, (Russian) pp. 7–10 (1979)

7. Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper
Saddle River (2004)

8. Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum
Automata. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387,
pp. 574–583. Springer, Heidelberg (2002)

9. Hooley, C.: On Artin’s conjecture. J.ReineAngew.Math 225, 229–220 (1967)
10. Heath-Brown, D.R.: Artin’s conjecture for primitive roots. Quart. J. Math. Ox-

ford 37, 27–38 (1986)
11. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.

Problems in Information Transmission 1, 1–7 (1965)
12. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:

Proc. IEEE FOCS 1997, pp. 66–75 (1997)
13. Paz, A.: Some aspects of probabilistic automata. Information and Control 9(1),

26–60 (1966)
14. Rabin, M.O.: Probabilistic Automata. Information and Control 6(3), 230–245

(1963)
15. Rogers Jr., H. (ed.): Theory of Recursive Functions and Effective Computability.

McGraw Hill Book Company, New York (1967)
16. Spencer, J.: Nonconstructive methods in discrete mathematics. In: Rota, G.-C.

(ed.) Studies in Combinatorics (MAA Studies in Mathematics), vol. 17, pp. 142–
178 (1978)

Introducing Reactive Kripke Semantics

and Arc Accessibility

Dov M. Gabbay

King’s College London, London WC2R 2LS, U.K.
dov.gabbay@kcl.ac.uk

To Boaz!

Abstract. Ordinary Kripke models are not reactive. When we evaluate
(test/measure) a formula A at a model m, the model does not react, re-
spond or change while we evaluate. The model is static and unchanged.
This paper studies Kripke models which react to the evaluation process
and change themselves during the process. The additional device we add
to Kripke semantics to make it reactive is to allow the accessibility rela-
tion to access itself. Thus the accessibility relation R of a reactive Kripke
model contains not only pairs (a, b) ∈ R of possible worlds (b is acces-
sible to a, i.e. there is an accessibility arc from a to b) but also pairs of
the form (t, (a, b)) ∈ R, meaning that the arc (a, b) is accessible to t, or
even connections of the form ((a, b), (c, d)) ∈ R.

This new kind of Kripke semantics allows us to characterise more ax-
iomatic modal logics (with one modality �) by a class of reactive frames.
There are logics which cannot be characterised by ordinary frames but
which can be characterised by reactive frames.

We also discuss the manifestation of the ‘reactive’ idea in the context
of automata theory, where we allow the automaton to react and change
it’s own definition as it responds to input, and in graph theory, where
the graph can change under us as we manipulate it.

1 Motivation and Background

1.1 The Reactive Idea1

Traditional modal logic uses possible world semantics with accessibility relation
R. When we evaluate a formula such as B = �p ∧ �2q in a Kripke model
m = (S, R, a, h) (S is the set of possible worlds, a ∈ S, R ⊆ S2 and h is the
assignment) the model m does not change in the course of evaluation of B.
We say the model m is not reactive. It stays the same during the process of
evaluation.

To make this point absolutely clear, consider the situation in Fig. 1 below2

1 An earlier version of this paper was presented in CombLog 04, July 28–
30, 2004, and published in the proceedings [11]. See www.cs.math.ist.ut.pt/
comblog04/talks.html

2 Single arrows indicate point-to-point accessibility, double arrows indicate point-to-
arc accessibility.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 292–341, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

file:www.cs.math.ist.ut.pt/comblog04/talks.html
file:www.cs.math.ist.ut.pt/comblog04/talks.html

Introducing Reactive Kripke Semantics and Arc Accessibility 293

a
b

d

c

Fig. 1.

To evaluate a � �2q, we have to check b � �q. We can also check an-
other formula at b, say, b � �p. In either case the world accessible to b are c
and d.

We do not say that since b � �q started its evaluation at world a as a � �2q
and continued to b � �q, then the accessible worlds to b are now different. In
other words the model does not react to our starting the evaluation of a � �2q
by changing the accessible worlds at b (for example, see the double arrow in
Fig. 1, it indicates that we can disconnect the accessibility of node c to b) and
therefore allowing us to see a different set of accessible worlds when we continue
the evaluation of b � �q.

The evaluation of � at b does not depend, in traditional Kripke semantics, on
how we “got” to b.

This paper addresses the case where the semantics does change (or react)
under us as we evaluate a formula. This idea makes the evaluation of a wff
at a world t dependent on the route leading to t. Thus we get a new kind
of semantics, the reactive semantics. This semantics is stronger than ordinary
Kripke semantics as there are axiomatic propositional logics with one modality
� which cannot be characterised by a class of traditional Kripke models but is
complete for a class of reactive Kripke models.

The idea of dynamic interaction in logic, classical or non-classical, is not new.
Interactive logic has been done in many guises. The most well known exam-
ple is the game theoretic semantics for the classical quantifiers, and hence for
modalities, which has extensive applications in natural language analysis and
in theoretical computer science. A related interactive system is a dialogue logic
with its vast applications to logic and to argumentation theory. The paradigm
of these systems is different from what we are offering here. The interactive
paradigm involves two players over a fixed object (a model or a database), who
have their respective goals and rules which allow them to manipulate the object
and each other in order to win the interaction. Our paradigm is different. As we
discuss later in Sect. 2, we consider systems which react a nd change because
of built-in faults and remedies which get activated while they are used. Applied
in this context we can roughly say that we allow the object as well as the rules
controlling the players to react to the moves of the players and try to influence

294 D.M. Gabbay

them. As the players make their moves the object which they manipulate as well
as the game rules governing them can change.3

Meanwhile let us give an example based on Fig. 1, to give the reader some
immediate comparison.

Example 1. Consider the Kripke model as described in Fig. 1. It has the nodes
S = {a, b, c, d} with R = {(a, b), (b, c), (b, d)}. Let the actual world be a.

Let the assignment h for the atom q be h(q) = {a, b, d}. Thus q is false at
world c but holds at worlds a, b and d.

Let us evaluate a �1
h �2q in a traditional manner (use superscript 1 for tradi-

tional)
a �1

h �2q iff b �h �q iff both c �1
h q and d �1

h q iff false.

If we allow the model to be reactive (use superscript 2) we get

a �2
h �2q iff b �2

h �q iff d �2
h q iff true.

under �2, once we passed through node a, c was no longer accessible from b when
we came to evaluate b �2 �q.4

The reader might wish to say that we have two models here, one with c
accessible to b and one with c not accessible to b.

This view does not work in general. Suppose the reactive model switches bRc
on and off each time we make a move. Then whether bRc holds or not depends
on how many moves we make to get to b. To illustrate this point, let us modify
the model and assume that aRa holds and evaluate a � �3q.

a �2
h �3q iff both (∗) a �2

h �2q and (∗∗) b �2
h �2q hold.

Since we made only one move, the node c is not accessible to b.
Let us continue:

(∗) a �2
h �2q iff both (∗1) a �2

h �q and (∗2) b �h �q hold.

Since we now made two moves, we have that c is again accessible to b and hence
(∗2) is evaluated at b with bRc active.

On the other hand, (**) is evaluated at b with bRc not active.
We shall see later that this reactive semantics is not reducible to the traditional

semantics.
3 If the reader insists on the interactive game theoretical point of view then we can

regard the reactive paradigm as adding an additional player to the game which is
trying to modify and obstruct the two existing players. Whether this point of view
is technically correct and/or useful is a matter for investigation towards the end of
the paper, after we define our reactive semantics. This additional player may not
have any strategy beyond interfering with the game of the other two players. It may
be regarded as a faulty environment which changes unpredictably. Michael Gabbay
suggested that perhaps we can study a third player whose winning strategy is to
deprive the other two players from having a winning strategy.

4 Think of node a transmitting a signal along the double arrow and disconnecting the
arrow from b to c.

Introducing Reactive Kripke Semantics and Arc Accessibility 295

Let us now check how a game theoretical semantics would evaluate �2q in this
model. We have two players A and B. A claims that �2q holds and B claims it
does not hold. B moves by choosing an accessible point (e.g. b) and challenges
A to claim that �q holds at b. The game goes on and A must have a strategy
for winning. It is clear that the model is fixed in this game.

We can add a third player C who makes changes to the model (and the game
rules, if you want) in reaction to the moves made by A and B and we expect a
winning strategy from A against both B and C.

1.2 Examples Motivating the Reactive Idea

Before we continue with more technical material, let us motivate our idea of
reactive semantics and consider some case studies.

Airline Example. We begin with a very simple and familiar example. Consider
Fig. 2

New York

London

Paris Prague

Vancouver

Los Angeles

Fig. 2.

Figure 2 gives the possible flight routes for the aeroplanes of TUA (Trans Uni-
versal Airlines). It is well known that many features of a flight depend on the route.
These include the cost of tickets, as well as the right to take passengers at an air-
port. The right to take passengers at an airport depends on the flight route to that
airport and on bilateral agreements between the airlines and governments. Thus,
for example, flights to New York originating in London, may take on passengers
in London to disembark in New York. However, a flight starting at Paris going
to New York through London may not be allowed to pick up passengers in Lon-
don to go onto New York. It is all a matter of agreements and landing rights. It is
quite possible, however, that on the route Prague–Paris–London–New York, the
airline is allowed to take passengers in London to disembark in New York. We can
describe the above situation in Fig. 3.

The double-headed arrow from Paris to the arc London→New York indicates
a cancellation of the ‘passenger’ connection from London to New York. The

296 D.M. Gabbay

New York

London

Paris Prague

Fig. 3.

double-headed arrow from Prague to the double arrow arc emanating from Paris
indicates a cancellation of the cancellation.

Figure 3 looks like a typical reactive Kripke model, where we have arcs leading
into arcs.

Let us see more examples of this.

Inheritance Networks Example. This example offers a different point of
view of arc semantics, coming from the non-monotonic theory of inheritance
networks. Consider Fig. 4.

� Son of Tweetie

Special Penguins

Penguins

Birds

Fly

Fig. 4.

In Fig. 4, the circular nodes are predicates, such as Fly, Birds, etc. The ar-
rows indicate inheritance, so for example, we have ∀x(Bird(x) → Fly(x)). The
arrows with a bar indicate blockage, for example ∀x(Penguin(x) → ¬Fly(x)).
The square nodes indicate instantiation, so son of Tweetie is a special penguin.

Figure 4 is the kind of figure one finds in papers on inheritance networks.
The figure indicates that Penguins are Birds, that Birds Fly but that Penguins
do not Fly. However, special Penguins do Fly and the son of Tweetie, a rare

Introducing Reactive Kripke Semantics and Arc Accessibility 297

� Son of Tweetie

Special Penguins

Penguins

Birds

Fly

Fig. 5.

bird, is a special Penguin, and therefore does Fly. The arrow with the bar on it
blocks the information from flowing from the Penguin node to the Fly node. The
theory of inheritance networks spends a lot of effort on algorithms that allow us
to choose between paths in the network so that we can come up with the desired
intuitively correct answers. In the case of Fig. 4 we want to get that the son
of Tweetie does fly, since we have the most specific information about him. It
is not important to us in this paper to take account of how inheritance theory
deals with this example. We want to look at the example from our point of view,
using our notation, as in Fig. 5.

In Fig. 5 the double headed arrow � emanating from Penguins attacks the
arrow from Birds to Fly, and the double arrow emanating from Special penguins
attacks the double arrow emanating from Penguins and attacking the arrow
from Birds to Fly. This is not how inheritance theory would deal with this
situation but we are not doing inheritance theory here. Our aim is to motivate
our approach and what we need from the inheritance example is just the idea of
the algorithmic flow of information during the dynamic evaluation process.5

We have already put forward the reactive and dynamic idea of evaluation in
earlier papers and lectures (see [18]). A typical example we give is to consider
t � ♦A. In modal logic this means that there is a possible world s such that we
have s � A we take a more dynamic view of it.

We ask: where is s? How long does it take to get to it? and how much does it
cost to get there?

The reader should recall the way circumscription theory deals with the
Tweetie example, see [20, Sect. 4.1, especially p. 324]. We write

– Birds (x) ∧ ¬Ab1(x) → Fly(x)
– Penguins(x) → Birds(x)

5 It is our intention to explore whether our idea of double headed arrows cancelling
other arrows can simplify inheritance theory algorithms.

298 D.M. Gabbay

C B

Ab

Fig. 6.

– Penguins(x) ∧ ¬Ab2(x) → Ab1(x)
– Special Penguins(x) → Penguins(x)
– Special Penguins (son of Tweetie)
– Special Penguins (x) → Ab2(x).

“Ab(x)” stands for “x is abnormal”. If the clause C(x) → B(x) represents the
arc C → B then C(x) ∧ ¬Ab(x) → B(x) represents the situation in Fig. 6

A Technical Example. It is now time to give a technical example. Consider
Fig. 7 below. This figure displays a past flow of time. The node t is the present
moment and a single headed arrow from one node to another, say from s to t,
means that t is in the immediate future of s. We use the modality � to mean
‘always in the immediate past’. Thus the accessibility relation R of Fig. 7 is as
follows:

– tRs, tRb, bRs, sRa, tRt, bRb, sRs and aRa.

The double-headed arrows cancel the accessibility relation.
Let us calculate t � �3q in Fig. 7.

Initial Position: Starting point is t and all arrows are active.
Step 1: Send double arrow signal from t to all destinations inverting the ac-
tive/inactive status of all destination arrows. Then go to all accessible worlds
(in this case s and b) and evaluate �2q there. If the result is positive 1 and at
all nodes, then send ‘success’ back to node t.
Step 2: Evaluate �2q at nodes b and s.
Subcase 2.b. Evaluation at b: First we send a double arrow signal from b to
all destinations reversing the activation status of these destinations. Thus the

a s t

b

Fig. 7.

Introducing Reactive Kripke Semantics and Arc Accessibility 299

single arrow from s to s will be re-activated and we will evaluate �q at s at the
next step 3 (with s accessible to itself). b is not accessible to itself because its
arrow has been deactivated by t at Step 1.
Subcase 2.s. Evaluation at s: First we send a double arrow signal to reverse
the status arrow from a to a. Then we evaluate �2q at s with s not accessible
to itself, since the arrow from s to s was deactivated by t at step 1.

This can go on, but we shall not continue as we trust that the reader has got
the idea by now.

Note that if we start at t and evaluate B = �3q ∧ �2q, we will get that �q
must be evaluated at s in two ways. One with s accessible to itself (coming from b
via t � �3q) and once with s not accessible to itself (coming from t via t � �2q).

Let us now calculate t � ♦2q in Fig. 7.

Initial Position: Starting point is t and all arrows are active.
Step 1: Send double arrow signal from t to all destinations inverting the ac-
tive/inactive status of all destination arrows. Then go to one of the accessible
worlds (in this case s or b) and evaluate ♦2q there. If the result is positive 1 at
this node, then send ‘success’ back to node t.
Step 2: Evaluate ♦2q at nodes b or s.
Subcase 2.b. Evaluation at b: First we send a double arrow signal from b to
all destinations reversing the activation status of these destinations. Thus the
single arrow from s to s will be re-activated and we will evaluate ♦q at s at the
next step 3 (with s accessible to itself). b is not accessible to itself because its
arrow has been deactivated by t at Step 1.
Subcase 2.s. Evaluation at s: First we send a double arrow signal to reverse
the status arrow from a to a. Then we evaluate ♦2q at s with s not accessible
to itself, since the arrow from s to s was deactivated by t at step 1.

This can go on, but we shall not continue as we trust that the reader has
got the idea by now. For the case of ♦ we make a non-deterministic choice. The
model is not sensitive to whether we come to a point because we are evaluating
� or a ♦. If we want this kind of sensitivity we can have arrows of the form��
and �♦.

Such distinctions may be desirable in dealing with quantifier games, where
changes may be different for the cases of ∀ and ∃.

Tax Example. Having explained the technical side of our reactive (changing)
semantics, let us give some real examples.

House prices in London have gone up a great deal. An average upper middle
class family is liable to pay inheritance tax on part of the value of their house
(if the house is valued over £500,000, for example, then there is tax liability on
£250,000). Some parents solved the problem by giving the house as a gift to
their children. If at least one of the parents remains alive for seven years after
the transaction, then current rules say that there is no tax. Consider therefore
the following scenario:

300 D.M. Gabbay

1. current date is April 2004
2. parents gave house as a gift to children in 1996
3. parents continued to live in house as guests of the children

(1)–(3) above imply that (4):

4. if parents both die in March 2004, then no tax is liable.

To continue the story, there were rumours that the tax people were going to
change the rules in April 2004, declaring that if parents remain living in the
house after it was given as a gift, then the gift does not count as such an there is
tax liability. The rumours also said that this law is going to apply retrospectively.6

Thus we have that (5) holds:

5. If parents both die on March 2005, then tax is liable.

We assume that (4) still holds even after the new law as we cannot imagine that
the UK tax inspector would be opening closed old files and demanding more tax.

The way to represent (4) and (5) is to use two dimensional logic. We write
t �s A to mean at time t A is true given the point of view proposed or held at
time s.

Thus 2005 �2003 ¬(5) holds, because from the 2003 laws point of view (before
legislation) no tax is liable ((5) says tax is liable).But 2005 �2004 (5) also holds,
because according to 2004 legislation tax is liable.

So far we have no formal problem and no need for our new semantics, because
we can write

– t �t �A iff for all future s, s �s A.

In other words we evaluate sentences at time t according to the point of view
held at the very same time t.

The problem arises when we want to formalise the following scenario. The
parents die in 2003. The lawyer is dealing with the estate. We do not know when
he is going to finish. When he submits the paperwork then the tax liability at
2003 is judged according to the time of submission. Now the second index s in
t �s A behaves like a reactive model as we are evaluating

2003 �time lawyer submits (4).

Salesman Example. Consider the simple graph of Fig. 8
A salesman wants to traverse this graph in such a way that he doesn’t pass

through the same edge twice. Such problems are very common in graph theory.
The simplest way of implementing this restriction is to cancel an edge once it
has been used. Figure 9 will do the job.

6 Some countries, like Austria, for example, would never legislate retrospectively. They
regard this as a cultural taboo.

Introducing Reactive Kripke Semantics and Arc Accessibility 301

b

a

c

Fig. 8.

b

a

c

Fig. 9.

One cannot always implement the salesman problem in this way. It depends
on the graph we deal with. However, it is one more reason for considering arc
accessibility.7

Resource Example. Consider a road system as in Fig. 10.

a b c d

-70 -50 -100

+50 +100+100

-100

Fig. 10.

7 For the salesman example we need accessibility from arcs to arcs. So in Fig. 9, rather
than have the double arrow (b, (a, b)), we need the double arrow ((a, b), (a, b)). The
arc cancels itself as we go through it.

302 D.M. Gabbay

a b c d

Fig. 11.

Assume that whenever we drive through a road we need to pay a fee to pass.
Payment must be in cash and it is very expensive. We can withdraw money from
cash machines along the way to pay for our passage as follows:

Point a: Cash withdrawal $100 is available.
Road a to b: costs $ 70.

Point b: Cash withdrawal $50 available.
Road b to c: costs $50

Point c: Cash withdrawal $100 is available.
Road c to d: costs $120.

We start with no money at all at point a. If we drive from a to c directly,
we can get $100 from the cash machine at a, and this will get us to c with no
money left and so we cannot get at c enough cash to pay passage from c to d.
However, if we pass through b, we can withdraw money at b and later at c and
we will have enough to pay for the passage from c to d.

Figure 10 is essentially an ordinary annotated graph describing the resource
situation but the qualititative situation (where money considerations are hidden)
can be described in Fig. 11. The upshot of Fig. 11 is that the arc from a to c
sends a signal to cancel the arc from c to d. This is also the first case where we
have double arrows going from arc to arc.

Flow Products Example. Ordinary products of Kripke frames are defined in
a straightforward manner. Given two frames (S1, R1), and (S2, R2), we form the
product space S = S1 ×S2, and define two modalities �1,�2 on pairs as follows:

– (a, b) � �1A iff ∀x(aR1x → (x, b) � A)
– (a, b) � �2A iff ∀y(bR2y → (a, y) � A).

Figure 12 shows the configuration for the case of S1 = S2 = N , the set of
natural numbers
�1 shifts the x coordinate, leaving b fixed and �2 shifts the y coordinate,

leaving a fixed.
We have, for example, among other things that �1�2 = �2�1. Products

spaces are used whenever we deal with two independent modal or temporal
aspects. This is a very active area of many dimensional modal logics, also related
to classical predicate logic with a fixed number of variables. See our book [16].

The authors introduce in [18] the concept of flow products. Imagine the x axis
is space (measured in kilometers) and the y axis is time measured in hours. Any

Introducing Reactive Kripke Semantics and Arc Accessibility 303

(a, b)

y axis

x axis

Fig. 12.

shift in space will necessarily cause a shift in time. Assuming speed of 1 mile per
hour, we get

– (a, b) � �1A iff ∀u((a + u, b + u) � A)
– (a, b) � �2A iff ∀u((a, b + u) � A).

When we move in space time shifts.
We can view this as a reactive model. Imagine for any point (a, b) the following

double arrows exist

...

(a, b) a + 2a + 1

. . .

. . .
b + 1

b + 2

as we move from a to a + 1, the connection from b to b + 1 is switched off.
Therefore we get

(a, b) � �1A

304 D.M. Gabbay

in the reactive model iff ∀u((a + u, b) � A in the new model after firing the
reaction of moving through a + 1, a + 2, . . . , a + u, which disconnects b from
b+1, b+2, . . . , b+u). Hence (a+u, b) � �2B is now connected to (a+u+1, b+
u + 1) � B, i.e. it is as if we are at the point (a + u, b + u).

Of course a general flow product model will require a shift function f(a, b, x)
on the x-coordinate, satisfying

(a, b) � �1A iff ∀x(aR1x → (x, f(a, b, x)) � A.

f(a, b, x) tells us how much the y coordinate shifts. f must satisfy some additivity
properties, such as

– aR1x → bR2f(a, b, x)
– aR1x1 ∧ x1R1x2 ∧ aR1x2 → f(a, b, x2) = f(x1, f(a, b, x1), x2).

1.3 Plan of This Paper

The next section, Sect. 2, describes the reactive paradigm in general and pro-
ceeds to give some specific examples from different application areas. These
areas are studied in separate research papers. We also discuss several options
for defining reactivity. The rest of the paper should give some technical results
in the area of modal logic. There is a lot to do here and the main bulk of the
results is postponed to a sequel paper. In order to give some formal results in
this paper, we want to show that the class of switch reactive Kripke models can
characterise more syntactic modal axiomatic systems than the class of ordinary
Kripke models. This is done in Sect. 4. To prepare the ground for this result
we need to devote Sect. 3 first to hyper-modalities, being a related but not an
identical concept to the concept of reactive modality. Section 4 concludes with
two examples showing the two concepts (hyper-modality and reactive modality)
are different.

We now have two options of how to continue this paper:

Option 1. Get more mathematical results for reactive modality. For example,
characterise some modal axioms by conditions on models (on R) etc. Investigate
complexity, introduce proof theory, etc, etc.

Option 2 Continue with some general conceptual analysis of the concept of
reactivity and comparison with relevant literature.

We follow the second option.
Section 5 introduces non-deterministic reactive Kripke models, Sect. 6 dis-

cusses connections with fibring logics and Sect. 7 discusses how to introduce
dedicated reactivity operators.

Each of these topics has enough problems to investigate to merit a spearate
research paper.

We continue with four appendices which give further results and comparison
with the literature.

Introducing Reactive Kripke Semantics and Arc Accessibility 305

2 The Reactive Paradigm in General

Consider a system S containing components and some internal connections and
procedures governing the interactive behaviour of these components in response
to external inputs. We can think for example of S as a graph (to be traversed or
manipulated) or as an automaton which responds to inputs and changes states,
or as a Kripke model in which a formula is evaluated, or as a bureaucratic system
responding to an application form or even as more familiar daily objects such as
a washing machine, a television set or a car.

We can represent such a system as a network containing possibly labelled
vertices represeting the components and arrows between the vertices represet-
ing possible “control flows” within the system of whatever the system internal
processes do.

Figure 13 is a typical situation we want to consider:

• •
a c

db

• •

Fig. 13.

The arrows from a to b and from c to d indicate that internally whatever the
system does in response to input or command, there is a possible path where
component a passes the “flow” to component b and similarly maybe in another
part of the system, there is a connection between c and d.

So far we have nothing more than a possible network graphic representation
of some system.

Now comes the reactive idea. Consider the possibility that the system develops
faults due to overuse or stress. The double arrow from the arc (a, b) to the arc
(c, d) (which we denote by ((a, b), (c, d))) indicates how the fault may develop.
When we pass from a to b we put internal pressure on the connection from c to
d. If significant pressure builds up on the connectiuon from c to d it may fail. For
example everyone who drove a car long distance during a very hot day knows
that the engine may overheat. This is an example of a fault. In general these
faults are predictable and are predetermined by the construction of the system.
They are represented in Fig. 13 by the double arrows.

In fact, Fig. 13 also indicates a remedy to this pressure, this is a double
arrow from the arc (a, b) to the double arrow ((a, b), (c, d)), namely ((a, b), ((a, b),
(c, d))).

306 D.M. Gabbay

•a b

Fig. 14.

The double arrows represent known weakneses or remedies in the system. We
can look at the double arrows as indicating the ways in which the system reacts
and adjusts itself under pressure. The simplest model is a once only bridge in
Fig. 14

When we cross the bridge from a to b, a signal (representing stress) is sent
to the bridge to collapse and so after we cross the bridge the arc from a to b is
cancelled.

The above is the basic intuition behind the idea of reactivity. Think of it as
“fault” reactivity, or better it is “fault-remedy” reactivity.

We now elaborate more about this concept to distinguish it from other some-
what similar concepts.

The “fault” reactivity should be distinguished from the idea of incuding
dynamic metalevel operators in the input. To give example of such metalevel
operators, consdier the possibility that the system may have several modes of
operoations say mode 1 ,. . . , mode n.

The input may contain instructions of the form Ji (jump to mode i) which tells
the system how to operate on the input. This is a metalevel instruction inducing
a change in the system. It is different from “fault” reactivity, though the latter
can be case-by-case represented in it. If we replace double arrows to (c, d) by the
metalevel instruction “disconnect(c, d)”, we might be able to simulate the fault
induced by an input by adding (interleaving) some “disconnect” instructions to
the input to form a new input.

This option will be discussed later in the paper on a case-by-case analysis.
It is not reactivity but “fibring” of metalevel instructions giving the illusion of
reactivity.

The notion of fault reactivity should also be distinguished from the notion
of “sabotage”, independently introduced by J. van Benthem [4] and further de-
veloped by P. Rohde [21]. The notion is similar; we envisage a saboteur discon-
necting components within the system. There are both conceptual and tecnnical
differences between the two notions (“fault” reactivity and “sabotage” reactiv-
ity) and this will be analysed in detail in Appendix D. For the moment we note
that faults and remedies are built into the system while sabotage is not and also
sabotage is presented as a metalevel connective and fault is not. For more detail,
see Appendix D.8

It turns out that as we apply this idea in various application areas where
different non-reactive systems are used we can get new kinds of systems, the
reactive systems, which can have better applicability in each respective area.

8 Some sabotage may be non-deterministic like water damage running through the
system. This can be modelled as a non-deterministic reactive system. The possible
options for water damage can be forseen!

Introducing Reactive Kripke Semantics and Arc Accessibility 307

We give five immediate examples:

1. Ordinary Kripke models become reactive Kripke models which can change
during the process of evaluation, affording a wider class of models for modal
logic.

2. Ordinary non-deterministic automata become reactive automata whose tran-
sition table changes every time they make a transition, see [6]. Although it
is shown in [6] that every reactive automaton is equivalent to another or-
dinary non-reactive automaton, the reactive automata can perform tasks
(recognise inputs) with much less states and represent substantial savings in
computational costs!

3. An ordinary graph becomes a reactive graph where there are also arrows
from edges to edges, see [17]. This area is very promising and is now under
intensive investigation.

4. Reactive grammars and rewrite systems [2]. For reactive rewrite systems we
get new hierarchies of languages. Again this area is actively investigated.

5. A proof system becomes a reactive proof system which changes as we advance
in the proof process, see [9,2].

In each case a new class of models/graphs/automata/proof theory is introduced
and some natural questions can be asked.

The following are some sample questions:

1. What is the expressive power/complexity of the new class and what can it
do or not do?

2. What do traditional investigations yield when applied to this new class? (E.g.
completeness theorems, cut elimination, correspondence theory, axioms, hi-
erarchies of automata, theorems about cycles or classes of graphs, etc, etc.)

3. How does this concept relate to other dynamic/change concepts already
existing in the literature?

4. Can the new models be reduced to known models via traditional interpre-
tations? What is the edge/advantage we have by using the new reactive
models?

5. Comparison and evaluation of the options for representing reactivity in the
object level vs. metalevel.

Let us give some concrete examples, which will help us get a feel for the notion
of reactivity.

Example 2 (Modal logic). Here we take the reactive Kripke models of the pre-
vious sections. The system is the evaluation process (for a given formula). The
reactive parameter is a Kripke model with a point of evaluation t. The environ-
ment (or the faults in the system) is realised by the double arrows �, which
change the accessibility relation every time we make a move (i.e. every time we
continue with the evaluation).

This example generalises slightly, giving it a familiar everyday meaning. Think
of a network of nodes representing various components of a system. The arrows

308 D.M. Gabbay

represent connections between components and a path through this graph fol-
lowing the arrows represents a way in which the system can be used. Imagine
that the system is prone to faults and failures. So the use of one component may
send a (double arrow) signal to other components and weaken or influence them.

We know this to be true for many real life systems. So the reactivity of a
network is just a measure of the ways it can fail and disappoint you!

Example 3 (Quantifier games). Recall the basic game semantics for the quanti-
fiers. Given a classical model m and a formula, say Ψ = ∀x∀y∃z(ϕ(x, y, z) with
ϕ(x, y, z) quantifier free, we play a game over the model between two players,
A (claiming that Ψ holds) and player B claiming that Ψ does not hold. At step
0, A puts forward Ψ . At step 1 B challenges by choosing a in the domain of m,
and continues to choose an element b in the domain of m. It is the task of player
A to supply a c such that ϕ(a, b, c) holds. Player A has a winning strategy iff
he has a function f such that for any a, b the element c = f(a, b) is such that
m � ϕ(a, b, f(a, b)).

In this case the moves are the choices of elements. The reactive environment
player E has a tinkering function τ : (a,m) 	→ mτ

a which changes any model
m and an element a in the domain of m into a new model ma with the same
domain.

Thus in order to win, A has to have a winning function λτλxyfτ (x, y) such
that

∀τ∀a∀b mτ
a,b � ϕ(a, b, fτ (a, b)).

So as we can see, this definition covers the modal logic case, if viewed through
its translation to classical logic.

For consider a reactive Kripke model m with actual world a. Consider the
evaluation a � �2♦q. This is translated into classical logic as

Ψ = ∀x∀y∃z(aRx ∧ xRy → yRz ∧ Q(z)).

The function τ for changing the model is governed by the double arrows �
and we clearly have a special case of the quantifier games tinkering.

We get in this case the formula Ψ ′:

Ψ ′ = ∀x∀y∃z[aRx ∧ xRay → yRa,xz ∧ Q(z)]

where Rt denotes the new accessibility relation obtained from R after imple-
menting the double arrows emanating from it.

Example 4 (Automata). A non-deterministic automaton A = (S, M, a, F, Σ) is
characterised by a set of states S, an initial state a ∈ S, a set F ⊆ S of final
states and an alphabet Σ. M is a function giving for each state t ∈ S and a letter
σ ∈ Σ a new set of states M(t, σ) ⊆ S, which are the states that the automaton
A can non-deterministically move to.

Another way to view the automaton is as a multi-modal Kripke model of the
form (S, Rσ, a, F), where Rσ for σ ∈ Σ is defined by xRσy iff y ∈ M(x, σ).

Introducing Reactive Kripke Semantics and Arc Accessibility 309

A word of the form (σ1, . . . , σn) is said to be recognisable by the automaton A
iff there exists a sequence of states x1, . . . , xn such that aRσx1∧ . . .∧xn−1Rσnxn

holds and xn ∈ F . If the atom q is assigned the set F , then (σ1, . . . , σn) is
recognisable by A iff A � ♦σ1 , . . . ,♦σnq, where ♦σ corresponds to Rσ, σ ∈ Σ.

Thus naturally we can define a reactive automaton by adding double arrows
�σ for every σ ∈ Σ in the places we want. Figure 15 is an example of such an
automaton. Let Σ = {σ1, σ2}, S = {a, b, c} and F = {c}.

b c

σ2

σ1

σ1

a

σ1

σ1

σ2

σ2

σ2

Fig. 15.

We have
Rσ1 = {(a, c), (b, c)}
Rσ2 = {(a, b), (b, c)}

Figure 15 indicates the available double arrows. For example, the figure shows
that as we move through node a in response to the letter σ1 we disconnect (a, c)
and (b, c) from the Rσ1 relation. If we move through node a in response to the
letter σ2 then we disconnect (a, b) from Rσ2 .

It is interesting to note that according to this figure, if we move out of state b
in response to the letter σ2 then we disconnect the connection (b, c) in the Rσ1

relation but not in the Rσ2 relation.
So there can be an interplay between the modalities here.
The reader should note that we can get a new hierarchy of automata here by

taking the usual hierarchy and making it reactive. We shall pursue this idea in
a subsequent papers, [12,6].

The next remark, however, lists some possible options for creating reactivity.

Remark 1 (Options for the reactive property). We saw that the basic idea of a
reactive action is to change the model every time a move is made. To explain
our options on how to change the model consider Fig. 16 below.

310 D.M. Gabbay

a b

t

Fig. 16.

From the point t arrows and double arrows emanate. Some may be active and
some may not be. Also observe that we have a double arrow emanating from an
arrow. Let us list what we have:

1. t → b
2. t� (t → b)
3. a → b
4. (a → b)� (t → b).

Our first list of options relates to what kind of arrows we allow. Do we want
only arrows emanating from a point or do we also allow arrows emanating from
arcs?

Items 1–3 above emanate from points and item 4 emanates from arcs.
The second list of options has to do with how we use the arrows to change

the model as we pass through a point or an arc.
The first possibility is the switch-like use of the arrows. At any given moment

some of the arrows are active (on) and some are dormant (off). When we pass
through a point or an arc a signal is sent along the arrows emanating from the
said point or arc and reverses the status of the target arrows at the destination.
This is a simple switch action. In general, the reactivity can be more intelligent.
The second possibility is to allow each node and arc from which arrows emanate
to decide, depending on the state (on off) of the target arrows, which of the target
arrows to switch on and which to switch off. Care must be taken to ensure that
this decision process is of the same complexity as the original non-reactive model.
So for example in the case of reactive finite state automaton of Example 4, the

Introducing Reactive Kripke Semantics and Arc Accessibility 311

. . .

a

b
4 3 2 1

Fig. 17.

decision of each node which double arrows to activate should be done by another
automaton.

Consider Fig. 17 below
Suppose we start with all arcs being switched on at the starting point a. As

we move out of a to b, a switch behaviour will switch off all arcs 1, 2, 3, If we
move through node a again, these arcs will be switched on again.

A more intelligent option might switch them on selectively one at a time,
which each passage through the node a. This would allow us to use them as
markers emulating aspects of a stack. Note that the idea is intuitively sound,
and is not just a technicality. It makes sense to give nodes some intelligence to
decide how to react, based on the situation it ‘sees’.

The above options were deterministic. The most general option was to attach
an automaton at each exit point of arrows (of any kind) to decide what to
switch on and what to switch off. It is also possible to make these decisions non-
deterministic or probabilistic. Consider Fig. 16. We can make all double arrows
in this figure non-deterministic. So as we pass, for example, from node a to node
b the double arrow to the arc t → b (namely (a → b)� (t → b)), if active, may
or may not (non-deterministically) send a signal.

Similarly we may attach probabilities to such connection, say 0.7, and so with
0.7 probability a signal will be sent. We shall elaborate more about this option
in a subsequent paper [12].

Example 5 (Intelligent switches). Previous examples used on and off switches.
The present example uses an intelligent switching system. In fact, we build on
Example 4 (automata) and show in the present example how to simulate a stack
automaton. We make sure the intelligent switching process is also done by a
finite automaton. Consider the model described in Fig. 18

This model has two relations Rσ1 and Rσ2 . It corresponds to an automaton
with alphabet {q+

1 , q−1 , q+
2 , q−2 , t, a} and stack letter α. The initial state is a and

the terminal state is t. It is designed to recognise the words of the form σm
i σm

j , i
=
j, m ≥ 1.

The starting state is a. Upon seeing σi the automaton moves to state q+
i and

writes α in the stack. It continues to write α as long as it sees σi. When it sees
σj , j
= i it moves to q−i and starts deleting from the stack.

312 D.M. Gabbay

. . . 3 2 1

α

t

a

σ2 σ1 σ2 σ1

σ1

σ2

σ2 σ1
σ2 σ1

σ2 σ2

q−1 q+
1 q+

2 q−2

σ1 σ2

σ1 σ2

Fig. 18.

The double arrows are intelligent. The ones emanating from node a or node
q+ activate the first highest non-active arrow or double arrow at α. The ones
emanating from a q− deactivate the highest active double arrow from α. If

Introducing Reactive Kripke Semantics and Arc Accessibility 313

Table 1.

state stack at α Input letter Reaction

a all arrows not active σi move to state q+
i and

activate arrow 1 at α

a some arrows active any do not care. Case will
not arise

q+
i arrows 1, . . . , m are

active m ≥ 1
σi stay at q+

i and acti-
vate arrow m + 1

q+
i arrows 1, . . . , m are

active
σj , j �= i move to q−i

q+
i not the above any don’t care. Case will

not arise

q−i arrows 1, . . . , m are
active m ≥ 1

σj , j �= i stay at q−i and deac-
tivate arrow m.

q−i arrows 1, . . . , m are
active, m ≥ 1

σi or no input move to t and deacti-
vate arrow m

q−i all arrows at α are
not active or arrows
2, . . . , m are active
m ≥ 2 and arrow 1
not active

no input or input σi move to t, activate
arrow m + 1. If no
arrow at α is active
then activate arrow
2.

q−i same as previous σj , j �= i remain at q−i , acti-
vate arrow m+1 or if
no arrows at α are ac-
tive then activate ar-
row 2.

q−i Different from previ-
ous

any don’t care. Case will
not arise.

t any no input. terminal position no reaction. terminal
position.

q− sees that all arrows at α are not active it starts to activate arrow 2 and
higher.So if arrow 1 is active then q− deactivates the top arrow and if arrow 1 is
not active then q− activates the first non active arrow above arrow 1. We need
to assume that only a finite number of arrows and double arrows from α are
active at any given time.

The following table describes the moves of the automaton of Fig. 18. Note
that only arrows at α may switch. The initial position is state a with all arrows
at α not active. The terminal state is t.

So let us simulate an input computation.

Starting state
All double arrows and arrows are active except those at α which are not active.

Input step 1
We can assume without loss of generality that we get σ1. So we move along Rσ1

from node a to node q+
1 . This move activates arrow 1 at α. The more σ1 we see

314 D.M. Gabbay

the more double arrows at α are activated in sequence. So if we see a total of m
σ1s, i.e. σm

1 we get that arrows 1, . . . , m are active. The first time we see σ2 we
move from q+

1 to q−1 along Rσ2 . There is no Rσ2 double arrow from q+
1 to α.

If we continue to get σ2 at q−1 we cancel an arrow at α. The minute we get σ1

again or the input finishes we move to a terminal state t. If the number of σ2 is
equal to σ1, we end up stopping at t with no α arrow active. If the number of
σ2 is less than σ1, we end up stopping with some α arrows active. If the number
of σ2 is larger than σ1 we are faced with a situation where the q−1 automaton
sees no arrow connections at α at all and needs to decide what to do. We can
tell it to activate arrow 2, leaving arrow 1 not active and to continue to activate
arrows 3, 4, . . . as long as the input is σ2. If the input is empty or q−1 sees σ1

again then it stops.

Example 6 (Options for interpreting necessity when double arrows emanate from
arcs). Consider Fig. 19 below:

d

a

b c

Fig. 19.

In this figure we have two double arrows emanating from arcs. We ask: What
semantic meaning can we give to �?

We want to evaluate
a � ��⊥

How do we go about it? Do we go to every accessible point one-by-one and check
whether �⊥ holds? Or do we go to all points simultaneously?

When double arrows emanate from points, there is no difference in the mode
of operation, but when they emanate also from arcs, then there is a difference

Case 1. Separate evalaution of �
When we move from a to c, the arc (c, d) is still connected and so we have that
c � ¬�⊥. Similarly when we move from a to b, the arc (b, d) is still connected
and so we have that b � ¬�⊥.

Therefore, according to the separate evaluation of �, we get that a � �¬�⊥.

Introducing Reactive Kripke Semantics and Arc Accessibility 315

Case 2. Simultaneous evaluation of �
If we move to b and to c simultaneously and evaluate at b and at c both arcs
(b, d) and (c, d) are disconnected and so we have b � �⊥ and c � �⊥ and hence
a � ��⊥.

It makes more sense to adopt the separate evaluation of � because of the
traditional connection of � with ♦, namely � = ¬♦¬ we have:
a � ♦A iff for some accessible point s, when we move to s we ahve s � A.

We also have a � �A iff for all accessible points s when we move to s we have
s � A.

To preserve the duality ♦ = ¬�¬ we must adopt the separate evaluation of �.

3 Connection with Hyper-modalities

In [10], we introduced hyper-modal logics. We showed that such modalities can-
not always be characterised by a class of Kripke frames. However, there is hope
that our new reactive semantics might provide frames for some of these modali-
ties. This section and the next study the connection.

A hyper-modality � is a modality which changes its nature depending on
where in a formula it appears. So for example, in the formula B = �3q ∧ �2q,
the inner modalities may not have the same meaning as the outer ones. To
illustrate this point consider the arrangement of Fig. 20

� � �

�

a s t

b

Fig. 20.

t is now, s is in the past of t and so are a and b. We consider two past operators

– HKA saying A was true at all the immediately past moments of time

and

– HTA saying A ∧ HKA

We let � alternate between HK and HT, starting with HT.
Thus B = �3q ∧�2q reads

HTHKHTq ∧ HTHKq.

Let us evaluate B at t. We write t �K A when we are evaluating A at a K mode
and t �T A when we are evaluating A at the T mode.

Writing the above in full we have:

(*1) t �K �A iff for all immediately past points s we have s �T A.
(*2) t �T �A iff t �K A and for all immediately past points s we have s �K A.

316 D.M. Gabbay

Let us now evaluate t � (�3q ∧�2q) in the flow of Fig. 20. We have (remember
we start with �T):

– t �T �3q iff first s �K �2q and second b �K �2q and third t �K �2q iff first
a �T �q and second s �T �q and third b �T �q and s �T �q.

– t �T �2q iff first s K �q, and second b �K �q and third t �K �q.

Since both t �T �3q and t �T �2q must hold, we see that we need to evaluate
both s �T �q and s �K �q.

This means that we cannot make the evaluation of �q at s be dependent
solely on the properties of the set {y | yRs}. We do need the dependency on the
T and K modes.

Indeed, we axiomatise in [10] a modal logic with only the connective � with
the property that this logic can be characterised by the two K and T modes but it
cannot be characterised by any class of frames. This shows that mode shifting is a
genuinely stronger instrument of defining modal logics than imposing conditions
on the accessibility relation R. We will to show in this paper that this logic can
be characterised by a class of reactive models.

So much for a short survey of the ideas of [10]. See Appendix A for formal
definitions of hyper-modal logics. Let us now proceed to show the connection
with the reactive semantics of this paper.

First observe that the mode described above change the meaning of �. The
modes do not change the semantics. In other words, the geometry of Fig. 20
remained fixed. The model has not changed during the course of evaluation of
t � B. We want to show that we can achieve the same effect by changing the
semantics as we evaluate.

Consider Fig. 21.
Figure 21 describes the same flow of time as that of Fig. 20 with the addition of

the property that time is reflexive. Now suppose we have two modes of evaluation
�T, where we evaluate � in the reflexive mode (i.e. Fig. 21), and �K, where we
evaluate in the irreflexive model (i.e. in Fig. 20).

Let us spell it out clearly:

(*3) t �K �A iff first deactivate all reflexive arrows in the accessibility relation
R and then ask for s �T A to hold at every s which is accessible to t.

(*4) t �T �A iff first reactivate all cancelled reflexive arrows in R and then
ask for s �K A to hold at every s accessible to t.

a s t

b

Fig. 21.

Introducing Reactive Kripke Semantics and Arc Accessibility 317

Clearly the evaluation of t � B will end up the same whether we view it as
shifting the meaning of � or shifting the underlying accessibility relation in the
model.

Let us view the changing of the semantics as disconnecting or reconnecting
arrows (accessibility) in the model.

This we have already done in the technical example of Subsection 1.3. See
Fig. 7.

It is not difficult to see how a general arc model can be constructed in which
� alternates between a T and a K modality.

To do this properly, we need first a formal definition of the reactive semantics
for modal logic.

4 Switch Reactive Kripke Models

We now give a definition of what we call switch reactive Kripke models, giving
rise to what we call switch arc modal logics. In these models the reactive double
arrows are just on/off switches, and the emanate from points.

Definition 1. Let S be a set of possible worlds and a ∈ S is the actual world.
An arc-accessibility relation on S is defined as follows:

1. The set of all arcs A is defined by
1.1. S ⊆ A, these are 0 level arcs.
1.2. If α ∈ A is an n level arc and s ∈ S then β = (s → α) is an n + 1 level

arc.
2. A subset R ⊆ A is an arc relation.
3. An arc-Kripke model has the form (S, R, R∗, a, h), where R and R∗ are an

arc-accessibility relations and R ⊆ R∗ and h is an assignment giving to
each t ∈ S and each atom q a value h(t, q) ∈ {0, 1}. The part of the model
(S, R, R∗, a) is called the model frame and a ∈ S is the actual world of the
frame.

4. Note that in this definition all arcs emanate from points.

Definition 2. Let m = (S, R, R∗, a, h) be a model.
Define a � A, by structural induction

1. a � q if h(a, q) = 1, for q atomic.
2. a � A ∧ B iff a � A and a � B.
3. a � ¬A iff a
� A.
4. a � �A iff for all s in S such that (a, s) ∈ R we have that s � A in the

model ms = (S, Ra, R∗, s, h), where Ra is obtained from R as follows:

Ra = R−{α | (a → α) ∈ R∧α ∈ R}∪{α | (a → α) ∈ R∧α
∈ R∧α ∈ R∗}.

This is a switch satisfaction clause for �.
5. A model m = (S, R, R∗, a, h) is said to be of level ≤ n, n ≥ 1, if all its arcs

in R∗ are of level ≤ n.
For example, a model of level ≤ 2 can contain either arcs of the form t → s
or of the form r → (t → s), where r, t, s, ∈ S.

318 D.M. Gabbay

6. Let Kn
A, n ≥ 1 be the set of wffs valid in the class of all reactive Kripke

models of level ≤ n. Note that K1
A is ordinary modal K.

Let KA Be the set of wffs valid in the class of all reactive Kripke models.
This is the basic reactive analogue of modal K.

7. A modal logic L is said to be a reactive modal logic if for some class K of
reactive models L = {A | A is valid in all models of K}.

8. Note that to be more precise these models use only arcs emanating from
points and the reactivity acts like a switch.

9. Note that the evaluation of a � �A and a � �B for any two wffs A and B
is done independently of one another and in parallel, as indicated in item 4
above. We have �(A ∧ B) ↔ �A ∧ �B and both A and B in this case get
evaluated at the model with Ra.
This gives us scope to introduce the connective “∧ ”, where X ∧ Y reads A
and then y. So a � �A ∧ �B will evaluate a � �A first. In the course of
the evaluation of �A the relation R will become Ra and then we evaluate
a � �B in the model (S, Ra, R∗, a, h).

Example 7. Consider the two point model of Fig. 22 with S = {a, b}:
Let R = R∗ = {a → b, b → a, a → (a → b), a → (a → (a → b)),

b → (b → a), b → (b → (b → a))}.
Consider a model

m = (S, R, R∗, a, h).

Here Ra = {b → a, b → (b → a), a → (a → (a → b))}.

Ra,b = {b → (b → a), a → (a → (a → b))}
Ra,b,a = {b → (b → a), a → (a → (a → b)), a → (a → b)}.

Note that a → b is not restored until Ra,b,a,b,a.

Definition 3. Let (S, R) be a set S with a binary relation R ⊆ S2. Let τ be a
Horn clause theory in the language with R containing universal clauses of the
form

(universal closure) (
n∧

i=1

xiRyi → xRy). Let Rτ ⊇ R be defined as the small-

est extension of R such that (S, Rτ) � τ . Rτ can be constructed by induction as
the closure of R under all instances of τ as follows:

a b

Fig. 22.

Introducing Reactive Kripke Semantics and Arc Accessibility 319

1. Let R0 = R
2. Let Rn+1 = {(a, b) | for some clause L in τ of the form (universal clo-

sure) (
∧

xiRyi → xRy) and a substitution θ to the variables of L such that
θ(yi), θ(xi) ∈ S, θ(x) = a, θ(y) = b, we have that

∧
θ(xi)Rnθ(yi) holds.

3. Let Rτ =
⋃

n Rn.

Definition 4

1. Let N be the set of natural numbers {0, 1, 2, . . .}. Let N
∗ be the set of all

finite sequences of natural numbers including the empty sequence ∅. Define
α < β, for α, β ∈ N

∗ by

α < β = (definition) for some m ∈ N, β = α ∗ (m),

where ∗ is concatenation.
Let <∗ be the transitive closure of <.

2. A tree T is a nonempty subset of N
∗ such that if β ∈ T and α < β then

α ∈ T .
3. Let τ be a Horn theory on <.

Let (T, <) be a tree and let (T, <τ) be its τ-closure. Define Rτ as follows:
– (α → β) ∈ Rτ if (α, β) ∈<τ .
– (γ → (α → β)) ∈ Rτ whenever γ <τ

∗ α and γ <τ
∗ β hold where <τ

∗ is the
transitive closure of <τ .

4. Let Kτ be the class of all models of the form (T, <, Rτ , δ, h), where T is a
tree and δ ∈ T .

5. Let Hτ be a set of all wffs A such that A holds in any model of Kτ .

Example 8. Let τ ={∀x(xRx)}. Then the models of Kτ have the form (T, <,
Rτ , δ, h), where Rτ =< ∪{γ → (α → α) | γ �∗ α}. This is so since <τ is
< ∪{(α, α) | α ∈ T }.

It is easy to see that the meaning of � alternates between K and T modalities
because R switches the reflexive arcs on and off. Thus the logic Hτ of our example
is the same as the logic HS

1 of Sect. 3 of [10].
We know from [10] that the following is a Hilbert axiomatisation of Hτ . We

make use of our irreflexivity rule, see [7].

Axioms: (E, F are wffs without �).

1. A ∧�A, where A is a substitution instance of a truth functional tautology.
2. �(A → B) → (�A → �B)
3. �(�(A → B) → (�A → �B))
4. ♦�
5. ¬E ∧�2E ∧ Y → ♦(¬E ∧ Y), where Y = A or Y = �A, for A without �.
6. ¬E ∧�2E ∧ ♦(¬E ∧ A) ∧ ♦(¬E ∧ B) → ♦(¬E ∧ A ∧ B).
7. ¬E ∧�2E → ♦(¬E ∧ A) ∨ ♦(¬E ∧ ¬A)
8. �A ∧ ¬E ∧�2E → ♦(¬E ∧ A).
9. �X ∧ ¬E ∧�2E → ♦(¬E ∧�(¬ ∧�2F → ♦¬F ∧ X))

320 D.M. Gabbay

10. ¬E ∧�2E ∧♦A∧♦(¬E ∧�Y ∧��Y ′ ∧¬A∧��X) → ♦(A∧X ∧Y ∧�Y ′)
where Y, Y ′ are without �

11. ¬E ∧�2E ∧ ♦(C ∧ E ∧ Y) → ♦(¬E ∧ ♦(Y ∧ E ∧ ♦(C ∧ E))

Rules

MP:
 A; A → B

 B

IRR:
 ¬q ∧�2q → A

 A
where q is an atom not in A.

2-necessitation:
 A

 �2A

IRRn:

n∧

m=1

βm
m → A

 A
where βm

m are as defined below and qi
j are all not in A.

The following defines βi
j :

Let qi
j be a double indexed sequence of atoms. Let

1. βi
1(qi

1) = ¬qi
1 ∧�2(qi

1).
2. βi

2(qi
1, q

i
2) = ¬qi

2 ∧�2qi
2 ∧ ♦(¬qi

2 ∧�βi
1).

3. βi
n+1(q

i
1, . . . , q

i
n+1) = ¬qi

n+1 ∧�2qi
n+1 ∧ ♦(¬qi

n+1 ∧�βi
n)

Example 9. We now give an example of a class of reactive Kripke models char-
acterising a logic which cannot be presented as a hyper-modal logic. Consider
one point models of the following form, see Fig. 23

Let
arc0 = a → a
...
arcn+1 = (a → arcn)

a

k arcs

Fig. 23.

Introducing Reactive Kripke Semantics and Arc Accessibility 321

Consider the models mk of the form

mk = ({a}, {arc0, arck}, {arcn | n ≤ k}, a)

The model mk is a one node model with arcs as in Fig. 23, where only the arcs
a → a and a → (a → . . . (a → a) . . .) (k arrows) are active.

The following points are clear for the class of models {mk}.

1. ♦n�⊥ is consistent for all n.
2. The following holds in the logic L of this class

� ♦n�⊥ →
∧

m≤n

(�mA ⇔ A)

for all wffs A without �.

We claim the logic L cannot be presented as a hyper-modal logic.
For suppose there is a class of traditional Kripkemodels of the form (S, R, a) and

a sequence (Ψ1, . . . , Ψk) of conditions characterising modalities �1, . . . ,�k such
that the evaluation of ♦ alternates according to this sequence (see Definition 9).

Then for a high enough n, the meaning of ♦ in ♦n�⊥ starts repeating itself.
Let (S, R, a) be a model of ♦n�⊥, for n large enough. By property 2, all

♦m, m ≤ n satisfy �a ♦mA ⇔ A, for A without �. Thus we must have Ψi(a, R) =
{(a, a)}. Therefore, how can we also have �a ♦n�⊥?

This example shows that there is a class of reactive models of finite level
defining a modal logic L which is not a hyper-modal logic.

Example 10. We now exhibit a hyper-modal logic which cannot be characterised
by a class of finite level reactive models. Consider the situation in Fig. 24

Let Ψ1 = {(a, a)} and let Ψ2 = {(a, a), (a, b)}. Consider the sequence
(Ψ1, Ψ1, Ψ2). This means that � is interpreted as seeing only the a node twice
and then it can also see b once before repeating. Let L be the hyper-modal logic
defined by this set up.

To implement this logic by reactive models we need to switch the arc a → b
on and off by other arcs in the repeating sequence (−, −, +).

Figure 25 can help visualise the situation:

b

a

Fig. 24.

322 D.M. Gabbay

b

a

n 2 1

Fig. 25.

We note that if the connection a → b must alternate as (−, −, +) then con-
nection a → (a → b) (i.e. arc1 in Fig. 25) must alternate (−, +, +) and arc2

must alternate (+, −, +) and so on.
However in any finite level model, the highest level arcs cannot alternate.

Hence modalities of the form �n for high enough n cannot be implemented in
any given model. We conjecture that if we allow models of unbounded level then
all reasonable hyper-modalities can be implemented. In our case the sequence
(−, −, +) can be implemented by a single model of infinite level.

Remark 2. Let us give some thought to the problem of how to axiomatise the
basic reactive modal logic KA (see Definition 1, item 6). Let Δ be a consistent
complete theory of this logic. Then for some model m = (S, R, R∗, a, h) we
have Δ = {A | a � A}. So Δ must contain within it enough information to
reconstruct a canonical model with a suitable arc accessibility. How this can be
is not immediately clear. In ordinary modal logic we can construct accessibility
ΘRΘ′ by letting it be

∀α(�α ∈ Θ → α ∈ Θ)

We can do the same here and this will give us the arrows but how do we define
the double arrows?

Coming to think of it, we still have to check whether KA is axiomatisable or
is RE?

5 Non-deterministic Reactive Kripke Models

Let us begin by considering again the basic situation of Fig. 1. This is a simple
reactive Kripke model. Let us make it non-deterministic. This would mean that
as we move from node a to node b, the double arrow a � (b → c), may or may
not (non-deterministically) fire. So to evaluate a � �2q, we need to evaluate
b � �q. If the double arrow does fire, then the connection b → c is cancelled and
only b → d is active. If the double arrow does not fire, then b → c is also active
when we evaluate b � �q.

Introducing Reactive Kripke Semantics and Arc Accessibility 323

So at this model (the non-deterministic model of Fig. 1), there are two possible
non-deterministic valuations of a � �2q. One with b → c active at the time
of the evaluation of b � �q and one where it is not active. We say that a
non-deterministic model m can satisfy a wff A if there is at least one non-
deterministic valuation of A in the model in which A gets the value �. We
say that A holds in the model if it holds (gets �) under all non-deterministic
valuations in the model.

a

b

Fig. 26.

Example 11. Consider the model of Fig. 26.
Then as a non-deterministic model we have that ♦n�⊥ can always be made

false, by never activating the double arrow in the evaluation. But it can also
be satisfied by activating the double arrow at the (n − 1)st step and then the
model becomes irreflexive at point b and �⊥ then holds at b. Thus we see that
such models can satisfy both a wff A and its negation ¬A, because different
non-deterministic options can come to bear. However, only one of A and ¬A
can hold in the model. We can see already that we need to be careful with
this concept. Consider the axiom �(A ∧ B) → �A ∧ �B. This is valid in any
reactive Kripke model (provided the evaluations of �A and of �B are done
in parallel, see Definition 2). Not so in a non-deterministic model for consider
♦�(p ∧ ¬p) ∧ ♦�(q ∧ ¬q) where p and q are different atoms. When we evaluate
a � ♦�(p∧¬p) in the model of Fig. 26, we may take the non-deterministic choice
of not firing the double arrow and thus get a value false. When we do it again
for the second copy ♦�(q ∧ ¬q), we may choose to fire and thus get value true.
We are going to have to formulate our definitions carefully here.

The single non-deterministic model of Fig. 26 is equivalent to the two ordinary
Kripke models of Fig. 27, m1 and m2

During the evaluation at node a we can change our view of whether node b is
reflexive or not.

324 D.M. Gabbay

b

a

model m1

b

a

model m2

Fig. 27.

Definition 5. A non-deterministic choice of switches in a model m = (S, R,
R∗, a, h) is a pair of sets ρ+

a , ρ−a for each b ∈ S satisfying the following:

ρ+
b ⊆ {α | (b → α) ∈ R ∧ α ∈ R∗}

ρ−b ⊆ {α | (b → α) ∈ R ∧ α
∈ R ∧ α ∈ R∗}

Definition 6 (Non-determinstic switch Kripke models)

1. By a model m = (S, R, R∗, a, h) we mean a model as defined in Definition 1.
2. By a sequence of selections of non-deterministic choices of switches in a

model m we mean a sequence of the form ρ±a,k, k = 0, 1, . . . where for each
k, ρ±a,k is a non-deterministic choice as defined in the previous definition.

3. Given a wff A and a node a in a model m, we define the universal non-
deterministic evaluation a|≡kA in parallel to Definition 2 as follows (where
k is a natural number representing a universal ticking clock meaning that
this is the kth time that a � is evaluated at the node a).
(a) a|≡k q if h(a, q) = 1, for q atomic and any k ≥ 0.
(b) a|≡k A ∧ B iff a|≡k A and a|≡k B
(c) a|≡k ¬A iff A
 |≡k A
(d) a|≡k �A iff for all s ∈ S such that (a, s) ∈ R, we have that s|≡k+1 A in

the model mk
s , where

mk
s = (S, Rk

a, R∗, s, h)

and where
Rk

a = (R − ρ+
a,k) ∪ ρ−a,k.

(e) A formula A is said to be satisfiable in a model m if for some non-
deterministic choice sequence ρ±t,k, t ∈ S, k = 0, 1, 2, We have that
a|≡0 A. Note that it is possible to have that both a|≡0 A and a|≡0 ¬A.

(f) A formula is said to hold in a model m if its negation is not satisfiable
in m.

(g) A modal logic L is said to be a non-deterministically reactive if for some
class of reactive Kripke models we have

L = {A | A is non-deterministically valid in all models in the class}

Introducing Reactive Kripke Semantics and Arc Accessibility 325

Example 12 This example explains the ‘ticking clock’ of the previous definition.
Consider the frame of Fig. 26, and consider a � ♦�(p ∧ ¬p) and again a �

♦�(q ∧ ¬q).
In the first evaluation we activate the double arrow immediately and get true

and in the second evaluation we do not activate it and get false. To avoid such
a situation, we introduce a universal counting clock, counting the number of
nested modalities. We now write

a|≡0 ♦�(P ∧ ¬p) iff a|≡1 �(p ∧ ¬p) or b|≡1 �(p ∧ ¬p)

We require always the same non-deterministic choice for any evaluation of the
form t|≡k �, with the same t and k.

If we have this we get that �(A ∧ B) → �A ∧�B holds.

6 Connection with Fibring Logics

This section gives some methodological remarks and points out a connection
with fibring logics; see [9,12].

6.1 Methodological Considerations

Consider two modal logics L1 and L2. Assume L1 has a K modality, �1 and
let L2 have a K4 modality, �2. We know that L1 is complete for all Kripke
frames of the form (S1, R1, a1), with a1 ∈ S1, R1 ⊆ S2

1 , and L2 is complete for
all Kripke frames of the form (S2, R2, a2) with a2 ∈ S2, R2 ⊆ S2

2 and R2 is a
transitive (irreflexive) relation. When we combine these two logics in a way which
is generally called fusion (or dovetailing in [9]), we get completeness for the class
of all Kripke models of the form (S, R1, R2, a) with R2 transitive irreflexive and
where the truth table for �i is defined as follows:

(∗1) t � �iq iff ∀s(tRis → s � q) for i = 1, 2.

The above combination of L1 and L2 assumes that the languages L1 and L2

are disjoint, and to the extent that they share the classical connectives, they
agree on these connectives.

Assume now that L1 and L2 contain an additional modality �, i.e. L1 =
L2(�,�1) and L2 = L2(�,�2), where � is a T modality. Now the models for Li

have the form (Si, R, Ri, ai) where R ⊆ S2
i and R is reflexive. Obviously L1 and

L2 which contain the same symbol for modality �, must agree on the nature of
this modality (namely that it is a T modality). We can therefore safely combine
them (in the same way as before) and get a logic L1+2 with �,�2,�2. This logic
is complete for models of the form (S, R, R1, R2, a) where R ⊆ S2 is reflexive
and R2 ⊆ S2 is irreflexive and transitive, and R1 ⊆ S2.

The question arises what can we do if L1 and L2 do not agree on the modality
�? What if L1 has � as K modality while L2 has � as a T modality? How do we

326 D.M. Gabbay

do this? To put it bluntly, can we combine two systems for the same modality
�, where one says � is a K modality and the other one says that � is a T
modality?

To make the problem more acute we can have modalities with contradictory
conditions on R. For example, L1 can ask ∀x∃yxRy (the axiom �♦�) and L2

can ask ∃x∀y¬xRy (the axiom ♦�⊥).
One way to combine two different systems for the same symbols is to timeshare

the symbol, i.e. � can sometimes be an L1 modality and sometimes an L2

modality. This is the way processes share the same resource; they timeshare
according to a certain protocol μ.

So let us examine modal logics with a single modality �, where the meaning
of � is timeshared between, say a K and a T modality.

The questions we ask are the following:

(Q1) How do we define and execute the timeshare?
(Q2) What is the semantics corresponding to (Q1)?

Let us start by choosing something simple. Let the meaning of � alternate
between a T and a K modality. Thus a wff of the form

α = �(�q ∧���p)

will read as
β = �T(�Kq ∧�K�T�Kp).

Thus the meaning of � alternates according to its nesting depth in the for-
mula.

So now we know how to read α, namely we read it as β, but what is the
semantics for β? Being a mono-modal logic, we expect a Kripke semantics with
a single accessibility relation R, i.e. models of the form (S, R, a). So how can R
be and not be reflexive alternatively? This is impossible!

To this end we need a new point of view on how we see our semantics. Let us
consider the notion of a mode of search for a possible world. Namely let Ψ(x, y)
be (a possibly higher order) binary wff on the classical model (S, R, a). Let

(∗2) t �Ψ �q iff for all s such that Ψ(t, s) holds we have s � q.

Ψ is the mode of search for worlds s. The following are examples:

– For K modality ΨK(x, y) ≡ xRy
– For T modality ΨT(x, y) ≡ x = y ∨ xRy
– For K4 modality ΨK4(x, y) ≡ for some n ≥ 0 we have xRny.

Note that ΨK4 is not first-order.

The truth condition for a system with alternating K and T modality can be
written as follows:

(∗3) • t �K �q iff for all s, ΨK(t, s) → s �T q.
• t �T �q iff for all s, ΨT(t, s) → s �K q.

Introducing Reactive Kripke Semantics and Arc Accessibility 327

The logic with (S, R, a) where � alternates in meaning as above can be seen
as one way of fibring disagreeing modalities via a timesharing protocol.

Let us use the following terminology:

– use the term C-fibring for Compromise Fibring when we combine two logics
which do not agree on the common part.

– Use the words μ-Protocol for any procedures μ for timesharing the common
symbols.

– A modality which changes its meaning in the sentence is called a hypermodal-
ity, see [10]

We now continue and discuss another ‘twist’ in our way of thinking. Obviously
when � is interpreted as �T, we use ΨT. How about modalities complete for
classes of models whose relations cannot be nicely defined via some Ψ (even
second order)? We certainly can form models of the form (S, R1, R2, a) and
let the meaning of � alternate between R1 and R2. However, this is not neat,
because with one symbol � we expect semantics with one symbol R or some
generalisation of it.

We need some inspiration at this junction. So here it is:
We talk about reactive models. These are models whose accessibility relation

changes as we go along. Figure 28 illustrates the basic mechanism:
We evaluate t � �q at moment t. We assume that at each moment, either all

the R1 or all the R2 (but not both) connections are on. When we move from
t � �q to s, i.e. to s � q, we send a signal from t (�) to all other R1 and R2

connections. If a connection receives the signal and it is on, then it turns off. If
it is off then it turns on. So when we come to s, we switch from R1 to R2 or from
R2 to R1 depending which one is active. In general, we we deal with reactive
models as in Sect. 2.

Now in order to be able to compromise-fibre two logics with the same modality
but different reactive Kripke semantics, we need to allow arrow � to cancel

R

t

s

R1

a

c
b

R2

Fig. 28.

328 D.M. Gabbay

other arrows up to arbitrary finite iterations. This yields Definitions 1 and 1 of
Sect. 3.

We have now completed our methodological motivation for reactive Kripke
models. For more on compromise fibring, see [12].

6.2 Formal Compromise Fibring

It is now time to give a formal definition of C-fibring.

Definition 7

1. Let (S, R, a) be a Kripke frame. By a finite path we mean a sequence of ele-
ments of the form St = (a, a1, . . . , an) such that aRa1 ∧a1Ra2 ∧ . . . an−1Ran

holds. We also include the empty sequence as a path.
2. Let t ∈ S, we define the model (S[t], R[t], t) as follows.

(a) Let S[t] be the smallest subset S′ ⊆ S such that t ∈ S′ and if x ∈ S′ and
xRy then y ∈ S′.

(b) Let R[t] be R � S[t].

Definition 8. Let K1, . . . , Kn be n classes of Kripke frames. Let L1, . . . ,Ln be
the logics they define as frames in a language with the syntactical modality �.

We define a C-fibred general model for � as follows:

1. (S, R, a, f) is a C-fibred model for L1 +L2 + . . .+Ln iff f is a function giving
for each finite path t = (a, a1, . . . , an) a value f(t) = Rf

t ⊆ R[an] such that
for some m ≤ n, the model (S[an], R

f
t, an) is in Km.

2. We define satisfaction in (S, R, a, f) as follows (under an assignment h to
the atoms) for t = (a, a1, . . . , an):
– an �t �q iff for all s ∈ S[t] such that tRf

ts we have that s �t∗(s) q, where
∗ is concatenation of sequences.

3. Note that the condition Rf
t ⊆ R[an] is not restrictive because we can always

start with R = S2.
4. Let L1 + . . . + Ln be the logic defined by all models (S, R, a, f).

Remark 3. Note that ordinary fibring of two modalities �1 and �2 can be cap-
tured by this semantics. Let us pretend that �1 = �2 = � and that L1 reads
� as �1 for a class of models K1 and similarly L2 for K2. Consider all models
with frames (S, R1, R2, a) where (S, R1, t) ∈ K1 and (S, R2, t) ∈ K2 for all t ∈ S.
Let R be defined as R1 ∪ R2. Let f(a, a1, . . . , an) = R1 if n is odd and R2 if n is
even. Then �1 and �2 can be translated in a context sensitive way as seen by
the following example.

Let α = �1(�1q ∧�2�1p). Then α is translated into β.

β = �(�2q ∧��p).

We translate each �i from outside in. We translate each �i as either � or ��
depending whether it gives us an odd or even nesting of boxes as required by the
index i. This translation is not faithful. More work needs to be done
on this idea.

Introducing Reactive Kripke Semantics and Arc Accessibility 329

7 Dedicated Reactivity Connectives

Previous sections dealt with a modality � that both sent the evaluation to
accessible worlds and at the same time activated all reactivity double arrows.
Let us check and see how we can separate these two functionalities using two
separate connectives. Consider the simple model in Fig. 29

•

d
b

c

a

Fig. 29.

When we evaluate a � �q, we move to the evaluation of b � q and c � q. The
node a also sends a signal along the double arrows at a and as a result the arcs
(a, b) and (c, d) are disconnected.

Let us separate these two operations. Let us look at the fault disconnection
signal separately from the ordinary modality operation. Let us have an ordinary

modality
→
� A and a reactive modality

�
� A operating as follows:

1. a �
→
� A iff for all y such that aRy we have y � A. This is an ordinary

modality moving along the single arrows.

2. a �
�
� A iff a � A in the model obtained by letting all reactive double arrows

do their job!
So this is a modality which changes the model (set of possible worlds and
its accessibility relation). It is like a Jump operator of the form

a �model 1 Jump A iff a �model 2 A.

The move from one model to the other is done by activating the double
arrows emanating from a.
So, for the situation in Fig. 29 we have that

a �
�
� A in the model of Fig. 29

iff
a � A in the model of Fig. 30

Having isolated the reactive operation, we would like to check the interdefin-

ability properties of �,
→
� and

�
�.

330 D.M. Gabbay

•
a

c

Fig. 30.

We will see that matters are not so simple.
We would like to have maybe that

� =
→
�

�
�

or
� =

�
�

→
�

or some combination
� = combination (

→
�,

�
�)

However this is not so simple because � fires both
→
� and

�
� simultaneously. If

we do
→
� first, we no longer can disconnect the (c, d) arc. If we do

�
� first, we no

longer can get to b.

If we use a � ��, we do not get the effect of
�
� because we move to the

accessible worlds b and c.
Thus, no matter what we do, we have a problem interdefining these con-

necteives.
In fact

�
� is a metalevel connective, operating on the model (disconnecting

accessibility arrows) and is different in nature from the evaluation of the ordinary
connective

→
�. Being action metalevel connective we can talk naturally about

the simultanety of several actions. Let “‖” indicate simultaneous operation of
actions, being another metalevel connective.

Then we can write
� =

→
� ‖

�
�

The difference between the connectives is even more serious. Consider Fig. 31.
Figure 31 is like Fig. 29 except the “fault” double arrows emanate from the

arcs and not from the point. Do we want
�
� to fire all double arrows from arcs

or only one of them? Note that when we write a � ♦A, we either go to c � A in
which case only (c, d) is disconnected or we go to b � A in which case only (a, b)
is disconnected.

It looks like we need, in addition to the modalities
→
� and

→
♦= ¬

�
� ¬ six

additional fault connectives to be able to express all our options:

Introducing Reactive Kripke Semantics and Arc Accessibility 331

c

d

•
a

b

Fig. 31.

1. a �
�
�point A activates all double arrows emanating from the point a.

2. a �
�
�arc A activates all double arrows emanating from all arcs beginning at

a.
3. a �

�
♦point A activates at least one double arrow emanating from a

4. a �
�
♦

one

arc A activates at least one double arrow emanting from one arc coming
out of a

5. a �
�
♦

all

arc A activates all double arrows emanting from at least one arc coming
out of a.

6. a � (X‖Y)A. Execute XA and Y A in parallel, simultaneously.
Thus we have
– � =

→
� ‖

�
�point ‖

�
�arc

– ♦ =
→
♦ ‖

�
�point ‖

�
♦

all

arc
Note that we can use ‖ also as a connective and write (�A)‖(�B), which
means evaluate �A and �B in parallel at the same time so they will interfere
with each other. Compare with �A ∧�B which do not interefere.

These are metalevel deletion operators brought into the object level by the
use of connectives. Their detailed logical study is a big story on its own and
needs to be done within a wider context. Deletion appears in abduction in logic
and in handling databases as well as deletion of elements from models. See our
anti-formula and anti-element papers [3,6].

Acknowledgements

I am grateful to David Makinson and to the referee for valuable comments.

References

1. Abramsky, S.: Semantics of interaction: an introduction to game semantics. In:
Dybjer, P., Pitts, A. (eds.) Proceedings of the 1996 CLiCS Summer School, Isaac
Newton Institute, pp. 1–31. Cambridge University Press, Cambridge (1997)

332 D.M. Gabbay

2. Barringer, H., Gabbay, D., Rydeheard, D.: Reactive Grammars, paper 303 (in
preparation, 2007)

3. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. In: Sokolsky, O. (ed.) RV 2007. LNCS, vol. 3839, Springer,
Heidelberg (2007)

4. van Benthem, J.: An Essay on Sabotage and Obstruction. In: Hutter, D., Stephan,
W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp.
268–276. Springer, Heidelberg (2005)

5. van Benthem, J., van Eijck, J., Kook, B.: Logics of Communciation and Change.
Informationa nd Computation, 1620–1662 (2006)

6. Crochemore, M., Gabbay, D.: Size reduction of automata using reactive links, paper
304 (in preparation, 2007)

7. Gabbay, D.M.: An irreflexivity lemma with applications to axiomatizations of con-
ditions on tense frames. In: Monnich, U. (ed.) Aspects of Philosophical Logic, pp.
67–89. D. Reidel (1981)

8. Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, Oxford
(1996)

9. Gabbay, D.M.: Fibring Logics. Oxford University Press, Oxford (1998)
10. Gabbay, D.M.: A theory of hypermodal logics: mode shifting in modal logic. Journal

of Philosophical Logic 31, 211–243 (2002)
11. Gabbay, D.M.: Reactive Kripke semantics and arc accessibility. In: Carnielli, W.,

Dionesio, F.M., Mateus, P. (eds.) Proceedings of CombLog 2004, Centre for Logic
and Computation, University of Lisbon, pp. 7–20 (2004)

12. Gabbay, D.M.: More on reactive Kripke semantics and proof theory (in prepara-
tion)

13. Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulas and
Resource Overdraf: Part I. Logic Journal of the IGPL 10, 601–652 (2002)

14. Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulas and
Resource Overdraf: Part II. In: Gabbay, D.M., et al. (eds.) Logic, Epistemology
and the Unityof Science, pp. 291–326. Kluwer, Dordrecht (2004)

15. Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, Nonmonotonic Reasoning and Uncertain
Reasoning, vol. 3. Oxford University Press, Oxford (1994)

16. Gabbay, D.M., et al.: Many Dimensional Modal Logics. Elsevier, Amsterdam (2004)
17. Gabbay, D., Marcelino, S.: Theory of reactive graphs, paper 306 (in preparation

2007)
18. Gabbay, D.M., Shehtman, V.: Flow products of modal logics. Draft incorporated

in [16] (2000)
19. Horty, J.F.: Some direct theories of nonmonotonic inheritance. In: [15], pp. 111–188
20. Lifschitz, V.: Circumscription. In [15], pp. 297–352.
21. Rohde, P.: Moving in a Crumbling Network: The Balanced Case. In: Marcinkowski,

J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 1–25. Springer, Heidelberg
(2004)

Appendix: Further Topics

A Hypermodalities

Since we are comparing in this paper the notions of hyper-modal logics and
reactive modal logics, we need to give here the exact definition of a hyper-modal
logic.

Introducing Reactive Kripke Semantics and Arc Accessibility 333

Our starting point is a general Kripke model of the form m = (S, R, a, h). R
is an arbitrary binary relation on S.

We are going to introduce evaluation modes into such semantics. It is con-
venient to regard the relation xRy as a classical formula ΨK(x, R, a, y) in the
language of the relation R, the individual variables x, y and actual world constant
a as follows

– ΨK(x, R, a, y) =def xRy

we have

– t � �A iff ∀s(ΨK(t, s) → s � A).

We can refer to ΨK as the mode of evaluation for �. It is fixed in the semantics
and does not change. Intuitively it tells us, for a world x, how to evaluate �A
at x, namely where to look for worlds y where y � A must hold. The subscript
K indicates that this formula is used in the case of K modality.

We can think of different formulas Ψ for the mode. Consider for example:

– ΨT(x, R, a, y) =def xRy ∨ x = y

– ΨK4(x, R, a, y) =def (∃n ≥ 1)xRny.
Where xRny is defined by induction as:

• xR0y iff x = y

• xRn+1y iff ∃z(xRz ∧ zRny).
– ΨKB(x, R, a, y) =def (xRy ∨ yRx).

Clearly ΨK4(x, R, a, y) is not a first-order formula. It defines the transitive closure
of R.

One can think of Ψ as changing the accessibility relation from R to λxλyΨ
(x, y). Another way of looking at Ψ is that it gives us a new mode of how to use
R in evaluating the truth value of �A. The latter view is more convenient to use
because we will be shifting modes during the evaluation.

Let us write �i, to mean that the mode Ψi is used in the evaluation. Then
�K for arbitrary frames (S, R, a) yields the logic K, �T yields the logic T, �KB
yields the logic KB and �K4 yields the logic K4.

Note that our starting point is a frame (S, R, a) with an arbitrary R. We define
Ψi(x, R, a, y) as a binary relation and use it to evaluate �. Thus in traditional
terms the frame we are using is (S, Ψi, a) not (S, R, a). When we shift modalities,
i.e. change from t �i �A to s �j �A it is like shifting from (S, Ψi, a) to (S, Ψj , a).
We now give a formal definition of hypermodality.

We treat the simple case is where the number of modes is a finite set μ and
there is a function ε for shifting modes. This case is given in the next definition.

Definition 9 (Mode shifting). Let μ = {Ψ0, . . . , Ψk} be a set of modes and
let ε be a function assigning to each 0 ≤ i ≤ k a value 0 ≤ ε(i) ≤ k.

334 D.M. Gabbay

Let (S, R, a, h) be a Kripke model. We define the following (μ, ε) satisfaction in
the model

– t �i �A iff ∀s(Ψi(t, s) → s �ε(i) A).
– We say A is true in the model if a �0 A.

Definition 10

1. Let K be a class of models of the form (S, R, a, h). Let (μ, ε) be a mode
system. We write K �(μ,ε) A iff for every model (S, R, a, h) in K we have
a �0 A.

2. Let L be a logic complete for a class K of Kripke models of the form (S, R,
a, h). Let K[μ, ε] be {A | K �(μ,ε) A}. We sometimes write L[μ, ε] for K[μ, ε],
when the implicit dependence on K is clear.

Obviously the nature of hypermodal logic depends on (μ, ε) and its abstract
properties and also on the class K of models chosen.

B Traversing a Graph

Definition 11. By a graph G we mean a set S with a binary relation R ⊆ S2.
Let a ∈ S be the starting point. We write G = (S, R, a).

Definition 12. 1. By a Horn closure condition in the language of R we mean
a clauses of the form

C :
∧

i

xiRyi ∧
∧

j

uj
= vj → xRy.

2. A substitution θ from Z = {xi, yi, uj, vj , x, y} into S is a function θ assigning
values θ(z) ∈ S for each z ∈ Z.

3. We say a relation R∗ ⊆ S2 satisfies the clause C if for all θ, if θ(xi)R∗θ(yi)
holds and θ(uj)
= θ(vj) holds then θ(x)R∗θ(y) also holds. We write G∗ =
(S, R∗, a) � C.
Let τ be a set of clauses. We say G � τ iff G � C for all C ∈ τ .

Lemma 1. Let G = (S, R, a) be a graph and τ a set of clauses. Then there
exists the smaller R∗ ⊇ R such that G∗ = (S, R∗, a) � τ .

Definition 13. Let G = (S, R, a) be a graph and let μ = (τ1, . . . , τk) be a se-
quence of sets of clauses. Let R∗

1, . . . , R
∗
k be the closures of R under τi resp.

Define a μ-path H through S as follows.
The first element of H is a0 = a. The next element of H is a1 such that

a0R
∗
1a1 holds. We say a1 is a τ1 choice.

Assume an is a τn choice then an+1 is such that anR∗
n+1an+1 where R∗

n+1 =
R∗

i+1 if an is a τi choice, i < k and R∗
n+1 = R∗

1 if an is a τk choice.

Introducing Reactive Kripke Semantics and Arc Accessibility 335

Definition 14 (A reactive graph). Let G = (S, R, a) be a graph. Write R =
{(x, y) | xRy holds}. Define W as follows:

W0 = S × S connections of level 0
Wn+1 = S × Wn connections of level n + 1
W =

⋃
n Wn

We consider any set of connections of level ≥ 1 as a switch.
A subset R̄ of W can be used to describe S paths H as follows.

1. initial element of H is a0 = a initial set of R̄1 = R̄.
2. Assume Rn is defined and R̄n ⊆ R̄.
3. We define R̄n+1.

Let Rn+1 = R̄n = {α | (an, α) ∈ Rn} ∪ {β | (an, β) ∈ (R̄) − Rn}.
We assume (an, an+1) is in R̄n.

Conjecture: Let Hμ be the all possible paths defined on G = (S, R, a) using
μ = (τ1, . . . , τk). Then there exists an R̄ ⊆ W that yields the same paths.

Definition 15. 1. A multigraph has the form G = (V, E, s, r) where V is a set
of vertices, E a set of edges, and s, r : E → V are maps describing the source
and range of edges.

2. A family of sets of edges, RH = Rh = (Eh, sh, rh), is called compatible if:
for

e ∈ Eh ∩ Eh′

then we have
sh(e) = sh′(e) and rh(e) = rh′(e) .

So it make sense considering a set of edges that is the union of the elements
RH as ⋃

RH = (
⋃

h∈H

Eh, s, r)

where s(e) = sh(e) and s(e) = sh(e) for any h ∈ H. In a similar way we
define intersection of sets of edges and the predicate ∈ to edges and sets of
edges of this form.

Definition 16. A reactive multigraph has the form G = (V, RH) where RH =
{Rh = (Eh, sh, rh) | h ∈ H} is a compatible family of set of edges based on V
indexed on H and (V, Rh, a) is a multigraph for all h. The elements of H are
sequences of edges and it satisfies:

ε ∈ H the empty path, corresponding to the empty sequence of edges

p = e1 . . . en ∈ H iff e1 . . . en−1 ∈ H and re1...en−1(en−1) = se1...en−1(en)

H is called the set of reactive paths of G.

336 D.M. Gabbay

Definition 17 (Switch reactivity)

1. Let G = (V, R) be a multigraph and R = (E, s, r). Define the total set of
possible switches WR as follows:

W0 = E
...
Wn+1 = {(e, α) | e ∈ E, α ∈ Wn}
...
WR =

⋃
n Wn.

2. A switch graph G has the form (V, R,Rε,R) where (V, R) is a multigraph,
which set of edges ”possible in the graph”, Rε ⊆ R ⊆ WR, Rε is the initial
configuration of the switch graph.

3. Let R′ ⊆ R and let e ∈ E. Define R′
e as follows:

R′
e = R′ − {α | (e, α) ∈ R′} ∪ {β | (e, β) ∈ R ∧ (e, β)
∈ R′}.

We say α is deactivated and β is activated by the passing through the node
x.

4. Let H = (e1 . . . en). We let RH be defined as follows:

Re1 = (Rε)e1

...
Re1...em+1 = (Re1...em)em+1

Here we see e ∈ E as edge (e, s|e, r|e).
5. A switch graph has level n of reactivity if R ⊆

⋃
i≤n Wi.

A switch graph is a particular case of a reactive graph, with:

Rh = Rh ∩ R

Problem 1 Can every reactive multigraph be represented by a switch graph?

C Reactive Proof Theory

We give an example of how to do reactive proof theory. A full analysis will be
done in [12]. The proper environment for developing reactive proof theory is the
methodology of Labelled Deductive Systems, see [8]. See also [3] where reactive
rules were independently introduced.

The usual natural deduction propositional system has elimination rules and
introduction rules. In principle an elimination rule has the form

ER
A1, . . . , An

B
where A1, . . . , An, B, are well formed formulas.

Introducing Reactive Kripke Semantics and Arc Accessibility 337

and an introduction rule has the form of a subproof:

IR: To show ϕ(A1, . . . , An, B), start a subproof with A1, . . . , An as addi-
tional assumptions and conclude the subproof successfully with obtaining
B, where ϕ, A1, . . . , An, B are well formed formulas. ϕ is built up from
A1, . . . , An, B.

Well known examples of such rules are the implicational rules:

⇒ E
A, A ⇒ B

B

⇒ I To show A ⇒ B, assume A and prove B

Definition 18 (Proofs of level ≤ n). Let S be a set of proof rules.

1. A line (in a proof) is a sequence of the form

� : A, J, ρ, α

where � is a line reference (line number), A is the formula of the line, J is
the justification of the line, and ρ is the set of proof rules active at this line
and α is a set of line references accessible at the line. ρ changes only in a
reactive proof system. In an ordinary proof system ρ is always the full set of
rules of the logic, and α contains all previous line references.
The justification in � : B, J, ρ, α can be either the word “assumption” or the

phrase “A is obtained using the elimination rule ER :
A1, . . . , An

A
, where Ai

are formulas obtained in lines �i, i = 1, . . . , n and �i are accessible”, or the
phrase “A = ϕ(A1, . . . , An, B) where A is a formula of an introduction rule
IR and the justification is a subproof π whose assumptions are A1, . . . , An

together with whatever is accessible at �”.
2. A (non-reactive) proof π of level 0 is a sequence of numbered lines containing

formulas and justifications of the form

line number: wff, Justification

such that the beginning of the sequence contains formulas justified as “as-
sumptions” and any subsequent line has the form � : B, R where R is an

elimination rule of the form
A1, . . . , An

B
here �i : Ai Justification are previ-

ous lines in the sequence. We say that the sequence is a proof of the formula
of the last line from the initial sequence of assumptions.

3. A proof of level ≤ n+1 is defined as a sequence π of lines containing formulas
and justifications where the initial elements of the sequence are all justified
as “assumptions” and each subsequent formula in line � is either justified
from previous lines using an elimination rule, as described in (2) above, or
is a formula of the form ϕ(A1, . . . , An, B) appearing in an introduction rule,
justified by a proof πϕ of level ≤ n, of B from the assumptions A1, . . . , An

and whatever is accessible to �.

338 D.M. Gabbay

If the last line of π contains the formula E and the initial sequence of the
proof are the assumptions D1, . . . , Dk, then we say that π is a level ≤ n + 1
proof of E from D1, . . . , Dk.

Definition 19 (Reactive proof system). A reactive system has reactive rules
of the form

Rn : (R, r+
i , r−j)

i = 1, . . . , k+, j = 1, . . . , k−, n = 1, . . . , m, r±i ≤ m.

where R is a rule (elimination or introduction). The reading of Rn is that if
we use rule R then the rules Rr+

i
, i = 1, . . . , k+ should be activated and rules

Rr−
j
, j = 1, . . . , k− should be deactivated.

The notion of a proof is modified as follows.
At the start of the proof (line 1) we add a third component ρ indicating which

rules are active and a fourth component α indicating which previous lines are
accessible for the purpose of justification. The general nature of the logic will
have procedures for telling us given a line � in the proof and its α, what will be
the α of the next line? For example if in line �, the justification is “assumption”,
then line � is available to be used in justification of the next line or for example

if line � is justified by an elimination rule of the form
A1, . . . , An

B
, where Ai are

from accessible lines �i, resp. then lines �i are no longer accessible at the next
line (line � + 1). Lines which are assumptions do not change which rules are
active and which are not. A line which uses a rule Rn as justification (either
elimination or introduction) activates or deactivates the other rules as indicated
in the rule itself and the result of the change are the rules ρ which are available
for the next line of the proof. The changes in accessibility α can depend on the
logic at hand. For example as we have mentioned, a resource logic may make
assumptions not accessible once they are used in a justification.

Example 13. Take the ordinary natural deduction rules for classical logic
including

A, A ⇒ B

B

and

⊥
B

and

To show A ⇒ B assume A and prove B

Introducing Reactive Kripke Semantics and Arc Accessibility 339

Assume that using modus ponens deactivates the negation rule.
Thus A, A ⇒ ⊥
 C by modus ponens alone using level 0 proofs because once

we use modus ponens to get ⊥ we do not have the negation rule anymore. We
could work our way around this in this case, using level 1 proofs as follows:

1. A, assumption
2. A ⇒ ⊥, assumption
3. ⊥ ⇒ C

using ⇒ introduction rule,
3.1. ⊥, assumption
3.2. C from 3.1 and the negation rule
3.3. Exit with ⊥ ⇒ C proved

4. ⊥, from 1 and 2 using modus ponens. Note that the negation rule which was
used in the subproof at 3.2 does not cancel the modus ponens in the main
proof.

5. C from 4 and 5 using modus ponens again.

D J. van Benthem’s Sabotage Modal Logic

J. van Benthem introduced sabotage modal logic in [4]. The idea was put forward
by van Benthem (2002) and is based on games played on graphs where one player
is trying to traverse the graph while another tries to delete edges to make the
first player fail.

This is another instance of reactive behaviour, conceputally conceived as sab-
otage. In the context of Kripke models (S, R, a, h), van Benthem introduces two
modalities, the usual evaluation modality (denoted in our notation by

→
�) and a

sabotage modality denoted by ♦.
There are several versions for ♦−9

a � ♦−point A iff a � A in a new model in which some point s ∈ S, s
= a is
deleted.

We can use the convenient notation a �s A.
a � ♦−arc A iff a � A in a new model in which some arc (t, s) ∈ R is deleted.

Again we can use the notation a �(t,s) A.
Philip Rohde studied properties of these logics, with regard to complexity.
Another recent variation recommended by Benedikt Löwe, is to have the sab-

otage modality localised by turning the system two dimensional.
a, t � ♦−arc A iff for some s such that tRs we have a, s �(t,s) A. 10

9 van Benthem has modalities indexed also by actions, but this is irrelevant to the
system’s conceptual aspects.

10 To clarify the notation, let

– �(z1, . . . , zn) ≡
�

i�=j zi �= zj

– �((x1, y1), . . . , (xm, ym)) =
�

i�=j(xi �= xj ∨ yi �= yj)

Let t �z1,...,zn A mean that A holds at t, in the model where all the different points
z1, . . . , zn have been deleted.

340 D.M. Gabbay

We now compare sabotage modality with our “fault-remedy” modality to give
the reader a view of what is going on.

It is obvious that Professor van Benthem and I share the idea of reactivity, of
working against a system which changes under you, whether by built-in weak-
nesses and remedies or by sabotage. The actual modal logics produced emerge
from the original point of view taken11

I also adopt the point of view that deletion is a metalevel notion and that
there should be a logical discipline and stylised machinery for bringing it into
the object level. This should be seen in a wider context of dynamic evaluations
and dynamic operators on which there is a lot of literature. See [5] for a recent
application, and the references there.

The rest of this comparison is simply technical, comparing formal options
between teh fault-remedy modality and the sabotage modality.

1. Fault modality can have arrow to arrow deletions of many levels. This comes
from the original point of view.

2. Switch procedures also come naturally in this context.

Similarly, t �(x1,y1),...,(xm,yn) A means that A holds at t in the model where all
the different arcs (x1, y1), . . . , (xn, yn) have been deleted.

Thus for point sabotage we have

– t �z1,...,zn ♦A iff ∃s∃y(tRs ∧ �(t, s, z1, . . . , zn, y) and s �z1,...,zn,y A).

For arc sabotage we have:

– t �(x1,y1),...,(xn,yn) ♦A iff ∃s∃u∃v(tRs ∧ uRv ∧ �((x1, y1), . . . , (xn, yn), (t, s)) ∧
�((x1, y1), . . . , (xn, yn), (u, v)) and s �(x1,y1),...,(xn,yn),(u,v) A).

11 van Benthem says in [4] (this paper was already written in 2002) as follows:

“In particular, the logical model-checking angle suggests a study of evaluation
of first-order logic on structures which change under evaluation. E.g. an object
might become unavailable once drawn from a domain, or a fact might change
when inspected (think of measurement in quantum mechanics)”.

In comparison, I say in [7]

“This paper addresses the case where the semantics does change (or react)
under us as we evaluate a formula. This idea makes the evaluation of a wff
at a world t dependent on the route leading to t. Thus we get a new kind of
semantics, the reactive semantics.”

and later in the paper, I continue to say

“we have put forward the reactive and dynamic idea of evaluation in earlier
papers and lectures. A typical example we give is to consider t � ♦A. In modal
logic this means that there is a possible world s such that s � A. We take a
more dynamic view of it. We ask: where is s? How long does it take to get to
it? and how much does it cost to get there?”

Introducing Reactive Kripke Semantics and Arc Accessibility 341

3. Fault modality is a simultaneous parallel combination of metalevel changes
and evaluation. This makes it possibly technically different from the logic
where the functionalities are separated.
We can simulate sabotage by double arrows and non-determinism. The oper-
ator ♦̄arc, deleting an arc,can be simulated, for example, by looking at double
arrows going from each node to all arcs and non-deterministically activating
one double arrow every time we make a move.

4. Conceptually the fault-remedy concept is universal, while the notion of sab-
otage is agent specific. Consider a case of one agent sabotaging the work of
several other agents. Additional special effort is required by the saboteur to
make it look like a fault (accident).12

12 Think of the numerous detective novels where the murderer tries to make the murder
look like an accident, and how the detective can show it was not.

On Partially Wellfounded Generic Ultrapowers

Moti Gitik1 and Menachem Magidor2

1 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
gitik@post.tau.ac.il

2 Institute of Mathematics, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel

menachem@math.huji.ac.il

Dedicated to Boaz Trakhtenbrot on the occasion of his 85-th birthday.

Abstract. We construct a model without precipitous ideals but so that
for each τ < ℵ3 there is a normal ideal over ℵ1 with generic ultrapower
wellfounded up to the image of τ .

1 Introduction

Let κ be a regular uncountable cardinal. For f, g ∈ κOn set

f <∗ g iff {α < κ | f(α) < g(α)} contains a closed unbounded subset.

The Galvin-Hajnal rank ‖g‖ of a function g ∈ κOn is defined as follows

‖g‖ = sup{‖f‖ + 1 | f <∗ g}.

By induction on α, the αth canonical function hα is defined (if it exists) as
the <∗-least function greater than each hβ , β < α. If hα exists then it is unique
modulo the nonstationary ideal over κ. First κ+ canonical functions always exist.
Hajnal (see [4], 27.11) showed that already in L the ω2nd canonical function for
κ = ω1 does not exist. By Jech and Shelah [6], the existence of ω2nd canonical
function is not a large cardinal property. Note that the existence of f ∈ κκ with
‖f‖ = κ+ does not necessary imply the existence of κ+ canonical function over
κ. Just, for example, in L there are many functions of the rank ω2 without the
least such function. On the other hand non existence of such f implies large
cardinals. Thus, Donder and Koepke [1] showed that then κ ≥ ℵ2 implies 0†

exists and κ = ℵ1 implies ℵ2 is almost < ℵ1-Erdős cardinal in the core model K.
An ideal I over κ is called precipitous if every its generic ultrapower is well

founded. It is not hard to see that if every generic ultrapower of I is well founded
up to the image of (2κ)+ then I is precipitous.
Suppose now that for each τ < (2κ)+ there is an ideal over κ with generic
ultrapowers well founded up to the image τ . Does this imply the existence of a
precipitous ideal?

Our aim is to provide a negative answer. We will show the following:

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 342–350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Partially Wellfounded Generic Ultrapowers 343

Theorem 1. Suppose that

1. 2ℵ1 = ℵ2

2. there is an ℵ1-Erdős cardinal
3. there is a function f : ω1 → ω1 with ‖f‖ ≥ ω2.

Then for every τ < ω3 there exists a normal ideal over ℵ1 with a generic
ultrapower wellfounded up to the image of τ .

Remark 2. 1. Note that in general it is impossible to allow τ = ω3. Thus,
the cardinality of the forcing is only ω2. Hence, if a generic ultrapower is
wellfounded up to the image of τ = (ω3)V , then it is fully wellfounded (just
taking a big enough elementary submodel (in V) of cardinality ω2 arbitrary
functions to those with the ranges being subsets of ω3). But this implies an
inner model in which ω1 is a measurable cardinal, see [4]. The original V
does not need to have even an inner model with a Ramsey cardinal.

2. The assumption 3 is not very restrictive. Thus by [1], if there is no such a
function, then ℵ2 is almost < ℵ1-Erdős cardinal in the core model K. In the
last case we can assume that V = K or just collapse first a non < ℵ1-Erdős
cardinal in K to be new ℵ2.

3. Note that up to (ℵ2)V (not its image!) a generic ultrapower by the nonsta-
tionary ideal is always wellfounded , just due to the existence of canonical
functions. It is possible (consistently) to get to the image of ℵ1 using the
canonical functions, if the nonstationary ideal on ℵ1 is ℵ2-saturated or con-
sistently using a weaker assumptions as was shown in [7].

4. It is an open question whether any large cardinal hypothesis implies (directly,
not consistently) the existence of a precipitous ideal on ℵ1. In view of 1, a
kind of “almost” precipitousness follows from ℵ1-Erdős cardinal.

5. We do not know whether ℵ1-Erdős cardinal is needed for the conclusion of
1. Note only that it is easy to show that ℵ1 must be a weakly compact
limit of weakly compact cardinals in L (just the tree property and a generic
elementary embedding). Also, if ℵ1 = ℵK

1 then at least 0� exists.
6. We do not know if the analog of the theorem holds once ℵ1 is replaced by a

bigger cardinal.

2 The Game

Let λ be an ℵ1-Erdős cardinal. Fix some τ < λ.
Consider the following game Gτ :
Player I starts by picking a stationary subset A0 of ℵ1. Player II chooses a

function f1 : A0 → τ and either a partition 〈Bn|n < ω〉 of A0 into at most
countably many pieces or a sequence 〈Bα|α < ℵ1〉 of disjoint subsets of ℵ1 so
that

	α<ω1Bα ⊇ A0.

The first player then supposed to respond by picking an ordinal α2 < λ and a
stationary set A2 which is a subset of A0 and of one of Bn’s or Bα’s.

344 M. Gitik and M. Magidor

At the next stage the second player supplies again a function f3 : A2 → τ
and either a partition 〈Bn|n < ω〉 of A2 into at most countably many pieces or
a sequence 〈Bα|α < ℵ1〉 of disjoint subsets of ℵ1 so that

	α<ω1Bα ⊇ A2.

The first player then supposed to respond by picking a stationary set A4 which
is a subset of A2 and of one of Bn’s or Bα’s on which everywhere f1 is either
above f3 or equal f3 or below f3. In addition he picks an ordinal α4 < λ such
that

α2 < α4 iff f1 � A4 < f3 � A4.

Intuitively, α2n pretends to represent f2n−1 in a generic ultrapower.
Continue further in the same fashion.
Player I wins if the game continues infinitely many moves. Otherwise Player

II wins. Clearly it is a determined game.
Let us argue that the second player cannot have a winning strategy.

Lemma 3. For each τ < λ Player II does not have a winning strategy in the
game Gτ .

Proof. Suppose otherwise. Let σ be a strategy of two. Find a set X ⊂ λ of
cardinality ℵ1 such that σ does not depend on ordinals picked from X . In order
to get such X let us consider a structure

A = 〈H(λ), ∈, λ, τ, P(ℵ1), G, σ〉.

Let X be a set of ℵ1 indiscernibles for A.
Pick now a countable elementary submodel M of H(χ) for χ > λ big enough

with σ, X ∈ M . Let α = M ∩ ω1. Let us produce an infinite play in which the
second player uses σ. This will give us the desired contradiction.

Consider the set S = {f(α)|f ∈ M, f is a partial function from ω1 to τ}. Ob-
viously, S is countable. Hence we can fix an order preserving function π : S → X .

Let one start with A0 = ω1. Consider σ(A0). Clearly, σ(A0) ∈ M . It consists
of a function f1 : A0 → τ and, say a sequence 〈Bξ|ξ < ℵ1〉 of disjoint subsets of
ℵ1 so that

	ξ<ω1Bξ ⊇ A0.

Now, α ∈ A0, hence there is ξ∗ < α such that α ∈ Bξ∗ . Then Bα∗ ∈ M , as
M ⊇ α. Hence, A0 ∩ Bξ∗ ∈ M and α ∈ A0 ∩ Bξ∗ . Let A2 = A0 ∩ Bξ∗ . Pick
α2 = π(f1(α)).

Consider now the answer of two which plays according to σ. It does not depend
on α2, hence it is in M . Let it be a function f3 : A2 → τ and, say a sequence
〈Bξ|ξ < ℵ1〉 of disjoint subsets of ℵ1 so that

	ξ<ω1Bξ ⊇ A2.

As above find ξ∗ < α such that α ∈ Bξ∗ . Then Bα∗ ∈ M , as M ⊇ α. Hence,
A2 ∩ Bξ∗ ∈ M and α ∈ A2 ∩ Bξ∗ . Let A′

2 = A2 ∩ Bξ∗ . Split it into three sets
C<, C=, C> such that

On Partially Wellfounded Generic Ultrapowers 345

C< = {ν ∈ A′
2|f3(ν) < f1(ν)},

C= = {ν ∈ A′
2|f3(ν) = f1(ν)},

C> = {ν ∈ A′
2|f3(ν) > f1(ν)}.

Clearly, α belongs to only one of them, say to C<. Set then A4 = C<. Then,
clearly, A4 ∈ M , it is stationary and f3(α) < f1(α). Set α4 = π(f3(α)).

Continue further in the same fashion. �

It follows that the first player has a winning strategy.

3 The Construction of an Ideal

Let τ < ℵ3. We like to construct an ideal on ℵ1 with a generic ultrapower
wellfounded up to the image of τ .

Fix a winning strategy σ for Player I in the game Gτ .
Set I = {X ⊆ ω1 | σ never picks X}.

Lemma 4. I is a normal proper ideal over ω1.

Proof. Let us show for example the ω1-completeness. Thus let that 〈Bn|n < ω〉
be a partition of a set A ∈ I+. Consider a game according to σ in which A
appears as a move of the player one. Let two to answer by 〈Bn|n < ω〉 (and
arbitrary function). Then the answer of one according to σ will be a subset of
one of Bn’s. But this means that this Bn is I-positive. �

Fix a sequence 〈hα|α < ℵ2〉 of the first ℵ2 canonical functions from ω1 to ω1.
We would like to have a function that represents (ℵ2)V in a generic ultrapower.

If there exists the ℵ2nd canonical function then it will be as desired. Here we
do not assume its existence, but rather a weaker property that there is f :
ω1 → ω1 with ‖f‖ = ω2. Clearly, such f is above each hα, α < ω2 (modulo the
nonstationary ideal). The problem is that there may be many such f ’s without
the least one. The way to overcome this will be to find an ideal J ⊇ I which has
have the J-least function above all canonical functions.

Proceed as follows. Set

S = {f ∈ ω1ω1 | ‖f‖ ≥ ω2}.

Basically we let Player II to play functions in S and Player I to respond using
the strategy σ. Find a function h ∈ S, a finite play t = 〈t1, ..., tn〉 and an ordinal
η such that

1. t was played according σ
2. h was picked by Player II at his last move tn−1

3. Player I responded with η
4. there is no continuation of t, with Player I using σ, in which a response to

a function from S less than η.

346 M. Gitik and M. Magidor

Note that such η ≥ ω2, since otherwise Player II can easily win by playing hη

at the very next move. Then Player I should respond respond by some η1 < η
on which II respond by hη1 etc.

Also note that such h is not necessary unique, but any other function attached
to η which appears further in the game will be equal to h on the corresponding
set.

Set now

J = {X ⊆ ω1 | X is never picked by σ in the continuation of t}.

The proof of the next lemma repeats those of Lemma 4.

Lemma 5. J is a normal proper ideal over ω1 extending I.

Lemma 6. Generic ultrapowers by J are wellfounded at least up to (ω2)V + 1.
Moreover (ω2)V is represented by h.

Proof. Just note, that by the choice of h and the definition of J , the only functions
that are below h on a J-positive set are the canonical functions hα, α < ω2. �

Assume without loss of generality that for each α < ℵ2 we have hα(ν) < h(ν),
for each ν < ω1. Also fix for each ν < ω1 a function Hν : ω →onto h(ν).

Let
Anα = {ν < ω1 | Hν(n) = hα(ν)}.

Lemma 7. Let X ∈ J+. Then for each n < ω there is α < ω2 such that
X ∩ Anα ∈ J+.

Proof. By 6 a generic ultrapower with J is wellfounded up to ωV
2 + 1 and ωV

2 is
represented by h.

Let G ⊆ J+ be a generic ultrafilter with X ∈ G and j : V → MG = V ∩
ω1>V/G be the corresponding elementary embedding. We may assume that the
ordinals of M up to [h]G are just ωV

2 . Consider H = [〈Hν |ν < ωV
1]G. Then,

H : ω →onto ωV
2 in MG. So, for some α < ωV

2 we have H(n) = α. But then
X ∩ Anα ∈ G and be are done. �

The following lemma is similar.

Lemma 8. Let X ∈ J+. Then for each m < ω there is n > m so that |{α <
ω2 | X ∩ Anα ∈ J+}| = ℵ2.

Proof. Just otherwise X or its extension will force that the range of H (as in 7)
will be bounded in ωV

2 . �

Now we will use an argument similar to those of [3] in order to extend J to an
ideal with the desired property.

Let 〈fα | α < ℵ2〉 be an enumeration of the set of all functions from ω1 to τ
(recall that τ is a fixed ordinal less than ℵ3 and 2ℵ1 = ℵ2). Fix an enumeration
〈Xα | α < ℵ2〉 of J-positive sets.

On Partially Wellfounded Generic Ultrapowers 347

By 8 there is n < ω such that

|{α < ω2 | Anα ∈ J+}| = ℵ2.

Suppose for simplicity that n = 0. Let

〈A0τ(ξ) | ξ < ω2〉

be a one to one enumeration of this set.
We construct by induction a sequence of ordinals 〈ξ0α|α < ω2〉 and a sequence

of J positive sets 〈C0α|α < ω2〉. Let α < ω2. If there is ξ < ω2 such that ξ �= ξ0β

for each β < α and Xα ∩ A0τ(ξ) ∈ J+, then let ξ0α be the least such ξ. We
would like now to attach an ordinal to the function fα. So let us play the game
G (which continues t)where the player one uses the strategy σ until the stage
at which the player one plays Xα ∩ A0τ(ξ). All the previous move do not matter
much here, but we fix some such play. Let the player two respond by Xα ∩A0τ(ξ)

and fα. The strategy σ provides then the answer of the player one. It consists
of a subset C0α of Xα ∩ A0τ(ξ) and an ordinal η0α.

Let
I0α = {X ⊆ ω1 | σ never picks X in all possible continuations of the play

started above.}
If there is no such ξ then

Xα ⊆ 	ε<ω1A0τ(ξβε),

where 〈βε|ε < ω1〉 is an enumeration of α. Let then ξ0α be the least ordinal
above all ξ0β with β < α. Replace Xα be ℵ1 and then proceed with it as above.

Set I0 =
⋂

{I0α|α < ℵ2}. Then I0 is a normal ideal over ℵ1, since each of I0α

is such.
The next lemma follows from the construction above.

Lemma 9. For each X ∈ J+ we have X ∈ I0α, for some α < ℵ2 or X ⊆ {ν <
ω1| ∃β < ν ν ∈ A0ζβ

} mod J , for some sequence 〈ζβ |β < ω1〉 of ordinals
below ω2.

As in [3] we can now deduce the following:

Lemma 10. Let X ⊆ ω1. Then X ∈ I0 iff X ⊆ {ν < ω1| ∃β < ν) ν ∈ Yβ}
mod J , for some sequence 〈Yβ |β < ω1〉 such that for some sequence 〈αβ|β < ω1〉
of ordinals below ω2 we have Yβ ⊆ A0τ(ξαβ

) and Yβ ∈ I0αβ
.

Let now n = 1. Fix some γ < ω2. We apply 8 to find the least nγ ≥ 1 such that
the set

|{α < ω2|Anγα ∈ I+
0γ}| = ℵ2.

Let
〈Anγτ(ξ)|ξ < ω2〉

be a one to one enumeration of this set. For each ξ < ω2 we would like to attach
an ordinal to a restriction of fξ to an I0γ positive subset of Anγτ(ξ).

348 M. Gitik and M. Magidor

Proceed as above. Define recursively sequences 〈ξ〈0γ,1α〉|α < ω2〉 and
〈C〈0γ,1α〉|α < ω2〉.

At stage α consider the α-th set Xα in I0γ . If there is ξ < ω2 such that
ξ �= ξ〈0γ,1β〉, for each β < α and Xα ∩ Anγτ(ξ) ∈ I+

0γ , then let ξ〈0γ,1α〉 be the
least such ξ. We would like to shrink I0γ below Xα ∩ Anγτ(ξ〈0γ,1α〉) in order to
decide an ordinal which will correspond to fα. As above we fix a play according
to σ which is a continuation of the previous play (the one from the definition of
I0γ reaching Xα ∩ Anγτ(ξ〈0γ,1α〉). Let the second player plays at his next move
Xα ∩ Anγτ(ξ〈0γ,1α〉) and fα. Apply the strategy σ. It supplies an I0γ positive
subset C〈0γ,1α〉 of Xα ∩ Anγτ(ξ〈0γ,1α〉) and an ordinal η0γ,1α. This will be the
ordinal corresponding to fα � C〈0γ,1α〉.

Let I〈0γ,1α〉 = {X ⊆ ω1 | σ never picks X in all possible continuations of the
play started above.}

If there is no such ξ then let ξ〈0γ,1α〉 be the least ordinal above all ξ〈0γ,1β〉 for
β < α. Take ω1 instead of Xα and run the construction above.

Set I1 =
⋂

{I0γ,1α〉 | γ, α < ℵ2}. Then I1 is a normal ideal over ℵ1, since each
of I〈0γ,1α〉 is such.

Continue similar and define Is and In for each n < ω and s ∈ [ω × ω2]<ω. Let
Fs and Fn be the corresponding dual filters. Finally set

Iω = the closure under ω unions of
⋃

n<ω

In.

Let Fω be the corresponding dual filter.
The following lemmas of [3] transfer directly to the preset context.

Lemma 11. F ⊆ F0 ⊆ ... ⊆ Fn ⊆ ... ⊆ Fω and I ⊆ J ⊆ I0 ⊆ ... ⊆ In ⊆ ... ⊆ Iω .

Lemma 12

Fω =

{

X ⊆ ω1

∣
∣
∣
∣∃〈Xn|n < ω〉∀n < ωXn ∈ Fn X =

⋂

n<ω

Xn

}

and

Iω =

{

X ⊆ ω1|∃〈Xn

∣
∣
∣
∣n < ω〉∀n < ωXn ∈ In X =

⋃

n<ω

Xn

}

Lemma 13. Iω is a proper ω1-complete filter over ω1.

Lemma 14. If 〈Yβ |β < ω1〉 is a sequence of sets in Iω then the set

Y = {ν < κ| ∃β < ν ν ∈ Yβ}

is in Iω as well and hence Iω is normal.

Lemma 15. A set X is in I+
ω iff X ∈ Fs, for some s ∈ [ω × ω2]<ω.

Now we are ready to show the desired result.

On Partially Wellfounded Generic Ultrapowers 349

Theorem 16. Let G be a generic subset of I+
ω and jG : V → MG = V ∩ ω1V/G

be the corresponding elementary embedding. Then MG is wellfounded at least up
to jG(τ).

Proof. Suppose that 〈ġn|n < ω〉 is a sequence of I+
ω -names of old (in V) functions

from ω1 → τ .
Let G ⊆ I+

ω be a generic ultrafilter. Pick a set X0 ∈ G and a function

g0 : ω1 → τ

in V such that
X0‖ I+

ω
ġ0 = ǧ0.

Let α0 < (ω2)V be so that fα0 = g0.
Apply Lemma 15 to X0 . There is a sequence s0 with Fs0 defined and so that

X0 ∈ Fs0 . Recall now the definition of the filters Fs0�〈|s0|α〉 which extend Fs0

at the very next stage of the construction. There will be β0 < κ+ and n0 > |s0|
such that An0τ(α0) ∈ Fs0�〈|s0|β0〉. Denote by η0 the the ordinal attached to fα0

at the level of s0 in the construction of F+
s0�〈|s0|β0〉. By shrinking if necessary

we can assume that An0τ(α0) ∩ X0 ∈ Ft implies that the sequence s0
�〈|s0|β0〉 is

an extension of the sequence t or vice verse. Without loss of generality we can
assume that An0τ(α0) ∩ X0 ∈ G, just otherwise replace X0 by arbitrary positive
subset and use density.

Continue now below An0τ(α0) ∩ X0 and pick X1 ∈ G such that for some
function

g1 : κ → τ

in V we have
X1‖ F+

ω
ġ1 = ǧ1.

Let g1 = fα1 . Again, by 15, there is a sequence s1 extending s0 with Fs1 defined
and so that X1 ∈ Fs1 . Recall now the definition of the filters Fs1�〈|s1|α〉 which
extend Fs1 at the very next stage of the construction. There will be β1 < κ+

and n1 > |s1| such that An1τ(α1) ∈ Fs1�〈|s1|β1〉. Denote by η1 the the ordinal
attached to fα1 at the level of s1 in the construction of F+

s1�〈|s1|β1〉. By shrinking
if necessary we can assume that An1τ(α1) ∩ X1 ∈ Ft implies that the sequence
s1

�〈|s1|β1〉 is an extension of the sequence t or vice verse. Without loss of
generality we can assume that An1τ(α1) ∩ X1 ∈ G, just otherwise replace X1 by
arbitrary positive subset and use density.

Continue the process for each n < ω. There will be k < m < ω with ρk ≤ ρm.
Then the set

{ν ∈ Xm ∩ Anmαm |fαk
(ν) ≤ fαm(ν)} ∈ Fsm

�〈|sm|βm〉.

But Xm ∩ Anmαm ∈ G as well. Then,

{ν ∈ Xm ∩ Anmαm |fαk
(ν) ≤ fαm(ν)} ∈ G,

just no elements ofG canbe outside ofXm ∩ Anmαm (modF ⊆ Fω)since all of them
are in Ft’s for sequences t which are subsequences of sn, for some n < ω. �

350 M. Gitik and M. Magidor

Actually the argument provides a bit more information. Thus the following holds:

Theorem 17. Assume that 2ℵ1 = ℵ2 and ‖f‖ = ω2, for some f : ω1 → ω1.
Suppose that Player I has a winning strategy in the game Gτ , for some τ < ℵ3,
then there is a normal ideal on ℵ1 with a generic ultrapower wellfounded up to
the image of τ .

Proof. Note that the construction of Iω above relays only on the strategy for the
player one in the game Gτ . �

The opposite direction is true as well:

Theorem 18. Suppose that J is a normal ideal on ℵ1 with a generic ultrapower
well founded up to the image of τ (for some ordinal τ), then Player I has a
winning strategy in the game Gτ .

Proof. Just start with ω1 or any J-positive set. At a stage 2n − 1(n > 0) the
second player responds with a function f : A2n−2 → τ and, say, a sequence
〈Bα|α < ℵ1〉 such that

	α<ω1Bα ⊇ A2n−2.

Then one of Bα’s should have the intersection with A2n−2 in J+ (J is normal and
we assume that A2n−2 ∈ J+). Pick the least α such that A2n−2∩Bα ∈ J+. Shrink
then A2n−2 ∩ Bα to a set deciding the value of [f]Ġ in the generic ultrapower.
Let A2n be such a set.

The above defines a winning strategy for the player one in the game Gτ . �

Acknowledgement

We would like to thank A. Ferber and A. Rinot for their comments and remarks.

References

1. Donder, H.-D., Koepke, P.: On the consistency strength of ‘Accessible’ Jonsson
Cardinals and of the Chang Conjecture, APAL 25, pp. 233–261 (1983)

2. Foreman, M.: Ideals and Generic Elementary Embeddings, in Handbook of Set The-
ory (to appear)

3. Gitik, M.: On normal precipitous ideals, www.math.tau.ac.il/∼gitik
4. Jech, T.: Set Theory, 3rd ed.
5. Jech, T., Prikry, K.: On ideals of sets and the power set operation. Bull. Amer.

Math. Soc. 82(4), 593–595 (1976)
6. Jech, T., Shelah, S.: A note on canonical functions. Israel J. Math. 68, 376–380

(1989)
7. Larson, P., Shelah, S.: Bounding by canonical functions, with CH. J. Math.

Logic 3(2), 193–215 (2003)
8. Mitchell, W.: The covering lemma, in Handbook of Set Theory (to appear)

www.math.tau.ac.il/~gitik

Some Results on the Expressive Power and

Complexity of LSCs�

David Harel��, Shahar Maoz, and Itai Segall

The Weizmann Institute of Science, Rehovot, Israel
{dharel,shahar.maoz,itai.segall}@weizmann.ac.il

This paper is dedicated to Prof. Boaz Trakhtenbrot,
with deep admiration and respect.

Abstract. We survey some of the main results regarding the complex-
ity and expressive power of Live Sequence Charts (LSCs). We first de-
scribe the two main semantics given to LSCs: a trace-based semantics
and an operational semantics. The expressive power of the language is
then examined by describing translations into various temporal logics.
Some limitations of the language are also discussed. Finally, we survey
complexity results, mainly due to Bontemps and Schobbens, regarding
the use of LSCs for model checking, execution, and synthesis.

1 Introduction

Live Sequence Charts (LSCs, or LSC for the language) [9] constitute a visual for-
malism for inter-object scenario-based specification and programming. The lan-
guage extends classical Message Sequence Charts (MSC) [21], mainly by adding
universal and existential modalities. LSC distinguishes between behaviors that
may happen in the system (existential, cold) and those that must happen (uni-
versal, hot). A universal chart contains a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in
the actual chart body.

An executable (operational) semantics for LSC was defined in [18]. Thus,
LSC can be viewed not only as a specification language but also as a high-level
programming language for reactive systems.

Since its original definition, the language has been the subject of much work,
e.g., in the contexts of scenario-based testing [25,26], synthesis [3,13,15], execu-
tion (play-out) [18], formal verification [22,33], specification and verification of
hardware [6], telecommunication systems [8], biological systems [11], specifica-
tion mining [27], and compilation into aspects [12,29]. Also, recently, in [16], a
� The research was supported in part by The John von Neumann Minerva Center for

the Development of Reactive Systems at the Weizmann Institute of Science and by
a Grant from the G.I.F., the German-Israeli Foundation for Scientific Research and
Development.

�� Part of this author’s work carried out during a visit to the School of Informatics at
the University of Edinburgh, which was supported by a grant from the EPSRC.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 351–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

352 D. Harel, S. Maoz, and I. Segall

UML2 compliant and slightly generalized variant of LSC was defined, allowing
the embedding of LSC into the UML standard [35].

In this paper we survey some results regarding the expressive power and suc-
cinctness of the language, as well as complexity results for various problems
related to using LSC for specification and programming.

2 Language Overview

The LSC language was originally defined by Damm and Harel in [9]. The lan-
guage has two types of charts: universal (annotated by a solid borderline) and
existential (annotated by a dashed borderline). Universal charts are used to spec-
ify restrictions over all possible system runs. A universal chart typically contains
a prechart, that specifies the scenario which, if successfully executed, forces the
system to satisfy the scenario given in the actual chart body. Existential charts
specify sample interactions between the system and its environment, and must
be satisfied by at least one system run. They thus do not force the application to
behave in a certain way in all cases, but rather state that there is at least one set
of circumstances under which a certain behavior occurs. Existential charts can
be used to specify system tests, or simply to illustrate longer (non-restricting)
scenarios that provide a broader picture of the behavioral possibilities to which
the system gives rise.

Most constructs in the language, e.g., messages and conditions, also have a
hot/cold modality. Hot behaviors are mandatory and must be satisfied by any
system run. Cold behaviors, on the other hand, are provisional, and may be
satisfied. For example, a hot message must eventually be sent, while a cold
message may or may not be sent.

An example of a universal LSC is given in Fig. 1. The chart in the example
is adopted from [24], and is part of a specification for a cellular phone. The
chart requires that whenever the user closes the Cover, the Chip will send the
message StartRing(Silent) to the Speaker and later the speaker will turn
silent as designated by the self message Sound(Silent). The Display will set
its state to Time and later set its background to Green. An LSC induces a
partial order that is determined by the order along an instance line, by the fact
that a message can be received only after it is sent, and by taking into account
that a synchronous message blocks the sender until receipt. Thus in Fig. 1, the
message ChangeBackground(Green)must occur after message SetState(Time),
but both are unordered with respect to the messages StartRing(Silent) and
Sound(Silent).

An example of an existential LSC is given in Fig. 2. The chart states that there
is a possible run of the system where the user presses Click on the Send Key
and eventually the Chip receives an ACK from the environment ENV. The SYNC
condition restricts the order between the two messages, which are otherwise
unordered.

We give here a restricted and simplified trace-based semantics for a kernel sub-
set of LSC. The original LSC semantics was given in [9]. In subsequent work the

Some Results on the Expressive Power and Complexity of LSCs 353

Fig. 1. An example of a universal chart

Fig. 2. An example of an existential chart

semantics of (restricted subsets or extensions of) the language was given using
temporal logics (see, e.g., [24]) or various types of automata (see, e.g., [16,23]).
An operational semantics, explicated in the play-out algorithm, was given in [18].

2.1 Basic Definitions

The following definitions are adopted from [24]. We assume the LSC specifica-
tion relates to an object system composed of a set of objects O = {O1 . . . On}.
An object system corresponds to an implementation, and our goal in providing
semantics for LSCs is to define when a given object system satisfies an LSC
specification. The instance identifiers in the LSC charts refer to objects from O,
and possibly also the environment, denoted env. The LSC specifies the behavior
of the system in terms of the message communication between the objects in the
system. We want to define the notion of satisfiability of an LSC specification.
In other words, we want to capture the languages L ⊆ A∗ ∪ Aω generated by
the object systems that satisfy the LSC specification. The alphabet A used de-
fines message communication between objects, A = O × (O.Σ), where Σ is the
alphabet of messages.

354 D. Harel, S. Maoz, and I. Segall

An LSC chart is constructed from a set of instances, a set of locations in those
instances, a set of messages, and a mapping from messages to locations. Each
chart also has an activation mode, either universal or existential. Similarly, each
message has a temp function, defining its temperature, as either hot or cold.
For now, a chart is assumed to have a single message acting as the activation
message. Later on this notion will be extended to a full prechart.

Let inst(m) be the set of all instance-identifiers referred to in chart m. With
each instance i we associate a finite number of locations dom(m, i) ⊆ {0, . . . ,
l max(i)}. We collect all locations of m in the set

dom (m) = {〈i, l〉 | i ∈ inst(m) ∧ l ∈ dom(m, i)}.

The messages appearing in m are triples

Messages(m) = dom(m) × Σ × dom(m),

where (〈i, l〉, σ, 〈i′, l′〉) corresponds to instance i, while at location l, sending σ
to instance i′ at location l′. Each location can appear in at most one message
in the chart. The relationship between locations and messages is given by the
mapping

msg(m) : dom(m) → Messages(m)

The msg function induces two Boolean predicates send and receive. The predi-
cate send is true only for locations that correspond to the sending of a message,
while the predicate receive is true only for locations that correspond to the re-
ceiving of a message. We define the binary relation R(m) on dom(m) to be the
smallest relation satisfying the following axioms and closed under transitivity
and reflexivity:

– order along an instance line:

∀〈i, l〉 ∈ dom(m), l < l max(i) ⇒ 〈i, l〉R(m)〈i, l + 1〉

– order induced from message sending:

∀msg ∈ Messages(m), msg = (〈i, l〉, σ, 〈i′, l′〉) ⇒

〈i, l〉R(m)〈i′, l′〉

– messages are synchronous; they block the sender until receipt:

∀msg ∈ Messages(m), msg = (〈i, l〉, σ, 〈i′, l′〉) ⇒

〈i′, l′〉R(m)〈i, l + 1〉

We say that the chart m is well-formed if the relation R(m) is acyclic. We
assume all charts to be well-formed, and use ≤m to denote the partial order
R(m).

Some Results on the Expressive Power and Complexity of LSCs 355

We denote the preset of a location 〈i, l〉 containing all elements in the domain
of a chart smaller than 〈i, l〉 by

•〈i, l〉 = {〈i′, l′〉 ∈ dom(m)|〈i′, l′〉 ≤m 〈i, l〉}.

We denote the partial order induced by the order along an instance line by
≺m; thus 〈i, l〉 ≺m 〈i′, l′〉 iff i = i′ and l < l′.

A cut through m is a set c of locations, one for each instance, such that for
every location 〈i, l〉 in c, the preset •〈i, l〉 does not contain a location 〈i′, l′〉 such
that 〈j, lj〉 ≺m 〈i′, l′〉 for some location 〈j, lj〉 in c. A cut c is specified by the
locations in all of the instances in the chart:

c = (〈i1, l1〉, 〈i2, l2〉, ..., 〈in, ln〉)

For a chart m with instances i1, ..., in the initial cut c0 has location 0 in all the
instances. Thus, c0 = (〈i1, 0〉, 〈i2, 0〉, ..., 〈in, 0〉). We denote cuts(m) the set of all
cuts through the chart m.

For chart m, some 1 ≤ j ≤ n and cuts c, c′, with

c = (〈i1, l1〉, 〈i2, l2〉, ..., 〈in, ln〉), c′ = (〈i1, l′1〉, 〈i2, l′2〉, ..., 〈in, l′n〉)

we say that c′ is a 〈j, lj〉-successor of c, and write succm(c, 〈j, lj〉, c′), if c and c′

are both cuts and
l′j = lj + 1 ∧ ∀i = j, l′i = li

Notice that the successor definition requires that both c and c′ are cuts, so that
advancing the location of one of the instances in c is allowed only if the obtained
set of locations remains unordered.

A run of m is a sequence of cuts, c0, c1, . . . , ck, satisfying the following:

– c0 is an initial cut.
– for all 0 ≤ i < k, there is 1 ≤ ji ≤ n, such that succm(ci, 〈ji, lji〉, ci+1).
– in the final cut ck all locations are maximal.

Runs(m) is the set of all runs of m.
Assume the natural mapping f between (dom(m) ∪ env) × Σ × dom(m) to

the alphabet A, defined by

f(〈i, l〉, σ, 〈j, l′〉) = (Oi, Oj .σ)

Intuitively, the function f maps a location to the sending object and to the
message of the receiving object. With this notation in mind, f(Messages(m)) will
be used to denote the letters in A corresponding to messages that are restricted
by chart m:

f(Messages(m)) = {f(v) | v ∈ Messages(m)}

Definition 1. Let c = c0, c1, ..., ck be a run. The execution trace, or simply the
trace of c, written w = trace(c), is the word w = w1 ·w2 · · · wk over the alphabet
A, defined by:

wi =
{

f(msg(m)(〈j, lj〉)) if succm(ci−1, 〈j, lj〉, ci) ∧ send(〈j, lj〉)
ε otherwise

356 D. Harel, S. Maoz, and I. Segall

We define the trace language generated by chart m, Ltrc
m ⊆ A∗, to be

Ltrc
m = {w | ∃(c0, c1, ..., ck) ∈ Runs(m) s.t. w = trace(c0, c1, ..., ck)}

There are two additional notions that we associate with an LSC, its mode and
its activation message. These are defined as follows:

mod : m → {existential, universal}

amsg : m → dom(m) × Σ × dom(m)

The activation message of a chart designates when a scenario described by
the chart should start, as we describe below. The charts and the two additional
notions are now put together to form a specification. An LSC specification is a
triple

LS〈M, amsg, mod〉,
where M is a set of charts, and amsg and mod are the activation messages and
modes of the charts, respectively.

The language of the chart m, denoted by Lm ⊆ A∗ ∪Aω , is defined as follows:
For an existential chart, mod(m) = existential, we require that the activation

message is relevant (i.e., sent) at least once, and that the trace will then satisfy
the chart:

Lm =
{
w = w1 · w2 · · · | ∃i0, i1, ..., ik and ∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t.
(i0 < i1 < ... < ik) ∧ (wi0 = f(amsg(m))) ∧
(∀j, 1 ≤ j ≤ k, wij = vj) ∧
(∀j′, i0 ≤ j′ ≤ ik, j′ ∈ {i0, i1, ..., ik} ⇒ wj′ ∈ f(Messages(m)))}

The formula requires that the activation message is sent once
(wi0 = f(amsg(m))), and then the trace satisfies the chart; i.e., there is a
subsequence belonging to the trace language of chart m (v = v1 · v2 · · · vk =
wi1 · wi2 · · · wik

∈ Ltrc
m), and all the messages between the activation message

until the end of the satisfying subsequence (∀j′, i0 ≤ j′ ≤ ik) that do not be-
long to the subsequence (j′ ∈ {i0, i1, ..., ik}) are not restricted by the chart m
(wj′ ∈ f(Messages(m))).

For a universal chart, mod(m) = universal, we require that each time the
activation message is sent the trace will satisfy the chart:

Lm = {w = w1 · w2 · · · | ∀i, wi = f(amsg(m)) ⇒ ∃i1, i2, ..., ik and
∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t. (i < i1 < i2 < ... < ik) ∧
(∀j, 1 ≤ j ≤ k, wij = vj) ∧
(∀j′, i ≤ j′ ≤ ik, j′ ∈ {i1, ..., ik} ⇒ wj′ ∈ f(Messages(m)))}

The formula requires that after each time the activation message is sent
(∀i, wi = f(amsg(m))), the trace will satisfy the chart m (this is expressed
in the formula in a similar way to the case for an existential chart).

Now come the main definitions, which finalize the semantics of the language
by connecting it with an object system:

Some Results on the Expressive Power and Complexity of LSCs 357

Definition 2. A system S satisfies the LSC specification LS = 〈M, amsg, mod〉,
written S |= LS, if:

1. ∀m ∈ M, mod(m) = universal ⇒ LS ⊆ Lm

2. ∀m ∈ M, mod(m) = existential ⇒ LS ∩ Lm = ∅

In this short introduction, we assumed that a chart has an activation message.
The extension of this notion to a prechart is omitted here. Informally, a chart
containing a prechart must be satisfied whenever its prechart is satisfied. We also
assumed all messages are hot, therefore all cuts must progress. However, when
introducing cold messages, a cut containing only cold messages may progress,
but need not.

The kernel language of LSC, introduced in [9], contains several constructs, in
addition to the messages formally introduced above. These include:

– Conditions, which act as requirements on the state of the system at a given
point in time. Like messages, conditions too can have a hot/cold modality,
defining the effect of a false condition. A false hot condition is a violation of
the requirements, whereas a false cold condition merely induces an immediate
normal exit from the chart (or enclosing subchart).

– Subcharts are the main structuring mechanism in the LSC language. A sub-
chart is a well-formed fragment of a chart. Along with conditions, it can also
be used to define branching constructs like if-then-else.

– Variables, whose scope is local to an LSC. One can use assignments to assign
values to variables. Expressions within conditions may include variables.

2.2 Different Variants and Additional Constructs

The above definitions constitute a kernel subset of the LSC language. A number
of variants and extensions have been suggested and used in different kinds of
work and in different contexts. We list some of these variants and extensions
below.

The first variation to be discussed refers to the question of how often a univer-
sal LSC should be activated. The most general case is that of an invariant LSC,
which calls for the LSC to be activated whenever the prechart is completed, re-
gardless of the state of the system. This means that multiple copies of the same
chart may be active simultaneously, if the prechart is completed several times.
Two restrictions to this mode are initial and iterative (see, for example, in [5]).
The initial mode indicates that the LSC is activated at system start only; i.e., it
is intended to describe a start-up or initialization sequence. The iterative mode
allows only one incarnation of the chart at a time, i.e., as long as a chart is active
its prechart is not monitored for further satisfactions.

Another variant, suggested in [18], is that of strict vs. tolerant (or weak) se-
mantics. A strict LSC restricts the occurrence of the messages used in the LSC to
exactly those points in time where they are supposed to occur according to the
scenario. Any message appearing out-of-order in a strict LSC is considered a vi-
olation. In the weak interpretation, the specification is satisfied if each necessary

358 D. Harel, S. Maoz, and I. Segall

message occurs at least once where it is supposed to, and additional occurrences
of it are ignored.

A variety of extensions have also been suggested to the kernel subset of the
language. We now list some of them.

– Symbolic messages were introduced in [30]. In a symbolic message, the ar-
guments passed by the message are symbolic, thus a single message in an
LSC can stand for several different instantiations of it in the system. The
actual arguments used in a specific run can be stored in LSC-local variables,
so that they can be used again in the same chart. See also Chapter 7 in [18].

– In a real system, multiple objects can be instances of the same class. A
symbolic instance in an LSC represents an entire class, or rather, any instance
of the class, instead of a single concrete object. Symbolic instances were first
suggested in [30], and are also covered in Chapter 15 of [18].

– A co-region is a sequence of locations belonging to the same instance, in
which the partial order requirement is relaxed, i.e., locations within a co-
region may appear in any order.

– Forbidden messages and conditions were introduced in [18], allowing one to
state behaviors that are forbidden while an LSC (or a part of it) is active.
Similarly, one may add restrictions on message sending, besides the ones
derived from the LSC’s partial order, using a restricts clause.

– Timing constraints on LSCs are considered in [23] and [17]. In [23], LSCs can
be annotated by timers and by delay intervals, thus allowing one to express
timing constraints on pairs of events that are either on the same instance
line, or are connected by a message. In [17], on the other hand, a single clock
object with one property, Time, and a single method, Tick, are introduced.
This, together with the rich LSC language, suffices for specifying a wide
variety of timing constraints (see Chapter 16 of [18]).

2.3 Scenario-Based Execution

The semantics described so far is a trace-based semantics, defining when a trace
of events is in the language of the LSC specification. However, in [18,19], the
play-out approach is presented. In this approach, the LSC specification can be
directly executed, without any intermediate steps. Play-out is implemented in
the Play-Engine tool. The play-out process calls for the Play-Engine to contin-
uously monitor the applicable precharts of all universal charts, and whenever
successfully completed, to execute their bodies. A full operational semantics is
supplied in Appendix A of [18], defining how an LSC specification can be exe-
cuted. We quote some of the main definitions from there.

The operational semantics is given as a transition system

Sem(S) = 〈V , V0, SD, SM , Δ[SO, SC]〉

where V is the set of possible configurations (states) of Sem(S), V0 is the initial
configuration, SD ⊆ SU is the set of driving LSCs, SM ⊆ SU ∪ SE is the set of

Some Results on the Expressive Power and Complexity of LSCs 359

monitored LSCs, and Δ ⊆ V×(E∪
⋃

L∈S EL)×V is the set of allowed transitions.
We require that SD ∩ SM = ∅.

A state V ∈ V is defined as

V = 〈RL, ML,Violating〉
where RL is a set of live copies of ‘driving’ LSCs, ML is a set of live copies of
monitored LSCs, and Violating indicates by True or False whether the state is
a violating one.

The initial configuration contains no copies of driving LSCs and no copies of
monitored LSCs, and is defined as:

V0 = 〈∅, ∅, False〉
The transition relation Δ is parameterized by two sets. The first, SO, is the

set of original LSCs to which Δ should be applied. The second, SC , is the set of
live copies that currently exist. This set contains only copies of LSCs from SO.
The two sets are instantiated with either (SD, RL) or (SM , ML).

Δ is described as a set of rules to its set parameters and to Violating with
respect to a given event e. Since the set parameters are instantiated also by RL
and ML, which are taken from a state V , the result of applying Δ is a new state
V ′ consisting of the modified components. In other words, Δ defines the result
of executing an event e in a given system state. We skip the formal definition of
Δ. The idea behind its rules is to advance any cut that needs to be advanced by
executing e, to open new live copies of charts for which the prechart has become
relevant, and to update Violating to state whether there has been a violation.

The same definitions are used in [18] both for describing how a specification
can be used for testing (quite similarly to the trace-based semantics described
above), and for actual execution. The execution mechanism works in phases of
step and super-step. The input to a step is a system event e. The procedure for
a step phase consists of applying the transition relation onto the event e and, if
the event represents a property change, changing the state of the object model
according to the new value in the message.

In the super-step phase, the Play-Engine continuously executes the steps as-
sociated with internal events — i.e., those that do not originate with the user,
the environment, the Clock or external objects — until it reaches a ‘stable’ state
where no further such events can be carried out.

The execution algorithm proposed in [18] is näıve, in the sense that when
facing multiple choices for a step, none of them causing an immediate violation,
it chooses one arbitrarily. Its choice might lead to a contradiction in the future,
while perhaps there could have been a different choice that would have avoided
it. This problem is addressed by the smart play-out algorithm proposed in [14],
in which a legal super-step is found using a model checker. The specification
is translated into a model, and the model checker is fed with this model along
with the claim that no legal super-step exists. If one does exist, it will be given
as a counter-example to the claim. In [20] the problem is translated into an AI
planning problem, and an extended planner is used in order to find all legal
supersteps from a given system state, up to a predefined length.

360 D. Harel, S. Maoz, and I. Segall

The operational semantics given above expresses the same ideas as the trace-
based semantics of section 2.1, but in a manner more suitable for execution.
The operational semantics somewhat restricts the trace-based semantics to those
cases that are interesting in the context of execution. In a sense, all “interesting”
traces can be generated by the operational semantics. When equipped with the
smart play-out approach, it is also sound, in the sense that every supserstep
generated by it is also a legal trace in the trace-based semantics.

The Play-Engine [18] is an interpreter based execution engine for an LSC
specification. The specification is executed directly, with no intermediate code
being generated. An implementation of play-out by compilation into aspects
was suggested in [29] and is implemented in a compiler called S2A [12]. This
work is defined for the slightly generalized and UML2-compliant variant of LSC
given in [16], in which, unlike the version supported by the Play-Engine where
precharts are monitored and main-charts are executed, the hot/cold modality is
orthogonal to a new monitor/execute modality.

3 Expressive Power

The expressive power of LSC was studied in [3,10,13,24] by suggesting transla-
tions from fragments of the language into various Temporal Logics.

A first embedding of a kernel subset of the language (which omits variables,
for example) into CTL∗ was given in [13]. For this kernel subset the embedding is
a strict inclusion, since given the single level quantification mechanism of LSCs,
the language cannot express general formulas with alternating path quantifiers.1

This embedding was improved in [24] to support a wider subset of the language
and in a more efficient way. Specifically, it was shown that existential charts can be
expressed using the branching temporal logic CTL, while universal charts are in
the intersection of linear temporal logic and branching temporal logic LTL ∩ CTL.
Below we give the basic and then the improved explicit translations from [24].

Definition 3 ([24]). Let w = m1m2m3 . . . mk be a finite trace. Let R =
{e1, e2, e3 · · · el} be a set of events. The temporal logic formula φR

w is defined as:

φR
w = NU (m1 ∧ (X (NU (m2 ∧ (X(NU(m3 . . .))))))) ,

where the formula N is given by N = ¬e1 ∧ ¬e2 . . . ∧ ¬el.

Definition 4 ([24]). Let LS = 〈M, amsg, mod〉 be an LSC specification. For a
chart m ∈ M , we define the formula ψm as follows:

– If mod(m) = universal, then ψm = AG
(
amsg(m) → X

(∨
w∈Ltrc

m
φR

w

))
.

– If mod(m) = existential, then ψm = EF
(∨

w∈Ltrc
m

φR
w

)
.

1 It shouldn’t be too difficult to extend LSCs to allow certain kinds of quantifier
alternation, as noted in [9]. However, as in [9], this was not done there either, since
it was judged to have been too complex and unnecessary for real world usage of
sequence charts.

Some Results on the Expressive Power and Complexity of LSCs 361

(for a universal chart m, R includes the events appearing in the prechart and in
the main chart.)

In the above, the formula for a universal chart is in LTL. However, it can be large,
due to the possibility of having many different traces for the chart, which affects
the number of clauses in the disjunction, and also due to the similarity of clauses at
the different sides of the implication operator. In the improved translation given
below, the resulting temporal logic formulas are much more succinct, i.e., polyno-
mial vs. exponential in the number of locations.

We consider the case where both the prechart and the main chart consist only
of message communication, and denote by p1, · · · pk the events appearing in the
prechart, and by m1, · · · ml the events appearing in the main chart. Denote by ei

any of these events, either in the prechart or in the main chart. We write ei ≺ ej

if ei precedes ej in the partial order induced by the chart, and ei ⊀ ej if ei and ej

are unordered.

Definition 5 ([24])

ψm = G

⎛

⎝(
∧

pi≺pj

φpi,pj ∧
∧

∀pi,mj

φpi,mj ∧
∧

pi⊀pj

¬χpj ,pi) →

(
∧

mi≺mj

φmi,mj ∧
∧

mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj)

⎞

⎠

φxi,xj = ¬xjUxi

χxi,xj = (¬xi ∧ ¬xj)U(xi ∧ X((¬xi ∧ ¬xj)Uxi))

Here the formula φxi,xj specifies that xj must not happen before xi, which even-
tually occurs. The formula ¬χxi,xj specifies that xi must not occur twice before
xj occurs.

Note that this translation is polynomial in the number of messages appearing
in the chart, while the translation in Definition 4 may be exponential in that num-
ber. However, the above translation assumes that a message does not appear more
than once in the same chart. Whether an efficient translation exists for the most
general case is left open in [24]. A construction given in [3] provides a polynomial
translation for the more general case of deterministic LSCs, i.e., where a message
may occur more than once in a chart but all appearances of the same message are
ordered.

Using a characterization by Maidl for the common fragment of LTL and CTL
[28] and a theorem by Clarke and Draghicesku [7], it is shown in [24] that the for-
mulas given in Definition 5 have equivalent CTL formulas. Finally, [24] considers
also the extension of the above to support conditions and bounded iterations. An
explicit translation that supports these, however, is left in [24] for future work.

A different translation of LSC into TL, which supports variables but consid-
ers activation only by activation condition and not the general case of precharts,
was given by Damm, Toben, and Westphal in [10]. To support variables, the work

362 D. Harel, S. Maoz, and I. Segall

defines a translation of LSC into a fragment of first-order CTL∗. Specifically, a
translation is defined from bounded LSCs (i.e., where conditions and local invari-
ants only appear in simultaneous regions with messages) into (deterministic) com-
munication sequence first-order prenex CTL∗ (DCSCTL), a syntactically charac-
terized fragment of CTL∗. The translation is shown to be tight, i.e., a translation
back from DCSCTL into LSC is constructively defined, thus establishing an equiv-
alence.

Restricted to messages, the two pieces of work surveyed above [10,24] coincide.
They consider different subsets of the LSC language. Neither of them handles ex-
plicit time.

3.1 Limitations

As mentioned above, given the single level quantification mechanism of LSCs,
the language cannot express general formulas with alternating path quantifiers.
However, as shown in [10], the embedding of LSC into CTL∗ is strict even with-
out resorting to the nesting of path quantifiers. The question of whether adding
constructs not included in the above work (e.g., bounded iterations, specifically
within precharts) will make LSCs equivalent in expressive power to LTL remains
open in [10]. A similar result is provided in [1] where it is shown that the language
Σ∗aaΣω that is expressible using a deterministic Büchi automaton (DBA) and
by an LTL formula (F (a ∧ Xa)) is not expressible in LSC.

4 Complexity Results

In this section we survey the complexity results for the three main applications
of LSCs, i.e., model checking, execution (play-out), and synthesis. Essentially, all
results mentioned are due to Bontemps and Schobbens in [2] and [3].

4.1 Model Checking

Our first problem is that of model-checking. In this setting, one is given a system
implementation (either centralized or distributed) in some formal language, e.g.,
I/O automata, and an LSC specification, and we want decide whether the sys-
tem satisfies the specification. The complexity of this problem grows along two
axes: centralized vs. distributed systems, and closed vs. open environments (i.e.,
whether the system is a stand-alone one or interacts with an environment).

Theorem 1 ([2]). Closed Centralized Model Checking (CCMC) is complete for
co-NP.

Proof. Membership in co-NP is proved by guessing a counter-example, which is a
path in the system automaton that violates an LSC.

Hardness is proved by reducing the complement of the traveling salesman prob-
lem (CoTSP) (see [31]) to CCMC. Given a weighted graph, an automaton is built
such that a tour in the graph corresponds to a set of automata transitions. The

Some Results on the Expressive Power and Complexity of LSCs 363

automaton is equipped with a counter that sums the weights of the edges in the
tour. The fact that all tours have length ≥ k is encoded in an LSC. Its prechart is
matched when all vertices have occurred exactly once, and the main chart makes
sure the value of the counter is ≥ k. A tour of length < k exists iff the automaton
violates the LSC. ��

Theorem 2 ([2]). Open centralized model checking (OCMC), closed distributed
model checking (CDMC) and open distributed model checking (ODMC) are all
complete for PSPACE.

Proof. (For CDMC) Membership is proved by building a nondeterministic
PSPACE Turing machine deciding on the complement of the distributed model
checking problem, and relying on coPSPACE=PSPACE, according to Savitch’s
theorem [32].

The hardness proof takes a DPSPACE Turing machine and builds a set of au-
tomata, Ai, one for each cell tape. Each automaton records the letter in its cell,
and whether the tape head is located on it or not. Each transition of the Turing
machine is encoded by transitions in the relevant automaton. The LSC states that
whenever a run starts it must halt. This causes the system to satisfy the LSC iff
the Turing machine halts. ��

4.2 Reachability and Smart Play-Out

When considering the complexity of play-out, there are two main problems to
be considered, reachability, and smart play-out. In the reachability problem, an
LSC specification and a single existential LSC are given, and one wants to decide
whether, under the constraints of the former, the latter can be satisfied. In smart
play-out, the environment has executed several steps, and the system should find
a superstep, i.e., a series of steps that satisfies the specification.

Theorem 3 ([2]). Reachability is PSPACE-complete.

Proof. Membership is proved by transforming the LSC specification into an LTL
formula, Φu, and the claim that the existential formula can not be satisfied into
another LTL formula, φe, and checking whether Φu → φe is valid. This solves
the complement of the reachability problem. The solution for LTL is in PSPACE
according to [34]. Note that membership can also be proved by considering [14], in
which the problem is reduced to model-checking,which is known to be in PSPACE.

Hardness is proved by encoding the execution of a DPSPACE Turing machine
on the blank input as an LSC specification. The existential LSC calls for the ex-
ecution to start and to halt. A halting run of the Turing machine exists iff the
existential LSC can be satisfied. ��

Theorem 4. Smart play-out is PSPACE-complete.

Proof. Thetheoremcanbeprovedbyadaptingthereachabilityproofabove.Inother
work, not yet published, the same claim is proved by a reduction from QBF. ��

364 D. Harel, S. Maoz, and I. Segall

4.3 Synthesis and Consistency

The most complex class of problems considered here is that of synthesis. In this
class of problems, we would like to know whether the objects participating in the
LSC specification can actually be implemented consistently. This problem is also
termed “agent design”.

A related problem is that of consistency; i.e., deciding whether the specifica-
tion has no internal contradictions. A formal definition of a consistent system is
given in [13]. Informally, a system is consistent if there exists a non-empty regular
language, L, s.t. (1) all universal charts are satisfied by all traces in L; (2) every
trace in L is extendible if a new message is sent from the environment; and (3) each
existential chart is satisfied by some trace in L. In [13] it is shown that a system
is consistent if and only if it is satisfiable (i.e., can be synthesized).

As in previous sections, two versions of the synthesis problem are considered;
a centralized one, in which a single automaton is built, and a distributed one, in
which each object has its own automaton.

Theorem 5 ([1]). Centralized synthesis is EXPTIME-complete.

Proof. Membership follows from the exponential time algorithms proposed in [4]
and [15].

Hardness is proved by encoding an alternating PSPACE Turing machine as an
LSC, similar to the construction in Theorem 3, in which existential and universal
moves are distinguished. ��

An interesting question regarding the centralized synthesis problem deals with
the size of the synthesized automaton. This is also answered in [3], where it is
shown that there exists a family (φn)n>0 of LSC specifications, such that any im-
plementation of φn requires memory of size 2Ω(n log n). It is worth noting that this
proof uses co-region constructs, which relax the ordering of events. A co-region
succinctly encodes an exponential number of orderings.

Finally, [3] considers the problem of distributed synthesis, in which each object
has to be synthesized separately. The question of whether such a synthesis exists
is undecidable. This is proved by reducing Post’s correspondence problem to the
problem of deciding whether the specification is not distributively implementable.

5 Conclusion

The language of LSC has been a subject of much work. We surveyed here some
theoretical results regarding the expressive power of the language and the com-
plexity of some of its main applications.

References

1. Bontemps, Y.: Relating Inter-Agent and Intra-Agent Specifications (The Case of
Live Sequence Charts). PhD thesis, Facultés Universitaires Notre-Dame de la Paix,
Institut d’Informatique (University of Namur, Computer Science Dept) (April 2005)

Some Results on the Expressive Power and Complexity of LSCs 365

2. Bontemps, Y., Schobbens, P.-Y.: The Complexity of Live Sequence Charts. In: Sas-
sone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 364–378. Springer, Heidelberg
(2005)

3. Bontemps, Y., Schobbens, P.-Y.: The Computational Complexity of Scenario-Based
Agent Verification and Design. J. Applied Logic 5(2), 252–276 (2007)

4. Bontemps, Y., Schobbens, P.-Y., Löding, C.: Synthesis of Open Reactive Systems
from Scenario-Based Specifications. Fundam. Inform. 62(2), 139–169 (2004)

5. Brill, M., et al.: Live Sequence Charts: An Introduction to Lines, Arrows, and
Strange Boxes in the Context of Formal Verification. In: Ehrig, H., et al. (eds.) INT
2004. LNCS, vol. 3147, pp. 374–399. Springer, Heidelberg (2004)

6. Bunker, A., Gopalakrishnan, G., Slind, K.: Live Sequence Charts Applied to Hard-
ware Requirements Specification and Verification: A VCI Bus Interface Model. Soft-
ware Tools for Technology Transfer 7(4), 341–350 (2005)

7. Clarke, E.M., Draghicescu, I.A.: Expressibility Results for Linear-Time and
Branching-Time Logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
Linear Time, Branching Time and Partial Order in Logics and Models for Concur-
rency. LNCS, vol. 354, pp. 428–437. Springer, Heidelberg (1989)

8. Combes, P., Harel, D., Kugler, H.: Modeling and Verification of a Telecommunica-
tion Application Using Live Sequence Charts and the Play-Engine Tool. In: Peled,
D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 414–428. Springer, Hei-
delberg (2005)

9. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Formal Methods in System Design 19(1), 45–80 (2001); Preliminary version In:
Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) Proc. 3rd IFIP Int. Conf. on For-
mal Methods for Open Object-Based Distributed Systems (FMOODS 1999), pp.
293–312. Kluwer Academic Publishers, Dordrecht (1999)

10. Damm, W., Toben, T., Westphal, B.: On the Expressive Power of Live Sequence
Charts. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS,
vol. 4444, pp. 225–246. Springer, Heidelberg (2007)

11. Fisher, J., et al.: Combining State-Based and Scenario-Based Approaches in Mod-
eling Biological Systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS
(LNBI), vol. 3082, pp. 236–241. Springer, Heidelberg (2005)

12. Harel, D., Kleinbort, A., Maoz, S.: S2A: A Compiler for Multi-modal UML Sequence
Diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 121–
124. Springer, Heidelberg (2007)

13. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifi-
cations. Int. J. of Foundations of Computer Science 13(1), 5–51 (2002) Also: Harel,
D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifications.
In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 1–33. Springer, Heidel-
berg (2001) Preliminary version appeared as technical report MCS99-20, Weizmann
Institute of Science (1999)

14. Harel, D., et al.: Smart Play-out of Behavioral Requirements. In: Aagaard, M.D.,
O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 378–398. Springer, Hei-
delberg (2002)

15. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Models
from Scenario-Based Requirements. In: Kreowski, H.-J., et al. (eds.) Formal Meth-
ods in Software and Systems Modeling. LNCS, vol. 3393, pp. 309–324. Springer,
Heidelberg (2005)

16. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Se-
quence Diagrams. Software and Systems Modeling (SoSyM) (to appear, 2007)

366 D. Harel, S. Maoz, and I. Segall

17. Harel, D., Marelly, R.: Playing with Time: On the Specification and Execution of
Time-Enriched LSCs. In: MASCOTS, pp. 193–202. IEEE Computer Society, Los
Alamitos (2002)

18. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

19. Harel, D., Marelly, R.: Specifying and Executing Behavioral Requirements: The
Play-In/Play-Out Approach. Software and Systems Modeling (SoSyM) 2(2), 82–
107 (2003)

20. Harel, D., Segall, I.: Planned and Traversable Play-Out: A Flexible Method for Ex-
ecuting Scenario-Based Programs. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 485–499. Springer, Heidelberg (2007)

21. ITU. International Telecommunication Union Recommendation Z.120: Message Se-
quence Charts. Technical report (1996)

22. Klose, J., et al.: Check It Out: On the Efficient Formal Verification of Live Sequence
Charts. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 219–233.
Springer, Heidelberg (2006)

23. Klose, J., Wittke, H.: An Automata Based Interpretation of Live Sequence Chart.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031,
pp. 512–527. Springer, Heidelberg (2001)

24. Kugler, H., et al.: Temporal Logic for Scenario-Based Specifications. In: Halbwachs,
N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 445–460. Springer, Heidel-
berg (2005)

25. Kugler, H., Stern, M.J., Hubbard, E.J.A.: Testing Scenario-Based Models. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 306–320. Springer,
Heidelberg (2007)

26. Lettrari, M., Klose, J.: Scenario-Based Monitoring and Testing of Real-Time UML
Models. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 317–
328. Springer, Heidelberg (2001)

27. Lo, D., Maoz, S., Khoo, S.-C.: Mining Modal Scenario-Based Specification from Ex-
ecution Traces of Reactive Systems. In: Proc. 22nd IEEE/ACM Int. Conf. on Au-
tomated Software Engineering (ASE 2007), pp. 465–468 (2007)

28. Maidl, M.: The Common Fragment of CTL and LTL. In: FOCS, pp. 643–652 (2000)
29. Maoz, S., Harel, D.: From Multi-Modal Scenarios to Code: Compiling LSCs into

AspectJ. In: Proc. 14th Int. ACM/SIGSOFT Symp. Foundations of Software Engi-
neering (FSE-14), Portland, Oregon, pp. 219–230 (November 2006)

30. Marelly, R., Harel, D., Kugler, H.: Multiple Instances and Symbolic Variables in
Executable Sequence Charts. In: Proc. 17th ACM Conf. on Object-Oriented Prog.,
Systems, Lang. and App. (OOPSLA 2002), Seattle, WA, pp. 83–100 (2002)

31. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
32. Savitch, W.J.: Relationships Between Nondeterministic and Deterministic Tape

Complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)
33. Schinz, I., et al.: The Rhapsody UML Verification Environment. In: Proc. of the 2nd

Int. Conf. on Software Engineering and Formal Methods (SEFM 2004), pp. 174–183.
IEEE Computer Society Press, Washington, DC, USA (2004)

34. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Logics.
J. ACM 32(3), 733–749 (1985)

35. UML. Unified Modeling Language Superstructure Specification, v2.0. OMG spec.,
OMG (August 2005), http://www.omg.org

http://www.omg.org

Finite Dimensional Vector Spaces Are Complete

for Traced Symmetric Monoidal Categories

Masahito Hasegawa1, Martin Hofmann2, and Gordon Plotkin3

1 RIMS, Kyoto University
hassei@kurims.kyoto-u.ac.jp

2 LMU München, Institut für Informatik
hofmann@ifi.lmu.de

3 LFCS, University of Edinburgh
gdp@inf.ed.ac.uk

Abstract. We show that the category FinVectk of finite dimensional
vector spaces and linear maps over any field k is (collectively) complete
for the traced symmetric monoidal category freely generated from a sig-
nature, provided that the field has characteristic 0; this means that for
any two different arrows in the free traced category there always exists
a strong traced functor into FinVectk which distinguishes them. There-
fore two arrows in the free traced category are the same if and only if
they agree for all interpretations in FinVectk.

1 Introduction

This paper is affectionately dedicated to Professor B. Trakhtenbrot on the oc-
casion of his 85th birthday. Cyclic networks of various kinds occur in computer
science, and other fields, and have long been of interest to Professor Trakhten-
brot: see, e.g., [15,9,16,8]. In this paper they arise in connection with Joyal, Street
and Verity’s traced monoidal categories [6]. These categories were introduced to
provide a categorical structure for cyclic phenomena arising in various areas of
mathematics, in particular knot theory [17]; they are (balanced) monoidal cate-
gories [5] enriched with a trace, a natural generalization of the traditional notion
of trace in linear algebra that can be thought of as a ‘loop’ operator.

In computer science, specialized versions of traced monoidal categories natu-
rally arise as recursion/feedback operators as well as cyclic data structures. In
particular, Hyland and Hasegawa independently observed a bijective correspon-
dence between Conway (Bekič, or dinatural diagonal) fixpoint operators [1,11]
and traces on categories with finite products [2,3]. Thus, the notion of trace very
neatly characterises the well-behaved fixpoint operators commonly used in com-
puter science. More generally, traced symmetric monoidal categories equipped
with the additional structure of a cartesian center can be used for modelling
recursive computation created from cyclic data structures, see ibid. In this con-
text, freely generated traced symmetric monoidal categories can be characterised
as categories of cyclic networks, and so are of particular interest (see [14] for a
related treatment).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 367–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 M. Hasegawa, M. Hofmann, and G. Plotkin

We characterise the equivalence of arrows in free traced symmetric monoidal
categories via interpretations in the very familiar setting of linear algebra: the
category FinVectk of finite dimensional vector spaces and linear maps over a
field k. Specifically, we show (Theorem 4) that if k has characteristic 0 then
FinVectk is (collectively) complete for the traced symmetric monoidal category
freely generated from a signature; this means that for any two different arrows in
the free traced category there always exists a structure-preserving functor into
FinVectk which distinguishes them. Therefore two arrows in the free traced cat-
egory are the same if and only if they agree for all interpretations in FinVectk.

In order to show this, we present the freely generated traced symmetric
monoidal category in terms of networks modulo suitable isomorphisms, and re-
duce the problem to that of finding suitable interpretations of these networks in
FinVectk. This problem is then further reduced to considering a certain class
of networks: those over a one-sorted signature and with no inputs or outputs.
Finally, given any two such networks X and Y , we construct interpretations
[[−]]μX and [[−]]μY such that, ignoring some trivial cases, [[X]]μX = [[Y]]μX and
[[X]]μY = [[Y]]μY jointly imply that X and Y are isomorphic.

One motivation for our work was previous completeness results for the carte-
sian case, where the monoidal product is the categorical one. As remarked above,
in that case trace operators correspond to Conway fixpoint operators. However,
the mathematically natural model categories, such as that of pointed directed
complete posets and continuous functions, obey further equations, and the rel-
evant notion is that of an iteration operator [1,11]. It is shown in [11] that any
category with an iteration operator satisfying a mild non-triviality condition is
collectively complete for the theory of iteration operators. It would be inter-
esting to investigate conditions for the collective completeness of a symmetric
monoidal category for trace operators. Another direction which may be of in-
terest would be to look for completeness results for various classes of symmetric
monoidal categories equipped with some natural combinations of (co)units and
(co)diagonals; see [4] for a discussion of possible such combinations.

A closely related research thread is that of higher-order structures. Concerning
coherence problems in category theory, Mac Lane conjectured that the category
of vector spaces over a field is complete for the symmetric monoidal closed cat-
egory freely generated by a set of atoms. This was proved in a more general
form by Soloviev [12]; his proof-theoretic approach differs substantially from our
model-theoretic one. In the cartesian case one considers the typed λ-calculus,
where there is a good deal of work, starting with Friedman’s completeness theo-
rem: see [10] and the references given there for further developments. The com-
bination of higher-order structure and traces could be an interesting subject
for investigation; specifically one might consider the case of traced symmetric
monoidal closed categories.

Organisation of this paper. The rest of this paper is organised as follows. In
Sect. 2 we recall the notion of traced symmetric monoidal category, and describe
the trace on FinVectk. Section 3 is devoted to a theory of cyclic networks,
which provide a characterisation of the traced symmetric monoidal category

Finite Dimensional Vector Spaces Are Complete 369

freely generated over a monoidal signature. In Sect. 4 we study the interpretation
of networks in FinVectk, and, in particular, the interpretations needed for our
completeness results. These are presented in the concluding Sect. 5, which also
gives a completeness theorem for interpretations with finite fields (Theorem 5), a
discussion of some open problems, and a completeness result for compact closed
categories (Corollary 5), obtained using the biadjunction of [6] between such
categories and traced symmetric monoidal categories.

2 Preliminaries

2.1 Traced Symmetric Monoidal Categories

A monoidal category is a category C equipped with a bifunctor ⊗ : C2 → C,
an object I and natural isomorphisms aA,B,C : (A ⊗ B) ⊗ C

∼→ A ⊗ (B ⊗ C),
lA : I ⊗ A

∼→ A and rA : A ⊗ I
∼→ A satisfying standard conditions [7,5].

It is strict if these natural isomorphisms are identities. A symmetric monoidal
category is a monoidal category equipped with a specified natural isomorphism
cX,Y : X ⊗ Y

∼→ Y ⊗ X , again subject to standard axioms. A trace on such a
symmetric monoidal category is a family of functions:

TrX
A,B : C(A ⊗ X, B ⊗ X) → C(A, B)

subject to the following conditions:

– tightening (naturality): TrX
A′,B′((k ⊗ 1X) ◦ f ◦ (h ⊗ 1X)) = k ◦ TrX

A,B(f) ◦ h

– yanking: TrX
X,X(cX,X) = idX

– superposition: TrX
C⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrX

A,B(f)
– exchange:

TrX
A,B(TrY

A⊗X,B⊗X(f)) = TrY
A,B(TrX

A⊗Y,B⊗Y ((1B ⊗ cX,Y)◦ f ◦ (1A ⊗ cY,X)))

where, for ease of presentation, the associativity isomorphisms a have been omit-
ted in the last two conditions. For example, the unabbreviated exchange axiom
is:

TrX
A,B(TrY

A⊗X,B⊗X(f)) =
TrY

A,B(TrX
A⊗Y,B⊗Y (
a−1

B,Y,X ◦ (1B ⊗ cX,Y) ◦ aB,X,Y ◦ f ◦ a−1
A,X,Y ◦ (1A ⊗ cY,X) ◦ aA,Y,X))

where f : (A ⊗ X) ⊗ Y → (B ⊗ X) ⊗ Y . Note that this axiomatisation is not
quite the same as the original axiomatisation [6] or another popular formulation
(see e.g., [2,3]); however, it is not hard to see that they are all equivalent.1 A
traced symmetric monoidal category is a symmetric monoidal category equipped
with a (specified) trace.

The following graphical notation for the trace may help the reader. Given
f : A ⊗ X → B ⊗ X , its trace TrX

A,B(f) : A → B is shown as a feedback:

1 The vanishing condition for the unit TrI(f) = f was redundant in the original
axiomatisation. The vanishing condition for tensor TrX⊗Y (f) = TrX(TrY (f)) and
the sliding condition TrX((1 ⊗ h) ◦ f) = TrY (f ◦ (1 ⊗ h)) can all be derived from
the axioms presented here.

370 M. Hasegawa, M. Hofmann, and G. Plotkin

tightening : TrX
A′,B′((k ⊗ 1X) ◦ f ◦ (h ⊗ 1X)) = k ◦ TrX

A,B(f) ◦ h

�

�

�

�

�

h
f

k � =

�

�

�

�

�

h
f

k �

yanking : TrX
X,X(cX,X) = 1X

�

�

�

�

�

���� � = �

superposition : TrX
C⊗A,C⊗B(1C ⊗ f) = 1C ⊗ TrX

A,B(f)

�

�

�

�

�

f �
�

=

�

�

�

�

�

f �
�

exchange : TrX
A,B(TrY

A⊗X,B⊗X(f)) = TrY
A,B(TrX

A⊗Y,B⊗Y ((1B ⊗cX,Y)◦f ◦(1A ⊗cY,X)))

�

�

�

�

�
�

�

�

	

�

f

� =

�

�

�

�

�
�

�

�

	

�

���� f ����
�

Fig. 1. Axioms for Trace

�

�

�

�

�

fA �B

The above axioms are presented using this notation in Figure 1.

2.2 Finite Dimensional Vector Spaces

Finite dimensional vector spaces over a field k and linear maps form a traced
symmetric monoidal category FinVectk. The monoidal structure is given by
the standard tensor product, and the trace is a natural generalization of the
standard ‘sum of diagonal elements’ trace, sometimes called the ‘partial trace’;
the trace TrW

U,V (f) : U → V of a linear map f : U ⊗k W → V ⊗k W is given by:
(
TrW

U,V (f)
)
i,j

= Σkfi⊗k,j⊗k

where i, j run over bases of U and V . If U = V = k, we have TrW (f) =
∑

k fk,k

as expected. If {e1, . . . , en} is a basis of W , this is the same as
∑

i〈f(ei)|ei〉
where 〈−|−〉 is the canonical scalar product such that 〈ei|ej〉 = δij .

Finite Dimensional Vector Spaces Are Complete 371

The partial trace is the unique trace for this monoidal structure on FinVectk.
This is because FinVectk is compact closed, and every compact closed category
has a unique trace with respect to its monoidal structure.

3 Cyclic Networks

We present a theory of cyclic networks similar to the theory of cyclic sharing
graphs given in [3].

3.1 Sorts and Signatures

We introduce a notion of multisorted signature suitable for interpretation over
monoidal categories. If S is our set of sorts we call elements of S∗, the set of
finite sequences of sorts, arities. Given such an arity v, we write |v| for its length
and vi for its i-th component (for 1 ≤ i ≤ |v|).

Definition 1. An S-sorted signature is a triple (F, arin , arout) where F is a set
whose elements are called function symbols, and where arin , arout : F → S∗ are
mappings assigning to each function symbol f two arities: an input arity arin(f)
and an output arity arout (f).

We may refer to a signature by the set F alone, leaving the arity functions
implicit.

Definition 2. We define F• to be the extension of F with additional function
symbols •s for each sort s ∈ S, with arin(•s) = arout(•s) = ε.

The function symbol •s will be used to represent the trivial cycle of sort s (the
trace of the identity at s).

3.2 Networks

Definition 3. Let F be an S-sorted signature. A network from v to w in S∗

over F is a tuple N of the form (X, ϕ, π), where:

– X is a finite set (of nodes)
– ϕ is a function from X to F• (the labelling function, assigning a function

symbol to each node)
– π is a bijection between

ON = {〈x, i〉 | x ∈ X, 1 ≤ i ≤ |arout(ϕ(x))|} ∪ {j | 1 ≤ j ≤ |v|}

and

DN = {〈x, i〉 | x ∈ X, 1 ≤ i ≤ |arin(ϕ(x))|} ∪ {j | 1 ≤ j ≤ |w|}

372 M. Hasegawa, M. Hofmann, and G. Plotkin

such that the following constraints on arities are satisfied:

– π〈x, i〉 = 〈y, j〉 implies arout (ϕ(x))i = arin(ϕ(y))j

– π〈x, i〉 = j implies arout(ϕ(x))i = wj

– π(i) = 〈y, j〉 implies vi = arin(ϕ(y))j

– π(i) = j implies vi = wj

We say that v and w are the input and output arities of the network, and write
N : v → w.

It may help the reader to think of O as the set of ports from which flow originates
and D as the set of ports to which flow goes. The function π then shows how
the ports are linked.

Example 1. Let S = {A, B} be the set of sorts. We consider the following signa-
ture (F, arin, arout) on S, where F = {f, g} and:

arin(f) = AB arout(f) = AA
arin(g) = A arout(g) = B

B
A f

�A

�A
A g �B

Then, for instance, ({f, g, a}, ϕ, π) : A → A with ϕ(f) = f, ϕ(g) = g, ϕ(a) = •A

and:
π〈f, 1〉 = 1
π〈f, 2〉 = 〈g, 1〉
π〈g, 1〉 = 〈f, 2〉
π(1) = 〈f, 1〉

is a network which may be pictured as follows:

�

�

�

�

�A

�

�

�

�

�

A f A�
g

3.3 Homomorphisms

Definition 4. Let N = (X, ϕ, π) : v → w and N ′ = (X ′, ϕ′, π′) : v → w be
networks with the same input and output arities. A homomorphism from N to
N ′ is given by a function f : X → X ′ such that:

– ϕ′(f(x)) = ϕ(x)
– π〈x, i〉 = 〈y, j〉 implies π′〈f(x), i〉 = 〈f(y), j〉
– π〈x, i〉 = j implies π′〈f(x), i〉 = j
– π(i) = 〈y, j〉 implies π′(i) = 〈f(y), j〉
– π(i) = j implies π′(i) = j

Finite Dimensional Vector Spaces Are Complete 373

The first condition just says that f does not change the function symbol assigned
to each node. The other four requirements are equivalent to the commutation of
the following diagram:

ON DN

ON ′ DN ′

�π

�

fO

�

fD

�
π′

where fO and fD send 〈x, i〉 to 〈f(x), i〉 and j to j.
We evidently have a category with objects the networks of given input and

output arities and morphisms the homomorphisms. Since, as one easily sees, the
inverse of a bijective homomorphism is also a homomorphism, the isomorphisms
are the bijective homomorphisms. Note that we deal with trivial cycles as nodes
and hence homomorphisms must send trivial cycles to trivial cycles.

3.4 Interpretations in Traced Categories

Let us fix a traced symmetric monoidal category C. We are mainly interested in
the case of finite dimensional vector spaces and linear maps over a field, but it
is natural to state the general case, and necessary if we want to say something
about the classifying category built from networks.

Definition 5. Let F be an S-sorted signature. Then an interpretation μ of F
in C consists of the following data:

– an object [[s]]μ of C for each sort s ∈ S
– an arrow [[f]]μ : [[arin(f)]]μ → [[arout (f)]]μ for each function symbol f ∈ F ,

while for •s we put [[•s]]μ = Tr[[s]]μ(id[[s]]μ)

where we define the interpretation of arities by [[ε]]μ = I and [[sw]]μ = [[s]]μ⊗[[w]]μ.

Definition 6. Let F be an S-sorted signature and let μ be an interpretation of
F . Then the value [[(X, ϕ, π)]]μ : [[v]]μ → [[w]]μ of a network (X, ϕ, π) : v → w
with respect to μ is defined to be the trace of:

(⊗
x∈X [[arout(ϕ(x))]]μ

)
⊗ [[v]]μ π̂→

(⊗
x∈X [[arin(ϕ(x))]]μ

)
⊗ [[w]]μ

(
�

[[ϕ(x)]]μ)⊗[[w]]μ−−−−−−−−−−−−→
(⊗

x∈X [[arout(ϕ(x))]]μ
)

⊗ [[w]]μ

where π̂ is the isomorphism induced by π.

Proposition 1. If two networks are isomorphic, they have the same value.

3.5 The Traced Monoidal Category of Networks

Fixing an S-sorted signature F , we now define several constructions on networks
over F .

374 M. Hasegawa, M. Hofmann, and G. Plotkin

Definition 7. – Identity Networks. The identity network on arity v is defined
to be (∅, ∅, id) : v → v, where id is the identity permutation.

– Sequential Composition of Networks. For networks N = (X, ϕ, π) : v → w
and N ′ = (X ′, ϕ′, π′) : w → u, their sequential composition N ′ ◦ N : v → u
is the network (X � X ′, ϕ � ϕ′, π′′) : v → u, where (ϕ � ϕ′)(x) = ϕ(x) for
x ∈ X and (ϕ � ϕ′)(y) = ϕ′(y) for y ∈ X ′, and π′′ sends (i) p ∈ ON to
π′(π(p)) if π(p) ∈ N, otherwise to π(p), and (ii) 〈y, j〉 ∈ ON ′ to π′〈y, j〉.

– Parallel Composition of Networks. For networks N = (X, ϕ, π) : v → w and
N ′ = (X ′, ϕ′, π′) : v′ → w′, their parallel composition N ⊗ N ′ : vv′ → ww′

is the network (X � X ′, ϕ � ϕ′, π′′) : vv′ → ww′ where (i) π′′(p) = π(p) for
p ∈ ON , (ii) π′′(|v| + i) = |w| + π′(i) (1 ≤ i ≤ |v′|) if π′(i) ∈ N, otherwise
π′′(|v|+ i) = π′(i), and (iii) π′′〈y, i〉 = |w|+π′〈y, i〉 if π′〈y, i〉 ∈ N, otherwise
π′′〈y, i〉 = π′〈y, i〉.

– Symmetry Networks. The symmetry network on arities v and w is defined
to be (∅, ∅, c|v|,|w|) : vw → wv where cm,n(i) = i + n for 1 ≤ i ≤ m and
cm,n(m + i) = i for 1 ≤ i ≤ n.

– Traces of Networks. The trace Trs
v,w(N) : v → w of N = (X, ϕ, π) : vs → ws

is the network:
• (X � {a}, ϕ′, π′) : v → w if π(|v| + 1) = |w| + 1, where ϕ′(x) = ϕ(x) for

x ∈ X and ϕ′(a) = •s, and π′ = π \ {〈|v| + 1, |w| + 1〉}.
• (X, ϕ, π′) : v → w if π(|v| + 1) �= |w| + 1, where π′(p) = π(|v| + 1) if

p = π−1(|w| + 1) and π′(p) = π(p), otherwise..
This definition is extended to non-primitive arities by setting Trε

v,w(N) = N
for N : v → w and Trsu

v,w(N) = Trs
v,w(Tru

vs,ws(N)) for N : vsu → wsu.

Lemma 1. The constructions above are well-defined on equivalence classes of
networks up to network isomorphism.

We can now introduce the traced symmetric monoidal category Net(S,F). Its
objects are the arities (elements of S∗) and an arrow from v to w is an equivalence
class of networks over F with input arity v and output arity w, up to network
isomorphism. Composition is given by sequential composition, and the identity
arrows by the identity networks. The tensor of two objects is their concatenation
and the tensor of two arrows is given by parallel composition; the symmetry
maps are given by the symmetry networks. Finally, trace is given by the trace
on networks. Using the above lemma it is now straightforward to show:

Proposition 2. Net(S,F) forms a traced strict symmetric monoidal category.

3.6 Net(S,F) as a Classifying Category

Just as in traditional functorial model theory, it is not hard to see that giving
an interpretation of an S-sorted signature F in a traced symmetric monoidal
category C is equivalent to giving a structure-preserving functor (traced functor)
from Net(S,F) to C. This observation can be strengthened to be an equivalence
of the category Mod((S, F), C) of interpretations of F in C and the category

Finite Dimensional Vector Spaces Are Complete 375

TrMon(Net(S,F), C) of traced functors from Net(S,F) to C and monoidal natural
transformations, where we define a morphism between interpretations μ and μ′ to
be a family of arrows hs : [[s]]μ → [[s]]μ

′
which commutes with the interpretations

of function symbols, that is, for f with arin(f) = s1 . . . sm and arout(f) =
t1 . . . tn, the following diagram commutes:

[[s1]]μ ⊗
(
· · · ⊗ [[sm]]μ

)
[[t1]]μ ⊗ (· · · ⊗ [[tn]]μ)

[[s1]]μ
′
⊗

(
· · · ⊗ [[sm]]μ

′)
[[t1]]μ

′
⊗

(
· · · ⊗ [[tn]]μ

′)

�[[f]]μ

�

hs1⊗ (···⊗hsm)

�

ht1⊗ (···⊗htn)

�
[[f]]μ

′

Proposition 3. There is an equivalence of categories:

Mod((S, F), C) TrMon(Net(S,F), C)

Proof (Outline). Given an interpretation in a traced (possibly non-strict) sym-
metric monoidal category C, we can extend it to a strong traced functor from
Net(S,F) to C. This also sends morphisms between interpretations to monoidal
natural transformations, and we obtain a fully faithful functor from Mod
((S, F), C) to TrMon(Net(S,F), C). In addition, given a strong traced functor
from Net(S,F), we can construct an isomorphic strong traced functor which
comes from an interpretation. ��

4 Networks, Homomorphisms and Interpretations in
Finite Dimensional Vector Spaces

We have seen that to give a strict traced functor from Net(S,F) to a traced
symmetric monoidal category C is to give an interpretation of the signature
(S, F) in C. We are particularly interested in interpretations in FinVectk, for
various fields k; we call such interpretations interpretations over k. Proposition
1 gives us the soundness of such interpretations:

If two networks are isomorphic, they have the same value for all inter-
pretations over any field k.

Our aim is to establish the converse when k has characteristic 0:

If two networks have the same value under all interpretations over k then
they are isomorphic.

To this end a number of simplifying assumptions will prove convenient:

– We consider only the single-sorted case. This will involve no loss of generality,
due to the following: any signature F has an associated single-sorted signa-
ture Fo obtained by identifying all its sorts; any network N over F then has

376 M. Hasegawa, M. Hofmann, and G. Plotkin

an associated network No over Fo; and for any networks N, N ′ : u → v over
F , if No and N ′

o are isomorphic, so are N and N ′. In the single-sorted case
we identify arities with non-negative integers and write • for the (unique)
function symbol for trivial cycles.

– In the single-sorted case, we consider only closed networks, those with no
inputs and outputs and so of the form N : 0 → 0. We will later reduce
the case of non-closed networks to that of closed ones: introducing extra
(dummy) function symbols fm : 0 → m and fn : n → 0 for all m, n > 0,
one has that two networks N, N ′ : m → n are isomorphic if and only if their
compositions with (the networks consisting of) fm and fn are isomorphic.

– Finally, we consider only non-empty networks without trivial cycles, i.e.,
those which do not contain any •-labelled node. The more general case will
not present significant additional difficulties.

So, in the rest of this section, by a network we mean, unless otherwise stated, a
non-empty closed network without trivial cycles over a single-sorted signature.

4.1 Basic Facts about Networks and Homomorphisms

We recall the definition of parallel composition (Definition 7) for closed networks
N = (X, ϕ, π) and N ′ = (X ′, ϕ′, π′). The network N ⊗ N ′ is (N � N ′, ϕ′′, π′′)
where:

– ϕ′′(x) = ϕ(x) for x ∈ X and ϕ′′(y) = ϕ′(y) for y ∈ X ′,
– π′′〈x, i〉 = π〈x, i〉 for x ∈ X and π′′〈y, i〉 = π′〈y, i〉 for y ∈ X ′.

For closed networks, parallel composition N ⊗ N ′ and sequential composition
N ◦ N ′ agree. We also note that N ⊗ N ′ is the coproduct of N and N ′ in the
category of networks and homomorphisms.

Definition 8. Let x and x′ be nodes in a network N = (X, ϕ, π). They are
directly connected, written x ∼ y, if either π〈x, i〉 = 〈x′, j〉 or π〈x′, i〉 = 〈x, j〉,
for some i and j. Connectedness (of nodes) is the equivalence relation generated
by ∼.

A non-empty equivalence class of nodes with respect to connectedness is called
a connected component. A network is connected if any two of its nodes are
connected, i.e., if it is itself a connected component.

In the following, we may refer to a network just by its set of nodes, leaving ϕ
and π implicit. This convention is helpful as we are interested in decomposing a
network into its connected components. We notice that a connected component
is itself a (connected) network when equipped with the restrictions of ϕ and π.
Each network X can be decomposed as:

X ∼= X1 ⊗ · · · ⊗ Xn

where the Xi are the connected components of X .
We need some information on homomorphisms and connectedness. First, they

clearly preserve connection, and so connectedness. Next:

Finite Dimensional Vector Spaces Are Complete 377

Lemma 2. Let f : X → Y be a homomorphism, and suppose that we have
f(x) = y ∼ y′. Then there is an x′ such that x ∼ x′ and f(x′) = y′.

We then have the following proposition:

Proposition 4. Let f : X → Y be a homomorphism. For each connected com-
ponent C of X, the image f(C) ⊆ Y is a connected component of Y .

Corollary 1. Let f : X → Y be a homomorphism. If Y is connected, then f is
a surjection.

The following immediate consequence will be important later.

Corollary 2. Let f : X → Y be a homomorphism and suppose that Y is con-
nected and |X | = |Y |. Then f is an isomorphism.

Lemma 3. Let f, g : X → Y be homomorphisms. Suppose that f(x) = g(x) and
x ∼ x′. Then f(x′) = g(x′).

This yields:

Proposition 5. Let f, g : X → Y be homomorphisms. If X is connected and
f(x) = g(x) for some x ∈ X, then f = g.

The following upper bound on the number of homomorphisms is a direct conse-
quence of this proposition.

Corollary 3. Let X and Y be networks, and suppose that X is connected. Then
| hom(X, Y)| ≤ |Y |.

Proposition 6. Let f : X → Y be a homomorphism. Then, for any y ∼ y′ in
Y , |f−1(y)| = |f−1(y′)|.

Proof. We may suppose, without loss of generality, that for some i and j,
πY 〈y, i〉 = 〈y′, j〉. Then we may define a bijection θ : f−1(y) ∼= f−1(y′) by
θ(x) = (πX〈x, i〉)1; its inverse is given by θ−1(x′) = (π−1

X 〈x′, j〉)1. ��

The following corollary is then immediate:

Corollary 4. If f : X → Y is a homomorphism and Y is connected, then |X |
is a multiple of |Y |.

4.2 Interpretations over a Field k

An interpretation μ of a (one-sorted) signature over a field k is specified by
a vector space V μ and a linear map [[f]]μ : [[arin(f)]]μ → [[arout(f)]]μ for each
function symbol f , where [[m]]μ = V μ ⊗ · · · ⊗ V μ

︸ ︷︷ ︸
m

. Let X be a closed network

over this signature, possibly empty or with trivial cycles. Its value with respect
to the interpretation μ is then the trace of:

⊗

x∈X

[[arout(ϕ(x))]]μ π̂−→
⊗

x∈X

[[arin(ϕ(x))]]μ
�

x∈X [[ϕ(x)]]μ

−−−−−−−−−→
⊗

x∈X

[[arout(ϕ(x))]]μ

378 M. Hasegawa, M. Hofmann, and G. Plotkin

where π̂ is the linear map induced by π, and for • we put [[•]]μ = dimV μ.
Note that for any two closed networks X , Y over this signature we have that

[[X ⊗ Y]]μ = [[X]]μ[[Y]]μ. It follows that the value of a network X with t trivial
cycles and non-trivial connected components X1, . . . , Xn is given by:

[[X]]μ = dt[[X1]]μ · · · [[Xn]]μ

where d is the dimension of the interpretation of the sort by μ.

Definition 9. Let μ1, μ2 be two interpretations. The interpretation μ1 + μ2 is
defined by:

– V μ1+μ2 = V μ1 ⊕ V μ2 ,
– [[f]]μ1+μ2

(⊗

1≤i≤arin(f)

vi + ui

)
= [[f]]μ1

(⊗

1≤i≤arin (f)

vi

)
+ [[f]]μ2

(⊗

1≤i≤arin(f)

ui

)

where the evident inclusions of [[m]]μ1 and [[m]]μ2 in [[m]]μ1+μ2 have been
omitted.

Proposition 7. Let μ1, μ2 be two interpretations. If X is a connected network,
then [[X]]μ1+μ2 = [[X]]μ1 + [[X]]μ2 .

Proof. Let

m :
⊗

x∈X

⊗

1≤j≤arout (ϕ(x))

V μ1 ⊕ V μ2 −→
⊗

x∈X

⊗

1≤j≤arout (ϕ(x))

V μ1 ⊕ V μ2

be the linear map whose trace determines the value of X under μ1 + μ2. Also,
let m1, m2 be the maps whose trace determines the value of X under μ1 and
μ2 respectively. Suppose that v =

⊗
x∈X

⊗
1≤j≤arout (ϕ(x)) v〈x,j〉 is a basis vector

such that 〈v|m(v)〉 �= 0. Since v is assumed to be a basis vector, we have that
each v〈x,j〉 is either in V μ1 or V μ2 , and is a basis vector of the respective space.
We claim that all the v〈x,j〉 must lie in the same space. First, we notice that for
given x all the vπ−1

X 〈x,i〉 for i < arinx must lie in the same space, for otherwise
[[ϕ (x)]]μ1+μ2

(⊗
i v〈x,i〉

)
= 0 and hence m(v) = 0. Thus each x is associated

to either V μ1 or V μ2 , and its directly connected nodes are also associated to
the same space. Hence either v ∈ V μ1 and m(v) = m1(v) or v ∈ V μ2 and
m(v) = m2(v). As the trace of m is obtained by summing up all such 〈v|m(v)〉,
we have the required result. ��

4.3 The Counting Interpretation

Let us fix a field k. We now describe the key part of the proof: given a connected
network X we define an interpretation μ(X, λ) over k which, in essence, counts
the contribution of each function symbol in the network X .

Definition 10. Let X be a connected network and λ ∈ k\{0} be a non-zero
scalar. The interpretation μ (X, λ) is defined as follows:

Finite Dimensional Vector Spaces Are Complete 379

– The (unique) sort 1 is interpreted as the vector space V μ(X,λ) with basis
the input ports of X, i.e., the set {〈x, i〉 | 1 ≤ i ≤ arin(ϕ(x))}. (Hence
dimV μ(X,λ) =

∑
x∈X arin(ϕ(x)).)

– [[f]]μ(X,λ) : [[arin(f)]]μ(X,λ) → [[arout (f)]]μ(X,λ) is given by:

[[f]]μ(X,λ)
(⊗

1≤i≤arin (f)

pi

)
= λ

∑

x:ϕ(x)=f
pi=〈x,i〉

⊗

1≤j≤arout (f)

π〈x, j〉

Notice that if arin (f) > 0 then the sum consists of at most one summand. In
this case we have:

[[f]]μ(X,λ)
(⊗

i

pi

)
=

⎧
⎨

⎩

λ
⊗

j

π〈x, j〉 if pi = 〈x, i〉 for all i

0 otherwise

That is to say, [[f]]μ(X,λ) is non-zero if it is applied to the input of an f -labelled
node in X and in this case returns the output of that node. The semantics of an
input-less function symbol (a constant) is λ times the sum over all its outputs
occurring in X . We also notice that all function symbols that do not actually
occur in X receive zero meaning. If F contains a symbol f with arin(f) =
arout (f) = 0 then, since X is connected, either X does not contain f -labelled
nodes at all, hence [[f]]μ(X,λ) = 0, or X consists of a single f -labelled node, in
which case V μ = k and [[f]]μ(X,λ) = λ.

Theorem 1. Let X and Y be networks, and assume that X is connected. Then,
for any λ ∈ k\{0}, we have:

[[Y]]μ(X,λ) = λ|Y || hom(Y, X)|

Proof. Recall that V μ(X,λ) is the vector space with basis vectors the input ports
of X , i.e., the set {〈x, i〉 | 1 ≤ i ≤ arin(ϕ(x))}. Let

m :
⊗

y∈Y

⊗

1≤j≤arout (ϕ(y))

V μ(X,λ) −→
⊗

y∈Y

⊗

1≤j≤arout (ϕ(y))

V μ(X,λ)

be the linear map so that [[Y]]μ(X,λ) = Tr(m). Unfolding the definition yields:

m
(⊗

y∈Y

⊗

1≤j≤arout (ϕ(y))

〈x(y,j), i(y,j)〉
)

= λ|Y | ⊗

y∈Y

∑

x

⊗

1≤j≤arout (ϕ(y))

πX〈x, j〉

where the sum ranges over those x ∈ X satisfying ϕX(x) = ϕY (y) and also
〈xπY 〈y,i〉, iπY 〈y,i〉〉 = 〈x, i〉 for all 1 ≤ i ≤ arin(ϕY (y)).

Now the trace of m equals λ|Y | times the number of the basis vectors v of
the space

⊗
y∈Y

⊗
1≤j≤arout (ϕ(y)) V μ(X,λ) which occur in m(v), i.e., for which

〈v | m(v)〉 = λ|Y |. We show that these basis vectors are in 1-1 correspondence
with homomorphisms from Y to X . If v =

⊗
y∈Y

⊗
1≤j≤arout (ϕ(y))〈x(y,j), i(y,j)〉

380 M. Hasegawa, M. Hofmann, and G. Plotkin

satisfies 〈v | m(v)〉 �= 0 then for each y the sum in m(v) must contain a summand
corresponding to v. More precisely:

∀y ∈ Y ∃x ∈ X
ϕY (y) = ϕX(x) (a)
∀i 〈xπ−1

Y 〈y,i〉, iπ−1
Y 〈y,i〉〉 = 〈x, i〉 (b)

∀j 〈x〈y,j〉, i〈y,j〉〉 = π〈x, j〉 (c)

As explained above, either X is a singleton set or it does not contain function
symbols with neither inputs nor outputs. In each case, we have that for each
y ∈ Y there exists a unique x ∈ X satisfying (b) and (c). In the former case,
there is only one x anyway; in the latter case either (b) or (c) is a nonempty
conjunction and establishes uniqueness.

We have thus determined a function f : Y → X such that (b) and (c) hold
with x replaced with f(y). We claim that f is a homomorphism. Indeed, if
π−1

Y 〈y, i〉 = 〈y′, j〉 then by (b) we have 〈f(y), i〉 = 〈x〈y′,j〉, i〈y′,j〉〉. On the other
hand, (c) shows 〈x〈y′,j〉, i〈y′,j〉〉 = πX〈f(y′), j〉, thus 〈f(y), i〉 = πX〈f(y′), j〉 or
π−1

X 〈f(y), i〉 = 〈f(y′), j〉 establishing homomorphism.
Conversely, if f : Y → X is a homomorphism, we define a basis vector v =⊗
y∈Y

⊗
1≤j≤arout (ϕ(y))〈x〈y,j〉, i〈y,j〉〉 by:

{
x〈y,j〉 = f(y′)
i〈y,j〉 = i

when πY 〈y, j〉 = 〈y′, i〉 (1)

Now, towards showing (a), (b), (c) above, given y ∈ Y we put x = f(y). Condi-
tion (a) follows directly from the homomorphism property; condition (b) is direct
from the definition of 〈x〈y,j〉, i〈y,j〉〉; for condition (c), we assume πY 〈y, j〉 = 〈y′, i〉
hence πX〈f(y), j〉 = 〈f(y′), i〉 = 〈x〈y,j〉, i〈y,j〉〉 using the homomorphism property
and the definition of 〈x〈y,j〉, i〈y,j〉〉.

It is obvious that going back and forth starting with a homomorphism f yields
that homomorphism back. To show the converse, assume that we are given a basic
vector determined by a family {〈x̂〈y,j〉, î〈y,j〉〉}〈y,j〉. We define a homomorphism
f : Y → X by letting f(y) be the unique x satisfying conditions (a), (b), (c)
above. We then define another basic vector {〈x〈y,j〉, i〈y,j〉〉}〈y,j〉 by (1).

Given y ∈ Y and 1 ≤ j ≤ arout (ϕ(y)) we have:

〈x̂〈y,j〉, î〈y,j〉〉 = πX〈f(y), j〉

by condition (b) above. On the other hand, if πY 〈y, j〉 = 〈y′, i〉 then:

πX〈f(y), j〉 = 〈f(y′), i〉 = 〈x〈y,j〉, i〈y,j〉〉

by the homomorphism property and (1), thus:

〈x̂〈y,j〉, î〈y,j〉〉 = 〈x〈y,j〉, i〈y,j〉〉

as required. ��

Finite Dimensional Vector Spaces Are Complete 381

Theorem 1 and Proposition 7 immediately yield:

Theorem 2. Let X be a network with connected components X1,. . . , Xn, let λ1,
. . . , λn be non-zero scalars, and let Y be a network with connected components
Y1, . . . , Ym. Then we have:

[[Y]]
�n

i=1 μ(Xi,λi) =
m∏

j=1

n∑

i=1

λ
|Yj |
i | hom(Yj , Xi)|

5 Completeness Results

We begin by considering closed networks over a one-sorted signature. In the fol-
lowing definition we assume a standard enumeration of (the isomorphism classes)
of the connected non-empty and non-trivial such networks.

Definition 11. Let X be a closed network over a one-sorted signature, and
suppose its non-trivial connected components are X1, . . . , Xn (n ≥ 0), and let
λ1, . . . , λn be distinct variables (taken from some standard enumeration of vari-
ables). Then the interpretation μX over Q(λ1, . . . , λn) is given by:

μX = μ(X1, λ1) + · · · + μ(Xn, λn) + ζ2

where ζ2 is the interpretation interpreting 1 by a two-dimensional space and
assigning all function symbols the value 0.

Now if Y is any closed network over the same signature as X , with non-trivial
connected components Y1, . . . , Ym and with t trivial cycles, we have by the above
remarks on the interpretation of such networks, Proposition 7 and Theorem 2
that:

[[Y]]μX = dt
m∏

j=1

n∑

i=1

λ
|Yj |
i | hom(Yj , Xi)| (2)

where d ≥ 2 is the dimension of the interpretation of 1 by μX . Note that this
is a polynomial in λ1, . . . , λn with positive integer coefficients, and non-zero in
case n > 0 and X and Y have the same non-trivial connected components up
to isomorphism. Writing deg(λi, [[Y]]μX) for the largest exponent of λi in [[Y]]μX ,
we have:

deg(λi, [[Y]]μX) =
∑

j:hom(Yj ,Xi) �=∅
|Yj | (3)

where Y1, . . . , Ym are the components of Y .

Lemma 4. Let X and Y be closed networks over a one-sorted signature, at least
one of which has a non-trivial connected component. If

[[X]]μX = [[Y]]μX

382 M. Hasegawa, M. Hofmann, and G. Plotkin

and
[[X]]μY = [[Y]]μY

then X and Y are isomorphic.

Proof. Let X1, . . . , Xm and Y1, . . . , Yn be the standard enumerations of the non-
trivial connected components of X and Y, respectively.

Let U be a connected component in X or Y . The height of U is defined as
the length of the longest sequence of homomorphisms

U0
f0−→ U1

f1−→ U2 −→ . . .
fk−1−−−→ Uk = U

where Ui are connected components in X or Y , and none of the fi are isomor-
phisms. Notice that the height is well-defined by Corollaries 1 and 2.

The multiplicity of component U in X (or Y) is defined as the number of
isomorphic copies of U in X (or Y). We show by course-of-values induction on h
that each component of X or Y of height h has the same multiplicity in X and
in Y .

So assume that U is a connected component of height h and that components
of height less than h have equal multiplicities in X and Y . Let us write x and y
for the multiplicity of U in X and Y respectively. By the definition of height we
have: ∑

i:hom(Xi,U) �=∅
|Xi| = x|U | +

∑

i:hom(Xi,U) �=∅∧height(Xi)<h

|Xi|

and: ∑

j:hom(Yj ,U) �=∅
|Yi| = y|U | +

∑

i:hom(Yi,U) �=∅∧height(Yi)<h

|Yi|

Now, supposing without loss of generality that U occurs in X as X1, we conclude
by equation 3 that:

∑

i:hom(Xi,U) �=∅
|Xi| = deg(λ1, [[X]]μX) = deg(λ1, [[Y]]μX) =

∑

j:hom(Yj ,U) �=∅
|Yi|

Combining this with the induction hypothesis shows x|U | = y|U |, hence x = y.
So X and Y have the same non-trivial connected components, up to isomor-

phism. So, as [[X]]μX = [[Y]]μX , we see by equation 2 above and the following
remark that they have the same number of trivial cycles, which concludes the
proof. ��

Theorem 3. If two networks over a given signature have equal value under all
interpretations over fields of the form Q(λ1, . . . , λn) then they are isomorphic.

Proof. We have already described how the general case can be reduced in turn
to that of one-sorted signatures and then to that of closed such networks. The
previous lemma deals with all such cases except the trivial one where both
networks consist only of trivial cycles. ��

Finite Dimensional Vector Spaces Are Complete 383

In order to strengthen our completeness result to fields of characteristic 0, we
encode polynomials with positive integer coefficients as natural numbers:

Proposition 8. Let d and C be positive integers. There exist natural numbers
k1, . . . , kn such that for any polynomials p, q ∈ N[λ1, . . . , λn] with total degree
less or equal to d and coefficients smaller than C we have:

p = q ⇐⇒ p(k1, . . . , kn) = q(k1, . . . , kn)

We then have:

Theorem 4. Let k be a field of characteristic 0. If two networks over a given sig-
nature have equal value under all interpretations over k then they are isomorphic.

A number of natural questions arise on considering this theorem. As regards
generalisations, we do not know if the corresponding result is true for any field
of positive characteristic. Nevertheless, a small refinement of our proof yields the
following weaker result:

Theorem 5. If two networks have equal value under all interpretations over all
finite fields then they are isomorphic.

Proof. For this, one makes use of the fact that for positive integers d, C there
always exists a finite field k and l1, . . . , ln ∈ k such that for any two polynomials
p, q ∈ N[λ1, . . . , λn] with total degree less or equal to d and coefficients smaller
than C one has p = q iff p(l1, . . . , ln) = q(l1, . . . , ln) in k, and then simply
proceeds as in the proof of Theorem 4, taking a finite field with characteristic
large enough so that no undesired cancellations occur. ��

One may also ask if Theorem 4 can be strengthened. Perhaps there is a uni-
form bound on the dimensions of the vector spaces needed for completeness.
Alternatively there may be a result similar to those of Statman for the simply
typed λ-calculus [13]. This might associate to each network N a bound on the
dimensions of the vector spaces needed to decide whether any other network is
isomorphic to N ; there may even a be single interpretation such that another
network is isomorphism to N iff it has the same value as N in that interpretation.

5.1 Completeness for Compact Closed Categories

The category FinVectk is not only traced symmetric monoidal but also compact
closed. So it is natural to ask if our completeness result also holds for compact
closed categories. This is indeed the case: it is a corollary of the result for the
traced case and the structure theorem of Joyal, Street and Verity [6].

As noted before, every compact closed category has a unique trace. The struc-
ture theorem says that the forgetful 2-functor from the 2-category CompCat
of compact closed categories to the 2-category TrMon of traced symmetric
monoidal categories has a left biadjoint whose unit is fully faithful. More con-
cretely, given a traced symmetric monoidal category C, there is a compact

384 M. Hasegawa, M. Hofmann, and G. Plotkin

closed category IntC whose objects are pairs of objects of C and whose ar-
rows from (A+, A−) to (B+, B−) are the arrows from A+ ⊗ B− ro B+ ⊗ A−

in C. The identity arrow on (A+, A−) is idA+⊗A− , and the composition of
f : (A+, A−) → (B+, B−) with g : (B+, B−) → (C+, C−) is given by:

�

�

�

�
��
�

f

�
��
�

g
�

��
�C−

A+ B+

�A−

�
C+

As regards the compact closed structure, the interested reader is referred to [6]
(but our symmetric case is much simpler than the original braided case). In
the case C = Net(S,F), we regard IntNet(S,F) as a category of ‘bi-directional
networks’ modulo isomorphism, where a bi-directional network from (v+, v−) to
(w+, w−) is just a network from v+w− to w+v−.

There is a fully faithful strong traced functor N : C → IntC sending A to
(A, I). Furthermore, for any compact closed category D and any strong traced
functor F :C → D, there is a unique (up to isomorphism) strong monoidal functor
F : Int C → D such that F ◦ N is isomorphic to F; explicitly, F sends (A+, A−)
to FA+ ⊗ (FA−)∗, and f : (A+, A−) → (B+, B−) to:

FA+ ⊗ (FA−)∗
id⊗η⊗id−−−−−→ FA+ ⊗ FB− ⊗ (FB−)∗ ⊗ (FA−)∗

�−→ F(A+ ⊗ B−) ⊗ (FB−)∗ ⊗ (FA−)∗
(Ff)⊗id−−−−−→ F(B+ ⊗ A−) ⊗ (FB−)∗ ⊗ (FA−)∗

�−→ FB+ ⊗ (FB−)∗ ⊗ (FA−)∗ ⊗ FA−
id⊗ε−−−→ FB+ ⊗ (FB−)∗

In particular, TrMon(C, D) is equivalent to CompCat(Int C, D).
We can routinely define the notion of interpretations of signatures in a com-

pact closed category D and morphisms between them, but this is the same as
giving interpretations of signatures in D regarded as a traced monoidal cate-
gory and morphisms between them. From this, we note that IntNet(S,F) is the
free compact closed category over the signature (S, F) because, for any compact
closed D, we have the following equivalences:

Mod((S, F), D) TrMon(Net(S,F), D) CompCat(IntNet(S,F), D)

So we can speak of the value of a bidirectional net given an interpretation of
its signature over k, i.e., in FinVectk: one simply applies the functor obtained
from the interpretation by the above chain of equivalences to the isomorphism
class of the net.

Corollary 5. Let k be a field of characteristic 0. If two bidirectional nets have
equal value under all interpretations over k then they are isomorphic.

Finite Dimensional Vector Spaces Are Complete 385

For the proof, one uses the definition of F to reduce the question to the case of
Net(S,F) and the result is then immediate from Theorem 4.

Acknowledgements

Hasegawa acknowledges the support of the Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology, Grant-in-Aid for Young Scientists (B)
17700013. Plotkin acknowledges the support of a Royal Society-Wolfson award.

References

1. Bloom, S., Ésik, Z.: Iteration Theories, EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1993)

2. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997.
LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)

3. Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec.
Distinguished Dissertation Series. Springer, Heidelberg (1999), also available as
Ph.D. thesis ECS-LFCS-97-360, University of Edinburgh (1997)

4. Hyland, M., Power, A.J.: Symmetric monoidal sketches and categories of wirings.
Electr. Notes Theor. Comput. Sci 100, 31–46 (2004)

5. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
6. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-

bridge Phil. Soc. 119(3), 447–468 (1996)
7. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1971)
8. Pardo, D., Rabinovich, A.M., Trakhtenbrot, B.A.: Synchronous circuits over contin-

uous time: feedback, reliability and completeness. Fundam. Inform. 62(1), 123–137
(2004)

9. Rabinovich, A.M., Trakhtenbrot, B.A.: Nets and data flow interpreters. In: Proc.
Fourth Symp. on Logic in Computer Science, pp. 164–174. IEEE Computer Society
Press, Washington (1989)

10. Simpson, A.K.: Categorical completeness results for the simply-typed lambda-
calculus. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902,
pp. 414–427. Springer, Heidelberg (1995)

11. Simpson, A.K., Plotkin, G.: Complete axioms for categorical fixed-point opera-
tors. In: Proc. Fifteenth Symp. on Logic in Computer Science, pp. 30–41. IEEE
Computer Society Press, Washington (2000)

12. Soloviev, S.V.: Proof of a conjecture of S. Mac Lane. Ann. Pure Appl. Logic 90,
101–162 (1997)

13. Statman, R.: Completeness, invariance, and definability. J. Symbolic Logic 47, 17–
26 (1982)

14. Ştefǎnescu, G.: Network Algebra. Series in Discrete Mathematics and Theoretical
Computer Science. Springer, Heidelberg (2000)

15. Trakhtenbrot, B.A.: On operators, realizable in logical nets. Doklady AN SSSR
(Proceedings of the USSR Academy of Sciences) 112(6), 1005–1007 (1957)

16. Trakhtenbrot, B.A.: On the power of compositional proofs for nets: relationships
between completeness and modularity. Fundam. Inform. 30(1), 83–95 (1997)

17. Yetter, D.N.: Functorial Knot Theory. World Scientific, Singapore (2001)

Tree Automata over Infinite Alphabets

Michael Kaminski and Tony Tan

Department of Computer Science, Technion – Israel Institute of Technology,
Haifa 32000, Israel

{kaminski,tantony}@cs.technion.ac.il

Dedicated to Boris (Boaz) Trakhtenbrot
on the occasion of his 85th birthday.

Abstract. A number of models of computation on trees labeled with
symbols from an infinite alphabet is considered. We study closure and
decision properties of each of the models and compare their computation
power.

1 Introduction

In recent years a new application area for regular word and tree languages has
evolved during one of the most important developments in World Wide Web
(WWW) – the emergence of the Extensible Markup Language (XML). For many
purposes, XML documents are modeled as labeled finite trees, where the finite
set of labels corresponds to the set of element names allowed in the document.
Thus, concepts from regular word and tree languages became important in XML
research; see [1,8,11,9,12,14,18].

However, this abstraction ignores an important aspect of XML – the presence
of attributes attached to the leaves of trees. Since attributes may assume values
from an infinite set, modeling XML documents by trees over a finite alphabet
is not adequate in any scenario. Therefore, a more natural way to model XML
documents in this setting is to allow, besides the finite set of element labels,
an infinite set of possible data values. Consequently, there is a need to extend
the notion of regular and tree languages in such a way that, on one hand, as
many as possible settings involving attributes can be captured and (most of) the
desirable properties of the language class are retained on the other.

In this paper we extend finite-memory automata; see [2,5,6], to tree automata
over infinite alphabets.

It should be noted, however, that there is a different model of computa-
tion over infinite alphabets, called pebble automata over infinite alphabets; see
[8,10,13]. They are “orthogonal” to finite-memory automata. Also, the tree walk-
ing automata with pebbles ([8]) naturally extend to infinite alphabets for type-
checking purposes. In our opinion, all these automata are inappropriate for
modeling XML. This is because the tree languages they accept lack basic deci-
sion properties, though, unlike the language considered in this paper, they are
closed under complement. However, for practical purposes it is very common to

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 386–423, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tree Automata over Infinite Alphabets 387

ask whether an XML scheme admits even one document. Since the emptiness
problem for pebble automata is undecidable, using these automata for modeling
XML documents is, at least, arguable.

In our extension of finite-memory automata to trees each head scanning a
symbol at the tree node is equipped with a finite number of registers. This
number is the same for all heads of the automaton. There are two ways to scan
an input tree: top-down from the root to the leaves; see [15], and bottom-up
from the leaves to the root; see [4,17].1 When moving top-down from a parent
node to its children, the automaton splits the head and the corresponding set of
registers; and when moving bottom-up from the child nodes to their parent node,
the automaton replaces the two2 heads by one and merges the corresponding set
of registers by forgetting some of their contents. Whereas the definition of a
top-down finite-memory tree automata is very natural: the split results in two
heads each carrying a set of registers with the same contents, the definition of
the bottom-up one is less obvious, because it requires an automaton to merge
two sets of registers whose contents may be quite different and even disjoint.

In addition, there are (at least) two possibilities of updating the content of
the automaton registers. One possibility is to replace the content of one of the
registers with the currently scanned new input symbol, as was done in [5,6], and
the other is to replace the content of one of the registers with any new symbol
from the infinite input alphabet, as was done in [2]. That is, in the latter case,
the automaton does not necessarily have to arrive to the symbol in order to
store it in its registers. Such ability will be referred to as a nondeterministic
reassignment.

The above two distinctions result in four models of finite-memory tree au-
tomata which we consider in our paper. It appears that both top-down and
bottom-up models with deterministic reassignment (the first possibility) are not
strong enough for modeling XML. The former cannot even accept the tree lan-
guage consisting of all trees having two different leaves labeled with the same
symbol; see Example 2,3 whereas the latter cannot accept a very simple tree lan-
guage consisting of all trees whose root label differs from the labels of all other
nodes. In fact, unlike in the case of a finite alphabet, the computation powers of
these two models are incomparable.

In contrast with the above, the computation models with nondeterministic
reassignment, which are stronger than those with the deterministic one, seem
to be appropriate for modeling XML. We show that top-down and bottom-up
tree automata with nondeterministic reassignment have the same computation
power (which indicates that the definition is robust) and are proper extensions

1 Recall that in Computer Science trees grow top-down.
2 This paper deals with binary trees, only. Since finite branching trees can be encoded

by binary trees in a standard manner, our computation models naturally generalize
to unranked trees.

3 For some purposes, an XML document might require certain integrity constraints.
For example, it might require that the value at a certain position of a document also
occurs (or differs from the value) at some other position.

388 M. Kaminski and T. Tan

of the deterministic reassignment models. In particular, the tree languages from
the above two examples are accepted by tree automata with nondeterministic
reassignment.

Also, we establish some closure and decision properties of tree languages ac-
cepted by tree automata with deterministic and nondeterministic reassignment
and show how these tree languages are related to context-free languages over
infinite alphabets introduced in [2]. This relationship is of importance, because
the latter are tightly connected to Document Type Definitions which define XML
documents.

The paper is organized as follows. In the next section we give a rough review
of XML concepts. Section 3 contains the notation used throughout this paper.
In Sect. 4 and 5 we introduce the tree automata with deterministic and non-
deterministic reassignment, respectively. Section 6 deals with decision problems
related to our models of computation. In Sect. 7 we establish a relationship be-
tween the tree languages defined in this paper and the context-free languages
introduced in [2]. Finally, Appendices A and B contain the proof of equivalence
of top-down and bottom-up tree automata with nondeterministic reassignment
and Appendix C summarizes the closure properties of tree languages accepted
by our tree automata.

2 Basic Notions of XML

In this section we briefly sketch the core idea of XML and its connection to tree
languages. This is done via an example below. Readers interested in the details
are referred to [16] or [19].

Consider the following XML document that displays information about a
factory.

<factory name = "super">
<section name = "productions">

<product id = 011>
<No.> 1 </No.>
<label> notebook </label>

</product>
<product id = 294>

<No.> 2 </No.>
<label> pencil </label>

</product>
</section>
<section name = "advertisement">

<product id = 011>
<No.> 1 </No.>
<label> notebook </label>

</product>
</section>

</factory>

Tree Automata over Infinite Alphabets 389

Like in the case of HTML, the building blocks of XML are elements which
are delimited by the start- and end-tags. A start-tag of a product-element, for
example, is <product> and the end-tag is </product>. Everything in between
<product> and </product> constitutes a product-element.

An element can be nested into another one. For example, the element <No.>
1 </No.> is a subelement of the outer product-element. Elements may also
have attributes. These are name value pairs separated by the equality sign. For
example, <product id = 011> indicates that the value of the id attribute of
that particular product-element is 011.

An XML document can be viewed as a tree in a natural way. Fig. 1 below
shows the above XML document in form of a tree.

factory[name = "super"]
�

�
�

�
�

�
��

�
�

�
�

�
�

��
production

�
�

�
�

��

�
�

�
�

��

advertisement

product

[id = 011]

�
�
�
�
�

�
�

�
�

�

product

[id = 294]

�
�
�
�
�

�
�

�
�

�

product

[id = 011]

�
�
�
�
�

�
�

�
�

�
No. name No. name No. name

1 notebook 2 pencil 1 notebook

Fig. 1. A tree representation of an XML document

XML documents can be defined by Document Type Definitions (DTDs). These
are, basically, extended context-free grammars (cf. context-free grammars over
infinite alphabets in Sect. 7), i.e., context-free grammars with regular expressions
at the right-hand sides. For example, the DTD in Fig. 2 defines the scheme of
an XML document for a “factory.”

This DTD specifies that the element factory is the outermost and consists
of the production- and the advertisement-elements. Each of them, in turn,

390 M. Kaminski and T. Tan

<!DOCTYPE factory [

<!ELEMENT factory (production, advertisement)>

<!ELEMENT production (product)*>

<!ELEMENT advertisement (product)*>

<!ELEMENT product (No.,name) | ε >

<!ELEMENT No. (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST factory name #PCDATA>

<!ATTLIST product id #PCDATA>

]>

Fig. 2. The DTD scheme for the XML document in Fig. 1

consists of a finite number of product-elements. A product-element can either
consist of nothing (i.e., the empty word ε), or of the No.- and the name-elements.
The No.- and name-elements do not consist of any other elements, but a word, as
the term #PCDATA indicates. The DTD also indicates that the factory- and
the product-elements have attributes attached to it: name and id, respectively.
These attributes take the data value #PCDATA, that is a word.

Furthermore, in addition to conforming to the DTD, an XML document may
require some constraints imposed on the data values of the attributes. For ex-
ample, the DTD factory may require that the advertised product is produced
by the factory itself. This constraint is defined by the following formula in which
the binary predicate Parent(x, y) is, naturally, read as “x is the parent of y” and
y is the advertised product.

∃x(Parent(x, y) ∧ x.label = advertisement∧ y.label = product) →

∃u∃v(Parent(u, v) ∧ u.label = production∧ v.label = product∧ v.id = y.id)

So, any product-element that appears under the advertisement-element
must also appear under the production-element. As product-element is identi-
fied by its id-attribute, the number of possible product-elements is unbound.

3 Notation

We fix an infinite alphabet Σ not containing # that is reserved to denote an
empty register. For a word w = w1w2 · · · wr over Σ ∪{#}, we define the content
of w, denoted [w], by [w] = {wj �= # : j = 1, 2, . . . , r}. That is, [w] consists of
all symbols of Σ which appear in w.

A word w1 · · ·wr such that wi = wj and i �= j imply wi = # is called an
assignment. That is, an assignment is a word over Σ ∪ {#} where each sym-
bol from Σ appears at most one time. Assignments represent the contents of the

Tree Automata over Infinite Alphabets 391

registers of an automaton: the symbol in the ith register is wi. If wi = #, then
the ith register is empty. The set of all assignments of length r is denoted by
Σr �=.

A set of words T ⊆ {0, 1}∗ is called a (binary) tree if it satisfies the following
two conditions.

– For each n ∈ T and each prefix n′ of n, n′ ∈ T . That is, T is prefix closed.
– If n ∈ T , then either both or none of {n0, n1} are in T .

We write n1 � n2, if n1 is a prefix of n2.
Elements of a tree are called nodes. The root of the tree is the empty word

ε. A node n of a tree T is called a leaf, if neither of {n0, n1} belongs to T . If
n is not a leaf, then nodes n0 and n1 are called the left and right children of
n, respectively, and n is called the parent of both n0 and n1. A node n1 is an
ancestor of n2, or n2 is a descendant of n1, if n1 � n2.

The hight of a node n in a tree T is the length of n. The root ε is of hight 0.
The hight of a tree T is the hight of the longest node of T .

A Σ-tree is a map σ from a tree into Σ. The set of all Σ-trees is denoted by
T (Σ). We denote by dom(σ) = T , the domain of σ : T → Σ.

Finally, let σ : T → Σ be a Σ-tree and let n1, n2, . . . , nm be the list of all
leaf nodes of T in the lexicographical order. The Σ-word σ(n1)σ(n2) · · · σ(nm)
is called the frontier of σ and is denoted by �(σ).

4 Tree Automata with Deterministic Reassignment

In this section we define the tree version of finite memory automata (FMA)
introduce in [6], both the top-down and bottom-up cases. We start with the
top-down case, which is a straightforward extension of the ordinary word FMA.

4.1 Top-Down Finite-Memory Automata with Deterministic
Reassignment

Definition 1. (Cf. [6, Definition 1].) A top-down finite-memory automaton with
deterministic reassignment (↓-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where

– S is finite set of states.
– s0 ∈ S is the initial state.
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment to the r registers of A.
– ρ : S → {1, 2, . . . , r} is a function from S into {1, 2, . . . , r} called the deter-

ministic reassignment. The intuitive meaning of ρ is as follows. If A is in
a state p and the input symbol appears in no register, then the automaton
reassigns the ρ(p)th register with the input symbol.

– μ ⊆ S×{1, 2, . . . , r}×S2 is the transition relation, whose elements are called
transitions and are also written in the form

(p, i) → (p0, p1),

392 M. Kaminski and T. Tan

where p, p0, p1 ∈ S and i ∈ {1, 2, . . . , r}. Intuitively, in a Σ-tree σ the tran-
sition (p, i) → (p0, p1) “applies” at a node n if n is labeled with the state p
and the content of the ith register is σ(n). Subsequently, the children n0 and
n1 of n are labeled with the states p0 and p1, respectively.

– F ⊆ S × {1, 2, . . . , r} is the set of final relations.

Like in the case of FMA, an actual state of A is a state of S together with the
content of all registers. That is, A has infinitely many states which are pairs
(p, w), where p ∈ S and w ∈ Σr �= is the content of the registers of A. These are
called configurations of A. The set of all configurations of A is denoted by Sc.
The pair (s0, u), denoted sc

0, is called the initial configuration.
The transition relation μ induces the following relation μc on Sc×Σ×(Sc×Sc),

whose elements are written in the form

(p, w), σ → (p0, w0), (p1, w1),

where p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.

Then (p, w), σ → (p0, w0), (p1, w1) belongs to μc if and only if the following
conditions are satisfied.

– If σ = wi ∈ [w], then w0 = w1 = w and (p, i, (p0, p1)) ∈ μ.
– If σ �∈ [w], then w0,ρ(p) = w1,ρ(p) = σ, w0,i = w1,i = wi for each i �= ρ(p),

and (p, ρ(p), (p0, p1)) ∈ μ.

The set of final relations F defines the set of final “Σ-relations” F c. A pair
((p, w), σ) ∈ F c if the following holds.

– If σ = wi, then (p, i) ∈ F ; and
– if σ �∈ [w1w2 · · · wr], then (p, ρ(p)) ∈ F .

A run of A on a Σ-tree σ : T → Σ is a mapping R : T → Sc such that

– R(ε) = sc
0 (recall that sc

0 = (s0, u) is the initial configuration of A) and
– for each non-leaf node n ∈ T , (R(n), σ(n)) → (R(n0), R(n1)) ∈ μc.

We say that A accepts a Σ-tree σ : T → Σ, if there exists a run R of A on σ,
called an accepting run, such that for each leaf n of T , (R(n), σ(n)) ∈ F c. The
set of all trees accepted by A is denoted by L(A).

Example 1. Let Aε = 〈{s0, p}, s0, ##, ρ, μ, {(s0, 1), (p, 2)}〉, where

– ρ(s0) = 1, ρ(p) = 2, and
– μ = {(s0, 1, (p, p)), (p, 2, (p, p))}.

Then L(Aε) = Lε, where

Lε = {σ : T → Σ : for each n ∈ T \ {ε}, σ(n) �= σ(ε)}.

For example, an accepting run R : T → {s0, p}×Σ2�= of Aε on a Σ-tree σ : T →
Σ such that for each n ∈ T \ {ε}, σ(n) �= σ(ε) is defined by

Tree Automata over Infinite Alphabets 393

– R(ε) = (s0, ##),
– R(0) = (p, σ(ε)#),
– R(1) = (p, σ(ε)#), and
– for n �= ε and i = 0, 1, R(ni) = (p, σ(ε)σ(n)).

Example 2. In this example we show that the tree language

L2 =
{

σ : T → Σ :
there exist two different leaves n′, n′′ ∈ T
such that σ(n′) = σ(n′′)

}

is not accepted by a top-down finite-memory automaton.
Indeed, assume to the contrary there exists a top-down tree finite-memory

automaton A = 〈S, s0, u, ρ, μ, F 〉 that accepts L2. In particular, A accepts the
Σ-tree σ : {ε, 0, 1} → Σ, where σ(ε) �= σ(0) and σ(0) = σ(1) �∈ [u]. Let R
be an accepting run of A on σ and R(0) = (q, w), Then, σ(0) �∈ [w], implying
(q, ρ(q)) ∈ F .

Consider the Σ-tree σ′ : {ε, 0, 1} → Σ, where σ′(ε) = σ(ε), σ′(0) �= σ(0),
σ′(0) �∈ [u] ∪ {σ(ε)}, and σ′(1) = σ(1). Then R is also a run of A on σ′. Since
σ′(ε) = σ(ε), R(0) = (q, w). In addition, σ′(0) �∈ [w] and (q, ρ(q)) ∈ F imply
σ′ ∈ L(A). However, this contradicts L(A) = L2.

4.2 Bottom-Up Finite-Memory Automata with Deterministic
Reassignment

To define bottom-up automata we need to choose r symbols (to fill r registers at
the parent node) out of, possibly, 2r symbols stored in the registers at the child
nodes. Such a choice is based on the notion of a type defined below.

Definition 2. An r-type is a subset t of {1, 2, . . . , r} × {1, 2, . . . , r} such that
for all (i0, i1), (j0, j1) ∈ t,

(i0, i1) �= (j0, j1) implies both i0 �= i1 and j0 �= j1.

The set of all r-types is denoted by Tr.
For two assignments w0 = w0,1w0,2 · · ·w0,r and w1 = w1,1w1,2 · · · w1,r we

define the type t(w0, w1) by

t(w0, w1) = {(i′, i′′) : w0,i′ = w1,i′′}.4

A function f : {1, . . . , r} → {0, 1} × {1, . . . , r} is said to be a valid selector
for an r-type t if for all 1 ≤ i < j ≤ r,

f(i) = (0, i′) and f(j) = (1, j′) imply (i′, j′) �∈ t.

Intuitively, f is used to select r registers out of 2r registers for the assignment at
the parent node. If f(i) = (0, i′), then the content of the ith register at the parent
node comes from the i′th register of the left child. Similarly, if f(i) = (1, i′), then
4 That is, the elements of t(w0, w1) indicate the registers with the same content. It

follows from the defintion of an assignment that the type t(w0, w1) is well defined.

394 M. Kaminski and T. Tan

the content of the ith register at the parent node comes from the i′th register
of the right child. By definition, if f is a valid selector for an r-type t, then the
resulting assignment does not have two registers with the same content.

A triple of assignments (u, v, w) is an instance of (t, f), where t ∈ Tr and f
is a valid selector for t if

– t = t(u, v), and
– w = w1 · · ·wr is defined by

wi =
{

uj if f(i) = (0, j)
vj if f(i) = (1, j) ,

where u = u1 · · · ur and v = v1 · · · vr.

Intuitively, the assignment w is the result of merging the assignments u and
v according to the the function f . Since f is a valid selector for t, w does not
have two registers with the same content.

Definition 3. A bottom-up finite-memory automaton with deterministic reas-
signment (↑-FMA) is a system A = 〈S, s0, u, ρ, τ, μ, F 〉, where

– S is a finite set of states.
– s0 ∈ S is the initial state.
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment to the r registers of A.
– ρ : S → {1, 2, . . . , r} is the deterministic reassignment.
– μ ⊆ (S × {1, 2, . . . , r})2 × S is the transition relation, whose elements are

transitions and are also written in the form

(p0, k0), (p1, k1) → p,

where p0, p1, p ∈ S and k0, k1 ∈ {1, 2, . . . , r}. The intuitive meaning of tran-
sition (p0, k0), (p1, k1) → p is as follows. In a Σ-tree σ it “applies” at nodes
n0 and n1 labeled states p0 and p1, respectively, if the content of the k0th
register at node n0 is σ(n0) and the content of the k1th register at node n1
is σ(n1). Then the label of n is p.

– τ is a merging relation whose elements are of the form

((p0, k0), (p1, k1), t, f),

where p0, p1 ∈ S and k0, k1 ∈ {1, 2, . . . , r}, t ∈ Tr, and f is a valid selector
for t. The intuitive meaning of an element ((p0, k0), (p1, k1), t, f) of τ is
as follows. In a Σ-tree σ it “applies” at nodes n0 and n1 labeled p0 and
p1, respectively, if the content of the k0th register at node n0 is σ(n0) and
the content of the k1th register at node n1 is σ(n1) and the type of the
assignments at n0 and n1 is t. Then the assignments are merged according
to f .

– F ⊆ S × {1, 2, . . . , r} is the set of final relations.

Tree Automata over Infinite Alphabets 395

The transition relation μ induces the following relation μc on (Sc × Σ)2 × Sc

whose elements are also written in the form

(p0, w0, σ0), (p1, w1, σ1) → (p, w),

where p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.

Then (p0, w0, σ0), (p1, w1, σ1) → (p, w) belongs to μc if and only if there exist
v0, v1 ∈ Σr �= , v0 = v0,1v0,2 · · · v0,r and v1 = v1,1v1,2 · · · v1,r, (p0, k0), (p1, k1) →
p ∈ μ, and ((p0, k0), (p1, k1), t, f) ∈ τ such that the following conditions are
satisfied.

– If σ0 ∈ [w0], then v0 = w0. Otherwise,

v0,i =
{

w0,i if i �= ρ(p0)
σ0 if i = ρ(p0)

.

– Similarly, if σ1 ∈ [w1], then v1 = w1. Otherwise,

v1,i =
{

w1,i if i �= ρ(p1)
σ1 if i = ρ(p1)

.

– v0,k0 = σ0 and v1,k1 = σ1.5

– t = t(v0, v1).
– (v0, v1, w) is an instance of (t, f).

A run of A on a Σ-tree σ : T → Σ is a mapping R : T → Sc such that

– for each leaf n of T , R(n) = sc
0 (recall that sc

0 = (s0, u) is the initial config-
uration of A), and

– for each non-leaf node n ∈ T , (R(n0), σ(n0)), (R(n1), σ(n1)) → R(n) ∈ μc.

The set of final relations F defines the following set final “Σ-relations” F c. A
pair ((p, w), σ) is in F c if the following holds.

– If σ = wi, then (p, i) ∈ F ; and
– if σ �∈ [w1w2 · · · wr], then (p, ρ(p)) ∈ F .

We say that A accepts a Σ-tree σ : T → Σ if there exists a run R of A on σ,
called an accepting run, such that (R(ε), σ(ε)) ∈ F c. The set of all trees accepted
by A is denoted by L(A).

Example 3. (Cf. Example 1.) The set of Σ-trees Lε from Example 1 is not ac-
cepted by bottom-up finite-memory automata.

Indeed, assume to the contrary Lε is accepted by an r-register bottom-up
automaton A with the initial assignment u. Consider a tree σ ∈ Lε, where σ(ε) �∈
[u] and σ(n1) �= σ(n2), whenever n1 �= n2. During the course of computation,
5 Note that if σ0 �∈ [w0] (respectively, σ1 �∈ [w1]), then k0 = ρ(p0) (respectively,

k1 = ρ(p1)).

396 M. Kaminski and T. Tan

till the last step, σ(ε) does not appear in the registers of A. When A reaches the
root, it reassigns one of the registers with σ(ε) and verifies whether one of the
final Σ-relations holds.

Assume, in addition, that the range of σ contains more than r different sym-
bols. Therefore, when A reaches the root of the tree, there is a node n such that
σ(n) is no longer in the registers of A. If we replace σ(ε) with σ(n), A would
still accept the obtained Σ-tree, in contradiction with L(A) = Lε.

Example 4. (Cf. Example 2.) The set of Σ-trees L2 from Example 2 is accepted
by a bottom-up finite-memory automaton that operates as follows. It “guesses”
two different nodes, remembers their labels, and carries them up to the node
where the paths from the two guessed nodes meet. At this meeting node the
automaton checks whether the labels at the two guessed nodes are the same.

5 Tree Automata with Nondeterministic Reassignment

In this section we introduce the notion of tree automata with nondeterministic
reassignment – both for the top-down and the bottom-up cases. Unlike the de-
terministic reassignment automata which may only reassign one of their registers
with the current input symbol, these automata are allowed to reassign a number
of registers with arbitrary symbols from Σ. That is, the reassignment function
ρ : S → 2{1,...,r} mapping the states from S into the power set 2{1,...,r}.

5.1 Top-Down Finite-Memory Automata with Nondeterministic
Reassignment

Definition 4 below is the top-down tree counterpart of the infinite-alphabet push-
down automata introduced in [2] and the look-ahead finite-memory automata
introduced in [20].

Definition 4. A top-down finite-memory automaton with nondeterministic re-
assignment (↓-NR-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where all compo-
nents of A, except ρ, are as Definition 1. The nondeterministic reassignment ρ
is a function from S into 2{1,2,...,r}. The intuitive meaning of ρ is as follows.
In state p the automaton may reassign the registers whose indices belong to ρ(p)
with any pairwise different symbols of Σ. Of course, these symbols must differ
from those in the registers whose indices do not belong to ρ(p).

The transition relation μc on Sc × Σ × (Sc × Sc) is defined similarly to that
of top-down finite-memory automata. Let p, p0, p1 ∈ S and w, w0, w1 ∈ Σr �= .
Then (p, w), σ → (p0, w0), (p1, w1) belongs to μc if and only if the following
conditions are satisfied. Let w = w1w2 · · ·wr , w0 = w0,1w0,2 · · ·w0,r, and w1 =
w1,1w1,2 · · ·w1,r. Then

– w0 = w1,
– for all i �∈ ρ(p), w0,i (= w1,i) = wi,

Tree Automata over Infinite Alphabets 397

– for some k = 1, 2, . . . , r, w0,k = σ (= w1,k), and
– (p, k) → (p0, p1) ∈ μ.

To extend F onto Sc×Σ we need one more bit of notation. For two assignments
v, w ∈ Σr �= , v = v1 · · · vr and w = w1 · · · wr, and S ⊆ {1, . . . , r}, we write
v =S w if for all i �∈ S, vi = wi. That is, v and w are equal “modulo” the
symbols in the positions in S.

The set of final “Σ-relations” F c is defined as follows. A pair ((p, w), σ) ∈ F c

if for some w′ ∈ Σr �= , w′ = w′
1w

′
2 · · ·w′

r, such that w =ρ(p) w′, σ = w′
i, and

(p, i) ∈ F .
Now a run and acceptance of for ↓-NR-FMAs are defined exactly as for ↓-

FMAs.

Example 5. (Cf. Example 2.) The set of Σ-trees L2 from Example 2 is accepted
by a ↓-NR-FMA that operates as follows. In the root of the input it “guesses”
the symbol that appears at two different nodes and then (nondeterministically)
verifies that the guess is correct.

Proposition 1. If a set of Σ-trees is accepted by a ↓-FMA, then it is also
accepted by a ↓-NR-FMA.

Proof. Given a ↓-FMA A = 〈S, s0, u, ρ, μ, F 〉, consider the following two ↓-NR-
FMAs A− = 〈S′, s−0 , u, ρ′, μ′, F ′〉 and A+ = 〈S′, s+

0 , u, ρ′, μ′, F ′〉, where

– S′ =
⋃

s∈S

{s−, s+};6

– ρ′(s−) = ∅ and ρ′(s+) = {ρ(s)}, p ∈ S;
– μ′ is the union of

• {(s−, i, s∓0 , s∓1) : (s, i, s0, s1) ∈ μ} and
• {(s+, ρ(s), s∓0 , s∓1) : (s, ρ(s), s0, s1) ∈ μ};

and
– F ′ =

⋃

s∈F

{s−, s+}.

It can be easily seen that L(A) = L(A) ∪ L(A+). Indeed, both automata are
allowed to make a nondeterministic reassignment (according to ρ) only in states
of the form s+, but they have to use it immediately. Consequently, the reassigned
symbol must be the current input. Thus, actually, both of them behave like A,
except, possibly, the first move at the root of the input Σ-tree.

Since ↓-NR-FMA languages are closed under union; see Appendix C, the
proposition follows. ��

5.2 Bottom-Up Finite-Memory Automata with Nondeterministic
Reassignment

Definition 5 below is the “bottom-up” counterpart of Definition 4.

6 That is, S′ consists of two copies of S.

398 M. Kaminski and T. Tan

Definition 5. A bottom-up finite-memory automaton with nondeterministic
reassignment (↑-NR-FMA) is a system A = 〈S, s0, u, ρ, τ, μ, F 〉, where all com-
ponents of A, but ρ are as Definition 1 and the nondeterministic reassignment
ρ is a function from S into 2{1,2,...,r}.

The relation μc on Sc × Σ × (Sc × Sc) is defined similarly to that of bottom-up
finite-memory automata. The only difference is that each head may reassign non-
deterministically a set of their registers before merging. Namely, for p, p0, p1 ∈ S
and w, w0, w1 ∈ Σr �= , (p0, w0, σ0), (p1, w1, σ1) → (p, w) belongs to μc if and
only if the following holds.

Let w = w1w2 · · · wr, w0 = w0,1w0,2 · · · w0,r, and w1 = w1,1w1,2 · · · w1,r.
Then there exist assignments v0 = v0,1 · · · v0,r and v1 = v1,1 · · · v1,r, a transition
(p0, k0), (p1, k1) → p ∈ μ, and a merging relation ((p0, k0), (p1, k1), t, f) ∈ τ such
that

– v0,i = w0,i for all i �∈ ρ(p0);
– v1,i = w1,i for all i �∈ ρ(p1);
– v0,k0 = σ0 and v1,k1 = σ1;
– t = t(v0, v1); and
– (v0, v1, w) is an instance of (t, f).

That is, for the assignment w at the parent node, f selects r out of 2r values
of the “reassigned”assignments at the child nodes.

The set of final relations F defines the set of final “Σ-relations” F c. A pair
((p, w), σ) ∈ F c if for some w′ ∈ Σr �= , w′ = w′

1w
′
2 · · · w′

r, such that w =ρ(p) w′

σ = w′
i, and (p, i) ∈ F .

Example 6. (Cf. Example 3.) The set of Σ-trees Lε from Example 1 is accepted
by a ↑-NR-FMA that operates as follows. In each leaf of the input the automaton
“guesses” the symbol that appears at the root. Then, going down, it verifies that
the input symbols are different from those at the leaves and that the “guessed”
symbols are the same. Finally, when arriving to the root the automaton verifies
that the guess is correct, i.e., the guessed symbol is one that appears at the root.

Proposition 2. If a set of Σ-trees is accepted by a ↑-FMA, then it is also
accepted by a ↑-NR-FMA.

The proof of Proposition 2 is similar to that of Proposition 1 and is omitted.

5.3 The Main Result

We conclude this section with the main result of our paper stating that top-
down and bottom-up finite-memory automata with nondeterministic reassign-
ment have the same computation power.

Theorem 1. A set of Σ-trees is accepted by a ↓-NR-FMA if and only if it
is accepted by a ↑-NR-FMA. Moreover, the conversions of a ↓-NR-FMA to its
equivalent ↑-NR-FMA and vice versa are effective.

Tree Automata over Infinite Alphabets 399

The proof of Theorem 1 is long and technical. It is presented in the appendices
in the end of this paper.

Corollary 1. Both ↓-FMA and ↑-FMA can be simulated by either of ↓-NR-FMA
or ↑-NR-FMA.

Note that by Examples 1, 2, 3, and 4, the inclusions provided by Corollary 1 are
proper.

6 Decision Properties

In this section we show that the membership and emptiness problems for ↓-
NR-FMAs are decidable. Thus, by Theorem 1 and Propositions 1 and 2, these
problems are decidable for all other models of automata introduced in this paper.
We also show that the universality and, consequently, the inclusion problems are
undecidable for all models of automata introduced in this paper.

Propositions 3 and 4 below deal with decidability of the membership and
emptiness problems. The former asks whether a given ↓-NR-FMA accepts a
given Σ-tree, and the latter asks whether the language of a given ↓-NR-FMA is
empty.

Proposition 3. The membership problem for ↓-NR-FMAs is decidable.

Proof. Let A = 〈S, s0, u, ρ, μ, F 〉 be a ↓-NR-FMA and let σ : T → Σ be a Σ-
tree. We contend that σ ∈ L(A) if and only if there is an accepting run of A on
σ in which the assignment at each node belongs to Σ

r �=
0 , where

Σ0 = σ(T) ∪ [u] ∪ {#} ∪ {θ1, θ2, . . . , θr}, θi �∈ σ(T), i = 1, 2, . . . , r.

The “if” direction is immediate, and for the proof of the “only if” direction
we just replace the symbols which appear in an accepting run of A on σ , but
do not belong to σ(T)∪ [u]∪{#} with appropriate elements of {θ1, θ2, . . . , θr}.7

Therefore, given an input Σ-tree σ : T → Σ, we may restrict ourselves to the
configurations of A from S ×Σ

r �=
0 , which brings us to an ordinary finite alphabet

tree automaton. Since the membership problem for the latter is decidable, the
proposition follows. ��

Proposition 4. The emptiness problem for ↓-NR-FMAs is decidable.

The proof of Proposition 4 is based on Lemma 1 below.

Lemma 1. Let A = 〈S, s0, u, ρ, μ, F 〉 be an r-register ↓-NR-FMA such that
L(A) �= ∅ and let Σr = {θ1, θ2, . . . , θr} be an r-element subset of Σ that in-
cludes [u]. Then there is a Σ-tree σ : T → Σr in L(A).

Proof. Let σ : T → Σ ∈ L(A) and let R : T → Sc be an accepting run of
A on σ. To construct a Σ-tree σ : T → Σr in L(A) we need the function
I : T → {1, 2, . . . , r} defined below.
7 Obviously, such symbols can be introduced by reassignment, only.

400 M. Kaminski and T. Tan

– For a non-leaf node n ∈ T , if R(n0) = (p, w1w2 · · · wr) and σ(n) = wi, then
I(n) = i.

– For a leaf node n ∈ T , if R(n) = (p, w1w2 · · · wr) and w′ ∈ Σr �= , w′ =
w′

1w
′
2 · · · w′

r, is such that w =ρ(p) w′, σ = w′
i, and (p, i) ∈ F , then I(n) = i.

Let u = u1 · · · ur. We may assume that for each i = 1, 2, . . . , r, ui �= # implies
ui = θi. Then a Σ-tree σr : T → Σr satisfying the lemma is defined by σr(n) =
θI(n), n ∈ T . This Σ-tree is accepted by the run of A whose state components are
the same as of R and that always reassigns the i registerwith Θi, i = 1, 2, . . . , r. ��

Proof. (of Proposition 4) Let A = 〈S, s0, u, ρ, μ, F 〉 be an r-register ↓-NR-FMA
and let Σr = {θ1, θ2, . . . , θr} be an r-element subset of Σ that includes [u]. It
follows from Lemma 1 that L(A) �= ∅ if and only if there is a Σ-tree σ : T → Σr

in L(A).
Since on the inputs σ : T → Σr the configurations of A belong to S × Σ

r �=
r ,

the emptiness of A is reduced to the emptiness of an ordinary finite alphabet tree
automaton that is is decidable. ��

It was shown that in [13] the universality problem of finite-memory automata
is undecidable.8 Consequently, this problem is also undecidable for all above
models of tree automata.

Proposition 5. The universality problem for ↓-FMAs and ↑-FMAs is undecid-
able.

Corollary 2. The inclusion problem for ↓-FMAs and ↑-FMAs is undecidable.

7 Context-Free Languages over Infinite Alphabets and
Their Relationship with Tree Automata

In this section we recall the definition of quasi context-free languages from [2]
and show how they are related to the tree languages introduced in this paper.

In short, a quasi context-free grammar is a context-free grammar, where each
variable carries the same number r of of registers. The terminal alphabet of
a grammar G is the set {1, 2, . . . , r}. Let V be the set of variables of G. The
productions of G are of the form

(A, k) → α1α2 · · · αn,

where 1 ≤ k ≤ r and αi ∈ V ∪ {1, . . . , r}, i = 1, 2, . . . , n. The above production
allows us

– to replace the content of the kth register carried by A with any symbol of
Σ that differs from the symbols stored in the other registers,9 and

8 That is, is undecidable whether a given finite-memory automaton accepts Σ∗.
9 Actually, automata with nondeterministic reassignment were motivated by [2].

Tree Automata over Infinite Alphabets 401

– to replace A with the word β1 · · · βn, where βi is the content of the jth
register, if αi = j, and is αi, if αi is a variable, i = 1, 2, . . . , n.

The language generated by G consists of all words in Σ∗ obtained by repeatedly
applying the productions of G, starting with the start variable. It is called a
quasi context-free language, cf. DTDs in Sect. 2. The precise definition of quasi
context-free grammars and languages is as follows.

Definition 6. ([2, Definition 1]) An infinite-alphabet context-free grammar is
a system G = 〈V, u, R, S〉, where

– V is a finite set of variables disjoint with Σ;
– u = u1u2 · · ·ur ∈ Σr �= is the initial assignment;
– R ⊆ (V × {1, 2, . . . , r}) × (V ∪ {1, 2, . . . , r})∗ is a set of productions, whose

elements are written in the form (A, i, a) as (A, i) → a, where A ∈ V ,
i = 1, 2, . . . , r, and a ∈ (V ∪ {1, 2, . . . , r})∗; and

– S ∈ V is the start variable.

For A ∈ V , w = w1w2 · · · wr ∈ Σr �= , and X = X1X2 · · ·Xn ∈ (Σ ∪ (V ×
Σr �=))∗, we write (A, w) ⇒ X if there exist a production (A, i) → a ∈ R,
a = a1a2 · · · an ∈ (V ∪{1, 2, . . . , r})∗, and a symbol σ �∈ [w] \ {wi} such that the
condition below is satisfied.

Let w′ ∈ Σr �= be obtained from w by replacing wi with σ. Then, for j =
1, 2, . . . , n the following holds.

– If aj = k for some k = 1, 2, . . . , r, then Xj = w′
k.

– If aj = B for some B ∈ V , then Xj = (B, w′).

For two words X and Y over Σ ∪ (V × Σr �=), we write X ⇒ Y if there exist
words X1, X2, and X3 over Σ ∪ (V × Σr �=) and (A, w) ∈ V × Σr �= , such that
X = X1(A, w)X2, Y = X1X3X2, and (A, w) ⇒ X3.

As usual, the reflexive and transitive closure of ⇒ is denoted by ⇒∗. The
language L(G) generated by G is defined by L(G) = {σ ∈ Σ∗ : (S, u) ⇒∗ σ}
and is referred to as a quasi-context-free language.

Example 7. Let G be a 1-register grammar with the set of variables V = {S},
the initial assignment #, and the following two production.

(S, 1) → 1S1 | ε.

Then L(G) = {σσR | σ ∈ Σ∗}.10 For example, the word σ1σ2σ3σ3σ2σ1 is
derived as follows.

(S, #) ⇒ σ1(S, σ1)σ1 ⇒ σ1σ2(S, σ2)σ2σ1

⇒ σ1σ2σ3(S, σ3)σ3σ2σ1 ⇒ σ1σ2σ3σ3σ2σ1.

10 As usual, σR is the reversal of σ.

402 M. Kaminski and T. Tan

We end this paper with the theorem below that relates quasi context-free
languages to the tree languages introduced in this paper. Recall that for a Σ-
tree σ : T → Σ, the frontier �(σ) of σ is the word σ(n1)σ(n2) · · · σ(nm),
where n1, n2, . . . , nm is the list of all leaf nodes of T in the lexicographical order.
Below the set frontiers of all elements of a set of Σ-trees L is denoted by �(L):
�(L) = {�(σ) : σ ∈ L}.

Theorem 2. Let L be a tree language accepted by a top-down (or bottom-up)
finite-memory automaton A with a deterministic (or non-deterministic) reas-
signment. Then �(L) is quasi-context-free language.

Conversely, for every quasi-context-free language L, there exists a top-down (or
bottom-up) finite-memory automata A with deterministic (or non-deterministic)
reassignment such that �(L(A)) = L.

We omit the proof that is quite straightforward. For example, any Σ- tree σ
accepted by a ↓-FMA A, after an appropriate modification, can be thought of
as a derivation tree of the word �(σ). Conversely, given a quasi context-free
grammar G, we may assume that all derivation trees of the words in L(G) are
binary.11 Therefore, the set of productions of G can be thought of as the set of
transition of a ↓-FMA A, implying that �(L(A)) is exactly the language generated
by G.

Acknowledgment

This research was supported by the Jewish communities of Germany research
fund, by the Technion vice-president fund for the promotion of research at the
Technion, and by a grant from the Software Technology Laboratory (STL) in
the Department of Computer Science, the Technion. In addition, the work of the
second author was supported by the Raphael and Miriam Mishan Fellowship.

References

1. Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of
XSLT. Information and System 27(1), 21–39 (2002)

2. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Informatica 35, 245–267 (1998)

3. Comon, H., et al.: Tree Automata Techniques and Applications (2005),
http://www.grappa.univ-lille3.fr/tata/

4. Doner, J.E.: Tree acceptors and some of their applications. Journal of Computer
and System Sciences 4, 406–451 (1970)

5. Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings of the 31th
Annual IEEE Symposium on Foundations of Computer Science, pp. 683–688. IEEE
Computer Society Press, Los Alamitos (1990)

11 It is well known that any tree can be converted to a binary tree that preserves the
order of the leaves.

http://www.grappa.univ-lille3.fr/tata/

Tree Automata over Infinite Alphabets 403

6. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 138, 329–363 (1994)

7. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets.
Fundamenta Informaticae 69, 301–318 (2006)

8. Milo, T., Suciu, D., Vianu, V.: Type checking for XML transformers. Journal of
Computer and System Sciences 66, 66–97 (2003)

9. Neven, F., Schwentick, T.: Expressive and efficient pattern languages for tree-
structured data. In: Proceedings of the Nineteenth International Symposium on
Principles of Database Systems, pp. 145–156. ACM Press, New York (2000)

10. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite al-
phabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 560–572. Springer, Heidelberg (2001)

11. Neven, F.: Automata, logic and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

12. Neven, F., Schwentick, T.: Query automata on finite trees. Theoretical Computer
Science 275, 633–674 (2002)

13. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic 5, 403–435 (2004)

14. Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: Pro-
ceedings of the Twentieth International Symposium on Principles of Database Sys-
tems, pp. 35–46. ACM Press, New York (2001)

15. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

16. Ray, E.: Learning XML. O’Reilly & Associates, Inc, Sebastopol (2001)
17. Thatcher, J., Wright, J.: Generalized finite automata theory. Mathematical System

Theory 2, 57–81 (1968)
18. Vianu, V.: A web odyssey: from Codd to XML. In: Proceedings of the 20th In-

ternational Symposium on Principles of Database Systems, pp. 1–15. ACM Press,
New York (2001)

19. XML Core Working Group: Extensible Markup Language (XML). World Wide
Web Consortium, http://www.w3.org/XML/

20. Zeitlin, D.: Look-ahead finite-memory automata. Master’s thesis, Department of
Computer Science, Technion - Israel Institute of Technology (2006)

A Proof of the “only if” Part of Theorem 1

For an r-register ↓-NR-FMA A = 〈S, s0, u, ρ, μ, F 〉 we construct an r-register
↑-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, τ̃ , μ̃, F̃ 〉 such that L(A) = L(Ã).

Similarly to the proof of [7, Lemma 5.1] it can be shown that, without loss of
generality, the following assumptions hold.

– u = #r−mθ1 · · · θm, where θ1, . . . , θm ∈ Σ, and
– only the first r − m registers of A can be reassigned, i.e, the range of ρ is a

subset of {1, 2, . . . , r − m}.

We precede the formal description of Ã with a general intuitive explanation.
One would expect the construction to be just the transition reversing, i.e., a
transition (p, k) → (p0, p1) of A to become a “transition” ((p0, p1), k) → p of Ã.

http://www.w3.org/XML/

404 M. Kaminski and T. Tan

This is indeed almost so, but with the following modification. Since transitions
of a ↑-NR-FMA merge two heads and depend on two input symbols from Σ,
we combine two transitions of A into one “reversed” transition of Ã. That is,
two transitions (p0, k0) → (p00, p01) and (p1, k1) → (p10, p11) of A are combined
into one transition ((p00, p01), k0), ((p10, p11), k1) → (p0, p1) of Ã and “moved”
one level up, as illustrated in Fig. 3 and 4 below. Fig. 3 shows an application of
two top-down transitions at two nodes (sharing the same parent node) labeled
σ0 and σ1. Fig. 4 shows their reversal bottom-up transition applied at the same
two nodes, but in the converse direction.

Fig. 3. An application of two transitions of A

Fig. 4. Reversing and combining two transitions of A

Note that assignments w0 and w1 equal to w “modulo” the symbols in the po-
sitions belonging to ρ(p0) and ρ(p1), respectively; and except for the symbols at
the positions in ρ(p0)∩ρ(p1), w can be recovered from w0 and w1. The symbols
at the positions in ρ(p0)∩ρ(p1) can be “guessed” by a nondeterministic reassign-
ment of the “reversal” automaton Ã. Thus, for p0, p1 ∈ S, we let ρ̃((p0, p1)) be
ρ(p0)∩ρ(p1). In fact, the reversed transitions in Ã yield the assignments v, v0, v1

such that v =ρ(p0)∩ρ(p1) w, v0 =ρ(p00)∩ρ(p01) w0 and v1 =ρ(p10)∩ρ(p11) w1.
To define the transition relation μ̃ and the merging relation τ̃ we need the

following definition and the corresponding auxiliary result.

Tree Automata over Infinite Alphabets 405

Let t be an r-type and let f be a valid selector for t. The pair (t, f) is called
an inverse structure associated with a pair of states (p0, p1) if the following con-
ditions are satisfied.

– (i, i) ∈ t for all i ∈ {1, . . . , r} − (ρ(p0) ∪ ρ(p1)).

– f(i) =

⎧
⎨

⎩

(0, i) or (1, i) for i ∈ {1, . . . , r} \ (ρ(p0) ∪ ρ(p1))
(1, i) for i ∈ ρ(p0) \ ρ(p1)
(0, i) for i ∈ ρ(p1) \ ρ(p0)

Note that the value of f on the elements of ρ(p0) ∩ ρ(p1) is arbitrary. The set
of all inverse structures associated with a pair of states (p0, p1) will be denoted
I(p0, p1).

Lemma 2. Let (t, f) be an inverse structure associated with a pair of states
(p0, p1) and let v0, v1, v, w ∈ Σr �= be such that v0 =ρ(p0) w and v1 =ρ(p1) w.
Then (v0, v1, v) is an instance of (t, f) if and only if v =ρ(p0)∩ρ(p1) w.

Moreover, if v =ρ(p0)∩ρ(p1) w and (v0, v1, v) is an instance of (t, f), then
v0 =ρ(p0) w and v1 =ρ(p1) w.

Proof. Let v0 = v0,1 · · · v0,r, v1 = v1,1 · · · v1,r, v = v1 · · · vr, and w = w1 · · ·wr .
It immediately follows from the definition that (v0, v1, v) is an instance of (t, f)
if and only if

vi =
{

v0,i = wi if i �∈ ρ(p1)
v1,i = wi if i �∈ ρ(p0)

, i = 1, . . . , r,

which is equivalent to v =ρ(p0)∩ρ(p1) w.
Now we prove the second part. Let v =ρ(p0)∩ρ(p1) w. In particular, for all

i �∈ ρ(p0), wi = vi. If (v0, v1, v) is an instance of (t, f), by the definition of
(t, f), vi = v0,i. Therefore, w =ρ(p0) v0. In a similar way we can show that
w =ρ(p1) v1. ��

Now we are ready to define the desired ↑-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, τ̃ , μ̃, F̃ 〉.

– S̃ = S × S ∪ {s̃0}, where s̃0 is a new state.
– The initial state of Ã is s̃0.
– ũ = #r−mθ1 · · · θm.
– ρ̃(s̃0) = {1, . . . , r − m}, and

ρ̃((p0, p1)) = ρ(p0) ∩ ρ(p1), for all (p0, p1) ∈ S̃.
– μ̃ = μ̃1 ∪ μ̃2 ∪ μ̃3 ∪ μ̃4, where

• μ̃1 = {(s̃0, k0), (s̃0, k1) → (p0, p1) : (p0, k0), (p1, k1) ∈ F};
• μ̃2 = {(s̃0, k0), ((p10, p11), k1) → (p0, p1) :

(p0, k0) ∈ F and (p1, k1) → (p10, p11) ∈ μ};
• μ̃3 = {((p00, p01), k0), (s̃0, k1) → (p0, p1) :

(p0, k0) → (p00, p01) ∈ μ and (p1, k1) ∈ F};
• μ̃4 = {((p00, p01), k0), ((p10, p11), k1) → (p0, p1) :

(p0, k0) → (p00, p01), (p1, k1) → (p10, p11) ∈ μ}.
– τ̃ = τ̃1 ∪ τ̃2 ∪ τ̃3 ∪ τ̃4, where

406 M. Kaminski and T. Tan

• τ̃1 = {((s̃0, k0), (s̃0, k1), t, f) :
for some p0, p1 ∈ S, (p0, k0), (p1, k1) ∈ F and (t, f) ∈ I(p0, p1)};12

• τ̃2 = {((s̃0, k0), ((p1,0, p1,1), k1), t, f) :
for some p0, p1 ∈ S, (p0, k0) ∈ F and (p1, k1) → (p1,0, p1,1) ∈ μ and

(t, f) ∈ I(p0, p1)};
• τ̃3 = {(((p0,0, p0,1), k0), (s̃0, k1), t, f) :

for some p0, p1 ∈ S, (p0, k0) → (p0,0, p0,1) ∈ μ and (p1, k1) ∈ F and
(t, f) ∈ I(p0, p1)};

• τ̃4 = {(((p00, p01), k0), ((p10, p11), k1), t, f) :
for some p0, p1 ∈ S, (p0, k0) → (p00, p01), (p1, k1) → (p10, p11) ∈ μ and

(t, f) ∈ I(p0, p1)}.
– F̃ = {(q0, q1), k) : (s0, k) → (q0, q1) ∈ μ}.

The proof of the equality L(Ã) = L(A) is based on Lemma 3 below. Roughly
speaking, Lemma 3 is the formal description of the construction in Fig. 3 and 4.
It shows how an accepting run of A can be “reversed” into an accepting run of Ã,
or more precisely, it shows how transitions from μc are converted into transitions
from μ̃c, and vice versa.

Lemma 3 consists of four parts corresponding to the type of nodes on which
transitions take place. Its part (i) shows how an accepting run of A can be
“reversed” into an accepting run of Ã at the leaf nodes and vice versa. Part (ii)
shows how an accepting run of A can be “reversed” into an accepting run of Ã
when one of the two sibling nodes is a leaf and the other is an interior node.
Part (iii) of the lemma settles the case of the interior nodes. Finally, part (iv)
of Lemma 3 deals with the case of the root node ε.

Lemma 3

(i) (See Fig. 5 and 6.) If ((p0, w), σ0), ((p1, w), σ1) ∈ F c, then there is an
assignment v =

�ρ(p0,p1) w such that

((s̃0, ũ), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

((s̃0, ũ), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

and w =
�ρ(p0,p1) v, then ((p0, w), σ0), ((p1, w), σ1) ∈ F c.

(ii) (a) (See Fig. 7 and 8.) If ((p0, w), σ0) ∈ F c,

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc

and v1 =
�ρ(p10,p11) w1, then there is an assignment v =

�ρ(p0,p1) w such
that

((s̃0, ũ), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

12 Recall that I(p0, p1) denotes the set of all inverse structures associated with the pair
of states (p0, p1).

Tree Automata over Infinite Alphabets 407

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

((p0, w), σ0) ∈ F c ((p1, w), σ1) ∈ F c

Fig. 5. Application of two final relations
of A

(p0, p1), v

�

�
�

�
�

��

(�s0, �u), σ0 (�s0, �u), σ1

Fig. 6. Reversing and combining two fi-
nal relations of A

Conversely, if

((s̃0, ũ), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c

and w =
�ρ(p0,p1) v, then ((p0, w), σ0) ∈ F c and there is an assignment

w1 =
�ρ(p10,p11) v1 such that

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc.

(b) If
((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc,

((p1, w), σ1) ∈ F c and v0 =
�ρ(p00,p01) w0, then there is an assignment

v =
�ρ(p0,p1) w such that

(((p00, p01), v0), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

(((p00, p01), v0), σ0), ((s̃0, ũ), σ1) → ((p0, p1), v) ∈ μ̃c

and w =
�ρ(p0,p1) v, then there is an assignment w0 =

�ρ(p00,p01) v0 such
that

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc

and ((p1, w), σ1) ∈ F c.
(iii) (See Fig. 3 and 4.) If

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc,

((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc,

v0 =
�ρ(p00,p01) w0 and v1 =

�ρ(p10,p11) w1, then there is an assignment
v =

�ρ(p0,p1) w such that

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

Conversely, if

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c

408 M. Kaminski and T. Tan

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p0, w), σ0) ∈ F c ((p1, w), σ1)

�

�
�

�
�	

(p10, w1) (p11, w1)

Fig. 7. An application of a final relation
and a transitions of A

(p0, p1), v

�
�

�
���

�
�

�
���

(�s0, �u), σ0 ((p10, p11), v1), σ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 8. Reversing a final relation and a
transition of A into a transition of �A

and w =
�ρ(p0,p1) v, then there are assignments w0 =

�ρ(p00,p01) v0 and
w1 =

�ρ(p10,p11) v1 such that

((p0, w), σ0) → (p00, w0), (p01, w0) ∈ μc

and
((p1, w), σ1) → (p10, w1), (p11, w1) ∈ μc.

(iv) (See Fig. 9 and 10.) If

((s0, u), σ) → (p0, w), (p1, w) ∈ μc

and v =
�ρ(p0,p1) w, then (((p0, p1), v), σ) ∈ F̃ c.

Conversely, if (((p0, p1), v), σ) ∈ F̃ c, then there is an assignment w =
�ρ(p0,p1)v such that

((s0, u), σ) → (p0, w), (p1, w) ∈ μc.

We postpone the proof of the lemma to the end of this appendix and prove
the “only if” part of Theorem 1 first.

Proof. (of the “only if” part of Theorem 1.) We prove that L(A) = L(Ã) by
showing how to convert an accepting run of A on a Σ-tree σ : T → Σ, into an
accepting run of Ã on σ, and vice versa.

For an accepting run R : T → Sc, R(n) = (pn, wn), n ∈ T , of A on σ we
construct an accepting run R̃ : T → Sc of Ã on σ bottom-up, i.e., from the
leaves to the root, by induction, as follows.

By definition, for a leaf node n ∈ T , R̃(n) = s̃0
c = (s̃0, ũ), and for an interior

node n ∈ T , R̃(n) = ((pn0, pn1), vn), where the assignment vn =
�ρ(pn0,pn1) wn0(=

wn1) is defined as follows.13

13 Recall that by definition of μc, wn0 = wn1.

Tree Automata over Infinite Alphabets 409

(s0, u), σ

�

�
�

�
�
�	

(p0, w) (p1, w)

Fig. 9. An application of a transition of
A at the root node

(((p0, p1), v), σ) ∈ �F c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 10. Reversing a transition of A at
the root node into a final relation of �A

– If both children of n are leaf nodes, then vn is provided by part (i) of
Lemma 3.

– If one child of n is a leaf node and the other is an interior node, then vn is
provided by part (ii) of Lemma 3.

– Finally, if both children of n are interior nodes, then vn is provided by
part (iii) of Lemma 3.

Now, by part (iv) of Lemma 3, R̃ is an accepting run of Ã on σ.
The converse direction can shown in a similar manner. That is, an accepting

run R of A on σ is constructed from an accepting run R̃ of Ã by applying the
converse direction of Lemma 3. ��
It remains to prove Lemma 3.

Proof. (of Lemma 3) We will prove only part (iii) of the lemma. The proofs of
the other parts are very similar.

Let
(p0, w), σ0 → (p00, w0), (p01, w0) ∈ μc

and
(p1, w), σ1 → (p10, w1), (p11, w1) ∈ μc,

w = w1 · · · wr, w0 = w0,1 · · ·w0,r and w1 = w1,1 · · · w1,r. That is,

– (p0, k0) → (p00, p01) ∈ μ and w0,k0 = σ0;
– (p1, k1) → (p10, p11) ∈ μ and w1,k1 = σ1.

Then, by the definition of μ̃4,

((p00, p01), k0), ((p10, p11), k1) → (p0, p1) ∈ μ̃4

and
(((p00, p01), k0), ((p10, p11), k1), t, f) ∈ τ̃4,

where (t, f) is an inverse structure of (p0, p1); see the definition of μ̃ and τ̃ .
Let v0 =

�ρ(p00,p01) w0, v1 =
�ρ(p10,p11) w1, and let an assignment v be such that

(w0, w1, v) is an instance of (t, f). Then

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

Since w0 =ρ(p0) w and w1 =ρ(p1) w, by the first part of Lemma 2, v =
�ρ(p0,p1) w.14

14 Recall that �ρ(p0, p1) = ρ(p0) ∩ ρ(p1).

410 M. Kaminski and T. Tan

For the proof of the converse part of the lemma, let

(((p00, p01), v0), σ0), (((p10, p11), v1), σ1) → ((p0, p1), v) ∈ μ̃c.

That is, there exist

– v′
0 ∈ Σr �= , v′

0 = v′0,1v
′
0,2 · · · v′0,r, such that v′

0 =
�ρ(p00,p01) v0;

– v′
1 ∈ Σr �= , v′

1 = v′1,1v
′
1,2 · · · v′1,r, such that v′

1 =
�ρ(p10,p11) v1;

– ((p00, p01), k0), ((p10, p11), k1) → (p0, p1) ∈ μ̃, where v′0,k0
= σ0 and v′1,k1

=
σ1; and

– ((p00, p01), k0, (p10, p11), k1, t, f) ∈ τ̃ , where (v′
0, v

′
1, v) is an instance of (t, f).

By the definition of μ̃, both transitions (p0, k0) → (p00, p01) and (p1, k1) →
(p10, p11) are in μ; and (t, f) is an inverse structure of (p0, p1).

Let w be an assignment such that w =
�ρ(p0,p1) v. Since w =

�ρ(p0,p1) v and
(v′

0, v
′
1, v) is an instance of (t, f), by the second part of Lemma 2, w =ρ(p0) v′

0

and w =ρ(p1) v′
1. Therefore, we can put w0 = v′

0 and w1 = v′
1, implying

(p0, w), σ0 → (p00, w0), (p01, w0) ∈ μc

and
(p1, w), σ1 → (p10, w1), (p11, w1) ∈ μc.

Since v′
0 =

�ρ(p00,p01) v0 and v′
1 =

�ρ(p10,p11) v1, the converse part of the lemma
follows. ��

B Proof of the “if” Part of Theorem 1

For an r-register ↑-NR-FMA A = 〈S, s0, u, ρ, τ, μ, F 〉 we construct a 2r-register
↓-NR-FMA Ã = 〈S̃, s̃0, ũ, ρ̃, μ̃, F̃ 〉 such that L(A) = L(Ã).

Like in the previous proof, we assume that

– u = #r−mθ1 · · · θm, where θ1, . . . , θm ∈ Σ, and
– only the first r − m registers of A can be reassigned, i.e, the range of ρ is a

subset of {1, 2, . . . , r − m}.

We precede the formal description of Ã with a general intuitive explana-
tion. One would expect the construction to resemble the reversing the classical
automata, i.e., a transition (p0, k0), (p1, k1) → p of A to become the “transi-
tion” (p, k0, k1) → (p0, p1) of Ã. This is indeed almost so, but with the fol-
lowing modification. Dually to the construction in Appendix A, reversing of a
bottom-up transition (p0, k0), (p1, k1) → p results in two top-down transitions
((p, 0), k0) → (p0, 0), (p0, 1) and ((p, 1), k1) → (p1, 0), (p1, 1) at the lower level.
The state components 0 and 1 indicate the child nodes of the parent node,
where these transitions are applied: 0 indicates the left child and 1 indicates the
right one.

One half of the 2r registers of Ã, the main registers, is intended to contain
the corresponding assignment of A at the parent node, while the other half is

Tree Automata over Infinite Alphabets 411

intended to “recover” the symbols forgotten in the merging. To identify the (r
out of 2r) main registers, the states of Ã are equipped with a pointer function

π : {1, 2, . . . , r} → {1, 2, . . . , 2r},

where the value π(i) is the index of the register of Ã containing the symbol
stored in ith register of A. These pointers are also used to mimic the merging
relation. That is, the pointers at the child nodes and the pointers at the parent
node are defined in such a way that mimics the type and the valid selector used
to merge the assignments at the child nodes.

More precisely,

S̃ = S × {0, 1} × Π2
r × T r × Fr ∪ {s̃0},

where s̃0 is a new state (the initial state of Ã), Πr is the set of all injective
functions from {1, . . . , r} into {1, . . . , 2r}, and Fr is the set of functions from
{1, . . . , r} into {0, 1} × {1, . . . , r}. A bottom-up transition (p0, k0), (p1, k1) → p
and a corresponding “merging attribute” ((p0, k0), (p1, k1), t, f) are simulated by
two top-down transitions

((p, 0, π, π0, t, f), π0(k0)) → (p0, 0, π0, π
′
0, t0, f0), (p0, 1, π0, π

′′
0 , t0, f0)

and

((p, 1, π, π1, t, f), π1(k1)) → (p1, 0, π1, π
′
1, t1, f1), (p1, 1, π1, π

′′
1 , t1, f1),

where

1. π0(i) = π1(j) implies (i, j) ∈ t, and

2. π(j) =
{

π0(i) if f(j) = (0, i)
π1(i) if f(j) = (1, i)

A triple of pointers (π0, π1, π) satisfying the above conditions 1 and 2 is said to
comply with the pair (t, f).

The pointers π0 and π1 in the states (p, 0, π, π0, t, f) and (p, 1, π, π1, t, f),
respectively, point at the assignments of A at the corresponding child nodes,
and the pointer π points at the assignment A at the parent node.

The registers whose indices lie outside of the ranges of π0 and π1 are intended
to contain the forgotten symbols which are recovered by a non-deterministic
reassignment. That is, we define
ρ̃(p, 0, π, π0, t, f) =

{π0(i) : f(j) = (0, i) and j ∈ ρ(s)} ∪
(
{1, . . . , 2r} \ Range(π0)

)

and

412 M. Kaminski and T. Tan

ρ̃(p, 1, π, π1, t, f) =
{π1(i) : f(j) = (1, i) and j ∈ ρ(s)} ∪

(
{1, . . . , 2r} \ Range(π1)

)
.

The above description of Ã is illustrated in Fig. 11 and 12 below. In Fig. 11 w,
w0, and w1 are the assignments at the nodes labeled with the states p, p0, and
p1, respectively,15 in a run of A. Fig. 12 shows the reversing of the transition
in Fig. 11. The intended meaning of the states in Fig. 12 (that depicts the
corresponding run of Ã) is that π0(v0) =ρ(p0) w0, π1(v1) =ρ(p1) w1, π(v) =ρ(p)

w,16 and t and f are the type and the valid selector applied in the merging
transition of A that results in w.

Fig. 11. An application of a bottom-up transition of A

Fig. 12. Reversing and “splitting” the transition of A in Fig. 11

We proceed with the formal description of Ã = 〈S̃, s̃0, ũ, ρ̃, μ̃, F̃ 〉 (that has 2r

registers). Even though some of the components of Ã have been define earlier,
we list them one more time fore the sake of continuity.
15 In particular, w results in merging w0 and w1 after reassignment.
16 π(w1 · · · wr) denotes wπ(1) · · · wπ(r), etc..

Tree Automata over Infinite Alphabets 413

– S̃ = S × {0, 1} × Π2
r × T r × Fr ∪ {s̃0}, where s̃0 is a new state.

– s̃0 is the initial state.
– ũ = #r−mθ1 · · · θm#r.
– The reassignment ρ̃ is defined as follows.

ρ̃(s̃0) = {1, . . . , r − m} ∪ {r + 1, . . . , 2r},

and for each p ∈ S,
ρ̃(p, 0, π, π0, t, f) =

{π0(i) : f(j) = (0, i) and j ∈ ρ(p)} ∪
(
{1, . . . , 2r} \ Range(π0)

)

and
ρ̃(p, 1, π, π1, t, f) =

{π1(i) : f(j) = (1, i) and j ∈ ρ(p)} ∪
(
{1, . . . , 2r} \ Range(π1)

)
.

– The transition relation μ̃ consists of the following transitions.
• For each (p, k) ∈ F and all π0, π1 such that (π0, π1, πid)17 complies with

(t, f) it contains

(s̃0, k) → (p, 0, πid, π0, t, f), (p, 1, πid, π1, t, f);

and
• for each (p0, k0), (p1, k1) → p ∈ μ, each ((p0, k0), (p1, k1), t, f) ∈ τ , and

all π, π0, π1, π00, π01, π10, π11 ∈ Πr, t0, t1 ∈ T r, and f0, f1 ∈ Fr such
that (π0, π1, π) complies with (t, f), (π00, π01, π0) complies with (t0, f0),
and (π10, π11, π1) complies with (t1, f1), it contains both

(p, 0, π, π0, t, f), π0(k0) → (p0, 0, π0, π00, t0, f0), (p1, 1, π0, π01, t0, f0),

and

(p, 1, π, π1, t, f), π1(k1) → (p1, 0, π1, π10, t1, f1), (p1, 1, π1, π11, t1, f1).

– Finally, F̃ is defined as follows. For each (s0, k0), (s0, k1) → p ∈ μ (that starts
from the initial state s0) each ((s0, k0), (s0, k1), t, f) ∈ τ , and all π, π0, π1 ∈
Πr such that (π0, π1, π) complies with (t, f), it contains

((p, 0, π, π0, t, f), π0(k0))

and
((p, 1, π, π1, t, f), π1(k1)).

The proof of the equality L(Ã) = L(A) is based on Lemma 4 below that is
a formalization of Fig. 11 and 12. It shows how an accepting run of A can be
“reversed” into an accepting run of Ã, or more precisely, it shows how transitions
from μc are converted into transitions from μ̃c, and vice versa.
17 Here πid denotes the identity function on {1, 2, . . . , r}. That is, πid(i) = i, for all

i = 1, . . . , r.

414 M. Kaminski and T. Tan

Lemma 4 consists of four parts corresponding to the type of nodes on which
transitions take place. Its part (i) deals with the case of the root node ε. Part
(ii) of the lemma settles the case of the interior nodes. Part (iii) shows how an
accepting run of A can be “reversed” into an accepting run of Ã when one of the
two sibling nodes is a leaf and the other is an interior node. Finally, part (iv) of
Lemma 3 shows how an accepting run of A can be “reversed” into an accepting
run of Ã at the leaf nodes and vice versa.

Lemma 4

(i) (See Fig. 13 and 14.) For all pointers π0, π1, all types t, all valid selec-
tors f for t such that (π0, π1, πid) comply with (t, f), and all final relations
((p, w), σ) ∈ F c, there is an assignment v such that πid(v) =ρ(p) w and

((s̃0, ũ), σ) → ((p, 0, πid, π0, t, f), v), ((p, 1, πid, π1, t, f), v) ∈ μ̃c.

Conversely, for all

((s̃0, ũ), σ) → ((p, 0, πid, π0, t, f), v), ((p, 1, πid, π1, t, f), v) ∈ μ̃c

and all assignments w such that w =ρ(p) πid(v), ((p, w), σ) ∈ F c.

((p,w), σ) ∈ F c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 13. An application of a final
relation of A at the root node

(�s0, �u), σ

�
�

�
�

�
�	

�

((p, 0, πid, π0, t, f), v), σ0 ((p, 1, πid, π1, t, f), v), σ1

Fig. 14. Reversing the final relation of A at the
root node in Fig. 13

(ii) (See Fig. 11 and 12.) For all

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above tran-
sition, all assignments v such that π(v) =ρ(p) w, all pointers π, π0, π1,
π00, π01, π10, π11, and all types t0 and t1 and valid selectors f0 and f1 for
t0 and t1, respectively, such that (π0, π1, π) comply with (t, f), (π00, π01, π0)
comply with (t0, f0), and (π10, π11, π1) comply with (t1, f1), there are assign-
ments v0 and v1 such that π0(v0) =ρ(p0) w0, π1(v1) =ρ(p1) w1, and both
transitions

Tree Automata over Infinite Alphabets 415

(((p, 0, π, π0, t, f), v), σ0) →
((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0)

and

(((p, 1, π, π1, t, f), v), σ1) →
((p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1)

are in μ̃c.

Conversely, for all transitions
(((p, 0, π, π0, t, f), v), σ0) →

((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0)

and

(((p, 1, π, π1, t, f), v), σ1) →
((p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1)

in μ̃c and all assignments w0 and w1 such that π0(v0) =ρ(p0) w0 and
π1(v1) =ρ(p1) w1, there is an assignment w such that π(v) =ρ(p) w and

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc,

(iii) (a) (See Fig. 15 and 16.) For all transitions

((p0, w0), σ0), ((s0, u), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w, all pointers π,
π0, π1, π00, π01, and all types t0 and valid selectors f0 for t0 such that
(π0, π1, π) comply with (t, f) and (π00, π01, π0) comply with (t0, f0),
there is an assignment v0 such that π0(v0) =ρ(p0) w0,

(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

and
(((p, 0, π, π0, t, f), v), σ0) →

((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0) ∈ μ̃c .

Conversely, for all

(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

and

((p, 0, π, π0, t, f), v), σ0 →
((p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0 ∈ μ̃c,

416 M. Kaminski and T. Tan

and all assignment w0 such that w0 =ρ(p0) π0(v0), there is an as-
signment w such that w =ρ(p) π(v) and

((p0, w0), σ0), ((s0, u), σ1) → (p, w) ∈ μc.

(b) For all transitions

((s0, u), σ0), ((p1, w1), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w and for all point-
ers π, π0, π1, π10, π11, ad all types t1 and valid selectors f1 for t1
such that (π0, π1, π) comply with (t, f) and (π10, π11, π1) comply with
(t1, f1), there is an assignment v1 such that π1(v1) =ρ(p1) w1,

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c

and

((p, 1, π, π1, t, f), v), σ1 →
(p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c.

Conversely, for all

((p, 1, π, π1, t, f), v), σ1 →
(p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c ,

and

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c,

and all assignments w1 such that w1 =ρ(p1) π1(v1), there is an as-
signment w such that w =ρ(p) π(v) and

((s0, u), σ0), ((p1, w1), σ1) → (p, w) ∈ μc.

(iv) (See Fig. 17 and 18.) For all

((s0, u), σ0), ((s0, u), σ1) → (p, w) ∈ μc,

all types t and all valid selectors f for t which yield w in the above
transition, all assignments v such that π(v) =ρ(p) w, and for all pointers
π, π0, π1 such that (π0, π1, π) comply with (t, f),

(((p, 0, π, π0, t, f), v), σ0) ∈ F̃ c

and
(((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c.

Tree Automata over Infinite Alphabets 417

(p, w)

�

�
�

�
�

��

(p0, w0), σ0 (s0, u), σ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 15. An application of a transition of A at a leaf node

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p, 0, π, π0, t, f), v), σ0 ((p, 1, π, π1, t, f), v), σ1 ∈ �F c

(p0, 0, π0, π00, t0, f0), v0 (p0, 1, π0, π01, t0, f0), v0

�

�
�

�
�

�
�	

Fig. 16. Reversing and “splitting” the transition of A in Fig. 15 into a transition and
a final relation

Conversely, for all pairs of final relations

(((p, 0, π, π0, t, f), v), σ0), (((p, 1, π, π1, t, f), v), σ1) ∈ F̃ c,

there is an assignment w such that w =ρ(p) π(v) and

((s0, u), σ0), ((s0, u), σ1) → (p, w) ∈ μc.

We postpone the proof of the lemmas to the end of this appendix and prove
the “if” part of Theorem 1 first.

Proof. (of the “if” part of Theorem 1.) We prove that L(A) = L(Ã) by showing
how to convert an accepting run of A on a Σ-tree σ : T → Σ, into an accepting
run of Ã on σ, and vice versa.

418 M. Kaminski and T. Tan

(p, w)

�
�

�
�

���

�
�

�
�

���

(s0, u), σ0 (s0, u), σ1

Fig. 17. An application of a transition of A at two leaf nodes

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
((p, 0, π, π0, t, f), v), σ0 ∈ �F c ((p, 1, π, π1, t, f), v), σ1 ∈ �F c

Fig. 18. Reversing and “splitting” the transition of A in Fig. 17 into two final relations
of �A

For an accepting run R : T → Sc, R(n) = (pn, wn), n ∈ T , of A on σ we
construct an accepting run R̃ : T → Sc of Ã on σ top-down, i.e., from the root
to the leaves, by induction for which we shall employ the following notation. For
an interior node n ∈ T ,

– tn and fn are the type and the valid selector used in the transition

(R(n0), σ(n0)), (R(n1), σ(n1)) → R(n);

– πn0, πn1, and πn are pointers such that (πn0, πn1, πn) complies with (tn, fn);
and

– πε = πid.

By definition, for the root node ε, R̃(ε) = s̃0
c = (s̃0, ũ), and assume that R̃(n)

has been constructed for a non-leaf node n ∈ T . Then

– R̃(n0) = ((pn, 0, πn, πn0, tn, fn), vn) and
– R̃(n1) = ((pn, 1, πn, πn1, tn, fn), vn),

where πid(vn) =ρ(pn) wn is defined below..

– The assignment vε is provided by part (i) of Lemma 4, and
– for non-root interior node n, the assignment vn is provided by part (ii) of

Lemma 4.

By parts (iii) and (iv) of Lemma 4, R̃ is an accepting run of Ã on σ.
The converse direction can shown in a similar manner. That is, an accepting

run R of A on σ is constructed from an accepting run R̃ of Ã by applying the
converse direction of Lemma 4. ��

Tree Automata over Infinite Alphabets 419

It remains to prove Lemma 4.

Proof. (of Lemma 4.) We will prove only part (ii) of the lemma. The proofs of
the other parts are very similar.

Let
(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc.

That is, there exist

– assignments w′
0 = w′

0,1w
′
0,2 · · ·w′

0,r and w′
1 = w′

1,1w
′
1,2 · · · w′

1,r such that
w′

0 =ρ(p0) w0 and w′
1 =ρ(p1) w1;

– a transition (p0, k0), (p1, k1) → p ∈ μ such that w′
0,k0

= σ0 and w′
1,k1

= σ1;
and

– a merging relation ((p0, k0), (p1, k1), t, f) ∈ τ such that (w′
0, w

′
1, w) is an

instance of (t, f).

Let π0, π1, π, π00, π01, π0, π10, π11, π1 be pointers and t0, t1 and f0, f1 be types
and the corresponding valid selectors such that (π0, π1, π) complies with (t, f),
(π00, π01, π0) complies with (t0, f0), and (π10, π11, π1) complies with (t1, f1).

By definition, μ̃ contains both

(p, 0, π, π0, t, f), π0(k0) → (p, 0, π0, π00, t0, f0), (p, 1, π0, π01, t0, f0)

and

(p, 0, π, π1, t, f), π1(k1) → (p, 0, π1, π10, t1, f1), (p, 1, π1, π11, t1, f1)

Let v be an assignment such that π(v) =ρ(p) w. By the definition of the
reassignments ρ̃((p, 0, π, π0, t, f)) and ρ̃((p, 1, π, π0, t, f)), there are assignments

– v0 =
�ρ((p,0,π,π0,t,f)) v such that π0(v0) = w′

0, and
– v1 =

�ρ((p,1,π,π0,t,f)) v such that π1(v1) = w′
1.

Since (π0, π1, π) comply with (t, f), π(v0) = w = π(v1). Thus, both

((p, 0, π, π0, t, f), v), σ0 → (p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0

and

((p, 1, π, π1, t, f), v), σ1 → (p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1

are in μ̃c.

For the proof of converse part of the lemma, let

((p, 0, π, π0, t, f), v), σ0 → (p0, 0, π0, π00, t0, f0), v0, (p0, 1, π0, π01, t0, f0), v0 ∈ μ̃c

and

((p, 1, π, π1, t, f), v), σ1 → (p1, 0, π1, π10, t1, f1), v1, (p1, 1, π1, π11, t1, f1), v1 ∈ μ̃c

420 M. Kaminski and T. Tan

where v0 =
�ρ((p,0,π,π0,t,f)) v, v1 =

�ρ((p,1,π,π1,t,f)) v, and (π0, π1, π), (π00, π01, π0),
and (π10, π11, π1) comply with (t, f), (t0, f0), and (t1, f1), respectively.

Therefore, by definition, there are transitions

(p, 0, π, π0, t, f), π0(k0) → (p0, 0, π0, π00, t0, f0), (p0, 1, π0, π01, t0, f0) ∈ μ̃

and

(p, 1, π, π1, t, f), π1(k1) → (p1, 0, π1, π10, t1, f1), (p1, 1, π1, π11, t1, f1) ∈ μ̃

such that v0,π0(k0) = σ0 and v1,π1(k1) = σ1.
By the definition of μ̃,

(p0, k0), (p1, k1) → p ∈ μ

and
((p0, k0), (p1, k1), t, f) ∈ τ.

Let w0, w1 be assignments such that w0 =ρ(p0) π0(v) and w1 =ρ(p1) π1(v),
and let denote w′

0 = π0(v) and w′
1 = π1(v).

Since w0,k0 = vπ0(k0) = σ0 and w1,k1 = vπ1(k1) = σ1,

(p0, w0), σ0, (p1, w1), σ1 → (p, w) ∈ μc

where w is an assignment such that (w′
0, w

′
1, w) is an instance of (t, f).

Thus, the proof will be complete if we show that π(v) =ρ(p) w. Let i �∈ ρ(p).
Since (π0, π1, π) complies with (t, f), and (w′

0, w
′
1, w) is an instance of (t, f),

vπ(i) =
{

vπ0(j) = v0,π0(j) = w′
0,j = wi, where f(j) = (0, i)

vπ1(j) = v1,π1(j) = w′
1,j = wi, where f(j) = (1, i)

and the converse part of the lemma follows. ��

C Closure Properties

In this section we establish some basic closure properties of the tree languages
defined defined by ↓-NR-FMAs. The proofs are pretty standard and can be easily
modified for all other models of tree automata introduced in this paper.

Let Ai = 〈Si, s0,i, ui, ρi, μi, Fi〉, i = 1, 2, be ↓-FMAs. Without loss of general-
ity, we assume that A1 and A2 possess the following properties.

1. The sets of states S1 and S2 are disjoint.
2. Both the initial states s0,1 and s0,2 are not accessible from the other states

of the corresponding automaton. That is, there is no transition of the form
(q, k) → (s0,i, q

′) or (q, k) → (q′, s0,i), i = 1, 2.
3. Both automata have the same initial assignment of the form θ1 · · · θm#r, and

registers 1, . . . , m are never reset.18 This property can be verified similarly
to the proof of [7, Lemma 5.1].

Tree Automata over Infinite Alphabets 421

��

��

s
�
�

�
���

�
�

�
���

A1 A2

Fig. 19. The diagram of A

Closure under union. We construct an automaton A that accepts L(A1)∪L(A2)
as the “union” of A1 and A2. The initial state of A is a new state s. ¿From this
state A can simulate either of A1 and A2, as illustrated in Fig. 19.

The initial assignment of A is θ1 · · · θm#2r. Except for the input symbols from
{θ1, θ2, . . . , θm}, A1 is simulated by the registers (m + 1) to (m + r), while A2

is simulated by the last r registers. The transitions of A2 are renamed from
(q, k) → (q0, q1) to (q, k + r) → (q0, q1) for all k = m + 1, m + 2, · · · , m + r.
For the inputs from {θ1, θ2, . . . , θm}, both A1 and A2 use the first m registers.
Finally, ρ(s) = ρ(s1) ∪ {k + r : k ∈ ρ(s2)}.

Closure under concatenation.19 An automaton A accepting L(A1)L(A2) results
in “extending” A1 with A2. That is, A starts by simulating A1 until it reaches a
final relation. Then it continues by simulating A2. This is achieved by changing
all the final relations (q, k) ∈ F1 to (q, k) → (s0,2, s0,2). The set of final relations
of A is F2.

Closure under Kleene star.20 The construction is similar to the concatenation
case. To accept L(A1)∗, the automaton A simulate A1 a number of times, which
is achieved by adding the transition (q, k) → (s0,1, s0,1) to μ1 for each final
relation (q, k) ∈ F1 and setting ρ(s0,1) = {m + 1, . . . , m + r}.

Closure under intersection. The construction here is a bit more involved. The
basic idea is to use the (equivalent) tree automata model similar to the M-FMA
introduced in [6, Sect. 3]. These automata are allowed to “consult” a number of
registers at the same time.

Definition 7. (Cf. [20, Definition 5. pp. 20-22].) A top-down M-finite-memory
automaton (↓-M-FMA) is a system A = 〈S, s0, u, ρ, μ, F 〉, where
18 Consequently, only registers m + 1, . . . , m + r may be reset.
19 The concatenation of two tree languages L1 and L2 is defined by extending each leaf

in every tree from L1 with two child nodes in each of which a tree from L2 is rooted.
In terms of the corresponding definition in [3, Sect. 2.2, p. 52], we can view this as
first extending each leaf in every tree from L1 with two children labeled with a new
symbol � and then applying ·�.

20 For a tree language L, L∗ is the collection of all iterated concatenations of L ∪ {�},
where � is the “empty tree,” i.e., a single node labeled with the symbol �. In terms
of the corresponding definition in [3, Sect. 2.2, p. 54], L∗ = L∗,� (=

�
n≥0 Ln,�).

422 M. Kaminski and T. Tan

– S is the finite set of states.
– s0 is the initial state.
– u = θ1 · · · θm # · · · #

︸ ︷︷ ︸
r

· · ·#
︸ ︷︷ ︸

r

∈ (Σ ∪ {#})(m+2r) is the initial assignment.

– ρ : S → {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r} is the reassignment
function.

– μ is the set of transitions of the following form
• (p, k) → (p0, p1) ∈ S × {1, . . . , m} × S × S,
• (p, (k0, k1)) → (p0, p1) ∈ S × {m + 1, . . . , m + r} × {m + r + 1, . . . , m +

2r} × S × S.
– F is the set of final relations of the following form

• (p, k) ∈ S × {1, . . . , m},
• (p, (k0, k1)) ∈ S × {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r}.

Similarly, the transition relation μ induces the following relation μc which is
defined as follows. (p, w), σ → (p0, w

′), (p1, w
′) belongs to μc if and only if the

following conditions are satisfied. w′ = w′
1 · · · w′

m+2r, where w′
i = wi, for all

i �∈ {i, j : (i, j) ∈ ρ(p)} and

1. If σ ∈ {θ1, . . . , θm}, then w′
k = θ and (p, k, (p0, p1)) ∈ μ.

2. If σ �∈ {θ1, . . . , θm}, then σ = w′
k0

= w′
k1

, for some k0 < k1 and the triple
(p, (k0, k1), (p0, p1)) belongs to μ.

The relation F c is defined as follows. A pair ((p, w), σ) ∈ F c if the following
holds.

– If σ ∈ {θ1, . . . , θm}, then w′
k = θ and (p, k, (p0, p1)) ∈ F .

– If σ �∈ {θ1, . . . , θm}, then σ = w′
k0

= w′
k1

, where m < k0 < k1 and
(p, (k0, k1), (p0, p1)) belong to F .

Proposition 6. For each ↓-M-NR-FMA A there exists an ↓-NR-FMA A′ such
that L(A) = L(A′).

Proof. We convert A into a standard (m + r2)-register ↓-NR-FMA A′ whose
initial assignment is θ1 · · · θm#r2

.
Let ϕ : {m + 1, . . . , m + r} × {m + r + 1, . . . , m + 2r} → {m + 1, . . . , m +

r2} be a one-to-one function. The simulation of A by A′ is done by referring
each pair of registers (k0, k1) to a single register ϕ(k, k′) of A′. Formally, A′ =
〈S′, s′0, u

′, ρ′, μ′, F ′〉 is defined as follows.

– S′ = S and s′0 = s0.
– u′ = θ1 · · · θm#r2

.
– ρ(q1, q2) = ϕ(ρ(q1) × {m + r + 1, . . . , m + 2r} ∪ {m + 1, . . . , m + r} × ρ(q2)).
– μ′ consists of the following two types of transitions:

• for every ((q1, q2)(k1, k2)) → ((q′1, q
′′
1)(q2, q

′′
2)) ∈ μ it contains

((q, q′), ϕ((k, k′))) → ((q0, q
′
0), (q1, q

′
1)),

Tree Automata over Infinite Alphabets 423

• for every ((q1, q2), k) → ((q′1, q
′′
2), (q2, q

′′
2)) ∈ μ, it contains

((q1, q2), k) → ((q′1, q
′′
2), (q2, q

′′
2))

itself.
– F ′ consists of the following two types of relations:

• for every ((q1, q2), (k1, k2)) ∈ F it contains ((q1, q2), ϕ(k1, k2)), and
• for every ((q1, q2), k) ∈ F it contains ((q1, q2), k) itself. ��

Now we construct an ↓-M-FMA A that accepts L(A1)∩L(A2) by simultaneously
simulating A1 and A2. This is done by defining A as the product of A1 and A2.

The precise description of A is as follows. Like in the case of the closure under
union, the initial assignment of A is θ1 · · · θm#2r and the automata A1 and A2 are
simulated on the registers {1, . . . , m+r} and {1, . . . , m}∪{m+r+1 . . . , m+2r},
respectively. That is, A = 〈S, s0, u, ρ, μ, F 〉 is defined as follows.

– S = S1 × S2.
– s0 = (s0,1, s0,2).
– u = θ1 · · · θm#2r.
– ρ(q1, q2) = {ρ1(q1), ρ2(q2) + r}.
– μ consists of the following two types of transitions:

• for every (q1, k1) → (q′1, q
′′
1) ∈ μ1 and every (q2, k2) → (q′2, q

′′
2) ∈ μ2

such that m ≤ k1, k2 ≤ m + r, it contains ((q1, q2), (k1, k2 + r)) →
(q′1, q

′
2)(q

′′
1 , q′′1), and

• for every (q1, k) → (q′1, q
′′
1) ∈ μ1 and every (q2, k) → (q′2, q

′′
2) ∈ μ2 such

that 1 ≤ k ≤ m, it contains ((q1, q2), k) → (q′1, q′2)(q′′1 , q′′1).
– F consists of the following two types of relations:

• for every (q1, k1) ∈ F1 and every (q2, k2) ∈ F2 such that m ≤ k1, k2 ≤
m + r, it contains ((q1, q2), (k1, k2 + r)), and

• for every (q1, k) ∈ F1 and every (q2, k) ∈ F2 such that 1 ≤ k ≤ m, it
contains ((q1, q2), k).

Connectives in Cumulative Logics�

Daniel Lehmann

School of Computer Science and Engineering, Hebrew University,
Jerusalem 91904, Israel
lehmann@cs.huji.ac.il

It is a great pleasure for me to present those reflections to the Festschrift of
Boaz (Boris) Trakhtenbrot, who, with great constancy, manifested his interest

in my explorations in quantic and other exotic logics and whose
encouragements have been most appreciated.1

Abstract. Cumulative logics are studied in an abstract setting, i.e.,
without connectives, very much in the spirit of Makinson’s [11] early
work. A powerful representation theorem characterizes those logics by
choice functions that satisfy a weakening of Sen’s property α, in the spirit
of the author’s [9]. The representation results obtained are surprisingly
smooth: in the completeness part the choice function may be defined on
any set of worlds, not only definable sets and no definability-preservation
property is required in the soundness part. For abstract cumulative log-
ics, proper conjunction and negation may be defined. Contrary to the
situation studied in [9] no proper disjunction seems to be definable in
general. The cumulative relations of [8] that satisfy some weakening of
the consistency preservation property all define cumulative logics with
a proper negation. Quantum Logics, as defined by [3] are such cumula-
tive logics but the negation defined by orthogonal complement does not
provide a proper negation.

1 Introduction

The study of nonmonotonic logics on a language without connectives was started
in [9], where logics related to the preferential system of [8] have been studied.
The present paper pursues this approach by studying less powerful nonmonotonic
logics related to the cumulative and loop-cumulative systems there. It also asks
the question: which are the natural connectives in those logics?

One reason for being interested in such logics is the remarkable presentation
of Quantum Logic as a cumulative, even loop-cumulative, logic proposed by En-
gesser and Gabbay in [3]. In [1], Birkhoff and von Neumann suggested that the
� This work was partially supported by the Jean and Helene Alfassa fund for research

in Artificial Intelligence.
1 A preliminary version of the present work was written in May 2002 and then re-

vised in August 2002. It has been presented in an invited lecture to the 2002
ASL European Summer meeting in Muenster, Germany. It appeared as Leib-
niz Center for Research in Computer Science TR-2002-28 and is available at
http://arxiv.org/pdf/cs/0205079.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 424–440, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://arxiv.org/pdf/cs/0205079

Connectives in Cumulative Logics 425

logic of quantum mechanics be isomorphic to the algebra of closed subspaces
of Hilbert spaces, under “set product” (i.e., intersection), “closed linear sum”,
and “orthogonal complement”. Many researchers studied the properties of those
operations and their results are reviewed in [2]. Recently, Engesser and Gab-
bay [3] proposed a very different and most intriguing connection between Logics
and Quantum mechanics. For them every quantum state defines a consequence
relation. They showed that those consequence relations are nonmonotonic. They
also showed they satisfy cumulativity, the focus of early studies of nonmono-
tonicity, in particular [11,8,6,12,4,5]. Whereas Engesser and Gabbay assume a
language closed under the propositional connectives (as did Birkhoff and von
Neumann), even though those connectives are not at all classical, the purpose
of this paper is to study and try to characterize the consequence operations pre-
sented by Quantum mechanics before any connectives are defined, in the style of
the author’s [9] and in the tradition of Makinson’s early work. Since Quantum
Logics fail, in general, to satisfy two of the properties assumed there, repre-
sentation results for larger families than those of [9] are needed. Such results
will be developed first. For the conservative extension results to be proven be-
low, models closer to the cumulative models of [8] or of [12] could have been
used. The models presented here and their tight link with the failure of Coher-
ence have been preferred both for their intrinsic interest and for compatibility
with [9].

All in all, the connectives proposed in the present work are probably not the
right ones for Quantum Physics. I think that quantum negation must be in-
terpreted as orthogonal complementation and, most importantly, that quantum
conjunction should not be a commutative operation interpreted as intersection,
as proposed by Birkhoff and Von Neumann but should be some non-commutative
operation. Such ideas are developed in [10].

2 C-logics

2.1 Definition

The framework is the one presented in [9]. Let L be any non-empty set. The
elements of L should be viewed as propositions or formulas and L is therefore a
language. At present no structure is assumed on L and its elements are therefore
to be taken as atomic propositions. Let C : 2L −→ 2L.

Definition 1. The operation C is said to be a C-logic iff it satisfies the two
following properties.

Inclusion ∀A ⊆ L , A ⊆ C(A),

Cumulativity ∀A, B ⊆ L, A ⊆ B ⊆ C(A) ⇒ C(A) = C(B).

Note that neither Monotonicity nor Supraclassicality is assumed.

426 D. Lehmann

2.2 Properties

Lemma 1 (Makinson). An operation C is a C-logic iff it satisfies Inclusion,

Idempotence ∀A ⊆ L, C(C(A)) = C(A)

and

Cautious Monotonicity ∀A, B ⊆ L A ⊆ B ⊆ C(A) ⇒ C(A) ⊆ C(B)

Proof. Let us prove, first, that a C-logic satisfies Idempotence. By Inclusion
A ⊆ C(A) ⊆ C(A), therefore, by Cumulativity: C(A) = C(C(A)). Assume, now
that C satisfies Inclusion, Idempotence and Cautious Monotonicity. Let A ⊆ B ⊆
C(A). By Cautious Monotonicity, we have C(A) ⊆ C(B). Therefore, we have B ⊆
C(A) ⊆ C(B). By Cautious Monotonicity again, we have: C(B) ⊆ C(C(A)). By
Idempotence, then, we conclude C(B) ⊆ C(A) and therefore C(B) = C(A). ��

Lemma 2 (Makinson). An operation C is a C-logic iff it satisfies Inclusion
and

2-Loop A ⊆ C(B), B ⊆ C(A) ⇒ C(A) = C(B).

Proof. Assume C is a C-logic and A ⊆ C(B). By Inclusion, we have B ⊆ A ∪ B ⊆
C(B) and by Cumulativity: C(B) = C(A ∪ B). Similarly B ⊆ C(A) implies C(A)=
C(A ∪ B).

Assume now that C satisfies Inclusion and 2-Loop, and that A ⊆ B ⊆ C(A).
By Inclusion: A ⊆ B ⊆ C(B). By 2-Loop, then, we have: C(A) = C(B). ��

The finer study of C-logics relies, as for monotonic logics, on the notions of a
consistent set and of a theory.

Definition 2. A set A ⊆ L is said to be consistent iff C(A) 	= L. A set A for
which C(A) = L is said to be inconsistent.

The following follows from Idempotence.

Lemma 3. A set A is consistent iff C(A) is.

Lemma 4. If A ⊆ B and A is inconsistent, so is B.

Proof. miuns .1em If C(A) = L, we have A ⊆ B ⊆ C(A) and, by Cumulativity,
C(B) = C(A) = L. ��

Definition 3. A set A ⊆ L is said to be maximal consistent iff it is consistent
and any strict superset B ⊃ A is inconsistent.

Definition 4. A set T ⊆ L is said to be a theory iff C(T) = T .

The following is obvious (by Inclusion).

Lemma 5. There is only one inconsistent theory, namely L.

Lemma 6. Any maximal consistent set A is a theory.

Connectives in Cumulative Logics 427

Proof. By Inclusion A ⊆ C(A). By Lemma 3 the set C(A) is consistent and by
maximality: A = C(A). ��

Notation: Given any C-logic C let us define CnC : 2L −→ 2L by:

CnC(A) =
⋂

T⊇A, T a theory

T.

When C is clear from the context, we shall simply write Cn. Note that Cn(A) =⋂
B⊇A C(B). Note also that Cn does not in this paper denote classical conse-

quence as it often does. The following follows from Lemma 5.

Lemma 7

Cn(A) =
⋂

T⊇A, T a consistent theory

T.

Lemma 8. A ⊆ Cn(A) ⊆ C(A).

Proof. By the definition of Cn and the fact that C(A) is a theory that includes
A (Idempotence and Inclusion). ��

Lemma 9. A set A ⊆ L is inconsistent iff Cn(A) = L.

Proof. If Cn(A) = L, then, by Lemma 8, C(A) = L. If A is inconsistent, then,
by Lemma 4, there is no consistent theory that includes A and, by Lemma 7,
Cn(A) = L. ��

Lemma 10. C(A) = Cn(C(A)) = C(Cn(A)).

Proof. By Lemma 8, we have C(A) ⊆ Cn(C(A)) ⊆ C(C(A)). By Idempotence,
then, the first equality is proved. By Lemma 8 and Cumulativity, we have
C(A) = C(Cn(A)). ��

Corollary 1. For any theory T , Cn(T) = T .

Proof. Cn(T) = Cn(C(T)) = C(T) = T . ��

Lemma 11. The operation Cn is monotonic, i.e., if A⊆B, then Cn(A) ⊆ Cn(B)
and also idempotent, i.e., Cn(Cn(A)) = Cn(A).

Proof. Monotonicity follows immediately from the definition of Cn. For Idempo-
tence, notice that, by Monotonicity and Corollary 1, any theory T that includes
A also includes Cn(A): Cn(A) ⊆ Cn(T) = T . ��

2.3 f-Models

Assume M is a set (of worlds), about which no assumption is made, and |= ⊆
M × L is a (satisfaction) binary relation (nothing assumed either). For any set

428 D. Lehmann

A ⊆ L, we shall denote by Â or by Mod(A) the set of all worlds that satisfy all
elements of A:

Â = Mod(A) = {x ∈ M | x |= a, ∀a ∈ A}.

For typographical reasons we shall use both notations, sometimes even in the
same formula. For any set of worlds X ⊆ M, we shall denote by X the set of all
formulas that are satisfied in all elements of X :

X = {a ∈ L | x |= a, ∀x ∈ X}.

The following are easily proven, for any A, B ⊆ L, X, Y ⊆ M: they amount to
the fact that the operations X �→ X and A �→ Â form a Galois connection.

A ⊆ Â , X ⊆ X̂

Â ∪ B = Â ∩ B̂ , X ∪ Y = X ∩ Y

A ⊆ B ⇒ B̂ ⊆ Â , X ⊆ Y ⇒ Y ⊆ X

A ⊆ B ⇒ Â ⊆ B̂ , X ⊆ Y ⇒ X̂ ⊆ Ŷ

Â =
̂̂
A , X = X̂

The last technical notion that will be needed is that of a definable set of worlds.
It will be used in the completeness proof below, but not in Definition 6.

Definition 5. A set X of worlds is said to be definable iff either one of the two
following equivalent conditions holds:

1. ∃A ⊆ L such that X = Â, or
2. X = X̂.

The set of all definable subsets of X will be denoted by DX .

The proof of the equivalence of the two propositions above is obvious.

Lemma 12. If X and Y are definable sets of worlds, then their intersection
X ∩ Y is also definable.

Proof. By the remarks above: if X = Â and Y = B̂, X ∩ Y = Â ∩ B̂ = Â ∪ B. ��

Definition 6. A choice function on M is a function f : 2M → 2M.

Note that f is defined on arbitrary sets of worlds, not only on definable sets as
in [9]. In the same vein, we do not require here that the image by f of a definable
set be definable as was necessary in the corresponding soundness result of [9].

Definition 7. A triplet 〈M, |=, f〉 is an f-model (for language L) iff |= is a
binary relation on M × L and f is a choice function M that satisfies, for any
sets X, Y :

Contraction f(X) ⊆ X

and
f-Cumulativity f(X) ⊆ Y ⊆ X ⇒ f(Y) = f(X).

Connectives in Cumulative Logics 429

Definition 8. An f-model is said to be a restricted f-model iff its choice function
f also satisfies, for any set X:

f-Consistency f(X) = ∅ ⇒ X = ∅.

2.4 Properties of f-Models

This section makes clear the relation between f-models and the models of [9]. It
will not be used in the sequel. There one considered choice functions satisfying
Contraction,

Coherence X ⊆ Y ⇒ X ∩ f(Y) ⊆ f(X)

and
f-Monotonicity f(X) ⊆ Y ⊆ X ⇒ f(Y) ⊆ f(X).

Lemma 13. Any function f that satisfies Inclusion, Coherence and f-
Monotonicity satisfies f-Cumulativity.

Proof. Assume f(X) ⊆ Y ⊆ X , we must show that f(X) ⊆ f(Y) (the opposite in-
clusion is guaranteed by f-Monotonicity). By Coherence: Y ∩ f(X) ⊆ f(Y). ��

2.5 Soundness

Theorem 1. Let 〈M, |=, f〉 be an f-model and the operation C be such that:

C(A) = f(Â). (1)

Then C is a C-logic.

Note that if C is defined as above, then Â ⊆ C(A).

Proof. By Contraction f(Â) ⊆ Â and therefore Â ⊆ f(Â). But A ⊆ Â. We have
proved Inclusion.

Assume now A ⊆ B ⊆ C(A). We have: Ĉ(A) ⊆ B̂ ⊆ Â and also Ĉ(A) =
̂

f(Â).

But f(Â) ⊆
̂

f(Â). We have: f(Â) ⊆ B̂ ⊆ Â. By f-Cumulativity, then: f(Â) =
f(B̂) and C(A) = C(B). ��

2.6 Representation

Theorem 2. If C is a C-logic, then there is a restricted f-model 〈M, |=, f〉 such
that C(A) = f(Â).

Notice that, comparing to Theorem 1 we are getting f-Consistency for free: given
any f-model, there is a restricted f-model that defines the same consequence
operation. No purely semantic derivation of this result is currently known.

430 D. Lehmann

Proof. For M take all consistent theories of C. Set T |= a iff a ∈ T . It follows
that, by Lemma 7, for any A ⊆ L,

Â = Cn(A).

We must now define a choice function f . Consider some X ⊆ M. We distinguish
two cases. If there is some A ⊆ L such that Ĉ(A) ⊆ X ⊆ Â,we let f(X) = Ĉ(A),
and otherwise we let f(X) = X .

The correctness of the definition above relies on the fact that, in the first case,
f(X) does not depend on the A chosen. This will be proved now and, then, we
shall return to the proof of Theorem 2.

Lemma 14. If Ĉ(A) ⊆ X ⊆ Â and Ĉ(B) ⊆ X ⊆ B̂, then C(A) = C(B).

Proof. It is enough to prove that, under the assumptions above, C(A) =
C(Cn(A, B)). We have X ⊆ Â ∩ B̂ = Â ∪ B. Therefore Cn(A, B) ⊆ X ⊆
Cn(C(A)) = C(A), by Lemma 10. Then A ⊆ Cn(A, B) ⊆ C(A) and, by Cumula-
tivity, C(A) = C(Cn(A, B). ��

We return now to the proof of Theorem 2. Notice that, for any A ⊆ L, f(Â) =
Ĉ(A). Therefore f(Â) = Cn(C(A)) = C(A) by Lemma 10. We shall now show that
f satisfies Contraction, f-Cumulativity and f-Consistency. If f(X) = Ĉ(A) ⊆ X ,
Contraction is clear. If f(X) = X, Contraction is also clear. For f-Cumulativity,
assume f(X) ⊆ Y ⊆ X. If f(X) = X , then Y = X and f(Y) = f(X). Otherwise,
Ĉ(A) ⊆ Y ⊆ X ⊆ Â and f(Y) = Ĉ(A) = f(X). For f-Consistency, assume that
f(X) = ∅. If f(X) = X, then X = ∅. If f(X) = Ĉ(A) ⊆ X ⊆ Â, then Ĉ(A) = ∅
and there is no consistent theory that contains C(A). We conclude that C(A) is
inconsistent and therefore A is inconsistent by Lemma 3, no consistent theory
contains A by Lemma 4 and Â = ∅. We conclude that X = ∅. ��

2.7 Connectives in C-logics

Conjunction and Negation. We shall show that C-logics admit a classical
conjunction and a classical negation. Let us assume now, for the remainder of
this section, that the language L is closed under a binary connective written ∧
and a unary connective written ¬.

Theorem 3. If 〈M, |=, f〉 is a restricted f-model that behaves classically with
respect to ∧ and ¬, i.e., for any m ∈ M,

– m |= a ∧ b iff m |= a and m |= b
– m |= ¬a iff m 	|= a,

then the inference operation defined by the f-model satisfies:

– ∧-R C(A, a ∧ b) = C(A, a, b)
– ¬-R1 C(A, a, ¬a) = L
– ¬-R2 if C(A, ¬a) = L, then a ∈ C(A),

Connectives in Cumulative Logics 431

where C(A, a) denotes C(A ∪ {a}).

Proof. The first property follows from the fact that

Mod(A ∪ {a ∧ b}) = Mod(A ∪ {a} ∪ {b}).

For the second property notice that Mod(A ∪ {a} ∪ {¬a}) = ∅ implies, by Con-
traction, that f(Mod(A ∪ {a} ∪ {¬a})) = ∅. For the third property, since no
element of M satisfies both a and ¬a, if C(A, ¬a) = L, there is no m that
satisfies C(A, ¬a) and f(Mod(A ∪ ¬a)) = ∅. Since the model is a restricted f-
model, Mod(A ∪ ¬a) = ∅. Therefore every m that satisfies A also satisfies a and
a ∈ C(A). ��

The reader should notice that it is claimed that, if C(A, ¬a) = L, then any m
satisfying A also satisfies a, but it is not claimed that, under this hypothesis,
a ∈ Cn(A). Indeed Cn is defined via the theories of C and the relation of those
to the elements of M is not straightforward. The reader should also note that a
similar result (Equation 8.5) was obtained in [9] only assuming Coherence. Here
Coherence is not required, f-Consistency is required in its place. The reader
may notice that, in the presence of all other properties, ¬-R2 is equivalent to: if
a ∈ C(A, ¬a) then a ∈ C(A).

The following theorem shows the converse of Theorem 3. It requires a com-
pactness assumption. We shall, then, assume that C satisfies the following:

Weak Compactness C(A) = L ⇒ ∃ a finite B ⊆ A such that C(B) = L.

In a monotonic setting and in the presence of a proper negation Weak Compact-
ness implies Compactness, i.e., if a ∈ C(A), there is some finite subset B of A
such that a ∈ C(B), but this is not the case in a nonmonotonic setting.

Theorem 4. If C satisfies Weak Compactness, Inclusion, Cumulativity, ∧-R,
¬-R1 and ¬-R2, then there is a restricted f-model that behaves classically with
respect to ∧ and ¬ such that C(A) = f(Â).

Before presenting a proof of Theorem 4, three lemmas are needed.

Lemma 15. Assume C satisfies Cumulativity, Weak Compactness, ¬-R1 and
¬-R2. If a 	∈ C(A), there is a maximal consistent set B ⊇ A such that a 	∈ B.

Proof. By ¬-R2, A ∪ {¬a} is consistent. By Weak Compactness, Cumulativity
and Zorn’s lemma, there is a maximal consistent set B that contains it. This B
does not contain a by ¬-R1. ��

Lemma 16. Assume C satisfies Inclusion, Cumulativity, ∧-R, ¬-R1 and ¬-R2.
If A is a maximal consistent set, then

– a ∧ b ∈ A iff a ∈ A and b ∈ A,
– ¬a ∈ A iff a 	∈ A.

432 D. Lehmann

Proof. By ∧-R, a ∧ b ∈ C(A) iff a ∈ C(A) and b ∈ C(A), but, by Lemma 6, A is a
theory. If ¬a ∈ A, then a 	∈ A since A is consistent, by ¬-R1. If ¬a 	∈ A, then by
the maximality of A, C(A, ¬a) = L and, by ¬-R2, a ∈ C(A), but A is a theory. ��

Lemma 17. Assume C satisfies Inclusion, Cumulativity, Weak Compactness,
¬-R1 and ¬-R2. Then

Cn(A) =
⋂

B⊇A,B maximal consistent

B.

Proof. The left-hand side is a subset of the right-hand side by Lemmas 7 and 6.
But if a 	∈ Cn(A), then there is a theory T such that a 	∈ T = C(T) and, by
Lemma 15, there is a maximal consistent B that includes T but does not
contain a. ��

Let us now proceed to the proof of Theorem 4.

Proof. We modify the construction of Theorem 2, by considering not all consis-
tent theories but only maximal consistent sets. Those maximal consistent sets
are theories and behave classically for ∧ and ¬ by Lemma 16. By Lemma 17, for
any A ⊆ L,

Â = Cn(A).

The remainder of the proof is unchanged. ��

We may now show that, if one considers only tautologies or entailments, proposi-
tional nonmonotonic cumulative logic is not weaker than (and therefore exactly
the same as) monotonic logic. Section 2.7 will show that this equivalence between
cumulative and monotonic logic does not hold if one considers proof-theoretic,
inferential properties of the logics. In the following theorem, we consider a propo-
sitional language in which negation and conjunction are considered basic and
other connectives are defined in the usual classical way.

Theorem 5. Let L be a propositional calculus (negation and conjunction basic,
other connectives defined classically) and a, b ∈ L. The following propositions are
equivalent.

1. a logically implies b, i.e., a |= b,
2. for every operation C that satisfies Inclusion, Idempotence, Monotonicity,

Weak Compactness and the rules ∧-R, ¬-R1 and ¬-R2 above: b ∈ C(a),
3. for every operation C that satisfies Inclusion, Cumulativity, Weak Compact-

ness and the rules ∧-R, ¬-R1 and ¬-R2 above: b ∈ C(a),
4. for every such C and for any A ⊆ L: b ∈ C(A, a),
5. for every such C: C(a, ¬b) = L.

Proof. Property 5 implies 4, since, by Cumulativity, C(a, ¬b) = L implies that we
have C(A, a, ¬b) = L, and, by the rule ¬-R2: b ∈ C(A, a). Property 4 obviously
implies 3, that implies 2 since Monotonicity and Idempotence imply Cumulativ-
ity. Property 2 implies 1 since the operation C|= defined by C|=(A) = {b | A |= b}
satisfies all the conditions of 2.

Connectives in Cumulative Logics 433

The only non-trivial part of the proof is that 1 implies 5. Assume a |= b and
C satisfies Inclusion, Cumulativity, Weak Compactness and the rules ∧-R, ¬-R1
and ¬-R2. By Theorem 4, there is a set M, a satisfaction relation |= that behaves
classically with respect to ∧ and ¬ and a choice function satisfying Contraction,

f-Cumulativity and f-Consistency such that C(a, ¬b) = f({̂a} ∩ {̂¬b}). But, by
assumption {̂a} ∩ {̂¬b} = ∅. By Contraction, then C(a, ¬b) = ∅ = L. ��
Theorem 5 shows that the proof theory of the semantically-classical conjunction
and negation in a nonmonotonic setting is the same as in a monotonic setting.
The following shows, that, in yet another sense, C-logics admit a proper con-
junction and a proper negation: one may conservatively extend any C-logic on a
set of atomic propositions to a language closed under conjunction and negation.
It is customary to consider Introduction-Elimination rules, such as ∧-R, ¬-R1
and ¬-R2 as definitions of the connectives. Hacking [7, Section VII] discusses
this idea and proposes that, to be considered as bona fide definitions of the
connectives, the rules must be such that they ensure that any legal logic on a
small language may be conservatively extended to a legal logic on the language
extended by closure under the connective.

Theorem 6. Let P be an arbitrary set of atomic propositions and C a C-logic
over P . Let L be the closure of P under ∧ and ¬. Then, there exists a C-
logic C′ on L that satisfies ∧-R, ¬-R1 and ¬-R2, such that, for any A ⊆ P ,
C(A) = P ∩ C′(A).

Proof. By Theorem 2, there is a restricted f-model on P 〈M, |=, f〉 such that

C(A) = f(Â). Let us now extend |= to L by m |= a ∧ b iff m |= a and m |= b
and m |= ¬a iff m 	|= a. We claim that 〈M, |=, f〉 is now a restricted f-model on
L, whose satisfaction relation |= behaves classically for ¬ and ∧. Indeed, the
properties required from f do not involve the satisfaction relation at all, they
deal with subsets of M exclusively. Let us define, for any A ⊆ L, C′(A) = f(Â).
By Theorem 1, C’ is a C-logic. By Theorem 3 it satisfies ∧-R, ¬-R1 and ¬-
R2. It is left to us to see that C(A) = P ∩ C′(A), for any A ⊆ P . This follows
straightforwardly from the fact that both C(A) and C′(A) are the sets of formulas
(the former of P , the latter of L) satisfied by all members of the set f(Â). ��

Disjunction. We have seen that any C-logic admits classical negation and
conjunction. The reader may think that this implies that it also admits a classical
disjunction defined as a ∨ b = ¬(¬a ∧ ¬b). Indeed it is the case that, if we define
disjunction in this way one of the basic properties of disjunction is satisfied:

∨-R1 a ∈ C(A) ⇒ a ∨ b ∈ C(A) and b ∨ a ∈ C(A).

But the other fundamental property of disjunction does not hold.

∨-R2 C(A, a) ∩ C(A, b) ⊆ C(A, a ∨ b).

Theorem 7 of [9] shows that if f satisfies Coherence, the logic C defined by 1
can be extended conservatively to a propositional language such that disjunction
behaves as properly, i.e.:

434 D. Lehmann

– if a ∈ C(A) then a ∨ b ∈ C(A),
– if a ∈ C(A) then b ∨ a ∈ C(A) and
– if c ∈ C(A, a) and c ∈ C(A, b) then c ∈ C(A, a ∨ b).

The author conjectures a proper disjunction cannot always be defined if f sat-
isfies only f-Cumulativity.

2.8 Connection with Previous Work

Theorem 7. Let L be a propositional calculus and C an operation that satisfies
Weak-Compactness, Inclusion, Cumulativity, ∧-R, ¬-R1 and ¬-R2. Define a
binary relation among propositions by: a ∼b iff b ∈ C(a). Then, the relation ∼
is a cumulative relation in the sense of [8].

Proof. We shall show that ∼ satisfies Left Logical Equivalence, Right Weaken-
ing, Reflexivity, Cut and Cautious Monotonicity. For Left-Logical-Equivalence,
suppose |= a ↔ a′. By Theorem 5, a′∈C(a) and, by Cumulativity, C(a)=C(a, a′).
But, similarly, exchanging a and a′: C(a′) = C(a, a′) and C(a) = C(a′). For Right
Weakening, by Theorem 5 b |= b′ implies b′ ∈ C(a, b). If a ∼ b, by Cumulativity
C(a) = C(a, b) and a ∼ b′. Reflexivity follows from Inclusion. Cut and Cautious
Monotonicity together are equivalent to: if a ∼ b, then a ∧ b ∼ c iff a ∼ c. Assume
b ∈ C(a), then, by Cumulativity, C(a) = C(a, b). ��

The converse cannot be true since it is easy to see that any cumulative relation
defined as above satisfies: if a ∧ ¬b ∼ false then a ∼ b. But this last property is
not satisfied by all cumulative relations. It is satisfied, though, by all cumulative
relations that satisfy the consistency-preservation property favored by Makinson,
i.e., if a ∼ false then a |= false. The author conjectures the following holds by
the results of [5].

Conjecture 1. If ∼ is a cumulative relation, that satisfies

a ∧ ¬b ∼ false ⇒ a ∼ b,

then there is an operation C that satisfies Weak-Compactness, Inclusion, Cumu-
lativity, ∧-R, ¬-R1 and ¬-R2 such that b ∈ C(a) iff a ∼ b.

3 L-logics

A sub-family of C-logics will be defined now. It corresponds to the cumulative
with loop (CL) relations of [8].

Definition 9. The operation C is said to be an L-logic iff it satisfies the follow-
ing two properties.

Inclusion ∀A ⊆ L , A ⊆ C(A),

Loop ∀n ∀i = 0, . . . , n − 1 modulo n Ai ⊆ C(Ai+1) ⇒ C(A0) = C(A1).

Connectives in Cumulative Logics 435

The assumption of Loop is: A0 ⊆ C(A1), A1 ⊆ C(A2), . . . , An−1 ⊆ C(A0). The
conclusion could equivalently have been: C(Ai)=C(Aj) for any i, j = 0, . . . , n − 1.
Notice that for n = 2, the condition Loop is the condition 2-Loop of Lemma 2.
Therefore any L-logic is a C-logic. The characteristic property of L-logics is
embedded in the relation to be defined now.

Definition 10. Let T and S be theories. Let us define T ≤ S iff there exists a
set A ⊆ S such that C(A) = T .

The following holds without any assumption on C.

Lemma 18. The relation ≤ is reflexive. If T, S are two theories such that
T ⊆ S, then T ≤ S.

Proof. S ⊆ S and C(S) = S imply S ≤ S. T ⊆ S and C(T) = T imply T ≤ S. ��

The next lemma holds only for L-logics. Notice that, even for L-logics, the rela-
tion ≤ is not transitive in general.

Lemma 19. If C is an L-logic, and T0 ≤ T1, . . ., Tn−1 ≤ T0, then T0 = T1 =
. . . = Tn−1.

Proof. Assume T0 ≤ T1, . . ., Tn−1 ≤ T0. There are Ai ⊆ Ti+1 such that C(Ai) =
Ti. Therefore Ai−1 ⊆ C(Ai) and by Loop C(Ai) = C(Aj). ��

In particular, the relation ≤ is anti-symmetric for L-logics (in fact for C-logics).

Definition 11. Let T and S be theories. Let us define T < S iff T ≤ S and
S 	≤ T , or equivalently (for C-logics) T ≤ S and T 	= S. Let <+ be the transitive
closure of <.

Lemma 20. If C is an L-logic, then the relation <+ is irreflexive and therefore
a strict partial order.

Proof. By Lemma 19. ��

4 The Case of Quantum Logic

4.1 Quantum Consequence Operations

Birkhoff and von Neumann [1] framed Quantum Logics in Hilbert style, i.e., as
a set of valid propositions in propositional calculus. Engesser and Gabbay [3]
proposed to view Quantum Logics in a different light: as a consequence relation
describing what can be deduced from what. They assume a language closed under
the propositional connectives, but their definition makes perfect sense and is very
rich even on a language that contains only atomic propositions. This is, in this
paper’s view, a major step taken by Engesser and Gabbay since Birkhoff and
von Neumann’s framework does not allow any interesting consideration in the
absence of connectives. The setting proposed by Engesser and Gabbay allows
us to discuss first the nature of Quantum Deduction without any need to posit

436 D. Lehmann

connectives, and then to consider the proof-theoretic and semantics properties
of connectives one at a time.

Assume a Hilbert space H and an element h ∈ H are given. Assume also a
non-empty set (language) L of closed subspaces of H is given. Thus, the elements
of L, the atomic propositions are closed subspaces of H. For every proposition
a ∈ L, we shall denote by ap the projection on the subspace a: for every x ∈ H,
ap(x) is the element of a closest to x. For every set of propositions: A ⊆ L,

A∗ def=
⋂

a∈A a and A∗
p will denote the projection on A∗, i.e., on the intersection

of all the elements of A.

Definition 12 (Engesser-Gabbay). Let Ch : 2L −→ 2L be defined by:

b ∈ Ch(A) iff A∗
p(h) ∈ b. (2)

Theorem 8. The operation Ch defined above is an L-logic.

Engesser and Gabbay essentially noticed already that Ch is a C-logic. From now
on, we shall write C for Ch when no confusion can arise. We need a lemma.

Lemma 21. If B⊆C(A), then A∗
p(h)=(A∗ ∩ B∗)p(h) and d(h, A∗) ≥ d(h, B∗).

Proof. For any b ∈ B, A∗
p(h) ∈ b. Therefore A∗

p(h) ∈ B∗. ��

Let us now prove Theorem 8

Proof. Indeed, A∗
ph ∈ A∗ and therefore, for any a ∈ A, Aph ∈ a, and we have

shown Inclusion.
Assume A ⊆ B ⊆ C(A). By Lemma 21, we have A∗

p(h) = (A∗ ∩ B∗)p(h), but
B∗ ⊆ A∗ and A∗

p(h) = B∗
p(h). Therefore C(A) = C(B) and we have shown Cu-

mulativity.

A1 ⊆ C(A0), A2 ⊆ C(A1), . . . , A0 ⊆ C(An) ⇒ C(A0) = C(A1)

For Loop, assume Ai ⊆ C(Ai+1), for i = 0, . . . , n − 1 (mod n). By Lemma 21,
d(h, Ai+1) ≥ d(h, Ai) and therefore all those distances are equal: d(h, A0) =
d(h, A1), A0

∗
p(h) = A1

∗
p(h) and C(A0) = C(A1). ��

4.2 Open Question

Do the four properties above characterize those consequence operations pre-
sentable by Hilbert spaces? Or are there other properties shared by those op-
erations presentable by Hilbert spaces that do not follow from the above? The
answer to this question is not known.

Engesser and Gabbay show that any operation presentable by a Hilbert space
admits an internalizing connective, i.e. a connective � such that b ∈ C(a) iff
a � b ∈ C(∅). This could be understood as a sign that Hilbert space logics have
some special quality. It should not. Any C-logic can be extended by such an
internalizing connective.

Connectives in Cumulative Logics 437

Consider any C-logic C. By Theorem 2, there is a restricted f-model that
defines C. We shall now extend the language and close it under a new connective
� and build an f-model on the extended language. This is done by defining, by
induction on the structure of the propositions, both the satisfaction relation and
the extension of C to the new language as below. For any m ∈ M, m |= a � b iff
b ∈ C(a). Then C is the C-logic defined by the f-model on the extended language.
Notice that either all elements of M satisfy a � b or none of them does. This
definition by induction is legal since the function f is always the same and we
still have an f-model. The C defined by this model on the extended language is
a C-logic and a conservative extension of the original C.

Suppose now that a � b ∈ C(∅). This means that every element of f(M)
satisfies a � b. Since the model is a restricted model, f(M) is not empty, there
is some element of M that satisfies a � b and b ∈ C(a). Suppose now that
b ∈ C(a), then every element of C satisfies a � b and a � b ∈ C(∅).

4.3 Connectives

Conjunction. Conjunction is unproblematic. Even infinite conjunctions are
easily defined. If A is a set of propositions, and each a ∈ A is associated with some
closed subspace a∗, we may associate the proposition

∧
a∈A a with the closed

subspace
⋂

a∈A a∗, i.e., A∗ and the rule ∧-R is validated: C(A, B) = C(
∧

a, B).

Negation. The situation for negation is most intriguing. By Theorem 8 any
operation C presented as a Quantum Logic is an L-logic, therefore a C-logic.
Theorem 6 shows that C-logics admit a negation satisfying ¬-R1 and ¬-R2.
We therefore expect Quantum Logics to admit such a negation. But the treat-
ment of negation proposed by Birkhoff and von Neumann and later used by
Engesser and Gabbay does not do the job in the following sense. Suppose we
define (¬a)∗ = (a∗)⊥ where ⊥ denotes the orthogonal complement. It is easy to
see that ¬-R1 is satisfied since the intersection of a subspace and its orthogonal
complement is {0}, but ¬-R2 is not satisfied. Consider for example three generic
(not parallel and not orthogonal) one-dimensional subspaces (lines through the
origin) a, b and c in the real plane. Let h be any non-zero vector of c. The
intersection of a and b⊥ is {0} and therefore C(a, ¬b) = L. But b 	∈ C(a) since
the projection of h on a is not in b. This failure of ¬-R2, which is the principle
of proof by contradiction, was in fact already noted or guessed by Birkhoff and
von Neumann. In section 17, p. 837, they compare Quantum Logics with other
non-classical logics introduced on introspective or philosophical grounds, such as
intuitionistic logic. They note that even though “logicians have usually assumed
that properties of negation were the ones least able to withstand a critical anal-
ysis, the study of (quantum) mechanics points to the distributive identities as
the weakest link in the algebra of logic.” And they conclude: “our conclusion
agrees perhaps more with those critiques of logic, which find most objectionable
the assumption that to deduce an absurdity from the conjunction of a and not
b, justifies one in inferring that a implies b”. This paper’s conclusions agree only
in part, and will be presented below.

438 D. Lehmann

If the ⊥ operator of Birkhoff and von Neumann does not do the job, one may
ask whether some other operator would. The following shows that no operator
on closed subspaces of a Hilbert space provides a suitable negation. M. Magidor
and A. Nissimov helped here.

Theorem 9. There is no operation n on closed subspaces that guarantees that
if one defines

(¬a)∗ = n(a∗)

the operation Ch defined in Definition 12 satisfies the properties ¬-R1 and ¬-R2
for any h.

Proof. First, if Ch satisfies ¬-R1 for any h, one easily sees that it must be the case
that for any Y = b∗, Y ∩ n(Y) = {0}. Consider now, some strict subspace Y = b∗

of H. Since H cannot be the union of two disjoint non trivial subspaces, there
must be some non-zero element x ∈ H that is not in the union Y ∪ n(Y). Let us
choose h = x. Let X be the one-dimensional subspace defined by x and assume
that X = a∗. Notice that X ∩ Y = X ∩ n(Y) = {0}. By the latter, C(a, ¬b) = L.
By ¬-R2, we must have b ∈ C(a), i.e., Xp(h) ∈ Y . But Xp(h) = x and x 	∈ Y . ��

Disjunction. A proper disjunction should satisfy ∨-R1 and ∨-R2 defined in
Section 2.7. We have seen that C-logics do not always support such a disjunction.
It is left to be seen whether Quantum Logics support such a disjunction. In any
C-logic that satisfies ∧-R, ∨-R1 and ∨-R2, the distributive equality holds, in the
sense that C(A, a ∧ (b ∨ c)) = C(A, (a ∧ b) ∨ (a ∧ c)). The only Quantum Logics
that admit a proper disjunction are therefore those Quantum Logics that support
the distributive law. This is a very limited family.

5 Conclusions and Future Work

Quantum Logics are nonmonotonic logics as noticed by Engesser and Gabbay,
they are also very respectable nonmonotonic logics since they are L-logics. It
is indeed surprising that Quantum Logics come to satisfy formal properties de-
signed with a completely different intention: to describe properties “introduced
on introspective grounds” and intended to describe disciplined “jumping to
conclusions”.

The study of C-logics is unexpectedly smooth and attractive. The basic in-
tuition behind the cumulative relations of [8] is confirmed: cumulative relations
yield classical connectives but the disjunction (that may be defined as usual
from negation and conjunction) does not behave proof-theoretically as a proper
disjunction should. The section on L-logics is less interesting. I am not sure
where it leads. The results are straightforward translations from [8] and L-logics
do not seem to behave in any better way with respect to connectives than C-
logics. The reason why this may be interesting is that Quantum Logics are not
only C-logics but also L-logics. But two main questions about Quantum Log-
ics are left open: can all L-logics be presented as Quantum Logics or do Quantum

Connectives in Cumulative Logics 439

Logics satisfy additional properties? What is the meaning for Quantum Logics
of the classical negation and conjunction that can be defined for any C-logic?
Intersection of closed subspaces provides a perfect semantics for the conjunction
natural in C-logic, but it may not be the right conjunction for Quantum Physics.
Orthogonal complement does not provide a suitable semantics for negation, but
Theorem 6 ensures there is a respectable negation. It seems doubtful that one
could find a suitable corresponding operation among closed subspaces of Hilbert
spaces that would enable us to associate a closed subspace to the negation of a
closed subspace. This probably means that one cannot assume that the negation
of an observable is an observable. But must we insist that the negation of an ob-
servable be observable? Couldn’t negation mean something about what we know
and not about the world? Disjunction is probably incompatible with Quantum
Logics altogether.

Acknowledgments

I am most grateful to Kurt Engesser for helping me through the geometry of
Hilbert spaces. Some of the examples used in the paper are his. David Makinson
and Alexander Bochman provided important feedback. An anonymous reader’s
thoughtful comments helped improve the presentation.

References

1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Math-
ematics 37, 823–843 (1936)

2. Dalla Chiara, M.L.: Quantum logic. In: Gabbay, D.M., Guenthner, F. (eds.) Hand-
book of Philosophical Logic, 2nd edn., vol. 6, pp. 129–228. Kluwer, Dordrecht
(2001), http://www.philos.unifi.it/persone/dallachiara.htm

3. Engesser, K., Gabbay, D.M.: Quantum logic, Hilbert space, revision theory. Arti-
ficial Intelligence 136(1), 61–100 (2002)

4. Freund, M., Lehmann, D.: Nonmonotonic inference operations. Bulletin of the
IGPL 1(1), 23–68 (1993), Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many

5. Freund, M., Lehmann, D.: Nonmonotonic reasoning: from finitary relations to in-
finitary inference operations. Studia Logica 53(2), 161–201 (1994)

6. Freund, M., Lehmann, D., Makinson, D.: Canonical extensions to the infinite case
of finitary nonmonotonic inference operations. In: Brewka, G., Freitag, H. (eds.)
Workshop on Nomonotonic Reasoning, Sankt Augustin, FRG, December 1989,
vol. (443), pp. 133–138 (1989), Arbeitspapiere der GMD no. 443

7. Hacking, I.: What is logic? The Journal of Philosophy 76(6), 285–319 (1979)
8. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (2021)
9. Lehmann, D.: Nonmonotonic logics and semantics. Journal of Logic and Compu-

tation 11(2), 229–256 (2001) CoRR: cs.AI/0202018

http://www.philos.unifi.it/persone/dallachiara.htm

440 D. Lehmann

10. Lehmann, D.: A presentation of quantum logic based on an and then connective.
Journal of Logic and Computation (to appear, 2007), doi:10.1093/logcom/exm054

11. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al.
(eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Hei-
delberg (1988)

12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, Nonmonotonic and Uncertain Reasoning, vol. 3, pp. 35–
110. Oxford University Press, Oxford (1994)

Reasoning in Dynamic Logic

about Program Termination

Daniel Leivant�

Computer Science Department, Indiana University,
Bloomington, IN 47405, USA
leivant@cs.indiana.edu

For Boris Trakhtenbrot, a grandmaster and a friend.

Abstract. Total correctness assertions (TCAs) have long been consid-
ered a natural formalization of successful program termination. However,
research dating back to the 1980s suggests that validity of TCAs is a no-
tion of limited interest; we corroborate this by proving compactness and
Herbrand properties for the valid TCAs, defining in passing a new sound,
complete, and syntax-directed deductive system for TCAs.

It follows that proving TCAs whose truth depends on underlying in-
ductive data-types is impossible in logics of programs that are sound for
all structures, such as Dynamic Logic (DL) based on Segerberg-Pratt’s
PDL, even when augmented with powerful first-order theories like Peano
Arithmetic. The Convergence Rule of [6] bypasses this difficulty, but
is methodologically and conceptually problematic, in addition to being
unsound for general validity. We propose instead to bind variables to
inductive data via DL’s box operator, leading to an alternative formal-
ization of termination assertions, which we dub Inductive TCA (ITCA).
We show that validity of ITCAs is directly reducible to validity of par-
tial correctness assertions, confirming the foundational importance of the
latter.

1 Dynamic Logic

1.1 Correctness Assertions

The aim of practical verification of imperative programs is to prove that given
programs terminate for inputs of interest, with output fulfilling desired prop-
erties. First-order Dynamic Logic (DL) provides a convenient framework for
specifying such requirements (see e.g. [6,7]).

To focus on the essentials, we refer to the simplest non-trivial imperative
programming language, namely regular programs. Given a first-order vocabu-
lary V , we admit two atomic programs: assignments x := t (t a V -term), and
tests ?χ (χ a first-order V -formula).1 Compound programs are generated using
� Research partially supported by NSF grant CCR-0105651. Preliminary version ap-

peared as [11].
1 Implementable programs use only quantifier free tests. Conversely, we could allow

tests over DL-formulas, so called “rich tests”; we mention in the sequel particular
forms of rich tests.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 441–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

442 D. Leivant

composition, union, and Kleene’s ∗ (nondeterministic iteration). Guarded itera-
tive programs (“while” programs) are then definable: skip ≡ ?�, abort ≡ ?⊥,
(if χ then α else β) ≡ (?χ; α) ∪ (?¬χ; β), and (while χ do α) ≡
(?χ; α)∗; (?¬χ).

Given a V -structure S, the operational semantics over S of programs α is
defined by a straightforward recurrence on the complexity of α (see e.g. [7]).

The formulas of Dynamic Logic over a vocabulary V are generated from the
atomic V -formulas (including equations) using propositional connectives, quan-
tifiers, and the modal operators: if α is a program (over V) and ϕ a formula then
[α]ϕ is a formula, intended to express that ϕ is true at any state reached by a
completed execution of α. The dual operator, 〈α〉ϕ, can be defined as ¬[α]¬ϕ.

Within DL one can formulate two basic forms of program correctness. A partial
correctness assertion (PCA) is a formula of the form ϕ → [α]ψ, abbreviated
as ϕ[α]ψ, stating that every terminating execution of program α leads to a
state verifying the first-order post-condition ψ, provided the initial state verifies
the first-order pre-condition ϕ. Dually, a total correctness assertion (TCA) is
a formula ϕ → 〈α〉ψ, abbreviated as ϕ〈α〉ψ, stating that some execution of
program α terminates in a state that verifies the post-condition ψ, provided the
initial state verifies the pre-condition ϕ.

1.2 Segerberg’s Axiomatization

One natural deductive formalism for DL, which we dub Segerberg’s Dynamic
Logic (SDL), is obtained by merging Segerberg’s axioms for propositional dy-
namic logic [16,7] with Floyd-Hoare’s Assignment rule and first-order logic. (This
is closely related to the formalism 14.12 of [7], with the Convergence Rule omit-
ted.)

Of course, the presence of programs calls for some caution with inference rules
involving variables. We consider an occurrence of a variable x to be bound not
only by quantifiers but also by programs: x is bound in [α]ϕ if it is assigned-to
in α. The operation {t/x}, of substituting a term t for all free occurrences of x,
is legal for a formula ϕ if x has no free occurrence in ϕ where a variable in t is
bound. In such cases, the definition of {t/x}ϕ proceeds as usual, by recurrence
on α and ϕ.

A deductive calculus for DL is now obtained by augmenting a deductive cal-
culus for first-order logic (such as Gentzen’s natural deduction or sequential
calculus) with the following rules and axioms.

I Axiom-templates and rules for programs in general. These are the rules of the
rudimentary modal logic K:

Generalization:
2

Γ
 ϕ

Γ
 [α]ϕ (no free variables in Γ)

Box: [α](ϕ→ψ) → ([α]ϕ→ [α]ψ)

2 Note that the box operator is not applied to Γ in the consequence, since we insist
that Γ has no free variables.

Reasoning in Dynamic Logic about Program Termination 443

II Axiom-templates defining the intended meaning of atomic programs in terms
of first-order logic:

Assignment: [x := t]ϕ(x) ↔ ϕ(t) (x not assigned-to in ϕ)

Test: [?χ] ϕ ↔ (χ→ϕ)

III Syntax directed rules for program constructs.

Composition: [α; β]ϕ ↔ [α][β]ϕ

Branching: [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ

Iteration: [α∗]ϕ ↔ ϕ ∧ [α][α∗]ϕ

IV Induction for ∗:

[α∗](ϕ → [α]ϕ) → (ϕ → [α∗]ϕ)

It is easy to formulate a variant of the deductive calculus above for reasoning
about guarded iterative programs, rather than regular programs.

Clearly, SDL is sound for general validity: for all vocabularies V , if a DL
V -formula ϕ is provable in SDL, then it is true in every V -structure S and
environment therein.

2 Validity of TCAs

From the Compactness Theorem for first-order logic it follows that inductive
data-types, such as the natural numbers, lists, or strings over an alphabet, cannot
be delineated by a first-order theory. In particular, no first-order theory defines,
in all structures, the denotations of the numerals 0, s(0), The validity of
a TCA in all structures must therefore refer also to “non-standard” data, an
ominous requirement that all but trivializes the concept. This is reflected in
the existence of sound and complete axiomatizations of the valid TCAs [13,15],
in contrast to the set of valid partial-correctness assertions, which is not RE.
In fact, validity of TCAs is directly reducible to validity of first-order formulas
[9]. Using the latter, we provide here further evidence of the triviality of TCA
validity, by proving compactness and Herbrand-style properties for it.

2.1 Explicit Rendition of Dynamic Logic

As observed in [9], the operational semantics of regular programs α can be
defined explicitly within an extension of first-order logic with relational variables

444 D. Leivant

and quantification over them. To avoid costly pedantry, we posit that all formulas
and programs under discussion have free variables among x̄ = x1 . . . xk. We
then write ϕ[t̄], where t̄ = (t1 . . . tk) are terms, for the result of simultaneously
substituting t1 . . . tk for all free occurrences of x1 . . . xk, respectively.

For each program α we define a formula Mα, with free variables ū = u1 . . . uk

and v̄ = v1 . . . vk (all variables distinct), with the following property. For every V -
structure S and environment η therein, S, η |= Mα(ū, v̄) iff there is an execution of
α starting in environment η[x̄ := ηū] and terminating in environment η[x̄ := ηv̄].

Mα(ū, v̄) ≡ vi = t(ū) ∧ (∧j �=ivj = uj) for α ≡ (xi := t(x̄))

M?χ(ū, v̄) ≡ χ(ū) ∧ ū = v̄
where α ≡?χ(x̄)

Mα;β(ū, v̄) ≡ ∃w̄. Mα(ū, w̄) ∧ Mβ(w̄, v̄)

Mα∪β(ū, v̄) ≡ Mα(ū, w̄) ∨ Mβ(w̄, v̄)

Mα∗(ū, v̄) ≡ ∀Q. Q(ū) ∧ Clα[Q] → Q(v̄)
where
Clα[Q] ≡ ∀z̄, w̄. Q(z̄) ∧ Mα(z̄, w̄) → Q(w̄)

We use the explicit rendition above of program semantics to render DL for-
mulas ϕ by second-order formulas ϕ�.

ϕ� ≡df ϕ for ϕ atomic

(ϕ ∧ ψ)� ≡df ϕ� ∧ ψ� and similarly for other connectives

(∀y.ϕ)� ≡df ∀y.(ϕ�) and similarly for ∃
([α]ϕ)� ≡df ∀ū. Mα(x̄, ū) → {ū/x̄}(ϕ�)

(〈α〉ϕ)� ≡df ∃ū. Mα(x̄, ū) ∧ {ū/x̄}(ϕ�)

Proposition 1. For every DL formula ϕ, |= ϕ ↔ ϕ�. That is, for every struc-
ture S and environment η therein, S, η |= ϕ iff S, η |= ϕ�.

Note that if ∗ does not occur in ϕ, then ϕ� is first-order.

2.2 Completeness of First-Order Logic for Convergence Assertions

Call a second-order formula ϕ relationally-universal if every second-order ∀ in
ϕ occurs positively, and every second-order ∃ occurs negatively.3 Call a DL
formula ϕ a convergence assertion if for every program α with ∗, every modal
operator 〈α〉 occurs positively, and every [α] occurs negatively. For example, the
conjunction of any number of TCAs and negations of PCA’s is a convergence
assertion.
3 Recall that a position in a formula is positive if it is in the negative scope of an even

number of implications and negations.

Reasoning in Dynamic Logic about Program Termination 445

Lemma 1. If a DL formula ϕ is a convergence assertion, then ϕ� is a
relationally-universal formula semantically equivalent to ϕ.

Note: It is easy to see that Lemma 1 remains true even if convergence assertions
are allowed as tests in programs (this more general form is used in [15]). The
discussion has to be modified simply by (1) Defining by simultaneous recurrence
convergence programs, that allow such tests, and the more general notion of
convergence assertions, that refer to such programs; (2) Defining by simultane-
ous recurrence on programs and formulas the interpretation Mα of convergence
programs α, and the interpretation ϕ� of convergence assertions ϕ.

Lemma 2. Every relationally-universal formula ϕ can be mapped effectively, in
logarithmic space, to a first-order formula ϕo such that |= ϕ iff |= ϕo.

Proof. Given a relationally-universal formula ϕ, convert it first into a prenex
formula ϕ′. This can clearly be done within logarithmic space, and all relational
∀ in ϕ′ occur positively, as can be proved by a trivial induction on ϕ.

Consider the following choice principle C01 (from objects to relations):

∀x∃R ϕ(x, R) → ∃Q∀xϕ(x, Qx) (1)

Here the arity of Q is 1 + the arity of R, and Qx(t̄) stands for Q(x, t̄). Note that
the backward implication for (1) is trivial. Taking the dual of (1), we obtain the
schema

∃x∀R ψ(x, R) ↔ ∀Q∃xψ(x, Qx) (2)

Using (2), the relational prenex formula ϕ′ can be converted into a semantically
equivalent formula ϕ′′ of the form

−→
Q ϕo, where

−→
Q is a block of universal rela-

tional quantifiers, and ϕo is first-order. Clearly, ϕo is valid iff ϕ′′ is valid, i.e. iff
ϕ is valid.

It is easy to see that ϕo can be computed from ϕ′, and therfore from ϕ, in
logarithmic space. ��

Corollary 1. Every convergence assertion ϕ can be mapped effectively, in log-
arithmic space, to a first-order formula (ϕ�)o, such that |= ϕ iff |= ϕo.

Proof. By Lemma 1 ϕ� is semantically equivalent to ϕ, and by Lemma 2 |= ϕ�

iff |= (ϕ�)o. ��

2.3 Positive Results for TCAs

Corollary 1 makes it possible to apply the rich meta-theory of first-order logic
to convergence assertions. Since for first-order formulas validity is equivalent to
provability, we have

Theorem 1. The set of valid convergence-assertions is recursively enumerable.

446 D. Leivant

Theorem 1 was first proved in [13], using a different method. The proof above
has the merit of exposing clearly the direct role of first-order logic, and of being
applicable to all imperative program constructs whose semantics is definable by
universal relational quantification, as is the case for virtually all constructs. The
first-order nature of total correctness was rediscovered, in a different guise, in
[14].

A related result in [13] establishes a connection between program semantics
and TCA’s:

Theorem 2. If programs α and β differ semantically then they have difference
total-correctness theories, i.e. there are first-order formulas ϕ and ψ such that
one of the two TCAs ϕ〈α〉ψ and ϕ〈β〉ψ is valid, whereas the other is not.

Proof. Suppose α and β differ semantically: there is a structure S such that
one of the two programs, say α, maps some S-environment η to environment η′,
and β does not. Let η = η0, η1, . . . , ηn = η′ be the sequence of environments
that form the execution-trace of α on S starting with η. Each ηi+1 is either
identical to ηi (with α performing a successful test χi in environment ηi), or
else ηi+1 is obtained from ηi by an assignment. Thus, the values taken by the
variables x1 . . . xk present are all expressible in terms of the initial values: for each
environment ηi and each variable xj there is a term tij with ηi(xj) = η(tij(x̄)).

For each one of the tests χi above, let χ′
i ≡ χi(t̄i), where t̄i ≡ (ti1 . . . tik).

Let ϕ be the conjunction of the formulas χ′
i, and v̄ = v1 . . . vk be fresh variables.

Then the TCA
(ϕ ∧ (x̄ = v̄)) 〈α〉 (x̄ = t̄n(v̄))

is valid, whereas the TCA

(ϕ ∧ (x̄ = v̄)) 〈β〉 (x̄ = t̄n(v̄))

fails in structure S and environment η. ��
2.4 Degenerative Properties of TCAs

The expressiveness of first-order logic for TCAs, and the triviality of Theorem
2, are warning signs that TCAs are of limited interest. We show now that the
validity of a TCA never reflects the intended semantics of the iteration operator
∗, confirming the limited interest of TCAs.

Given a program α and n � 0, α�n will stand for the program obtained from
α by interpreting ∗ as iteration up to n times; that is:

• For α atomic α�n is α.

• (α; β)�n is (α�n); (β�n).

• (α ∪ β)�n is (α�n) ∪ (β�n).

• (α∗)�n is ∪i�n(α�n)i.

For DL formulas ϕ we define ϕ�n by a similar interpretation of ∗, that is:
([α]ϕ)�n ≡df [α�n](ϕ�n), (〈α〉ϕ)�n ≡df 〈α�n〉(ϕ�n), (ϕ ∧ ϕ′)�n ≡df (ϕ�
n) ∧ (ϕ′�n), etc. By a straightforward induction on the complexity of programs
α and formulas ϕ, we obtain

Reasoning in Dynamic Logic about Program Termination 447

Lemma 3. 1. |= 〈α�n〉ψ → 〈α〉ψ, for all formulas ψ.

2. Let S be a structure and η an environment therein. If S, η |= 〈α〉ϕ, where
ϕ is first-order, then for some n � 0, S, η |= 〈α�n〉ϕ.
More generally, if ϕ is a convergence assertion, and S, η |= ϕ, then
S, η |= ϕ�n for some n � 0.

3. If ϕ is a convergence assertion then

|= (ϕ�n) → (ϕ�m) for all m � n and |= (ϕ�n) → ϕ

Theorem 3. Let ϕ be a convergence assertion. If |= ϕ, then |= (ϕ�n) for some
n � 0.

Proof. Towards contradiction, assume that |= ϕ, but �|= (ϕ�n) for all n. Let Γ
be the first-order theory consisting of (ϕ)�)o as well as all formulas ¬(ϕ�n)�,
n � 0 (recall the definition of ϕo from Corollary 1, and of ψ� from Proposition
1). Note that (ϕ�n)� is always first-order, because ϕ�n is ∗-free.

By assumption, for each n there is a model of ¬(ϕ�n), which by Proposition
1 is a model of ¬(ϕ�n)�, and by Corollary 1 must also be a model of (ϕ�)o, since
we assume that ϕ is valid. By Lemma 3(3) it follows that every finite sub-theory
of Γ has a model. So, by the Compactness Theorem for first-order logic, Γ is
true in some interpretation (S, η).

Since S, η |= (ϕ)�)o, we have, by Corollary 1, S, η |= ϕ, and so, by Lemma
3(2), S, η |= (ϕ�n) for some n. But S, η |= Γ , and in particular S, η |= ¬(ϕ�n)�,
which by Proposition 1 implies that S, η |= ¬(ϕ�n), a contradiction. ��

Note. Theorem 3 implies that if ϕ〈α∗〉ψ is valid then so is ϕ〈∪i�nαi〉ψ for
some n, not that ϕ〈αn〉ψ is valid for some n. For example, consider

α ≡ (?(x = 0); x := s(x)) ∪ (?(x �= 0); x := 0)

Clearly, 〈α∗〉x = s(0) is valid. But in a structure where 0 �= s(0), there is no n
for which 〈αn〉 (x=s(0)) holds true for all values for x. Thus (0 �=s(0)) 〈α∗〉 (x =
s(0) is valid, but for each n � 0 (0 �= s(0) 〈αn〉 (x = s(0)) is not valid. ��
Theorem 3 shows that the validity of TCAs fails to reflect the infinite nature of
iteration. Combining this with the proof of Theorem 2, we conclude further:

Theorem 4. If a TCA ϕ〈α〉ψ is valid, then there is a finite set T of k-ary
vectors of terms such that (with fresh variables v̄ = (v1 . . . vk))

|= (ϕ ∧ x̄ = v̄) 〈α〉 (ψ ∧ (
∨

t̄∈T

x̄ = t̄(v̄)))

2.5 A Syntax Directed Deductive System for TCAs

The recursive enumerability of the set of valid TCAs begs for a sound and com-
plete deductive calculus. A complete deductive system for TCAs over while

448 D. Leivant

programs was indeed given by Meyer and Halpern [12]. Schmitt [15] gave a for-
malism for proving all convergence assertions, but there the proof of a TCA may
use convergence assertions more general than TCAs.4 We give a more syntax-
directed deductive system momentarily.

Since all the deductive systems mentioned have axioms and rules that are
derived in SDL, we trivially obtain

Theorem 5. SDL is sound and complete for validity of TCAs.

The emphasis in the Theorem’s statement on TCAs is essential, of course: the
set of valid PCAs is not RE, and so SDL is not complete for validity of PCAs.
(See [10] for related results.)

We now proceed to give a deductive calculus TC, whose simplicity corre-
sponds to the inherent triviality of TCAs. The calculus TC refers only to first-
order formulas and to TCAs, and is sound and complete for validity. Our com-
pleteness proof uses only basic properties of first-order logic.

As is the case for Hoare’s Logic for PCAs, TC refers both to modal formulas
(here TCAs) and first-order formulas. The inference rules, to be added to those
for classical first-order logic, are as follows.

Assignment: ({t/x}ϕ) 〈x := t〉 ϕ

Test: (ξ ∧ ϕ) 〈?ξ〉 ϕ

Composition:

ϕ 〈α〉 χ χ 〈β〉 ψ

ϕ 〈α; β〉 ψ

Branching:

ϕ0 〈α0〉ψ ϕ1 〈α1〉ψ
(ϕ0 ∨ ϕ1) 〈α0 ∪ α1〉 ψ

Iteration:

{ ϕi 〈αi〉 ψ }i<n

(∨i<nϕi) 〈α∗〉 ψ

Pre-Consequence:

ϕ→ϕ′ ϕ′ 〈α〉 ψ

ϕ 〈α〉 ψ

The Iteration Rule as stated above is somewhat unusual, in that the number
of premises (n) is not fixed. The reader who finds this approach objectionable
may prefer the following two rules, from which the Iteration Rule above is
easily derivable.

4 The proof in [15] erroneously invokes Keisler’s Model Existence Theorem for Lω1ω for
formulas with parameters, but can be rephrased to correctly use Keisler’s Theorem
for sentences only [Personal communication with Peter Schmitt].

Reasoning in Dynamic Logic about Program Termination 449

Exact-Iteration:

ϕ 〈αi〉 ψ

ϕ 〈α∗〉 ψ

Disjunction:

ϕ0 〈α〉 ψ ϕ1 〈α〉 ψ

(ϕ0 ∨ ϕ1) 〈α〉 ψ

The soundness of the calculus above is obvious. Its semantic completeness is
also straightforward:

Theorem 6. If a TCA ϕ〈α〉ψ is valid, then it is provable in TC.

Proof. We proceed by induction on α. Assume that ϕ〈α〉ψ is valid.

• If α is an assignment x := t, then |= ϕ → {t/x}ψ, and by the Assignment

Rule {t/x}ψ 〈x := t〉ψ. So ϕ〈α〉ψ follows by Pre-Consequence.

• If α is a test ?χ, then ϕ→ (χ ∧ ψ) is valid, whereas (χ ∧ ψ) 〈α〉ψ holds by
the Test Rule. So ϕ〈α〉ψ holds by Pre-Consequence.

• Suppose α is β; γ. By Theorem 3 we have, for some n,

|= ϕ → 〈β�n〉 〈γ�n〉ψ

whence, by Proposition 1 and Lemma 3(1)

|= ϕ 〈β〉 (〈γ�n〉ψ)�

and so by IH

 ϕ 〈β〉 (〈γ�n〉ψ)� (3)

Also,
|= (〈γ�n〉ψ)� 〈γ�n〉ψ

whence, by Lemma 3,
|= (〈γ�n〉ψ)� 〈γ〉ψ

which by IH implies

 (〈γ�n〉ψ)� 〈γ〉ψ

Combining the latter with (3) and using the Composition Rule, we obtain

 ϕ 〈β; γ〉ψ,

• If α is β ∪ γ, then, again by Theorem 3, there is an n for which

|= ϕ → (〈β�n〉ψ)� ∨ (〈γ�n〉ψ)�,

|= (〈β�n〉ψ)� 〈β〉ψ,

and |= (〈γ�n〉ψ)� 〈γ〉ψ.

By IH the latter two TCAs are provable, and so by Branching and
Pre-Consequence we obtain
 ϕ 〈β ∪ γ〉ψ.

450 D. Leivant

• Finally, consider the case where α is β∗. By Theorem 3 we have, for a suffi-
ciently large n,

|= ϕ → 〈∪i�n(β�n)i〉ψ

and so
|= ϕ →

∨

i�n

(〈(β�n)i〉ψ)� (4)

Also, for each i � n, the TCA

(〈(β�n)i〉ψ)� 〈βi〉ψ

is valid, and therefore provable, by IH, repeated i times. Thus, by the the
Iteration Rule,

 (〈(β�n)i〉ψ)� 〈β∗〉ψ

Using (4), we conclude by Ore-Consequence that
 ϕ 〈β∗〉ψ. ��

3 Convergence Assertions for Inductive Data

3.1 Unprovable Convergence Assertions

The first-order nature of TCA validity shows that TCAs, understood as logical
statements, do not capture the infinitary nature of inductive data, such as the
natural numbers. That is, there is an unavoidable gap between the semantics
of program convergence, which is anchored in the standard natural numbers,
and the semantics of data in the background theory, which might include non-
standard elements. This is illustrated by very simple TCAs, such as

P → 〈 (x := p(x))∗〉 (x=0) (5)

where P is some finite axiomatization of arithmetic,5 that includes the definition
of p as cut-off predecessor: p(0) = 0, p(sx) = x. Since there are non-standard
models of P , with elements that are not denotations of numerals, the TCA (5)
cannot be valid.6 It follows that (5), although trivially true in the intended struc-
ture, cannot be proved in any DL formalism which is sound for all structures,
such as SDL.

This remains true even if we augment SDL with axioms for inductive data,
such as Peano Arithmetic, since the semantics of program convergence will re-
main different from the semantics of counting in the grafted first-order theory.

Of course, (5) can be proved by induction on the formula

ϕ(n) ≡ (x = n) → 〈 (x := p(x))∗〉 (x=0)
5 Take, for example, Peano Arithmetic with induction up to some fixed level Σn in

the arithmetical hierarchy.
6 The same argument applies to the entailment P |= 〈 (x := x−1)∗〉 (x=0), where P

is an infinite theory, say full Peano Arithmetic, or even the set of all sentences true
in the standard structure of the natural numbers.

Reasoning in Dynamic Logic about Program Termination 451

but ϕ is not a first-order formula, and so this instance of induction is not part
of the background theory. As long as the background theory has no direct access
to modal formulas, it cannot be used to derive TCAs whose truth depends on
the inductive data considered.

To prove convergence assertions whose truth does depend on the inductive
nature of underlying data we may: (a) Abandon the separation between logic
and inductive data; this route was followed by Harel [6]; or (b) Consider, as we
do here, more general formal renditions of convergence, which account directly
for inductive data within the framework of DL itself.

3.2 The Convergence Rule

The termination of imperative programs is commonly proved by the Variance
Method: one attaches to each instance of a looping construct in the program
(such as a while loop or a recursive procedure) a parameter ranging over the
field A of a well-founded relation �, and shows that each cycle reduces that
parameter under �:

 ϕ ∧ a=x → 〈α〉ϕ ∧ a � x

 ϕ ∧ A(x) → 〈α∗〉ϕ (a not assigned-to in α)

Taking � to be the natural order on N, the Variance Rule yields the Conver-
gence Rule of [6]:

 ϕ(sx) → 〈α〉ϕ(x)

 ϕ(x) ∧ N(x) → 〈α∗〉ϕ(0)

(x not assigned-to in α
N interpreted as N)

Note that this rule fuses the interpretation of counting in the background the-
ory and in the program semantics, thus forcing the numeric variables to range
precisely over the natural numbers. In particular, the rule is not sound only for
structures in which N is interpreted as N, structures dubbed arithmetical in [6].

The rationale of [6] for the Convergence Rule was ostensibly to establish
a completeness property for DL, analogous to Cook’s Relative Completeness
Theorem for Hoare-style logics. However, Cook’s notion of relative completeness
is itself problematic, and the arithmetic completeness of [6] faces additional
pitfalls. One is the soundness of the rule only for a special class of structures,
itself not first-order axiomatizable.

Also, whereas Hoare’s Logic for PCAs is based on a formal separation between
rules for programs (Hoare’s rules) and rules for data (the background theory),
the essential feature of the Convergence Rule is that it fuses the two. When
programs and data are fused, and programs and their semantics are codable by
data (as is the case in arithmetic structures), the very rationale for factoring
out rules for programs from axioms for data is weakened, and one might ar-
guably reason directly about programs in a first-order theory, as done for example
in [1].

Interestingly, Hajek [5] was so taken aback by the unsoundness of the Con-
vergence Rule, that he mistakenly took it to be an unintended error, which he

452 D. Leivant

proposed to correct by adopting a weaker variant, in which the inductive formula
ϕ in the statement of the rule above has no free variable occurring in the pro-
gram α, whether assigned to or not. However, since SDL is complete for sound
TCAs (Theorem 5), and Hajek’s variant is sound for general validity, adding it
to SDL will yield no new TCAs, regardless of the background theory.

Needless to say, proving program termination by the Variance Method is of
immense practical importance. Our contention is that the method is a mathe-
matical tool (referring to particular structures, i.e. well-orderings) rather than a
logical principle.

3.3 Inductive TCAs

Interestingly, the machinery of DL itself provides the means to refer to inductive
data, such as the natural numbers. Thus program termination over N can be
rendered directly by a suitable generalization of TCAs.

DL is particularly suitable for enforcing variables to assume values in a given
inductively generated algebra, such as N. Let N(x) be the program x := 0; (x :=
s(x))∗ (with s denoting the successor function); then the modal operator [N(x)]
is semantically equivalent to ∀x ∈ N. More precisely, a formula [N(x)]ϕ is true
in a structure S and an environment η therein iff the formula ∀x ∈ N. ϕ is
true in that environment, where N is the set of denotations in S of the numerals
0, s(0), s(s(0)), . . . , s[n](0),

We can therefore state that a TCA ϕ〈α〉ψ is true whenever a variable x
assumes initially the denotation of a numeral, by the DL formula

[N(x)](ϕ→〈α〉ψ).

The program N(x) is nondeterministic, but by conceding some brevity and ele-
gance we can use instead a deterministic while program (using a fresh variable y):

y := 0; while y �= x do y := s(y)

If the axioms defining the predecessor function are added to the background
theory, yet another alternative is

y := x; while y �= 0 do y := p(y)

Similar programs can be given for any inductively generated algebra. For
example, the set Σ∗ of words over a finite alphabet Σ can be identified with the
free algebra generated from the constant ε, denoting the empty word, and, for
each a ∈ Σ, a unary function identifiers a. For example, {0, 1}∗ is generated from
ε and unary 0 and 1. (Confusion with the constants 0 and 1 can be avoided by
using instead s0 and s1 as function identifiers.) A word such as 011 is represented
in the algebra as 0(1(1(ε))).

Let
W{0,1}(x) ≡ x := ε; ((x := 0(x)) ∪ (x := 1(x)))∗

Then [W{0,1}(x)] ϕ is true in a structure S and environment η therein exactly
when ϕ is true for all denotations of terms representing {0, 1}∗. A deterministic

Reasoning in Dynamic Logic about Program Termination 453

program defining {0, 1}∗ must rely here on a destructor function p. Adding to
the background theory its defining equations,

pfp(ε) = ε pfp(0(x)) = x pfp(1(x)) = x

the defining program is similar to the last one above for N.
Analogous programs can be defined for any free algebra, even if they are

multi-sorted. For example, to have x range over the algebra of lists over N, with
Λ denoting Nil and c denoting cons, we use the program

LN(x) ≡
x := Λ; (y := 0; (y := s(y))∗; x := c(y, x))∗

We define inductive total correctness assertions (ITCA) to be the DL formulas
of the form [α](ϕ→〈β〉ψ), where ϕ and ψ are first-order. Such formulas can ex-
press a variety of program properties. For example, ∀n ∈ N. 〈αn〉ϕ is expressed,
using a fresh variable x, by [N(n)] 〈x := 0; while (x �=n) do (α; x := s(x))〉 ϕ
(compare [6, §6.4].)

3.4 Reduction of ITCAs to Partial Correctness Assertions

Surprisingly, the validity of each ITCA is equivalent to the validity of a cer-
tain partial correctness assertion. This observation attests to the foundational
importance of PCAs.

Theorem 7. Every ITCA ϕ can be effectively converted, in logarithmic space,
to a PCA whose validity is equivalent to the validity of ϕ.

Proof. Given an ITCA [α](ϕ→〈β〉ψ), its
-translation is (modulo trivial varia-
tions) of the form

∀v̄.Mα(x̄, v̄) ∧ ϕ(v̄) → (∃w̄. Mβ(v̄, w̄) ∧ ψ(w̄)) (6)

We use the choice principle C01 defined above to rewrite Mβ(v̄, w̄) as a relation-
ally universal formula ∀Q̄.M0

β(Q̄, v̄, w̄). So (6) is equivalent to

∀v̄.Mα(x̄, v̄) ∧ ϕ(v̄) → ∃w̄ ∀Q̄. M0
β(Q̄, v̄, w̄) ∧ ψ(w̄)

which by C01 is equivalent to

∀R̄ ∀v̄ Mα(x̄, v̄) ∧ ϕ(v̄) → ∃w̄ M0
β(R̄w̄, v̄, w̄) ∧ ψ(w̄)

The validity of the latter formula is equivalent to the validity of

∀v̄ Mα(x̄, v̄) ∧ ϕ(v̄) → ∃w̄ M0
β(R̄w̄, v̄, w̄) ∧ ψ(w̄)

i.e. of the PCA

[α] (ϕ → ∃w̄ M0
β(R̄w̄, x̄, w̄) ∧ ψ(w̄)) ��

454 D. Leivant

3.5 ITCAs and the Variance Method

Hoare’s logic is conveniently conveyed as a system of program annotation, which
Variance Method supplements [3], as e.g. in the annotation of a while loop:

{x ∈ N}
{ϕ}
while χ do

{x = s(n)}
α
{x = n}
end

{ψ}

Note that this format can be viewed as the display of a DL proof of the ITCA
[N(x)](ϕ→〈α〉ψ).

The use of the Variance Method for an arbitrary well-ordering �, over a field
A, is captured in DL analogously, as an admission of the �-induction schema

(∀y ≺ x. ϕ(y) → ϕ(x)) → (∀x ∈ A)ϕ(x)

where ϕ is itself a TCA. However, here the well-foundedness of � is declared
generically, without reference to an inductive process, and so ITCAs are of no
direct relevance.

4 Summary and Conclusions

Logics for imperative programs have been studied decades ago, and yet some
fundamental issues have not been completely addressed to date. In this paper
we considered the issue of expressing and proving the correct termination of
simple imperative programs. Using the second-order definition of program se-
mantics as a core unifying method, we reproved the recursive enumerability
of valid TCAs and their separation ability, and proved additional degenerative
properties, namely compactness and a Herbrand-like theorem. Indeed, using this
method, TCA validity is seen clearly to be a first-order concept. We exhibited
in passing the first sound, complete, and syntax-directed deductive system for
TCAs.

The degenerative properties of TCA validity can be traced to its first-order
nature, and the major limitative results about classical first-order logic. Among
these limitations is the failure to axiomatize inductive data-types, such as the
natural numbers. Since TCA of interest are those whose truth depends on an
underlying inductive data-type, it follows that they can not be proved in any
semantically-sound logic of programs, such as Segerberg’s Dynamic Logic. We
defined here an extension of TCA’s, the inductive TCAs (ITCA), which express
directly, within the framework of DL itself, termination properties for inductive
data.

Reasoning in Dynamic Logic about Program Termination 455

ITCAs have additional applications, to be discussed elsewhere. Notably, they
suggest a general notion of program provability in DL. A unary function f over N

is provable in a given deductive formalism D for DL, if there is a program α that
computes f , for which D
 [N(x)]〈α〉�. (It is straightforward to generalize this
notion to functions of arbitrary arity, and over arbitrary inductive data types.)
This notion of provable termination is independent of any coding and auxiliary
concepts, of the kind invoked by definitions of “provable recursive functions” for
formalization of arithmetic (see e.g. [8]). These functions are precisely the prov-
ably recursive functions of Peano Arithmetic. Allowing “rich tests” in programs
(i.e. tests that are themselves DL formulas, rather than first-order formulas)
does not make a difference. This result is not surprising, in view of known rela-
tions between DL and Peano Arithmetic [2,4], but neither is it trivial, because
those results focus on the interpretation of DL in Peano Arithmetic, whereas
we need to focus on the dual interpretation. The characterization is of interest
also because it establishes an inherently computational bridge between logics of
programs and traditional Proof Theory. It also suggests a panoply of interesting
questions concerning the proof theoretic calibration of various deductive calculi
for Dynamic Logic. For example, we believe that the provable functions of DL
with Induction restricted to TCAs are precisely the primitive recursive functions,
and that further restricting Induction to first-order (i.e. program-free) formulas
characterizes precisely the Kalmar-elementary functions.

References

1. Andreka, H., Nemeti, I., Sain, I.: A complete logic for reasoning about programs
via nonstandard model theory, Parts I and II. Theoretical Computer Science 17,
193–212, 259–278 (1982)

2. Bergstra, J.A., Tucker, J.V.: Hoare’s Logic and Peano’s Arithmetic. Theoretical
Computer Science 22, 265–284 (1983)

3. Gries, D. (ed.): The science of programming. Springer, Berlin (1981)
4. Hajek, P.: Arithmetical interpretations of Dynamic Logic. Jourmal of Symbolic

Logic 48, 704–713 (1983)
5. Hajek, P.: A simple dynamic logic. Theoretical Computer Science 46, 239–259

(1986)
6. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
8. Kreisel, G.: Survey of proof theory. Journal of symbolic Logic 33, 321–388 (1968)
9. Leivant, D.: Logical and mathematical reasoning about imperative programs. In:

Conference Record of the Twelfth Annual Symposium on Principles of Program-
ming Languages, pp. 132–140. ACM, New York (1985)

10. Leivant, D.: Partial corretness assertions provable in dynamic logics. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, Springer, Heidelberg (2004)

11. Leivant, D.: Proving termination assertions in dynamic logics. In: Nineteenth Sym-
posium on Logic in Computer Science, pp. 89–99. IEEE Computer Society Press,
Washington (2004)

12. Meyer, A., Halpern, J.: Axiomatic definition of programming languages: a theoret-
ical assessment. Journal of the ACM 29, 555–576 (1982)

456 D. Leivant

13. Meyer, A., Mitchell, J.: Termination assertions for recursive programs: complete-
ness and axiomatic definability. Information and Control 56, 112–138 (1983)

14. Sain, I.: Total correctness in nonstandard logics of programs. Theoretical Computer
Science 50, 285–321 (1987)

15. Schmitt, P.H.: Diamond formulas: A fragment of Dynamic Logic with recursive
enumerable validity problem. Information and Computation 61, 147–158 (1984)

16. Segerberg, K.: A completeness theorem in the modal logic of programs (preliminary
report). Notics of the American Mathematical Society 24(6), A–552 (1977)

The Grace of Quadratic Norms: Some Examples

Leonid A. Levin�

Computer Science Department, Boston University,
111 Cummington St., Boston, MA 02215, USA

My token tribute to the anniversary of
Boaz Trakhtenbrot and to his major role
in developing computer theory in Russia.

Abstract. Here I share a few notes I used in various course lectures,
talks, etc. Some may be just calculations that in the textbooks are more
complicated, scattered, or less specific; others may be simple observations
I found useful or curious.

1 Nemirovski Estimate of Mean of Arbitrary
Distributions with Bounded Variance

The popular Chernoff bounds assume severe restrictions on distribution: it must
be cut-off, or vanish exponentially, etc. In [3], an equally simple bound uses no
conditions at all beyond independence and known bound on variance. It is not
widely used because it is not explained anywhere with very explicit computation.
I offer this summary:

Assume independent variables xi with the same unknown mean m and known
lower bounds bi on inverses 1/vi of variance. We estimate m with < 2−k chance
of error exceeding ε. This requires

∑
bi of about 12k/ε2.

First, we normalize xi to set ε = 1, spread them into 2k − 1 groups, and
in each group j take an average Xj , weighted in proportion to bi. The inverse
variance bounds Bj for Xj are additive and we assure Bj ≥ (

√
2 + 1)2 = b.

By Chebyshev’s inequality, Xj deviate from m to each side by ≥ 1 with prob-
ability ≤ 1/(b + 1). (We assume equality: the general case follows by modifying
the distribution.) Their median then deviates from m by ≥ 1 with probability

P ≤ 2
k−1∑

i=0

(
2k−1

i

)
bi

(b+1)2k−1
<

2(b+1)
(b+1)2k

(
2k−1

k

) k−1∑

i=0

bi = Q .

Now, n! = (n/e)n
√

2πn + θn, π/3<θn ≤ e2−2π , and
(
2k
k

)
< 4k/

√
πk . So,

P < Q =
b+1

(b+1)2k

(
2k

k

)
bk−1
b−1

<

(
4b

(b+1)2

)k
b+1

(b−1)
√

πk
= 2−k

√
2

πk
.

� Supported by NSF grant 0311411.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 457–459, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

458 L.A. Levin

2 Leftover Hash Lemma

The following lemma is often useful to convert a stream of symbols with ab-
solutely unknown (except for a lower bound on its entropy) distribution into a
source of perfectly uniform random bits b ∈ Z2 = {0, 1}.

The version I give is close to that in [2], though some aspects are closer to
that from [1]. Unlike [1], I do not restrict hash functions to be linear and do not
guarantee polynomial reductions, i.e. I forfeit the case when the unpredictability
of the source has computational, rather than truly random, nature.

However, like [1], I restrict hash functions only in probability of collisions, not
requiring pairwise uniform distribution.

Let G be a probability distribution on Zn
2 with Renyi entropy − log

∑
x G2(x)

≥ m. Let fh(x)∈Zk
2 , h∈Zt

2, x∈Zn
2 be a hash function family in the sense that

for each x, y �= x the fraction of h with fh(x)=fh(y) is ≤ 2−k + 2−m.
Let U t be the uniform probability distribution on Zt

2 and s = m − k − 1.
Consider a distribution P (h, a) = 2−tG(f−1

h (a)) generated by identity and f
from U t ⊗ G. Let L1(P, Q) =

∑
z |P (z) − Q(z)| be the L1 distance between

distributions P and Q = U i, i = t + k. It never exceeds their L2 distance

L2(P, Q) =
√

2i
∑

z

(P (z) − Q(z))2 .

Lemma 1 (Leftover Hash Lemma)

L1(P, U i) ≤ L2(P, U i) < 2−s/2 .

Note that h must be uniformly distributed but can be reused for many different
x. These x need to be independent only of h, not of each other as long as they
have ≥ m entropy in the distribution conditional on all their predecessors.

Proof

(L2(P, U))2 = 2i
∑

h,a

P (h, a)2 + 2i
∑

z

(2−2i − 2P (z)2−i) = 2i
∑

h,a

P (h, a)2 − 1

= −1 + 2i
∑

x,y

G(x)G(y)2−2t
∑

a

‖{h : fh(x) = fh(y) = a}‖

= −1 + 2k−t
∑

x,y

G(x)G(y)‖{h : fh(x)=fh(y)}‖

= −1 + 2k−t

⎛

⎝
∑

x

G(x)22t +
∑

x,y �=x

G(x)G(y)‖{h : fh(x)=fh(y)}‖

⎞

⎠

≤ −1 + 2k2−m + 2k−t(1 − 2−m)2t(2−k + 2−m) < 2−s . 	

The Grace of Quadratic Norms: Some Examples 459

3 Disputed Ballots and Poll Instabilities

Here is another curious example of advantages of quadratic norms.
The ever-vigilant struggle of major parties for the heart of the median voter

makes many elections quite tight. Add the Electoral College system of the US
Presidential elections and the history may hang on a small number of ballots in
one state. The problem is not in the randomness of the outcome. In fact, chance
brings a sort of fair power sharing unplagued with indecision: either party wins
sometimes, but the country always has one leader. If a close race must be settled
by dice, so be it. But the dice must be trusty and immune to manipulation!

Alas, this is not what our systems assure. Of course, old democratic traditions
help avoiding outrages endangering younger democracies, such as Ukraine. Yet,
we do not want parties to compete on tricks that may decide the elections:
appointing partisan election officials or judges, easing voter access in sympathetic
districts, etc. Better to make the randomness of the outcome explicit, giving
each candidate a chance depending on his/her share of the vote. It is easy to
implement the lottery in an infallible way, the issue is how its chance should
depend on the share of votes.

In contrast to the present one, the system should avoid any big jump from a
small change in the number of votes. Yet, chance should not be proportional to
the share of votes. Otherwise each voter may vote for himself, rendering election
of a random person. The present system encourages voters to consolidate around
candidates acceptable to many others. The ‘jumpless’ system should preserve this
feature. This can be done by using a non-linear function: say the chance in the
post-poll lottery be proportional to the squared number of votes. In other words,
a voter has one vote per each person he agrees with.1 Consider for instance an
8-way race where the percents of votes are 60, 25, 10, 1, 1, 1, 1, 1. The leader’s
chance will be 5/6, his main rival’s 1/7, the third party candidate’s 1/43 and
the combined chance of the five ‘protest’ runners 1/866.

This system would force major parties to determine the most popular can-
didate via some sort of primaries, and will almost exclude marginal runners.
However it would have no discontinuity rendering any small change in the vote
distribution irrelevant. The system would preserve an element of chance, but
would be resistant to manipulation.

References

1. Goldreich, O., Levin, L.A.: A Hard-Core Predicate for any One-way Function. Sec-
tion 5. In: STOC (1989)

2. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudorandom Generator
from any One-way Function. Section 4.5. SICOMP 28(4) (1999)

3. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Op-
timization. Wiley, New York (1983)

1 The dependence of lottery odds on the share of votes may be sharper. Yet, it must
be smooth to minimize the effects of manipulation. Even (trusty) noise alone, e.g.,
discarding a randomly chosen half of the votes, can “smooth” the system a little.

Nested Petri Nets

for Adaptive Process Modeling�

Irina A. Lomazova

Program Systems Institute of the Russian Academy of Science,
Pereslavl-Zalessky, 152020, Russia
irina@lomazova.pereslavl.ru

To my teacher B.A. Trakhtenbrot with sincere gratitude.

Abstract. We consider Nested Petri nets (NP-nets), i.e. Petri nets in
which tokens can be Petri nets themselves. To increase flexibility and
give tools for modeling adaptive processes we extend this formalism by
allowing operations on net tokens. We prove decidability of some crucial
for verification problems and thus show that, in spite of very flexible
structure, NP-nets maintain “good” properties of ordinary Petri nets.

1 Introduction

Petri nets are a well-known formalism for modeling concurrent and distributed
systems of less than Turing power. Limited expressiveness of Petri nets is more a
merit, than a demerit, for many constitutive behavioral properties are decidable
for Petri nets.

In this paper we consider Nested Petri nets (NP-nets) [12,13,14,15,16,17] as
a tool for adaptive modeling of concurrent and distributed processes. Informally
speaking Nested Petri nets are Petri nets with net tokens, which may be gener-
ated, transferred, copied and removed as usual Petri net tokens. Net tokens may
autonomously fire its inner transitions, thus changing their own marking. Net
tokens may synchronize with one another (horizontal synchronization). There is
also a mechanism of synchronizing transition firings in two adjacent levels (ver-
tical synchronization). Vertical synchronization means simultaneous firing of a
system net together with all net tokens “involved” in this firing.

The idea of net tokens being Petri nets goes back to R. Valk [20], and “nets in
nets” approach is extensively studied in the Petri net literature [1,10,11,18,21].
In all these works, the goal was to extend the expressive power or the expressive
comfort of Petri nets, and, as a rule, this leads to Turing expressibility and
undecidability of almost all interesting properties.

For NP-nets it was proved, that though they are strictly more expressive
than usual Petri nets (reachability is undecidable for NP-nets), they are still less

� This research was partly supported by the Russian Foundation for Basic Research
(grants 06-01-00106 and 07-01-00702).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 460–474, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Nested Petri Nets for Adaptive Process Modeling 461

expressive than Turing machines and such problems as Termination, Coverability
and some others are decidable for them.

Here we extend nested Petri nets with operations on net tokens. Now in NP-
nets transition firing may transform involved net tokens and built new net tokens
from the former ones by applying special net operations. This approach was al-
ready used in [4,5] for adaptive modeling of workflow processes. Nested workflow
nets were defined there and decidability of soundness (proper termination – a
crucial property for workflow modeling) was established.

Now we consider in a certain sense more general situation – adaptive mod-
eling for arbitrary processes, when net tokens represent some subprocesses and
a system net controls their execution. Extending NP-nets with net operations
gives rich facilities and flexibility in adaptive modeling. With net operations
it is possible to change subprocess structure in runtime. Choosing a set of net
operations may depend on application field. Here, having in mind that net to-
kens are subprocesses, we restrict ourselves to net tokens being nets with two
distinguished places: initial (source) place with no input arcs and final (sink)
place with no output arcs. For such nets operations similar to Process algebra
operations can be naturally defined.

The idea of controlled modification of token nets is also considered for high-
level net and rule (HLNR) systems in [8,2]. Unlike our approach that easily
supports arbitrary (but limited) nesting level and synchronization between dif-
ferent levels of a nested net as well as between different net tokens, this work
considers nesting of depth one only. Moreover, [8] carries structural modification
of P/T token nets by means of rule tokens, whereas our approach uses predefined
and well-known operations, such as sequential and parallel composition.

Our goal was to extend NP-nets by self-modifying facilities, retaining decid-
ability results. In this paper we prove that the Coverability and the Termination
problems are decidable for NP-nets with net operations.

2 Petri Nets

By N we denote the set of natural numbers.
A Petri net is a bipartite graph N = (P, T, F) with a finite set of nodes

P ∪T , where P ∩ T = ∅, and an incidence function (flow relation) F : (P × T)∪
(T × P) → N, describing arc multiplicity. Nodes from P are called places, they
correspond to local states of the system. Nodes from T are called transitions
and correspond to actions or events. A marking in a Petri net is a function
M : P → N, mapping each place to some natural number (possibly zero). Thus
a marking may be considered as a multiset over the set of places. Pictorially, P -
elements are represented by circles, T -elements by boxes, and the flow relation F
by directed arcs. Places may carry tokens represented by filled circles. A current
marking M is designated by putting M(p) tokens into each place p ∈ P .

A toy example of a Petri net, modeling some assumed research laboratory, is
shown in Fig. 1. Here black tokens are researchers, who can be either at home

462 I.A. Lomazova

(place p1) or at work (place p2). Being at work two researchers can produce a
project (a token in the place p3). So, transitions t1 and t2 correspond to going
home and to the laboratory correspondingly. The transition t3 models discussion;
t3 “consumes” two researchers at work and produces a project, returning tokens
from p2 back.

�
���

��

��

��

��

�
���

�
��

��

•
• • �

�

at home at work

discussion

projects�
��	

�

�

p1 p2 p3t1

t2

t3

Fig. 1. Ordinary Petri net

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) –
an output arc; the preset •t and the postset t• are defined as the multisets over
P such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P . A transition
t ∈ T is enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t). An enabled
transition t may fire yielding a new marking M ′ =def M − •t + t•, i.e. M ′(p) =
M(p) − F (p, t) + F (t, p) for each p ∈ P (denoted M

t→ M ′).
Being a helpful and efficient formalism for modeling and analysis of concurrent

and distributed system ordinary Petri nets have serious limitations connected
with the size of modeled systems. Large unstructured Petri nets are difficult to
understand and to deal with. To diminish a Petri net size and to make a model
more readable high-level Petri nets were introduced in the early eighties [19].

High-level Petri nets have the following characteristic properties:

– tokens in a high-level Petri net marking are not indistinguishable black dots,
but individual objects;

– transitions may fire in different modes depending on consumed tokens.

Thus, tokens in high-level Petri nets may be of different types and a marking
maps a place not just to a number of tokens, but to a multiset of tokens. To
retain good Petri net features (e.g. decidability of some important semantic
properties) it is usually supposed that the number of token types (colors) is finite.
Arc labels are also changed. In high-level Petri nets arcs are labeled not with
natural numbers indicating arc multiplicity, but with expressions depending on
variables. Different variables binding define different modes of transition firings.
Thus a variable is binded to a token of some type, and an expression get a
multiset of tokens as its value.

Figure 2 shows an example of high-level Petri net CPN, extending the example
in Fig. 1. Now researchers are represented by individual tokens A, B and C.
Each of them, as in the previous example, can be either at home or at work. A
variable x in a cycle of going home from work and back may be bound with any

Nested Petri Nets for Adaptive Process Modeling 463

�
���

��

��

��

��

�
����

���

�
���

�
��

��

A
B C

x x

x x

��

��

x

y

at home at work

discussion

projects

p1
p2 p3t1

t2

t3

Fig. 2. High-level Petri net CPN

of these three values. Each binding generates some mode of firing for transitions
t1 and t2. Thus now t1 represents actually three transitions- one for each of the
participants A, B and C. In the initial marking workers A and B are at home,
and C is at work. After firing of t1 with the binding x := A workers A and C
will be at work and could produce a project via discussion.

A popular class of high-level Petri nets are Colored Petri nets (CPNs) of
Jensen [9]. In CPN types are called colors, so in a marking places contain colored
tokens. It is well known that high-level Petri nets can be modeled by ordinary
Petri nets provided the number of colors or types of individual tokens is finite.
That means that for each high-level Petri net an ordinary Petri net with the
equivalent behavior can be constructed. Such an “unfolding” may lead to a high
growth of the net size.

3 Nested Petri Nets

In nested Petri nets (NP-nets) [12,13,16] tokens may be Petri nets themselves.
A NP-net consists of a system net and element nets. Marked element nets are
net tokens.

We illustrate NP-nets by further extending our example with a research lab-
oratory. Now a research worker will be modeled by a Petri net (an element net)
with three local states: passive (tied), active (rested) and inspired (ready to pro-
duce a project). Fig. 3 shows two almost similar element nets EN1 and EN2 for
two types of researchers. Both in EN1 and EN2 transitions u1, u2, u3, and u4

correspondingly represent changing states from passive to active, from active to
inspired and so on. The only difference in these two nets – labels for the transition
u2: α in EN1 and α in EN2. Labels α and α are for horizontal synchronization,
i.e. synchronization between two net tokens residing in one system place. Label
α is complementary to α and vice versa. A transition with a label for horizontal
synchronization may fire only simultaneously with some transition marked by
the complementary label in some other net token in the same system place.

A system net SN in our example almost coincides with the high-level Petri
net CPN in Fig. 2. The only syntactical difference – transition t3 is labeled by λ
– complementary to the label for u3 in element nets. These labels are for vertical
synchronization between system and element nets.

The main difference between the high-level Petri net CPN in Fig. 2 and the
NP-net NPN shown in Fig. 4 concerns their markings. Tokens in places p1 and

464 I.A. Lomazova

�

λ

�

inspired

passive

u1 u3

�

�

�

�

���� ���

�

active
u2

α

�

λ

�

inspired

passive

u1 u3

�

�

�

�

���� ���

�

active
u2

α

����

�

����

�

u4 u4

Fig. 3. Element nets EN1 and EN2

p2 in the system net SN are copies of element nets EN1 or EN2 with their own
markings. Tokens in p3 (projects) are usual black dots, i.e. atom (not net) tokens.
Thus element nets serve as token description for a system net. In our example we
have one net token with the label α (the element net EN1) and two net tokens
with the label α (the element net EN2). So, here new ideas can’t be generated
without the worker EN1 (a “creative” researcher).

A possible initial marking for NP-net NPN1 is schematically shown in Fig. 4.
It corresponds to the situation, when one tired creative worker is at home, and
two other participants are at work. One of them is active, and another is ready
to write a project.

Firing rules for transitions are defined as follows. An unlabeled transition
both in element and system nets may fire autonomously. Autonomous transition
firing in a system net is executed according to the usual rules for high-level Petri
nets, where net tokens are considered to be common atomic tokens (autonomous
system transition firing does not change net token markings). We say that a net
token is involved in some transition firing, if it is consumed or produced by this
firing. Net tokens in our example are ordinary Petri nets. Unlabeled transitions
in net tokens may fire autonomously according to the usual rules for ordinary
Petri nets, after that the net token (with a new marking) remains in the same
position in its system net as before.

So, in our example an autonomous transition u1 may fire in the net token re-
siding in p1, changing the state of the creative researcher from passive to active.
After that this researcher may move to work (autonomous system transition
firing). Note, that these two transitions may fire in any order. Some other tran-
sition firings are also possible in the initial state, e.g. active researcher may go
home.

In nested Petri nets net tokens may also synchronize with one another (hori-
zontal synchronization) and with the system net (vertical synchronization). Thus
in our example after becoming active and coming to work the creative worker
may discuss synchronously with another active worker (both being in the same
place p2), after that both net tokens involved in it come to the inspired state,
i.e. two transitions with complementary labels for horizontal synchronization in
two net tokens residing in the same system place may fire simultaneously.

Nested Petri Nets for Adaptive Process Modeling 465

�
���

��

��

��

��

�
����

���

�
���

λ �
��

��

◦ ◦◦

x x

x x

��

��

x

y

at home at work projects

p1
p2 p3t1

t2

t3

�

λ

�

inspired

passive

•

u1 u3

�

�

�

�

���� ���

�

active
u2

α

����

�

u4

�

λ

�

inspired

passive

•

u1 u3

�

�

�

�

���� ���

�

active
u2

α

����

�

u4

�

λ

�

inspired

passive

•

u1 u3

�

�

�

�

���� ���

�

active
u2

α

����

�

u4

Fig. 4. NP-net NPN1

In our example labels λ in the system net and λ in net tokens are for vertical
synchronization. It means that transition t3 in the system net may fire only
simultaneously with transitions marked by complementary labels in all involved
in its firing net tokens. So, in our example t3 may fire only when there are two
inspired net tokens in the place p3, and after this firing two net tokens involved
in it change to the passive state.

It was proved in [13,17] that, in contrast to high-level Petri nets, NP-nets
are strictly more expressive than ordinary Petri nets, but they are still less
than Turing power. The Reachability problem (to decide whether a given target
marking is reachable from an initial one) being decidable for ordinary Petri nets is
undecidable for NP-nets. However, the Coverability problem (to decide whether
a marking, containing a given target marking, is reachable from an initial one)
is decidable for NP-nets. The same is true about the Termination.

466 I.A. Lomazova

4 Extending NP-Nets by Operations on Net Tokens

Here we extend nested Petri nets with operations on net tokens. Further we also
call the extended class NP-nets, thinking it will not lead to ambiguity.

We consider many-level nets with a bounded number of levels (taking into
account all reachable markings) and tokens being NP-nets themselves. An upper-
layer Petri net (called a system net) together with usual black or color tokens may
contain net tokens being usual (one-level) Petri nets or NP-nets. The algorithm
checking if the number of levels in all reachable markings is bounded for a given
NP-net is described in [14].

Now in NP-nets transition firing may transform involved net tokens and build
new net tokens from the former ones by applying special net operations. This
approach was used in [4,5] for adaptive modeling of workflow processes. Nested
workflow nets were defined there and decidability of soundness (proper termina-
tion, which is a crucial property for workflow modeling) was established.

Here we consider in a certain sense more general situation – adaptive modeling
for arbitrary processes, when net tokens represent some subprocesses and a sys-
tem net controls their execution. Then NP-nets allow modeling such situations
as:

– canceling a subprocess (a system net transition simply removes a net token
in case it comes to some undesirable state via vertical synchronization);

– changing one subprocess by another (via the similar mechanism);
– starting a new subprocess in some specific situation (by generating a new

net token);
– choosing which subprocess to run depending on some local state, etc.

Extending NP-nets with net operations gives even more rich facilities and
flexibility in adaptive modeling. With net operations it is possible to change
subprocess structure in runtime. Choosing a set of net operations may depend
on application field. Here, having in mind that net tokens are subprocesses,
we restrict ourselves to net tokens being nets with two distinguished places:
initial(source) place with no input arcs and final (sink) place with no output
arcs. For such nets we can define operations similar to operations in Process
algebra.

Let α, β be two marked nets (net tokens) with distinguished initial and final
places. We define the following net operations (cf. Fig. 5):

1. (α.β) – sequential composition of nets (merging of the final place of α with
the initial place of β).

2. (α|β) – OR-composition (choice composition) of nets (merging two initial
places into one initial place and two final places into one final place).

3. (α‖β) – AND-composition (parallel composition) of nets (combining α and
β by adding two new transitions – “initial” and “final” – as it is shown in
Fig. 5).

4. refinet(α, β) – in a net α refining transition t by net β with the same input
and output sets of places.

Nested Petri Nets for Adaptive Process Modeling 467

N1

f1i1

N2

f2i2

ti tf

i f

N1

f1=i2i(i1)

N2

f(f2)

N1

i1=i2

N2

f1=f2

N1||N2

N1.N2

N1+N2

i f

Fig. 5. Parallel composition N1‖N2, Choice N1 + N2, Sequential composition N1 · N2

These operations allow for example to add a new subprocess as an alterna-
tive to some other subprocess, or to increase reliability by running two similar
subprocesses in parallel, or to insert some additional check and so on.

5 Definitions of Extended NP-Nets

Here we give a definition of NP-nets extended with operations on net tokens.
A NP-net is defined as a tuple of several net components with one designated
component called a system net. Other net components are called element nets.
First of all, from now on we suppose all element nets to have one initial and one
final places.

A net component is a colored Petri net. Together with usual types (colors)
of high-level Petri nets in NP-nets we use net types. That is, we consider each
element net ENi as a type τi and a associate the set of elements (values) with it.
Elements of type τi are marked nets of the form (ENi, M). As usual, variables
and constants in arc expressions are supposed to have some fixed types. Binding
functions map variables to values of corresponding types.

In arc expressions we use variables from Var = {v, . . .} and constants from
Con = {c, . . .}. We define Exprin to be a language of input expressions (over
Var∪Con) and Exprout to be a language of output expressions as follows. Note,
that Exprin ⊂ Exprout.

Definition 1. Let Atom = Var ∪ Con.

1. An atom a ∈ Atom is an expression in Exprin.
2. If e1, e2 ∈ Exprin are expressions, then (e1 + e2) is also an expression in

Exprin.

468 I.A. Lomazova

3. If e is constructed from atoms with net types with the help of net operations
listed above, then e is an expression in Exprout.

4. If e1, e2 ∈ Exprout, then (e1 + e2) is also an expression in Exprout.

Let e ∈ Expr = Exprin ∪ Exprout. By Var(e) we denote the set of variables
occurring in e. Further, in the definition of a NP-net constants, expressions from
Expr are interpreted either as marked element nets (net tokens), or as individual
colored tokens without inner structure (atomic tokens).

By Anet = {α, . . . , } we denote the set of net tokens, by Aatom we denote the
set of atomic tokens. We suppose, that Aatom �= ∅ and contains at least a black
dot.

Some of transitions in NP-nets may be marked by synchronization labels: we
distinguish labels for vertical and horizontal synchronization, each label has a
complementary one.

Definition 2. A nested Petri net (NP-net) is a tuple NPN = (Expr,Lab,SN,
EN1, . . . ,ENk, U) with

1. Expr is a language of expressions defined above.
2. Lab is a set of labels defined above.
3. SN,EN1, . . . ,ENk (k ≥ 1) is a finite number of net components, where SN

is called a system net, and ENi(1 ≥ i ≥ k) are element nets of NPN.
4. U = (A, I) is a model for Expr consisting of a universe A and interpretation

function I, where A = Anet ∪ Aatom, and Anet is the set of marked element
nets (net tokens), Aatom is a set of colored tokens.
Interpretation function I : Con → A interprets constants as net or atomic
tokens. Net operations are interpreted in the natural way (as described above)
and “+” designates the multiset addition.

Here a net component is defined as a tuple (N, W, Λ), where:

– N = (P, T, F) is a net with a set of places P , a set of transitions T , and a
flow relation F .

– W is a function mapping an arc (x, y) ∈ F to an expression from Expr, so
that an input to a transition arc gets an expression from Exprin, and an out-
put arc – from Exprout. Moreover, W must satisfy the following restrictions
(called arc expression restrictions):

• there are no net constants (with values in Anet) in input arc expressions;
• every net variable has not more than one occurrence in each input arc

expression;
• for every two expressions W (p1, t) and W (p2, t) ascribed to two input

arcs of the same transition t the set Var(W (p1, t)) ∩ Var(W (p2, t)) does
not contain net variables;

• for each variable v in an output arc expression W (t, q) there should be
at least one input arc expression W (p, t) containing this variable.

– Λ is a partial function of transition labeling assigning labels from Lab to
transitions in a net component. Note that a system net SN can’t have labels
for upper synchronization.

Nested Petri Nets for Adaptive Process Modeling 469

So, an NP-net consists of a system net, and a set of element nets, which define
structure of net tokens. A system net is a high-level net with a special language
of arc expressions. A language model U is specified by element nets. A model
universe contains marked element nets along with individual tokens. Note, that
tokens in a net token can themselves be marked nets. Thus an NP-net can
have several layers. In addition some transitions in system and element nets are
marked by special labels for synchronization of transition firings.

We now come to defining NP-net behavior.
Let NPN = (Expr,Lab,SN,EN1, . . . ,ENk, U) be a NP-net. A marking M in

NPN is a function mapping each place p ∈ P in SN to some (possibly empty)
multiset M(p) of tokens from A. Thus a marking in a NP-net is defined as a
marking of its system net.

Let t be a transition in SN, •t = {p1, . . . , pi}, t• = {q1, . . . , qj} be sets of
its pre- and post-elements. Then W (t) = {W (p1, t), . . . , W (pi, t), W (t, q1), . . . ,
W (t, qj)} will denote a set of all arc expressions adjacent to t. A binding of t is
a function b assigning a value b(v) (of the corresponding type) from A to each
variable v occurring in some expression in W (t). Obviously, given a binding of
t, a value θ(b) = b(θ) of any expression θ ∈ W (t) can be computed.

A transition t in SN is enabled in a marking M w.r.t. a binding b iff ∀p ∈
•t : W (p, t)(b) ⊆ M(p), i. e. each input place p adjacent to t contains a multiset
value of input arc label W (p, t).

The enabled transition fires yielding a new marking M ′, write M → M ′, such
that for all places p, M ′(p) = (M(p) \ W (p, t)(b)) ∪ W (t, p)(b).

For net tokens from Anet, which serve as variable values in input arc ex-
pressions from W (t), we say, that they are involved in the firing of t. (They are
removed from input places and may be brought to output places of t or used as
building material for new net tokens).

There are three kinds of steps in a NP-net NPN.

An autonomous step. Let t be a transition without synchronization labels in
a system net or in a net token. Then an autonomous step is a firing of t according
to the usual rules, when all tokens are considered as if they were atomic ones.
An autonomous step does not change inner markings of net tokens, but it can
transfer or remove some of them. Also new net tokens may evolve as a result of
such a step.

A horizontal synchronization step. Let t1, t2 be two transitions labeled with
complementary labels for horizontal synchronization in two net tokens residing
in one place in some marking. If both t1 and t2 are enabled in this marking then
they may fire simultaneously changing their markings according to the usual
rules and remaining in the same outward place.

A vertical synchronization step. Let t be a transition labeled λ for lower
synchronization in system net SN or in some net token, let t be enabled in a
marking M w.r.t. a binding b and let α1, . . . , αk ∈ Anet be net tokens involved in

470 I.A. Lomazova

this firing of t. Then t can fire provided in each αi (1 ≤ i ≤ k) a transition labeled
by the upper synchronization label λ is also enabled. A vertical synchronization
step includes two stages: first, firing of transitions in all net tokens involved in
the firing of t and then, firing of t in the system net w.r.t. binding b.

We say marking M ′ is directly reachable from marking M and write M → M ′

if there is a step in NPN leading from M to M ′. A run of NP-net NPN is a
sequence of markings M0 → M1 → . . . successively reachable from the initial
marking M0.

6 NP-Nets as Well-Structured Transition Systems

Our former decidability results [13,14] for NP-nets without operations on net
tokens were mostly based on the theory of Well-Structured Transition Systems
(WSTS) [3]. Now we consider nested nets extended with operations on net to-
kens. To show that such extended nets are still WSTS is a challenge we deal
with here.

Recall that a transition system is a pair S = 〈S, →〉, where S is an abstract
set of states (or markings), and → ⊆ S × S is any transition relation. For a
transition system S = 〈S, →〉 we write Succ(s) for the set {s′ ∈ S | s → s′} of
immediate successors of s. S is finitely branching if all Succ(s) are finite.

A quasi-ordering is any reflexive and transitive relation ≤ (over some set
X). A well-quasi-ordering (a wqo) is any quasi-ordering ≤ such that, for any
infinite sequence x0, x1, x2, . . . , in X , there exist indices i, j with i < j and
xi ≤ xj . Note, that if ≤ is a wqo then any infinite sequence contains an infinite
increasing subsequence: xi0 ≤ xi1 ≤ xi2

Definition 3. A transition system Σ = 〈S, →〉 is well-structured (a WSTS)
iff there is an ordering ≤ ⊆ S × S on states, such that ≤ is a wqo, and ≤ is
“compatible” with →, where “compatible” means that whenever s1 ≤ t1, and a
transition s1 → s2 exists, there also has to exist a transition t1 → t2, such that
s2 ≤ t2.

We define a wqo on markings for NP-nets and show that together with the step
relation → on states it forms WSTS.

Let EN1, . . . ,ENk be element nets, and let Nets = Nets(EN1, . . . ,ENk) be the
set of all nets obtained from EN1, . . . ,ENk by net operations from {., +, ||,
refinet}. Let also A = Aatom ∪ Anet be set of tokens as defined before. Then by
MNets(A) we denote the set of nets from Nets, marked with tokens from A. We
suppose that MNets(A) contains also an empty net ε, s.t. α.ε = ε.α = α + ε =
ε + α = α||ε = ε||α = α, refinet(ε, α) = ε, and refinet(α, ε) is not defined. We
now define an embedding relation �emb on nets from MNets.

Definition 4. The embedding relation �emb⊆ MNets × MNets is defined as a
transitive closure of the following relation: for each (N, M), (N, M ′), (N1, M1),
(N2, M2) ∈ MNets we have

Nested Petri Nets for Adaptive Process Modeling 471

1. ε �emb (N, M).
2. (N, M) �emb (N, M ′) iff for every place p ∈ N there exists a multiset in-

jection jp : M(p) → M ′(p), such that for each token α ∈ M(p) we have
α = jp(α) for an atomic token and α � jp(α) for a net token. In words, it
means that for each place p in N a multiset M ′(p) of tokens can be reduced
to M(p) by removing some tokens and/or by replacing some of net tokens
by smaller (w.r.t. �emb) ones.

3. For any operation ∗ ∈ {., +, ||, refinet } if (N1, M1) �emb (N2, M2), then
(N1, M1) ∗ (N, M) �emb (N2, M2) ∗ (N, M), and (N, M) ∗ (N1, M1) �emb

(N, M) ∗ (N2, M2).

Lemma 1. The relation �emb on MNets(A) is an ordering relation, and �emb

is a wqo provided the set of element nets and the set Aatom of atomic tokens are
finite.

The proof of this lemma is based on inductive application of Higman lemma [6]
and is omitted here.

Lemma 2. Let (N, M) be a NP-net, �(N, M) – the set of all reachable states
for (N, M). Then 〈�(N, M), →, �emb〉 is a WSTS.

Proof (Sketch). We are to show, that (1) the relation �emb on the set �(N, M)
is a wqo, and (2) the compatibility property, which can be represented by the
following diagram, where M1 and M2 are two system net markings, t, t′ – some
transition firings:

M1 �emb M2

t

⏐
⏐
�

⏐
⏐
�t′

M ′
1 �emb M ′

2

(1) Let R be a binary relation on X and define a relation R∗ on vectors
in Xn by (x1, . . . , xn)R∗(y1, . . . , yn) iff ∀1 ≤ i ≤ n : xiRyi. It’s easy to check
that if a binary relation R on X is a wqo, then the relation R∗ on Xn induced
by R is also a wqo. Let us fix some linear ordering p1, p2, . . . , pn on places in
a system net. Then markings in the system net may be represented as vectors
M(p1), M(p2), . . . , M(pn). So, a proof of the theorem can be reduced to the case,
when a system net has only one place.

Then, since a set of atom token colors for a concrete net is fixed and finite,
by the same property of wqo a proof can be reduced to the case when there
are atom tokens of only one type, i.e. black dot tokens (or tokens of some other
certain color). By Lemma 1 the embedding on net tokens is a wqo. Finally, the
statement follows from Higman lemma [6].

(2) Checking compatibility is a technical work, which we omit here.

As is well known ([3]), each WSTS has a finite coverability tree. So the next
theorem immediately follows from the last lemma.

Theorem 1. For each NP-net a finite coverability tree can be effectively con-
structed.

472 I.A. Lomazova

Indeed, since for NP-nets the ordering relation is decidable, reachability tree is
finitely branching, and the finite set of all states, directly reachable from a given
state, can be effectively computed, a finite coverability tree can be effectivly
constructed for any NP-net.

7 Decidability Results for NP-Nets

Now we come to decidability of semantic properties for NP-nets.
A net terminates if there exists no infinite execution (Termination Problem).

The Control-State Maintainability Problem is to decide, given an initial mark-
ing M and a finite set {M1, M2, . . . , Mn} of markings, whether there exists a
computation starting from M with all its inner markings covering (not less than
w.r.t. some ordering) one of the Mi’s. The dual problem, called the Inevitability
Problem, is to decide whether all computations starting from M eventually visit
a state not covering one of the Mi’s, e.g. for Petri nets we can ask whether a
given place will eventually be emptied.

It was proved in [3] that the Termination problem, the Control-state main-
tainability problem, and the Inevitability problem are decidable for WSTSs with
(1) decidable ≤, and (2) effective Succ(s), where Succ(s) is the set of all states,
directly reachable from s. This allows us to obtain the following decidability
results:

Theorem 2. Termination, the control-state maintainability problem and the in-
evitability problem (w.r.t. �emb) are decidable for NP-nets.

Remark 1. Solving termination, the control-state maintainability and the in-
evitability problems for a NP-net can be done by building a coverability tree,
which turns to be finite for NP-nets.

The Coverability problem is to decide, given an initial marking M and a target
marking M ′, whether a marking covering M ′ is reachable from M . To prove
decidability of the Coverability problem for NP-nets we use the so called set-
saturation method for WSTSs [3].

Let LTS = 〈S, →, ≤〉 be a WSTS. For X ⊆ S the set ↑X =def {y ∈ S | (∃x ∈
X) : y ≥ x} is upword-closed. A basis of an upword-closed I is a set Ib such
that I = ∪x∈Ib ↑x. It is known, that for a wqo any upword-closed set has a finite
basis. By Pred(s) we denote the set {s′ ∈ S | s → s′} of immediate predecessors
of s. For X ⊆ S respectively we have Pred(X) =def ∪s∈XPred(s).

Let C be an upword-closed set. Consider the sequence C0 ⊆ C1 ⊆ . . . , where
C0 =def C, Ci+1 =def Ci ∪ Pred(Ci), and denote Pred∗(C) =def ∪i≥0Ci. Then
to solve the Coverability problem is to check that M ∈ Pred∗(↑M0) for a given
initial state M0 and a target set M . A WSTS has effective pred-basis if there
exists an algorithm accepting any state s ∈ S and returning pb(s – a finite basis
of ↑Pred(↑s).

It was also proved in [3], that The Coverability problem is decidable for
WSTS’s with (1) decidable ≤, and (2) effective pred-basis.

Nested Petri Nets for Adaptive Process Modeling 473

Lemma 3. Any NP-net has effective pred-basis.

The proof of this lemma is rather technical and extends the proof for NP-nets
without net operations in [16]. As a consequence of this lemma and the state-
saturation method we get the following

Theorem 3. The Coverability problem is decidable for NP-nets.

8 Conclusion

In this paper we extended NP-nets by net operations, providing new facilities for
adaptive modeling. Now NP-nets allow to model not only canceling or recovering
a subprocess, but also to change its structure in a run time.

We have proved, that the Termination problem, as well as the Coverability
problem (which can be considered as a weak analogue of Reachability) are decid-
able for extended NP-nets. Thus being a rather expressive and flexible modeling
formalism, NP-nets with net operations retain “good” properties of usual Petri
nets.

References

1. Biberstein, O., Buchs, D., Guelfi, N.: Object-Oriented Nets with Algebraic Speci-
fications: The CO-OPN/2 Formalism. In: Agha, G.A., De Cindio, F., Rozenberg,
G. (eds.) APN 2001. LNCS, vol. 2001, pp. 73–130. Springer, Heidelberg (2001)

2. Ehrig, H., Padberg, J.: Graph grammars and Petri net transformations. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 496–536.
Springer, Heidelberg (2004)

3. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1-2), 63–92 (2001)

4. van Hee, K., et al.: Nested Nets for Adaptive Systems. In: Donatelli, S., Thiagara-
jan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 241–260. Springer, Heidelberg
(2006)

5. van Hee, K., et al.: Checking Properties of Adaptive Workflow Nets. In: Concur-
rency, Specification and Programming, Informatik-Bericht 206, vol. 1, pp. 92–103.
Humboldt-Universitat zu Berlin, Berlin (2006)

6. Higman, G.: Ordering by divisibility in Abstract Algebra. Proc. London Math.
Soc. 3(2), 326–336 (1952)

7. Hoffman, K.: Run time modification of algebraic high level nets and algebraic
higher order nets using folding and unfolding construction. In: Hommel, G. (ed.)
Proceedings of the 3rd Internation Workshop Communication Based Systems, pp.
55–72. Kluwer Academic Publishers, Dordrecht (2000)

8. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
268–288. Springer, Heidelberg (2005)

9. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical.
Springer, Heidelberg (1992)

474 I.A. Lomazova

10. Köhler, M., Rölke, H.: Reference and value semantics are equivalent for ordinary ob-
ject petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 309–328. Springer, Heidelberg (2005)

11. Lakos, C.: From coloured Petri nets to object Petri nets. In: DeMichelis, G., Dı́az,
M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 278–297. Springer, Heidelberg (1995)

12. Lomazova, I.A.: Modeling Multi-Agent Dynamic Systems with Nested Petri Nets.
In: Program Systems: Theoretical Foundations and Applications, pp. 143–156. Fiz-
matlit, Moscow, Nauka (1999) (in Russian)

13. Lomazova, I.A.: Nested Petri nets — a Formalism for Specification and Verification
of Multi-Agent Distributed Systems. Fundam. Inform. 43(1-4), 195–214 (2000)

14. Lomazova, I.A.: Nested Petri nets: Multi-level and recursive systems. Fundam.
Inform. 47(3-4), 283–293 (2001)

15. Lomazova, I.A.: Modeling dynamic objects in distributed systems with nested Petri
nets. Fundam. Inform. 51(1-2), 121–133 (2002)

16. Lomazova, I.A. (ed.): Nested Petri nets: modeling and analysis of distributed sys-
tems with object structure. Nauchny Mir, Moscow (2004) (in Russian)

17. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri nets.
In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp.
208–220. Springer, Heidelberg (2000)

18. Moldt, D., Wienberg, F.: Multi-Agent-Systems Based on Coloured Petri Nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 82–101. Springer,
Heidelberg (1997)

19. Smith, E.: Principles of high-level net theory. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 174–210. Springer, Heidelberg (1998)

20. Valk, R.: Nets in computer organization. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) APN 1986. LNCS, vol. 255, pp. 218–233. Springer, Heidelberg (1987)

21. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 819–848.
Springer, Heidelberg (2004)

Checking Temporal Properties

of Discrete, Timed and Continuous Behaviors

Oded Maler1, Dejan Nickovic1, and Amir Pnueli2,3

1 Verimag, 2 Av. de Vignate, 38610 Gières, France
Dejan.Nickovic@imag.fr, Oded.Maler@imag.fr

2 Weizmann Institute of Science, Rehovot 76100, Israel
3 New York University, 251 Mercer St. New York, NY 10012, USA

Amir.Pnueli@cs.nyu.edu

Words, even infinite words, have their limits.
Dedicated to B.A. Trakhtenbrot on his 85th Birthday.

Abstract. We survey some of the problems associated with checking
whether a given behavior (a sequence, a Boolean signal or a continuous
signal) satisfies a property specified in an appropriate temporal logic and
describe two such monitoring algorithms for the real-time logic MITL.

1 Introduction

This paper is concerned with the following problem:

Given a temporal property ϕ how does one check that a given behavior ξ
satisfies it.

Within this paper we assume that the behavior to be checked is produced by a
model of a dynamical system S, although some of the techniques are applicable
to behaviors generated by real physical systems. Unlike formal verification which
aims at showing that all behaviors generated by S satisfy ϕ, here S is used to
generate one behavior at a time and can thus be viewed as a black box. This set-
ting has been studied extensively in recent years both in the context of digital
hardware, under the names of “dynamic” verification, or assertion checking as
well as for software, where it is referred to as runtime verification [15,39]. We
will use the term monitoring. In this framework the question of coverage, that is,
finding a finite number of test cases whose behavior will guarantee overall cor-
rectness, is delegated outside the scope of the property monitor. This approach
can be used when the system model is too large to be verified formally. It is also
applicable when the “model” in question is nothing but a hardly-formalizable
simulation program, as is often the case in electrical simulation of circuits. On the
other hand, the explicit presentation of ξ itself, rather than using the generating
model S, raises new problems.

Most of the work described in this paper has been performed within the
European project PROSYD1 with the purpose of extending some ingredients
1 IST-2003-507219 PROSYD (Property-Based System Design).

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 475–505, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

476 O. Maler, D. Nickovic, and A. Pnueli

of verification methodology from digital (discrete) to analog (continuous and
hybrid) systems. Consequently, we treat systems and behaviors described at
three different levels of abstraction (discrete, timed and continuous). Hence we
find it useful to start with a generic model of a dynamical system defined over an
abstract state space which evolves in an abstract time domain, see also [28,29].
The three models used in the paper are obtained as special instances of this
model.

States and Behaviors. A model S of a system is defined over a set V =
{x1, . . . xn} of state variables, each ranging over a domain Xi. The state space of
the system is thus X = X1 × · · · × Xn. The system evolves over a time domain
T which is a linearly-ordered set. A behavior of the system is a function from
the time domain to the state space, ξ : T → X . We consider complete behaviors,
where ξ is defined all over T , as well as partial behaviors where ξ is defined only
on a downward-closed subset of T , that is, some interval of the form [0, r). We
use the notation ξ[t1, t2] for the restriction of ξ to the interval [t1, t2] and let
ξ[t] = ⊥ when t ≥ r. We denote the set of all possible (complete and partial)
behaviors over a set X by X∗.2

Systems. The dynamics of a system S is defined via a rule of the form x′ =
f(x, u) which determines the future state x′ as a function of the current state
x and current input u ∈ U . As mentioned earlier, we do not have access to f
and our interaction with the model is restricted to stimulating it with an input
ν ∈ U∗ and then observing and checking the generated behavior ξ ∈ X∗.

Properties. Regardless of the formalism used to express it, a property ϕ defines
a subset Lϕ of X∗. A property monitor is a device or algorithm for deciding
whether a given behavior ξ satisfies ϕ (denoted by ξ |= ϕ) or, equivalently,
whether ξ ∈ Lϕ.

The paper starts with properties of discrete (digital) systems, a well-studied
and mature domain, where some of the problems associated with monitoring
(non-causality of the specification formalism, satisfiability by finite traces, online
vs. offline) are already manifested. We then move to timed discrete systems,
whose behaviors can be viewed as continuous-time Boolean signals, which raise
a lot of new issues such as sampling, event detection, variability bounds, etc.
Most of the paper will investigate monitoring at this level of abstraction where we
made some original contributions. Finally we move to continuous (analog) signals
which, in addition to dense time, admit also numerical real values. Although
for many types of properties (and in particular those expressible in our signal
temporal logic [37,31]) checking continuous properties can be reduced to checking
timed properties, there are further issues, such as approximation errors, raised
by the continuous domain and by the manner in which signals are generated by
numerical simulators.
2 For discrete time behaviors, it is common to use X∗ for finite behaviors and Xω for

infinite ones, but these distinctions are less meaningful when we come to continuous
behaviors.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 477

2 Discrete (Digital) Systems: Properties

Discrete models are used for modeling digital hardware (at gate level and above)
as well as software. At this level of abstraction the set N of natural numbers is
taken as the underlying time domain. In this case the difference between ξ[t] and
ξ[t+1] reflects the changes in state variables that took place in the system within
one clock cycle (hardware) or one program step (software).3 The state space of
digital systems is often viewed as the set B

n of Boolean n-bit vectors.4 Behaviors
are, hence, n-dimensional Boolean sequences generated by system models which
are essentially finite automata (transition systems) which can be encoded in a
variety of formalisms such as systems of Boolean equations with primed variables
or unit delays, hardware description languages at various levels of abstraction,
programming languages, etc.

Semantically speaking, a property is a subset of the set of all sequences (also
known in computer science as a formal language) indicating the behaviors that
we allow the system to have. Such subsets can be defined syntactically using a
variety of formalisms such as logical formulae, regular expressions or automata
that accept them. In this paper we focus on temporal logic [35,36] which can be
viewed as a useful syntactic sugar for the first-order fragment of the monadic
logic of order [40]. This section does not present new results but is rather a
synthetic survey of the state-of-the-art which can serve as an entry point to the
vast literature and which, we feel, is a pre-requisite for understanding the timed
and continuous extensions.

2.1 Temporal Logic (Future)

The temporal logic of linear time (LTL) is perhaps the most popular property
specification formalism. In a nutshell it is a language for specifying certain rela-
tionships between values of the state variables at different time instants, that is,
at different positions in the sequence. For example, we may require that when-
ever x1 = 1 at position t then x2 = 0 at position t + 3. A property monitor is
thus a device that observes sequences and checks whether they satisfy all such
relationships. We repeat briefly some standard definitions concerning the syntax
and semantics of LTL. By semantics we mean the rules according to which a
sequence is declared as satisfying or violating a formula ϕ.
The syntax of LTL is given by the following grammar:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2,

where p belongs to a set P = {p1, . . . , pn} of propositions indicating values of
the corresponding state variable. The basic temporal operators are next (©),
3 We mention here the existence and usefulness of asynchronous (event triggered rather

than time triggered) systems and models, where the interpretation of a step is dif-
ferent.

4 In software, as well as in high-level models of hardware, systems may include state
variables ranging over larger domains such as bounded and unbounded numerical
variables or dynamically-varying data structures such as queues and trees, but, at
least in the hardware context, those can be encoded by bit vectors.

478 O. Maler, D. Nickovic, and A. Pnueli

which specifies what should hold in the next step and until (U), which requires
ϕ1 to hold until ϕ2 becomes true, without bounding the temporal distance to
this becoming. From these basic LTL operators one can derive other standard
Boolean operators as well as temporal operators such as eventually (♦) and
always (�):

♦ϕ = t Uϕ and �ϕ = ¬♦¬ϕ.

Models of LTL are Boolean sequences of the form ξ : N → B
n. We also use p

to denote the sequence obtained by projecting a sequence ξ on the dimension
corresponding to p. The satisfaction relation (ξ, t) |= ϕ, indicating that sequence
ξ satisfies ϕ starting from position t, is defined inductively as follows:

(ξ, t) |= p ↔ p[t] = 1
(ξ, t) |= ¬ϕ ↔ (ξ, t) 	|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ©ϕ ↔ (ξ, t + 1) |= ϕ
(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′), (ξ, t′′) |= ϕ1

(ξ, t) |= ♦ϕ ↔ ∃t′ ≥ t (ξ, t′) |= ϕ
(ξ, t) |= �ϕ ↔ ∀t′ ≥ t (ξ, t′) |= ϕ

A sequence ξ satisfies ϕ, denoted by ξ |= ϕ, iff (ξ, 0) |= ϕ.

2.2 Temporal Logic (Past)

The past fragment of LTL is defined by a syntax similar to the future fragment
where the next and until operators are replaced by previously (©-) and since (S).
As with future LTL, useful derived operators are sometime in the past ♦- and
always in the past �- defined as

♦- ϕ = t Sϕ and �- ϕ = ¬♦- ¬ϕ

Their semantics is given by

(ξ, t) |= ©- ϕ ↔ t = 0 or (ξ, t − 1) |= ϕ
(ξ, t) |= ϕ1Sϕ2 ↔ ∃t′ ∈ [0, t] (ξ, t′) |= ϕ2 and ∀t′′ ∈ (t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦- ϕ ↔ ∃t′ ∈ [0, t](ξ, t′) |= ϕ
(ξ, t) |= �- ϕ ↔ ∀t′ ∈ [0, t] (ξ, t′) |= ϕ

A finite sequence satisfies a past property ϕ if it satisfies it from the last position
“backwards”, that is, ξ |= ϕ if (ξ, |ξ|) |= ϕ.

3 Discrete Systems: Checking Temporal Properties

We describe here the fundamental problems associated with checking tempo-
ral properties as well as the common approaches for tackling them. These are
problems that exist already in the simplest model of Boolean sequences and are
propagated, with additional complications to the timed and continuous domains.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 479

3.1 Causality and Non-determinism

A major difficulty in checking properties expressed in future LTL is due to the
non-causal definition of the satisfaction relation. To see what this means it might
be helpful to look at the definition of LTL semantics as a procedure which is
recursive on both the structure of ϕ and on the sequential structure of ξ. This
procedure is called initially with ϕ and with ξ[0] as arguments because we want
to determine the satisfiability of ϕ from position zero. Then the semantic rules
“call” the procedure recursively with sub formulae of ϕ and with further positions
of ξ. In other words, the satisfiability of ϕ at time t may depend on the value
of ξ at some future time instant t′ ≥ t. Even worse, some temporal operators
refer to future time instants in a quantified manner, for example, requiring some
p to hold in all future time instants. The satisfiability of such a property may
sometime be determined only at infinity, that is, “after” we can be sure that no
instance of ¬p is observed.

Note that for past LTL, the recursion goes backward in time and the satisfac-
tion of a past formula ϕ by a sequence ξ at position t is determined according
to the values of ξ at the interval [0, t] and in this sense, past LTL is causal.
However it has been argued that the futuristic specification style is more natu-
ral for humans. The past fragment of LTL admits an immediate translation to
deterministic automata and a simple monitoring procedure [16] based on this
observation.

The “classical” theoretical scheme for using LTL in formal verification is based
on translating a formula ϕ into a non-deterministic automaton over infinite se-
quences (an ω-automaton) Aϕ that accepts exactly the sequences that satisfy
it. The non determinism is needed to compensate for the non causality: the au-
tomaton has to “guess” at time t whether future observations at some t′ > t will
render ϕ satisfied at t, and split the computation into two paths according to
these predictions. A path that made a wrong prediction will be aborted later, ei-
ther within a finite number of steps (if the guess is falsified by some observation)
or via the ω-acceptance condition (if the falsification is due to non-occurrence
of an event at infinity). Satisfiability of the formula can thus be determined by
checking whether the ω-language accepted by Aϕ is not empty. This reduces
to checking the existence of an accepting cycle in Aϕ which is reachable from
an initial state. Verification is achieved by checking whether S may generate an
infinite behavior rejected by Aϕ (or accepted by A¬ϕ). It should be noted that
simplified procedures have been developed and implemented when the property
in question belongs to a subclass of LTL, such as safety.

3.2 Evaluating Incomplete Behaviors

In monitoring we do not exploit the model S that generates the sequences, but
rather observe sequences as they come. The major problem here, with respect to
the standard semantics of LTL which is defined over complete infinite sequences,

480 O. Maler, D. Nickovic, and A. Pnueli

is the impossibility to observe infinite sequences in finite time.5 Hence, the ex-
tension of LTL semantics to incomplete behaviors is a major issue in monitoring.

After having observed a finite sequence ξ we can be in one of the following
three basic situations with respect to a property ϕ:

1. All possible infinite completions of ξ satisfy ϕ. Such a situation may happen,
for example, when ϕ is ♦p and p occurs in ξ. In this case we say that ξ
positively determines ϕ.

2. All possible infinite completions of ξ violate ϕ. For example when ϕ is �¬p
and p occurs in ξ. In this case we say that ξ negatively determines ϕ.

3. Some possible completions of ξ do satisfy ϕ and some others violate it. For
example, any sequence where p has not occurred has extensions that satisfy,
as well as extensions that violate, formulae such as ♦p or �¬p. In this case
we say that ξ is undecided.

It should be noted that the “undecided” category can be refined according to
both methodological, quantitative, and logical considerations. One might want
to distinguish, for example, between “not yet violated” (in the case of �¬p) and
“not yet satisfied” (in the case of ♦p). The quantitative aspects enter the picture
as well because the longer we observe a sequence ξ free of p, the more we tend to
believe in the satisfaction of �¬p, although the doubt will always remain. On the
other hand, the satisfaction of a formula like ©kp, a shorthand for ©(©(. . . ©
p) . . .)), although undecided for sequences shorter than k, will be revealed in
finite time. The most general type of answer concerning the satisfiability of ϕ by
a finite sequence ξ would be to give exactly the set of completions of ξ that will
make it satisfy ϕ, defined as

ξ\ϕ = {ξ′ : ξ · ξ′ |= ϕ}.

Positive and negative determination correspond, respectively, to the special cases
where ξ\ϕ = X∗ and ξ\ϕ = ∅. This “residual” language can be computed
syntactically as the left quotient (“derivative”) of ϕ by ξ.

In certain situations we would like to give a decisive answer at the end of the
sequence. In the case of positive and negative determination we can reply with a
yes/no answer. More general rules for assigning semantics to every finite sequence
have been proposed [27,11]. Let us consider some sub-classes of LTL formulae for
which such a finitary semantics clearly makes sense. The simplest among those is
bounded-LTL where the only temporal operator is next and where satisfiability
of a formula ϕ at time 0 is always determined by the values of the sequence up
to some t ≤ k, with k being a constant depending on ϕ. Note that this class is

5 To be more precise, there are some classes of infinite sequences such as the ultimately-
periodic ones, that admit a finite representation and an easily-checkable satisfiability,
however we work under the assumption that we do not have much control over the
type of sequences provided by the simulator and hence we have to treat arbitrary
finite sequences. It is worth noting that if S is input-deterministic then an ultimately-
periodic input induces an ultimately-periodic behavior.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 481

not as useless as it might seem: one can use “syntactic sugar” operators such
as �[0,r]ϕ as shorthand for

∧r−1
i=0 (©iϕ). The implication for monitoring is that

every sufficiently-long sequence is determined with respect to such formulae (see
also [25]).

The next class is the class of safety properties6 where the only quantification
of the time variable is universal as in �ϕ. It is not hard to see that ω-languages
corresponding to such formulae consist of infinite words that do not have a prefix
in some finitary language. While monitoring a finite sequence ξ relative to such a
formula, we can be in either of the following two situations. Either such a prefix
has been observed and hence any continuation of ξ will be rejected and ξ can be
declared as violating, or no such prefix has been observed but nothing prevents
its occurrence in the future and ξ is undecided. A similar and dual situation
holds for eventually property such as ♦ϕ that quantify existentially over time,
and where an occurrence of a finitary prefix satisfying ϕ renders the sequence
accepted.

With respect to these sub-classes one can adopt the following policy: interpret
any quantification Qt, Q ∈ {∀, ∃} as Qt ≤ |ξ| and hence a safety that has not been
violated during the lifetime of ξ is considered as satisfied, and an eventuality not
fulfilled by that time is interpreted as violated. This principle may be extended
to more complex formulae that involve nesting of temporal operators but in this
case the interpretation seems less intuitive.

Let us remark that although models of past LTL are finite sequences, the prob-
lem of undecided sequences still exists. Consider for example the property �- p.
As soon as ¬p is observed, we can say the the formula is negatively determined
and need not wait for the rest of the sequence. On the other hand, as long as
¬p has not been observed, although the prefix satisfies the property we cannot
give conclusive results until the “official” end of the sequence, because ¬p may
always be observed in the next instant. Hence the treatment of past properties
is not much different from future ones, except for the simpler construction of the
corresponding automaton

Naturally many solutions have been proposed to this problem in the context
of monitoring and runtime verification and we mention few. The work of [1] con-
cerning the FoCs property checker of IBM, as well as those of [22] are restricted
to safety (prefix-closed) or eventuality properties and report violation when it
occurs. On the other hand, the approach of giving the residual language is pro-
posed in [23] and [41] in the context of timed properties. A systematic study of
the possible adaptation of LTL semantics to finite sequences (“truncated paths”)
is presented in [11]. This semantics has been adopted by the semiconductor in-
dustry standard property specification language PSL [10].

Our approach to monitoring is invariant under all these semantical choices.
As a minimal requirement for being used, the chosen semantics should associate
with every formula ϕ a function Ωϕ : X∗ → D which maps all finite sequences

6 To be more precise safety properties can be written as positive Boolean combinations
of formulae of the form �ϕ where ϕ is a past property, and eventuality properties
are negations of safety properties.

482 O. Maler, D. Nickovic, and A. Pnueli

into a domain D that contains B (satisfied/violated) and is augmented with
some additional values for undecided formulae.

3.3 Offline and Online Monitoring

In this section we discuss different forms of interaction between the mechanism
that generates behaviors and the mechanism that checks whether they satisfy a
given property. The behaviors are generated by some kind of a simulator that
computes states sequentially. Without loss of generality we may assume that
the systems we are interested in are not reverse-deterministic and, hence, the
natural way to generate behaviors is from the past to the future. One may think
of three basic modes of interaction (see Fig. 1):

1. Offline: The behaviors are completely generated by the simulator before the
checking procedure starts. The behaviors are kept in a file which can be read
by the monitor in either direction.

2. Passive Online: The simulator and the checker run in parallel, with the latter
observing the behaviors progressively.

3. Active Online: There is a feed-back loop between the generator and the
monitor so that the latter may influence the choice of inputs and, hence,
the subsequent values of ξ. Such “adaptive” test generation may steer the
system toward early detection of satisfaction or violation, and is outside the
scope of this paper.

Each behavior is a finite sequence ξ, whose satisfiability value with respect to ϕ
is defined via Ωϕ(ξ) regardless of the checking method. However there are some
practical reasons to prefer one method over the other. First, to save time, we
would like the checking procedure to reach the most refined conclusions as soon
as possible. In the offline setting this will only reduce checking time, while in
the online setting the effects of early detection of satisfaction/violation can be
much more significant. This is because in certain systems (analog circuits is a
notorious example) simulation time is very long and if the monitor can abort a
simulation once its satisfiability is decided, one can save a lot of time.

The difference between online and offline is, of course, much more significant
in situations where monitoring is done with respect to a physical device, not its
simulated model. We discuss briefly several instances of this situation. The first is
when chips are tested after fabrication by injecting real signals to their ports and
observing the outcome. Here, the response time of the tester is very important
and early (online) detection of violation can have economic importance. In other
circumstances we may be monitoring a system which is already up and running.
One may think of the supervision of a complex safety-critical plant where the
monitoring software should alert the operator about dangerous developments
that manifest themselves by property violation or by progress toward such vio-
lations. Such a situation calls for online monitoring, although offline monitoring
can be used for “post mortem” analysis, for example, analyzing the “black box”
after an airplane crash. Monitoring can be used for diagnosis and improvement
of non-critical systems as well. For example analyzing whether the behavior of

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 483

Input Generator Simulator

Input Generator Simulator Monitor/checker

File Monitor/checker

Input Generator Simulator Monitor/checker

Fig. 1. Offline, passive online and active online modes of interaction between a test
generator and a checker

an organization satisfies some specifications concerning the business rules of the
enterprise, e.g. “every request if treated within a week”. Such an application of
monitoring can be done offline by inspecting transaction logs in the enterprise
data base.

In the sequel we describe three basic methods for checking satisfaction of LTL
formulae by sequences.

The Automaton-Based Method. This is an online-oriented approach that
follows the principles used in formal verification. To monitor a property ϕ we
first construct the automaton Aϕ that accepts exactly the sequences satisfying ϕ
and then let it read every sequence ξ as it is generated. There is a vast literature
concerning the construction of automata from LTL formulae [43] and monitoring
does not depend too much on the choice of the translation algorithm. We have,
however a preference for the compositional construction, presented in [19] and
extended for timed systems in [33]. For each sub-formula ψ of ϕ, this procedure
constructs a sequence χψ(ξ) indicating the satisfaction of ψ over time, that is
χψ(ξ) has value 1 at t iff (ξ, t) |= ψ.

There are two major problems that need to be tackled while employing this
method. The first problem is that the natural automaton for ϕ will be an au-
tomaton over infinite sequences. This automaton needs to be transformed, via
a suitable definition of acceptance conditions, into an automaton over finite se-
quences that realizes the chosen finitary semantics, as discussed in the previous
section. For example, if our satisfiability domain consists of yes, no and unde-
cided, we will output yes as soon as the automaton enters a state from which all

484 O. Maler, D. Nickovic, and A. Pnueli

the remaining paths are accepting (a positive “sink”) and no when we enter a
negative sink. From all other states the output will be undecided.

The second problem is that Aϕ is typically non-deterministic. It can be re-
solved in either of the following ways: 1) Feed the non-deterministic automaton
with ξ while keeping track of all the states in which it can be at every time
instant. This amounts to performing the classical “subset construction” on-the-
fly; 2) Determinize the automaton offline, either using Safra’s algorithm for ω-
automata [38] or using a simpler algorithm adapted to the finitary semantics.

Purely-Offline Marking. This is the first method we have developed to timed
and continuous properties and will be described in more detail in Sect. 6.1.
The procedure consists in computing χψ(ξ) for every sub-formula ψ of ϕ from
the bottom up. It starts with the truth values of propositional formulae χp(ξ)
given by the sequence ξ itself. Then, recursively, for each sub-formula ψ with
immediate sub-formulae ψ1 and ψ2 such that χψ1(ξ) and χψ2(ξ) have already
been computed, we compute χψ(ξ) following the semantic rules of LTL. The
backward nature of these rules implies that the values of ξψ1 and ξψ2 at time t
will “propagate” to values of ξψ at some t′ ≤ t. The satisfaction function χϕ for
the main formula is computed at the end.

Incremental Marking. This approach combines the simplicity of the offline
procedure with the advantages of online monitoring in terms of early detection
of violation or satisfaction. After observing a prefix of the sequence ξ[0, t1] we
apply the offline procedure. If, as a result, χϕ(ξ) is determined at time zero we
are done. Otherwise we observe a new segment ξ[t1, t2] and then apply the same
procedure based on ξ[0, t2].

A more efficient implementation of this procedure need not start the compu-
tation from scratch each time a new segment is observed. It will be often the
case that χψ(ξ) for some sub-formulae ψ is already determined for some sub-
set of [0, t1] based on ξ[0, t1]. In this case we only need to propagate upwards
the new information obtained from ξ[t1, t2], combined, possibly, with some ad-
ditional residual information from the previous segment that was not sufficient
for determination in the previous iterations. This procedure will be described in
more algorithmic detail in Sect. 6.2.

The choice of the granularity (length of segments) in which this procedure is
invoked depends on trade-offs between the computational cost and the impor-
tance of early detection.

4 The Timed Level of Abstraction

Coming to export the specification, testing and verification framework from the
digital to the analog world, one faces two major conceptual and technical prob-
lems [30].

1. The state variables range over subsets of the set of real numbers that repre-
sent physical magnitudes such as voltage or current;

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 485

2. The systems evolve over a physical time scale modeled by the real numbers
and not over a logical time scale defined by a central clock or by events.

Mathematically speaking, the behaviors that should be specified and checked are
signals, function from R≥0 to R

n rather than sequences from N to B
n or to some

other finite domain. The first problem for monitoring is the problem of how to
represent a signal defined over the real time axis inside the computer, given that
it is a function defined over an infinite (and non-countable) domain. The very
same problem is encountered, of course, by numerical simulators that produce
such signals.

Based on our conviction that the dense time problem is more profound than
the infinite-state problem we use the following approach. Using a finite number
of predicates over the continuous state space, analog signals are transformed
into Boolean ones and are checked against properties expressed in a real-time
temporal logic whose atomic propositions correspond to those predicates. This
allows us to tackle the problem of dense time in isolation. Aspects specific to
the continuous state space are discussed in Sect. 7. Note that one can naturally
combine these predicates with genuine Boolean propositions to specify properties
of hybrid systems (mixed-signal systems in the circuit jargon).

Handling an infinite state space, such as the continuum, using finite formulae
is a fundamental mathematical problem. In finite domains one can characterize
every individual state by a distinct formula. For example, there is a bijection
between B

n and the set of Boolean terms over {p1, . . . , pn} which has one literal
for each pi. The common way to speak of subsets of infinite sets such as R

n

is via predicates, functions from R
n to B, for example inequalities of the form

xi < d.
We thus adopt the following approach. Let μ1, . . . , μm be m predicates of the

form μ : R
n → B. These predicates define a mapping M : R

n → B
m assigning to

every real point a Boolean vector indicating the predicates it satisfies. Applying
this mapping in a pointwise fashion to an analog signal ξ : R≥0 → R

n we obtain
a Boolean signal M(ξ) = ξ′ : R≥0 → B

m describing the evolution over time of
the truth values of these predicates with respect to ξ (see Fig. 2). Events such as
rising and falling in the Boolean signal correspond to some qualitative changes
in the analog signal, for example threshold crossing of some continuous variable.
This is an intermediate level of abstraction where we can observe the temporal
distance between such events and need to confront the problems introduced by
the dense time domain. Timed formalisms such as real-time temporal logics or
timed automata are tailored for modeling, specification, verification and moni-
toring at this level of abstraction, which in addition to its applicability to analog
circuits, is also very useful to model phenomena such as delays in digital cir-
cuits and execution times of software and, in fact, anything in life that can be
modeled as a process where some time has to elapse between its initiation and
termination.7

7 It is a pity that the study and utilization of timed models outside academic “formal
methods” circles is so negligible compared to their vast, almost universal, domain of
application.

486 O. Maler, D. Nickovic, and A. Pnueli

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input and Delayed Signals

Time offset: 0

−1

0

1

2

−1

0

1

2

p2 = x2 > 0.7

s = x1||x2

p1 = x1 > 0.7

Fig. 2. A 2-dimensional continuous signal and the 2-dimensional Boolean signal ob-
tained from it via the predicates x1 > 0.7 and x2 > 0.7

4.1 Dense-Time Signals: Representation

The major problems in handling Boolean signals by computerized tools are due
to the properties of the time domain. In digital systems we have the discrete
order (N, <), which means that there is a relation (successor) that generates the
whole order relation. In other words, for every t and t′ such that t < t′, there
is a finite positive k such that t′ = Suck(t). This also implies that whenever we
put a bound r on the range of the time variable, the set {t : 0 ≤ t ≤ r} is finite
and every behavior defined on the interval [0, r] can be represented by a finite
set {ξ[0], ξ[1], . . . , ξ[r]}.

The dense order (R, <) does not admit such a property, and for every t < t′

one can find t′′ such that t < t′′ < t′. This implies that in order to specify a
dense-time signal, even if restricted to a bounded time interval [0, r], one might
need to specify an infinite set of values. For arbitrary analog signals the only way
to provide these values throughout the entire interval is via analytic expressions
such as ξ[t] = sin(t). Otherwise an analog signal can only be partially represented
by its values at a finite subset of the time domain consisting of sampling points
(more on that in Sect. 7). As for Boolean signals, let us note that functions
from R+ to B can be rather weird objects, potentially switching between 0
and 1 infinitely many times in a bounded interval of time (the so-called Zeno
phenomenon).8 From now on we restrict our attention to non-Zeno Boolean
signals.

A non-Zeno Boolean signal ξ defined over an interval [0, r) decomposes nat-
urally into a finite sequence of intervals I0, I1, . . . , Ik such that I0 = [0, t1),
Ii = [ti, ti+1), Ik = [tk−1, r), the value of ξ is constant in every interval, and
ξ(Ii+1) = ¬ξ(Ii). The set of intervals, together with the value at t = 0 deter-
mine the value of ξ at any point and can serve as a basis for checking properties
relative to ξ.

8 Such Zeno signals can be obtained from analog signals via Booleanization: just con-
sider a signal representing a damped oscillation around zero and its Boolean image
via the predicate x < 0.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 487

4.2 Dense-Time Signals: Properties

The temporal operators of LTL are of two types. The next operator is bounded
and quantitative. It specifies something that should happen within the very next
step or, if used iteratively, within a bounded number of steps. The until opera-
tor and its derivatives are unbounded and qualitative, requiring that something
should or should not hold at some unspecified future instant. The latter proper-
ties are not affected seriously from the passage to dense time, while quantitative
operators need to be redefined. To start with, the next operator which specifies
at t what should hold at the smallest t′ such the t < t′ becomes meaningless.
Instead one has to use operators that specify at t what should hold at time t+d
or during the interval t ⊕ [a, b] = [t + a, t + b]. Many temporal logics over such
metric time have been proposed and studied [21,4,17,18] and we will focus on
the logic MITL, which is a natural adaptation of LTL to dense time [3].

Dense time also has an influence on the different monitoring procedures. As
we shall see, the offline procedure based on marking the truth values of sub-
formulae over time, can be rather easily adapted to signals. However the online
approaches are more problematic. Consider the approach based on translating a
formula into an automaton that accepts its models. The appropriate automaton
will be a timed automaton, which reads signals continuously and uses auxiliary
clock variables to measure times since the occurrence of certain events. Automata
corresponding to MITL formulae are, more often than not, non-deterministic,
a feature that, in a discrete-time framework, can be resolved using subset con-
struction, either offline or on the fly. Dense non-determinism is another story as
the automaton may stay during an interval in a state q while at any moment
during the interval it may take a transition to q′, thus spawning uncountably-
many runs of the automaton. The impossibility of an offline determinization of
timed automata is a well-known fact in the domain, but in Sect. 6.3 we will
mention some remedies to this problem.

We can now move to more detailed definitions of signals and their correspond-
ing temporal logics, followed by the description of their monitoring algorithms.

5 Boolean Signals and Their Temporal Logics

5.1 Signals

Two basic semantic domains can be used to describe timed behaviors. Time-
event sequences consist of instantaneous events separated by time durations while
discrete-valued signals are functions from time to some discrete domain. The
reader may consult the introduction to [6] for more details on the algebraic
characterization of these domains. In this work we use Boolean signals as the
semantic domain, which is the natural choice, both for the logic MITL and the
circuit application domain.

Let the time domain T be the set R≥0 of non-negative real numbers. A Boolean
signal is a function ξ : T → B

n. We use ξ[t] for the value of the signal at time t
and the notation σt1

1 · σt2
2 · · · for a signal whose value is σ1 at the interval [0, t1),

488 O. Maler, D. Nickovic, and A. Pnueli

σ2 in the interval [t1, t1 + t2), etc. A signal whose value is defined only on an
interval [0, r) is called finite and of metric9 length r (denoted by |ξ| = r). The
restriction of a signal to length d is defined as

ξ′ = 〈ξ〉d iff ξ′[t] =
{

ξ[t] if t < d
⊥ otherwise

For the sake of simplicity we restrict ourselves to left-closed right-open signal
segments and to timed modalities that use only closed intervals. As a conse-
quence we exclude signals with punctual “intervals” which are meaningless in
the algebraic definition of signals [6,5]. The more general case was treated in [3].

Different Boolean signals can be combined and separated using the standard
operations of pairing and projection defined as

ξ1 || ξ2 = ξ12 if ∀t ξ12[t] = (ξ1[t], ξ2[t])
ξ1 = π1(ξ12) ξ2 = π2(ξ12)

In particular, πp(ξ) will denote the projection of ξ on the dimension that corre-
sponds to proposition p.

Any Boolean operation op can be “lifted” to an operation on signals as

ξ = op(ξ1, ξ2) iff ∀t ξ[t] = op(ξ1[t], ξ2[t])

When we apply operations on signals of different lengths we use the convention

op(v, ⊥) = op(⊥, v) = ⊥
which guarantees that if ξ = op(ξ1, ξ2) then |ξ| = min(|ξ1|, |ξ2|).

Any reasonable Boolean signal can be represented using a countable number
of intervals. An interval covering of a given interval I = [0, r) is a sequence
I = I1, I2 . . . of left-closed right-open intervals such that

⋃
Ii = I and Ii ∩Ij = ∅

for every i 	= j. An interval covering I′ is said to refine I, denoted by I ′ ≺ I if
∀I ′ ∈ I′ ∃I ∈ I such that I ′ ⊆ I.

An interval covering I is said to be consistent with a signal ξ if ξ[t] = ξ[t′] for
every t, t′ belonging to the same interval Ii. In that case we can use the notation
ξ(Ii). Clearly, if I is consistent with ξ, so is any I ′ ≺ I. We restrict ourselves to
signals of finite variability, that is, signals admitting a finite consistent interval
covering. We denote by Iξ the minimal interval covering consistent with a finite
variability signal ξ. The set of positive intervals of ξ is I+

ξ = {I ∈ Iξ : ξ(I) = 1}
and the set of negative intervals is I−

ξ = Iξ − I+
ξ .

A signal ξ is said to be unitary if I+
ξ is a singleton. Any finite-variability signal

ξ over a bounded interval can be decomposed into a union of k unitary signals
such that ξ = ξ1 ∨ . . . ∨ ξk, see Fig. 3.

The concatenation ξ = ξ1 ·ξ2 of two signals ξ1 and ξ2 defined over the intervals
[0, r1) and [0, r2) respectively is a signal over [0, r1 + r2) defined as:

ξ[t] =
{

ξ1[t] if t < r1

ξ2[t − r1] otherwise
9 To distinguish it from the logical length which corresponds to the number of state

changes.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 489

ξ

ξ1

ξ2

ξ3

Fig. 3. A signal ξ and its unitary decomposition (ξ1, ξ2, ξ3)

The d-suffix of a signal ξ is the signal ξ′ = d\ξ obtained from ξ by removing
the prefix 〈ξ〉d from ξ, that is,

ξ′[t] = ξ[t + d] for every t ∈ [0, |ξ| − d).

The Minkowski sum and difference of two sets P1 and P2 are defined as

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}
P1 � P2 = {x1 − x2 : x1 ∈ P1, x2 ∈ P2}.

Of particular interest are the applications of these operations to one-dimensional
sets consisting of elements of the time domain T :

{t} ⊕ [a, b] = [t + a, t + b], [m, n) ⊕ [a, b] = [m + a, n + b)

{t} � [a, b] = [t − b, t − a], [m, n) � [a, b] − [m − b, n − a)

The operation that will be used for computing the satisfiability of a formula
whose major operator is a bounded temporal operator is the operation of back
shifting.

Definition 1 (Back Shifting). The [a, b]-back-shifting of a Boolean signal ξ′,
denoted by ξ = Shift[a,b](ξ′), is a signal ξ such thet for every t, ξ[t] = 1 iff there
exists t′ ∈ t ⊕ [a, b] such that ξ′[t′] = 1.

The resemblance of this definition to the semantics of the ♦[a,b] operator (to
be defined in Sect. 5.2) is not a coincidence. If ϕ = ♦[a,b]ϕ

′ then the respective
satisfiability signals of ϕ and ϕ′ satisfy χϕ = Shift[a,b](χϕ′). This operation is
easy to compute on a representation based on an interval covering of the signals.
When ξ′ is a unitary signal with I+

ξ′ = {I ′}, the result of back shifting is the
unitary signal ξ with I+

ξ = {I} where I = I ′ � [a, b] ∩ T (the intersection with
T is needed to remove negative values, see Fig. 4).

5.2 Real-Time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

490 O. Maler, D. Nickovic, and A. Pnueli

I′ = [m, n)

I′ � [a, b]

0 0 0
(c)(b)(a)

Fig. 4. Three instances of back shifting I = [m, n) � [a, b]: (a) I = [m − b, n − a); (b)
I = [0, n − a] because m − b < 0; (c) I = ∅ because n − a < 0

where p belongs to a set P = {p1, . . . , pn} of propositions and b > a ≥ 0 are
rational numbers.10 From basic mitl operators one can derive other standard
Boolean and temporal operators, in particular the time-constrained eventually
and always operators:

♦[a,b]ϕ = t U[a,b]ϕ and �[a,b]ϕ = ¬♦[a,b]¬ϕ

We interpret mitl over n-dimensional Boolean signals and define the satisfiabil-
ity relation similarly to LTL.

(ξ, t) |= p ↔ p[t] = t

(ξ, t) |= ¬ϕ ↔ (ξ, t) 	|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦[a,b]ϕ ↔ ∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ
(ξ, t) |= �[a,b]ϕ ↔ ∀t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

The past version of MITL is obtained by replacing the U[a,b] operator by the
since operator S[a,b], from which one can derive the time-constrained sometime
in the past (♦-) and always in the past (�-), operators. The semantics of the past
operators is defined as

(ξ, t) |= ϕ1S[a,b]ϕ2 ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦- [a,b]ϕ ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ
(ξ, t) |= �- [a,b]ϕ ↔ ∀t′ ∈ t � [a, b] (ξ, t′) |= ϕ

In this paper we focus on the more difficult future fragment of MITL.

6 Checking Timed Properties

In this section we describe two procedures for checking MITL properties:
10 In fact, it is sufficient to consider integer constants.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 491

1. An offline marking procedure that propagates truth values upwards from
propositions via super-formulae up to the main formula. This procedure has
been first presented in [31].

2. An incremental marking procedure that updates the marking each time a
new segment of the signal is observed. This procedure is described in [37].

A central notion in all these algorithms is that of the satisfaction signal ξ′ =
χϕ(ξ) associated with a formula ϕ and a signal ξ. In this signal ξ′[t] = 1 whenever
(ξ, t) |= ϕ. We remind the reader that due to non-causality the value of ξ′[t] is
not necessarily known at time t, that is, after observing ξ[t], and may depend
on future values of ξ. Whenever the identity of ξ is clear from the context, we
will use the shorthand notation χϕ.

6.1 Offline Marking

This algorithm [31] works as follows. It has as input a formula ϕ and an n-
dimensional Boolean signal of length r. For every sub-formula ψ of ϕ it computes
its satisfiability signal χψ(ξ). To simplify the discussion we restrict the presen-
tation to a bounded version of MITL where the unbounded until is not used.
Hence we have properties that are fully determined if the signal is sufficiently
long. In the case where the signal is too short the output is undecided, denoted
by ⊥. The procedure is recursive on the structure (parse tree) of the formula. It
goes down until the propositional variables whose values are determined directly
by ξ, and then propagates values as it comes up from the recursion. We will use
op1 and op2 for arbitrary unary and binary logical or temporal operators. As
a preparation for the incremental version, we do not pass ξ and χϕ as input or
output parameters but rather store them in global data structures.

Algorithm 1. OfflineMitl

input : an MITL Formula ϕ

switch ϕ do
case p

χϕ := πp(ξ);
end
case op1(ϕ1)

OfflineMitl (ϕ1);
χϕ := Combine(op1, ϕ1);

end
case op2(ϕ1, ϕ2)

OfflineMitl (ϕ1);
OfflineMitl (ϕ2);
χϕ := Combine (op2, χϕ1 , χϕ2);

end
end

Most of the work in this algorithm is done by the Combine function which for
ϕ = op2(ϕ1, ϕ2) computes χϕ from the signals χϕ1 and χϕ2 , which may differ

492 O. Maler, D. Nickovic, and A. Pnueli

p

q

p′

q′

p′ ∨ q′

p ∨ q

Fig. 5. To compute p∨q we first refine the interval covering to obtain the semantically-
equivalent representations p′ and q′. We then perform interval-wise operations to obtain
p′ ∨ q′ and then merge adjacent positive intervals

in length. We describe briefly how this function works for each of the operators,
with a sufficient detail to understand how it operates on the representation of
the input and output signals by their sets of positive intervals. For the sake of
readability we omit the description of various mundane optimizations.

χϕ := Combine(¬, χϕ1) The negation is computed by simply changing the
Boolean value of each minimal interval in the representation of χϕ1 .

χϕ := Combine(∨, χϕ1 , χϕ2) For the disjunction we first construct a refined
interval covering I = {I1, . . . , Ik} for χϕ1 ||χϕ2 so that the mutual values
of both signals become uniform in every interval. Then we compute the
disjunction interval-wise, that is, ϕ(Ii) = ϕ1(Ii) ∨ ϕ2(Ii). Finally we merge
adjacent intervals having the same Boolean value to obtain the minimal
interval covering Iχϕ . This procedure is illustrated in Fig. 5.

χϕ := Combine(♦[a,b], χϕ1) This is the most important part of our procedure
which computes χϕ := Shift[a,b](ξϕ1). For every positive interval I ∈ I+

ϕ1

we compute its back shifting I � [a, b] ∩ T and insert it to I+
ϕ. Overlap-

ping positive intervals in I+
ϕ are merged to obtain a minimal consistent

interval covering. In the process, all the negative intervals shorter than b− a
disappear.11

χϕ := Combine(U[a,b], χϕ1 , χϕ2) The implementation of the timed until opera-
tor is based on the equivalence ϕ1U[a,b]ϕ2 ↔ (♦[a,b](ϕ1 ∧ ϕ2)) ∧ ϕ1 when
χϕ1 is a unitary signal. This is because for a unitary signal, if ϕ1 holds at
t1 and at t2 it must hold during the whole interval. This does not hold for
arbitrary signals, see Fig. 6. In order to treat the general case where χϕ1 is
a non-unitary signal we first need to decompose it into the unitary signals
χ1

ϕ1
, . . . , χk

ϕ1
and then compute

χi
ϕ = (Shift[a,b](χi

ϕ1
∧ χϕ2)) ∧ χi

ϕ1

11 This procedure can be viewed alternatively as shifting the negative intervals by [b, a].

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 493

p = p1 ∨ p2

q = q1 ∨ q2

s1 = p ∧ q

s2 = s1 � [a, b]

s3 = s2 ∧ p

s3 �= pU[a,b]q

(a)

p2

q1

s4 = p2 ∧ q1

s5 = s4 � [a, b]

s6 = s5 ∧ p2

p2

q2

s7 = p2 ∧ q2

s9 = s8 ∧ p2

s8 = s7 � [a, b]

s6 ∨ s9 = pU[a,b]q

(b)

Fig. 6. Computing satisfiability of pU[a,b]q via the satisfiability of ♦[a,b](q ∧ p) ∧ p. (a)
wrong results obtained with non-unitary signals; (b) correct results obtained with a
unitary decomposition p = p1 ∨p2 and q = q1 ∨q2. The computation with p1 is omitted
as it has an empty intersection with q

for each i ∈ [1, k]. Finally we recompose the resulting signals as

χϕ =
k∨

i=1

χi
ϕ.

6.2 Incremental Marking

Incremental marking is performed using a kind of piecewise-online procedure
invoked each time a new segment of ξ, denoted by Δξ, is observed. For each

494 O. Maler, D. Nickovic, and A. Pnueli

χϕ Δϕ

χϕ1

χϕ2

Δϕ

χϕ1 Δϕ1

χϕ2 Δϕ2

Δϕ1

χϕ

Δϕ2

α

(a) (b)

Fig. 7. A step in an incremental update: (a) A new segment α for ϕ is computed from
Δϕ1 and Δϕ2 ; (b) α is appended to Δϕ and the endpoints of χϕ1 and χϕ1 are shifted
forward accordingly

sub-formula ψ the algorithm stores its already-computed satisfaction signal par-
titioned into a concatenation of two signals χψ ·Δψ with χψ consisting of values
already propagated to the super-formula of ψ, and Δψ consists of values that
have already been computed but which have not yet been propagated to the
super-formula and can still influence its satisfaction.

Initially all signals are empty. Each time a new segment Δξ is read, a recursive
procedure similar to the offline procedure is invoked, which updates every χψ

and Δψ from the bottom up. The difference with respect to the offline algorithm
is that only the segments of the signal that have not been propagated upwards
participate in the update of their super-formulae. This may result in a lot of
saving when the signal is very long, as has been demonstrated empirically in
[37].

As an illustration consider ϕ = op(ϕ1, ϕ2) and the corresponding truth signals
of Fig. 7-(a). Before the update we always have |χϕ · Δϕ| = |χϕ1 | = |χϕ2 |: the
parts Δϕ1 and Δϕ2 that may still affect ϕ are those that start at the point from
which the satisfaction of ϕ is still unknown. We apply the Combine procedure on
Δϕ1 and Δϕ2 to obtain a new (possibly empty) segment α of Δϕ. This segment
is appended to Δϕ in order to be propagated upwards, but before that we need
to shift the borderline between χϕ1 and Δϕ1 (as well as between χϕ2 and Δϕ2)
in order to reflect the update of Δϕ. The procedure is described in Algorithm 2.

6.3 Monitoring Using Timed Automata

Our contribution to the automaton-based approach for checking timed prop-
erties will be described elsewhere and we mention the relevant results briefly.
In [32] we have shown how to build deterministic timed automata from past
MITL properties and gave an alternative proof of the impossibility to do so for
future MITL. The difference in dererminizability between the past and future

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 495

Algorithm 2. Inc-Offline-Mitl

input : an MITL Formula ϕ and an increment Δξ of a signal

switch ϕ do
case p

Δϕ := Δϕ · πp(Δξ);
end
case op1(ϕ1)

Inc-Offline-Mitl (ϕ1, Δξ);
α := Combine(op1, Δϕ1);
d := |α| ;
Δϕ := Δϕ · α ;
χϕ1 := χϕ1 · 〈Δϕ1〉d ;
Δϕ1 := d\Δϕ1

end
case op2(ϕ1, ϕ2)

Inc-Offline-Mitl (ϕ1, Δξ);
Inc-Offline-Mitl (ϕ2, Δξ);
α := Combine(op2, Δϕ1 , Δϕ2);
d := |α| ;
Δϕ := Δϕ · α ;
χϕ1 := χϕ1 · 〈Δϕ1〉d ;
Δϕ1 := d\Δϕ1 ;
χϕ2 := χϕ2 · 〈Δϕ2〉d ;
Δϕ2 := d\Δϕ2

end
end

fragments turned out to be a syntactical accident not related to the difference in
the causality between past and future (note that the logic MTL, admitting punc-
tual modalities such as ♦d is non-deterministic in both directions). The reason
is that interval-based modalities, when they point backwards, erase the effect
of small fluctuations in Boolean signals, see [32]. In [33] we adapted the com-
positional construction of non-deterministic automata from LTL [19] to MITL.
Finally we have shown in [34] how to construct deterministic timed automata for
the bounded fragment of the more general logic MTL under bounded variability
assumptions. More technical details concerning the techniques used can be found
in those papers. We mention the works of [42,24] and [12,13,14] which inspired
part of our work.

7 Continuous Signals

The algorithms developed for dense-time Boolean signals, provide a solid basis
for monitoring continuous signals when the properties belong to the signal tem-
poral logic (STL) [31,37] which is nothing but MITL, parameterized by a set of
numerical predicates playing the role of atomic propositions. For such properties,
each continuous signal is transformed, via the numerical predicates appearing in

496 O. Maler, D. Nickovic, and A. Pnueli

t

t

t

t

ξ ξ′

μ(ξ) μ(ξ′)

Fig. 8. Two signals which are close from a continuous point of view, one satisfying the
property �(x > 0) and one violating it

the property, into a Boolean signal which is checked against the MITL “skeleton”
of the formula. In the rest of this section we discuss technical problems related
to the applicability of the “Booleanization” procedure.

As we have seen, non-Zeno Boolean signals, albeit the fact that they are
defined over dense time domain, admit an exact finite representation via the
switching points that define their true and false intervals. This is no longer the
case for continuous signals where we have a contrast between the ideal mathemat-
ical object, consisting of an uncountable number of pairs (t, ξ[t]) with t ranging
over some interval [0, r) ⊆ R≥0, and any finite representation which consists of
a collection of such pairs, with t restricted to range over a finite set of sampling
points. The values of ξ at sampling points t1 and t2 may, at most, impose some
constraints on the values of ξ inside the interval (t1, t2). Such constraints can
be based on the dynamics of the generating system and the manner in which
the numerical simulator produces the signal values at the sampling points. Nu-
merical analysis is a very mature domain with a lot of accumulated experience
concerning tradeoffs between accuracy and computation time. Its major premise
is that given a model of the system as a continuous dynamical system defined by
a differential equation12, one can improve the quality of a discrete-time approx-
imation of its behavior by employing denser sets of sampling points and more
sophisticated numerical integration procedures.13

In order to speak quantitatively about the approximation of a signal by an-
other we need the concept of a distance/metric imposed on the space of con-
tinuous signals. A metric is a function that assigns to two signals ξ1 and ξ2 a
non-negative value ρ(ξ1, ξ2) which indicates how they resemble each other. Using
metrics one can express the “convergence” of a numerical integration scheme as
12 It is worth noting that some models used for rapid simulation of transistor net-

works cannot always be viewed as continuous dynamical systems in the classical
mathematical sense.

13 For systems which are stable the quality can be improved indefinitely.

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 497

the condition that limd→0 ρ(ξ, ξd) = 0 where ξ is the ideal mathematical signal
and ξd is its numerical approximation using an integration step d.

Metrics and norms for continuous signals are used extensively in circuit de-
sign, control and signal processing. There are, however, major problems con-
cerned with their application to property monitoring due to the incompatibility
between the continuous nature of the signals and the discrete nature of {0, 1}-
properties, a phenomenon which is best illustrated using the following simple
example. Consider the property �(x > 0) and an ideal mathematical signal ξ
that satisfies the property but which passes very close to zero at some points.
We can easily transform ξ into a signal ξ′ which is very close to ξ under any rea-
sonable continuous metric, but according to the metric induced by the property,
these signals are as distant as can be: one of them satisfies the property and the
other violates it (see Fig. 8).

Moreover, if the sojourn time of a signal below zero is short, an arbitrary shift
in the sampling can make the monitor miss the zero-crossing event and declare
the signal as satisfying (see Fig. 9). In this sense properties are not robust as small
variations in the signal may lead to large variations in its property satisfaction.
Let us mention some interesting ideas due to P. Caspi [20] concerning new metrics
for bridging the gap between the continuous and the discrete points of view. Such
metrics are expressible, by the way, in STL [37].

t t

Fig. 9. Shifting the sampling points, zero crossing can be missed

The abovementioned issues can be handled pragmatically in our context, with-
out waiting for a completely-satisfactory theoretical solution to this fundamental
problem. The following assumptions facilitate the monitoring of sampled contin-
uous signals against STL properties, passing through the timed abstraction:

1. Sufficiently-dense sampling: the simulator detects every change in the truth
value of any of the predicates appearing in the formula at a sufficient accu-
racy. This way the positive intervals of all the Boolean signals that corre-
spond to these predicates are determined. This requirement imposes some
level of sophistication on the simulator that has to perform several back-
and-forth iterations to locate the time instances where a threshold crossing
occurs. Many simulation tools used in industry have already such event-
detection features. A survey of the treatment of discontinuous phenomena
by numerical simulators can be found in [26].

498 O. Maler, D. Nickovic, and A. Pnueli

2. Bounded variability: some restrictive assumptions can be made about the
values of the signal between two sampling points t1 and t2. For example one
may assume that ξ is monotone so that if ξ[t1] ≤ ξ[t2] then ξ[t′1] ≤ ξ[t′2] for
every t′1 and t′2 such that t1 < t′1 < t′2 < t2. An alternative condition could
be a condition a-la Lipschitz: |ξ[t2] − ξ[t1]| ≤ K|t2 − t1|. Such conditions
guarantee that the signal does not get wild between the sampling points,
otherwise property checking based on these values is useless.

Under such assumptions every continuous signal which is given by a discrete-
time representation, based on sufficiently-dense sampling, induces a well-defined
Boolean signal ready for MITL monitoring. Let us add at this point a general
remark that the standards of exactness and exhaustiveness as maintained in
discrete verification cannot and should not be exported to the continuous do-
main, and even if we are not guaranteed that all events are detected, we can
compensate for that by using safety margins in the predicates and properties.

8 Monitoring STL Properties

In this section we illustrate the monitoring of STL properties against signals
produced by the numerical simulator Matlab/Simulink, used mainly for control
and signal-processing applications, but also for modeling analog circuits at the
functional level of abstraction. The waveforms presented here are the output of
our first prototype of analog monitoring tool, which parses STL properties and
applies the offline marking procedure described in Sect. 6.1.

d1

d2

Fig. 10. Sufficiently-dense sampling with respect to the two thresholds d1 and d2. The set
of samplingpoints consists of auniformgrid augmentedwith the threshold-crossingpoints

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 499

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input and Delayed Signals

Time offset: 0

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

0 50 100 150 200 250 300
−1

0

1

2

Time offset: 0

�[0,300](p1 → ♦[3,5]p2)

s = x1||x2

p1 = x1 > 0.7

p2 = x2 > 0.7

♦[3,5]p2

p1 → ♦[3,5]p2

Fig. 11. A 2-dimensional signal satisfying the property �[0,300]((x1 > 0.7) ⇒
♦[3,5](x2 > 0.7)). Boolean signals correspond to the evolution of the truth values of
sub-formulae over time

8.1 Following a Reference Signal

As a first example consider the property

ϕ1 : �[0,300]((x1 > 0.7) ⇒ ♦[3,5](x2 > 0.7))

which requires that whenever x1 crosses the threshold 0.7, so does x2 within
t ∈ [3, 5] time units. We fix x1 to be the sinusoid

x1[t] = sin(ωt),

and let x2 be a signal generated by

x2[t] = sin(ω(t + d)) + θ

where d is a random delay ranging in [3, 5] degrees and θ is an additive random
noise. The marking procedure is illustrated in Fig. 11. The Boolean signals cor-
responding to the atomic propositions p1 and p2 are derived from the sampled

500 O. Maler, D. Nickovic, and A. Pnueli

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input and Delayed Signals

Time offset: 0

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

0 50 100 150 200 250 300
−1

0

1

2

Time offset: 0

�[0,300](p1 → ♦[3,5]p2)

s = x1||x2

p1 = x1 > 0.7

p2 = x2 > 0.7

♦[3,5]p2

p1 → ♦[3,5]p2

Fig. 12. A 2-dimensional signal violating the property�[0,300]((x1 > 0.7) ⇒ ♦[3,5](x2 >
0.7))

analog signal. From there the truth values of the sub-formulae ♦[3,5](x2 > 0.7),
(x1 > 0.7) ⇒ ♦[3,5](x2 > 0.7) are marked as intermediate steps toward the
marking of ϕ1 which is satisfied in this example. In Fig. 12 we apply the same
procedure to check ϕ1 against a signal in which x2 was generated with a much
larger additive noise θ ∈ [−0.5, 0.5]. The fluctuations in the value of x2 are re-
flected in the Boolean abstraction p2 and lead to a violation of the property at
some points where x1 > 0.7 is not followed by x2 > 0.7 within the pre-specified
delay.

8.2 Stabilizability

The second example is a very typical stabilizability property used extensively in
control and signal processing. The system in question is supposed to maintain
a controlled variable y around a fixed level despite disturbances x coming from
the outside world. The actual system used to generate this example is a water-
level controller for a nuclear plant. The disturbances come from changes in the

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 501

50

100

−100
−50

0
50

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

0 500 1000 1500 2000 2500 3000
−1

0
1
2

Analog Response y(t)

p = y ∈ (−0.5, 0.5)

q = y ∈ (−30, 30)

♦[0,150]�[0,20]p

�[0,20]p

¬p → ♦[0,150]�[0,20]p

¬p → ♦[0,150]�[0,20]p

Disturbance Signal

�[300,2500](q ∧ (¬p → ♦[0,150]�[0,20]p))

Fig. 13. A disturbance signal and an analog response y satisfying the stabilizability
property �[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]�[0,20](|y| ≤ 0.5)))

system load that trigger changes in the operations of the reactor which, in turn,
influences the water level, see [9]. Other instances of the same type of problem
may occur when the voltage of a circuit has to be kept constant despite variations
in the current due to changes in the circuit workload.

502 O. Maler, D. Nickovic, and A. Pnueli

50

100

−100
−50

0
50

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

0 500 1000 1500 2000 2500 3000
−1

0
1
2

Analog Response y(t)

p = y ∈ (−0.5, 0.5)

q = y ∈ (−30, 30)

♦[0,150]�[0,20]p

�[0,20]p

¬p → ♦[0,150]�[0,20]p

¬p → ♦[0,150]�[0,20]p

Disturbance Signal

�[300,2500](q ∧ (¬p → ♦[0,150]�[0,20]p))

Fig. 14. A disturbance signal and an analog response y violating the stabilizability
property �[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]�[0,20](|y| ≤ 0.5)))

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 503

We want y to stay always in the interval [−30, 30] (except, possibly, for an
initialization period of duration 300) and if, due to a disturbance, it goes outside
the interval [−0.5, 0.5], it should return to it within 150 time units and stay there
for at least 20 time units. The whole property is

ϕ2 : �[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]�[0,20](|y| ≤ 0.5))).

The results of applying our offline monitoring procedure to this formula appear
in Figures 13 and 14. When the disturbance is well-behaving, the property is
verified, while when the disturbance changes too fast, the property is violated
both by over-shooting below −30 and by taking more than 150 time units to
return to [−0.5, 0.5].

9 Conclusions

Motivated by the exportation of some ingredients of formal verification technol-
ogy toward analog circuits and continuous systems in general, we embarked on
the development of a monitoring procedure for temporal properties of continuous
signals. During the process we have gained better understanding of temporal sat-
isfiability in general as well as of the relation between real-time temporal logics
and timed automata. The ideas presented in this paper have been implemented
into an analog monitoring tool AMT [37] that has been applied to real-life case
studies.

References

1. Abarbanel, Y., et al.: FoCs: Automatic Generation of Simulation Checkers from
Formal Specifications. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 538–542. Springer, Heidelberg (2000)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal
of the ACM 43, 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Logics and Models of Real-Time: A Survey. In: Huizing,
C., et al. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)

5. Asarin, E.: Challenges in Timed Languages. Bulletin of EATCS 83 (2004)
6. Asarin, E., Caspi, P., Maler, O.: Timed Regular Expressions. The Journal of the

ACM 49, 172–206 (2002)
7. Beer, I., et al.: The Temporal Logic Sugar. In: Berry, G., Comon, H., Finkel, A.

(eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)
8. Bensalem, S., et al.: Testing Conformance of Real-time Applications with Auto-

matic Generation of Observers. In: RV 2004 (2004)
9. Donzé, A.: Etude d’un Modèle de Contrôleur Hybride. Master’s thesis, INPG (2003)

10. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

11. Eisner, C., et al.: Reasoning with Temporal Logic on Truncated Paths. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer,
Heidelberg (2003)

504 O. Maler, D. Nickovic, and A. Pnueli

12. Geilen, M.C.W., Dams, D.R.: An On-the-fly Tableau Construction for a Real-time
Temporal Logic. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 276–290.
Springer, Heidelberg (2000)

13. Geilen, M.C.W.: Formal Techniques for Verification of Complex Real-time Systems,
PhD thesis, Eindhoven University of Technology (2002)

14. Geilen, M.C.W.: An Improved On-the-fly Tableau Construction for a Real-time
Temporal Logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 394–406. Springer, Heidelberg (2003)

15. Havelund, K., Rosu, G. (eds.): Runtime Verification RV 2002. ENTCS 70(4) (2002)
16. Havelund, K., Rosu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,

J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 342–
356. Springer, Heidelberg (2002)

17. Henzinger, T.A.: It’s about Time: Real-time Logics Reviewed. In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer,
Heidelberg (1998)

18. Hirshfeld, Y., Rabinovich, A.: Logics for Real Time: Decidability and Complexity.
Fundamenta Informaticae 62, 1–28 (2004)

19. Kesten, Y., Pnueli, A.: A Compositional Approach to CTL∗ Verification. Theoret-
ical Computer Science 331, 397–428 (2005)

20. Kossentini C., Caspi, P.: Approximation, Sampling and Voting in Hybrid Comput-
ing Systems, HSCC (to appear, 2006)

21. Koymans, R.: Specifying Real-time Properties with with Metric Temporal Logic.
Real-time Systems, 255–299 (1990)

22. Kim, M., et al.: Monitoring, Checking, and Steering of Real-time Systems. RV
2002, ENTCS 70(4) (2002)

23. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime Verification of Timed
LTL using Disjunctive Normalized Equation Systems. RV 2003 ENTCS 89(2)
(2003)

24. Krichen, M., Tripakis, S.: Black-box Conformance Testing for Real-time Systems.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004)

25. Kupferman, O., Vardi, M.Y.: On Bounded Specifications. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer,
Heidelberg (2001)

26. Mosterman, P.J.: An Overview of Hybrid Simulation Phenomena and their Support
by Simulation Packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC
1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999)

27. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: LCTES 2000.
LNCS, pp. 196–218 (1985)

28. Maler, O.: A Unified Approach for Studying Discrete and Continuous Dynamical
Systems. In: CDC, pp. 2083–2088. IEEE, Los Alamitos (1998)

29. Maler, O.: Control from Computer Science. Annual Reviews in Control 26, 175–187
(2002)

30. Maler, O.: Analog Circuit Verification: a State of an Art. ENTCS 153, 3–7 (2006)
31. Maler, O., Nickovic, D.: Monitoring Temporal Properties of Continuous Signals.

In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

32. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present,
Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp.
2–16. Springer, Heidelberg (2005)

Checking Temporal Properties of Discrete, Timed and Continuous Behaviors 505

33. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

34. Maler, O., Nickovic, D., Pnueli, A.: On Synthesizing Controllers from Bounded-
Response Properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 95–107. Springer, Heidelberg (2007)

35. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer, Heidelberg (1992)

36. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

37. Nickovic, D., Maler, O.: AMT: A Property-Based Monitoring Tool for Analog Sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763,
pp. 304–319. Springer, Heidelberg (2007)

38. Safra, S.: On the Complexity of ω-Automata. In: FOCS 1988, pp. 319–327 (1988)
39. Sokolsky, O., Viswanathan, M.(eds.): Runtime Verification RV 2003. ENTCS 89(2)

(2003)
40. Trakhtenbrot, B.A.: Finite Automata and the Logic of One-place Predicates. DAN

SSSR 140 (1961)
41. Thati, P., Rosu, G.: Monitoring Algorithms for Metric Temporal Logic Specifica-

tions. RV (2004)
42. Tripakis, S.: Fault Diagnosis for Timed Automata. In: Damm, W., Olderog, E.-R.

(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–224. Springer, Heidelberg (2002)
43. Vardi, M.Y., Wolper, P.: An Automata-theoretic Approach to Automatic Program

Verification. In: LICS 1986, pp. 322–331. IEEE, Los Alamitos (1986)

Token-Free Petri Nets

Antoni Mazurkiewicz

Institute of Computer Science of PAS, Warsaw

This paper is dedicated to Boaz Trakhtenbrot
on the occasion of the 85th anniversary of his birthday,

with a deep gratitude for many inspiring
discussions. Thank you, Boaz, for all of them!

Abstract. In the paper a modification of classical Petri nets is defined.
The fundamental notions of nets, as places, transitions, and firing rules
are retained. In this way the composition properties of classical nets as
well as their full expressive power is preserved. However, while preserv-
ing basic notions of Petri nets theory, the presented modification offers
much more freedom in defining data types and the way of place contents
transformations. It turns out that such a modification leads to a simpli-
fication of the net description (neither tokens nor arrows are necessary
anymore) and yet strengthening its expressive power.

1 Introduction

For more than 40 years Petri nets [3] serve as an efficient formal model of con-
current behavior of complex discrete systems. There exists a rich bibliography of
books and works devoted to this model and many applications of nets have been
already created. The model is extremely simple: it uses three basic concepts, of
places, of transitions, and of a flow relation. The behavior of a net is represented
by changing distribution of tokens situated in the net places, according to some
simple rules (so-called firing rules). Non-negative integers play essential role in
the description of tokens distribution, indicating the number of tokens assigned
to nets places. Transitions determine the way of changing the distribution, tak-
ing off a number of tokens from entry places and putting a number of tokens in
exit places of an active transition. Formally, to any transition some operations
on numbers stored in places are assigned and therefore the behavior of nets is de-
scribed by means of a simple arithmetic with adding and subtracting operations
on non-negative integers.

Nets became attractive for several reasons, namely because:

- simplicity of description,
- demonstrativeness, mainly due to their graphic representation,
- a deep insight into concurrency phenomena,
- facility of applications to basic concurrent systems.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 506–520, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Token-Free Petri Nets 507

Among various versions of Petri nets three of them are worth of a special atten-
tion, namely condition/event nets, elementary net systems, and place/transition
nets. In each of them tokens play slightly different parts. Condition/event nets
explain the background of concurrency; tokens mark conditions holding and in
this way describe the whole state of the system described. Elementary net sys-
tems are tools for modeling concurrent computations and tokens mark points of
distributed control, indicating instantaneous stage of computation. Place/tran-
sition nets are tools for complex systems description; tokens describe overall
configurations of the system. The last type of nets will constitute the basis for
designing token-free nets discussed in the paper.

The paper is organized as follows: First, some facts from the formal language
theory will be recalled or defined; they will serve for defining the behavior of
discussed nets. Next, token-free nets will be defined and some properties of
their behavior will be given. Having defined token-free nets, their composition
properties are considered; in particular, it is shown that token-free nets can be
viewed as the composition of one-place nets (automata). To have a handy tool
for proving general properties of token-free nets, their canonical representation
is introduced. The last part of the paper concerns adjusting net specifications to
restrict their behavior (e.g. to avoid possible deadlocks).

2 Preliminaries

The reader is assumed to be acquainted with basic notion from automata theory,
language theory and Petri nets theory. To fix the notation, let us recall here some
of them. Let Σ be an alphabet, i.e. a finite set of symbols. Any finite sequence
of symbols from Σ is called a string over Σ. The empty string is denoted by ε.
The set of all strings over Σ is denoted by Σ∗. If u, v are strings, uv denotes
their concatenation (composition). Any set L ⊆ Σ∗ is a language over Σ. Let
L′, L′′ be languages; then L′L′′ = {w′w′′ | w′ ∈ L′, w′′ ∈ L′′}. If it causes
no ambiguity, we shall not distinguish between a singleton set and its element,
one-symbol string and its single symbol, and between a one-string language and
its single element. In particular, aL denotes the language {aw | w ∈ L}, for
any symbol a and language L. For any strings u, w we say that u is a prefix
of w and write u ≤ w, if there is v with w = uv (if v �= ε, u is said to be a
proper prefix of w). Language L is prefix-closed, if any prefix of any string in L
is in L as well. Let A ⊆ Σ, w ∈ Σ∗; projection πA(w) of w onto A is defined
recursively; for any symbol a πA(a) = a, if a ∈ A, or πA(a) = ε, otherwise; then
πA(ε) = ε and πA(uv) = πA(u)πA(v), for all u, v ∈ Σ∗. In other words, πA(w)
is the effect of erasing in w all symbols not belonging to A. If L is a language
over Σ and A ⊆ Σ, then πA(L) = {πA(w) | w ∈ L} is the projection of L onto
A. Let L be a language, w be a string; the language {u | wu ∈ L} is called
the left quotient of L by w (or the continuation of w in L) and is denoted by
L/w.

508 A. Mazurkiewicz

3 Token-Free Nets

Let us discuss advantages offered by nets. Without no doubt, they are intuition
appealing and enforcing intended specification. By their very nature, they en-
force natural numbers as a tool for system state description. Natural numbers
form a basic formal concept, easy to understand and to manipulate: operations
on numbers are simple and easy. The cardinality of their set is countable, by
definition. Operations in nets are limited to (multiple) successor/predecessor
operations; they have an obvious meaning and need no additional explanations.

However, some of positive features of nets create also their weakness. Namely,
the simplicity of the model makes difficult some complex situations description;
the formalism being well suited to describe basic phenomena may turn out to
be difficult for some real applications, e.g. relations {(n, m)} (replace n with m),
{(0, 0)} (test for “0”), {(n, n + 1) | n > m} (increase n by 1 provided n > m)
are not admissible in classical PT nets formalism. Integers may turn out to be
too primitive structures for dealing with more subtle objects; enlarging the net
structure to the real word situations could make the description difficult to grasp.
Finally, the intuition appealing graphical representation may be dangerous for
rigorous treatment and formal reasoning. This is the reason why a constantly
growing number of different extensions of original nets to the so-called higher
level ones has been invented, as nets with multiple arcs, different capacity of
places, self loops, inhibitor arcs, colored nets, etc. All of them are aiming to
overcome difficulties mentioned above, but they did not improve the situation
radically. In this paper a very modest modification of the original net concept is
introduced. Namely, it is proposed to:

– retain notions of places and transitions;
– replace tokens with arbitrary objects (consequently, accepting various types

of places);
– retain notions of enabling and firing (suitably modified);
– extend flow relation to an arbitrary relation (consequently, replace in nets

arrows by edges).

These modifications, though simple and straightforward, yet cover many features
introduced by higher level nets and lead to the token-free nets concept defined
below.

Definition 1. Any token-free net (P, T, G; S, F, σ0) is defined by its structure
(P, T, G) and its specification (S, F, σ0), where

P is a finite non-empty set, (of places) ,
T is a finite set(of transitions), P ∩ T = ∅,
G ⊆ P× T, (influence relation).

If (p, t) ∈ G, place p is said to be a neighbor of transition t, and transition t
to be a neighbor of place p. Pair (p, t) is an edge of the net. The specification
(S, F, σ0) of a net is the triple:

Token-Free Petri Nets 509

S is a set (of (individual) values),
F : G −→ 2S ×S , (transition assignment),
σ0 : P −→ S, (initial valuation).

Any mapping σ : P −→ S assigning to place p ∈ P its value σ(p) ∈ S is called a
valuation of net N . F is a mapping which to each pair (p, t) ∈ G assigns a binary
relation in S, denoted by Ft(p) or F (p, t), and called the transition relation for
edge (p, t). Relation Ft(p) is intended to define the way of transforming the value
assigned to p by execution of t.

Token-free nets can be represented by diagrams similar to those used in the
classical net theory, with circles representing places, boxes representing transi-
tions, and edges joining places with transitions that are in the influence rela-
tion. An example of a graphical representation of net structure (P, T, G) with
P = {p, q, r, t}, T = {a, b, c, d}, G = {(p, a), (q, a), (q, c), (q, d), (r, b), (r, c), (t, c),
(t, d)}, is given in Fig. 1.

�

� �

�

a b

c

d

p

q r

t

Fig. 1. Token-free net structure

From now on, whenever the context indicates the type of a net, the adjective
“token-free” will be omitted; if necessary, original nets will be referred to as
“classical nets”.

Definition 2. Let N = (P, T, G; S, F, σ0) be a net, p ∈ P, t ∈ T . Set

Pt = {p | (p, t) ∈ G}, Tp = {t | (p, t) ∈ G}.

Say that p enables t (or that t is enabled by p) at valuation σ, if σ(p) is in the
domain of F (p, t). Let σ′, σ′′ be two valuations of N , t ∈ T be a transition of N ;
say that t transforms in N valuation σ′ into σ′′ (or that t can fire at valuation
σ′) and write σ′ t→N σ′′, if the following equivalence holds:

σ′ t→N σ′′ ⇔ (σ′(p), σ′′(p)) ∈ Ft(p), if p ∈ Pt,

σ′′(p) = σ′(p), if p �∈ Pt.

From the above equivalence it follows that σ′ t→N σ′′ implies that each p ∈ Pt

enables t at σ′. In such a case say that t is enabled at σ′. Extend relation t→N

to w→N for w ∈ T ∗ in the standard way:

σ′ w→N σ′′ ⇔ σ′ = σ′′, if w = ε,

∃σ : σ′ u→N σ
v→N σ′′, if w = uv.

510 A. Mazurkiewicz

Then

T(N) = {w | ∃σ : σ0 w→N σ}, V(N) = {σ | ∃w : σ0 w→N σ}

are called respectively the (sequential) behavior and reachability set of net N .
Elements of T(N) are called, traditionally, firing sequences of N .

Thus, execution of transition t at valuation σ results in replacing value σ′(p)
of place p with value σ′′(p) provided (σ′(p), σ′′(p)) ∈ F (p, t). From the behavior
definition it follows that a transition can be executed only if values assigned
to all its neighbor places enable it; a place valuation can be changed only if at
least one of neighbor transitions is enabled and then precisely one of them is
executed. Therefore, transition execution depends solely on values assigned to
its neighbor places; the way the value assigned to a place is transformed depends
exclusively on the transition being executed and does not depend on values of
other neighbors of the transition. It results in a strong locality of net actions.

A non-classical example of token-free nets are ‘string nets’, with strings over
alphabet Σ are individual values, or ‘language nets’, with languages over Σ as
the values. This type of nets will be discussed later on. Observe that values
assigned to different places may be of different types, e.g. values of some places
can be strings, while those of other ones can be integers. It makes possible to
deal with places with a mixed specifications. In Table 1 a comparison between
classical nets and token-free ones is presented.

Table 1. Classical and token-free nets comparison

CLASSICAL NETS TOKEN-FREE NETS

Places P P

Transitions T T

Structure relation P× T ∪ T× P P× T

Type Directed Undirected

Values Natural numbers Any domain element

Represented by Tokens —

Configurations Markings Valuations

Basic operations Successor/predecessor Any

Assigned to Arrows Edges

Preconditions Included in the structure Domains of relations

Classical place/transition nets are particular cases of token-free nets, in which
values of all places are non-negative integers, and relations are defined either by
Ft(p) = {n, n + k) | n + k ≤ c} (then pair (p, t) is represented by an arc leading

Token-Free Petri Nets 511

from t to p, or by Ft(p) = {n, n − k) | k ≤ n} (then the arc leads from p to
t). Arc of both kinds are labeled by k, the multiplicity of arcs, and with places
labeled with c, the capacity of p). As it follows from the classical net theory [4],
the behavior of such nets agrees with the definition given above. Behavior of
token-free nets will be of the primary interest through the whole paper.

Below are some examples of what we can gain by introducing token-free nets.

��

��

b
φ

p

Fig. 2. Waiting for a condition

Example 1. Let φ = {(x, x) | ρ(x)} be the transition relation assigned to the
edge (p, t) (Fig. 2). Then transition t can be executed only if value of p meets
condition ρ.

Example 2. Let numbers 1, 2, 3 ,4 represent traffic lights: 1 – green, 2 – green
&yellow, 3 – red, 4 – red; let ⊕ = {(1, 2), (2, 3), (3, 4), (4, 1)} be the transition
relation assigned to edges (p, c), (q, c) and f = {(1, 1)} be the transition relation
assigned to edges (p, a) and (q, b) (Fig. 3). Places p, q represent traffic lights for di-
rections SN and EW, respectively. Transition c corresponds to the device control-
ling lights. Transitions a and b indicates changing traffic lights. Then the scheme
in Fig. 3 models a traffic light system on crossroad with two directions: NS and
EW . The behavior of this scheme is the prefix closure of language a∗(ccb∗cca∗)∗;
a∗ represent stream of vehicles in NS direction, b∗ in EW direction. For traf-
fic direction p the sequence of light colors is 1, 2, 3, 4) (i.e. green,green&yellow,
red,red), for q it is 3, 4, 1, 2 i.e (red, red, green, green&yellow).

Example 3. In this example two different token-free nets representing well-known
“four seasons scheme” are presented. The left-hand scheme is a faithful transla-
tion of original classical scheme, with four places corresponding to four seasons

��

��

��

��

a bc
f f⊕ ⊕

p q

1 3

Fig. 3. Traffic lights token-free net

512 A. Mazurkiewicz

��

��

��

��

��

��

��

��

c

a

d b

(0, 1) (1, 0)

(1, 0) (0, 1)

(1, 0)

(0, 1)

(0, 1)

(1, 0)

1 0

0 0

��

��

a

d

b c
(2, 3)

(3, 4)

(4, 1)

(1, 2)

1

Fig. 4. Four seasons schemes

(spring, summer, fall, and winter) and four transitions terminating one season
and starting the other. In the token-free version edges are labeled with single-
ton relations (containing one pair of values each; braces around singletons are
omitted to simplify the notation). The right-hand scheme is a token-free net
with only one place which can be valuated with four numbers 1, 2, 3, and 4,
corresponding to four seasons mentioned above. Both schemes have the same
behavior, namely prefix closure of language (abcd)∗.

4 Behavior Properties

Let N = (P, T, G, S, F, σ0) be an net fixed for the rest of this section. Recall
that Tp = {t | (p, t) ∈ G} and F is a mapping assigning to each pair (p, t) ∈ G a
transition relation in S× S. Extend F to F ∗ : P× T ∗ −→ 2S×S defining F ∗ for
each p ∈ P , w ∈ T ∗ as follows:

(s′, s′′) ∈ F ∗(p, w) ⇔ s′ = s′′, if w = ε,
(s′, s′′) ∈ F (p, t), if (p, t) ∈ G,
∃s : (s′, s) ∈ F ∗(p, u′) ∧

(s, s′′) ∈ F ∗(p, u′′), if w = u′u′′.

Lemma 1. Let πp : T ∗ −→ T ∗
p be the projection, σ′, σ′′ be valuations. Then

σ′ w→N σ′′ ⇔ ∀p ∈ P : (σ′(p), σ′′(p)) ∈ F ∗(p, πp(w)).

Proof. If w = ε, equivalence σ′ ε→N σ′′ ⇔ ∀p ∈ P : (σ′(p), σ′′(p)) ∈ F ∗(p, πp(ε))
is obvious. If w = t ∈ T , the above equivalence is reduced to

σ′ t→N σ′′ ⇔ ∀p ∈ P : p ∈ Pt ∧ (σ′(p), σ′′(p)) ∈ F (p, t) ∨
p �∈ Pt ∧ σ′(p) = σ′′(p),

which follows directly from the definition of transition. If w = u′u′′, the equiv-

alence σ′ u′u′′
−→N σ′′ ⇔ ∀p ∈ P : (σ′(p), σ′′(p)) ∈ F ∗(p, πp(u′u′′)) follows by

induction from the extension definition and from properties of projections. ��

Token-Free Petri Nets 513

Corollary 1. For any net N with set of places P :

w ∈ T(N) ⇔ ∀p ∈ P : πp(w) ∈ πp(T(N)).

Call set Lp(N) = {w | (σ0(p), σ(p)) ∈ F ∗(p, πp(w))} the local behavior of N .
From Lemma 1 it follows that Lp(N) = πp(T(N)) for all p ∈ P .

Let N = (P, T, G, S, F, σ0) be a net, let Lp ⊆ T ∗
p for each p ∈ P . By the

composition of languages Lp we understand the language

&
p ∈ P

Lp = {w ∈ T ∗ |
∧

p∈P

(πp(w) ∈ Lp)}.

Proposition 1 follows directly from the above definition.

Proposition 1. The behavior of any net is the composition of all its local
behaviors.

Definition 3. Let N = (P, T, G; S, F, σ0) be a token-free net, Tp = {t | (p, t) ∈
G}, πp : T ∗ −→ T ∗

p be projection. Strings w′, w′′ ∈ T ∗ are said to be Shields’
equivalent, if ∀p : πp(w′) = πp(w′′). Shields’ equivalence, as depending on net N ,
is denoted by ≡N ; however, if the net is known, the subscript N will be omitted.
Two languages L′, L′′ are Shields’ equivalent, if ∀ ∈ P : πp(L′) = πp(L′′). The
Shields’ closure 〈L〉 of language L is the prefix closure of the set {w | ∃u ∈ L :
w ≡ u}. A language L ⊆ T ∗ is Shields’ closed, if L = 〈L〉.

Intuitively speaking, Shields’ equivalence of strings (or languages) means that
they look like identical from each local point of view of the net.

Lemma 2. Let (P, T, G; S, F, σ0) be a token-free net, L ⊆ T ∗, w ∈ T ∗. Then
w ∈ 〈L〉 ⇔ ∀p ∈ P : πp(w) ∈ πp(L).

Proof. w ∈ 〈L〉 implies ∃u : w ≡ u ∈ L which in turn implies πp(w) = πp(u) ∈
πp(L) for all p ∈ P . Conversely, ∀p ∈ P : πp(w) ∈ πp(L) implies ∃u ∈ L : ∀p ∈
P : πp(w) ∈ πp(u) which in turn implies w ∈ 〈L〉. ��

Theorem 1. The behavior of any token-free net is Shields’ closed.

Proof. Let M be the behavior of net N . Prefix closedness of M follows directly
from definition. To prove that M is Shields’ closed, let w ∈ M and u ≡ w.
Since w ∈ M , there is σ such that σ0 w→N σ. Then, by Lemma 1, ∀p ∈ P :
(σ0(p), σ(p)) ∈ F ∗(p, πp(w)). Since w ≡ u, πp(w) ⇔ πp(u), we have also ∀p ∈
P : (σ0(p), σ(p)) ∈ F ∗(p, πp(u)). It means σ0 u→N σ, i.e. u ∈ M . ��

Language L ⊆ T ∗ is linear, if ∀u, v ∈ L ⇒ v ≤ u ∨ u ≤ v (recall that u ≤ v
means u is a prefix of v). Shields’ closure of any linear subset of T(N) is called
a (single) run of net N .

Proposition 2. Let N = (P, T, G; S, F, σ0) be a token-free net, Tp = {t | (p, t) ∈
G}, πp : T ∗ −→ T ∗

p be projection, R be a run of a net. Then πp(R) is linear for
any p ∈ P .

514 A. Mazurkiewicz

Proof. It follows directly from the monotonicity of projections: u ≤ v ⇒ πp(u) ≤
πp(v) for all u, v ∈ T ∗, p ∈ P . ��

Proposition 3. With denotations of the previous proposition, let R = T(N)
and let πp(R) be linear for all p ∈ P . Then R is a (single) run of N .

Proof. To prove the proposition, let L be maximal linear subset of R; then
∀p ∈ P : πp(L) = πp(R), since otherwise either L would be not maximal, or
πp(R) would be not linear for some p ∈ P ; hence R = 〈L〉. ��

5 Composition Properties

Token-free nets enjoy a composition property similar to that which holds for
classical Petri nets [2].

Definition 4. Let Ni = (Pi, Ti, Gi; Si, Fi) be token-free nets, for each i =
1, 2, . . . , n such that Pi ∩ Pj = ∅ = Pi ∩ Tj for all i �= j. Then the system

(
n⋃

i=1

Pi,
n⋃

i=1

Ti,
n⋃

i=1

Gi;
n⋃

i=1

Si, F, σ0)

such that σ0(p) = σ0
i (p), F (p, t) = Fi(p, t) for each p ∈ Pi, i = 1, 2, . . . , n and

t ∈
⋃n

i=1 Ti, is a token-free net, called the composition of nets Ni and denoted
by

⋃n
i=1 Ni.

Observe that due to assumed disjointness of Pi the above definition is correct.
Sets Ti need not be disjoint; actually, transitions common to a number of compo-
sition components establish the only link binding them. The following theorem
expresses the main composition property of nets, similar to that valid for classical
ones (see e.g. [1,2]).

Theorem 2. Let Ni = (Pi, Ti, Gi; Si, Fi) be token-free nets, (i = 1, 2, . . . , n),
such that Pi ∩ Pj = ∅ = Pi ∩ Tj for all i �= j. Then

T (
n⋃

i=1

Ni) =
n

&
i=1

T(Ni).

Proof. Denote
⋃n

i=1 Ni by N and similarly
⋃n

i=1 Pi,
⋃n

i=1 Ti,
⋃n

i=1 Gi by P, T, G,
respectively. Let πi : T ∗ −→ T ∗

i be the projection mapping. We have to prove
that

w ∈ T(N) ⇔ ∀i : πi(w) ∈ T(Ni).

By Lemma 1 ∀i : πi(w) ∈ T(Ni) ⇔ ∀i : ∀p ∈ Pi : πp(πi(w)) ∈ πp(T(Ni)). Since
Pi are pairwise disjoint and P = P1 ∪ · · · ∪ Pn, by definition of N we have

∀i : ∀p ∈ Pi : πp(πi(w)) ∈ πp(T(Ni)) ⇔ ∀p ∈ P : πp(w) ∈ πp(T(N))

and again by Lemma 1 ∀p ∈ P : πp(w) ∈ πp(T(N)) ⇔ w ∈ T(N). That is,
∀i : πi(w) ∈ T(Ni) ⇔ w ∈ T(N). It ends the proof. ��

Token-Free Petri Nets 515

It is worthwhile to note that the composition property holds in effect of a strong
locality of transitions executions that make possible changing a place value inde-
pendently of values assigned to other places. Extreme form of nets composition
(or decomposition) is the following.

Definition 5. By an automaton we understand here any ordered quadruple
A = (S, Σ, δ, s0) such that S is a set (of states of A), Σ is a finite set (of symbols
of A), δ : Σ −→ 2S×S is the transition relation of A, and s0 ∈ S is the initial
state of A. Automaton A is finite, if set S is finite. Let δ∗ : Σ∗ −→ 2S×S be an
extension of δ defined recursively for all strings in Σ∗:

(s′, s′′) ∈ δ∗(ε) ⇔ s′ = s′′,
(s′, s′′) ∈ δ∗(wt) ⇔ ∃s : (s′, s) ∈ δ∗(w) ∧ (s, s′′) ∈ δ(t).

The set L(A) = {w | ∃s : (s0, s) ∈ δ∗} is the language accepted by automaton A
and string w ∈ Σ∗ is said to be accepted by automaton A, if w ∈ L(A).

Let N = (P, T, G; S, F, σ0) be a token-free net. To each place p ∈ P assign finite
automaton Ap defined by equality Ap = (Sp, Σp, δp, s

0
p), where Sp = S, Σp =

Tp, δp(t) = Fp(t), and s0
p = σ0(p), called the local automaton of N . Conversely,

given a finite family of local automata Ai = (Si, Σi, Fi, s
0
i), i ∈ I, with δi(t) ⊆

Si× Si for each t ∈ Ti and s0
i ∈ Si, their composition &i∈IAi can be defined

as net (I, T, G; S, F, σ0), such that T =
⋃

i∈I Σi, G = {(i, t) | i ∈ I, t ∈ Σi},
S =

⋃
i∈I Si, and σ0(i) = s0

i for all i ∈ I.

Corollary 2. Any token-free net is the composition of its local automata.

Proof. It is a simple consequence of the Theorem 2. ��

The following theorem says that any net can be reduced to a single automaton.

Theorem 3. Any token-free net is equivalent to a single automaton.

Proof. Let N = (PN , TN , GN ; SN , FN , σ0
N) be a token-free net, AN =

(SA, ΣA, δA, s0
A) be an automaton defined by the following equalities

SA = {σ | σ : PN −→ SN};
ΣA = TN ;
δA(t) = {(σ′, σ′′) | σ′ t→N σ′′};
s0

A = σ0
N .

Then T(N) = L(AN). Indeed (σ′, σ′′) ∈ δA(t) ⇔ σ′ t→N σ′′
1 ; from here by an

easy induction, we get (σ′, σ′′) ∈ δA(w) ⇔ σ′ w→N σ′′
1 for all w ∈ T ∗

N , and, in
consequence, T(N) = L(AN). ��

516 A. Mazurkiewicz

6 Canonical Representation

Token-free nets offer much of freedom in choosing valuations of places suitable
for a variety of intended models. However, if behavior of nets defined by transi-
tion sequences is of primary interest, one can chose a specific valuation making
possible to represent behavior of an arbitrary net. In other words, if such a spec-
ification exists, it is sufficient to express all nets possibilities. In this section we
shall give such a specification. Recall that L/u = {w | uw ∈ L} for any string u
and language L (the left quotient of L by u).

Definition 6. Token-free net N = (P, T, G; S, F, σ0) is canonical, if there exists
non-empty language M0 ⊆ T ∗ such that for all p ∈ P, t ∈ T

S = 2T ∗
,

F (p, t) = {(X, Y) | X, Y ⊆ T ∗, ∅ �= Y = X/t},
σ0(p) = πp(M0).

Canonical net (P, T, G; S, F, σ0) is then fully determined by its structure (P, T, F)
and language M0; such a net will be denoted by (P, T, G; M0) and said to be
initialized with M0.

From this definition it follows that in canonical net transition t is enabled at
valuation σ if and only if languages assigned (by σ) to all places influenced by t
contain some strings beginning with t.

Lemma 3. For any prefix closed language L and string w, L/w �= ∅ ⇔ w ∈ L.

Proof. Let L be prefix closed. If L/w �= ∅, then there is u s.t. wu ∈ L; since L is
prefix closed, w ∈ L. Conversely, if w ∈ L, then {ε} ⊆ L/w = �= ∅. ��

Theorem 4. For any canonical net C initialized with M0: T(C) = 〈M0〉.

Proof. By the definition of the behavior it follows w ∈ T(C) ⇔ ∃σ : σ0 w→
σ. In case of canonical net it means w ∈ T(C) ⇔ ∃M �= ∅ : M0 w→ M .
By the definition of canonical nets and Lemma 1 M0

w→ M ⇔ ∀p ∈ P :
(πp(M0), πp(M)) ∈ F ∗(p, πp(w)). From definition of canonical nets the right-
hand side of this equivalence means πp(M) = πp(M0)/πp(w). Since M is non-
empty, ∀p ∈ P : πp(M0)/πp(w) �= ∅. by Lemma 3 the last condition holds if and
only if ∀p ∈ P : πp(w) ∈ πp(M0); by Lemma 2 it holds if and only if w ∈ 〈M0〉.
It ends the proof. ��

Example 4. Consider nets represented graphically in Fig. 5, a classical net (a)
with the prefixes of string adcbacd in its behavior and its canonical version (b)
with initial valuation σ0 shown in the first row of Table 2 such that σ0(p) = wp =
πp(adcbacd)) for p = 1, 2, 3, 4, 5 (the braces around singletons are omitted).

The effect of execution of sequence adcbacd is shown in Table 2 below; columns
correspond to places of the net, each row displays valuation of the net after

Token-Free Petri Nets 517

��

��

��

��

��

��

��

��

��

��

•d c

b

a

�

�

�

�

�

�

� �

� �

1 2

3 4

5
(a)

��

��

��

��

��

��

��

��

��

��

w3

w1 w2

w4

w5d c

b

a
1 2

3 4

5
(b)

Fig. 5. Classical net (a) and token-free canonical net (b)

Table 2. Behavior of a canonical net

i 1 2 3 4 5

wi adad acac dbd cbc aba

a dad cac dbd cbc ba
d ad cac bd cbc ba
c ad ac bd bc ba
b ad ac d c a
a d c d c
c d d
d

execution of transition given in the leftmost column. Observe that the order of
transition execution is defined by their enabling conditions that replace classical
arrows.

Let Ni = (Pi, Ti, Gi; Si, Fi, σ
0
i), (i = 1, 2) be token-free nets. Say that N1, N2

are equivalent, if T(N1) = T(N2), and strongly equivalent, if they are equivalent
and, moreover, their structures are identical: (P1, T1, G1) = (P2, T2, G2). The
following theorem gives a possibility of proving behavior properties of nets by
proving them for canonical nets exclusively.

Theorem 5. Any token-free net is strongly equivalent to a canonical net.

Proof. Let N = (P, T, G; S, F, σ0) be a token-free net. Then, by Theorem 4, the
behavior T(C) of canonical net C = (P, T, G;T(N)) is equal to 〈T(N)〉. Since
by Theorem 1 the behavior T(N) is Shields’ closed, T(C) = T(N). Nets N and
C have the same structure, hence they are strongly equivalent. ��

7 Specification Adjusting

In Sect. 5 operations on token-free nets that preserve their behaviors were con-
sidered; in the present section the inverse question is addressed, namely how to

518 A. Mazurkiewicz

modify a net specification for achieving an assumed behavior. In other words, the
question is what kind of behaviors can be attained by modifying the specification
of a net, keeping its structure unchanged. The motivation for such a question
is how to avoid unfavorable situations in nets, as e.g. deadlocks or livelocks, by
modifying their specifications. Say that net N is adjustable to language R, if
there exists a net with the same structure as N and with behavior R.

Theorem 6. Any token-free net with set T of transitions is adjustable to any
Shields’ closed subset of T ∗.

Proof. It is an immediate consequence of Theorem 4, initializing with R a canon-
ical net with the same structure as N ; since R is Shields’ closed, 〈R〉 = R. ��

Corollary 3. Any token-free net with T as the set of transitions is adjustable
to T ∗; any net is adjustable to {ε}.

In between of these two extremities there is a broad variety of nets with all
possible behaviors, up to Shields’ equivalence. The question is, and in fact it
was a motivation of this work, does there exist a net specification eliminating
from its behavior all terminated strings and preserving all extendable ones (a
string in a language is extendable, if it is a proper prefix of another string in this
language, and is terminated, if otherwise). In general, such a specification does
not exist, as it is shown in Example 5.

Example 5. Consider net N given in Fig. 6 specified with classical symbols. Its
behavior is the language 〈(a(bfek ∪ dhcg))∗a(bfcg ∪ ekdh)〉. Projection of this
language on Tp and Tq are respectively (a(b∪d))∗ and (a(c∪e))∗. Thus, Shields’
closure of the behavior would contain strings from 〈a(b ∪ d)(c ∪ e)〉; if we want
to have 〈a(be ∪ dc)〉, we must accept in the behavior string 〈a(bc ∪ de)〉 as well,
which leads to a deadlock. Informally, free decisions made in separate places
cannot be coordinated. In this case the set of all extendable strings of T(N) is
not Shields’ closed.

However, one can easily adjust this net to perform alternate executions:
〈(abefkadhcg)∗〉, enabling execution of each transition. This can be made by

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

3 41

5 62

•

•

a

b c

d e

f g

h k

� �
�

�

� �

� �

� �

� �

� �

� �

� �

� �

p q

Fig. 6. Net with deadlock

Token-Free Petri Nets 519

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

3 41

5 62

•

•

a

b c

d e

f g

h k

� �
�

�

� �

� �

� �

� �

� �

� �

p q

φ

φψ

ψ

Fig. 7. Adjusted net

replacing classical arrows leading from places p and q with “token-free edges”
and assigning to them singleton relations φ = (1, 2) and ψ = (3, 0), as shown in
Fig. 7.

8 Conclusions

In the paper a generalization of Petri Nets, a broadly known formal tool for
concurrent systems description, is proposed. The great impact of the Petri Nets
theory on the whole concurrency theory is due to a proper choice of description
primitives and their mutual interplay. These primitives are places, transitions,
and the way transitions executions transform contents of their neighbor places.
Using these notions one can describe basic phenomena of concurrency, as inde-
pendency, conflict, process, cooperation, and many others. However, in classical
net theory there are notions that seem to be of secondary importance, or even
debatable, hence stimulating different proposals of net modifications. These are
notions of flow direction, tokens, marking, capacities, and others. In Sect. 3, to
separate relevant notions from irrelevant ones, and at the same time to simplify
net description, the token-free nets have been introduced, with simplified struc-
ture and arbitrary, hence flexible, specification. First, it has been shown that
this modification does not cause substantial changes in the behavior description
(Sect. 4). It turns out that due to a strong locality of transformations (inherited
from classical nets), the proposed modification does not destroy the composition
property. Moreover, it is shown in Sect. 5 that token-free nets can be viewed as
a composition of classical automata. On the other hand, it is also shown that
any token-free net is equivalent (from the point of view of behavior) to a single
place net, i.e. to an automaton, at the cost of possible lost of independency of
transitions. While in the first part of the paper the behavior of different nets
with various specifications were discussed, in the last part of it the nets with a
fixed structure, but various specifications are considered. First, a canonical spec-
ification of token-free nets has been defined. It has been proved that canonical
specification enjoys a universal property: any token-free net with an arbitrary
specification can be simulated by a canonical net with the same behavior and the

520 A. Mazurkiewicz

same structure, but with a canonical specification. The last question discussed
in the paper is a possibility of specification adjustment for eliminating some un-
favorable behaviors (e.g. those leading to a deadlock valuation). A necessary and
sufficient condition for a behavior definable be a suitably chosen specification is
formulated and proved.

To sum up, we started with relaxing limitations concerning classical nets,
as tokens (natural numbers), fixed flow direction, and limited ways of mark-
ing transformations; it turned out that it suffices to generalize classical nets to
canonical token-free nets, with formal languages replacing tokens, and with con-
tinuation operations on languages as basic operations. There is still a quest for a
satisfactory concurrency notion; the sufficient condition for concurrency of some
actions is independency of their resources (as e.g. formulated in [2,5]), but it is
not a necessary condition: any net can be replaced by one-place net with the
same behavior, hence a net without separate resources.

References

1. Diekert, V., Rozenberg, G.: Book of Traces. World Scientific Pub. Co, Singapore
(1995)

2. Mazurkiewicz, A.: Semantics of Concurrent Systems: A Modular Fixed Point Trace
Approach, Instituut voor Toegepaste Wiskunde en Informatica, Rijksuniversiteit
Leiden, TR-84-19 (1984)

3. Petri, C.A.: Concepts of Net Theory. In: Proc. of MFCS 1973, High Tatras, Math.
Institute of Slovak Academy of Sciences, pp. 137–146 (1973)

4. Reisig, W.: Petri Nets. In: EATCS Monographs on Theoretical Computer Science,
Springer, Heidelberg (1985)

5. Shields, M.W.: Non-sequential behaviour, part I. Int. Report CSR-120-82, Dept. of
Computer Science, University of Edinburgh (1979)

Proof Search Tree and Cut Elimination

Grigori Mints

Stanford University, Stanford CA 94305, USA
mints@csli.stanford.edu

This paper is dedicated to B. Trakhtenbrot whose influence and support I felt
for many years.

Abstract. A new cut elimination method is obtained here by “proof
mining” (unwinding) from the following non-effective proof that begins
with extracting an infinite branch B when the canonical search tree T
for a given formula E of first order logic is not finite. The branch B
determines a semivaluation so that B |= Ē and (*) every semivaluation
can be extended to a total valuation. Since for every derivation d of E
and every model M, M |= E, this provides a contradiction showing
that T is finite, ∃l(T < l). A primitive recursive function L(d) such that
T < L(d) is obtained using instead of (*) the statement: For every r, if
the canonical search tree T r+1 with cuts of complexity r + 1 is finite,
then T r is finite.

In our proof the reduction of (r+1)-cuts does not introduce new r-cuts
but preserves only one of the branches.

1 Introduction

Normalization of derivations by eliminating the cut rule

Γ → C C, Γ ⇒ A

Γ ⇒ A
cut

is one of the main tools of proof theory. Continuing work done in [4] we obtain
a new cut elimination method by “proof mining” (unwinding) from a familiar
non-effective proof consisting of four parts.

1. If the canonical search tree without cut T for a given formula E of first order
logic is not finite, then there exists an infinite branch B of T .

2. The branch B determines a semivaluation (partial model for subformulas of
E) so that B |= Ē.

3. Every semivaluation can be extended to a total valuation (model).
4. For every derivation d of E and every model M, M |= E.

This is a contradiction showing that T is finite, ∃l(T < l). A primitive recursive
function L(d) such that T < L(d) is obtained in the present paper after replacing
the statement 3 by

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 521–536, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

522 G. Mints

(3’) For every r, if the canonical search tree T r+1 with cuts of rank r + 1 is
finite, then T r is finite.

By rank we mean the maximal depth of logic connectives in a formula:

rk(A&B) = rk(A ∨ B) = max{rk(A), rk(B)} + 1; rk(QxA) = rk(A) + 1

rk(A) = 0 for atomic A.
We consider formulas in the negative normal form, that is with negations

pushed down to atomic formulas. Our proof of (3’) provides a reduction of (r+1)-
cuts that (unlike familiar Gentzen’s reduction) does not introduce new r-cuts
but preserves only one of the branches, depending however of the truth-values
of subformulas in the “current” node of the tree T r. This node is changed in the
course of reduction.

To save notation we assume that the endformula of an original derivation d
is a Σ0

1 sentence of first order logic,

E = ∃xM(x), x := x1, . . . xp,

with a quantifier free M , but given derivation d as well as proof search trees may
contain formulas of an arbitrary complexity.

T r is a canonical proof search tree for E with cuts over formulas of rank ≤ r
beginning with a quantifier. In particular

T := T 0 is a proof search tree with ∃ rules instantiated by terms in H (the
Herbrand universe for E) and cuts over all atomic formulas with terms in
H . We wish to prove:

If d is a derivation of E, then T < l for some l.
It is assumed that the eigenvariables for the ∀ inference (that can occur for

r > 0) in a proof search tree is uniquely determined by the formula introduced
by the rule. In this way the eigenvariables in T r for different r but the same
principal formula are the same.

The step 3 in the non-effective proof of cut-elimination consists in an extension
of a semivaluation to all formulas of complexity r and hence to a total valuation.
This is proved by induction on the rank r of the semivaluation with a trivial base
r = 0 and the induction step:

∃fSem(f, r) → ∃fSem(f, r + 1) (1.1)

where Sem(f, r) means that f is a semivaluation defined for all formulas of
complexity r.

As noticed in [2], given derivation d : E with cuts of rank R provides a bound
l such that T R < l: this l is a level in T R where all rules present in d had been
already applied. In particular for R = 0 any derivation with only atomic cuts
provides a bound for T .

As G.Kreisel pointed out [1], semivaluations are closely related to infinite
branches of the proof search tree. By König’s Lemma,

∃fSem(f, r) ⇐⇒ T r is infinite,

Proof Search Tree and Cut Elimination 523

therefore (1.1) can be converted into the implication

∃l(T r+1 < l) → ∃l(T r < l) (1.2)

of Σ0
1 -formulas. A familiar proof of this implication consists of converting it back

to (1.1) and using arithmetical comprehension.
There are (at least) two ways of replacing this with a primitive recursive proof

of (1.2). One way is to note that a standard Gentzen-style cut reduction applied
to all cuts of complexity r + 1 in T r+1 leads to a derivation d of complexity r
that provides a simple bound for T r.

This argument led to the algorithm for bounding T discussed in [4] : eliminate
all non-atomic cuts, then restrict T as above, completely bypassing (1.1).

Our present method relies on a non-effective proof of (1.2) which is closer
to extension of a semivaluation f of complexity r to a semivaluation, say g of
complexity r+1. If T r+1, or any other derivation d : E of complexity r+1 is finite,
and g is given, assumption g(E) = ⊥ leads to a contradiction by computing the
truth values of all formulas and sequent S in T r+1 and proving g(S) =
. The
values of g for the formulas of complexity ≤ r with parameters from T r are the
same as the given values of f .

Instead of using comprehension to determine the values under g of remaining
formulas (of complexity r + 1), consider which of these values are needed at the
beginning under the “depth first” strategy: in the uppermost leftmost r + 1-cut
try to compute the left hand side premise ∃xA(x) first:

Δ, A(ti)
Δ, ∃xA(x)

...
Γ, ∃xA(x)

...b
Γ, Ā(b)

Γ, ∀xĀ(x)
∀

Γ, E (1.3)

The values f(A(ti)) are all defined, and it is possible to act as if

g(∃xA(x)) = max
i

f(A(ti))

for all A(ti) in a given derivation. This allows to prune the cut (1.3) retaining
only one of the premises depending on this value of g(∃xA(x)). At the end, all
r + 1-cuts are removed and (1.2) is established.

We present a non-effective proof of (1.2) modified in this way for the case
r = 0 in Section 3. The same proof works for arbitrary r and by conservative-
ness of Konig’s Lemma over primitive recursive arithmetic PRA its unwinding
provides a primitive recursive cut elimination algorithm (as pointed out by U.
Kohlenbach). Section 4 presents our unwinding leading to a new cut elimination
procedure for first order logic described in Section 5. Exposition in Section 5 is
independent from the rest of the paper.

Discussions with G. Kreisel, S. Feferman and especially U. Kohlenbach helped
to clarify the goal of this work and the statements of results and proofs.

524 G. Mints

2 Preliminaries

2.1 Tree Notation

Let’s recall some notation concerning finite sequences of natural numbers. We
use a, b, c as variables for binary finite sequences

a =< a0, . . . , an > where ai ∈ {0, 1}, lth(a) := n + 1, (a)i := ai.
Concatenation ∗:
< a0, . . . , an > ∗ < b0, . . . , bm >:=< a0, . . . , an, b0, . . . , bm >.
<> is the empty sequence with lth(<>) = 0. a ⊆ b : ⇐⇒ ∃cb = a ∗ c;
a < b iff a lexicographically strictly precedes b, that is situated strictly to the

left in the tree of all finite sequences:
a ⊂ b or for some j < lth(a), (a)i = (b)i for all i < j, and (a)j < (b)j .
Consider a primitive recursive tree T of binary sequences with the root <>:

b ∈ T &a ⊆ b → a ∈ T ; a ∈ T → (∀i < lth(a))(a)i ≤ 1

Ta is the subtree of T with the root a: {b ∈ T : a ⊆ b}.
In fact we use labeled trees. T (a) = 0 means a /∈ T , while T (a) �= 0 means

that a ∈ T and contains some additional information. A node a ∈ T is a leaf if
b ⊃ a implies b �∈ T . In this case all branches of T through a are closed.

T < l := (∀a : lth(a) = l)(a /∈ T); T > l := (∃a : lth(a) = l + 1)(a ∈ T)

and similar bounded formulas with replacement of <, > by ≤, ≥.

2.2 Tait Calculus; Canonical Proof Trees

We consider first order formulas in positive normal form (negations only at
atomic formulas). Negation Ā of a formula A is defined in a standard way by
de-Morgan rules. Derivable objects are sequents, that is multisets of formulas.

Axioms: A, Ā, Γ
Inference Rules:

A, Γ B, Γ

A&B, Γ
&

A, B, Γ

A ∨ B, Γ
∨

M(t), ∃xB(x), Γ
∃xB(x), Γ ∃

B(a), Γ
∀xB(x), Γ ∀ C, Γ C̄, Γ

Γ
cut

The eigenvariable a in ∀ inference should be fresh. The term t in the rule ∃ is
called the term of that rule.

Definition 1. The Herbrand Universe H of a Σ0
1 -formula E consists of all

terms generated from constants and free variables occurring in M by function
symbols occurring in M . If the initial supply is empty, add a new constant.

For a given formula E = ∃x1 . . . xpM list all p-tuples of terms of the Herbrand
universe H in a sequence

t1, . . . , ti, . . . (2.1)

Proof Search Tree and Cut Elimination 525

We assume also some Godel enumeration Gn(A) of all terms and formulas A.
The canonical proof search tree T for a sentence E = ∃xM(x) is constructed by
bottom-up application of the rules &, ∨ (first) and ∃ and atomic cut when &, ∨
are not applicable.

T assigns sequents to nodes a of the tree of finite binary sequences. To express
a �∈ T (when a is situated over an axiom or the second premise of a one-premise
inference rule) we write T (a) = 0.

T (<>) contains sequent E. If T (a) is already constructed and is not an axiom
(:=closed ‘ node or branch), then it is extended preserving all existing formulas.
Principal formulas of the propositional rules are preserved (for bookkeeping). If
all branches of T are closed, then the whole tree is closed.

The following fairness conditions are assumed. There exists a primitive recur-
sive function L0 such that for each a ∈ T and every non-closed b ⊇ a, b ∈ T
with lth(b) ≥ lth(a) + L0(a)

1. If C&D ∈ T (a) then C ∈ T (b) or D ∈ T (b),
2. If C ∨ D ∈ T (a) then C ∈ T (b) and D ∈ T (b),
3. B(ti) ∈ T (b) for every i ≤ lth(a),
4. For every atomic formula A over H with Gn(A) < lth(a) either A ∈ T (b) or

Ā ∈ T (b).

For r > 0 let Hr be the Herbrand universe for T r generated by the functions
(including constants) in E from the eigenvariables (chosen in a standard way as
above) for all ∀-formulas of rank ≤ r.

We say that a formula A agrees with a node a ∈ T r if A contains free only
eigenvariables of the ∀ rules situated under a.

The canonical proof search tree T r of complexity r > 0 is defined similarly to
T , but now cuts are applied to atomic formulas and formulas of complexity ≤ r
beginning with quantifier that agree with a given node.

The following fairness conditions are assumed. There exists a primitive recur-
sive function Lr such that for each a ∈ T r and every non-closed b ⊇ a, b ∈ T r

with lth(b) ≥ lth(a) + Lr(a)

1. If C&D ∈ T (a) then C ∈ T (b) or D ∈ T (b),
2. If C ∨ D ∈ T (a) then C ∈ T (b) and D ∈ T (b),
3. If ∃yC(y) ∈ T (a), then C(t) ∈ T (b) for every term t with Gn(t) ≤ lth(a),
4. If ∀yC(y) ∈ T (a), then C(t) ∈ T (b) for some term t,
5. For every every formula A over Hr with Gn(A) < lth(a) that agrees with a

and is atomic or begins with a quantifier, either A ∈ T (b) or Ā ∈ T (b).

3 Cuts of Rank 1: Modified Non-effective Proof

Let us modify the proof of (1.2) for r = 0 restated as follows:

Lemma 1. T is infinite ⇒ T 1 is infinite.

526 G. Mints

Proof. Suppose T is infinite. Then every non-closed branch B of T (existing by
Koenig’s Lemma) is a countermodel for E: B |= Ē.

Write B |=+ A (A is decided by B) to express that A is propositionally implied
by the values of formulas present in the branch B: there are A1, . . . Ak ∈ T (b)
for some b ∈ B such that Ā1& . . . &Āk → A is a tautology. Note that for every
quantifier free formula A with parameters in H (the Herbrand universe of E).

B |=+ A or B |=+ Ā,

since all atomic formulas in A are decided by cuts in every branch of T .
Consider a new inference rule:

B |=+ A Ā, Γ

Γ
B-cut

for a quantifier free A with all terms in the Herbrand universe H .
Define extended derivations as ones using B-cut and cuts of rank 1 in addition

to ordinary cut free rules.
Assume there exists an extended derivation d of E and prove B |= E using

induction on the number of cuts in d. This implies T is finite by contradiction
with B �|= E.

Induction base. No cuts. Induction on d using the fact that B is defined for
all needed subformulas.

Induction step.

1. For some ∃ inference in (1.3) one has B |=+ A(ti). Replace (1.3) by the rule

B |=+ A(ti)

...ti
Ā(ti), Δ

Δ
B-cut

where the right hand side premise is obtained by substitution of ti for b. Now
apply IH.

2. For some particular cut in (1.3) and for all ∃ inferences as above B |= Ā(ti).
Replace the cut (1.3) by its left branch, erasing all formulas ∃xA traceable to
this cut and replacing corresponding ∃ inference by a B-cut with the premise
B |= Ā(ti). Now IH is applicable.

Let us assume the only free variables of the terms ti are the eigenvariables of the
∀ inferences situated below. Then if the case 1 does not obtain, the situation in
the case 2 always occurs for one of the cuts (1.3), namely for the uppermost cut
in the leftmost (with respect to r + 1-cuts) branch. Indeed, r + 1-eigenvariables
do not occur in the conclusions of ∃ rules in that branch. This concludes the
proof. ��

4 Reduction of Rank

We present a combinatorial proof of (1.2) obtained by “unwinding” the proof
for complexity 1 in the previous subsection.

Proof Search Tree and Cut Elimination 527

We use finite objects similar to B-derivations. For a node a ∈ T r consider a
rule

A ∈ T r(a) A, Γ

Γ
a-cut

for a formula A agreeing with a and use a-derivations using this rule. For com-
parison with B-cut recall that B |= Ā for A ∈ T (a), a ∈ B.

Assume also that every free variable of the term t in ∃ rule either occurs
free in the conclusion or is an eigenvariable of a rule occurring below. This
can be achieved by replacing redundant free variables by a constant 0. (Recall
however remarks by G. Kreisel on essential use of such “redundant” variables in
unwinding of mathematical proofs).

4.1 A Bound for T r

Eliminating r + 1-Cuts Till the end of the subsection 4.1

d : Γ, E

denotes an a-derivation of complexity r + 1, with Γ agreeing with a, complexity
of Γ ≤ r, a ∈ T r with eigenvariables for ∀-formulas of the complexity ≤ r chosen
in a standard way.

At the beginning d = T r, at the end all r + 1-cuts are replaced by a-rules for
a suitable a that changes in the process.

Definition 2. A formula A is decided by a if A ∈ T (a) (i.e. A is explicitly false
in a) or Ā ∈ T (a) (i.e. A is explicitly true in a).

Consider an r + 1-cut in d:

Δ, ∃xA(x) Δ, ∀xĀ(x)
Δ, E

cut (4.1)

Such a cut is leftmost, if there are no ∀-premises of r + 1-cuts below it, that is
it is in the left branch of every r + 1-cut situated below. Choose a leftmost cut
(4.1) such that there are no r + 1-cuts above it. List all side formulas of ∃ rules
traceable to the formula ∃xA(x).

A(t1), . . . , A(tm) (4.2)

Note that the terms ti do not contain eigenvariables of the ∀ rules of complexity
r + 1, so ti ∈ Hr.

Lemma 2. Let a ∈ T r, d : Γ, E be a-derivation, and all formulas A(ti) in (4.2)
be decided by a.

Then the cut (4.1) can be replaced by a-cuts, leading to a new a-derivation of
Γ, E.

528 G. Mints

Proof. Consider possible cases.

1. At least one of the side formulas A(ti) is “true” in a: Ā(ti) ∈ T (a). Then we
can replace (4.1) by a-cuts. Delete the left branch, replace all formulas trace-
able to ∀xĀ(x) by Ā(ti) and substitute the eigenvariable of rules introducing
∀xĀ(x) by ti. Both (4.1) and all such ∀ rules become a-cuts:

Ā(ti) ∈ T r(a) Ā(ti), Σ
Σ (4.3)

2. All side formulas A(ti) are “false” in a: A(ti) ∈ T r(a). Then the formula
∃xA is redundant. Delete the right branch of the cut (4.1). From the left
branch delete all formulas traceable to ∃xA(x). Then ∃ rules introducing
this formula become a-cuts:

A(ti) ∈ T r(a) A(ti), Σ
Σ (4.4)

��

We say that the transformation in Lemma 2 reduces d to a new derivation.
We show that d can be (primitive recursively in all parameters) reduced to
derivations without (r + 1)-cuts by climbing up T r.

Lemma 3. Let a ∈ T r, d : Γ, E be a-derivation. Then there exists a level l ≥
lth(a) such that every node b ⊃ a, b ∈ T r decides all formulas in (4.2).

Proof. Formulas A(ti) contain only eigenvariables of the rules of complexity ≤ r,
hence they contain only terms in Hr. Using the fairness function Lr find a level
l ≥ lth(a) such that all these formulas appear (possibly negated) by the level
l. ��

For a ∈ T r let Lprop(a) be the first level ≥ lth(a) of T r saturated with respect
to propositional rules appled to all formulas in T r(a).

Lemma 4. Let a ∈ T r, d : Γ be an a-derivation, Γ ⊇ T r(a) and let d consist
of a-cuts and propositional rules. Then

T r
a < Lprop(a)

that is the restriction of T r
a to this level is a derivation.

Proof. Let A1, . . . , An be all a-cut formulas in d. Then

T r(a) ⊇ Γ, A1, . . . An (4.5)

by the proviso in the a-cut. Now use induction on d. Induction base is obvious,
the case of a-cut in the induction step follows from (4.5). Consider a propositional
rule, say

A, Γ B, Γ

A&B, Γ

There is a level l ≤ Lprop(a) such that every non-closed node b ⊇ a, lth(b) = l
contains A or B and Lprop(b) ≤ Lprop(a). Now apply IH. ��

Proof Search Tree and Cut Elimination 529

For an arbitrary finite sequence A1, . . . , Am of formulas of complexity ≤ r with
parameters in Hr that agree with a let LE(a, A1, . . . , Am, d) be the first level
l ≥ lth(a) containing A1, . . . , Am up to negation and saturated with respect to
all rules appled to all formulas in T r(a), A1, . . . Am in d. The latter condition
means in particular that if Ai = ∃xB(x) is instantiated by a term t in d and
Ai ∈ T r(b) with b ⊇ a, lth(b) ≥ l, then B(t) ∈ T r(b).

Lemma 5. Let a ∈ T r, d : Γ be an a-derivation of complexity r, Γ ⊇ T r(a).
Then

T r
a < LE(a, A1, . . . , Am, d)

where A1, . . . , Am is the complete list of the principal and side formulas of quan-
tifier rules in d.

Proof. Like in the previous Lemma, with all quantifier rules treated using the
new bound. ��

Lemma 6. There is a primitive recursive function L1 such that T r < L1(d) for
every d : E of complexity r + 1 with the standard choice of eigenvariables.

Proof. Combine the previous Lemmata. ��

The original derivation d : E may fail to satisfy the standardness condition
for eigenvariables. This condition can be enforced by renaming eigenvariables
and deleting redundant formulas and branches. We use fairness properties of T r

instead.

Theorem 1. There is a primitive recursive function L∗ such that T r < L∗(d)
for every d : E of complexity r.

Proof. Rename eigenvariables in d into standard eigenvariables. This invalidates
some of the ∀ rules in d by violating the proviso for eigenvariables. However
Lemma 5 is still applicable to the resulting figure. ��

Theorem 2. There is a primitive recursive function L such that T < L(d) for
every d : E.

Proof. Iterate the previous theorem. ��

Let’s see what happens if d : E is not a derivation but an infinite figure con-
structed by inference rules of predicate logic. In this case the proofs we gave in
Lemma 3 and Lemma 2 do not go through for several reasons. First, it is possi-
ble that the given branch B or the leftmost branch (with respect to r + 1-cuts)
contains infinitely many r + 1-cuts so that every ∃-formula is instantiated by a
term containing r+1-eigenvariable. Second, even if there is only finite number of
r + 1-cuts, the search through all instance A(ti) of ∃xA(x) can be infinite. This
agrees with the fact that finding the branch in T r+1 is not in general recursive
(in a given branch of T r).

530 G. Mints

4.2 Operation Γ · d

Assume that weakening is among our rules:

Γ
Γ, A

W

Definition 3. The operation Γ ·d adds the finite set Γ of formulas to all sequents
in a derivation d : Δ and prunes all rules that become redundant.

We give a detailed definition by induction on d. Unless stated otherwise, the
rules are simply augmented by Γ :

d′
Δ′ d′′

Δ′′
d : Δ is defined to be

Γ · d′
Γ · Δ′ Γ · d′′

Γ · Δ′′
d : Γ · Δ

and similarly for the one-premise rules. Let’s list all exceptional cases.

1. If Γ, Δ is an axiom (that is contains A, Ā for some A) then Γ ·d is an axiom.
2. If A ∈ Γ that is Γ = Γ, A (since sequents are finite sets), and d ends in a

cut
d′

Δ, A
d′′

Δ, Ā

d : Δ

then

Γ · d :=
Γ · d′

Γ, Δ, A

We abbreviate this definition to “d is replaced by Γ · d′”. If Ā ∈ Γ the cut is
replaced by Γ · d′′.

3. Let A ∈ Γ . If d ends in the &-rule introducing A&B

d′
Δ, A Δ, B

d : Δ, A&B

then d is replaced by Γ · d′ and a weakening:

Γ · d′ : Γ, Δ, A

Γ · d : Γ, A, Δ, A&B
W

A cut over A&B is relaced by (Γ ·) the left premise. Similarly when B ∈ Γ .
4. If A, B ∈ Γ , then ∨-rules introducing A ∨ B and A ∨ B-cuts are similarly

replaced.
5. If A[t] ∈ Γ then an ∃-rule with the side formula A[t] is deleted:

d′ : Δ, A[t], ∃xA[x]
d : Δ, ∃xA[x] Γ · d′ : Γ, Δ, A[t], ∃xA[x]

Proof Search Tree and Cut Elimination 531

6. If A[t] ∈ Γ for some t, then ∀xA-cuts are replaced by the left premise and
∀-rule

d′[a]
Δ, A[a]

Δ, ∀xA[x] is replaced by

Γ · d′[t]
Γ, Δ, A[t]

Γ, A[t], Δ, ∀xA[x]
W

7. If Ā, B̄ ∈ Γ , then A&B-cuts are replaced by axiom-like derivations:

axiom
Γ, Ā, B̄, A

axiom
Γ, Ā, B̄, B

Γ, Ā, B̄, A&B

8. If Ā, ∈ Γ or B̄, ∈ Γ , then A ∨ B-cuts are similarly replaced by axiom-like
derivations.

9. For a cut
d′
...

Σn, ∃xA[x], A[tn]
Σn, ∃xA[x]

...
Σ1, ∃xA[x], A[t1]

Σ1, ∃xA[x]
...

d0 : Δ, ∃xA[x] d1 : Δ, ∀xĀ[x]
Δ (4.6)

the reduction is similar. If Ā[t] ∈ Γ for some t, then the cut is replaced (as
above in ∀xA-case) by a weakening and Γ · d1.

If A[t1], . . . , A[tn] ∈ Γ for all side formulas of ∃-rules traceable to the cut
formula ∃xA[x] then the right-hand side of the cut is pruned, that is d is
replaced by a weakening and Γ · d0.

So in the latter case the result is

Γd′
...

Γ, Σn, ∃xA[x]
...

Γ, Σ1, ∃xA[x]
...

Γ, Δ

Definition 4. A finite set of formulas Γ agrees with a derivation d if for every
∀-inference in d

Δ, A[b]
Δ, ∀xA[x],

if the eigenvariable b occurs in Γ , then A[b] or ∃xĀ[x] is a member of Γ .

532 G. Mints

Lemma 7. If Γ agrees with d then Γ · d is a derivation.

Proof. Check all rules. Two things can go wrong: the proviso for eigenvariables
in ∀ rules and pruning of cuts when suitable subformulas of the cut formula are
present in Γ (up to negation). Since Γ agrees with d, each ∀ rule stays correct
or is pruned.

A cut over a formula C = A � B, � ∈ {&, ∨} is pruned if Γ contains Γ ′ ⊆
{+A, +B} such that the ¬Γ ′ decides C, that is tautologically implies C̄ or C. In
the first case all rules traceable to C in the derivation of the l.h.s. premise of the
cut are pruned after adding Γ , hence C becomes redundant in this premise and
can be introduced by a weakening. If ¬Γ ′ |= C, then Γ ′, C has an axiom-like
derivation. ��

Lemma 8. Let d : E and let a ∈ T r be a non-closed node such that

T r(a) · d contains cuts of rank r + 1 .

Then there is an L > lev(a) such that for every non-closed b ∈ T r, lev(b) = L

T r(b) · (T r(a) · d) contains fewer cuts of rank r + 1 than T r(a) · d

The function L = L(a, d) is primitive recursive.

Proof. Take the leftmost uppermost cut of rank r + 1 in T r(a) · d:

Σ, C Σ, C̄

Σ

List all ∀-inferences of rank ≤ r in T r(a) · d. Using fairness function for T r

find level L0 ≥ lev(a) such that all main formulas ∀zF [z] of such inferences
are decided by every non-closed node b ⊇ a of level ≥ L0, and in the case
∀zF [z] ∈ T r(b) also F [a] ∈ T r(b) for the eigenvariable a. This guarantees that
T r(b) agrees with T r(a) · d.

Now increase L to guarantee all immediate subformulas of C are decided in
b. This is problematic in the case C = ∃xA[x]. In that case we require all side
formulas A[t1], . . . , A[tn] of ∃-rules traceable to C are decided. If at least one of
¬A[ti] is present, the C-cut is replaced by the right premise, otherwise by the
left premise of the cut. ��

A cut reduction step is applied to an assignment of derivations of rank ≤ r + 1
to non-overlapping non-empty nodes ai ∈ T r:

(a1, d1; . . . ; ap, dp); lev(ai) = l; rk(di) ≤ r + 1

Define
R(0, d) := (∅, d)

Assume R(n, d) = (a1, d1; . . . ; ap, dp).

Proof Search Tree and Cut Elimination 533

Assume that for i < s we have rk(T r(ai) · di) ≤ r, while for i ≥ s, rk(T r(ai) ·
di) = r + 1 (up to the order of ai). For every i ≥ s write down all nodes

bi,1, . . . , bi,qi

of the level L(ai, di) with rk(T r(bi,j) · di) = r + 1, denote di,j := T r(bi,j) · di

and define

R(n + 1, d) := (a1, d1; . . . ; as−1, ds−1; bs,1, ds,1; . . . ; bs,qs , ds,qs ; . . . ; bp,qp , dp,qp)

Lemma 9. R(n, d) is a derivation.

Theorem 3. Let rk(d) ≤ r + 1 and d contains n cuts of rank r + 1. Then
rk(R(n, d)) ≤ r.

Proof. Induction on n. If n = 0, then rk(d) = 0. If n > 0, ��

4.3 Elimination of Atomic Cuts

On one view (for example for natural deduction) atomic cuts are just an illusion.
More seriously, standard Gentzen cut elimination is simply substitution.

Let’s give an argument closer to proof-mining.
Since the endformula is assumed to be existential E = ∃xM(x), the derivation

d : E with atomic cuts contains only instances from the Herbrand universe of E

M(t1), . . . , M(tn)

Wait till they appear in the search tree without any cuts and are analyzed.
Assume that by this moment some node b of the proof search tree is not closed.
Then it determines a countermodel for M(t1), . . . , M(tn) a contradiction.

More detailed proof: for Γ = T (b), the derivation Γ · d is empty: all proposi-
tional rules are pruned. Hence it is an axiom, that is Γ is an axiom.

5 A Variant of Ordinary Cut Elimination

The complete search in the proof search tree T r, especially the presence of all
cuts of the rank ≤ r seemed to be essential for the possibility to prune cuts of
rank r +1 from the given derivation d. However in fact we need only rank-r cuts
that decide instances A[t] of rank-r + 1 cut formulas ∃xA[x]. r + 1 denotes here
the maximal complexity of cuts in given derivation.

In this section a new cut-elimination algorithm is presented. It is obtained
from the algorithm described in previous sections by cleaning out and changing
some details and is independent of the previous sections.

It turns out that the subformulas needed for cut elimination are almost present
in d itself, so that cut elimination algorithm to be described in the present section
can work with d only, without need for T r.

534 G. Mints

5.1 Propositional Cut

As a warm-up note that propositional cuts are easily eliminated (i. e., replaced
by cuts of smaller complexity) by a familiar trick exactly corresponding to com-
putation of the truth-value of A&B from the given values of A, B. A cut

. . .
Σ, A

. . .
Σ, B

Σ, A&B
...

Δ, A&B

. . .
Π, Ā, B̄

Π, Ā ∨ B̄
...

Δ, Ā ∨ B̄

d : Δ
CutA&B

is replaced by cuts over A and B. Adding formulas +A, +B to the derivation
d allows to choose one of the branches in the cut CA&B. If both Ā and B̄ are
added, then the r.h.s. of the derivation d is retained after replacing Ā ∨ B̄ by
Ā, B̄.

In all remaining cases one of A, B (say A) without negation is retained. Then
the l.h.s. in CutA&B is transformed by replacing A&B by A and choosing the
l.h.s. in the corresponding &-rules. The result of eliminating CA&B looks as
follows:

...
Σ, A

...
Δ, A

...
Σ, Ā, B

...
Δ, Ā, B

...
Π, Ā, B̄

...
Δ, Ā, B̄

Δ, Ā
CutB

Δ
CutA

5.2 Quantifier Cut

Consider now the remaining case of the r+1-cut with an existential cut formula.
Choose an uppermost leftmost r+1-cut C, that is assume that there are neither
r + 1-cuts over C nor r + 1-cuts having C over their r.h.s. premise. List all
∃-inferences traceable to the cut formula ∃xA(x) of the cut C:

d′
...

Σn, ∃xA[x], A[tn]
Σn, ∃xA[x]

...
Σ1, ∃xA[x], A[t1]

Σ1, ∃xA[x]
...

d0 : Δ, ∃xA[x]

d′′[x]
Δ, Ā[x]

Δ, ∀xĀ[x]
d : Δ

C (5.1)

Proof Search Tree and Cut Elimination 535

We try to replace this with the figure:

d̃0

Δ, A[t1], . . . , A[tn] Δ, Ā[t1] . . . Δ, Ā[tn]
Δ (5.2)

ending in n cuts of complexity r, where d̃0 = (A[t1], . . . , A[tn]) · d0 is the result
of adding formulas A[t1], . . . , A[tn] to d0 (Section 4.2). Unfortunately d̃ is not in
general a derivation. If some of A[ti] contains an eigenvariable of a ∀-rule in d0,
that rule is invalidated by adding A[ti]. In the cut reduction from the previous
section such a rule is pruned from d0 by formulas added to Δ, since their main
and side formulas are decided by cuts in T r. Now we simulate the same effect
by pushing such ∀-inferences down from d0 instead.

List all principal formulas of ∀ rules in d0 such that their eigenvariable oc-
curs in one of the t1, . . . , tn, and inductively eliminate them beginning from the
lowermost ones by adding r-cuts from below to the derivation d . The inductive
parameter (of the cut C) is the number of different ∀-formulas to be eliminated
from the derivation ending in C. Note that by the choice of C and the assump-
tion that the endformula of the whole derivation is purely existential (Σ0

1) all
∀-formulas have complexity ≤ r.

Suppose some of these ∀-formulas has been eliminated resulting in the deriva-
tion e. Take in e one of the remaining formulas with one of the lowermost ∀ rules
to be eliminated:

...
Θ, B[b]

Θ, ∀yB[y]
...
Ω
...

e : Σ

Then e is replaced by

...
Θ, B[b]

...
Ω, B[b]

...
Σ, B[b]

Σ, ∀yB[y]

axiom
Θ, ∀yA[y], ∃yB̄[y]

...
Ω, ∃yB̄[y]

...
Σ, ∃yB̄[y]

Σ
Cut∀yB(y)

Here the left hand side is obtained by adding B[b] to all sequents in e between
Σ and the premise of the ∀-rule introducing ∀xA[x]. This rule is deleted.

536 G. Mints

The right hand side is obtained by adding ∃xB̄[x] to all sequents in e between
Σ and the conclusion of the ∀-rule introducing ∀xA[x]. This rule is again deleted.
In this way the new figure is a derivation with fewer main ∀-formulas.

The new figure contains an r + 1-cut at each side. Since ∀-rules introducing
∀yB(y) are eliminated from the derivation d, each of these two r + 1-cuts has
smaller induction parameter.

After elimination of all such ∀-rules the cut reduction in (5.2) can be applied.

References

1. Kreisel, G., Mints, G., Simpson, S.: The Use of Abstract Language in Elementary
Metamathematics. Lecture Notes in Mathematics 253, 38–131 (1975)

2. Mints, G.: The Universality of the Canonical Tree. Soviet Math. Dokl. 14, 527–532
(1976)

3. Mints, G.: E-theorems. J. Soviet Math. 8, 323–329 (1977)
4. Mints, G.: Unwinding a Non-effective Cut Elimination Proof. In: Grigoriev, D.,

Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 259–269. Springer,
Heidelberg (2006)

Symbolic Verification Method for Definite

Iterations over Tuples of Altered Data
Structures and Its Application

to Pointer Programs�

Valery Nepomniaschy

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences,
Siberian Division, 6, Lavrentiev Ave., Novosibirsk 630090, Russia

vnep@iis.nsk.su

This paper is dedicated to Boris Trakhtenbrot,
my teacher, on the occasion of his 85th anniversary.

His lectures on axiomatic semantics of complex program
constructs have introduced me into the program verification field.

Abstract. The symbolic method for verifying definite iterations over
hierarchical data structures without loop invariants is extended to allow
tuples of altered data structures and the termination statement which
contains a condition depending on variables modified by the iteration
body. Transformations of these generalized iterations to the standard
ones are proposed and justified. A technique for generating verification
conditions is described. The generalization of the symbolic verification
method allows us to apply it to pointer programs. As a case study, pro-
grams over doubly-linked lists are considered. A program that merges
in-place ordered doubly-linked lists is verified by the symbolic method
without loop invariants.

1 Introduction

The axiomatic approach to program verification is based on the Hoare method
and consists of the following stages: annotating a program by pre-, post-
conditions and loop invariants; generating verification conditions with the help
of proof rules and proving the verification conditions [6]. The loop invariant syn-
thesis is an important problem [8] which is far from being solved [27]. In the
functional approach to program verification, loops are annotated by functions
expressing the loop effect [10]. However, the synthesis of such functions remains
a difficult problem in most cases [14]. Attempts to extract loop invariants from
programs by using special tools [3] are found to be successful only for quite
simple kinds of invariants.

� This work was partly supported by Russian Foundation for Basic Research under
grant 04-01-00114.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 537–554, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

538 V. Nepomniaschy

Two ways for overcoming the difficulties of program verification are consid-
ered. In papers on code certification [16,29], verification of simple but important
program properties is considered in the framework of the axiomatic approach.
However, the invariant synthesis problem imposes an essential limitation on the
practical use of this method [29]. Another way for overcoming the difficulty is to
use loops of a special form which allows us to simplify the verification process.
The special form of loops called simple loops is proposed in [1]. The simple loops
are similar to for-loops in that they contain the only control variable called a
loop parameter and, also, its alteration in a given finite domain does not depend
on other variables modified by the loop body. Therefore, the simple loops are
definite iterations because of their termination for all values of input variables.
Although the reduction of for-loops to while-loops is often used for verifica-
tion, attempts to use the specific character of for-loops in the framework of the
axiomatic approach should be noted [4,5,7]. In the framework of the functional
approach, a general form of the definite iteration as an iteration over all ele-
ments of an arbitrary structure has been proposed in [28], where spreading of
such iterations in practical programming has been justified.

We developed a symbolic method integrating axiomatic and functional ap-
proaches in [17,18] for verifying for-loops with the statement of assignment to
array elements as the loop body . We extended the method in [21,22] to the def-
inite iterations over data structures without restrictions on the iteration bodies.
This method is based on using a replacement operation that represents the loop
effect in a symbolic functional form and allows us to express the loop invariant.
The symbolic method uses a special technique for proving verification condi-
tions containing the replacement operation. Along with data structures defined
in [28], the symbolic method allows us to use hierarchical data structures that
are constructed from given structures [22]. The symbolic method is more appro-
priate for so-called flat loops [1] which have no embedded loops. Moreover, the
symbolic verification method is applied to a new kind of definite iterations called
iterations over tuples of data structures [23]. These iterations allow loops with
several input data structures to be represented compactly and naturally, and to
be used as flat loops. This method has been successfully applied to verification
of programs over arrays and files [22,23]. However, the attempt to apply the
method to pointer programs has revealed the following problems. First, the data
structures can be modified by the iteration body, and, therefore, the loops are
not simple. Second, the iteration body can include the termination statement
containing a condition that depends on variables modified by the iteration body.
In [24] the symbolic verification method has been extended to definite iterations
over altered data structures and applied to verification of pointer programs with
one input data structure.

The purpose of this paper is to extend the symbolic method to definite it-
erations with several input altered data structures and to apply it to pointer
program verification. An outline of standard definite iterations over hierarchical
data structures is given in Sect. 2. Definite iterations over tuples of unaltered
data structures that extend the iterations from [23] are described in Sect. 3,

Symbolic Verification Method for Definite Iterations 539

where their reduction to the standard iterations is justified. Similar results for
the iterations extended by the termination statement are represented in Sect. 4.
In Sect. 5, definite iterations over tuples of altered data structures are introduced
and their reduction to the iterations considered in Sects. 3 and 4 is described. A
technique of generating verification conditions for standard definite iterations,
as well as for pointer programs, is given in Sect. 6. Application of the symbolic
method to verification of programs over doubly-linked lists is presented in Sect.
7, where we consider a program that merges two lists. Advantages and prospects
of the symbolic verification method are discussed in Sect. 8.

2 Definite Iteration over Hierarchical Data Structures

We introduce the following notation. Let {s1, . . . , sn} be a multiset consisting of
elements s1, . . . , sn, U1 − U2 be the difference of multisets U1 and U2, U1

⋃
U2

be the union of these multisets, and |U | be the power of a finite multiset U . Let
[v1, . . . , vm] denote a vector consisting of elements vi (1 ≤ i ≤ m) and ∅ denote
the empty vector. A concatenation operation con(V1, V2) is defined in the usual
fashion for vectors V1 and V2. For a function f(x) we assume that

f0(x) = x, f i(x) = f(f i−1(x)) (i = 1, 2, . . .).

Let us remind the notion of a data structure [28]. Let memb(S) be a finite
multiset of elements of a structure S, empty(S) be a predicate ”memb(S) is
empty”, choo(S) be a function which returns an element of memb(S), rest(S)
be a function which returns a structure S′ such that memb(S′) = memb(S) −
{choo(S)}. The functions choo(S) and rest(S) will be undefined if and only if
empty(S). This definition, which abstracts from the way of determination of the
functions choo(S) and rest(S), is quite flexible. For example, if a tree is defined
as a data structure, a tree traversal method is fixed. So, such different traversal
methods result in different data structures.

Let us remind a definition of useful functions related to the structure S
[21]. Let vec(S) denote a vector [s1, . . . , sn] such that si = choo(resti−1(S))
(i = 1, . . . , n) in the case of ¬empty(S) and memb(S) = {s1, . . . , sn}. The vector
vec(S) is empty if empty(S). The function vec(S) defines such an unfolding of the
structure S that gives uniquely its use. Structures S1 and S2 are called equivalent
(S1 = S2), when vec(S1) = vec(S2). The functions head(S) and last(S) will be
undefined in the case of empty(S). A function head(S) returns a structure such
that vec(head(S)) = [s1, . . . , sn−1] if vec(S) = [s1, . . . , sn] and n ≥ 2. If n = 1,
then empty(head(S)). Let last(S) be a partial function such that last(S) = sn

if vec(S) = [s1, . . . , sn]. Let str(s) denote a structure S which contains the
only element s. A concatenation operation con(S1, S2) is defined in [21] so that
con(vec(S1), vec(S2)) = vec(con(S1, S2)). Let con(s, S) = con(str(s), S) and
con(S, s) = con(S, str(s)). In the case of ¬empty(S), con(choo(S), rest(S)) =
con(head(S), last(S))=S. Moreover, the property head(rest(S))=rest(head(S))
provided ¬empty(rest(S)) results from [21].

540 V. Nepomniaschy

Along with the data structures, we use hierarchical data structures. Let us
determine the rules for construction of a hierarchical structure S from given
structures S1, . . . , Sm [22]. We will use T (S1, . . . , Sm) to denote a term con-
structed from data structures Si (i = 1, . . . , m) with the help of the functions
choo, last, rest, head, str, con. For a term T which represents a data structure,
we denote the function |memb(T)| by lng(T). The function can be calculated by
the following rules: lng(Si) = |memb(Si)|, lng(con(T1, T2)) = lng(T1)+ lng(T2),
lng(rest(T)) = lng(head(T)) = lng(T) − 1, lng(str(s)) = 1. Let a hierarchical
data structure S = STR(S1, . . . , Sm) be defined by the functions choo(S) and
rest(S) constructed with the help of conditional if − then − else, superposition
and Boolean operations from the following components:

— terms not containing S1, . . . , Sm;
— the predicate empty(Si) and the functions choo(Si), rest(Si), last(Si),

head(Si) (i = 1, . . . , m);
— terms of the form STR(T1, . . . , Tm) such that

∑m
i=1 lng(Ti) <

∑m
i=1 lng(Si);

— an undefined element ω.

Note that the undefined value ω of the functions choo(S) and rest(S) means
empty(S).

Let us suppose that the iteration body consists of a sequence of assignment
and conditional statements. The iteration body is represented as the vector as-
signment statement v := body(v, x), where x is the iteration parameter, v is a
vector of other variables, body(v, x) is a vector of conditional expressions con-
structed with the help of the operation if − then − else. Such a representation
is formed by a sequence of suitable substitutions which replace both conditional
statements by conditional expressions and a sequence of assignment statements
by one vector assignment statement.

Let us consider a definite iteration of the form

for x in S do v := body (v, x) end (1)

where S is a data structure that may be hierarchical and the iteration body
v := body(v, x) does not change the structure S. The result of this iteration is
an initial value v0 of the vector v if empty(S). Assume that ¬empty(S) and
vec(S) = [s1, . . . , sn]. Then the iteration body iterates sequentially for x defined
as s1, . . . , sn.

3 Iterations over Tuples of Unaltered Data Structures

To define a definite iteration over a tuple of data structures S1, . . . , Sm (possibly
hierarchical), we will use a function sel(x1, . . . , xm) for selection of one structure
from the structures S1, . . . , Sm, where xi ∈ memb(Si)

⋃
{ω} (i = 1, . . . , m). The

function sel(x1, . . . , xm) returns an integer j (1 ≤ j ≤ m) such that xj �= ω, and
also sel(ω, . . . , ω) is undefined. In the case of xj �= ω and xi = ω for all i �= j
(i = 1, . . . , m), sel(x1, . . . , xm) = j and the definition of the function sel can be
omitted.

Symbolic Verification Method for Definite Iterations 541

Let us consider the iteration over the tuple of structures S1, . . . , Sm of the
form

for x1 in S1, . . . , xm in Sm do t := sel(x1, . . . , xm); v := body (v, xt, t) end
(2)

where v is a data vector (xi /∈ v for all i = 1, . . . , m) and the iteration body
does not change the structures S1, . . . , Sm. If empty(Si) for each i = (1, . . . , m),
then the iteration result is an initial value v0 of the vector v. Otherwise, we
assume xi = choo(Si) for each i = 1, . . . , m and t = sel(x1, . . . , xm), where
choo(Si) = ω provided empty(Si). A new value v1 of the vector v is defined so
that v1 = body(v0, xt, t). The structure St is replaced by the structure rest(St),
and the other structures Si (i �= t) are not changed. The process is applied to
v1 and the resulted structures until all structures become empty. The resulted
value vd (d =

∑m
i=1 | memb(Si) |) of the vector v is assumed to be the result of

iteration (2).
It should be noted that the function body(v, xt, t) does not depend on variables

xi for i �= t resulting in simplification of the reduction of iteration (2) to iteration
(1). Such variables xi can be doubled by variables from the vector v.

Here the purpose is to reduce iteration (2) to iteration (1) with the
help of hierarchical structures. We introduce the following notation in or-
der to define a hierarchical structure S = STR(S1, . . . , Sm) from the
structures S1, . . . , Sm and the function sel(x1, . . . , xm). Let EMPTY =
(empty(S1) ∧ . . . ∧ empty(Sm)), t1 = sel(choo(S1), . . . , choo(Sm)), REST =
STR(r(S1), . . . , r(Sm)) provided ¬EMPTY , r(St1) = rest(St1) and r(Si) =
Si for i �= t1. Then (choo(S), rest(S)) = if EMPTY then (ω, ω)
else ((choo(St1), t1), REST). Notice that this definition is consistent with the
definition of hierarchical structures from Sect. 2, since the quantifiers bounded
by the set {1, . . . , m} can be expressed by applying conjunction or disjunction
m times, and empty(S) ≡ (choo(S) = ω).

Theorem 1. Iteration (2) is equivalent to the iteration

for (x, τ) in S do v := body (v, x, τ) end (3)

Proof. We will use induction on d = 0, 1, 2, If d = 0, then empty(Si) for
each i = 1, . . . , m, and, therefore, Theorem 1 holds. Let us suppose d > 0 and
iterations (2) and (3) are equivalent if

∑m
i=1 | memb(Si) |= d − 1. It is evident

that iteration (2) is equivalent to the program

v := body(v, choo(St1), t1);
for x1 in r(S1), . . . , xm in r(Sm)

do t := sel(x1, . . . , xm); v := body (v, xt, t) end.
(4)

By the inductive hypothesis, program (4) is equivalent to the program

v := body(v, choo(St1), t1); for (x, τ) in REST do v := body (v, x, τ) end (5)

It remains to notice that program (5) is equivalent to iteration (3) according
to rest(S) = REST, choo(S) = (choo(St1), t1) and S = con(choo(S), rest(S))
provided d > 0. 	

542 V. Nepomniaschy

We introduce the following notation in order to formulate useful properties of the
hierarchical structure S = STR(S1, . . . , Sm). We will use memb1(S) to denote
the multiset of the first components of elements of memb(S). Let veci(S) be
the subsequence of vec(S) which consists of all elements (r, i) for a suitable r,
and veci1(S) be the sequence of the first components of elements of veci(S)(i =
1, . . . , m).

Theorem 2

2.1. memb1(S) =
⋃m

i=1 memb(Si).
2.2. veci1(S) = vec(Si) for each i = 1, . . . , m.

Proof. We will use induction on d = 0, 1, 2, If d = 0, then empty(S),
empty(Si) for each i = 1, . . . , m and Theorem 2 holds. Let us suppose d > 0 and
Theorem 2 holds for

∑m
i=1 | memb(Si) |= d − 1.

2.1. By the induction hypothesis, memb1(S) = memb1(con(choo(S), rest(S))) =
{choo(St1)}

⋃
memb(rest(St1))

⋃⋃
i�=t1

memb(Si) =
⋃m

i=1 memb(Si) according
to memb(St1) = {choo(St1)}

⋃
memb(rest(St1)).

2.2. By the induction hypothesis, veci1(S) = veci1(con(choo(S), rest(S))) =
if i = t1 then con(choo(Si), vec(rest(Si))) else vec(Si) = vec(Si) according to
veci1(str(choo(S))) is the empty sequence and veci1(rest(S)) = vec(Si), when
i �= t1. 	

In the case of S = STR(S1, S2), head(S) and last(S) can be expressed in terms
of head(Si) and last(Si) (i = 1, 2) as follows.

Theorem 3. If S = STR(S1, S2) and ¬empty(S), then ¬empty(S1),
head(S) = STR (head (S1), S2) and last(S) = (last (S1), 1) or ¬empty(S2),
head(S) = STR(S1, head(S2)) and last(S) = (last(S2), 2).

Proof. Fordefiniteness,wesupposet1 = 1.Wewilluseinductionond = 1, 2,Ifd =
1, then ¬empty(S1), empty(head(S1)), empty(S2), empty(head(S)), last(S) =
(last(S1), 1) and therefore Theorem 3 holds. In the case of d > 1,
head(S) = head(con(choo(S), rest(S))) = con(choo(S), head(rest(S))) =
con(choo(S), head(STR(rest(S1), S2))) and last(S) = last(rest(S)). By the
inductionhypothesis for the structure rest(S) = STR(rest(S1), S2), two cases are
possible.

1. ¬empty(rest(S1)) and head(STR(rest(S1), S2)) = STR(head(rest(S1)), S2).
Let us denote the structure STR(head(S1), S2) by HS. Then, head(S) =
con(choo(S), STR(head(rest(S1)), S2)), HS = con(choo(HS), rest(HS)) =
con(choo(HS), STR(rest(head(S1)), S2)). From ¬empty(head(S)), choo(HS) =
choo(S) and rest(head(S1)) = head(rest(S1)), it follows that head(S) = HS.
Moreover, last(rest(S)) = (last(rest(S1)), 1) = (last(S1), 1).
2.¬empty(S2) and head(STR(rest(S1), S2)) = STR(rest(S1), head(S2)). Let
us denote the structure STR (S1, head (S2)) by SH . Then, choo(S2) =
choo(head(S2)) provided ¬empty (head(S2)), head(S) = con(choo(S),
STR(rest(S1), head(S2))), SH = con(choo(SH), rest(SH)), rest(SH) =

Symbolic Verification Method for Definite Iterations 543

STR(rest(S1), head(S2)). From choo(S) = choo(SH) = (choo(S1), 1) it follows
thathead(S) = SH .Moreover, last(rest(S)) = last(S2). 	

Claim 1. There exists a structure S = STR(S1, S2, S3) for which Theorem 3
does not hold.

Proof. Let memb(Si) = {ai} (i = 1, 2, 3), where a1 < a2 < a3. We de-
fine the function sel(x1, x2, x3) as if x1 �= ω ∧ x2 �= ω ∧ x3 �= ω then
1 else if xi = ω ∧ xj �= ω ∧ xl �= ω then max(j, l), where i, j, l are
different. Then vec(S) = [(a1, 1)(a3, 3)(a2, 2)], vec(head(S)) = [(a1, 1)(a3, 3)],
last(S) = (a2, 2) = (last(S2), 2). Therefore, vec(STR(S1, head(S2), S3)) =
[(a3, 3)(a1, 1)] �= vec(head(S)). 	

4 Iterations with Termination Statement

Let us consider the following definite iteration over a tuple of unaltered data
structures with a body including the termination statement EXIT:

for x1 in S1, . . . , xm in Sm do t = sel(x1, . . . , xm), v := body(v, xt, t);
if cond(v, x1, . . . , xm) then EXIT end (6)

where xi �∈ v (i = 1, . . . , m), and the iteration body does not change the struc-
tures Sj (j = 1, . . . , m).

Let us define operational semantics of iteration (6) for an initial value v0 of
the vector v. Let t1 = sel(choo(S1), . . . , choo(Sm)), v1 = body(v0, choo(St1), t1),
b1 = cond(v1, choo(S1), . . . , choo(Sm)). If empty(Si) for all i = 1, . . . , m, then
v0 is the result of iteration (6). Otherwise, v1 is the result of iteration (6) in
the case of b1 = true. If b1 = false, then this process is continued with v = v1

and the structure rest(St1) instead of St1 , when the other structures Si (i �= t1)
are not changed. A value vl of the vector v that results from this process is the
result of iteration (6).

Here the purpose is to reduce iteration (6) to iteration (1) with the help of
hierarchical structures. We impose such restrictions on the body of iteration
(6) that allows us to replace the termination condition cond(v, x1, . . . , xm) by
cond(v0, x1, . . . , xm) for an initial value v0 of the vector v.

We introduce the following notation:
S = [S1, . . . , Sm], f(S) = [f(S1), . . . , f(Sm)] for an unary function f ,
vec0(Si) = if ¬empty(Si) then vec(Si) else ∅, tj = sel(choo(vecj−1(S))),
vecj(Si) = if i �= tj then vecj−1(Si) else rest(vecj−1(Si)),
where i = 1, . . . , m, j = 1, . . . , d, d =

∑m
i=1 | memb(Si) |.

The function body(v, xt, t) preserves the condition cond(v, x1, . . . xm) with re-
spect to the structures S1, . . . , Sm and the function sel(x1, . . . , xm) if
cond(body(v, x′

t, t), x1, . . . , xm) = cond(v, x1, . . . , xm) for all v, x1, . . . , xm, t, x′
t

for which there exist numbers l, l0 such that l0 ≤ l, xi = choo(vecl(Si)),
x′

i = choo(vecl0(Si)), t = sel(x′
1, . . . , x

′
m) (i = 1, . . . , m).

544 V. Nepomniaschy

Lemma 1. If the function body(v, xt, t) preserves the condition cond(v, x1, . . . ,
xm) with respect to the structures S1, . . . , Sm and the function sel(x1, . . . , xm),
then iteration (6) with an initial value v0 of the vector v is equivalent to the
iteration

for x1 in S1, . . . , xm in Sm do t := sel(x1, . . . , xm); v := body(v, xt, t); (7)
if cond(v0, x1, . . . , xm) then EXIT end

Proof. Lemma 1 is evident in the case of d = 1, when iteration (6) is terminated
after the first step. Let d > 1, vi = body(vi−1, choo(veci−1(Sti)), ti),
bi = cond(vi, choo(veci−1(S))) (i = 1, . . . , d − 1). Let us define a number k
(1 ≤ k ≤ d − 1) as follows. If bi = false for all i = 1, . . . , d − 1, then we suppose
k = d − 1. Otherwise, there exists the only number k such that bk = true and in
the case of k > 1 bi = false for all i = 1, . . . , k−1. Lemma 1 follows immediately
from the condition

∀j(1 ≤ j ≤ k → bj = cond(v0, choo(vecj−1(S)))). (8)

This condition results from the following more general condition for i = j:

∀j(1 ≤ j ≤ k → ∀i(1 ≤ i ≤ j → cond(vi, choo(vecj−1(S))) = (9)
cond(v0, choo(vecj−1(S))))).

To prove condition (9), we use induction on i = 1, . . . , j. The function body
(v, xt, t) preserves the condition cond(v, x1, . . . , xm) for v = v0, l = j − 1, l0 = 0
and therefore condition (9) holds for i = 1. Let us suppose 1 < i < j. The func-
tion body(v, xt, t) preserves the condition cond(v, x1, . . . , xm) for v = vi, l = j −
1, l0 = i and therefore cond(vi+1, choo(vecj−1(S))) = cond(vi, choo(vecj−1(S))).
It remains to apply the inductive hypothesis. 	

Let us define a hierarchical structure T0 = STR(S1, . . . , Sm) with the help
of the function sel(x1, . . . xm) and the condition cond(v0, x1, . . . , xm) as follows.
(choo(T0), rest(T0)) = if EMPTY then (ω, ω) else ((choo(St1), t1),
if b0 then ω else REST), where b0 = cond(v0, choo(S)),
EMPTY = (empty(S1) ∧ . . . ∧ empty(Sm)), REST = STR(r(S1), . . . , r(Sm)),
r(St1) = rest(St1) and r(Si) = Si for i �= t1.

Theorem 4. If the function body(v, xt, t) preserves the condition
cond(v, x1, . . . , xm) with respect to the structures S1 . . . , Sm and the function
sel(x1, . . . , xm), then iteration (6) with an initial value v0 of the vector v is
equivalent to the iteration

for (x, τ) in T0 do v := body(v, x, τ) end (10)

Proof. . It follows from Lemma 1 that it is sufficient to prove the equivalence of
iterations (7) and (10) for v = v0. For this we will use induction on d = 0, 1,
If d = 0, then EMPTY and the equivalence is evident. Let us suppose that

Symbolic Verification Method for Definite Iterations 545

d > 0 and the equivalence holds for d − 1. Two cases are possible.
1. b0 = true. Then iteration (7) is equivalent to the statement
v := body(v, choo(St1), t1) and the structure T0 consists of one element
choo(T0) = (choo(St1), t1). Therefore, iterations (7) and (10) are equivalent.
2. b0 = false. Then iteration (7) is equivalent to the program

v := body(v, choo(St1), t1); for x1 in r(S1), . . . , xm in r(Sm) do

t := sel(x1, . . . , xm); v := body(v, xt, t);
if cond(v0, x1, . . . , xm) then EXIT end (11)

By the inductive hypothesis, program (11) is equivalent to the program

v := body(v, choo(St1), t1); for (x, τ) in T1 do v := body(v, x, τ) end (12)

where T1 = STR(r(S1), . . . , r(Sm)). It follows from choo(T0) = (choo(St1), t1)
and REST = T1 that program (12) is equivalent to iteration (10). 	

Thus, introduction of the vector v0 which represents initial values of variables
of the vector v allows us to reduce iteration (6) to more simple iteration (10)
for the mentioned restrictions on the termination condition cond(v, x1, . . . , xm).
If this condition does not depend on variables from v, then Theorem 4 can be
essentially simplified as follows.

Corollary 1. The iteration
for x1 in S1, . . . , xm in Sm do t := sel(x1, . . . , xm); v := body(v, xt, t);
if cond(x1, . . . , xm) then EXIT end
is equivalent to the iteration
for (x, τ) in T do v := body(v, x, τ) end
where (choo(T), rest(T)) = if EMPTY then (ω, ω) else ((choo(St1), t1),
if cond(choo(S)) then ω else REST).

5 Iterations over Tuples of Altered Data Structures

The definite iteration over tuples of altered data structures has the form (2),
where the structure Si can depend on variables from the vector v
(i = 1, . . . , m). Let wi denote a vector consisting of all variables on which the
structure Si = Si(wi) depends (i = 1, . . . , m). If Si does not depend on variables
from v, then wi is the empty vector and it can be omitted. It should be noted
that the vector wi can consist of one variable Si when, for example, Si is a linear
list which can be changed by an iteration body. Let Init denote a set consisting
of admissible initializations of variables from v. The set Init can depend on a
program containing iteration (2).

Let vj (wij , respectively) denote a vector consisting of the values of variables
from v (wi, respectively). Let us say that vj extends wij (vj ⊃ wij) if, for each
variable y from the vector wi and its value yj ∈ wij , the property yj ∈ vj holds.

546 V. Nepomniaschy

Let us define operational semantics of iteration (2) for a vector v0 consisting
of the initial values of variables from v such that v0 ∈ Init. Let Si0 = Si(wi0)
provided wi0 ⊂ v0 (i = 1, . . . , m), d =

∑m
i=1 | memb(Si0) |.

We introduce the following notation :
vec0(Si0) = if ¬empty(Si0) then vec(Sio) else ∅,
tj = sel(choo(vecj−1(S10)), . . . , choo(vecj−1(Sm0))),
vecj(Si0) = if i �= tj then vecj−1(Si0) else rest(vecj−1(Si0)),
V ECj0 = [vecj(S10), . . . , vecj(Sm0)],
vj = body(vj−1, choo(vecj−1(Stj0)), tj)(j = 1, . . . , d).

An unrestricted variation of the structures Si by the body of iteration (2)
can result in an infinite iterative process. To provide finiteness of the iteration,
we impose a restriction RTR1 on iteration (2) such that, at the j-th step of the
iterative process, the iteration body does not change V ECj0 for j = 1, . . . , d−1.
Therefore, after the j-th step of the iterative process, the vector of undelivered
elements of the structure Si coincides with vecj(Si0), when v = vj−1 and
xi = choo(vecj−1(Si0)) (i = 1, . . . , m).

The result of the iterative process is defined to be vd. The following claim
follows immediately from operational semantics of iteration (2).

Claim 2. Iteration (2) with an initial value v0 ∈ Init of the vector v, provided
Si = Si(wi) and wi0 ⊂ v0 (i = 1, . . . , m), is equivalent to the program

w1 := w10; ... wm := wm0; for x1 in S1(w10), . . . , xm in Sm(wm0)
do t := sel(x1, . . . , xm); v := body(v, xt, t) end (13)

where, in the case of wk = ∅, the statement wk := wk0 is omitted in (13) and
Sk (wk0) is replaced by Sk (k = 1, . . . , m).

Let us define operational semantics of iteration (6) for a vector v = v0 ∈ Init,
when the structure Si depends on variables from the vector wi (i = 1, . . . , m).
Let bj = cond(vj , choo(vecj−1(S10)), . . . , choo(vecj−1(Sm0)))
(j = 1, . . . , d−1). We impose a restriction RTR2 on iteration (6) such that on at
the j-th step of the iterative process the iteration body does not change V ECj0,
when ¬b1 ∧ . . .∧¬bj (j = 1, . . . , d− 1). vd is defined as the result of the iterative
process in the case of d ≤ 1 or ¬b1 ∧ . . . ∧ ¬bd−1 for d > 1. If b1 = true, then
v1 is defined as the result of the iterative process. Otherwise, there exists j such
that 2 ≤ j < d ∧ ¬b1 ∧ . . . ∧ ¬bj−1 ∧ bj . In this case vj is defined to be the result
of the iterative process.

The following claim follows immediately from operational semantics of
iteration (6).

Claim 3. Iteration (6) with an initial value v0 ∈ Init of the vector v, provided
Si = Si(wi) and wi0 ⊂ v0 (i = 1, . . . , m), is equivalent to the program

w1 := w10; ... wm := wm0; for x1 in S1(w10), . . . , xm in Sm(wm0) do

t := sel(x1, . . . , xm); v := body(v, xt, t);
if cond(v, x1, . . . , xm) then EXIT end (14)

Symbolic Verification Method for Definite Iterations 547

where, in the case of wk = ∅, the statement wk := wk0 is omitted in (14) and
Sk (wk0) is replaced by Sk (k = 1, . . . , m).

6 Generation of Verification Conditions

Let us remind the definition of the replacement operation rep(v, S, body) which
presents the effect of iteration (1) [21]. Let its result for v = v0 be a vector vn

such that n = 0 provided empty(S), and vi = body(vi−1, si) for all i = 1, . . . , n
provided ¬empty(S) and vec(S) = [s1, . . . , sn]. The following theorem presents
useful properties of the replacement operation [23].

Theorem 5
5.1. Iteration (1) is equivalent to the multiple assignment statement

v := rep(v, S, body).

5.2. rep(v, con(S1, S2), body) = rep(rep(v, S1, body), S2, body).
5.3. rep(v, str(s), body) = body(v, s).

Corollary 2
2.1. ¬empty(S) → rep(v, S, body) = body(rep(v, head(S), body), last(S)).
2.2. ¬empty(S) → rep(v, S, body) = rep(body(v, choo(S)), rest(S), body).

The replacement operation allows us to formulate the following proof rule with-
out invariants for iteration (1). Let R(y ← exp) be the result of substitution
of an expression exp for all occurrences of a variable y into a formula R. Let
R(vec ← vexp) denote the result of a synchronous substitution of the com-
ponents of an expression vector vexp for all occurrences of the corresponding
components of a vector vec into a formula R.

rl1. {P}prog{Q(v ← rep(v, S, body))} �
{P}prog; for x in S do v := body(v, x) end {Q}

where P is a pre-condition, Q is a post-condition which does not depend on the
iteration parameter x, prog is a program fragment, and {P} prog {Q} denotes
partial correctness of a program prog with respect to P and Q.

The following corollary is evident from Theorem 5.1.

Corollary 3. The proof rule rl1 is derived in the standard system of proof rules
for usual statements including the multiple assignment statement.

Projections of vectors body(v, x) and rep(v, S, body) on a variable y from the
vector v are denoted by bodyy(v, x) and repy(v, S, body), respectively.

Let us consider Pascal pointer programs. We will use the method from [11]
to describe axiomatic semantics of these programs. With a pointer type we as-
sociate a section of a heap which presents a computer memory. Let L be a set
of heap elements to which pointers can refer. An element to which a pointer p

548 V. Nepomniaschy

refers is denoted by p↑ in programs or by ⊂p⊃ in specifications, or by L⊂p⊃ in
specifications when it belongs to the set L. We will denote the predicate ⊂p⊃∈ L
by pnto(L, p). Let upd(L, ⊂p⊃, e) be a set resulted from the set L by replacing
the element L ⊂ p ⊃ with the value of the expression e. In the case when the set
L consists of records with the field k, we use upd(L, ⊂p⊃, k, e) to denote a set re-
sulted from the set L by replacing the field L ⊂p⊃ .k of the record L ⊂p⊃ with the
value of the expression e. We consider upd(L, ⊂ q ⊃, (k1, . . . , kn), (e1, . . . , en)) to
be a shorthand for upd(. . . (upd(L, ⊂ q ⊃, k1, e1), . . .), ⊂ q ⊃, kn, en) in the case
of different fields k1, . . . , kn, and when the expressions e1, . . . , en do not depend
on ⊂ q ⊃.

To generate verification conditions for programs which contain statements
q↑:= e, q↑.k := e, new(p), dispose(r), we use their equivalent forms:
L := upd(L, ⊂q⊃, e) when pnto(L, q), L := upd(L, ⊂q⊃, k, e) when pnto(L, q),
L := L

⋃
{⊂ p ⊃} when ¬pnto(L, p), L := L − {⊂ r ⊃} when pnto(L, r),

respectively.
The following proof rules, where P is a pre-condition, Q is a post-condition,

prog is a program fragment, result from these equivalent representations.

rl2. {P} prog {Q(L ← upd(L, ⊂q⊃, e))} � {P} prog; q ↑:= e {Q}
when pnto(L, q).

rl3. {P} prog {Q(L ← upd(L, ⊂q⊃, k, e))} � {P} prog; q ↑ .k := e {Q}
when pnto(L, q).

rl4. {P} prog {Q(L ← L ∪ {⊂p⊃})} � {P} prog; new(p) {Q}
when ¬pnto(L, p).

rl5. {P} prog {Q(L ← L − {⊂r⊃})} � {P} prog; dispose(r) {Q}
when pnto(L, r).

7 Case Study: Iterations over Doubly-Linked Lists

7.1 Specification Means

In this section we assume that a set L that forms a doubly-linked list, consists
of records with the fields key, next and prev. The key field contains an integer
(possible, zero) that serves as an identification name for an element. The next
and prev fields contain a pointer or nil.

The predicate reachn(L, r, q) (reachp(L, r, q), respectively) means that the el-
ement ⊂ q ⊃ is reached from the element ⊂ r ⊃ in the set L via pointers from
the next (prev, respectively) field. Let rootn(L) (rootp(L), respectively) be a
pointer to the head element of the set L with respect to n-reachability
(p-reachability, respectively), i.e. such an element from which all other elements
of the set L can be reached via pointers from the next (prev, respectively) field.
Let l = lastn(L) (l = lastp(L), respectively) be such an element of the set L

Symbolic Verification Method for Definite Iterations 549

that the field l.next (l.prev, respectively) contains nil or a pointer to an element
which does not belong to the set L.

The predicate dset(L) means that the set L is doubly-linked, i.e. there exist
pointers rootn(L) and rootp(L), as well as elements lastn(L) and lastp(L), such
that lastp(L) = ⊂ rootn(L) ⊃ and lastn(L) = ⊂ rootp(L) ⊃. Notice that there
exist the only pointers rootn(L) and rootp(L), as well as the only elements
lastn(L) and lastp(L) for the doubly-linked set L. A doubly-linked set L can
be considered as a structure L such that choo(L) =⊂ rootn(L) ⊃ and rest(L)
results from the set L by removing the element choo(L).

The predicate dlist(L) means that the set L is a doubly-linked list, i.e. dset(L)
and lastn(L).next = lastp(L).prev = nil. The other useful kind of doubly-linked
sets, so-called semilists, is defined by the predicate dpset(L) which means dset(L)
and lastn(L).next = nil.

Let us define several useful operations over doubly-linked sets. A doubly-linked
set which contains the only element l is denoted by dset(l). Let us consider
disjoint doubly-linked sets L1 and L2 such that ¬pnto(L1, lastn(L2).next) and
¬pnto(L2, lastp(L1).prev). We define their concatenation as a doubly-linked set
L = con(L1, L2) such that L = L′

1 ∪ L′
2, where L′

1(L
′
2, respectively) results from

L1(L2, respectively) by placing the pointer rootn(L2) (rootp(L1), respectively)
into the field lastn(L1).next (lastp(L2).prev, respectively). Let us extend the
definition of con(L1, L2) such that con(L1, L2) = Li, where i=1 if L2 is the empty
set Ø, and i=2 if L1 = Ø. We consider con(L, l) and con(l, L) to be a short form
for con(L, dset(l) and con(dset(l), L), respectively. A set con(con(L1, L2), L3) is
denoted by con(L1, L2, L3). It should be noted that for doubly-linked sets L1

and L2, the set L = con(L1, L2) is doubly-linked, and, moreover, dpset(L) in the
case of dpset(L2).

A sequence which is the projection of the doubly-linked set L on the key field
in the direction given by pointers in the next field is denoted by L.key. In the
case of the empty set L, let L.key be the empty sequence.

For a sequence seq of different integers, we denote by sord(seq) a predicate
whose value is true, if the sequence seq has been sorted in the order <, and false
otherwise. Let set(seq) be the set of all elements of the sequence seq.

7.2 Merging Ordered Doubly-Linked Lists

The following annotated program prog1 merges in-place ordered doubly-linked
lists L1 and L2 into an ordered list L, where the sets of keys of elements of L1

and L2 are disjoint.
{P}z := nil; y1 := rootn(L1); y2 := rootn(L2);
for x1 in L1, x2 in L2 do t := sel(x1, x2);
if z �= nil then begin z ↑ .next := yt; yt ↑ .prev := z end;
z := yt; yt := xt.next; if x1 = ω ∨ x2 = ω then EXIT end {Q},
where sel(x1, x2) = if x1.key < x2.key then 1 else 2,
yt = if t = 1 then y1 else y2,
P : L1 = L10∧L2 = L20∧dlist(L10)∧dlist(L20)∧L = L10∪L20∧sord(L10.key)∧
sord(L20.key) ∧ set(L10.key) ∩ set(L20.key) = Ø,

550 V. Nepomniaschy

Q : dlist(L) ∧ sord(L.key) ∧ set(L.key) = set(L10.key) ∪ set(L20.key).
It should be noted that the program prog1 has variables L1, L2, L, y1, y2, z, x1, x2,
t, and the elements z↑ and yt↑ can be written in the form L⊂z ⊃ and L⊂yt ⊃,
respectively. Moreover, yi is a pointer to a scanned element of the list Li (i =
1, 2), and z is a pointer to an element of the set L which has been selected by
means of the function sel at the previous step of the iterative process.

The iteration that is contained in prog1 is considered for the initialization Init:
L1 = L10, L2 = L20, L = L10 ∪ L20, z = nil, y1 = rootn(L10), y2 = rootn(L20),
where dlist(L10) and dlist(L20) hold because of true precondition P.

Claim 4. The restriction RTR2 holds for the iteration from prog1 under the
condition of the initialization Init.

Proof. Let v = v0 ∈ Init. We will use the induction on j = 1, . . . , d−1. If j = 1,
then z = nil and the set L = L10 ∪ L20 does not change after the first step of
the iterative process. Therefore, the restriction RTR2 holds for j = 1. Let us
suppose that j > 1 and ¬b1 ∧ . . . ∧ ¬bj . Two elements of the set L L ⊂ z ⊃
and L⊂yt ⊃ can be changed at the j-th step of the iterative process. Detecting
that the element L⊂z⊃ has been selected at the (j-1)-th step and the element
L ⊂ yt ⊃ has been selected at the j-th step, we see that these elements do not
belong to V ECj0. Claim 4 follows from this and the inductive hypothesis. 	

By Claim 3, the program prog1 is equivalent to the following program prog2 for
the initialization Init:

{P}z := nil; y1 := rootn(L1); y2 := rootn(L2); L1 := L10, L2 := L20;
for x1 in L10, x2 in L20 do t := sel(x1, x2);
if z �= nil then begin z ↑ .next := yt; yt ↑ .prev := z end;
z := yt; yt := xt.next; if x1 = ω ∨ x2 = ω then EXIT end {Q}.

By Corollary 1, the program prog2 is equivalent to the program prog3:
{P}z := nil; y1 := rootn(L1); y2 := rootn(L2); L1 := L10, L2 := L20;
for (x, τ) in S do if z �= nil then begin z ↑ .next := yτ ; yτ ↑ .prev := z end;
z := yτ ; yτ := x.next end {Q},
where the hierarchical structure S = STR(L10, L20) is defined as follows.
(choo(S), rest(S)) = if EMPTY then (ω, ω) else ((choo(Lt10), t1),
if b1 then ω else REST),
where t1 = sel(choo(L10), choo(L20)), b1 = (choo(L10) = ω ∨ choo(L20) = ω),
REST = if t1 = 1 then STR(rest(L10), L20) else STR(L10, rest(L20)).

The body of the iteration that is contained in prog3 can be written in the
form (L, y1, y2, z) := body(L, y1, y2, z, x, τ), where body(L, y1, y2, z, x, τ) =
(if z �= nil then upd(upd(L, ⊂z⊃, next, yτ), ⊂yτ ⊃, prev, z) else L,
if τ = 1 then x.next else y1, if τ = 1 then y2 else x.next, yτ).

The following verification condition VC is generated from prog3 with the help
of the proof rule rl1.
V C : P (L, L1, L2, L10, L20) → Q(L′, L10, L20),
where L′ = repL((L, rootn(L1), rootn(L2), nil), S, body).

Symbolic Verification Method for Definite Iterations 551

In order to prove the condition VC by induction, we will replace doubly-
linked lists by semilists. The verification condition VC immediately follows from
the property
prop(L, L1, L2, L10, L20) = (P ′(L, L1, L2, L10, L20) → Q′(L′, L10, L20)),
where P ′(L, L1, L2, L10, L20) : L1 = L10 ∧ L2 = L20 ∧ dpset(L10) ∧ dpset(L20) ∧
L = L10 ∪ L20 ∧ ¬pnto(L20, choo(L10).prev) ∧ ¬pnto(L10, choo(L20).prev) ∧
sord(L10.key) ∧ sord(L20.key) ∧ set(L10.key) ∩ set(L20.key) = Ø,
Q′(L, L10, L20) : dpset(L) ∧ sord(L.key) ∧ choo(L).key = choo(Lt10).key ∧
choo(L).prev = choo(Lt10).prev ∧ set(L.key) = set(L10.key) ∪ set(L20.key).

Claim 5. The property prop(L, L1, L2, L10, L20) holds.

Proof. Let us suppose t1 = 1. We will use induction on k =|memb(S) | (k ≥ 2).
If k = 2, then | memb(L10) |= 1 and L′ = con(L10, L20). Indeed, the struc-
ture STR(rest(L10), L20) consists of the only element (choo(L20), 2) and L′ =
repL((L10 ∪ L20, rootn(L10), rootn(L20), nil), S, body)= upd(upd(L10 ∪ L20,
⊂ rootn(L10) ⊃, next, rootn(L20)), ⊂ rootn(L20) ⊃, prev, rootn(L10))
by Theorem 5.3 and Corollary 2.2. Therefore, from P ′(L, L1, L2) it follows that
dpset(con(L10, L20)) and sord(con(L10, L20).key). Q′ (L′, L10, L20) follows
immediately from this.

Let us suppose that k > 2 and prop(L, L1, L2, L10, L20) holds for
| memb(S) |< k. Two cases are possible.

1. t2 = 1. Then L′ = {choo(L10)} ∪ L′′, where L′′ = repL((rest(L10) ∪ L20,
rootn(rest(L10)), rootn(L20), nil), STR(rest(L10), L20), body) =
repL((rest(L10) ∪ L20, choo(rest(L10)).next, rootn(L20), rootn(rest(L10))),
STR(rest2(L10), L20), body). By the inductive hypothesis for L′′, it follows from
P ′(L′′, L1, L2, rest(L10), L20) that Q′(L′′, rest(L10), L20). Therefore, L′ =
con(choo(L10), L′′). Q′ (L′, L10, L20) follows from this, sord(L′′.key) and
choo(L10).key < choo(rest(L10)).key =⊂rootn(L′′)⊃.key.
2. t2 = 2. Then L′ = {upd(choo(L10), next, rootn(L20))} ∪
upd(L′′, ⊂ rootn(L′′) ⊃, prev, rootn(L10)), where L′′ = repL((rest(L10) ∪ L20,
rootn(rest(L10)), rootn(L20), nil), STR(rest(L10), L20), body) =
repL((rest(L10) ∪ L20, choo(L10).next, choo(L20).next, root(L20)),
STR(rest(L10), rest(L20)), body). By the inductive hypothesis for L′′, it follows
from P ′(L′′, L1, L2, rest(L10), L20) that Q′(L′′, rest(L10), L20). Therefore,
L′ = con(choo(L10), L′′). Q′ (L′, L10, L20) follows from this, sord(L′′.key),
choo(L10).key < choo(L20).key and choo(L′′) = choo(L20). 	

8 Conclusion

A generalization of the symbolic verification method for definite iterations over
tuples of data structures to allow modification of data structures by the
iteration body and termination of the iteration under a condition is described

552 V. Nepomniaschy

in this paper. The generalization extends application domains of the symbolic
method since generalized iterations allow us to represent a new important case of
while-loops and to apply the method to verification of pointer programs with
several input data structures.

Restrictions RTR1 and RTR2 imposed on iterations over tuples of altered data
structures allow us to change only the current and previously processed values of
iteration parameters and to retain the important property of termination of the
iterations. The idea of reduction of the iterations to the iterations over tuples of
unaltered data structures by means of introducing special variables that store
initial values of variables from the iteration body was found to be fruitful as
demonstrated by Claims 2,3 and by the example in Sect. 7.2.

Instead of loop invariants, the symbolic method uses properties of the replace-
ment operation which, as a rule, are simpler than the invariants. To represent
the invariants, new notions related to a specific character of verified programs
are often required. The proof of verification conditions including the replace-
ment operation does not require introducing such notions. Instead, the symbolic
method uses properties of both hierarchical data structures and the replacement
operation that are expressed by Theorems 2, 3, 5 and Corollary 2.

Verification of pointer programs has been considered in [2,9,12,24,25,26] in the
framework of axiomatic approach. It should be noted that the symbolic method
has been applied to verification of two programs over linear singly-linked lists
for elimination of elements with zero keys and for a search of an element with
reordering [24]. Interesting examples of pointer program verification, which in-
clude a program for in-place merging ordered singly-linked lists, have been given
in [2], where a verification method based on the method proposed in [15] has
been developed. To verify this program, a special list representation and a com-
plicated loop invariant are used in [2]. An application of the tool Isabelle/HOL
to pointer program verification using the method [2] has been described in [12].
Verification of a program over doubly-linked lists for elimination of elements
with zero keys has been presented in [26], where a Hoare-like logic oriented to
pointer program verification has been proposed. This logic has been formalized
in [25] as the separation logic. The symbolic verification method has two advan-
tages as compared with [2] and [26], since it does not use both loop invariants
and special list representations. For Hoare-style verification of pointer programs,
decidable logics and simulation of data structures including doubly-linked lists
have been adapted in [9]. Such a new verification method uses loop and simula-
tion invariants. Correctness proofs of some routines over singly-linked lists have
been considered in [13] as a case study of a reliable library of object-oriented
components.

The symbolic verification method is promising for applications. In [19,20], we
described a tool SPECTRUM which uses the symbolic method for verification of
linear algebra programs. It is suggested to develop a tool for program verification
by the symbolic method and apply it to pointer program verification.

Symbolic Verification Method for Definite Iterations 553

References

1. Abd-El-Hafiz, S.K., Basili, V.R.: A knowledge - based approach to the analysis of
loops. IEEE Trans. of Software Eng. 22(5), 339–360 (1996)

2. Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

3. Ernst, M.D., et al.: Dynamically discovering likely program invariants to support
program evolution. IEEE Trans. of Software Eng. 27(2), 99–123 (2001)

4. Gries, D., Gehani, N.: Some ideas on data types in high-level languages. Comm.
ACM 20(6), 414–420 (1977)

5. Hehner, E.C.R., Gravell, A.M.: Refinement semantics and loop rules. In: Wood-
cock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1497–
1510. Springer, Heidelberg (1999)

6. Hoare, C.A.R.: An axiomatic basis of computer programming. Comm. ACM 12(10),
576–580 (1969)

7. Hoare, C.A.R.: A note on the for statement. BIT 12(3), 334–341 (1972)

8. Hoare, C.A.R.: The verifying compiler: a grand challenge for computing research.
In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 1–12. Springer,
Heidelberg (2004)

9. Immerman, N., et al.: Verification via structure si+mulation. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 281–294. Springer, Heidelberg (2004)

10. Linger, R.C., Mills, H.D., Witt, B.I.: Structured programming: theory and practice.
Addison Wesley, Reading (1979)

11. Luckham, D.C., Suzuki, N.: Verification of array, record and pointer operations in
Pascal. ACM Trans. on Programming Languages and Systems 1(2), 226–244 (1979)

12. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 121–135. Springer, Heidelberg
(2003)

13. Meyer, B.: Towards practical proofs of class correctness. In: Bert, D., P. Bowen,
J., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 359–387. Springer, Heidelberg
(2003)

14. Mills, H.D.: Structured programming: retrospect and prospect. IEEE Software 3(6),
58–67 (1986)

15. Morris, J.M.: A general axiom of assignment, Assignment and linked data struc-
tures. Lecture Notes of Intern. Summer School on Theoretical foundations of pro-
gramming methodology, D. Reidel, pp. 25–41 (1982)

16. Necula, G.C.: Proof-carrying code. In: Proc. 24th Annual ACM Symposium on
Principles of Programming Languages, pp. 106–119. ACM Press, New York (1997)

17. Nepomniaschy, V.A.: Loop invariant elimination in program verification. Program-
ming and Computer Software 3, 129–137 (1985) (English translation of Russian
Journal ”Programmirovanie”)

18. Nepomniaschy, V.A.: On problem–oriented program verification. Programming and
Computer Software 1, 1–9 (1986)

19. Nepomniaschy, V.A., Sulimov, A.A.: Problem-oriented means of program specifi-
cation and verification in project SPECTRUM. In: Miola, A. (ed.) DISCO 1993.
LNCS, vol. 722, pp. 374–378. Springer, Heidelberg (1993)

20. Nepomniaschy, V.A., Sulimov, A.A.: Problem-oriented verification system and its
application to linear algebra programs. Theoretical Computer Science 119, 173–185
(1993)

554 V. Nepomniaschy

21. Nepomniaschy, V.A.: Symbolic verification method for definite iteration over data
structures. Information Processing Letters 69, 207–213 (1999)

22. Nepomniaschy, V.A.: Verification of definite iteration over hierarchical data struc-
tures. In: Finance, J.-P. (ed.) ETAPS 1999 and FASE 1999. LNCS, vol. 1577, pp.
176–187. Springer, Heidelberg (1999)

23. Nepomniaschy, V.A.: Verification of definite iteration over tuples of data structures.
Programming and Computer Software 1, 1–10 (2002)

24. Nepomniaschy, V.A.: Symbolic verification method for definite iteration over al-
tered data structures. Programming and Computer Software 1, 1–12 (2005)

25. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

26. Reynolds, J.C.: Reasoning about shared mutable data structure. In: Proc. Symp.
in celebration of the work of C.A.R. Hoare, Oxford, pp. 1–22 (1999)

27. Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Flener, P.
(ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 271–288. Springer, Heidelberg (1999)

28. Stavely, A.M.: Verifying definite iteration over data structures. IEEE Trans. of
Software Eng. 21(6), 506–514 (1995)

29. Whalen, M., Schumann, J., Fischer, B.: Synthesizing certified code. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 431–450. Springer,
Heidelberg (2002)

Categories of Elementary Sets over Algebras and

Categories of Elementary Algebraic Knowledge

Boris Plotkin1 and Tatjana Plotkin2

1 Department of Mathematics, Hebrew University, Jerusalem, Israel
borisov c©math.huji.ac.il

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
plotkin c©macs.biu.ac.il

To our dear friend B.A.Trahtenbrot on the occasion of his birthday.

Abstract. For every variety of algebras Θ and every algebra H in Θ we
consider the category of algebraic sets KΘ(H) in Θ over H . We consider
also the category of elementary sets LKΘ(H). The latter category is
associated with a geometrical approach to the First Order Logic over
algebras. It is also related to the category of elementary knowledge about
algebra H . Grounding on these categories we formally introduce and
study the intuitive notions of coincidence of algebraic geometries over
algebras H1 and H2 from Θ, of coincidence of logics over H1 and H2,
and of coincidence of the corresponding knowledge. This paper is a survey
of ideas stimulated by this approach.

1 Preliminaries

1.1 Varieties of Algebras, Free Algebras

A variety of algebras is a class of algebras defined by a signature (system of
symbols of operations Ω) and a set of identities for these operations. For example,
the variety of semigroups is given by the operation of multiplication and the
associativity identity. There are also various varieties of groups, of associative
algebras, of Lie algebras, and many others. In every variety Θ there exists the
free algebra W = W (X) over a set X . This means that X is a subset in W
and for every algebra H ∈ Θ and every mapping ν : X → H this ν is uniquely
extended up to a homomorphism μ : W → H . Thus, we have a commutative
diagram

X �id W
�

���
ν

�
μ

H

For example, if Θ is the variety of commutative associative algebras over a
field P , X = {x1, . . . , xn}, then the algebra of polynomials P [x1, . . . , xn] is the
free in Θ algebra over X . Free semigroups and free monoids are well known and
have lots of applications.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 555–570, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

556 B. Plotkin and T. Plotkin

The notion of category is quite popular. For every variety of algebras Θ define
an important category Θ0. Its objects are free in Θ algebras W = W (X), where
X runs all finite subsets in some infinite universum X0. Morphisms in Θ0 are
arbitrary homomorphisms s : W (X) → W (Y).

1.2 Affine Spaces in Θ over H

For every algebra H denote by H(n) the n-th cartesian degree of the set H . Its
elements are the points a = (a1, . . . , an), ai ∈ H . Let, further, X = {x1, . . . , xn}
and take the set HX of mappings ν : X → H . We have the canonical bijections
HX → H(n) and Hom(W, H) → H(n). A point (μ(x1), . . . , μ(xn)), μ(xi) = ai =
ν(xi) corresponds to an element μ : W → H . Each of the sets H(n), HX , and
Hom(W, H) we treat as the affine space for the given H and X . In particular, a
homomorphism μ : W → H is a point of the affine space Hom(W, H).

Let us define the category of affine spaces K0
Θ(H). Its objects are the sets of

homomorphisms Hom(W, H) and morphisms are of the form

s̃ : Hom(W1, H) → Hom(W2, H),

where s : W2 → W1 is a morphism in Θ0 and the mapping s̃ is given by the
rule s̃(ν) = νs : W2 → H for ν : W1 → H . We have a contravariant functor
Θ0 → K0

Θ(H) which implies a duality of the categories if and only if the identities
of the algebra H determine the whole variety Θ, i.e., V ar(H) = Θ.

1.3 Algebraic Sets and Elementary Sets

Let us take W = W (X) and consider equations of the form w = w′, where
w, w′ ∈ W . These w and w′ are the terms in W , w = w(x1, . . . , xn), w′ =
w′(x1, . . . , xn), X = {x1, . . . , xn}. A point a = (a1, . . . , an) ∈ H(n) is a solu-
tion of w = w′ in the algebra H if w(a1, . . . , an) = w′(a1, . . . , an). Similarly, a
point μ ∈ Hom(W, H) is a solution of w = w′ if w(μ(x1), . . . , μ(xn)) = wμ =
w′(μ(x1), . . . , μ(xn)) = w′μ. The equality wμ = w′μ means that the pair (w, w′)
belongs to the kernel of the homomorphism μ, denoted by Ker(μ). The kernel
Ker(μ) is a congruence of the algebra W , and the quotient algebra W/Ker(μ)
can also be considered.

Let now T be a system of equations in W . Set

T ′
H = A = {μ : W → H |T ⊂ Ker(μ)}

for every H ∈ Θ. Here A is the set of points, satisfying every equation in T .
Such sets A are called algebraic sets.

We consider also elementary sets as subsets in the corresponding Hom(W, H).
In order to do that let us treat every equation w = w′ as a formula which is an
equality in First Order Logic (FOL), written as w ≡ w′. The equality w ≡ w′

is an element of a special algebra of formulas Φ = Φ(X) (see Subsect. 2.6 for
the definition). We also view an arbitrary formula u ∈ Φ as an equation and
look for its solutions in the affine space Hom(W (X), H). The value of a formula

Categories of Elementary Sets over Algebras and Categories 557

V alH(u) = V alXH(u) is defined to be a subset in Hom(W (X), H). In particular,
V alH(w ≡ w′) is the set of all points μ : W → H with (w, w′) ∈ Ker(μ). Later
we will see how to determine V alH(u) for an arbitrary u ∈ Φ. A point μ is the
solution of an ”equation” u if μ ∈ V alH(u).

Let us define the logical kernel LKer(μ) of a point μ : W → H . A formula
u ∈ Φ(X) belongs to LKer(μ) if and only if μ ∈ V alH(u). The usual kernel
Ker(μ) is the set of all (w, w′) with w ≡ w′ ∈ LKer(μ).

Note that the algebra Φ is a Boolean algebra. Recall the definition of a filter
of Boolean algebra. Proceed from Φ and a set T ∈ Φ. T is a filter if

1. 0 �∈ T ,
2. u1, u2 ∈ T implies u1 ∧ u2 ∈ T ,
3. u ∈ T and u < v imply v ∈ T .

It is obvious that the kernel LKer(μ) is a filter. This fact is very important.
Define an elementary set in Hom(W, H) as follows. Let T be an arbitrary subset
in Φ. We set:

T L
H = A = {μ : W → H |T ⊂ LKer(μ)}.

If μ is a solution of every ”equation” u ∈ T , then μ ∈ A. The following is also
true:

T L
H =

⋂

u∈T

V alH(u) = A.

Each A of such a form is called an elementary set. It is clear, that every algebraic
set is an elementary set as well.

1.4 Categories of Algebraic and Elementary Sets

Define first the category SetΘ(H) of affine sets over an algebra H . Its ob-
jects are of the form (X, A), where A is an arbitrary subset in the affine space
Hom(W (X), H). The morphisms are

[s] : (X, A) → (Y, B).

Here s : W (Y) → W (X) is a morphism in Θ0. The corresponding morphism
s̃ : Hom(W (X), H) → Hom(W (Y), H) should be coordinated with A and B by
the condition: if ν ∈ A, then s̃(ν) ∈ B. Then the induced mapping [s] : A → B
we consider as a morphism (X, A) → (Y, B).

In every category a part of its objects determines a full subcategory. Thus,
the category KΘ(H) of algebraic sets over H is a full subcategory in SetΘ(H).
We take here objects (X, A), where A is an algebraic set in Hom(W (X), H). If
we take for A the elementary sets, then we are coming up with the category of
elementary sets LKΘ(H). The category KΘ(H) is a full subcategory in LKΘ(H).
We consider KΘ(H) as a main algebra-geometrical (AG)-invariant of the algebra
H , while LKΘ(H) is a main logic-geometrical (LG)-invariant of the same H . We
will work with these invariants.

558 B. Plotkin and T. Plotkin

1.5 Homomorphisms and Filters of Boolean Algebras

We recall here the known facts about homomorphisms and filters of Boolean
algebras. Let α : B1 → B2 be a homomorphism of Boolean algebras. Its kernel
Ker(α) is a congruence in B1, defined by the condition bKer(μ)b′ ⇔ α(b) =
α(b′). Cosets in B1 correspond to the congruence Ker(μ). The coset [1] = T is a
filter, determining the whole congruence Ker(α). The general rule is as follows.
If T is a filter in B, then the corresponding congruence ρ in B is given by: bρb′ ⇔
(b → b′) ∧ (b′ → b) ∈ T . We consider the quotient algebra B/ρ also denoted by
B/T . Here the filter T serves as the kernel of the natural homomorphism. We
will use these facts in the sequel.

Let us pass to some structures of algebraic logic, in particular, to the definition
of the algebra of formulas Φ(X).

2 Halmos Categories and Halmos Algebras

Polyadic Halmos algebras and cylindric Tarski algebras are the main structures
of algebraic logic [3], [2]. They are used to be defined for infinite set of variables
X0. For our purposes we need to explore another situation when we take the set
of all finite subsets X of X0 instead of one infinite X0. This, in particular, leads
to Halmos categories and special multisorted Halmos algebras. From now on X
denotes a finite set.

2.1 Extended Boolean Algebras

Note first that in Algebraic Logic (AL) quantifiers are treated as operations
on Boolean algebras. Let B be a Boolean algebra. Its existential quantifier is a
mapping ∃ : B → B with the conditions:

1. ∃0 = 0,
2. ∃a > a,
3. ∃(a ∧ ∃b) = ∃a ∧ ∃b.

The universal quantifier ∀ : B → B is defined dually:

1. ∀1 = 1,
2. ∀a < a,
3. ∀(a ∨ ∀b) = ∀a ∨ ∀b.

Here 0 and 1 are zero and unit of the algebra B and a, b are arbitrary elements
of B. The quantifiers ∃ and ∀ are coordinated in the usual way: ∃a = ∀a, ∀a = ∃a.

Let Θ and W = W (X) ∈ Θ be fixed and B be a Boolean algebra. We call B
an extended Boolean algebra in Θ over W (X), if

1. There are defined quantifiers ∃x for all x ∈ X in B with ∃x∃y = ∃y∃x for
all x, y ∈ X .

Categories of Elementary Sets over Algebras and Categories 559

2. To every equality w ≡ w′, w, w′ ∈ W it corresponds a constant in B, denoted
by w ≡ w′. Here,
(a) w ≡ w is the unit of the algebra B.
(b) For every n-ary operation ω ∈ Ω we have

w1 ≡ w′
1 ∧ . . . ∧ wn ≡ w′

n < w1 . . . wnω ≡ w′
1 . . . w′

nω.

We can consider the variety of such algebras for the given Θ and W = W (X).

2.2 Example

Take an affine space Hom(W (X), H) and let the algebra Bool(W (X), H) =
Sub(Hom(W (X), H)) be the Boolean algebra of subsets A in Hom(W (X), H).
Let us define quantifiers ∃x, x ∈ X on Bool(W (X), H). We set μ ∈ ∃xA if and
only if there exists ν ∈ A such that μ(y) = ν(y) for every y ∈ X , y �= x.

Every equality w ≡ w′, w, w′ ∈ W is implemented on this algebra as

V alXH (w ≡ w′) = {μ : W → H |(w, w′) ∈ Ker(μ)}.

As a result we have an extended algebra Bool(W (X), H) in Θ over W (X).
Consider, further, the category HalΘ(H) of extended Boolean algebras for

the given H ∈ Θ. Its morphisms are of the form

s∗ : Bool(W (X), H) → Bool(W (Y), H),

where s : W (X) → W (Y) is a morphism in Θ0. Let us define the transition from
s to s∗. We have

s̃ : Hom(W (Y), H) → Hom(W (X), H).

Let A be a subset in Hom(W (X), H). We set s∗A = s̃−1A. The map s∗ is a
homomorphism of Boolean algebras, but, in general, not a homomorphism of
extended Boolean algebras.

We have a covariant functor Θ0 → HalΘ(H).

2.3 Halmos Categories

A category Υ is a Halmos category if:

1. Every its object has the form Υ (X), and this object is an extended Boolean
algebra in Θ over W (X).

2. Morphisms are of the form s∗ : Υ (X) → Υ (Y), where s : W (X) → W (Y)
are morphisms in Θ0, s∗ are homomorphisms of Boolean algebras and the
transition s → s∗ is given by a covariant functor Θ0 → Υ .

3. There are identities controlling the interaction of morphisms with quantifiers
and equalities. See [8] for the explicit list of identities or [7] for more details.

The category HalΘ(H) is an example of the Halmos category. Another im-
portant example is the category of formulas Hal0Θ of the algebras of formulas
Hal0Θ(X) = Φ(X). This category plays in logical geometry the same role as the
category Θ0 does in AG.

560 B. Plotkin and T. Plotkin

2.4 Multisorted Algebras

We will use multisorted algebras in order to define the notion of Halmos algebras.
One-sorted algebras are algebras with one domain. In multisorted algebras there
are many domains. They are written as G = (Gi, i ∈ Γ), where Γ is a set of
sorts, which can be infinite. Categories are often related to multisorted algebras
[4].

Every operation ω in G has a specific type τ = τ(ω). In the one-sorted case
it is the arity of an operation. In the multisorted case we have τ = (i1, . . . , in; j)
and a mapping ω : Gi1 × . . .×Gin → Gj . Morphisms of multisorted algebras are
of the form μ = (μi, i ∈ Γ) : G → G′, where μi : Gi → G′

i are the mappings and
μ is naturally correlated with the operations ω.

Subalgebras, quotient algebras, and cartesian products of multisorted alge-
bras are defined in the usual way. Hence, one can define varieties of multisorted
algebras with the given domain Γ and signature Ω. In every such a variety there
exist free algebras, determined by multisorted sets.

2.5 Halmos Algebras

We deal with multisorted Halmos algebras, associated with Halmos categories.
We first describe the signature. Take LX = {∨, ∧,− , ∃x, x ∈ X, MX} for every
X . Here MX is a set of all equalities over the algebra W = W (X). We add
all possible s : W (X) → W (Y) to LX , treating them as symbols of unary
operations. Denote the new signature by LΘ. Denote by Γ the set of all finite
subsets of the infinite set X0.

Consider further algebras Υ = (ΥX , X ∈ Γ). Every ΥX is an algebra in the
signature LX and an unary operation (mapping) s∗ : ΥX → ΥY corresponds to
every s : W (X) → W (Y). We call an algebra Υ in the signature LΘ a Halmos
algebra, if

1. Every ΥX is an extended Boolean algebra in the signature LX .
2. Every mapping s∗ : ΥX → ΥY is coordinated with the Boolean operations

and is a homomorphism of Boolean algebras.
3. The identities, controlling interaction of operations s∗ with quantifiers and

equalities are the same as in the definition of Halmos categories.

It is clear now that each Halmos category Υ can be viewed as a Halmos algebra
and vice versa. In particular, this relates to HalΘ(H).

2.6 Categories and Algebras of Formulas

Denote by M = (MX , X ∈ Γ) a multisorted set with the components MX .
Take the absolutely free algebra Υ 0 = (Υ 0

X , X ∈ Γ) over M in the signature
LΘ. Elements of each Υ 0

X are FOL formulas which are inductively constructed
from the equalities using the signature LΘ. So, Υ 0 is a multisorted algebra of
pure FOL formulas.

Denote by HalΘ the variety of Γ -sorted Halmos algebras in the signature
LΘ. Denote by Hal0Θ the free algebra of this variety over the multisorted set of

Categories of Elementary Sets over Algebras and Categories 561

equalities M . The same M determines the homomorphism π = (πX , X ∈ Γ) :
Υ 0 → Hal0Θ. If u ∈ Υ 0

X , then the image uπx = ū in Hal0Θ(X) is viewed as a
compressed formula.

Setting Hal0Θ(X) = Φ(X) we get the wanted algebra of compressed formulas.
This is an extended Boolean algebra.

Recall that the Halmos algebra of formulas Hal0Θ is also a Halmos category.
As it was mentioned above, the category Hal0Θ plays in logical geometry the
same role as the category Θ0 does in universal algebraic geometry. We have a
covariant functor Θ0 → Hal0Θ.

2.7 Value of a Formula

The value V alXH (w ≡ w′) corresponds to each equality w ≡ w′, w, w′ ∈ W (X).
This determines a mapping V alH : M → HalΘ(H) which is uniquely extended
up to homomorphisms V al0H : Υ 0 → HalΘ(H) and V alH : Hal0Θ → HalΘ(H).
For every X ∈ Γ we have a commutative diagram

Υ 0 �V al0X
H Bool(W (X), H)

�
���

πX �
��	
V alXH

Φ(X)

Thus, for every u ∈ Υ 0
X and the corresponding ū ∈ Φ(X) we have the values

V al0X
H (u) = V alXH(ū).

We call formulas u and v in Υ 0
X semantically equivalent if V al0Θ(u) = V al0Θ(v)

for every algebra H ∈ Θ. It is proved in [7] that

1. Formulas u and v are semantically equivalent if and only if uπX = ū = v̄ =
vπX .

2. The variety HalΘ is generated by all algebras HalΘ(H), where H ∈ Θ.

The second proposition motivates the definition of the variety HalΘ as a variety,
determined by common identities of all H ∈ Θ.

Let us make a remark on the kernel of the homomorphism V alH . We have
Ker(V alH) = Th(H) = (ThX(H), X ∈ Γ). Here Th(H) = (ThX(H), X ∈ Γ)
is the elementary theory of the algebra H , i.e., the set of formulas u ∈ ThX(H)
such that V alXH (u) = Hom(W (X), H). This is the necessary information from
algebraic logic.

3 Categories and Bases of Elementary Algebraic
Knowledge

This section complements the paper [8]. We will repeat some material from [8]
with some changes in approach and notation. The main distinction is that the
subject of knowledge in [8] was a model, consisting of an algebra H ∈ Θ and
some set of relations implemented in H , while here we deal only with the algebra
H without additional relations. Besides, in [8] the emphasis was made on finite
H while here H is an arbitrary algebra.

562 B. Plotkin and T. Plotkin

3.1 The Category KnlΘ(H)

Denote the category of knowledge about H by KnlΘ(H). The form of its objects
is (X, T, A). Here X ∈ Γ , T ⊂ Φ(X) and A = T L

H is an elementary set in
Hom(W (X), H). We consider T as a description of knowledge and A as its
content.

Let us define morphisms (X, T1, A) → (Y, T2, B) in KnlΘ(H). Proceeding
from some s : W (X) → W (Y), we have s∗ : Φ(X) → Φ(Y). Restrict our-
selves with s satisfying s∗u ∈ T2 if u ∈ T1. Show that a morphism [s] :
(Y, B) → (X, A) corresponds to every s of such kind. For the given s we have
s̃ : Hom(W (Y), H) → Hom(W (X), H). We need to check that if ν ∈ B, then
s̃(ν) ∈ A.

Let ν ∈ B = T L
2H be given. For every v ∈ T2 we have ν ∈ V alXH(v). Condition

s̃(ν) ∈ A means that s̃(ν) ∈ V alXH(u) for every u ∈ T1. Using the fact that V alH
is a homomorphism and, hence, it commutes with s∗, we observe that the latter
condition is equal to

ν ∈ s∗V alXH (u) = V alXH (s∗u).

Since s∗u = v ∈ T2, the inclusion above holds.
We have proved that if ν ∈ B, then s̃(ν) ∈ A. This gives us the required

[s] : (Y, B) → (X, A). Denote the corresponding morphism in the category of
knowledge by

(s, [s]) : (X, T1, A) → (Y, T2, B).

The product of morphisms is defined componentwise, i.e., [s1s2] = [s2][s1].
Now we want to relate the category of knowledge about the algebra H to two

other categories. The second one is the category of elementary sets LKΘ(H).
Having in mind that we consider every set of formulas T as a logical description
of knowledge, let us define the first category called the category LDΘ of sets of
formulas. The objects of the category LDΘ are of the form (X, T), where X ∈ Γ ,
and T is a set of formulas in Φ(X). Morphisms s∗ : (X, T1) → (Y, T2) are defined
like in the category KnlΘ(H). These categories are connected by the functor

CtH : LDΘ → LKΘ(H).

This functor transforms a description of knowledge into its content by the rule:
CtH(T) = T L

H = A. Correspondingly, CtH(s∗) = [s] : (Y, B) → (X, A) is as-
signed to a morphism s∗ : (X, T1) → (Y, T2). The functor CtH is contravari-
ant. The category of knowledge KnlΘ(H) and the pair of categories LDΘ and
LKΘ(H) equipped with the functor CtH are uniquely related. Both can be
treated as a knowledge base about the algebra H .

3.2 Isomorphism of Categories of Knowledge

Let H1, H2 be two algebras in Θ. Isomorphism of the categories KnlΘ(H1) and
KnlΘ(H2) can be represented by a commutative diagram

Categories of Elementary Sets over Algebras and Categories 563

LDΘ
�τ LDΘ

�
CtH1 �

CtH2

LKΘ(H1) �F LKΘ(H2)

Here τ is an automorphism of the category LDΘ while F is the isomor-
phism of the categories of elementary sets, induced by τ . It is an equivalence
of the corresponding databases as well. The explanations will follow in the next
subsection.

3.3 Inner Automorphism of the Category LDΘ

We give here some background and explanations from category theory [5]. Let
ϕ1, ϕ2 : C1 → C2 be two functors of categories. Consider an isomorphism s :
ϕ1 → ϕ2 of functors. It means that for every object A of the category C1 there
is an isomorphism of objects sA : ϕ1(A) → ϕ2(A) in the category C2. Besides,
for every morphism ν : A → B in C1 there is a commutative diagram

ϕ1(A) �sA ϕ2(A)

�
ϕ1(ν)

�
ϕ2(ν)

ϕ1(B) �sB ϕ2(B)

If ϕ1 and ϕ2 are isomorphic, then we write ϕ1 ≈ ϕ2.
Recall that categories C1 and C2 are called equivalent, if there exists a pair of

functors ϕ : C1 → C2 and ψ : C2 → C1 such that ψϕ ≈ 1C1 and ϕψ ≈ 1C2 . Here
1C is the identity functor of the category C. So, any equivalence of categories
is determined by a pair of functors (ϕ, ψ). If ψϕ = 1C1 and ϕψ = 1C2 , then
ψ = ϕ−1 and the equivalence of categories is converted into their isomorphism,
given by the invertible functor ϕ.

If, further, C1 = C2 = C, then ϕ is an automorphism of the category C.
Suppose that ϕ satisfies ϕ ≈ 1C . Let an isomorphism s : 1C → ϕ be given. Then
for the object A we have an isomorphism sA : A → ϕ(A), and for the morphism
ν we have

A �sA ϕ(A)

�
ν

�
ϕ(ν)

B �sB ϕ(B)

This diagram gives ϕ(ν) = sBνs−1
A : ϕ(A) → ϕ(B). Such an automorphism ϕ

is called inner. See details in [6].
Let us return to the mentioned diagram

LDΘ
�τ LDΘ

�
CtH1 �

CtH2

LKΘ(H1) �F LKΘ(H2)

564 B. Plotkin and T. Plotkin

There are two main problems related to this diagram. The first one is to
figure out the structure of automorphisms τ of the category LDΘ subject to
the variety Θ. The second one is to determine relations between the algebras
H1 and H2 which yield the existence of an isomorphism F , induced by
some τ .

Consider the situation when τ is an inner automorphism. Note first of all that
every automorphism ϕ of the category Θ0 induces an automorphism ϕ∗ of the
category Hal0Θ.

Indeed, let W = W (X) be an object in Θ0 and ϕ(W) = W (Y). Then we
set ϕ∗(Φ(X)) = Φ(Y). Every morphism of the category Hal0Θ has the form
s∗ : Φ(X) → Φ(Y), where s : W (X) → W (Y) is a morphism in Θ0. Here we
set ϕ∗(s∗) = ϕ(s)∗ : ϕ∗(Φ(X)) → ϕ∗(Φ(Y)). Now ϕ∗ is an automorphism of the
category Hal0Θ.

Let now τ be an inner automorphism of the category Hal0Θ and σ : 1Hal0Θ
→ τ

be the corresponding isomorphism of functors. For every Φ = Φ(X) we have
an isomorphism σΦ : Φ → τ(Φ). Here, if τ(Φ) = Φ(Y), then σΦ = s∗, where
s : W (X) → W (Y) is an isomorphism in Θ0.

Let us make the next step. Proceed from σΦ : Φ(X) → τ(Φ(Y)). It is an
isomorphism in the category Hal0Θ and, consequently, an isomorphism of Boolean
algebras, in particular, it is a bijection. Let, further, T ⊂ Φ(X). Take T ∗ =
{σΦ(u)|u ∈ T } ⊂ Φ(Y). So, in the category LDΘ we have the objects (X, T) and
(Y, T ∗).

Let us construct an automorphism τ̄ of the category LDΘ by the automor-
phism τ of the category Hal0Θ. For every object (X, T) of the category LDΘ take
τ̄ (X, T) = (Y, T ∗). This determines the bijection on the objects of the category
LDΘ. Further we need to define σ̄ : 1LDΘ → τ̄ by σ : 1Hal0Θ

→ τ . For every
(X, T) we should define an isomorphism σ̄(X,T) : (X, T) → τ̄(X, T) = (Y, T ∗) in
LDΘ. Let us return to σΦ : Φ(X) → Φ(Y). This σΦ induces a bijection T → T ∗.
This means that σΦ is an isomorphism (X, T) → (Y, T ∗) as well. Denote it
by σ̄(X,T). Let now η : (X1, T1) → (X2, T2) be a morphism in LDΘ. We set
τ̄ (η) = σ̄(X2,T2)ησ̄−1

(X1,T1)
: τ̄(X1, T1) → τ̄ (X2, T2). This determines the automor-

phism τ̄ with the isomorphism of functors σ̄ : 1LDΘ → τ̄ . τ̄ is also inner. We say
that an automorphism τ of the category LDΘ is the restriction of the automor-
phism τ of the category Hal0Θ. It is easy to show that if ϕ : Θ0 → Θ0 is an inner
automorphism of the category Θ0, then the corresponding ϕ∗ : Hal0Θ → Hal0Θ
is also an inner automorphism. Hence, we could proceed from τ = ϕ∗. Then the
inner automorphism τ̄ of the category LDΘ is induced by an inner ϕ : Θ0 → Θ0.
It remains the general problem of investigation of automorphisms of the cate-
gories Hal0Θ and LDΘ. The other general problem was already mentioned: for
which H1 and H2 we have an isomorphism F : LKΘ(H1) → LKΘ(H2), induced
by some τ . For τ we can take inner automorphisms and even the identical τ .
Some related remarks will be given in the next section, where we return to logical
geometry.

Categories of Elementary Sets over Algebras and Categories 565

4 Logically-Geometrical Equivalence of Algebras

4.1 The Main Galois Correspondence in Algebraic Geometry and
Logical Geometry

Let us start with algebraic geometry and suppose that Θ, W = W (X) in Θ0,
H ∈ Θ, and Hom(W, H) are given. The Galois correspondence between sets A in
Hom(W, H) and binary relations, i.e., a system of equations T in W , is defined
by:

A = T ′
H = {μ : W → H |T ⊂ Ker(μ)} =

⋂

(w,w′)∈T

V alXH (w ≡ w′).

T = A′
H =

⋂

μ∈A

Ker(μ) = {(w, w′)|A ⊂ V alXH(w ≡ w′)}.

In logical geometry we replace Ker(μ) by the logical kernel LKer(μ) and
instead of systems of equations we consider arbitrary subsets in the algebra of
formulas Φ = Φ(X). Earlier we had:

A = T L
H = {μ : W → H |T ⊂ LKer(μ)} =

⋂

u∈T

V alXH (u).

In the opposite direction:

T = AL
H =

⋂

μ∈A

LKer(μ) = {u|A ⊂ V alXH (u), u ∈ Φ(X)}.

Here T is a filter in Φ, called an H-closed filter. We can speak of closures A′′
H ,

ALL
H ⊂ A′′

H , T ′′
H , and T LL

H .
Note that in the case of algebraic geometry we used representation of a system

of equations as a system of equalities in Φ(X).
The formulas above actually determine the Galois correspondence. For exam-

ple, for the transitions A → AL
H and T → T L

H it means that A1 ⊂ A2 implies
AL

2H ⊂ AL
1H and T1 ⊂ T2 implies T L

2H ⊂ T L
1H . Besides, A ⊂ ALL

H , T ⊂ T LL
H .

4.2 Infinitary Logic

For the fixed Φ = Φ(X) and for T ⊂ Φ consider formulas of the form (
∧

u∈T u) →
v, written also as T → v, v ∈ Φ. If the set T is infinite, then it is a formula of
infinitary logic. It follows from the definitions that the inclusion v ∈ T LL

H takes
place if and only if the formula T → v holds in H . In the case of algebraic geom-
etry the latter formula can be rewritten as a quasi-identity (possibly infinitary):

∧

(w,w′)∈T

w ≡ w′ → w0 ≡ w′
0.

If this quasi-identity holds in H , then w0 ≡ w′
0 ∈ T ′′

H .

566 B. Plotkin and T. Plotkin

4.3 Coordinate Algebras

Let A ⊂ Hom(W, H) be an algebraic set, and T = A′
H be an H-closed congru-

ence in W . Then W/T is called the coordinate algebra for H . It is an algebra in
the variety Θ. Denote by CΘ(H) the category of such coordinate algebras. We
have a duality KΘ(H) → CΘ(H).

Let, further, A ⊂ Hom(W, H) be an elementary set and T = AL
H . We have

a Boolean algebra Φ(X)/T , which we call the coordinate algebra for A. Denote
the category of such coordinate Boolean algebras by LCΘ(H). The transition
(X, A) → Φ(X)/AL

H determines a contravariant functor LKΘ(H) → LCΘ(H).
It seems that in the general case this functor is not a duality. Duality takes place
if H is an algebra of constants of the corresponding logic. See details in [7].

Consider a particular case A = Hom(W (X), H). Then AL
H = ThX(H), and

the coordinate algebra for A is the Boolean algebra Φ(X)/ThX(H).

4.4 Lattices of Elementary Sets

It can be proved that all elementary sets in Hom(W, H) constitute a lattice
which is a sublattice in the lattice of all subsets in the given affine space. This
lattice is antiisomorphic to the lattice of all H-closed filters of the corresponding
algebra Φ = Φ(X). The same is not true for algebraic sets, i.e., they do not
constitute a sublattice in the lattice of all subsets of the space Hom(W, H).
Indeed, if A and B are algebraic sets, their union A ∪ B is not necessarily an
algebraic set, but it is an elementary set.

We will be interested in isomorphisms F : LKΘ(H1) → LKΘ(H2). We call
such an isomorphism correct if it is naturally correlated with the lattice oper-
ations (see [6]). We regard algebras H1 and H2 to have the same logic, if the
categories LKΘ(H1) and LKΘ(H2) are correctly isomorphic. We can also pro-
ceed from correct equivalence of these categories.

The following subsection is the main one in this section.

4.5 LG-Equivalence of Algebras

Definition 1. Algebras H1 and H2 in Θ are called LG-equivalent, if for every
X ∈ Γ and every T in Φ(X) we have T LL

H1
= T LL

H2
.

Recall (see Subsect. 4.1) that H1 and H2 are AG-equivalent, if for every X and
every T in W = W (X) we have T ′′

H1
= T ′′

H2
.

It follows from the definitions, that

1. If H1 and H2 are LG-equivalent, then they are AG-equivalent.
2. If H1 and H2 are LG-equivalent, then they are elementary equivalent in the

sense of Tarski, i.e., the elementary theories Th(H1) and Th(H2) coincide.

The opposite statement is not true. Therefore LG-equivalence is more strict than
elementary equivalence.

Now let us prove that

Categories of Elementary Sets over Algebras and Categories 567

Proposition 1. If H1 and H2 are LG-equivalent, then the categories LKΘ(H1)
and LKΘ(H2) are correctly isomorphic.

Remark 1. In the case of algebraic geometry (AG case) such a proposition triv-
ially follows from the duality of LKΘ(H) and LCΘ(H). The LG situation is not
so trivial.

Proof. Let (X, A) be an object in LKΘ(H1) and H1 and H2 be LG-equivalent.
We set: F (X, A) = (X, B), where B = (AL

H1
)L
H2

. Here F determines a bijection
on the objects of the category.

Take a morphism [s] = [s]H1 : (X, A1) → (X, A2) in LKΘ(H1). We have
s : W (Y) → W (X) and s̃ : Hom(W (X), H1) → Hom(W (Y), H1). If ν ∈ A1,
then s̃(ν) ∈ A2. We say that s is admissible for A1 and A2. The straightforward
check shows that the same s is admissible for B1 and B2. The same is true in
the opposite direction. This, in particular, gives a morphism [s]H2 : (X, B1) →
(Y, B2) in LKΘ(H2). We need to prove that there is a one-to-one correspondence
between [s]H1 and [s]H2 . The last means, that if [s]H1 = [s1]H1 = [s2]H1 , then
[s]H2 = [s1]H2 = [s2]H2 , and vice versa.

Let [s1]H1 = [s2]H1 . This equality means that for every ν ∈ A1 = A we have
s̃1(ν) = s̃2(ν); νs1 = νs2. Then for every w ∈ W (Y) we have νs1w = νs2w. This
gives ν ∈ V alXH1

(s1w ≡ s2w), and A ∈ V alXH1
(s1w ≡ s2w). Therefore, (s1w ≡

s2w) ∈ AL
H1

= T = BL
H2

, where B = B1. Now the inclusion (s1w ≡ s2w) ∈ BL
H2

gives B ⊂ V alXH2
(s1w ≡ s2w). For every μ ∈ B we have μs1w ≡ μs2w. It is

true for every w ∈ W (Y), and μs1 = μs2, s̃1(μ) = s̃2(μ) for every μ ∈ B. Thus,
[s1]H2 = [s2]H2 . The opposite direction is checked similarly.

We set F ([s1]H1 = [s]H2 , which gives an isomorphism F : LKΘ(H1) →
LKΘ(H2). This isomorphism is correct.

Let us make some general remarks on relations between morphisms and Galois
transitions used in the first part of the proof. Take s : W (X) → W (Y) and,
correspondingly, s∗ : Φ(X) → Φ(Y). For T ⊂ Φ(Y) we set u ∈ s∗T for s∗u ∈ T .
For T ⊂ Φ(X) we have s∗T = {s∗u|u ∈ T }. Further, s̃ : Hom(W (Y), H) →
Hom(W (X), H). Take B = s∗A = s̃−1A for A ⊂ Hom(W (X), H). For B ⊂
Hom(W (Y), H) we have s∗B = {s̃(μ)|μ ∈ B}.

We have the properties:

1. If T ⊂ Φ(X), then (s∗T)L
H = s∗T L

H .
2. If B ⊂ Hom(W (Y), H), then (s∗B)L

H = s∗BL
H .

3. If A ⊂ Hom(W (X), H), then s∗AL
H ⊂ (s∗A)L

H .

We view these properties as rules of behavior of elementary sets under the moves
of affine spaces. The first rule implies that if A is an elementary set, then so is
s∗A. Note also that if u ∈ Φ(X) and u ∈ ThX(H), then s∗u ∈ (ThY)(H).
Indeed, V alYH(s∗u) = s∗V alXH(u) = s∗1 = 1 = Hom(W (Y), H) follows from
V alXH(u) = 1 = Hom(W (X), H).

568 B. Plotkin and T. Plotkin

Let us return to the diagram

LDΘ
�τ LDΘ

�
CtH1 �

CtH2

LKΘ(H1) �F LKΘ(H2)

It is important to notice that the algebra H does not participate in the cate-
gory LDΘ and the upper arrow is not concerned with H . Automorphisms τ are
also free from H . On the other hand, it is natural to ask for which H1 and H2

with the isomorphism F : LKΘ(H1) → LKΘ(H2) there exists a suitable τ .
Consider separately the case of τ = 1 with the diagram

LKΘ(H1) �F LKΘ(H2)

�
CtH1 �

��	CtH2

LDΘ

Take an object (X, u), i.e., T consists of one element u. Then V alXH2
(u) =

F (V alXH1
(u)). Here, if u ∈ ThX(H1), but does not belong to ThX(H2), then

F (Hom(W (X), H)) is not in Hom(W (X), H2). This means that the correspond-
ing F is not correct. It is quite possible that some other τ provides correctness
of F . Thus, in order to get a correct F , we should assume that the algebras
H1 and H2 are elementary equivalent. Unlike LG-equivalence that implies the
needed isomorphism of categories, the elementary equivalence does not provide
this. We mention here the following

Proposition 2. Algebras H1 and H2 are elementary equivalent if and only if
for every X ∈ Γ and finite T ⊂ Φ(X) we have T LL

H1
= T LL

H2
. This imparts some

”geometrical” meaning to the idea of elementary equivalence.

4.6 Noetherianity

Here we consider noetherian conditions providing coincidence of LG-equivalence
and elementary equivalence. Let us give some definitions.

1. An algebra H ∈ Θ is LG-noetherian, if every elementary set over H can be
determined by one formula.

2. An algebra H is strongly LG-noetherian, if in every T there exists a finite
part T0 such that T L

H = T L
0H .

3. An algebra H is weakly LG-noetherian, if for every formula T → v, holding
in H , there exists a finite part T0 in T such that T0 → v holds in H .

The following proposition takes place:

Proposition 3. If H1 and H2 satisfy one of the noetherianity conditions, then
they are LG-equivalent if and only if they are elementary equivalent.

Concluding this section on elementary sets let us make one more remark. For
the given algebra H take its group of automorphisms Aut(H). This group acts
naturally in each Hom(W, H).

Categories of Elementary Sets over Algebras and Categories 569

Theorem 1. Every elementary set over H is invariant under the action of the
group Aut(H).

5 Problems

In this section we formulate several natural problems joined by the idea of LG-
equivalence.

Problem 1. Whether there exists an infinite LG-noetherian algebra H?

Problem 2. Whether there exists an infinite weakly LG-noetherian algebra H?

Problem 3. Whether there exists an infinite weakly LG-noetherian Abelian gro-
up H?

Problem 4. Construct examples of non-isomorphic LG-equivalent algebras.

Remark 2. Constructions of model theory imply that examples of such kind
exist. This problem mainly asks what is the situation for the specific varieties Θ
and H ∈ Θ.

Problem 5. Let L1 and L2 be two extensions of a field P . Is it true that LG-
equivalence implies isomorphism?

Remark 3. In the general case this problem has a negative solution (see [1] and
references therein). The question makes sense if we impose additional conditions
on the extensions L1 and L2.

Problem 6. Are there elementary equivalent but not LG-equivalent extensions
L1 and L2?

Problem 7. Consider the LG-theory of Abelian groups.

6 Concluding Remarks

In conclusion, we remind the reader that in AG and LG along with the categories
KΘ(H) and LKΘ(H) we consider the categories of coordinate algebras CΘ(H)
and LCΘ(H). Also, along with the category LCΘ(H) we consider a close (similar)
category LDΘ which is not related to the algebra H but induced by the transition
to the category of knowledge KnlΘ(H). This gives us a new insight on the general
problem of similarity of logics for different H1 and H2. We also speak of the
sameness of knowledge about H1 and H2.

Note that LG-equivalence often implies isomorphism. For example, it is true
if H1 and H2 are free groups Fn and Fm (Zlil Sela). But we do not know what
is the situation if H1 is a free group F (X) and H2 is an arbitrary group, LG-
equivalent to H1. Whether it is true that H1 and H2 are isomorphic? If yes, this
will mean that the free group F (X) is LG-separated from all other groups.

570 B. Plotkin and T. Plotkin

Acknowledgements

We are grateful to Professor B. Zilber for the very useful discussions and for
letting us know the paper [1] which is strongly related to the problems formulated
above.

References

1. Grossberg, R.: Classification theory for abstract elementary classes. Logic and Al-
gebra. In: Zhang, Y. (ed.) Contemporary Mathematics vol. 302, pp. 165–204 AMS
(2002)

2. Halmos, P.R.: Algebraic logic. New York (1969)
3. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. North-Holland Publ. Co.,

Amsterdam (1985)
4. Higgins, P.J.: Algebras with a scheme of operators. Math. Nachr. 27, 115–132 (1963)
5. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1971)
6. Plotkin, B.: Varieties of algebras and algebraic varieties. Israel Math. Journal 96(2),

511–522 (1996)
7. Plotkin, B.: Algebraic geometry in First Order Logic. Sovremennaja Matematika

and Applications 22, 16–62 (2004) Journal of Math. Sciences 137(5), 5049–5097
(2006), http://arxiv.org/abs/math.GM/0312485

8. Plotkin, B., Plotkin, T.: An Algebraic Approach to Knowledge Base Models Infor-
mational Equivalence. Acta Applicandae Mathematicae 89(1–3), 109–134 (2005),
http://arxiv.org/abs/math.GM/0312428

http://arxiv.org/abs/math.GM/0312485
http://arxiv.org/abs/math.GM/0312428

Selection and Uniformization Problems in the

Monadic Theory of Ordinals: A Survey

Alexander Rabinovich and Amit Shomrat

Sackler Faculty of Exact Sciences, Tel Aviv University, Israel 69978
{rabinoa,shomrata}@post.tau.ac.il

Dedicated with deepest appreciation and respect to Boris Abramovich
Trakhtenbrot whose inspiration as a teacher, a researcher and a role model has
been guiding us and many others for many years.

Abstract. A formula ψ(Y) is a selector for a formula ϕ(Y) in a struc-
ture M if there exists a unique Y that satisfies ψ in M and this Y also
satisfies ϕ. A formula ψ(X, Y) uniformizes a formula ϕ(X, Y) in a struc-
ture M if for every X there exists a unique Y such that ψ(X, Y) holds
in M and for this Y , ϕ(X, Y) also holds in M. In this paper we survey
some fundamental algorithmic questions and recent results regarding se-
lection and uniformization, when the formulas ψ and ϕ are formulas of
the monadic logic of order and the structure M = (α, <) is an ordinal α
equipped with its natural order. A natural generalization of the Church
problem to ordinals is obtained when some additional requirements are
imposed on the uniformizing formula ψ(X, Y). We present what is known
regarding this generalization of Church’s problem.

1 Introduction

The aim of this paper is to survey recent results on the selection and uniformiza-
tion problems for monadic (second-order) logic of order. These results are well-
known for the standard discrete time model of natural numbers. When selection
and uniformization problems are considered over countable ordinals new and in-
teresting phenomena appear. Our exposition focusses on methodological issues
rather than providing the technical details. No proofs are offered, though we
sometimes indicate the main ideas of the proofs.

1.1 Selection

Definition 1 (Selection). Let ϕ(Y), ψ(Y) be formulas and M a structure.
We say that ψ selects (or, is a selector for) ϕ in M iff:

1. either both formulas are not satisfied in M, or
2. ψ defines in M a unique P and this P satisfies ϕ in M.

We say that ψ selects ϕ over a class C of structures iff ψ selects ϕ in every
M ∈ C.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 571–588, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

572 A. Rabinovich and A. Shomrat

Generally, once some logic L and a class C of structures for L have been fixed,
three basic questions may be raised concerning selection for L-formulas over C.
First,

(1) Selection property: Does every L-formula have a selector over C?

When this is the case we shall say that C has the selection property (with respect
to L-formulas). When C lacks the selection property, the following algorithmic
question naturally arises:
(2) Deciding selectability: Can we decide, given an L-formula ϕ, whether it

has a selector over C?

Finally, whether or not C has the selection property, it seems interesting to ask:
(3) Synthesis of a selector: If ϕ has selectors over C, can one be computed

for it?

When both Questions (2) and (3) are answered affirmatively, we say that the
selection problem over C is solvable.

We consider the above questions when the logic L is either the second-order
monadic logic of order (MLO) or its first-order fragment and C = {(α, <)} for
some ordinal α or C is a class of countable ordinals.

MLO extends first-order logic by allowing quantification over subsets of the
domain. The binary relation symbol ‘<’ is its only non-logical constant. Since
our structures are ordinals, we shall assume that ‘<’ is interpreted as a well-order
of the domain. In short, MLO uses first order variables s, t, . . . interpreted as
elements and monadic second-order variables X, Y, . . . interpreted as subsets
of domain. The atomic formulas are s < t and t ∈ X ; all other formulas are
built from the atomic ones by applying Boolean connectives and quantifiers ∀, ∃
for both kinds of variables. An MLO formula is first-order if it does not use
quantification over set variables.

An MLO formula ϕ(Y) defines in an ordinal α the family of sets which satisfy
ϕ(Y) in α. If this family is non-empty, then a selector ψ(Y) for ϕ defines one
set from this family.

MLO plays a very important role in mathematical logic and computer sci-
ence. The fundamental connection between this logic and automata was discov-
ered independently by Büchi, Elgot and Trakhtenbrot [1, 6, 20–22] and the logic
was proved to be decidable over the class of finite chains. Büchi [2] proved the
decidability of MLO in (ω, <) and later [4] that the monadic theory of every or-
dinal ≤ ω1 is decidable. Shelah [18] showed that the MLO-theory of any ordinal
α < ω2 is decidable. Rabin proved that the MLO theory of the full binary tree
T2 := (D, <, Left, Right) is decidable [13, 14]. Here D is the set all finite strings
over {0, 1}; the relation symbol ‘<’ is interpreted as the prefix relation and the
unary predicate ‘Left’ (respectively, ‘Right’) is interpreted as the set of strings
whose last symbol is ‘0’ (respectively, ‘1’).

The Rabin basis theorem states that if T2 |= ∃Zϕ(Z) then there is a regular
subset S ⊆ D such that T2 |= ϕ(S). Since a subset of T2 is regular iff it is
definable, the Rabin basis theorem can be restated as following: the full binary
tree has the selection property.

Selection and Uniformization Problems in the Monadic Theory of Ordinals 573

1.2 Uniformization

A uniformizer for a binary relation R is a function f ⊆ R such that dom(f) =
dom(R). That every binary relation has a uniformizer is a statement equivalent
to the Axiom of Choice. Existence of a uniformizer becomes mathematically
interesting when we place certain restrictions on the uniformizing function f . A
uniformization context is a pair 〈R, F〉, where R is a class of binary relations
and F a class of functions. We call R the challenge class and F the response
class of the context. Given such a pair, one may ask whether a particular (resp.
every) R ∈ R has a uniformizer f ∈ F .1

This paper focuses on two uniformization contexts – definable and causal
uniformization – in which the challenge class R is taken to be the class of
relations definable in some ordinal α, when α is viewed as a structure for MLO.
Our aim is to survey the current state of research into these two contexts, to
report recent developments, and to indicate what seem to us the most interesting
questions still left open.

1.3 Definable Uniformization

The first uniformization context we explore we call definable uniformization (in
the literature, this is referred to simply as “uniformization”; see, for instance,
[8] and [11]). Here, the response class F is taken to be the class of functions
P(α) → P(α) definable in the ordinal α (or, strictly speaking, in the structure
(α, <) where α is equipped with its natural order):

Definition 2 (Definable uniformization). Let ϕ(X, Y), ψ(X, Y) be formulas
and M a structure. Say that ψ uniformizes (or, is a uniformizer for) ϕ in M
iff:

1. M |= ∀X∃≤1Y ψ(X, Y),
2. M |= ∀X∀Y (ψ(X, Y) → ϕ(X, Y)), and
3. M |= ∀X

(
∃Y ϕ(X, Y) → ∃Y ψ(X, Y)

)
.

Here “∃≤1Y . . .” stands for “there exists at most one. . .”.
We say that ψ uniformizes ϕ over a class C of structures iff ψ uniformizes ϕ in
every M ∈ C.

Note that ϕ(Y) has a selector if and only if X = X ∧ ϕ(Y) has a definable uni-
formizer. Thus, selection is a special case of uniformization. Accordingly, Ques-
tions (1)–(3) above can be generalized to the latter case.

(1′) Uniformization property: Does every formula have a uniformizer over
C?

(2′) Decidability of uniformization: Can we decide, given a formula ϕ,
whether it has a uniformizer over C?

(3′) Synthesis of a uniformizer: If ϕ has uniformizers over C, can one be
computed for it?

1 Some famous examples are found in descriptive set theory, where one proves, for
instance, that for every Π1

1 relation there is a Π1
1 uniformizer.

574 A. Rabinovich and A. Shomrat

Again, when both Questions (2′) and (3′) are answered affirmatively, we say
that the uniformization problem over C is solvable.

Gurevich and Shelah [8] proved that the full binary tree does not have the
uniformization property. In [11], Lifsches and Shelah characterize the trees which
have the uniformization property.2 For ordinals they show:

Theorem 3. An ordinal α has the uniformization property iff α < ωω.

This answers Question (1′) for ordinals. Question (3′) was answered in the af-
firmative when C = {(α, <)} for α < ωω. However, for an ordinal α ≥ ωω,
Questions (2′) and (3′) remain open.

In Section 10 we consider a restricted version of uniformization problem which
we call bounded uniformization, and show that the bounded uniformization prob-
lem is solvable in every ordinal ≤ ω1.

1.4 Church Uniformization

The second uniformization context we look at is that of causal uniformiza-
tion, better known as the Church uniformization. While definable uniformization
makes sense in any structure, causal uniformization is only relevant in a linear
order.

Definition 4 (Causal operator). Let (A, <) be a linear order and f : P(A) →
P(A). We call f causal iff for all P, P ′ ⊆ A and α ∈ A,

if P ∩ [0, α] = P ′ ∩ (−∞, α], then f(P) ∩ (−∞, α] = f(P ′) ∩ (−∞, α].

That is, if P and P ′ agree up to and including α, then so do f(P) and f(P ′).

When discussing causal uniformization, we fix some ordinal α. Again, we take
as challenge class R the class of relations definable in (α, <). Note that in MLO
variables range over subsets of the domain. Thus, relations definable in (α, <) are
relations on P(α). It therefore makes sense to ask, whether a definable relation
can b e uniformized by a causal function. Accordingly, in causal uniformization
the response class F consists of all causal functions f : P(α) → P(α) (whether
definable or not).

We speak of a causal function f uniformizing a formula ϕ in (α, <), meaning
that f uniformizes the relation defined by ϕ in (α, <). In this context, Question
(1′) above becomes the question whether any formula ϕ has a causal uniformizer
in (α, <). For any α ≥ 2, the answer is easily seen to be negative. For example,
the formula saying “if X = ∅, then Y = All; otherwise, Y = ∅” has no causal
uniformizer in (α, <) for any α ≥ 2. Question (2′) is already more interesting.

Definition 5 (Church uniformization problem). Let α be an ordinal. Given
a formula ϕ(X, Y), decide whether there is a causal uniformizer for ϕ in (α, <).

2 A tree for them is a poset (T, <) such that for every a ∈ T , {b ∈ T | b ≤ a} is a
linear order.

Selection and Uniformization Problems in the Monadic Theory of Ordinals 575

Church [5] was the first to formulate this problem for the case α = ω. Some
restricted versions of this problem were solved by Church and Trakhtenbrot.
Church’s Problem for ω was solved by Büchi and Landweber [3] building on
McNaughton’s game-theoretical interpretation of this problem [12]. Under this
game-theoretical interpretation the causal operators correspond to the strategies
of the players.

It would seem that Question (3′) is irrelevant to causal uniformization. In
what sense can we speak of computing a general causal uniformizer? Already in
ω, there are 2ℵ0 such operators. It becomes relevant once more, when we examine
the uniformization context where the response class consists of all operators
f : P(α) → P(α) which are both definable and causal.

(1′′) Does every formula which has a causal uniformizer in (α, <) also has a
definable causal uniformizer?

When this fails, we have an analogue of Question (2′).

(2′′) Can we decide, given a formula ϕ, whether it has a definable causal uni-
formizer in (α, <)?

And, of course,

(3′′) If ϕ has definable causal uniformizers in (α, <), can we compute a formula
defining one?

Question (1′′) will be answered here for all ordinals. Questions (2′′) and (3′′) are
yet unsolved for α ≥ ωω.

Note that ϕ(Y) has a selector if and only if X = X ∧ ϕ(Y) has a defin-
able causal uniformizer. Thus, selection is also a special case of definable causal
uniformization. Indeed, looking at selection would turn out to be the key for
answering Question (1′′).

1.5 The Structure of the Paper

In Sect. 2, we fix our notations and terminology. We also recall some fundamental
theorems about the monadic theories of countable ordinals. Section 3 surveys the
selection property in an ordinals. In Sect. 4 the selection problem in an ordinal
are considered. Section 5 investigates the selection property and the selection
problem over classes of countable ordinals. The logic considered in Sect. 3–5 is
MLO, while in Sect. 6 we consider the first-order fragment of MLO and other
logics with expressive power between first-order MLO and MLO. In Sect. 7 we
assign to each formula ϕ a selection degree which measures “how difficult it is to
select ϕ”. We show that in a countable ordinal all non-selectable formulas share
the same degree.

If a structure M lacks the selection property, it is natural to ask whether
there is a finite expansion of M which has the selection property. This question
is investigated for a countable ordinal in Sect. 8. In Sect. 9 the Church uni-
formization problem for countable ordinals is considered. In Sect. 10 we treat

576 A. Rabinovich and A. Shomrat

a restricted version of the definable uniformization problem. Finally, Sect. 11
contains some open problems.

As mentioned above, this paper offers no proofs and only occasionally indicates
their main ingredients. For results having to do with selection in a particular
ordinal (Sects. 3, 4, 6 and 7) proofs can be found in [16]. Sections 5, 8 and 10 are
covered in [17]. All results having to do with Church (= causal) uniformization
(Sect. 9) are in [15]. It is perhaps worth mentioning that almost all proofs relay
on what is known as the “composition method” (originating in [7] and adapted
and ingeniously applied to the case of MLO in [18]). In [16] use is also made of
Büchi’s translation of MLO-formulas into automata over ordinal words (see, for
instance, [4]).

From now on, “uniformization” simpliciter would mean “definable uniformiza-
tion”. When we intend to refer to causal uniformization, this would be stated
explicitly.

Finally, for the sake of notational simplicity, we state our results for formulas
ϕ(X, Y) with free variables X and Y . All results generalize in a straightfor-
ward manner to formulas ϕ(X̄, Ȳ) where X̄ and Ȳ are finite tuples of (distinct)
variables.3

2 Preliminaries

2.1 Notations

We use n, k, l, m, p for natural numbers, α, β, γ, δ, ζ for ordinals. The set of nat-
ural numbers is ω := {0, 1, 2, . . .}. ω1 is the first uncountable ordinal. We write
α + β, αβ, αβ for the sum, multiplication and exponentiation, respectively, of
ordinals α and β.

We use standard notation for sub-intervals of a chain: if (A, <) is a chain and
b < a are in A, we write (b, a) := {c ∈ A | b < c < a}, [b, a) := (b, a) ∪ {b}, etc.

2.2 MLO

The vocabulary of MLO consists of first-order variables t0, t1, t2, . . . interpreted
as elements of the domain and monadic second-order variable X0, X1, . . . inter-
preted as subsets of the domain. The atomic formulas are ti < tj and ti ∈ Xj ;
the MLO formulas are built from atomic ones by applying Boolean connectives
and quantifiers ∀, ∃ for both kinds of variables. An MLO formula is first-order if
it does not use quantification over set variables; note however, that such formula
may contain free set variables.

The quantifier depth of a formula ϕ is denoted by qd(ϕ).
We use lower case letters s,t, . . . to denote the first-order variables and upper

case letters X , Y , . . . to denote second-order set variables.

3 To fit the general notion of uniformization, the relation defined by ϕ(X̄, Ȳ) must be
thought of as consisting of pairs (P̄ , Q̄) of tuples of subsets of the domain, where
lg(P̄) = lg(X̄) and lg(Q̄) = lg(Ȳ).

Selection and Uniformization Problems in the Monadic Theory of Ordinals 577

A structure is a tuple M := (A, <, ā, P̄) where: A is a non-empty set, < is a
binary relation on A, and ā := 〈a0, . . . , am−1〉 (respectively, P̄ := 〈P0, . . . , Pl−1〉)
is a finite tuple of elements (respectively, subsets) of A.

Suppose ϕ is a formula with free-variables among t0, . . . , tm−1, X0, . . . , Xl−1.
We define the relation M |= ϕ (read: M satisfies ϕ) as usual.

The monadic theory of M, MTh(M), is the set of all formulas satisfied by M.
When ā and P̄ are the empty tuple (as is most often the case for us), MTh(M)
is a set of sentences.

2.3 The Monadic Theory of Countable Ordinals

Büchi (for instance [4]) has shown that there is a finite amount of data concerning
any ordinal ≤ ω1 which determines its monadic theory:

Theorem 6. Let α ∈ [1, ω1]. Write α = ωωβ + ζ where ζ < ωω (this can be
done in a unique way). Then the monadic theory of (α, <) is determined by:

1. whether α is countable or α = ω1,
2. whether α < ωω, and
3. ζ.

We can associate with every α ≤ ω1 a finite code which holds the data required
in the previous theorem. This is clear with respect to (1) and (2). As for (3), if
ζ �= 0, write

ζ =
∑

i≤n ωn−i · an−i, where n, ai ∈ ω for i ≤ n and an �= 0

(this, too, can be done in a unique way), and let the sequence 〈an, . . . , a0〉 encode
ζ. The following is then implicit in [4]:

Theorem 7. There is an algorithm that, given a sentence ϕ and the code of an
α ∈ [1, ω1], determines whether (α, <) |= ϕ.

Agreement In this paper, whenever we say that an algorithm is “given an
ordinal...” or “returns an ordinal...”, we mean the code of the ordinal.

3 The Selection Property in an Ordinal

In [11], Lifsches and Shelah characterize the trees which have the uniformization
property.4 For ordinals they show that an ordinal α has the uniformization prop-
erty iff α < ωω. It follows, in particular, that α < ωω has the selection property.
On the other hand, it does not immediately follow that all ordinals above ωω

lack the selection property. Indeed, the selection property is known not to imply
the uniformization property. As mentioned in Sect. 1, Rabin proved that the full
binary tree has the selection property[14], while Gurevich and Shelah proved
that the full binary tree lacks the uniformization property [8]. But, in fact, for
selection, too, we have:
4 A tree for them is a poset (T, <) such that for every a ∈ T , {b ∈ T | b ≤ a} is a

linear order.

578 A. Rabinovich and A. Shomrat

Proposition 8 (Selection property). An ordinal α has the selection property
iff α < ωω.

The proof that in any ordinal α ≥ ωω there are non-selectable formulas, reduces
to the cases α = ωω and α = ω1. The key to handling these, in turn, is the
notion of a periodic subset.

If (A, <, P) is a structure and D ⊆ A, we write (A, <, P)�D for the restriction
of (A, <) to D, that is, (A, <, P)�D := (D, <, P ∩ D).

Definition 9. Let α ∈ {ωω, ω1} and P ⊆ α. We say that P is periodic iff there
are α0, α1 < α and P1 ⊆ α1 such that (α, <, P)�[α0,α) is the “concatenation” of
α copies of (α1, <, P1), i.e., for every β < α,

(α, <, P)�[α0+α1β,α0+α1(β+1)) is isomorphic to (α1, <, P1).

The notion of a periodic subset enters our discussion through the following
lemma.

Lemma 10. Let α ∈ {ωω, ω1}. Any definable subset of α is periodic.

Now, no unbounded ω-sequence in ωω is periodic (in fact, an unbounded periodic
subset of ωω has order-type ωω). Note that there is a formula θω ub(Y) that in
every countable limit ordinal α defines the set of all unbounded ω-sequences in
α. This formula θω ub(Y) is the conjunction of the following two formulas:

“Y is unbounded”: ∀t1∃t2(t2 > t1 ∧ t2 ∈ Y), and
“no point is a limit point of Y ”:

∀t1∃t2

(
t1 > 0 →

(
t2 < t1 ∧ ∀t3(t2 < t3 < t1 → t3 /∈ Y)

))
.

Therefore,

Corollary 11. The formula θω ub(Y) saying “Y is an unbounded ω-sequence”
has no selector in (ωω, <).

To handle ω1 recall the following definitions:

Definition 12 (Clubs and stationary sets)

1. Let C ⊆ ω1. C is called:
closed iff for every limit β < ω1, if sup(C ∩ β) = β, then β ∈ C.5

a club iff C is closed and unbounded in ω1.
2. S ⊆ ω1 is called stationary iff for every club C ⊆ ω1, S ∩ C �= ∅.

Note that being a club and being stationary are definable properties of a subset
of ω1 and that ω1 itself is definable. It is also easy to show that any unbounded
periodic subset of ω1 contains a club. From this and Lemma 10, one derives:

Corollary 13. Let θstat(Y) say: “Both Y ∩ω1 and ω1 \Y are stationary in ω1”.
Then θstat has no selector in (α, <) for every α ≥ ω1.

5 That is, C is closed under taking sup.

Selection and Uniformization Problems in the Monadic Theory of Ordinals 579

Note that if two ordinal have the same monadic theory, then ψ selects ϕ in the
first ordinal iff ψ selects ϕ in the second. By Theorem 6, ωω and ωωβ have the
same monadic theory for every countable ordinal β > 0. Therefore, θω ub(Y) is
not selectable in ωωβ for every countable β > 0.

For a countable ordinal α > ωω, a formula ψα(Y) which is unselectable in α
can be constructed as follows. Write α = ωωβ + ζ where ζ < ωω. If ζ = 0, then
θω ub(Y) is not selectable in α. Otherwise note that since 0 < ζ < ωω there is a
formula Ψ(t) such that α |= Ψ(μ) iff μ = ωωβ. Hence, ωωβ is definable in α. The
formula ψα(Y) saying “Y is unbounded ω-sequence in the interval [0, ωωβ)” is
unselectable in α.

Note that in Corollary 13 a formula not selectable in every α ≥ ω1 was pre-
sented. We sketched a construction of a formula ψα not selectable in a countable
ordinal α ≥ ωω. However, ψα depends on (the code of) α. Is there a single for-
mula not selectable in every α ∈ [ωω, ω1)? The answer turns out to be negative:

Proposition 14. For every n ∈ ω, we can compute ξ(n) < ωω such that for
every formula ϕ(Y) with qd(ϕ) ≤ n and ζ ∈ [ξ(n), ωω), ϕ is selectable in ωω +ζ.

4 The Selection Problem in an Ordinal α ≤ ω1

In [11], issues of decidability and computability are not discussed. However, from
the proof of Proposition 6.1 there, one can extract an algorithm as follows (a
detailed proof is given in [17]):

Proposition 15 (Uniformization below ωω). There is an algorithm that,
given (the code of) an ordinal α and ϕ(X, Y), computes a ψ(X, Y) that uni-
formizes ϕ in α.

In the case of selection, we are able to go beyond ωω.

Proposition 16 (Solvability of the selection problem). There exists an
algorithm that, given α ∈ [ωω, ω1] and a formula ϕ(Y), decides whether ϕ has a
selector in (α, <), and if so, constructs one for it.

Roughly speaking, the proof breaks into three steps. One shows that:

1. If α ∈ {ωω, ω1}, then any formula ϕ(Y) satisfied by a periodic predicate in
(α, <) is selectable in (α, <).

By Lemma 10, this means that being satisfied by a periodic predicate (or not
being satisfied at all) is a necessary and sufficient condition for selectability in
these ordinals.

2. It is decidable whether ϕ is satisfied by a periodic predicate.
3. Selection in any countable ordinal is reducible to the case of ωω.

The full uniformization problem turns out to be trickier. There is currently
no proof of the solvability (or insolvability) of the uniformization problem in
(ωω, <). A restricted case of this problem is treated in Sect. 10.

580 A. Rabinovich and A. Shomrat

5 Selection over Classes of Countable Ordinals

Here we discuss the selection property and problem over classes of countable
ordinals.

5.1 The Selection Property for Subclasses of ωω

By Proposition 8, any class of ordinals which has an α ≥ ωω as a member does
not have the selection property. What can we say about subclasses of ωω? It
turns out that there is a simple combinatorial criterion for a class C ⊆ ωω to
have the selection property.

Notation (Trace). Let 0 �= α < ωω. Write α = ωnrar+ωnr−1ar−1+· · ·+ωn0a0

where r ∈ ω and nr > nr−1 > . . . > n0 and ai (for i ≤ r) are positive integers
(this presentation is unique). Let trace(α) := {nr, . . . , n0}.

Proposition 17. A class C ⊆ ωω has the selection property iff

∀p ∈ ω∃N(p) ∈ ω∀α ∈ C
(
α > ωp+N(p) → [p, p + N(p)] ∩ trace(α) �= ∅

)
.

If in addition, N(p) is computable form p, then selectors are computable over C.

Therefore, {ωk | k ∈ ω} does not have the selection property. On the other
hand, both of the following classes have the selection property and selectors are
computable over them (for both, let N(p) := 0 for all p ∈ ω):

1. {ω, ω2 + ω, ω3 + ω2 + ω, . . .}.
2. The class of α < ωω whose trace is a prefix of ω, that is, such that trace(α) =

{0, 1, ..., n − 1} for some n ∈ ω.

Note that the first of these classes has order-type ω while the second has order-
type ωω.

5.2 The Selection Problem over Definable Classes of Countable
Ordinals

In [17] we proved that the selection problem is solvable over every MLO definable
class of countable ordinals. Thus, given a formula ϕ(Y), we may decide, for
instance, whether ϕ has a selector over the class of all countable ordinals, of
countable limit ordinals, etc. In fact, something slightly more general holds.

Proposition 18. There is an algorithm that, given formulas π(t) and ϕ(Y) and
an ordinal δ ≤ ω1:

1. decides whether ϕ has a selector over the class definable by π in (δ, <),
namely over {(α, <) | α ∈ δ \ 1 ∧ (δ, <) |= π(α)}, and

2. if a selector exists constructs it.

Selection and Uniformization Problems in the Monadic Theory of Ordinals 581

This is indeed more general. For example, ωω is not a definable ordinal, but {ωω}
is definable in (ωω + ζ, <) for any ζ < ωω. The proof of the last proposition is
based on a reduction of this problem to the bounded uniformization problem
discussed in Sect. 10.

Note that Proposition 17 provides sufficient and necessary conditions for the
selection property. However, the definability conditions of Proposition 18 are
sufficient but are not necessary conditions for solvability of the selection problem
over a class of countable ordinals. The class {ωk | k ∈ ω} is not definable (in any
ordinal), however, the selection problem over this class is solvable.

6 Selection between First-Order and Second-Order
Logics

Let ϕ be an MLO-formula. Recall that ϕ is a first-order formula iff all quanti-
fiers appearing in ϕ are first-order quantifiers. Note, however, that ϕ can con-
tain second-order free variables which range over subsets of the domain.6 Let us
call the set of first-order MLO formulas the first-order fragment of MLO. Then
all results concerning the selection property and selection problem in count-
able ordinals carry through from MLO to its first-order fragment. This follows
from:

Proposition 19. If α is a countable ordinal and ϕ(Y) is an MLO formula
selectable in (α, <), then there is a first-order χ(Y) that selects ϕ in (α, <).
Furthermore, χ is computable from α and ϕ.

From the last proposition, we can infer a little more.
Let L2 and L1 be logics. We say that a structure M has the L2 −L1 selection

property iff for every L2-formula ϕ there is an L1-formula such that ψ selects ϕ
in M. We say that the L2 − L1 selection problem for a structure M is solvable
iff there is an algorithm which for every ϕ ∈ L2 decides whether there is ψ ∈ L1

which selects ϕ in M, and if so, constructs such a ψ. Using this terminology
Proposition 19 can be rephrased as “The MLO− FOMLO selection problem is
solvable for ordinal α ≤ ω1”. More generally,

Corollary 20. Let L1 and L2 be logics such that:

1. For every first-order φ, there is an L1-formula Λ equivalent to it.
2. For every L2-formula Λ, there is an MLO formula ϕ equivalent to it.

Then a countable ordinal α has the L2 − L1 selection property iff α < ωω.
If furthermore, in (1) Λ is computable from φ and in (2) ϕ is computable from Λ,

then the selection problem in (α, <) is solvable for all α ≤ ω1.

6 This is significant. For instance, there is a first-order φ(Y) such that the only subset
of ω satisfying φ in (ω, <) is the set of even numbers. On the other hand, there is
no first-order formula φ(y), with y an individual variable, such that for any n ∈ ω,
(ω,<) |= φ(n) iff n is even.

582 A. Rabinovich and A. Shomrat

A famous example of a logic L as in the corollary is weak MLO (WMLO),
where the second-order quantifiers range over finite subsets of the domain. There-
fore, MLO− WMLO, WMLO − WMLO and WMLO− FOMLO selection prob-
lems are solvable for every α ≤ ω1.

When we turn to ω1, the first-order fragment of MLO no longer behaves like
full MLO.

Proposition 21. (ω1, <) has the FO order selection property, but not the MLO
selection property.

In fact, an interesting dichotomy holds. Let φ(Y) be first-order.

1. If φ is selectable in (ωω, <), then φ is also selectable in (ω1, <), and we can
compute for it a (first-order) selector that works in both;

2. If φ is not selectable in (ωω, <), then it is not even satisfied in (ω1, <) (hence,
is trivially selectable).

7 Selection Degrees

We know that the formula θω ub(Y) saying “Y is an unbounded ω-sequence”
has no selector in (ωω, <). Now, let us look at the formula θω2 ub saying “Y is
unbounded and of order type ω2”. It is immediate from Lemma 10, that θω2 ub,
too, has no selector in (ωω, <). But are there any other interesting relations
between these two formulas? Can we say, for instance, that θω2 ub is even “harder”
to select than θω ub (whatever that might mean)? Or, perhaps the other way
round?

To turn this admittedly vague question into a mathematical one, we require
a notion of comparing formulas and perhaps an equivalence relation on them.
But, as our example shows, semantical equivalence seems not to be the right
notion. Note, however, the following. For any unbounded ω2-sequence S2 ⊆ ωω,
the set of limit points of S2 (i.e., those α < ωω such that sup(S2 ∩ α) = α) is an
unbounded ω-sequence. Also, this set is definable from S2. On the other hand,
given an unbounded ω-sequence S1 ⊆ ωω, the set {α + n | α ∈ S1, n ∈ ω} is
an unbounded ω2-sequence. And, again the latter set is definable from S1. The
example suggests the following definition:

Definition 22 (Reduction). Let ϕ0(Y), ϕ1(X) be formulas and M a struc-
ture. We say that ϕ0 is easier than ϕ1 to select in M (in symbols: ϕ0 �M ϕ1)
iff there exists a formula ψ(X, Y) such that:

1. if ϕ1 is not satisfied in M, neither is ϕ0, and
2. if P satisfies ϕ1 in M, then ψ(P, Y) selects ϕ0 in M, i.e., there is a unique

Q which satisfies ψ(P, Y) in M and this Q satisfies ϕ0 in M.

We call ψ a reduction of ϕ0 to ϕ1 over C.

It is clear that �M is a partial preorder on the formulas. The corresponding
equivalence classes of �M are called selection degrees in M.

Selection and Uniformization Problems in the Monadic Theory of Ordinals 583

A formula which has a selector in M is easier to select than any other formula.
A non-selectable formula is never easier than a selectable one. Thus, the minimal
selection degree is the set of selectable formulas. It turns out that in a countable
ordinal, all non-selectable formulas also form a single degree:

Proposition 23. Every α ∈ [ωω, ω1) has two selection degrees:

1. the class all formulas selectable in (α, <), and
2. the class of all non-selectable formulas.

Furthermore, given α and two non-selectable (in α) formulas ϕ0 and ϕ1, we can
compute a reduction ψ of ϕ0 to ϕ1.

Phrased somewhat differently, this becomes:

Corollary 24. Let α ∈ [ωω, ω1) and P ⊆ α. Suppose P satisfies some non-
selectable formula in (α, <). Then for every formula ϕ(Y), there is a formula
ψ(X, Y) such that ψ(P, Y) selects ϕ in (α, <).

For the case α = ωω, the proof proceeds by showing that any formula is easier
than the formula θω ub(Y) which says “Y is an unbounded ω-sequence.” Then
one shows that, conversely, θω ub is easier than any non-selectable formula in
(ωω, <). Finally, one reduces every other countable α ≥ ωω to the case α = ωω.

Note that if ϕ0(Y) and ϕ1(X) are both satisfiable in M, then ϕ0 is easier
than ϕ1 to select in M if and only if ϕ0(Y) ∧ ϕ1(X) has a uniformizer in M
(indeed, a uniformizer for the latter formula and a reduction of ϕ0 to ϕ1 are one
and the same thing). Thus, Proposition 23 actually solves a special case of the
uniformization problem in a countable ordinal, namely, where ϕ(X, Y) has the
form ϕ0(Y) ∧ ϕ1(X).

8 Labeled Ordinals

Corollary 24 leaves open an interesting question. It tells us that if P satisfies
some non-selectable formula in (ωω, <), then with P as a parameter, we can select
all formulas in (ωω, <). But, the formulas we select using P do not themselves
“mention” P . In other words, the proposition does not tell us that (ωω, <, P)
has the selection property.

Let Pω be an unbounded ω-sequence {ωk | k ∈ ω}. Then for every ϕ(Y)
there is a formula ψ(X, Y) such that ψ(Pω , Y) selects ϕ(Y) in ωω. However,
let ϕ(X, Y) says: “If x < x′ are successive elements of X , then Y ∩ [x, x′) is
an ω-sequence unbounded in [x, x′)”. Then it is easy to show ϕ(Pω , Y) has no
selector in (ωω, <, Pω). But, is this fact an artifact of the specific choice of P?
That is, could (ωω, <) be expanded by finitely many subsets of ωω to have the
selection property?

Proposition 25. Let P := {ω, ω2 + ω, ω3 + ω2 + ω, . . .}. Then:

(a) (ωω, <, P) has the selection property,

584 A. Rabinovich and A. Shomrat

(b) for any formula ϕ(X, Y), a selector for ϕ(P, Y) in (ωω, <, P) is computable,
and

(c) the monadic theory of (ωω, <, P) is decidable.

This proposition can be extended to all α < ωω2
.

9 The Church Uniformization Problem

McNaughton [12] observed that the Church uniformization problem can be equiv-
alently phrased in game-theoretic language. This phrasing is easily generalizable
to all ordinals.

Definition 26. For an ordinal α and a formula ϕ(X, Y), the McNaughton game
Gα

ϕ is a game of perfect information of length α between two players, X and Y .
At stage β < α, X either accepts or rejects β; then, Y decides whether to

accept or to reject β.
For a play π, we denote by Xπ (resp. Yπ) the set of ordinals < α accepted by

X (resp. Y) during the play. Then,

Y wins π iff (α, <) |= ϕ(Xπ, Yπ).

What we want to know is: Does either one of X and Y have a winning strategy
in Gα

ϕ? If so, which of them? That is, can X choose his moves so that, whatever
way Y responds we have ¬ϕ(Xπ, Yπ)? Or can Y respond to X ’s moves in a way
that ensures the opposite?

Since at stage β < α, Y has access only to Xπ ∩ [0, β], a winning strategy
for Y is one and the same thing as a causal uniformizer for ϕ. Thus, we may
rephrase Definition 5 as follows.

Definition 27 (Game version of the Church uniformization problem).
Let α be an ordinal. Given a formula ϕ(X, Y), decide whether Y has a winning
strategy in Gα

ϕ .

In their seminal [3], Büchi and Landweber prove the decidability of the Church
uniformization problem in (ω, <). While in defining the problem, we did not
require that the winning strategy (= causal uniformizer) be definable, Büchi
and Landweber have shown that in the case of (ω, <) we can indeed restrict
ourselves to definable winning strategies (compare Question (1′′) in Sect. 1).

Theorem 28 (Büchi and Landweber [3]). Let ϕ(X, Y) be a formula. Then:

– Determinacy: One of the players has a winning strategy in the game Gω
ϕ .

– Decidability: It is decidable which of the players has a winning strategy.
– Definable strategy: The player who has a winning strategy, also has a defin-

able winning strategy.
– Synthesis algorithm: We can compute a formula ψ(X, Y) that defines (in

(ω, <)) a winning strategy for the winning player in Gω
ϕ .

Selection and Uniformization Problems in the Monadic Theory of Ordinals 585

It seems that Büchi and Landweber believed their theorem would generalize to
all countable ordinals. Indeed, after stating the theorem just quoted they write:

“We hope to present elsewhere an extension of [the theorem] from ω to
any countable ordinal.”

But, from Proposition 8 it follows that for every α ≥ ωω there are formulas
ϕ such that Y wins Gα

ϕ , but has no definable winning strategy. Indeed, fix any
α ≥ ωω. Pick a formula ϕ′(Y) not selectable in (α, <) and let ϕ(X, Y) denote
X = X ∧ ϕ′(Y). If ψ(X, Y) defined a winning strategy for Y in Gα

ϕ , then (say)
∃X(X = ∅ ∧ ψ(X, Y)) would select ϕ in (α, <), which is impossible. On the
other hand, Y does win this game: she simply plays some fixed P ⊆ α which
satisfies ϕ in (α, <) (ignoring X ’s moves).

The Büchi-Landweber Theorem in its entirety generalizes to ordinals smaller
than ωω. Its determinacy and decidability clauses generalize to all countable
ordinals. Thus,

Theorem 29. Let α be a countable ordinal, ϕ(X, Y) a formula.

– Determinacy: One of the players has a winning strategy in the game Gα
ϕ .

– Decidability: It is decidable which of the players has a winning strategy.
– Definable strategy: If α < ωω, then the player who has a winning strategy,

also has a definable (in (α, <)) winning strategy. For every α ≥ ωω, there
is a formula for which this fails.

– Synthesis algorithm: If α < ωω, we can compute a formula ψ(X, Y) that
defines a winning strategy for the winning player in Gα

ϕ .

A proof of this theorem can be found in [15]. It uses the composition method to
reduce games of every countable length to games of length ω.

Finally, for uncountable ordinals the situation changes radically. Let
ϕspl(X, Y) say: “X is stationary, Y ⊆ X and both Y and X \ Y are stationary”
(recall Definition 12). Then it follows immediately from [10] that each of the
following statements is consistent with ZFC:

1. None of the players has a winning strategy in Gω1
ϕspl

.
2. Y has a winning strategy in Gω1

ϕspl
.

3. X has a winning strategy in Gω1
ϕspl

.

In other words, ZFC can hardly tell us anything concerning this game. On the
other hand, S. Shelah (private communication) tells us he believes it should be
possible to prove:

Conjecture 30. It is consistent with ZFC that Gω1
ϕ is determined for every for-

mula ϕ.

10 The Bounded Uniformization Problem

As mentioned above, the uniformization problem in (ωω, <) has not so far been
solved (or shown to be undecidable). The task of constructing a uniformizer

586 A. Rabinovich and A. Shomrat

is intuitively harder than that of constructing a selector in that a uniformizer
must respond to a given subset substituted for the domain variable X with an
appropriate subset to be substituted for the image variable Y ; it must (uni-
formly) answer a variety of challenges. In selection X simply does not appear
in the formula. Put more abstractly, its variability has been reduced to zero. A
natural move therefore, when X does appear in the formula, is to place various
restrictions on the subsets of the domain substituted for it. One restriction which
comes to mind is to consider formulas ϕ(t, Y) where the t is an first-order vari-
able, i.e. ranges over elements of the domain. Once we show the solvability of the
uniformization problem for such formulas, our next step may be to allow X to
range only over finite subsets of the domain, or perhaps over sets of order-type
ω, etc. These examples are generalized by the following proposition.

Proposition 31 (Solvability of δ-bounded uniformization). There is an
algorithm that, given ordinals α ∈ [ωω, ω1], δ < ωω and a formula ϕ(X, Y), decides
whether there is a ψ which uniformizes ϕ in (α, <), when X is restricted to range
over subsets of order-type < δ. If such a ψ exists, the algorithm constructs it.

Roughly speaking, the proof proceeds by a (non-trivial) reduction of this prob-
lem to uniformization over the class of ordinals smaller than δ and to selection
in (ωω, <) (or in (ω1, <) when α = ω1). Proposition 15 tells us the former is
solvable, while Proposition 16 handles the latter.

11 Open Problems

We end by presenting several questions and conjectures, whose investigation,
we believe, represents the next natural step in the exploration of definable and
Church uniformization in the monadic theory of ordinals. First, a question al-
ready mentioned.

Question 32. Is the uniformization problem in (ωω, <) solvable?

Next, we saw that for every countable α ≥ ωω there are McNaughton games,
where the winner does not have a definable winning strategy. This leads to
(compare Questions (2′′) and (3′′) of Sect. 1):

Conjecture 33. There is an algorithm that, given α ∈ [ωω, ω1) and a formula
ϕ(X, Y), decides whether there is a definable winning strategy in Gα

ϕ , and if so,
returns a ψ defining one.

Rabinovich ([15]) shows that if the conjecture holds for α = ωω, then it is true.
We have seen that the only stumbling block for selection in (ωω, <) was se-

lecting an unbounded ω-sequence (recall Corollary 24). We believe an analogous
statement may be true concerning definability of a winning strategy for games
of length ωω:

Conjecture 34. For every formula ϕ(X, Y), there is a formula ψ(W, X, Y) such
that for every unbounded ω-sequence S ⊆ ωω, ψ(S, X, Y) defines in (ωω, <) a
winning strategy for the winner of Gωω

ϕ .

Selection and Uniformization Problems in the Monadic Theory of Ordinals 587

It is possible to extend the definition of selection degrees to the case of uni-
formization. First, extend MLO by allowing also atomic formulas of the form
F (X, Y) where F is a new relation symbol. Call the resulting language MLOF .
Let M be a structure with domain A. For every f : P(A) → P(A), denote by
Mf the expansion of M which interprets F as (the graph of) f .

Let ϕ0(X, Y), ϕ1(X, Y) be MLO-formulas (that is, where F does not appear).
Say that ϕ0 is easier than ϕ1 to uniformize in M if and only if there exists an
MLOF -formula ψ(X, Y) such that for every f which uniformizes (the relation
defined by) ϕ1 in M, ψ uniformizes ϕ0 in Mf . Now continue as in the case of
selection to define uniformization degree. It is easy to see that this definition
generalizes the one given for selection. A natural question is then:

Question 35. What are the uniformization degrees in (ωω, <)?

Of course, there is no reason to limit ourselves to countable ordinals.

Question 36. What are the selection/uniformization degrees in (ω1, <)?

Recall that it was only for notational convenience that we stated our results
for formulas ϕ(Y) having only a single free-variable Y . Our discussion carries
through to formulas ϕ(Ȳ) with finitely many free-variables. In particular, so
does the definition of selection degrees. Thus, ϕ0(Y0, . . . , Yl−1) is easier than
ϕ1(X0, . . . , Xm−1) to select in M iff there is ψ(X0, . . . , Xm−1, Y0, . . . , Yl−1) such
that for every m-tuple P̄ satisfying ϕ1 in M, ψ(P̄ , Ȳ) selects ϕ0 in M. This is
important to remember when discussing selection degrees in (ω1, <). Indeed, for
each n ∈ ω \ 1, let ϕn(X0, . . . , Xn−1) say “for all i < j < n, Xi is a stationary
subset of ω1 and Xi ∩ Xj = ∅.” Then it can be shown that every formula
ϕ(Ȳ) is easier than ϕn for some n ∈ ω \ 1. We suspect also (but this is yet
to be proven) that the ϕn represent distinct selection degrees in (ω1, <) and
that, more generally, ϕn+1 never shares a degree with a formula having only
n free-variables. If this is indeed so, then unlike what held true for countable
ordinals, not all interesting phenomena having to do with selection in (ω1, <)
are exhibited by formulas having a single free-variable.

Further open questions in the context of uniformization and selection are
suggested in [19].

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik
und Grundl. Math. 6, 66–92 (1960)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Int. Congress on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stan-
ford University Press (1962)

3. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Amer. Math. Soc. 138, 295–311 (1969)

4. Büchi, J.R., Siefkes, D.: The Monadic Second-Order Theory of all Countable Or-
dinals. In: Bloomfield, R.E., Jones, R.B., Marshall, L.S. (eds.) VDM 1988. LNCS,
vol. 328, pp. 1–126. Springer, Heidelberg (1988)

588 A. Rabinovich and A. Shomrat

5. Church, A.: Logic, arithmetic and automata. In: Proc. Inter. Cong. Math. 1963,
Almquist and Wilksells, Uppsala (1963)

6. Elgot, C.: Decision problems of finite-automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–51 (1961)

7. Feferman, S., Vaught, R.L.: The first-order properties of products of algebraic
systems. Fundamenta Mathematicae 47, 57–103 (1959)

8. Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. Jou. of Symbolic
Logic 48, 1105–1119 (1983)

9. Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds.)
Model-Theoretic Logics, pp. 479–506. Springer, Heidelberg (1985)

10. Larson, P.B., Shelah, S.: The stationary set splitting game. Mathematical Logic
Quarterly (to appear)

11. Lifsches, S., Shelah, S.: Uniformization and Skolem functions in the class of trees.
Jou. of Symbolic Logic 63(1), 103–127 (1998)

12. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9, 521–530 (1966)

13. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

14. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Math.
Soc., Providence, RI (1972)

15. Rabinovich, A.: The Church synthesis problem over countable ordinals (submitted)
16. Rabinovich, A., Shomrat, A.: Selection in the monadic theory of a countable ordinal

(submitted)
17. Rabinovich, A., Shomrat, A.: Selection over classes of ordinals expanded by

monadic predicates (submitted)
18. Shelah, S.: The monadic theory of order. Annals of Math., Ser. 2 102, 379–419

(1975)
19. Shomrat, A.: Uniformization Problems in the Monadic Theory of Countable Ordi-

nals. M.Sc. Thesis,Tel Aviv University (2007)
20. Trakhtenbrot, B.A.: The synthesis of logical nets whose operators are described in

terms of one-place predicate calculus. Doklady Akad. Nauk SSSR 118(4), 646–649
(1958)

21. Trakhtenbrot, B.A.: Certain constructions in the logic of one-place predicates. Dok-
lady Akad. Nauk SSSR 138, 320–321 (1961)

22. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian
Math. J 3, 101–131 (1962) Russian; English translation in: AMS Transl. 59, 23–55
(1966)

23. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata. North Holland, Amsterdam
(1973)

The Scholten/Dijkstra Pebble Game Played

Straightly, Distributedly, Online and Reversed

Wolfgang Reisig

Department of Computer Science, Humboldt-Universität zu Berlin

With pleasure I remember the visit of Boaz at GMD in Bonn in the early
1980s and at TU Munich in late 1980s as well as long discussions with him in
Dagstuhl, and several meetings in Tel Aviv. What a rich source of inspiration!

Abstract. The Scholten/Dijkstra “Pebble Game” is re-examined. We
show that the algorithm lends itself to a distributed as well as an online
version, and even to a reversed variant.

Technically this is achieved by exploiting the local and the reversible
nature of Petri Net transitions. Furthermore, these properties allow to
retain the verification arguments of the algorithm.

1 Introduction

University Video Communications [1] distributes a “Distinguished Lecture Se-
ries” of “Leaders in Computer Science and Electrical Engineering” where in an
“Academic Honour Presentation” Edsger W. Dijkstra talked about Reasoning
about programs. As an example, Dijkstra presents a “Pebble Game” as an ex-
ample of a nondeterministic algorithm. Gries in [2] refers the problem to Carl
Scholten, due to a letter from Dijkstra in fall 1979. Scholten plays the game
with black and white beans in a coffee can. Dijkstra models this algorithm as a
guarded command program and proves its decisive properties.

Section 2.1 of this paper recalls Dijkstra’s oral presentation of the algorithm
as well his program. A Petri Net model of the algorithm is given in Sect. 2.2,
and verified in Sect. 2.3.

Part 3 of this paper presents three variants that provide more insight into
the nature of the algorithm. In particular, a distributed and an online version
exploit the local nature of the algorithm’s steps. Furthermore, it is shown that
the algorithm can be played ”backwards”, exploiting the reversible nature of the
algorithm’s steps. Interesting enough, the decisive verification arguments remain
valid in all three variants.

2 The Algorithm’s Basic Version

2.1 Dijkstra’s Algorithm and Model

We quote Dijkstra’s oral presentation of [1]:

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 589–595, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

590 W. Reisig

“. . . a one person game is played with a big urn full of pebbles where
each pebble is white or black. We don’t start with an empty urn. . . .

The rule is that one goes on playing as long as moves are possible. For
a move there have to be at least two pebbles in the urn because a move
is the following: What one does is: One shakes the urn, and then looks in
the opposite direction, puts one hand in the urn, picks up two pebbles,
looks at their color and depending on the color of the two pebbles taken
out one puts a pebble in the urn again . . .

The idea is that if we take out two pebbles of a different color, we
put back the white one. However, if we take out two pebbles of equal
color, we put a black one into the urn. (If we take out two white ones,
we have to have a sufficient supply of black pebbles) . . .

Given the initial content of the urn, what can be said about final
pebble?”

Figure 1 represents the algorithm as a nondeterministic guarded command
program. B and W are the number of white and black pebbles in the initial
state.

b := B; w := W ;

do w ≥ 1 ∧ b ≥ 1 → b := b − 1� b ≥ 2 →
b := b − 1� w ≥ 2 →
w := w − 2; b := b + 1

od

Fig. 1. Dijkstra’s solution to the pebble game

Dijkstra suggests to annotate this program by assertions, in particular by a
loop invariant, thus showing that the final pebble is white if and only if W is
odd.

2.2 A Petri Net Model of the Algorithm

To model the algorithm, we start with the pebbles: Initially as well as at any
reachable state, the urn contains finitely many white and black pebbles. As
a mathematical structure, they form a finite multiset (also called a bag). Let
PEBBLES denote the bag of pebbles initially in the urn.

Next we turn to the urn: In the context of the algorithm, the urn is an item
with two properties:

– the urn can contain any bag of white and black pebbles;
– actions can affect the urn, where an action may remove some of the pebbles

available in the urn, and may add pebbles to the urn.

The Scholten/Dijkstra Pebble Game 591

A place of a (high-level) Petri Net has exactly these properties. So, we model
the urn as a Petri Net place.

Finally, we turn to the three actions: Each action is to remove two pebbles
with a specific choice of colors from the urn. Occurrence of an action then returns
a pebble to the urn. The returned pebbles’s color is specified by the rules of
the game. This is exactly what a Petri Net transition with corresponding arc
inscriptions describes. So, we model each action as a Petri Net transition.

Figure 2 shows the corresponding Petri net. Its steps are the steps of the
pebble game and its sequences of steps are the runs of the pebble game. All
together, the Petri net of Fig. 2 models the pebble game.

��

��

��

����	�

���

Fig. 2. The basic version of the algorithm

Petri Nets would also allow to model a 2-elementary bag of pebbles be taken
out of the urn, instead of two pebbles.

2.3 Verification of the Algorithm

As described by Dijkstra, the algorithm has two decisive properties. Firstly,

the algorithm terminates with one pebble, p, remaining in the urn. (1)

Furthermore, the color of p depends only on the number W of white pebbles in
PEBBLES:

p is white if and only if W is odd (2)

Property (1) follows immediately from the observation that each occurrence of
each transition of the Petri net in Fig. 2 reduces the magnitude of the bag in
the urn by one, and that at least one of the transitions is enabled as long as
there are at least two pebbles in the urn. As each transition returns a pebble,
the process will eventually terminate with one pebble in the urn. Any further
formalization of this obvious argument would be a formal overkill.

Proof of property (2) is far less trivial. It is based on a function f that assigns
each bag of pebbles one of the numbers 0 or 1. More precisely, if BAG is a bag
of pebbles with W white pebbles, let

f(BAG) =

{
0 if W is even
1 if W is odd

(3)

In particular, for the one-elementary bags [•] and [◦], f([•]) = 0 and f([◦]) = 1.

592 W. Reisig

The decisive argument is now that f is stable: For each step M
t−→ M ′ of the

algorithm holds:

f(M(urn)) = f(M ′(urn)) (4)

where M(urn) and M ′(urn) represent the token load of the place urn at the
markings M and M ′, respectively. This rises the question of how to prove (4).
Petri Net Theory provides the standard technique of place invariants to prove
this kind of properties.

The place invariant technique exploits two observations:

– the effect of a transition occurrence boils down to the addition and subtrac-
tion of bags;

– the invariant function f as in (4) is linear on bags (with multiset addition)
and on its range (in (4), the range is {0, 1} with addition modulo 2).

By a simple argument on the iteration of steps, (4) extends apparently to all
reachable markings: With M0 the initial marking and Mω the final marking of
urn, we get

f(Mω(urn)) = f(M0(urn)). (5)

Now it is easy to prove (2): The remaining pebble is white
iff Mω(urn) = [◦]
iff f(Mω(urn)) = f([◦]) = 1
iff f(M0(urn)) = 1
iff K is odd.

The intuition behind this proof in fact resembles Dijkstra’s loop invariant.
Dijkstra’s annotations for the program in Fig. 1 may be mirrored in Petri

Nets by help of additional places, where an invariant property corresponds to
a constant token load. Verification then reduces to problems of transition en-
abling, and can be attacked by place invariants just as program verification is
based on loop invariants. This is merely a matter of convention and syntactic
sugar.

3 Variants of the Algorithm

3.4 A Distributed Version of the Algorithm

Dijkstra assumes one player to execute the steps of the algorithms in a sequential
order. There is no reason to do so. Many players may concurrently remove pairs
of pebbles from the urn. To illustrate the most general case, assume a group of
children with each child representing a white or a black pebble. The children are
collected in a large circle (representing the urn) on the floor of the kindergarden.
Any two children may decide to leave the circle together, with one of them
returning, colored according to the rule’s game.

How model this behavior? The initial count of n children yields n(n − 1)
enabled actions, of which no more than �n/2� occur concurrently. Each action

The Scholten/Dijkstra Pebble Game 593

occurrence reduces n by one. A sequence of sets of actions would misrepresent
this kind of behavior, because nothing in the algorithm enforces lockstep behav-
ior. Sequential subprocesses likewise don’t shine up.

From the very beginning, Petri Nets came with the notion of distributed runs:
A distributed run is a partially ordered set of transition occurrences. An occur-
rence of a transition t is technically represented as an instance of t, with ingoing
and outgoing arcs from and to the tokens that are consumed and produced by
an occurrence of t. For example, an occurrence of transition t1 in Fig. 2 reads

�� (6)

As an example, assume the initial bag PEBBLES of the net in Fig. 2 to contain
two white and three black pebbles. Fig. 3 shows three distributed runs with this
initial state.

��

��

��

��

A distributed run of the algorithm

��

��

��

��

Another distributed run of the algorithm

��

��
��

��

A distributed run with concurrent occurrences of t1

Fig. 3. Three distributed runs of the algorithm in Fig. 2

594 W. Reisig

The decisive properties (1) and (2) remain valid in the distributed version.
Furthermore, proof of (1) and (2) as given in Sect. 2.3 also apply to the dis-
tributed case.

Summing up, the distributed version of the algorithm comes without extra
cost. It just employs the notion of distributed runs. This notion is anyway the
adequate notion of runs for distributed systems.

3.5 An Online Version of the Algorithm

Both the sequential and the distributed versions of the algorithm assume the
initial bag PEBBLE be available before computation starts. There is no reason
to do so. The pebbles may be produced elsewhere and be added to the urn while
the algorithm processes previous pebbles. The urn then serves as an (unbounded)
buffer. Figure 4 shows this online version of the algorithm.

Property (1) is no longer valid, as we now do not necessarily assume PEBBLES
to be a finite multiset. In the course of time, infinitely many pebbles may be
added to the urn. A weaker property of (2) holds nonetheless:

For each intermediate state S with only one pebble p in the urn,
p is white if the number of so far arrived white pebbles is odd. (7)

��

��

��

����	�

���

�� ��

Fig. 4. The online version of the algorithm

3.6 A Reversed Version of the Algorithm

This version reverses the three rules of the game: Each action removes one pebble
from the urn and adds two pebbles. The color of the added pebbles depends on
the color of the removed pebble: If the removed pebble is white, pebbles with
mixed color are added: A white and a black one. If the removed pebble is black,
pebbles with equal color are added: Either two black ones, or two white ones.
Starting with a single pebble, the algorithm may proceed forever, with unlimited
numbers of pebbles collecting in the urn.

To model this behavior, we just reverse the arrow heads in the basic version
of the algorithm. Figure 5 shows the result. PEBBLES now consists of only one
pebble.

The Scholten/Dijkstra Pebble Game 595

��

��

��

����	�

���

Fig. 5. The reversed version of the algorithm

As an interesting property of this version, in any reachable state S, the number
of white pebbles is odd if and only if the color of the initial pebble is white. Proof
of this property follows again from the place invariant (4).

One may construct a distributed as well as an online version of the reversed
algorithm, in an obvious way.

4 Conclusion

We agree that an adequate invariant decisively supports both intuition and veri-
fication of the pebble algorithm. We challenge however that guarded commands
was the most adequate modeling technique for this algorithm.

Removing or adding pebbles from or to the urn is locally confined to the peb-
bles affected. Different pairs of pebbles can therefore independently be processed.
Both the distributed and the online version of the algorithm exploit locality of
the actions.

Removing or adding pebbles from or to the urn are reversible actions: Knowing
the resulting state and the action that caused the state allows re-tracing the start
state. Assignment statements are in general not reversible. The reversed version
of the algorithm exploits the reversibility of the actions.

Acknowledgements

H. Völzer brought the pebble game to my attention. G. Goos pointed me at
David Gries’ book. D. Bjørner gave me some additional hints.

References

1. Dijkstra, E.W.: Reasoning about programs, University Video Communications,
Stanford. The Distinguished Lecture Series, Academic Leaders in Computer Sci-
ence and Electrical Engineering, vol. III (1990)

2. Gries, D.: The Science of Programming, pp. 165–301. Springer, Heidelberg (1981)

The Reaction Algebra:

A Formal Language for Event Correlation�

César Sánchez1, Matteo Slanina2, Henny B. Sipma1, and Zohar Manna1

1 Computer Science Department, Stanford University, Stanford, CA 94305-9025
{cesar,sipma,zm}@CS.Stanford.EDU

2 Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043
mslanina@google.com��

To Boaz, pioneer and visionary – in honor of your 85th birthday.

Abstract. Event-pattern reactive programs are small programs that
process an input stream of events to detect and act upon given tem-
poral patterns. These programs are used in distributed systems to notify
components when they must react.

We present the reaction algebra, a declarative language to define finite-
state reactions. We prove that the reaction algebra is complete in the fol-
lowing sense: every event-pattern reactive system that can be described
and implemented – in any formalism – using finite memory, can also be
described in the reaction algebra.

1 Introduction

Interactive computation [6] studies the interaction of computational devices,
including reactive and embedded systems, with their (not necessarily computa-
tional) environment. The most common approach to study interactive computa-
tion is based on machine models such as automata and Turing machines, enriched
with output. In this paper we offer a complementary perspective: the reaction
algebra, a declarative language to describe finite-state reactions. Its relationship
to the machine models is similar to the relationship of regular expressions to
language acceptors.

The practical motivation for a formalization of event-pattern reactive pro-
grams is to offer developers of distributed reactive systems a declarative way
to describe temporal reaction patterns that is both formal and practical. The
advantage of this design approach is that the interaction between components
is made explicit and separate from the application code and can hence be an-
alyzed independently. In addition, the code for pattern detection and reaction
can be generated automatically from the event-pattern expressions and can be
optimized for different objectives, including minimum processing time per event
or smallest footprint.
� This research was supported in part by NSF grants CCR-02-20134, CCR-02-09237,

CNS-0411363, CCF-0430102, and CSR- 0615449, and by NAVY/ONR contract
N00014-03-1-0939.

�� Current affiliation. This work was done while at Stanford University.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 596–619, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Reaction Algebra: A Formal Language for Event Correlation 597

Event-Patattern Reactive Programming. In recent years the publish/subs-
cribe architecture has become popular in the design of distributed reactive sys-
tems. In this architecture, components communicate with each other by events
via an event channel. Components publish events to the event channel that may
be of interest to other components. Components can also subscribe to the event
channel to express interest in receiving certain events. The objectives of the
publish/subscribe architecture are flexibility and scalability. Components are
loosely coupled and may be added and removed on the fly and activated only
when relevant events happen.

Most modern distributed systems are built on a middleware platform, a soft-
ware layer that hides the heterogeneity of the underlying hardware, offers a uni-
form interface to the application, and usually provides services that implement
common needs. Many middleware platforms provide an event channel that sup-
ports the publish/subscribe architecture. There are differences, however, in what
kind of subscriptions are supported. Most platforms, including Gryphon [1],
Ace-Tao [24], Siena [4], and Elvin [25], support simple “event filtering”: com-
ponents can subscribe with a list of event types and the event channel notifies
the component each time an event of one of those types is published. A slightly
more expressive mechanism is “event content filtering”, in which components in
their subscriptions can specify predicates over the data included in the event.
Notification, however, is still based on the properties of single events.

A more sophisticated subscription mechanism is “event correlation”, which
allows subscriptions in the form of temporal patterns. A component is noti-
fied only when a sequence of events that satisfies one of the patterns has been
published. An implementation of this mechanism must maintain state: it may
have to remember events it observed and may even have to store events that
may have to be delivered to a component at a later stage. Event correlation is
attractive because it separates the interaction logic from the application code
and reduces the number of unnecessary notifications. Separation of the interac-
tion logic increases analyzability. It also allows reuse of pattern detection code,
thereby simplifying the development of applications. However, providing event
correlation as a service requires that it have an intuitive, easy to use description
language with a well-defined semantics. The reaction algebra, presented in this
paper, aims to provide such a language.

Example 1. Fig. 1 shows an example of a small avionics system. It consists of
six components that all communicate with the event channel. The purpose of
the system is to control the cockpit’s display such that it shows relevant infor-
mation according to the current mode of operation, in this case tactical mode
and navigational mode. In tactical mode, the Tactical Steering (TS) component
collects data from the sensors and publishes events with tactical information to
be displayed; in navigational mode the Navigational Steering (NS) component
collects the data and performs the calculations. The mode of operation is set by
the pilot via the Pilot Control component, which publishes an event to the event
channel each time the mode is switched.

598 C. Sánchez et al.

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

(a) With no event correlation.

Navigation
Display

Navigation
Steering

Tactical
Steering

Middleware

GPS
Pilot

Control
Air Frame

EC

EC EC EC

(b) With event correlation.

Fig. 1. A simple avionics scenario

Without event correlation (Fig. 1(a)) all components receive all events that
are published, that is all components are activated by the event channel when
an event is published and their application code has to decide whether to react
to the event or discard it. This strategy is clearly inefficient. For example, both
the TS and NS component need to remember what is the current mode, or
alternatively perform superfluous calculations and publish events that will not
be used.

With event correlation (Fig.ure 1(b)) the TS component can subscribe with
the temporal pattern that specifies that it only wants to be activated when “an
event from GPS is received, after an event Mode=Navigation is received with
no event Mode=Tactical in between”, and similar for the NS component. In
this way neither the TS nor the NS component is activated unnecessarily and
no useless events are published. In addition the application code for the NS and
TS components is simpler because it does not have to decide whether to react
or not. ��

Our first language for event correlation was ECL [21]. It was developed as part of
the DARPA PCES project, with implementations integrated in ACE-TAO [24]
and FACET [10], the underlying middleware platforms of the Boeing Open Ex-
perimental Platform. Next, we proposed PAR [22], a simplified but equally ex-
pressive version of ECL. With a formal semantics defined in the style of Plotkin’s
Structural Operational Semantics [18] in a coalgebraic framework [19], PAR was
more suitable for formal analysis. In this paper we further streamline and sim-
plify the presentation resulting in a new language called “the reaction algebra”.

We prove that the reaction algebra is at least as expressive as finite-memory
machines, that is, that every event-pattern reactive mechanism that can be im-
plemented in finite memory, including Moore and Mealy machines [17,15], can be
described by a reaction algebra program (a preliminary short version of the proof
appeared in [23]). This result parallels, in the domain of reactive behaviors, the
well-known equivalence between regular expressions and finite automata in the
field of formal languages [11,14,9] and has equally important implications. Our
result is technically more challenging, due to the more complex semantic domain
and the determinism of the language. The proof proceeds by constructing a set of
formulas, one for each state of the event-pattern machine, and then showing that

The Reaction Algebra: A Formal Language for Event Correlation 599

each formula and its corresponding state are bisimilar. Hence, by coinduction,
we can conclude that the observable behaviors are indistinguishable.

Related Work. The main difference between our reaction algebra and other
algebraic languages from concurrency theory like CCS [16], CSP [8] and process
algebras [2] is that our reaction algebra is a programming language, and therefore
it is deterministic, while every reasonable concurrency theory models nondeter-
minism. The reaction algebra resembles synchronous reactive languages such as
Esterel [3] sharing common features such as immediate reactivity and deter-
minism. There are also some significant differences, however. For instance, every
reaction algebra expression has a unique well-defined semantics, while this may
not be the case for some syntactically correct Esterel programs [26]. Moreover,
some correct Esterel programs can become incorrect when put in an enclosing
context, even if this context corresponds to correct programs on other instanti-
ations. In contrast, every reaction algebra context generates a uniquely defined
behavior when instantiated.

Paper Organization. The paper is organized as follows. Section 2 reviews the
coalgebraic framework that serves as the semantic domain. Section 3 introduces
the reaction algebra, its semantics and some examples of extensions of the basic
language. Section 4 shows that reaction algebra expressions can only define reg-
ular behaviors while Section 5 shows that they can define all regular behaviors.
Finally, Section 6 presents the conclusions.

2 Semantic Domain

Event-pattern reactive programs recognize temporal patterns in an input stream
of events and respond by generating output notifications. The reaction algebra
enables a declarative specification of these patterns.

2.1 Reactive Machines

We use reactive machines as our model of computation to define the semantics of
reaction algebra expressions. Reactive machines resemble finite-state automata:
they are state machines over a set of input events. Reactive machines describe
behaviors in terms of the output generated after each input event. In addition,
to enable compositional definition of languages, reactive machines are equipped
with a completion status function that affects reactions to future inputs.

Reactive machines satisfy the following conditions:

– Determinism and non-blocking: for every input prefix there is exactly one
instantaneous reaction;

– Causality: the current output can depend only on past inputs;
– Immediate reaction: outputs are generated synchronously with inputs;

Despite these restrictions reactive machines are sufficiently general to model a
wide range of reactive formalisms, including message passing systems and I/O
automata [13].

600 C. Sánchez et al.

Inputs. We assume a set Σ of input events and a finite set Prop of predicates
over Σ, corresponding to elementary properties of individual events; that is, for
all p ∈ Prop, p ⊆ Σ. An element of B(Prop), the boolean algebra over Prop,
is called an observation. A valuation is an assignment of truth values to all
propositions in Prop, which is lifted to B(Prop) in the usual way.

An input event a satisfies an observation p ∈ B(Prop), written a � p, whenever
p is true for all valuations that assign true to the elementary propositions that
contain a (i.e., valuations in which for all q ∈ Prop, if a ∈ q then q is assigned
true.) To simplify the presentation in this paper, we assume that Σ is finite and
that for every input event a there exists an observation pa in Prop.

Outputs. The output domain of a reactive machine, denoted by O, consists of sets
of symbols taken from a finite set Γ . The reason for having sets of symbols rather
than single symbols is that reaction algebra expressions can describe multiple
patterns to be detected in parallel, each with its own outputs. Outputs of an
expression, in that case, are the union of the outputs of the subexpressions. The
simplest output, or notification, is a singleton element from Γ . Absence of output
is represented by the empty set.

Completion Status. We define a completion domain C = {�, ι, ⊥} containing
three completion statuses that intuitively indicate

– �: success. The pattern has just been observed.
– ⊥: failure. The pattern cannot be observed in any stream that extends the

current prefix.
– ι: incomplete. More input is needed or the input event processed is not

relevant.

All event-pattern behaviors have the property that, once success or failure is
declared, any subsequent output will be empty and any completion status will
be incomplete.

We now define reactive machines formally:

Definition 1 (Reactive Machine). A reactive machine over input Σ and out-
put domain O is a tuple M = 〈Σ, M, o, α, ∂〉 consisting of a set M of states and
three functions defined on an input event and a state:
– o : Σ × M → O, an output function that returns an output notification,
– α : Σ ×M → C, a completion function that returns a completion status, and
– ∂ : Σ × M → M , a derivative function that returns a next state.

A machine must satisfy the silent property: for every state m ∈ M and input
a ∈ Σ, if α(a, m) �= ι then ∂(a, m) is silent. A set of states S is silent if, for
every state s ∈ S and input a, α(a, s) = ι, o(a, s) = ∅ and ∂(a, s) ∈ S. A state
is silent if it belongs to some silent set.

The silent property establishes that a terminated program (or pattern observed)
must not exhibit any subsequent behavior, that is, it must not contribute any
future outputs.

The Reaction Algebra: A Formal Language for Event Correlation 601

s1
a

c/⊥

s2
a

c/⊥

s3

b[A]

c/⊥
s0

Σ a a b a b b a b a c a a b . . .

O ∅ ∅ A ∅ ∅ ∅ ∅ A ∅ ∅ ∅ ∅ ∅ . . .

C ι ι ι ι ι ι ι ι ι ⊥ ι ι ι . . .

M s2 s3 s1 s2 s2 s2 s3 s1 s2 s0 s0 s0 s0 . . .

(a) Graphical representation (b) Sample run from initial state s1

Fig. 2. Example machine M with a sample evaluation for input “aababbabacaab . . .”

Notation. We will write oam, αam, and ∂am to stand for o(a, m), α(a, m), and
∂(a, m), respectively. Also, we extend the definitions of α, o, and ∂ to strings
of input symbols in the standard way, as αwav = αa∂wv, owav = oa∂wv, and
∂wav = ∂a∂wv. It is sometimes convenient to use a graphical representation of
machines. Nodes are labeled by states. Two nodes, labeled by states n, m ∈
M , are connected by an edge labeled by input event a whenever ∂an = m.
Completion status and outputs are also depicted on the edges, but only if αan �= ι
and oan �= ∅, respectively. Self-loops with labels ι and ∅ are not shown.

Example 2. Fig. 2(a) depicts a machine M. Node s0 is silent since all outgoing
edges are self-loops labeled ι and ∅. The only edge associated with nonempty
output connects s3 to s1, for which obs3 = A. Fig. 2(b) shows the run of M
for input aababbabacaabb . . . , starting from state s0; below each input symbol
appear the output, the completion status, and the next state. ��

We use the notions of homomorphism and bisimulation to extract a unique
semantics for each state of every machine. Homomorphisms are functions that
preserve observable behavior and bisimulations capture whether two behaviors
are indistinguishable.

Definition 2 (Homomorphism). A machine homomorphism from M to M′

is a function f : M → M ′ such that, for all m ∈ M and a ∈ Σ:

oam = o′af(m),
αam = α′

af(m) and
f(∂am) = ∂′

af(m).

Definition 3 (Bisimulation). A bisimulation between machines M and M′

is a binary relation # such that for all m ∈ M , m′ ∈ M ′ and input symbol a:

if m#m′ then

⎧
⎪⎨

⎪⎩

oam = o′am′,
αam = α′

am′ and
∂am # ∂′

am′.

We say that two states m and m′ are bisimilar (and we write m ≈ m′) if there
is a bisimulation that relates them.

602 C. Sánchez et al.

Example 3. One important instance of a reactive machine is the machine of all
behaviors, defined as B : 〈B, ∂B, αB, oB〉, where

– B is the set of all functions f from input prefixes Σ+ to O ×C satisfying the
following silent condition. If f(w) = 〈o, c〉 for c �= ι then f(wv) = 〈∅, ι〉 for
all input extensions v ∈ Σ+,

– ∂B
a f of f on input a is the function g such that g(w) = f(aw),

– oBa f is the first component of f(a), and
– αB

a f is the second component of f(a).

It is a routine exercise to check that B is well defined since the silent condition
for machines is implied by the silent condition imposed on the functions in the
set B. The elements of B are called “behaviors” or “reactions”. ��
In [22] we showed that the definition of a reactive machine (Def. 1) captures a
category of coalgebras with a final object. Once Σ and O are fixed, the machine of
all behaviors is final among all machines, i.e., there is exactly one homomorphism
(usually denoted �·�M or simply �·�) from any machine M into B.

The finality of B serves two purposes. First, the formal semantics of a language
intended to describe event-pattern reactions can be defined by equipping the set
of all language expressions with appropriate functions α, o and ∂ (providing that
they satisfying the silent condition). By defining these functions, the set of all
language expressions becomes a machine. Then, the semantics of an expression
ϕ is obtained by finality as its (unique) homomorphical image �ϕ� in B. We call
this the principle of definition by corecursion. Second, the finality of B gives the
following principle of proof by coinduction:

Theorem 1 (Coinduction). If two states m and s from arbitrary machines
are bisimilar (m ≈ s) then they define the same behavior (i.e., �m� = �s�).

In other words, bisimilarity captures whether two states react in the same way
when given the same stream of input symbols.

In Section 5 we use Theorem 1 to show that the behavior of every state of a
finite event-pattern machine can be described with a reaction algebra expression.

3 The Reaction Algebra

This section describes the language and semantics of the reaction algebra. We
first present in sections 3.1 and 3.2 the syntax and semantics of the basic con-
structs. These constructs are sufficient to express any behavior that can be rep-
resented by a finite reactive machine. In section 3.3 we extend the language with
additional constructs that do not increase the expressiveness of the language,
but are convenient to describe common patterns that occur in practice.

3.1 Syntax and Informal Semantics

Reaction algebra (RA) expressions are defined inductively according to the fol-
lowing syntax:

α ::= p
∣
∣ S

∣
∣ α | α

∣
∣ α ; α

∣
∣ R α

∣
∣ α � α

∣
∣ α

∣
∣ αA� .

The Reaction Algebra: A Formal Language for Event Correlation 603

The base case is the simple expression p that tests whether an input symbol sat-
isfies an observation p from B(Prop). It ranges over all observations. Compound
expressions are constructed with the operators selection (|), sequential composi-
tion (;), repetition (R), priority or otherwise operator (�), complementation (·),
and output operator (··�). The output A ranges over all output notifications.

Informal Semantics. A RA expression defines a reaction. The execution of a
RA expression consists of the processing of input events, one at a time, producing
a (possibly empty) output after each event is processed. Informally, the operators
behave as follows.

Simple Expression: The expression p declares success when an event is received
that matches the observation p; all other events are ignored. No output is gen-
erated.

Silent : The expression S does not generate any output and always declares
incomplete.

Selection: The expression x | y evaluates x and y in parallel, offering each the
same events, and generating as output the combination of the subexpressions’
outputs. Selection succeeds as soon as one of the branches succeeds and only
fails when both branches have failed.

Sequential : Sequential composition, x ; y, evaluates the first subexpression, and
upon successful completion starts the evaluation of the second. If one of them
fails, sequential immediately fails. The output generated is that of the currently
active subexpression.

Repetition: The expression R x starts by evaluating x, called the body. If the
evaluation of the body completes with success, it evaluates R x (called the contin-
uation) again. If the body fails, repetition declares failure. The output generated
is that of the body.

Otherwise: The expression x�y evaluates x and y in parallel. If x completes first
(or at the same time as y), the completion status of x � y is that of x. Otherwise
the completion status is that of y. The output generated is the combination of
the subexpressions’ outputs.

Negation: The expression x behaves as x except that it reverses success with
failure and vice-versa. The output generated is the output of the enclosing subex-
pression.

Output : The expression xA� evaluates x. Upon successful completion, the out-
put A is generated and combined with any output simultaneously generated by
x. The completion status of xA� is the same as that of x.

604 C. Sánchez et al.

3.2 Formal Semantics

The formal semantics of RA expressions is defined by defining the functions αa,
oa and ∂a and applying the principle of corecursion, using the finality of the
reactive machine of all behaviors B.

The functions are defined inductively, by giving, for each of the operators,
the values of α, o, and ∂ on every input symbol, possibly based on the values
of the subexpressions. The definitions are presented as rules using the following
notation: x

a� c stands for αax = c; x
a→ y stands for ∂ax = y (with x

a→ι y as
an abbreviation for both x

a� ι and x
a→ y); and x

a⇒ o stands for oax = u.

Simple Expression: The rule (αEv1) captures that a simple expression p suc-
ceeds upon receiving an event that satisfies p; (αEv2) and (Ev) state that it
waits otherwise:

(αEv1) p
a� � (if a � p)

(αEv2) p
a� ι (if a � p) (Ev) p

a→ p (if a � p)
(oEv) states that a simple expression does not generate any output:

(oEv) p
a⇒ ∅

Silent : The rules for silent: (αSil), (oSil) and (Sil) establish that the expression
S does not generates any observable behavior:

(αSil) : S
a� ι (oSil) : S

a⇒ ∅ (Sil) : S
a→ S

We introduce an extra rule that simplifies the definition of many others; it con-
strains the derivative of an expression that completes to be silent:

x
a

�� ι
(GlobalSil)

x
a→ S

The rule (GlobalSil) guarantees that the derivative of an expression that de-
clares a non silent completion status is the silent expression S. This encompasses
the non-silent completion cases for the rest of the operators, and guarantees the
silent condition necessary to define a reactive machine.

Selection: The rules for the completion status of selection establish that x | y
succeeds if either x or y does, and fails only when both x and y fail.

x
a� �(αSel1)

x | y a� �
y

a� �
x | y

a� �
x

a� ⊥ y
a� ⊥

(αSel2)
x | y a� ⊥

In every other case, the completion status is incomplete:

x
a� ι y

a

�� �
(αSel3)

x | y a� ι

x
a

�� � y
a� ι

(αSel4)
x | y

a� ι

The Reaction Algebra: A Formal Language for Event Correlation 605

The output is the combination of the outputs of x and y,

x
a⇒ u1 y

a⇒ u2(oSel)
x | y a⇒ u1 ∪ u2

and the derivative of a selection is the selection of the derivatives,

x
a→ι x′ y

a→ι y′
(Sel1)

x | y
a→ x′ | y′

unless one of them (not both) fail, in which case the derivative is the derivative
of the non-failing subexpression,

x
a� ⊥ y

a→ι y′
(Sel2)

x | y
a→ y′

x
a→ι x′ y

a� ⊥
(Sel3)

x | y a→ x′

Sequential : Completion and output of a sequential composition are determined
by the first subexpression:

x
a

�� ⊥
(αSeq1)

x ; y a� ι

x
a� ⊥(αSeq2)

x ; y a� ⊥
x

a⇒ u(oSeq)
x ; y a⇒ u

The derivative of the sequential composition is given by the two rules:

x
a→ι x′

(Seq1)
x ; y a→ x′ ; y

x
a� �(Seq2)

x ; y
a→ y

Repeat : The rules for completion and output for repeat are:

x
a

�� ⊥
(αRep1)

R x
a� ι

x
a� ⊥(αRep2)

R x
a� ⊥

x
a⇒ u(oRep)

R x
a⇒ u

The derivative rules state that either the repetition begins if the body succeeds
(Rep2), or that the body must be completed first (Rep1):

x
a→ι x′

(Rep1)
R x

a→ x′ ; R x

x
a� �(Rep2)

R x
a→ R x

Otherwise: The completion rules for otherwise state that x � y succeeds or fails
whenever x does (αOw1) and in all other cases has the same completion status
as y (αOw2),

x
a� c(αOw1) c �= ι

x � y
a� c

x
a� ι y

a� d
(αOw2)

x � y
a� d

The outputs of x and y are combined,

x
a⇒ u1 y

a⇒ u2(oOw)
x � y

a⇒ u1 ∪ u2

and the derivative of x � y is the derivative of the subexpressions.

606 C. Sánchez et al.

x
a→ι x′ y

a→ι y′
(Ow)

x � y
a→ x′ � y′

Complementation: The completion rules state that success and failure are re-
versed:

x
a� �(αNeg1)

x
a� ⊥

x
a� ι(αNeg2)

x
a� ι

x
a� ⊥(αNeg3)

x
a� �

and the output and derivative rules reduce output and derivative to those of the
subexpression,

x
a⇒ u(oNeg)

x
a⇒ u

x
a→ι x′

(Neg)
x

a→ x′

Output : The completion and derivative rules state that xA� behaves as x

x
a� c(αOut)

xA� a� c

x
a→ι x′

(Out)
xA� a→ x′A�

and the output rules state that xA� adds output A to the output of x if x
succeeds, and otherwise just produces the output of x,

x
a⇒ u x

a

�� �
(oOut1)

xA� a⇒ u

x
a⇒ u x

a� �(oOut2)
xA� a⇒ u ∪ A

Example 4. The behavior of state s1 of machine M in Fig. 2 is described by the
expression R ((a ;a ; bA�) �c). Alternatively, the same behavior is also described
by

(
R(a ; a ; bA�)

)
� c. These two expressions can be easily proven equivalent by

giving a bisimulation that relates them. ��

The following theorem justifies the study of expressiveness up to bisimulation in
the reaction algebra:

Theorem 2 ([22]). Bisimilarity is a reaction algebra congruence. Bisimilarity
is the largest reaction algebra congruence that refines output equivalence.

3.3 Language Extensions

The operators given above are sufficient to describe any behavior that can be
represented by a finite reactive machine. For practical applications, however, it
is often convenient to have available additional operators that describe common
event-pattern behaviors. In this section we introduce some of these additional
operators. Several of these operators were specifically requested by Boeing sys-
tem developers to support the functionality of their Avionics platform. Some of
these operators were also included in ECL [21].

The operators presented below do not increase the expressiveness of the lan-
guage, that is, all of them can be defined in terms of the basic operators defined
before. For some of them we will still also give the rules for the ∂, α and o
functions, as these functions more directly describe behavior.

The Reaction Algebra: A Formal Language for Event Correlation 607

Immediate: The immediate occurrence of an observation p, written p! can be
defined in terms of basic operators as follows:

p! def= p � (¬p)

Upon the reception of an input event, it immediately terminates, either suc-
ceeding if the event satisfies p or failing otherwise. The immediate reaction is
useful to represent transitions in machines. It is easy to see that the elementary
observation (the primitive operator in the reaction algebra) can also be defined
in terms of immediate reaction, since:

p ≈ R (¬p)!

Two important particular observations are the false observation (satisfied by
no event) and the true observation (satisfied by every event). We use false to
represent the former, and true to represent the latter:

false def= false ! true def= true!

Note that false fails immediately, while true succeeds immediately.

Positive and Negative: We define the positive and negative versions of an ex-
pression x as:

x+ def= x | x x− def= x+

An expression differs from its positive and negative versions only in the com-
pletion status (x+ cannot fail, x− cannot succeed), but not in the instant this
termination is produced or in the output generated. The positive and negative
operator are both idempotent, they cancel each other, and complementation
turns one into the other, as expressed by the following equivalences:

(x+)+ ≈ x+ (x+)− ≈ x− x+ ≈ x−

(x−)− ≈ x− (x−)+ ≈ x+ x− ≈ x+

More Loops : The repetition construct Rx terminates when x fails. An infinite
loop can thus be defined by applying R to the positive version of x:

L x
def= R x+

Note that S ≈ L true and hence can be defined in terms of the other basic
constructs. S is the only basic operator that is redundant. We decided to keep S
in the set of basic operators for simplicity of the definitions.

Another repetition operator, called persist, is useful to represent repeated
attempts until success. It first evaluates the body: if the body finishes with
success, then persist also finishes with success; if the body fails then persist
restarts the evaluation. Where R x repeats the body while it succeeds, P x persists
while it fails.

608 C. Sánchez et al.

The defining rules for P are:

x
a

�� �
(αPer1)

P x
a� ι

x
a� �(αPer2)

P x
a� �

x
a⇒ u(oPer)

P x
a⇒ u

The derivative rules determine that either the repetition begins if the body
succeeds (Per1), or that the body must be completed first (Per2):

x
a→ι x′

(Per1)
P x

a→ x′ ; P x

x
a� ⊥(Per2)

P x
a→ P x

The following equivalences show that persist is the dual of repetition:

P x ≈ R x R x ≈ P x

These duality laws could have been used as an alternative definition of P using
only repetition and negation. They also show that Theorem 2 still holds when
the basic algebra is enriched with persist.

Persist also provides a more intuitive definition of lazy observation in terms
of the immediate observation:

p ≈ P p!

Delays : Sometimes it is useful to delay the failing of one expression until some
other expression terminates. This can be accomplished with the waiting for con-
struct:

y W x
def= y | x−

If expression y terminates with success, then y W x immediately succeeds. If, on
the other hand, y fails, then y W x waits for x to terminate and then fails.

Accumulation: A pattern commonly occurring in practice is a task that consists
of several subtasks executed in parallel that all must succeed before the main
task can proceed. This pattern can be described by the accumulation operator +:
it evaluates its subexpressions in parallel and succeeds when all subexpressions
have succeeded and fails as soon as one of them fails, as reflected by the following
rules for completion:

x
a� ⊥(αAcc1)

x + y
a� ⊥

y
a� ⊥

x + y
a� ⊥

x
a� � y

a� �
(αAcc2)

x + y
a� �

In every other case, the completion status is incomplete:

x
a� ι y

a

�� ⊥
(αAcc3)

x + y
a� ι

x
a

�� ⊥ y
a� ι

(αAcc4)
x + y

a� ι

The output of an accumulation expression is the combination of outputs of its
subexpressions:

x
a⇒ u1 y

a⇒ u2(oAcc)
x + y

a⇒ u1 ∪ u2

The Reaction Algebra: A Formal Language for Event Correlation 609

The derivative of an accumulation expression is the accumulation of the deriva-
tives,

x
a→ι x′ y

a→ι y′
(Acc1)

x + y
a→ x′ + y′

unless one of the subexpressions (but not both) succeeds, which case is captured
by rules (Acc2) and (Acc3):

x
a� � y

a→ι y′
(Acc2)

x + y
a→ y′

x
a→ι x′ y

a� �
(Acc3)

x + y
a→ x′

Accumulation is the dual of selection, as shown by the following congruences:

x | y ≈ x + y, x + y ≈ x | y.

which could also have been used as an alternative definition of accumulation
from selection and negation.

Parallel : The parallel construct is the nonterminating version of accumulation.
It executes its subexpressions in parallel without ever terminating, even if all
subexpressions terminate

x ‖ y
def= x+ + y+ + S

The accumulation and parallel operator were two of the operators included
in the language ECL [21], but as we show here, they are not necessary, as they
can be defined in terms of the basic operators.

Preemption: The construct x U y (read “try x unless y”) allows the occurrence of
one pattern (described by y) to preempt further execution of another expression
(x). Both expressions are evaluated in parallel. If y completes with success before
x then the whole expression fails. We say that y preempts x.

x
a� ι y

a� �
(αTry2)

x U y
a� ⊥

If x completes no later than y, the completion status is that of x, reflected in
the following rules:

x
a� c(αTry1) c �= ι

x U y
a� c

x
a� ι y

a

�� �
(αTry3)

x U y
a� ι

The output of the try-unless construct is the combination of outputs of the
subexpressions

x
a⇒ u1 y

a⇒ u2(oTry)
x U y

a⇒ u1 ∪ u2

610 C. Sánchez et al.

The rules for the derivative are:

x
a→ι x′ y

a→ι y′
(Try1)

x U y
a→ x′U y′

x
a→ι x′ y

a� ⊥
(Try2)

x U y
a→ x′

The try-unless can be defined in terms of previously defined operators, as shown
by the following congruence

x U y ≈ x � (y + S)

and hence its addition to the language does not increase the expressiveness of
the language.

Dual Output : A dual version of the output operator, that generates a notification
whenever an expression fails, can be defined by dualizing the rules (oOut1) and
(oOut2) above:

x
a⇒ u x

a

�� ⊥
(oOutF1)

x�A� a⇒ u

x
a⇒ u x

a� ⊥(oOutF2)
x�A� a⇒ u ∪ A

The rules for completion status and derivative remain the same as for output:

x
a� c(αOutF)

x�A� a� c

x
a→ι x′

(Out)
x�A� a→ x′�A�

Duality laws : In the basic reaction algebra, as defined in Section 3.2, enriched
with accumulation, persist, and dual output, every expression is equivalent to
an expression in negation normal form, that is, an expression in which comple-
mentation is applied only to observations. The following congruences, if applied
as rewriting rules from left to right, provide a method to calculate the negation
normal form of a given reaction algebra expression:

x ≈ x

x | y ≈ x + y x + y ≈ x | y

x � y ≈ x � y

xA� ≈ x�A� x�A� ≈ xA�
R x ≈ P x P x ≈ R x

If also the strict operator is included in the language, then complementation can
be removed completely, as shown by the following congruence:

p! ≈ (¬p)! (¬¬p) ≈ p.

The Reaction Algebra: A Formal Language for Event Correlation 611

4 Regularity of the Reaction Algebra

A behavior is called regular if it can be described by a reactive machine with a
finite number of states. We show in this section that the reaction algebra can
only express regular behaviors.

Every expression can be decomposed according to its behavior in response to
individual observations. Given an expression x, the set of input symbols can be
partitioned according to their direct effect on the completion status of x:

S(x) = {a ∈ Σ | αa(x) = �}
F (x) = {a ∈ Σ | αa(x) = ⊥}
I(x) = {a ∈ Σ | αa(x) = ι}

Also, the one-step reaction of expression x on input a can be defined as:

Stepa(x) def= pa!oax�

Lemma 1 (Expansion). Every reaction algebra expression x is equivalent to
its expansion with respect to input symbols:

x ≈
(∣

∣

a∈S(x)

Stepax
)

�
(∣

∣

a∈I(x)

Stepax ; ∂ax
)

�
(∣

∣

a∈F (x)

Stepax
)
.

Proof. Let ϕ(x) denote the expansion of expression x. The proof proceeds by
showing that the following relation is a bisimulation:

R = {〈x, ϕ(x)〉 | x ∈ RA} ∪ {〈x, x〉 | x ∈ RA} ∪ {〈x, S � x � S〉 | x ∈ RA}

For an arbitrary input symbol a and pair 〈x, ϕ(x)〉, both sides produce the same
output and completion status in all three possibilities: a ∈ S(x), a ∈ F (x) and
a ∈ I(x). In the case that a /∈ I(x), then ∂ax = S = ∂aϕ(x). In the other case,
a ∈ I(x), we have that

∂aϕ(x) = S � ∂ax � S

so 〈∂aϕ(x), ∂ax〉 is in R. Hence, R is a bisimulation. ��

The fact that RA expressions can be described with finite memory is an easy
consequence of the Expansion Lemma and the following proposition.

Proposition 1. For every reaction algebra expression x, the set of derivatives
Δx

def
= {∂wx | for some input prefix w} is finite.

Proof. The proof proceeds by structural induction on expressions. Clearly, the
result holds for observations and the silent expression S since Δp = {p, S} and
ΔS = {S}. For selection the derivative is either silent, one of the subterms or a se-
lection of derivatives of the subterms, so the inductive hypothesis can be applied.
The same reasoning holds for �, complementation, repeat and output. ��

612 C. Sánchez et al.

Theorem 3. Every reaction algebra expression is equivalent to a finite machine.

Proof. Given x we build a machine Mx : 〈Δx, α, o, ∂〉 by taking Δx as the states.
For every state my corresponding to expression y ∈ Δx, the functions are defined
as:

– α(my)(a) = α(y)(a),
– o(my)(a) = o(y)(a), and
– ∂(my)(a) = ∂(y)(a).

The binary relation {〈y, my〉 | for y ∈ Δx} is a bisimulation which, for the par-
ticular case of the original expression x, shows that x is equivalent to the corre-
sponding state mx in Mx. ��

5 Expressive Completeness

The converse of Theorem 3 also holds: every state of a finite reactive machine
can be described by a reaction algebra expression.

First, we observe that all silent states of a given machine are bisimilar. There-
fore, without loss of generality, we assume that the given finite machine has at
most one silent state.

We construct a set of reaction algebra expressions, each one capturing the
behavior of a state in the machine. The construction proceeds as follows. First,
the non-silent states are arbitrarily numbered from 1 to n. We will use vi to refer
to the state indexed i. The silent state, if it exists, receives index n + 1 and is
denoted by vshh . Then, we incrementally build a set of intermediate formulas
whose behavior simulates more and more accurately that of its corresponding
state for certain input strings. Finally, using the intermediate formulas we define
a set of expressions Φi, each one bisimilar to a state vi.

5.1 Intermediate Formulas

This stage of the construction runs for n rounds. At round k, we build a set
of formulas ϕk

ij , one for each pair of non-silent states vi and vj . The formula
ϕk

ij approximates the behavior on input prefixes that take from vi to vj of the
following form:

Definition 4 (Direct Path). A non-empty input string w is a direct path from
state v1 to state v2 if ∂wv1 = v2 and, for all proper prefixes u of w, ∂uv1 �= v2.

Direct paths correspond to paths in the graph of the machine that visit the
destination node exactly once, at the end of the traverse. The expression ϕk

ij

captures the behavior of state vi for direct paths that lead to vj visiting only
states labeled k or less along the way. Upon reaching vj , ϕk

ij completes with suc-
cess, it fails if a state of index larger than k is reached, and it declares incomplete
otherwise. Formally, we classify the set of symbols according to formula ϕk

ij as
follows:

The Reaction Algebra: A Formal Language for Event Correlation 613

Definition 5. Given an index k and nodes vi and vj , we partition Σ into:

– Successful symbols (Sk
ij): symbols a for which ∂avi = vj .

– Incomplete symbols (Ik
ij): symbols a for which ∂avi = vl, for l �= j and l ≤ k.

– Failing symbols (F k
ij): symbols a for which ∂avi = vl, for l �= j and l > k.

Incomplete symbols could, in principle, be extended to direct paths from vi to
vj (at least no violation of the restriction to visit states labeled k or less has
occurred so far). Failing symbols can never be extended to such a path, since a
state labeled greater than k (and different from j) is visited.

The correctness of the construction relies on all formulas ϕk
ij satisfying the

following property, as we will prove at every stage:

Property 1. Let a be an input symbol, and ∂avi = vm the corresponding deriva-
tive (successor state of vi in the machine):

1.1 if a is an incomplete symbol: αaϕk
ij = ι oaϕk

ij = oavi ∂aϕk
ij ≈ ϕk

mj ,

1.2 if a is a successful symbol: αaϕk
ij = � oaϕk

ij = oavi ∂aϕk
ij = S,

1.3 if a is a failing symbol: αaϕk
ij = ⊥ oaϕk

ij = ∅ ∂aϕk
ij = S.

Properties 1.1 and 1.2 guarantee that ϕk
ij generates the same output as the state

vi for all words in any direct path to vj that only visit states labeled k or less.
Notice that ϕk

ij can disagree with state vi for failing symbols since, in this case,
the output of the formula is empty and the output of the state need not be.
These properties also establish that the completion status of the formula ϕk

ij

is success for successful symbols, fail for failing symbols and incomplete for all
others. Again, in the case of successful and failing symbols the completion be-
havior can differ from vi. Consider, for example, a successful symbol, for which
the completion of ϕk

ij is �. The corresponding derivative in the machine directly
connects vi to vj and, since vj is not the silent state, the completion status is
ι. These discrepancies are reduced during the construction as k grows. Eventu-
ally, when k = n, we have Fn

ij = ∅ and the only discrepancies left are in the
completion status.

We now define the formulas ϕk
ij inductively:

Base case (k = 0): Let vi and vj be two states:

ϕ0
ij

def=
∣
∣

vi

a/ι�A�−−−−→vj

pa!A�.

Given an input symbol a, ϕ0
ij either immediately succeeds or immediately

fails; it succeeds if ∂avi = vj and fails otherwise. In particular, if there is no
input symbol connecting vi to vj , then ϕ0

ij is equivalent to false.

Example 5. For machine M in Fig. 2(a), where we number states s1 as 1, s2 as
2 and s3 as 3, we obtain:

ϕ0
12 = pa!, ϕ0

31 = pb!A�, ϕ0
13 = false and ϕ0

22 = pb!

614 C. Sánchez et al.

Lemma 2. All formulas ϕ0
ij satisfy Property 1.

Proof. First, Property 1.1 holds vacuously since there are no incomplete symbols
in the base case: every given symbol is either successful of failing. If a is a
successful symbol, by definition of pa!, ϕ0

ij succeeds, and its output coincides
with that of state vi. If, on the other hand, a is a failing symbol, then every
branch of the selection fails. Consequently, the completion status of ϕ0

ij is ⊥ and
the output is empty. ��

Inductive step (k > 0): We assume that we have defined all the formulas ϕk−1
ij

satisfying Property 1, and proceed to define ϕk
ij . First, the particular case where

indices j and k are equal is easy: ϕk
ik

def= ϕk−1
ik .

For the following we assume k �= j. There are two kinds of direct paths from
vi to vj : those that visit vk and those that do not. We first consider paths that
visit state vk. These paths may loop around vk (zero, one, or more times), and
either keep looping forever or eventually enter a path that visits vj .

To define a formula that captures this case we make use of ϕk−1
ik , ϕk−1

kk and
ϕk−1

kj , previously defined. Note that the formula ϕk−1
kj must be restarted precisely

after ϕk−1
kk succeeds. This can be achieved with (ϕk−1

kk ∗ ϕk−1
kj) using the new

binary operator ∗ defined as follows:

x ∗ y
def=

(
P (y W x)

)
� R x.

The ∗ operator is designed to work for sub-formulas such that, for every input,
y completes no later than x. This is actually our case: if ϕk−1

kk completes, then the
reached state is indexed k or greater. Consequently, if ϕk−1

kj has not completed
yet, it has to do so at exactly that instant.

Informally, ∗ works as follows. For every input, the output is the combination
of that of the subexpressions. For completion, consider all possible cases:

1. y succeeds: regardless of what x does, y W x immediately succeeds, and
consequently so does the persist term

(
P (y W x)

)
. Therefore, x ∗ y also

succeeds.
2. y fails: then, y W x waits for x to complete (which can happen at the same

time or later). At the point of completion of x, independently of the comple-
tion status of x, y W x fails, and then the persist subexpression restarts. To
see what happens with the right branch of �, we consider the possible values
of x upon completion:
– x succeeds: R x is restarted, at the same time as the persist branch. In

other words, the whole formula is restarted at this point. This behavior
is used to model a loop around state vk.

– x fails: then R x fails, which makes the whole expression fail.

Now, using ∗, we are ready to define the formula that captures the behavior
of node vi for direct paths to vj that visit vk:

Kleenek
ij

def=

⎧
⎨

⎩

ϕk−1
ik ; (ϕk−1

kk ∗ ϕk−1
kj) if i �= k

ϕk−1
kk ∗ ϕk−1

kj otherwise

The Reaction Algebra: A Formal Language for Event Correlation 615

vi

ϕk−1
ik

ϕk−1
ij

vk

ϕk−1
kj

ϕk−1
kk

vj

Fig. 3. Direct paths from vi to vj , using only nodes indexed k or less classified according
to whether vk is visited. Dotted arrows distinguish paths from edges.

Finally, to complete the definition of ϕk
ij we also have to consider the paths that

do not visit vk, captured directly by ϕk−1
ij , and compose these two cases:

ϕk
ij

def= ϕk−1
ij | Kleenek

ij .

Lemma 3. For all nodes vi, vj and index k, ϕk
ij satisfies Property 1.

Proof. We proceed by induction on k, with the base case already proved in
Lemma 2. For the inductive step we considered the cases for an input symbol a
separately:

1. Let a be a successful symbol (a ∈ Sk
ij). Then, ∂avi = vj , so a is also a

successful symbol for ϕk−1
ij . Hence, αaϕk−1

ij = � and therefore αaϕk
ij = � and

∂aϕk
ij = S. Moreover, by inductive hypothesis oaϕk−1

ij = oavi so oaϕk
ij = oavi.

Hence, Property 1.2 holds.
2. Let a be a failing symbol (a ∈ F k

ij). Similar.
3. Let a be an incomplete symbol (a ∈ Ik

ij). We consider two cases:
(a) vi

a−→ vk. In this case a is in Sk−1
ik and also in F k−1

ij . Consequently,

αaϕk
ij = αa(Kleenek

ij) = ι, and oaϕk
ij = oa(Kleenek

ij) = oavi,

by inductive hypothesis. Finally, ∂aϕk
ij = ∂aKleenek

ij . Now, it follows
from properties of ∗:

∂aKleenek
ij = (ϕk−1

kk ∗ ϕk−1
kj) = Kleenek

kj = ϕk
kj .

Then Property 1.1 holds.
(b) vi

a−→ vl with l < k. Then, a is also an incomplete symbol for ϕk−1
ij .

Consequently, by inductive hypothesis αaϕk−1
ij = ι and αa(Kleenek

ij) = ι,
and we can conclude that αaϕk

ij = ι. Second, oaϕk
ij = oaϕk−1

ij = oavi.
Finally, if i �= k, then

∂aϕk
ij = ∂aϕk−1

ij | ∂aKleenek
ij

= ϕk−1
lj | (ϕk−1

lk ; Kleenek
kj) ≈ ϕk

lj .

616 C. Sánchez et al.

On the other hand, if i = k we make use of the following property of
Kleene:

Kleenek
kj ≈ ϕk−1

kj | (ϕk−1
kk ; Kleenek

kj),

to conclude that

∂aϕk
ij ≈ ϕk−1

lj | (ϕk−1
lk ; Kleenek

kj) ≈ ϕk
lj .

Then, Property 1.1 also holds. ��

5.2 Final Formulas

Using the formulas ϕn
ij obtained in the last step of the previous stage, we now

define formulas Φi, one for each non-silent state vi. The behavior of the silent
state vshh , if present, is modeled by the formula S.

First, we need to define variations of the Kleene formula to cover the cases of
succeeding and failing transitions in the machine. For each state vi:

Kleene�
i

def= ϕn
ii ∗

(∣
∣

vi

a/��A�−−−−−→vshh

pa!A�
)

Kleene⊥
i

def= ϕn
ii ∗

(∣
∣

vi

a/⊥�A�−−−−−→vshh

pa!A�
)

The formula Kleene�
i captures the behaviors of state vi for input strings that

either loop forever around vi, or eventually succeed directly from vi. The formula
Kleene⊥

i works similarly except that it captures behaviors that fail directly from
vi. Note that Kleene⊥

i succeeds (instead of failing).
Finally, the behavior of vi is defined by composing all possible paths:

Φi
def=

(
Kleene�

i |
∣
∣
j

(
ϕn

ij ; Kleene�
j

))
� Kleene⊥

i |
∣
∣
j

(
ϕn

ij ; Kleene⊥
j

)

5.3 Proof of Correctness

The correctness of the construction relies on the following lemma:

Lemma 4. For all states vi and input symbols a,
(1) αaΦi = αavi and oaΦi = oavi.
(2) If αavi is incomplete and ∂avi = vl then ∂aΦi ≈ Φl.

Proof. (1) We proceed by cases:

1. If vi
a/ι�A�−−−−→ vl, then all the direct branches in Kleene�

i and Kleene⊥
i are

not satisfied. Therefore oaΦi = ∪joaϕn
ij = ∪oavi = oavi. Moreover, all select

branches of both sides of � are incomplete, so αaΦi = ι = αavi.

2. If vi
a/��A�−−−−−→ vshh , then oaϕn

ij = ∅, and oaKleene�
i = oavi so oaΦi = oavi.

Also, αaKleene�
i = αaΦi = ⊥ = αavi.

3. The case vi
a/⊥�A�−−−−−→ vshh is handled similarly, except that in this case the

Kleene⊥
i succeeds, so αaΦi = ⊥ = αavi.

The Reaction Algebra: A Formal Language for Event Correlation 617

(2) For all branches with j �= l, ∂aϕn
ij ≈ ϕn

lj , and then ∂a(ϕn
ij ; Kleene�

j) ≈
(ϕn

lj ; Kleene�
j). On the other hand, for j = l, since αaϕn

il = �, we have ∂a(ϕn
il ;

Kleene�
j) = Kleene�

l . Finally, ∂aKleene�
i ≈ (ϕn

li ; Kleene�
i). This holds since all

| branches inside Kleene�
i fail. Hence,

∂aΦi ≈

⎛

⎜
⎜
⎝

ϕn
li ; Kleene�

i | Kleene�
l |

∣
∣
j 	=l

ϕn
lj ; Kleene�

j

�

ϕn
li ; Kleene⊥

i | Kleene⊥
l |

∣
∣
j 	=l

ϕn
lj ; Kleene⊥

j

⎞

⎟
⎟
⎠

≈

⎛

⎜
⎜
⎝

Kleene�
l |

∣
∣
j
ϕn

lj ; Kleene�
j

�

Kleene⊥
l |

∣
∣
j
ϕn

lj ; Kleene⊥
j

⎞

⎟
⎟
⎠ = Φl

The reordering of terms in the last step was possible by the commutativity and
associativity of the | operator. ��

Theorem 4. Every final formula Φi is bisimilar to its corresponding state vi.

This is a direct consequence of Lemma 4 and implies that the behavior of
state vi is captured precisely by formula Φi. Therefore, every finite graph can be
expressed by a reaction algebra expression.

6 Conclusions

We have introduced the reaction algebra as a formal language for interactive
computation. While most models of interactive computation start from machine-
based formalisms that are “interactive Turing-complete” the reaction algebra is
a simple and tractable language that can be enriched to describe more com-
plex behaviors. Our approach can also be interpreted as complementary to most
formalisms for the design of reactive systems, like Statecharts [7], which are usu-
ally based on machine models. Even though we use machines for the description
of the semantics, the main emphasis of our work relies on the study of simple
languages to express reactions, and their properties.

The purpose of the reaction algebra is analogous to the role of regular expres-
sions in language acceptors. Where regular expressions aim at easily defining reg-
ular sets, the reaction algebra can easily define reactions that can be efficiently
implemented. Even though for some expressions the smallest finite machine has
exponential size, every reaction algebra expression can be evaluated using stor-
age space O(n), performing at most n number of elementary operations per input
event. Reaction algebras have been used in practice as an event-pattern reactive
programming language; we show in this paper how to extend the basic reaction
algebra with new operators.

618 C. Sánchez et al.

We have shown that every reactive behavior that can be described and imple-
mented with finite memory can be expressed in RA with a basic set of operators.
In addition to its theoretical value, this result has also has practical applications,
for example, in the development of compilers and analysis tools. Compilers only
need to support the minimal set of constructs, while additional constructs can
be reduced to this set by a preprocessor. Similarly, analysis methods need to
cover only the basic constructs.

Future work includes: (1) Study whether, unlike regular-expressions (see
[5,20,12]), there are equational axiomatizations of the reaction algebra. (2) Con-
struct decision procedures for the problem of equational reasoning of parame-
terized RA expressions, and for the full first-order case. Efficient solutions will
allow the synthesis of reaction algebra expressions and the implementation of
behavior-preserving optimizations. (3) Go beyond the finite state case by equip-
ping the reaction algebra with capabilities to store and manipulate data, and
study to what extent the expressive power is still complete in some suitable
sense, and to what extent the analysis problems are still tractable.

References

1. Aguilera, M.K., et al.: Matching events in a content-based subscription system. In:
Symposium on Principles of Distributed Computing, pp. 53–61 (1999)

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

3. Berry, G.: Proof, language, and interaction: essays in honour of Robin Milner. In:
The foundations of Esterel, pp. 425–454. MIT Press, Cambridge (2000)

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19(3), 332–383
(2001)

5. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall, Boca Raton
(1971)

6. Goldin, D., Smolka, S.A., Wegner, P. (eds.): Interactive Computation: the New
Paradigm. Springer, Heidelberg (2006)

7. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and com-
putation. Addison-Wesley, Reading (1979)

10. Hunleth, F., Cytron, R., Gill, C.D.: Building customizable middleware using aspect
oriented programming. In: Works. on Advanced Separation of Concerns (OOPSLA
2001) (2001)

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–41. Princeton
University Press, Princeton (1956)

12. Kozen, D.: A completeness theorem for kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

13. Lynch, N., Tuttle, M.: An introduction to Input/Output automata. CWI-
Quarterly 2(3) (1989)

The Reaction Algebra: A Formal Language for Event Correlation 619

14. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers 9, 39–47 (1960)

15. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Systems Technical
Journal 34(5), 1045–1079 (1955)

16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

17. Moore, E.F.: Gedanken-Experiments on sequential machines. In: Automata Stud-
ies, pp. 129–153 (1956)

18. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

19. Rutten, J.J.: Automata and coinduction (an exercise in coalgebra). In: CONCUR
(1998)

20. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the ACM 13(1), 158–169 (1966)

21. Sánchez, C., et al.: Event correlation: Language and semantics. In: Alur, R., Lee, I.
(eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 323–339. Springer, Heidelberg (2003)

22. Sánchez, C., et al.: Final semantics for Event-Pattern Reactive Programs. In: Fi-
adeiro, J.L., et al. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 364–378. Springer,
Heidelberg (2005)

23. Sánchez, C., et al.: Expressive completeness of an event-pattern reactive program-
ming language. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 529–532.
Springer, Heidelberg (2005)

24. Schmidt, D., Levine, D., Harrison, T.: The design and performance of a real-time
CORBA object event service. In: Proc. of OOPSLA (1997)

25. Segall, B., Arnold, D.: Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In: Queensland AUUG Summer Technical Conference,
Brisbane, Australia (1997)

26. Tardieu, O.: A deterministic logical semantics for Esterel. In: Workshop on Struc-
tural Operational Semantics, SOS (2004)

On Natural Non-dcpo Domains

Vladimir Sazonov

Department of Computer Science, the University of Liverpool,
Liverpool L69 3BX, U.K.

Vladimir.Sazonov@liverpool.ac.uk

Dedicated to my teacher, Boris Abramovich Trakhtenbrot,
in his 87th year whose influence on me and help

cannot be overstated.

Abstract. As Dag Normann has recently shown, the fully abstract
model for PCF of hereditarily sequential functionals is not ω-complete
and therefore not continuous in the traditional terminology (in con-
trast to the old fully abstract continuous dcpo model of Milner). This
is also applicable to a wider class of models such as the recently con-
structed by the author fully abstract (universal) model for PCF+ =
PCF+ parallel if. Here we will present an outline of a general approach
to this kind of “natural” domains which, although being non-dcpos, al-
low considering “naturally” continuous functions (with respect to exist-
ing directed “pointwise”, or “natural” least upper bounds) and also have
appropriate version of “naturally” algebraic and “naturally” bounded
complete “natural” domains. This is the non-dcpo analogue of the well-
known concept of Scott domains, or equivalently, the complete f-spaces
of Ershov. In fact, the latter version of natural domains, if considered un-
der “natural” Scott topology, exactly corresponds to the class of f-spaces,
not necessarily complete.

1 Introduction

The goal of this paper is to present a first brief outline of the so-called “nat-
ural” version of domain theory in the general setting, where domains are not
necessary directed complete partial orders (dcpos). As Dag Normann has re-
cently shown [6], the fully abstract model of hereditarily-sequential finite type
functionals for PCF [1,3,5,10]1 is not ω-complete (hence non-dcpo) and there-
fore not continuous in the traditional terminology. This is also applicable to a
potentially wider class of models such as the fully abstract model of (heredi-
tarily) wittingly consistent functionals for PCF+ (i.e. PCF + parallel if) [10].
Note that until the above mentioned negative result in [6] and further positive
results in [10] the domain theoretical structure of such models was essentially

1 As to the language PCF for sequential finite type functionals see [4,7,9,11]. Note
also that the technical part of [10] — the source of considerations of the present
paper — is heavily based on [8,9].

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 620–634, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Natural Non-dcpo Domains 621

unknown. The point of using the term “natural” for these kinds of domains is
that in the case of non-dcpos, the ordinary definitions of continuity and finite
(algebraic) elements via arbitrary directed least upper bounds (lubs) prove to
be inappropriate. A new, restricted concept of “natural” lub is necessary, and it
leads to a generalized theory applicable also to non-dcpos. More informally, if
some directed least upper bounds do not exist in a partial ordered set D then
this can serve as an indication that even some existing least upper bounds can
be considered as “unnatural” in a sense. Although “natural” lubs for functional
domains can also be characterised technically as “pointwise” (in the well-known
sense), using the latter term for the concepts of continuous functions or finite
elements as defined in terms of pointwise lubs is, in fact, somewhat misleading.
The term “pointwise continuous” is in this sense awkward and of course not
intended to be considered as “continuous for each argument value”, but rather
as “continuous with respect to the pointwise lubs” which is lengthy. Thus, the
more neutral and not so technical term “natural” is used instead of “pointwise”.
Moreover, for general non-functional non-dcpo domains the term “pointwise”
does not seem to have the straightforward sense. However we should also note
the terminological peculiarity of the term “natural”. For example, the existence
of “naturally finite but not finite” elements in such “natural” domains is quite
possible (see Hypotheses 2.8 in [10] concerning sequential functionals). Although
the main idea of the current approach has already appeared in [10], it was ap-
plied there only in a special situation of typed non-dcpo models with “natural”
understood as (hereditarily) “pointwise”. Here our goal is to make the first steps
towards a general non-dcpo domain theory of this kind.

2 Natural Domains

A non-empty partially ordered set (poset) 〈I, ≤〉 is called directed if for all i, j ∈ I
there is a k ∈ I such that i, j ≤ k. By saying that a (non-empty) family of
elements xi in a poset 〈D, �〉 is directed, we mean that I, the range of i, is a
directed poset, and, moreover, the map λi.xi : I → D is monotonic in i, that is,
i ≤ j ⇒ xi � xj . However in general, if it is not said explicitly or does not follow
from the context, xi may denote a not necessarily directed family. Moreover, we
will usually omit mentioning the range I of i, relying on the context. Different
subscript parameters i and j may range, in general, over different index sets I
and J . As usual

⊔
X denotes the ordinary least upper bound (lub) of a subset

X ⊆ D in a poset D which may exist or not. That is, this is a partial map⊔
: 2D →̇ D with 2D denoting the powerset of D. If D has a least element, it is

denoted as ⊥D or ⊥ and called undefined.

Definition 1

(a) Any poset 〈D, �D〉 (not necessarily a dcpo) is also called a domain.
(b) Recall that a directly complete partial order (or dcpo domain) is required

to be closed under taking directed least upper bounds
⊔

xi.2 (We omit the
usual requirement that a dcpo should contain a least element ⊥.)

2 In general, by
�

i zi we mean
�

{zi | i ∈ I}, and analogously for
�

below.

622 V. Sazonov

(c) A natural pre-domain is a domain D (in general non-dcpo) with a partially
defined operator of natural lub

⊎
: 2D →̇ D satisfying the first of the fol-

lowing four conditions. It is called a natural domain if all these conditions
hold:
(
⊎

1)
⊎

⊆
⊔

. That is, for all sets X ⊆ D, if
⊎

X exists (i.e. X is in the
domain of

⊎
) then

⊔
X exists too and

⊎
X =

⊔
X .

(
⊎

2) If X ⊆ Y ⊆ D,
⊎

X exists, and Y is upper bounded by
⊎

X then
⊎

Y
exists too (and is equal to

⊎
X).

(
⊎

3)
⊎

{x} exists (and is equal to x).
(
⊎

4) Let {yij}i∈I,j∈J be an arbitrary non-empty family of elements in D
indexed by I and J . Then

⊎

i

⊎

j

yij = (
⊎

j

⊎

i

yij =)
⊎

ij

yij =
⊎

i

yii

provided that:
1. Assuming all the required internal natural lubs

⊎
j yij in

⊎
i

⊎
j yij

and one of the external natural lubs
⊎

i

⊎
j yij or

⊎
ij yij exist, then

both exist and the corresponding equality above holds. (The case of⊎
j

⊎
i yij is symmetrical.3)

2. For the last equality to hold, the family yij is additionally required
to be directed (and monotonic) in each parameter i and j ranging
over the same I, and the existence of any natural lub in this equality
implies the existence of the other.

The second part of (
⊎

4) (directed case) evidently follows also from (
⊎

1), (
⊎

2),
and the following optional clause which might be postulated as well.

(
⊎

5) If X ⊆ Y ⊆ D,
⊎

Y exists, and X is cofinal with Y (i.e. ∀y ∈ Y ∃x ∈ X.
y � x) then

⊎
X exists too (and =

⊎
Y).

But we will really use only (
⊎

1)–(
⊎

4). Evidently, any pre-domain with unre-
stricted

⊎
�

⊔
is a natural domain. As an extreme case any discrete D with

� coinciding with = and
⊎

�
⊔

is a natural domain. But, as in the case of
[10], it may happen that only under a restricted

⊎
�

⊔
a natural domain has

some additional nice properties such as “natural” algebraicity properties dis-
cussed below in Sect. 3. Note that a natural domain is actually a second-order
structure 〈D, �D,

⊎D〉 in contrast to the ordinary dcpo domains represented as
a first-order poset 〈D, �D〉 structure.

Definition 2. Direct product of natural (pre-) domains D × E (or more gener-
ally,

∏
k∈K Dk) is defined by letting 〈x, y〉 �D×E 〈x′, y′〉 iff x �D x′ & y �E y′,

and additionally
⊎

i〈xi, yi〉 � 〈
⊎

i xi,
⊎

i yi〉 for any family 〈xi, yi〉 of elements
in D × E whenever each natural lub

⊎
i xi and

⊎
i yi exists.

3 It follows that for the equality
�

i

�
j yij =

�
j

�
i yij to hold it suffices to require

that all the internal and either one of the external natural lubs or the mixed lub�
ij yij exist.

On Natural Non-dcpo Domains 623

Proposition 1. The direct product of natural (pre-) domains is a natural (pre-)
domain as well. �

The poset of all monotonic maps D → E between any domains ordered pointwise
(f �(D→E) f ′ � fx �E f ′x for all x ∈ D) is denoted as (D → E). We will
usually omit the superscripts to �.

Definition 3

(a) A monotonic map f : D → E between natural pre-domains is called natu-
rally continuous4 if f(

⊎
i xi) =

⊎
i f(xi) for any directed natural lub

⊎
i xi,

assuming it exists (that is, if
⊎

i xi exists then
⊎

i f(xi) is required to exist
and satisfy this equality). The set of all (monotonic and) naturally continu-
ous maps D → E is denoted as [D → E].

(b) Given an arbitrary family fi : D → E of monotonic maps between natural
pre-domains, define a natural lub f =

⊎
i fi : D → E pointwise, as

fx �
⊎

i

(fix),

assuming the latter natural lub exists for all x; otherwise
⊎

i fi is undefined.

Proposition 2. For the case of naturally continuous fi the resulting f in (b)
above is a naturally continuous map as well, assuming E is a natural domain.

Proof. Use the first part of (
⊎

4): f
⊎

j xj �
⊎

i(fi

⊎
j xj) =

⊎
i

⊎
j(fixj) =⊎

j

⊎
i(fixj) �

⊎
j fxj , for xj directed and having a natural lub (with all other

natural lubs evidently existing). �

Moreover, for any non-empty set F of monotonic functions D → E and a family
fi ∈ F , if the natural lub

⊎
i fi exists and is also an element of F then it is

denoted as
⊎F

i fi; otherwise,
⊎F

i fi, is considered as undefined. When defined,
⊎F

i fi =
⊔F

i fi =
⊔(D→E)

i fi. Here
⊔F denotes the lub relativized to the poset F

with the pointwise partial order �(D→E) restricted to F . Evidently, F ⊆ F ′ =⇒
⊔F ′

i fi �
⊔F

i fi when both lubs exist. In contrast with
⊔F , the natural lub

⊎F
i fi =

⊎
i fi is essentially independent on F , except it is required to be in F .

We will omit the superscript F when it is evident from the context. Further, it
is easy to show (by pointwise considerations) that

Proposition 3. For D and E natural pre-domains, any F ⊆ (D → E) is (triv-
ially) a natural pre-domain under

⊎F defined above. It is also a natural domain
4 Using the adjective ‘natural’ here and in other definitions below is, in fact, rather

annoying. We would be happy to avoid it at all, but we need to distinguish all
these ‘natural’ non-dcpo versions of the ordinary definitions for dcpos relativized
to the natural lub

�
from similar definitions relativized to the ordinary lub

�
. In

principle, if the context is clear, we could omit ‘natural’, and use this term as well
as ‘non-natural’ only when necessary. Another way is to write ‘

�
-continuous’ vs.

‘
�

-continuous’, etc. to make the necessary distinctions.

624 V. Sazonov

if E is, and, in particular, (D → E) and [D → E] are natural domains in this
case with [D → E] closed under (existing, not necessarily directed) natural lubs
in (D → E).

Proof

(
⊎

1) is trivial.
(
⊎

2) For a family of monotonic functions {fj ∈ F}j∈J and I ⊆ J , assume that⊎
i∈I fi ∈ F and fj �

⊎
i∈I fi for all j ∈ J . It follows that for all j ∈ J

and x ∈ D, fjx �
⊎

i∈I(fix). Therefore, by using (
⊎

2) for E,
⊎

j∈J (fjx)
exists for all x in the natural domain E, and hence

⊎
j∈J fj does exist too

in (D → E) and therefore coincides with
⊎

i∈I fi ∈ F , as required.
(
⊎

3) For any f , (
⊎

{f})x =
⊎

{fx} = fx. Thus,
⊎

{f} = f , as required.
(
⊎

4) For arbitrary family of functions fij ∈ F (
⊎

4) reduces to the same in E
for yij = fijx with arbitrary x ∈ D.
1. Indeed, assume all the required internal natural lubs

⊎
j fij and one of

the external natural lubs
⊎

i

⊎
j fij or

⊎
ij fij exist and belong to F .

Then for all x ∈ D the corresponding assertion holds for
⊎

j fijx and⊎
i

⊎
j fijx or

⊎
ij fijx, and therefore

⊎
i

⊎
j fijx =

⊎
ij fijx in E. This

pointwise identity implies both existence of the required natural lubs in
F and equality between them

⊎
i

⊎
j fij =

⊎
ij fij .

2. For directed fij , i, j ∈ I, and one of the natural lubs
⊎

j fij or
⊎

j fii

existing, we evidently have for all x ∈ D that fijx is directed in each
parameter i and j, and

⊎
j fijx =

⊎
j fiix holds in E, and therefore both

the required lubs exist in F and the equality
⊎

j fij =
⊎

j fii holds. �

If natural domains D and E are dcpos with
⊎

=
⊔

then the same holds both for
(D → E) and [D → E], and the latter domain coincides with that of all (usual)
continuous functions with respect to arbitrary directed lubs. This way natural
domain theory generalizes that of dcpo domains, and we will see that other
important concepts of domain theory over dcpos have natural counterparts in
natural domains with all the ordinary considerations extending quite smoothly
to the ‘natural’ non-dcpo case.

These considerations allow us to construct inductively some natural domains
of finite type functionals by taking, for each type σ = α → β, an arbitrary
subset Fα→β of monotonic (or only naturally continuous) mappings Fα → Fβ .
Of course, we can additionally require that these Fσ are sufficiently closed
(say, under λ-definability or sequential computability). This way, for example,
the λ-model of hereditarily-sequential finite type functionals can be obtained.
E.g. in [10] this was done inductively over level of types with an appropri-
ate definition of sequentially computable functionals in Qα1,...,αn→Basic-Type ⊆
(Qα1 , . . . , Qαn → QBasic-Type) (over the basic ‘flat’ domain QBasic-Type =
N⊥). It was proved only a posteriori and quite non-trivially that all sequential
functionals are naturally continuous by embeddings: Qα1,...,αn→Basic-Type ⊆
[Qα1 , . . . , Qαn → QBasic-Type] and Qα→β ↪→ [Qα → Qβ], and satisfy further
“natural” algebraicity properties discussed in Sect. 3. It was while determining
the domain theoretical nature of Qα that the idea of natural domains emerged;

On Natural Non-dcpo Domains 625

and, although it proved to be quite simple, it was unclear at that moment
whether anything reasonable could be obtained. What is new here is a gen-
eral, abstract presentation of natural domains that does not rely, as in [10], on a
type structure like that of {Qα}. Unfortunately, it would take too much space to
consider here the construction of the λ-model {Qα} — the source of general con-
siderations of this paper. (See also [1,3,5] where the same model was defined in
a different way and where its domain theoretical structure was not described; it
was even unknown whether it is different from the older dcpo model of Milner [4]
which was shown later by Normann [6].)

Proposition 4. Let D, E be natural pre-domains and F a natural domain. A
two place monotonic function f : D × E → F is naturally continuous iff it is so
in each argument.

Proof. “Only if” is trivial (and uses (
⊎

3) for F). Conversely, for arbitrary di-
rected families xi and yi having natural lubs we have

f(
⊎

i

〈xi, yi〉) � f(〈
⊎

i

xi,
⊎

i

yi〉) =
⊎

i

⊎

j

f(〈xi, yj〉) =
⊎

ij

f(〈xi, yj〉)

=
⊎

i

f(〈xi, yi〉) ,

as required, by applying the natural continuity of f in each argument and using
(
⊎

4) for F . �

Proposition 5. There are the natural (in the sense of category theory) order
isomorphisms over natural domains preserving additionally in both directions all
the existing natural lubs, not necessarily directed5,

(D × E → F) ∼= (D → (E → F)) , (1)
[D × E → F] ∼= [D → [E → F]]. (2)

This makes the class of natural domains with monotonic, resp., naturally contin-
uous morphisms a Cartesian closed category (ccc) in two ways. Moreover, each
side of the second isomorphism is a subset of the corresponding side of the first,
with embedding making the square diagram commutative.

Proof. Indeed, the isomorphism (1) and its inverse are defined for any f ∈ (D ×
E → F) and g ∈ (D → (E → F)), as usual, by

f∗ � λx.λy.f(x, y) ∈ (D → (E → F)) ,

ĝ � λ(x, y).gxy ∈ (D × E → F) .

5 And, of course, preserving the ordinary lubs.

626 V. Sazonov

Then λf.f∗ preserves (in both directions) all the existing natural lubs (
⊎

i fi)∗ =⊎
i f∗

i :

(
⊎

i

fi)∗xy � (
⊎

i

fi)(x, y) �
⊎

i

fi(x, y) �
⊎

i

((f∗
i x)y) � (

⊎

i

(f∗
i x))y

� ((
⊎

i

f∗
i)x)y � (

⊎

i

f∗
i)xy

holds for all x ∈ D and y ∈ E where if the first natural lub exists then all the
others exist too, and conversely. Here we used only the definitions of ∗ and

⊎

for functions. The second isomorphism (2) is just the restriction of the first. For
its correctness we should check that f∗ (resp. ĝ) is naturally continuous if f
(resp. g) is:

f∗ ⊎

i

xi � λy.f(
⊎

i

xi, y) = λy.
⊎

i

f(xi, y) �
⊎

i

λy.f(xi, y) �
⊎

i

f∗xi

by using additionally Proposition 4 in the second equality. Similarly,

ĝ(
⊎

i

xi,
⊎

i

yi) � g(
⊎

i

xi)(
⊎

i

yi) =
⊎

i

gxi(
⊎

i

yi) =
⊎

i

⊎

j

gxiyj

=
⊎

i

gxiyi �
⊎

i

ĝ(xi, yi)

by using (
⊎

4) for F . �

Definition 4. An upward closed set U in a natural pre-domain D is called
naturally Scott open if for all directed families xi having the natural lub

⊎

i

xi ∈ U =⇒ xi ∈ U for some i.

Such subsets constitute the natural Scott topology on D.

This is a straightforward generalization of the ordinary Scott topology on any
poset defined in terms of the usual lub

⊔
of directed families. Evidently, each

Scott open set (in the standard sense) is naturally Scott open, and therefore the
latter sets constitute a T0-topology.

Proposition 6

(a) Any natural pre-domain 〈D, �D,
⊎D〉 is a T0-space under its natural Scott

topology whose standardly generated partial ordering coincides with the orig-
inal ordering �D on D.

(b) Continuous functions between pre-domains defined as preserving the existing
natural lubs are also continuous relative to the natural Scott topologies in the
domain and co-domain.

On Natural Non-dcpo Domains 627

(c) But the converse holds only in the weakened form: continuity of a map f
in the sense of natural Scott topologies implies f(

⊎
i xi) =

⊔
i f(xi) for any

directed family xi with existing
⊎

i xi.6

Proof

(a) If x � y and x ∈ U for any naturally Scott open U ⊆ D then y ∈ U because
U is upward closed. Conversely, assume x �� y, and define Uy � {z ∈ D |
z �� y}. This set is evidently upward closed. Let

⊎
i xi ∈ Uy for a directed

family. Then it is impossible that all xi �∈ Uy, i.e. xi � y, because then we
should have

⊎
i xi � y — a contradiction. Therefore Uy is a naturally Scott

open set (in fact, even Scott open in the standard sense) such that x �� y,
x ∈ Uy but y �∈ Uy, as required.

(b) Assume monotonic f : D → E preserves natural directed lubs and U ⊆ E is
naturally Scott open in E. Then f−1(U) is evidently upward closed in D as
U is such in E. Further, let

⊎
i xi ∈ f−1(U), i.e. f(

⊎
i xi) =

⊎
i f(xi) ∈ U and

hence f(xi) ∈ U and xi ∈ f−1(U) for some i. Therefore f−1(U) is naturally
Scott open. That is, f is continuous in the sense of natural Scott topologies
in D and E.

(c) Conversely, assume f : D → E is continuous in the sense of natural Scott
topologies in D and E, and

⊎
i xi exists in D for a directed family. Let

us show that f(
⊎

i xi) =
⊔

i f(xi). The inequality f(
⊎

i xi) � f(xi) follows
by monotonicity of f . Assume y is an upper bound of all f(xi) in E but
f(

⊎
i xi) �� y. Define like above the Scott open set Vy � {z ∈ E | z �� y}.

Then f−1(Vy) is naturally Scott open containing
⊎

i xi and therefore some
xi, implying f(xi) ∈ Vy, i.e. f(xi) �� y — a contradiction. This means that
f(

⊎
i xi) =

⊔
i f(xi). �

3 Naturally Finite Elements

Definition 5. A naturally finite element d in a natural pre-domain D is such
that for any directed natural lub (assuming it exists) if d �

⊎
X then d � x for

some x in X . If arbitrary directed lubs
⊔

X are considered then d is called just
finite.

The last part of the definition is most reasonable in the case of dcpos. Otherwise
(assuming

⊎
�=

⊔
), ‘finite’ means rather ‘non-natural finite’.

Definition 6. A natural pre-domain D is called naturally (ω-) algebraic if (it
has only countably many naturally finite elements and) each element in D is a
natural lub of a (non-empty) directed set of naturally finite elements.

6 In the special case of
�

�
�

and standard Scott topologies we have, as usual, the
full equivalence of the two notions of continuity of maps with f(

�
i xi) =

�
i f(xi).

We will see below that the full equivalence of these two notion of continuity holds
also for naturally algebraic and naturally bounded complete natural pre-domains.

628 V. Sazonov

If D is dcpo with
⊎

=
⊔

then the above reduces to the traditional concept of
(ω-) algebraic dcpo. It follows, assuming additionally (

⊎
2), that

x =
⊎

x̂ (3)

where x̂ � {d � x | d is naturally finite} for any x ∈ D.

Definition 7. If any two upper bounded elements c, d have least upper bound
c � d in D then D is called bounded complete, and it is called finitely bounded
complete if, in the above, only finite c, d (and therefore c � d) are considered.

This is the traditional definition adapted to the case of an arbitrary poset D.
If D is an algebraic dcpo then it is bounded complete iff it is finitely bounded
complete. In fact, for dcpos bounded completeness means existence of a lub for
any bounded set, not necessarily finite. Algebraic and bounded complete dcpos
with least element ⊥ are also known as Scott domains or as the complete f0-
spaces of Ershov [2] (or just Scott-Ershov domains). For the ‘natural’, non-dcpo
version of these domains we need

Definition 8. A natural pre-domain D is called naturally bounded complete if
any two naturally finite elements upper bounded in D have a lub (not necessarily
natural lub, but evidently naturally finite element).

In such domains any set of the form x̂ is evidently directed, if non-empty. (It is
indeed non-empty in naturally algebraic pre-domains.)

Proposition 7. For a naturally algebraic natural domain D the natural lub of
an arbitrary family xi can be represented as

⊎

i

xi =
⊎⋃

i

x̂i (4)

where both natural lubs either exist or not simultaneously.

Proof. Indeed, let x0
i � xi denote an arbitrarily chosen naturally finite approxi-

mation of xi, and let j range over naturally finite elements of D. Define xij � j
if j � xi, and � x0

i otherwise. Then
⊎

i xi =
⊎

i

⊎
x̂i =

⊎
i

⊎
j xij =

⊎
ij xij =⊎⋃

i x̂i by (3) and the first part of (
⊎

4). �

Therefore, any naturally algebraic natural domain D is, in fact, defined by the
quadruple 〈D, D[ω], �D, L〉 where D[ω] ⊆ D consists of naturally finite elements
in D and L is the set of all sets of naturally finite elements having a natural lub.
Indeed, we can recover

⊎
i xi �

⊔⋃
i x̂i by (4) whenever

⋃
i x̂i ∈ L. Moreover, in

the case of naturally algebraic and naturally bounded complete natural domains
D their elements x can be identified, up to the evident order isomorphism, with
the ideals x̂ ∈ L (non-empty directed downward closed sets of naturally finite
elements ordered under set inclusion and having a natural lub). In particular,

x � y ⇐⇒ x̂ ⊆ ŷ . (5)

On Natural Non-dcpo Domains 629

Note 1. The above definition via naturally finite elements and ideals does not
always work in practice. Thus, in the real application of this theory to the λ-
model of hereditarily sequential finite type functionals {Qα} [10] we do not
have naturally finite elements Q

[ω]
α ⊆ Qα as given. We only have a priori that

Qα are partial ordered sets with ⊥α and with monotonic application operators
Appα,β : Qα→β × Qα → Qβ. That they are, in fact, naturally ω-algebraic,
naturally bounded complete natural domains with Appα,β naturally continuous
requires quite complicated considerations (using appropriate theory of sequential
computational strategies) for its proof. Even the fact that the natural (in fact,
quite simply defined as pointwise) lub

⊎α on Qα is fruitful notion to use here
was not self-evident at all.

Generalizing the case of dcpos we can improve an appropriate part in Proposi-
tion 6 (see also footnote 6):

Proposition 8

(a) For D and E naturally algebraic and naturally bounded complete natural pre-
domains, a monotonic map f : D → E is naturally continuous (in the sense
of preserving directed natural lubs) iff for all x ∈ D and naturally finite
b � fx there exists naturally finite a � x such that b � fa. This means
that natural continuity of functions between such domains is equivalent to
topological continuity with respect the natural Scott topology because

(b) Naturally Scott open sets in such domains are exactly arbitrary unions of the
upper cones ǎ � {x | a � x} for a naturally finite.

Proof (a) Indeed, for f naturally continuous, fx =
⊎

f(x̂), so b � fx implies
b � fa for some a � x for naturally finite a, b.
Conversely, assume f satisfies the above b-a-continuity property and x =⊎

i xi be a natural directed lub in D. Let us show that fx =
⊎

i fxi. The
inclusions fxi � fx hold by monotonicity of f and imply

⋃
i f̂xi ⊆ f̂x.

Now, it suffices to show, by (4) and (5) applied to E, the inverse inclusion
f̂x ⊆

⋃
i f̂xi. Thus, assume b � fx for a naturally finite b and hence b � fa

for some naturally finite a � x =
⊎

i xi and, therefore, a � xi for some i.
Then b � fa � fxi, as required.

(b) This follows straightforwardly from the definitions of naturally finite ele-
ments, naturally Scott open sets, and from the identity x =

⊎
x̂ (with x̂

directed). �

Note 2. In fact, it can be shown that naturally algebraic and naturally bounded
complete natural (pre-) domains, if considered as topological spaces under the
natural Scott topology, are exactly f-spaces of Ershov [2] (i.e. all, not necessary
complete f-spaces). But here again we could apply the comments of Note 1.
Indeed, Qα do not originally appear as f-spaces (represented as in [2] either
topologically or order theoretically with finite (or f-) elements as given). This
becomes clear only a posteriori, after complicated considerations based, in par-
ticular, on the general concept of natural domains (and on a lot of other things).
That is why this concept is important in itself.

630 V. Sazonov

Further generalizing the traditional dcpo case and working in line with the theory
of f-spaces [2], we can show

Proposition 9. If natural domains D and E are naturally (ω-)algebraic and
naturally bounded complete then so are D ×E and [D → E], assuming addition-
ally in the case of [D → E] that E contains the least element ⊥E. Then such
a restricted class of domains with ⊥ and with naturally continuous morphisms
constitute a ccc.

Proof. For D × E this is evident. Let us show this for [D → E]. Indeed, let
a0, . . . , an−1 ∈ D and b0, . . . , bn−1 ∈ E be two arbitrary lists of naturally finite
elements satisfying the

Consistency condition: for any x ∈ D the set {bi | ai � x, i < n} is upper
bounded in E, and hence its lub exists and is naturally finite.

(In general, assume that a, b, c, d, . . ., possibly with subscripts, range over natu-
rally finite elements.) Then define a tabular function

[
b0,...,bn−1
a0,...,an−1

]
∈ [D → E] by

taking for any x ∈ D
[

b0,...,bn−1
a0,...,an−1

]
x �

⊔
{bi | ai � x, i < n} (6)

because this lub does always exist. (Here we use the fact that E contains the
least element ⊥E needed to get the lub defined if the set on the right is empty.)
In particular,

[
b0,...,bn−1
a0,...,an−1

]
is the least monotonic function f : D → E for which

bi � fai for all i < n, that is,
[

b0,...,bn−1
a0,...,an−1

]
� f ⇐⇒ bi � fai for all i < n. (7)

Moreover, this is also a naturally continuous function. Indeed, for any directed
family {xk}k∈K in D with the natural lub existing

[
b0,...,bn−1
a0,...,an−1

]⊎

k

xk =
⊔

{bi | ai �
⊎

k

xk} =
[

b0,...,bn−1
a0,...,an−1

]
xk0

for some k0 ∈ K (due directedness of {xk}k∈K) so that, in fact,
[

b0,...,bn−1
a0,...,an−1

]
xk �

[
b0,...,bn−1
a0,...,an−1

]
xk0 for all k ∈ K and hence, by (

⊎
2) and (

⊎
3) for E,

[
b0,...,bn−1
a0,...,an−1

]⊎

k

xk =
⊎

k

[
b0,...,bn−1
a0,...,an−1

]
xk .

It is also follows from (7) that
[

b0,...,bn−1
a0,...,an−1

]
=

⊔
i<n

[
bi
ai

]
. Moreover, this is a

naturally finite element in [D → E]. Thus, in the simplest case of
[

b
a

]

[
b
a

]
�

⊎

j

fj
(7)⇐⇒ b �

⊎

j

fja ⇐⇒ ∃j.b � fja ⇐⇒ ∃j.
[

b
a

]
� fj

On Natural Non-dcpo Domains 631

for any directed family of naturally continuous functions fj with
⊎

j fj and there-

fore
⊎

j fja existing. If
[

b0,...,bn−1
a0,...,an−1

]
� f and

[
d0,...,dm−1
c0,...,cm−1

]
� f then evidently

[
b0,...,bn−1
a0,...,an−1

]⊔ [
d0,...,dm−1
c0,...,cm−1

]
=

[
b0,...,bn−1,d0,...,dm−1
a0,...,an−1,c0,...,cm−1

]
� f . Thus, the set f̂ of tab-

ular approximations to any monotonic function f is directed. Moreover, any
naturally continuous f is, in fact, the natural lub of this set:

f =
⊎

f̂ =
⊎

{ϕ | ϕ � f & ϕ tabular} (8)

because

fx =
⊎

f̂x =
⊎

{b | b � fx} =
⊎

{b | ∃ naturally finite a � x (b � fa)}

=
⊎

{
[

b
a

]
x |

[
b
a

]
� f} =

⊎
{ϕx | ϕ � f & ϕ tabular}.

The last equality holds because, for tabular functions, ϕx =
[

b
a

]
x for some[

b
a

]
� ϕ (where, in accordance with (6),

[
b
a

]
does not necessary is one of the

columns of the tabular representation of ϕ). It also follows from (8) that tabular
elements of [D → E] are exactly the naturally finite ones. Moreover, this domain
is naturally (ω-)algebraic and naturally bounded complete. �

Note 3. For any finite list of tabular elements ϕ1, . . . , ϕk in [D → E], they are
upper bounded in [D → E] iff the union of tables representing ϕi is consistent
in the above sense. This reduces, essentially algorithmically, the problem of up-
perboundedness for naturally finite elements in [D → E] to those in D and E.
But if we would consider a subset of F ⊆ [D → E] (say, of sequential or other
kind of restricted function(al)s as in [10]) then no such algorithmic reduction
for F is possible a priori, even if it is naturally algebraic and naturally bounded
complete and its naturally finite elements are represented in the tabular way as
above.

4 Semi-formal Considerations on the More General Case
of F ⊆ [D → E] Induced by [4]7

Here most our of assertions will have a conditional character with intuitively ap-
pealing assumptions. Let F ⊆ (D → E) be an arbitrary natural domain of mono-
tonic functions (for appropriate natural domains D and E). (See Proposition 3.
For example, F could consist of naturally continuous sequential function(al)s
only.) While postulating the additional requirement of natural continuity and
ω-algebraicity property of a function domain F looks quite reasonable from the
computational perspective, the requirement of (natural) bounded completeness
might seem questionable in general. Why should the lub of two (naturally finite)

7 Note that [4] was devoted only to the case of dcpos.

632 V. Sazonov

sequential functionals exist at all and be sequentially computable, even if they
have a joint upper bound? However the following intuitive, semi-formal and
sufficiently general argumentation in favour of natural bounded completeness
can be given (and easily formalised for the case of finite type functionals).

The simplest, ‘basic’ domains D like flat ones may be reasonably postulated
to be naturally bounded complete. Also, the greatest lower bound (glb) x y
of any two elements can be considered computable/natural continuous. (Say, for
flat domains we need only conditional if and equality = to define .) Then,
assuming that F has the most basic computational closure properties, we can
conclude that F is also closed under the naturally continuous operation glb
f g = (λx ∈ D.fx gx) ∈ F .

Moreover, it seems quite reasonable to assume that the set of naturally fi-
nite elements in any ‘basic’ D is a directed union, D[ω] =

⋃
k D[k], of some

finite sets D[k] of naturally finite objects which are suitably finitely restricted
for each k where k (say, 0, 1, 2, . . .) may serve as a measure of restriction. For
each D[k] ⊆ D we could expect that each x ∈ D has a best naturally finite lower
approximation x[k] = Ψ [k]x � x from D[k], assuming also Ψ [k](Ψ [k]x) = Ψ [k]x.
Thus, Ψ

[k]
D : D → D is just a monotonic projection onto its finite range D[k]. It

easily follows that the family {x[k]}k is directed for any x ∈ D. Also it is a rea-
sonable assumption that such Ψ

[k]
D , for the basic domains, are computable and

therefore naturally continuous.
Then the fact that each finitely restricted element x[k] is naturally finite can

even be deduced as follows: x[k] �
⊎

Z for a directed set Z implies x[k] �
⊎

{z[k] |
z ∈ Z} = z[k] � z for some z by natural continuity of Ψ [k] and because D[k] is
finite.

Further, we could additionally assume that x =
⊎

k x[k] holds for all x. This
implies formally (from our assumptions) that naturally finite and finitely re-
stricted (i.e., of the form x[k]) elements in D are the same.

It follows that any two upper bounded finitely restricted elements d, e ∈ D[k]

must have a (not necessarily natural) lub d � e in D which is also finitely re-
stricted. Indeed, it can be obtained as the greatest lower bound in D of a finite
nonempty set:

d � e = {x[k] | x � d, e}. (9)

By induction, given any (not necessary ‘basic’) naturally ω-algebraic and nat-
urally bounded complete domains D and E with such projections, we should
conclude that the composition Ψ

[k]
E ◦ f ◦ Ψ

[k]
D , denoted as Ψ

[k]
F f or f [k] (f [k]x �

(fx[k])[k]), is computable/naturally continuous, assuming f ∈ F ⊆ [D → E] is
such. Assuming that F has minimal reasonable closure properties, we can con-
clude that this composition should belong to F as well. But, once all D[k] and
E[k] are finite sets consisting only of naturally finite elements, Ψ

[k]
F f is just a nat-

urally finite tabular function, which can be reasonably postulated as k-restricted
in F , and Ψ

[k]
F : F → F is the corresponding directed family of projections having

finite ranges F [k] consisting of some tabular k-restricted functions.

On Natural Non-dcpo Domains 633

These projections are naturally continuous and, moreover, preserve all existing
natural lubs (not necessarily directed) assuming Ψ

[k]
D and Ψ

[k]
E do:

(Ψ [k]
E ◦ (

⊎

i

fi) ◦ Ψ
[k]
D)x = Ψ

[k]
E ((

⊎

i

fi)(Ψ
[k]
D x)) = Ψ

[k]
E (

⊎

i

(fi(Ψ
[k]
D x)))

=
⊎

i

Ψ
[k]
E (fi(Ψ

[k]
D x)) =

⊎

i

((Ψ [k]
E ◦ fi ◦ Ψ

[k]
D)x) = (

⊎

i

(Ψ [k]
E ◦ fi ◦ Ψ

[k]
D))x .

Moreover, having that F consists of only naturally continuous functions, f =⊎
k f [k] should hold for all f . Indeed, this follows from the same property in

D and E: fx = f(
⊎

k x[k]) =
⊎

k(fx[k]) =
⊎

k

⊎
m(fx[k])[m] =

⊎
k(fx[k])[k] =⊎

k(f [k]x). Then we can conclude that the tabular functions (of the form f [k]

for any f ∈ F) are exactly the naturally finite elements of the natural domain
F , and F is naturally ω-algebraic. Finally, having projections Ψ

[k]
F and naturally

continuous finite glb in F (definable by induction like above and therefore
existing in F by the natural closure properties), natural bounded completeness
of F follows exactly as above in (9) for the case of ‘basic’ domains.

To define a naturally ω-algebraic and naturally bounded complete natural
domain F ⊆ [D → E], we can fix any (simply) bounded complete set F [ω] of
tabular elements in [D → E] containing ⊥[D→E], and take F to be any extension
of F [ω] by some (if exists in [D → E]) directed natural lubs of these tabular
elements. Then F [ω] is exactly the set of all naturally finite elements in F . Two
extreme versions of F are F [ω], and the set of all existing directed natural lubs
from F [ω]. Besides the fact that this construction looks quite natural in itself, it
follows from the above considerations that naturally finite elements in F cannot
be anything other than tabular elements, provided there are, as above, directed
families of naturally continuous projections Ψ

[k]
D and Ψ

[k]
E to finite elements such

that x =
⊎

k x[k] and y =
⊎

k y[k] hold for any x ∈ D and y ∈ E, and that F is
closed under projections Ψ

[k]
F defined from Ψ

[k]
D and Ψ

[k]
E .

5 Conclusion

Our presentation is that of the current state of affairs and has the peculiarity
that really interesting concrete examples of non-dcpo domains (such as those of
hereditarily sequential and wittingly consistent higher type functionals [10]) from
which this theory has in fact arisen require too much space to be presented here.
The theory is general, but the non-artificial and instructive non-dcpo examples
on which it is actually based are rather complicated and in a sense exceptional
(dcpo case being more typical and habitual). However we can hope that there
will be many more examples where this theory can be used, similarly to the case
of dcpos.

One important topic particularly important for applications which was not
considered here in depth and which requires further special attention is the pos-
sibility of the effective version of naturally algebraic, naturally bounded complete
natural domains. Unlike the ordinary dcpo version (Ershov-Scott domains), not

634 V. Sazonov

everything goes so smoothly here as is noted in connection with the model of
hereditarily sequential functionals in Sect. 2.4 of [10]; see also Note 3 above.

Acknowledgments. The author is grateful to Yuri Ershov for a related dis-
cussions on f-spaces, to Achim Jung for his comments on the earlier version of
presented here non-dcpo domain theory, and to Grant Malcolm for his kind help
in polishing the English.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Informa-
tion and Computation 163(2), 409–470 (2000)

2. Ershov, Y.L.: Computable functionals of finite types. Algebra and Logic 11(4), 367–
437 (1972), http://www.springerlink.com doi: 10.1007/BF02219096 (English Ver-
sion)

3. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I, II, and III. Infor-
mation and Computation 163, 285–408 (2000)

4. Milner, R.: Fully abstract models of typed λ-calculi. Theoretical Computer Sci-
ence 4, 1–22 (1977)

5. Nickau, H.: Hereditarily-Sequential Functionals: A Game-Theoretic Approach to
Sequentiality. Siegen, PhD Thesis (1996)

6. Normann, D.: On sequential functionals of type 3. Mathematical Structures in
Computer Science 16(2), 279–289 (2006)

7. Plotkin, G.: LCF considered as a programming language. Theoretical Computer
Science 5, 223–256 (1977)

8. Sazonov, V.Y.: Functionals computable in series and in parallel. Sibirskii Matem-
aticheskii Zhurnal 17(3), 648–672 (1976), http://www.springerlink.com, doi:
10.1007/BF00967869 (English Version)

9. Sazonov, V.Y.: Expressibility of functionals in D.Scott’s LCF language. Al-
gebra and Logic 15(3), 308–330 (1976), http://www.springerlink.com, doi:
10.1007/BF01876321 (English Version)

10. Sazonov, V.Y.: Inductive Definition and Domain Theoretic Properties of Fully
Abstract Models for PCF and PCF. Logical Methods in Computer Science 3(3:7),
1–50 (2007), http://www.lmcs-online.org

11. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical
Computer Science, 121 (1&2), 411–440 Böhm Festschrift (1993) Article has been
widely circulated as an unpublished manuscript since (1969)

http://www.springerlink.com
http://www.springerlink.com
http://www.springerlink.com
http://www.lmcs-online.org

Church’s Problem and a Tour through

Automata Theory

Wolfgang Thomas

RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Dedicated to Boris A. Trakhtenbrot, pioneer and teacher of automata theory
for generations of researchers, on the occasion of his 85th birthday.

Abstract. Church’s Problem, stated fifty years ago, asks for a finite-
state machine that realizes the transformation of an infinite sequence α
into an infinite sequence β such that a requirement on (α, β), expressed
in monadic second-order logic, is satisfied. We explain how three fun-
damental techniques of automata theory play together in a solution of
Church’s Problem: Determinization (starting from the subset construc-
tion), appearance records (for stratifying acceptance conditions), and
reachability analysis (for the solution of games).

1 Introduction

Around 1960, a core of automata theory had been established which led to the
first comprehensive expositions, such as the volume Sequential Machines – Se-
lected Papers edited by Moore [15] and the monograph [11] of Hopcroft and Ull-
man. In these early books three essential aspects of automata theory are either
underrepresented or missing: the view of automata as transducers (computing
functions rather than accepting languages), the use of automata in the study
of infinite computations, and the close connection between automata and logic.
These directions of study are a focus in the work of B.A. Trakhtenbrot. In the de-
velopment of automata theory the three aspects often appeared in combination,
offered most beautiful results and – as we know today – are highly significant and
even indispensable for many applications in the design and analysis of computer
systems.

The breakthrough on the relation between automata and logic was the proof of
the expressive equivalence between finite automata and weak monadic second-
order arithmetic over the natural number ordering, established by Büchi and
Elgot (see the joint announcement [3] of 1958 and the two papers [1,8]) and
independently by Trakhtenbrot [27] (submitted in July 1957). The Büchi-Elgot-
Trakhtenbrot Theorem was extended soon after by Büchi [2] to the full monadic
second-order theory of the natural number ordering, together with an expressive
model of finite automaton over infinite sequences (“Büchi automaton”). Later
Rabin showed how to generalize this theory to cover also infinite trees [20].

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 635–655, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

636 W. Thomas

The equivalence between formulas of monadic second-order logic and finite
automata opened a way to establish algorithms that can test sentences for truth
in the standard model of arithmetic. After decades of work on variants of the
original question and on improving the efficiency of decision procedures, this
approach became the origin of “model-checking”, today a vast field which offers
techniques for verifying highly nontrivial software and hardware systems.

Regarding the infinite behavior of automata and the use of automata as trans-
ducers, a master problem was raised by Church in 1957 [5] (see also [6]). He asked
for the synthesis of automata that realize functions over infinite words rather
than languages. Church posed the problem whether certain transformations of
infinite words that are specified in a system of arithmetic are computable by
finite automata (in his words: by circuits):

Given a requirement which a circuit is to satisfy, we may suppose the
requirement expressed in some suitable logistic system which is an exten-
sion of restricted recursive arithmetic. The synthesis problem is then to
find recursion equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no such circuit).
([5, p.8-9])

Church’s Problem was solved by Büchi and Landweber [4] for specifications
in monadic second-order logic over (N, <), building on a fundamental result by
McNaughton [13] on the determinization of Büchi automata. These two results,
the Büchi-Landweber Theorem and the McNaughton Theorem, are the origin
of a field which might be called “synthesis of reactive systems” (rather than
“verification”), with the algorithmic theory of infinite games as a core discipline.
Today the area attracts much attention – it is concerned with refined studies on
Church’s synthesis problem and the extension to more general questions (e.g.,
on infinite stochastic games or multiplayer games).

At a very early stage, it was again Trakhtenbrot who merged the fundamental
constructions of the subject in his pioneering monograph with Barzdin [28]. The
part due to Trakhtenbrot (namely, Chapters I to III) covers both key results
indicated above; it is based on lecture notes of his of 1966, with more material
(on the Büchi-Landweber Theorem) added with the translation. It is remarkable
to see that the authors call (in the preface to [28]) the Chapters I-III the “old”
parts of the theory, while just the Chapters IV and V, which focus on statistical
aspects, are mentioned as the “first encouraging steps of a new trend”. This
judgment was prophetic in the sense that today it is true as it was more than
30 years ago; probably the use of statistical methods will be a key in developing
efficient approaches to the present demanding challenges in verification and syn-
thesis. However, for the remainder of this paper, our objective is rather to reflect
on the “old” theory. We single out basic ingredients that are relevant to Church’s
Problem, taking a view as it developed over the past twenty years. We call these
methods “determinization”, “appearance records”, and “reachability analysis”.
The first two deal with approaches to set up memory structures in finite au-
tomata, and the last one is concerned with techniques for exploring transition
graphs. The purpose of this paper is to present the integration of these ideas in

Church’s Problem and a Tour through Automata Theory 637

a solution of Church’s problem. Since the details of these constructions are well-
known, our exposition focusses on methodological issues rather than offering a
full technical treatment1.

In Sect. 2, we begin with a presentation of Church’s Problem. Section 3 briefly
discusses the issue of determinization and subset constructions. Determinization
is the key construction for transforming Church’s Problem into a problem of
state-based infinite games, namely into the question of solving so-called “Muller
games”.

Sections 3 and 4 are the main part of the paper; they are devoted to the
solution of Muller games in two stages, following an idea proposed in [24] (as
an alternative to the original proof in [4]). The first stage is a stratification of
the Muller winning condition; it leads to the so-called “parity condition”. We
explain how this stratification is obtained by a simple memory structure that we
call “appearance records”. We present it in two versions (for weak and strong
Muller games).

The last step is the solution of parity games (again in their weak and strong
version), showing memoryless determinacy of these games. This completes the
solution of Church’s Problem. We explain (in Sect. 4) that the core of the proof
of memoryless determinacy of parity games is provided by (a subtle iteration
of) simple reachability tests. In the present game theoretical framework, we deal
with alternating reachability.

Of course, this emphasis on three essential constructions just points to some
selected central ideas. Automata theory is much too rich to be reducible to these
simple principles. For example, we do not touch the large area of automaton
minimization. Our exposition is also more motivated by didactic aspects than
by claims on practical applicability. For applications in program verification or
program synthesis, one often has to find refinements or even alternatives for the
basic constructions in order to ensure algorithmically satisfactory solutions.

2 Church’s Problem

Let us start with an example. Our objective is to construct a finite automaton
that transforms an input stream α of bits into an output stream β of bits such
that the following three conditions are satisfied. (We write, e.g., α(t) for the t-th
bit of α (t = 0, 1, . . .), and ∃ω for the quantifier “there exist infinitely many”.)

1. ∀t(α(t) = 1 → β(t) = 1)
2. ¬∃t β(t) = β(t + 1) = 0
3. ∃ωt α(t) = 0 → ∃ωt β(t) = 0

The desired automaton has to produce the output bit β(t) without delay
upon receipt of α(t). More specifically, we work with transducers in the for-
mat of deterministic Mealy automata. A Mealy automaton has the format M
= (S, Σ, Γ, s0, δ, τ) where S is the finite set of states, Σ and Γ are the input

1 Readers who want to see a self-contained exposition are referred to the tutorial [25].

638 W. Thomas

alphabet and output alphabet, respectively, s0 the initial state, δ : S × Σ → S
the transition function and τ : S × Σ → Γ the output function. In a graphical
presentation we label a transition from p to δ(p, a) by a/τ(p, a). The definition
of the function fM : Σω → Γ ω computed by M is then obvious.

For our example, the first two conditions are satisfied easily by producing
output 1 at each moment t. But the last condition, which has the form of a
fairness constraint, excludes this simple solution; we cannot ignore the zero bits
in α. A natural idea is to alternate between outputs 0 and 1 if the inputs are
only 0. We arrive at the following procedure:

– for input 1 produce output 1
– for input 0 produce

• output 1 if last output was 0
• output 0 if last output was 1

This procedure is executable by the following Mealy automaton. (As initial state
we take, for example, the left-hand state.)

last
output

0

last
output

1
1/1

1/1
0/1

0/0

Let us present the specification language and the task of synthesis in more
detail. For the formulation of “requirements” we consider the system of monadic
second-order logic (MSO) over the successor structure (N, +1, <), also called S1S
(for “second-order theory of one successor”) or “sequential calculus”. This case
was emphasized by Church as an open problem in [6], and today it is under-
stood that “Church’s Problem” refers to S1S. In short words, this language uses
variables s, t, . . . for time instances (natural numbers) and variables X, Y, . . . for
sequences. Sequences are identified here with unary predicates over the natural
numbers: The bit sequence α is identified with the predicate that holds for t iff
α(t) = 1; so in S1S one writes X(t) rather than α(t) = 1. The atomic formulas
are equalities and inequalities between number terms (e.g. s + 1 + 1 = t, s < t)
and formulas X(τ) with number term τ ; the S1S-formulas are built from atomic
ones by applying Boolean connectives and the quantifiers ∀, ∃ to both kinds
of variables. In general, we have S1S-specifications ϕ(X, Y) that speak about
tuples of predicates (sequences). For an m1-tuple X and an m2-tuple Y this
means that the input alphabet under consideration is {0, 1}m1 and the output
alphabet {0, 1}m2. In our explanations and examples we only refer to the case
m1 = m2 = 1.

Church’s Problem can now be stated as follows:

Given an S1S-specification ϕ(X, Y), decide whether a Mealy automaton
exists that transforms each input sequence α ∈ ({0, 1}m1)ω into an output
sequence β ∈ ({0, 1}m2)ω such that (N, +1, <) |= ϕ[α, β] – and if this is
the case, construct such an automaton.

Church’s Problem and a Tour through Automata Theory 639

Among the many concepts of transformations of sequences, only a very special
form is admitted for Church’s Problem. Two aspects are relevant, as was at an
early stage clarified by Trakhtenbrot [26]: First, the transformation should be
“causal” (or: “nonanticipatory”), which means that the output β(t) only depends
on the prefix α(0) . . . α(t) of α. (Thus we have a much sharper requirement than
continuity in the Cantor space, where β(t) is determined by some finite prefix
of α, possibly longer than α(0) . . . α(t).) The second aspect is the computability
of the transformation by a finite-state machine (and here we take the above-
mentioned format of Mealy automata, to be specific).

As an illustration consider the two transformations T− and T + which “divide
by 2”, respectively “double” a given sequence α. The transformation T− maps α
to the sequence β that contains every second letter of α (so β(t) = α(2t)). Clearly
T− is not causal. T +(α) is defined to be the sequence β which repeats each α-
letter once; so we have α(t) = β(2t) = β(2t + 1) for all t. This transformation
is causal but not computable by a Mealy automaton; an unbounded memory
is needed to store for outputs from time 2t onwards the relevant α-segment
α(t) . . . α(2t), for increasing t. Note that we exclude the possibility to produce
outputs of length greater than 1 in one step.

Before we enter the solution of Church’s Problem in the framework of au-
tomata over infinite sequences, it should be mentioned that an alternative ap-
proach has been developed by Rabin [21] via automata on infinite trees. Tree
automata allow to deal directly with the space of all sequence pairs (α, β) of
input- and output-sequences. In the present paper we pursue the “linear” ap-
proach as in [4].

3 From Logic to Games

It is useful to study Church’s Problem in the framework of infinite games, fol-
lowing an idea that was proposed by McNaughton [12]. A specification ϕ defines
an infinite two-person game between players A and B who contribute the input-,
respectively the output-bits in turn. A play of this game is the sequence of pairs
(α(t), β(t)) of bits supplied for t = 0, 1, . . . by A and B in alternation, and the
play (α(0), β(0)) (α(1), β(1)) (α(2), β(2)) . . . is won by player B iff ϕ is satisfied
by the pair (α, β). So the formula ϕ serves as a winning condition (for player B).
A Mealy automaton as presented above defines a winning strategy for player B
in this game; so we speak of a finite-state winning strategy.

In this section the game theoretic form of Church’s Problem is developed,
in two steps: First, the S1S-specifications are transformed into deterministic
automata over infinite words (“ω-automata”), and secondly these automata are
converted into arenas of infinite games.

3.1 Determinization and Muller Automata

The first step for solving Church’s Problem consists of a transformation of a
specification ϕ(X, Y) into a semantically equivalent but “operational” form. The

640 W. Thomas

idea is to introduce a finite number of “states” that are visited while a play
evolves and at the same time to radically simplify the logical condition to be
satisfied. As it turns out, this condition only takes into account which states
are visited infinitely often during an infinite play that is built up by players A
and B.

This transformation puts Church’s Problem into the framework of automata
theory. It is remarkable that we do not have any solution of Church’s Problem
that avoids this transformation at the start – e.g., by an inductive approach of
synthesis that is guided by the structure of the original formula ϕ.

The appropriate model of automaton into which S1S-formulas are to be trans-
formed was introduced by Muller [17] and is called Muller automaton. In the
present context, a Muller automaton scans deterministically a play (α(0), β(0))
(α(1), β(1)) . . . as a sequence from Σ = ({0, 1}2)ω ; the automaton is called equiv-
alent to ϕ if precisely the plays are accepted that satisfy ϕ. Its unique run
 on a
given play between A and B can be viewed as the working of a referee watching
the play. The acceptance condition for the run
 refers to the “infinity set of
”,
which is defined as follows (denoting the set of states by Q):

Inf(
) := {q ∈ Q | ∃ωi
(i) = q}

The acceptance component of the Muller automaton is a collection F of state
sets, and a run
 is declared to be accepting if Inf(
) belongs to F . Since a set
Inf(
) clearly constitutes a strongly connected subset of the transition graph of
the Muller automaton, it suffices to include only strongly connected subsets in
F , which we call “accepting loops”.

The transformation from S1S to Muller automata can be established by an
induction on the construction of S1S-formulas. While the cases of atomic formu-
las and Boolean operations are straightforward, the quantifier step (without loss
of generality regarding the existential second-order quantifier) is of intriguing
difficulty. The projection operation involved in an application of the existential
quantifier leads immediately to nondeterministic Muller automata, which then
have to be determinized.

The determinization problem requires to condense the different runs of a given
nondeterministic automaton A into a single run of a new (deterministic) automa-
ton such that this run allows to decide the existence of a successful run of A.
Over a finite word w, acceptance is decided by inspecting the last states of the
different A-runs on w. To compute the states reachable by A via w, it suffices
to record the reachable states for each of the prefixes of w. Since the update of
this set from one prefix to the next is possible without a reference to previously
visited states, the “subset construction” (introduced by Myhill [19] and by Rabin
and Scott [22]) suffices, in which a deterministic automaton is built with states
that are sets of states of A.

For the determinization of ω-automata one needs additional memory, since
repeated visits to certain states on individual runs of the given nondeterministic

Church’s Problem and a Tour through Automata Theory 641

automaton A have to be recorded. We consider here the case of nondeterministic
Büchi automata (to which the case of nondeterministic Muller automata is easily
reduced); a run
 of a Büchi automaton is called successful if for infinitely many
t the state
(t) belongs to a designated set F of accepting states. To check the
existence of a successful run of a Büchi automaton deterministically, there are (at
least) three types of appropriate memory structures. Such a structure S should
be finite, and it should be usable for the test whether an A-run exists on a given
ω-word in which a state from F occurs infinitely often; moreover, the test should
involve just the information which memory states of S are visited infinitely often
and which only finitely often when processing the ω-word under consideration.

The first idea, pursued by McNaughton in [13] and also in the book [28], is to
start new computation threads whenever the nondeterminism of A requires this,
to record whether visits of states in F occur, and to devise a policy of merging
runs when they reach the same A-state. A different approach is the construction
of Muller and Schupp in [18]. Here a version of the run tree of a nondeterministic
Büchi automaton is built up while an input word is scanned. The finite prefixes
of the run tree (corresponding to the prefixes of the input word) are compressed
so that only finitely many different compressed trees can arise. The subset con-
struction is applied in each step, however dividing the reached states into two
parts (consisting of the F -states and non-F -states, respectively), which leads to
two son nodes of a leaf of the previous tree. A bound on the height and the
width of the trees is realized by a compression of paths without branching and
by the deletion of double occurrences of a state. A vertex coloring with three
colors serves to keep track of repeated visits to states in F . Finally, the cele-
brated construction of Safra [23] involves a somewhat sparser use of the subset
construction; here a new branch of the run tree is opened only when F -states
are encountered (so a new son vertex is only created with F -states). Again, a
compression policy ensures that the size of the “Safra trees” stays bounded, and
a subtle mechanism serves to record repeated visits to F .

There is no space here to discuss these intriguing constructions in further de-
tail. Even today the subject is not closed; and a major open problem is to devise
procedures that substantially reduce (or even minimize) the size of deterministic
ω-automata.

3.2 Muller Games

For an analysis of Church’s Problem in a game theoretic setting it is useful to
distinguish the contribution of bits (in the general case: bit vectors) by the two
players A and B. Rather than processing a bit pair (α(t), β(t)) in one step of
the Muller automaton, we introduce two steps, each processing a single bit, and
using an intermediate state. Then we have two kinds of states, called A- and
B-states. In an A-state, the next bit is to be picked by player A, in a B-state
by player B. In a graph theoretical presentation we indicate A-states by boxes
and B-states by circles. Thus the transitions of a Muller automaton from a given
state are dissolved as follows:

642 W. Thomas

•

• • • •

(
0
0

)

(
0
1

) (
1
0

)

(
1
1

)
�

0 1

0 1 0 1

The result is a “game graph”. For our example specification above, we obtain
the following game graph from a corresponding Muller automaton (the reader
should ignore for the moment the boldface notation of some arrows).

1 2 6 7

3 4

5

1

1
01

0 0, 1

0, 1

0

0

0

1

1

The three conditions of our example formula (Sect. 2) can indeed be captured
by this graph, by providing an appropriate list of accepting loops. The first
condition requires that a bit 1 chosen by A has to be answered by the bit 1
chosen by B. If this is violated (starting from the initial state 1), state 6 (and
hence the loop consisting of states 6 and 7) is entered. The second condition
says that player B should not pick two zeroes in succession. If this is violated,
we would reach 6 and 7 again. We thus exclude states 6 and 7 from the accepting
loops. The third condition on fairness means that if A chooses 0 infinitely often
(which happens by going to 4 or 5), then B has to choose 0 infinitely often
(which is only possible by going from 4 to 3). Altogether we declare a loop F as
accepting if it does not contain 6 or 7 and satisfies (4 ∈ F ∨ 5 ∈ F → 3 ∈ F).

How should player B pick his bits to ensure that the play visits precisely the
states of one of these loops F infinitely often? We have to fix how to move from
states 2, 4, 5, 7. From 7 player B has to move to 6 since there is no other choice.
The other choices can be fixed as follows: From 2 to 1, from 4 to 3, and from
5 to 1 (see boldface arrows). Then, depending on what Player A does, a play
starting in 1 will visit infinitely often the states 1 and 2, or the states 1 to 4, or
the states 1, 3, 4, 5, or the states 1 to 5. Each of these loops is accepting.

We see that player B has a winning strategy by fixing his moves as stated
above. This winning strategy can be converted into a Mealy automaton when
we combine again each pair of two successive moves (by player A and then B)
into a single transition. We get an automaton with the states 1 and 3 and the
following transitions: From 1 via

(
1
1

)
back to 1, from 1 via

(
0
0

)
to 3, and from 3

via
(
0
1

)
and via

(
1
1

)
back to 1. Up to names of states (and the irrelevant initial

state) this is precisely the Mealy automaton mentioned in Sect. 2.

Church’s Problem and a Tour through Automata Theory 643

In the remainder of the paper, we shall outline a “solution” of Muller games
(and some weaker variants like “‘weak Muller games”). By a solution we mean
two algorithms: The first decides for each state q (A-state or B-state) whether
for plays starting in q player B has a winning strategy, and – in this case – the
second algorithm allows to construct a Mealy automaton that executes such a
winning strategy. In this analysis we may cancel the labels on the transitions.
This is motivated by the fact that the winning condition is formulated in terms of
visits of states only, regardless of the labels that are seen while traversing edges.
When a winning strategy over the unlabelled game graph is to be constructed,
it will be easy to re-introduce the labels and use them for a Mealy automaton
as required in the original formulation of Church’s Problem.

As a preparation, we now summarize the relevant definitions in some more
detail.

3.3 Finite-State Games: The Framework

A game graph has the form G = (Q, QA, E) where QA ⊆ Q and E ⊆ Q×Q is the
transition relation. We assume that ∀q ∈ Q : qE �= ∅ (i.e. ∀q∃q′ : (q, q′) ∈ E); so
plays cannot end in a deadlock (and hence a subset Q0 of Q induces again a game
graph if from each q ∈ Q0 there is an edge back to Q0). We set QB := Q \ QA.
In this paper edges will always lead from QA-states to QB-states or conversely.
A play over G from q is an infinite sequence
 = q0q1q2 . . . with q0 = q and
(qi, qi+1) ∈ E for i ≥ 0. We assume that player A chooses the next state from a
state in QA, and player B from a state in QB. The set Q will always be finite in
the sequel; so we speak of finite-state games.

For the formulation of winning conditions, we add a further item to the game
graph, depending on the format of the condition. We use either a collection
F ⊆ 2Q of sets R ⊆ Q, or a coloring c : Q → {0, . . . , k} for some natural number
k. In the special case c : Q → {0, 1} we also consider the subset F = {q ∈ Q |
c(q) = 1} instead. For a collection F ⊆ 2Q we introduce two winning conditions.
The first is the Muller winning condition mentioned above; it refers to the set of
states visited infinitely often in a play
:

Inf(
) := {q ∈ Q | ∃ωi
(i) = q}

Player B wins the play
 if Inf(
) ∈ F . With these conventions we speak of
a Muller game (G, F). Another use of a system F leads to the weak Muller
condition (also called Staiger-Wagner condition). Here we refer to the visited
states in a play (“occurrence set”):

Occ(
) := {q ∈ Q | ∃i
(i) = q}

Player B wins a play
 according to the weak Muller condition if Occ(
) ∈ F .
We speak of the weak Muller game (G, F). From the example in Sect. 2 we
obtain a weak Muller game if we delete the third requirement. The items 1 and
2 are captured over the presented game graph (with the states 1, . . . , 7) by the
condition that none of the states 6 or 7 is ever visited; this is expressed by the
weak Muller condition with the system F that contains all subsets of {1, . . . , 5}.

644 W. Thomas

An important special case of weak Muller games is the reachability game, given
a set F ⊆ Q of states of the game graph (Q, QA, E). The reachability condition
for player B is satisfied for a play
 if some state of
 belongs to F . We speak of
the reachability game (G, F). One obtains an equivalent weak Muller condition
by setting F = {R ⊆ Q | R∩F �= ∅}. The reachability game (for player B) yields
a game with complemented winning condition for player A, namely to stay in
the set Q \ F throughout. Such a condition is called a safety condition. Taking
up our example again, we see that the weak Muller condition mentioned above
(covering items 1 and 2 of the requirement) amounts to the safety condition,
now for player B, to stay in the set {1, . . . , 5} during the whole play.

We now turn to the solution of games, starting with the central concept of
strategy. A strategy for player B from q is a function f : Q+ → Q, specifying
for any play prefix q0 . . . qk with q0 = q and qk ∈ QB some vertex r ∈ Q with
(qk, r) ∈ E (otherwise the value of f is chosen arbitrarily). A play
 = q0q1 . . .
from q0 = q is played according to strategy f if for each qi ∈ QB we have
qi+1 = f(q0 . . . qi). A strategy f for player B from q is called winning strategy
for player B from q if any play from q which is played according to f is won by
player B. In the analogous way, one introduces strategies and winning strategies
for player A. We say that A (resp. B) wins from q if there is a winning strategy
for A (resp. B) from q.

For a game over the graph G = (Q, QA, E), the winning regions of players
A and B are the sets WA := {q ∈ Q | A wins from q} and WB := {q ∈ Q |
B wins from q}. It is obvious that a state cannot belong to both WA and WB ;
so the winning regions WA, WB are disjoint. But whether these sets exhaust the
whole game graph is a more delicate question. One calls a game determined if
WA∪WB = Q, i.e. from each vertex one of the two players has a winning strategy.
Determinacy of infinite games is a central topic in descriptive set theory; with the
axiom of choice one can construct games that are not determined. For the games
considered in this paper (i.e. games defined in terms of the operators Occ and
Inf), determinacy is well-known. Nevertheless we state this claim in the results
below, since determinacy is the natural way to show that envisaged winning
strategies are complete: In order to show that the domain D of a strategy covers
the entire winning region of one player, one verifies that from each state outside
D the other player has a winning strategy.

To “solve” a game over the graph G = (Q, QA, E) involves two tasks:

1. to decide for each q ∈ Q whether q ∈ WB or q ∈ WA,
2. and depending on q to construct a suitable winning strategy from q (for

player B, respectively A).

For item 2 two kinds of strategies will be employed, the memoryless and the
finite-state strategies. A strategy f : Q+ → Q is memoryless if the value of
f(q1 . . . qk) only depends on the “current state” qk. For the definition of finite-
state strategies, we first observe that over a finite set Q, a strategy f : Q+ → Q
can be considered as a word function. We say that f is a finite-state strategy if it
is computed by a Mealy automaton. In the present context we use the format S =
(S, Q, Q, s0, δ, τ) with state set S, input alphabet Q, output alphabet Q, initial

Church’s Problem and a Tour through Automata Theory 645

state s0, transition function δ : S ×Q → S, and output function τ : S ×QA → Q
for player A (respectively τ : S × QB → Q for player B). The strategy fS
computed by S is now defined by fS(q0 . . . qk) = τ(δ∗(s0, q0 . . . qk−1), qk) (where
δ∗(q, w) is the state reached from q after processing the input word w and τ is
chosen for the player under consideration).

Now we state the main theorem on weak Muller games and Muller games.

Theorem 1. Weak Muller games and Muller games are determined, and for a
weak Muller game, respectively Muller game (G, F) one can effectively compute
the winning regions of the two players, and one can construct, for each state q
of G, a finite-state winning strategy from q for the respective winning player.

The part concerning Muller games is the Büchi-Landweber Theorem and gives
the desired solution of Church’s Problem. For this, one proceeds as in the previ-
ous section, i.e. one transforms a given S1S-formula ϕ into a Muller automaton
M which is then converted to a game graph G with Muller winning condition.
Note that the game graph G inherits an initial state from M. Using the Büchi-
Landweber Theorem, one checks whether this initial state belongs to the winning
region of player B, and in this case one obtains a Mealy automaton S that real-
izes a winning strategy from the initial state. The desired finite-state strategy for
the original formula ϕ is then easily constructed as a product automaton from
M and S. Its memory thus combines the state space of the Muller automaton
M with that of the strategy automaton S. It is not yet well understood how
these two aspects play together in general. Our example in Sect. 2 illustrates the
case that in addition to the states of M no additional memory is necessary.

3.4 Reachability Games

As a preparatory step for Theorem 1 we solve reachability games. Recall that a
reachability game (G, F) involves the winning condition (for player B) that the
play should reach somewhere a state of the set F . The solution relies on a simple
backward search of the game graph, starting with the set F .

Theorem 2. A reachability game (G, F) with G = (Q, QA, E) and F ⊆ Q is
determined, and the winning regions WA, WB of players A and B, respectively,
are computable, as well as corresponding memoryless winning strategies.

Proof. We compute, for i = 0, 1, . . ., the vertices from which player B can force
a visit in F within i moves. We call this set the i-th “attractor” (for B):

Attri
B(F) := {q ∈ Q | from q player B can force a visit of F

in ≤ i moves}
Its computation for increasing i is known from the theory of finite games (and
corresponds to the well-known analysis of AND-OR-trees):

Attr0B(F) = F ,
Attri+1

B (F) = Attri
B(F)

∪{q ∈ QB | ∃(q, r) ∈ E : r ∈ Attri
B(F)}

∪ {q ∈ QA | ∀(q, r) ∈ E : r ∈ Attri
B(F)}

646 W. Thomas

So for step i + 1 we include a state of QB if from it some edge can be chosen
into Attri

B(F). We can fix such a choice for each QB-state in Attri+1
B (F) (i =

0, 1, . . .) in order to build up a memoryless strategy. We include a state in QA

in Attri+1
B (F) if all edges from it lead to Attri

B(F). The sequence Attr0B(F) ⊆
Attr1B(F) ⊆ Attr2B(F) ⊆ . . . becomes stationary for some index k since Q is
finite. Since k ≤ |Q| we can define AttrB(F) :=

⋃|Q|
i=0 Attri

B(F).
Later we shall also use the set AttrA(F), defined in the analogous way for

player A.
With the inductive construction it was explained that AttrB(F) ⊆ WB ; fur-

thermore we have defined a uniform memoryless winning strategy which can be
applied to any state in WB regardless of the start of the play. (For states in
QB ∩ F the choice of the next state is arbitrary.)

For the converse inclusion WB ⊆ AttrB(F) we have to show that AttrB(F)
exhausts the winning region WB. For this, we show that from each state in
the complement of AttrB(F), player A has a winning strategy (which is again
memoryless). It suffices to verify that from any state q in Q \AttrB(F) player A
can force to stay outside AttrB(F) also in the next step. This is checked by a case
distinction: If q ∈ QA, there must be an edge back into Q \ AttrB(F), otherwise
all edges from q would go to AttrB(F) whence q would belong to AttrB(F). If
q ∈ QB, all edges from q must lead to Q \ AttrB(F), because otherwise there
would be an edge to AttrB(F) and q would again belong to AttrB(F).

4 Appearance Records and Game Simulations

4.1 Appearance Records

For Muller games, both in the weak and the unrestricted form, memoryless
strategies are not enough. A simple example illustrates this. Consider the fol-
lowing game graph G and the set F = {{1, 2, 3}}.

1 2 3

The weak Muller game (G, F) requires for player B to visit all states in order
to win. From vertex 2 there is no memoryless winning strategy: Neither the choice
to move to 1 nor the choice to move to 3 will ensure to reach each vertex. On the
other hand, a one-bit memory will do: When coming back to 2 we should know
whether 1 or 3 was visited before, and then we should move to 3, respectively 1
(and maybe do this perpetually from that moment onwards). A general principle
derivable from this solution is to “remember where we have been already”. This
principle corresponds to a simple experience of every-day life: When there is a
task ahead consisting of several items, keep a list of what was done already (and
thus of what still has to be done).

For the strong Muller game (G, F), both vertices 1 and 3 have to be visited
again and again. Clearly it does not suffice just to remember where we have been
already: After the visits of 1 and 3 it is necessary to switch from 1 to 3 and back

Church’s Problem and a Tour through Automata Theory 647

again and again. The natural solution is to “remember where we went last time”
– and then to do the choice accordingly, going to the respective “other” vertex.

In the first case (of weak Muller games), we are led to a memory structure that
allows to store in an accumulative way the vertices that were already visited in
a play. Given a weak Muller game (G, F) with G = (Q, QA, E) and F ⊆ 2Q, we
define the transition structure of an automaton S with the power set 2Q of Q as
its set of states and Q as its input alphabet. Having read the input word q1 . . . qk,
its state will be {q1, . . . , qk}. So the initial state is ∅ and the transition function
δ : 2Q × Q → 2Q is defined by δ(R, p) = R ∪ {p}. This memory of subsets of Q
with the mentioned update rule is called appearance record. We shall show that
this memory structure suffices for winning strategies in arbitrary weak Muller
games over G. What remains is to fix the output function for S.

Let us now treat the case of (strong) Muller games. Our example above moti-
vates to keep a refined record of the states visited in a play, taking into account
the order in which states were “visited last time”. A naive way to realize this
kind of memory is to arrange the set of visited states in a list where the first
entry is the currently visited state q, the second one the state q′ �= q visited last
before q, the third one the state q′′ different from q, q′ visited last before q, q′,
and so on until the set of previously visited states is exhausted. It will be useful
to work with a slight (but essential) refinement of this list structure, which goes
back to McNaughton [12] and is today known as latest appearance record, short
“LAR”.

Consider a Muller game (G, F) with G = (Q, QA, E) and Q = {1, . . . , n}.
A LAR is a pair ((i1, . . . , ir), h) where the ij are distinct states from Q and
0 ≤ h ≤ r. Following Büchi, we call the index h the hit of the LAR. Again we
define the transition structure of an automaton S, now with the set of LAR’s
over Q as its set of states. The initial state is ((), 0) (empty list and hit 0). The
transition function changes a given LAR upon input q ∈ Q by listing the new
state q at the front: If it was not present in the previous LAR, then it is added
(and h is set to be 0); if it occurs in the previous LAR, then it is shifted to the
front and the position where it was taken from is the value of h.

We give an example for a set Q of four states, which we name A, B, C, D to
avoid confusion with the hit values 1, . . . , 4. Also we indicate the hit value h
by underlining the h-th position of the corresponding list (if h > 0). Suppose a
play
 starts with the states A, C, C, D, B, D, C, D, D, Then we obtain the
following sequence of LAR’s (where we skip the initial LAR ((), 0)):

Suppose that the play goes on only by states C and D (and both are chosen
again and again). Then the states A, B will not be touched anymore, and the
hit will assume 2 as maximal value thereafter again and again: It will no more
be 3 or 4 (since A, B stay where they are), and it cannot finally stay with value
1 (since then only a single state, namely the leading one of the LAR, would be
visited from some point onwards). The maximal hit visited infinitely often thus
indicates the cardinality of the set Inf(
).

648 W. Thomas

Visited state Reached LAR
A (A)
C (CA)
C (CA)
D (DCA)
B (BDCA)
D (DBCA)
C (CDBA)
D (DCBA)
D (DCBA)

LetussummarizethedefinitionoftheautomatonS = (S, Q, s0, δ)whichrealizes,
given a play prefix i1 . . . ik ∈ Q∗, the computation of the resulting LAR. The state
set S is the set of LAR’s over Q, we have s0 = ((), 0), and the transition function
δ : S×Q → S realizestheupdateoftheLARasfollows:Wehaveδ(((i1 . . . ir), h), i) =
((ii1 . . . ir), 0)ifidoesnotoccurin(i1 . . . ir);otherwise,ifi = ikcancelifrom(i1 . . . ir)
to obtain (j1 . . . jr−1) and set δ(((i1 . . . ir), h), i) = ((ij1 . . . jr−1), k).

Note that we obtain the (simple) appearance record if we discard the order
in the state-lists and delete the h-value. We shall show that the LAR memory
structure over Q will suffice for realizing winning strategies in Muller games over
Q. Again, it only remains to supply the output function τ for the automaton S
in order to obtain the complete definition of a Mealy automaton.

We add a historical remark. The paper [12] in which McNaughton introduced
the fundamental data structure of LAR is a technical report that was not pub-
lished as a journal paper (it contained an error in an attempted solution of
Muller games). McNaughton used the name “order-vector”; the term “latest ap-
pearance record” (LAR) was introduced by Gurevich and Harrington in their
landmark paper [10] on automata over infinite trees.

4.2 Game Simulations and Parity Conditions

The two versions of appearance record introduced in the previous section allow
to reformulate the winning conditions (weak Muller condition, strong Muller
condition) in a form that makes the solutions of the corresponding games much
easier.

First let us consider weak Muller games. For a play
, consider the sequence
of associated appearance records, as assumed in the run of the Mealy automaton
that realizes the necessary updates. The set of visited states increases weakly
monotonically during the play and finally reaches the value Occ(
) on which it
stays fixed. Similarly the cardinality of the set of visited states increases until
it reaches the value |Occ(
)|. This observation enables us to express the weak
Muller winning conditon “Occ(
) ∈ F” in different way. We associate a number
c(R) with each subset R of Q, also called its color, which conveys two informa-
tions: the size of R, and whether R belongs to F or not. In the first case, we
take the even color 2 · |R|, otherwise the odd color 2 · |R| − 1 (assuming R �= ∅):

Church’s Problem and a Tour through Automata Theory 649

c(R) :=

{
2 · |R| if R ∈ F
2 · |R| − 1 for R �∈ F

For R = ∅ let c(R) = 0. – The following claim is then obvious:

Remark 3. Let
 be a play and R0, R1, R2, . . . be the sequence of the associated
appearance records. Then Occ(
) ∈ F iff the maximal color in the sequence
c(R0)c(R1)c(R2) . . . is even.

This remark motivates a new winning condition over game graphs G=(Q, QA, E)
that are equipped with a coloring c : Q → {0, . . . , k}. The weak parity condition
with respect to coloring c says: Player B wins the play
 = r0r1r2 . . . iff the
maximum color in the sequence c(r0)c(r1)c(r2) . . . is even. Given a game graph
G and a coloring c with the weak parity winning condition, we speak of the weak
parity game (G, c).

Using this, one transforms a weak Muller game (G, F) into a weak parity
game (G′, c): Given G = (Q, QA, E) let G′ = (2Q × Q, 2Q × QA, E′) where
((P, p), (R, r)) ∈ E′ iff (p, r) ∈ E and R = P ∪ {p}, and let c(R, r) := 2 · |R|
if R ∈ F , otherwise 2 · |R| − 1. Each play
 = r0r1 . . . in G induces the play

′ = (∅, r0)({r0}, r1) . . . in G′, which is built up according to the definition of
E′. We have by construction that
 satisfies the weak Muller condition w.r.t. F
iff
′ satisfies the weak parity condition w.r.t. c.

This transformation of (G, F) into (G′, c) (with a change of the winning con-
dition) is a “game simulation”. (We skip a general definition since we only apply
it for the present case and the case of Muller games.)

The simulation has an interesting consequence when the latter game (the
weak parity game) allows memoryless winning strategies. Namely, a memory-
less strategy over G′ immediately determines the output function for the Mealy
automaton that computes the appearance records: If the memoryless strategy
(say for player B) requires to proceed from position (R, q) (where q ∈ QB) to
(R′, q′), then the output function value τ(R, q) of the Mealy automaton is set
to be q′ (and the new state is R′ = R ∪ {q}). Also the decision whether a state
q of G belongs to the winning region of B is provided by the analysis of the
corresponding weak parity game over G′, since for each state of a weak parity
game we shall determine the winner. Applying this to the state (∅, q) of G′ we
obtain the answer also for q in the graph G.

In the next section we shall show that weak parity games can indeed be solved
with memoryless winning strategies. Using the previous remark this completes
the solution of weak Muller games in Theorem 1.

Let us turn to the case of Muller games. We proceed as before, now using
the latest appearance record structure LAR in place of the appearance record.
Consider a play
 over Q and the associated sequence
′ of LAR’s. We collect
the entries of a LAR ((i1 . . . ir), h) up to position h as the hit set {i1, . . . , ih}
of the LAR. If h is the maximal hit assumed infinitely often in
′, we may pick
a position (time instance) in
′ where no unlisted state enters any more later
in the play and where only hit values ≤ h occur afterwards. From that point

650 W. Thomas

onwards the states listed after position h stay fixed, and thus also the hit set
for the hit value h stays fixed. We call this set the hit set for the maximal hit
occurring infinitely often in
′. The following statement is now easily verified:

Remark 4. Let
 be a sequence over Q and
′ be the associated sequence of
LAR’s. The set Inf(
) coincides with the hit set H for the maximal hit h occur-
ring infinitely often in
′.

For the proof, consider the point in
 from where no new states will occur and
where all visits of states that are visited only finitely often are completed. After
a further visit of all the states in Inf(
), these states will stay at the head of the
LAR’s (in various orders), and the hit values will be ≤ k := |Inf(
)|. It remains
to show that the hit value in
′ reaches k again and again (so that k is the
maximal hit occurring infinitely often in
′). If the hit was < k from some point
onwards, the state q listed on position k would not be visited later and thus not
be in Inf(
).

Remark 4 allows to transform the Muller winning condition for a play
 into
a different winning condition applied to the associated play
′. By Remark 4 we
know that the Muller winning condition holds for the play
 iff the hit set for
the maximal hit occurring infinitely often in
′ belongs to F . This allows us to
extract two data from the LAR’s which are sufficient to decide whether the play

 satisfies the Muller condition: the hit value and the information whether the
corresponding hit set belongs to F . We combine these two data in the definition
of a coloring of the LAR’s. Define

c(((i1 . . . ir), h)) :=

{
2h if {i1, . . . , ih} ∈ F
2h − 1 if {i1, . . . , ih} �∈ F

for h > 0 and let c(((i1 . . . ir), 0)) = 0. Then the Muller condition Inf(
) ∈ F is
satisfied iff the maximal color occurring infinitely often in c(
′(0))c(
′(1)) . . . is
even. This is a “parity condition” (as introduced by Mostowski [16] and Emerson
and Jutla [9]2). The only difference to the weak parity condition is the reference
to colors occurring infinitely often rather than to those which occur at all.

In general, the parity condition refers to a coloring c : Q → {0, . . . , k} of a
game graph G; it is the following requirement on a play
:

∨

j even

(∃ωi : c(
(i)) = j ∧ ¬∃ωi : c(
(i)) > j)

The pair (G, c) with this convention for the winning condition for player B is
called a parity game.

In complete analogy to the case of weak Muller games, one can set up a game
simulation of a Muller game (G, F) by a parity game (G′, c). A state of G′ is a
pair consisting of a LAR � and a state q from Q. An edge is introduced from (�, q)

2 Other names appearing in the literature are “Mostowski condition” and “Rabin
chain condition”.

Church’s Problem and a Tour through Automata Theory 651

to (�′, q′) if the edge (q, q′) exists in G and �′ results from � by the LAR-update
that lists q at the head. A play
 over G then corresponds to a play
′ over G′.
The coloring c is defined as above.

We shall show that parity games can be solved with memoryless winning
strategies. As for the case of weak Muller and weak parity games, a memoryless
winning strategy of player B in the parity game over G′ yields a finite-state
winning strategy of player B in the Muller game over G. The decision whether
for a state q of G such a winning strategy exists is done by testing whether player
B wins from position (((), 0), q) in the parity game over G′.

5 Solving Weak and Strong Parity Games

A central difficulty in the solution of weak Muller games and Muller games is
the possibly complicated structure of the system F of “winning state-sets”. The
first proof of the Büchi-Landweber Theorem [4] involves an intriguing analysis
of the partial order (by set inclusion) of the power set of the set Q of states of
the game graph. The transformation to a game with a (weak or strong) parity
condition stratifies the winning condition by introducing the total order of colors.
As we shall see, this order can be exploited for an inductive construction, again
for both the weak parity games and the parity games. In both cases, an iterated
application of attractor computations suffices; thus, the game solution ultimately
rests on simple reachability tests.

Theorem 5. A weak parity game (G, c) is determined, and one can compute the
winning regions WA, WB and also construct corresponding memoryless winning
strategies for the players A and B.

It may be noted that we suppressed the initial states q when speaking about
memoryless winning strategies. In the proof we shall see that – as for reachability
games – the strategies can be defined independently of the start state (as long
as it belongs to the winning region of the respective player).

Proof. Let G = (Q, QA, E) be a game graph (we do not refer to the special
graph G′ above), c : Q → {0, . . . , k} a coloring (w.l.o.g. k even, otherwise switch
players). Set Ci = {q ∈ Q | c(q) = i}.

We first compute the attractor for B of the states with maximal color, which
is even. When player B reaches such a state the play is won whatever happens
later. So Ak := AttrB(Ck) is a part of the winning region of player B.

The remaining vertices form the set Q \ Ak; the subgraph induced by Q \ Ak

in G is again a game graph. (Note that from each state q in Q \ Ak there is at
least one edge back to Q \ Ak, otherwise – as seen by case distinction whether
q ∈ QA or q ∈ QB – q would belong to Ak = AttrB(Ck).)

Now in the subgame over Q\Ak we compute Ak−1 := AttrA(Ck−1 \Ak); from
these vertices player A can reach the highest odd color k − 1 and guarantee to
stay away from Ak, in the same way as explained above for reachability games
(see Sect. 4.1).

652 W. Thomas

In both sets we can choose memoryless winning strategies, over Ak for B, and
over Ak−1 for A. In this way we continue to adjoin “slices” of the game graph,
taking B- and A-attractors in alternation, in order to obtain the winning regions
of B and A. The next set Ak−2 is the set of all states q ∈ Q \ (Ak−1 ∪ Ak) from
which player B can force the play to Ck−2 \ (Ak−1 ∪ Ak). We denote this set
by AttrQ\(Ak−1∪Ak)

B (Ck−2 \ (Ak−1 ∪ Ak)). The exponent indicates the (domain
of) the game graph in which the attractor computation takes place. In order to
facilitate the notation for the general case, set Qi := Q \ (Ai+1 ∪ . . . ∪ Ak).

So we compute the sets Ak, Ak−1, . . . , A0 inductively as follows:

Ak := AttrB(Ck)
Ak−1 := AttrQk−1

A (Ck−1 \ Ak)

and for i = k − 2, . . . , 0:

Ai :=

{
AttrQi

B (Ci \ (Ai+1 ∪ . . . ∪ Ak)) if i even
AttrQi

A (Ci \ (Ai+1 ∪ . . . ∪ Ak)) if i odd

The memoryless strategies for A and B are chosen as explained for the initial
cases Ak, Ak−1. Now we have

WB =
⋃

i even

Ai and WA =
⋃

i odd

Ai

For the correctness, one verifies by induction on j = 0, . . . , k:

k⋃

i=k−j

i even

Ai ⊆ WB

k⋃

i=k−j

i odd

Ai ⊆ WA

Returning to the solution of weak Muller games, we note that a finite-state
winning strategy can be realized with 2n memory states over a game graph with
n states, due to the introduction of appearance records.

Let us turn to the case of parity games, following a proof of McNaughton [14].

Theorem 6. A parity game (G, c) is determined, and one can compute the
winning regions WA, WB and also construct corresponding memoryless winning
strategies for the players A and B.

Proof. Given G = (Q, QA, E) with coloring c : Q → {0, . . . , k} we proceed by
induction on |Q|, the number of states of G.

The induction start (Q is a singleton) is trivial. In the induction step assume
that the maximal color k is even (otherwise switch the roles of players A and B).
Let q be a state of the highest (even) color k and define A0 = AttrB({q}). As
the complement of an attractor, the set Q\A0 defines a subgame. The induction
hypothesis applied to the game over the subgraph induced by Q \ A0 ensures
a partition of Q \ A0 into the winning regions UA, UB of the two players (with
corresponding memoryless winning strategies) in the game over Q \ A0.

Church’s Problem and a Tour through Automata Theory 653

We now distinguish two cases:

1. From q, player B can ensure to be in UB ∪ A0 in the next step,
2. From q, player A can ensure to be in UA in the next step.

Let us first verify that one of the two cases applies (which gives a kind of local
determinacy). Assume Case 1 fails. If q ∈ QB, then all transitions from q have
to go to UA, otherwise we would be in Case 1. By the same reason, if q ∈ QA,
then some transition from q goes to UA; so Case 2 applies.

In Case 1, one shows that the winning region WB of B in G is UB ∪AttrB({q})
and that WA = UA. For player B, the memoryless winning strategy is composed
of the memoryless strategy over UB by induction hypothesis in the game over
Q\A0, of the attractor strategy over AttrB({q}), and possibly of the edge choice
in q according to “Case 1”; for player A just the memoryless strategy over UA

is taken. For the claim UB ∪ AttrB({q}) ⊆ WB note that a play from a state
in UB ∪ AttrB({q}) either remains in UB from some point onwards, whence
Player B wins by induction hypothesis, or it visits (due to moves of player A)
the attractor A0 and hence q again and again, so that player B wins by seeing
the highest color (even!) repeatedly. The claim UA ⊆ WA is clear by induction
hypothesis.

We turn to Case 2. From our analysis above we know that q ∈ AttrA(UA).
We consider the set A1 = AttrA(UA ∪ {q}), clearly of cardinality ≥ 1. So we
can apply the induction hypothesis to the domain Q \A1. We obtain a partition
of this domain into winning regions VA, VB for A and B in the subgame over
Q \ A1, with corresponding memoryless winning strategies. Now it is easy to
verify WB = VB and WA = VA ∪ A1; memoryless winning strategies for B,
respectively A, are provided by the induction hypothesis and by the attractor
strategy over A1.

Finally we note that the inductive construction can be turned into a recur-
sive procedure which produces, given G and the coloring c, the desired winning
regions and memoryless strategies.

The recursive procedure appearing in this proof involves a nested call of the
inductive hypothesis, which means that for each induction step the computa-
tional effort doubles, resulting in an overall exponential runtime. It is known
that the problem “Given a parity game (G, c) and a state q, does q belong to
the winning region of B?” is in the complexity class NP ∩ co-NP. Whether this
problem is decidable in polynomial time is one of the major open problems in
the algorithmic theory of infinite games.

For the memory size of Mealy automata that realize winning strategies, we
obtain a higher bound than for weak Muller games. Over a graph with n states
the bound n! · n states suffices. This bound can be met by simplifying the LAR
construction introduced above, in the sense that only state lists of length n (and
no shorter lists) are used. It is easy to adapt our construction to this format.
That the factorial function also provides a lower bound for the memory size was
shown in [7].

654 W. Thomas

6 Conclusion

We have presented an approach to Church’s Problem that involves three basic
ingredients, namely determinization, the stratification of Muller and weak Muller
games by different versions of appearance records, and an iterated application
of simple reachability tests in the solution of games.

Today, we see that Church’s Problem was the starting point for a highly active
area of research in computer science, in the last 20 years even with a great influence
in practical verification and program synthesis. Thus the “old” parts of automata
theory for infinite computations, as addressed by Boaz Trakhtenbrot in the Pref-
ace of the book [28], turned out extremely fruitful. It seems certain that the vision
of “new trends” as proposed in [28] already decades ago will lead to many more
results that share both beauty and an even wider range of applicability.

Acknowledgment

I thank the editors, in particular Alex Rabinovich, for their encouragement and
patience.

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel,
E., et al. (eds.) Proc. 1960 International Congress on Logic, Methodology and
Philosophy of Science, pp. 1–11. Stanford University Press (1962)

3. Büchi, J.R., Elgot, C.C.: Decision problems of weak second-order arithmetics and
finite automata, Abstract 553-112, Notices Amer. Math. Soc. 5, 834 (1958)

4. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies, Trans. Trans. Amer. Math. Soc 138, 367–378 (1969)

5. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell
Univ, Ithaca, N.Y (1957)

6. Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962,
Inst. Mittag-Leffler, Djursholm, Sweden, pp. 23–35 (1963)

7. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: Proc. 12th IEEE Symp. on Logic in Computer Science, pp.
99–110. IEEE Computer Society Press, Los Alamitos (1997)

8. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–52 (1961)

9. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy. In: Proc.
32nd FoCS 1991, pp. 368–377. IEEE Comp. Soc. Press, Los Alamitos (1991)

10. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th ACM
Symp. on the Theory of Computing, pp. 60–65. ACM Press, New York (1982)

11. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata.
Addison-Wesley, Boston (1969)

Church’s Problem and a Tour through Automata Theory 655

12. McNaughton, R.: Finite-state infinite games, Project MAC Rep. MIT, Cambridge
(1965)

13. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Inf. Contr. 9, 521–530 (1966)

14. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65,
149–184 (1993)

15. Moore, E.F. (ed.): Sequential Machines – Selected Papers. Addison-Wesley, Read-
ing, Mass (1963)

16. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of
automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer,
Heidelberg (1985)

17. Muller, D.E.: Infinite sequences and finite machines. In: Proc. 4th IEEE Ann.
Symp. on Switching Circuit Theory and Logical Design, pp. 3–16. IEEE Press, Los
Alamitos (1963)

18. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the results of Rabin, McNaughton,
and Safra. Theor. Comput. Sci. 141, 69–107 (1995)

19. Myhill, J.: Finite automata and the representation of events, WADC Tech. Rep.
57-624, pp. 112-137 (1957)

20. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

21. Rabin, M.O.: Automata on infinite objects and Church’s Problem, Amer. Math.
Soc., Providence RI (1972)

22. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

23. Safra, S.: On the complexity of omega-automata. In: Proc. 29th Ann. Symp.on
Foundations of Computer Science, White Plains, New York, pp. 319–327. IEEE
Computer Society Press, Los Alamitos (1988)

24. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech,
C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

25. Thomas, W.: Solution of Church’s Problem: A tutorial. In: Apt, K., van Rooij, R.
(eds.) New Perspectives on Games and Interaction, vol. 5, Amsterdam Univ. Press,
Texts on Logic and Games (to appear)

26. Trakhtenbrot, B.A.: On operators realizable in logical nets. Dokl. Akad. Naut.
SSSR 112, 1005–1007 (1957) (in Russian)

27. Trakhtenbrot, B.A.: Synthesis of logical nets whose operators are described of
monadic predicates. Dokl. Akad. Naut. SSSR 118, 646–649 (1958) (in Russian)

28. Trakhtenbrot, B.A., Barzdin, Ya.M.: Finite Automata. Behavior and Synthesis.
North-Holland, Amsterdam (1973)

From Monadic Logic to PSL�

Moshe Y. Vardi��

Rice University, Department of Computer Science, Rice University,
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu
http://www.cs.rice.edu/∼vardi

Two major themes of my research have been finite model theory and the
automata theoretic approach. Boaz Trakhtenbrot laid the foundations in both
areas. In 1950, he proved the undecidability of the satisfiability in the finite
problem for first-order logic. His contributions to the automata-theoretic
approach are described in this paper. I met Boaz in a seminar in 1981, when I
was a doctoral student. Little did I know then that his work would have such a
profound impact on my future research.

Abstract. One of the surprising developments in the area of program
verification is how ideas introduced originally by logicians in the 1950s
ended up yielding by 2003 an industrial-standard property-specification
language called PSL. This development was enabled by the equally un-
likely transformation of the mathematical machinery of automata on in-
finite words, introduced in the early 1960s for second-order arithmetics,
into effective algorithms for model-checking tools. This paper attempts
to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Logic and Automata

Classical logic views logic as a declarative formalism, aimed at the specification
of properties of mathematical objects. For example, the sentence

(∀x, y, x)(mult(x, y, z) ↔ mult(y, x, z))

expressed the commutativity of multiplication. Starting in the 1930s, a differ-
ent branch of logic focused on formalisms for describing computations, starting
with the introduction of Turing machines in the 1930s, and continuing with the
development of the theory of finite-state machines in the 1950s. A surprising,
� A shorter version of this paper, under the title “From Church and Prior to PSL”,

appeared in the Proc. 2006 Workshop on 25 Years of Model Checking, Lecture Notes
in Computer Science, Springer.

�� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and
ANI-0216467, by BSF grant 9800096, and by a gift from the Intel Corporation. The
“Y” in the author’s middle name stands for “Ya’akov”.

A. Avron et al. (Eds.): Trakhtenbrot/Festschrift, LNCS 4800, pp. 656–681, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From Monadic Logic to PSL 657

intimate, connection between these two paradigms of logic emerged in the late
1950s.

A nondeterministic finite automaton on words (NFW) A = (Σ, S, S0, ρ, F)
consists of a finite input alphabet Σ, a finite state set S, an initial state set
S0 ⊆ S, a transition relation ρ ⊆ S × Σ × S, and an accepting state set F ⊆ S.
An NFW runs over an finite input word w = a0, . . . , an−1 ∈ Σ∗. A run of A
on w is a finite sequence r = s0, . . . , sn of states in S such that s0 ∈ S0, and
(si, ai, si+1) ∈ ρ, for 0 ≤ i < n. The run r is accepting if sn ∈ F . The word w is
accepted by A if A has an accepting run on w. The language of A, denoted L(A),
is the set of words accepted by A. The class of languages accepted by NFWs forms
the class of regular languages, which are defined in terms of regular expressions.
This class is extremely robust and has numerous equivalent representations [70].

Example 1. We describe graphically below an NFW that accepts all words over
the alphabet {0, 1} that end with an occurrence of 1. The arrow on the left des-
ignates the initial state, and the circle on the right designates an accepting state.

0

1
1

0

We now view a finite word w = a0, . . . , an−1 over an alphabet Σ as a relational
structure Mw, with the domain of 0, . . . , n − 1 ordered by the binary relation <,
and the unary relations {Pa : a ∈ Σ}, with the interpretation that Pa(i) holds
precisely when ai = a. We refer to such structures as word structures. We now
use first-order logic (FO) to talk about such words. For example, the sentence

(∃x)((∀y)(¬(x < y)) ∧ Pa(x))

says that the last letter of the word is a. We say that such a sentence is over the
alphabet Σ.

Going beyond FO, we obtain monadic second-order logic (MSO), in which we
can have monadic second-order quantifiers of the form ∃Q, ranging over subsets
of the domain, and giving rise to new atomic formulas of the form Q(x). Given
a sentence ϕ in MSO, its set of models models(ϕ) is a set of words.

The fundamental connection between logic and automata is now given by
the following theorem, discovered independently by Julius Richard Büchi, 1924–
1984, Calvin Creston Elgot, 1922-1980, and Boris (Boaz) Trakhtenbrot.

Theorem 1. [15,17,43,123,124,125] Given an MSO sentence ϕ over alphabet
Σ, one can construct an NFW Aϕ with alphabet Σ such that a word w in Σ∗

is accepted by Aϕ iff ϕ holds in the word structure Mw. Conversely, given an
NFW A with alphabet Σ, one can construct an MSO sentence ϕA over Σ such
that ϕA holds in a word structure Mw iff w is accepted by A.

658 M.Y. Vardi

Thus, the class of languages defined by MSO sentences is precisely the class of
regular languages.

To decide whether a sentence ϕ is satisfiable, that is, whether models(ϕ) 	= ∅,
we need to check that L(Aϕ) 	= ∅. This turns out to be an easy problem. Let
A = (Σ, S, S0, ρ, F) be an NFW. Construct a directed graph GA = (S, EA),
with S as the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The
following lemma is implicit in [15,17,43,123] and more explicit in [107].

Lemma 1. L(A) 	= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA

there is a path from s0 to t.

We thus obtain an algorithm for the Satisfiability problem of MSO over word
structures: given an MSO sentence ϕ, construct the NFW Aϕ and check whether
L(A) 	= ∅ by finding a path from an initial state to an accepting state. This ap-
proach to satisfiability checking is referred to as the automata-theoretic approach,
since the decision procedure proceeds by first going from logic to automata, and
then searching for a path in the constructed automaton.

There was little interest in the 1950s in analyzing the computational complex-
ity of the Satisfiability problem. That had to wait until 1974. Define the func-
tion exp(k, n) inductively as follows: exp(0, n) = n and exp(k +1, n) = 2exp(k,n).
We say that a problem is nonelementary if it can not be solved by an algorithm
whose running time is bounded by exp(k, n) for some fixed k ≥ 0; that is, the
running time cannot be bounded by a tower of exponentials of a fixed height.
It is not too difficult to observe that the construction of the automaton Aϕ in
[15,17,43,123] involves a blow-up of exp(n, n), where n is the length of the MSO
sentence being decided. It was shown in [88,116] that the Satisfiability prob-
lem for MSO is nonelementary. In fact, the problem is already nonelementary
for FO [116].

1.2 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known
1957 paper by Alonzo Church, 1903–1995, in which he described the use of logic
to specify sequential circuits [24]. A sequential circuit is a switching circuit whose
output depends not only upon its input, but also on what its input has been in
the past. A sequential circuit is a particular type of finite-state machine, which
became a subject of study in mathematical logic and computer science in the
1950s.

Formally, a sequential circuit C = (I, O, R, f, g, r0) consists of a finite set I of
Boolean input signals, a finite set O of Boolean output signals, a finite set R of
Boolean sequential elements, a transition function f : 2I × 2R → 2R, an output
function g : 2R → 2O, and an initial state r0 ∈ 2R. (We refer to elements of I ∪
O∪R as circuit elements, and assume that I, O, and R are disjoint.) Intuitively,
a state of the circuit is a Boolean assignment to the sequential elements. The
initial state is r0. In a state r ∈ 2R, the Boolean assignment to the output signals
is g(r). When the circuit is in state r ∈ 2R and it reads an input assignment
i ∈ 2I , it changes its state to f(i, r).

From Monadic Logic to PSL 659

A trace over a set V of Boolean variables is an infinite word over the alphabet
2V , i.e., an element of (2V)ω. A trace of the sequential circuit C is a trace over
I ∪ O ∪ R that satisfies some conditions. Specifically, a sequence τ = (i0, r0,o0),
(i1, r1,o1), . . ., where ij ∈ 2I , oj ∈ 2O, and rj ∈ 2R, is a trace of C if rj+1 =
f(ij, rj) and oj = g(rj), for j ≥ 0. Thus, in modern terminology, Church was
following the linear-time approach [82] (see discussion in Section 2.1). The set
of traces of C is denoted by traces(C).

We saw earlier how to associate relational structures with words. We can
similarly associate with an infinite word w = a0, a1, . . . over an alphabet 2V , a
relational structure Mw = (IN, ≤, V), with the naturals IN as the domain, ordered
by <, and extended by the set V of unary predicates, where j ∈ p, for p ∈ V ,
precisely when p holds (i.e., is assigned 1) in ai.1 We refer to such structures as
infinite word structures. When we refer to the vocabulary of such a structure, we
refer explicitly only to V , taking < for granted.

We can now specify traces using First-Order Logic (FO) sentences constructed
from atomic formulas of the form x = y, x < y, and p(x) for p ∈ V = I ∪R∪O.2

For example, the FO sentence

(∀x)(∃y)(x < y ∧ p(y))

says that p holds infinitely often in the trace. In a follow-up paper in 1963
[25], Church considered also specifying traces using monadic second-order logic
(MSO), where in addition to first-order quantifiers, which range over the ele-
ments of IN, we allow also monadic second-order quantifiers, ranging over subsets
of IN, and atomic formulas of the form Q(x), where Q is a monadic predicate
variable. (This logic is also called S1S, the “second-order theory of one successor
function”.) For example, the MSO sentence,

(∃P)(∀x)(∀y)((((P (x) ∧ y = x + 1) → (¬P (y)))∧
(((¬P (x)) ∧ y = x + 1) → P (y)))∧
(x = 0 → P (x)) ∧ (P (x) → q(x))),

where x = 0 is an abbrevaition for (¬(∃z)(z < x)) and y = x + 1 is an abbrevia-
tion for (y > x∧¬(∃z)(x < z ∧ z < y)), says that q holds at every even point on
the trace. In effect, Church was proposing to use classical logic (FO or MSO) as
a logic of time, by focusing on infinite word structures. The set of infinite models
of an FO or MSO sentence ϕ is denoted by modelsω(ϕ).

Church posed two problems related to sequential circuits [24]:

– The Decision problem: Given circuit C and a sentence ϕ, does ϕ hold in
all traces of C? That is, does traces(C) ⊆ models(ϕ) hold?

– The Synthesis problem: Given sets I and O of input and output signals,
and a sentence ϕ over the vocabulary I∪O, construct, if possible, a sequential
circuit C with input signals I and output signals O such that ϕ holds in all
traces of C. That is, construct C such that traces(C) ⊆ models(ϕ) holds.

1 We overload notation here and treat p as both a Boolean variable and a predicate.
2 We overload notation here and treat p as both a circuit element and a predicate

symbol.

660 M.Y. Vardi

In modern terminology, Church’s Decision problem is the model-checking

problem in the linear-time approach (see Section 2.2). This problem did not re-
ceive much attention after [24,25], until the introduction of model checking in the
early 1980s. In contrast, the Synthesis problem has remained a subject of ongo-
ing research; see [18,76,78,106,122]. One reason that the Decision problem did
not remain a subject of study, is the easy observation in [25] that the Decision

problem can be reduced to the validity problem in the underlying logic (FO
or MSO). Given a sequential circuit C, we can easily generate an FO sentence
αC that holds in precisely all structures associated with traces of C. Intuitively,
the sentence αC simply has to encode the transition and output functions of
C, which are Boolean functions. Then ϕ holds in all traces of C precisely when
αC → ϕ holds in all word structures (of the appropriate vocabulary). Thus, to
solve the Decision problem we need to solve the Validity problem over word
structures. As we see next, this problem was solved in 1962.

1.3 Reasoning about Infinite Words

Church’s Decision problem was essentially solved in 1962 by Büchi who showed
that the Validity problem over infinite word structures is decidable [16]. Ac-
tually, Büchi showed the decidability of the dual problem, which is the Sat-

isfiability problem for MSO over infinite word structures. Büchi’s approach
consisted of extending the automata-theoretic approach, see Theorem 1, which
was introduced a few years earlier for word structures, to infinite word struc-
tures. To that end, Büchi extended automata theory to automata on infinite
words.

A nondeterministic Büchi automaton on words (NBW) A = (Σ, S, S0, ρ, F)
consists of a finite input alphabet Σ, a finite state set S, an initial state set
S0 ⊆ S, a transition relation ρ ⊆ S × Σ × S, and an accepting state set F ⊆ S.
An NBW runs over an infinite input word w = a0, a1, . . . ∈ Σω. A run of A on
w is an infinite sequence r = s0, s1, . . . of states in S such that s0 ∈ S0, and
(si, ai, si+1) ∈ ρ, for i ≥ 0. The run r is accepting if F is visited by r infinitely
often; that is, si ∈ F for infinitely many i’s. The word w is accepted by A if A has
an accepting run on w. The infinitary language of A, denoted Lω(A), is the set
of infinite words accepted by A. The class of languages accepted by NBWs forms
the class of ω-regular languages, which are defined in terms of regular expressions
augmented with the ω-power operator (eω denotes an infinitary iteration of e)
[16].

Example 2. We describe graphically an NBW that accepts all words over the
alphabet {0, 1} that contain infinitely many occurrences of 1. The arrow on the
left designates the initial state, and the circle on the right designates an accept-
ing state. Note that this NBW looks exactly like the NFW in Example 1. The
only difference is that in Example 1 we considered finite input words and here
we are considering infinite input words.

From Monadic Logic to PSL 661

0

1
1

0

As we saw earlier, the paradigmatic idea of the automata-theoretic approach is
that we can compile high-level logical specifications into an equivalent low-level
finite-state formalism.

Theorem 2. [16] Given an MSO sentence ϕ with vocabulary V , one can con-
struct an NBW Aϕ with alphabet 2V such that a word w in (2V)ω is accepted
by Aϕ iff ϕ holds in the word structure Mw. Conversely, given an NBW A with
alphabet 2V , one can construct an MSO sentence ϕA with vocabulary V such
that ϕA holds in an infinite word structure Mw iff w is accepted by A.

Thus, the class of languages defined by MSO sentences is precisely the class of
ω-regular languages.

To decide whether sentence ϕ is satisfiable over infinite words, that is, whether
modelsω(ϕ) 	= ∅, we need to check that Lω(Aϕ) 	= ∅. Let A = (Σ, S, S0, ρ, F) be
an NBW. As with NFWs, construct a directed graph GA = (S, EA), with S as
the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The following
lemma is implicit in [16] and more explicit in [126].

Lemma 2. Lω(A) 	= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA

there is a path from s0 to t and a path from t to itself.

We thus obtain an algorithm for the Satisfiability problem of MSO over in-
finite word structures: given an MSO sentence ϕ, construct the NBW Aϕ and
check whether Lω(A) 	= ∅ by finding a path from an initial state to an accept-
ing state and a cycle through that accepting state. Since the Decision problem
can be reduced to the Satisfiability problem, this also solves the Decision

problem.
Neither Büchi nor Church analyzed the complexity of the Decision problem.

The non-elementary lower bound mentioned earlier for MSO over words can be
easily extended to infinite words. The upper bound here is a bit more subtle.
For both finite and infinite words, the construction of Aϕ proceeds by induc-
tion on the structure of ϕ, with complementation being the difficult step. For
NFW, complementation uses the subset construction, which involves a blow-up
of 2n [107,109]. Complementation for NBW is significantly more involved, see
[127]. The blow-up of complementation is 2Θ(n log n), but there is still a gap be-
tween the known upper and lower bounds. At any rate, this yields a blow-up of
exp(n, n log n) for the translation from MSO to NBW.

662 M.Y. Vardi

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient times.3 Aristotle pondered
how to interpret sentences such as “Tomorrow there will be a sea fight,” or
“Tomorrow there will not be a sea fight.” Medieval philosophers also pondered
the issue of time.4 By the Renaissance period, philosophical interest in the logic
of time seems to have waned. There were some stirrings of interest in the 19th
century, by Boole and Peirce. Peirce wrote:

“Time has usually been considered by logicians to be what is called
‘extra-logical’ matter. I have never shared this opinion. But I have thought
that logic had not yet reached the state of development at which the in-
troduction of temporal modifications of its forms would not result in
great confusion; and I am much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century,
but the birth of modern temporal logic is unquestionably credited to Arthur
Norman Prior, 1914-1969. Prior was a philosopher, who was interested in theo-
logical and ethical issues. His own religious path was somewhat convoluted; he
was born a Methodist, converted to Presbytarianism, became an atheist, and
ended up an agnostic. In 1949, he published a book titled “Logic and The Basis
of Ethics”. He was particularly interested in the conflict between the assumption
of free will (“the future is to some extent, even if it is only a very small extent,
something we can make for ourselves”), foredestination (“of what will be, it has
now been the case that it will be”), and foreknowledge (“there is a deity who
infallibly knows the entire future”). He was also interested in modal logic [103].
This confluence of interests led Prior to the development of temporal logic. 5 His
wife, Mary Prior, recalled after his death:

“I remember his waking me one night [in 1953], coming and sitting on
my bed, . . ., and saying he thought one could make a formalised tense
logic.”

3 For a detailed history of temporal logic from ancient times to the modern period,
see [92].

4 For example, William of Ockham, 1288–1348, wrote (rather obscurely for the modern
reader): “Wherefore the difference between present tense propositions and past and
future tense propositions is that the predicate in a present tense proposition stands
in the same way as the subject, unless something added to it stops this; but in a past
tense and a future tense proposition it varies, for the predicate does not merely stand
for those things concerning which it is truly predicated in the past and future tense
propositions, because in order for such a proposition to be true, it is not sufficient
that that thing of which the predicate is truly predicated (whether by a verb in the
present tense or in the future tense) is that which the subject denotes, although it is
required that the very same predicate is truly predicated of that which the subject
denotes, by means of what is asserted by such a proposition.”

5 An earlier term was tense logic; the term temporal logic was introduced in [91]. The
technical distinction between the two terms seems fuzzy.

From Monadic Logic to PSL 663

Prior lectured on his new work when he was the John Locke Lecturer at the
University of Oxford in 1955–6, and published his book “Time and Modality” in
1957 [101].6 In this book, he presented a temporal logic that is propositional logic
extended with two temporal connectives, F and P , corresponding to “sometime
in the future” and “sometime in the past”. A crucial feature of this logic is that
it has an implicit notion of “now”, which is treated as an indexical, that is, it
depends on the context of utterance for its meaning. Both future and past are
defined with respect to this implicit “now”.

It is interesting to note that the linear vs. branching time dichotomy, which
has been a subject of some controversy in the computer science literature since
1980 (see [132]), has been present from the very beginning of temporal-logic
development. In Prior’s early work on temporal logic, he assumed that time was
linear. In 1958, he received a letter from Saul Kripke,7 who wrote

“In an indetermined system, we perhaps should not regard time as a
linear series, as you have done. Given the present moment, there are
several possibilities for what the next moment may be like – and for each
possible next moment, there are several possibilities for the moment after
that. Thus the situation takes the form, not of a linear sequence, but of
a ‘tree’.”

Prior immediately saw the merit of Kripke’s suggestion: “the determinist sees
time as a line, and the indeterminist sees times as a system of forking paths.” He
went on to develop two theories of branching time, which he called “Ockhamist”
and “Peircean”. (Prior did not use path quantifiers; those were introduced later,
in the 1980s. See Section 3.2.)

While the introduction of branching time seems quite reasonable in the con-
text of trying to formalize free will, it is far from being simple philosophically.
Prior argued that the nature of the course of time is branching, while the nature
of a course of events is linear [102]. In contrast, it was argued in [91] that the
nature of time is linear, but the nature of the course of events is branching: “We
have ‘branching in time,’ not ‘branching of time’.”8

During the 1960s, the development of temporal logic continued through both
the linear-time approach and the branching-time approach. There was little con-
nection, however, between research on temporal logic and research on classical
logics, as described in Section 1. That changed in 1968, when Johan Anthony
Willem (Hans) Kamp tied together the two threads in his doctoral dissertation.

6 Due to the arcane infix notation of the time, the book may not be too ac-
cessible to modern readers, who may have difficulties parsing formulas such as
CKMpMqAMKpMqMKqMp.

7 Kripke was a high-school student, not quite 18, in Omaha, Nebraska. Kripke’s in-
terest in modal logic was inspired by a paper by Prior on this subject [104]. Prior
turned out to be the referee of Kripke’s first paper [75].

8 One is reminded of St. Augustin, who said in his Confessions: “What, then, is time?
If no one asks me, I know; but if I wish to explain it to some who should ask me, I
do not know.”

664 M.Y. Vardi

Theorem 3. [71] Linear temporal logic with past and binary temporal connec-
tives (“strict until” and “strict since”) has precisely the expressive power of FO
over the ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more general and asserts
expressive equivalence of FO and temporal logic over all “Dedekind-closed or-
ders”. The introduction of binary temporal connectives by Kamp was necessary
for reaching the expressive power of FO; unary linear temporal logic, which has
only unary temporal connectives, is weaker than FO [51]. The theorem refers
to FO formulas with one free variable, which are satisfied at an element of a
structure, analogously to temporal logic formulas, which are satisfied at a point
of time.

It should be noted that one direction of Kamp’s Theorem, the translation from
temporal logic to FO, is quite straightforward; the hard direction is the trans-
lation from FO to temporal logic. Both directions are algorithmically effective;
translating from temporal logic to FO involves a linear blowup, but translation
in the other direction involves a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, then they define sets of
traces (a sentence ϕ defines models(ϕ)). A characterization of of the expressive-
ness of FO sentences over the naturals, in terms of their ability to define sets of
traces, was obtained in 1979.

Theorem 4. [121] FO sentences over naturals have the expressive power of ∗-
free ω-regular expressions.

Recall that MSO defines the class of ω-regular languages. It was already shown
in [44] that FO over the naturals is weaker expressively than MSO over the
naturals. Theorem 4 was inspired by an analogous theorem in [87] for finite
words.

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic can be applied to pro-
grams. Prior stated: “There are practical gains to be had from this study too, for
example, in the representation of time-delay in computer circuits” [102]. Also, a
discussion of the application of temporal logic to processes, which are defined as
“programmed sequences of states, deterministic or stochastic” appeared in [91].

The “big bang” for the application of temporal logic to program correctness
occurred with Amir Pnueli’s 1977 paper [94]. In this paper, Pnueli, inspired
by [91], advocated using future linear temporal logic (LTL) as a logic for the
specification of non-terminating programs; see overview in [59].

LTL is a temporal logic with two temporal connectives, “next” and “until”.9 In
LTL, formulas are constructed from a set Prop of atomic propositions using the
usual Boolean connectives as well as the unary temporal connective X (“next”),
9 Unlike Kamp’s “strict until” (“p strict until q” requires q to hold in the strict future),

Pnueli’s “until” is not strict (“p until q” can be satisfied by q holding now), which
is why the “next” connective is required.

From Monadic Logic to PSL 665

and the binary temporal connective U (“until”). Additional unary temporal
connectives F (“eventually”), and G (“always”) can be defined in terms of U .
Note that all temporal connectives refer to the future here, in contrast to Kamp’s
“strict since” operator, which refers to the past. Thus, LTL is a future temporal
logic. For extensions with past temporal connectives, see [84,85,129].

LTL is interpreted over traces over the set Prop of atomic propositions. For
a trace τ and a point i ∈ IN, the notation τ, i |= ϕ indicates that the formula ϕ
holds at the point i of the trace τ . Thus, the point i is the implicit “now” with
respect to which the formula is interpreted. We have that

– τ, i |= p if p holds at τ(i),
– τ, i |= Xϕ if τ, i + 1 |= ϕ, and
– τ, i |= ϕUψ if for some j ≥ i, we have τ, j |= ψ and for all k, i ≤ k < j, we

have τ, k |= ϕ.

The temporal connectives F and G can be defined in terms of the temporal
connective U ; Fϕ is defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ. We say
that τ satisfies a formula ϕ, denoted τ |= ϕ, iff τ, 0 |= ϕ. We denote by models(ϕ)
the set of traces satisfying ϕ.

As an example, the LTL formula G(request → F grant), which refers to
the atomic propositions request and grant, is true in a trace precisely when
every state in the trace in which request holds is followed by some state in the
(non-strict) future in which grant holds. Also, the LTL formula G(request →
(request U grant)) is true in a trace precisely if, whenever request holds in a
state of the trace, it holds until a state in which grant holds is reached.

The focus on satisfaction at 0, called initial semantics, is motivated by the
desire to specify computations at their starting point. It enables an alternative
version of Kamp’s Theorem, which does not require past temporal connectives,
but focuses on initial semantics.

Theorem 5. [56] LTL has precisely the expressive power of FO over the ordered
naturals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-free ω-regular expressions
over the naturals. Thus, LTL has the expressive power of star-free ω-regular
expressions (see [96]), and is strictly weaker than MSO. An interesting outcome
of the above theorem is that it lead to the following assertion regarding LTL
[89]: “The corollary due to Meyer – I have to get in my controversial remark – is
that that [Theorem 5] makes it theoretically uninteresting.” Developments since
1980 have proven this assertion to be overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s Decision problem: given a finite-
state program P and an LTL formula ϕ, decide if ϕ holds in all traces of P . Just
like Church, Pnueli observed that this problem can be solved by reduction to
MSO. Rather than focus on sequential circuits, Pnueli focused on programs, mod-
eled as (labeled) transition systems [72]. A transition system M = (W, W0, R, V)
consists of a set W of states that the system can be in, a set W0 ⊆ W of initial
states, a transition relation R ⊆ W 2 that indicates the allowable state transi-
tions of the system, and an assignment V : W → 2Prop of truth values to the

666 M.Y. Vardi

atomic propositions in each state of the system. (A transition system is essen-
tially a Kripke structure [10].) A path in M that starts at u is a possible infinite
behavior of the system starting at u, i.e., it is an infinite sequence u0, u1 . . . of
states in W such that u0 = u, and (ui, ui+1) ∈ R for all i ≥ 0. The sequence
V (u0), V (u1) . . . is a trace of M that starts at u. It is the sequence of truth
assignments visited by the path. The language of M , denoted L(M), consists
of all traces of M that start at a state in W0. Note that L(M) is a language
of infinite words over the alphabet 2Prop. The language L(M) can be viewed as
an abstract description of the system M , describing all possible traces. We say
that M satisfies an LTL formula ϕ if all traces in L(M) satisfy ϕ, that is, if
L(M) ⊆ models(ϕ). When W is finite, we have a finite-state system, and can
apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that
satisfiability of FO over trace structures is nonelementary. In contrast, it was
shown in [61,62,111,112,113,138,139] that LTL Satisfiability is elementary; in
fact, it is PSPACE-complete. It was also shown that the Decision problem for
LTL with respect to finite transition systems is PSPACE-complete [111,112,113].
The basic technique for proving these elementary upper bounds is the tableau
technique, which was adapted from dynamic logics [99] (see Section 3.1). Thus,
even though FO and LTL are expressively equivalent, they have dramatically
different computational properties, as LTL reasoning is in PSPACE, while FO
reasoning is nonelementary.

The second “big bang” in the application of temporal logic to program cor-
rectness was the introduction of model checking by Edmund Melson Clarke and
Ernest Allen Emerson [28] and by Jean-Pierre Queille and Joseph Sifakis [105].
The two papers used two different branching-time logics. Clarke and Emerson
used CTL (inspired by the branching-time logic UB of [9]), which extends LTL
with existential and universal path quantifiers E and A. Queille and Sifakis used
a logic introduced by Leslie Lamport [82], which extends propositional logic with
the temporal connectives POT (which corresponds to the CTL operator EF)
and INEV (which corresponds to the CTL operator AF). The focus in both
papers was on model checking, which is essentially what Church called the De-

cision problem: does a given finite-state program, viewed as a finite transition
system, satisfy its given temporal specification. In particular, Clarke and Emer-
son showed that model checking transition systems of size m with respect to
formulas of size n can be done in time polynomial in m and n. This was refined
later to O(mn) (even in the presence of fairness constraints, which restrict at-
tention to certain infinite paths in the underlying transition system) [29,30]. We
drop the term “Decision problem” from now on, and replace it with the term
“Model-Checking problem”.10

10 The model-checking problem is analogous to database query evaluation, where we
check the truth of a logical formula, representing a query, with respect to a database,
viewed as a finite relational structure. Interestingly, the study of the complexity of
database query evaluation started about the same time as that of model checking
[128].

From Monadic Logic to PSL 667

It should be noted that the linear complexity of model checking refers to the
size of the transition system, rather than the size of the program that gave rise to
that system. For sequential circuits, transition-system size is essentially exponen-
tial in the size of the description of the circuit (say, in some Hardware Description
Language). This is referred to as the “state-explosion problem” [31]. In spite of
the state-explosion problem, in the first few years after the publication of the
first model-checking papers in 1981-2, Clarke and his students demonstrated that
model checking is a highly successful technique for automated program verifica-
tion [13,33]. By the late 1980s, automated verification had become a recognized
research area. Also by the late 1980s, symbolic model checking was developed
[19,20], and the SMV tool, developed at CMU by Kenneth Laughlin McMillan
[86], was starting to have an industrial impact. See [27] for more details.

The detailed complexity analysis in [29] inspired a similar detailed analysis of
linear time model checking. It was shown in [83] that model checking transition
systems of size m with respect to LTL formulas of size n can be done in time
m2O(n). (This again was shown using a tableau-based technique.) While the
bound here is exponential in n, the argument was that n is typically rather
small, and therefore an exponential bound is acceptable.

2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated to NBW, it is
clear that LTL can be translated to NBW. Going through FO, however, would
incur, in general, a nonelementary blowup. In 1983, Pierre Wolper, Aravinda
Prasad Sistla, and I showed that this nonelementary blowup can be avoided.

Theorem 6. [136,140] Given an LTL formula ϕ of size n, one can construct an
NBW Aϕ of size 2O(n) such that a trace σ satisfies ϕ if and only if σ is accepted
by Aϕ.

It now follows that we can obtain a PSPACE algorithm for LTL Satisfiability:
given an LTL formula ϕ, we construct Aϕ and check that Aϕ 	= ∅ using the graph-
theoretic approach described earlier. We can avoid using exponential space, by
constructing the automaton on the fly [136,140].

What about model checking? We know that a transition system M satisfies
an LTL formula ϕ if L(M) ⊆ models(ϕ). It was then observed in [135] that the
following are equivalent:

– M satisfies ϕ
– L(M) ⊆ models(ϕ)
– L(M) ⊆ L(Aϕ)
– L(M) ∩ ((2Prop)ω − L(Aϕ)) = ∅
– L(M) ∩ L(A¬ϕ) = ∅
– L(M × A¬ϕ) = ∅

Thus, rather than complementing Aϕ using an exponential complementation
construction [16,77,115], we complement the LTL property using logical nega-
tion. It is easy to see that we can now get the same bound as in [83]: model

668 M.Y. Vardi

checking programs of size m with respect to LTL formulas of size n can be
done in time m2O(n). Thus, the optimal bounds for LTL satisfiability and model
checking can be obtained without resorting to ad-hoc tableau-based techniques;
the key is the exponential translation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took
over a decade of further research, which saw the development of

– an optimized search algorithm for explicit-state model checking [36,37],
– a symbolic, BDD-based11 algorithm for NBW nonemptiness [19,20,49],
– symbolic algorithms for LTL to NBW translation [19,20,32], and
– an optimized explicit algorithm for LTL to NBW translation [58].

By 1995, there were two model-checking tools that implemented LTL model
checking via the automata-theoretic approach: Spin [69] is an explicit-state LTL
model checker, and Cadence’s SMV is a symbolic LTL model checker.12 See [133]
for a description of algorithmic developments since the mid 1990s. Additional
tools today are VIS [12], NuSMV [26], and SPOT [38].

It should be noted that Robert Kurshan developed the automata-theoretic
approach independently, also going back to the 1980s [1,2,79]. In his approach
(as also in [108,140]), one uses automata to represent both the system and its
specification [80].13 The first implementation of COSPAN, a model-checking tool
that is based on this approach [63], also goes back to the 1980s; see [81].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [83,135] be viewed as a satisfactory
solution to Church’s Decision problem? Almost, but not quite, since, as we
observed earlier, LTL is not as expressive as MSO, which means that LTL is
expressively weaker than NBW. Why do we need the expressive power of NBWs?
First, note that once we add fairness to transitions systems (sse [29,30]), they
can be viewed as variants of NBWs. Second, there are good reasons to expect the
specification language to be as expressive as the underlying model of programs
[95]. Thus, achieving the expressive power of NBWs, which we refer to as ω-
regularity, is a desirable goal. This motivated efforts since the early 1980s to
extend LTL.

The first attempt along this line was made by Wolper [138,139], who de-
fined ETL (for Extended Temporal Logic), which is LTL extended with grammar
operators. He showed that ETL is more expressive than LTL, while its Satis-

fiability problem can still be solved in exponential time (and even PSPACE
[111,112,113]). Then, Sistla, Wolper and I showed how to extend LTL with au-
tomata connectives, reaching ω-regularity, without losing the PSPACE upper

11 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary
Decision Diagrams [14].

12 Cadence’s SMV is also a CTL model checker. See
www.cadence.com/webforms/cbl software/index.aspx.

13 The connection to automata is somewhat difficult to discern in the early papers [1,2].

www.cadence.com/webforms/cbl_software/index.aspx

From Monadic Logic to PSL 669

bound for the Satisfiability problem [136,140]. Actually, three syntactical vari-
ations, denoted ETLf , ETLl, and ETLr were shown to be expressively equivalent
and have these properties [136,140].

Two other ways to achieve ω-regularity were discovered in the 1980s. The
first is to enhance LTL with monadic second-order quantifiers as in MSO, which
yields a logic, QPTL, with a nonelementary Satisfiability problem [114,115].
The second is to enhance LTL with least and greatest fixpoints [6,130], which
yields a logic, μLTL, that achieves ω-regularity, and has a PSPACE upper bound
on its Satisfiability and Model-Checking problems [130]. For example, the
(not too readable) formula

(νP)(μQ)(P ∧ X(p ∨ Q)),

where ν and μ denote greatest and least fixpoint operators, respectively, is equiv-
alent to the LTL formula GFp, which says that p holds infinitely often.

3 Thread III: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specify programs, Vaughan
Ronald Pratt proposed using dynamic logic, an extension of modal logic, to
specify programs [97].14 In modal logic �ϕ means that ϕ holds in all worlds that
are possible with respect to the current world [10]. Thus, �ϕ can be taken to
mean that ϕ holds after an execution of a program step, taking the transition
relation of the program to be the possibility relation of a Kripke structure. Pratt
proposed the addition of dynamic modalities [e]ϕ, where e is a program, which
asserts that ϕ holds in all states reachable by an execution of the program e.
Dynamic logic can then be viewed as an extension of Hoare logic, since ψ → [e]ϕ
corresponds to the Hoare triple {ψ}e{ϕ} (see [3]). See [65] for an extensive
coverage of dynamic logic.

In 1977, a propositional version of Pratt’s dynamic logic, called PDL, was pro-
posed, in which programs are regular expressions over atomic programs [52,53].
It was shown there that the Satisfiability problem for PDL is in NEXPTIME
and EXPTIME-hard. Pratt then proved an EXPTIME upper bound, adapting
tableau techniques from modal logic [98,99]. (We saw earlier that Wolper then
adapted these techniques to linear-time logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli
was interested in nonterminating programs. This motivated various extensions of
dynamic logic to nonterminating programs [68,118,117,119]. Nevertheless, these
logics are much less natural for the specification of ongoing behavior than tem-
poral logic. They inspired, however, the introduction of the (modal) μ-calculus
by Dexter Kozen [73,74]. The μ-calculus is an extension of modal logic with
least and greatest fixpoints. It subsumes expressively essentially all dynamic and

14 See discussion of precursor and related developments, such as [21,34,50,110], in [65].

670 M.Y. Vardi

temporal logics [11]. Kozen’s paper was inspired by previous papers that showed
the usefulness of fixpoints in characterizing correctness properties of programs
[45,93] (see also [100]). In turn, the μ-calculus inspired the introduction of μLTL,
mentioned earlier. The μ-calculus also played an important role in the develop-
ment of symbolic model checking [19,20,49].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reasoning about programs,
in contrast to Pnueli’s linear-time approach. Lamport was the first to study the
dichotomy between linear and branching time in the context of program cor-
rectness [82]. This was followed by the introduction of the branching-time logic
UB, which extends unary LTL (LTL without the temporal connective “until”)
with the existential and universal path quantifiers, E and A [9]. Path quantifiers
enable us to quantify over different future behavior of the system. By adapting
Pratt’s tableau-based method for PDL to UB, it was shown that its Satis-

fiability problem is in EXPTIME [9]. Clarke and Emerson then added the
temporal conncetive “until” to UB and obtained CTL [28]. (They did not focus
on the Satisfiability problem for CTL, but, as we saw earlier, on its Model-

Checking problem; the Satisfiability problem was shown later to be solvable
in EXPTIME [47].) Finally, it was shown that LTL and CTL have incomparable
expressive power, leading to the introduction of the branching-time logic CTL∗,
which unifies LTL and CTL [46,48].

The key feature of branching-time logics in the 1980s was the introduction
of explicit path quantifiers in [9]. This was an idea that was not discovered by
Prior and his followers in the 1960s and 1970s. Most likely, Prior would have
found CTL∗ satisfactory for his philosophical applications and would have seen
no need to introduce the “Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics
provide two distinct perspectives for specifying programs: the first is state based,
while the second is action based. Various efforts have been made to combine the
two approaches. These include the introduction of Process Logic [64] (branching
time), Yet Another Process Logic [134] (branching time), Regular Process Logic
[67] (linear time), Dynamic LTL [60] (linear time), and RCTL [8] (branching
time), which ultimately evolved into Sugar [7]. RCTL/Sugar is unique among
these logics in that it did not attempt to borrow the action-based part of dynamic
logic. It is a state-based branching-time logic with no notion of actions. Rather,
what it borrowed from dynamic logic was the use of regular-expression-based
dynamic modalities. Unlike dynamic logic, which uses regular expressions over
program statements, RCTL/Sugar uses regular expressions over state predicates,
analogously to the automata of ETL [136,140], which run over sequences of
formulas.

From Monadic Logic to PSL 671

4 Thread IV: From LTL to ForSpec and PSL

In the late 1990s and early 2000s, model checking was having an increasing
industrial impact. That led to the development of two industrial temporal logics
based on LTL: ForSpec, developed by Intel, and PSL, developed by an industrial
standards committee.

4.1 From LTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spend-
ing a sabbatical year in Israel, conducted a successful feasibility study at the
Intel Design Center (IDC) in Haifa, using COSPAN, which at that point was
a prototype tool; see [81]. In 1992, IDC started a pilot project using SMV. By
1995, model checking was used by several design projects at Intel, using an inter-
nally developed model checker based on SMV. Intel users have found CTL to be
lacking in expressive power and the Design Technology group at Intel developed
its own specification language, FSL. The FSL language was a linear-time logic,
and it was model checked using the automata-theoretic approach, but its design
was rather ad-hoc, and its expressive power was unclear; see [54].

In 1997, Intel’s Design Technology group at IDC embarked on the development
of a second-generation model-checking technology. The goal was to develop a
model-checking engine from scratch, as well as a new specification language. A
BDD-based model checker was released in 1999 [55], and a SAT-based model
checker was released in 2000 [35].

I got involved in the design of the second-generation specification language
in 1997. That language, ForSpec, was released in 2000 [5]. The first issue to be
decided was whether the language should be linear or branching. This led to
an in-depth examination of this issue [132], and the decision was to pursue a
linear-time language. An obvious candidate was LTL; we saw that by the mid
1990s there were both explicit-state and symbolic model checkers for LTL, so
there was no question of feasibility. I had numerous conversations with Limor Fix,
Michael Hadash, Yonit Kesten, and Moshe Sananes on this issue. The conclusion
was that LTL is not expressive enough for industrial usage. In particular, many
properties that are expressible in FSL are not expressible in LTL. Thus, it turned
out that the theoretical considerations regarding the expressiveness of LTL, i.e.,
its lack of ω-regularity, had practical significance. I offered two extensions of
LTL; as we saw earlier both ETL and μLTL achieve ω-regularity and have the
same complexity as LTL. Neither of these proposals was accepted, due to the
perceived difficulty of usage of such logics by Intel validation engineers, who
typically have only basic familiarity with automata theory and logic.

These conversations continued in 1998, now with Avner Landver. Avner also
argued that Intel validation engineers would not be receptive to the automata-
based formalism of ETL. Being familiar with RCTL/Sugar and its dynamic
modalities [7,8], he asked me about regular expressions, and my answer was that
regular expressions are equivalent to automata [70], so the automata of ETLf ,
which extends LTL with automata on finite words, can be replaced by regu-
lar expressions over state predicates. This lead to the development of RELTL,

672 M.Y. Vardi

which is LTL augmented by the dynamic regular modalities of dynamic logic
(interpreted linearly, as in ETL). Instead of the dynamic-logic notation [e]ϕ,
ForSpec uses the more readable (to engineers) (e triggers ϕ), where e is a regu-
lar expression over state predicates (e.g., (p ∨ q)∗, (p ∧ q)), and ϕ is a formula.
Semantically, τ, i |= (e triggers ϕ) if, for all j ≥ i, if τ [i, j] (that is, the finite
word τ(i), . . . , τ(j)) “matches” e (in the intuitive formal sense), then τ, j |= ϕ;
see [22]. Using the ω-regularity of ETLf , it is now easy to show that RELTL
also achieves ω-regularity [5].

While the addition of dynamic modalities to LTL is sufficient to achieve ω-
regularity, we decided to also offer direct support to two specification modes
often used by verification engineers at Intel: clocks and resets. Both clocks and
resets are features that are needed to address the fact that modern semiconductor
designs consist of interacting parallel modules. While clocks and resets have a
simple underlying intuition, defining their semantics formally is quite nontrivial.
ForSpec is essentially RELTL, augmented with features corresponding to clocks
and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronous circuits.
In synchronous circuits, clock signals synchronize the sequential logic, providing
the designer with a simple operational model. While the asynchronous approach
holds the promise of greater speed (see [23]), designing asynchronous circuits is
significantly harder than designing synchronous circuits. Current design method-
ology attempts to strike a compromise between the two approaches by using
multiple clocks. This results in architectures that are globally asynchronous but
locally synchronous. The temporal-logic literature mostly ignores the issue of
explicitly supporting clocks. ForSpec supports multiple clocks via the notion of
current clock. Specifically, ForSpec has a construct change on c ϕ, which states
that the temporal formula ϕ is to be evaluated with respect to the clock c; that
is, the formula ϕ is to be evaluated in the trace defined by the high phases of
the clock c. The key feature of clocks in ForSpec is that each subformula may
advance according to a different clock [5].

Another feature of modern designs’ consisting of interacting parallel modules
is the fact that a process running on one module can be reset by a signal coming
from another module. As noted in [120], reset control has long been a critical
aspect of embedded control design. ForSpec directly supports reset signals. The
formula accept on a ϕ states that the property ϕ should be checked only un-
til the arrival of the reset signal a, at which point the check is considered to
have succeeded. In contrast, reject on r ϕ states that the property ϕ should
be checked only until the arrival of the reset signal r, at which point the check
is considered to have failed. The key feature of resets in ForSpec is that each
subformula may be reset (positively or negatively) by a different reset signal; for
a longer discussion see [5].

ForSpec is an industrial property-specification language that supports
hardware-oriented constructs as well as uniform semantics for formal and
dynamic validation, while at the same time it has a well understood expressive-
ness (ω-regularity) and computational complexity (Satisfiability and

From Monadic Logic to PSL 673

Model-Checking problems have the same complexity for ForSpec as for LTL)
[5]. The design effort strove to find an acceptable compromise, with trade-offs
clarified by theory, between conflicting demands, such as expressiveness, usabil-
ity, and implementability. Clocks and resets, both important to hardware design-
ers, have a clear intuitive semantics, but formalizing this semantics is nontrivial.
The rigorous semantics, however, not only enabled mechanical verification of var-
ious theorems about the language, but also served as a reference document for
the implementors. The implementation of model checking for ForSpec followed
the automata-theoretic approach, using alternating automata as advocated in
[131] (see [57]).

4.2 From ForSpec to PSL

In 2000, the Electronic Design Automation Association instituted a standardiza-
tion body called Accellera.15 Accellera’s mission is to drive worldwide develop-
ment and use of standards required by systems, semiconductor and design tools
companies. Accellera decided that the development of a standard specification
language is a requirement for formal verification to become an industrial reality
(see [81]). Since the focus was on specifying properties of designs rather than de-
signs themselves, the chosen term was “property specification language” (PSL).
The PSL standard committee solicited industrial contributions and received four
language contributions: CBV, from Motorola, ForSpec, from Intel, Temporal e,
from Verisity [90], and Sugar, from IBM.

The committee’s discussions were quite fierce.16 Ultimately, it became clear
that while technical considerations play an important role, industrial commit-
tees’ decisions are ultimately made for business considerations. In that
contention, IBM had the upper hand, and Accellera chose Sugar as the base
language for PSL in 2003. At the same time, the technical merits of ForSpec
were accepted and PSL adopted all the main features of ForSpec. In essence,
PSL (the current version 1.1) is LTL, extended with dynamic modalities (re-
ferred to as the regular layer), clocks, and resets (called aborts). PSL did inherit
the syntax of Sugar, and does include a branching-time extension as an acknowl-
edgment to Sugar.17

There was some evolution of PSL with respect to ForSpec. After some debate
on the proper way to define resets [4], ForSpec’s approach was essentially ac-
cepted after some reformulation [41]. ForSpec’s fundamental approach to clocks,
which is semantic, was accepted, but modified in some important details [42].
In addition to the dynamic modalities, borrowed from dynamic logic, PSL also
has weak dynamic modalities [40], which are reminiscent of “looping” modalities
in dynamic logic [68,66]. Today PSL 1.1 is an IEEE Standard 1850–2005, and
continues to be refined by the IEEE P1850 PSL Working Group.18

15 See http://www.accellera.org/.
16 See http://www.eda-stds.org/vfv/.
17 See [39] and language reference manual at http://www.eda.org/vfv/docs/

PSL-v1.1.pdf.
18 See http://www.eda.org/ieee-1850/.

http://www.accellera.org/
http://www.eda-stds.org/vfv/
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.eda.org/vfv/docs/PSL-v1.1.pdf

674 M.Y. Vardi

Practical use of ForSpec and PSL has shown that the regular layer (that is,
the dynamic modalities), is highly popular with verification engineers. Another
standardized property specification language, called SVA (for SystemVerilog As-
sertions), is based, in essence, on that regular layer [137].

5 Contemplation

The evolution of ideas, from Church and Prior to PSL, seems to be an amazing
development. It reminds me of the medieval period, when building a cathedral
spanned more than a mason’s lifetime. Many masons spend their whole lives
working on a cathedral, never seeing it to completion. We are fortunate to see
the completion of this particular “cathedral”. Just like the medieval masons,
our contributions are often smaller than we’d like to consider them, but even
small contributions can have a major impact. Unlike the medieval cathedrals,
the scientific cathedral has no architect; the construction is driven by a com-
plex process, whose outcome is unpredictable. Much that has been discovered is
forgotten and has to be rediscovered. It is hard to fathom what our particular
“cathedral” will look like in 50 years.

Acknowledgments

I am grateful to E. Clarke, A. Emerson, R. Goldblatt, A. Pnueli, P. Sistla,
P. Wolper for helping me trace the many threads of this story, to D. Fisman,
C. Eisner, J. Halpern, D. Harel and T. Wilke for their many useful comments
on earlier drafts of this paper, and to S. Nain, K. Rozier, and D. Tabakov for
proofreading earlier drafts. I’d also like to thank K. Rozier for her help with
graphics.

References

1. Aggarwal, S., Kurshan, R.P.: Automated implementation from formal specifica-
tion. In: Proc. 4th Int’l Workshop on Protocol Specification, Testing and Verifi-
cation, pp. 127–136. North-Holland, Amsterdam (1984)

2. Aggarwal, S., Kurshan, R.P., Sharma, D.: A language for the specification and
analysis of protocols. In: Proc. 3rd Int’l Workshop on Protocol Specification, Test-
ing, and Verification, pp. 35–50. North-Holland, Amsterdam (1983)

3. Apt, K., Olderog, E.R.: Verification of Sequential and Concurrent Programs.
Springer, Heidelberg (2006)

4. Armoni, R., et al.: Resets vs. aborts in linear temporal logic. In: Garavel, H.,
Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 65–80.
Springer, Heidelberg (2003)

5. Armoni, R., et al.: The ForSpec temporal logic: A new temporal property-
specification logic. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS
2002. LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)

From Monadic Logic to PSL 675

6. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–74. Springer, Heidelberg (1989)

7. Beer, I., et al.: The temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001)

8. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formu-
las. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer,
Heidelberg (1998)

9. Ben-Ari, M., Manna, Z., Pnueli, A.: The logic of nexttime. In: Proc. 8th ACM
Symp. on Principles of Programming Languages, pp. 164–176 (1981)

10. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge (2002)

11. Bradfield, J., Stirling, C.: PDL and modal μ-calculus. In: Blackburn, P., van
Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, Elsevier, Amsterdam
(2006)

12. Brayton, R.K., et al.: VIS: a system for verification and synthesis. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Hei-
delberg (1996)

13. Browne, M.C., et al.: Automatic verification of sequential circuits using temporal
logic. IEEE Transactions on Computing C-35, 1035–1044 (1986)

14. Bryant, R.E.: Graph-based algorithms for Boolean-function manipulation. IEEE
Transactions on Computing C-35(8), 677–691 (1986)

15. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik
und Grundl. Math. 6, 66–92 (1960)

16. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Int. Congress on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stan-
ford University Press (1962)

17. Büchi, J.R., Elgot, C.C., Wright, J.B.: The non-existence of certain algorithms
for finite automata theory (abstract). Notices Amer. Math. Soc. 5, 98 (1958)

18. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. AMS 138, 295–311 (1969)

19. Burch, J.R., et al.: Symbolic model checking: 1020 states and beyond. In: Proc.
5th IEEE Symp. on Logic in Computer Science, pp. 428–439 (1990)

20. Burch, J.R., et al.: Symbolic model checking: 1020 states and beyond. Information
and Computation 98(2), 142–170 (1992)

21. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, Stockholm, Sweden, pp. 308–312. North-Holland,
Amsterdam (1974)

22. Bustan, D., et al.: Regular vacuity. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 191–206. Springer, Heidelberg (2005)

23. Nowick, S.M., van Berkel, C.H., Josephs, M.B.: Applications of asynchronous
circuits. Proceedings of the IEEE 87(2), 223–233 (1999)

24. Church, A.: Applicaton of recursive arithmetics to the problem of circuit synthesis.
In: Summaries of Talks Presented at The Summer Institute for Symbolic Logic, pp.
3–50. Communications Research Division, Institute for Defense Analysis (1957)

25. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathe-
maticians, 1962, Institut Mittag-Leffler, pp. 23–35 (1963)

26. Cimatti, A., et al.: Nusmv 2: An opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002)

676 M.Y. Vardi

27. Clarke, E.M.: The birth of model checking. In: Avron, A., et al. (eds.) Trakhten-
brot/Festschrift. LNCS, vol. 4800 (2007)

28. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

29. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In:
Proc. 10th ACM Symp. on Principles of Programming Languages, pp. 117–126
(1983)

30. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languagues and Systems 8(2), 244–263 (1986)

31. Clarke, E.M., Grumberg, O.: Avoiding the state explosion problem in temporal
logic model-checking algorithms. In: Proc. 16th ACM Symp. on Principles of
Distributed Computing, pp. 294–303 (1987)

32. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model check-
ing. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Hei-
delberg (1994)

33. Clarke, E.M., Mishra, B.: Hierarchical verification of asynchronous circuits using
temporal logic. Theoretical Computer Science 38, 269–291 (1985)

34. Constable, R.L.: On the theory of programming logics. In: Proc. 9th ACM Symp.
on Theory of Computing, pp. 269–285 (1977)

35. Copty, F., et al.: Benefits of bounded model checking at an industrial setting. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453.
Springer, Heidelberg (2001)

36. Courcoubetis, C., et al.: Memory efficient algorithms for the verification of tem-
poral properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531,
pp. 233–242. Springer, Heidelberg (1991)

37. Courcoubetis, C., et al.: Memory efficient algorithms for the verification of tem-
poral properties. Formal Methods in System Design 1, 275–288 (1992)

38. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library us-
ing transition-based generalized büchi automata. In: Proc. 12th Int’l Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems, pp. 76–83. IEEE Computer Society, Los Alamitos (2004)

39. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

40. Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness.
In: Proc. 24th ACM Symp. on Principles of Distributed Computing, pp. 1–8 (2005)

41. Eisner, C., et al.: Reasoning with temporal logic on truncated paths. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer,
Heidelberg (2003)

42. Eisner, C., et al.: The definition of a temporal clock operator. In: Baeten, J.C.M.,
et al. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer, Heidelberg
(2003)

43. Elgot, C.: Decision problems of finite-automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–51 (1961)

44. Elgot, C.C., Wright, J.: Quantifier elimination in a problem of logical design.
Michigan Math. J. 6, 65–69 (1959)

45. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel
programs using fixpoints. In: Proc. 7th Int. Colloq. on Automata, Languages,
and Programming, pp. 169–181 (1980)

From Monadic Logic to PSL 677

46. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time. In: Proc. 10th ACM Symp. on Principles of Programming
Languages, pp. 127–140 (1983)

47. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and Systems Science 30, 1–24
(1985)

48. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching
versus linear time. Journal of the ACM 33(1), 151–178 (1986)

49. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the proposi-
tional μ-calculus. In: Proc. 1st IEEE Symp. on Logic in Computer Science, pp.
267–278 (1986)

50. Engeler, E.: Algorithmic properties of structures. Math. Syst. Theory 1, 183–195
(1967)

51. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and
unary temporal logic. Inf. Comput. 179(2), 279–295 (2002)

52. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs (extended
abstract). In: Proc. 9th ACM Symp. on Theory of Computing, pp. 286–294 (1977)

53. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
Journal of Computer and Systems Science 18, 194–211 (1979)

54. Fix, L.: Fifteen years of formal property verification at Intel. In: Proc. 2006 Work-
shop on 25 Years of Model Checking. LNCS, Springer, Heidelberg (2007)

55. Fix, L., Kamhi, G.: Adaptive variable reordering for symbolic model checking. In:
Proc. ACM/IEEE Int’l Conf. on Computer Aided Design, pp. 359–365 (1998)

56. Gabbay, D., et al.: On the temporal analysis of fairness. In: Proc. 7th ACM Symp.
on Principles of Programming Languages, pp. 163–173 (1980)

57. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

58. Gerth, R., et al.: Simple on-the-fly automatic verification of linear temporal logic.
In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Testing, and Veri-
fication, pp. 3–18. Chapman and Hall, Boca Raton (1995)

59. Goldblatt, R.: Logic of time and computation. Technical report, CSLI Lecture
Notes, no.7, Stanford University (1987)

60. Hafer, T., Thomas, W.: Computation tree logic CTL� and path quantifiers in the
monadic theory of the binary tree. In: Ottmann, T. (ed.) ICALP 1987. LNCS,
vol. 267, pp. 269–279. Springer, Heidelberg (1987)

61. Halpern, J., Reif, J.H.: The propositional dynamic logic of deterministic, well-
structured programs (extended abstract). In: Proc. 22nd IEEE Symp. on Foun-
dations of Computer Science, pp. 322–334 (1981)

62. Halpern, J.Y., Reif, J.H.: The propositional dynamic logic of deterministic, well-
structured programs. Theor. Comput. Sci. 27, 127–165 (1983)

63. Hardin, R.H., Har’el, Z., Kurshan, R.P.: COSPAN. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 423–427. Springer, Heidelberg (1996)

64. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, com-
pleteness. J. Comput. Syst. Sci. 25(2), 144–170 (1982)

65. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
66. Harel, D., Peleg, D.: More on looping vs. repeating in dynamic logic. Inf. Process.

Lett. 20(2), 87–90 (1985)
67. Harel, D., Peleg, D.: Process logic with regular formulas. Theoreti. Comp.

Sci. 38(2–3), 307–322 (1985)

678 M.Y. Vardi

68. Harel, D., Sherman, R.: Looping vs. repeating in dynamic logic. Inf. Com-
put. 55(1–3), 175–192 (1982)

69. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

70. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

71. Kamp, J.A.W.: Tense Logic and the Theory of Order. PhD thesis, UCLA (1968)
72. Keller, R.M.: Formal verification of parallel programs. Communications of the

ACM 19, 371–384 (1976)
73. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982)
74. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-

ence 27, 333–354 (1983)
75. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic Logic 24,

1–14 (1959)
76. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:

Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer,
Heidelberg (2006)

77. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(2), 408–429 (2001)

78. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science, pp. 531–540 (2005)

79. Kurshan, R.P.: Analysis of discrete event coordination. In: de Bakker, J.W., de
Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 414–453.
Springer, Heidelberg (1990)

80. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1994)

81. Kurshan, R.P.: Verification technology transfer. In: Proc. 2006 Workshop on 25
Years of Model Checking. LNCS, Springer, Heidelberg (2007)

82. Lamport, L.: “Sometimes” is sometimes “not never” - on the temporal logic of
programs. In: Proc. 7th ACM Symp. on Principles of Programming Languages,
pp. 174–185 (1980)

83. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy
their linear specification. In: Proc. 12th ACM Symp. on Principles of Program-
ming Languages, pp. 97–107 (1985)

84. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

85. Markey, N.: Temporal logic with past is exponentially more succinct. EATCS
Bulletin 79, 122–128 (2003)

86. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

87. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

88. Meyer, A.R.: Weak monadic second order theory of successor is not elementary
recursive. In: Proc. Logic Colloquium. Lecture Notes in Mathematics, vol. 453,
pp. 132–154. Springer, Heidelberg (1975)

89. Meyer, A.R.: Ten thousand and one logics of programming. Technical report,
MIT, MIT-LCS-TM-150 (1980)

90. Morley, M.J.: Semantics of temporal e. In: Melham, T.F., Moller, F.G. (eds.) Banff
1999 Higher Order Workshop (Formal Methods in Computation), University of
Glasgow, Department of Computing Science Technical Report (1999)

From Monadic Logic to PSL 679

91. Urquhart, A., Rescher, N.: Temporal Logic. Springer, Heidelberg (1971)
92. Øhrstrøm, P., Hasle, P.F.V.: Temporal Logic: from Ancient Times to Artificial In-

telligence. Studies in Linguistics and Philosophy, vol. 57. Kluwer Academic Pub-
lishers, Dordrecht (1995)

93. Park, D.: Finiteness is μ-ineffable. Theoretical Computer Science 3, 173–181
(1976)

94. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on Foun-
dations of Computer Science, pp. 46–57 (1977)

95. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer,
Heidelberg (1985)

96. Pnueli, A., Zuck, L.: In and out of temporal logic. In: Proc. 8th IEEE Symp. on
Logic in Computer Science, pp. 124–135 (1993)

97. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th IEEE
Symp. on Foundations of Computer Science, pp. 109–121 (1976)

98. Pratt, V.R.: A practical decision method for propositional dynamic logic: Prelim-
inary report. In: Proc. 10th Annual ACM Symposium on Theory of Computing,
pp. 326–337 (1978)

99. Pratt, V.R.: A near-optimal method for reasoning about action. Journal of Com-
puter and Systems Science 20(2), 231–254 (1980)

100. Pratt, V.R.: A decidable μ-calculus: preliminary report. In: Proc. 22nd IEEE
Symp. on Foundations of Computer Science, pp. 421–427 (1981)

101. Prior, A.: Time and Modality. Oxford University Press, Oxford (1957)
102. Prior, A.: Past, Present, and Future. Clarendon Press (1967)
103. Prior, A.N.: Modality de dicto and modality de re. Theoria 18, 174–180 (1952)
104. Prior, A.N.: Modality and quantification in s5. J. Symbolic Logic 21, 60–62 (1956)
105. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Ce-

sar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

106. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Math-
ematical Society (1972)

107. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 115–125 (1959)

108. Sabnani, K., Wolper, P., Lapone, A.: An algorithmic technique for protocol veri-
fication. In: Proc. Globecom (1985)

109. Sakoda, W., Sipser, M.: Non-determinism and the size of two-way automata. In:
Proc. 10th ACM Symp. on Theory of Computing, pp. 275–286 (1978)

110. Salwicki, A.: Algorithmic logic: a tool for investigations of programs. In: Butts,
R.E., Hintikka, J. (eds.) Logic Foundations of Mathematics and Computability
Theory, pp. 281–295. Reidel (1977)

111. Sistla, A.P.: Theoretical issues in the design of distributed and concurrent systems.
PhD thesis, Harvard University (1983)

112. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
In: Proc. 14th Annual ACM Symposium on Theory of Computing, pp. 159–168
(1982)

113. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic.
Journal of the ACM 32, 733–749 (1985)

114. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985.
LNCS, vol. 194, pp. 465–474. Springer, Heidelberg (1985)

680 M.Y. Vardi

115. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science 49,
217–237 (1987)

116. Stockmeyer, L.J.: The complexity of decision procedures in Automata Theory and
Logic. PhD thesis, MIT, Project MAC Technical Report TR-133 (1974)

117. Street, R.S.: Propositional dynamic logic of looping and converse. In: Proc. 13th
ACM Symp. on Theory of Computing, pp. 375–383 (1981)

118. Streett, R.S.: A propositional dynamic logic for reasoning about program diver-
gence. PhD thesis, M.Sc. Thesis, MIT (1980)

119. Streett, R.S.: Propositional dynamic logic of looping and converse. Information
and Control 54, 121–141 (1982)

120. A comparison of reset control methods: Application note 11. Summit Microelec-
tronics, Inc. (1999),
http://www.summitmicro.com/tech support/notes/note11.htm

121. Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42(2),
148–156 (1979)

122. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

123. Trakhtenbrot, B.: The synthesis of logical nets whose operators are described in
terms of one-place predicate calculus. Doklady Akad. Nauk SSSR 118(4), 646–649
(1958)

124. Trakhtenbrot, B.: Certain constructions in the logic of one-place predicates. Dok-
lady Akad. Nauk SSSR 138, 320–321 (1961)

125. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian
Math. J. 3, 101–131 (1962) Russian; English translation in: AMS Transl. 59, 23–
55 (1966)

126. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata. North-Holland, Amsterdam
(1973)

127. Vardi, M.Y.: The büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

128. Vardi, M.Y.: The complexity of relational query languages. In: Proc. 14th ACM
Symp. on Theory of Computing, pp. 137–146 (1982)

129. Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. 15th ACM Symp. on Princi-
ples of Programming Languages, pp. 250–259 (1988)

130. Vardi, M.Y.: Unified verification theory. In: Banieqbal, B., Pnueli, A., Barringer,
H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 202–212. Springer,
Heidelberg (1989)

131. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Hei-
delberg (1994)

132. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi,
W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer,
Heidelberg (2001)

133. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

134. Vardi, M.Y., Wolper, P.: Yet another process logic. In: Clarke, E., Kozen, D.
(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg
(1984)

http://www.summitmicro.com/tech_support/notes/note11.htm

From Monadic Logic to PSL 681

135. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 332–344
(1986)

136. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

137. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog As-
sertions. Springer, Heidelberg (2005)

138. Wolper, P.: Temporal logic can be more expressive. In: Proc. 22nd IEEE Symp.
on Foundations of Computer Science, pp. 340–348 (1981)

139. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1–
2), 72–99 (1983)

140. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths.
In: Proc. 24th IEEE Symp. on Foundations of Computer Science, pp. 185–194
(1983)

Author Index

Artemov, Sergei 58
Auguston, Mikhail 72
Avron, Arnon 46, 87

Baaz, Matthias 107
Barzdins, Janis 130
Benthem, Johan van 146
Bergstra, Jan 166
Blass, Andreas 179
Boker, Udi 199

Dekhtyar, Michael I. 230, 256
Dershowitz, Nachum 46, 199
Dikovsky, Alexander Ja. 230, 256

Fischer, Eldar 266
Freivalds, Rūsiņš 280

Gabbay, Dov M. 292
Gitik, Moti 342
Gurevich, Yuri 179

Harel, David 351
Hasegawa, Masahito 367
Hirshfeld, Yoram 166
Hofmann, Martin 367

Ikegami, Daisuke 146

Kalnins, Audris 130
Kaminski, Michael 386

Lehmann, Daniel 424
Leivant, Daniel 441
Levin, Leonid A. 457
Lomazova, Irina A. 460

Magidor, Menachem 342
Makowsky, Johann A. 266

Maler, Oded 475
Manna, Zohar 596
Maoz, Shahar 351
Mazurkiewicz, Antoni 506
Meyer, Albert R. 39
Mints, Grigori 521

Nepomniaschy, Valery 537
Nickovic, Dejan 475

Plotkin, Boris 555
Plotkin, Gordon 367
Plotkin, Tatjana 555
Pnueli, Amir 475

Rabinovich, Alexander 46, 571
Reisig, Wolfgang 589
Rencis, Edgars 130
Rikacovs, Sergejs 130

Sánchez, César 596
Sazonov, Vladimir 620
Segall, Itai 351
Shomrat, Amit 571
Sipma, Henny B. 596
Slanina, Matteo 596

Tan, Tony 386
Thomas, Wolfgang 635
Trakhtenbrot, Boris A. 1
Trakhtenbrot, Mark 72
Tucker, John 166

Valiev, Mars K. 256
Vardi, Moshe Y. 656

Zach, Richard 107

	Title Page
	Preface
	Organization
	Table of Contents
	From Logic to Theoretical Computer Science – An Update
	Foreword
	Early Days
	Brichevo
	Kishinev
	Chernovtsy

	Ph.D. Studies
	Toward TCS
	Automata
	Languages and Operators

	Experiments and Formal Specifications
	Towards Logical Specifications
	Synthesis
	About the Trinity

	Complexity
	Entering the Field
	Towards Applications
	Algorithms and Randomness
	Relativized Complexity
	Formalizing Intuitions

	Epilogue
	Addendum -- November 2007
	Theory of Programming
	Concurrency
	Continuous-Time Paradigms

	Reminiscences
	Boris A. Trakhtenbrot: Academic Genealogy and Publications
	Trakhtenbrot's Genealogy
	Trakhtenbrot's Progeny
	Trakhtenbrot's Publications
	Books

	Symmetric Logic of Proofs
	Introduction
	LP Basics
	Symmetric Provability Interpretation
	Justification and Epistemic Semantics
	Choice Function `+' in LP
	Symmetric Logic of Proofs
	Discussion

	Synthesis of Monitors for Real-Time Analysis of Reactive Systems
	Introduction
	Dynamic Analysis with Synthesized Monitors
	Underlying Semantics
	Real-Time Monitoring vs. Other Analysis Methods
	Assertion Language
	Examples
	Implementation Outline
	Translation of Restricted Operators
	Translation of Unrestricted Operators

	Conclusions and Future Work
	References

	A Framework for Formalizing Set Theories Based on the Use of Static Set Terms
	Introduction
	A Description of the General Framework
	Languages
	Logic
	Axioms
	Safety Relations

	The Rudimentary Set Theory RST
	The Power of RST
	Generalized Absoluteness

	Stronger Set Theories
	Basic ZF: The Full Separation and Replacement Schemes
	The Powerset Axiom
	The Axiom of Infinity

	Using Transitive Closure Logic

	Effective Finite-Valued Approximations of General Propositional Logics
	Introduction
	Propositional Logics
	Many-Valued Covers for Propositional Calculi
	Optimal Covers
	Effective Sequential Approximations
	Conclusion

	Model Transformation Languages and Their Implementation by Bootstrapping Method
	Introduction
	The Base Language L0
	Implementation of L0
	The Language L1
	The Final Language L2 and Its Usage
	Implementation of L1 and L2
	Conclusions

	Modal Fixed-Point Logic and Changing Models
	Basic Closure Properties of Logics
	Closure Properties of Modal Languages
	Epistemic Logic
	Public Announcement and Definable Submodels
	General Observation and Product Update

	Closure Under Relativization for Modal Standard Languages
	Closure of Dynamic Logic Under Products
	Closure of the μ-Calculus Under Products
	Conclusions and Further Directions

	Fields, Meadows and Abstract Data Types
	Universal Algebra
	Algebraically Specified Abstract Data Types
	Fields, Meadows, and Skew Meadows
	Meadows and Skew Meadows
	Some Properties of Skew Meadows
	Skew Meadows and Division Rings

	Strongly Von Neumann Regular Rings
	What about Regular Rings and the Weaker Axiom, $\mathcalRil'?$
	Algebraic Specification of the Rational Field
	Conclusion

	Why Sets?
	Sets in Computer Science
	Sets in Mathematics
	Adequacy of Sets
	Non-ZF Sets
	Categories
	Functions

	The Church-Turing Thesis over Arbitrary Domains
	Introduction
	Arbitrary Domains
	Computational Model Versus Single Function
	Comparing Computational Power
	Influence of Representations
	Completeness
	Effective Representations

	An Axiomatization of Effective Models
	Structures
	Sequential Procedures
	Effective Models
	Effective Equals Computable
	Discussion

	Proofs of Two Theorems
	Programmable Machines
	Sequential Equals Programmable
	Effective Equals Computable

	Generalized Categorial Dependency Grammars
	Introduction
	Syntactic Types
	Generalized Categorial Dependency Grammar
	Expressive Power of GCDG
	Categorial Dependency Grammars
	Parsing Complexity
	Concluding Remarks

	Temporal Verification of Probabilistic Multi-Agent Systems
	Introduction
	 Probabilistic MAS
	 The Probabilistic MAS Behavior
	 Probabilistic MAS as Finite Markov Chains
	Complexity of Verifying Dynamic Properties of MAS
	Conclusion

	Linear Recurrence Relations for Graph Polynomials
	Introduction
	Guiding Examples
	Six Graph Sequences and Their Iterative Constructions
	The Matching Polynomial
	The Vertex-Cover Polynomial
	The Tutte Polynomial
	The General Strategy

	Enter Logic
	The Logic MSOL
	MSOL-Polynomials
	MSOL-Smooth Operations
	Iteration Operations
	Main Result
	Proof of Theorem 1

	Conclusions and Further Research

	Artin’s Conjecture and Size of Finite Probabilistic Automata
	Introduction
	Number-Theoretical Conjectures
	Linear Codes
	Kolmogorov Complexity
	New Mirage Codes
	Probabilistic Reversible Automata
	Without Conjectures

	Introducing Reactive Kripke Semantics and Arc Accessibility
	Motivation and Background
	The Reactive Idea^1
	Examples Motivating the Reactive Idea
	Plan of This Paper

	The Reactive Paradigm in General
	Connection with Hyper-modalities
	Switch Reactive Kripke Models
	Non-deterministic Reactive Kripke Models
	Connection with Fibring Logics
	Methodological Considerations
	Formal Compromise Fibring

	Dedicated Reactivity Connectives
	Hypermodalities
	Traversing a Graph
	Reactive Proof Theory
	J. van Benthem's Sabotage Modal Logic

	On Partially Wellfounded Generic Ultrapowers
	 Introduction
	The Game
	 The Construction of an Ideal

	Some Results on the Expressive Power and Complexity of LSCs
	Introduction
	Language Overview
	Basic Definitions
	Different Variants and Additional Constructs
	Scenario-Based Execution

	Expressive Power
	Limitations

	Complexity Results
	Model Checking
	Reachability and Smart Play-Out
	Synthesis and Consistency

	Conclusion

	Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories
	Introduction
	Preliminaries
	Traced Symmetric Monoidal Categories
	Finite Dimensional Vector Spaces

	Cyclic Networks
	Sorts and Signatures
	Networks
	Homomorphisms
	Interpretations in Traced Categories
	The Traced Monoidal Category of Networks
	Net_(S,F) as a Classifying Category

	Networks, Homomorphisms and Interpretations in Finite Dimensional Vector Spaces
	Basic Facts about Networks and Homomorphisms
	Interpretations over a Field k
	The Counting Interpretation

	Completeness Results
	Completeness for Compact Closed Categories

	Tree Automata over Infinite Alphabets
	Introduction
	Basic Notions of XML
	Notation
	Tree Automata with Deterministic Reassignment
	Top-Down Finite-Memory Automata with Deterministic Reassignment
	Bottom-Up Finite-Memory Automata with Deterministic Reassignment

	Tree Automata with Nondeterministic Reassignment
	Top-Down Finite-Memory Automata with Nondeterministic Reassignment
	Bottom-Up Finite-Memory Automata with Nondeterministic Reassignment
	The Main Result

	Decision Properties
	Context-Free Languages over Infinite Alphabets and Their Relationship with Tree Automata
	Proof of the ``only if'' Part of Theorem 1
	Proof of the ``if'' Part of Theorem 1
	Closure Properties

	Connectives in Cumulative Logics
	Introduction
	C-logics
	Definition
	Properties
	f-Models
	Properties of f-Models
	Soundness
	Representation
	Connectives in C-logics
	Connection with Previous Work

	L-logics
	The Case of Quantum Logic
	Quantum Consequence Operations
	Open Question
	Connectives

	Conclusions and Future Work

	Reasoning in Dynamic Logic about Program Termination
	Dynamic Logic
	Correctness Assertions
	Segerberg's Axiomatization

	Validity of TCAs
	Explicit Rendition of Dynamic Logic
	Completeness of First-Order Logic for Convergence Assertions
	Positive Results for TCAs
	Degenerative Properties of TCAs
	A Syntax Directed Deductive System for TCAs

	Convergence Assertions for Inductive Data
	Unprovable Convergence Assertions
	The Convergence Rule
	Inductive TCAs
	Reduction of ITCAs to Partial Correctness Assertions
	ITCAs and the Variance Method

	Summary and Conclusions

	The Grace of Quadratic Norms: Some Examples
	Nemirovski Estimate of Mean of Arbitrary Distributions with Bounded Variance
	Leftover Hash Lemma
	Disputed Ballots and Poll Instabilities

	Nested Petri Nets for Adaptive Process Modeling
	Introduction
	Petri Nets
	Nested Petri Nets
	Extending NP-Nets by Operations on Net Tokens
	Definitions of Extended NP-Nets
	NP-Nets as Well-Structured Transition Systems
	Decidability Results for NP-Nets
	Conclusion

	Checking Temporal Properties of Discrete, Timed and Continuous Behaviors
	Introduction
	Discrete (Digital) Systems: Properties
	Temporal Logic (Future)
	Temporal Logic (Past)

	Discrete Systems: Checking Temporal Properties
	Causality and Non-determinism
	Evaluating Incomplete Behaviors
	Offline and Online Monitoring

	The Timed Level of Abstraction
	Dense-Time Signals: Representation
	Dense-Time Signals: Properties

	Boolean Signals and Their Temporal Logics
	Signals
	Real-Time Temporal Logic

	Checking Timed Properties
	Offline Marking
	Incremental Marking
	Monitoring Using Timed Automata

	Continuous Signals
	Monitoring STL Properties
	Following a Reference Signal
	Stabilizability

	Conclusions

	Token-Free Petri Nets
	Introduction
	Preliminaries
	Token-Free Nets
	Behavior Properties
	Composition Properties
	Canonical Representation
	Specification Adjusting
	Conclusions

	Proof Search Tree and Cut Elimination
	Introduction
	Preliminaries
	Tree Notation
	Tait Calculus; Canonical Proof Trees

	Cuts of Rank 1: Modified Non-effective Proof
	Reduction of Rank
	A Bound for \TT^r
	Operation $\ga\cdot d$
	Elimination of Atomic Cuts

	A Variant of Ordinary Cut Elimination
	Propositional Cut
	Quantifier Cut

	Symbolic Verification Method for Definite Iterations over Tuples of Altered Data Structures and Its Application to Pointer Programs
	Introduction
	Definite Iteration over Hierarchical Data Structures
	Iterations over Tuples of Unaltered Data Structures
	Iterations with Termination Statement
	Iterations over Tuples of Altered Data Structures
	Generation of Verification Conditions
	Case Study: Iterations over Doubly-Linked Lists
	Specification Means
	Merging Ordered Doubly-Linked Lists

	Conclusion

	Categories of Elementary Sets over Algebras and Categories of Elementary Algebraic Knowledge
	Preliminaries
	Varieties of Algebras, Free Algebras
	Affine Spaces in Θ over H
	Algebraic Sets and Elementary Sets
	Categories of Algebraic and Elementary Sets
	Homomorphisms and Filters of Boolean Algebras

	Halmos Categories and Halmos Algebras
	Extended Boolean Algebras
	Example
	Halmos Categories
	Multisorted Algebras
	Halmos Algebras
	Categories and Algebras of Formulas
	Value of a Formula

	Categories and Bases of Elementary Algebraic Knowledge
	The Category $Knl_\Theta(H)$
	Isomorphism of Categories of Knowledge
	Inner Automorphism of the Category LD_Θ

	Logically-Geometrical Equivalence of Algebras
	The Main Galois Correspondence in Algebraic Geometry and Logical Geometry
	Infinitary Logic
	Coordinate Algebras
	Lattices of Elementary Sets
	LG-Equivalence of Algebras
	Noetherianity

	Problems
	Concluding Remarks

	Selection and Uniformization Problems in the Monadic Theory of Ordinals: A Survey
	Introduction
	Selection
	Uniformization
	Definable Uniformization
	Church Uniformization
	The Structure of the Paper

	Preliminaries
	Notations
	MLO
	The Monadic Theory of Countable Ordinals

	The Selection Property in an Ordinal
	The Selection Problem in an Ordinal $\alpha\le \om_1$

	The Scholten/Dijkstra Pebble Game Played Straightly, Distributedly, Online and Reversed
	Introduction
	The Algorithm's Basic Version
	Dijkstra's Algorithm and Model
	A Petri Net Model of the Algorithm
	Verification of the Algorithm

	Variants of the Algorithm
	A Distributed Version of the Algorithm
	An Online Version of the Algorithm
	A Reversed Version of the Algorithm

	Conclusion

	The Reaction Algebra: A Formal Language for Event Correlation
	Introduction
	Semantic Domain
	Reactive Machines

	The Reaction Algebra
	Syntax and Informal Semantics
	Formal Semantics
	Language Extensions

	Regularity of the Reaction Algebra
	Expressive Completeness
	Intermediate Formulas
	Final Formulas
	Proof of Correctness

	Conclusions

	On Natural Non-dcpo Domains
	Introduction
	Natural Domains
	Naturally Finite Elements
	Semi-formal Considerations on the More General Case of $F\subseteq[D\arr E]$ Induced by [4]^7
	Conclusion

	Church’s Problem and a Tour through Automata Theory
	Introduction
	Church's Problem
	From Logic to Games
	Determinization and Muller Automata
	Muller Games
	Finite-State Games: The Framework
	Reachability Games

	Appearance Records and Game Simulations
	Appearance Records
	Game Simulations and Parity Conditions

	Solving Weak and Strong Parity Games
	Conclusion

	From Monadic Logic to PSL
	Thread I: Classical Logic of Time
	Logic and Automata
	Reasoning about Sequential Circuits
	Reasoning about Infinite Words

	Thread II: Temporal Logic
	From Aristotle to Kamp
	The Temporal Logic of Programs
	Back to Automata
	Enhancing Expressiveness

	Thread III: Dynamic and Branching-Time Logics
	Dynamic Logics
	Branching-Time Logics
	Combining Dynamic and Temporal Logics

	Thread IV: From LTL to ForSpec and PSL
	From LTL to ForSpec
	From ForSpec to PSL

	Contemplation

	Author Index

