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Abstract. This paper studies the efficiency of several probabilistic mo-
del checkers by comparing verification times and peak memory usage
for a set of standard case studies. The study considers the model check-
ers ETMCC, MRMC, PRISM (sparse and hybrid mode), YMER and
VESTA, and focuses on fully probabilistic systems. Several of our exper-
iments show significantly different run times and memory consumptions
between the tools—up to various orders of magnitude—without, how-
ever, indicating a clearly dominating tool. For statistical model check-
ing YMER clearly prevails whereas for the numerical tools MRMC and
PRISM (sparse) are rather close.

1 Introduction

Model checkers such as PRISM [34] (with about 4,000 downloads), MRMC [23],
E�MC2 [16], VESTA [35,36], YMER [39], and APMC [27] support the verifi-
cation of discrete- and continuous-time Markov chains. Their engines are based
on combinations of numerical or simulation techniques for Markov chains and
traditional CTL model-checking algorithms. Tools such as PRISM are relatively
easy to use, have a graphical user interface and advanced built-in plot facilities.
This allows researchers from various areas to apply probabilistic model check-
ing. Applications range from areas such as randomized distributed algorithms to
planning and AI, security [30], and even biological process modeling [28]. Prob-
abilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [9], Statemate [6], the
stochastic process algebra PEPA [18], and a probabilistic variant of Promela [4].
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This paper provides a comparative experimental study of a substantial set
of probabilistic model checkers. The aim of this study is to get more insight
into the strengths and weaknesses of the various tools, and to compare different
model-checking techniques. We focus on fully probabilistic models, that is, finite-
state discrete- and continuous-time Markov chains (DTMCs and CTMCs). We
consider the temporal logics: probabilistic CTL (PCTL) [13] and its continuous-
time variant CSL [3,5]. These logics allow one to express constrained reachability
probabilities, e. g., the probability to reach a goal state while visiting only legal
states is at least 0.4567, and bounded versions thereof. In the discrete setting the
bound is a number of steps while in the continuous case a time bound may be
imposed on reaching the goal state. Finally, CSL allows for expressing steady-
state properties such as: in the long run the probability to be in a goal state
meets a certain bound. All these properties have been used in the experiments,
as well as nested versions thereof and qualitative properties.

The experiments are focused on the verification time, i. e., the required time
to verify a formula on a Markov chain, as well as peak memory usage, i. e., the
maximal amount of memory needed during the verification. This was done for
a set of five publicly available case studies, mostly examples that act as bench-
marks for probabilistic model checking and that allow for varying state space
sizes. Tools that were considered are E�MC2, MRMC, PRISM, VESTA and
YMER. All experiments were carried out on a standard PC, and care was taken
that equivalent input models are used. Since models, properties, testing environ-
ment, and tool settings are all publicly available, all reported experiments are
repeatable and verifiable. The number of experiments carried out is substantial,
and each experiment is repeated several times. In total, about 15,000 verification
runs have been considered. This paper presents a selection of the experiments
from [31] and attempts to observe and explain relevant phenomena.

We found considerable differences in time and memory usage between the
tools, due to variations in model checking techniques (statistical versus numeri-
cal), state space representation (MTBDDs versus sparse matrices or a combina-
tion) and implementation language (C/C++ versus Java). The tables in Sect. 6
show an overview of the results. In addition, we compared the user friendliness
of the tools. Here PRISM is the clear winner.

Organisation of the Paper. Section 2 briefly presents the tools and Sect. 3 the
case studies we analyzed. In Sect. 4 we discuss the set up of our measurements.
Then, we compare and analyze the results of our experiments in Sect. 5. Finally,
Sect. 6 summarizes the conclusions and provides tool recommendations.

2 Tools

ETMCC. E�MC2 [16] (version 1.4.2, 2001), also written ETMCC, is a pro-
totype model checker for CTMCs. The tool is written in Java and uses sparse
matrices to represent the state space.
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MRMC. MRMC [23] (version1.1.1b,March 2006) is a model checker for discrete-
time and continuous-time Markov reward models. MRMC is a command-line tool,
implemented in C, and represents the state space by sparse matrices.

PRISM. PRISM [25] (version 2.1, September 20041) stands for Probabilistic
Symbolic Model Checker. The user interface and parsers are written in Java; the
core algorithms are mostly implemented in C++. For state space representation,
PRISM uses a modified version of the CUDD package [38].

PRISM offers a choice between two engines that use different data structures:
a “sparse” and a “hybrid” engine, henceforth denoted as PRISMS and PRISMH .
It is expected that PRISMS is faster, whereas PRISMH consumes less memory.
Regardless of the engine, PRISM always generates an MTBDD to represent the
transition matrix, and PRISMS converts it to a sparse matrix, if necessary.

VESTA. VESTA [35] (version 2.0, 2005) is a Java-based tool for statistical
analysis of probabilistic systems. It implements the statistical methods from
[41,36], based on Monte-Carlo simulation and statistical hypothesis testing [19].

YMER. YMER [39] (version 3.0, February 2005) is a command-line tool, writ-
ten in C and C++, for verifying transient properties of CTMCs and generaliza-
tions. YMER implements statistical CSL model checking techniques [41], based
on discrete event simulation [37] and acceptance sampling. It also supports nu-
merical techniques, where the numerical engine for model checking CTMCs is
adopted from PRIMS’s hybrid engine.

Other tools. We have also considered other tools for our comparison, for ex-
ample APMC [27], FHP-Murphi [32], Probverus [14]. We restricted ourselves to
the above five because other tools did not support our models or logics or were
not available in a stable version.

2.1 Languages

Input Models. Most tools support both discrete- and continuous-time Markov
chains. Support for discrete time is limited in E�MC2; YMER only supports
(a superset of) CTMCs. Some tools also recognize other input models (MDPs,
reward models) not considered here. PRISM has its own modelling language: A
system is described as the parallel composition of a set of modules. A module
state is determined by a set of finite-range variables and its behaviour is given
using a guarded-command notation. E�MC2 and MRMC do not use a specific
modeling language; instead, they accepts models in (a subset of) the .tra-format
as e. g. generated by the stochastic process algebra tool TIPPtool [15] and Petri
net tool DaNAMiCS [?]. The state labelling with atomic propositions has to be
1 This was the most recent version when we started our research. In the meantime, a

newer version of PRISM has appeared.
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Table 1. Minimal and maximal model sizes per case study

timing study min/max, param. # states # transitions
discrete SLE min, n = 4, k = 2 55 70

max, n = 8, k = 4 458,847 524,382
RDF min, n = 3 770 2,845

max, n = 7 5,454,562 44,070,594
BDP min, m = 100 101 202

max, m = 100,000 100,001 200,002
continuous TQN min, n = 2 15 23

max, n = 1023 2,096,128 7,328,771
CPS min, n = 3 36 84

max, n = 18 7,077,888 69,599,232

provided in a separate .lab file. We used a recently added feature of PRISM to
generate these files directly from PRISM models. The language used by YMER is
a subset of the PRISM language with a few slight syntactic differences. VESTA
uses a Java-based language to specify models. A model description consists of
sequential statements in combination with Java code. Each statement consists
of a guard, rate and action. The language offers no explicit parallel composition.

Requirements. All tools support the logics PCTL for DTMCs, or CSL for
CTMCs. The tools that support other models, of course, also know additional
property languages. In addition, E�MC2 supports aCSL, an action-based variant
of CSL; and VESTA accepts requirements specified using QuaTEx [1].

3 Case Studies

We selected five representative case studies, taken from the literature on per-
formance evaluation and probabilistic model checking. The selected studies
represent a spectrum of applications, both distributed algorithms and perfor-
mance models, and are of diverse natures. There are three discrete-time and two
continuous-time cases. For each case, we let the tools calculate the probability
of some bounded and unbounded until properties, i. e. constrained reachabil-
ity properties. They are the most important property type in the logic PCTL
(and the only one that cannot be checked trivially). We also included a nested
property (with multiple until operators) in a discrete-time case study. In the
continuous-time case studies, we also checked for steady-state properties. The
model types and the sizes of the smallest and largest models investigated are
recorded in Table 1.2

Synchronous Leader Election (SLE). The Synchronous Leader Election
protocol [21] solves the following problem: in a ring of n processors with
2 Unfortunately we were not able to generate larger state spaces for the SLE case

study due to an error obtained from the CUDD package.
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synchronous unidirectional communication, the processors have to elect a unique
leader by sending messages around the ring. The protocol proceeds in rounds.
In a round, each processor (independently) chooses a random number from the
set {1, . . . , k} as its id. Then, they pass their ids around the ring. If there is a
unique id, then the processor with the largest unique id is elected leader; oth-
erwise they begin a new round. We checked the SLE protocol for n = 2 with
k ∈ {2, 4, 6, 8, 10, 12, 14, 16} and n = 4 with k ∈ {2, 4}.

The protocol is used in several studies, e. g. [27,12,11]. We checked the prop-
erties: (1) eventually a leader is elected, i. e., P≥1(♦ elected), (2) the probability
to elect a leader within 5 steps is ≥ 0.85, i. e., P≥0.85(♦≤5 elected), and (3) the
probability to elect a leader within 40 steps is ≥ 0.99, i. e., P≥0.99(♦≤40 elected).

Randomized Dining Philosophers (RDP). In the Dining Philosophers
problem [10], one assumes a round table with n philosophers who spend their
lives just thinking and eating. There is a large plate of spaghetti in the center of
the table, which is constantly refilled. Between each pair of philosophers lies a
chopstick. Whenever a philosopher feels hungry, he can eat using the two chop-
sticks on his sides. [33] describes a distributed randomized algorithm to avoid
deadlocks: A philosopher picks the two chopsticks in random order. If he can
only get one chopstick, he gives up eating (but may become hungry again later).

For n ∈ {3, 4, 6, 7} we checked the properties: (1) eventually some philosopher
will eat, i. e., P≥1(♦ eat), and (2) the probability that some philosopher will eat
within 20 steps is at least 0.9, i. e., P≥0.9(♦≤20 eat).

Birth–Death Process (BDP). Birth–death processes [29,22] are used in nu-
merous fields, e. g. to model the growth of a population or queue size. States in
a birth–death process are numbered by integers that denote the current pop-
ulation size n. An increase in size is denoted as “birth” whereas a decrease is
denoted as “death.” To get a finite Markov chain, we limited the maximum pop-
ulation size to a predetermined size m. The probability of birth decreases with
the population size, until it is 0 when the maximum population is reached.

For m ∈ {100, 1000, 10000, 100000} we checked the properties: (1) the prob-
ability to reach a quarter of the maximum population within m

2 steps is ≥ 0.9,
i. e., P≥0.9(♦≤m

2 (n = m
4 )), (2) eventually a population of 50 will be reached

while the probability to reach a population of 70 within 100 steps never drops
below 0.9, i. e., P≥0.8(P≥0.9(♦≤100 (n = 70))U (n = 50)), and (3) eventually the
maximum population will be reached, i. e., P≥1(♦ (n = m)).

Tandem Queuing Network (TQN). The Tandem Queuing Network [17,34]
(see also [16,40,35]) consists of two queues of capacity n in sequence. Messages
arrive at the first queue; when they get served, they are routed to the second
queue, from where they leave the system. The message arrivals are exponentially
distributed with rate λ = 4n. The server handles messages from the first queue
according to a two-phase Coxian [8] distribution. The time between departures
from the second queue is exponentially distributed with rate κ = 4.
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For n ∈ {2, 10, 50, 100, 255, 511, 1023}we checked: (1) in equilibrium, the TQN
is full with probability < 0.01, i. e., S<0.01(full), (2) the TQN is full within 0.5
to 2 time units with probability < 0.1, i. e., P<0.1(♦[0.5,2] full), and (3) if the
second queue is full, eventually a departure will happen, i. e., P≥1(snd U sndn).

Cyclic Server Polling System (CPS). A cyclic polling system [20] consists
of n stations and a server. Each station has a buffer with capacity 1 and the sta-
tions are attended by a single server in cyclic order. The server starts by polling
the first station. If this station has a message in its buffer, the server serves it.
Once the station has been served, or if its buffer was empty, the server moves to
the next station cyclically. The polling and service times are exponentially dis-
tributed with rates γ = 200 and μ = 1, respectively. The arrival rate of messages
at each station is exponentially distributed with rate λ = μ/n. Applications of
this case study can be found in e. g. [39,16,35,40].

For n ∈ {3, 6, 9, 12, 15, 16, 17, 18} we checked properties like: (1) in the steady
state, the first station is waiting for the server with probability < 0.2, i. e.,
S<0.2(busy1 ∧ ¬serve1), (2) the probability that the first station will be served
within time interval [40, 80] is ≤ 0.99, i. e., P≤0.99(♦[40,80] serve1), (3) if the first
station is busy, the probability that it will be served within time t is ≥ 0.5 (for
t ∈ {5, 10, 20, 40, 80}), i. e., busy1 =⇒ P≥0.5(♦≤t poll1), and (4) if the first
station is busy, it will be served eventually, i. e., busy1 =⇒ P≥1.0(♦ poll1).

4 Experimental Setup

This section describes the details of our experiments measuring the verification
time and peak memory usage of the various tools. To give our conclusions a solid
scientific basis, the experiment design was guided by the following principles:

– Repeatability and Verifiability: Every one should be able to repeat and verify
our experiments; this is achieved by the fact that our models, properties,
scripts and tool settings are publicly available.

– Statistical Significance: This has been achieved by repeating experiments
several times and computing the standard deviation.

– Encapsulation: Our experiments should measure what we claim to measure
(i. e. model check times and memory usage), no other influences. This has
been achieved by carefully measuring the time and memory usage of the
processes (see below) and by using a dedicated machine, thus the effect of
disturbing factors such as network traffic, background processes is avoided.

Moreover, we have considered the tools as black boxes. That is, we have executed
the tools, but not changed their source code3. Also, we chose the verification
parameters (e. g. the algorithm for solving matrix equations) to be the same
across all tools. For details on the models and measurements, we refer to [31].

3 A minor exception is E�MC2, where we added command line support to facilitate
scripting.
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Software and Hardware Settings. All experiments were performed on a
standard PC with an Intel R© Pentium R© 4 CPU 3.00 GHz processor and 2 GB
of RAM. The operating system is SuSE Linux 9.1, because this is supported
by all tools. Furthermore we ensured that the verification parameters and nu-
merical solution methods of the tools match. For the numerical tools, e. g., the
Jacobi method is used for solving systems of linear equations and the conver-
gence accuracy ε is set to the default value 10−6. For the statistical tools, we
bound the probability of error (i. e. the chance of false negatives or positives) by
α = β = 0.01, which is the default setting for these tools, and half the width
of the indifference region δ = 0.01. The former agrees with possible choices of
α = β from [40]. The choice of δ is somewhat arbitrary, and also taken from the
literature.

Timing. In (probabilistic) model checking, two time factors are of interest: the
model construction time, i. e. the time to build the internal representation from
the input model, and the model checking time, i. e. the time to verify the property
on the internal representation. We mainly focused on the bare model check time.
One would often construct the model only once and then use it to verify multiple
properties. In our comparison, we use the time as reported by the tools.

Memory Usage. We measured the peak memory usage of the model checker,
i. e. the amount of memory that is allocated for the verification problem at hand.
More precisely, we recorded the virtual memory size (RAM + swap) of the entire
process (which includes model construction). It also includes memory that the
process has allocated but does not actually use. We did so by running a script
in parallel to the model checker that took a sample every 100 msec. Although
this sampling method is not perfect, it gives us the means to conduct uniform
measurements on all tools, and it provides a reasonable indication of the memory
consumption of each tool. A disadvantage is that this method does not work for
very small experiments that are too quick. Other methods, such as profiling
tools, are less suitable as they e. g., require tool modifications.

Data Collection. All experiments and measurement procedures were auto-
mated using shell scripts. This enabled us to easily repeat experiments many
times and collect data in a uniform way. An experiment consists of verifying one
property on one particular model using one of the model checkers. The tools are
restarted before each experiment; this prevents the interference of e. g., caching
on the measurements. Each experiment was repeated 20 times, except that ex-
periments for which a single run took more than 30 minutes were repeated only
three times. From the collected data, we calculated mean and standard devi-
ation. The latter is determined using Student’s t distribution, which takes the
number of experiments into account. The maximal completion time for a single
experiment was set to 24 hours, i. e., experiments that took longer were aborted.
The verification time of these experiments is indicated in the results as ∞.
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Fig. 1. The PRISM model is the central model, from which the other models are
derived

Model Construction. The selected case studies were modeled using the model
description language of each of the tools. For MRMC, E�MC2 and PRISM the
models were readily available, viz., from the PRISM webpage or from the ex-
ample models included in the tool distribution. Although the tools use different
modeling languages, we require the models to be equivalent across all tools.
Thanks to the export facility of PRISM version 3.0 beta1, models in the PRISM
language can be exported to the input format of E�MC2 and MRMC. The
YMER modeling language is almost identical to that of PRISM and only a few
minor changes had to be made. The models for these four tools can thus safely
be assumed to be equivalent on the state and transition level, so there is no bias
for or against one of the tools. The TQN and CPS case studies are provided in
the standard distribution of the VESTA tool. Only for the BDP case study, a
re-modeling effort was needed. We were not able to generate the models for the
RDP and SLE case studies due to parsing problems of VESTA (see also Fig. 1).

We attempted to generate models as large as possible by varying the model
parameters. In addition to the RAM size, two factors restrict the model size: the
size of the .tra files used by MRMC and E�MC2 is limited to a maximum of
2 GB In a few cases, we could not generate (and verify) our model as PRISM
crashed due to a (known) problem of the CUDD package used for MTBDDs.

As MRMC and E�MC2 do not support a built-in modeling language, their
overhead to generate a sparse matrix representation is low compared to the
sparse matrix generation by PRISM. This aspect should be considered when
interpreting the following experimental results.

5 Data and Analysis

5.1 Performance

Fig. 2. The legend

The experimental results are discussed per type of formula,
allowing us to compare phenomena across the various case
studies. The results are presented by histograms where the
x-axis indicates the model parameters that determine the
state space size, and the y-axis indicates the verification
time (in seconds) or the memory consumption (in KB).
Note that the y-axis is log-scale. The legend of the plots is
given by Fig. 2.
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(a) model check time (b) peak memory

Fig. 3. Synchronous leader election: P≥1(♦ elected)

Almost Sure Reachability Properties. We first consider unbounded until
formulas with probability bound ≥ 1. Figure 3 shows the verification time and
memory usage for the SLE case study for various (n, k) pairs. (Recall that n is
the number of nodes, and k the identity range.) As PRISM checks qualitative
properties in a symbolic manner regardless whether it uses the sparse or hybrid
engine, there is no difference in runtime nor in memory consumption between
PRISMS and PRISMH . On increasing model parameters, the memory consump-
tion of MRMC grows gradually (as expected) whereas for PRISMS and PRISMH

only a slight increase is observed. This is due to the fact that PRISM requires
a large base memory for the JVM, the CUDD package (around 40 MB) and the
MTBDD it generates. The MTBDD for this case study is not very compact, as
indicated by the following table:

(n, k) (4, 4) (4, 8) (4, 12) (4, 16) (8, 2) (8, 4)
MTBDD vertices 10K 165K 9M 2.8M 7.9K 1.1M

# states 0.8K 12K 62K 0.2M 2K 0.5M

As a result, PRISM needs substantially more memory than MRMC and the
verification times differ up to several orders of magnitude. (For the smallest two
problem instantiations, the memory consumption for MRMC is unavailable as
its verification times are negligible.)

The SLE case study suggests that memory consumption for PRISMS and
PRISMH is highly influenced by the MTBDD size. This observation is also sub-
stantiated by the CPS case study, for which the MTBDD sizes just increase
slightly on a growth of the state space size:

n 3 6 9 12 15 18
MTBDD vertices 112 367 765 1282 1942 2745

# states 36 0.6K 7K 74K 0.7M 7M

Observe that the MTBDD is very compact, e. g., the model of 7 million states
only requires 2745 MTBDD vertices, much less than in the SLE case study.

Some experimental results for a reachability property of the CPS case study
are summarized in Fig. 4. In contrast to the previous study, PRISM needs less
memory than MRMC for large models due to the small MTBDD size. As be-
fore, there is no difference between PRISMS and PRISMH . For small models,
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(a) model check time (b) peak memory

Fig. 4. Cyclic polling server: busy1 =⇒ P≥1(♦ poll1)

(a) model check time : t = 5 (b) model check time : t = 80

Fig. 5. Cyclic polling server: busy1 =⇒ P≥0.5(♦≤t poll1)

MRMC is faster and less memory intensive, but for n ≥ 15, it is outperformed
by PRISMS . This effect is to be expected to be more drastic for larger values
of n as PRISMS is able to check the CPS for n > 18 (roughly 26 M states)
rather efficiently. As the file size of the .tra file for n > 18 exceeds 2 GB, we were
unable to execute MRMC on it. For n ≥ 15, E�MC2 runs out of memory. The
performance of E�MC2 is worse than that of MRMC due to a less space-efficient
sparse matrix representation, and the effect of the JVM. VESTA is about two
orders of magnitude slower although – due to the use of Java – its memory usage
is comparable to PRISMS. The inefficiency of VESTA stems from the fact that
it needs an excessive amount of sample paths to decide properties with bounds
of the form ≥ 1, as shown in the following table:

n 3 6 9 12 15 18
# samples 34K 150K 395K 840K 1.6M 2.9M

Generally, statistical tools have difficulties to decide whether the probability
of some property meets a bound if the actual probability and the bound are
close. VESTA always gave the correct answer for these properties. For the BDP
case study we experienced that for the property that almost surely eventually
the population is maximal, VESTA reports an incorrect answer if the stopping
probability – the likelihood that a sample path is stopped [36] – is not chosen
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appropriately. More precisely, if at some point during the simulation the stopping
probability (in our case 0.05) is larger than that of reaching the state n=m (in
fact, a rare event), the sample path ends and it is concluded that n=m is not
reached. Re-simulation using a smaller stopping probability (e. g. 0.01) yields
the correct answer. (VESTA always gives results for the initial state only; see
the remarks with the next case study for details.) Note that YMER is not used
here as it does not support unbounded reachability properties.

Fig. 6. Cyclic polling server, peak memory:
busy1 =⇒ P≥0.5(♦≤t poll1)

Bounded Reachability Proper-
ties. To show the effect of bounds,
we consider a time-bounded variant
of the property discussed before and
observe what happens upon changing
time bound t. Figure 5 depicts the ver-
ification times for the extreme bounds
that we investigated in the CPS: t=5
and t=80, whereas Fig. 6 depicts the
memory consumption for arbitrary t
– the memory consumption does not
depend on t. The verification time re-
quired by MRMC is heavily influenced by t, e. g., for n=15 the time for t=20 is
about four times longer than t=5. This is not surprising, as the time complexity
of the underlying algorithm is linear in t. From t=30 on, the verification time is
almost constant, due to a built-in steady-state detection [24]. Besides, for t=80
and n=17, MRMC requires about 1700 seconds (not depicted), and we obtained
a timer overflow for larger instantiations. A similar behaviour is obtained for
E�MC2 but it runs out of memory rather quickly, as for simple reachability.
PRISMH is more efficient than PRISMS due to the compact MTBDD (see pre-
vious case). As for MRMC, the verification time for PRISMH and PRISMS is
linear in t, although this is less clear from the pictures due to the initial over-
head of the MTBDD construction. A careful analysis of the logfiles reveals that
the time per iteration is constant. Due to PRISM’s steady-state detection, the
verification time stops increasing around t=30. The verification time for VESTA
for t=5 is rather constant as the number of samples (approx. 300,000) is more
or less the same for each n. For t=80 the number of samples slightly increases
(it raises from 0.2M for n=3 to about 1.1M for n=18). This explains the small
increase in run time in Fig. 5(b). Unfortunately, VESTA gave wrong answers
for low time bounds often: for t = 5, only 32.5% of the answers were correct.
Note that the property has also been checked by YMER, but as its run time
is negligible – it immediately establishes that the initial state does not satisfy
the premise of the implication – this is invisible in the figures. YMER thus has
an “excellent” performance, but only checks the initial state whereas the other
tools check all states. (VESTA also only provides answers for the initial state,
but is unable to find the trivial satisfaction.)
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(a) model check time: P≤0.01(♦≤2 full) (b) model check time: P≤0.01(♦[0.5,2] full)

Fig. 7. Tandem queuing network: bounded reachability properties

Figures 7 and 8 show the results for checking a time-bounded property on the
TQN case case study. YMER is for most cases much faster and smaller than all

Fig. 8. Tandem queuing network, peak
memory: P≤0.01(♦≤2 full)

other tools. (For n=2 the verifica-
tion time is too short to measure the
memory consumption reliably.) As we
have seen before, PRISMH is more
memory-efficient than PRISMS , but
the latter is faster. The memory us-
age of YMER is less than VESTA,
and for both simulation tools inde-
pendent of the model size (as ex-
pected). As in the other case studies
we see that due to the base memory
overhead (JVM+CUDD) usage, the
PRISM memory consumption is less
dependent on the model size than MRMC, and E�MC2 is only able to handle
relatively small models (up to few hundred thousands of states).

Figure 7(b) shows the timing for a bounded reachability property with both a
positive lower and an upper bound. (E�MC2 and VESTA do not support these
bounds.) To check this formula, a model checker will calculate two reachability
probabilities in different Markov chains. The results are similar to the above,
as expected: YMER is, for most cases, the fastest tool; its runtime depends
less on the model size than for the other tools. MRMC is slightly faster than
PRISMS , which is slightly faster than PRISMH . The fact that YMER is fast is
also confirmed by checking such bounded property on the CPS case study, e. g.
on n=16, YMER just needs 1.2 sec whereas PRISMS and MRMC require about
1500 sec, and PRISMH about 3000 sec.

Steady State Properties. We only consider steady-state properties for
CTMCs. The long-run operator for PCTL [2] is only supported by MRMC,
and is therefore not used here. YMER and VESTA do not support steady-state
properties, basically as it is unclear on when to stop the sample path generation.
Figure 9 shows the runtime and peak memory for a steady-state property in the
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(a) model check time (b) peak memory

Fig. 9. Tandem queuing network : S>0.2(P>0.1(X snd))

(a) model check time (b) peak memory

Fig. 10. Birth-death process : P≥0.8(P≥0.9(♦≤100 (n = 70)) U (n = 50))

TQN case study. The experiments show similar results as before. E�MC2 is the
slowest tool and cannot handle large models (where n > 100). For the smaller
models, the memory usage of PRISM is dominated by the overhead. For larger
models, PRISMS needs more memory than PRISMH but is slightly faster. All
experiments with steady-state formulas confirm our earlier observations: MRMC
is faster and memory-wise more efficient than PRISMS and PRISMH , but for
larger models, PRISM uses less memory than MRMC. The turn point, however,
seems to occur at larger state spaces than experienced for reachability.

Nested Properties. We also checked the behaviour on nested quantitative
reachability properties. Figure 10 shows the results of checking such property
for the BDP case study. The tools check such nested formula in a bottom-up
fashion, i. e., first the set of states satisfying the sub-formula is determined. The
results are rather similar to the above findings. The MTBDD for the BDP case
study is not very compact as the transition rates depend on the population size
n, and as a result, most transition probabilities are distinct (resulting in many
leaves in the MTBDD). As a result, MRMC outperforms PRISMS and PRISMH .
Note however, that considered state spaces for this case study are relatively
small which is favorable for MRMC. For all model instantiations, VESTA did
not terminate simulation within 24 hours. We suggest as explanation that too
many samples are required because the event n=70 is rather rare.
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5.2 User Friendliness

Our experiments also gave insight in the user friendliness of the probabilistic
model checkers. As recognised by many people in the field, we find PRISM the
most user friendly tool, having a reasonably powerful modeling language, a GUI
and many additional features, such as the ability to plot the probability for
different model parameter values. VESTA was less powerful in this respect. It
does have a nice GUI, but lacks a parallel composition operator. Hence one needs
to combine the various parallel components into a single model by hand, which
is a very cumbersome and error-prone task. Also, we find VESTA’s syntax and
error messages not so intuitive. PRISM is able to generate files that are readable
for E�MC2, MRMC and YMER. Whereas E�MC2 and MRMC allow one to read
these files directly, YMER uses a slightly different syntax, so PRISM models have
to be slightly transformed before being used by YMER. Without a GUI, all three
tools are less intuitive to use than PRISM. On the other hand, MRMC is more
appropriate as back-end verification engine as it has a simple input format.

The following table summarizes the results (++ is best, −− is worst).

E�MC2 MRMC PRISM YMER VESTA
ease of modeling ++ a ++ a ++ + −−
ease of use + 0/+ ++ 0 +

a Exploiting the modeling facilities of PRISM (or TIPPtool).

6 Conclusion

We presented a performance comparison of five probabilistic model checkers. By
ensuring that our experiments are repeatable, verifiable, statistically significant
and free from external influences, our findings are based on a solid methodology.

From our experiments, we conclude that YMER is by far the fastest tool. Also,
its memory usage is remarkably constant, hardly varying with the model size.
Unfortunately, YMER only supports bounded and interval until formulas. Also,
as statistical tool, YMER may report the wrong answer, and has done so during
our experiments (in a few cases, as expected). In particular, YMER outperforms
the other statistical model checker VESTA: VESTA’s memory consumption is
also rather constant, but more in the order PRISM’s memory usage. However,
its runtime varies a lot. For certain nested properties we checked, VESTA did
not terminate within 24 h, even on a model with 100 states only.

E�MC2 performs the worst in terms of memory, and frequently was unable
to check models that were easy for the other tools.

For models up to a few million states, MRMC mostly performs better than
PRISMS both in time (although sparse matrix generation takes negligible time
in MRMC compared to PRISM) and memory. This is mainly due to the overhead
for MTBDD generation in PRISM. On larger models, PRISMS and PRISMH
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perform better. This effect is more apparent whenever the MTBDD representa-
tion is compact. As expected, PRISMS is often faster than PRISMH , but uses
more memory. The results are summarized in the following tables.

We conclude that the differences between the numerical tools, which use the
same algorithms [26], are based on differences in data structures used and more
or less efficient implementations of the same algorithm. Statistical tools use
different algorithms, so different behaviour – less dependent on model size than
the numerical tools – meets the expectations.

speed E�MC2 MRMC PRISMS PRISMH YMER VESTA
steady state − ++ + 0/+ a N/A N/A
bounded until − + b +/++ 0/+ a ++ +
unbounded until − + b +/++ +/++ a N/A −/0
nested − ++ + 0/+ a N/A c −− d

a The time heavily depends on the MTBDD size.
b MRMC was faster in most cases, PRISMS on larger models.
c The property contained operators not supported by YMER.
d Based on one property, for which VESTA did not terminate.

memory E�MC2 MRMC PRISMS PRISMH YMER VESTA
steady state − + a + +/++ a b N/A N/A
bounded until − + a + +/++ a b ++ + c

unbounded until − + a +/++ +/++ a b N/A 0/+ c

nested − + a + +/++ a b N/A N/A d

a MRMC used least memory in most cases. For larger models PRISMS was between
MRMC and PRISMH , and PRISMH was the best.

b The MTBDD size varied much with the case study.
c Fairly constant; inefficient for small models, efficient for large ones.
d Based on one property, for which VESTA did not terminate.

Recommendations. Based on our experience, we have the following sugges-
tions for improving the tools. For YMER, it would be very useful if it supported
more CSL/PCTL operators, so that its “slim and fast” engine becomes applica-
ble to a wider class of model checking problems. Also, it would be nice for YMER
to use exactly the same syntax as PRISM, improving the tool interoperability.
For VESTA, we suggest to improve its runtime efficiency. Also, its applicability
would be enlarged by improving the modeling language, by either adding a par-
allel operator, or by supporting a modeling language similar to PRISM’s. For
PRISM, a tight connection with YMER could be of relevance – ideally, a user
would call the YMER model checker by pressing a single button. For MRMC,
we suggest to improve the performance for larger models.

Acknowledgement. We would like to thank Dave Parker and Gethin Norman
for providing us with valuable feedback on a draft version of this paper.
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