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Preface

This volume contains the proceedings of the 3rd Haifa Verification Conference
(HVC 2007), which took place in Haifa during October 2007. HVC is a forum for
researchers from both industry and academia to share and advance knowledge
in the verification of hardware and software systems.

Academic research in verification is generally divided into two paradigms –
formal verification and dynamic verification (testing). Within each paradigm,
different algorithms and techniques are used for hardware and software systems.
Yet, at their core, all of these techniques aim to achieve the same goal of ensuring
the correct functionality of a complicated system. HVC is the only conference
that brings together researchers from all four fields, thereby encouraging the
migration of methods and ideas between domains.

With this goal in mind we established the HVC Award. This award recog-
nizes a promising contribution to verification published in the last few years.
It is aimed at developments that significantly advance the state of the art in
verification technology and show potential for future impact on different verifi-
cation paradigms. The winners of the HVC Award are chosen by an indepen-
dent committee with experts from all fields of verification – both formal and
dynamic, software and hardware. The winners of the 2007 HVC Award were
Corina Păsăreanu and Willem Visser, for their work on combining static and
dynamic analysis.

This year we received 32 submissions, out of which 15 were accepted after
a thorough review conducted by the Program Committee (PC) and additional
reviewers. Each paper was reviewed by at least three reviewers, sometimes more.
PC members who submitted papers were not involved in any way in the review,
discussion, or decision regarding their paper. The chosen papers were presented
during the 3-day conference, along with keynote and invited presentations. These
proceedings include reviewed papers as well as the extended abstracts of invited
talks. In addition, we held a full-day tutorial titled: “Verification 101—The Ba-
sics of Hardware Verification and Software Testing.” The tutorial was designed
for non-experts who want to know what verification is all about and for people
with knowledge in one aspect of verification (e.g., software testing) who wanted
to become familiar with other aspects (e.g., formal verification). The goal was to
supply the non-expert with the tools needed to better understand the talks that
were later presented at the conference. The tutorial was hosted by our sponsor,
the Caesarea Rothschild Institute (CRI) at the University of Haifa.

Attendance at the conference was very high, with more than 250 participants
from 12 countries (Austria, Canada, Czech Republic, France, Germany, India,
Israel, The Netherlands, Russia, Switzerland, UK, and USA). Thanks to spon-
sorship from Cadence Israel, we were able to offer student travel grants, thus
enabling PhD students to travel to the conference to present their work.
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I would like to thank the Organizing Committee, the HVC Award Commit-
tee, the Program Committee, and the authors of all submitted papers for their
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speakers who travelled from afar and made the conference that much more in-
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Simulation vs. Formal:
Absorb What Is Useful; Reject What Is Useless

Alan J. Hu

Department of Computer Science
University of British Columbia

Abstract. This short paper is the result of the invited talk I gave at the 2007
Haifa Verification Conference. Its purpose is to briefly summarize the main points
of my talk and to provide background references. The original talk abstract was,
“Dynamic verification (simulation, emulation) and formal verification often live
in separate worlds, with minimal interaction between the two camps, yet both
have unique strengths that could complement the other. In this talk, I’ll briefly
enumerate what I believe are the best aspects of each verification style, and then
explore some possibilities for drawing on the strengths of both camps.”

1 The Bruce Lee Approach to Verification

Absorb what is useful.
Reject what is useless.

— Bruce Lee

I was invited to give a talk based on my long-standing interest in both dynamic (simula-
tion and emulation) as well as formal verification, and the interplay between them. As
I contemplated what to talk about, I recalled Bruce Lee’s famous slogan, quoted above.
This led to Cindy Eisner suggesting that the talk be entitled “The Bruce Lee Approach
to Verification.”

Bruce Lee’s quote was a reaction against the orthodoxy of traditional martial arts
instruction. He was not the first to articulate such a challenge, nor the last, but he is
perhaps the most famous.

Fig. 1 lists some general characteristics of traditional martial arts instruction. These
characteristics are common to other traditional instructional systems, such as for monks,
many traditional arts, or medieval guilds. Such a system is excellent for preserving the
traditions of the group, and for deep study of the intricacies of a given tradition. Students
develop strong bonds with their fellow students and great reverence for their teacher,
their teacher’s teacher, etc. For example, I trace my T’ai Chi Ch’uan lineage back to
Cheng Man-Ch’ing, who founded the sub-style I practice, and from him back to the
founder of the Yang style of T’ai Chi Ch’uan, and I hold great reverence and gratitude
to my fellow students and my teachers for their abilities and what they have taught
me. In some martial arts styles, this reverence is explicitly formalized. For example, in
Aikido schools, every class begins and ends by bowing to a portrait of Morihei Ueshiba,
the founder of Aikido.

The problem with the traditional style of instruction is that it can lead to group-think.
The lack of communication with other styles slows the spread of good ideas and can lead

K. Yorav (Ed.): HVC 2007, LNCS 4899, pp. 1–7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 A.J. Hu

– Study is in a school led by the master or a group of affiliated masters.
– Introductory classes are in groups, taught by the master or senior students,

with the syllabus set by the master(s).
– Advanced study is one-on-one with the master.
– Students interact almost exclusively with fellow students and the master.
– When students travel, they go to tournaments and workshops, where they interact

and compete with others from the same style.
– Students read books, articles, and papers by the masters of their own style.
– Often, students and teachers denigrate other styles.

Fig. 1. Characteristics of Traditional Martial Arts Instruction

to stagnation. Worse, followers of a style can fail to notice their own assumptions and
blind-spots. This causes problems when those assumptions don’t hold. For example, in
my talk, I showed a video clip of a challenge match, in which one fighter was repeatedly
defeated by the other, because the losing fighter’s training had not prepared him for the
types of situations which tended to occur under the rules and conditions of the challenge
match.1 Bruce Lee’s quote was a call to break out of the confines of one’s style, to
explore what other experts and masters have to offer, to challenge one’s assumptions
and seek out the best ideas from all sources.

How does this relate to verification? Fig. 2 lists some general characteristics of tradi-
tional martial arts instruction. Comparing and contrasting Figs. 1 and 2, one can notice
some similarities. Although I do not bow to pictures of Ed Clarke and David Dill each
morning when I go to work, I do hold great reverence for their expertise and gratitude
for what they’ve taught me.

The problem, of course, is the same sorts of blind spots that result from spending
most of one’s time in one community. For example, I am from the formal verification
community, but I believe I also have a good awareness of, and an open-mind toward, dy-
namic verification. Last year, I was giving a talk at the 2006 IEEE International Work-
shop on High-Level Design Validation and Test on some recent work by my student
and myself on using formal verification to guide a commercial logic simulator [12]. I
thought this work perfectly straddled the division between formal and simulation, but
Gil Shurek and Eyal Bin pointed out that I was still stuck in a formal mind-set: I had
assumed that “bad states” were specified declaratively, as a logical assertion, but in re-
ality, bad states might only be identifiable by running a large and complex chunk of
imperative software code that acts as a checker. I believe I have an approach to han-
dling such checkers (via software model checking), but the fact that I had completely
overlooked this issue illustrates a blind-spot I had acquired by my focus on formal
verification.

In my talk, I showed examples of how almost any combination of good ideas from
the dynamic and formal communities has produced interesting and useful research. This
is not an exhaustive list! I am just giving some examples that come to mind, to illustrate
the general value of breaking free of one’s style and absorbing useful ideas from others.

1 I’m being deliberately obscure, because I don’t want to descend into a “My kung fu style is
better than yours” debate. :-)
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– Study is in a school led by the professor or a group of affiliated professors.
– Introductory classes are in groups, taught by the professor or graduate students,

with the syllabus set by the professor(s).
– Advanced study is one-on-one with the professor.
– Students interact almost exclusively with fellow students and the professor.
– When students travel, they go to conferences and workshops, where they interact

and compete with others from the same style.
– Students read books, articles, and papers by the masters of their own style.
– Often, students and teachers denigrate other styles.

Fig. 2. Characteristics of Traditional Computer Science and Electrical Engineering Education

2 Combining Simulation and Formal

2.1 Version 1.0

The most obvious strength of formal verification is its exhaustiveness, and the most ob-
vious strength of simulation is its scalability. Some of the earliest efforts to derive the
best of both worlds sought to use a bit of formal verification, to gain coverage, while
relying on simulation to handle the size and complexity of real designs. For example,
some leading companies combined the two approaches methodologically, using simu-
lation and emulation as the workhorse for verification, but applying formal strategically
to small, high-value areas (e.g., complex protocols or algorithms) that were deemed to
be particularly bug-prone (e.g., [7]).

Other approaches combined some formal state-space exploration and random sim-
ulation into a single tool, using just a little bit of formal analysis to gain some
coverage before the formal analysis exploded. Early examples of work along these
lines include computing a few pre-images to enlarge target states for random simula-
tion (e.g., [27,29]), under-approximate reachability through partial image computation
(e.g., [25]), and more elaborate combinations (e.g., [18]).

These ideas continue to be valuable. However, I believe a finer-grained examination
of the strengths of formal and simulation can yield many other valuable ideas.

2.2 Mix and Match: Good Ideas from Formal

At a slightly finer-grained level, what are the key good ideas to extract from the formal
verification world?

1. Exhaustive analysis is useful! I believe this is a fundamental conceptual break-
through from the formal verification community in the past 10–15 years. Previ-
ously, exhaustive, brute-force algorithms were typically discarded as impractical,
but the formal verification community has repeatedly shown the value of exhaus-
tive analysis for solving real problems. Enabling this breakthrough are two key
supporting ideas:
(a) Smart, Brute Force: For example, techniques like BDDs, SAT, SMT, and con-

straint solving are all brute-force techniques at their worst-case core, but con-
siderable effort has made them efficient and practical for many real problems.
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(b) Abstraction: This is the other Swiss Army Knife of formal verification. An ex-
haustive analysis can become tractable if we can group large (possibly infinite)
sets of possibilities and analyze them all together.

2. Machine-Readable Specifications. This is a really good methodological idea that
has long been advocated by the formal verification community and has been gaining
broader acceptance. Unless “correctness” is specified unambiguously in a machine-
readable form, advanced verification tool support is impossible.

Choosing any of the good ideas from the above list and applying them to simu-
lation yields new, good ideas. For example, constrained test generation has been a
major practical success, resulting from applying “smart, brute force” techniques like
BDDs, SAT, constraint solving, and state-space traversal to the problem of gener-
ating input stimuli for simulation (e.g., [19,1,16]). Combining abstraction and sim-
ulation yields abstraction-guided simulation, where model-checking an abstracted
version of a system yields information that can help a simulator reach a target state
(e.g., [28,21,17,14,26,22,12,13]). And bringing formal, declarative, machine-readable
specifications to simulation is the foundation behind assertion-based verification (ABV)
(e.g., [6]).

2.3 Mix and Match: Good Ideas from Simulation

Similarly, we can try to extract the key good ideas that make simulation so effective. I
have identified three:

1. Compiled Code. This was a major performance breakthrough for simulation and
enables its continued scalability. The point is to execute the model as code, rather
than interpreting it as data, resulting in far higher performance. Hardware acceler-
ators for simulation, as well as emulation, are even more extreme versions of this
idea.

2. Metrics. This is a major methodological contribution pioneered by the simulation
community. Coverage metrics of some form are needed to measure and report ver-
ification progress.

3. Domain Expertise. I am not implying that formal verification engineers lack do-
main expertise. But as I look at the reported research in formal verification versus
dynamic verification, the difference is striking: most papers on formal verification
describe a general theory for a general class of systems to verify; most papers on
dynamic verification are infused with vast amounts of detailed knowledge about the
characteristics of the design. This domain expertise has allowed effective verifica-
tion in practice, despite the theoretically execrable coverage provided by simulation.

As above, we can mix-and-match good ideas from formal and simulation to generate
new, good ideas. Some arbitrary examples of domain-specificity being applied to
“smart, brute force” include SAT solvers tuned for hardware bounded model checking
(e.g., [15]) or automatically retuned for software verification [20]; applied to abstraction
yields things like Burch-Dill pipelined processor verification [9]; applied to specifica-
tion yields everything from broadly applicable, somewhat domain-specific specification



Simulation vs. Formal: Absorb What Is Useful; Reject What Is Useless 5

languages like Sugar [5] and ForSpec [3] (the predecessors of PSL and SVA) all the way
down to an obscure example from my own work [10], which allows specifying a cycle-
accurate MIPS processor simulator in less than 300 lines of code that runs comparably
fast to hand-crafted performance simulators.

Mixing-and-matching Simulation Item 2 (Metrics) produces good ideas like a no-
tion of coverage for formal specifications [11], a coverage model based on predicate
abstraction [4], and progress metrics for SAT solvers [2,8].

I am particularly fond of the compiled code idea, having started on this idea several
years ago, but not having had the opportunity to explore it as much as I’d like. In the late
1990s, I was teaching computer architecture courses, and it was a fairly common obser-
vation that every unpredictable branch cost dozens of instructions, and every non-local
memory access might cost hundreds or even thousands of instructions. Conversely, op-
erations that could be done in parallel were essentially free. This led me to realize that
formal verification algorithms and data structures were making particularly poor use of
modern processors, whereas compiled simulation was particularly efficient. My student
and I developed a SAT solver for bounded model checking that compiled the circuit into
fast, straightline executable code, but also did some learning [8]. On certain examples,
it could greatly outperform the leading SAT-solvers of the time. Combining the idea
of exploiting compiled code with abstraction also led to interesting work. I have men-
tioned abstraction-guided simulation above. Some recent work in this area has sought
to employ the idea with leading, commercial compiled-code simulators [26,12]. When
we did this, we found that the speed advantage of compiled-code simulation was so
great that it overwhelmed the effect of the abstraction-guidance, forcing us to develop
a much more robust and effective guidance heuristic [13], which has worked well in
extensive experiments on large designs. I do not have any good examples of the com-
bination of compiled code and machine-readable, formal specifications, per se, but as
mentioned earlier, it is important that formal tools be able to handle the operational, im-
perative specifications that are common in the simulation world, and for formal specifi-
cations to be compilable into an executable form for use with simulators and emulators
(e.g., [24,23] are two of my favorite papers along these lines :-)).

3 The Future

We have only scratched the surface of the possible synergies between formal and sim-
ulation. For example, I believe there is a deep connection between abstraction and cov-
erage.2 The fundamental question is why anything works, given that formal verification
is not universal in industrial practice, and the theoretical coverage of the set of all pos-
sible behaviors provided by simulation is some ε fraction of all possibilities. I believe
the answer lies in a connection between the informal coverage matrices used to track
simulation progress and the existence of a suitable abstraction for model-checking the
design.

2 Hana Chockler has looked at the question of abstraction versus her concept of coverage for
formal specifications. Here, I am talking instead of the concept of coverage in the simulation
sense — the fraction of the behavior space that has been exercised by the simulator.
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Summing up, my advice (or Bruce Lee’s advice) is:

– Train hard in your own style. Expertise and depth in your area are your foundation.
– Cross-Train: Friendly study and sparring with practitioners of other verification

styles helps share good new ideas and illuminate blind spots.
– Learn from other masters, as well as your own.

This advice doesn’t just apply to verification!
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Scaling Commercial Verification to Larger

Systems

Robert Kurshan

Cadence Design Systems

Abstract. Simulation test coverage does not scale gracefully with grow-
ing system design size. Component interactions grow exponentially with
the number of system components, while conventional system test at
best can increase coverage as a linear function of allotted test time.

Likewise, capacity limitations are commonly cited as the essential gat-
ing factor that restricts the application of automatic formal verification
(model checking) to at most a few design blocks.

Nonetheless, abstraction has long been used successfully in pilot pro-
jects to apply model checking to entire systems. Abstraction in conjunc-
tion with guided-random simulation can be used in the same way to
increase coverage for conventional test.

While academic use of abstraction is old, its use in the EDA indus-
try’s commercial tool sets has been very limited, due to a perception
that its use entails an unacceptably disruptive methodology change. It
is shown here how quite general data-path abstraction incorporated into
a hierarchical design flow can be introduced with only a modest change
in methodology. This hierarchical design flow supports verification based
on either simulation or model checking that can scale gracefully with
increasing design complexity.

1 Introduction

Today, less than 50% of integrated circuit design cost is attributed to synthesis
and layout. The major cost of design is debug and verification, amounting to
50% to 80% of the total. Moreover, the relative and absolute costs of debug and
verification are growing, as a result of increasing design complexity.

There are two predominant sources of this increasing complexity: the increas-
ing use of embedded software that is so tightly integrated into the hardware that
it is hard or impossible to test the hardware and embedded software separately;
and an exponential growth in design complexity.

These two sources of complexity offer quite different verification challenges.
Verification in the presence of embedded software requires new algorithms, flows
and methodologies, as well as abstraction to handle the greater functional com-
plexity introduced by the large additional software design component.

As a design grows in complexity, it gains additional components that function
largely in parallel. Since n parallel components of size m leads to mn system
states, and the complexity of verification grows in proportion to the size of the
design state space, it thus grows exponentially with increasing design size.
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The challenge of dealing with this complexity growth – both from embedded
software and generally increasing design complexity – is what is addressed here.

As a related matter, it is widely held that the cost of fixing a bug grows
exponentially with the stage of development at which it is detected and fixed.
This is on account of the increasing interactions with other components, as the
design is developed. These other components may be required to reflect changes
from such fixes. Additionally, over time a developer may forget the details of a
design, or may be unavailable to fix a bug, again increasing the cost of debugging
as the design matures.

The hierarchical design flow proposed here addresses both the exponentially
increasing verification challenge and the ambition to perform debug and verifi-
cation earlier in the design flow.

Through the use of abstraction, the intractability of design verification is
mitigated. Through use of an abstraction-based top-down stepwise refinement
hierarchy, design components can be debugged and verified as soon as they are
coded, which is at the earliest possible point in the design development flow.

Although a conventional view is that simulation test is not bound by the ca-
pacity limitations of model checking, this leaves a wrong impression. The fact
that an arbitrarily large design can be fed into the compiler front-end of a sim-
ulation tool does not speak to the quality of the simulation that ensues. In fact,
both simulation and model checking are equally compromised by design size. In
the case of simulation, this is manifest by diminished coverage; in the case of
model checking, it is limited capacity. They are two sides of the same coin.

Through hierarchical design, both coverage for simulation and capacity for
model checking can be enhanced.

2 Abstraction as Divide-and-Conquer

The age-old strategy for dealing with an intractable task is divide-and-conquer.
To build the 6M ton virtual monolith that was the Great Pyramid, the task
was divided into the assembly of 2.3M blocks, each small enough to handle.
Likewise, the key to verifying a large design is to divide it into blocks small
enough to verify. To build the virtual pyramid, its component blocks needed to
be assembled with great precision. Likewise, to stitch together verified design
blocks into a virtual verification of a large design, mathematical precision is
required. Otherwise, there is just a jumble of partial verifications that cannot
speak to the behavior of the entire design.

Since the verification of large designs is provably intractable, our only hope lies
with some form of divide-and-conquer, and that requires mathematical precision.
Thus it is fair to say that whatever the future of verification, it necessarily will
be based on formal methods. Design components may be verified through model
checking or they may be tested with conventional (informal) simulation test.
However, the stitching together of these component results into a virtual result
for the entire design must be mediated by a formal method.
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Compositional verification implements a sort of “horizontal” divide-and-
conquer wherein the design is partitioned into its component blocks, abstractions
of some blocks are used to verify local properties of other blocks, and then these
local properties are used to deduce global properties of the large design. This
second part: to deduce global properties of the large design from local prop-
erties can be very challenging, and many research papers have resulted from
tour-de-force deductions of this type. The difficulties involved preclude this sort
of “horizontal” verification from entering the routine commercial design flow.

However, there is another sort of divide-and-conquer that can be viewed as
“vertical”. This is where the design evolves in a top-down fashion that follows
a precise stepwise refinement methodology. With “vertical” divide-and-conquer,
one begins with certain components together with abstractions of others, as
in the “horizontal” case. However, in the “vertical” flow, the abstractions are
refined into their ultimate implementations, whereas in the “horizontal” flow,
the implementations come first and are then abstracted.

The “vertical” flow cannot in fact be a pure top-down process, as it must
end up with a target architecture. In fact, it’s a combination top-down/bottom-
up flow. One starts with the architecture, floor plan, block diagrams, functional
specification, etc. as now, and begins coding the design as now, but in a different
order.

The “vertical” flow proceeds through stepwise refinement, so that properties
may be verified at a high level of abstraction after which they are guaranteed to
hold at all subsequent levels of refinement. This facilitates early verification: as
soon as a block is coded, it may be verified.

In the “vertical” flow, global properties are verified first, when the design is
relatively simple, unencumbered by its low-level implementational details. Prop-
erties with greater locality are verified as the relevant blocks are coded, later
in the flow. Since they may be verified locally, they do not require large por-
tions of the design to participate in the verification. This flow can maintain a
constant-sized granularity for verification, so that coverage and capacity issues
are avoided.

3 Vertical (Hierarchical) Decomposition

There seems little choice but to code data before control: in order to define a
controller, the data objects it controls must have been defined – after all, the
controller must refer to the objects it controls. Therefore, today’s design flow
begins with a coding of the data structures that define data and data paths.
Only once these data structures are completely coded may the designer begin to
code the finite state machines and other control structures used to control the
data.

However, there is something deeply dissatisfying about this order. After
all, the controllers define the functional behavior of the design. One would
like to define (and debug) them first, and only then code the design infrastructure
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defined by the data and data paths. It’s as if you were required to build a house
by first installing the plumbing and wiring, and only after this build the walls
and floors.

Coding first the data structures that define data and data paths also leads
to design instabilities. Once these data structures are defined, several design-
ers may code controllers against them. However, in coding a controller it is not
uncommon for a designer to find the previously coded data structures are insuf-
ficient. Perhaps a tag bit required by a controller to store its state in the data
path was overlooked. Then the data structures need to be redefined. This may
impact several designers and set back the design.

Thus, “data before control” is backward both for the interests of the design
process and design stability.

In fact, it is possible to reverse this order for hardware designs and code
control before data. This reversal is the key to the “vertical” flow proposed here.

The way to achieve this reversal is to use stubs to serve as place-holders for
data and data paths. The developer begins the design by coding the controllers,
which point to and manipulate these stubs.

These stubs have a semantics, and their refinement into the ultimate data
structures that define the data and the data paths is precisely controlled to
ensure that the refinement is conservative.

Some stubs are oracles. For example, a controller that needs to move a packet
from one buffer to another, conditional on a CRC check of the packet, can be
implemented using a stub for the ALU that will perform the CRC check. This
stub ALU can be implemented as an oracle that nondeterministically emits a
“yes” (CRC passed) or a “no”. At a high level of abstraction the packet is also
abstracted (“stubbed”) as a token, so there is in fact no actual packet to check.
At this high level of abstraction, what can be verified is that the controller does
the correct action if the answer is “yes” and the correct action if the answer
is “no”.

Later, the packet stub and the ALU stub will be refined into their actual
implementations. At that level it can be checked that the CRC is correct –
a local verification independent of the controller. The controller need not be
reverified at this lower level, since its correctness is inherited by the conservative
refinement process.

Since the controller can be verified as soon as it is coded, it is fresh in the
mind of the designer and thus easier to debug. At the same time, the design is
simple since much is abstracted (stubbed out), so again debugging is easier. At
lower levels of abstraction, debugging is likewise simpler, as at the lower levels
the verification is more local, and thus entails smaller portions of the design.

Coding control before data is not an enormous methodology shift: in the end
of the design flow, essentially the same RTL code is written as in the present-
day flow. The shift is that the design is coded in a different order. All the same
considerations of architecture, floor plan and function mediate this new flow just
the same as in the old flow. Code must be written in some order; the change
proposed here is only that order, not the code itself.
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4 A Methodology for Hierarchical Design

The crux of the design method proposed here is to code control before data. But
which controllers and in what order? The answer lies with a new wrinkle in the
design process.

Although most will agree that it is important to define a test plan before
design begins, all too often testing is the bastard child of design, left only to
the end, to a “verification team” that lies low in the pecking order of the design
elite. Leaving testing to the end has been the down-fall of great designs. This is
widely understood, and yet astonishingly much less widely accommodated.

The catalyst of the control before data hierarchical design flow is a movement
of verification to the top of the development elite. In this flow, the “verification
team” gets promoted to become a “specification/verification team”. This team
works with the same design specifications as the designers, before design coding
commences. They derive a complete formal specification of the design using, say,
a standardized specification language (PSL, OVL, SVA). These design properties
will be used as monitors for simulation test and as assertions and constraints for
model checking.

It is important that this design specification be complete, in the sense that
collectively the specified properties account for all required design functionality.
While there are several criteria for checking “completeness” of a set of design
properties that are currently in vogue, such as mutation checks or finite-state
machine completeness, each of these have their short-comings.

A better means may be based on the old-fashioned (but time-honored) process
of review. Just as with a code review where experts analyze a piece of code
line-by-line, in a specification review the architects, designers and “specifica-
tion/verification team” review drafts of design properties for correctness and
completeness.

Once the specification is complete and deemed correct, the “specifica-
tion/verification team” establishes a taxonomy of properties, from more global
to more local. This taxonomy will drive the order of controller design.

The “specification/verification team” will work hand-in-hand with the de-
signer to establish the order of design coding. Initially, the designer is given a
high-level property. The designer codes the controllers required to verify this
property, stubbing out the associated data and data paths. The “specifica-
tion/verification team” will assist the designer in verifying these controllers for
the designated property through simulation, model checking or a combination
of the two. This way, the controller gets debugged as soon as it is written.

This process continues for other high-level properties, until all the global con-
trollers have been coded and debugged.

Then the stubs are refined (possibly into some data path, some lower-level
“local” controllers and new stubs for the remaining data path). The refinements
are then verified in their more local context. The locality increases with decreas-
ing granulatity of data. This balance tends to hold the verification complexity
constant.
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This process continues until all stubs are refined into their ultimate RTL. At
this point the design is not only complete, but at the same time, completely
verified.

This description serves to give an intuitive understanding of the process that
is proposed. In fact, it cannot work as simply as the above description suggests.
The refinement flow will not be so neatly linear (top-to-bottom) as this discussion
may imply, but will involve imbalanced abstractions at various design levels and
non-linear refinement flows. A more detailed description that addresses these
realities is beyond the scope of this extended abstract. However, the simplistic
linear flow conveys the correct intuition concerning intent and essence of the
method.
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Extended Abstract

With the growing maturity in hardware verification methods, there has been great in-
terest in applying them to verification of software programs. Aside from issues of scale
and complexity, there are many differences between the two domains in the underlying
problem of searching for bugs. In this talk, I will describe our experiences with this
transition, with emphasis on methods that worked and those that did not.

Verification methods based on Boolean Satisfiability (SAT) have emerged as a
promising alternative to BDD-based symbolic model checking methods [8]. We have
developed an efficient platform for SAT-based model checking [4], called VERISOL,
which has been used successfully in industry practice to verify large hardware designs.
It uses an efficient circuit representation with on-the-fly simplification algorithms, an
incremental hybrid SAT solver, and utilizes several SAT-based engines for finding bugs
(bounded model checking) and proofs (proof-based abstraction, SAT-based induction).

Inspired by its success on hardware designs, we attempted to re-use VERISOL for
performing model checking in the back-end of F-SOFT [6], which is targeted for ver-
ifying C programs. We first derive a control flow graph (CFG) representation of the
program, use static code analyses (program slicing, range analysis, constant folding) to
simplify and reduce the CFG, and then derive a symbolic circuit model (under assump-
tions of finite data and finite recursion). The resulting bit-accurate circuit model of the
program is then verified by VERISOL.

Our direct attempt at using hardware verification methods for verifying software
models did not lead immediately to success. The two main problems were that the
number of variables was too high, and BMC needed to go too deep. We therefore pro-
posed several customized SAT-based heuristics to exploit the high-level structure in
CFG models, which greatly improve SAT solver performance [5]. We have also pro-
posed path balancing transformations on the CFG model, which enable additional on-
the-fly simplification during BMC to improve performance [3]. To reduce the burden
on the model checker, we use program analysis methods for static invariant genera-
tion [9] to find proofs more cheaply for array buffer overflow and pointer dereference
errors. In our experience, a combination of these methods with SAT-based BMC works
much better than predicate abstraction refinement for these checks, since the number of
predicates and the number of refinement iterations tend to blow up.

To address the problem of bugs being too deep (when starting from the main
function in a C program), we start verification from some intermediate function by
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considering a default abstract environment at its interface. This re-uses the idea of a lo-
calization reduction [7]. A counterexample reported by the model checker may be spu-
rious due to missing environment information. We use these counterexamples to guide
environment refinement (CEGER). This is similar to standard CEGAR [2] or predicate
abstraction refinement [1], except that we use it to refine only the environment, not the
model of the program. The CEGER loop is not completely automated – we require
help from the user to identify the spurious behavior and guide the refinement. However,
the model checker assists the user by providing a concrete error trace, and a weakest
precondition as a suggestion for the interface constraint. In practice, users find it much
easier to modify a suggested constraint, than to create one.

With these techniques to scale up and supplement model checking for software pro-
grams, the F-SOFT platform has recently been used to start an in-house verification
service within NEC. To date, it has found more than 450 likely bugs (many confirmed
by developers) in four projects totalling 1.1 MLOC (with one 600 kLOC project).

Acknowledgements. I would like to thank the current and past members of the NEC
Labs Verification Group – Pranav Ashar, Malay Ganai, Franjo Ivančic̀, Vineet Kahlon,
Weihong Li, Nadia Papakonstantinou, Sriram Sankaranarayanan, Ilya Shlyakhter, Chao
Wang, and James Yang – for their numerous contributions to these projects. I would also
like to thank Y. Hashimoto, K. Ikeda, S. Iwasaki, A. Mukaiyama, K. Wakabayashi, and
the SWED Group from NEC Corp. (Japan) for their support in the development and
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Abstract. A program fails. How can we locate the cause? A new gen-
eration of program analysis techniques automatically determines failure
causes even in the absence of any specification - in the input, in the set
of code changes, or in the program state: ”GCC fails because of a cycle
in the abstract syntax tree.” Relying on automated tests and dynamic
execution data is just one example of how future program analysis tech-
niques will access and leverage data beyond specs and code; leveraging
all available data will result in automated assistance for all developer
decisions.
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Techniques for checking complex software range from model checking and static
analysis to testing. We aim to use the power of exhaustive techniques, such as
model checking and symbolic execution, to enable thorough testing of complex
software. In particular, we have extended the Java PathFinder model checking
tool (JPF) [3] with a symbolic execution capability [4,2] to enable test case
generation for Java programs. Our techniques handle complex data structures,
arrays, as well as multithreading, and generate optimized test suites that satisfy
user-specified testing coverage criteria.

Programs are executed on symbolic, rather than concrete, inputs; the vari-
able values are represented as expressions and constraints that reflect the code
structure. JPF generates and analyzes different symbolic execution paths. The
input constraints for one path are solved (using off-the-shelf constraint solvers)
to generate tests that are guaranteed to execute that path. To bound the search
space we put a limit on the model checking search depth, or on the num-
ber of constraints along one path. Alternatively, we use abstract state match-
ing [1], which enables JPF to analyze an under-approximation of the program
behavior.

Our techniques have been used in black box and white box fashion [5]. They
have been applied to generate test sequences for object-oriented code [6] and
test vectors for NASA software. Recently, we have also applied our techniques
to (executable) models – using a JPF extension for UML Statecharts.
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Abstract. Modern hardware designs are typically based on multiple
clocks. While a singly-clocked hardware design is easily described in
standard temporal logics, describing a multiply-clocked design is cumber-
some. Thus, it is desirable to have an easier way to formulate properties
related to clocks in a temporal logic. In [6] a relatively simple solution
built on top of the traditional ltl semantics was suggested and adopted
by the IEEE standard temporal logic psl. The suggested semantics was
examined relative to a list of design goals, and it was shown that it an-
swered all requirements except for preserving the least fixed point char-
acterization of the until operator under multiple clocks. In this work we
show that with a minor addition to the semantics of [6] this requirement
is met as well.

1 Introduction

Synchronous hardware designs are based on a notion of discrete time, in which
the flip-flop (or latch) takes the system from the current state to the next state.
A flip-flop or latch is a memory element, which passes on some function of its
inputs to its outputs, but only when its clock input is active. The signal that
causes the flip-flop (or latch) to transition is termed the clock. In a singly-clocked
hardware design, temporal operators in logics such as ltl [16,17] are interpreted
with respect to the clock, so that the following ltl formula:

G(p → Xq) (1)

can be interpreted as “globally, if p then at the next clock cycle, q”. Mapping
between a state of a model for the temporal logic and a clock cycle of hardware
can then be dealt with by the tool which builds a model from the source code
(written in some hardware description language).

Modern hardware designs, however, are typically based on multiple clocks. In
such a design, for instance, some flip-flops may be clocked with clka, while others
are clocked with clkb. In this case, the mapping between temporal operators and
clock cycles cannot be done automatically; rather, the formula itself must contain
some indication of which clock to use. Thus, it is desirable to have an easier way
to formulate properties related to clocks in a temporal logic. For example, the
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linear temporal logic ltl can be extended with a clock operator, denoted @, so
that the formula

(G(p → Xq))@clka (2)

stating that “globally, if p during a cycle of clka, then at the next cycle of clka,
q” will be equivalent to the ltl formula

G((clka ∧ p) → X(¬clka W (clka ∧ q))) (3)

In [6] a relatively simple solution built on top of the traditional ltl semantics
is given. The underlying idea of this solution is that the only role of the clock
operator should be to define a projection of the path onto those states where the
clock “ticks”, and it is its own dual. Actually, referring to a projection of the path
is not precisely correct, as we allow access to states in between consecutive states
of a projection in the event of a clock switch. However, the word “projection”
conveys the intuitive function of the clock operator in the case that the formula is
singly-clocked. Achieving this introduces a problem for paths on which the clock
never ticks. This problem is solved in [6] by introducing a propositional strength
operator that extends the semantics from non-empty paths to empty paths in
the same way that the strong next operator [14,12] extends the semantics from
infinite paths to finite paths.

The solution of [6] has been adopted by the standard temporal logic psl [11,5]
and extended to account for regular expression which are an important part of
psl. The definition of the clock operator in the standard temporal logic sva [10]
which is based on regular expressions and does not include ltl operators agrees
with that of psl.1

The logic given in [6], is measured against a list of design goals. It is shown
that all design goals are met, but that the least fixed point characterization of
until is not preserved when multiple clocks are involved. The characterization of
until as a fixed point is not merely a theoretical issue — it has practical aspects
as some tools (e.g. the ones built upon the automata theoretic approach [19])
rely on it. In this work we show that with a minor addition to the semantics
of [6] the until operator preserves its least fixed point characterization (and the
semantics preserves the other design goals as well).

The addition suggested herein can be thought of as alignment operators, such
as those of [9], that takes you to the closest clock tick, when the current cycle is
not a clock tick. Note that the next operators takes you to the second clock tick
when the current cycle is not a clock tick. This is ok since on the projected path,
the second clock tick is the second letter — exactly the place where the next
operator will take you in standard ltl. The alignment operator comes in two
version, weak and strong, in order to deal with the possibility the clock may stop
ticking. The strong alignment operator demands the clock to tick at least once

1
PSL stands for Property Specification Language and is defined IEEE Std 1850tm-
2005 [11]. Its formal syntax and semantics are defined in Annex B of this document.
SVA stands for SystemVerilog Assertions and is defined in Annex E of IEEE Std
1800tm-2005 [10].
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more, while the weak alignment operator makes no such requirement. On singly-
clocked formulas there is no need for alignment operators, since a subformula
is always evaluated on a clock tick (the clock operator causes the evaluation to
consider the projected path, and all other operators keep the evaluation on this
path). On multiply-clocked formulas, however, on the event of a clock switch a
subformula may be evaluated on a cycle which is not a clock tick. The alignment
operators, in this case, takes the evaluation to the closest relevant tick.

The remainder of the paper is organized as follows. In Section 2 we give the
semantics of the logic, and explain the difference with [6]. In Section 3 we provide
some simple observations on the semantics of the logic. In Section 4 we prove
that the least fixed point characterization of until is preserved, as well as the
other design goals of [6]. In Section 5 we conclude.

2 The Definition of ltl
@

The semantics of [6] is defined with respect to a clock context. Evaluation of a
formula of the form ϕ@clk then sets clk to be the clock context. An unclocked
formula can be seen as a formula working in clock context true. The temporal
operators advance the evaluation according to the clock context. For example,
the formula ϕUψ requires that there would be a clock tick of the clock context
where ψ holds and on every preceding tick of the clock ϕ holds.

The problem of finite paths introduced by the fact that the clock context may
stop ticking is solved in [6] by defining two versions of the next operator as is
done in ltl [14, pp.272-273] and the linear time μ-calculus [12]. The formula
X!ϕ of ltl holds on a word w if the length of w is at least two and ϕ holds on
the second letter of w whereas the weak version holds also if the length of w is
less than two. In ltl augmented with the clock operator as per [6] we get that
X!ϕ holds on a word w if the length of w projected onto the cycles where the
clock context ticks is at least two (i.e. there are at least two clock ticks in w)
and ϕ holds on the second tick whereas the weak version holds also if the are
less than two ticks. The problem of empty paths introduced by the fact that the
clock context may not tick at all is solved in [6] by providing a propositional
strength operator. Given a proposition p, both p! and p are formulas of the logic
of [6], where the strong version p! holds if on every non-empty word w, the first
letter of w satisfies p; and the weak version holds also on the empty word.

In this work we solve the problem of finite and empty paths by augmenting
the next operator with an exponent. That is, the next operators comes with a
non-negative integer m, so that X!mϕ holds if ϕ holds on the (m+1)-th future
tick of the clock context (where future is understood to include the present). If
the clock context is true the formula X!mϕ requires ϕ to hold on the (m+1)-th
letter of the given word. Similarly, Xmϕ holds if ϕ holds on the m+1-th future
tick of the clock if there are m+1 future ticks. If the clock context is true the
formula Xmϕ holds if ϕ holds on the (m+1)-th letter, or there are less than m+1
letters in the given word. The operators obtained by instantiating m with zero
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(i.e. X!0 and X0) can be seen as alignment operators, similar to those of [9].2 The
formulas X!0ϕ and X0ϕ advance the evaluation to the closest clock tick, when
the current cycle is not a clock tick, and evaluate ϕ there. If the current cycle is
a clock tick ϕ is evaluated at the current cycle. Thus, if the clock context is true
(or the formula is unclocked) ϕ is evaluated at the current letter. As expected
the strong version requires that there would be at least one future clock tick
while the next version holds also there are no clock ticks. If the clock context is
true the strong version requires that the given word would not be empty whereas
the weak version holds also if it is empty.

Remark 1. The alignment operators X!0 and X0 move to the nearest concurrent
or future clock tick. It might be practically useful to include also alignment
operators that are strictly future. That is, while X!0 and X0 do not advance
when the current cycle is a clock tick, the strictly future alignment operators
will advance to the next clock tick, when the current cycle is a clock tick (and
to the closest clock tick when the current cycle is not a clock tick). These can
be defined as syntactic sugaring by means of the existing operators, using t as
the clock context.

2.1 Syntax

We define the syntax of ltl
@ as follows, where we use the term Boolean expres-

sion to refer to any application of the standard Boolean operators to atomic
propositions.

Definition 1 (Formulas of ltl
@)

– If b is a Boolean expression, then b! and b are ltl
@ formulas.

– If clk is a Boolean expression, m is a non-negative integer, and ϕ and ψ are
ltl

@ formulas, then the following are ltl
@ formulas:

• ¬ϕ • ϕ ∧ ψ • X!mϕ • ϕUψ • ϕ@clk

Additional operators are derived from the basic operators defined above:

• ϕ ∨ ψ
def= ¬(¬ϕ ∧ ¬ψ) • ϕ → ψ

def= ¬ϕ ∨ ψ

• Xmϕ
def= ¬X!m¬ϕ • Fϕ

def= tUϕ

• Gϕ
def= ¬F¬ϕ • ϕWψ

def= (ϕUψ) ∨ Gϕ

• Xϕ
def= X1ϕ • X!ϕ def= X!1ϕ

where t is a Boolean expression that holds on every letter. In the sequel, we also
use f, which is a Boolean expression that does not hold for any letter.

We refer to the subset of ltl
@ consisting of the formulas that have no clock

operator, by ltl. This subset is a slight generalization of the standard definition
2 The operators X!0 and X0 resemble the operator s align @(c) and w align @(c) of

the assertion language ecbv [9]. The definition of the alignment operators here and
there do not resemble since the language ecbv is defined by means of computations
of an alternating automaton. The obtained semantics, however, does.
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of ltl (as defined in [17]) – it consists of two version of Boolean expressions
as well as the generalized version of the next operator. The important thing,
however, is that it agrees with the standard semantics on the common operators
(on non-empty paths, as the standard semantics is defined only over non-empty
paths).

2.2 Semantics

We denote a letter by �, and an empty, finite, or infinite word by u, v, or w.
The concatenation of u and v is denoted by uv. If u is infinite, then uv = u.
The empty word is denoted by ε, so that wε = εw = w. We denote the length of
word v as |v|. The empty word ε has length 0, a finite word v = (�0�1 · · · �n) has
length n + 1, and an infinite word has length ∞. We use i, j, and k to denote
non-negative integers. For i < |v| we use vi to denote the (i + 1)st letter of v
(since counting of letters starts at zero). We denote by vi.. the suffix of v starting
at vi.

The semantics of ltl
@ is defined inductively with respect to a word (which

may be infinite, finite or empty) over the alphabet Σ = 2P where P is a given
non-empty set of atomic propositions. We identify Boolean expression over P as
elements of B = 22P

(as they convey subset of possible valuations (assignments)
to the set of propositions in P ). For a Boolean expression b ∈ B and a letter
� ∈ Σ we define the Boolean satisfaction relation by � b iff � ∈ b.

We first present the semantics of ltl over infinite, finite, and empty words
(unclocked semantics). We then present the semantics of ltl

@ over infinite, finite,
and empty words (clocked semantics). In Corollary 1 given in Section 4.2 we
show that the unclocked semantics can be obtained from the clocked semantics
by setting the clock context to t.

Unclocked Semantics. We now present semantics for ltl. The semantics is
defined with respect to an infinite, finite, or empty word. The notation w |= ϕ
means that formula ϕ holds along the word w. The semantics is defined as
follows, where b denotes a Boolean expression, ϕ and ψ denote formulas, and m,
j and k denote natural numbers (i.e., non-negative integers).

– w |= b ⇐⇒ |w| = 0 or w0 b

– w |= b! ⇐⇒ |w| > 0 and w0 b

– w |= ¬ϕ ⇐⇒ w |=/ ϕ
– w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ
– w |= X!mϕ ⇐⇒ |w| > m and wm.. |= ϕ
– w |= ϕUψ ⇐⇒ ∃k < |w| such that wk.. |= ψ, and ∀j < k, wj.. |= ϕ

Clocked Semantics. We define the semantics of an ltl
@ formula with respect

to an infinite, finite, or empty word w and a context c, where c is a Boolean
expression over P . We say that a finite word w is a clock tick of clock c if
c holds at the last letter of w and does not hold at any previous letter of w.
Formally,
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Definition 2 (clock ticks)

– We say that finite word w is a clock tick of c iff |w| > 0 and w|w|−1 c and
for every natural number i < |w| − 1, wi / c.

– For m > 0, we say that finite word w is m clock ticks of c iff there exists m
words w1, w2, . . . , wm such that w = w1w2 . . . wm and for every 1 ≤ i ≤ m
the word wi is a clock tick of c.

The notation w |=c ϕ means that formula ϕ holds along the word w in the context
of clock c. The semantics is defined as follows, where b, c and c1 denote Boolean
expressions, ϕ and ψ denote formulas, and m, j and k denote natural numbers
(i.e., non-negative integers).

− w |=c b ⇐⇒ if ∃k < |w| such that w0..k is a clock tick of c then wk b

− w |=c b! ⇐⇒ ∃k < |w| such that w0..k is a clock tick of c and wk b

− w |=c ¬ϕ ⇐⇒ w |=/c ϕ
− w |=c ϕ ∧ ψ ⇐⇒ w |=c ϕ and w |=c ψ
− w |=c X!mϕ ⇐⇒ ∃j < |w| s.t. w0..j is m + 1 clock ticks of c and wj.. |=c ϕ

− w |=c ϕUψ ⇐⇒ ∃k < |w| such that wk c and wk.. |=c ψ and
∀j < k such that wj c, wj.. |=c ϕ

− w |=c ϕ@c1 ⇐⇒ w |=c1 ϕ

3 Observations on the Semantics of ltl
@

The following section provides some simple observation regarding the weak/
strong next operators and their exponents. First we provide the direct semantics
of the weak next operator, which was given as a syntactic sugaring of the strong
next operator in Section 2.1.

Claim 1 (Weak next operator). Let w be a word over Σ. Let c be a Boolean
expression in B, m a non-negative integer and ϕ an ltl

@ formula. Then

w |=c Xmϕ ⇐⇒ if ∃j < |w| s.t. w0..j is m + 1 clock ticks of c then wj.. |=c ϕ

The following claim states that the weak/strong Boolean expressions can be
stated in terms of the weak/strong next operator by setting m to zero. Note
that this does not mean that the X0 and X!0 are redundant in the presence of
weak and strong Boolean expressions. They are needed to provide an easy way
to get to the closest tick (when the current cycle is not a clock tick) for general
formulas.

Claim 2 (Weak/strong Boolean expressions). Let w be a word over Σ.
Let c and b be Boolean expressions in B. Then

1. w |=c b! ⇐⇒ w |=c X!0b
2. w |=c b ⇐⇒ w |=c X0b
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The following claim shows that the standard strong and weak next operators, as
defined in [6], are obtained by setting m to one in X!m and Xm, respectively.

Claim 3 (Weak/strong simple next operators). Let w be a word over Σ.
Let c be a Boolean expression in B and ϕ an ltl

@ formula. Then

1. w |=c X!ϕ ⇐⇒ ∃j< k < |w| such that w0..j is a clock tick of c and wj+1..k is
a clock tick of c and wk.. |=c ϕ

2. w |=c Xϕ ⇐⇒ if ∃j < k < |w| such that w0..j is a clock tick of c and wj+1..k

is a clock tick of c then wk.. |=c ϕ

The following claim states that X!m can be obtained by m iterations of X! and
similarly for the weak version.

Claim 4 (Power characterization). Let w be a word over Σ. Let c be a
Boolean expression in B, m a integer and ϕ an ltl

@ formula.

1. w |=c X!mϕ ⇐⇒ w |=c X!X! . . . X!
︸ ︷︷ ︸

m times

ϕ

2. w |=c Xmϕ ⇐⇒ w |=c XX . . . X
︸ ︷︷ ︸

m times

ϕ

The following claim states that the next operators are additive. That is, com-
position of X!m (resp., Xm) operators corresponds to addition in the exponents
(even if one or both exponents is zero).

Claim 5. Let m and n be non-negative integers and ϕ and ltl
@ formula .Then

1. X!mX!nϕ ≡ X!m+nϕ
2. XmXnϕ ≡ Xm+nϕ

The proofs of these claims are given in the full version of the paper.

4 Meeting the Goals

In this section, we show that the logic ltl
@ satisfies all the goals of [6], as well as

preserving the least and greatest fixed point characterization of the strong and
weak until operators, respectively. We make use of the following notations.

The projection of a word w onto clock c, denoted w|c, is the word ob-
tained from w after leaving only the letters which satisfy c. For example, if
w = �0�1�2 . . . �10 and �0 / c, �1 / c, �2 / c, �3 c, �4 / c, �5 / c, �6 c, �7 c,
�8 / c, �9 / c and �10 / c then w|c = �3�6�7.

Let ϕ be an ltl formula. We use [[ϕ]] to denote the set of all words satisfying ϕ.
That is [[ϕ]] = {w | w |= ϕ}. Let ϕ be an ltl

@ formula. We use [[ϕ]]c to denote the
set of all words satisfying ϕ under clock context c. That is, [[ϕ]]c = {w | w |=c ϕ}.
We say that two ltl formulas ϕ and ψ are unclocked equivalent (ϕ ≡ ψ) if
[[ϕ]] = [[ψ]]. We say that two ltl

@ formulas ϕ and ψ are clocked equivalent

(ϕ
@≡ ψ) if [[ϕ]]c = [[ψ]]c for every clock contexts c.
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4.1 The Until Fixed Point Characterization

In standard ltl, interpreted over infinite words, [[ϕ U ψ]] and [[ϕ W ψ]] are
the least and greatest (resp.) fixed points of the functional E defined as fol-
lows [15,3]:3

E(S) = [[ψ ∨ (ϕ ∧ XS)]] (4)

where X is the strengthless version of the X! and X operators that it used when
ltl is interpreted solely on infinite words. When ltl is interpreted over finite
words as well then [[ϕ U ψ]] and [[ϕ W ψ]] are the least and greatest fixed point
of the functionals E+ and E− obtained from E by replacing X with X! and X,
respectively.

E+(S) = [[ψ ∨ (ϕ ∧ X!S)]] (5)

E−(S) = [[ψ ∨ (ϕ ∧ XS)]] (6)

This characterization does not hold for ltl
@. Consider the strong until oper-

ator. We have that ψ ∨ (ϕ∧X!S) may be satisfied weakly if ψ is a weak formula,
e.g. if ψ equals Xp for some proposition p and the clock never ticks. Whereas
ϕ U (Xp) demands (among other things) that there would be at least one clock
tick. For this reason, [6] proposed the functional F+

c defined as follows:

F+
c (S) = [[(t! ∧ ψ) ∨ (ϕ ∧ X!S)]]c (7)

where t! is the strong Boolean expression t asserting that there is a current
cycle (and t holds on it). This characterization holds for singly-clocked formulas
but not for multiply-clocked formulas. The following counter examples shows
that the characterization breaks when multiple clocks are involved. Let p, q and
clkq be atomic propositions, and let ψ = q@clkq. Consider a word w such that
w0 |= clkq ∧ q and for all i > 0, wi |=/ clkq ∧ q, and w0 |=/ c. Then w |=c ψ hence
w |=c (t! ∧ ψ) ∨ (p ∧ X!(p U ψ)). However, since w0 |=/ c, and there is no state
other than w0 where clkq ∧ q holds, w |=/c (p U ψ).

The following claim states that under the semantics given here, the strong
until operator can be defined as a least fixed point of the following functional

G+
c (S) = [[X!0(ψ ∨ (ϕ ∧ X!S))]]c (8)

(even in the presence of multiple clocks). Since by definition w |=t X!0ϕ ⇐⇒ |w| >

0 and w |=t ϕ this can be seen as a generalization of the standard characterization:
The standard characterization assumes paths are non-empty and works with no
clock context, or equivalently with t as the clock context - thus the X!0 operator
can be removed. The obtained functional G+

t
(S) = [[ψ ∨ (ϕ ∧ X!S)]]t is then the

standard characterization. If we restrict also to infinite paths, the strength of
the X! operator can be taken away as well.

3 Earlier works (e.g. [2]) provided fixed point representation of the logic ctl by showing
that it can be encoded in the propositional μ-calculus [13]. See [7] for the fixed-point
characterization of the logic ctl

∗(that subsumes both ltl and ctl).
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Theorem 1. Let ϕ and ψ be ltl
@ formulas. Then [[ϕ U ψ]]c is a least fixed point

of the functional G+
c (S) = [[X! 0 (ψ ∨ (ϕ ∧ X! S))]]c.

Proof: It is easy to see that the functional G+
c is monotonic and thus by Tarski-

Knaster theorem [18] it has a least fixed point. First we show that [[ϕ U ψ]]c is a
fixed point of G+

c then we show that it is the least fixed point.

– Let ϕ and ψ be ltl
@ formulas. Let w be a word over Σ, and c a Boolean

expression. We show that [[ϕ U ψ]]c is a fixed point of G+
c by proving

ϕ U ψ
@≡ X!0 (ψ ∨ (ϕ ∧ X! (ϕ U ψ))).

w |=c X!0 (ψ ∨ (ϕ ∧ X! (ϕ U ψ)))
⇐⇒ ∃ j0 < |w| s.t. w0..j0 is a clock tick of c and wj0.. |=c (ψ ∨ (ϕ ∧

X! (ϕ U ψ)))
⇐⇒ ∃j0 < |w| such that w0..j0 is a clock tick of c and either wj0.. |=c ψ or

wj0.. |=c (ϕ ∧ X! (ϕ U ψ)))
⇐⇒ ∃j0 < |w| such that w0..j0 is a clock tick of c and either wj0.. |=c ψ or

(wj0.. |=c ϕ and ∃j1 < |w| such that j1 > j0 and wj0+1..j1 is a clock
tick of c and wj1.. |=c (ϕ U ψ))

⇐⇒ ∃j0 < |w| such that w0..j0 is a clock tick of c and either wj0.. |=c ψ or
(wj0.. |=c ϕ and ∃j1 < |w| such that j1 > j0 and wj0+1..j1 is a clock
tick of c and ∃k < |wj1..| such that wj1+k c and wj1+k.. |=c ψ and
for every j < k such that wj1+j c, wj1+j.. |=c ϕ)

⇐⇒ ∃k < |w| s.t. wk c and wk.. |=c ψ and ∀j < k s.t. wj c, wj.. |=c ϕ

⇐⇒ w |=c ϕ U ψ

– We have shown that [[ϕUψ]]c is a fixed point of G+
c . We now show that

[[ϕUψ]]c is the least fixed point. That is, given S is an arbitrary fixed point
of G+

c we show that [[ϕUψ]]c ⊆ S. Let S be a fixed point of G+
c . That is, S is a

set of empty, finite, or infinite words such that w ∈ S iff w |=c X!0(ψ∨(ϕ∧X!S)
where w |=c S means w ∈ S. We have to show that for any word w, we have
that w |=c ϕUψ implies w ∈ S.
Let w be such that w |=c ϕUψ. Then there exists k < |w| s.t. wk c and
wk.. |=c ψ and for every j < k s.t. wj c we have wj.. |=c ϕ. From the fact
that wk.. |=c ψ and wk c we get that wk.. |=c X!0ψ and thus wk.. ∈ S. Let
0 ≤ j0 < j1 < . . . < jk < k be the set of all j’s in w such wj c. Consider first
jk. We have that wjk c, wjk.. |=c ϕ and wk.. ∈ S. Thus wjk .. |=c X!0(ϕ∧X!S)
and so wjk .. ∈ S. By induction we get that for each such ji we have that
wji.. ∈ S. In particular wj0.. ∈ S. Thus wj0.. |=c X!0(ψ ∨ (ϕ∧X!S). And since
j0 is the closest tick of c starting at 0 we get that w0.. |=c X!0(ψ ∨ (ϕ ∧ X!S)
as well. Thus, we have shown that w ∈ S.

We now show that the weak until operator is the greatest fixed point of the
functional G− below obtained from G+ by weakening the next operators.
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Theorem 2. Let ϕ and ψ be ltl
@ formulas. Then [[ϕ W ψ]]c is a greatest fixed

point of the functional G−
c (S) = [[X0 (ψ ∨ (ϕ ∧ XS))]]c.

Proof: It is easy to see that the functional G−
c is monotonic and thus by

Tarski-Knaster theorem [18] it has a greatest fixed point. First we show that
[[ϕ W ψ]]c is a fixed point of G−

c then we show that it is the greatest fixed point.
In the following we make use of the direct clocked semantics of W as given by [8,
Lemma 4.9].

w |=c ϕ W ψ iff for all 0 ≤ k < |w| such that wk c and wk.. |=/c ϕ,
there exists 0 ≤ j ≤ k such that wj c and wj.. |=c ψ.

– Let ϕ and ψ be ltl
@ formulas. Let w be a word over Σ, and c a Boolean

expression. We show that [[ϕ W ψ]]c is a fixed point of G−
c by proving

ϕ W ψ
@≡ X0 (ψ ∨ (ϕ ∧ X (ϕ W ψ))).

w |=c X0 (ψ ∨ (ϕ ∧ X (ϕ W ψ)))
⇐⇒ if there exists j ≥ 0 such that w0..j0 is a clock tick of c then

wj0.. |=c (ψ ∨ (ϕ ∧ X (ϕ W ψ)))
⇐⇒ if there exists j0 < |w| such that w0..j0 is a clock tick of c then either

wj0.. |=c ψ or wj0.. |=c (ϕ ∧ X (ϕ W ψ)))
⇐⇒ if there exists j0 < |w| such that w0..j0 is a clock tick of c then either

wj0.. |=c ψ or (wj0.. |=c ϕ and if there exists j1 < |w| such that j1 > j0
and wj0+1..j1 is a clock tick of c then wj1.. |=c (ϕ W ψ))

⇐⇒ if there exists j0 < |w| such that w0..j0 is a clock tick of c then either
wj0.. |=c ψ or (wj0.. |=c ϕ and if there exists j1 < |w| such that j1 > j0
and wj0+1..j1 is a clock tick of c then for all 0 ≤ k < |wj1..| such that
wj1+k c and wj1+k.. |=/c ϕ, there exists 0 ≤ j ≤ k such that wj1+j c
and wj1+j.. |=c ψ)

⇐⇒ for all 0 ≤ k < |w| such that wk c and wk.. |=/c ϕ, there exists
0 ≤ j ≤ k such that wj c and wj.. |=c ψ

⇐⇒ w |=c ϕ W ψ

– We have shown that [[ϕWψ]]c is a fixed point of G−
c . We now show that

[[ϕWψ]]c is the greatest fixed point. That is, given S is an arbitrary fixed
point of G−

c we show that [[ϕWψ]]c ⊇ S. Let S be a fixed point of G−
c .

That is, S is a set of empty, finite, or infinite words such that w ∈ S iff
w |=c X0(ψ ∨ (ϕ ∧ XS) where w |=c S means w ∈ S. We have to show that for
any word w, we have that w ∈ S implies w |=c ϕWψ.

Let w be such that w ∈ S. Then w |=c X0(ψ ∨ (ϕ ∧ XS). Assume towards
contradiction that w |=/c ϕWψ. Let J = {j0, j1, . . .} be the set of all j’s such
that wj c with 0 ≤ j0 < j1 < . . . < |w|. Note that |J | may be empty,
finite or infinite. Then, w |=/c ϕWψ implies there exists a tick point jk such
that wk.. |=/c ϕ and for every tick point ji ≤ jk we have that wji.. |=/c ψ. Thus
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wjk.. /∈ S (since wjk .. |=/c X0ψ and wjk.. |=/c X0ϕ). Therefore, wjk−1.. /∈ S (since
wjk−1.. |=/c X0ψ and wjk−1.. |=/c X0XS). For the same reason wjk−2.. /∈ S. By
induction we can show that for any ji ≤ jk we have wji.. /∈ S. In particular
wj0.. /∈ S and so w = w0.. /∈ S as well, contradicting our assumption.

4.2 The Other Goals

Below we state that the semantics given here preserve the goals met in [6]. The
work in [6] provides detailed explanations and motivations of the goals, as well
as relation to other works. Here we provide a succinct motivation to the less
obvious goals. The proofs are a slight modification of those of [6] and are given
in the full version of the paper.

1. When singly-clocked, the semantics should be that of the projection view.
Motivation:
When only a single clock is involved we would like that a clocked formula
ϕ@clk hold on a word w if and only if the unclocked formula ϕ holds on a
word w|c (i.e. on the word obtained from w by projecting onto those states
where clk holds).�

Proposition 1. For any ltl formula ϕ, a Boolean expression c and an
infinite, finite, or empty word w, the following holds:

w |=c ϕ if and only if w|c |= ϕ

The following is an immediate consequence of this.

Corollary 1. for an ltl formula ϕ, and a word w.

w |=t ϕ if and only if w |= ϕ

2. Clocks should not accumulate.
Motivation:
In many hardware designs, large chunks of the design work on some main
clock, while small pieces work on a secondary clock. Rather than require the
user to specify a clock for each subformula, we would like to allow clocking
of an entire formula on a main clock, and pieces of it on a secondary clock, in
such a way that the outer clock (which is applied to the entire formula) does
not affect the inner clock (which is applied to one or more sub-formulas).
That is, we want a nested clock operator to have the effect of “changing the
projection”, rather than further projecting the projected word.�

Proposition 2. For any ltl
@ formula ϕ and Boolean expressions c1 and

c2 the following holds:

ϕ@c1@c2
@≡ ϕ@c1
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3. The clock operator should be its own dual.
Motivation:
Previous definitions of clock operators [1,4] introduces two kids of clocks, a
weak clock and a strong clock (one is the dual of the other). Each of the
definitions had drawbacks as we elaborate on items 4 and 5 below.�

Proposition 3. For any ltl
@ formula ϕ and Boolean expression b the fol-

lowing holds:

(¬ϕ)@b
@≡ ¬(ϕ@b)

4. For any atomic propositions p and q, there should be a clocked version of
(Fp) ∧ (Gq) that is meaningful on paths with a finite number of clock ticks.
Motivation:
In Sugar2.0 [4], a strongly clocked formula requires the clock to “tick
long enough to ensure that the formula holds”, while a weakly clocked
formula allows it to stop ticking before then. Thus, for instance, the formula
(Fp)@clk! (which is strongly clocked) requires there to be enough ticks of
clk so that p eventually holds, whereas the formula (Fp)@clk (which is
weakly clocked) allows the case where p never occurs, if it “is the fault
of the clock”, i.e., if the clock ticks a finite number of times. For the dual
formulas we get that (Gq)@clk! holds if the clock ticks an infinite number
of times and q holds at every tick, while (Gq)@clk holds if q holds at every
tick, no matter how many there are. A disadvantage of this semantics is
that the formula (Fp) ∧ (Gq) cannot be satisfactorily clocked for a finite
word, because ((Fp) ∧ (Gq))@clk! does not hold on any finite word, while
((Fp) ∧ (Gq))@clk makes no requirement on p on such a word.�
Under the semantics given here we get that ((Fp) ∧ (Gq))@c, holds if p holds
for some state and q holds for all states on the projected word, which is
indeed the intuitive desired semantics.

5. For any atomic proposition p, if (Fp)@clk holds on a word, it should hold
on any extension of that word.
Motivation:
In ForSpec [1], a strongly clocked formula requires only that the clock
tick at least once, after which the only role of the clock is to define the
projection of the word onto those states where the clock ticks. A weakly
clocked formula, on the other hand, holds if the clock never ticks; if it does
tick, then the role of the clock is the same as for a strongly clocked formula.
Thus, the only difference between strong and weak clocks in ForSpec is on
paths whose projection is empty. This leads to the strange situation that
a liveness formula may hold on some word w, but not on an extension of
that word, ww′. For instance, if p is an atomic proposition, then (Fp)@clk
holds if there are no ticks of clk, but does not hold if there is just one tick,
at which p does not hold.�
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Proposition 4. For Boolean expressions b, clk and c, a finite word w, and
an infinite or finite word w′, the following holds:

w |=c (Fb)@clk =⇒ ww′ |=c (Fb)@clk

6. For any clock c, two equivalent ltl formulas should remain equivalent when
clocked with c.
Proposition 5. For ltl formulas ϕ and ψ, and a Boolean expression c, the
following holds:

ϕ ≡ ψ =⇒ ϕ@c
@≡ ψ@c

7. Substituting subformula ψ for an equivalent subformula h should not change
the truth value of the original formula.

Proposition 6. If ψ is a subformula of ϕ, and ψ′ @≡ ψ, then the following
holds:

ϕ
@≡ ϕ[ψ ← ψ′]

where ϕ[ψ ← ψ′] denotes the formula obtained from ϕ by replacing subfor-
mula ψ with ψ′.

8. For every word, the truth value of ltl
@ Formula (2) given in the introduc-

tion should be the same as the truth value of ltl Formula (3) given in the
introduction.
Proposition 7. For every word w,
w |=t (G(p → Xq))@clka ⇐⇒ w |= G((clka ∧ p) → X(¬clka W (clka ∧ q)))

4.3 Rewrite Rules

In [6] it was shown that the clock operator does not add expressive power. In fact
there are rewrite rules that given an ltl

@ formula ϕ return an equivalent ltl

formula. The rewrite rules form a recursive procedure T clk(), whose application
starting with clk = t results in an ltl formula with the same truth value in
context t. The rewrite rules are given below. Note that by Claim 4 it suffices to
provide rewrite rules for X!0 and X! instead of X!m.

– T clk(b) = (¬clk W (clk ∧ b))
– T clk(b!) = (¬clk U (clk ∧ b))
– T clk(¬f) = ¬T clk(ϕ)
– T clk(ϕ ∧ ψ) = T clk(ϕ) ∧ T clk(ψ)
– T clk(X!0f) = (¬clk U (clk ∧ T clk(ϕ)))
– T clk(X!ϕ) = (¬clk U (clk ∧ X!(¬clk U (clk ∧ T clk(ϕ)))))
– T clk(ϕ U ψ) = (clk → T clk(ϕ)) U (clk ∧ T clk(ψ))
– T clk(ϕ@clk1) = T clk1(ϕ)

Proposition 8. Let ϕ be any ltl
@ formula, c a Boolean expression, and w a

word.
w |=c ϕ if and only if w |= T c(ϕ)

The proof of this proposition as well as some additional rewrite rules are given
in the full version of the paper.
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5 Conclusions

In [6] a relatively simple definition of ltl augmented with a clock operator
was given. The augmented logic is suitable for specifying properties in multiply-
clocks designs [5, Chapter 14] and was adopted by the IEEE standard psl. In
this definition, the only role of the clock operator is to define a projection of the
word, and it is its own dual. This definition was shown to answer a list of design
goals. However it does not preserve the least fixed point characterization of the
until operator. The characterization of until as a least fixed point is not merely
a theoretical issue — it has practical aspects as some tools depend on it.

In this work we fix this problem with a minor addition to the semantics
of [6]. The addition introduces an exponent to the next operator. The key of this
solution is that by taking the zero exponent we get the operators X!0 and X0

which can be thought of as alignment operators, such as the ones in ecbv [9],
taking us to the closest clock tick, if the current cycle is not a clock tick.

The suggested semantics can be seen as a way to abstract the word when mul-
tiple clocks are involved. The clock operator @ defines the current clock context,
so that the temporal operators move according to this context. For example,
(ϕUψ) demands that ψ hold on some future tick of the context clock, and ϕ
holds on all ticks preceding the tick where ψ holds. The alignment operators X!0

and X0 allow you to move to the closest tick of a clock, which is needed in the
event of a clock switch.

The resulting semantics meets all the design goals listed in [6] and preserves
the least and greatest fixed point characterization of the strong and weak until
operators, respectively.
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Abstract. SystemC is a popular language used in modeling system-
on-chip implementations. To support this task at a high level of ab-
straction, transaction-level modeling (TLM) libraries have been recently
developped. While TLM libraries are useful, it is difficult to capture
the reactive nature of certain transactions with the constructs currently
available in the SystemC and TLM libraries. In this paper, we propose
an approach to specify and verify reactive transactions in SystemC de-
signs. Reactive transactions are different from TLM transactions in the
sense that a transaction can be killed or reset. Our approach consists of:
(1) a language to describe reactive transactions that can be translated to
verification monitors, (2) an architectural pattern to implement reactive
transactions, and (3) the verification support to verify that the design
does not deadlock, allows only legal behaviors and is always responsive.
We illustrate our approach through an example of a transactional mem-
ory system where a transaction can be killed or reset before its comple-
tion. We identify the architectural patterns for reactive transactions. Our
results demonstrate the feasibility of our approach as well as support for
a comprehensive verification using RuleBase/NuSMV tools.

1 Introduction

Transaction-level models are useful in SystemC [1] to understand a system by
abstracting the low-level bus signaling details. In this paper, we build upon this
work by extending the transactions to support reactive features that are com-
monly found in frameworks such as Esterel [2]. Reactivity can provide one with
the capability to kill or reset a transaction before the transaction completes. This
is analogous - but for transactions - to the reactive features for processes that
were present in the earlier versions of SystemC through the “wait” and “watch-
ing” syntactic constructs [3]. The “watching” constructed was later dropped
from SystemC due to lack of use. However, as the libraries evolve and as the role
of TLM models is increasing, we believe that these constructs would find greater
use and simplify the design migration to higher levels of abstraction.

This investigation of specification and verification of reactive transactions was
motivated by an experiment to model and verify a transactional memory using
interaction descriptions and SystemC. The fundamental difference between the
transactional memory model and the typical TLM models built with SystemC is
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the following: in the transactional memory, a process that initiates a transaction
can be reset before the transaction completes. Then, the pending transaction
could be reset or not, depending on what the desired outcome is. Unfortunately,
it is not possible to capture this kind of behavior with the current SystemC
TLM libraries. Therefore, we had to re-think what a transaction is and what
are the syntactical and architectural features that are necessary to capture the
reset and kill behavior, and how to use the formal verification to guarantee the
implementation of the transaction specifications.

We found three challenges for specifying implementing and verifying the re-
active transactions with SystemC. The first one is to specify the transactions
using the property specification languages. Because many events can potentially
happen at the same time, the properties can be very tedious to specify. From
our experience, as a specification can take many simultaneous events at one
time, and because the properties need to describe every possible scenario, the
properties become very large as one basically has to compute and write down
the product of all possible event combinations for the TLM events. The second
challenge is that it is difficult to implement reactive features within SystemC
TLM models. This is because there are no do/watching statement we can use
to capture the reactive behaviors and the necessary transaction handlers. Also,
since the transaction events are atomic rendezvous in the specification and hand-
shakes in the implementation, the implementation of the reactive transactions
can be challenging as mismanaging the handshakes with the resets could easily
cause synchronization problems such as deadlocks. Finally, the third challenge
is to have an efficient SystemC verification framework that support the reac-
tive transactions as a first-order construct and also includes the capability of
verifying liveness properties.

In this paper, we present an approach to specify and reason about the reactive
transactions by defining a language that will capture the transactions, and a
tool to translate these specifications into verification monitors. While one could
argue that such transactions could be specified using PSL [4], we believe the
task can be slightly tedious as the properties become long and complex. This is
evidenced by the continuing evolution of PSL into more elaborate higher-level
design languages [5] where the specification can be a bit more high-level, making
the specification easier to write. In that spirit, we use a specification language
that is inspired by the process algebraic framework of CRP [6]. Our framework
enables the specification of rendezvous communications a la CSP, as well as the
reactive features provided by the Esterel constructs. We extend those ideas to
add the features that are necessary for transactions.

The contributions described in this paper are as follows. First, we define a
high-level language inspired by CRP to describe reactive transactions and their
compositions as a first-order construct. Second, using the standard syntax, we
provide a TLM extension in the form of an architectural pattern to capture the
reactive transactions, with the cascading of resets. Third, we believe are the first
to formally check TLM models with respect to transaction specifications rather
than generic properties.
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The rest of the paper is organized as follows. In the next section, we present the
related work in monitor-based verification and SystemC verification. In Section
3, we describe a subset of the Transactional Memory example that motivated
this work, and the problems and challenges of specifying and verifying reactive
transactions. In Section 4, we describe how to specify reactive transactions, with
the definition of the syntax and semantics of the specification language. In Sec-
tion 5, we describe how to implement the reactive transactions in SystemC, and
then present our experiments and results in Section 6, followed by a discussion
and the conclusion.

2 Related Work

We broadly categorize the related work as being the specification of protocols
and the generation of verification monitors, as well as the verification of SystemC
designs. In some sense, this work bridges transaction specification with SystemC
verification by using the specification of transactions for TLM verification.

2.1 Protocol Monitors

In the context of system-level design, a transaction is a concept that is a slight
bit above the components. We need to capture the transactions spanning accross
multiple components in the system into properties that can be used for verifi-
cation. Specification languages do not clearly provide the necessary constructs,
since there is no notion of global transactions.

To address this gap, there have been several attempts at describing trans-
actions as high-level entities, at the level above the components. Seawright et
al. [7] proposed an approach to describe the transaction that can happen at
an interface using regular expressions. Such a protocol description can be used
to generate interface monitors from the regular expressions. Siegmund et al. [8]
followed this approach and showed how one can synthesize bus interface circuits
from the regular expressions. The approach has the advantage that, instead of
describing the producer and the consumer, the description models the protocol
as a monitor that observes a set of variables. To describe the monitor, their
language has four operators: “serial”, “parallel”, “repeat” and “select”. A syn-
thesis algorithm is used to generate the state machines for both the producer
and the consumer. Although it greatly simplified complex hardware design, one
of the limitations is that it can be difficult to specify and synthesize the reactive
features (kill/reset) with the available operators.

Several more interesting contributions followed. Oliveira et al. [9] extended
monitor-based specification languages by introducing storage variables, a pipeline
operator, and also improved the algorithms for generating the protocol monitor.
However, one drawback of their approach is the lack of formal semantics. Shimizu
[10] addressed part of the problem by using a framework of concurrent guarded
transitions, and showed how to model check the descriptions for useful properties.
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Interface descriptions and monitors are now widely used for both documenta-
tion and validation [4] [11]. Many engineers use the PSL language (and extensions
[5]) to describe the interfaces, and several tools exist to generate protocol moni-
tors for simulation. There exist commercial tools that generate protocol monitors
from such descriptions for simulation or verification, notably FoCs [12]. In this
context, we see two opportunities stemming from this body of work: (1) to eas-
ily and elegantly capture the reactive features in the transactions, and (2) to
have a compositional analysis from transactions to interface specification, which
challenging to achieve with the reactive features.

2.2 SystemC Verification

The goal of the Transaction-Level Modeling (TLM) with SystemC [13] is to de-
fine a model where the details of the RTL bus communications are abstracted
away either (1) instead of going through signal transitions, have a component
directly call the method of another component, or (2) having the components
communicating through buffered FIFO communications. In both cases abstract
data types can also be used to bundle low-level bus data types into one chunk of
data. The benefit of using a TLM model is that the simulator does not need to
spend cycles on simulating all the RTL bus synchronizations, thus the design will
simulate much faster. Typically, a SystemC TLM model simulates 2-3 orders of
magnitude faster than an “equivalent” RTL model. There exists a number of ver-
ification approaches for both RTL and TLM models written in SystemC. These
approaches support TLM models in the sense that they support the syntactic
constructs found in the models, which include function calls, access to FIFO
buffers, and reading and writing signals. However, it is difficult to verify a TLM
model because (1) the model can be non-deterministic due to the shared variable
communications within the channels, and (2) the number of elements queued in
a FIFO buffers can grow without a bound. Thus, all existing approaches impose
restrictions on the input syntax to avoid these problems.

The approach defined by Habibi et al. [14] uses a specification format based
on PSL sequences or basic Message Sequence Charts, augmented with clocking
guards. The properties range over the signals and the buffers in the architec-
ture. A property is translated into a monitor, which is an automaton with fail,
in-progress and accept states. Similarly, a SystemC design is translated into au-
tomaton and then the design and the property automata are composed together.
During the composition, the ASML composition tool will expand the state ma-
chine and check that the monitor is always asserted. Similarly, the Lussy tool
suite developed by Moy et al. [15] translates SystemC modules into an inter-
mediate automaton based on the Lustre formalism. This approach also uses
synchronous observers for verification. In this work, the notion of a transac-
tion matches the SystemC TLM definitions, where the bus transactions which
are abstracted into simple function calls. These function calls are then mapped
to architectural blocks that capture the TLM communication through simple
minimal handshakes. The approach by Kroening [16] provides efficient SystemC
verification by using by translating a SystemC model to a SMV description,
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using predicate abstraction and other techniques. However, here again there is
no explicit notion of a transaction.

3 Motivating Example: Transactional Memory

Figure 1 shows an example of how modules, channels and buffers are connected
in the transactional memory system. There are three components with their own
threads: the program segment, the controller and the cache. There are also two
channels, which convert a SystemC TLM method call into a request/response
handshake through buffers.

Cache

channel
Ctrl

reset

Prog
segment

read()

write()
req_buf1

rsp_buf1

Controller

channel
Cache req_buf2

rsp_buf2

get_value()

write_value()

addr_in_cache()

Fig. 1. Simplified example architecture for the Transactional Memory model

The program segment starts a read() or a write() transaction with a
method call to the channel. Figure 2 depicts a scenario for the interactions for
a read transaction. The channel converts the call to a request which it places
on th req buf1 buffer. The controller will pick up the request, and if it is a
read request it is going to check if the address is in the cache by calling the
addr in cache method of the cache channel. If it, then it will get the value by
calling the get value method. If it is a write request, it will just call the write
value method. The methods of the cache channel will generate a request to the
req buf2 buffer. The cache will then process the request and place the response
on the response buffer rsp buf2, and the response will eventually make its way
to the program segment that will eventually pick it up through the value re-
turned by the original method call. Note that for a read or write transaction,
there is at least one sub-transaction that will be called the controller and the
cache.

The reset signal is used to reset the program segment when there is a conflict
on the cache. The program segment can be reset at anytime while a transaction
is in progress. The main challenge in this example is the following: when the
program segment is reset, what happens with the pending transactions? Should
they complete or be killed? It is the responsibility of the designer (or the synthesis
tool) to decide what the desirable outcomes in such situations are. However,
in the current SystemC TLM standard, there is no support to handle these
situations. Therefore, defining the required control signals and communication
protocols to support these situations, both for specification and verification, is
the central problem we are addressing in this paper.
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Fig. 2. Message exchange and scope for a read transaction

4 Specification of Reactive Transactions

We capture a transaction as a first-order entity, in the sense that it can be
specified, it has a context, control signals and that it can describe behavior
which can be distributed over many components in an architecture. Figure 3(a)
depicts the “abstract” interface of a transaction: there is a start and a done
signal, both being used as the normal and entry and exit event of the transaction.
As its name indicates, the kill signal is used to terminate a transaction. The
status is used by other components to observe the status of the transaction.
The possible statuses are “ready”, “done”, “in progress” and “killed”. Figure
3(b) and Figure 3(c) shows the abstract interface behavior for a terminating and
a reactive transaction. The start and done signals are abstract in the sense that
they can be mapped to given events in the system, such as specific reading a
value for a buffer. In between and start and the completion of a transaction can
be events, operations, and sub-transactions.

The specification language we use to capture transactions is rooted in CRP,
but we augment it to capture the transactions as first-order constructs. The

start transaction

kill status

done

(a)

ready inprogress

done

start?/inprogress

done!/done

kill?/killed

(b)

killed
/ready

inprogress

(c)

start?/inprogress

kill?/ready

done!/ready

ready

/ready

Fig. 3. Interface for Reactive Transaction: (a) control and status signals (b) normal
transaction (c) reactive transaction
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formal foundation of CRP [6] is composed of CSP [17], where we borrow the
rendezvous communication, with the synchronous foundation in Esterel with its
reactive features [2]. In the same fashion, we will define the semantics of our
specification language with a semantics domain composed of an environment,
which is a set of events, rendezvous actions, pending labels and status flag, and
a set of state variables. The semantics of a specification description is defined
through a transition system which is induced by operational semantics rule of
the form:

(〈stmt〉, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(〈stmt′〉, σ′)

where:

– stmt is a specification statement, meaning the location of the program
counter for the specification, and stmt′ is the program text with the location
of the program counter after the transition,

– σ and σ′ are the states before and after the reaction respectively,
– E is the set of events in the environment before taking the transition
– L is the set of pending labels in the environment before taking the transition,
– E′ is the set of events emitted by this transition,
– A′ is the set of rendezvous labels agreed for this transition,
– L′ is a set of pending labels, containing the pending labels after taking the

transactions,
– b is a boolean flag indicating if the taken transition terminates (blocks) the

instantaneous reaction or not.

Figure 4 shows the main statements in the language, and Table 1 and 2
show the functions defining the semantics for the transaction and reactive state-
ments respectively. The statements to specify the behaviors of transactions are
exec start and exec done, where exec start t will denotes the beginning of
a transaction t, synchronizing on rendezvous start(t), and posting a label pend-
ing(t) in the environment (to remember that transaction t is pending). Similarly,
statement exec done t denotes the completion of t, and synchronizes on ren-
dezvous done(t), also removing the pending label t from the environment. The
exec start t and exec done t statements are meant to be paired with rv rcv
t and rv snd t rendezvous statements. The exec statements are to be used by
the master process (the one initiating the transaction), and rendezvous state-
ments are used by the slave process (the one receiving the transaction). The only
difference between the exec and the rendezvous statement is the exec statements
post and remove a transaction labels in the environment.

The rendezvous statements work like CSP rendezvous, with a slight variation
to accommodate the synchrony hypothesis. The synchrony hypothesis, a concept
defined in Esterel [2], is that at a given instant, all processes synchronously
execute a sequence of statements instantaneously (up until the next pause). The
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rv snd a and rv rcv a statements synchronize on the shared action a only if
that action is not in the preceding environment, and is present only in the output
environment. This is to avoid the possibility of a rendezvous being taken twice
during a synchronous reaction (synchronous as in synchrony hypothesis).

The watching statement is used to monitor events which will interrupt state-
ment stmtwhen bexpr evaluate to true. When the condition evaluates to false, the
watch computation will keep proceeding along stmt and its derivative (stmt can be
a complex statement) until the termination of stmt. If the condition is true, then
the computation of stmt will terminate immediately, and all the pending transac-
tions will be killed, and L′ will be empty. In other words, during a watch condition,
if there is a pending transaction label, the transaction will be killed - including all
transactions started by stmt. This ability to keep track of what transactions has
been started, and be able to kill them in the event to a watch statement is the
main feature of the reactive transaction specification language. This is the same
as the hidden signals that are found in the composition operators (such as prefix)
in process algebras, and used to simplify specifications. Note that it is possible to
define scopes for the set L of pending labels to follow the hierarchical structure of
the specification. But this leads to much more complicated semantic rules, which
we will omit for the sake of space and simplicity.

The rest of the language borrows heavily from CRP, with the wait, emit, ren-
dezvous, sequencing, choice, guarded actions and pause statements. The emit
statement posts an event e into the set E′, while a wait expression is evaluated
in the incoming environment E. The pause statement terminate an instantaneous
reaction. The language also has constructs for parallel compositions, arithmetic
and Boolean expressions, and usual control flow statement etc. The syntax se-
mantics of these and other statements in the language follow from the definitions
Esterel and CSP with the addition of the transformation for the synchrony hy-
pothesis, but are out of the scope of this paper.

stmt ::=
exec_start t /* start transaction t */

| exec_done t /* wait for transaction t to be done */
| rv_snd a /* rendezvous at a (can send data) */
| rv_rcv a /* rendezvous at a (can receive data) */

| do { stmt } watching bexpr /* do/watching stmt */
| G(bexpr) {stmt} [] G(bexpr) {stmt} /* guarded selection */
| stmt |C| stmt /* choice */
| stmt ; stmt /* sequence */

| emit e /* emit event e */
| wait bexpr /* wait for given boolean expression */
| pause /* wait for a moment */

Fig. 4. Syntax of the specification language
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Table 1. Semantics for the Transaction Statements

(rv-snd-1)
a /∈ A

(rv snd a, σ)
〈∅,a,L,1〉−−−−−−→
〈E,A,L〉

( , σ)

(rv-snd-2)

(rv snd a, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(rv snd a, σ)

(rv-rcv-1)
a /∈ A

(rv rcv a, σ)
〈∅,a,L,1〉−−−−−−→
〈E,A,L〉

( , σ)

(rv-rcv-2)

(rv rcv a, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(rv rcv a, σ)

(exec-start-1)
start(t) /∈ A

(exec start t, σ)
〈∅,start(t),{L∪pending(t)},1〉−−−−−−−−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

(exec-done-1)
done(t) /∈ A

(exec done t, σ)
〈∅,done(t),{L\pending(t)},1〉−−−−−−−−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

(exec-start-2)

(exec start t, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(exec start t, σ)

(exec-done-2)

(exec done t, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(exec done t, σ)

5 Verifiable Implementation in SystemC

In this section we discuss the following challenges in the verifiable implementa-
tion of reactive transactions:

1. How to have an implementation of reactivity through a simple architectural
pattern that is generalizable for reactive transactions, and

2. How to correlate the atomic events in a transaction specification to the non-
atomic handshakes in the SystemC code.

5.1 Reactivity Through Exceptions and Architectural Patterns

To implement reactivity within TLM models, we need to use the reactive features
that were removed from SystemC a short time ago. These watching-and-waiting
statements have been using exceptions to throw special conditions designating
reset conditions [3]. For this purpose, we follow a similar pattern and we intro-
duce a new wait macro, which we call MYWAIT :

#define MYWAIT(event_expr, reset_cond) \
wait(event_expr); \
if (reset_cond) \
throw 1;
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Table 2. Semantics for the Reactive Statements

(do-watching-1)

σ �|= bexpr (stmt, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(stmt’, σ′)

(do {stmt} watching (bexpr), σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(do {stmt’} watching (bexpr), σ′)

(do-watching-2)

σ �|= bexpr (stmt, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
( , σ′)

(do {stmt} watching (bexpr), σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
( , σ′)

(do-watching-3)
σ |= bexpr

(do {stmt} watching (bexpr), σ)
〈∀t∈L:kill(t),∅,∅,〉−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

The macro defines a wait statement, which will wait on a given list of events.
This will be a regular transaction event, or a reset event. The second parameter is
the reset condition, and it identifies which event condition means the transaction
has been reset, and if this condition holds the macro will throw an exception
(here just an integer). An example of how to use this macro is as follows:

MYWAIT( (clk.posedge_event() | reset.posedge_event()),
(reset.event() && reset==1) );

where the event expression is either a clock up-tick or a reset up-tick, and the
reset expression a reset event and the reset signal to one. The MYWAIT macro
is meant to be used inside a try/catch statement. Here is an example of a process
which invokes a write transaction on a ctrl channel:

try {
ctrl->write(1,1)

} catch (int reset_code) {
ctrl->kill__write();

}

When a reset event occurs, the exception will be thrown from inside the
write() method implementing the transaction inside the ctrl channel. The ex-
ception will be caught by the outer handler– not in the channel but in the com-
ponent. In this case, the process can choose to kill the transaction in the server
by calling the kill write() method on the channel to send the kill signal to
the server.

In this case, the handling of the reactivity can be done inside the component,
but in general an architectural pattern with a transaction controller and a sepa-
rate controller helper to handle the reactivity can be used. Figure 5 shows the ar-
chitectural pattern to use to separate the reset conditions from the regular TLM
processing. A controller processes transactions and dispatches sub-transactions.
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pending__t2
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kill__t1

start__t1

done__t1

start__t2

done__t2

kill__t2

Fig. 5. Architectural pattern to propagate the transaction kills

With the architecture on the figure, assume a situation where a transaction t1
is started, followed transaction t2 being started by the controller, t2 being nec-
essary to complete t1. When t2 is started, signal pending t2 is sent to the
controller to tell that t2 is pending. If t1 is killed while t2 is pending, then from
pending t2 the controller helper will go ahead and kill t2.

This pattern is useful when a controller helper can process and keep track
of all the simultaneous transactions. Then, the controller it does not have to
be concerned about keeping track of which sub-transactions to kill, matching
the idea the designer has when using the transaction description algebra. An
underlying question is how to implement this controller helper.

5.2 Non-atomicity of Rendezvous and Kill Handlers

In the specification, a rendezvous is atomic. However, in the SystemC TLM
implementation, a rendezvous is not atomic but a handshake. The master com-
ponent synchronizes with the slave (also called the transaction server - or just
server) through a method call that leads to an exchange using a TLM FIFO
buffer. Until the slave has picked up the data from the buffer, the exchange can-
not be considered done, but only in progress. In that sense, the challenge here
is implementing the transactions with the reactive features is to manage the
kills that occur during the handshakes that are in progress. When a kill occurs
during that time, there has to be special conditions to correlate the non-atomic
exchange to the atomic exchange in the specification.

Figure 6 shows the scenarios that can occur when kill happens during a hand-
shake. Each of these scenarios requires a specific handling strategy which will
make sure the buffers are emptied and the transaction in the slave is cleanly
killed. The first case, illustrated Figure 6(a), is when t2 gets killed before it
started; this assumes that the server of t2 will be able to eventually unblock and
pick up the request from the buffer, see the kill t2 signal to be asserted, and
then thus discard the request:

if ( pending__t2 and ready__t2 and full(t2_req_buf) ) {
kill__t2 = 1;
wait_until empty(t2_req_buf);
kill__t2 = 0;

}
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Fig. 6. Scenarios for handshakes with kill: (a) request posted but slave has not picked
up yet, (b) slave is processing transaction, (c) slave is done but master has not picked
up response yet

The second scenario is when t2 terminates at the same time it gets killed. In
that case, the handler might need to pick up and discard the response:

if (pending__t2 and in_progress__t2_) {
kill__t2 = 1;
wait_until ready(t2) or kill(t2) or done(t2);
kill__t2 = 0;
if (full(t2_rsp_buf))
get(rsp_buf)

}

The third scenario is when t2 is done serving the transaction, but the master
has not yet picked up the response from the buffer. Then, the handler just picks
up and discards the response from the buffer:

if (pending__t2 and ready__t2 and not full(t2_rep_buf)) {
assert( full(t2_rsp_buf) );
get(t2_rsp_buf);

}

We believe that, the transaction interfaces defined in our reactive transac-
tion framework gives the tools to implement the handling strategies for reac-
tive transactions. However, it is the responsibility of the designer to make sure
there are no deadlocks and de-synchronization situations in the design. While
we provide the signals and the patterns, correctly implementating the transac-
tion controllers can be a challenging task. In that context, it is very valuable to
have the verification support to be able to formally prove the correctness of the
implementation.

6 Experiments and Results

Our verification setup is to use monitor-based model checking, where a monitor
will check a SystemC component for any unallowed behaviors. Furthermore, we
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also use temporal logic formulas to ensure no deadlocks or stalls are reached. To
convert a specification description into a verification monitor, we designed and
implemented a Spec Analyzer tool. The conversion from specification to monitor
directly follows the operational semantics rules, with the addition of the conver-
sion for the synchrony hypothesis. The pass about the synchrony hypothesis
is used to reduce a sequence of micro-transitions into one synchronous macro-
transition, by following the termination flag (the b in the semantic rules). The
Spec Analyzer generates a verification monitor which has a an error state which
denotes a problem in the design, as well as a special state to handle the environ-
ment assumptions (whether we are “in-transaction” or not). Furthermore, using
the Module Analyzer tool we previously presented [18], we convert the SystemC
to a transition system described in an SMV file.

For the example, we implemented a simplified version of the transactional
memory in SystemC with the reactive transactions library. Figure 7 shows the
structure of the system we implemented and verified. The structure is the same
as the one in Figure 1 with the addition of the reactive features. The program
segment implements reactivity with a try/catch and takes care of the pending
transactions in its catch handler. For the controller, we use the pattern with the
controller helper as described in the previous section.

req

rsp

Prog
segment

req

rsp
channel

Ctrl
channel
Cache

reset

read()

write()

kill__write()

kill__read()

Controller
kill__read
status__read

status__write
kill__write

Controller
Helper

Cache

write_value()

get_value()

addr_in_cache()

pending__get_value
pending__write_value
pending__addr_in_cache

kill__write_value
kill__get_value

kill__addr_in_cache
status__read_value
status__write_value

status__addr_in_cache

Fig. 7. Reactive architecture for the simplified Transactional Memory model

We have verified the design both at the system-level and at the component
level. At the system-level, the global specification is an infinite sequence of read
or write transactions that can be reset and restarted. We derived local component
specifications from the global transactions for component-level verification.

Figure 8 lists the specification for the controller, which reads as follows:
the controller will first wait for a rendezvous on either a read start or
write start transaction. These transactions are to be initiated by the pro-
gram segment using exec statements. Then, if controller picks up a read or a
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while (true) {
rv_rcv read__start |C| rv_rcv write__start ;
G( read__start && !read__kill ) {

do {
exec_start addr_in_cache;
exec_done addr_in_cache;
exec_start get_value;
exec_done get_value;
rv_snd read__done

} watching read__kill__posedge_event
} [] G( write__start && !write__kill ) {

do {
exec_start write_value;
exec_done write_value;
rv_snd write__done

} watching write__kill__posedge_event
} [] G( (!(read__start && !read__kill )) &&

(!(write__start && !write__kill)) ) {
// other guards are false

};
}

Fig. 8. Specification for the Controller

write transaction and it was not killed at the same instant, it will proceed on
it; if the transaction was killed it will discard the request go back to the ren-
dezvous. When the controller processes the read transaction, it will execute two
sub-transactions and complete with a done rendezvous - all this while watching
the kill read condition. If a kill read occurs, the controller shall return to the ini-
tial rendezvous, and the pending transactions will get killed by the combination
of exec and watching statements. A write transaction works similarly. Note that
the controller can wait for an arbitrary amount of time between the rendezvous.

Table 3 lists the verification results for the example using NuSMV 2.4.3. For
each run, the property we verify are the following:

1. Monitor assertions: AG !(monitor.state==ERROR)
This guarantees all the behaviors of the implementations are permitted by
the transaction specification;

2. C++ assertions: AG !(component.ERR)
When an assertion inside a C++/SystemC module fails, it will set the ERR
flag. This is often used to monitor the conditions inside the modules.

3. Liveness assertions: AG AF trans starts or AG EF trans starts
The liveness property specifies that we can always eventually start a new
transaction, or there always is a path leading to the start of a new trans-
action, depending on how strong the property has to be. This will prove
absence of stalls or deadlocks with respect to those events and the branch-
ing conditions.
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The verification times for all the properties are compounded in the entries of
Table 3. The transaction channels are inlined inside the SystemC components.
To keep track of transactions implemented through method calls, start and done
events are added at the boundary of methods calls. We also currently limit the
sizes of the TLM buffers to one unit only. The verifiation times are reasonable,
and in line with the verification times for other SystemC verification frameworks.
However, we cannot fairly compare our numbers with the numbers from other
verification frameworks because the other frameworks do not capture the reactive
transactions as we do, thus the specification is different. As for the numbers in
the table, one can notice that the verification of the Controller + Controller
Helper takes significantly more time and space than for the other components.
This is because the controller interacts with all components - thus all buffers are
there - and its environment model has many constraints.

Table 3. Verification results (with NuSMV)

Configuration Time (sec) Memory (KB)
full system 671 102864

prog segment 41 19168

controller (+ controller 483 97368
helper)

cache 131 40300

Note that we did not prove the compositionality of the specification, and this
is outside the scope of this paper. The system-level verification is important to
prove that the reset of nonatomic rendezvous avoids all integration problems. In
our case, we found several integration bugs and this lead us of to formulate those
conditions. One of the next steps is to generalize those conditions and elaborate
a proof structure to avoid having to do the system-level verification.

7 Summary and Future Work

In this paper, we have presented an approach to specify, implement and verify
reactive transactions in SystemC. To specify the transactions, We defined a
language that implicitely keeps track of pending transaction and a watching
statement is used to abstract away the bookeeping details of propagating the
reactivity to sub-transactions (propagating the reset and kill events).

Many of the implementation efforts are spent on explicitely instantiating these
signals in an verifiable implementation pattern. Indeed, we provide the sketch of
an architectural pattern to implement the reactive transactions in SystemC, as
well as an outline of the conditions to correlate the non-atomic SystemC imple-
mentation of atomic transaction events. Our third contribution is the verification
path, currently supported by SMV-based model checkers.
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One of the broader goal of this work is to exploit the compositionality in
the transaction specifications, as well as, when possible, its reflection in the
architecture and proof structure. We believe that the style of specification we
have developed will be amenable to the decomposition and consistency checks
that are necessary for to support this example. In that context we are also
investigating using equivalence checking techniques to address the verification
problem more directly.
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Abstract. The paper presents a new approach to formal verification
of generic (i.e. parametrised) hardware designs specified in VHDL. The
proposed approach is based on a translation of such designs to counter
automata and on exploiting the recent advances achieved in the area
of their automated formal verification. We have implemented the pro-
posed translation. Using one of the state-of-the-art tools for verification
of counter automata, we were then able to verify several non-trivial prop-
erties of parametrised VHDL components, including a real-life one.

1 Introduction

Modern hardware description languages (HDL) such as VHDL or Verilog allow
digital hardware to be designed in a way quite close to software programming.
These languages offer many features whose use constitutes a challenge for the
current formal verification technologies. One of such challenges is the possibility
of parametrisation of the designed hardware components by values from a do-
main that is not bounded in advance. Parametrisation is widely used, e.g., when
creating libraries of re-usable hardware components.

In this paper, we propose a novel way of verifying parametrised hardware com-
ponents. Namely, inspired by the recent advances in the technology for verifica-
tion of counter automata, we propose a translation from (a subset of) VHDL [11]
to counter automata on which formal verification is subsequently performed. The
subset of VHDL that we consider is restricted in just a limited way, mostly by
excluding constructions that are anyway usually considered as erroneous, unde-
sirable, and/or not implementable (synthesisable) in hardware.

In the generated counter automata, bit variables are kept track in the con-
trol locations whereas bit-vector (i.e. integer) variables—including parameters—
are mapped to (unbounded) counters. When generating counter automata from
VHDL, we first pre-process the input VHDL specification in order to simplify
it (i.e. to reduce the number of the different constructions that can appear in
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it), then we transform it to an intermediate form of certain behavioural rules
describing the behaviour of particular variables that appear in the given design,
and finally we put the behaviour of all the variables together to form a single
counter automaton.

We concentrate on verifying that certain bad configurations specified by a
boolean VHDL expression (which we call an error condition) over bit as well
bit-vector variables is not reachable. We have built a simple prototype tool im-
plementing the proposed translation. Despite there is a lot of space for optimising
the generated counter automata and despite the fact that reachability analysis
of counter automata is in general undecidable [10], we have already been able to
verify several non-trivial properties of parametrised VHDL components, includ-
ing a real-life component implementing an asynchronous queue designed within
the Liberouter project (which aims at designing new network routing and mon-
itoring systems based on the FPGA technology) [13,9].
Related work. Recently, there have appeared many works on automatic formal
verification of counter automata or programs over integers that can also be
considered as a form of counter automata (see, e.g., [6,18,1,15,8,4]). In the area
of software model checking, there have also appeared works that try to exploit
the advances in the technology of verifying counter automata for a verification of
programs over more complex structures, notably recursive structures based on
pointers [3,7,2]. In this work, we get inspired by the spirit of these works and try
to apply it in the area of verifying generic (parametrised) hardware designs. We
obtain a novel, quite general, and highly automated way of verification of such
components, which can exploit the current and future advances in the technology
of verifying counter automata.

Plan of the paper. In Section 2, we introduce some basics of VHDL, we com-
ment on the VHDL constructions that we do not support, and explain the way
we pre-process VHDL for the further transformations. We also introduce the
notion of counter automata. In Section 3, we provide a translation from (simpli-
fied) VHDL to a certain form of intermediate behavioural rules. In Section 4, we
present a translation from the intermediate format to counter automata. Section
5 comments on the reachability properties that we verify and on the way we fa-
cilitate their checking. In Section 6, we discuss our experimental results. Finally,
in Section 7, we conclude and briefly discuss possible future improvements of our
approach.

2 Hardware Design and Counter Automata Basics

2.1 Hardware Design

Nowadays, most of the digital hardware development is not done on the level of
particular gates or transistors, but rather on the more abstract register transfer
level (RTL). There are several languages for RTL hardware design, also known
as hardware description languages (HDL), out of which the most widely used
are VHDL and Verilog. A design specified in such a language is an input for
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hardware synthesis tools, and also for hardware simulation or verification tools.
A process called synthesis transforms a generic RTL description of a system
to the gate/transistor level of a concrete electronic circuit description. Such
a description serves as an input for the further production of an integrated
circuit (through the so-called place&route process) or as a configuration program
for field programmable gate arrays (FPGA) if they are used to implement the
system.

We build our counter automata-based models from the RTL level description
via an intermediate behavioural model. This model cannot be created from the
gate level as on that level the parametrisation of the system is lost—all the
parameters are already instantiated. Moreover, in our model, we are only inter-
ested in the logical behaviour of the system, not in details such as propagation
delays of the gates or the set of concrete hardware elements used to physically
implement the given system.

Although VHDL and Verilog are different languages, their main expressive
means are quite similar from our point of view of building a counter automaton
model from an RTL hardware description (and running a verification on the
counter automaton). That is why, in this paper, we will discuss only the VHDL
language, which, moreover, has a better support for parametrised designs.

Hardware Design in VHDL. In VHDL [11], a more complex hardware sys-
tem is described in a modular way using components. A component is described
by a definition of its interface and its body. The interface defines the inputs and
outputs of a component as well as its parameters which can make the compo-
nent generic. The body of a component, also known as an architecture, consists
of a declaration of internal variables and a collection of the so-called parallel
statements describing the behaviour of the component.

VHDL offers two types of specifying the design of an architecture—structural
and behavioural. Within a structural description, we view a digital circuit as
a composition of objects that may be composed of other smaller objects. In
terms of the parallel statements, this approach is based on using statements of
instantiations of subcomponents and parallel assignment statements (e.g., even
<= not(a1 xor a2 xor a3);1). On the other hand, the behavioural approach
directly describes the desired functionality of a component using the parallel
statement process that is specified as a sequence of statements like sequential as-
signments or conditionals. We have to, however, note that sequential statements
in VHDL have a different meaning than in typical programming languages—the
sequence they are based on is not the execution sequence, but rather a sequence
of preferences of how to proceed under different circumstances (we will get to
this issue closer later on).

Since there is no way how to efficiently synthesise a hardware design from
complex behavioural requirements, the behavioural description is widely used
for a low-level description of parts of a system (e.g., logic functions, simple

1 From a logical point of view, a variable such as even represents a symbolic name for
the expression assigned to it only.
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registers, counters), while the structural description is used for building more
complex components or the entire system.

Transparent and Synchronous Mode. The so-called transparent and syn-
chronous modes of hardware gates substantially influence the output of the gate.
For example, let us have two gates connected in a cascade. If both gates work in
the transparent mode (such gates are known as latches) and the input changes its
value, the first gate instantly propagates the input to its output (the input of the
second gate), and the same value propagation happens at the second gate. The
result of the transparent mode is that the change of the input of the first gate in-
stantly changes the value of the output of the second gate. Conversely, if both gates
work in the synchronous mode (such gates are known as flip-flops), they propa-
gate their inputs to the output one step at a time—the change of the input values
of the first gate changes its output after one clock period, but this still does not
immediately influence the output of the second gate (its output is changed only
after another clock period). Let us add that some gates may be operated both as
latches as well as flip-flops depending on some of their control inputs.

Not Considered VHDL Constructions and Behaviour. VHDL is a very
rich specification language, and we do not cover it fully. However, most of the
restrictions that we describe below correspond to constructions which are in
theory possible, but are usually not used, represent undesirable design practices,
are often not even synthesisable, or modern synthesis tools [12,14] at least issue
warnings when they are used.

First, we do not support VHDL functions, procedures, delay information, and
asserts which serve for a test-bench specification of the designed hardware and
do not have an influence on the behaviour of the hardware.

Next, we disallow cyclic assignments in the transparent mode in a sequen-
tial description of a behaviour (e.g., q <= not(reset and not(set and q)), or
if (reset = ’1’) then a <= b; b <= a; elsif).2 Such assignments would
complicate our constructions significantly, and in practice, they are anyway un-
desirable as they lead to a possible oscillation of the signals.

We concentrate on analysing reachable stable states of hardware components
only. A stable state is a state which does not change until one or more input
variables change their values. Unstable states arise due to transition and prop-
agation delays of real gates changing their stable states (cf. Fig. 1). In general,
even when we are interested only in stable states, if we do not consider unstable
states at all, there is a risk that we will not capture flaws caused by reading
and registering unstable values. Such a flaw can be caused either (i) by a signal
path that is too long wrt. the clock frequency used, or (ii) by an asynchronous
exchange of signals between two clock domains. However, the need to deal with
the former issue is eliminated simply by taking into account the capabilities of
standard synthesis tools. These tools automatically check that the delay arising

2 A sequential gate works in the transparent mode when its output is controlled only
by the level of the input signals.
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in the longest signal path of a given circuit is safe wrt. the clock frequency used.
The latter issue is a little more complicated but it is still usually solvable by using
simple static analysis to check whether the given circuit uses proper synchroni-
sation approaches (like Gray coding) for all clock domain crossing signals [17].
Hence, below, we do not consider unstable states any further.

process (clk)
begin

if (clk’event and clk=’1’) then
x <= a or b;

end if;
end process;
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Fig. 1. (a) The source code of a simple component and (b) an example of a timed
diagram of its behaviour illustrating the notion of stable and unstable states

Finally, we restrict the use of parameters a bit. Namely, we do not allow a
bit-wise access to variables with a parametric range and we do not allow for
loops over parametrised variables. Both of these restrictions could be lifted,
but they would further complicate our translation to counter automata and also
their analysis (as we would have to introduce a relatively complicated arithmetic
to mask out the particular bits of the values of particular counters). We let
experiments with these feature for our future research.

2.2 Simplifying VHDL Code

To avoid a very complex direct transformation from the rich VHDL language
to the intermediate behavioural model introduced in Section 3 (which is then
translated to counter automata in Section 4), we first simplify a VHDL source
code to a form which is much simpler for all the subsequent steps.

As we mentioned before, VHDL components contain input/output ports, pa-
rameters, and internal variables—here, we consider all of them simply as vari-
ables. VHDL provides two basic types of variables: 1-bit (boolean) variables and
arrays (vectors) of bits. Further, there is also a possibility of user-defined struc-
tured types, but they are used as a form of syntactic sugar only. Therefore,
before any further steps, we decompose structured variables to their elements.
Similarly, if a bit vector variable is accessed bit-wise (i.e. there is at least one
statement in the considered code that accesses single bits of the vector at a
time), we replace the vector variable with its boolean components (if we had not
disallowed the bit-wise access to parametrised-size vectors, we would have had
to use a complex arithmetics to mask out the particular bits—e.g., to get a bit
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value at position p in the bit vector represented by an integer value n, we could
use the expression (n div 2p) mod 2). The remaining vectors may then easily
be mapped to counters of counter automata (whereas all 1-bit variables will be
a part of their control states).

Further, we also remove all structural descriptions of circuits and replace them
by the corresponding behavioural description (in a way similar to macro expan-
sion in the C programming language). This can easily be achieved by unfolding
(or flattening) of the structural description taking into account that a structural
description simply describes from which subcomponents a given component is
build of, what are the values of parameters of the subcomponents, and how the
input/output ports of these subcomponents are connected to the input/output
ports of the component and/or to each other (which is done via the internal
variables of the component). We substitute references to the subcomponents by
their behavioural description, connect their input/output ports to the internal
variables of the component (and/or its input/output ports), and substitute pa-
rameters of the subcomponents by the appropriate arguments (which may be
parameters of the component being processed).

Next, we transform the code such that the only statements that will remain
(and that we will have to consider in the further steps) are the following:

1. Assignment statements of the form signal <= expression; appearing in
an architecture definition as parallel statements or in a process section as
sequential statements.

2. Conditional (if) statements appearing in process sections as sequential sta-
tements with the following syntax (and the obvious semantics): if cond1
then stmt1; elsif cond2 then stmt2; ... ; else stmtN; end if;

To this end, we rewrite any other statements to one or more assignment and/or
conditional statements of the above form. In particular, this is the case of the
VHDL selected assignments and case statements (cf. Fig. 2). Moreover, it is also
the case of the VHDL for loops as we assume that they cannot be performed
over parametric bit vectors—otherwise, we would have to model their effect by
special purpose loops in our counter automata.

with sel select
sig <= v1 when c1,

v2 when c2,
else v3;

(a)

process(...)
begin

case sel is
when c1 => sig <= v1;
when c2 => sig <= v2;
when others => sig <= v3;

end case;
end process;

(b)

process(..)
begin

if (sel = c1) then
sig <= v1;

elsif (sel = c2) then
sig <= v2;

else
sig <= v3;

end if;
end;

(c)

Fig. 2. A conversion of (a) selected signal assignments and (b) case statements to
(c) if statements
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Normalization of if Statements. After the pre-processing done above, the
architecture of the component being examined is described by a set of par-
allel assignments and a set of processes, every such a process consists of a
sequence of sequential assignments and (possibly nested) if statements. As we
have already said, these sequential statements inside the processes are not ex-
ecuted sequentially—instead, for each variable, the last applicable assignment
is searched and used, and all the statements preceding it are ignored. For ex-
ample, for a sequence v <= e1; if c then v <= e2; endif;, if c holds, one
performs the v <= e2; assignment, otherwise one performs the assignment v
<= e1; (we may assume that the processes consist solely of assignments and—
possibly nested—if statements).

In order to make dealing with the described semantics easier when generat-
ing the intermediate behavioural model, we perform one more pre-processing
step. In particular, we transform each process into a single nested if statement
in which it is clear under which conditions which assignment is to be applied
(e.g., the example we mentioned above will be transformed to the statement if
c then v <= e2; else v <= e1; endif;—more examples will come below).
More precisely, for each sequential process and each variable v assigned by that
process, we do the following steps (we ignore all assignments to other variables
when handling v):

1. We add an empty else branch to each if statement of the given process
that does not have such a branch.

2. Till there is some assignment or if statement s1 in the given process that is
just before an if statement s2 (i.e. s1 and s2 are on the same level of nesting
of if statements), we move s1 to the beginning of the else branch of s2, i.e.
we nest s1 into the else branch of s2 and put it just before the statements
that are already in this branch (cf. Fig. 3(a)).

3. If there are branches of if statements of the given process that do not
contain any statement, we add the implicit assignment v <= v; to each of
them.

4. We reduce every sequence of statements s1; s2; ...; sn; v <= e; within the
given process to just v <= e;. Here, si for 1 ≤ i ≤ n, n ≥ 1, is a sequence
of assignments or if statements. The fact that at the end of the sequence
there is an assignment statement (and not an if statement) is guaranteed
by the transformation done in the previous step.

2.3 Counter Automata

For an integer arithmetic formula ϕ, let FV (ϕ) denote the set of free variables
of ϕ.3 For a set of variables X , let Φ(X) denote the set of integer arithmetic
formulae with free variables from X∪X ′ where X ′ = {x′ | x ∈ X}. If ν : X → Z is
3 We do not further restrict the kind of integer arithmetics used. It naturally follows

from the integer operations used in the hardware design being handled, to which our
translation adds just an implementation of the implicit modulo arithmetics used in
VHDL—we will get back to this issue in the next subsection.
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if c1 then if c2 then
v <= e1; v <= e2;

end if; else
if c2 then --> if c1 then

v <= e2; v <= e1;
else end if;

v <= e3; v <= e3;
end if; end if;

(a)

if c2 then
v <= e2;

else if c2 then
if c1 then v <= e2;
v <= e1; --> else

else v <= e3;
v <= v; end if;

end if;
v <= e3;

end if;

(b)

Fig. 3. Transformations of sequential statements: (a) moving all statements preceding
an if statement to its else branch, (b) removing statements preceding an assignment
(and thus being useless)

an assignment of FV (ϕ) ⊆ X , we denote by ν |= ϕ the fact that ν is a satisfying
assignment of ϕ. A counter automaton (CA) is a tuple A = 〈X, Q, q0, ϕ0, →〉
where X is a finite set of counters, Q is a finite set of control locations, q0 ∈ Q is
a designated initial location, ϕ0 is an arithmetic formula such that FV (ϕ0) ⊆ X ,
describing an initial assignments of the counters, and →∈ Q × Φ(X) × Q is a
finite set of transition rules.

A configuration of a CA is a pair 〈q, ν〉 ∈ Q × (X → Z). The set of all
configurations is denoted by C. The transition relation

ϕ−→
A

⊆ C × C is defined

by (q, ν)
ϕ−→
A

(q′, ν′) iff there exists a transition q
ϕ−→ q′ such that if σ is an

assignment of FV (ϕ), where σ(x) = ν(x) and σ(x′) = ν′(x), we have that
σ |= ϕ and ν(x) = ν′(x) for all variables x with x′ 
∈ FV (ϕ). We denote by
−→
A

the union
⋃

ϕ∈Φ

ϕ−→
A

, and by ∗−→
A

the reflexive and transitive closure of −→
A

.

A run of A is a sequence of configurations (q0, ν0), (q1, ν1), (q2, ν2) . . . such that
(qi, νi) −→

A
(qi+1, νi+1) for each i ≥ 0 and ν0 |= ϕ0.

2.4 Handling VHDL Integer Variables in Counter Automata

When translating operations on integer variables used in VHDL to operations on
counters, we have to take care of the fact that in VHDL, arithmetical operations
over integers are always implicitly evaluated modulo the range of the appropriate
integer variables. In counter automata, we have to make the modulo computation
explicit (e.g., an assignment v1 <= v2+v3; over integer variables represented on
n bits has to be translated to an assignment of the form v1 := (v2 +v3) mod 2n).

For analysing the generated counter automata, we then, of course, need a tool
that can cope with counter manipulations corresponding both to arithmetical,
logical, and relational operators directly used in the considered VHDL design as
well as to the additional operations stemming from implementing the implicit
modulo computations (and if we add them in the future, then also the bit-wise
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manipulations on integer variables). Given a concrete counter automata analyser,
the translation may need to be adjusted to respect the operations that the tool
supports. If the tool does not offer all the needed operations (nor allows their
implementation based on other supported operations), one has to restrict to
the case when the appropriate integer variables have a fixed range (i.e. are not
parameters) and can also be recorded as a part of the control states of counter
automata.

3 An Intermediate Behavioural Model

In the previous section, we discussed the syntax and semantics of VHDL con-
structions that we will consider in the following, together with the notion of
counter automata that we want to use to model (and analyse) these construc-
tions. In order to make the translation from the simplified VHDL to counter
automata smoother, we make it via an intermediate behavioural model that we
will now present.

3.1 A Definition of the Intermediate Behavioural Model

The intermediate behavioural model of a hardware component is defined as
a triple M = (V, T, B), where V is a set of variables that are typed by a func-
tion T : V → {bool, int}, and B is a set of behavioural rules that describe
the behaviour of a given hardware component and that have a form which we
introduce below.

Let Vi ⊆ V be a set of input ports and Vp ⊆ V a set of parameters. We define
V = V × {last, next, posedge, negedge} to be the set of possible references to
the values of variables from V with the following meaning:

– (v, last) ∈ V refers to the value of v in the last reached (i.e. current) state—
in expressions, we usually abbreviate it simply to v,

– (v, next) ∈ V , abbreviated to v′, denotes the value of v in the next state,
– (v, posedge) ∈ V , abbreviated to ↑v, has the boolean meaning ↑v = ¬v ∧ v′

and denotes the positive edge of a 1-bit variable v (for which T (v) = bool),
– (v, negedge) ∈ V , abbreviated to ↓v, has the boolean meaning ↓v = v ∧ ¬v′

and denotes the negative edge of a 1-bit variable v (for which T (v) = bool).

Further, let E be the set of all (well-typed) expressions that one can form
over V using arithmetical (+, −, ∗, ...), relational (=, 
=, <, >, ≤, ≥), and logi-
cal (¬, ∧, ∨, ...) operators, and let C be the subset of E containing all boolean
valued expressions. Let ⊥ ∈ E denotes an empty expression (see below).

We can now introduce the special conditional assignments that are the be-
havioural rules constituting the set B of an intermediate behavioural model. In
particular, B ⊆ C∗ × V × E. We write a behavioural rule b ∈ B as

c → v := e

for c ∈ C∗ being a list of enabling conditions, v ∈ V the variable set by the rule,
and e ∈ E being an expression defining the new value of v. In other words, b
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with c = c1c2...cn says that if c1 ∧ c2 ∧ ... ∧ cn holds for the evaluation of the
variables, v will get a new value obtained by an evaluation of e. If c = ε, we
consider it to be always true, and the assignment v := e is always enabled.

For a behavioural rule b : c → v := e ∈ B, let cond(b) = c denote the enabling
condition of b, var(b) = v denote the variable to be set, and let value(b) = e be
the expression defining the new value of v. For e ∈ E ∪C∗, let F (e) be the set of
references to variables occurring in e. Finally, let B(v) = {b | b ∈ B, var(b) = v}
be the set of behavioural rules over a variable v.

3.2 Extracting Behavioural Rules from the Source Code

The architecture of a VHDL component consists of a set of parallel assignments
and a set of sequential processes. With respect to the simple VHDL transfor-
mations described in Section 2.2, we may assume that the sequential processes
consists of a single if statement for every variable set within it. In order to
obtain the set of behavioural rules B from such a description, we extract the
rules from VHDL statements as follows:

1. For each parallel assignment v <= e;, we add a rule ε → v := e into B.
2. For each sequential process that sets a variable v by a single, possibly nested,

if statement (after the pre-processing, there is no other possibility), we
proceed as follows. For each assignment statement v <= e; that appears on
the leaf level of such a (nested) if statement, we add a rule c′1, c′2, ..., c′n →
v := e into B (n ≥ 1). Here, c1, c2, ..., cn are all the branching conditions that
one tests before reaching v <= e, and c′i = ci if the condition is supposed to
hold (i.e. we are nesting into an if ci or elsif ci branch) whereas c′i = ¬ci if
the condition is supposed not to hold. An example of such a transformation
is shown in Fig. 4.

3.3 Adjustments of Behavioural Rules

The Environment of a Component. To be able to model check a component,
we need a model of its environment too. Currently, we model the environment
to behave in a completely random way. To do that, we extend the intermediate
behavioural model by adding behavioural rules for all component inputs. For
every such an input v ∈ Vi, we add the following behavioural rule ε → v :=
random. Here, random represents a random integer or boolean value. Note that
we have to adjust the form of random such that the CA analyser that want to
use understands it.

Non-state Variables. We are only interested in stable states that are defined
by the so-called state variables. In the hardware developers’ jargon, such variables
are also known as registers or signals which save their value. The remaining
variables are non-state variables whose values are not registered and that, from
our point of view, represent just a symbolic name for some expression. From
a set of behavioural rules, a non-state variable can be identified by the fact
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¬c1, c2 → v := e2
¬c1,¬c2, c3, c4 → v := e3
¬c1,¬c2, c3,¬c4, c5 → v := e4
¬c1,¬c2, c3,¬c4,¬c5 → v := v

¬c1,¬c2,¬c3 → v := e5

c1 → v := e1
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Fig. 4. Synthesis of behavioural rules wrt. the conditions passed till a certain assign-
ment can be fired: (a) a normalized VHDL if statement, (b) the tree representing
branching conditions, (c) the set of behavioural rules for variable v

that its value is set by a rule with the empty enabling condition (i.e. by an
unconditional assignment4). The remaining variables are then state variables.
The only exception are input variables whose values are defined and held by
the environment of the modelled component. Formally, v ∈ V \ Vi is a non-
state variable iff cond(b) = ε for the rule b ∈ B such that B(v) = {b}. Let
further Vs = Vi ∪ {v | v ∈ V, cond(b) 
= ε} be the set of state variables. Before
generating counter automata, we change the intermediate behavioural model to
use the state variables only. We remove the non-state variables v defined by rules
ε → v := e present in B by iteratively searching for references to such variables
in enabling conditions and value expressions of the rules in B and by replacing
these references by e.

Behavioural Rules Over 1-bit Variables. Next, for technical reasons allow-
ing us to ease the subsequent construction of CA from intermediate behavioural
rules, we prefer to have all the manipulation of 1-bit state variables in guards of
the rules. That is why, we transform every behavioural rule b : c → v := e over
a 1-bit state variable v ∈ Vs, T (v) = bool, to the rule bnew : c, v′ = e → v := e.

Triggers of Behavioural Rules. Let V↑↓ = V ∩ (V × {posedge, negedge})
be the set of edges of the values of variables from V . We define a mapping
R : B → {τ} ∪ V↑↓ that assigns each rule either τ in case the rule models an
assignment in the transparent mode or a signal edge (i.e. a trigger) that activates
the rule if it models an assignment in the synchronous mode. Formally, for b ∈ B,
let R(b) = τ iff F (cond(c))∩V↑↓ = ∅, and let R(b) = t iff F (cond(b))∩V↑↓ = {t}
for some t ∈ V↑↓. Note that this definition is correct as due to the hardware

4 Note that as we require the rules not to be in a conflict, this is the only rule that is
setting the value of such a variable.
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description principles, there can be at most one positive or negative edge variable
reference in a behavioural rule condition. Designs violating this requirement are
exposed during the synthesis process.

For each rule b ∈ B that works in the transparent mode, i.e. R(b) = τ , we
adjust the condition and assignment part of b such that each variable reference
that appears there refers to the future. This is, we change every variable reference
v that appears in value(b) or cond(b) to v′. The reference to the future assures
that the rule is evaluated using values of variables that are computed at the
same time step as the one at which we perform the evaluation (and not a step
before as in the case of the synchronous mode). This is because gates working in
the transparent mode immediately propagate their input values to the output.
We can afford to use this transformation as we excluded the possibility of cyclic
dependencies of the values of variables in the transparent mode. That is why, the
variables changing in the transparent mode can be ordered according to their
dependencies and evaluated in the given order starting with variables that are
assigned a constant value (which happens, e.g., when the circuit is being reset) or
from variables which are not changing at the given time step. For an illustration
of this behaviour, see Fig. 5.
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b1 : c → y := ¬x

c: v =’1’, R(b1) = R(b2) = τ

(a)

c: ↑v, R(b1) = R(b2) = ↑v

(b)

processing y := ¬0processing y := ¬1

b2 : c → x := 0

Fig. 5. A timing diagram illustrating the differences between the transparent and syn-
chronous mode. For the transparent mode (a), both x and y are controlled by the level
of the variable v, which causes a continuous change of their values (y is set to the
negation of x via b1, y is set to 0 via b2). Due to the propagation delays of hardware
which implements such a behaviour, there are several changes of the values until they
are all stabilised, which we are, however, not interested in. The important thing to
notice is that the resulting value of x is ¬y′ and not ¬y. On the other hand, in the
synchronous mode (b), an edge triggers a change of the value of v, which holds until
the next triggering event. In this case, the resulting value of x is ¬y (and not ¬y′).

We have to do a similar adjustment as above also for the rules modelling the
synchronous mode. For simplicity, we consider here the case of positive edges
only. The case of negative edges is analogical. Within each rule b ∈ B for which
R(b) = ↑v for some v ∈ V , cond(b) = c1c2 . . . cn↑vcn+1 . . . cm for some n, m ∈ N.
Note that F (c1c2 . . . cn) ∩ V↑↓ = ∅. In this case, the way our algorithm for
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generating behavioural rules works implies that the set of generated behavioural
rules B must also include behavioural rules bτ ∈ B whose condition is built
solely of the conditions c1, c2, . . . , cn (possibly negated), hence R(bτ ) = τ . Due
to the evaluation order of the conditions, the bτ rules have a priority over b. At
the same time, they model the transparent mode, hence they will work with the
future values of variables. That is why, in order to exclude a possible conflict
of the rules bτ with b, we have to replace every variable reference v to v′ in
c1, c2, . . . , cn in b. Then, if some of the bτ rules is enabled, b is disabled as its
enabling condition contains a negation of some of the enabling conditions of bτ

evaluated on the same values of variables. On the other hand, if this is not the
case, the rest of b will work with the current values of the variables.

4 Generating Counter Automata

4.1 Counters, Control Locations, and Initialisation

Let us fix a hardware design with a set of variables V of types T and with
a set of behavioural rules B generated from the design. We start building the
counter automaton A representing the design by defining its set of counters as
all integer-type state variables from V —formally, wrt. the definition of counter
automata (Def. 2.3), X = {v | v ∈ Vs, T (v) = int}.

Further, we build control locations of A based on all possible evaluations
of all control state variables in V , i.e. 1-bit state variables from the set Vq =
{v ∈ Vs | T (v) = bool}. Formally, we define the set of control locations of A as
Q = {q | q : Vq → {0, 1}}.

The design of a component in VHDL does not include any specification of its
initial state. In most cases, however, the specification of the component includes
a combination of signals which resets the component to some initial state and
assigns some constants to all its internal variables. For the generation of A, to ob-
tain these constants and thus define the initial location and the initial constraint
on counters, the user must explicitly specify the resetting signals by providing
the appropriate evaluation of input variables that encodes them. By evaluating
enabling conditions of all the rules in B under the given resetting valuation of
the input variables, we get a subset of rules that are initially enabled. Each of
such behavioural rules defines an initial value for one variable—by evaluating
the assignment parts of these rules, we can initialise the variables. The obtained
values of control state variables make up the definition of the initial location q0,
the evaluation of integer variables allows us to construct the initial constraint ϕ0
on counters5. If the modelled component has no resetting signals or the desired
initial state is not the reset state, the initialisation must be defined explicitly by
the user.

5 In fact, this applies only to the counters other than the ones representing
parameters—if the possible values of parameters are also to be constrained somehow,
it is up to the user to add the appropriate constraint into ϕ0.
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4.2 Transition Relation

For an expression e ∈ E and two locations q1, q2 ∈ Q of A, we denote by eq1,q2 the
evaluation of e where for each v ∈ Vq, (v, last) is evaluated as q1(v) and (v, next)
is evaluated as q2(v). We allow the evaluation to be partial—if e contains integer
variables, they remain untouched. We construct the transition relation of A by
checking for every pair of control locations q1, q2 ∈ Q, q1 
= q2, whether the
intermediate behavioural model allows us to connect them:6

1. For each b ∈ B with cond(b) = c1c2 . . . cn for some n ∈ N, we (as far as pos-
sible) evaluate the enabling condition of b, i.e. we compute guardq1,q2(b) =
∧

1≤i≤n cq1,q2
i . Let Be = {b | b ∈ B, var(b) ∈ Vs, guardq1,q2(b) 
= false} be

the set of all (conditionally) enabled behavioural rules setting the value of
state variables.

2. We further one-by-one consider all subsets Bt ⊆ Be such that Bt contains
exactly one rule b such that var(b) = v for each state variable v ∈ Vs. For
each Bt, we perform the following steps:
(a) In each rule b ∈ Bt, we iteratively substitute all references to the future

values of counter variables by the expressions assigned to them within
Bt. This is, we substitute each v′ for v ∈ Vs \ Vq by the expression
value(bv) where bv ∈ Bt and var(bv) = v.7 We repeat this step till all
references to future values of counters disappear.

(b) Based on the set of rules Bt, we create a transition q1
ϕ−→ q2 of A where

ϕ = (
∧

b∈Bt
guardq1,q2(b)) ∧ (

∧

b∈Bt,var(b) 	∈Vq
α(valueq1,q2(b)) and α is a

function that transforms an assignment v := e to a formula v′ = e.

Let us add a few comments to the algorithm. For a given choice of states q1
and q2, the first step may lead to three situations: (i) If guardq1,q2(b) = false,
we know that b does not change the value of var(b). (ii) If guardq1,q2(b) = true,
b is allowed to change the value of var(b). (iii) Finally, if guardq1,q2(b) does
not reduce to neither false nor true (i.e. if guard(b) refers to some values of
counters in a way that must be taken into account), we only know that b may
be able to change var(b), but subject to the values of the counters. If there
is no (at least conditionally) enabled behavioural rule for some state variable,
i.e. if ∃v ∈ Vs, ∀b ∈ B(v).guardq1,q2(b) = false, no transition from q1 to q2
will be possible as we are unable to compute the next value of v in q2—even for
preserving the current value of v there is a behavioural rule which is forbidden by
its guard. Otherwise, we have to explore all combinations of (at least potentially)
enabled rules adjusting the value of the particular variables, which is done in
the second step of the algorithm.

Suppose now that, for instance, Vs = {v1, v2, v3, v4} where only v4 is a 1-bit
variable, and the first step of the algorithm yields a set of rules Be = {g1 → v1 :=
6 Note that we cannot have self-loops in A as the control states are stable, and some

signal must change in order a change of the states happens.
7 At this point, only the variables representing counters are considered as the references

to future values of control state variable are taken care through the partial evaluation
of the expressions.
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f1(v′2), g2,1 → v2 := f2,1(v′3, v1), g2,2 → v2 := f2,2(v3), g3 → v3 := f3(v2), v′4 =
¬v4 → v4 := ¬v4} (the rule for v4 is transformed as we described in Section 3).
We can find two subsets Bt that are to be handled by the second step of the
algorithm—namely, Bt,1 = {g1 → v1 := f1(v′2), g2,1 → v2 := f2,1(v′3, v1), g3 →
v3 := f3(v2), v′4 = ¬v4 → v4 := ¬v4} and Bt,2 = {g1 → v1 := f1(v′2), g2,2 →
v2 := f2,2(v3), g3 → v3 := f3(v2), v′4 = ¬v4 → v4 := ¬v4}. If we apply the
steps described above for Bt,1, we obtain two CA transitions with a formula
g1 ∧ g2,1 ∧ g3 ∧ v′1 = f1(f2,1(f3(v2), v1)) ∧ v′2 = f2,1(f3(v2), v1) ∧ v′3 = f3(v2)
going between control states q1 and q2 such that q1(v4) = ¬q2(v4). Note that
the condition v′4 = ¬v4 does not appear in the formula of the transition as its
evaluation wrt. q1, q2 yields true.

5 Handling the Reachability Properties to Be Verified

In our work, we concentrate on verifying that certain bad configurations are not
reachable. We assume the bad configurations to be given by a boolean VHDL
expression—an error condition. The error condition may refer to 1-bit VHDL
variables appearing in the design of the component being checked (which are
represented as a part of the control location of the generated counter automata)
as well to VHDL bit-vector variables (represented by the values of counters in
the counter automata).

In order to facilitate verification of reachability of the bad configurations, we
extend a generated counter automaton by a special error state whose reachabil-
ity implies that a bad configuration is reachable in the component being checked.
The error state is connected to the control states of the generated counter au-
tomaton that represent a valuation of the VHDL 1-bit variables which is not
contradictory with the error condition. Moreover, the transitions to the error
state are guarded by conditions on counters derived from the error condition by
substituting the 1-bit variables by values that appear in the source control lo-
cation of these transitions (after which, just a constraint on bit-vector variables
remains).

6 Experiments

For our experiments, we implemented a Python-based prototype [16] of the pro-
posed translation (up to some of the issues of the VHDL pre-processing men-
tioned in Section 2). In particular, we implemented a translation to counter
automata in the input language of the ARMC tool [15] and also to integer pro-
grams in the C programming language in order to be able to use the Blast model
checker [8] as well. Both of the tools provide us with the possibility of verifying
reachability properties of counter automata (or, alternatively, integer programs)
using techniques based on predicate abstraction and the counterexample-guided
abstraction refinement (CEGAR) loop.

To test the proposed counter-automata-based model extraction method, we
have first applied it to two small non-parametric components (having integer
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Table 1. Experiments with counter automata extraction from VHDL and with their
subsequent reachability analysis using ARMC and Blast

Component Locations Transitions Counters Extraction time ARMC Blast

Counter 5 13 2 < 1s < 1s 1.5s
Register 9 43 2 1s < 1s < 1s
Synchronous LIFO 65 985 3 24s 40s 5m31
Asyn. FIFO (FE) 65 5060 12 1m12s 6m56s N/A
Asyn. FIFO (Status) 129 6628 12 4m 4m16 N/A

variables, but of a fixed width). Then we applied the method to two more com-
plex parametric components, including a real-life, highly specialised, parametric
component developed within the Liberouter project [13].

The first two components (a counter and a register) represent basic elements
from which hardware is built on the RTL level. For the counter, we verified that
there is no overflow possible. For the register, we verified that the data transfer
from its input to the output and the reset of the register work correctly. A more
complex case study that we considered is a synchronous LIFO component which
implements a stack with two operations—push and pop. The generic nature of
this component is given by a parametrisation of the number of items the LIFO
can save. This component implements—among other—signals that say whether
it is empty or full. We verified whether these signals are always correctly set for
any possible size of the LIFO.

The last verified component is an asynchronous queue (FIFO). This spe-
cialised parametric component was built to be used in network monitoring adap-
tors developed within the Liberouter project (with a stress on being as efficient
as possible). Apart from signals about whether the component is empty or full,
it also implements additional signals saying whether it is almost full or almost
empty (less than some amount of items are free/occupied). For the component,
we successfully verified two properties: (i) that the queue does not inform that
it is empty and full at the same time, and (ii) that the status information about
the queue being almost full is set correctly. For a more detailed description of
the verified properties see [16].

The results of our experiments are summarised in Table 1. The first column
gives the verified component—for the last component, there are two lines corre-
sponding to the two different properties that we checked for it. The next column
provides the number of control locations in the generated counter automata—
note that the number corresponds to 2n + 1, which is the number of control
locations over n 1-bit state variables, plus one location representing the bad
state. The next two columns provide the number of transitions between control
locations of the generated counter automata and the number of used counters
(integer variables). The next columns gives the times used by our prototype
tool to generate the counter automata. Finally, the last two columns provide
the time used by ARMC and Blast, respectively, to verify the generated counter
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automata. The experiments were performed on an Intel Xeon X5355 processor
with 16GB of memory. (“N/A” means that the verification did not finish.)

7 Conclusion and Future Work

We have presented a new, quite general and automated, approach to formal
verification of parametrised VHDL components. The approach is based on an
automated translation of the components to counter automata and on exploiting
the constantly improving technology for verifying counter automata (or integer
programs). We have built a prototype tool implementing our translation schema
and successfully used it together with the ARMC tool [15] for verification of
several interesting properties of parametrised VHDL components, including a
real-life component developed within the Liberouter project [13].

In the future, we want to experiment with lifting some of the restrictions of our
initial approach (e.g., allowing a bit-wise approach to parametrised components).
Another interesting research direction is to investigate possibilities of reducing
the size of the automata that we generate. Further, we would like to do more
experiments with real-life components and also with using more different tools
for handling counter automata (or integer programs).

Acknowledgement. We would like to thank Andrey Rybalchenko for his help
with the use of the ARMC tool.
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Abstract. This paper studies the efficiency of several probabilistic mo-
del checkers by comparing verification times and peak memory usage
for a set of standard case studies. The study considers the model check-
ers ETMCC, MRMC, PRISM (sparse and hybrid mode), YMER and
VESTA, and focuses on fully probabilistic systems. Several of our exper-
iments show significantly different run times and memory consumptions
between the tools—up to various orders of magnitude—without, how-
ever, indicating a clearly dominating tool. For statistical model check-
ing YMER clearly prevails whereas for the numerical tools MRMC and
PRISM (sparse) are rather close.

1 Introduction

Model checkers such as PRISM [34] (with about 4,000 downloads), MRMC [23],
E�MC2 [16], VESTA [35,36], YMER [39], and APMC [27] support the verifi-
cation of discrete- and continuous-time Markov chains. Their engines are based
on combinations of numerical or simulation techniques for Markov chains and
traditional CTL model-checking algorithms. Tools such as PRISM are relatively
easy to use, have a graphical user interface and advanced built-in plot facilities.
This allows researchers from various areas to apply probabilistic model check-
ing. Applications range from areas such as randomized distributed algorithms to
planning and AI, security [30], and even biological process modeling [28]. Prob-
abilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [9], Statemate [6], the
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This paper provides a comparative experimental study of a substantial set
of probabilistic model checkers. The aim of this study is to get more insight
into the strengths and weaknesses of the various tools, and to compare different
model-checking techniques. We focus on fully probabilistic models, that is, finite-
state discrete- and continuous-time Markov chains (DTMCs and CTMCs). We
consider the temporal logics: probabilistic CTL (PCTL) [13] and its continuous-
time variant CSL [3,5]. These logics allow one to express constrained reachability
probabilities, e. g., the probability to reach a goal state while visiting only legal
states is at least 0.4567, and bounded versions thereof. In the discrete setting the
bound is a number of steps while in the continuous case a time bound may be
imposed on reaching the goal state. Finally, CSL allows for expressing steady-
state properties such as: in the long run the probability to be in a goal state
meets a certain bound. All these properties have been used in the experiments,
as well as nested versions thereof and qualitative properties.

The experiments are focused on the verification time, i. e., the required time
to verify a formula on a Markov chain, as well as peak memory usage, i. e., the
maximal amount of memory needed during the verification. This was done for
a set of five publicly available case studies, mostly examples that act as bench-
marks for probabilistic model checking and that allow for varying state space
sizes. Tools that were considered are E�MC2, MRMC, PRISM, VESTA and
YMER. All experiments were carried out on a standard PC, and care was taken
that equivalent input models are used. Since models, properties, testing environ-
ment, and tool settings are all publicly available, all reported experiments are
repeatable and verifiable. The number of experiments carried out is substantial,
and each experiment is repeated several times. In total, about 15,000 verification
runs have been considered. This paper presents a selection of the experiments
from [31] and attempts to observe and explain relevant phenomena.

We found considerable differences in time and memory usage between the
tools, due to variations in model checking techniques (statistical versus numeri-
cal), state space representation (MTBDDs versus sparse matrices or a combina-
tion) and implementation language (C/C++ versus Java). The tables in Sect. 6
show an overview of the results. In addition, we compared the user friendliness
of the tools. Here PRISM is the clear winner.

Organisation of the Paper. Section 2 briefly presents the tools and Sect. 3 the
case studies we analyzed. In Sect. 4 we discuss the set up of our measurements.
Then, we compare and analyze the results of our experiments in Sect. 5. Finally,
Sect. 6 summarizes the conclusions and provides tool recommendations.

2 Tools

ETMCC. E�MC2 [16] (version 1.4.2, 2001), also written ETMCC, is a pro-
totype model checker for CTMCs. The tool is written in Java and uses sparse
matrices to represent the state space.
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MRMC. MRMC [23] (version1.1.1b,March 2006) is a model checker for discrete-
time and continuous-time Markov reward models. MRMC is a command-line tool,
implemented in C, and represents the state space by sparse matrices.

PRISM. PRISM [25] (version 2.1, September 20041) stands for Probabilistic
Symbolic Model Checker. The user interface and parsers are written in Java; the
core algorithms are mostly implemented in C++. For state space representation,
PRISM uses a modified version of the CUDD package [38].

PRISM offers a choice between two engines that use different data structures:
a “sparse” and a “hybrid” engine, henceforth denoted as PRISMS and PRISMH .
It is expected that PRISMS is faster, whereas PRISMH consumes less memory.
Regardless of the engine, PRISM always generates an MTBDD to represent the
transition matrix, and PRISMS converts it to a sparse matrix, if necessary.

VESTA. VESTA [35] (version 2.0, 2005) is a Java-based tool for statistical
analysis of probabilistic systems. It implements the statistical methods from
[41,36], based on Monte-Carlo simulation and statistical hypothesis testing [19].

YMER. YMER [39] (version 3.0, February 2005) is a command-line tool, writ-
ten in C and C++, for verifying transient properties of CTMCs and generaliza-
tions. YMER implements statistical CSL model checking techniques [41], based
on discrete event simulation [37] and acceptance sampling. It also supports nu-
merical techniques, where the numerical engine for model checking CTMCs is
adopted from PRIMS’s hybrid engine.

Other tools. We have also considered other tools for our comparison, for ex-
ample APMC [27], FHP-Murphi [32], Probverus [14]. We restricted ourselves to
the above five because other tools did not support our models or logics or were
not available in a stable version.

2.1 Languages

Input Models. Most tools support both discrete- and continuous-time Markov
chains. Support for discrete time is limited in E�MC2; YMER only supports
(a superset of) CTMCs. Some tools also recognize other input models (MDPs,
reward models) not considered here. PRISM has its own modelling language: A
system is described as the parallel composition of a set of modules. A module
state is determined by a set of finite-range variables and its behaviour is given
using a guarded-command notation. E�MC2 and MRMC do not use a specific
modeling language; instead, they accepts models in (a subset of) the .tra-format
as e. g. generated by the stochastic process algebra tool TIPPtool [15] and Petri
net tool DaNAMiCS [?]. The state labelling with atomic propositions has to be
1 This was the most recent version when we started our research. In the meantime, a

newer version of PRISM has appeared.
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Table 1. Minimal and maximal model sizes per case study

timing study min/max, param. # states # transitions
discrete SLE min, n = 4, k = 2 55 70

max, n = 8, k = 4 458,847 524,382
RDF min, n = 3 770 2,845

max, n = 7 5,454,562 44,070,594
BDP min, m = 100 101 202

max, m = 100,000 100,001 200,002

continuous TQN min, n = 2 15 23
max, n = 1023 2,096,128 7,328,771

CPS min, n = 3 36 84
max, n = 18 7,077,888 69,599,232

provided in a separate .lab file. We used a recently added feature of PRISM to
generate these files directly from PRISM models. The language used by YMER is
a subset of the PRISM language with a few slight syntactic differences. VESTA
uses a Java-based language to specify models. A model description consists of
sequential statements in combination with Java code. Each statement consists
of a guard, rate and action. The language offers no explicit parallel composition.

Requirements. All tools support the logics PCTL for DTMCs, or CSL for
CTMCs. The tools that support other models, of course, also know additional
property languages. In addition, E�MC2 supports aCSL, an action-based variant
of CSL; and VESTA accepts requirements specified using QuaTEx [1].

3 Case Studies

We selected five representative case studies, taken from the literature on per-
formance evaluation and probabilistic model checking. The selected studies
represent a spectrum of applications, both distributed algorithms and perfor-
mance models, and are of diverse natures. There are three discrete-time and two
continuous-time cases. For each case, we let the tools calculate the probability
of some bounded and unbounded until properties, i. e. constrained reachabil-
ity properties. They are the most important property type in the logic PCTL
(and the only one that cannot be checked trivially). We also included a nested
property (with multiple until operators) in a discrete-time case study. In the
continuous-time case studies, we also checked for steady-state properties. The
model types and the sizes of the smallest and largest models investigated are
recorded in Table 1.2

Synchronous Leader Election (SLE). The Synchronous Leader Election
protocol [21] solves the following problem: in a ring of n processors with
2 Unfortunately we were not able to generate larger state spaces for the SLE case

study due to an error obtained from the CUDD package.
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synchronous unidirectional communication, the processors have to elect a unique
leader by sending messages around the ring. The protocol proceeds in rounds.
In a round, each processor (independently) chooses a random number from the
set {1, . . . , k} as its id. Then, they pass their ids around the ring. If there is a
unique id, then the processor with the largest unique id is elected leader; oth-
erwise they begin a new round. We checked the SLE protocol for n = 2 with
k ∈ {2, 4, 6, 8, 10, 12, 14, 16} and n = 4 with k ∈ {2, 4}.

The protocol is used in several studies, e. g. [27,12,11]. We checked the prop-
erties: (1) eventually a leader is elected, i. e., P≥1(♦ elected), (2) the probability
to elect a leader within 5 steps is ≥ 0.85, i. e., P≥0.85(♦≤5 elected), and (3) the
probability to elect a leader within 40 steps is ≥ 0.99, i. e., P≥0.99(♦≤40 elected).

Randomized Dining Philosophers (RDP). In the Dining Philosophers
problem [10], one assumes a round table with n philosophers who spend their
lives just thinking and eating. There is a large plate of spaghetti in the center of
the table, which is constantly refilled. Between each pair of philosophers lies a
chopstick. Whenever a philosopher feels hungry, he can eat using the two chop-
sticks on his sides. [33] describes a distributed randomized algorithm to avoid
deadlocks: A philosopher picks the two chopsticks in random order. If he can
only get one chopstick, he gives up eating (but may become hungry again later).

For n ∈ {3, 4, 6, 7} we checked the properties: (1) eventually some philosopher
will eat, i. e., P≥1(♦ eat), and (2) the probability that some philosopher will eat
within 20 steps is at least 0.9, i. e., P≥0.9(♦≤20 eat).

Birth–Death Process (BDP). Birth–death processes [29,22] are used in nu-
merous fields, e. g. to model the growth of a population or queue size. States in
a birth–death process are numbered by integers that denote the current pop-
ulation size n. An increase in size is denoted as “birth” whereas a decrease is
denoted as “death.” To get a finite Markov chain, we limited the maximum pop-
ulation size to a predetermined size m. The probability of birth decreases with
the population size, until it is 0 when the maximum population is reached.

For m ∈ {100, 1000, 10000, 100000} we checked the properties: (1) the prob-
ability to reach a quarter of the maximum population within m

2 steps is ≥ 0.9,
i. e., P≥0.9(♦≤m

2 (n = m
4 )), (2) eventually a population of 50 will be reached

while the probability to reach a population of 70 within 100 steps never drops
below 0.9, i. e., P≥0.8(P≥0.9(♦≤100 (n = 70))U (n = 50)), and (3) eventually the
maximum population will be reached, i. e., P≥1(♦ (n = m)).

Tandem Queuing Network (TQN). The Tandem Queuing Network [17,34]
(see also [16,40,35]) consists of two queues of capacity n in sequence. Messages
arrive at the first queue; when they get served, they are routed to the second
queue, from where they leave the system. The message arrivals are exponentially
distributed with rate λ = 4n. The server handles messages from the first queue
according to a two-phase Coxian [8] distribution. The time between departures
from the second queue is exponentially distributed with rate κ = 4.
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For n ∈ {2, 10, 50, 100, 255, 511, 1023}we checked: (1) in equilibrium, the TQN
is full with probability < 0.01, i. e., S<0.01(full), (2) the TQN is full within 0.5
to 2 time units with probability < 0.1, i. e., P<0.1(♦[0.5,2] full), and (3) if the
second queue is full, eventually a departure will happen, i. e., P≥1(snd U sndn).

Cyclic Server Polling System (CPS). A cyclic polling system [20] consists
of n stations and a server. Each station has a buffer with capacity 1 and the sta-
tions are attended by a single server in cyclic order. The server starts by polling
the first station. If this station has a message in its buffer, the server serves it.
Once the station has been served, or if its buffer was empty, the server moves to
the next station cyclically. The polling and service times are exponentially dis-
tributed with rates γ = 200 and μ = 1, respectively. The arrival rate of messages
at each station is exponentially distributed with rate λ = μ/n. Applications of
this case study can be found in e. g. [39,16,35,40].

For n ∈ {3, 6, 9, 12, 15, 16, 17, 18} we checked properties like: (1) in the steady
state, the first station is waiting for the server with probability < 0.2, i. e.,
S<0.2(busy1 ∧ ¬serve1), (2) the probability that the first station will be served
within time interval [40, 80] is ≤ 0.99, i. e., P≤0.99(♦[40,80] serve1), (3) if the first
station is busy, the probability that it will be served within time t is ≥ 0.5 (for
t ∈ {5, 10, 20, 40, 80}), i. e., busy1 =⇒ P≥0.5(♦≤t poll1), and (4) if the first
station is busy, it will be served eventually, i. e., busy1 =⇒ P≥1.0(♦ poll1).

4 Experimental Setup

This section describes the details of our experiments measuring the verification
time and peak memory usage of the various tools. To give our conclusions a solid
scientific basis, the experiment design was guided by the following principles:

– Repeatability and Verifiability: Every one should be able to repeat and verify
our experiments; this is achieved by the fact that our models, properties,
scripts and tool settings are publicly available.

– Statistical Significance: This has been achieved by repeating experiments
several times and computing the standard deviation.

– Encapsulation: Our experiments should measure what we claim to measure
(i. e. model check times and memory usage), no other influences. This has
been achieved by carefully measuring the time and memory usage of the
processes (see below) and by using a dedicated machine, thus the effect of
disturbing factors such as network traffic, background processes is avoided.

Moreover, we have considered the tools as black boxes. That is, we have executed
the tools, but not changed their source code3. Also, we chose the verification
parameters (e. g. the algorithm for solving matrix equations) to be the same
across all tools. For details on the models and measurements, we refer to [31].

3 A minor exception is E�MC2, where we added command line support to facilitate
scripting.
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Software and Hardware Settings. All experiments were performed on a
standard PC with an Intel R© Pentium R© 4 CPU 3.00 GHz processor and 2 GB
of RAM. The operating system is SuSE Linux 9.1, because this is supported
by all tools. Furthermore we ensured that the verification parameters and nu-
merical solution methods of the tools match. For the numerical tools, e. g., the
Jacobi method is used for solving systems of linear equations and the conver-
gence accuracy ε is set to the default value 10−6. For the statistical tools, we
bound the probability of error (i. e. the chance of false negatives or positives) by
α = β = 0.01, which is the default setting for these tools, and half the width
of the indifference region δ = 0.01. The former agrees with possible choices of
α = β from [40]. The choice of δ is somewhat arbitrary, and also taken from the
literature.

Timing. In (probabilistic) model checking, two time factors are of interest: the
model construction time, i. e. the time to build the internal representation from
the input model, and the model checking time, i. e. the time to verify the property
on the internal representation. We mainly focused on the bare model check time.
One would often construct the model only once and then use it to verify multiple
properties. In our comparison, we use the time as reported by the tools.

Memory Usage. We measured the peak memory usage of the model checker,
i. e. the amount of memory that is allocated for the verification problem at hand.
More precisely, we recorded the virtual memory size (RAM + swap) of the entire
process (which includes model construction). It also includes memory that the
process has allocated but does not actually use. We did so by running a script
in parallel to the model checker that took a sample every 100 msec. Although
this sampling method is not perfect, it gives us the means to conduct uniform
measurements on all tools, and it provides a reasonable indication of the memory
consumption of each tool. A disadvantage is that this method does not work for
very small experiments that are too quick. Other methods, such as profiling
tools, are less suitable as they e. g., require tool modifications.

Data Collection. All experiments and measurement procedures were auto-
mated using shell scripts. This enabled us to easily repeat experiments many
times and collect data in a uniform way. An experiment consists of verifying one
property on one particular model using one of the model checkers. The tools are
restarted before each experiment; this prevents the interference of e. g., caching
on the measurements. Each experiment was repeated 20 times, except that ex-
periments for which a single run took more than 30 minutes were repeated only
three times. From the collected data, we calculated mean and standard devi-
ation. The latter is determined using Student’s t distribution, which takes the
number of experiments into account. The maximal completion time for a single
experiment was set to 24 hours, i. e., experiments that took longer were aborted.
The verification time of these experiments is indicated in the results as ∞.
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Fig. 1. The PRISM model is the central model, from which the other models are
derived

Model Construction. The selected case studies were modeled using the model
description language of each of the tools. For MRMC, E�MC2 and PRISM the
models were readily available, viz., from the PRISM webpage or from the ex-
ample models included in the tool distribution. Although the tools use different
modeling languages, we require the models to be equivalent across all tools.
Thanks to the export facility of PRISM version 3.0 beta1, models in the PRISM
language can be exported to the input format of E�MC2 and MRMC. The
YMER modeling language is almost identical to that of PRISM and only a few
minor changes had to be made. The models for these four tools can thus safely
be assumed to be equivalent on the state and transition level, so there is no bias
for or against one of the tools. The TQN and CPS case studies are provided in
the standard distribution of the VESTA tool. Only for the BDP case study, a
re-modeling effort was needed. We were not able to generate the models for the
RDP and SLE case studies due to parsing problems of VESTA (see also Fig. 1).

We attempted to generate models as large as possible by varying the model
parameters. In addition to the RAM size, two factors restrict the model size: the
size of the .tra files used by MRMC and E�MC2 is limited to a maximum of
2 GB In a few cases, we could not generate (and verify) our model as PRISM
crashed due to a (known) problem of the CUDD package used for MTBDDs.

As MRMC and E�MC2 do not support a built-in modeling language, their
overhead to generate a sparse matrix representation is low compared to the
sparse matrix generation by PRISM. This aspect should be considered when
interpreting the following experimental results.

5 Data and Analysis

5.1 Performance

Fig. 2. The legend

The experimental results are discussed per type of formula,
allowing us to compare phenomena across the various case
studies. The results are presented by histograms where the
x-axis indicates the model parameters that determine the
state space size, and the y-axis indicates the verification
time (in seconds) or the memory consumption (in KB).
Note that the y-axis is log-scale. The legend of the plots is
given by Fig. 2.
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(a) model check time (b) peak memory

Fig. 3. Synchronous leader election: P≥1(♦ elected)

Almost Sure Reachability Properties. We first consider unbounded until
formulas with probability bound ≥ 1. Figure 3 shows the verification time and
memory usage for the SLE case study for various (n, k) pairs. (Recall that n is
the number of nodes, and k the identity range.) As PRISM checks qualitative
properties in a symbolic manner regardless whether it uses the sparse or hybrid
engine, there is no difference in runtime nor in memory consumption between
PRISMS and PRISMH . On increasing model parameters, the memory consump-
tion of MRMC grows gradually (as expected) whereas for PRISMS and PRISMH

only a slight increase is observed. This is due to the fact that PRISM requires
a large base memory for the JVM, the CUDD package (around 40 MB) and the
MTBDD it generates. The MTBDD for this case study is not very compact, as
indicated by the following table:

(n, k) (4, 4) (4, 8) (4, 12) (4, 16) (8, 2) (8, 4)

MTBDD vertices 10K 165K 9M 2.8M 7.9K 1.1M
# states 0.8K 12K 62K 0.2M 2K 0.5M

As a result, PRISM needs substantially more memory than MRMC and the
verification times differ up to several orders of magnitude. (For the smallest two
problem instantiations, the memory consumption for MRMC is unavailable as
its verification times are negligible.)

The SLE case study suggests that memory consumption for PRISMS and
PRISMH is highly influenced by the MTBDD size. This observation is also sub-
stantiated by the CPS case study, for which the MTBDD sizes just increase
slightly on a growth of the state space size:

n 3 6 9 12 15 18

MTBDD vertices 112 367 765 1282 1942 2745
# states 36 0.6K 7K 74K 0.7M 7M

Observe that the MTBDD is very compact, e. g., the model of 7 million states
only requires 2745 MTBDD vertices, much less than in the SLE case study.

Some experimental results for a reachability property of the CPS case study
are summarized in Fig. 4. In contrast to the previous study, PRISM needs less
memory than MRMC for large models due to the small MTBDD size. As be-
fore, there is no difference between PRISMS and PRISMH . For small models,
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(a) model check time (b) peak memory

Fig. 4. Cyclic polling server: busy1 =⇒ P≥1(♦ poll1)

(a) model check time : t = 5 (b) model check time : t = 80

Fig. 5. Cyclic polling server: busy1 =⇒ P≥0.5(♦≤t poll1)

MRMC is faster and less memory intensive, but for n ≥ 15, it is outperformed
by PRISMS . This effect is to be expected to be more drastic for larger values
of n as PRISMS is able to check the CPS for n > 18 (roughly 26 M states)
rather efficiently. As the file size of the .tra file for n > 18 exceeds 2 GB, we were
unable to execute MRMC on it. For n ≥ 15, E�MC2 runs out of memory. The
performance of E�MC2 is worse than that of MRMC due to a less space-efficient
sparse matrix representation, and the effect of the JVM. VESTA is about two
orders of magnitude slower although – due to the use of Java – its memory usage
is comparable to PRISMS. The inefficiency of VESTA stems from the fact that
it needs an excessive amount of sample paths to decide properties with bounds
of the form ≥ 1, as shown in the following table:

n 3 6 9 12 15 18

# samples 34K 150K 395K 840K 1.6M 2.9M

Generally, statistical tools have difficulties to decide whether the probability
of some property meets a bound if the actual probability and the bound are
close. VESTA always gave the correct answer for these properties. For the BDP
case study we experienced that for the property that almost surely eventually
the population is maximal, VESTA reports an incorrect answer if the stopping
probability – the likelihood that a sample path is stopped [36] – is not chosen
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appropriately. More precisely, if at some point during the simulation the stopping
probability (in our case 0.05) is larger than that of reaching the state n=m (in
fact, a rare event), the sample path ends and it is concluded that n=m is not
reached. Re-simulation using a smaller stopping probability (e. g. 0.01) yields
the correct answer. (VESTA always gives results for the initial state only; see
the remarks with the next case study for details.) Note that YMER is not used
here as it does not support unbounded reachability properties.

Fig. 6. Cyclic polling server, peak memory:
busy1 =⇒ P≥0.5(♦≤t poll1)

Bounded Reachability Proper-
ties. To show the effect of bounds,
we consider a time-bounded variant
of the property discussed before and
observe what happens upon changing
time bound t. Figure 5 depicts the ver-
ification times for the extreme bounds
that we investigated in the CPS: t=5
and t=80, whereas Fig. 6 depicts the
memory consumption for arbitrary t
– the memory consumption does not
depend on t. The verification time re-
quired by MRMC is heavily influenced by t, e. g., for n=15 the time for t=20 is
about four times longer than t=5. This is not surprising, as the time complexity
of the underlying algorithm is linear in t. From t=30 on, the verification time is
almost constant, due to a built-in steady-state detection [24]. Besides, for t=80
and n=17, MRMC requires about 1700 seconds (not depicted), and we obtained
a timer overflow for larger instantiations. A similar behaviour is obtained for
E�MC2 but it runs out of memory rather quickly, as for simple reachability.
PRISMH is more efficient than PRISMS due to the compact MTBDD (see pre-
vious case). As for MRMC, the verification time for PRISMH and PRISMS is
linear in t, although this is less clear from the pictures due to the initial over-
head of the MTBDD construction. A careful analysis of the logfiles reveals that
the time per iteration is constant. Due to PRISM’s steady-state detection, the
verification time stops increasing around t=30. The verification time for VESTA
for t=5 is rather constant as the number of samples (approx. 300,000) is more
or less the same for each n. For t=80 the number of samples slightly increases
(it raises from 0.2M for n=3 to about 1.1M for n=18). This explains the small
increase in run time in Fig. 5(b). Unfortunately, VESTA gave wrong answers
for low time bounds often: for t = 5, only 32.5% of the answers were correct.
Note that the property has also been checked by YMER, but as its run time
is negligible – it immediately establishes that the initial state does not satisfy
the premise of the implication – this is invisible in the figures. YMER thus has
an “excellent” performance, but only checks the initial state whereas the other
tools check all states. (VESTA also only provides answers for the initial state,
but is unable to find the trivial satisfaction.)
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(a) model check time: P≤0.01(♦≤2 full) (b) model check time: P≤0.01(♦[0.5,2] full)

Fig. 7. Tandem queuing network: bounded reachability properties

Figures 7 and 8 show the results for checking a time-bounded property on the
TQN case case study. YMER is for most cases much faster and smaller than all

Fig. 8. Tandem queuing network, peak
memory: P≤0.01(♦≤2 full)

other tools. (For n=2 the verifica-
tion time is too short to measure the
memory consumption reliably.) As we
have seen before, PRISMH is more
memory-efficient than PRISMS , but
the latter is faster. The memory us-
age of YMER is less than VESTA,
and for both simulation tools inde-
pendent of the model size (as ex-
pected). As in the other case studies
we see that due to the base memory
overhead (JVM+CUDD) usage, the
PRISM memory consumption is less
dependent on the model size than MRMC, and E�MC2 is only able to handle
relatively small models (up to few hundred thousands of states).

Figure 7(b) shows the timing for a bounded reachability property with both a
positive lower and an upper bound. (E�MC2 and VESTA do not support these
bounds.) To check this formula, a model checker will calculate two reachability
probabilities in different Markov chains. The results are similar to the above,
as expected: YMER is, for most cases, the fastest tool; its runtime depends
less on the model size than for the other tools. MRMC is slightly faster than
PRISMS , which is slightly faster than PRISMH . The fact that YMER is fast is
also confirmed by checking such bounded property on the CPS case study, e. g.
on n=16, YMER just needs 1.2 sec whereas PRISMS and MRMC require about
1500 sec, and PRISMH about 3000 sec.

Steady State Properties. We only consider steady-state properties for
CTMCs. The long-run operator for PCTL [2] is only supported by MRMC,
and is therefore not used here. YMER and VESTA do not support steady-state
properties, basically as it is unclear on when to stop the sample path generation.
Figure 9 shows the runtime and peak memory for a steady-state property in the
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(a) model check time (b) peak memory

Fig. 9. Tandem queuing network : S>0.2(P>0.1(X snd))

(a) model check time (b) peak memory

Fig. 10. Birth-death process : P≥0.8(P≥0.9(♦≤100 (n = 70)) U (n = 50))

TQN case study. The experiments show similar results as before. E�MC2 is the
slowest tool and cannot handle large models (where n > 100). For the smaller
models, the memory usage of PRISM is dominated by the overhead. For larger
models, PRISMS needs more memory than PRISMH but is slightly faster. All
experiments with steady-state formulas confirm our earlier observations: MRMC
is faster and memory-wise more efficient than PRISMS and PRISMH , but for
larger models, PRISM uses less memory than MRMC. The turn point, however,
seems to occur at larger state spaces than experienced for reachability.

Nested Properties. We also checked the behaviour on nested quantitative
reachability properties. Figure 10 shows the results of checking such property
for the BDP case study. The tools check such nested formula in a bottom-up
fashion, i. e., first the set of states satisfying the sub-formula is determined. The
results are rather similar to the above findings. The MTBDD for the BDP case
study is not very compact as the transition rates depend on the population size
n, and as a result, most transition probabilities are distinct (resulting in many
leaves in the MTBDD). As a result, MRMC outperforms PRISMS and PRISMH .
Note however, that considered state spaces for this case study are relatively
small which is favorable for MRMC. For all model instantiations, VESTA did
not terminate simulation within 24 hours. We suggest as explanation that too
many samples are required because the event n=70 is rather rare.
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5.2 User Friendliness

Our experiments also gave insight in the user friendliness of the probabilistic
model checkers. As recognised by many people in the field, we find PRISM the
most user friendly tool, having a reasonably powerful modeling language, a GUI
and many additional features, such as the ability to plot the probability for
different model parameter values. VESTA was less powerful in this respect. It
does have a nice GUI, but lacks a parallel composition operator. Hence one needs
to combine the various parallel components into a single model by hand, which
is a very cumbersome and error-prone task. Also, we find VESTA’s syntax and
error messages not so intuitive. PRISM is able to generate files that are readable
for E�MC2, MRMC and YMER. Whereas E�MC2 and MRMC allow one to read
these files directly, YMER uses a slightly different syntax, so PRISM models have
to be slightly transformed before being used by YMER. Without a GUI, all three
tools are less intuitive to use than PRISM. On the other hand, MRMC is more
appropriate as back-end verification engine as it has a simple input format.

The following table summarizes the results (++ is best, −− is worst).

E�MC2 MRMC PRISM YMER VESTA
ease of modeling ++ a ++ a ++ + −−
ease of use + 0/+ ++ 0 +

a Exploiting the modeling facilities of PRISM (or TIPPtool).

6 Conclusion

We presented a performance comparison of five probabilistic model checkers. By
ensuring that our experiments are repeatable, verifiable, statistically significant
and free from external influences, our findings are based on a solid methodology.

From our experiments, we conclude that YMER is by far the fastest tool. Also,
its memory usage is remarkably constant, hardly varying with the model size.
Unfortunately, YMER only supports bounded and interval until formulas. Also,
as statistical tool, YMER may report the wrong answer, and has done so during
our experiments (in a few cases, as expected). In particular, YMER outperforms
the other statistical model checker VESTA: VESTA’s memory consumption is
also rather constant, but more in the order PRISM’s memory usage. However,
its runtime varies a lot. For certain nested properties we checked, VESTA did
not terminate within 24 h, even on a model with 100 states only.

E�MC2 performs the worst in terms of memory, and frequently was unable
to check models that were easy for the other tools.

For models up to a few million states, MRMC mostly performs better than
PRISMS both in time (although sparse matrix generation takes negligible time
in MRMC compared to PRISM) and memory. This is mainly due to the overhead
for MTBDD generation in PRISM. On larger models, PRISMS and PRISMH
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perform better. This effect is more apparent whenever the MTBDD representa-
tion is compact. As expected, PRISMS is often faster than PRISMH , but uses
more memory. The results are summarized in the following tables.

We conclude that the differences between the numerical tools, which use the
same algorithms [26], are based on differences in data structures used and more
or less efficient implementations of the same algorithm. Statistical tools use
different algorithms, so different behaviour – less dependent on model size than
the numerical tools – meets the expectations.

speed E�MC2 MRMC PRISMS PRISMH YMER VESTA
steady state − ++ + 0/+ a N/A N/A
bounded until − + b +/++ 0/+ a ++ +
unbounded until − + b +/++ +/++ a N/A −/0
nested − ++ + 0/+ a N/A c −− d

a The time heavily depends on the MTBDD size.
b MRMC was faster in most cases, PRISMS on larger models.
c The property contained operators not supported by YMER.
d Based on one property, for which VESTA did not terminate.

memory E�MC2 MRMC PRISMS PRISMH YMER VESTA
steady state − + a + +/++ a b N/A N/A
bounded until − + a + +/++ a b ++ + c

unbounded until − + a +/++ +/++ a b N/A 0/+ c

nested − + a + +/++ a b N/A N/A d

a MRMC used least memory in most cases. For larger models PRISMS was between
MRMC and PRISMH , and PRISMH was the best.

b The MTBDD size varied much with the case study.
c Fairly constant; inefficient for small models, efficient for large ones.
d Based on one property, for which VESTA did not terminate.

Recommendations. Based on our experience, we have the following sugges-
tions for improving the tools. For YMER, it would be very useful if it supported
more CSL/PCTL operators, so that its “slim and fast” engine becomes applica-
ble to a wider class of model checking problems. Also, it would be nice for YMER
to use exactly the same syntax as PRISM, improving the tool interoperability.
For VESTA, we suggest to improve its runtime efficiency. Also, its applicability
would be enlarged by improving the modeling language, by either adding a par-
allel operator, or by supporting a modeling language similar to PRISM’s. For
PRISM, a tight connection with YMER could be of relevance – ideally, a user
would call the YMER model checker by pressing a single button. For MRMC,
we suggest to improve the performance for larger models.
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Abstract. Constraint Programming (CP) technology has been extensively used 
in Random Functional Test Generation during the recent years. However, while 
the existing CP methodologies are well tuned for traditional combinatorial 
applications e.g. logistics or scheduling, the problem domain of functional test 
generation remains largely unexplored by the CP community and many of its 
domain specific features and challenges are still unaddressed. In this paper we 
focus on the distinctive features of CP for the random functional test generation 
domain and show how these features can be addressed using a classical CP 
engine with custom extensions. We present some modeling and solving 
problems arising in this context and propose solutions. In particular, we address 
the way of model building in the problem domain of test generation which we 
refer to as multi-layer modeling. In this context we introduce constraint patterns 
of composite variable, implied condition and implied composite variable 
condition, define their semantics and propose schemes for their CSP modeling. 
The paper also addresses specific problems arising at the solving stage in the 
problem domain of random test generation. We propose solutions to these 
problems by means of custom random search algorithms. This approach is 
illustrated on the examples of the disjunction constraint and conditional variable 
instantiation. The latter algorithm addresses the feature of dynamic modeling 
required in the test generation task. To demonstrate the effectiveness of our 
approach we present experimental results based on the implementation using 
ILOG Solver as a CP engine. 

1   Introduction 

Design verification on the register transfer level (RTL) is a major task in processor 
design cycle. One of the commonly used methodologies for performing this task is 
simulation-based validation. This methodology involves developing a large amount of 
functional tests in an attempt to exercise various execution scenarios which could lead 
to bug detection. Unfortunately, it is not feasible to cover all possible test scenarios 
deterministically due to size and complexity of modern architectures. Hence, the 
common approach is to generate so called directed random tests, which are driven by 
constraints to express test intention yet employ randomness to extend the reach of the 
test. Automated test generation tools are being designed in order to facilitate the work 
of validation engineers. In recent years functional test generation has emerged as a 
new application area of CP technology. Constraint modeling is used to enable a 
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declarative description of design under test as well as express test intention. 
Moreover, advanced CP algorithms are used by automated test generation tools to 
produce tests answering architectural and test intention requirements. However, while 
the existing CP methodologies are well tuned for traditional combinatorial 
applications e.g. logistics or scheduling, the problem domain of functional test 
generation remains largely unexplored by the CP community. Therefore, applying CP 
technology to test generation requires filling the gap between capabilities of classic 
CP engines and challenges presented by this specific problem domain. One of the 
possible approaches is to develop custom modeling and search tools for problems 
arising in test generation [1]. Another approach is to represent a test generation 
problem or sub problems as a classical CSP (Constraint Satisfaction Problem) and to 
use a standard CP engine with custom extensions for its modeling and solving [2]. 
While the former approach provides more flexibility in addressing domain specific 
features, the latter one achieves greater efficiency by making use of cutting edge CP 
algorithms. In this paper, we address the challenge presented by the second approach 
and show how some distinctive features of the functional test generation problem 
domain can be addressed within a classical CP framework. We demonstrate our ideas 
using ILOG Solver [3] as a CP engine. As observed in [2], our choice of the solver 
results from its high controllability and extensibility capabilities, including user-
defined extensions to search heuristics, modeling and constraint propagation 
mechanism. 

The first distinctive feature of CP for functional test generation considered in this 
paper arises from the way a CSP model is built. In traditional CP applications, a 
model is created by a single agent that possesses full knowledge of the problem and 
can exercise this knowledge to produce an efficient formulation of the problem as a 
CSP. On the other hand, in the domain of functional test generation, formulating a 
model is typically performed by several agents. For example, one of the agents 
contributing to a CSP model is an architectural description of the design under test. 
The corresponding part of the model reflects information that is not test specific. 
Another part of the model comes from a validation engineer who wishes to express 
the specific test intention by implying additional constraints on architectural variables. 
The validation engineer possesses the limited knowledge of the CSP model 
representing the architectural description. We refer to this modeling scheme in which 
parts of the model are built without full knowledge of other parts as multi-layer 
modeling. In this paper we present some of the challenges associated with multi-layer 
modeling and propose solution methods. Specifically, we introduce constraint patterns 
which we refer to as composite variable pattern, implied condition pattern and implied 
composite variable condition pattern, define their semantics and propose schemes for 
their CSP modeling. All of the presented patterns are related to the paradigm of 
conditional CSP. As a part of our modeling scheme, we propose the representation of 
conditional variables in terms of traditional CSP concepts. 

Another distinctive feature which is characteristic of random functional test 
generation domain is the requirement that a solution to a CSP must be randomly 
distributed over the solution space according to a desired distribution. This 
requirement suggests the use of randomized search algorithms. The area of design and 
analysis of complete random search algorithms has received much attention in recent 
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years (see [4] for a survey of research results in this area). However the focus of this 
research has been on analyzing and improving the performance of complete search 
methods by introducing randomization rather than addressing the randomness 
requirement. In this paper we design random search algorithms with a different 
purpose. Specifically, we wish to address problems arising in random test generation 
domain by taking advantage of the randomness requirement. While specific features 
of this problem domain render some of the classical search and constraint propagation 
techniques ineffective, the randomness requirement can be used to design random 
custom search algorithms that can effectively replace standard solving techniques. We 
illustrate this approach on the examples of the disjunction constraint and dynamic 
variable instantiation. The latter algorithm provides search level support for our 
conditional variable modeling.  

The rest of the paper is organized as follows. Section 2 provides background 
definitions. In Section 3 we introduce some problems arising in multi-layer modeling 
and propose solutions based on the standard CP modeling concepts. Section 4 
describes some problems in CP for random test generation arising at the search stage 
and presents random search algorithms that solve these problems. The description of 
algorithms is followed by experimental results to demonstrate the effectiveness of our 
approach. We conclude in Section 5 with the summary of results and future work 
directions. 

2   Definitions 

In this section we provide the CP background required for the presentation of our 
results. Also, the section contains description of selected ILOG Solver features that 
are referred to in the sequel of the paper. We begin by introducing the main concepts 
of Constraint Programming. An in-depth survey of this subject can be found in [5]. 

The CP paradigm comprises problem modeling as a CSP, constraint propagation, 
search algorithms, and heuristics. A CSP is defined by: 

• a set of constrained variables. Each variable is associated with a (finite) domain 
which is a collection of values that the variable can potentially assume; 

• a set of constraints. A constraint is a relation defined on a subset of variables 
which restricts the combinations of values that the variables can take 
simultaneously. 

A solution to a CSP is an assignment of values to variables so that each variable is 
assigned a value from its domain and all the constraints are satisfied.  

A meta-constraint is a constraint that is composed of other constraints by using 
operations on constraints, e.g. conjunction, disjunction, negation or implication.  

A CSP formulation of a problem is processed by a constraint solver which attempts 
to find a solution using a search algorithm combined with reductions of variable 
domains based on constraint information. The latter mechanism is known as 
constraint propagation.  During constraint propagation, domains of the variables 
involved in the constraint are reduced until some type of consistency is achieved. For 
example, one of the possible types of consistency is the generalized arc consistency. 
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This consistency type implies that for each value in the domain of a variable involved 
in the constraint, there exists a support in the domains of all other constraint variables. 
In other words, if any constraint variable is assigned any value from its domain, a way 
must exist for assigning other constraint variables so that the constraint is satisfied. To 
ensure the required type of consistency, a solver associates a specific propagation 
algorithm with each constraint type.  

The search space is the Cartesian product of the variable domains. A complete 
search algorithm explores the search space systematically and is guaranteed to find a 
solution if such exists even though the time consumed by the search can sometimes be 
impractically large. At the first stage the search algorithm invokes initial constraint 
propagation to reduce variable domains defined in the CSP model. The algorithm then 
explores the search space by implicitly building a search tree. The nodes in such a tree 
correspond to so called choice points where search decisions can be made. The arcs 
descending from a choice point represent possible decisions. These decisions are 
taken according to some search strategy. For example, the possible search strategy is 
to pick a variable which has not been fixed yet (i.e. whose domain has not yet been 
reduced to a single value) and to try assigning each value in the domain in turn to the 
variable. In this case the search tree contains a choice point so that the arcs 
descending from this choice point correspond to possible value assignments to the 
variable. Each time a decision is taken at a choice point, domains of some variables 
get modified. These changes trigger the constraint propagation mechanism that 
ensures that each of the relevant constraints is propagated in respect to the new 
domains. A branch of the search tree fails if the domain of some variable becomes 
empty. In this case the search algorithm backtracks to one of the earlier choice points 
and tries to explore another branch. A solution is reached when all the variables get 
fixed. The search algorithm can apply various search heuristics regarding, for 
example, the order of variables to be chosen at choice points or the order of branch 
exploration. 

To implement and test our methods we have used the ILOG constraint solver. This 
solver supports user extensions to the modeling capabilities, search engine and 
constraint propagation mechanism. In particular, a user can extend the search 
capabilities by implementing new search algorithms and heuristics. The search in the 
ILOG solver is implemented by means of so called goal programming. The algorithm 
maintains a stack of goals. Each goal is composed of the execution part and an 
(optional) sub goal that defines how the execution should be continued. While the 
stack is not empty, the search algorithm pops a goal from the top of the stack and 
executes it. At the end of its execution the goal pushes its sub goal (if any) on the 
stack. In this way, search goals can be pushed on the stack dynamically, depending on 
the state of the search. This mechanism allows implementing an algorithm where the 
sequence of events is not known in advance. An example of a predefined goal in the 
ILOG Solver is a variable instantiation goal which attempts to bind the variable to a 
value from its domain. Its algorithm creates a choice point where each branch 
corresponds to the assignment of a distinct domain value to the variable. A user is 
allowed to implement custom goals and to use them as building blocks of the search 
algorithm along with the predefined goals. 
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3   Constraint Patterns for Multi-layer Modeling  

The need for identification of common constraint patterns arising in CSP models has 
been argued by Walsh in [6]. Following his argument, constraint patterns 
identification can help sharing modeling experience as well as exploiting these 
patterns by CSP solvers.  

In this section we describe specific features of CSP model building for the task of 
functional test generation and identify constraint patterns applicable to this type of 
modeling. We define the semantics and propose implementation schemes for these 
constraint patterns. We start by describing the modeling paradigm characteristic of the 
test generation problem domain which we refer to as multi-layer modeling. 

3.1   Multi-layer Modeling 

In classical CP applications, a CSP model of a problem is built by a single agent that 
possesses full knowledge of the problem. However, this is not the case for the test 
generation task. In this task, the model is typically composed of a number of layers 
contributed by different agents. For example, one layer of the model is contributed by 
the architectural description of design under test. This layer defines architectural 
variables and constraints required to produce an architecturally valid test. This part of 
the model is constructed by an agent who possesses the knowledge of the architecture 
but is not aware of any specific test requirements. Another layer of the model comes 
from a validation engineer who augments the architectural layer of the model with 
constraints and new variables to express a specific test intention. The validation 
engineer has knowledge of the architectural concepts and must be provided access to 
the architectural variables introduced in the former layer of the model in order to 
formulate his constraints. However, his knowledge of the architecture need not be full 
and moreover, he does not possess the full knowledge of the CSP modeling of the 
architectural layer. 

Formally, we consider a model building scheme where a CSP model is built in 
phases by layers contributed by different agents. Each of the agents has a limited 
knowledge of layers contributed by other agents in the preceding phases. These layers 
can share common variables. We refer to this scheme as multi-layer modeling. Fig. 1 
illustrates the multi-layer modeling paradigm.  

The main challenge posed by the multi-layer modeling scheme is providing a 
mechanism to allow variable sharing subject to limited knowledge of agents about the 
CSP modeling of their predecessors. In a typical variable sharing scenario, the current 
agent wishes to impose a constraint on a concept that has been modeled in one of the 
preceding layers. This concept is viewed by the current agent as a single variable. In 
the simple cases of variable sharing, the shared concept is modeled by a single CSP 
variable in one of the preceding layers. In these cases some naming convention can be 
agreed upon and used to pass the corresponding variable to the current agent. 
However, there are cases when a shared concept has a more complex representation in 
one of the preceding layers than a single variable. 
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Fig. 1. Multi-Layer Modeling 

In the remainder of this section we present constraint patterns arising in the context 
of multi-layer modeling and propose the ways for their implementation. The patterns 
described below are related to so called conditional variables, therefore we start with 
defining this concept and provide some background on conditional CSP. 

3.2   Conditional Variables 

As observed in [1], CP for functional test generation involves dynamic modeling. In 
dynamic modeling, the existence, or relevance, of some variables may depend on the 
values some other variables assume in the search process. Consider an example from 
IA-32 processor architecture [7]. This architecture implements a segmentation 
mechanism and supports several segment types, e.g. code segment and data segment. 
While data segment has an attribute indicating whether the segment is writable, the 
latter attribute is not applicable to a code segment. Clearly, a model part, e.g. a 
variable, representing this attribute should participate in the solution only if variables 
representing segment type are assigned values corresponding to a data segment type. 
The variables, whose relevance depends on values taken by other variables, are 
known as conditional variables, and problems involving conditional, or dynamic, 
parts are known as Conditional CSP (CCSP). 

Since the formalism of CCSP was first introduced by Mittal and Falkenhainer [8], 
research has been done in this area and several algorithms have been developed for 
CCSP solving [9, 10, 11].  
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For the sake of completeness, below we present the definition of CCSP. CCSP is 
comprised of the following parts: 

− Unconditional variables; these variables participate in all the solutions to the 
problem.  

− Conditional variables; a conditional variable is associated with a condition 
referred to as activity constraint. The variable participates in a solution if and 
only if the condition is satisfied. In this case, a conditional variable is called 
active. An activity constraint can involve both conditional and unconditional 
variables. A group of conditional variables with the same activity constraint is 
known as activity cluster. 

− Compatibility constraints; these constraints imply restrictions on combinations 
of values that the variables can simultaneously assume. Compatibility 
constraints can involve both conditional and unconditional variables. A 
compatibility constraint applies to a solution if and only if all of its conditional 
variables are active. 

Next we describe our representation of CCSP in terms of the classical CSP. 
Unconditional variables are represented in our framework as standard CSP variables. 
Conditional variables are represented by a CSP variable and a CSP constraint. The 
latter constraint represents the activity constraint associated with the variable. Finally, 
compatibility constraints are represented as implication meta-constraints. Specifically, 
compatibility constraint C is represented by implication CSP constraint, implying that 
if the conditions associated with each of the conditional variables in C are satisfied, 
then C must also hold. We make the following assumptions about the activity 
constraints in our representation. First, we assume that the model does not contain 
activity circles. Namely, consider a graph where the nodes correspond to model 
variables and there is a directed edge from node a to node b if the variable b is 
conditional and the variable a participates in the activity constraint of b. The graph 
described above is known as a dependency graph [9]. Our assumption implies that the 
dependency graph is acyclic. While the general case of CCSP allows for activity 
cycles and [9,10] suggest methods to handle them, in our experience typical problems 
arising in the test generation tasks can be modeled without activity cycles. In general, 
we conjecture that activity cycles can be eliminated in most cases through more 
careful modeling. Next we describe our second assumption. Given that the 
dependency graph is acyclic, it can be assumed without loss of generality that if an 
activity constraint involves conditional variables then their conditions are also implied 
by the activity constraint. For example, consider a model which contains an 
unconditional variable A[0..5], and conditional variables B[0..5] and C[0..5] where B 
is active if and only if A > 5, and C is active if and only if B < 3. Then we assume that 
activity constraint for C is formulated as (A > 5) AND (B < 3). Observe that if the 
second assumption does not hold, the activity constraints can be modified to make it 
hold while retaining an equivalent CCSP model. Specifically, following the 
assumption that the dependency graph is acyclic, one can compute a topological 
ordering of the dependency graph and append activity constraints of predecessors to 
an activity constraint of each variable.  

In Section 4 we show how our representation of conditional variables in terms of 
CSP can be handled at the solving stage using a classic CP engine. In the rest of this 
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section we present constraint patterns involving conditional variables that arise in the 
context of multi-layer modeling, and propose implementations for these patterns. 

3.3   Composite Variable Constraint Pattern 

Consider the case when an agent A wants to impose constraints on a concept C that 
has been modeled in some preceding layer L. Suppose the concept C may have 
different configurations depending on the values of other variables. More precisely, 
the concept C could be modeled in the layer L by a group G of conditional activity 
clusters with disjoint, i.e. mutually exclusive, activity constraints. The agent A does 
not possess the knowledge about the modeling of C in the layer L. Moreover, the 
modeling of C should remain transparent to A, and A would like to treat C as a single 
variable. Semantically, a constraint applied to C by the agent A must apply to each 
representation in the group G. We refer to this constraint pattern as a composite 
variable pattern.  

For example, consider the paging mechanism in IA-32 processor architecture [7]. 
In certain modes, this mechanism allows pages of different sizes, namely, 4K and 4M. 
Linear to physical address translation passes through an architectural table called page 
directory. If the address being translated falls in a 4M page, then the base address of 
this page can be calculated from the base field of a page directory entry using a shift 
operation. Otherwise, address translation proceeds to another architectural table called 
page table, pointed by the page directory entry. In this case, the page base can be 
calculated from the base field of page table entry using a different shift operation. The 
resulting physical address is defined in terms of architectural table fields for each of 
the translation paths. Fig. 2 illustrates linear to physical address translation for 4M 
and for 4K pages. According to the mechanism described above, page base can be 
represented in the architectural layer of the CSP model by two different expressions. 
Each expression involves one distinct conditional variable and activity constraints of 
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Fig. 2. Linear to physical address translation: (a) 4M pages; (b) 4K pages 
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these two variables are disjoint, implying that the page size is 4K or 4M, respectively. 
On the other hand, a validation engineer might wish to imply constraints on the page 
base, regardless of the page size. The modeling details of the page base should remain 
transparent to the validation engineer. 

We propose to implement the composite variable pattern by adding a new variable 
and implication constraints to the layer L where the concept C is defined. Specifically, 
let G={E1,…,En} be the group of variables or expressions representing different 
configurations of the concept C in the composite variable pattern. Then a new 
variable V should be added to the layer L. The domain of V equals the union of 
domains of E1,…,En. Let Ci be an activity constraint of Ei, for i=1,…,n. Then for each 
i, an implication constraint must be added to the layer L, implying that if Ci holds then 
V equals Ei. Observe that these augmentations to the model of layer L are done not for 
the needs of this layer but for the purpose of sharing the composite concept with the 
following layers. In such an implementation, the following layers that wish to impose 
constraints on the concept C can apply the constraints directly to the variable V 
without the need to know about the expressions Ei.  

In the page base example described above, one should add a new variable P 
representing the page base to the architectural layer. As the page base width is 32 bits 
the domain of the new variable is [0..232−1]. Moreover, one should add a constraint 
implying that if the page size is S then P equals the expression corresponding to the S-
sized page translation path, for each S in {4K, 4M}. 

3.4   Implied Condition Constraint Pattern 

Like the composite variable constraint pattern defined in the previous subsection, the 
implied condition constraint pattern is related to conditional variables. This pattern 
arises when an agent imposes a constraint on a conditional variable defined in another 
layer. As the agent does not possess the knowledge of the CSP modeling of other 
layers, it may not be aware of the activity constraint of the variable or even of the fact 
that the variable is conditional. First, we define the semantics of such a constraint 
imposed on a conditional variable. We refer to a constraint which is not a meta-
constraint as a basic constraint. Let L be the current layer and let V be a conditional 
variable defined in one of the layers preceding L. We suggest that any basic constraint 
λ on V in the current layer L should be interpreted as the conjunction of λ with the 
activity constraint of V. In other words, in order to satisfy λ, the variable V must be 
active. We observe that λ can be a part of a meta-constraint μ. In this case V should 
not necessarily be active since it might be possible to satisfy μ without satisfying λ. 
An alternative definition to that proposed above would be to require that the 
constraint λ should be taken into account only if the activity constraint of V is 
satisfied. Yet we think that the definition we propose better suits the framework of 
multi-layer modeling.  

Consider the example of the writability attribute of a segment discussed in Section 
3.2. Suppose this attribute is implemented by a conditional variable with an activity 
constraint, implying that the segment type must be that of a data segment. When a 
validation engineer imposes a constraint requiring a segment to be writable, the 
meaning of this constraint according to our definition is that the segment must be a 
data segment and must be writable.  
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To implement the proposed semantics within the standard CSP modeling framework, 
we use the representation of conditional variables described in Section 3.2. For each 
layer L, and for each basic constraint λ in L, conditional variables defined in layers 
preceding L are identified and their activity constraints are appended to λ using the 
conjunction operation.  

3.5   Implied Composite Variable Condition Constraint Pattern 

This pattern is a combination of the composite variable pattern and the implied 
condition pattern defined in the previous subsections. This pattern occurs when a 
concept C defined in layer L can have multiple configurations associated with disjoint 
activity constraints, like in the composite variable pattern, and in addition C itself is 
conditional. According to our semantics definition, a basic constraint on C imposed in 
a layer succeeding L implies that C must be active and the constraint must hold for all 
possible configurations of C. 

For example, recall the page base example described in Section 3.3. When 
considered as a part of the address translation process, the paging mechanism itself is 
conditional. It is active if and only if paging is enabled. In this case, when a validation 
engineer imposes a basic constraint on the page base, in order to satisfy this constraint 
the paging mechanism must be active and the constraint on the page base must hold 
for any page size. 

The proposed implementation of the implied composite variable condition pattern 
combines the ideas of the composite variable pattern and the implied condition 
pattern. In the layer L where the conditional concept C is defined, a new conditional 
variable S must be added with an activity constraint corresponding to the activity 
condition of C. The domain of S is defined as a union of domains corresponding to 
different configurations of C. Moreover, implication constraints are added to L, 
implying that if both the activity constraint of S and the activity constraint of a 
specific configuration hold then S must equal the expression corresponding to the 
specific configuration. When one of the following model layers imposes a constraint 
λ on S, the activity constraint of S is appended to λ using the conjunction operation. 

4   Random Search Algorithms 

In Section 0 we discussed distinctive modeling aspects of CP for functional test 
generation. In this section we present some challenges arising at the solving stage for 
this problem domain. We propose solutions to address these challenges. These 
solutions are based on the randomness requirement inherent to the random test 
generation task. 

4.1   Random Search Algorithm for the Disjunction Constraint 

Consider the following typical constraint arising in the random test generation task. 
Given an integer variable V with a very large domain, one wants to restrict the 
possible values for this variable to a finite set of ranges within the variable domain. 
The relative sizes of ranges with respect to the domain size can be small. Within the 
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traditional CP framework, the described situation is modeled using a disjunction 
meta-constraint, where the disjunction is performed between the range constraints for 
each individual range. 

The standard constraint propagation algorithm for the disjunction constraint is as 
follows. Let C1∨C2…∨Cn be a disjunction constraint. If Ci becomes false for each 
i=1,…,n except i=j then add the constraint Cj to the solver. In particular, this 
propagation rule is implemented in ILOG Solver. Domain pruning achieved by this 
propagation rule is very weak as no pruning takes place until all but one constraint in 
the disjunction becomes violated. For example, for the range disjunction constraint 
described above, a solver would try to bind the variable V to arbitrary values in its 
large domain and since the percentage of valid values in the domain could be very 
small, this would cause the solver to backtrack numerous times until a valid value was 
found. 

An improved method for disjunction constraint propagation is constructive 
disjunction [12]. Following this approach, each constraint in the disjunction is 
propagated independently, and the domain of each variable is computed as the union 
over its domains obtained in all of the branches. Returning to the example of range 
disjunction, the constructive disjunction rule implies that each of the range constraints 
must be propagated independently. This means that in each propagation branch, the 
domain of V will be reduced to the corresponding single range, and the domain of V 
after applying the constructive disjunction rule will be the union of valid ranges. 
While the constructive disjunction rule is very efficient in the example described 
above, in general cases it can be more time consuming compared to the standard 
propagation rule. For this reason, the constructive disjunction is not widely used by 
existing CP engines. Lhomme [13] proposed a further improvement to disjunction 
constraint propagation that achieves the same pruning as constructive disjunction but 
is more efficient in general cases. However, his algorithm involves iterating over 
domains of variables shared by constraints in the disjunction and has the complexity 
of O(kd) where k stands for the number of shared variables and d is their maximum 
domain size. Therefore, this propagation rule is not efficient in cases of large domains 
as in the range disjunction example. 

A completely different approach to handling disjunction constraints is to represent 
them by choice points at the solving stage rather than by CSP constraints. Such a 
choice point selects one constraint from the disjunction and adds it to a solver. This 
approach has been mentioned by Würtz and Müller [14]. They compare different 
approaches to disjunction constraints handling and argue that constructive disjunction 
is not efficient for all applications, and that real world applications might need the 
standard propagation method or choice points to handle disjunctions efficiently. 

In this paper we propose to use the choice point approach in combination with 
randomization to handle disjunction constraints in the random test generation 
application. Specifically, we represent each disjunction constraint as a choice point in 
the search. The algorithm, which is performed at such a choice point, selects one of 
the constraints in the disjunction at random, with respect to uniform or any other 
desired distribution over individual constraints within the disjunction. The selected 
constraint is then added to the solver. In such an approach, only one constraint from 
the disjunction participates in the search at each given time. This algorithm is 
integrated into the standard search algorithm. If a failure occurs following a “bad” 
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choice of a constraint from the disjunction, the algorithm backtracks to the choice 
point and tries another constraint. 

We argue that the approach to disjunction constraints described above is the most 
suitable one for the random functional test generation problem domain. First of all, we 
observe that this approach answers in a natural way the requirement for random 
sampling of the solution space. Indeed, a typical use for disjunction constraints in the 
random test generation task is to enumerate over possible choices described by 
individual constraints. Since the validation task aims to cover all possible situations 
where bugs can reside, it is important that each possible architectural choice be 
represented with non zero probability in the resulting test. Therefore, such a 
disjunction can be viewed as a search decision regarding which choice will be 
represented in the test, and the desired probability can be assigned to each choice. 
Though this approach does not guarantee uniform or any other desired distribution 
over the solution space, it can serve as a good approximation to answer the validation 
needs. Second, as noted above, the existing constraint propagation methods for the 
disjunction constraint are generally not suited to the task of random test generation, 
because large variable domains typical to this task render these propagation methods 
ineffective. Finally, we use a standard CP engine to model and solve the tasks in test 
generation. However, as noted above, standard CP engines usually do not implement 
advanced propagation methods due to their high general case complexity. Extending 
an existing CP engine to include these advanced propagation algorithms would incur 
a substantial development effort, whereas the proposed algorithm can be more easily 
implemented by extending the search mechanism. 

We have implemented the proposed method on top of ILOG Solver. As described 
in Section 2, the search algorithm in ILOG Solver is implemented using goal 
programming, where a goal serves as a building block of the search. We have 
implemented a custom goal DisjunctionGoal taking a list of constraints as a 
parameter. The outline of the algorithm is shown in Fig. 3.  

 
 

 
Fig. 3. A random search algorithm for the disjunction constraint 

goal DisjunctionGoal(Constraints[n]) 

if n=1 

return goal(Constraint[0]) 

else 

i ← rand(1,n) 

NewConstraints ← Constraints \ 
Constraints[i] 

return ChoicePoint(goal(Constraint[i]), 

DisjunctionGoal(NewConstraints[n−1])
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The algorithm performed by DisjunctionGoal is as follows. The goal selects a 
constraint uniformly at random from the list of its parameters and discards this 
constraint from the list. If the reduced list is empty, then the goal adds the selected 
constraint to the solver and terminates. Otherwise, DisjunctionGoal creates a choice 
point. The first branch of the choice point adds the selected constraint to the solver. 
The second branch recursively activates another DisjunctionGoal that gets the 
reduced list of constraints as a parameter.  

We observe that the algorithm described above can be easily generalized to handle 
arbitrary distribution over the constraint list, which can be passed to the algorithm as 
an additional parameter. 

4.2   Random Search Algorithm for Conditional Variable Instantiation 

In this section we apply the idea similar to that of the random search algorithm for the 
disjunction constraint to the problem of conditional variable instantiation. 

The existing research results in the area of CCSP solving follow two main 
approaches. The first approach is to reformulate CCSP as a CSP and solve it with 
traditional CP methods. One way to obtain such reformulation is to represent the 
inactivity of a conditional variable by a special null value which is assigned to a 
variable when it is inactive [8,10]. Then activity constraints can be formulated as 
standard CSP constraints. Another way is to represent a CCSP by a collection of CSP 
problems that are solved separately [9]. The second approach is to design specialized 
algorithms for CCSP solving that aim to adopt the CSP techniques to the CCSP 
domain while eliminating the need for reformulation [10,11]. Experimental results 
presented in [10] show that the performance achieved by the second approach is much 
better than that of the first one. 

None of the approaches described above fits the needs of our application. The 
reformulation methods are not acceptable due to performance consideration. 
Moreover, the choice of the null value in the case of null reformulation is problematic 
for integer variables in the test generation task. Such variables typically represent 
architectural fields with a domain of [0..2n−1] where n stands for the width of the field 
in bits. The representation used for these variables does not easily extend to include 
an additional dummy domain value. The approach of specialized CCSP modeling and 
solving techniques does not fit our purpose either since we aim to use the strengths of 
an existing CP engine for our task. In this paper we propose an approach to CCSP 
which employs traditional CP methods, addresses the specific features of the test 
generation problem domain, and does not require problem reformulation as a CSP. 
This is achieved by the following two steps. First, we represent conditional variables 
using concepts of traditional CSP as described in Section 3.2, without reformulating 
the problem as a CSP. Such modeling is implemented as a layer above the existing CP 
modeling tool. Second, we provide support for conditional variables in the solving 
engine. This is done by a custom extension to a CP solver within a standard CSP 
solving framework. 

Next we describe our extension to the solving engine that allows instantiating 
conditional variables based on their activity status. As in the case of the disjunction 
constraint, we propose to view the activity status of a conditional variable as a search 
decision. The principle of random sampling of the solution space dictates that it might 
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be desirable to represent both active and inactive statuses of each conditional variable 
with non zero probability in the resulting solution. Following this argument, we 
implement instantiation of conditional variables using the randomized decision 
procedure. The purpose of this procedure is to randomly decide on the activity status 
of the variable and to take actions according to the selected decision. Specifically, if 
the randomly taken decision is to make the variable active, its activity constraint must 
be added to the solver and the variable must be instantiated. Otherwise, the constraint 
opposite to the activity constraint of the variable must be added to the solver. Since 
the random decision can prove wrong and lead to no solution, the decision procedure 
creates a choice point where the randomly taken decision is checked first and its 
alternative is checked second in case the first branch leads to a search failure. 

We observe that the requirement that an opposite constraint must exist for an 
activity constraint of the conditional variable is a limitation of our approach. 
However, the opposite constraint is defined for most of the common CSP constraints.  

Like the disjunction constraint algorithm, the conditional instantiation algorithm 
described above was implemented using ILOG Solver. The outline of the algorithm is 
shown in Fig. 4. The algorithm ConditionalGoal takes a conditional variable 
represented as a CSP variable var and a CSP constraint c (activity constraint). To 
improve the performance of the algorithm we avoid backtracking in cases where the 
activity status of a conditional variable can already be determined at the current stage 
of the search. This is achieved by propagating the activity constraint of the variable 
prior to taking the random decision. If it is determined that the activity constraint is 
satisfied or violated, then the variable activity status is set deterministically and the 
corresponding actions are taken.  

Observe that the algorithm described above can be used to instantiate a cluster of 
variables sharing the same activity constraint rather than a single variable. This 
provides a significant advantage over the null reformulation method where each 
variable needs to be instantiated regardless of its activity status. On the other hand, 
the proposed algorithm allows deactivating the whole cluster with a single condition 
check. 

Recall that in our modeling, if an activity constraint involves a conditional variable 
it must also include the activity constraint of this variable. Therefore, when the 
algorithm adds the constraint c to the solver it can also imply the activity of additional 
variables required for the activity of var. Such implementation makes it possible to 
instantiate variables in an arbitrary order and not necessarily according to the 
topological ordering of the dependency graph defined in Section 3.2. Also, this 
achieves propagation of the activity status of conditional variables. Another 
observation is that in our algorithm, compatibility constraints propagate as soon as all 
of its variables become active. Indeed, recall that we represent a compatibility 
constraint C as an implication CSP constraint, where the left part is composed of 
activity constraints of all conditional variables in C, and the right part is C itself, 
formulated over CSP variables that correspond to both conditional and unconditional 
CCSP variables. Therefore, C begins to propagate when activity constraints of all the 
conditional variables it involves are satisfied. 
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goal ConditionalInstantiationGoal(var,c) 
Propagate(solver,c) 
if c is satisfied 

activity_status ← active 
else if c is violated 

activity_status ← inactive 
else 

activity_status ← rand(active,inactive) 
if activity_status = active 

return 
ChoicePoint(AndGoal(goal(c),InstantiateGoal(var)), 

goal(!c)) 
else 

return ChoicePoint(goal(!c), 
       AndGoal(goal(c),InstantiateGoal(var))) 

 

Fig. 4. A randomized algorithm for conditional variable instantiation  

Finally, we observe that like the algorithm for the disjunction constraint described 
in Section 4.1, the algorithm described above can be modified to take a probability 
parameter if some biasing for the activity status of a conditional variable is required. 

4.3   Experimental Results 

In this subsection we present experimental results to demonstrate the effectiveness of 
the random search algorithms described in the preceding subsections. Our results are 
obtained based on the implementation using ILOG Solver 6.3 as a CP engine. We 
performed the evaluation on Pentium M 1.7 GHz processor with 1GB of RAM. 

First, we compare the performance of our random search algorithm for the 
disjunction constraint with the standard disjunction constraint propagation method 
implemented in ILOG Solver. Our test case includes one disjunction constraint on a 
single integer variable. The disjunction constraint is composed of four range 
constraints corresponding to sub ranges of the domain of the variable. The total 
number of valid values in all the ranges is 210. The test involves random instantiation 
of the variable subject to the disjunction constraint. We examined the performance for 
three cases, namely for variable domain size of 216, 224 and 231 respectively. For each 
case, we measured the run time of the solver, the number of search failures until the 
solution is found, and the memory usage of the solver. The results are summarized in 
Table 1. The figures shown in the table have been obtained as the average over 1000 
random runs. 

 



 Constraint Patterns and Search Procedures for CP-Based Random Test Generation 101 

Table 1. Performance comparison results for disjunction constraint implementations by standard 
constraint propagation method implemented in ILOG Solver and custom random search algorithm 
DisjunctionGoal 

 
Implementation Domain Size Run Time Number of Fails Memory Usage 

216 1.2 ms 63 129 K 
224 100.8 ms 15970 836 K 

ILOG Standard 
Constraint 

Propagation 231 8850 ms 1407570 384697 K 
216 0.84 ms 0 105K 
224 0.86 ms 0 105K 

 
DisjunctionGoal 

231 0.88 ms 0 105K  

The results below demonstrate clearly that while the standard disjunction constraint 
propagation method explodes in time and space, as the percentage of valid solutions 
in the variable domain decreases, the proposed random search algorithm achieves 
good performance regardless of the percentage of valid values. 

Next we examine the performance of the proposed random search algorithm for 
conditional variable instantiation, ConditionalGoal. We compare the performance of 
ConditionalGoal with that of the CCSP implementation based on null reformulation 
as a CSP which has also been implemented using the ILOG Solver. As mentioned in 
Section 4.2, there exist methods for CCSP solving that achieve better performance 
than null reformulation. However, these methods require development of custom CP 
tools. Thus, the purpose of our experiments was to estimate the improvement that 
could be achieved within the framework of a traditional CP engine using our 
algorithm. Our test case includes two clusters of conditional variables of equal sizes, 
so that variables in the same cluster share the same activity constraint. In addition, the 
model involves unconditional variables and compatibility constraints involving both 
conditional and unconditional variables. We performed tests for three models of the 
structure described above but with different numbers of conditional variables, namely 
10, 100, and 1000. For each test, we measured the run time and memory usage of 
each of the two algorithms averaged over 1000 random runs. Table 2 shows the 
results of the tests. 

The results above show that the proposed method for conditional instantiation is 
more effective than null reformulation. Moreover, the advantage of the proposed 
algorithm becomes more evident with the increase of the clustering effect of 
conditonal variables in the model.  

Table 2. Performance comparison results for conditional variable instantiation implementations by 
null reformulation and by custom random search algorithm ConditionalGoal 

Implementation Number of 
Conditional Variables Run Time Memory Usage 

10 0.8 ms 121 K 
100 2.5 ms 271 K Null Reformulation 

1000 33.4 ms 1789 K 
10 0.9 ms 121 K 

100 2.0 ms 213 K ConditionalGoal 
1000 18.1 ms 1219 K  
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5   Conclusion 

In this paper we addressed some challenges arising in CP for the problem domain of 
functional test generation. Our focus has been on providing modeling and search 
solutions based on an existing CP engine. We argue that the use of a traditional CP 
engine for the test generation task both makes use of cutting edge CP technologies 
and saves a substantial implementation effort for test generator developers.  

We considered both modeling and solving aspects of CP for test generation and 
provided solutions to specific problems arising in this domain. In particular, we 
addressed such a feature of CP for test generation as dynamic modeling, and proposed 
a method for modeling and instantiating conditional variables within the traditional 
CP framework with custom extensions. Also, we have identified specific modeling 
problems related to conditional variables in the modeling scheme characteristic of test 
generation domain. We defined constraint patterns associated with these modeling 
problems and proposed their implementation. Finally, we showed that replacing a 
standard disjunction constraint propagation method with a custom random search 
algorithm can boost the performance and thus overcome specific problems caused by 
large variable domains which otherwise could not be solved within reasonable time.  

We intend to continue the research on the subjects discussed in this paper. In 
particular, we would like to generalize the constraint patterns presented in this paper 
by removing the current assumptions and restrictions. It would also be helpful to 
identify and implement additional constraint patterns arising in the context of multi-
layer modeling. Moreover, regarding the random search algorithms presented in this 
paper, we believe that the performance of the proposed algorithm for conditional 
instantiation can be improved while remaining within the CP framework and we 
intend to perform further study in this direction. 
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Abstract. Reaching hard-to-reach coverage events is a difficult task
that requires both time and expertise. Data-driven Coverage Directed
Generation (CDG) can assist in the task when the coverage events are
part of a structured coverage model, but is a-priori less useful when the
target events are singular and not part of a model. We present virtual
coverage models as a mean for enabling data-driven CDG to reach sin-
gular events. A virtual coverage model is a structured coverage model
(e.g., cross-product coverage) defined around the target event, such that
the target event is a point in the structured model. With the structured
coverage model around the target event, the CDG system can exploit the
structure to learn how to reach the target event from covered points in
the structured model. A case study of using CDG and virtual coverage
to reach a hard-to-reach event in a multi-processor system demonstrates
the usefulness of the proposed method.

1 Introduction

Functional verification is widely acknowledged as one of the main challenges of
the hardware design cycle [1,2]. The increasing complexity of hardware designs
raises the need for the development of new techniques and methodologies that
can provide the verification team with the means to achieve its goals quickly and
with limited resources.

The current practice for functional verification of complex designs starts with
the definition of a verification plan, comprised of a large set of events that the
verification team would like to observe during the verification process. The veri-
fication plan is usually implemented using random test generators that produce
a large number of test-cases and coverage tools that detect the occurrence of
events in the verification plan. Analysis of the coverage reports allows the verifi-
cation team to modify the directives for the test generators to better reach areas
or specific events in the design that are not covered well [3].

The analysis of coverage reports and their translation to a set of test generator
directives to guide and enhance the implementation of the test plan, results in
major manual bottlenecks in the otherwise highly automated verification process.
Coverage directed test generation (CDG) [4] is a technique to automate the feed-
back from coverage analysis to test generation. The main goals of CDG are to
improve the coverage progress rate, to help reach non-covered events, and to
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provide many different ways to reach a given coverage event. Achieving these
goals should increase the efficiency and quality of the verification process and
reduce the time and effort needed to implement a test plan.

Data-driven CDG is a common approach to CDG. In data-driven CDG, the
CDG system discovers relations between the directives that control the stim-
uli generation and coverage events based on observations of specific settings of
the directives and the coverage events to which they lead. Reports on several
CDG systems based on this approach have been published in recent years, in-
cluding systems based on Bayesian networks [4], Markov chains [5,6], genetic
algorithms [7], and inductive logic [8].

Data-driven CDG systems have been proven to work efficiently when there
is some structure that connects the coverage events. The CDG system uses the
structure to infer, from both the parameter settings that lead to covered events
and the relation between these events and uncovered events, what are the best
parameter settings for reaching the uncovered events. Cross-product coverage [9],
which is the most commonly used form of structured coverage today, provides
an easy-to-use structure for data-driven CDG. In cross-product coverage, the
coverage model is defined as the cross-product of several attributes, each with a
finite domain of possible values. Data-driven CDG systems can use this structure
to break the problem of reaching a certain uncovered event into a set of smaller
problems of reaching the values of each of the attributes of the event [8]. Simply
stated, instead of trying to hit the event < x1, y1 >, the CDG system tries to
reach the value x1 in attribute X and the value y1 in the attribute Y . Note that
this approach works well even if the coverage attributes are not independent and
are affected by the same parameters in the directive file.

While data-driven CDG works well for structured coverage models in general,
and cross-product coverage models specifically, it is less capable of handling
coverage models comprised of unrelated coverage events. This happens because
the unstructured model does not provide the CDG system with an opportunity
to learn how to reach uncovered events from covered events. To overcome this
problem, we propose the use of virtual coverage to help data-driven CDG systems
learn how to reach uncovered events in an unstructured coverage model or when
only one coverage event exists.

The main idea is to define a structured coverage model, preferably a cross-
product coverage model, around the target event, such that the target event is
one of the coverage points in the structured events. With the structured coverage
model around the target event, the CDG system can exploit the structure to
learn how to reach the target event from covered points in the structured model.
We named this idea virtual coverage because covering the structured coverage
model is never a goal per-se of the verification process in general and the CDG
system specifically. Instead, the CDG system tries to learn from this model and
cover its coverage points only when this contributes to the goal of reaching the
target event.

The idea of creating a virtual coverage model is reminiscent of a technique
known as target enlargement [10] from the formal verification domain. There,
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the target space of the search is expanded into a set of nearby states. This
expansion can be performed through an over-approximated BFS traversal from
the target state or by adding additional states with small Hamming distance, to
cite a few techniques. While the underlying concept of adding contributing states
to the original coverage goal is similar in both target enlargement and virtual
coverage, these techniques differ in one critical aspect: target enlargement uses
these additional states as intermediate targets en route toward the real target,
whereas in virtual coverage the important information is how these additional
states are reached. This latter property makes it natural for exploitation in a
learning environment in general and in a CDG framework in particular.

The virtual coverage model can be defined either manually or automatically. In
manual definition, one can exploit domain knowledge to break the target event
into smaller events and add related events or attributes around them. While
manual definition can be difficult and time consuming, it has the potential to in-
crease the chances of success when compared to any automated definition. This
is due to the fact that the latter is naturally limited to more generic consider-
ations. In effect, automatic definition can be realized by performing static and
dynamic analysis on the design and the verification environment. For example,
this can be done by breaking the target event expression into sub-expressions or
finding the cone-of-influence of the target event.

To illustrate the benefits of using virtual coverage, we provide a case study
where CDG and virtual coverage were used to reach a hard-to-reach event in a
multi-processor system. The target event in this work was to fill a flow-through
buffer in one of the nodes of the system. Direct attempts to reach this event
yielded limited success. Defining a virtual coverage model around this event
helped to identify relevant parameters that affect the utilization of the buffer.
Designing and training a Bayesian network for the identified parameters and the
virtual coverage model allowed our CDG system to generate directive files that
reached the target event with a high probability.

The rest of the paper is organized as follows: Section 2 describes the concept
of data-driven coverage directed generation and explains why it works well on
structured coverage models. Section 3 presents virtual coverage as the solution
for using data-driven CDG to reach singular coverage events. Section 4 describes
the case study of filling the flow-through buffer. Conclusions and directions for
future work are presented in Section 5.

2 Data-Driven Coverage Directed Generation

In the highly automatic verification environment used today, analysis of coverage
information and usage of this information to direct the stimuli generator toward
uncovered or lightly covered areas is one of the remaining human bottlenecks.
Therefore, considerable effort is spent on finding ways to automate the covering
procedure; that is, to close the loop of coverage analysis and stimuli generation.
This automated feedback from coverage analysis to stimuli generation, known
as Coverage Directed stimuli Generation (CDG), can reduce the manual work in
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the verification process and increase its efficiency. In general, the goal of CDG
is to automatically provide the stimuli generator with directives that are based
on coverage analysis [4]. Figure 1 presents a sketch of a verification environment
with CDG. The CDG engine receives information from the coverage analysis
tool about the state and progress of the coverage, and generates directives to
the random test generator that are designed to achieve one or many of the CDG
goals.

Fig. 1. Structure of a verification environment with CDG

There are two main approaches to CDG. In direct CDG, or model-based CDG,
an external model of the design under verification is used to generate tests direc-
tives designed to accurately hit the coverage tasks [11]. In data-driven CDG, which
is often called feedback-based CDG, the CDG system relies on inference of the re-
quired stimuli directives from observations of past behaviors [4]. This inference
is usually done with machine learning techniques [4,7,8]. In this paper, we refer
to CDG systems based on Bayesian networks [4], although the concept of virtual
coverage described here can be used with other data-driven CDG approaches.

Bayesian networks are graphical models that represent distribution spaces [12].
A Bayesian network is a Directed Acyclic Graph (DAG) whose nodes are random
variables and whose edges represent a direct influence between nodes. CDG based
on Bayesian networks starts from the understanding that the space containing the
directives to the stimuli generator on one side and the coverage model on the other
side is a large distribution space. Moreover, it is assumed that this distribution
space can be compactly represented using a Bayesian network.

The CDG process begins with construction of a Bayesian network model that
describes the relations between the directives to the stimuli generator and the
coverage space. Figure 2 illustrates a simple yet typical Bayesian network, which
models an excerpt of the CDG setup used for covering dependencies in a pipeline
of a microprocessor [4]. The network describes the relations between the direc-
tives that control the instructions generated by the stimuli generator and the
coverage attributes of a cross-product coverage model. The network is comprised
of input nodes that relate to stimuli generator directives (the top of the graph),
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coverage nodes (at the bottom), and hidden nodes, namely variables for which we
don’t have any physical evidence. The Bayesian network in Figure. 2 describes
the causal relationships from the stimuli generation directives (causes) to the
coverage model space (effects). For example, it encodes the expert knowledge
that source and target registers together (nodes SR and TG in the figure) affect
the ability to dispatch instructions into the pipelines.

Fig. 2. Example of a Bayesian network for CDG

After being specified, Bayesian network structure is trained using a sample
of directive files and the respective coverage events they cover. This is done
by activating the simulation environment and constructing a training set out
of the directives used and the resulted coverage tasks. The training process
estimates the Bayesian network’s parameters (i.e., set of conditional probability
distributions).

To perform its job as the heart of a CDG system, the Bayesian network needs
to infer the best directives to reach coverage events from coverage events it has
seen during its training. To achieve this goal, the Bayesian network reduces the
problem of reaching a specific goal into a set of simpler sub-goals.

Cross-product coveragemodels [9] provide a natural break of a specific coverage
event into sub-goals of reaching the specific values of all the attributes in the cov-
erage space. Simply stated, the CDG system can learn from positive and negative
examples about the best settings of directives to reach a given value in each of the
attributes and what settings should be avoided. Combing all the answers for the
individual attributes together yields a good setting of the directives to the com-
bined event. Figure 3 illustrates this. In the figure, covered events are marked by
check marks and the target event is marked by a question mark (?). The CDG sys-
tem can take advantage of events that reached the X coordinate of a target event
but not the Y coordinate and events that reached the Y coordinate but not the X
coordinate to infer how to reach the target event.
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Fig. 3. Using the coverage model structure to learn how to reach an uncovered event
in two-dimensional space

This simplified method works even when there are dependencies between the
coverage attributes or when the coverage attributes depend on the same direc-
tive, as in the Bayesian network of Figure 2. In these cases, the structure of the
Bayesian networks captures the dependencies between coverage attributes and
their common dependencies. The learning algorithm can use the training data
to catch the essence of the dependency encoded in the structure and save it in
the conditional distributions stored in each node. When the network is queried
about the most probable explanation for a coverage event, it can provide an
answer that considers the dependencies in the network. For example, when the
Bayesian network of Figure 2 is queried about the most probable explanation
for instructions in stage 1 of the R and S pipes (nodes R1 and S1 in the figure),
it looks for a setting in the opcode node (OP in the figure) that fits both the
attributes together.

3 Virtual Coverage

While the common courtyard of the CDG technology includes a structured cov-
erage model, there are many cases where the verification goals include generation
of a very specific event, or a set of totally unrelated events (or at least events
with unknown relationship). In the sequel, we will refer only to the case of a
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single event since it is simpler to describe; however, the results obtained can
readily be adapted to the more general case of a set of uncorrelated events.

As an example of such a single event, Figure 4 depicts part of a typical modern
superscalar microprocessor. It contains several (N) execution units implemented
through pipelines including several stages. In regular operation, each instruction
resides in a stage for a single cycle, after which it moves to the next stage and the
stage becomes free for the next instruction. However, it may happen, for multiple
different causes, that an instruction resides in a pipeline stage for several cycles.
We then say that the instruction is held by the pipe stage, or that the pipe stage is
on hold. Examples of causes for stages to be on hold are: long execution time of the
instruction in the pipe, stalls causedby data hazards (i.e., the instruction is waiting
for data), and stalls caused by control hazards (i.e., the instruction cannot progress
in the pipe because the following stage is on hold or other pipe ordering rules).
When a pipe stage is on hold, the operations of previous stages in the pipeline are
stalled. A particularly interesting event is one which occurs when all the initial
stages of each pipeline are simultaneously on hold. In such a case, all the issue
queues feeding the pipelines have to stall. This is undeniably an event of interest as
it stresses the superscalar functionality, whereas the realization of this very specific
scenario is, in general, extremely complicated.

It is obvious that when there is only a single event to generate such as the one
above, there is no learning opportunity. The CDG learning engine cannot infer
any knowledge on how to cover the desired event from the generation of other
events. The trivial approach for coping with this problem is to invest extra-time
in analyzing the event and to try to generate it by a process of trial and error.

To overcome this problem in a more efficient manner, we add a set of ad-
ditional coverage goals, which we will call virtual coverage goals. On the one
hand, they should be easier to cover than the original goal, and on the other
hand their coverage should supply information to the CDG module on how to
increase the probability of generating the original goal. More precisely, the solu-
tion adds structure around the targeted event to form a cross-product coverage
model. Cross-product models have a structure defining a natural relationship,
or distance, amongst the events and thus lend themselves well to learning. The
CDG technology will then aim at covering the cross-product model as a means
to reach the targeted event. In effect, the virtual coverage tasks yield a type
of ladder to assist in reaching the targeted event. However, when driving the
CDG technology, one should recall that the coverage of the virtual events is not
a primary target. Hence, CDG should be operated in a special mode, in which
it appropriately mixes exploration (with the hope of building the ladder) and
exploitation (attempts to use the ladder to reach the desired event).

For example, the event described above can be generalized into a cross-product
model in the following manner: select the state of each initial stage at the end of a
cycle as an attribute, and have the virtual cross-product coverage model include
all combinations of the possible states of the N initial stages. Note, there are
many options for the possible state of a pipeline stage. However, the state of a
stage can be a simple indicator whether the stage is on hold or not, in which
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Fig. 4. Pipeline of a modern superscalar microprocessor

case the size of the cross-product space is 2N events. A more detailed state can
provide more information on the pipe stage and include values such as free (no
instruction in the pipe stage), busy (instruction in the pipe stage but not on
hold), on hold because of long execution time, on hold because of data hazard,
etc. This more detailed state increases the size of the virtual space, but provides
more opportunity for the CDG system to learn the relation between states of
stages in the pipe.

An important issue regarding the use of virtual coverage models is how to
define these cross-product models. The basic approach is to break the targeted
corner case into sub-events, each with its own set of values, and define a coverage
model represented by the Cartesian product of these values for each attribute.
In our example, this basic approach can be easily applied because the target
event is specified as a conjunction of sub-events. But there are many cases in
which this basic approach cannot be easily used because breaking the event into
sub-events is not intuitive. For example, consider the case of covering the event
of forwarding data from stage F2 to stage S3 in the pipeline. For this event,
the sub-events comprising it include: there is an instruction in stage F2, this
instruction can forward data to S3, there is an instruction in S2, it can receive
data from S3, certain timing constraints hold, etc. These sub-events are hidden
in the definition of the microarchitecture of the processor. Therefore, expertise
and domain knowledge are required to break the target event into necessary and
sufficient sub-conditions.
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Another intriguing issue regarding the definition of the virtual model is whether
to augment the basic virtual model with additional information and how to do
so. The basic virtual model can be augmented in two ways: adding values to the
attributes representing the sub-events and adding new attributes that do not di-
rectly belong to the target event. The two augmenting techniques result in a larger
virtual coverage space that contains more information, and thus more opportuni-
ties from which the CDG system can learn.

For example, the basic sub-events comprising the target event of our running
example are whether a given stage in the pipeline is on hold or not. This definition
of the sub-events results in a virtual coverage space with size of 2N events. These
basic sub-events can be augmented with a more detailed state of each pipe stage,
as discussed above. This leads to a much larger coverage space with 5N events.
The additional information in the extended state can help the CDG system
learn, for example, that free stages reduce the chance of stages being on hold
in other pipes in future cycles. A second way to augment the virtual coverage
model in our example is to add attributes for the states of other stages in the
pipe. For example, adding the states of the execution stages of the pipes can
help the CDG system learn how to bring instructions that are executed in these
stages for long periods of time, thus increasing the probability of stalls caused
by control hazards in the entry stages.

Note that increasing the size of the coverage space in a virtual model has less
severe effects on the verification process because covering the virtual space is
not a direct target of the verification process. Still, using a virtual space that
is too large reduces the ability of the CDG system to learn it or requires more
examples in the training set.

Our discussion so far dealt with the manual creation of a virtual coverage
model. In such cases, the eventual success of the approach is dependent on
the adequateness of the selected attributes and partition. If domain knowledge
is low, it can be difficult to come up with an adequate set of attributes. To
cope with this problem, cross-product models can be created in an automatic
manner. In fact, even if domain knowledge is high, the automatic method might
be preferred for efficiency and precision. There are several possible methods for
automatic extraction of the virtual coverage model. For example, when the event
is represented as a property in a property specification language, sub-properties
can be used as the sub-events. When the target event is represented as a signal
in the design, we can extract from the design the cone-of-influence of the event,
and use each element in the cone-of-influence as an attribute in the cross-product
model. This extraction can be done automatically through standard methods of
static analysis on the design.

4 Case Study – Filling the Flow-Through Buffers

In this section we demonstrate the effectiveness of using virtual coverage and
coverage directed generation to reach a very hard-to-reach event in an attempt
to recreate a bug found in the lab.
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4.1 The Target System

The bug occurred in the flow-through buffers in the multi-processor comput-
ing system depicted in Figure 5. The system is comprised of four nodes, with
each node containing several processing elements, caches, and memory and I/O
controllers (all of which are in the PE boxes in the middle of the nodes). The
nodes are connected using two one-way rings. The rings are used to transfer data
between nodes in the system, for example, to transfer data to and from remote
memories. To control the flow of transactions between the nodes, each node con-
tains two flow-through buffers that store transactions in transition. Each ring
has one such buffer in each of the nodes. The flow-through buffer stores transac-
tions only in intermediate nodes in the path from a source to a destination node.
Transactions arriving at a node from the previous node on the path are stored in
the flow-through buffer until the next node in the path is ready to accept them.
For example, a transaction from Node 0 to Node 2 traveling clockwise on the
inner ring is stored in the flow-through buffer of Node 1 until Node 2 is ready
to accept it. Transactions are always routed in the shortest path between the
source and destination nodes. For example, transactions from Node 2 to Node 1
are always sent on the outer ring counterclockwise. Transactions between nodes
on the opposite side of the ring are sent on the path with the least-loaded in-
termediate node. Note that because of the routing scheme and the number of
nodes in the system, the flow-through buffers store only transactions between
nodes on opposite sides of the ring.

The system can operate in two modes. In normal mode, all the nodes in the
system exist and both rings are fully operational. This mode is also called closed
ring mode. The system can also work in open ring mode when one (or more) of

Fig. 5. Multi-processor system with flow-through buffer
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the nodes are not available. In this case, only the parts of the rings that connect
live nodes are available. For example, if Node 3 is missing, only the two links
between Node 0 and Node 1 and the two links between Node 1 and Node 2
are working. In this case, the utilization of the flow-through buffers in Node 1
increases because there is only one path from Node 0 to Node 2 and back.

4.2 Description of the Bug

The bug found in the lab caused the flow-through buffers to overflow in some
very rare conditions. Overflow in a flow-through buffer causes lost of transactions
that are supposed to be stored in it. This, in turn, can cause the system to
hang. Attempts to recreate the bug in simulation, and to understand the rare
conditions that cause it, failed. However, analysis revealed that an important
necessary condition for the bug is to fill the flow-through buffer and keep it full
for long periods of time. Attempts to create this condition in simulation were
not very successful. The verification team could reach this event only in a very
small number of simulation runs and could not identify a proper setting of the
verification environment that would increase the probability of this event.

By the time work with CDG and virtual coverage started, the bug was fixed,
the fix was tested successfully at the lab, and the general belief was that overflow
in the flow-through buffer was impossible in the fixed design. Still, to increase
the confidence that the bug fix was correct, it was decided to put some effort
into trying to reach the important necessary condition in simulation, or in other
words, fill the flow-through buffer and keep it full for long periods of time. The
exact goal was to fill the buffer and keep it full for more than 50 cycles.

4.3 Definition of the Virtual Coverage Model

The work to find directives that can reach the target event on a regular basis
was done in three main steps. The first step was to define a virtual cross-product
coverage space around the event to be used by the CDG engine as a foundation
for learning how to reach the event. The second step was to design and train
a Bayesian network as part of the CDG engine. The third step was to use the
CDG engine with the trained Bayesian network to generate directives that could
reach the event. To improve the chance of success, it was decided to simulate
the system in open ring mode because this mode increases the utilization in the
flow-through buffers.

The first step in the work was to create a mechanism that would help us
measure if we reached the target event or how close to it we were. The mech-
anism that we used for this purpose was a cross-product coverage space that
captured many properties of ring transactions. This virtual coverage space (we
never intended to cover the entire coverage space or even portions of it) was
designed in such a way that it would be able to provide the CDG engine with
as much information as possible on how to reach the target event. In this sense,
we were not satisfied with the two basic sub-events that built the target event,
namely, the buffer is full and the time from arrival of the current transaction
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to the next departure from the buffer is more than 50 cycles. Instead, we used
the two augmentation methods described in the previous section to increase the
amount of information provided to the CDG system, thus increasing its ability
to learn how to reach the target event. Overall, our coverage space was built of
attributes of two types. First, we used attributes for the sub-events of the target
event. In our case, these attributes were:

– The number of used entries in the buffer when a new transaction arrives.
When this attribute was equal to the buffer capacity, the buffer was full.
Note that for this attribute we used the number of used entries instead of an
indicator whether the buffer is full or not to increase the information given
to the CDG system.

– Time between arrival of the current transaction into the flow-through buffer
and the next departure from the buffer. When the last free entry in the
buffer was filled by a given transaction and the value of this attribute for
this transaction was greater than 50, the target event was reached.

In addition to these two attributes, we used other attributes that were corre-
lated to the target event. Adding these attributes to the Bayesian network helped
it learn the relation between the parameters in directive files and behavior of
transactions, so it could better reach the target event. Some of these attributes
were:

– Number of cycles the transaction was in the flow-through buffer. This at-
tribute was correlated to the service time required by the transaction, the
utilization of the buffer when it arrived, and the ability of the flow-through
buffer to send the transaction to the next node. All of these affected the
ability to reach the target event.

– Time from arrival of the transaction to the arrival of the next transaction.
This attribute was an indicator of the arrival rate to the buffer, and thus it
was correlated to the buffer utilization.

– Transaction command (i.e., the opcode of the transaction). This attribute
directly affected the service time of the transaction, thus contributing to the
amount of time it was stored in the buffer.

4.4 The CDG System

The second step was designing and training a Bayesian network for the CDG
engine. This step was done in several sub-steps that included identifying relevant
parameters that affect the attributes in the coverage space, designing of the
Bayesian network, and its subsequent training. More details on this CDG process
can be found in [4].

To identify relevant parameters for creating transactions on the rings, we
started with directive files designed by the verification team to reach the event.
These directive files contained many parameters that were supposed to be rele-
vant. To identify the parameters that had the greatest effect, we automatically
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generated a set of directive files that nicely span the parameter space using
standard design-of-experiment techniques [13]. We then simulated the generated
directive files and performed sensitivity analysis between the parameters and the
coverage events created during the simulation. The sensitivity analysis was done
using measures of mutual information [14] between parameters and coverage
attributes and other statistical tests. This analysis helped reveal correlation be-
tween changing parameters and attributes in the coverage space. The parameters
that we found to be most relevant included parameters that control instruction
fetch and data loads and stores in the processing elements in each node, para-
meters that control i/o transactions in the nodes, and parameters that control
addresses.

Next, we designed and trained the Bayesian network that relates the parame-
ters and the coverage attributes. The network was designed based on information
obtained from the sensitivity analysis and domain knowledge provided by the
verification team. The network included nodes for the relevant parameters, the
coverage attributes, and internal hidden nodes that captured specific aspects in
the behavior of the system [4].

4.5 Results and Analysis

The trained network was used to generate directive files that increase the prob-
ability of the target event. This was done using the CDG engine by providing
the trained Bayesian network with the target event as an evidence and query-
ing for the most probable explanation to it in the parameters space [4]. In fact,
we generated several sets of parameters using slightly different versions of the
query and several versions of the Bayesian network. We simulated the generated
directive files and simulation results indicated that most of these directive files
hit the target event with a high probability and in many cases they were able to
keep the buffer full for periods of time much longer than the required 50 cycles.
See Table 1 for some details on the results.

Table 1. Results of flow-through buffer work

Open Ring Mode Closed Ring Mode

Probability of
reaching the event 50% 30%

Maximal full time 200 cycles 140 cycles

After the success with the initial goal, we decided to improve our results by
moving from the open ring mode to the normal closed ring mode. This was
done by changing the configuration of the simulated system and adding parame-
ters relevant to the forth node in the Bayesian network. After training the new
Bayesian network, we generated a new set of directive files with the same goals
(full utilization for long period of time). This new set of directive files was able
to achieve its goals, although the results were not as good as in the open ring
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mode. The probability of reaching full utilization for more than 50 cycles was
around 30% and the maximal full buffer utilization period was 130 cycles.

Analysis of the generated directive files revealed no surprises in how the CDG
engine chose to set the various parameters. To reach the target event in the
clockwise flow-through buffer in Node 1, the CDG engine generated parameters
for Node 0 that pushed data to Node 2, parameters for Node 2 that pulled
data from Node 0, and parameters for Node 1 that utilized the ring section
from Node 1 to Node 2. Still, there are some differences between the directive
files generated by the CDG engine and the manually created directive files. The
main difference between the directive files was the control of the node with the
flow-through buffer (Node 1 in the example above). The original understanding
of the verification team was that activity of a node has very little influence on
the utilization of its flow-through buffers. The sensitivity analysis revealed that
the activity of the node has major effect on the utilization since the node can
block the ring from the flow-through buffer because of its activity and need to
communicate with the neighboring node. Another difference between the manual
directive files and the ones generated by the CDG engine was in the split of
distributions between the various processor and i/o commands that generate
transactions on the ring. It seems that the CDG engine was able to find better
distributions than the manual directive files. The effect of this difference on the
ability of reaching the targeted event is less severe than the first difference, but
it is not negligible.

The work described in this section took about four months and required about
three person months and several workstations working almost non-stop either
simulating directive files or training Bayesian networks. Although this work did
not result in finding a bug in the flow-through buffers, it is a success because it
helped achieve the goal of improving the confidence that no such bug exists. The
high effort invested in the work indicates that using virtual coverage with manual
definition of the coverage model and manual design of the Bayesian network is
a solution only if the target event is extremely important and difficult to cover,
or if the effort can be used for covering many events.

5 Conclusions

Data-driven coverage directed generation is shown to be an efficient means for
closing the loop from coverage analysis to directives to the stimuli generation.
These CDG systems rely on observations of directives to the stimuli generator
and coverage events they reached, to infer how to reach uncovered events. This
makes the systems inefficient when the target events are singular. To overcome
this problem, we proposed the use of virtual coverage models. Virtual coverage
models are structured coverage models defined around the singular target event.
Virtual coverage models are used as a type of ladder to assist in reaching the
targeted event without being the actual target of the verification process.

A case study of using CDG and virtual coverage to fill a flow-through buffer
in a multi-processor system illustrates the usefulness of the proposed method in
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reaching hard-to-reach cases. This case study also demonstrates one of the main
weaknesses of the proposed method, namely the effort required to achieve the
goal. The high effort required means that this method is practical only if the tar-
get event is extremely important and difficult to cover. To overcome this problem
and make virtual coverage useful in more cases, more automation in the process
is required. This automation can come in two steps in the covering process. The
first opportunity for increasing the automation is in the definition of the virtual
coverage model. Another potential place for increasing the automation is in the
design and implementation of the CDG system for covering the virtual coverage
model. We are currently investigating both these opportunities.
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Abstract. Software verification is a hard yet important challenge. In
general, the problem is undecidable. Nevertheless, it is still beneficial
to look at solutions that either restrict the generality or are heuristic in
nature (and do not guarantee to terminate). In this paper, we concentrate
on a related problem, that of verifying that a cycle in the flow chart
of a program does not terminate. We show some exact and sufficient
conditions for cycle nontermination, and provide application for program
verification. This allows us to check sequential and concurrent programs
against temporal properties, using a truly symbolic approach, and to use
temporal logic to guide the selection of test cases in such programs.

1 Introduction

Software verification was suggested four decades ago [6,10] as a method for val-
idating that programs satisfy their specification. Although exhibiting beautiful
theoretical approach and introducing important influential concepts for software
development (such as the notion of an invariant), the goal of verifying software
in-the-large was not achieved. In particular, program verification is in general
undecidable, and requires considerable time and expertise. Model Checking [3,17]
restricts the verification problem to the finite state case. Different algorithmic
approaches are used to combat the inherently high complexity of the problem.
Completing the landscape of formal methods, testing is an approach for sam-
pling and checking the code based on the intuition and experience of the testers.
Testing is often somewhat informal, prescribing various alternative strategies for
the generation of test cases.

The main formal methods provide a large spectrum of approaches for im-
proving the quality of software. They offer a tradeoff between the amount of
effort required and the assurance provided. Combining these methods can help
alleviating some of their limitations. In particular, the method presented here is
related to [9], and is based on searching the flow chart paths, guiding the search
using the calculated path conditions, in the style of SPIN [11] . A specification
property, supplied by an experienced tester, corresponds to executions suspicious
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of being erroneous. The path condition for each generated path that potentially
matches the given specification is checked for satisfiability. The checked path is
extended by appending another flow chart node that also matches the checked
property. When the path condition is found to be unsatisfiable, the search back-
tracks and a different successor node (if one exists) can be appended to the path.
Upon success in finding a path that satisfies the specification, the path condition
is instantiated with satisfying values before its execution. This forces testing the
execution through the selected path while satisfying the given specification.

This, truly symbolic approach, is not a complete decision procedure for validat-
ing properties of software. Yet, it provides a useful human assisted tool, as was im-
plemented in the PET system [9] for generating test cases based on a given tempo-
ral specification. A constraint that is lifted in this paper is that, formerly in [9], the
specification provided refers to finite execution sequences. This is appropriate for
sequential code, but sometimes not enough for concurrent algorithms or protocols
that do not have a scheduled termination time. Moreover, since the given specifi-
cation may refer to faulty executions, nonterminating executions may be exactly
the goal of the search for errors in sequential code that is supposed to terminate.

In this paper we address the problem of calculating a path condition for
infinite executions. This allows extending the application of the above symbolic
approach for dealing with temporal properties, e.g., using the popular linear
temporal logic (LTL) [14]. In particular, we apply a model-checking-like search
for ultimately periodic (also called “lasso shaped”) sequences. Such sequences
consist of a finite prefix, followed by a cycle, of the flow chart graph. We provide
some criteria for deducing that such an infinite sequence executes forever. Our
approach, which calculates conditions for nontermination of code, complements
the approach of proving termination (see e.g., [1,5,15,16]).

2 Overall Architecture

The system takes as input a program, which consists of either a single process
or multiple processes. It translates it into flow charts, one per process. The sys-
tem also takes as input an LTL specification, which is translated into a Büchi
automaton. As an outcome of this latter transformation, the automaton nodes
contain two kinds of assertions, referring to the program variables and the pro-
gram labels (program locations), respectively. Inspired by model checking, we
conduct a search for a path of the flow chart that satisfies the temporal speci-
fication. The search commences on the product of the flow chart(s) and Büchi
automaton, for finding a path that satisfies the temporal property. Each node
in the search is a tuple, containing a component from each process flow chart,
and a component from the Büchi automaton. The two kinds of assertions in the
Büchi automaton nodes are treated separately.

Program location assertions. The search algorithm progresses to extend the
current path with a new tuple. Exactly one flow chart component progresses
from its current location to a successor to form the next tuple (for modeling
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synchronous communication we would have to allow for two processes to
progress simultaneously). While one flow chart progresses, the Büchi automa-
ton also progresses from the current node to a successor. These simultaneous
moves are done such that the flow chart nodes locations correspond to the
location assertions (of the form at l) in the Büchi automaton nodes (and
regardless of the Büchi automaton assertions on program variables, which
will be taken into account when calculating the path conditions). That is,
when assertion at l is present in the Büchi component, where l is a label in
process P , then the current node of the flow chart of P must be at location
l (and similarly, when the assertion is ¬at l, it must not be at location l).

Program variables assertions. We calculated a path condition to execute
the finite path searched so far, while satisfying the assertions on the program
variables appearing in the Büchi components. We apply a SAT solver to the
path condition. If the path condition is found to be unsatisfiable, the search
is forced to backtrack.

A tuple of nodes reached during the search may correspond to multiple states,
due to different values of the program variables. Therefore, when a tuple that
is already in the search stack occurs again, we are not allowed to backtrack
immediately as done in DFS (depth first search). Accordingly, we are also not
allowed to conclude that a cycle that corresponds to an infinite execution is being
closed when such a tuple is reached while already existing on the search stack.
Thus, we may have such a tuple coexisting multiple times on the search stack.
When such a tuple occurs in the search while being also in the search stack,
it generates a path with a lasso shape. In case the periodic part includes an
accepting Büchi component, we want to check whether this provides an infinite
execution. We use the conditions in Section 4 to check whether the ultimately
periodic path provides nonterminating execution sequence(s). Recall that since
a tuple may occur on the stack several times, there are several potential lasso
shapes that may need to be checked.

3 Preliminaries

3.1 Flow Charts

A flow chart of a program or a procedure is a graph, with nodes corresponding
to assignments and conditions, and edges reflecting the flow of control between
the nodes. A flow chart can be obtained by automatic compilation of sequential
code. There are several kinds of nodes, where the most common are

– a diamond containing a condition c, which is a first order formula over the
program variables, and

– a box containing an assignment of the form x := e, where x is a program
variable and e is an expression,

– an oval denoting the beginning or end of the program (procedure).
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Edges exiting from a diamond node are marked with either ‘yes’ or ‘no’ to denote
the success or failure of the condition, respectively. A transition is either (1) an
assignment node or (2) a condition together with the corresponding exit edge.

We assume that each node has a unique program counter value. This value
can be a label that is provided with the code, or automatically generated by
a translation tool. Passing an edge out of one node and into another entails a
corresponding change of the program counter value. A path of a program is a
sequence of consecutive nodes in the flow chart.

A state is a mapping providing values to the program variables from their
predefined domain(s). An augmented state is a state that also provides a value
to the program counter.

An execution is a (finite or infinite) sequence of states g0 g1 . . . gn . . ., where
each state gi is obtained from its predecessor gi−1 by executing a flow chart
node, as described below.

Let τ = t1, t2, . . . tn, . . . be a path in a flow chart. Let Γ = g0, g1, . . . , gn, . . .
be a sequence of non augmented program states (i.e., not including the program
counter values). The sequence Γ is an execution of τ if for each i ≥ 1 we have that

1. ti is a diamond node, with condition c and the edge from ti to ti+1 is marked
with “yes”. Then we must have gi−1 |= c and gi = gi−1.

2. ti is a diamond node, with condition c and the edge from ti to ti+1 is marked
with “no”. Then we must have gi−1 |= ¬c and gi = gi−1.

3. ti is an assignment node labeled x := e. Then gi = gi−1[e[gi−1]/x], which
denotes that gi is the same as gi−1, except for the variable x, which has the
value of e, interpreted according to the state gi−1.

In each one of these cases, we say that the transition ti is enabled in the state
gi−1. We denote the executions of a path τ by exec(τ). Note that in a finite
path, if the last node tn is a diamond, we must also include its outgoing edge in
order to figure out the complete information about the transition. An augmented
execution must satisfy in addition that the program counter value in each state
gi−1 corresponds to the location of the node ti. In general, a path may correspond
to multiple (augmented) executions.

A path condition ℘μ(ϕ) for a given path of length (i.e., number of transitions)
n is a first order predicate that is satisfied exactly by states from which the path
μ can be executed, and moreover each such execution ends with a state satisfying
ϕ. (A path condition does not refer to the program counter values.) Formally,
this means that ℘μ(ϕ) characterizes (i.e., is satisfied by) the set of all states g0
such that there exist states g1, . . . , gn, such that: (1) g0, . . . , gn is an execution
of μ, and (2) gn |= ϕ. When ϕ = true, we also denote the path condition by ℘μ.
We extend the definition of a path condition also to infinite paths. Then ϕ must
be true. In this case, the path condition is a predicate that is satisfied by states
from which the path can be executed.

In deterministic code, there is at most one way of extending a state into an
execution sequence. Hence, in this case, all the executions that start with a state
satisfying ℘μ are executions of the path μ (or, if μ is finite, the collection of paths
with prefix μ).
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We extend the notion of a path to cope with concurrent (multithreaded) soft-
ware. In this case, we have a finite collection of flow chart graphs. A concurrent
path is a sequence of nodes from the collection of graphs, such that the projec-
tion of the nodes on each flow chart forms a path. In other words, we interleave
several flow chart paths to form a single concurrent path. In concurrent code, a
global state is a combination of (local) states from the different processes. This
gives a mapping of values to the collection of variables from all the processes.
An execution is defined as before, but between any successive states there is a
progress in one process. This assumes a model of programs with shared vari-
ables. For other models, e.g., that of synchronous message passing, two, or even
more process, involved in sending and receiving a message, may progress from
one global states to an adjacent one.

Concurrent code is thus nondeterministic in the sense that there may be more
than a single way to continue the execution from the current state. For a nonde-
terministic code, the states satisfying the a path condition ℘μ do not guarantee
following the path μ; this is only true if, in addition, the nondeterministic choices
will also agree with it. On the other hand, any state not satisfying the path condi-
tion ℘μ will not allow the path μ to be executed. We still assume that transitions
are deterministic in the sense that a transition that is executed from a particular
state will result in a unique state.

In this paper we are in particular interested in infinite paths. In order to deal
with infinite paths in situations where the execution terminates or deadlock, we
can artificially extend each finite maximal path (including in particular concur-
rent paths), i.e., a path that cannot be extended by an executable flow chart
node, by adding some fixed no-op assignment node (for example, containing
x := x). We will use the following properties of ℘:

Compositionality: ℘σρ(ϕ) = ℘σ(℘ρ(ϕ)).
Monotonicity: If ϕ → ψ then ℘μ(ϕ) → ℘μ(ψ).
Distribution over Conjunction: ℘μ(ϕ ∧ ψ) = ℘μ(ϕ) ∧ ℘μ(ψ).

3.2 Calculating Finite Path Conditions

We calculate the path condition backwards. The accumulated path condition rep-
resents the condition to move from the current point in the calculation to the end
of the path. The current point in the path moves at each step in the calculation
of the path condition backwards, over one node to the previous point (edge).
We start with the condition true at the end of the path, if we are computing
℘μ, or with the condition ϕ, in case we are computing ℘μ(ϕ). That is, for an
empty path ε, ℘ε = true and ℘ε(ϕ) = ϕ. The calculation of the path condition
for a path tσ, can thus be defined formally according to cases of the executed
transition t as follows:

– t is a diamond with condition c and exit marked as “yes”. Then ℘tσ = ℘σ ∧c.
– t is a diamond with condition c and exit marked as “no”. Then ℘tσ = ℘σ∧¬c.
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D

A

B

C
x > 7

x := x + 1

x := x + y

yes

l1 : x := x + 1
l2 : if x > 7 then
l3 : x := x + 1

Fig. 1. An example path

– t is an assignment node, labeled x := e. Then ℘tσ = ℘σ[e/x]. (The notation
φ[e/x] means replacing textually in the predicate φ every free occurrence of
x by e.)

We can also calculate the accumulated variable transformation of a path μ.
This is a transformation of the set of variables (a multiple assignment) of the
path. Again, we perform the calculation backwards. We denote such a trans-
formation as x̄ := trμ(x̄), i.e., a set of assignments to the variables x̄. Denote
by tr(x̄)[e/x] the transformation where we substitute syntactically each occur-
rence of x in any right hand side of assignment in tr(x̄) by e. Denote also by
trμ(x̄)�x := e the set of assignments obtained by adding to trμ(x̄) the assign-
ment x := e only if it does not contain already an assignment to x (otherwise,
trμ(x̄) remains unchanged). We then have the following cases:

– t is a diamond, then tr tσ(x̄) = trσ(x̄).
– t is an assignment, labeled x := e, then tr tσ(x̄) = trσ(x̄)[e/x]�x := e.

Calculating the path condition for the example in Figure 1 backwards, we
start at the end of the path, i.e., point D, with a path condition true and
empty transformation. Going backwards to point C, we have still an accumulated
condition true, and the transformation becomes x := x+1. At point B we obtain
the accumulated path condition x > 7, while the transformation does not change.
Then going back to point A, the path condition becomes x + y > 7, and the
transformation becomes x := x + 1 + y.

We can henceforth represent any finite path μ using the pair ℘μ ↪→ trμ. The
path in Figure 1 can then be represented by x + y > 7 ↪→ x := x + 1 + y.

4 Conditions for Nontermination of Cycles

Consider the following problem: given a finite path σ followed by a cycle ρ; find
conditions under which the ultimately periodic (lasso shaped) σρω executes.
Ultimately, we would like to compute ℘σρω .
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4.1 The Equality Method

We handle here the case where the execution of the path ρ starts each time with
the same variable values, i.e., same state. Let x̄ be the state before executing ρ,
and x̄′ be the state afterwards. Then we are interested in the case where x̄ = x̄′,
or equivalently, x̄ = trρ(x̄), since x̄′ = trρ(x̄). We can propagate this condition
backwards to obtain the following condition on σρω :

℘σρ ∧ ℘σ(℘ρ ∧ x̄ = trρ(x̄))

This is a stronger condition than ℘σρω . This condition can be simplified (using
the distribution of the ℘ predicate over conjunction) into

℘σρ ∧ ℘σ(x̄ = trρ(x̄)) (1)

For nondeterministic programs, a similar result asserts that condition (1) is
satisfied exactly by those states from which σρω can be executed, given the right
nondeterministic choices.

As an example, consider the following program.

0: z:=z-1;
1: while x>0 do begin
2: y:=x;
3: x:=(x*2+z+y)/3 end;

Let σ be the assignment z:=z+1 and ρ be one iteration of the loop. The
transformation of the path ρ is then (x, y) := ((x × 2 + z + x)/3, x). We have
℘ρ = ℘σρ = x > 0. The condition for keeping the variable values the same over
the loop ρ, i.e., x̄ = trρ(x̄) is x = (x×2+z +x)/3∧y = x, which is equivalent to
z = 0 ∧ y = x. Pushed backwards over σ, which consists of the node z := z − 1,
we obtain ℘σ(x̄ = trρ(x̄)) = z − 1 = 0 ∧ y = x, or equivalently z = 1 ∧ y = x.
Thus, overall, the condition for executing the cycle with no change in value after
each complete iteration, after initially decrementing z is x > 0 ∧ z = 1 ∧ y = x.

4.2 The Monotonicity Method

Consider the following trivial example.

0: x:=1;
1: while x>0 do
2: begin x:=x+1 end;

Let σ be the assignment x:=1 and let ρ be one iteration of the loop. We
have ℘σρ = true. However, the condition x̄ = trρ(x̄) is in this case x = x + 1,
which is equivalent to false . Thus, the equality predicate is also false. To be
able to handle examples such as this one we introduce the monotonicity method
described below.
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For a loop ρ to execute infinitely many times, it is sufficient to find a loop
invariant I such that I → ℘ρ(I). Thus, the loop invariant guarantees that the
loop executes once and after that the invariant continues to hold. The weakest
such potential invariant is I = ℘ρ(true). To see this, notice that since I → true,
we have by monotonicity of ℘ρ that ℘ρ(I) → ℘ρ(true). Recall that we require
I → ℘ρ(I). Thus, if this holds, by transitivity, I → ℘ρ(true). Now if we set
I = ℘ρ(true), in the implication I → ℘ρ(I), we obtain that ℘ρ → ℘ρρ is a
sufficient condition for loop nontermination. Note that ℘ρρ = ℘ρ(℘ρ) = ℘ρ ∧
℘ρ[trρ(x̄)/x̄]. The first conjunct is the condition to execute ρ once. The second
conjunct expresses the condition to execute ρ after the first iteration; that is, ℘ρ

holding after an iteration of ρ, then this condition is relativized to the values of
the variables before the first iteration of ρ. Thus, the condition ℘ρ → ℘ρρ can be
rewritten as

℘ρ → ℘ρ[trρ(x̄)/x̄] (2)

Condition (2) states that if the loop can be executed once, then it can be
executed indefinitely. To handle the case where σ precedes the infinite iteration
of ρ, we have the following condition:

℘σρ → ℘σ(℘ρ[trρ(x̄)/x̄]) (3)

We now proceed, for simplicity of the presentation, to elaborate on how to check
Condition (2).

Consider first the simple case where the path condition ℘ρ is of the form e ≥ 0
and let e′ = e[trρ(x̄)/x̄]. Then Condition (2) is equivalent to e ≥ 0 → e′ ≥ 0. In
this case, a sufficient condition is e′ ≥ e. That is, the value of the expression e is
monotonically nondecreasing during the execution of the ρ loop. The same idea
works when instead of e ≥ 0, ℘ρ is of the form e > 0; in this case the condition
is e′ > e. When we have e1 ≥ e2 or e1 > e2, we can use e = e1 − e2. or more
general ℘ρ conditions, we can apply the following principles:

Conjunction principle. When ℘ρ is a conjunction e1 ≥ 0 ∧ e2 ≥ 0, it is
sufficient to show that e1

′ − e1 ≥ 0 and e2
′ − e2 ≥ 0. To see this, observe that if

℘ρ is of the form e1 ≥ 0∧e2 ≥ 0, then ℘ρ[trρ(x̄)/x̄] is of the form e′1 ≥ 0∧e′2 ≥ 0,
where e′i = ei[trρ(x̄)/x̄], for i = 1, 2. Thus, Condition (2) is in this case equivalent
to (e1 ≥ 0 ∧ e2 ≥ 0) → (e′1 ≥ 0 ∧ e′2 ≥ 0).
Disjunction principle. When ℘ρ is a disjunction e1 ≥ 0∨e2 ≥ 0, we strengthen
the path condition to either e1 ≥ 0 or e2 ≥ 0. It is then sufficient to show either
that e1

′ − e1 ≥ 0 or that e2
′ − e2 ≥ 0, respectively. This means requiring at least

one of the disjuncts to grow monotonically. Of course, in this way we give up
the ability to handle the case where expressions alternate in growth.

An equality e1 = e2 can be transformed into a conjunction e1 − e2 ≥ 0 ∧
e2 − e1 ≥ 0 and the conjunction principle can then be applied. An inequality
e1 �= e2 can be transformed into a disjunction e1 − e2 > 0 ∨ e2 − e1 > 0 and
the disjunction principle (which effectively strengthens the inequality by ignoring
one of the disjuncts) may then be applied. Applying these rules repeatedly allows
us to treat more complicated Boolean combinations.
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The monotonicity method can easily handle the above example (where ℘ρ is
x > 0 and x+1 = e′ > e = x holds for all x). Still, monotonicity provides only a
sufficient and not a necessary condition for nontermination. To see this, consider
the loop μ: x ≥ 0 ↪→ (x, y) := (x− y, y/2), where variables x and y take rational
values. Assume initially y > 0 and x > 2 × y. In that case, the loop does not
terminate. However, the value of x is reduced and converges towards the value
of x − 2 × y (with the initial values of x and y) rather than diverges.

4.3 Mixed Ultimately Periodic Paths

In an infinite state space, nontermination of execution can be caused by a non-
ultimately periodic path. Consider the following program, where the condition
PowerTwo(y) holds when y is a power of two of some natural number. Consider
the following code:

α: while x>1 do
begin β: if PowerTwo(x-1) then

γ: x:=4*(x-1)
else δ: x:=x-1 end

For example, we can have the following value of x, when the loop starts with
x = 4:

4 → 3 → 8 → 7 → 6 → 5 → 16 → 15 → . . .

We distinguish the condition β with the “yes” exit as β+, and with the “no”
exit as β−. Then the nonterminating executions are not ultimately periodic.
Instead, the number of β−δ iterations roughly doubles (from k times to (k×2)+1
times) between each successive iterations of β+γ.

We provide a solution that works for deterministic code (that is, we do not
allow any other processes to interleave with this loop). Our solution is also limited
to identifying conditions for ultimately periodic executions when a temporal
property is not given. We shrink each one of the paths i inside the loop into a path
condition and transformation pair ci ↪→ x̄i := ēi. As the code is deterministic,
we obtain a transition t that includes a choice between all these pairs, depending
on the (unique) condition that holds in the current state. Then path condition
of tσ (executing the transition t, followed by the sequence σ) can be formulated
as follows:

℘tσ(ϕ) =
∨

i

(ci ∧ (℘σ(ϕ)[x̄/ēi]) (4)

In the above example we shrink the path β+γ into PowerTwo(x − 1) ↪→
x := 4 ∗ (x − 1), and the path β−δ into ¬PowerTwo(x − 1) ↪→ x := x − 1.
We thus combine these two alternatives, which are mutually disjoint into a new
kind of transition that selects (denoted using the operator �) the transformation
depending on the truth value of the condition:

t : PowerTwo(x − 1) ↪→ x := 4 ∗ (x − 1)�¬PowerTwo(x − 1) ↪→ x := x − 1
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The calculation of ℘tσ is defined in Equation (4). Let B be the obtained transi-
tion, representing the loop body, and α is the loop condition. Then it is easy to
check that in this case ℘αB → ℘αBαB holds.

5 Translating Temporal Specification

Our aim is to guide the search for a test case or an execution sequence matching
the specification using a temporal property. The property may refer to labels
that such paths pass, and to some relationship between the program variables.
It can be given in various forms, e.g., an automaton or a temporal formula. The
translation and search algorithm described in this section are an adaptation of
the ones in [9]. The main changes from previous work are the use of specification
on infinite sequences, and the use of partial order reduction. Due to limited
space, the description here is terse, and the reader is referred to [9].

The specification includes the following two kinds of basic formulas. Program
counter predicates are of the form at l, where l is a program counter label. If
there are several processes, we may need to disambiguate this kind of predicate
by mentioning also the process name, e.g., P3 at l. Such a predicate holds in a
state if the program counter is at the location whose label is mentioned, i.e., on
the edge entering a node with the mentioned label. Program variables assertions
include the program variables (and do not include further Boolean operators).
Such a predicate is interpreted over a state according to the usual first order
semantics.

These formulas may be combined using Boolean and temporal operators. Our
implementation uses the Linear Temporal Logic (LTL) syntax as follows:

ϕ ::= (ϕ) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | �ϕ | �ϕ | ϕ U ϕ | p

where p ∈ P , with P a set of basic formulas. For a propositional sequence σ over
2P , we denote the ith state (where the first state is numbered 0) by σ(i), and the
suffix starting from the ith state by σ(i). Let |σ| be the length of the sequence
σ, which is a natural number. The semantic interpretation of LTL as follows:

• σ |= ©ϕ iff σ(1) |= ϕ.
• σ |= ϕU ψ iff σ(j) |= ψ for some j ≥ 0 such that for each 0 ≤ i < j, σ(i) |= ϕ.
• σ |= ¬ϕ iff it is not the case that σ |= ϕ.
• σ |= ϕ ∨ ψ iff either σ |= ϕ or σ |= ψ.
• σ |= p iff σ(0) |= p.

The rest of the temporal operators can be defined using the above operators in
a standard way.

The specification is translated into a Büchi automaton [7]. Let (S, Δ, I, F, L)
be a finite state automaton with nodes (states) S, a transition relation Δ ⊆ S×S,
initial nodes I ⊆ S, accepting nodes F ⊆ S and a labeling function L from S
to some set of labels. A run of the automaton is a maximal (finite or infinite)
sequence of nodes s1s2 . . . sn (n can be ω for an infinite sequence) where s1 ∈ I,
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and for each 1 ≤ i < n, (si, si+1) ∈ Δ. An accepting run satisfies further that it
passes infinitely many times through some state in F .

The property automaton is A = (SA, ΔA, IA, FA, LA). Each property automa-
ton node is labeled by a set of negated or non-negated basic formulas. The flow
chart can also be denoted as an automaton B = (SB, ΔB, IB, SB, LB) (where
all the nodes are accepting, hence FB = SB). Each node in SB is labeled by
(1) a single program counter value, (2) a node shape, e.g., box or a diamond,
respectively), and (3) an assignment or a condition, respectively. The transition
relation ΔB corresponds to the edges in the flow chart. The initial nodes are
IB ⊆ SB.

We can extend the automaton B to represent a collection of n flow charts
that execute concurrently. In this case, SA will be the set of n-tuples of flow
chart nodes, one per each flow chart. The relation ΔB forces exactly one flow
chart to progress according to its flow chart edge, while other flow chart nodes
are not changed. IB will be an n-tuple of initial nodes, where each component
is an initial node in the corresponding flow chart.

The intersection between a property automaton A and a flow chart B is an
automaton A × B = (SA×B, ΔA×B, IA×B, FA×B, LA×B) as follows:

• The nodes SA×B ⊆ SA ×SB have matching labels: if (a, b) ∈ SA×B then the
program counter of the flow chart(s) node (tuple) b must satisfy the program
counter predicate(s) labeling the property automaton node a.

• The transitions are {((a, b), (a′, b′))|(a, a′) ∈ ΔA ∧ (b, b′) ∈ ΔB} ∩ (SA×B ×
SA×B).

• The initial states are IA×B = (IA × IB) ∩ SA×B.
• The accepting states are FA×B = (FA ×SB)∩ SA×B. Thus, membership in

FA×B depends only on the A automaton component being accepting.
• The label on a matched pair (a, b) in the intersection contains the union of

labels from a and b.

Note that acceptance of runs by the intersection automaton as defined above
ignores the program variable assertions on the nodes SA and the assignments
and conditions labeling the nodes SB. The program variable assertions will affect
the path condition, as will be shown later.

We assume that each node s ∈ SA of the property automaton is annotated
by some set of program variables assertions whose conjunction is ηs and some
set of program counter predicates whose conjunction is μs. This annotation is
generated automatically when translating an LTL formula into an automaton.

Now consider an accepting sequence of the intersection of the property au-
tomaton A and the flow chart B of the form τ = t1, t2, . . . , tn . . .. Projecting τ
over the components of the flow chart gives a path. Thus, we may observe τ as
a path with some assertions added to it.

We are interested in the set of execution sequences of τ that also satisfy the
corresponding temporal property expressed using the automaton A. When A is
constructed as a translation of an LTL property ψ then ρ |= ψ. We denote the
condition for such executions by ℘τ,ψ.
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Consider first the simpler case of a temporal specification on program counters
only. For example, executions of paths that pass through label l2 twice may be
suspected of leading to some incorrect use of resources. The tester may express
such paths in LTL as

(¬at l2)U(at l2 ∧ ©((¬at l2) ∧ ((¬at l2)Uat l2))). (5)

Note that since the above temporal specification ψ involves only the program
counters but not the program variables, for each path ρ there can be only two
cases:

• All the executions of exec(ρ) satisfy ψ, or
• None of the executions of exec(ρ) satisfy ψ.

In the former case, ℘τ,ψ = ℘τ and in the latter case ℘τ,ψ = false . In this case,
by taking the intersection of the property automaton A for ψ and the flow chart
B, the paths that are the runs of the intersection are exactly those that have all
of their executions satisfying ψ .

In symbolic execution, we are often incapable of comparing states. Conse-
quently, we cannot check whether we reach the same state again. We may not
assume that two nodes in the flow chart with the same program counter labels
are the same, as they may differ because of the values of the program variables.
We also may not assume that they are different, since the values of the program
variables may be the same.

We now show how to take into account also the program variables assertions.
The specification formula (5) was based only on the program counters. Suppose
that we also want to express that when we are at the label l2 for the first time,
the value of x is greater or equal to the value of y, and that when we are at
the label l2 the second time, x is at least twice as big as y. We can write this
specification as follows:

ψ = (¬at l2)U(at l2 ∧ x ≥ y ∧ ©((¬at l2) ∧ ((¬at l2)U(at l2 ∧ x ≥ 2 × y)))) (6)

The translation from a temporal formula to an automaton results in the pro-
gram variables assertions x ≥ y and x ≥ 2 × y labeling two of the nodes of
the resulted automaton. They do not participate in the automata intersection,
but we need to incorporate them when calculating the path condition ℘τ,ψ.
According to the (rather technical) definition of the automata intersection, the
conjunction of the program variables assertions labeling the property automaton
nodes is assumed to hold in the path condition before the effect of the matching
flow chart node. Accordingly, if we add a condition η from some property au-
tomaton node to an assignment node in the flow chart, the assignment will take
effect right after η has to hold.

In general, when calculating a path condition for a path τ obtained from the
intersection of the property automaton for a property ψ and a flow chart, we need
to take into account the program variables assertions that appear on it (coming
from the property automaton components). We can do that by transforming
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the path as follows. Observe that each node in the intersection is a pair (a, b),
where a is a property automaton node, and b is a flow chart node in the current
path. The label of b agrees with the program counter predicates in a. Otherwise,
the path is automatically rejected to be in the intersection during the search
(and ℘τ,ψ = false). We transform each such pair into two sequential nodes.
First, b remains as it appears in the flow chart. We insert a new diamond node
to the current path, just before b. The inserted node contains as its condition
the conjunction of the program variables assertions labeling the node a (and
true if there are no program variables assertions labeling a). The edge between
the new diamond and b is labeled with ‘true’ corresponding to the case where
the condition in a holds. The edge that was formerly entering b now enters the
new diamond. Then the path condition ℘τ ′ for the path τ ′ obtained by the
transformation is exactly ℘τ,ψ. We use the methods introduced in Section 4 on
the resulted (and ultimately periodic) path τ ′ rather than on τ .

ItisimportanttoobservethattheLTLtoautomatatranslationgeneratesnodesthat
are labeledbya set ofbasic formulas, either negatedor non-negated.Our separation
of the searchdependsonthe fact thatwedonotallowanybasic formula that includes
both program variables and program counters, as in (at l3) × v. Such formulas can
usually be translated (unfortunately with some increase to the size of the formula)
into formulas that make the required separation.

Independence among program actions is useful for reducing the effective state
space needed in searching through a finite state system. Model checking for
reducing the search space using independence or commutativity are generically
called partial order reduction methods see, e.g., [4]. Two nodes t1 and t2 in
different processes will be called independent if their sets of referred variables
(variables tested or set by the nodes) are disjoint. Let T be the set of all the
nodes of a tested program. We denote by I ⊆ T × T the independence relation
between the nodes. Let v and w be two sequences of nodes, then the following
holds (as can be proved on the possible nodes t1 and t2):

℘vt1t2w(ϕ) = ℘vt2t1w(ϕ) (7)

Note that if a temporal specification is involved, it must not distinguish between
the executions vt1t2w and vt2t1w.

This observation can be generalized as follows (and proved by induction):
when w is obtained from v be repeatedly permuting adjacent independent nodes,
then

℘v(ϕ) = ℘w(ϕ) (8)

Two such sequences v and w are called trace equivalent [13]. This observation may
reduce considerably the number of paths through which we search. In particular,
there is no need to search through equivalent paths.

We use a reduction method that is suggested in [2]. For finite state spaces,
the reduction is shown to coincide with sleep sets [8]. Like sleep sets, for finite
systems, it is not guaranteed that a DFS will visit all of the program states.
However, in our case, the state space is essentially infinite, and effectively cycle
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free; as we do not identify two identical tuples of control points reached during
the search as the same. The result is that we do not lose coverage (the reduction
technique in [2] also does not lose coverage when using BFS instead of DFS).

Since we search through an infinite state space, we apply iterative deepening,
starting with some depth of search and increasing it gradually, as long as we did
not find the desired path. Now consider the case where a tuple that exists in the
search stack, at the end of a path σ, appears again, with a path ρ between these
occurrences If an accepting Büchi component appears on ρ, we check whether
σρω is executable, using the techniques of Section 4. As discussed before, due to
limited knowledge on values of program variables, such a tuple can exist more
than once on the search stuck, and such a comparison and check then is required
per each occurrence.

6 Implementation and Discussion

The equality and monotonicity methods have been implemented in Java. We use
Mathematica [18] to compute the satisfiability of boolean formulas. We tested
our methodology with the following example. A system is composed of two con-
current programs, as follows:

l1: while x<=y and z>0 do begin l5: while x>=y do begin
l2: y := y / 2; l6: x := x - 1;
l3: x := x * 2; l7: y := y + 1
l4: z := z - 1 end; l8: z := z * 2 end;

We assume that the variables x, y and z are integers. An interesting point in
the example is that it contains infinitely many infinite loops if x, y and z can
never overflow. In fact, if they are rationals, we can obtain preconditions like
y = 4 ∧ x = 2 ∧ z = 4

3 (repeating the execution of the program on the left
once, and then the one on the right twice). We search for infinite-loops using the
property ��(at l1).

Figure 2 and 3 gives the result reported by our implementation. The maxi-
mum depth was set to 12. When it found an infinite loop, it did not stop, but
continued looking for other loops until it checked all paths bounded by the max-
imum depth. The time in each row tells us when it found the corresponding
lasso. The memory usage is not high, and thus we do not show it in the figure.
Generally speaking, we are not guaranteed to obtain the shortest path for a loop,
due to the order of matching a transition with a Büchi automaton node if there
are multiple nodes available.

The approach presented in this paper provides a useful method for generating
test cases. There are several constraints that we study here. One of the problems
is undecidability of satisfiability. Finding satisfying values of unquantified first
order formulas is in general undecidable. This follows from the undecidability
of Hilbert’s 10th problem [12]. In fact, there are simple cases where nonter-
mination is still an open problem. For example, consider the following classical
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Time (second) Precondition σ ρ

11.634 x = 1 ∧ y = 4 ∧ z = 3 l1, l2, l3, l4 l1, l5, l2, l6, l3, l4, l7, l8
11.752 x = 1 ∧ y = 4 ∧ z = 2 l1, l2, l3, l4 l1, l5, l2, l6, l3, l7, l8, l4
80.658 x = 1 ∧ y = 2 ∧ z = 2 ε l1, l2, l3, l4, l5, l6, l7, l8
83.322 x = 1 ∧ y = 2 ∧ z = 1 ε l1, l2, l3, l5, l6, l7, l8, l4
155.521 x = 2 ∧ y = 2 ∧ z = 2 ε l1, l2, l5, l6, l3, l4, l7, l8
159.314 x = 2 ∧ y = 2 ∧ z = 1 ε l1, l2, l5, l6, l3, l7, l8, l4
1540.97 x = 3 ∧ y = 2 ∧ z = 1 l5, l6 l1, l2, l7, l8, l5, l6, l3, l4
1542.839 x = 2 ∧ y = 1 ∧ z = 2 l5, l6, l1 l7, l2, l3, l4, l1, l8, l5, l6
1551.269 x = 2 ∧ y = 1 ∧ z = 1 l5, l6, l1 l7, l2, l3, l8, l4, l1, l5, l6
1737.07 x = 3 ∧ y = 1 ∧ z = 1 l5, l6, l7 l1, l2, l8, l5, l6, l3, l4, l7

Fig. 2. Results of the equality method

example (Collatz Problem): while x>1 do begin if even(x) then x:=x/2
else x:=3×x+1 end;

Another problem is the existence of nonperiodic infinite executions. For ex-
ample, when there is a loop with two alternatives, α and β, one may have an
infinite execution such as αβα2β2α3β3 . . .. We provided a method for address-
ing such cases, which lumps together different loop transitions (in this case α
and β). However, due to shrinking and lumping together different paths inside
loops, the step by step synchronization of the program paths with the Büchi
automaton is lost. Hence, this method can be used only with a restricted class of
specifications (e.g., when each complete iteration of the loop happens to satisfy
some state predicate ϕ that needs to be satisfied infinitely often).

Time (second) Precondition σ ρ

12.128 x = 1 ∧ y = 4 ∧ z ≥ 3 l1, l2, l3, l4 l1, l5, l2, l6, l3, l4, l7, l8
12.252 x = 1 ∧ y = 4 ∧ z ≥ 2 l1, l2, l3, l4 l1, l5, l2, l6, l3, l7, l8, l4
83.031 x = 1 ∧ y = 2 ∧ z ≥ 2 ε l1, l2, l3, l4, l5, l6, l7, l8
85.715 x = 2 ∧ y = 4 ∧ z ≥ 2 ε l1, l2, l3, l4, l5, l6, l7, l8, l5, l6, l7, l8
85.96 x = 1 ∧ y = 2 ∧ z ≥ 1 ε l1, l2, l3, l5, l6, l7, l8, l4
88.723 x = 2 ∧ y = 4 ∧ z ≥ 1 ε l1, l2, l3, l5, l6, l7, l8, l4, l5, l6, l7, l8
163.198 x = 2 ∧ y = 2 ∧ z ≥ 2 ε l1, l2, l5, l6, l3, l4, l7, l8
167.107 x = 3 ∧ y = 4 ∧ z ≥ 2 ε l1, l2, l5, l6, l3, l4, l7, l8, l5, l6, l7, l8
167.358 x = 2 ∧ y = 2 ∧ z ≥ 1 ε l1, l2, l5, l6, l3, l7, l8, l4
171.36 x = 3 ∧ y = 4 ∧ z ≥ 1 ε l1, l2, l5, l6, l3, l7, l8, l4, l5, l6, l7, l8
173.994 x = 4 ∧ y = 4 ∧ z ≥ 1 ε l1, l2, l5, l6, l7, l8, l5, l6, l3, l4, l7, l8
236.517 x = 3 ∧ y = 3 ∧ z ≥ 2 ε l1, l5, l6, l7, l2, l3, l4, l8, l5, l6, l7, l8
239.229 x = 3 ∧ y = 3 ∧ z ≥ 1 ε l1, l5, l6, l7, l2, l3, l8, l4, l5, l6, l7, l8
1543.048 x = 3 ∧ y = 2 ∧ z ≥ 1 l5, l6 l1, l2, l7, l8, l5, l6, l3, l4
1553.643 x = 2 ∧ y = 1 ∧ z ≥ 2 l5, l6 l1, l7, l2, l3, l4, l8, l5, l6
1558.596 x = 2 ∧ y = 1 ∧ z ≥ 1 l5, l6 l1, l7, l2, l3, l8, l4, l5, l6
1745.278 x = 3 ∧ y = 1 ∧ z ≥ 1 l5, l6, l7 l1, l2, l8, l5, l6, l3, l4, l7
1749.518 x = 4 ∧ y = 2 ∧ z ≥ 1 ε l5, l6, l7, l1, l8, l5, l6, l7, l2, l3, l4, l8

Fig. 3. Results of the monotonicity method
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Abstract. This paper presents dynamic testing, a method that exploits
automata learning to systematically test (black box) systems almost
without prerequisites. Based on interface descriptions, our method suc-
cessively explores the system under test (SUT), while it at the same time
extrapolates a behavioral model. This is in turn used to steer the further
exploration process. Due to the applied learning technique, our method
is optimal in the sense that the extrapolated models are most concise in
consistently representing all the information gathered during the explo-
ration. Using the LearnLib, our framework for automata learning, our
method can elegantly be combined with numerous optimizations of the
learning procedure, various choices of model structures, and last but not
least, with the option to dynamically/interactively enlarge the alphabet
underlying the learning process. All these features will be illustrated us-
ing as a case study the web application Mantis, a bug tracking system
widely used in practice. We will show how the dynamic testing procedure
proceeds and how the behavioral models arise that concisely summarize
the current testing effort. It has turned out that these models, besides
steering the automatic exploration process, are ideal for user guidance
and to support analyzes to improve the system understanding.

1 Motivation

Testing was, is and will be an inevitable part of system development. No for-
mal verification methodology can change that, because it fails to fully integrate
the actual platform. However, formal methods are very valuable also for testing.
E.g. model-based testing led to a qualitative change of the testing technology,
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by providing means to measure quality of testing and to generate test suites
according to some given notion of coverage or some specifically defined goal.
One particularly interesting technique here is conformance testing, which gener-
ate test suites that guarantee a notion of equivalence between a model and an
implementation under certain additional assumptions. In fact, there is a wealth
of powerful techniques dealing with the case when systems come with a formal
model. However, what can be done if there is no or only a partial formal model?

In this paper, we present dynamic testing, a method that exploits automata
learning to systematically test (black box) systems, e.g. component-based sys-
tems with third party components, and legacy systems, almost without prereq-
uisites: Based on interface descriptions, our method successively explores the
system under test (SUT), while it at the same time extrapolates a behavioral
model. This is in turn used to steer the further exploration process. In essence,
our method can be regarded as an on-the-fly conformance model generation and
testing process [1], which we enhance here with interactive steering mechanisms,
which are necessary to scale to system sizes interesting in practice. In addition
the models generated on the fly are ideal means for generating test suites for
regression testing, where one wants to check if well-known and loved features
still function as expected.

Due to the applied learning technique, our method is optimal in the sense that
the extrapolated models are most concise in consistently representing all the in-
formation gathered during the exploration. Using the LearnLib, our framework
for automata learning, our method can elegantly be combined with numerous
optimizations of the learning procedure, various choices of model structures,
and last but not least, with the option to dynamically/interactively enlarge the
alphabet underlying the learning process. The latter is very important in par-
ticular for testing Web applications, where the net-based exploration process
inevitably leads to the dynamic “discovery” of new actions (in terms of links,
forms, Web pages), which must be dynamically integrated in the learning process
as extensions of the underlying alphabet.

All these features will be illustrated using as a case study the Web applica-
tion Mantis, a Web-based bug tracking system widely used in practice. We will
show how the dynamic testing procedure works and how the behavioral mod-
els arise that concisely summarize the current testing effort. It has turned out
that these models, besides steering the automatic exploration process, are ideal
for user guidance and to support analyzes to improve the system understand-
ing. Moreover, using our dynamic testing technology behavioral models of Web
applications are automatically kept up to date.

Our learning-based dynamic testing technology bases on longer term experi-
ences with our Integrated Test Environment (ITE) [2], a platform for system-
level testing of complex, distributed systems. The ITE is used here for executing
the test cases proposed during the learning process. The core of the ITE, the
test coordinator, is an independent system that drives the generation, execution,
evaluation and management of the system-level tests. In general, it has access
to all the involved subsystems and can manage the test execution through a
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Fig. 1. Test case generated by the LearnLib for the case study: jABC executable model

coordination of different, heterogeneous test tools. These test tools, which locally
monitor and steer the behavior of the software on the different clients/servers,
are technically treated just as additional units under test. The ITE has been suc-
cessfully applied to real-life examples of IP-based and telecommunication-based
solutions: the test of a Web-based application (the Online Conference Service,
used e.g. for the support of the program committee operations of over 60 LNCS
conferences and the test of IP-based telephony scenarios, e.g. Siemens’ testing
of the Deutsche Telekom’s Personal Call Manager application [3,4], which sup-
ports among other features the role based, Web-based reconfiguration of virtual
switches. In those settings, we used ITE to execute tests and regression tests.
Now we use the ITE as execution engine for the LearnLib’s elementary queries.
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In the remainder of the paper, we first present the LearnLib, our framework for
automata learning, together with the basic principles of automata learning in
Section 2.2. Afterwards we discuss the specifics of our technology for testing Web
applications, namely the necessity to dynamically increase the alphabet under-
lying the learning process (Section 3). We then consider a concrete application
example, the Mantis bug tracking systems, in Section 4, where we focus on the
extrapolation of models, the kernel of the dynamic testing technology. The paper
closes with some conclusions and perspectives in Section 5.

2 The LearnLib

LearnLib [5] is a library of tools for automata learning. It is implemented in
C++ and tested under Linux and Solaris, and it currently consists of 150 classes
and almost 50.000 lines of code. Originally, LearnLib has been designed to sys-
tematically build finite state machine models of unknown real world systems.
In the meantime, it also became a platform for experimentation with different
learning algorithms and to statistically analyze their characteristics in terms of
learning effort, run time and memory consumption. The LearnLib consists of
three libraries:

– The automata learning library contains the basic learning algorithms,
– the filter library provides several strategies to suppress redundant tests dur-

ing the dynamic testing process, and
– a library based on ideas from conformance testing. It is essential for steering

the model-based selection of individual test cases during the dynamic testing
process.

Before discussing our learning technology in more detail at the end of this section,
which is necessary to provide a better feeling of the essence of the proposed dy-
namic testing approach, we briefly sketch the LearnLib’s integration as a plugin
into our general modelling, development, and execution framework, the jABC.

2.1 Integration into the jABC

The jABC is a framework [6,7] for modelling, development, and execution of
applications and services. Predecessors of jABC have been used since 1995 to
design, among others, industrial telecommunication services [7], Web-based dis-
tributed decision support systems [8], and test automation environments for
Computer-Telephony integrated systems [9].

jABC allows users to easily develop services and applications by composing
reusable building-blocks to (flow-) graph structures. This development process
is supported by an extensible set of plugins that provide additional functionality
in order to adequately support all the activities needed along the development
lifecycle like animation, rapid prototyping, formal verification, debugging, code
generation, testing, and evolution. It does not replace but rather enhance other
modelling practices like the UML-based Rational Unified Process [28,10].
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Modelling the dynamic testing process in the jABC directly provides us with:

– Customizability. Processes can easily be customized, not only in their
process structure, which can be modified conveniently using a graphical in-
terface, but also in their look and feel and their organization in terms of
taxonomies. Thus it is easily possible to adopt the notational and symbolic
standards of the application domain.

– Executability. jABC’s execution environment allows one to execute both
the overall dynamic testing process and the individual test runs generated
during the extrapolation process in order to realize the membership queries
mentioned below.

As an example, Fig. 1 shows one of the executable test cases produced in
the course of the case study by the learning algorithm. The jABC graphs can
be interpreted as control flow graphs. Nodes represent atomic actions that
are executed successively, and the edges control the execution by determining
the next step. The example contains the initialization, the call of a Web page
(goto) followed by the comparison with the expected result, and the following
of a hyperlink with successive comparison of the reached page.

– Verification. jABC provides model checking and checks for local consis-
tency. These can be applied to the overall dynamic testing process to guaran-
tee predefined rules, which may be required to avoid that the testing process
gets stuck. As a typical example, test runs should leave the system under
test in a state, where further test runs can continue.

As an example, Fig. 2 shows how to ensure that jABC models (in this case
the test case of Fig. 1) respect certain properties of interest. In this case, the
property is that an openPreview is always followed by a closePreview. The
red (resp. dark gray) dotted frames mark the violating paths: after openPre-
view no closePreview is reachable. Parts that do not violate the property are
framed in green (resp. light grey).

Model checking can also be applied to enforce behavioural properties of
the models extrapolated during the dynamic testing process. This may be
e.g. advantageous to steer the testing/learning process in certain directions.

In the dynamic testing described here, we use the ITE plugin for the jABC
to model, verify, and enact the single test cases, as shown in the two previous
pictures, and the LearnLib plugin to steer the learning process that underlies
the dynamic testing.

The learning process modelling mode [11] of the LearnLib enables the user
to control the entire learning process, comprising the context-specific choice of
optimizations, strategies of search, as well as the setting of interaction points for
a truly interactive learning process. Fig. 3 shows our process model for dynamic
testing.

2.2 Supported Learning Technology

Machine learning deals in general with the problem of how to automatically
generate system descriptions. Besides the synthesis of static soft- and hardware
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Fig. 2. Model checking the test case in the jABC

properties, in particular invariants [12], [13], [14], the field of automata learning,
also called regular extrapolation [15] or regular inference [16], is of particular
interest for soft- and hardware engineering [17], [19], [20], [21]. [18] for example
aims at the derivation of automata from runtime observations, in combination
with invariants from [12]. In this sense, it is a passive learning method.

We have used automata learning techniques in a number of contexts, e.g. to
automatically construct models of common midrange telephony switch [22] and
to enhance incomplete specifications of biological systems [23].

In this paper we apply automata learning for flexibly testing systems which are
(in part) under-specified, i.e. systems containing third party components, black
box systems, or simply systems which have become legacy systems over time. The
following two subsections sketch 1) the basic technology, which provides the means
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for the organization of the dynamic testing process and the choice of individual
tests, and 2) optimizations, which are essential for achieving practicality.

Classical Learning. Automata learning tries to construct a deterministic finite
automaton that matches the behavior of a given target automaton on the basis
of observations of the target automaton and perhaps some further information
on its internal structure. In [15,24,22] we have discussed the method in detail.
Here we only summarize the basic aspects of our realization, which is based
on Angluin’s learning algorithm L∗ from [25]. A slight elaboration of Angluin’s
algorithm is depicted graphically in Fig. 3.

Definition 1
A deterministic finite automaton (DFA) is a tuple M = (S, s0, Σ, δ, F ) where

– S is a finite nonempty set of states,
– s0 ∈ S is the initial state,
– Σ is a finite alphabet,
– δ : S × Σ → S is the transition function, and
– F ⊆ S is the set of accepting states.

Intuitively, a DFA evolves through states s ∈ S, and whenever one applies an
input symbol (or action) a ∈ Σ, the machine moves to a new state according to
δ (s, a). A word q ∈ Σ∗ is accepted by the DFA if and only if the DFA reaches
an accepting state si ∈ F after processing the word starting from its initial
state. We write s

a−→ s′ to denote that on input symbol a the DFA moves from
state s to state s′. The transition function δ : S × Σ → S can be extended to
δ′ : S × Σ∗ → S such that forall states s, s′ ∈ Σ, letters a ∈ Σ, and words
w ∈ Σ∗ the following holds: δ′(s, ε) = s, and δ′(s, aw) = δ′(δ(s, a), w)).

L∗, also referred to as an active learning algorithm, learns deterministic finite
automata by actively posing membership queries and equivalence queries to the
target automaton in order to extract behavioral information, and by refining
successively an own hypothesis automaton based on the answers. A member-
ship query tests whether a string (a potential run) is contained in the target
automaton’s language (its set of runs), and an equivalence query compares the
hypothesis automaton with the target automaton for language equivalence, in
order to determine whether the learning procedure was (already) successfully
completed. In this case the experimentation can stop.

In its basic form, L∗ starts with the one state hypothesis automaton that treats
all words over the considered alphabet (of elementary observations) alike and
refines this automaton on the basis of query results iterating two steps. Here,
the dual way of how L* characterizes (and distinguishes) states is central:

– from below, by words reaching them. This characterization is too fine, as
different words may well lead to the same state.

– from above, by their future behavior wrt. a dynamically increasing set of
words. These future behaviors are essentially bit vectors, where a ’1’ means
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Fig. 3. Learning Process Modelling Mode: Design of a Web learning algorithm

that the corresponding word of the set is guaranteed to lead to an accepting
state and a ’0’ captures the complement. This characterization is typically
too coarse, as the considered sets of words are typically rather small.

The second characterization directly defines the hypothesis automata: each oc-
curring bit vector corresponds to one state in the hypothesis automaton. The
initial hypothesis automaton is characterized by the outcome of the membership
query for the empty observation. Thus it accepts any word in case the empty
word is in the language, and no word otherwise.

The learning procedure (1) iteratively establishes local consistency, after which
it (2) checks for global consistency.

Local Consistency. This first step (also referred to as automatic model comple-
tion) again iterates two phases: one for checking wether the constructed automa-
ton is closed under the one-step transitions, i.e., each transition from each state
of the hypothesis automaton ends in a well defined state of this very automaton.
And one for checking consistency according to the bit vectors characterizing the
future behavior as explained above, i.e., whether all reaching words with an iden-
tical characterization from above possess the same one step transitions. If this
is not the case, a distinguishing transition is taken as an additional distinguish-
ing future guaranteeing that the two reaching words with different transition
potential are no longer considered to represent the same state.

Global Equivalence. After local consistency has been established, an equivalence
query checks whether the language of the hypothesis automaton coincides with
the language of the target automaton. If this is true, the learning procedure suc-
cessfully terminates. Otherwise the equivalence query returns a counterexample,
i.e., a word which distinguishes the hypothesis and the target automaton. This
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counterexample gives rise to a new cycle of modifying the hypothesis automaton
and starting the next iteration.

In any practical attempt of learning truly unknown systems, the equivalence
tests can only be approximated, but membership queries can be answered by
testing the target systems [15,24]. In particular it is in general impossible to
decide, whether the hypothesis automaton is equivalent to the target system.
We therefore use ideas from conformance testing in order to reduce equivalence
queries to sets membership queries.

Web applications are typically reactive systems. They do not distinguish be-
tween accepting states and non accepting states but produce output when stim-
ulated. We therefore use our adaptation of Angluin’s algorithm for Mealy ma-
chines [22], which is suitable for this class of applications.

Definition 2. A Mealy machine is defined as a tuple M = (S, s0, Σ, Γ, δ, γ)
where

– S is a finite nonempty set of states,
– s0 ∈ S is the initial state,
– Σ is a finite input alphabet,
– Γ is a finite output alphabet,
– δ : S × Σ → S is the transition function, and
– γ : S × Σ → Γ is the output function.

A Mealy machine behaves very similarly to a DFA. It evolves through states
s ∈ S, and whenever one applies an input symbol (or action) a ∈ Σ, the machine
moves to a new state according to δ (s, a). However, in contrast to a DFA, it also
produces an output symbol x ∈ Γ according to γ (s, a).

Optimizations. Central bottleneck in practice of automata learning, and conse-
quently of our dynamic testing approach, is the overwhelming amount of arising
membership queries. We employ application-specific and structure-specific opti-
mizations in order to suppress redundant test cases [9,26]. We exploit e.g. prefix
closure, a property valid for all testable systems, structural symmetry, typically
given for systems consisting of a number of similar devices, and independence
of observations. This already accelerated the learning process by several orders
of magnitude. For our dynamic testing process, methods for steering the test
selection process, e.g. using temporal properties for defining test goals, are ad-
ditionally applied in order for our technique to scale further.

3 Dynamic Testing of Web Applications

Automata learning techniques have been proposed to deal with underspecified
systems [15]. Web applications are a very specific kind of this class of systems,
characterized by very small and well defined interfaces: using and testing a Web
application boils down to invoking sequences of http- put and get methods on
a Web-server, which simplifies the interaction with the system required during
the learning process.
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Fig. 4. Action Browser with opened gotoURL-Tab

Our algorithm traverses the Web application like a real user or agent. Not
only does it retrieve and analyze the pages generated by the application like a
Web robot, but it also uses the applications functionality. Thus executing a test
typically has tangible effects, like a changed password after a change password
operation or a update file after some change operation. These effects are visible
in the next test run, which now has to deal with the new situation. In contrast
to common Web crawlers, which recursively operate on all the retrieved URL’s,
our learning-based approach does not only consider the URL’s, but also the
dynamical behavior of the underlying application.

We use the jABC to graphically model the entire learning process, which
comprises the modelling of conditional and interactive behavior. The nodes in
this model represent arbitrary executable statements, in particular including all
atomic functionalities of the LearnLib, and the edges specify in which order and
under which condition they are processed, in a control flow fashion.

Fig. 3 depicts the control flow graph of the dynamic testing process for Web
applications. The process starts with connecting the graphical user interface to
the LearnLib ConnectLearnLib, before an interface to the Web application is
created CreateHtmlSUT. The specific features of the Web application interface
are presented in Sec.3.1. After these first initialization steps the learning process
is started by initializing Angluin’s algorithm L∗ [25]. The learning algorithm
now generates a test suite, which must be executed via the SUT interface in the
next step. The QueryTestCase component executes the traces contained in the
test suite (by means of repeated use of the ITE) and records the response of the
SUT. At this point the SUT interface may discover that the implementation of-
fers more possibilities to be stimulated than currently specified. When learning
Web applications this is very common, since every discovered Web page may
lead to new actions and can offer new hyperlinks and forms. This special feature
is handled by the two components connected to the sizesChanged branch. First
the results of querying the SUT are stored in the learning algorithm, then the
alphabet is updated. If the alphabet is unchanged the results are stored as well
and the observations are checked for the two well-formedness checks CheckClo-
sure and CheckConsistency. If the observations are both closed and consistent,
L∗ constructs a conjecture model (GetConjecture), otherwise the learning algo-
rithm provides a new test suite and the main loop continues.

After the main loop, the conjecture can be visualised (CreateModel and Dis-
playModel), before one enters the check for global equivalence. In this example
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Fig. 5. Action Browser with opened followLink-Tab

Fig. 6. Action Browser with opened SubmitForm-Tab

this is done by checking (CheckTestCases) the test suite generated using Wp-
Method [27]. If the conjecture does not conform to the SUT, a counterexample
is returned, and the learning algorithm continues. Otherwise the user can decide
to introduce further actions (WaitForActions), or continue with the next SUT
(HasNextSubject).

The execution of this control flow graph can be interactively steered using the
Tracer, a plugin of the jABC for executing jABC models. The Tracer additionally
provides useful debugging functionalities, which allow users to investigate the
data exchanged between the nodes resp. atomic functionalities. This way the
user can visualize at any time the sets of membership queries (realized via ITE
test cases) and intermediate finite state models generated during the dynamic
testing process.

3.1 Web Application Interface

Web applications can be regarded as Mealy machines. HTTP requests like ”open
a certain URL”, ”submit a form with some field set to predefined strings”, or
”follow a specified link” can be mapped to the input symbols (or actions) of a
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Mealy machine, and the HTML pages generated by the Web application can be
regarded as the corresponding output symbols.

Considering all possible input and output actions for a Web application is
practically impossible, in particular in a learning context, which is an order of
magnitude more expensive than exhaustive testing by means of conformance
testing [1]. Thus abstraction must be applied in order to control the complexity.
Typical is the grouping of the inputs and outputs according to their type or
their role: It may be sufficient to check the application just using single data or
one prototypical user. If this is insufficient, one can refine e.g. to distinguishing
internal and external users, males or females, customers of administrators etc..
Our approach supports manual abstraction of input and output. This allows
application experts to focus the learning process on different aspects of the ap-
plication interactively on demand. The right choice of abstraction is vital for the
success of the learning process.

A major challenge for inferring models of real life systems is the mapping
between the abstract world of models and the concrete system scenario. From
the (abstract) learning perspective, membership queries are just sequences of
abstract (input) symbols that have to be answered by sequences of abstract
(output) symbols. These queries need to be mapped to concrete test cases for
the system, which requires concrete stimuli. Conversely, the generated concrete
outputs must be abstracted to fit into the world of the models. The management
of these mappings, which is beyond the scope of this paper, is part of the design
of our integrated test environment (ITE) discussed in the introduction.

3.2 Interactive Specification of Input Actions

Learning Web applications does not only expose new behavioral structure but
also new basic facts: the HTML-analysis of Web pages revealed during the learn-
ing process typically exposes new links and forms. Making them accessible to
the learning procedure requires to dynamically extend the alphabet during the
learning procedure. We offer the following three interaction for this purpose: 1)
store a bookmark to a page for later reuse, 2) select a hyperlink, and 3) fill and
submit a form.

Fig. 4 shows the corresponding Action-Browser. Note that choosing input
actions using the Action-Browser can be done in parallel to executing test cases
on the system under test. This allows one to introduce new input actions at any
time, and prevents the LearnLib and the user from blocking each other.

The Action-Browser provides three tabs, corresponding to the three kinds of
Web application input. On the left hand side of the ActionBrowser’s gotoURL-
Tab all available bookmarks are listed. By marking a check-box in the left column
the user can instruct the learning algorithm to add a certain bookmark action
to the learning alphabet. Added actions are highlighted in grey in the table. The
right hand side is used to present a preview of visited pages. It can be selected
by clicking on a bookmark in the left hand side panel.
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The second kind of interactions a Web applications provides are hyperlinks,
see Figure 5. In order not to treat each hyperlink individually, hyperlinks can be
identified by their destination addresses or their ID-Tag. ID-Tags are optional
HTML-attributes of almost every HTML-element, meant to uniquely identify an
element on a Web page. Analogously, the right hand side previewer shows the
links available on the page under test.

The third kind of interactions concerns submitting forms. The corresponding
dialog is depicted in Figure 6. As before, the the right side is used to show a
preview of a selected Web page. The left-hand side is split into three areas. The
lowest area is used to list and select all forms revealed by the LearnLib process
so far. The top area lists all form input actions that are considered to be used
as input to the Web application. After selecting a form from the lower area,
the user can specify in the middle area which concrete values should be used
when submitting the form. For example, to learn the login process of a Web
application one should try the login form with data of an authorized user and a
bad user/password combination.

The Action-Browser dialog is used to realize abstraction on the input. Ab-
straction of the outputs is realized by xpath expressions. A corresponding GUI
is currently under development.

4 Mantis: A Case Study

Mantis [29] is a popular Web-based bugtracking system. It is written in the PHP
scripting language and requires a MySQL or PostgreSQL database and a Web-
server. Mantis is platform-independent and has been installed on Windows, Mac
OS, OS/2, and a variety of Unix operating systems. Almost any Web browser is
able to function as a client. It is released under the terms of the GNU General
Public License (GPL).

Reactive systems and in particular Web applications are designed to run for-
ever. Thus that they do not need and therefore do not support an efficient reset
operation. This also applies to Mantis. On the other hand, most automatic test-
ing approaches as well as automata learning algorithms require a reliable and
fast reset. Fortunately, Mantis can use a PostgreSQL database backend and
PostgreSQL in order to clone databases. This enables us to realize the required
reset operations via snapshots.

Fig. 7 shows the model extrapolated when restricting the input alphabet so
that 1) all discovered bookmarks and follow-link actions in the public part of
the application are enabled and 2) filling the autentification form with valid and
an invalid username/password combinations are enabled. The part on the right-
hand side is the portion visible to unauthorized users, and the smaller left-hand
side portion can only be visited after a successful login. The strict separation of
the left and the right part visually ”verifies” that the confidential part on the
left can only be visited after successful autentification.

We then additionally allowed the Mantis user to change his password by en-
abling two more actions: goto the user management page, and submit the new
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Fig. 7. Learned Web Application Model

password form. The new model adds the new aspect to the previous one, result-
ing in a diagram that is much more connected: for example, one can see that the
management feature and its subgraph are reachable from every state where login
was successful. We see here confirmed our feeling that complete models of such
systems are large and hardly analyzable in a visual manner, but that they can
be constructed by successive, aspect oriented exploration, adding further details
only at need. Views (for example, extracting only the user management after a
successful login) are here very useful, and they can be e.g. computed by model
checking.

5 Conclusion

We have presented dynamic testing, a method exploiting automata learning to
systematically test (black box) systems almost without prerequisites. Based on
interface descriptions, our method successively explores the system under test,
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while at the same time extrapolating a behavioral model. This model is in turn
used to steer the further exploration process. In addition, it is an ideal means for
generating test suites for regression testing. Using the LearnLib, our framework
for automata learning, our method can elegantly be combined with numerous
optimizations of the learning procedure, various choices of model structures,
and last but not least, with the option to dynamically/interactively enlarge the
alphabet underlying the learning process. In particular the last feature is of vital
importance for dynamically testing Web applications, where determining the
alphabet is a major part of the extrapolation process. This has been illustrated
in the case of the Web application Mantis, a bug tracking system widely used in
practice.

Our current research focuses on scalability, the central bottleneck of dynamic
testing (and learning). First experiments showed ways how to gain another cou-
ple of orders of magnitude by exploiting further domain-specific features and
optimizing the internals of the LearnLib. Another interesting research direction
we follow is the combination of dynamic testing and regression testing. Here
we build on early experience in the area of Computer Telephony testing, where
extrapolated models led to enormous performance gains [26]. Finally, we intend
to use the gained models as basis for self-healing of Web applications, as inves-
tigated in the SHADOWS EU project.
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Abstract. Implementations of computer systems comprise many layers
and employ a variety of programming languages. Building such systems
requires support of an often complex, accompanying tool chain.

The Verisoft project deals with the formal pervasive verification of
computer systems. Making use of appropriate formal specification and
proof tools, this task requires (i) specifying the layers and languages used
in the implementation, (ii) specifying and verifying the algorithms em-
ployed by the tool chain (or, alternatively, validating their actual output),
and (iii) proving simulation statements between layers, arguing about
the programs residing at the different layers. Combining the simulation
statements for all layers should allow to transfer correctness results for
top-layer programs to their bottom-layer representation; in this manner,
a verified stack can be built.

Maintaining all formal artifacts, the actual system implementation,
and the (verification) tool chain is a challenging task. We call sets of
tools that help addressing this task system verification environments. In
this paper, we describe the structure, contents, and architecture of the
system verification environment used in the Verisoft project.

1 Introduction

We begin with a simple question: do we know how to formally verify software?
At first, the answer would be ‘yes’, because (i) software consists of programs,
(ii) ways to formally specify program behavior can be looked up in any textbook
on programming language semantics, e.g., [1, 2], (iii) it has been known since
decades how to produce paper and pencil proofs for programs based on formal
semantics [3, 4, 5], and (iv) these proofs could be mechanically checked by a
modern computer-aided verification (CAV) system. Thus, at least in principle
the problem should be solved.

However, this is an oversimplification. Software engineering does not just deal
with ‘programs written in a programming language’ but with complex software
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systems. These consist of many programs, which are written in different pro-
gramming languages and interact with each other (and their environment) in
nontrivial ways.

Thus, even the most benevolent software engineer would doubt the useful-
ness of software verification if programs requiring standard operating system
services—e.g., file and terminal I/O, inter-process and network communication—
cannot be handled. Even if such facilities could be handled, the verification re-
sults would be relative to the correctness of the underlying system and therefore
questionable unless the hardware and the operating system (in particular its
kernel and the device drivers) could also be verified.

In some software systems, errors have potentially disastrous consequences
for body or purse and software correctness is particularly desirable. For exam-
ple, security-critical systems implement cryptographic protocols to guarantee
secrecy or authenticity of message exchange over untrusted networks. The sys-
tems controlling our cars, trains, or air planes are distributed and must meet
hard real-time requirements.

The mission of the German Verisoft project [6] is to develop methods and
an integrated set of tools permitting to handle all issues listed above and to
demonstrate these by verifying entire systems of industrial interest. We call in-
tegrated sets of tools supporting the collaborative formal verification of computer
systems (hardware plus software or software alone) system verification environ-
ments. Verification environments are themselves software systems, and like any
substantial software system they should better have an architecture. This paper
is about the architecture of such verification environments.

Present computer systems have a common structure: from the hardware to
the applications they are organized in layers of abstraction with well-defined
interfaces. For every pair of adjacent layers the lower system layer simulates the
upper system layer and implements its interface. Any reasonable theory of cor-
rectness of concrete computer systems will reflect this structure. We will argue
that this determines the architecture of system verification environments to a
very large extent. As an example we will describe in this article the environment
that was developed and is currently being used in the Verisoft project. We also
announce a web site, where we expose those portions of this environment (in-
cluding constructions and formal proofs) that appear sufficiently stable and do
not contain confidential data of industry partners.

Overview. The remainder of this paper is structured as follows. In Sect. 2 we
describe three concrete systems, which cannot be verified unless all the issues
raised in the introduction are dealt with. These systems (and their requirements)
were chosen together with Verisoft industry partners as concrete examples, whose
complete formal verification should be made feasible by our system verification
environment. Of course they will also serve as concrete examples in this paper.

Section 3 deals with computational models for describing the systems under
consideration and their components. The range of these models is necessarily
large, ranging from processors and devices at the low end via abstract C machines
and operating systems to communicating distributed applications at the high
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end. Some of these models serve as building blocks, which are referenced by
concurrent and distributed models. Any system verification environment must
contain formal specifications of these models. There is no complete functional
correctness proof of a C program without a formal C semantics. There is no
complete functional correctness proof of a driver without a formal device model.
There is no complete functional correctness proof of a program making a system
call unless the semantics of that call is defined somewhere.

Section 4 deals with verified components. Clearly, in a technology capable of
producing verified systems it is desirable to develop a library of verified stan-
dard components together with their correctness proofs. Indeed, such a library
is indispensable if pervasive system verification [7, 8] is attempted, i.e., the ver-
ification of entire systems across several layers of abstraction. It turns out that
that standard components often provide a simulation in terms of the models
from Sect. 3. Processors for instance simulate assembler programs by registers,
memories, and gates. Compilers translate source programs into target programs
simulating the source programs.

In Sect. 5 we consider another hierarchy different from the hierarchy of system
layers, namely the hierarchy of semantic models. In its basic form, this hierarchy
and its associated soundness results are classical material from textbooks on
programming language semantics [1]. We consider small step semantics, big step
semantics, and Hoare logic. We use small step semantics in our system models
where we need to argue about communicating systems, sometimes doing rely /
guarantee style proofs [9]. Big step semantics and Hoare logic are equivalent
and allow to prove pairs of pre and post conditions. Because the abstraction
level is higher than in small step semantics, proofs can be generated with higher
productivity than in small step semantics; for the Hoare logic we also make use
of a verification condition generator.

In addition to program state and functions, we also allow abstract state and
functions at the Hoare logic layer. This way, proofs in the Hoare logic may be
conducted relative to low-level functions or libraries. Consider a driver writing
some C variables to a disk. Although that driver has in line assembler code
(otherwise it cannot access the ports of the hard disk controller) its effect can
be specified in the Hoare logics by a pre and post condition pair operating on
abstract state representing the disk configuration. Hoare logics of this kind we
call extended Hoare logics ; soundness results for such Hoare logics are relative
to the postulated extended semantics.

Section 6 deals with proof tools. There must be a combination of interac-
tive and automatic proof tools. Automatic tools increase productivity, thus they
cannot be ignored in an engineering effort. Because the complete verification of
entire systems is out of reach for present automatic tools, at least one ‘general
purpose’ interactive prover must be present. We mainly use Isabelle/HOL [10]
as general purpose prover. Isabelle/HOL also serves as an integration platform
for most automatic proof tools.

Section 7 we shortly describe how the contents of the system verification
environment are stored and related to each other in a version control system.
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Fig. 1. Implementation layers of the academic system (Verisoft subproject 2)

Also, we describe the portions of the environment which are currently made
public. We summarize in Sect. 8.

2 Overview of Systems

In this section, we describe three systems for which the formal pervasive verifi-
cation is attempted in the Verisoft project: the ‘academic system’ (Verisoft sub-
project 2), the ‘chipcard-based biometric identification (CBI) system’ (Verisoft
subproject 4), and the ‘automotive system’ (Verisoft subproject 6). All these sys-
tems use the same implementation languages and also share significant parts of
the hardware and system software implementation. In particular, the employed
hardware architecture and the architecture-specific parts of the microkernel im-
plementation are reused for all described systems.

Academic system. The academic system is a computer system for writing, sign-
ing, and sending emails. It covers all implementation layers from the gate-level
hardware to communicating concurrent programs and thus represents a vertical
cross section of a general-purpose computer system.

Let us describe the components of the academic system in bottom-up fashion
(see also Fig. 1). The lowest layer of the academic system consists of a hardware
architecture, featuring the VAMP, a DLX-like processor with address translation,
and abstractions of memory-mapped I/O devices (timer, network interface card,
keyboard, terminal, and hard disk). The next layer of communicating virtual ma-
chines (CVM) establishes a hardware-independent programming interface for a
microkernel and a virtual computation environment for concurrently running
processes. Some parts of CVM must be implemented in assembler since C0, a
subset of regular C, lacks low-level programming constructs. The microkernel,
which is called VAMOS, is based on the CVM interface and contains no as-
sembler parts. On the next-higher layer the simple operating system (SOS) is
located, which runs as a (privileged) user process. It offers file I/O, inter-process
communication, sockets, and remote procedure calls to user processes. Last but
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not least several user processes are needed to implement the desired function-
ality of the academic system; these include a signing software, an SMTP client
(and, on the receiving side, an SMTP server), and a simple mail user agent.

Chipcard-based biometric identification system. The chipcard-based biometric
identification (CBI) system is an access solution, which grants system access
based on the similarity between fresh biometric data and reference biometric
data. Fresh biometric data is sampled using a biometric sensor. The reference
biometric data is read from a chipcard, which belongs to the user. Biometric
data is considered personal data in Germany and has to be kept confidential
in accordance with German privacy regulations. Additionally, communication
between the host system and the user’s chipcard must have certain cryptographic
properties like authenticity and integrity of messages. This is established by
running a cryptographic protocol between host and chipcard.

Automotive system. The automotive system is the prototype of an automatic
emergency call system, which is meant to contact the public-safety answering
point (PSAP) automatically in case of a (severe) car crash. The system is real-
ized as a distributed system, namely a cluster of electronic control units (ECUs)
connected to each other via a shared serial bus. Bus communication is time-
triggered, i.e., access to this bus is granted to the individual ECUs according to
a static, periodical schedule. The schedule period is called a round ; rounds are
evenly divided into slots, which represent the minimal bus allocation intervals.
In each slot, the sending ECU may broadcast a frame to all other ECUs. Frames
contain messages as a payload. Messages have types. On each ECU runs a small
operating system, which is called OLOS. OLOS maintains a buffer for each mes-
sage type. Incoming messages are stored into this buffer and outgoing messages
are transmitted from that buffer (according to another, static schedule). Appli-
cations may access the message buffer using system calls. The user view of the
whole cluster is as follows: applications are executed on all ECUs in lock-step
while they seem to communicate over shared variables.

In order for this hardware / software stack to work as specified, the following
two aspects concerned with timing are crucial. Already at the hardware level,
a clock synchronization algorithm must be used to compensate for the different
hardware clock frequencies of the ECUs (due to manufacturing tolerances or
environmental conditions). Otherwise, ECUs will violate slot and round bound-
aries, in the long run causing bus contention and compromise of the communi-
cation mechanism. At the software level, for the system to operate in lock-step
fashion, both the system software and the applications must run fast enough to
observe slot and round boundaries. To show that these constraints are met, a
worst-case execution time analysis for all the software is necessary.

3 Computational Models

The repository of computational models plays a very central role in the system
verification environment. Typically, each model is referenced in three situations:
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(i) in correctness proofs for programs in this model, (ii) in simulation theorems
showing that the model is simulated by a model from an adjacent lower system
layer, and (iii) in simulation theorems showing that the model simulates a model
belonging to an adjacent higher system layer (which may also be a program
correctness proof). In the remainder of this sections, we shortly sketch standard
models (for languages and systems without devices), devices models (for systems
with devices), and distributed models (for systems communicating over devices).

Standard models. We consider the following standard models for languages:
(i) the model of the machine language / instruction set architecture (ISA) of
the VAMP [11, 12], a variant of the DLX architecture [13], (ii) the model of
VAMP assembler, (iii) the semantics of C0, which is the subset of C we use [14],
and (iv) the semantics of C0A, which is C0 with in line assembler code. In the
latter model, we have to consider both the computation of a (compiled) C0 pro-
gram and of an assembler program. These computations influence each other
in cases where in line assembler instructions update C0 variables, e.g., when a
processor register is copied to a C0 variable. This requires knowledge about the
memory layout employed by the C0 compiler, which allocates C0 variables to
VAMP memory ranges.

Standard system models are obtained by combining one (or more) of the
above models with specifications of special operations (e.g., system calls). In the
academic system, we consider the following system models: (i) Communicating
virtual machines (CVM), a generic model of operating system kernels permitting
to abstract from the use of in line assembler in the lower-level kernel implemen-
tation [15]. This is a concurrent model of computation consisting of an abstract
kernel modeled as a C0 program and user processes modeled as VAMP assem-
bler programs. At any time either the kernel or one of the user processes are
running. The kernel is non preemptive and may only be interrupted by reset. If
interrupts occur during user process execution, the kernel is entered. No mem-
ory is shared between user processes or (C0 variables of) the abstract kernel.
(ii) VAMOS, the abstraction of an instantiation of CVM with a specific ker-
nel [16]. User processes may be assembler programs, or, in an extension of this
model, also C0 programs. In the latter case, we also abstract from the concrete
VAMOS scheduler. (iii) The model of the simple operating system (SOS), which
specifies the system calls provided for C0 or assembler user applications.

Device models. With the standard models above we cannot yet handle the nu-
merous situations where I/O is performed in the academic system (swap memory,
terminal, file, and network access). This makes a generalization of the hierarchy
above necessary. We have to define models for specific devices for use in the
specific layers of the model stack. Depending on the layer and its level of ab-
straction, even variants of models for a device may be required. From one layer
to the next, a more abstract variant of a device model is employed when the
lower layer implements a (nontrivial) driver for that device.

We distinguish the following models. (i) Hardware with devices. Devices em-
ployed at this stage may be gate-level implementations of devices and, if this
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is the case, must be part of the hardware correctness proofs. (ii) Instruction
set architecture with devices. For special cases (e.g., hard disk) this may be a
nonconcurrent model [17]. In the general case, this model is nondeterministic,
concurrent, and, when communication between computer systems is considered,
also distributed, cf. [18, 19]. The obvious next two models are (iii) assembler
with devices permitting to program device drivers in assembler (e.g., [20]) and
(iv) C0A with devices permitting to use these drivers in C0A programs. (v) As
a next step we turn the drivers into external functions. This permits to return
to the syntax of ordinary C0. For nontrivial drivers (which are not only used
to expose devices directly to user-level device drivers), more abstract variants
of a device may be employed. For example, we abstract a hard disk used for
swapping into a ‘swap memory’, which by the page fault handler via driver calls
to swap in or swap out pages. This model we call C0 with devices.

In the system models devices can only be accessed by (or through) the kernel;
device ports are never mapped to user memory and interrupts are relayed over the
kernel. For each system model, we have an extended model with devices. From one
system model to the next, certain devices may be hidden completely, e.g., the timer
used by the microkernel’s scheduler is not visible to the upper layers.

Extensions for distributed and communicating systems. In the automotive sys-
tem several processors together with their bus interfaces form a cluster of elec-
tronic control units (ECUs), which communicate over a FlexRay like shared
serial bus. A technically interesting complication arises from the fact that each
ECU has a private oscillator with a clock period close but not equal to a refer-
ence clock period. As a consequence the bus interfaces contain serial interfaces
and hardware implementing a clock synchronization algorithm [18,19].

Thus, in the automotive system, the following distributed models are consid-
ered: (i) A distributed hardware model, which extends the usual digital hardware
model in two ways. The hardware of the entire system is partitioned into por-
tions with the same oscillator (the ECUs). Moreover, for the drivers and registers
directly connected to the bus set up and hold times (and metastability of flip-
flops) must be considered [19,21]. (ii) A distributed ISA model with FlexRay like
devices modeling the communicating ECUs at the ISA level. (iii) A distributed
assembler model with FlexRay like devices modeling the communicating ECUs
at the assembler level. (iv) Employing the real-time kernel OLOS (OSEKtime
like operating system) [22], which provides access to the FlexRay to C0 user ap-
plications, we obtain a distributed OLOS model. (v) The top level model used in
the automotive system is a model of communicating automata called AutoFocus
Task Model (AFTM) [23].

The model for academic systems communicating over the Internet is slightly
simpler because only discrete systems are considered. From any computational
model with network interface card as device, a distributed version of the model
can be derived. This is simply the distributed system consisting of copies of the
basic model and the model for their connection, i.e., the Internet, which includes
a model of packet loss.
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4 Verified Components

Based on models of computation of the previous section we may now proceed to
present a library of verified components. A verified component has five parts: (i) a
formal specification of the component, which defines user visible data structures
and operations, (ii) a formal specification of the model in which the component
is implemented, (iii) formal specifications of subcomponents used in the con-
struction of the component (if any), (iv) an implementation of the component,
and (v) a formal proof that the construction meets the specification. Formal
specifications used in components may coincide with the specification of the
computational models from Sect. 3, e.g., for components implementing system
layers. Currently, a large number of verified components is under development
or completed. For the components listed below at least the first four parts are
completed and the formal proof is either completed or under construction.

Hardware. (i) VAMP processors built from ordinary hardware (i.e., gates, reg-
isters, and memories). Formal proofs against the VAMP ISA are completed in
PVS [12,24] and under construction in Isabelle/HOL. (ii) processors with devices
constructed from ordinary hardware devices specified at the hardware level. The
specification of such processors is given by the computational model of VAMP
ISA with devices. The correctness proof is a not completely obvious extension of
‘ordinary’ processor correctness theorems, because the ISA model of a proces-
sor with one or more devices is in general distributed and nondeterministic; the
nondeterminism is resolved by the implementation’s timing behavior. (iii) For
the automotive system, interfaces for a FlexRay like bus have been constructed
at the gate-level. The correctness proof for these devices is conducted in the
distributed hardware model described above. Both the correctness of a serial
interface and the implementation of a clock synchronization algorithm in hard-
ware have to be shown. For paper and pencil proofs see [18, 19]. The part of
the formal correctness proof dealing with setup and hold times of registers is
reported in [21].

Basic data structures and algorithms. For use by other C0 programs, we cur-
rently provide three libraries of basic data structures and algorithms: a library
for doubly linked lists, a string library [25], and a big number library [26]. All
libraries are programmed in C0. Specification and correctness proofs of the li-
brary functions are done in the Hoare logic for C0. The list library is used by
the other two libraries.

Compiler. (i) The C0 compiler (backend) translates abstract syntax trees of C0
programs into VAMP assembler programs [14]. It is specified in C0 small steps
semantics and uses the list library. The correctness is shown using C0 Hoare
logic. Correctness with respect to small steps semantics is inferred using the
soundness of the Hoare logic (cf. Sect. 5). (ii) A fairly straightforward extension,
assuming ‘acceptable’ behavior of in line assembler portions, gives the correct-
ness of the C0A compiler. (iii) A more involved extension of the compiler is a
copying garbage collector [27], which is crucial for certain (application) code,
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such as the big number library. (iv) The simulation of the model C0A with de-
vices by the model assembler with devices works only under certain software
conditions: compiled C0 instructions, e.g., of the kernel, must not be interrupted
and devices may only be accessed with in line assembler and not by compiled
C0 statements. This guarantees that the execution of compiled C0 statements
and device transitions do not interfere with each other. Note that user programs
never directly access devices in our systems and can be interrupted, which has
the effect of the non-interruptible kernel taking over control.

Device drivers. (i) Elementary device drivers are pieces of assembler program
copying data between a region of memory in the processor and a device specific
region of memory on the device, e.g., disk space. Elementary device drivers are
specified and programmed in the model assembler with devices. For a paper and
pencil correctness proofs of elementary device drivers for a disk and a UART
see [17, 20]. (ii) Elementary device drivers may be embedded into functions of
a C0A program. As these device drivers usually abstract from their assembler
implementation, their specification can be done relative to the C0 model with
devices. Typically, these drivers provide an abstracted view of the device they
control. Note that for interfacing reasons, the correctness proofs of any C0A
programs has to refer C0 calling convention and memory layout. (iii) User-level
devices are implemented using system calls for device access provided, e.g., by the
model VAMOS with devices. They may be verified relative to the specifications
of these system calls in an extended Hoare logic (cf. Sect. 5). An example of
such a driver is the hard disk driver used by the simple operating system to
implement a simple file system. In contrast to the elementary device driver used
for swapping, this disk driver is interrupt-driven.

System software. The specification of the generic operating system kernel CVM
is directly given by the model CVM with devices. The so called concrete kernel,
which is the CVM implementation for a given abstract kernel, is obtained by
linking and compiling the abstract kernel with a C0A program. This program
implements the CVM functionality. Its major data structures are the process
control blocks and the page tables. Its major functions are swap memory man-
agement, page fault handling, context switching, and operations on the user
assembler machines, such as user memory copy operations [15]. As the kernel is
non-preemptive parts of its correctness (in particular the page fault handler’s)
can be shown in an extended Hoare logic (cf. Sect. 5).

VAMOS [16] is an instantiation of CVM, which was inspired by the L4 micro-
kernel [28]. It calls CVM functions and is therefore implemented in the model
CVM with devices. Proofs can make use of extended Hoare logics relative to a
specification of this model. Thus, e.g., the correctness of inter-process communi-
cation (IPC) operations, which implement a rendezvous protocol, may be shown
relative to the correctness of the user memory copy operations provided by CVM.
In the VAMOS model allowing C0 user programs, two additional abstractions
have to be justified. First, the scheduler is abstracted away. This requires to
prove fairness of the scheduler. Second, some user processes are allowed to be
C0 programs, which must be linked against a system call library implemented
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in C0A. Proving the library correct, requires another application of compiler
correctness in the correctness proof.

The implementation of the simple operating system makes use of VAMOS,
drivers for disk, terminal, and network interface and an implementation of TCP.
On top of the disk driver, a simple file system is implemented. On top of the
TCP implementation, socket management functions have been implemented.

To implement remote procedure calls (RPC) for SOS applications a port map-
per, user-level primitives for the implementation of remote procedure call (RPC)
on top of SOS, and an interface compiler have to be provided [29]. SOS and the
applications running under it form a distributed system. Computations of user
processes and of SOS are interleaved. Correctness proofs about applications in-
teracting via RPC thus need to use rely / guarantee arguments (e.g., [30]).

Applications. Applications in the academic system are (i) an SMTP client and
server for email transfer [30], (ii) a signature server used to sign electronic mails
and (iii) an email client, which uses the previous applications and implements
a user interface [31]. The applications run under SOS, make use of SOS RPC
and the SOS file system. The signature server also makes use of formally verified
cryptographic primitives (e.g., [32]). For the biometric identification system, se-
curity properties of the cryptographic protocol have been formally modeled and
proven using VSE [33, 34]. Certain properties of the emergency call application
in the automotive system were formally verified in the AutoFocus task model
(AFTM) using the AutoFocus tool [23].

5 Semantics Hierarchy

Because we need to consider interleaved programs in several places of the Verisoft
project (e.g., RPC clients and servers), the standard models listed in Sect. 3 are
all small steps semantics. Although in the end we need many program correct-
ness theorems with respect to small steps semantics, we produce the correctness
proofs as much as possible using the verification condition generator (VCG) of
a Hoare logic for C0 [35]. This needs to be justified by a hierarchy of C0 seman-
tics, which is also part of the system verification environment: the small steps
semantics of C0 (Sect. 3), a big steps semantics for C0 [35], and a Hoare logic
with the VCG mentioned above as a proof tool.

In order to go back and forth between the three levels of C0 semantics we have
proven formal versions of classical textbook theorems. First, the soundness of the
big step semantics with respect to the small steps semantics. Second, the equiva-
lence between Hoare logic and big step semantics. Because of the shallow
embedding of the Hoare logic into Isabelle/HOL there can be no general (program-
independent) equivalence proof in Isabelle because such a proof would require to
quantify over all types of Isabelle [35, Chapter 8]. We expect, however, that the
proofs obligations for individual C0 programs can be automatically proven.

We also use an extended version of this semantics stack with which (noninter-
rupted) C0 programs may be verified in the Hoare logic relative to an abstract
specification, e.g., a system model providing system calls. This may be used in
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the verification of drivers (user or kernel level), abstract kernels, or user appli-
cations. The abstract specification is represented in the Hoare logic with ghost
(i.e., non-program) variables and postulated pre and post condition pairs. All
assumptions made in this manner need of course to be verified; the soundness
results for this semantics are only relative to the assumed specifications. These
assumptions must be discharged when transferring concrete properties from the
Hoare logic to the small steps semantics.

6 Proof Tools

In our system verification environment we use interactive provers (mainly Is-
abelle/HOL [10]) as the central platform for formal modeling and verification
tasks. All computational and semantic models are expressed as Isabelle/HOL
theories. Components (hardware and software) to be verified are usually written
relative to one of the semantic models in a deep embedding. There are two im-
portant exceptions to this rule. In the C0 Hoare logic, C0 expressions are shallow
embedded to improve verification productivity [35]; special care must be taken
about soundness here, as mentioned earlier. Also, hardware models are formu-
lated in a synthesizable subset of Isabelle/HOL [36]. Since gate-level hardware
constitutes the bottom of our model stack, we cannot show soundness here.

The benefit of having a general purpose interactive theorem prover as a central
component is that there is always a verification tool of last resort when automatic
verification fails. However, increasing automation is clearly the key to success in
the verification of industrial computer systems. We have integrated a number
of automatic proof tools into Isabelle/HOL via Isabelle’s oracle interface. These
tools either hook into one of the semantic model described above or Isabelle/HOL
directly. We trust the tools to produce correct results; hence, currently, no proof
objects are imported into Isabelle for automatically proven goals.

Proof tools that have been integrated into Isabelle include classical symbolic
model checkers [36], software model checkers and shape analysis tools [37, 38,
39, 40], translation validation tools [41], and first-order logic theorem provers
[42,43]. As mentioned earlier, the C0 Hoare logic includes a verification condition
generator [35]. For the automotive system, we use AbsInt’s worst-case execution
time analyzer aiT [44] based on abstract interpretation, which is, however, not
directly integrated into Isabelle/HOL.

7 Repository Implementation and Public Releases

To form a viable platform for the development of system correctness proofs,
we keep all afore-mentioned artifacts (computation models, proof objects, tools,
etc.) in a central repository. We make use of the version control system Sub-
version [45], which provides revision tracking and concurrent operation in an
easy-to-use fashion. In addition to the artifacts relevant for the formal verifi-
cation, we also store system implementations, the development tool chain, and
additional documentation in the repository. All of these items are organized
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Fig. 2. Example of modules and their dependencies

in so-called modules, often on a more fine-grained level than described earlier
(e.g., to share commonly used definitions or results across modules). Modules
are related to each other via dependencies, which have to be acyclic.

Figure 2 shows a number of modules from our repository, which are related
to the verification of our non-optimizing C0 compiler [14]. The four boxes on
the left-hand side represent the implementation modules of the compiler: the
compiler itself, the libraries that it needs, and standard headers. The latter need
not to be verified. For the other three implementation modules, there is a cor-
responding code verification module. All proofs therein are conducted in the C0
Hoare logic [35], which is implemented in Isabelle/HOL [10]. In the top-level
code verification module, vc0compiler, the output of the C0 compiler implemen-
tation is shown to be equivalent to the output of an (abstract) code generation
algorithm [46]. This algorithm maps syntax trees of C0 programs to VAMP as-
sembler programs, whose specifications are both modeled in Isabelle/HOL. In
the module C0compsim, the correctness of the code generation, expressed as a
simulation theorem over C0 and VAMP assembler computations, is shown.

We will make available self-contained portions of the repository, which appear
to be appear sufficiently stable and do not contain confidential data of industry
partners. Currently, four releases have been made public.1 Two of the releases
deal with the code-level verification of the C0 string library [25] and the C0
compiler [46], covering all the modules shown in Fig. 2 except C0compsim, which
is planned to be released next. As mentioned above, the code verification is
conducted in the C0 Hoare logic verification environment. For this purpose, the
C0 implementations in concrete syntax have been translated into their Hoare
logic representation. The translator is also included in the latest release. In the
C0 Hoare logic, Hoare triples for partial and total correctness have been shown.
In addition to the functional correctness and termination, the absence of certain
runtime errors has been proven (e.g., integer overflows and out-of-bounds array
access). These properties would be required at a later stage to translate total

1 http://www.verisoft.de/VerisoftRepository.html

http://www.verisoft.de/VerisoftRepository.html
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correctness results at the Hoare logic level down to our lower-level semantics,
i.e., in the end to compiled program running on the target architecture.

The third release deals with the code-level verification of the C0 big integer li-
brary, implementing arbitrary-precision integer operations based on a linked-lists
representation of integers. Supported operations include addition, subtraction,
multiplication, division, remainder, and exponentiation modulo an integer.

The fourth release deals with the code-level verification of the email client of
the academic system relative to the services provided the operating system and
applications for signing and email transfer [31]. In addition to modules described
earlier, it contains modules for the email client implementation and proofs.

8 Summary

We have presented an overview of the system verification environment used in
the Verisoft project to carry out the formal pervasive verification of entire sys-
tems of industrial interest. The architecture of our verification environment is
to a large extent determined by each system’s architecture and its requirements.
The system’s layers, its implementation languages, its components, and its tool
chain are all represented in the verification environment, thus enabling to for-
mally reason on system requirements. The form of the representations is on the
one hand shaped by the system requirements and on the other hand by verifica-
tion productivity concerns: we are employing small-steps semantics to reason on
concurrent, communicating programs, but we switch to more abstract semantics
(for which we have verification condition generation and integration of automatic
provers) wherever possible. Soundness and simulation theorems of the higher-
level relative to lower-level semantics justify this approach. Thus, in addition to
the stack of computational models, which inherit from the system implementa-
tion structure, a semantic stack is build. We have announced a web site, where
we have started to publish portions of our verification environment.
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Abstract. Despite many advances, today’s software model checkers and ex-
tended static checkers still do not scale well to large code bases, when verify-
ing properties that depend on complex interprocedural flow of data. An obvious
approach to improve performance is to exploit software structure. Although a
tremendous amount of work has been done on exploiting structure at various
levels of granularity, the fine-grained shared structure among multiple verifica-
tion conditions has been largely ignored. In this paper, we formalize the notion
of shared structure among verification conditions, propose a novel and efficient
approach to exploit this sharing, and provide experimental results that this ap-
proach can significantly improve the performance of verification, even on path-
and context-sensitive and dataflow-intensive properties.

1 Introduction

Verification conditions (VCs) are logical formulas, constructed from a system and de-
sired correctness properties, such that the validity of verification conditions corresponds
to the correctness of the system. Constructing and proving VCs are both essential steps
in software verification, and both have been active areas of research. In this paper, we
focus on proving the validity of VCs more efficiently.

The trend today is to use automated decision procedures to prove or disprove the
computed VCs. Unfortunately, this process is computationally extremely expensive and
is the main bottleneck to the wider application of formal and semi-formal software ver-
ification methods. Previous work has focused on the computation of VCs (e.g. [11,15]),
abstraction to make the VCs simpler for the decision procedure (e.g. [4,5]), and the
efficiency of the decision procedures themselves (e.g. [9,3,12,19,20]).

In our previous work [1], we showed how the structure of a single interprocedural
verification condition can be exploited at a coarse function level. This paper explores
a different direction for improving efficiency — namely, exploiting shared structure
among multiple VCs at the level of individual expressions — and proposes a technique
that exploits this structure. Since solving VCs is typically expensive, elimination of this
redundancy has the potential to significantly improve performance of static checking. In
this paper, we present our insights, formalize the notion of shared structure, propose an
algorithm for exploiting this shared structure, and provide experimental evidence that
our approach can cut runtime by almost one third and reduce the number of timeouts.

K. Yorav (Ed.): HVC 2007, LNCS 4899, pp. 169–184, 2008.
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1.1 Background and Related Work

Static Checking The work in this paper fits in the context of static checking of software.
The distinction between static checking and model checking is fuzzy, but historically,
static checking has emphasized fast bug hunting and scalability to large software, at
the expense of precision (and often soundness and/or completeness), whereas model
checking has emphasized precision and soundness, with the primary research challenge
being scalability. Our overall goal is to maintain the precision of a bit-accurate software
model checker like CBMC [14], while matching or exceeding the scalability of static
checkers like Boogie [17] or Saturn [27].

We use our static checker CALYSTO, but the contribution of this paper can be ap-
plied to any static checker that uses a decision procedure, assuming some reasonable
properties of VCs (see Sec. 2). Boogie and Saturn are the closest relatives of CA-
LYSTO. Boogie is a mature tool that performs intraprocedural analysis and requires
user-provided function/class interface invariants. Boogie uses abstract interpretation
to compute sound invariants of certain types of loops found in programs, while oth-
ers are unrolled and terminated with an assumption that the loop test is false [16].
CALYSTO is less mature and handles loops either by unrolling them (unsound) as in
ESC/Java [10] or by considering all loop-carried values unconstrained (sound). Stan-
dard, more precise loop invariant computation techniques can be used to replace loops
with loop invariants, as a CALYSTO-preprocessing technique. The most significant dif-
ference is that CALYSTO requires no user-provided interface invariants. Instead, CA-
LYSTO performs path- and context-sensitive interprocedural analysis. Such analysis is
inherently more expensive than the intraprocedural analysis in Boogie, so we focus
on exploiting structure at various levels of granularity to achieve scalability. For in-
stance, in our previous work [1], we showed how structure can be exploited to avoid
the exponential blowup of context-sensitive analysis in many cases. Saturn is path-
sensitive, but performs only partially context-sensitive analysis by computing sum-
maries as projections onto a set of predicates. CALYSTO, on the other hand, is fully
context sensitive, which means that it can handle dataflow-related properties more pre-
cisely. Saturn demonstrated that SAT solvers can be used to prove VCs, but it uses
off-the-shelf SAT solvers. In our experience, we have found that tight integration of the
static checker with a custom-tailored decision procedure offers significant performance
improvements, hence our research on exploiting structural properties of VCs by the
decision procedures.

Verification Conditions Traditionally, VCs are computed by Dijkstra’s weakest precon-
dition transformer [8], as is done for example in ESC/Java [10] and Boogie. A naı̈ve
representation of VCs computed by the weakest precondition can be exponential in
the size of the code fragment being checked, but this blow-up can be avoided by the
introduction of fresh variables to represent intermediate expressions [26,11,15]. Equiv-
alently, we can keep the formulas in the form of graphs that correspond to the abstract
syntax trees of the parsed formulas, with common sub-expressions shared. Such graphs
make structural reasoning easier, so we shall use the graph representation in this paper.
This representational difference is otherwise insignificant.
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Two things set our research apart from previous work on VCs. First, as mentioned
above, we do not assume user-provided interface invariants, but rather perform context-
sensitive interprocedural analysis. Second, we focus on exploiting common subexpres-
sions shared among multiple VCs. Our goal is to explore how much we can learn from
solving a set of VCs and how we can apply that knowledge to solve the remaining VCs
more efficiently.

Learning. Our contribution can be viewed as an automatic learning technique. Given a
set of VCs, the technique learns from the implicants that a decision procedure implied,
and attempts to reuse that knowledge later if the remaining VCs share some subexpres-
sions with the already solved ones.

Learning is an efficient technique for speeding up decision procedures, and has been
especially effective in boolean satisfiability (SAT) solvers [28]. The new aspect of the
problem that we are considering is context-dependence — facts learned about a shared
subgraph while solving one VC might not hold in the context of others.

Stump and Dill [25] proposed context-dependent caching and proof compression for
an Edinburgh LF decision procedure, but they considered caching only for subgraphs
of a single formula and did not consider sharing between multiple formulas. While
solving each individual VC, our static checker CALYSTO already eliminates common
subexpressions, and our SAT-based decision procedure SPEAR features its own intra-
VC learning (caching) mechanism. In contrast, the contribution of the present paper is
inter-VC learning.

Structure Exploitation. Many researchers have looked into how to exploit structure
for more efficient verification. Starting from the coarsest level of granularity, Roun-
tev at al. [23] observed that large libraries change less frequently than the applications
that use them, so the libraries can be pre-analyzed for speeding up verification of the
applications. Conway et al. [6] observed that programs are usually modified in small
incremental steps. So, after the application was verified once, only the modified func-
tions and functions that transitively call them have to be re-verified. Our work explores
a new dimension of the problem that has not (to the best of our knowledge) been ex-
plored before. Namely, we are interested in elimination of redundancy at a finer level
of granularity — individual expressions. This redundancy is inherent to any software
verification technique simply because a large majority of execution paths share some
common sequence of statements. Our technique is orthogonal to the above mentioned
approaches, and can be combined with them.

2 Preliminaries

In this section, we give definitions of some basic concepts required for understanding
the rest of the paper and present the assumptions on which our method relies.

Decision Procedure. We are interested in bit-precise software verification in order to
be able to catch frequent integer under/over-flow bugs1. So, all of our analysis will be

1 For instance, the 2004 JPEG security exploit (see e.g. [2]).
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assuming modular (machine bit-vector) arithmetic. Our decision procedure SPEAR2 is
based on a SAT solver and supports all standard modular arithmetic operators on finite
bit-vectors, including expensive operators (like multiplication and division). Although
we use modular arithmetic, the contribution is largely independent of the chosen logic.

When automated decision procedures are used for proving VCs, the validity of a
verification condition VC is usually being proven by asking the decision procedure to
prove unsatisfiability of the formula VC = false. Its satisfiability means that there is a
possible bug in the program from which the VC was constructed.

Representation As mentioned, we represent VCs as acyclic graphs. This representation
simplifies the reasoning about the structure of the formulas. In addition, using simple
node hash tables, we eliminate all common subexpressions. Such graphs, in which all
redundancies have been eliminated, are known as maximally-shared graphs:

Definition 1 (Maximally-Shared Graph)
Given an acyclic graph G = (N,E), let L stand for a labeling function L : N −→
string. Define the arity of a node n, denoted as |n|, as the number of outgoing edges. The
outgoing edges are ordered, and the i-th edge of a node n will be denoted as childi(n).
Two operator nodes n1 and n2 are defined to be equivalent (n1 � n2) if and only if |n1| =
|n2|, L (n1) = L (n2), and ∀i : 0 ≤ i ≤ |n1| : childi(n1) � childi(n2). (This is standard
bisimulation equivalence, but applied to a graph representing the static structure of
a VC, rather than the more typical application to a transition system.) Graph G is
maximally-shared if ¬∃n1,n2 ∈ N : n1 �= n2 ∧n1 � n2.

CALYSTO computes verification conditions directly as maximally-shared graphs. The
graph representation can be transformed into a conjunction of expressions by standard
renaming. We shall identify nodes in the graph with the variables used for renaming.
This is a one-to-one mapping. We shall represent equality (resp. inequality) in formulas
and algorithms as = (resp. �=), while in the code snippets and graphs = will stand for
assignment, and == (resp. !=) for equality (resp. inequality).

Graph Relations If there is an edge connecting two nodes, n −→ m ∈ E , then n is a
predecessor of m, and m is a successor of n. The set of predecessors of a node n will be
denoted as Pred(n), and the set of its successors as Succ(n). The nodes in the transitive
closure of Pred(n) are ancestors of n, and the nodes in the transitive closure of Succ(n)
are descendants of n, denoted Desc(n).

To analyze the shared subgraphs, we rely upon the dominance relation [21]:

Definition 2 (Dominance Relation)
A node n dominates node m if and only if all the paths from the entry node to m go
through n, written as n	m. If n �= m, n strictly dominates m, denoted n 	 m.

The dominance relation is a partial order (reflexive, antisymmetric, and transitive) and
can be computed in O(Nα(E,N)) [18] time, where α is the extremely slowly growing
inverse of Ackermann’s function. In practice, a simpler O(E logN) algorithm [18] is

2 http://www.domagoj.info/index spear.htm
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faster, even for very large graphs, and that is what we are using for the results in this
paper.

The dominance relation, as defined above, requires a unique entry node. The tech-
nique presented in this paper always considers the root node that represents a single VC
to be the entry node for the computation of the dominance relation.

Assumptions The work presented in the paper relies on several assumptions, which are
either almost always satisfied in practice or can be satisfied with a trivial amount of
post-processing.

First, as mentioned already, we assume that the VCs are representable by acyclic
graphs corresponding to abstract syntax trees obtained by parsing the formula. Most
software static checking tools (including Saturn, ESC/Java, Boogie, and CALYSTO)
produce VCs that have such structure. An example of a graph representation of two
VCs that share some subgraphs is shown in Fig. 1.

Second, the decision procedure must be able to identify facts of the form variable =
constant that are implied by formulas being solved. For instance, if the decision proce-
dure is based on a SAT solver, learned unit literals are such facts. Decision procedures
based on the Nelson-Oppen [20] framework generate conjunctions of equalities (pro-
viding that the individual theories are convex), and it is easy to extract the equalities
that satisfy our requirement.

Third, we assume complete propagation of equalities with constants, i.e. we require
that the decision procedure generates facts of the form a = 7,b = 7,c = 7 instead of a =
7,b = a,c = b. This is trivial to accomplish by a linear time constant propagation post-
processing even if the decision procedure does not make such guarantees. Assuming
that the formula is satisfiable, both SAT solvers and E-graphs [7], on which the Nelson-
Oppen framework is based, satisfy this requirement.

Fourth, we assume that the proper subexpressions of a VC are logically consistent.
Every expression that can be translated into an acyclic circuit-like representation sat-
isfies this requirements because circuits themselves are logically consistent — every
input produces some output. Two small examples provide the intuition behind this
assumption.

Example 1 Consider an obviously inconsistent formula a < 0 ∧a > 0. By introduction
of fresh variables n0, · · · ,n2 we get:

n0 = a < 0

n1 = a > 0

n2 = n0 ∧n1

This is a logically consistent set of constraints which corresponds to the circuit-like
representation in Fig. 1. Note that the constraints force n2 to be always false, but the
constraints themselves are satisfiable. Variable n2 corresponding to the root node in
Fig. 1 can be seen as a circuit output.

As mentioned earlier, the goal is to prove validity of a VC, i.e., that the value of the
output node is always true. We can check this by adding constraint root node = false
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Fig. 1. Small maximally-shared graph repre-
senting a < 0 ∧ a > 0. Successors of non-
commutative operators are ordered in the nat-
ural order (from left to right). Operator nodes
are labelled with the operator (inscribed) and
the name of corresponding variable used in
renaming (adjacent to the node).
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Fig. 2. Graph corresponding to the set of con-
straints in Example 2

and then check satisfiability. If the resulting formula is satisfiable, the original VC is not
valid. Only by adding the additional constraint can the constraints become inconsistent,
as in the next example.

Example 2 Given the formula: VC = (a > b ⇒ a ≥ b), we can construct the set of
constraints:

n0 = a > b

n1 = a ≥ b

n2 = n0 ⇒ n1

which is consistent. Now, to check validity, we add constraint n2 = false to the set,
forcing the output to false. The set of constraints becomes unsatisfiable, meaning that
the original VC was valid.

If the consistency assumption were violated, then the decision procedure could imply
arbitrary implicants, because false can imply anything. The consistency assumption en-
sures that the implicants derived from a subexpression are meaningful.

3 Exploiting Shared Structure

In software, many paths share common statements, which means that computed VCs will
share common subexpressions. However, it is less obvious how to exploit that structure.

A direct approach is to construct a disjunction of all (negated) verification condi-
tions, give it to the theorem prover, and for each solution, report a bug, then add a
blocking clause to eliminate that disjunct from further consideration. Everything that
the theorem prover learns can be re-used, so this is a “perfect solution”. Unfortunately,
it suffers from the same problem as clause learning in a SAT solver: there is too much
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information that is learned, with very little of it being useful later. Instead, we seek to
distill out implicants learned while solving one VC that are useful for solving another
VC. However, not all implicants can be re-used, because they can depend on the context
of the first VC, which might not be true of the other VC.

The crux of the problem is that decision procedures can propagate information in any
direction. Consider the VC shown in Fig. 2 with the additional constraint n2 = false.
Most decision procedures would start solving the VC by propagating constants. From
n2 = false, it follows that n0 = true and n1 = false. From n1 = false it follows that
a < b. The last implicant contradicts a > b, hence the set of constraints represented
by the graph is unsatisfiable. This propagation of information from above introduces
assumptions that might not hold in all other contexts. Any other VC that contains the
subexpression represented by n2 and does not enforce n2 = false cannot reuse the pre-
viously computed solution.

Intuitively, we want a way to figure out which implicants were implied from be-
low. For instance, if a decision procedure can infer that node n2 is always true just by
considering its descendants, then the same decision procedure will be able to infer the
same result if n2 appears as a subexpression of any other VC. In other words, n2 = true
becomes a context-independent invariant.

The concept of “context” can be defined in many ways. Since we study the fine-
grained structure of expressions computed from software, it is helpful to define context
on the maximally-shared graphs as follows: We say that an expression represented by
a node in a maximally-shared graph is context-independent if its value is uniquely im-
plied by its sub-expressions, otherwise the relation is context-dependent. For instance,
in Example 2 (Fig. 2) the implicant n0 = true is context-dependent because the impli-
cation chain came from the predecessor n2. On the other hand, n2 = true is a context-
independent invariant as it follows from the nodes below n2.

Decision procedures can generate a large number of implicants. For example, SAT
solvers usually generate a single implicant per conflict. Keeping even only 10% of im-
plicants from each VC requires excessive amounts of memory. In addition, not all impli-
cants are context-independent invariants. So, we use a more restricted form of invariants
to represent learned facts:

Definition 3. Let n be some node in a maximally-shared graph and ψ an invariant
derived by the decision procedure of the form n = constant. We shall say that n is fixed
by the decision procedure. Define predicate fixDP (n) to be true iff n is fixed by the
decision procedure. If fixDP (n) = true, define operator FixValDP (n) to be an operator
that returns the constant to which the node n was fixed.

The invariants derived by the decision procedure represent knowledge gained about the
solved VC; these invariants can be either context-dependent or context-independent.
We need to separate out the context-independent ones, as those can be used later when
other VCs are solved. So, we define a subset of nodes that were fixed by the decision
procedure in a context-independent manner as:

Definition 4. Let n be a node fixed by the decision procedure to FixValDP (n). If the
invariant n = FixValDP (n) was derived only by considering a subgraph rooted at n, we
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shall say that n was fixed from below. Define predicate fix↑ (n) to be true iff n is fixed
from below.

There are two basic approaches to establishing context independence. First, the deci-
sion procedure could record the implication graph for each inferred relation. Second,
one could attempt to reconstruct the chain of reasoning from the relations produced
by the decision procedure once it terminates. In our experience, the first approach is
impractical for decision procedures based on SAT solvers, as it requires excessive re-
sources, and slows down the core of the solver by several orders of magnitude. However,
it might be a viable approach within the Nelson-Oppen framework if all the combined
theories are convex [20]3. We present a reconstruction-based approach: a simple algo-
rithm that given a set of nodes fixed by the decision procedure, efficiently computes a
safe approximation of the set of nodes fixed in a context-independent manner.

It is worth noting that simple incrementality [13] cannot be used for handling mul-
tiple contexts. When the contexts are changed, assumptions and their implicants un-
related to the new context have to be removed, so the implication graphs have to be
recorded — exactly what we are trying to avoid. Some automated theorem provers, like
Yices [9] and CVC [24], feature push/pop commands that allow undoing logical rea-
soning since the last checkpoint (push). Even with these commands, we would need to
push a new context for each potentially shared node, which would be prohibitively ex-
pensive. Furthermore, if lazy construction of VCs is used, then it is not known a priori
which nodes will end up being shared, so every single subexpression would need to be
pushed as a new context.

3.1 Algorithm

Depending on the client, the queries to the decision procedures might be available all at
once, or computed in a lazy manner. For example, a static checker that relies on some
form of abstraction might compute incrementally more refined VCs, or process the call
graph of the verified application in an incremental manner. Other clients, like invariant
generators, might construct a number of queries at once, and ask for invariants common
to all the queries. Because CALYSTO performs lazy structural abstraction [1], we focus
on the case where queries are posed in an online manner: VCs are checked one-by-one
and future queries are not known. Obviously, the same algorithm can also handle the
the case where all VCs are available in advance.

Algorithm 1 computes a safe approximation of the set of nodes that are fixed from
below. The values of nodes fixed from below are stored in an associative table Fixed,
indexed by the nodes. Later, if another VC contains a node n that exists in the table, the
value that is read from the table, Fixed[n], is used to create an additional constraint n =
Fixed[n]. Adding this additional constraint to the set of constraints representing the VC
being solved saves computation effort because the decision procedure can immediately
start propagating the Fixed[n] constant.

3 Modular arithmetic, as well as the theory of integers, are not convex, so even decision pro-
cedures based on Nelson-Oppen framework would need some form of bookkeeping, similar
to implication graphs, to be able to exactly identify a set of assumptions from which each
implicant was implied.
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Algorithm 1. Approximation of the set of nodes fixed from below. Predicate
isConstant (n) returns true if the node n is a constant node, predicate isRoot (n) re-
turns true if the node n represents a VC (root of the graph), while isOperator (n) is true
iff n represents an operator. Results of the analysis are stored in the table Fixed, indexed
by nodes. The set of descendants (resp. predecessors) of a node n is denoted as Desc(n)
(resp. Pred(n)).
1: procedure FIX(n,Fixed)
2: for each s ∈ Succ(n) do
3: FIX(s,Fixed)
4: if ¬isRoot (n)∧ isOperator (n)∧fixDP (n) then
5: for each d ∈ Desc(n) do
6: if ¬isConstant (d)∨n �	 d then
7: return
8: for each p ∈ Pred(n) do
9: if fixDP (p) then

10: return
11: Fixed[n] ← FixValDP (n)

Line 4 performs some basic technical checks. The value of the root node is fixed
from above (to false because we are checking for unsatisfiability), so the root node is
eliminated from consideration. Note that there is no reason why the root node couldn’t
be fixed from below as well. However, in that case, our analysis is not capable to resolve
whether the implication chain came from above or from below. In order to resolve this
ambiguity, the theorem prover would need to track implication graphs — a technique
which we consider too expensive.

Only three basic types of nodes can be present in the expression graph: constants,
variables, and operators. Constants are always fixed from below, variables are always
considered unconstrained, so it makes sense to attempt to fix the values of only the
operator nodes.

Intuitively, the algorithm works as follows. Lines 5–7 check whether the node dom-
inates all its descendants. If n does not dominate some descendant d, it follows that d
is reachable from the root of the graph by at least one path that does not go through n.
Consequently, d appears in at least two contexts (one represented by the path that passes
through n and the other by path that avoids n). Without reconstructing the implication
graph that led the decision procedure to imply n = FixValDP (n), it is not possible to dis-
tinguish between these cases: (1) The invariant was implied from below, relying only
on the descendants of n. (2) The invariant was implied from above, possibly all the way
from the root node. (3) The constant propagation chain came from above, avoiding n,
fixed the value of some descendant of n, which in turn implied the invariant. The domi-
nance test eliminates the third case. The purpose of lines 8–10 is to eliminate the second
case. Obviously, if no predecessor of n was fixed, the constant propagation chain must
have come from below. Remember that we assume complete propagation of constants,
so each constant propagation chain has to have its beginning and its end. The nodes that
pass both tests can be safely considered fixed from below.

Implementations should mark visited nodes and avoid revisiting them. As each node
has to be visited only once, and each node can have at most |N| descendants and
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predecessors together (G is acyclic), the worst case complexity is O(|N|2), but that is
a very pessimistic bound. We found that in practice the algorithm runs almost in linear
time if a depth-first-search is used to iterate over the descendants in lines 5–7. Intuitively,
the deeper the node is, the larger the probability that it is shared (simpler expressions are
more frequently shared than complex ones). Hence, the probability of running into a node
not dominated by n is becoming larger as we get further away from n (downwards). The
dominance relation can be computed in O(|N|α(|N|, |E|)), as noted before.

How good is the approximation? The algorithm is able to fix only the nodes that
are at the end of a constant propagation chain. Intuitively, the last fixed node in the
constant propagation chain is the node that required the largest amount of reasoning.
For instance, let n1, · · · ,nk be a sequence of nodes whose values were fixed from below,
all lying on the same path. Assume that there are k VCs such that first contains n1,
second n2 but not n1, and so on. The last VC contains only nk. Since all node values
were fixed from below, it is likely that the decision procedure will repeat the same steps
while solving each of those k VCs, so eventually, all nodes in the constant propagation
chain might become fixed from below, and constraints ni = FixValDP (ni) can be used
later if any of the ni nodes becomes a part of other VCs. Even though this approximation
is crude, it is very fast even for large VCs. In Sec. 4, we will evaluate whether the
algorithm is fast enough and can find enough context-independent invariants to improve
overall performance.

To prove that Alg. 1 really computes a set of nodes fixed from below, we start with
the following lemma.

Lemma 1. Let n be the subgraph of graph G such that n is fixed by the decision proce-
dure fixDP (n) = true. Assume that ∀p ∈ Pred(n) : ¬fixDP (p) and ∀d ∈ Desc(n) : n 	 d,
then fix↑ (n) = true

Proof. As n dominates all descendants, the decision procedure could have inferred that
n = FixValDP (n) by a chain of constant propagations either from the descendants in G
of n or from its ancestors. Due to the definition of dominance, the constant propagation
chain can enter the subgraph rooted at n only passing through n, or has to start in the
subgraph and propagate upwards. According to our assumptions (Sec. 2), the decision
procedure completely propagates constants. So, if the the chain starts in some ancestor
of n, at least one predecessor has to be fixed. If that’s not the case, we can deduce that
n = FixValDP (n) must have been implied from the descendants of n.

Theorem 1. All of the expressions n = FixValDP (n) computed by Alg. 1 are context-
independent invariants.

Proof. Follows from Lemma 1

Finally, we give the overall algorithm (Alg. 2) to verify multiple VCs with sharing, as
implemented in CALYSTO. Given a graph representation of a VC, the main loop first
translates the graph into the form suitable for the given decision procedure, producing
a set of constraints C, and negates the VC. For each node n whose value was fixed
from below, the algorithm adds the corresponding constraint n = FixValDP (n) to the set
of constraints. The decision procedure is called with the set of constraints as a para-
meter. If the decision procedure finds the negated VC satisfiable, it reports a possible
bug and continues. In the last step, Alg. 1 visits the nodes in the graph, and computes an
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Algorithm 2. Checking the Validity of VCs with Shared Structure. Function TRANS-
LATE translates the graph representation to a representation suitable for the decision
procedure. SOLVE is the call to the decision procedure with the set of constraints C.
1: clear table Fixed
2: for each VCi do
3: C ← TRANSLATE(VCi)∪VCi = false
4: for each n ∈ Desc(VCi) do
5: if n is a valid index into table Fixed then
6: C ← C ∪n = Fixed[n]
7: status ←SOLVE(C)
8: if status = satisfiable then
9: Report bug

10: FIX(VCi,Fixed)

approximation of the set of nodes whose values were fixed from below by the most
recent call to the decision procedure, for use in solving subsquent VCs.

3.2 Example

In this section, we go through an example that is similar to what we have found in
practice. The example illustrates expression sharing among VCs. Variables a,b,c are
machine integers, and s,t,u,v,y,x are boolean variables. All operators used in the exam-
ple are standard C-like operators.4

1 i n t f ( i n t a , i n t b , bool s , bool t ) {
2 i f ( a % 2) { a ++; }
3 i f ( b % 2) { b ++; }
4

5 i n t c = a ∗ b ;
6 i n t d = c & 3 ;
7 bool u = ( d != 0 ) ;
8 bool v = ( s == t ) ;
9 bool y = ( u | | s ) ;

10 bool x = ( y | | v ) ;
11

12 i f ( x ) {
13 a s s e r t ( t ) ; / / VC1
14 . . .
15 } e l s e {
16 a s s e r t ( ( a + b ) % 2 == 0 ) ; / / VC2
17 . . .
18 }
19 . . .
20 }

There are two assertions in the example: the first assertion can be violated, while the
second can’t. Lines 2–3 increment odd numbers, so at line 5 both a and b are even.

4 Operator % is the modulo operator, & is bitwise-and, || is logical-or, and ++ is post-increment.



180 D. Babić and A.J. Hu

Table 1. The first column gives the name and version of the benchmark. KLOC is the number of
source code lines, in thousands, before preprocessing. #VCs is the number of checked VCs. As
is typical, almost all VCs are UNSAT, since satisfiable VCs correspond to bug reports. The next
four columns give the total VC checking time in seconds (including timeouts) and the number of
timeouts, for the base approach (i.e., the same system without the newly proposed method) vs. the
newly proposed method. The timeout limit was 300 secs. Experiments were on a dual-processor
AMD X2 4600+ machine with 2 GB RAM, running Linux 2.6.15. Memory consumption was not
a bottleneck on any of the benchmarks.

Benchmark KLOC #VCs Base Approach New Approach
Time (sec) Timeouts Time (sec) Timeouts

Bftpd v1.6 4 1130 725.8 0 582.5 0
HyperSAT v1.7 9 1363 5.3 0 5.1 0
Licq v1.3.4 20 2009 199.6 0 214.5 0
Dspam v3.6.5 37 8627 3478.6 8 3157.6 6
Xchat v2.6.8 76 8090 368.5 0 365.8 0
Wine v0.9.27 126 9000 1881.4 2 1266.7 0

Thus, their product is a multiple of four. Therefore, the last two bits of the product will
be zero, even in the case of an overflow. Hence, d is always zero.

In our implementation, the VCs are computed directly as maximally-shared graphs,
as shown in Fig. 3, from the SSA [22] provided by the compiler front-end. A large part
of the graph is shared. This sharing is especially valuable when expensive operations
are shared, like multiplication.

How would a SAT-based decision procedure handle these constraints? Each VC is
solved independently of the others, and additional constraints are kept only for nodes
fixed from below. We start solving VC1 by adding the constraint VC1 = false. The deci-
sion procedure could deduce by constant propagation from the root: x = true, t = false,
and those are all the invariants that can be found by trivial constant propagation. A typi-
cal SAT solver could continue with enumeration of possible solutions that would satisfy
node c, which corresponds to the product of two conditionally defined variables. If a
(resp. b) is odd, it will be incremented, so a (resp. b) is even at line 5. As mentioned
previously, the least significant bit of even numbers is zero, so the two least significant
bits of a product of even numbers are zero as well. Hence, the decision procedure even-
tually implies d = 0. By constant propagation it follows that u = false. At that point,
the decision procedure has to make another case split, and by setting s = true, VC1 is
satisfied, meaning that the assertion can be violated. When VC1 is being solved, node
u dominates all leaves of its subgraph (each root node is solved independently, so VC2
still doesn’t exist at this point). Node u was not fixed from above, but considering the
subgraph rooted at u, the decision procedure was able to infer that u = false. Since both
conditions required by the Alg. 1 are met, u can be marked as fixed from below. Later,
when VC2 is constructed, the additional constraint u = false can be added to the set of
constraints. Adding the constraint quickly prunes away most of the left branch of VC2,
focusing the effort on the right branch. Since the sum of two even numbers is divisible
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by two, the right branch is true, meaning that VC2 = false is unsatisfiable. Hence, the
second assertion is valid.

4 Experimental Results

To test our approach, we used CALYSTO to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 4 to 126 thousand lines of code
(KLOC) before preprocessing. The benchmarks are the Bftpd ftp server, the Dspam
spam filter, our boolean satisfiability solver HYPERSAT, the Licq ICQ chat client, the
Wine Windows OS emulator, and the Xchat IRC client. For each program, for each
pointer dereference, we generated a VC to check that the pointer is non-NULL (omit-
ting VCs that were solved trivially by our expression simplifier). Although we demon-
strate our approach on checking for NULL pointers, our method is independent of the
property being verified, as long as the assumptions in Sec. 2 are met.

The experimental results are given in Table 1. The runtimes represent the time our
SAT-based modular arithmetic decision procedure SPEAR needed for solving all the
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VCs and include computation of the dominance relation. On only one of the smaller
benchmarks, Licq, was the new approach somewhat slower. In all other cases, the new
approach is faster. On Wine, the largest benchmark, the proposed approach speeds up
the solving phase by 32%. There were also fewer timeouts with the new approach
(meaning that the reported results are lower bounds on the speedup).

The key question is whether the derived context-independent invariants are able to
accelerate the solver enough to overcome the cost of deriving them. The results show
that the overhead of our approach is very low, yet in some cases, it provides a substantial
speedup. SPEAR was already highly optimized, and features several techniques (like
abstraction, lazy interpretation [1], gate-optimal VC encoding, and several others) that
result in significant performance improvements over a standard, direct “bit-blasting”
translation of the VCs into SAT. The results presented in Table 1 show that exploiting
shared structure can push a state-of-the-art static checker even further.

5 Future Work

It would be useful to improve the quality of approximation of the set of nodes fixed
from below, while maintaining the low computational cost. Since we observed more
structure-sharing in practice than our technique is able to exploit, we believe that im-
provements in that direction could provide even more significant speedups.

Finding more expressive context-independent invariants could also boost the perfor-
mance of static checking. Such context-independent learning would probably run into
similar problems as learning in decision procedures — which implicants to keep and
for how long. Considering that learning has proven itself in SAT solvers as an indis-
pensable technique without which no solver today is competitive, we believe that this
direction is particularly promising.

We have focused on the case where VCs are solved one-by-one. If multiple VCs are
available all at once, solving the VCs in a different, heuristically-chosen order might
allow deriving more context-independent invariants. Furthermore, it should be possible
to analyze the maximally shared graph to quickly find the shared subgraphs between
the multiple VCs. Only these nodes need to be considered as candidates to be context-
independent invariants, reducing the overhead of our approach.

6 Conclusion

We have demonstrated a novel way to exploit shared, expression-level structure avail-
able in verification conditions. The approach relies on simple invariants inferred by
automatic decision procedures. The proposed technique computes a subset of those in-
variants which can be used safely in a context-independent manner. Our experimental
results demonstrate that the technique can substantially improve the performance of
static checking. As scalability is the primary limitation of automatic software verifi-
cation tools, these results are a step towards more widely applicable, practical formal
verification of software.
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Abstract. This paper presents an approach to the efficient verification
of embedded systems. Such systems usually operate in uncertain environ-
ments, giving rise to a high degree of nondeterminism in the correspond-
ing formal models, which in turn aggravates the state explosion problem.
Careful handling of nondeterminism is therefore crucial for obtaining ef-
ficient model checking tools. Here, we support this goal by developing
a formal computation model and an abstraction method, called delayed
nondeterminism, which instantiates nondeterministic values only if and
when this is required by the application code. It is shown how this tech-
nique can be integrated into our CTL model checking tool [mc]square
by introducing symbolic abstract states which represent several concrete
states. We also give a simulation relation between the concrete and the
abstract state space, thus establishing the soundness of delayed nondeter-
minism with respect to “path-universal” logics such as ACTL and LTL.
Furthermore, a case study is presented in which three different programs
are used to demonstrate the effectiveness of our technique.

1 Introduction

Embedded systems are frequently used in safety critical systems. Full testing
of these systems is often not possible due to fast time to market or uncertain
environments. To address these problems, industry recognized model checking
as a promising future tool for the analysis of such systems.

The first model checking tools available worked on proprietary models (e.g.,
SMV [1], Spin [2] and Uppaal [3]). To use them, the user had to remodel the sys-
tem under consideration in the input language of the corresponding tool. Then,
there were model checking tools which worked on higher level programming lan-
guages (e.g., C, C++ or Java). Nowadays, model checking of assembly language
(machine level language) gets into focus of research, cf. [4, 5, 6, 7, 8].

Model checking assembly language has several advantages. Writing microcon-
troller programs in higher level languages usually involves direct hardware access
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or embedded assembly instructions, which is not supported by most of the tools.
Moreover, the assembly code is the code that is actually deployed to the hard-
ware. Hence, it is not an intermediate representation as the C code. Thus, all
errors introduced during the complete development process can be found in the
assembly code, including, for instance, errors in the compiler and errors in han-
dling the hardware. The model checker does not have to consider the behavior
of the compiler as when model checking C code. In contrast to C code, assembly
code usually has a clean, formal and well documented semantics.

On the other side, model checking assembly code has two disadvantages. First,
the created state spaces tend to be bigger than when model checking higher level
languages as more details are involved. Second, the analysis is hardware depen-
dent, and hence, model checking tools have to be adapted to every processor
that should be supported.

In order to tackle this problem, we have developed [mc]square1, which is a
discrete, (mostly) explicit state, on-the-fly, Computation Tree Logic (CTL) [1]
model checker. It is capable of model checking assembly code written for certain
microcontrollers (ATMEL ATmega and Infineon XC167). It was important for
us not to restrict the set of supported constructs and to process arbitrary assem-
bly code given by the user (including, e.g., direct and indirect memory access,
recursions, and functions). Additionally, the user should not be forced to provide
an environment. To address the disadvantage of being hardware-dependent, we
developed an extensible architecture, which was described in [9]. To deal with
the state explosion problem, we implemented different abstraction techniques
in [mc]square. One of these, which is described in this paper, is called delayed
nondeterminism.

Delayed nondeterminism is an abstraction technique featuring two aspects
which help to reduce the state space size. First, it tries to limit the number of
bits (bytes) that have to be split up when determining nondeterministic values
(e.g., when input is read from the environment and not all bits are needed
for evaluation). Second, it tries to delay the split up as long as possible, i.e.,
nondeterministic values only have to be instantiated when the corresponding
values are needed for evaluation. Delayed nondeterminism is implemented by
introducing abstract states into [mc]square. That is, a state in [mc]square no
longer represents a single concrete state, but may represent many concrete states.

This paper is structured as follows. We start with the presentation of related
work. Then, a basic introduction to [mc]square is given. In the following section,
our formal approach to modeling microcontrollers is presented. As an example,
the model of the ATMEL ATmega16 microcontroller is detailed. Then, the ab-
straction technique of delayed nondeterminism is introduced. It is shown that
delayed nondeterminism induces a simulation relation between the concrete and
the abstract state space. After that, a case study is presented which demonstrates
the effect of delayed nondeterminism on the state space size of three different
programs. In the end a conclusion is drawn and some potential directions for
future improvements are shown.

1 http://www-i11.informatik.rwth-aachen.de/mc square.html

http://www-i11.informatik.rwth-aachen.de/mc_square.html


Delayed Nondeterminism in Model Checking Embedded Systems 187

2 Related Work

Motivated by the observation that usually memory is the limiting factor in the
application of model checking, many approaches have been developed to combat
the state explosion problem (see [1] for an overview). The abstraction technique
presented in this paper, Delayed NonDeterminism (DND), is dynamically ap-
plied at runtime. To the best of our knowledge, no comparable approach has been
developed so far to control the effect of nondeterminism in modeling embedded
systems.

There is, however, a verification method for concurrent systems called nar-
rowing which is based on a similar idea, and which is described in [10]. Here, the
states and transitions of the system are symbolically represented by terms and
rewriting steps, respectively. Terms can contain variables to abstract from de-
tails of the system state which currently are not “interesting”, but which can be
later expanded by substitution steps if necessary. Thus, in some sense, variables
correspond to the nondeterministic values in our approach.

Another direction of work which is worth mentioning is the consideration
of nondeterminism in connection with functional programming languages. The
paper [11] studies the implementation of nondeterministic choice in this setting
and refers to the problem of copying nondeterministic values, which is also the
reason for over-approximation in our model.

Symbolic or X-valued simulation is another technique that is similar to the
technique applied in [mc]square. Here, symbolic values are used in place of ex-
plicit values. In our approach parts of the states used can be symbolic, but
whenever the simulator or the model checker needs to access symbolic parts of
a state, these parts are instantiated, and hence become explicit. All parts of a
state that are not accessed remain symbolic. In [12], a symbolic simulator is used
to verify hardware systems. Whenever an X (denoted by * in our approach) is
accessed and a value is needed, new symbolic variables are added and simulation
has to be repeated. In our approach a dynamic refinement is conducted. There
are some approaches combining explicit and symbolic executions (cf. [13, 14]),
but these approaches do explicit execution and symbolic execution in parallel.

Other model checkers that handle machine languages or languages that are
similar to machine languages are Java PathFinder (JPF ) [15], StEAM [16], and
Estes [5], all being explicit model checkers as is [mc]square. JPF accepts Java
bytecode and employs collapsing techniques for efficiently storing states. Our ex-
periments have shown that such methods do not pay off in the case of [mc]square
since its states have a less complex structure. Another difference is that JPF has
to deal with parallel processes and therefore employs abstraction techniques such
as partial order reduction, which cannot be done in [mc]square. Moreover the
memory model used within JPF makes it possible to apply symmetry reduction
techniques. Again, this is not possible in [mc]square because the order of data
within memory is important. StEAM model checks bytecode for the Internet C
Virtual Machine. In this approach an existing Virtual Machine (VM) is moni-
tored and model checking is conducted on the states created by this VM. Estes
model checks assembly code for a certain processor. Similar to StEAM, it uses
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Fig. 1. Process used in [mc]square

an existing VM (the GNU debugger) to create the state space. In our approach,
we concentrate on the creation of the state space, that is, we concentrate on the
domain-specific abstractions implemented within the simulator. We do not want
to use existing simulators as we think that significant savings can be achieved by
a tailored implementation. In contrast to Estes we abstract from time because
the state explosion observed when temporal aspects were taken into account
was too big. Model checking considering time leads to real-time model checking
(cf. [3]).

3 Introduction to [mc]square

This section gives an introduction to [mc]square, which is a discrete, (mostly)
explicit state, on-the-fly, CTL model checker. It accepts assembly code writ-
ten for certain microcontrollers (ATMEL ATmega and Infineon XC167). More
information about [mc]square can be found in [6, 9].

The process that is applied in [mc]square is shown in Fig. 1.
First, the user inputs the program as an Executable and Linking Format

(ELF) file and the specification as a CTL formula. If the C code is available, the
user can also provide the C code file. The formula is parsed and transformed into
a formula object, which is utilized by the static analyzer and the model checker
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component. The ELF file is preprocessed and converted into an human readable
assembly program.

Then, the static analyzer component starts inspecting the assembly program.
During this analysis, it uses information from the formula object (registers, vari-
ables and memory locations used within the atomic propositions) to preserve
validity of the results. In the first step of the static analysis, a Control Flow
Graph (CFG) of the assembly program is created. This CFG is used later on by
the counterexample generator to present counterexamples or witnesses. In the
end, the static analyzer adds annotations to the assembly program which are
used by the simulator to reduce the state space size.

After that, model checking starts. First, the model checker requests the initial
state from the state space. It checks this state for certain parts of the formula,
and depending on the result of this check, it requests successor states of this
state from the state space. Then, it again checks these states for specific parts
of the formula. This process continues until a goal state is reached (proving
or disproving the validity of the formula) or the complete state space is built.
The model checking algorithm used was taken from [17]. A first version of this
algorithm was presented in [18]. As the simulator implemented in [mc]square
creates a safe over-approximation of the real state space, validity of ACTL2

formulae is preserved. If a CTL formula containing an existential path quantifier
is found to be correct, the user has to check whether the witness is a valid
one, i.e., whether it is feasible in the concrete state space and not caused by
the over-approximation. In the latter case, the user can deactivate some of the
options used in the simulator to build a more accurate state space. However,
this generally increases the number of states.

Whenever successors of a state are requested that are not created yet, the state
space component uses the simulator to on-the-fly create the needed states. To do
so, it passes the state to the simulator and calls a step() method. The simulator
creates all possible successors of this state including, e.g., occurrences of inter-
rupts, different input values from the environment etc. If, e.g., an instruction IN
R18 PINA reads input from the environment into register R18, and all eight bits
of port A are nondeterministic (used for input), this state has 256 successors
(all values between 0 and 255). If at another location an instruction IN R4 PINB
reads input from port B and, this time, only two bits of this port are nondeter-
ministic (all other bits are used for output and not for input) and one interrupt
is active, five successor states are created. In one successor the interrupt handler
is entered, and in the other four successors the IN instruction is executed and
register R4 gets the four different possible values. During this step [mc]square
uses some abstraction techniques to minimize the state space size. It is impor-
tant to notice that all these abstractions lead to a safe over-approximation of
the concrete state space (preserving ACTL). One of these techniques is delayed
nondeterminism, which is detailed in this paper.

In the last step, the counterexample generator derives a counterexample or a
witness depending on the formula checked and the result of the model checking

2 The universal fragment of CTL; see [19]
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process. This counterexample/witness is then presented in the assembly code, in
the C code, as a state space graph, and in the CFG of the assembly code. Hence,
the user can choose the representation that suits his requirements best to find
the error. In this representation, he or she can also check whether a witness of
an non-ACTL formula is a feasible one.

4 The Formal Model

This section introduces our formal modeling approach for microcontroller sys-
tems, consisting of hardware, software and environment. The motivation of this
development is twofold:

– It allows us to formally establish the correctness of our delayed nondeter-
minism abstraction technique, showing that it yields an over-approximation:
every possible behavior of the original system is also represented in the ab-
stract system, i.e., the abstract system simulates the concrete system (see
Section 4.4 for details).

– The model is very general, meaning that it allows to formalize virtually any
microcontroller system. Thus, it could be used as a kind of intermediate
specification, supporting the rapid development of model-checking tools for
embedded systems. This aspect will be investigated in our future work.

4.1 Handlers and Guarded Assignments

In our approach, the state of a (microcontroller) system will be decomposed
into a control state and a data state. More concretely, we assume that the data
space is organized as a global memory with linear byte addresses. The latter are
denoted by A and are assumed to have a length of m bytes (in our application,
m = 2). Thus, A := C

m where C := B
8 and B := {0, 1}. Here the bth bit of a

byte c ∈ C is denoted by c[b].
In order to incorporate nondeterminism, we extend this definition by intro-

ducing a nondeterministic bit value ∗, and let B∗ := B ∪ {∗} and C∗ := B
8∗.

Moreover we distinguish a set of deterministic addresses D ⊆ A in which only
deterministic values are allowed to be stored. These will later be used for cer-
tain I/O registers and for the (symbolic) addresses occurring in the formula to
be verified. Thus, memory states can be represented as mappings in the set
V := {v | v : A → C∗} where v(a) ∈ C for every a ∈ D.

The behavior of a system is determined by its current control location, which
is the program counter in our case. It is represented by a finite set Q. Thus, the
set of (system) states is given by S := Q × V . State changes are specified by
three so-called handlers :

– a nondeterminism handler of the form g1; . . . ; gk where k ≥ 0, which intro-
duces nondeterministic values where necessary,

– an interrupt handler of the shape h1 : q1 > . . . > hl : ql where l ≥ 0 and
q1, . . . , ql ∈ Q, which specifies the system’s reaction to extraordinary events
such as interrupts, and
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– for each control location q ∈ Q, an instruction handler of the form q : h′
1 :

q′1 > . . . > h′
m : q′m where m ≥ 1 and q′1, . . . , q

′
m ∈ Q, which defines the

normal execution of machine instructions.

Here each gi, hi, h
′
i is a guarded assignment of the shape e0 → x1 := e1, . . . , xn :=

en where n ≥ 0, e0, . . . , en are value expressions, and x1, . . . , xn are (disjoint)
address expressions (see below). A guarded assignment is called enabled if its
guard e0 evaluates to 1 in the current memory state. Its execution yields a new
memory state in which, for every 1 ≤ i ≤ n, the value stored at xi is determined
by ei. The guard e0 can be omitted if it is the constant 1.

Given a current state (q, v) ∈ S, the next state is determined by

1. executing every enabled guarded assignment gi in the nondeterminism han-
dler in the given order, followed by

2. an application of the first enabled guarded assignment hi in the interrupt
handler, stopping at the corresponding control location qi. If no such assign-
ment exists, then

3. again the complete nondeterminism handler is executed and, finally,
4. the first enabled guarded assignment h′

j in the instruction handler for q is
applied, stopping at q′j .

Formally, given the handlers of the above form, the successor state (q′, v′) ∈ S
is defined as follows:

(q′, v′) :=

⎧

⎨

⎩

(qi, �hi�(v1)) if I 	= ∅ and i = min I
(q′j , �h

′
j�(v2)) if I = ∅, J 	= ∅, and j = min J

(q, v2) if I = J = ∅
where

v1 := �gk�(. . . (�g1�(v)) . . .),
v2 := �gk�(. . . (�g1�(v1)) . . .),
I := {i ∈ {1, . . . , l} | hi enabled in v1}, and
J := {j ∈ {1, . . . , m} | h′

j enabled in v2}.
Here �g� : V → V denotes the meaning of a guarded assignment g as a mapping
on memory states; it will be defined in Section 4.3.

In our application, the nondeterminism handler is employed to deal with in-
terrupts: it checks which interrupts can (potentially) occur, and nondetermin-
istically sets the corresponding flags. The actual processing of the interrupt is
done by the interrupt handler. It first tests (in the order of descending interrupt
priority) whether an interrupt is raised, and jumps to the corresponding han-
dling routine in this case. Only if no interrupt has to be handled (i.e., I = ∅),
it again runs the nondeterminism handler and finally executes the actual ma-
chine instruction at the current control location by applying the corresponding
instruction handler.

Here the repeated call of the nondeterminism handler is required since after
the interrupt handler has ignored a cleared interrupt flag, the latter could be set
by some external event before the machine instruction is executed. Moreover it is
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important to observe that the nondeterminism handler performs every enabled
guarded assignment while the execution of the interrupt and the instruction
handler stops after applying the first guarded assignment which is enabled.

As mentioned earlier, each guarded assignment is of the shape e0 → x1 :=
e1, . . . , xn := en with value expressions ei and address expressions xj . Address
expressions are of the form a or a↓ + d or a[b] where a ∈ A, b ∈ {0, . . . , 7}, and
d ∈ Z. The first two cases are byte addresses, either given directly or indirectly
by dereferencing the address stored at a and by adding displacement d. The
expression a[b] refers to the bth bit of the byte which is stored at a. Value
expressions are of the form op(y1, . . . , yk) where op is an operation of the type
op : T1 × . . . × Tk → T0 such that, for every 1 ≤ j ≤ k, Tj ∈ {C, C∗, B, B∗}
and yj is an address expression. Here, we always assume that operations respect
memory sizes, i.e., that Tj ∈ {C, C∗} (Tj ∈ {B, B∗}) whenever yj denotes a
byte (bit) address. A similar restriction applies to the result type T0 and to the
corresponding left-hand side address xi. Moreover, we require the result type of
the guard e0 to be B.

The semantics of an address expression α depends on the current memory
state v ∈ V , and is denoted by �α�v . For byte address expressions, we let
�a�v := a ∈ A and �a↓ + d�v := a′ + d ∈ A if a′ = v(a) . . . v(a + m − 1) ∈ A.
Thus, in the second case, the result is the address a′ which is stored at a,
adding displacement d. The semantics is undefined if a′ is not a valid address,
i.e., contains a nondeterministic bit value ∗. For bit address expressions, we let
�a[b]�v := (a, b) ∈ A × {0, . . . , 7}.

To determine the semantics of a value expression, we have to apply the cor-
responding operation to the argument values: if op : T1 × . . . × Tk → T0 and
�yj�v ∈ Tj for every 1 ≤ j ≤ k, then �op(y1, . . . , yn)�v := op(�y1�v, . . . , �yk�v).
Otherwise the result is again undefined.

Note that the admissible types of operations in value expressions support non-
deterministic bit values as both arguments and results. Thus it is possible, e.g.,
to describe a simple copy instruction by choosing the identity on C∗ or B∗ as the
operation. On the other hand, nondeterministic values in argument addresses
can be excluded by choosing the argument type C or B. In such a case, the
access to an address containing a nondeterministic values requires instantiation;
see Section 4.3 for details. Moreover it is possible to mix deterministic and non-
deterministic values: if, e.g., a * bit is multiplied by 0, the operation can still be
evaluated by 0.

The next section shows how the microcontroller system under consideration
can be represented by our formal model. Thereafter, we will continue with for-
mally defining the meaning of guarded assignments.

4.2 Modeling the ATMEL ATmega16

In order to model the execution of machine code on the ATMEL ATmega16
microcontroller, the general framework developed in the previous section has to
be instantiated as follows:
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– Since the machine code is stored in flash memory, control locations in Q
correspond to flash memory addresses.

– Each address comprises m := 2 bytes.
– The following distinguished addresses are denoted by symbolic names:

• C variables used in the application program
• status register SREG with flag bits C (= 0), Z (= 1), N (= 2), ..., I (= 7)
• general-purpose registers R0, ..., R31
• indirect addressing registers X = R27:R26, Y = R29:R28, Z = R31:R30
• I/O registers such as

∗ timer registers such as TIMSK, TIFR and TCCR0,
∗ interrupt registers such as GICR and GIFR,
∗ stack pointers (SPL, SPH),
∗ data direction registers (DDRA, ...) and
∗ port registers (PORTA, ...)

and single bit positions within these (CS00, ...).
– The deterministic addresses in D comprise the addresses which are referenced

in the formula to be verified and certain I/O registers such as the DDR and
PORT registers.

– The nondeterminism handler, which is repeatedly executed before the inter-
rupt and the instruction handler, sets the input registers and checks whether
interrupts can potentially occur. Here we only consider a timer and an ex-
ternal interrupt; other interrupts can be handled similarly:

TCCR0[CS02] = 1 ∨ TCCR0[CS01] = 1 ∨ TCCR0[CS00] = 1
→ TIFR[TOV0] := nd(TIFR[TOV0]);
DDRB[DDB2] = 0 → GIFR[INTF2] := nd(GIFR[INTF2]); . . .

where nd : B∗ → B∗ is defined by nd(∗) := ∗, nd(0) := ∗, and nd(1) := 1.
– The interrupt handler is specified as follows (again only considering timer

and external interrupts):

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 →: 18↓ >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 →: 36↓ > . . .

– Every machine instruction which is stored at some location q ∈ Q gives rise
to an instruction handler. We give some exemplary instructions:
• ADD Ri,Rj:

q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := . . . , . . . : q + 2
• RJMP k: q :: q + k + 1
• IJMP: q :: Z↓
• JMP k: q :: k
• SBRC Ri,b: q : Ri[b] = 0 →: q + 2 > Ri[b] = 1 →: q + 3
• BREQ k: q : SREG[Z] = 1 →: q + k + 1 > SREG[Z] = 0 →: q + 2
• MOV Ri,Rj: q : Ri := Rj : q + 2
• LD Ri,X+: q : Ri := X↓, X := X + 1 : q + 2
• LD Ri,-X: q : Ri := X↓ − 1, X := X− 1 : q + 2
• LDD Ri,X+d: q : Ri := X↓ + d : q + 2
• IN Ri,A: q : Ri := pin(DDRA, PORTA) : q + 2 where pin : C × C → C∗ is,

for every b ∈ {0, . . . , 7}, defined by pin(c, d)[b] := d[b] if c[b] = 1 and ∗
otherwise.
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4.3 Coping with Nondeterminism

In our formal model, nondeterministic bit values can arise due to the application
of an operation op : T1 × . . . × Tk → T0 with result type T0 ∈ {C∗, B∗}. In the
simplest case, op is just the identity, that is, the assignment is of the form x := y
with �y�v = a ∈ A \ D and v(a) /∈ C ∪ B. A more involved example is the
formalization of the IN machine instruction (see Sect. 1 and 4.2) where a zero
bit in the DDRA register causes a nondeterministic bit value to be assigned.

In the standard implementation, this situation is handled by immediate in-
stantiation, meaning that each assignment of nondeterministic bit values is re-
solved by considering all possible assignments of concrete values instead. It is
clear that this involves an exponential blowup, e.g., the assignment of byte value
∗8 gives rise to 256 different successor states.

Our goal is to avoid this overhead by delaying nondeterminism, i.e., by re-
placing nondeterministic by concrete values only if and when this is required by
the following computation. Here “if” and “when” refer to two different aspects
of this optimization, which both lead to a reduction of the number of states
created. First, delayed nondeterminism only instantiates those bits (bytes) that
are used by some instruction, and hence, all other bits (bytes) may remain non-
deterministic. This lowers the number of successors which have to be created.
Second, delayed nondeterminism defers the splitting of nondeterministic values
until they are really needed. Hence, successors are created at a later point in
time. Both aspects help to minimize the number of created states, while still
preserving a safe over-approximation (as will be shown in Sect. 4.4).

In order to formally develop this abstraction technique, we introduce a partial
order � ⊆ B∗ × B∗, given by 0 � ∗ and 1 � ∗, and lift it to bytes and memory
states by pointwise extension: c[7] . . . c[0] � c′[7] . . . c′[0] iff c[b] � c′[b] for every
b ∈ {0, . . . , 7}, and v � v′ iff v(a) � v′(a) for every a ∈ A. Thus v � v′ if v′ is
“more general” than v.

Immediate Instantiation Immediate instantiation follows the principle that
in the course of the computation only deterministic values may be stored. (Nev-
ertheless, it is still possible, due to the initial choice of the memory state, that
v(a) ∈ C∗ \ C for specific addresses a ∈ A \ D.)

We say that a guarded assignment of the form e0 → x1 := e1, . . . , xn := en

is enabled in memory state v ∈ V if �e0�v = 1. Its execution nondeterministi-
cally yields every v′ ∈ V which is obtained by first evaluating every right-hand
side expression ei, by taking every possible instantiation of nondeterministic bit
values, and by updating v accordingly. Formally, v′ := v[�xi�v �→ ci; 1 ≤ i ≤ n]
such that ci ∈ C ∪ B with ci � �ei�v for every 1 ≤ i ≤ n. Here v[a �→ c] denotes
the modification of v at address a by storing the new value c.

Composing the effects of the nondeterminism, the interrupt, and the instruc-
tion handler for the current control location q ∈ Q as described in Section 4.1, we
obtain a concrete transition (q, v) h−→ (q′, v′) where h is the first enabled guarded
assignment of the interrupt or the instruction handler, and q′ is the correspond-
ing successor location. Given an initial system state s0 ∈ S, this yields a concrete
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transition system T c = (S,
⋃

h∈G

g−→, s0) where the set G collects all guarded
assignments in the interrupt and the instruction handlers.

Delayed Nondeterminism As described earlier, our goal is to instantiate
nondeterministic bit values as late as possible, i.e., not necessarily when they are
computed but only if and when they are required by a subsequent computation
step. More concretely, the instantiation of bit address (a, b) ∈ A × {0, . . . , 7}
with v(a)[b] = ∗ in state (q, v) ∈ S is required for a guarded assignment g of the
form e0 → x1 := e1, . . . , xn := en if

– (a, b) is referred by the guard e0 (guard case), or
– g is enabled and some ei refers to (a, b) in an operation argument position

which does not allow nondeterministic bit values (argument), or
– g is enabled and some xi dereferences a (indirection), or
– g is enabled and for some 1 ≤ i ≤ n, the evaluation of ei yields a non-

deterministic value which cannot be stored at address xi since it is in D
(target).

Here, we say that a bit address (a, b) is referred by a value expression op(y1, . . . , yk)
if it is referred by some address expression yj, which is the case if yj = a[b], yj = a,
yj = a↓ + d, or yj = a′↓ + d for some a′ ∈ A such that �a′↓ + d�v = a.

We can now formalize the above distinction of cases by the following in-
cremental instantiation procedure: a guarded assignment g of the form e0 →
x1 := e1, . . . , xn := en yields v′ ∈ V if there exist intermediate memory states
v1, v2, v3, v4 ∈ V such that

1. v1 � v with v1(a, b) 	= v(a, b) iff v(a, b) = ∗ and (a, b) is referred by e0
(guard), and

2. g is enabled in (q, v1), i.e., �e0�v1 = 1, and
3. v2 � v1 with v2(a, b) 	= v1(a, b) iff v1(a, b) = ∗, some ei is of the form

op(y1, . . . , yn) with op : T1 × . . .× Tn → T0, and (a, b) is referred by some yj

where Tj ∈ {C, B} (argument), and
4. v3 � v2 with v3(a, b) 	= v2(a, b) iff v2(a, b) = ∗, some xi is of the form a↓+ d,

and b ∈ {0, . . . , 7} (indirection), and
5. v4 := v3[�xi�v3 �→ �ei�v3 ; 1 ≤ i ≤ n], and
6. v′ ≤ v4 with v′(a, b) 	= v4(a, b) iff v4(a, b) = ∗, �xi�v4 ∈ {a, (a, b)} for some

1 ≤ i ≤ n, and a ∈ D (target).

Similarly to the previous section, the composition of nondeterminism, inter-
rupt, and instruction handlers yields abstract transitions of the form (q, v) h=⇒
(q′, v′) where h and q′ are again determined by the first enabled guard in the in-
terrupt handler or the instruction handler for q. Together with an initial system
state s0 ∈ S, this induces an abstract transition system T a = (S,

⋃

h∈G

g
=⇒, s0).

4.4 Establishing Correctness

Our goal is to verify the correctness of the program under consideration by model
checking it with respect to a specification. The latter is given by a temporal
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formula over a set P of bit value expressions which act as the atomic propositions.
These propositions yield an extension of both the concrete and the abstract
transition system to a labeled transition system (LTS). In the first case, it is
of the form Lc = (S,

⋃

h∈G
h−→, s0, λ) where λ : S → 2P : (q, v) �→ {p ∈ P |

�p�v = 1} labels each state by the set of all propositions which are valid in
that state. Note that the choice of the deterministic addresses D, comprising all
addresses in the formula, guarantees that �p�v is always defined. Analogously,
La = (S,

⋃

h∈G
h=⇒, s0, λ) is obtained in the abstract case.

The idea is to model check the “small” abstract LTS rather than the “big”
concrete one. Since, as we will now show, every computation in Lc corresponds
to a computation in La, this excludes “false positives”: whenever every abstract
computation satisfies the given specification, this also applies to every concrete
computation. The converse, however, is not true: copying nondeterministic bit
values may have the effect that the “same” nondeterministic value is replaced
by different concrete values. Thus, La is an over-approximation of Lc. This may
lead to “false negatives”, i.e., spurious computations in La which violate the
specification.

Formally the connection between Lc and La is given by a simulation, which
is a binary relation ρ ⊆ S × S such that s0ρs0 and, whenever s1ρs2,

– λ(s1) = λ(s2) and
– for every transition s1

h−→ s′1, there exists s′2 ∈ S such that s2
h=⇒ s′2 and

s′1ρs′2.

Indeed, it can be shown that La simulates Lc, i.e., that every sequence of
guarded assignments with immediate instantiation can be reproduced using de-
layed instantiation. More concretely, the simulation relation is given by the par-
tial order on bit values: (q1, v1)ρ(q2, v2) iff q1 = q2 and v1 � v2. In summary,
this means that our delayed nondeterminism abstraction is sound with respect
to “path-universal” logics such as ACTL and LTL.

5 Case Study

This section describes a case study demonstrating the effect of delayed nondeter-
minism on the state space size of different programs. The case study is conducted
on a laptop equipped with a Intel Core Duo CPU at 2.33 GHz, 4 GB main mem-
ory, and a hard disk with a capacity of 100 GB. [mc]square is completely written
in Java, and hence, every operating system can be used.

All programs used in this case study were developed by students during lab
courses, exercises, diploma theses, or their working time. None of them was
intentionally written to be model checked. All programs were run on the ATMEL
ATmega16 microcontroller.

In this case study, we execute four runs for each program. We use the following
four combinations of abstraction techniques: no abstraction technique, Dead
Variable Reduction (DVR) and Path Reduction (PR), Delayed Nondeterminism
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Table 1. Effect of delayed nondeterminism on the state space size

Program Options # states # states Size Time Reduction
used stored created [MB] [s]

plant

none 801,616 854,203 240 23.19 -

DVR & PR 54,788 1,297,080 16 17.98 93%

DND 188,404 195,955 57 4.39 76%

all 11,524 222,636 3.5 3.02 99%

traffic light

none 35,613 38,198 10 0.78 -

DVR & PR 2,585 55,370 0.75 0.71 93%

DND 10,004 10,520 2.73 0.24 72%

all 523 13,069 0.21 0.17 99%

window lift

none 10,100,400 11,196,174 2,049 416.98 -

DVR & PR 119,331 5,123,942 36 69.42 99%

DND 323,450 444,191 96 9.09 97%

all 10,699 463,129 3.26 7.43 100%

(DND), and finally, DVR, PR, and DND together. The implementation of DVR
and PR for [mc]square is described in [20]. For all programs, we use the formula
AG true. This formula does not influence the effect of the abstractions, and
therefore enables a fair comparison.

Table 1 presents the outcome of this case study for all programs. The first
column shows the name of the program. In the second column it is indicated
which abstraction techniques were used (here: none, DVR & PR, DND, and all).
The column # states stored represents the number of different states stored in
the state space. In contrast, the column # states created shows the number of
all states created during building of the state space, including revisits. Size [MB]
gives the size of the state space in main memory, and Time [s] shows the total
time needed for building the state space including all preparatory steps (e.g.,
preprocessing, parsing, and static analyses) and model checking the formula
AG true. Column Reduction shows the reduction factor for stored states in %
compared to the run using no abstraction technique.

Plant is a program that controls a virtual chemical plant. It consists of 73 lines
of C code (225 lines of assembly code) and uses one timer and two interrupts.
Without abstraction, 801,616 states are stored. DVR & PR reduce the state
space size by 93%. Using DND merely 188,404 states are stored. Here, the state
space size is reduced by 76% because only one aspect of DND has an impact.
The reduction is effected by the delay of the split up (i.e., split up is performed
at another location). The number of successors that are created during a split
up cannot be reduced because no values are read from the environment. Hence,
DND alone does not reduce the state space size as much as DVR & PR do,
but the combination of all three abstraction techniques together (DVR & PR &



198 T. Noll and B. Schlich

DND) reduces the state space size by 99%. That means that DND can even
improve the good results obtained when using DVR & PR.

Traffic Light is a program which was developed by our students in a lab
course. Its purpose is to control a traffic light. The program has 85 lines of C
code (155 lines of assembly code) and uses one timer and two interrupts. The
resulting state space comprises 35,613 elements. Using delayed nondeterminism,
the size can be reduced by 72% to 10,004 states. As in the plant program, only
the delay of the split up influences the state space size in this program because
input is not read from the environment. Hence, the reduction by DND alone is
not as efficient as the reduction obtained by DVR & PR, but again DND can
improve the results obtained by using DVR & PR. Using all three abstraction
techniques together, the state space size is reduced by 99%.

The last program called window lift is an automotive task. Here a controller
for a power window lift used in a car had to be implemented. This solution
consists of 115 lines of C code (289 assembly code lines) and uses two interrupts
and one timer. In this program, both aspects of DND affect the size of the
state space because input is read from the environment and split up can be
delayed. This can be seen in the results shown in Tab. 1. Using DND, the size
of the state space is reduced by 97% from 10,100,400 states to 323,450 states.
Again, DVR & PR alone perform better, but this time only by 2%. Using all
three techniques together, the state space size is reduced by more than 99%.
Again, DND improves the results obtained by using DVR & PR. Moreover,
this example shows that this reduction also significantly influences the time and
memory needed to conduct model checking. Time drops down from 416 to 7.43
seconds, and memory consumption drops down from 2,049 to 3.26 MB.

Summarizing, it can be seen that DND significantly reduces the state space
size. DND alone does not perform as good as DVR & PR, but DND improves
the results obtained from DVR & PR. It is important to notice that DVR or
PR alone do also not perform that good [20]. In the first two programs only one
effect of DND reduced the state space size. In the last program, both effects of
DND influenced the state space size. The last program is more realistic than the
other two programs as it, for example, reads input from the environment and
does not only monitor certain events like the other two programs do. We chose
these three small programs because we wanted to build the complete state space
without using abstraction techniques to compare the effects of the different ab-
straction techniques. This would not be possible with bigger programs, as the
case study [21] shows. In this case study we checked three out of 23 microcon-
troller programs. All these programs were written by students in a lab course.
The programs had 400–1300 lines of code. Without using all our abstraction
techniques, it was not possible to build the state spaces of these programs.

6 Conclusion and Future Work

In this paper, delayed nondeterminism, which is a new abstraction technique
implemented in [mc]square, was described. It is used to tackle the state-explosion
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problem. Delayed nondeterminism introduces symbolic abstract states to [mc]-
square. A single state no longer represents just one concrete state, but may
represent a set of states. Nevertheless, all parts of the state (e.g., variables,
registers, I/O registers and memory locations) that are accessed by the model
checker or the simulator have to be represented explicitly. That means parts of
a state may be represented symbolically as long as they are not accessed. In
contrast to other abstraction techniques used in [mc]square such as path and
dead variable reduction, delayed nondeterminism does not require a previous
static analysis of the program.

In Sect. 4.4 it was shown that delayed nondeterminism indeed induces a sim-
ulation relation between the concrete transition system and the symbolic transi-
tion system. Hence, it preserves the validity of ACTL and LTL formulae. How-
ever, if the user checks the validity of an ECTL formula, he or she has to inspect
whether the witness is also present in the concrete state space. This can be done
with the help of the different counterexample/witness representations available
in [mc]square. Automatic support as described in [22] is difficult here since coun-
terexamples and witnesses usually exhibit nondeterministic choices as timers are
modeled nondeterministically.

In the future, we want to investigate if we can establish a bisimulation re-
lation between the concrete and the abstract transition system by taking the
compiler behavior into account, and by disabling delayed nondeterminism for
certain memory locations.

As seen in Sect. 5, delayed nondeterminism has a significant influence on
the state space size of many programs. Together with the other abstraction
techniques implemented in [mc]square, a reduction of up to 99% was observed.

The delayed nondeterminism technique can be transferred to many other mi-
crocontrollers (e.g., Infineon Tricore, Intel MC51 and MC91, all microcontroller
that use an ARM7 core) without changing the approach. There are some micro-
controllers where a straightforward adoption is not possible, e.g., the Infineon
XC167 microcontroller. The problem with this microcontroller is that every in-
struction changes bits in the status register (e.g., C, Z, N). To change these bits,
the values used in the instruction have to be determined, viz even a move in-
struction has to instantiate values.

However, we think that an adoption of this approach to higher level program-
ming languages is not promising because in higher level programming languages
nondeterminism is often evaluated at the location where it first occurs, prevent-
ing the delay of the instantiation. Furthermore, rather seldom only single bits of
values are evaluated, making a partial instantiation useless.

Summarizing, we think that this is a promising approach to analyze software
for embedded systems. [mc]square can alreadyhandle programs of interesting size.
Delayed nondeterminism is an abstraction technique that helps to tackle the state
explosion problem. It can be combinedwith other techniques implemented in [mc]-
square (e.g., path reduction, dead variable reduction). This technique can also be
used for model checking software for many other microcontrollers. As we have
experienced with delayed nondeterminism or path reduction (cf. [20]), there are
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abstraction techniques which perform better when model checking assembly code.
Hence, we will focus future research on domain specific abstraction techniques.
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Abstract. Pushdown systems (PDSs) consist of a stack and a finite
state machine and are frequently used to model abstractions of software.
They correspond to sequential recursive programs with finite-domain
variables. This paper presents a novel algorithm for deciding reachability
of particular locations of PDSs. We exploit the fact that most PDSs used
in practice are shallow, and propose to use SAT-based Bounded Model
Checking to search for counterexamples. Completeness is achieved by
computing universal summaries of the procedures in the program.

1 Introduction

Pushdown systems (PDSs) consist of a finite state machine and stack with a finite
set of stack symbols. The use of PDSs as abstractions of software was promoted
by the Slam project at Microsoft Research. PDSs are equally expressive as
Boolean Programs [1]. The finite-state part of the PDS is used to model the
global variables and the control location of the Boolean program. The stack
can be used to model the call stack of the program, which permits unbounded
recursive function calls.

We present a novel algorithm for deciding reachability of particular error
locations of PDSs. Our algorithm is tailored to the verification of automatically
generated abstractions of commodity software within a program analysis tool
such as Slam or SatAbs.

We record two observations about such systems. First of all, most tools that
implement an abstraction/refinement framework compute a conservative ab-
straction. If the property holds on the abstract model, it also holds on the original
program. As a consequence, the abstraction/refinement loop terminates as soon
as an abstraction is built in which the error location is unreachable. In all pre-
vious iterations, there exists a path that reaches an error location. It is reported
in [2] that the verification of device drivers may require as much as twenty iter-
ations, with an average of 5 iterations. This motivates the need for an algorithm
that performs well on models with a counterexample.
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Second, we exploit the fact that pushdown systems generated as abstractions
of commodity software are typically very shallow. Formally, this means that any
node of the Kripke structure that is reachable from an initial state is reachable
with a few steps.

Bounded Model Checking (BMC) is a perfect fit for this scenario. In BMC, a
transition system is unwound together with a property up to a given bound k to
form a propositional formula. The formula is satisfiable if and only if there exists
a path of length k that refutes the property. If the formula is unsatisfiable, BMC
is inconclusive as longer counterexamples might still exist. SAT-based BMC is
therefore known as an effective method to discover shallow bugs.

In order prove the absence of errors, we extend BMC with procedure summa-
rization [3]. A procedure summary maps a configuration of a PDS at the entry of
a procedure to the set of configurations observable upon exit. As there are only
finitely many summaries, saturation can be used to compute the set of reachable
states [4,5].

Contribution and Outline. We present preliminaries of PDSs, summariza-
tion, and symbolic representations in Sec. 2. This paper extends the concept of
Universal Summaries [6], which are described in Sec. 3. This paper makes two
contributions:

1. We present a novel abstraction-based procedure to obtain universal sum-
maries of non-recursive procedures in Sec. 4. The abstraction is refined on-
demand if required by a spurious counterexample.

2. We show how to obtain universal summaries for recursive procedures by
means of a head-counting argument in Sec 5.

2 Preliminaries

Definition 1 (Pushdown Systems [7]). A pushdown system (PDS) is a tran-
sition system in which each state comprises of a control location and a stack. The
set of control locations P as well as the stack alphabet Γ is finite. A state is a
pair 〈p, w〉, where p ∈ P denotes a control location, and w ∈ Γ ∗ represents the
stack content. We use s0 to denote the initial state of a PDS. The head of
a state comprises of the control location and the topmost element of the stack.
The state space of a PDS may be infinitely large, since the stack height is not
bounded. The number of heads is bounded by |P | · |Γ |.

The transition relation is defined in terms of a finite set of rules Δ. These
rules determine the successors of a state 〈p, γw〉 (w ∈ Γ ∗) based on the head
〈p, γ〉 of this state. Each rule is of the form 〈p, γ〉 ↪→ 〈q, w〉, where |w| ≤ 2 (in
particular, w may be ε, |ε| = 0). Depending on the size of w, we distinguish
between expansion rules, neutration rules, and contraction rules (see Fig. 1).
The transition relation →⊆ (P ×Γ ∗)×(P ×Γ ∗) is defined as follows: If 〈p, γ〉 ↪→
〈p′, w〉 ∈ Δ, then 〈p, γw′〉 → 〈p′, ww′〉.
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Fig. 1. Transitions of a Pushdown System

We use →∗ to denote the reflexive transitive closure of →. A state si of a PDS is
reachable iff s0 →∗ si. The set of reachable states of a PDS can be represented
by means of a finite automaton [8], which may be obtained using a saturation
procedure [4,5]. Intuitively, an expansion 〈p0, γ0〉 → 〈p1, γ1γ2〉 followed by neu-
tration that yields 〈p2, γ3γ2〉, followed by a contraction 〈p2, γ3γ2〉 → 〈p3, γ2〉 can
be summarized1 by 〈p0, γ0〉 →∗ 〈p3, γ2〉. Augmenting the transition relation with
this summary may give rise to new summaries. The set of states reachable from
s0 is computed by repeatedly applying summarization until a fixpoint is reached
(i.e., no new summaries can be constructed).

The efficiency of these saturation based algorithms can be significantly im-
proved by using a symbolic BDD-based representation of the PDS. The notion
of symbolic PDSs was introduced by Schwoon [7]:

Definition 2 (Symbolic Pushdown Systems). Symbolic pushdown systems
use a propositional encoding for control locations p ∈ P and stack elements
γ ∈ Γ . A set of �log2(|P |)	+�log2(|Γ |)	 Boolean variables is sufficient to encode
all heads of a PDS. The right hand side 〈q, w〉 (where |w| ≤ 2) of a rule is
represented using a separate set of Boolean variables. We use primed variables
to denote elements of the latter set. The symbolic rules ΔS are expressed in terms
of a propositional relation over primed and unprimed variables. We use R↗, R→,
and R↘ to refer to the relation for expansions, neutrations, and contractions,
respectively.

Assume, for instance, that P is represented using {a0, a1}, and Γ using {b0, b1}.
One way to encode the neutration rule 〈p1, γ1〉 ↪→ 〈p2, γ3〉 is

(a1 · a0) · (b1 · b0) · (a′
1 · a′

0) · (b′1 · b′0)

i.e., to use the variables to represent a binary encoding of the indices i of pi ∈ P
and γi ∈ Γ (where a0 and b0 correspond to the lower bits). The set of symbolic
relations ΔS = {R↗, R→, R↘} is a disjunctive partitioning of symbolic relations
corresponding to the union of transition rules.

The same technique is used to represent summaries. The symbolic represen-
tation of the summary 〈p0, γ0〉 →∗ 〈p3, γ2〉 is ā1 · ā1 · b̄1 · b̄1 · a′

1 · a′
1 · b′1 · b̄′1.

The symbolic representation of summaries (and states) is more succinct than
the explicit representation used in [5]. The symbolic summary

1 The idea of summarization was introduced by Sharir and Pnueli [3].
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(a1 + a0) · (b1 · b0) · (a′
1 · (a′

0 = a1)) · (b′1 · b
′
0)

stands for the three explicit summaries

〈p0, γ3〉 →∗ 〈p2, γ2〉, 〈p1, γ3〉 →∗ 〈p2, γ2〉, and 〈p3, γ3〉 →∗ 〈p3, γ2〉.

Ordered BDDs are a suitable data structure to encode such formulas, since
the canonical representation enables efficient fixpoint detection [7,1]. An alter-
native algorithm based on satisfiability solvers for propositional logic (SAT) and
quantified Boolean formulas (QBF) is presented in [6].

Symbolic PDSs are a popular formalism to represent abstractions of pro-
grams [9,10]. Abstraction mechanisms like predicate abstraction [11] preserve
the control flow structure of the original program. In that case, it is convenient
to maintain an explicit representation of program locations, i.e., to discriminate
the rules in ΔS by their source and target nodes of the control flow graph (CFG).

R→
n0,n1

R→
n0,n2

R→
n1,n3

R→
n2,n3

n0

n1

n2

n3

(a) Conditional instruction

R↗
n0,[m0n1]

R↘
mi,[·]

n0

m0 mi

n1

(b) Function call

Fig. 2. Symbolic transitions rules with explicit CFG node information

Fig. 2 shows examples for symbolic transitions that are annotated with ex-
plicit control flow information (ni and mj are control flow nodes two different
functions). From these pictures, it becomes intuitively clear how pushdown rules
are used to model programs: The neutration rules in Fig. 2(a) model a con-
ditional statement, whereas the expansion and contraction rules in in Fig. 2(b)
model a function call and a return statement. A finite number of global (Boolean)
variables is modeled by means of the control locations, and the (also finite) local
variables of functions are represented using the stack alphabet Γ . For instance,
the summary 〈p0, γ0〉 →∗ 〈p3, γ2〉 modifies the control location (which represents
the global variables of a program) and the topmost stack element. Intuitively,
the return value of the corresponding function is passed on to the caller via the
control location in this example. Throughout this paper, we use the notion of
a function of a PDS to denote the transition rules associated with a function
in the CFG. The correspondence indicates that PDSs are equally expressive as
Boolean programs [9].

3 Universal Summaries

The reachability checking algorithms for PDSs presented in [1] and [6] are based
on symbolic simulation. They determine the reachability of a given head of a
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state (or a program location, respectively). This is sufficient to verify arbitrary
safety properties of a PDS, even though it may be necessary to modify the
PDS to state more complicated safety specifications. Each sequence of PDS
transitions is represented by a propositional formula that is only satisfiable if
the corresponding path is feasible.

Starting from s0, the search algorithm simulates the transition system. It
avoids getting caught in an infinite loop by keeping track of the heads it already
visited. Whenever the algorithm encounters a contraction rule, it computes a
summary for the corresponding expansion that matches head of the “calling
context”. This summary relates the heads of two states with the same stack
height. The sequences of transitions that may form a summary are described by
the grammar in Fig. 3.

Summary ::= R↗ Transitions R↘ ;
Transitions ::= Transitions Summary | Transitions R→ | ε;

Fig. 3. A grammar for summaries

Each new summary is added to a set Σ (using disjunction), such that sum-
maries can be reused whenever the algorithm encounters a head and an expan-
sion which are already covered. Eventually, Σ converges, since there are at most
|P |2 · |Γ |2 summaries that are not logically equivalent. The result is the least
fixpoint of the set of summaries for the PDS, i.e., Σ contains only summaries
for which the corresponding heads are indeed reachable.

An alternative to computing the set of reachable summaries Σ is to use uni-
versal summaries instead [6]:

Definition 3 (Universal Summary). A universal summary ΣU for a PDS
〈P, Γ, Δ, s0} is a relation ΣU ⊆ (P × Γ ) × (P × Γ ) such that

∀〈p, γ〉, 〈p′, γ′〉 ∈ P × Γ. (∃〈p1, w1〉, . . . , 〈pn, wn〉 ∈ P × Γ ∗.
〈p, γ〉 → 〈p1, w1〉 → . . . → 〈pn, wn〉 → 〈p′, γ′〉∧

∀i ∈ {1..n}.|wi| ≥ 2) ⇐⇒ ΣU(〈p, γ〉, 〈p′, γ′〉)

holds.

Intuitively, for any head 〈p, γ〉, a universal summary subsumes all paths that
“traverse a function” of the PDS, no matter whether there exists a reachable
state 〈p, γw〉 or not. The restriction |wi| ≥ 2 guarantees that ΣU relates ex-
pansions to their matching contractions (according to the grammar in Fig. 3).
Note that this definition does not rule out nested summaries. (A summary is
nested if it is entirely contained in another summary according to the gram-
mar in Fig. 3.) In particular, it does not exclude recursion, i.e., a summary
〈p0, γ0〉 →∗ 〈p′0, γ′

0〉 may stem from a sequence of transitions that contains a
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nested summary 〈p1, γ1〉 →∗ 〈p′1, γ′
1〉 such that p0 = p1, γ0 = γ1, p′0 = p′1, and

γ′
0 = γ′

1.
In the following section, we discuss how symbolic summaries are computed.

Based on this, we present an algorithm that computes symbolic universal sum-
maries for recursion-free PDSs in Section 3.

3.1 Computing Symbolic Summaries

A symbolic model checking algorithms for PDSs represents a sequence of tran-
sitions by a propositional formula that is only satisfiable if the corresponding
path is feasible. For instance, the path

〈p0, γ0〉
︸ ︷︷ ︸

s0

→ 〈p1, γ1γ2〉
︸ ︷︷ ︸

s1

→ 〈p2, γ3γ2〉
︸ ︷︷ ︸

s2

→ 〈p3, γ2〉
︸ ︷︷ ︸

s3

is represented by following path formula:

(a1 · a0) · (b1 · b0) · (a′
1 · a′

0) · (b′1 · b′0) · (a′′
1 · a′′

0) · (b′′1 · b′′0) · (a′′′
1 · a′′′

0 ) · (b′′′1 · b′′′0 )

where the variables {a0, a1, b0, b1} are used for the representation of s0, the
variables {a′

0, a
′
1, b

′
0, b

′
1} for s1, and so on. The parts of the formula that refer to

s1 and s2 constrain only the topmost element of the stack. The content of the
bottom element of the stack (γ2) is determined by the expansion rule 〈p0, γ0〉 ↪→
〈p1, γ1γ2〉, but the neutration rule cannot access this element. It only becomes
“visible” to subsequently applied transition rules after the contraction 〈p2, γ3〉 ↪→
〈p3, ε〉.

As discussed in Sec. 2, this sequence of transitions gives rise to the symbolic
summary ā1 · ā1 · b̄1 · b̄1 · a′

1 · a′
1 · b′1 · b̄′1. The summary is obtained by ex-

istentially quantifying the variables that represent the intermediate heads (i.e.,
{a′

0, a
′
1, b

′
0, b

′
1} and {a′′

0 , a′′
1 , b′′0 , b′′1} in our example). Each symbolic summary is a

propositional relation over a set of primed and unprimed variables.

Merging Paths. Whenever the algorithm encounters a branch (as illustrated
in Fig. 2(a)) it splits the path and constructs a new formula for each branch. To
avoid an exponential blowup, path formulas are merged (by means of a disjunc-
tion) when they agree on their initial and final CFG nodes (see, for instance, [12]).
A detailed description of an algorithm that performs aggressive merging by de-
laying transitions until merging becomes possible is given in [6].

3.2 Using BMC to Compute Universal Summaries

The symbolic algorithms discussed compute the least fixpoint of reachable sum-
maries [1,6]. This fixpoint detection is implemented using either BDDs or a QBF
solver. Unfortunately, neither of these approaches scales for a large number of
variables. Bounded Model Checking (BMC) addresses this issue by avoiding fix-
point detection altogether: The transition system is simply unrolled up to a
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bounded path length k. This idea is illustrated in Fig. 4(b) for the cyclic tran-
sition system shown in Fig. 4(a) (instead of unrolling each path separately, we
merge paths as discussed in Sec. 3.1). The satisfiability of the resulting path
formula can be decided using an efficient SAT-solver (e.g., MiniSat [13]).

R→
n0,n1

R→
n0,n2

R→
n1,n3

R→
n2,n3

R→
n3,n0

n0

n1

n2

n3

(a) A PDS transition system with a cycle

R→
n0,n1

R→
n0,n2

R→
n1,n3

R→
n2,n3

R→
n3,n0

n0

n1

n2

n3

R→
n0,n1

R→
n0,n2

R→
n1,n3

R→
n2,n3

R→
n3,n0

n0

n1

n2

n3

R→
n0,n1

R→
n0,n2

R→
n1,n3

R→
n2,n3

R→
n3,n0

n0

n1

n2

n3
n0

(b) Unrolling of the transitions in Fig. 4(a) for k = 3

Fig. 4. Bounded Model Checking for Pushdown Systems

BMC is complete with respect to reachability if (and only if) k is large enough
to guarantee that all reachable states of the transition system are considered (the
smallest k that has this property is called the reachability diameter of a transition
system [14]). For a PDS with an infinite state space, there is no such finite k.

However, a function containing only neutrations is a finite state transition
system. For a set of neutrations that are represented by R→

−→ and a symbolic
representation I(s0) of the initial state(s), the constant

k = max{i ∈ N|∃s0, . . . , si ∈ P × Γ ∗.I(s0) ∧
i−1
∧

j=0

sj
R→
−→ sj+1 ∧

i−1
∧

j=0

i
∧

l=j+1

sj �= sl}

is the length of the longest loop-free path that contains only neutrations (this
corresponds to the reachability recurrence diameter of a finite state transition
system [14]). Let 〈p, γ〉 →i 〈p′, γ′〉 denote the path formula obtained by means
of unrolling R→

−→ exactly i times. Then, the relation

R→∗
(〈p, γ〉, 〈p′, γ′〉) def=

k
∨

i=1

〈p, γ〉 →i 〈p′, γ′〉

is sufficient to determine all heads 〈p′, γ′〉 that are reachable from 〈p, γ〉 by
means of neutrations. Using this technique, we can compute a path formula that
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represents all heads reachable from an initial state 〈p, γ〉 ∈ I(s0) by the loop in
Fig. 4(a). In particular, if I(s0) = true, then the relation R→∗

determines the
states reachable from an arbitrary initial state.

Given an explicit representation of the CFG (as suggested in Sec. 2), it
is possible to determine the innermost function f that contains no expan-
sion/contraction rules (at least as long as f is not a recursive function). Let
R→

f denote the neutrations of this function, and let R↗
f and R↘

f the initial
expansion and the final contraction, respectively. Furthermore, let R→∗

f denote
the unrolled path formula for the neutrations R→

f and an arbitrary initial state
I(s0) = true. Then, we obtain a universal summary for f by composing R→∗

f

with R↗
f and R↘

f :

Σf
U (〈p, γ〉, 〈p′, γ′〉) def=

R↗
f (〈p, γ〉, 〈p1, γ1γ

′〉) ∧ R→∗

f (〈p1, γ1〉, 〈p2, γ2〉) ∧ R↘
f (〈p2, γ2〉, 〈p′, ε〉)

We proceed by finding a function g that calls only f and compute the universal
summary for R→

g using the universal summary for f . Thus, a universal summary
for the whole PDS can be obtained in a top-down manner (assuming that the
CFG representation of the PDS does not contain recursive function calls).

Corollary 1. Let k be the length of the longest loop-free path through a recursion-
free function f of a PDS. Then, the summary that subsumes all loop-free paths
through f up to length k is a universal summary for the function f .

Universal summaries have been presented only recently in [6]. The algorithm
described there handles recursion by falling back to QBF-based summarization.

4 Abstraction and Refinement with Summaries

The technique discussed in the previous section (and presented in [6]) applies
universal summaries in an eager manner: Whenever the search algorithm en-
counters an expansion rule and an appropriate (universal) summary is available,
the summary replaces the expansion transition. If we are only interested in the
reachability of a given head (or a program location), this approach is wasteful:
A subsequence of a path may be sufficient to show that a head is not reachable.
In that case, computing and applying the universal summaries for the nested
functions in a top-down manner does not contribute to the infeasibility of the
resulting path formula.

Therefore, we propose to compute universal summaries for functions on de-
mand, and to apply them in a bottom-up manner. Given the transition rules
of a function g of the PDS, we obtain an over-approximation of the corre-
sponding universal summary Σg

U by replacing all occurrences of f in g by a
non-deterministic summary Σf

� :
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b

b′=b

b′′=c′a a′=ā a′′=a′

R↗
f R↘

f

c′

(a) A path formula for f

b b′′a true

Rf
�

(b) The summary Σf
�

Fig. 5. Over-approximation of a universal summary

Σf
� (〈p, γ〉, 〈p′, γ′〉) def=

∃〈p1, γ1〉, 〈p2, γ2〉.R↗
f (〈p, γ〉, 〈p1, γ1γ

′〉) ∧ R↘
f (〈p2, γ2〉, 〈p′, ε〉)

The summary Σf
� is a conservative over-approximation of Σf

U , since

Σf
U(〈p, γ〉, 〈p′, γ′〉) =⇒ Σf

� (〈p, γ〉, 〈p′, γ′〉)

always holds. A head 〈p′, γ′〉 that is not reachable via the over-approximated
summary for g is also not reachable using Σg

U . The converse does not hold.

Example 1. Consider the following transition rules for a function f :

R↗
f (a, b, a′, b′, c′) = (a · b) · (a′ = a) · (b′ = b) · c′

R↘
f (a, b, a′) = (a′ = a)

The composition of R↗
f and R↘

f yields the path formula in Fig. 5(a). The cor-
responding over-approximation of the summary for f is

Σf
� (a, b, a′′, b′′) = ∃a′b′a�. (a · b) · (a′ = a) · (b′ = b) · b′′ · (a′′ = a�)

The summary Σf
� does not constrain the value of a′′ (see Fig. 5(b)), even

though the control state represented by a′′ = 1 on return contradicts the path
formula in Fig. 5(a).

Now consider the transitions of a function g shown in Fig. 6, and assume that
the rules R→

g require that transitions from n2 to n3 are only feasible if a′′ = 1
holds at n2 (e.g., R→

g (a, b, a′, b′) = a · a′ · (b′ = b) for the transition from n2 to
n3). If we over-approximate the function f as indicated in Fig. 6(a), then there
exists a valuation (with a′′ = 1 at n2) to the variables of the corresponding path
formula that represents a path through n0, n1, n2 and n3.

Unfortunately, this path is spurious, i.e., there is no feasible corresponding
path in the original PDS. Therefore, we have to eliminate it from our over-
approximated transition system. This can be achieved by computing Σf

U and
using it to constrain the transition from n1 to n2 (as illustrated in Fig. 6(b)).

The reachability of a head 〈p, γ〉 at a node n can be determined by repeatedly
refining the transition system until either a feasible path is found, or the head
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R→
g R→

g

n0

n1 n2

n3

R→
g

Σf
�

(a) Applying Σf
� in g

R→
g R→

g

n0

n1 n2

n3

R→
g

Σf
U

(b) Refinement

Fig. 6. Refining an over-approximated universal summary

becomes unreachable. Fig. 7 shows the pseudo code for this algorithm. Unfortu-
nately, this algorithm does not work if the CFG contains recursive function calls.
Therefore, our implementation still uses the QBF-based approach presented in [6]
to compute summaries for recursive functions. Universal summaries and the re-
finement technique are orthogonal to this approach and can be integrated easily.
In the following section, we present a theoretical result that eliminates the need
for a QBF-solver.

1: procedure IsReachable(PDS 〈P, Γ, Δ, s0〉, head 〈p, γ〉, node n)
2: for all functions f ∈ CFG of PDS 〈P, Γ, Δ, s0〉 do
3: Σ(f) := Σf

� ;
4: end for

5: while true do
6: if n contained in function f s.t. Σ(f) = Σf

� then
7: n′:= exit node of f ;
8: else
9: n′:= n;

10: end if
11: Use BMC and Σ to construct a path formula ϕ ending at n′;
12: if ϕ(s0, 〈p, γ〉) is satisfiable then
13: if path does not traverse a function f with Σ(f) = Σf

� then
14: return reachable;
15: else
16: Σ(f) := Σ(f)f

U ; � Use Σ for function calls in f
17: end if
18: else
19: return unreachable;
20: end if
21: end while
22: end procedure

Fig. 7. Abstraction/Refinement algorithm for PDS
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5 Recursion

In this section, we generalize Cor. 1 and extend the algorithm in Fig. 7 in order
to enable the construction of universal summaries for recursive functions.

Given a recursive function f , we can compute an over-approximation Σf
�1 of

Σf
U by replacing all recursive calls to f with Σf

� . A refined over-approximation
Σf

�2 can then be obtained by applying Σf
�1 for all calls to f . Unfortunately,

this technique may fail to eliminate all spurious paths, since any Σf
�i contains a

nested summary Σf
� (i.e., nested according to the grammar in Fig. 3).

We can eliminate these spurious paths by “blocking” all paths in Σf
�i that

traverse Σf
� , i.e., we can replace the corresponding expansion by false. Unfortu-

nately, this approach may also eliminate feasible paths. The following Theorem
states that it is sufficient to consider only paths up to a certain nesting depth:

Theorem 1 (Universal Summaries with Recursion). Let r be the largest
natural number for which both of the following conditions hold:

1. There is a feasible path which contains r nested summaries, and
2. this path contains no pair of nested summaries 〈p0, γ0〉 →∗ 〈p′0, γ′

0〉 and
〈p1, γ1〉 →∗ 〈p′1, γ′

1〉 for which 〈p0, γ0〉 = 〈p1, γ1〉 and 〈p′0, γ′
0〉 = 〈p′1, γ′

1〉
holds.

We claim that

a) such a finite r always exists and can be computed, and
b) a summary that subsumes all loop-free paths with at most r nested summary

applications is a universal summary ΣU .

Proof. The proof of claim a) is simple: Given a summary 〈p, γ〉 →∗ 〈p′, γ′〉, we
call 〈p, γ〉 the entry-head and 〈p′, γ′〉 the exit -head. There are at most |P |2 · |Γ |2
different combinations of entry- and exit-heads. After a path reaches a certain
recursion depth r ≤ |P |2 · |Γ |2, the pairs of heads inevitably start to repeat.
Furthermore, if this path exceeds a length l of at most |P | ·Σr

i=1|Γ |r, then there
is a state 〈p, w〉 that is visited twice. Thus, r can be computed by examining all
paths up to depth |P |2 · |Γ |2 and length |P | · Σr

i=1|Γ |r.

p0 γ0 γ0
p2

γ2

γ3

p3

γ2

γ4

. . .
γ2

...

p4

γ2

γ2

γ5

...

γ2

...

. . . p6

γ2

γ3

γ0
p5

γ2
p5

γ2

p1

γ1

p1

γ1

Fig. 8. Nested summaries with repeating entry- and exit-heads

Claim b) follows from the observations made above: Fig. 8 shows a path that
contains two nested summaries for which the entry-heads and exit-heads are
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equal. By eliminating the control states and stack elements that are colored grey
in Fig. 8, we obtain a new path with a smaller number of nested summaries. This
truncation has no impact on the states reachable from the final state 〈p5, γ2γ0〉
of the path. Formally, let

〈p0, γ0〉 → 〈p1, γ1w1〉 → 〈p2, γ2w2〉 → . . . →
〈pi, γiwi〉 → 〈pi+1, γi+1wi+1〉 → . . . → 〈pj−1, γj−1wj−1〉 → 〈pj , γjwj〉

→ . . . → 〈pk−1, γk−1wk−1〉 → 〈pk, γkwk〉 → 〈pk+1, γk+1〉

be a summary of the PDS, where |w1| = |wk|, |wi| = |wj |, |w1| < |w2| < . . . <
|wi| < |wi+1| and |wj−1| > |wj | > . . . > |wk−1| > |wk|, i.e., the summaries
〈p1, γ1〉 →∗ 〈pk, γk〉 and 〈pi, γi〉 →∗ 〈pj , γj〉 are nested. Furthermore, let p1 = pi,
γ1 = γi, pk = pj , and γk = γj . Then, there exists a summary

〈p0, γ0〉 → 〈pi, γiw1〉 → 〈pi+1, γi+1wr〉 → . . . →
〈pj−1, γj−1wt〉 → 〈pj , γjwk〉 → 〈pk+1, γk+1〉

that also covers 〈p0, γ0〉 →∗ 〈pk+1, γk+1〉, and the nesting depth of this summary
is smaller than the nesting depth of the original summary. Thus, any path with
a pair of nested summaries can be truncated such that condition 2 holds without
changing the set of states reachable via this path. A similar argument can be
made for paths that contain a certain state twice (i.e., for paths that are not
loop-free). ��

The same proof technique has been used by Richard Büchi to show that the set
of reachable states of a PDS can be expressed using a finite automaton [8].

There is an obvious similarity between the reachability recurrence diameter
presented in Section 3.2 and the bound for the nesting depth introduced in
Thm. 1. The reachability recurrence diameter of a PDS is two-dimensional and
comprises of a sufficiently large nesting depth r and the length l of the longest
loop-free path with a nesting depth at most r. This nesting depth can be com-
puted symbolically using the same SAT-based unrolling technique: The longest
loop-free path that contains no nested summaries is of length |P | · |Γ |. If we in-
crease the depth of the nestings to one, this length increases to |P | · (|Γ |+ |Γ |2),
since each summary in this path may be of length |P | · |Γ |. For any nesting depth
greater than 1, we perform a pairwise comparison of the nested summaries. This
can be achieved by means of a SAT-formula that is of quadratic size in the
number of nested summaries. By repeatedly increasing the nesting depth r, we
can determine the largest r for which the properties in Thm. 1 hold. Note, that
if the second condition of Thm. 1 fails for all paths represented by a symbolic
path that contains the summary Σf

�i, then it still fails if we replace Σf
�i with

Σf
�(i+1) (assuming that the first condition still holds after this transformation).

In that case, it is not necessary to unroll the summary up to the worst case
depth |P |2 · |Γ |2.
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Fig. 9. Comparison of Bebop, Boom, and Boom�

6 Experiments

We implemented the algorithm in Fig. 7 and evaluated it using 40 PDSs gener-
ated by Slam. In the scatter graphs in Fig. 9 we distinguish between PDSs with
reachable error locations (indicated by ×) and with unreachable error locations
(indicated by �). Fig. 9(a) shows the scatter graph of our comparison of Bebop

and the version of our tool that applies universal summaries eagerly. We conclude
from these results that our algorithm that applies universal summaries eagerly
(Boom) tends to perform better than the BDD based model checker Bebop

when the location in question is reachable in the PDS. It performs worse than
Bebop when it has to examine the whole state space. Fig. 9(b) compares the ef-
fect of the lazy abstraction approach (called Boom�) that we presented in Sec. 4
to the eager algorithm (Boom). The situation is less obvious than in Fig. 9(a). To
some extent, the algorithm improves the performance for model checking PDSs
with reachable error locations. Unfortunately, this cannot be generalized. We
observed that about a third of the non-deterministic summaries are not replaced
by refined summaries by the algorithm. We believe that we can still improve on
these results, since our tool is in a very early state of development. The most
recent version of Boom� is available at http://www.verify.ethz.ch/boom/.

7 Related Work

The decidability of reachability properties of PDSs was shown by Büchi more
than 40 years ago [8]. Efficient automata-based algorithms to construct the reg-
ular set of reachable states are presented by Finkel et al. [4] and Esparza et
al. [5] (see Sec. 2). Schwoon improved the latter approach using a BDD-based
symbolic representation of PDSs [7]. A saturation-based technique for similar
models, namely recursive state machines, is presented in [15].

Summarization was introduced by Sharir and Pnueli as part of a dataflow
analysis algorithm based on iterative fixpoint detection [3]. Ball and Rajamani’s
model checker Bebop is based on this work and uses BDDs to represent states

http://www.verify.ethz.ch/boom/
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symbolically [1]. An implementation of their algorithm based on satisfiability
solvers for propositional logic (SAT) and quantified Boolean formulas (QBF) is
presented in [6] (see Sec. 3.1). Universal summaries are introduced in [6] (see
Sec. 3). Kroening’s model checker Boppo uses SAT-based symbolic simulation
and QBF-based fixpoint detection, but does not use summarization [16]. Boppo

requires that all function calls can be inlined. Leino combines BDDs and SAT-
based techniques in his model checker Dizzy. He does not use summarization
and reports that his benchmarks suggest that the approach does not scale [12].

Several attempts have been made to extend the formalism of PDSs with
concurrency. In that case, the reachability problem becomes undecidable. Var-
ious verification techniques for concurrent PDSs have been proposed, but are
either unsound or incomplete: For instance, bounding the number of context
switches [17] or bounding communication [18] may miss feasible paths, while
over-approximating the set of reachable states [19,20] may report spurious paths.
We do not discuss these techniques here, since our approach is inappropriate for
asynchronous systems: In general, there is no sufficiently large but finite bound
for the sequential depth of concurrent PDSs.

Lal and Reps present a graph-theoretic approach for model checking weighted
PDSs [21]. Their approach is incomparable to our algorithm, since we do not
support weighted PDSs and their approach is not based on satisfiability solv-
ing techniques. Boujjani and Esparza survey approaches that use rewriting to
solve the reachability problem for sequential as well as for concurrent pushdown
systems [22].

BMC was introduced by Biere [23] as a SAT-based alternative to finite-state
model checking algorithms that use Binary Decision Diagrams (BDDs). BMC
and the recurrence diameter [14] for finite state transition systems is discussed
in Sec. 3.2. The Saturn verification tool uses SAT and summarization to detect
errors in C programs [24], but handles loops in an unsound manner.

8 Conclusion

BMC is an efficient technique for finding bugs. We showed how it can be applied
to PDSs. Our algorithm uses BMC to compute universal summaries that relate
arbitrary input states to their respective return states according to the transi-
tion relation of the function. Universal summaries can be applied in any calling
context. We implemented an algorithm that uses SAT to compute universal sum-
maries for functions without recursive calls, and QBF to compute summaries in
the presence of recursion. Our benchmarks show that this approach performs
better than BDD based algorithms when it comes to detecting bugs, but is less
efficient for proving the unreachability of error states. This is a very useful re-
sult, since CEGAR-based model checkers generate PDSs with reachable error
locations in all but the last iteration. Furthermore, we describe an extension to
our algorithm that allows to compute universal summaries for functions with
recursion. The implementation and evaluation of this extension is future work.
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Abstract. A regression bug is a bug which causes a feature that worked correctly
to stop working after a certain event (system upgrade, system patching, daylight
saving time switch, etc.). Very often an encompassed bug fix included in a patch
causes the regression bug. Regression bugs are an annoying and painful phe-
nomena in the software development process, requiring a great deal of effort to
find. Many tools have been developed in order to find the existence of such bugs.
However, a great deal of manual work is still needed to find the exact source-code
location that caused a regression bug.

In this paper we present the CodePsychologist, a tool which assists the pro-
grammer to locate source code segments that caused a given regression bug. The
CodePsychologist goes beyond current tools, that identify all the lines of code
that changed since the feature in question worked properly (with the help of a
Source Control Tool). The CodePsychologist uses various heuristics to select the
lines most likely to be the cause of the error, from these often large number of
lines of code. This reduces the fixing time of regression bugs. It allows a quick
response to field errors that need an immediate correction.

1 Introduction

Various research has been done to study the cost of software maintenance, especially
the cost and effort ratio of new development versus maintenance. System maintenance
is estimated to comprise at least 50% of the total life cycle costs [16]. According to [4],
the proportional maintenance costs range from 49% for a pharmaceutical company to
75% for an automobile company. At the maintenance phase the product is already in
the market, and the new versions of the product are due to changes in the code for fixing
newly discovered bugs, improving performance, developing new features, or adapting
to new environments (IEEE 1219 Standard for Software Maintenance).

While implementing these changes in the maintenance phase, one can accidentally
insert regression bugs [2]. Regression bugs occur whenever software functionality that
previously worked as desired stops working, or no longer works as planned. Typically
regression bugs occur as an unintended consequence of program changes.

To overcome this painful and costly phenomenon, one should check the functionality
of the product after each change of the source code. This kind of checking is called a
regression test, or a sanity test. Regression testing is any type of software testing which
seeks to uncover regression bugs. Those tests are sets of test cases that check the basic

K. Yorav (Ed.): HVC 2007, LNCS 4899, pp. 218–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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functionality of the Application Under Test (AUT). A test case consists of commands
and checkpoints. Commands describe the steps needed to be performed on the AUT,
such as clicking on a specific button, or inserting some text to an edit box. A check-
point is a verification point that compares the actual value of a specified property with
the expected value of that property. Checkpoint examples are checking that a certain
edit-box contains some specific text, checking the content of a database, etc. A failure
of a checkpoint means that the expected functionality was not met, implying that the
application source code contains a bug.

The testing process needs to be comprehensive and accurate, and it may be long and
exhausting. Tools for functional testing, that will perform automatic tests on the AUT,
are desired. Using both automatic and manual testing finds out whether a regression bug
exists. This, however, is not enough. If a regression bug exists in the code, some extra
manual work is needed, in order to trace and find the exact location in the source code
that has caused this regression bug.

In this paper we present an algorithm for tracing regression bugs. The algorithm’s
input is:

– The description of the failed checkpoint.

– The version number of the AUT which was the last one to pass the checkpoint
(when running the test case on this version the checkpoint passed, whereas the
following version failed).

The output is a set of changes in the source code which most likely have caused the bug.
Our goal is to reduce the number of locations in the source code that the programmer
has to examine in order to fix a bug.

The solution that we present here uses a Source Control Tool (SCT). An SCT is
used to manage multiple versions of the same unit of information. It is most com-
monly used in software development to manage ongoing development of digital doc-
uments like the application source code, which contains critical information that may
be worked on by a team of people. Changes to these documents are identified by in-
crementing an associated number or letter code, termed the “version” and associated
historically with the person making the change. Some known source control tools are
source-safe [17], CVS [3] and ClearCase [11] 1. We used the SCT to retrieve the source
code locations that have changed since the last time the checkpoint passed. After ob-
taining those changes our solution ranks them according to their likelihood to be the
cause for the failure.

In order to implement our algorithm we built a tool named CodePsychologist. Like
a psychologist, it tries to look for the cause and nature of the problem in the past.
Revealing the cause, eases the process of “curing” it.

The rest of the paper is organized as follows. The following section discusses re-
lated work, and explains the technical background needed for the rest of the paper. In
Section 3, we introduce the CodePsychologist and describe its structure and the tech-
niques it uses. Experiments and evaluations are reported in Section 4, and we conclude
and discuss future work in Section 5.

1 In our implementation we used Source-Safe as our source control tool [17].
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2 Related Work

Software testing is the process of identifying the completeness, correctness, security,
and quality of a software application. The separation of debugging from testing was
initially introduced by Myers [7]. He illustrated the desire of the software engineering
community to separate fundamental development activities, such as debugging, from
that of verification.

Regression tests are software tests whose purpose is to detect bugs which lead the
application to a “less developed state”, those bugs are called regression bugs. In [14],
Leena, Leonard, and Neyaz discuss the importance of regression tests, the goals of
those tests, and how to build comprehensive and modular regression tests. In [9], Piziali
describes the methodology of regression tests. It introduce two approaches of detecting
regression bugs:

– Classical regression: Tests suite incrementally constructed over period of time. The
test suite is composed of directed tests specified by the test plan.

– Autonomous regression: Hundreds to thousands of copies of different testing en-
vironments are dispatched to a regression farm2 each evening, each differing from
the others only by its initial random generation seed.

Ren et-al [12] described a tool for Java programs that statically analyze the impact
of each change, and report the affected tests. Using the program’s call graph, and set of
regression tests, it analyzes two versions of the source code and decomposes their differ-
ences into set of atomic changes, then it calculate a partial order of inter-dependencies
between the changes. This algorithm is used in order to find which test cases to run after
the source code has changed. In the CodePsychologist tool we use a similar algorithm
for a different purpose. We use it to rank the likelihood of a change to contain regression
bugs (see functions affinity in Section 3.3).

In [5], a bug finding algorithm is described. It uses bug fix memories, project-specific
bug and fix knowledge base, developed by analyzing the history of bug fixes. [15] ex-
plores how change classification can focus programmer attention on failure-inducing
changes, by automatically labeling changes with Red, Yellow, or Green, indicating the
likelihood that they have contributed to a test failure. The classification is done by the
effect of these changes on a set of tests. Tests whose outcome has improved are marked
as green, tests whose outcome has degraded are marked as red, and tests whose outcome
has remained unchanged are marked as yellow. The CodePsychologist also tries to rank
and classify changes based upon their relevance for the bug. However, it uses only one
failing test case.

Another approach for finding regression bugs is by automatic debugging. The Delta
Debugging algorithm [19] automates the scientific method of debugging. The algorithm
isolates failure causes automatically by systematically narrowing down failure-inducing
circumstances until a minimal set of changes remains. Delta Debugging has been ap-
plied to isolate failure-inducing program input (e.g. an HTML page that causes a Web
browser to fail), failure-inducing user interaction (e.g. the key strokes that make a pro-
gram crash), or failure-inducing changes to the program code (e.g. after a failing re-
gression test). We are interested in the latter, because it examines changes made to the

2 A Computer farm used for running regression tests.
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source code. It uses the Source Control Tool to obtain the changes of the source code,
as the CodePsychologist does (cf. Section 3). The algorithm tries to isolate the changes
that caused the failure. This is done by binary-search on the changes, running sets of
changes at a time. The preeminence of this algorithm is that it is sound and accurate.
Its output is the changes in the source code that caused the failure. However, for most
of the industrial application it is not applicable, because it needs some automatic tools
that are not trivial to implement for every application. For example, in order to exam-
ine a change in the source code of a common desktop application, the AUT has to be
built with the right source version, then to be installed on a clean machine with the
right environment, and then to be automatically tested. This is the motivation for the
CodePsychologist tool, which does not demand any build, installation, testing or estab-
lishment of special environments. The tool examines the source code statically, without
the need of reproducing the bug. It is therefore applicable even for large scale projects.

3 The CodePsychologist

We have built the CodePsychologist to assist the programmer to locate source code seg-
ments that caused a given regression bug. The overall structure of the tool is illustrated
in Figure 1. The problem that the tool intends to solve is defined as follows:

The AUT has failed at checkpoint C when running a test case. Let V be the last ver-
sion of the AUT where checkpoint C still passed when running the test case. We want
to find in the source code of the AUT the locations {p1, p2...pn} that caused C to fail.

Fig. 1. The CodePsychologist tool

The CodePsychologist obtains as input a checkpoint C, and V – the last version that
passed the checkpoint C. The algorithm starts by fetching from the SCT the latest ver-
sion of the source code, coping it into a temporary folder TempDir. Then it receives
from the SCT the source-code files one by one, version by version, in a reverse chrono-
logical order, i.e., from the newest version to the oldest one, until version V is received.
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The algorithm decides if the file is relevant. If not, the file is copied into the TempDir
directory, overriding the newer version, and the algorithm continues to the next version
from the SCT. If the file is relevant, it is compared to the sequential version (the newer
version) that is already in the TempDir directory. The comparison result is the changes
between the two versions. Each change is analyzed and ranked. Each ranked change is
inserted into a database. After ranking all the changes in the file, the algorithm copies
the file to the TempDir directory, overriding the newer version and continuing to the
next version from the SCT. After all the changes have been ranked, they are sorted
according to their ranks.

As seen, the CodePsychologist algorithm includes two steps.

1. Retrieving the relevant changes between version V and the version where the che-
ckpoint failed. The regression bug has been caused by some of those changes.

2. Ranking the changes.

In the following sections we elaborate these steps.

3.1 Retrieving Relevant Changes

In this step we want to retrieve the changes between V , the last version that we know
that had passed checkpoint C tests, and the current version of the AUT, that has failed.
The cause of the failure lies in those changes. In order to retrieve versions we use the
Source Control Tool (SCT). We assume that the AUT development was done with the
assistance of this SCT, which saves all the history and the versions of the AUT during
the development. The SCT provides the content of the versions as well as the time the
change was submitted (check-in time). The check-in time is used to retrieve all the
changes that occurred since the time T of the version V , the last version that passed the
checkpoint. We use the check-in time of version V to obtain T . Changes that occurred
prior to T are not relevant. There is no way that those changes caused the failure, since
at time T the checkpoint C passed. In order to filter out irrelevant changes, we use the
Changes Sound Filter (CSF) component, that uses the following techniques.

1) A mapping table is used to map checkpoints into locations in the source code.
Locations can be coarse grained, e.g. folders or files, or accurate and specific, e.g. lines
in the file, classes, or functions. The checkpoints are taken from the test cases (sanity
tests). The mapping table is the outcome of a joint effort of the quality assurance people,
who know the test cases and the checkpoints they contain, and the development team,
which knows the source code and the responsibilities of each module and file. The
mapping can also be done at the test case level, which means that the table entry is a
test case (instead of a checkpoint) and all the checkpoints of the test case are mapped
into the same entry in the mapping table.

The mapping table must be sound. This means that if the lines of code {L1...Ln} of
the AUT have been executed during the running of a test case till reaching checkpoint
C, then the locations {K1...Km} in the entry of C in the mapping table contain the
locations {L1...Ln}. The soundness of the mapping table insures that if the changes
{P1...Pn} in locations {L1...Ln} were the cause to the failure of checkpoint C, and
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the entry of C in the mapping table contains the set of locations {K1...Km}, then
{K1...Km} ⊇ {L1...Ln}. The mapping table can be built automatically, by running
the test case with some profiling tools. In our implementation, however, we built the
mapping table manually. Using the table in the CSF component, we can take only the
relevant changes for the checkpoint C. This means that we take only the changes that
occurred in the locations taken from the entry of C in the mapping table. For example,
suppose that we use the mapping table shown in Table 1, and that the checkpoint cp1
failed. We go to the cp1 entry, and retrieve the changes that occurred in the files dia-
log.cpp, dialog.h, and console.cpp. Since the mapping table is sound, the regression bug
is located in the changes we have retrieved. In the example we can also see a mapping
from checkpoints cp2 and cp3 to the folder c:/project/gui, and a mapping from all the
checkpoints in the test case “Sanity test 1” into the folder c:/project. Theoretically, since
every change may alter the mapping table, the mapping table should be updated every
time there is a change in the source code or in the test cases. Sanity test-cases, however,
are rarely changed, and if the mapping is general enough, the updating and maintenance
of the mapping table is an easy task.

Table 1. Mapping checkpoints to locations

Checkpoint or test case Locations
cp1 dialog.cpp, dialog.h, console.cpp

cp2,cp3 c:/project/gui
Sanity test 1 c:/project

2) The filtering of refactoring-changes. Refactoring changes are changes that do not
affect the functionality of the application. For example, changing variables or functions
name, extract common function, comments, function declarations, etc. Those changes
do not affect the functionality of the application and therefore can not be the cause
of the failure of checkpoint C. Therefore we can remove refactoring changes and still
remain sound.

3) When we have profiling information about the failure test case, we can use it in
order to remove changes that have not been executed. If a line in the code has not been
executed it could not affect the behavior of the application, so it is safe to remove it.

One should bear in mind that the first step of retrieving relevant changes is sound,
meaning that it does not filter the changes causing the regression bug. However, after
this step we can end up with too many changes that have not been filtered out. This is
the main reason for the second step: ranking the changes from the first step.

3.2 Changes Ranking

The second step takes as input the set of changes {p1, p2...pn}, produced in the first
step, and uses various heuristics to rank them based on likelihood of their being the
cause of the error. The output of this step, and of the whole CodePsychologist tool, is
the set of changes sorted by rank.
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The relevance of each change to the checkpoint failure is ranked according to sev-
eral heuristics we will describe in Section 3.3. The final change-rank Rank(p) is the
weighted average of all the heuristic-ranks of change p.

Rank(p) =
∑H

i=1
αi · HeuristicRanki(p)

where αi is the coefficient of the heuristic i, and H is the number of heuristics the al-
gorithm uses. The coefficients are based on experimental results described in Section 4.

It should be noted that the first step, retrieving relevant changes, is sound. The output
includes all the changes between version V (the last version that passed the checkpoint
C) and the current version, which contains the regression bug. The second step, rank-
ing changes by heuristics, is not sound, which means that the changes containing the
regression bug are not guaranteed to have the highest rank. However, our experiments,
reported in Section 4, show that the rank of the change containing the bug the is one of
the highest.

At the core of most of the heuristics we use (to be described in the following section),
is the concept of affinity-ranking. Affinity can be defined as “close connection marked
by community of interests or similarity in nature or character” [6].

The affinity between two collections of words A and B, quantifies their simi-
larity. For example, if we look on the following three collections of words: A =
{car, bicycle}, B = {train, car, track}, C = {camel, elephant, monkey, zebra},
we can say that the affinity between A and B is higher than the affinity between A
and C.

In order to rank the affinity between two collections of words, we have to calcu-
late the affinity between two words. We treat a taxonomy of words as an undirected
connected graph, where each node represents a synonym set. A synonym set is a collec-
tion of words with similar meaning. This undirected connected graph is created by the
WordNet tool [6]. We measure the distance between two words as the distance between
their synonyms sets. The shorter the path between the related nodes, the more similar
the words are.

The distance of identical words is defined as 1, and the distance between two mem-
bers of the same synonym set is 2 (synonym relations). The rationale for these numbers
is the way we define the affinity formula, as soon explained.

Figure 2, taken from [13], presents an example of the hyponym taxonomy in Word-
Net [6], used for path-length similarity measurement. Note that the distance between
the words ’car’ and ’auto’ is 2 because they are in the same synonym set. The distance
between ’car’ and ’bicycle’ is 5: distance of 3 between the synonym sets plus 2 for the
distance in the same synonym set. The distance between ’car’ and ’fork’ is 13: distance
of 11 between the synonym sets plus 2 for the distance in the same synonym set.

For two words a and b let us define distance(a,b) as the length of the path between
a and b in the taxonomy graph plus 2. If the words are located in the same synonym
set their distance value is 2. If the two words are identical their distance value is 1. The
affinity function WrdAff between a and b is calculated as follows:

WrdAff(a, b) =
1

distance(a, b)
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Fig. 2. Wordnet taxonomy example

Hence the affinity is a number in the range (0,1] where a larger affinity means stronger
similarity, and 1 means identity.

In order to compare two words, and to determine if they are equal, it is not enough
to do a simple string matching comparison. For example, the words ’sort’ and ’sorting’
are different words, yet we know they are very close in meaning. To overcome this
difficulty we use Porter’s suffix-stripping algorithm [10], which returns the stem of a
word. For the words ’sorting’ and ’sorted’, the stem is ’sort’, hence after removing the
suffix the comparison finds them equal.

Another technique to determine if words are equal, that we considered but did not
adopt, is to use Makagonov’s method for testing word similarity [1]. This method de-
termines words equality by empirical results. The formula relies on the following char-
acteristics of pair of words:

– y: the length of the common initial substring.
– n: the total number of final letters differing in the two words.
– s: the total number of letters in the two words.

In order to determine if two words are equal the following condition need to be satisfied:
n
s ≤ 0.53 − 0.029 · y.

The ranking ignores the semantic of the words. For example, if we have the following
two sentences: “We use it to sort the items” and “What sort of desserts are there?” The
affinity-rank between the word ’sort’ from the sentence line to the word ’sort’ from the
second sentence is 1 although they have different meanings.

Given two collections of words: A = {a1, a2...an} and B = {b1, b2...bm}, we define
the affinity function GrpAff(A, B) as follows:
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AsyGrpAff(A, B) =
1
n

·
∑n

i=1
max{WrdAff(ai, bj) | 1 ≤ j ≤ m},

GrpAff(A, B) =
(

AsyGrpAff(A, B) + AsyGrpAff(B, A)
)

/2.

The WrdAff(ai, bj) (for each j) in the first formula is the affinity function between two
words we defined earlier. Like the WrdAff formula, this function range is between (0,1].

The affinity-ranking method is aimed to a spoken language with meaningful words.
However, in the CodePsychologist algorithm we sometimes have to use this method on
source code, which is written in a formal programming language. Programming lan-
guages differ form spoken languages in both grammar and vocabulary. The ranking
affinity method does not relate to the order of the words, so the difference in the gram-
mar is not causing any problem. The vocabulary of programming languages however,
can cause a problem, because code-items names like methods, variables, and classes can
be words without any meaning. However, we assume the programmer is using mean-
ingful words in order to create a readable program. A code-item name can be com-
posed from a concatenation of meaningful words, and some extra characters with spe-
cial meaning. For example, the class member m nClerkSocialNumber composed from
’m ’ meaning this is a class member, the ’n’ means this is an integer number and the
concatenation ’ClerkSocialNumber’ disassembled to ’clerk social number’. In order to
disassemble code-item name into meaningful words, we use the code conventions rules.
It is widely believed that providing meaningful names to code elements enhances pro-
gram understandability. We have observed that programmers indeed tend to use mean-
ingful names and to write comments in the source code explaining the code. The test
cases and the checkpoints also describe their purpose. Hence we can expect high affinity
between those two groups of words (source code and checkpoint description).

Another challenge in finding the affinity between words taken from spoken language
(the test-cases) and words taken from a source code is that in some cases the set of terms
is different. You can find many application that uses one term in the logical computa-
tion of the application while the user interface use different term. For example in the
WinButler application of the DDS company[18] we used in the experiments, the logical
computation uses the word Waiter while the user interface use the word Clerk. This
phenomena add noise to the CodePsychologist results and reduce accuracy. In order to
bridge this gap between the test case language and the source code language, we use a
translation table that maps one set of terms to another.

3.3 The Heuristics

This section describes the heuristics we used. Most heuristics are based on the affinity-
ranking algorithm we previously described in Section 3.2.

The affinity-ranking algorithm ranks the affinity between two collections of words.
One collection of words given to the algorithm is the checkpoint-description, contain-
ing the set of operations needed for performing the check and testing the AUT. The
checkpoint description can also include text from the test case steps that have to be per-
formed prior to the checkpoint. All the heuristics rank are normalized to 1, hence the
rank is always in the range (0,1]. As Heuristic hints, the rank is not always accurate,
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and in certain cases might cause ranking errors. In all heuristics we use Ẅ (C), as the
collection of words in the description of checkpoint C.

Code Lines Affinity: This heuristic ranks the affinity between the checkpoint-
description and the source-code lines that have been changed. The heuristic takes into
account also code-lines that have not been changed, but are close to the lines that did
change. Ẅ (P, l) is the collection of source-code words located exactly l lines from the
change P . For example, if the lines 5 to 7 have been changed due to change P , Ẅ (P, 2)
are lines 3 and 9. The ranking formula is:

Rank1(C, P ) = β · GrpAff
(

Ẅ (C), Ẅ (P, 0)
)

+
(1 − β)

L
·
∑L

l=1
GrpAff

(

Ẅ (C), Ẅ (P, l)
)

.

The coefficient for lines that have changed is β (≥ 1
2 ), and (1 − β) is the coefficient for

unchanged lines at distance up to L lines from the location of the change.

Check-in comment Affinity: Committing a change into the SCT is called a check-in
operation. Most SCTs demand that programmers will insert a comment describing the
changes they made in the source code. The programmer can then describes the change
using a free text. The heuristic ranks the affinity between the checkpoint description
and the check-in comment that has been inserted by the programmer as follows:

Rank2(C, P ) = GrpAff
(

Ẅ (C), Ẅ (checkin(P ))
)

.

Ẅ
(

checkin(p)
)

is the collection of words in the check-in comment of change P . Notice
that when a programmer performs several changes in the same file, only one check-in
comment can be used. This yields the same rank for all the changes made in one file
(for a specific version).

File affinity: This heuristic ranks the affinity between the checkpoint description and
the file in which the change is located. It requires a words-histogram of the file. The
words-histogram is a mapping between a word in the file and the number of occur-
rences of this word in the file. The purpose of this heuristic is to determine, in a coarse
granularity, what are the most relevant files to look for the regression bug. The his-
togram of the file can be automatically built. We define the histogram affinity function
HstAff(A, B, map), which takes as input two collections of words A and B, and a
word-histogram map, and computes the affinity between the two collections according
to the given mapping. Let A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}, and

MaxAff(a, B) = max{WrdAff(a, bi) · map[bi] | 1 ≤ i ≤ m}.

The WrdAff function in the first formula is the affinity between two words, describes
in Section 3.2. map[bi] is the number of occurrences of the word bi in the file F (ac-
cording to the histogram). The rationality behind this formula, is to increase the rank of
affinities between words with a high number of occurrences in the file. We achieve that
by multiplying the affinity function WrdAff(a, bi) by the number of occurrences of the
word in the file map[bi]:

HstAff(A, B, map) =
∑n

i=1 MaxAff(ai, B)
n · max{map[bi] | 1 ≤ i ≤ m} .
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In this formula we used the MaxAff function we already defined, in order to calculate
the affinity between the collections A and B in respect to the word histogram map.
We accumulate all the MaxAff’s between the words in A to collection B, and then we
normalized it. Now we can use the HstAff function in order to rank a file F with respect
to the checkpoint C, according to F histogram Hstg(F ):

Rank3(C, P ) = HstAff
(

Ẅ (C), Ẅ (F ), Hstg(F )
)

.

P is a change in the file F . Like the previous heuristic, changes in the same file will get
the same rank.

Functions affinity: This heuristic is based on the affinity between the checkpoint de-
scription and the function where the change is located. The calculation is divided into
two parts. First we retrieve the function F where the change is located. Then we call the
function affinity method FncAff with two parameters: the checkpoint C that failed and
the function F . FncAff calculates the affinity between checkpoint C and function F ’s
name, the comment that describes F (if such a comment exists), and F ’s body. Finally
it recursively calls FncAff for each function Fi that F calls:

Rank4(C, P ) =
α

k + α + β
· GrpAff

(

Ẅ (C), Ẅ (F )
)

+

β

k + α + β
· GrpAff

(

Ẅ (C), Bdy(F )
)

+

∑k

i=1

1
k + α + β

· FncAff
(

C, FncCall(F, i)
)

,

where

– Ẅ (F ): The words in the function name of F .
– Bdy(F ): The words in the function body of F .
– FncCall(F, i): The i-th function that F calls to.
– k: The number of functions F calls to.
– α: A Coefficient for the function name affinity.
– β: A coefficient for the function body affinity.
– F : A function containing the change P .

The coefficients α and β are determined based upon experimental results we per-
formed (see Section 4). We intend to perform more experiments in order to determine
the coefficient values that give the best results. This ranking method ignores changes
located outside a function, such as functions declarations, include statements, etc. This
is acceptable as we are looking for a change in the functionality of the application rather
than in its structure. Nevertheless, this heuristic has some limitations:

– As the heuristics analysis is static, the call graph has a limited accuracy. Calls to vir-
tual functions can not always be resolved, because the dynamic type is not always
known. Function calls inside a condition block influence the rank, even when the
condition is not met and thus the functions are actually not called. We can resolve
those problems if we have some profiling information about the failed run of the
test case. Another solution we consider for the next version, is to adopt the heuristic
rule of taking the path or the function with the higher rank. For example, if we have
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two virtual function named foo, and both can be called by function F (the function
that we currently analyzing), we will calculate the affinity to both functions but we
will take into account only the function with the higher rank. The rationality behind
this heuristic rule, is that the heuristic search for the possible paths of execution that
are closed to the test case, the closest they are the most probable they are relevant
for the heuristic rank. One should remember that even if we have some errors in
this heuristic, the coefficients α, β and k can reduce the impact of that error.

– We ignore indirect changes of the functionality, such as changes to macros located
outside a function, changes of static class members initialization, and changes in
include and imports statements. These changes can lead to change in functionality.
We intend to refine the algorithm to take those changes into account.

Those limitation can damage the accuracy of the heuristic, However the initial re-
sults we present in Section 4 shows that the accuracy of this heuristic is good. This
affinity heavily depends on the technology in which the AUT is developed. We need to
implement the heuristic differently for each programming language.

Due to lack of space we omit two other heuristics that we have developed but have
not yet implemented: Code complexity and Human Factor. Their description may be
found in [8].

4 Experiments

We performed two kinds of experiments: synthetic and real-world. The synthetic exper-
iments were intended to tune CodePsychologist and to get an initial indication about
our theory. In the second kind of experiments we tested the CodePsychologist on a
real-world regression bug, and analyzed the results.

After ranking each change, we used two modes of views in order to analyze the
results.

– No Grouping. Each change was ranked separately.
– File Grouping. Changes in the AUT, like fixing a bug, or adding new feature, require

a change in the source code. This change can spread through many locations in a
file. This is the reason to rank the file version according to the ranks of all the
changes it contains. The file-version rank is the average of the ranks of all changes
located in the specific version of the file3 (the ranks are taken from the database).

4.1 Synthetic Experiments

In order to tune the CodePsychologist, and test it, we have used a demo project as the
AUT. The project, called WinButler developed by the DDS company [18] is a desktop
application used to configure electronic cache registers via RS232. It is written in C++,
using the Microsoft Foundation Classes library. It contains 891 files in 29 folders and
has 3 million lines of code. The number of check-ins is 3984 and the effort is estimated

3 We intend to experiment with other ways to compute the file-version rank, e.g. the maximal
rank.
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as 6 man-years. We have planted regression bugs in the source code, and wrote test-
cases that expose those bugs, meaning that the checkpoint in each test case will fail
when running the test case on the AUT (containing our planted regression bugs). We
tried to imitate as close as we can, common errors done by programmers, such as off
by one error in numerical expressions, or a small change in the control flow of the
application (e.g. changing a boolean expression in an if statement). We examined the
CodePsychologist with the failed test-cases and the WinButler source code. Then we
used the results of the experiments to tune the CodePsychologist and recalculate the
coefficients for each heuristic.

Table 2 and Table 3 summarize the results for the No Grouping and File Group-
ing modes, respectively. Each table presents the results of five different changes that
we made. Those changes introduce regression bugs. Each change was ranked with re-
spect to all 256 changes that occurred in the code during a real development of the
application, for the last 5 months. We show the rank that was obtained using each of
the 4 heuristics used. The columns are labeled as follows: (1) Code Lines Affinity, (2)
Check-in comment Affinity, (3) File affinity, and (4) Functions affinity. A minus (-)
sign, indicates that the change was not ranked among the top 10 changes (except for the
file affinity heuristic), which we usually view as a failure of the tool to find the bug. We
then present the simple (arithmetic) average of the ranks this change obtained by the
different heuristics. The last column of each table presents the weighted average which
provides improved results. We will explain shortly how the weights were chosen.

Table 2. No Grouping Results

Bug Heuristic Average
Code Lines Check-in File Affinity Functions Simple Weighted

1 5 3 9 1 1 1
2 - 1 24 - 7 3
3 5 3 3 1 1 1
4 - - - 6 6 5
5 2 1 4 1 4 1

Table 3. File Grouping Results

Bug Heuristic Average
Code Lines Check-in File Affinity Functions Simple Weighted

1 1 3 9 1 1 1
2 9 1 24 - 3 2
3 3 3 3 2 1 1
4 - - - 3 9 4
5 1 1 4 1 1 1

Looking at the tables, we can observe several things. In both modes, no heuristics
was able to find all bugs. In fact, different heuristics did well on different bugs. Conse-
quently, using the simple average, the tool found all bugs in the top 10. Furthermore, in
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the No Grouping two of the five bugs were ranked first among the 256 code changes,
and in the File Grouping mode, three of the five bugs were ranked first. In some cases
the file grouping view gets better results then without grouping, for example bug 4. The
reason for those results is that some changes that do not contain the regression bug get
a better rank then the change with the regression bug. In the file grouping view the rank
is determined for the whole file. The changes with the higher rank are taken along with
other changes in the file, usually with a low rank. This might lower the average rank for
the changed file.

When we compare the results of the various heuristics, we can observe several phe-
nomena. Analyzing the results together with the source code, we can conclude that the
code lines affinity heuristic does well when the changed code contains variables, func-
tions and classes with meaningful names, and comments that explains and elaborating
the logic of the code.

The check-in comment heuristic is heavily dependent on the programmers “good
will”, and the ability of the source control tool to enforce adding comments when com-
mitting a check-in operation. Some SCTs enforce entering of detailed comments while
other don’t enforce anything. The SCT that was used during the development of the
AUT was Visual SourceSafe [17], which does not enforce the insertion of a comment
while check-in, therefore many check-in operations were missing a comment, which
results with an affinity rank of 0. Still we can learn from the results that it is possi-
ble to find bugs using this heuristic. We conclude that detailed and accurate check-in
comments are important in order to find the suspicious changes, therefore SCTs that
enforce insertion of detailed check-in comments are likely to give better results for the
CodePsychologist. Our experiments were done only on one project with one SCT, this
is the reason why we can not conclude much from the results of this heuristic. We
intend to perform additional experiments of the check-in comment heuristic on other
applications developed using different SCTs.

The file affinity heuristic was developed with the view that it may be used as a coarse
grained filter of changes, prior to activation of the other heuristics. It is much faster than
the other heuristics, because all the changes located in the same file version gets the
same rank. For this heuristic we show the rank even when it is larger than 10. We can
see that all the files containing the bugs were found in the top 25 suspicious files. These
results encourages us to use this heuristic as a coarse grained filter.

The function affinity heuristic was the only heuristic that analyzes the source code
and found bug number four. Change number four has an indirect affinity to the check-
point, which means that the words in the change have low affinity to the checkpoint,
but the functions being called from the changed function (the function containing the
change), have high affinity to the checkpoint description. The ability to find indirect
affinity is important, because many regression bugs are due to an unintentional flow of
the program caused by a “simple” and “naive” change.

For two of the heuristics File Grouping and No Grouping yield identical results. In
general, File Grouping usually does better than the No Grouping.

After performing the experiments we computed the coefficients of each heuristic,
to maximize the weighted average results: α1 = 1

5 , α2 = 2
5 , α3 = 0, α4 = 2

5 . The
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coefficient α3 is zero because we want to use ’file affinity heuristic’ as a coarse grain
filter, instead of a regular ranking heuristic.

We can see that the results are better then the simple average results as expected. The
results support our assumption that the algorithm of CodePsychologist works, and have
added value to programmers in accelerating the resolution of regression bugs.

4.2 A Real World Regression Bug

We tested CodePsychologist on a real world regression bug. The bug insertion was
during the development of a new feature in the application. When running a sanity test
on the AUT containing the bug, a warning message box showed, causing the failure
of a checkpoint in the sanity test, and exposing the existence of the regression bug.
The reason for the warning message was a resource leak. Initializing the new feature
which used resource X , caused the incremental of the reference counter for resource X .
The new feature did not release resource X , then when X was destroyed it’s reference
counter was 1, causing the warning message box. In order to find this bug, one should
go over all objects in the source code which hold a reference to resource X , and confirm
that the reference was released before X is destroyed. This was a hard task. The number
of objects holding a reference to X was big, involving many composite modules, with
composite relations between them. Finding this bug, without fixing it, took 20 hours
of strenuous work of two experienced programmers (fixing it took less then an hour).
Using the CodePsychologist to trace this bug, accelerate the time of finding the bug.
The results of this experiment are summarized in Table 4. We used the ’File Grouping’
view (described in Section 4), because the changed lines containing the bug were spread
in different places in the file. We can see that the ’Code Lines Affinity’ heuristic and the
’Functions affinity’ heuristic ranked the change with the bug in the top ten suspicious
changes, which leads to an overall rank that placed the change in the fourth place.
This leaves the programmers to check only four places in the source code, and find the
regression bug much faster.

Table 4. A Real World regression bug results

Heuristic Rank (Group by File)
Code Lines Affinity 7

Check-in Comment Affinity -
File Affinity 22

Function Affinity 8

5 Future Work

For the next version of the CodePsychologist we want to implement the Code complex-
ity and the Human factor heuristics described in [8], and test their accuracy. We need to
perform more experiments on the check-in comment heuristic with several SCTs.

In order to optimize the performance of the algorithm, we consider to use the File
affinity heuristic as an initial filter heuristic, to filter out changes that we suspect to have



Locating Regression Bugs 233

a very small probability to be the cause for the checkpoint failure. The algorithm uses
the other heuristics only on the remaining changes. We want to give the tool users the
ability to insert a short description of the failure, for example “The application crashes”
or “The dialog title’s color is green”, etc. This description is added to the checkpoint
description. We think this could add accuracy to the tool.

In addition to the No Grouping and File Grouping views (Section 4) we want to add
the Group by task view. Usually a coding task such as adding a new feature, or fixing a
bug, involves more then one file. We rank file that are part of the same task according
to the ranks of all the changes inside the file. In order to retrieve those task’s groups, we
assume that files version with the same check-in comment and approximately the same
check-in time are part of the same task.

We intend to test the tool on other real world regression bugs, and eventually to find
out if it accelerate the process of fixing regression bugs.
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Abstract. Code coverage is often defined as a measure of the degree to
which the source code of a program has been tested [19]. Various metrics
for measuring code coverage exist. The vast majority of these metrics re-
quire instrumenting the source code to produce coverage data. However,
for certain coverage metrics, it is also possible to instrument object code
to produce coverage data. Traditionally, such instrumentation has been
considered inferior to source level instrumentation because source code
is the focus of code coverage. Our experience shows that object code
instrumentation, specifically post-link instrumentation, can be very use-
ful to users. Moreover, it does not only alleviate certain side-effects of
source-level instrumentation, especially those related to compiler opti-
mizations, but also lends itself to performance optimization that enables
low-overhead instrumentation. Our experiments show an average of less
than 1% overhead for instrumentation at the function level and an av-
erage of 4.1% and 0.4% overhead for SPECint2000 and SPECfp2000,
respectively, for instrumentation at the basic block level. This paper
demonstrates the advantages of post-link coverage and describes effec-
tive methodology and technology for applying it.

1 Introduction

Code coverage is the practice of measuring how many ’code entities’ have been
exercised by a specific test suite. Code entities vary according to the metric used
for coverage. Examples of common coverage metrics are statement coverage and
basic block coverage. Statement coverage reports how many of the potentially-
executable statements in the source code have actually been executed. Basic
block coverage differs from statement coverage only in the entity of code mea-
sured. The code entity in basic block coverage is each sequence of non-branching
statements rather than each statement. The vast majority of common coverage
metrics refer directly to the program source code and are typically implemented
at the source code level. This may stem from the fact that code coverage is con-
sidered a ’white-box’ testing technique, a technique that uses knowledge about
the structure of the source code. In addition, source code is typically relatively
portable (it is usually more portable than object code). However, instrumenting
the source code of languages such as C/C++ often requires tight coupling with
a compiler (e.g., GCOV[9], GNU’s coverage tool that works with GNU’s GCC
compiler). In general, coverage metrics that map to source line numbers can
be implemented at the object level if source-level debug information is present.

K. Yorav (Ed.): HVC 2007, LNCS 4899, pp. 235–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Though object-level implementations and even object-level coverage metrics ex-
ist, they seem to be used mainly for certification of critical airborne software
(Section 2).

The common practice in code coverage is to look at coverage only at the source
code level. Our experience with code coverage disagrees with this common prac-
tice. We have found object-level coverage, in particular post-link coverage, very
effective. We have had extensive real-world experience with applying code cover-
age where existing tools, such as GCOV, do not work. There are various reasons
for why existing tools might not work. The software that we deal with typically
has fault-tolerance requirements and timing constraints. Real-time requirements
are one example of timing constraints. Timing constraint imply that any code
instrumentation must refrain from adding significant performance overhead or
it may cause time-outs to be hit thus interfering with the functional correctness
or even with the execution of the software. Moreover, the software that we deal
with often works in an environment in which there is no operating system or only
a very primitive one. This means for example, that writing coverage data to files
is problematic and that the size of the executable and of the data may need to be
limited. In addition, dealing with static libraries is a challenge for many coverage
solutions. The same is true for dealing with non-terminating code. Naturally, a
coverage solution is not expected to deal with all the challenges we have listed
above. However, it should have the ability to deal with a subset of these chal-
lenges that is of high impact for specific software. We have used both source-level
coverage instrumentation and post-link coverage instrumentation. We found that
where we were able to apply our post-link technology we had more flexibility in
addressing various challenges. In addition, because more information is available
at the post-link level than at the source level, the post-link coverage data has
additional information that is beneficial for improving testing; coverage measure-
ments are usually taken to provide help in effectively strengthening the existing
test suite. These are the main advantages of post-link coverage:

– Obviously, if the source code is not available then post-link instrumentation
still allows you to get coverage data. However, this is not the emphasis of
this paper. Our claim is stronger: post-link instrumentation is useful also if
the source code is available. Moreover, it has advantages that source-level
approaches lack.

– Post-link instrumentation causes no interruption to compiler optimizations.
Source-level instrumentation may prohibit optimizations that would other-
wise be possible. As a result, post-link optimization works on the actual code
whereas source-level instrumentation works on a variant of the code. It is
better to test the actual code than a variant of the code. An example [1] of
the difference between source and post-link code is provided in the following
source code fragment that is taken from a login program

memset (password, ’\0’, len);
free (password)

A compiler performing dead-code elimination may reason that the program
never uses the memset values and therefore might remove the memset call.
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This leaves the clear-text password exposed on the heap, creating a security
hazard. However, the mere act of adding coverage instrumentation at the
source level will prevent this optimization. As a result, tests that verify that
no exposed clear-text exists will pass. Unfortunately, the customer gets code
that might contain exposed clear-text. Post-link coverage instrumentation
will leave the optimization in place and therefore the same tests that passed
before rightly fail now.

– Working at the post-link level lends itself more to introducing instrumen-
tation with minimal performance overhead because the actual code to be
executed is already in place. Section 4 provides details about our post-link
low-overhead technology. Being able to perform coverage instrumentation
while incurring only a very low performance overhead makes it possible to
take coverage measurements as part of the regular operation of all the verifi-
cation phases. Coverage as part of the regular operation has a major advan-
tage of being able to test the actual code and not a variation of it. It may
even make it possible to take coverage measurements at the customer’s site
(in places that were not covered during testing, Section 5 discusses this as
future work). Taking coverage measurements as part of the regular operation
of all phases also makes it possible to accumulate coverage results cross the
different phases. Low-overhead instrumentation does not interfere with the
regular regression process.

– It is often interesting and informative when improving testing to understand
why certain source lines are only partially covered. A single source line may
result in multiple basic blocks and therefore may be only partially covered.
Our post-link coverage methodology, presented in Section 3, includes a dic-
tionary of compiler transformations and optimizations.

The main contributions of this paper are the insight regarding the usefulness
of post-link coverage and the methodology for a practical implementation of
the insight. In our experience, this methodology alleviates the major hurdle of
post-link coverage, which is the difficulty in understanding the results of post-
link coverage. Post-link coverage data needs to be mapped back to the source
but the post-link version and the source version may be very different. We pro-
vide both a recommended methodology for applying post-link coverage and a
description of our post-link coverage technology. Apart from the post-link cov-
erage methodology, we have been developing and following a general coverage
methodology which we find very effective. This methodology is also described in
the paper.

2 Related Work

Many different coverage metrics exist. Section 2.1 presents some of the common
coverage metrics. Section 2.2 discusses existing work on object-level coverage.
Section 2.3 discusses work that relies on a similar insight to the one we make in
our work; namely, that object code has more information than source code and
this can be beneficial for various analyses.
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2.1 Coverage Metrics

In general, source-code coverage metrics can be implemented at the post-link
level. Different advantages and disadvantages may exist for each metric for
source-level implementation vs. post-link implementation. See for example, the
discussion about the define-use metric in Section 2.3. The various coverage met-
rics (e.g., [19], [2]) can roughly be divided into control-flow coverage metrics,
data-flow coverage metrics, and functional coverage metrics. Examples of control-
flow metrics are statement coverage and basic-block coverage. An example of
data-flow metrics is define-use coverage. An example of functional coverage [10]
is synchronization coverage. Statement coverage reports how many of the source
code executable statements have been executed. Basic block coverage is similar
to statement coverage except that it reports on each sequence of non-branching
statements. Define-use coverage reports on all the usages of a definition. Synchro-
nization coverage reports on contention on all the synchronization primitives.

Coverage solutions for C/C++ typically work at the source code level. Cover-
age solutions for Java typically work at the byte-code level (e.g., [5]). Information
in Java byte code is similar to source code as it has a one-to-one mapping with the
source code. Such a representation is not available for languages such as C/C++.
Object code may differ greatly from source code, especially if optimizations were
done, for example by the compiler. We claim that it is interesting and useful to
measure coverage on the actual code runs, i.e., coverage at the post-link level.

2.2 Object-Level Coverage Metrics

Metrics and tools for object-level coverage exist (e.g., [8]). However, they
seem to concentrate mainly on satisfying the FAA RTCA/DO-178B standard
[6]. RTCA/DO-178B”Software Considerationsin Airborne Systemsand Equip-
mentCertification” is an internationally recognized standard required for certi-
fying software used in airborne systems and equipment. It was developed by
the non-profit Radio Technical Commission for Aeronautics (RTCA). DO-178B
defines five software levels (A through E), with Level A applicable to the most
critical aircraft equipment requiring the greatest level of effort to show DO-178
compliance. Objectives 5, 6 and 7 of Table A-7 address statement, decision, and
MCDC (Multiple Condition Decision Coverage).

A common recommendation regarding object-level coverage is “You are better
off testing the original source code since it relates to program requirements better
than the object code” [3]. One of the contributions of our work is that our post-
link coverage technology comes with a methodology that enables users to get
the most out of the post-link coverage data. We have not come across any such
existing methodology.

2.3 Static Analysis

Static analysis is another instance of traditionally working at the source code
level. However, recent work [1] demonstrates the disadvantages of this approach
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compared to working at the post-link level. Balakrishnan et al. demonstrate that
for static analysis targeted at the security domain, some bugs and vulnerabili-
ties are only discovered at the post-link level. They argue that it is important
to analyze the precise artifact that will be executed. The source code is not the
artifact as it may differ significantly from the code to be executed. We make a
similar observation: the source code, especially if it is compiled with aggressive
optimizations, might bear little resemblance to the code that will be executed.
Code coverage differs from static analysis, though, in the sense that the cover-
age instrumentation itself may disrupt compiler optimizations and cause different
code to be generated when compiling with and without coverage instrumenta-
tion. This situation is undesirable because testing should be done on the same
code that is to be delivered. The difference between source code and object code,
in particular post-link object code, is a result of the fact that during post-link
more information is available. The same is applicable for post-link coverage. For
example, post-link define-use coverage can give, using static analysis, a better
estimation of the define-use relationship and as a result a better coverage task
list (a baseline for what constitutes 100% coverage).

3 Methodology: Post-Link Coverage

To better understand how to use post-link coverage, one should put it in the
general context of the process of coverage data collection and analysis. Section 3.1
describes our general coverage data collection and analysis approach, including
our analysis and view tool, FoCuS. The coverage data collection technology that
we use in this paper is post-link coverage through enhancements to an existing
tool. Section 3.2 describes both the existing tool, FDPR-Pro, and the coverage
enhancements we made to it.

Our experience with post-link coverage suggests that while the technology
and its ease-of-use are very important, another highly important factor for the
applicability of post-link coverage is the user’s ability to understand the coverage
results. Therefore, our coverage methodology includes:

1. Applying a post-link coverage technique as described in Section 3.3.
2. Following a process that guides the user in understanding the coverage data

as Section 3.4 describes
3. Consulting support items that provide concrete examples of compiler opti-

mizations and code translation. Section 3.5 provides such examples.

3.1 General Coverage Approach

Figure 1 outlines the architecture of our general code coverage methodology. A
single front-end, FoCuS [7], serves as a user interface for viewing and analyzing
coverage data. The coverage data is created by whichever technology works in
the specific environment; for example, GCOV or FDPR-Pro. FoCuS is a com-
plete tool for the functional coverage methodology. It is also used for viewing
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Fig. 1. Our general coverage approach: FoCuS serves as a single front-end to any back-
end that works. Examples of back-ends are FDPR-Pro and GCOV.

and analyzing code coverage information. FoCuS also provides a drill-down view,
a hierarchical view of the available coverage information (e.g., directories, the
files they contain, and the methods in each file) color-coded according to their
coverage, and hole analysis support, identifying common names (e.g., files or
methods) that are only rarely covered or not covered at all. We recommend a
general usage methodology that starts with coarse-grain coverage; for example
function-level coverage. The next step is coverage analysis to improve the test
suite. The improvement should be a result of identifying major areas of func-
tionality that are not covered and adding new tests to cover the missing parts. It
strongly recommended not to write tests only to improve coverage. Tests should
be written to improve the ability of the test suite to find potential bugs. Only
after improving the test suite as a result of the coarse-grain coverage data analy-
sis, do we recommend doing finer-grain coverage such as basic block coverage.
The reason is that it only makes sense to make small improvements to the test
suite if no major deficiencies exist.

3.2 Building on an Existing Performance Optimization Technology:
FDPR-Pro

FDPR-Pro (Feedback Directed Program Restructuring) [11,13,15,17,12] is a
feedback-directed post-link optimization tool. Other post-link optimization tools
exist [4,14,16,18]. FDPR-Pro is used extensively for improving performance
and memory consumption of large applications and subsystems running on the
POWER architecture. It does so by applying a set of aggressive post-link opti-
mizations that help complement compiler optimizations. FDPR-Pro optimizes
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the executable image of a program by first collecting information on the be-
havior of the program while the program executes a typical workload. Then,
it creates a new version of the program that is optimized for that workload.
FDPR-Pro performs global optimizations at the level of the entire executable,
including statically linked library code. Since the executable to be optimized
by FDPR-Pro will not be re-linked, the compiler and linker conventions do not
need to be preserved, thus allowing aggressive optimizations that are not al-
ways available to optimizing compilers. The main optimizations of FDPR-Pro
include inter-procedural register re-allocation, improving instruction scheduling,
data prefetching, aggressive function inlining, global data reordering, global code
reordering, and various tuning options for the POWER architecture. FDPR-Pro
operates in three main stages as shown in Figure 2:

1. Program instrumentation stage—Code stubs are injected into a given exe-
cutable for the purpose of profile gathering. The output of this stage is an
instrumented executable version along with template of profile file.

2. Program profiling stage—The instrumented executable produced in the pre-
vious stage is run with a given input workload. This run fills the profile file
with execution counters for every executed basic block of code.

3. Program optimization stage—FDPR-Pro is given the original non-
instrumented executable together with the profile file that was generated
in the profile stage in order to produce a new optimized executable version.

Fig. 2. FDPR-Pro Operation

When using FDPR-Pro for collecting coverage data, only the first two stages
described above are executed. In addition to maintaining program correctness
after optimizing it, FDPR-Pro also maintains the ability to debug the program
after it has been optimized. To enable debugability, FDPR-Pro incorporates the
debug information in its internal structures representing the analyzed program.
This also includes the line number information. To obtain code coverage infor-
mation with FDPR-Pro we used its regular instrumentation capability with the
ability to map instructions to line-number debug information. We enhanced the



242 O. Raz et al.

FDPR-Pro disassembly ability to include also line-number information along
with the existing basic blocks information and profile information. It should be
noted that compilers (e.g. GCC and IBM xlc) can generate line number infor-
mation and at the same time optimize the code. Figure 3 shows an excerpt
of FDPR-Pro’s disassembly (taken from SPEC2000 perlbmk benchmark). It in-
cludes the dissection into basic blocks of the whole program. For each basic block
it includes the basic block count (how many times this basic block was visited),
and for each instruction it includes the associated line number information in
the form of ’file name’:’line number’ as it appears in the in the original debug
information. The information in the disassembly file is used to create coverage
information for FoCuS.

.Perl_do_chop { function } ( size = 632 )
safe bb size = 60 func = .Perl_do_chop ( prolog ) count = 2019
0x1000b6c8: 0x7c0802a6 mflr r0 ; doop.c:215
0x1000b6cc: 0xfb61ffd8 std r27,-40(r1) ; doop.c:215
.......

safe bb size = 16 func = .Perl_do_chop count = 0
0x1000b74c: 0xe8828440 ld r4,-31680(r2) ; doop.c:251
0x1000b750: 0x7f63db78 or r3,r27,r27 ; doop.c:251
0x1000b754: 0x38a00000 li r5,0 ; doop.c:251
0x1000b758: 0x48076901 bl 0x1007fddc ; doop.c:251

Fig. 3. FDPR-Pro disassembly, annotated with coverage and line number information

3.3 Post-Link Coverage: Getting the Coverage Data

The first stage of coverage analysis is collecting coverage data. The general process
of getting coverage measures using our post-link technology is as follows:

1. Make sure you compile your code with a flag to include line-number debug
information.

2. Run FDPR-Pro on your executable to instrument it for coverage data col-
lection.

3. Run your test suite on the instrumented executable. The instrumentation
will cause profile information to be created.

4. Run FDPR-Pro again to create a disassembly file. Give it as input the profile
information gathered in step 3.

5. Run FoCuS on the disassembly file that was created by FDPR-Pro in step
4 to create a coverage model.

6. View the coverage data in FoCuS and analyze the results. We recommend
viewing the coverage data using FoCuS’s source view. FDPR-Pro produces
information that enables FoCuS to map basic block coverage information
back to the source code. Figure 6 is one example of what you see in source
view. The source code is color-coded according to the coverage of each line.
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A single line may map to multiple basic blocks and therefore may be only
partially covered. This is an example of having more information per line
at the post-link stage. In FoCuS views, green (medium gray in grayscale)
indicates locations (e.g., source code statements, files, or functions) that are
fully covered, red (dark gray in grayscale) indicates locations that are not
covered, and yellow (light gray in grayscale) indicates locations that are
partially covered. White source lines lines that are not part of the coverage
task list, they are not in the baseline for what constitutes 100% coverage. If
the code base size is very large (several hundreds or thousands of files) we
recommend starting with FoCuS’s drill-down view rather than with FoCuS’s
source view.

3.4 Post-Link Coverage: Understanding the Coverage Data

Once coverage data is obtained the user can enhance the test suite. We propose
a post-link coverage methodology that puts the user at the center. We believe
that to get the most from the coverage process, the user needs to understand
both what is in the coverage task list, the coverage baseline, and the reasons for
only partially covering some of the coverage tasks. This, along with the regular
process of coverage analysis (viewing the data in FoCuS and looking for holes),
helps the user generate effective tests to strengthen the test suite. Our post-link
coverage methodology is as follows:

1. Obtain post-link coverage measurements (process described above) after
compiling your code with no optimizations. This has several goals:
– Understanding better what a basic block is and how it maps to your

code (each basic block is mapped to the source code).
– Better understanding what happens to your source code during the pre-

processing stage in the build process.
2. Obtain post-link coverage measurements (process described above) after

compiling as for a normal run. We find post-link coverage especially use-
ful on code that went through aggressive compiler optimizations.

3. Consult the dictionary of compiler optimizations and transformations (see
examples below) if it is unclear to you why a certain code statement is not
part of the coverage task list (as indicated by no coloring of the statement), or
why a certain code statement is considered as partially covered (as indicated
by yellow coloring).

3.5 Post-Link Coverage: User Support Items

To support the user’s comprehension of post-link coverage data, we find it nec-
essary to incrementally create a dictionary of compiler transformations and
optimizations. A user may want to consult this dictionary when the coverage
information provided is unclear. There are two main cases where coverage infor-
mation may be unclear:
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1. When there is unexplained source code that is not part of the coverage task
list.

2. When there is partial coverage of source code.

In general, a source line that is not part of the coverage task list is due to compiler
optimizations that optimized this line out. Partial coverage is usually due to a
source being compiled into several basic blocks. This is true especially in lines
that include control blocks. Following are examples of entries in the compiler
transformation dictionary.

Macros. A macro may include a complicated control flow. Such a macro may
result in partial coverage on the line that uses it. For example, the source code
in Figure 4(a) uses the macro SvTIED mg (line 398). The SvTIED mg macro,
shown in Figure 4(b), uses the ? operator which is equivalent to If-Then-Else
control block. In addition, this macro uses other Macros as well. A partial cov-
erage of the SvTIED mg macro could be due to the condition in line 398 never
being true in any of the tests. In that case, line 398 is partially covered and the
body of the If statement is not covered.

398 if (mg = SvTIED mg((SV*)av, ’P’)) {
399 dSP;
... ...
410 return;
411 }

(a) Source code using the SvTIED mg macro

#define SvTIED mg(sv,how) (SvRMAGICAL(sv) ? mg find((sv),(how)) : Null(MAGIC*))

(b) The SvTIED mg macro which uses the ? operator and calls other macros

Fig. 4. Partial code coverage of macro usage

If Statement An If statement that includes several Boolean sub-expressions is
translated into several basic-blocks where each basic-block checks one Boolean
part. In Figure 5(a) (taken from SPEC doio.c) the If statement is partially cov-
ered and the body is never visited. This means that the last Boolean expression
was not evaluated (and possibly also the second one was not evaluated). This
is due to the short circuit evaluation of Boolean expressions. To verify, the user
may want to create explicit nested If statements for each Boolean expression,
as shown in Figure 5(b). Running the test on the nested If code reveals which
Boolean expression was not evaluated. This information is helpful in properly
extending the existing test suite.

Inlining In compiler inlining a function call is replaced with the code of that
function. In addition to eliminating the call sequence, inlining enables the com-
piler to further optimize the inlined code to be tailored to the replaced call
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176 if (*name == ’+’ && len>1 && name[len-1] != ’\|’) { /* scary */

177 mode[1] = *name++;

178 –len;
179 writing = 1;
180 }

(a) The original If statement

176-1 if (*name == ’+’) {
176-2 if (len>1) {
176-3 if (name[len-1] != ’\|’) { /* scary */

177 mode[1] = *name++;

178 –len;
179 writing = 1;
180-1 }
180-2 }
180-3 }
(b) A nested If statement for code coverage analysis

Fig. 5. Partial code coverage of If statement

location. Inlining may be viewed as eliminating the call statement. Therefore,
the call statement does not appear in the coverage task list (as indicated by
white coloring). Figure 6 shows an example of partial coverage due to compiler
inlining (the code is from hv.c in perlbmk). hv magic check() was inlined at line
293. The prolog and epilog of the inlined function (lines 260-261 and 276, re-
spectively) are not part of the coverage task list and the body of the function is
partially covered. All the calls to this function were optimized via inlining. Since
some of these calls were not executed (e.g., the call at line 444), the body of the
function is only partially covered.

4 Low-Overhead Instrumentation Method

The overhead of the code instrumentation for basic block coverage is significant.
The common implementation of basic block instrumentation counts the number
of times each basic block has been visited and has an overhead of at least one
hundred percent. In this section we present a method that minimizes the cover-
age instrumentation overhead. Basic block instrumentation collects extra data
that is not usually needed for code coverage which only needs an indication that
the basic block has been visited. Therefore, there is an opportunity to reduce the
overhead. One might think that it is possible to reduce the overhead by testing
the counter before setting it. Unfortunately, the counter fetch operation itself
requires bringing the counter to a register and causes a significant overhead. An-
other approach that can reduce the overhead is to modify the instrumentation
code after it is executed once. Code that changes itself is called self-modified
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260 hv magic check (HV *hv, bool *needs copy, bool *needs store)
261 {
262 MAGIC *mg = SvMAGIC(hv);
263 *needs copy = FALSE;
264 *needs store = TRUE;
265 while (mg) {
266 if (isUPPER(mg->mg type)) {
267 *needs copy = TRUE;
268 switch (mg->mg type) {
269 case ’P’:
270 case ’S’:
271 *needs store = FALSE;
272 }
273 }
274 mg = mg->mg moremagic;
275 }
276 }
...

289 xhv = (XPVHV*)SvANY(hv);

290 if (SvMAGICAL(hv)) {
291 bool needs copy;
292 bool needs store;
293 hv magic check (hv, &needs copy, &needs store);
294 if (needs copy) {
295 mg copy((SV*)hv, val, key, klen);

296 if (!xhv->xhv array && !needs store)
...

441 if (SvRMAGICAL(hv)) {
442 bool needs copy;
443 bool needs store;
444 hv magic check (hv, &needs copy, &needs store); }
445

446 if (needs copy && (svp = hv fetch(hv, key, klen, TRUE))) {
...

Fig. 6. Code coverage of inlined function

code. Self-modified code can be used to skip or run on the instrumentation code
after the first visit is recorded. For example, one way to modify the code is to
replace the first instruction in the instrumentation code with a branch to the
first instruction after the instrumentation. However, we claim that using self-
modified code is not enough to ensure minimal overhead. For example, in a
RISC architecture the instrumentation code itself requires a large number of in-
structions due to operations executing on registers, so we need to free registers
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and move the data to the register before operating on it. Since the average basic
block size is five instructions a naive implementation of basic block instrumenta-
tion with self-modified code may lead to a very bad utilization of the instruction
cache wherein most of the instructions in the cache are redundant. We analyze
the causes for overhead in code coverage instrumentation and divide them into
two instruction groups based on timing. The first group includes delays that are
caused by the instrumentation and self-modified code in the first visit to the
basic block. The second group includes delays that remain in the code after the
first visit and affect the performance throughout the entire run. We assume that
the delays in the first visit have a negligible effect on performance since they
happen only once. The experiments in Section 4.1 prove this assumption. Fol-
lowing the assumption, our approach minimizes the delays in performance that
have a performance effect after the first visit by moving most of the overhead to
the instruction group that executes only once. To achieve that we pack the in-
strumentation and self-modified code in general procedures that are called from
the original code. Appendix A provides details regarding the implementation of
low-overhead instrumentation on POWER architecture.

4.1 Experimental Results

To evaluate the overhead of the suggested method for code coverage we used
SPEC2000 using Linux on POWER. We choose Linux since we can make the
needed changes in the access permission of the program header to allow self-
modifying code. We used the gcc 4.1 compiler and optimized all programs with
-O3 optimization level. First, we tried to evaluated the long run overhead af-
ter replacing the function call instruction (BL instruction on POWER) with
NOP. This was done by instrumenting every basic block with a single NOP. The
results on SPEC2000 are shown in Figure 7. Note that the overhead for addi-
tional NOP execution at the function level is negligible (for FP it even improved
performance) and for the basic block level is 3.9% and 1% for INT and FP re-
spectively. It is interesting to note that in several cases, and even for the average
for FP at the function level, performance was improved (designated with nega-
tive percentage) by the NOP insertion. This is because the inserted code caused
a better alignment of the hot portions of the code, which affected the overall
performance. Note that we see more such cases for programs with a small num-
ber of hot functions as is the case for the FP benchmarks. The conclusion is that
overhead can be consciously reduced by further optimizing the code in a way
that does not affect the code coverage results. Such optimizations can include
improving alignment, reducing specific stalls by inserting NOP instructions (for
example Load After Store in the case of POWER architecture), and even global
code reordering. The guideline for applying optimizations on the instrumented
code is that we can map the coverage information of the instrumented/optimized
program faithfully back to the source code.

As expected, the results of real instrumentation, shown in Figure 8, indi-
cate that the additional one-time code insertion did not have much effect on
performance.
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bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vpr Average

Functions level 4.37 -1.41 2.3 -3.81 4.48 2.47 -2.74 -0.46 -0.5 0.61 2.21 0.7

Basic blocks level 5.52 5.02 1.2 -6.6 12.66 7.65 0.26 3.58 2.4 3.67 7.42 3.9

(a) SPECint2000

ammp applu apsi art equake mesa mgrid sixtrack swim wupwise Average

Functions level 3.8 0.8 0.2 0.1 -2.7 -8.7 0.8 -0.4 -5.1 -8.1 -1.9

Basic blocks level 7.1 3.6 0.3 0.8 0.3 -7.2 -0.8 3.3 1.0 1.7 1.0

(b) SPECfp2000

Fig. 7. Overhead of NOP insertion (percent over base) for SPEC2000

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vpr Average

Functions Level 2.2 1.3 1.8 -1.4 0.4 1.8 -4.2 2.1 -0.6 3.0 3.3 0.9

Basic Blocks Level 3.1 7.7 0.8 3.4 1.3 4.1 -3.9 13.4 3.6 5.1 5.9 4.1

(a) SPECint2000

ammp applu apsi art equake mesa mgrid sixtrack swim wupwise Average

Functions level 1.2 0.4 -0.5 -0.3 -1.5 -12.2 0.9 -0.1 -1.6 -1.3 -1.5

Basic blocks level 1.4 4.5 1.8 2.6 1.0 -6.8 0.4 -0.3 -3.1 2.8 0.4

(b) SPECfp2000

Fig. 8. Overhead of code coverage instrumentation (percent over base) for SPEC2000

5 Conclusions and Future Work

We have been working with various development groups at IBM on testing actual
code. Our experience indicates that post-link coverage has significant advantages
when compared to source-level coverage. Two major advantages on which we
elaborated in this paper are the ability to work even with highly optimized code
and the ability to introduce coverage instrumentation with very low performance
overhead. Without these abilities, coverage cannot be part of the regular testing
process. Moreover, coverage measurements are taken over a (less-optimized) vari-
ation of the code rather than on the code that the customers get. This is highly
undesirable, especially in systems that have high quality requirements. Usually,
such systems also have system-level test suites that run for days. Adding signif-
icant performance overhead to the already heavy system test process might be
unacceptable.

We showed examples of coverage over optimized code and of mapping back
post-link code to the source code. We demonstrated that the performance over-
head of our technology is expected to be no more than 4.1% on average. More-
over, it is often expected to be less than 1%. Simple optimizations such as con-
trolled alignment may significantly reduce this overhead and even improve the
overall performance. An example is the function level overhead on SPECfp2000
in Figure 8 (1.5% improvement in performance on average).
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We provided a methodology that enables users to better understand post-link
coverage data. This methodology relies on a dictionary of compiler optimizations
and transformations. We believe that one of the major hurdles to date in applying
object-level coverage has been the inability of users to understand how to map
the coverage data to improvements they need to do to their test suite. Our
methodology helps in better understanding what was not covered and why that
was the case. This is a major step toward improving the user’s test suite.

Once a very low performance overhead instrumentation is in place, together
with the ability to measure coverage on optimized code, we envision having
coverage throughout the development process. We believe coverage should be
present not only in all the stages of the development process, but even at the
customer site. We are developing a process in which each stage of testing only
keeps coverage instrumentation in places that were never hit during the past
stages. This partial instrumentation, combined with very low overhead instru-
mentation in places where the instrumentation is kept, may enable us to even
keep the coverage instrumentation in production code. It can be very useful for
the owner of the code to know that a customer is executing the software in ways
that were never covered during testing. This is probably an early indication of
a forthcoming bug report.

In this paper, we concentrated on basic block coverage at the post-link level.
However, we believe that our conclusions are applicable to post-link coverage in
general, regardless of the coverage metric. For some metrics, however, it may be
difficult to map the post-link information back to the source code thus making
it harder to understand.

A Low Overhead Instrumentation on POWER
Architecture

Each location that we want to test for coverage (typically a basic block) is aug-
mented with a branch and link (BL) instruction that jumps to the instrumen-
tation function that is added to the code. The instrumentation function simply
replaces the inserted BL instruction with a NOP instruction and then return
back to the instruction following the inserted BL instruction. The instrumenta-
tion function uses the value in the link register (LR) which is set by the BL to
gain access to the location of the BL. This replacement achieves two goals:

1. Having an indication that the code of the calling basic block was visited and
should be considered covered.

2. ’Closing the door’ so that the function executes only once for every tested
location, thereby avoiding extra overhead.

It is important to branch to the instrumentation function with a single instruc-
tion. This ensures the atomicity of the operation of ’closing the door’, and pre-
vents getting partial, incorrect code by other threads. Each thread that reaches
the BL location executes either the branch instruction or a NOP.
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1 BB-04: b BB STUB // branch to the intermediate stub
2 BB: ... // first instruction of instrumented basic block

(a) Instrumentation location

0 BB STUB-8: .long BB // holds the address of BB
1 BB STUB: st r0,ZZ(r1) // save ro to stack
2 BB STUB+4: mflr r0 // save Link Register in r0
3 BB STUB+8: bl IS // after execution the link register will hold address BB STUB+12
4 BB STUB+12: mtlr r0 // restore Link register value from r0
5 BB STUB+16: ld r0,ZZ(r1) // restore r0 from stack
6 BB STUB+20: b BB // branch back to the original BB

(b) Intermediate stub per instrumentation location

1 IS: std r28,YY(r1) // save r28 at offset YY from stack pointer r1
2 IS+04 std r29,XX(r1) // save r29 at offset XX from stack pointer r1
3 IS+12 mflr r29 // move LR (address BB STUB+12) to r29
4 IS+16 lds r29,-20(r29) // load address of BB from BB STUB-8
5 IS+16 addis r28,r0,0x6000 // set NOP opcode in r28
6 IS+20 stw r28, -4(r29) // overwrite b instruction at BB-4 with NOP
7 IS+24 addi r28, r29, -4 // place the address BB-4 r28
8 IS+28 dcbf r0, r28, 0 // flush block containing address BB-4 from Dcache
9 IS+32 sync // wait for flush completion on Dcache
10 IS+36 icbi r0, r28 // invalidate block containing instruction at BB-4 from Icache
11 IS+40 isync // wait for invalidation completion on Icache
12 IS+48 ld r28,YY(r1) // restore r28
13 IS+52 ld r29,XX(r1) // restore r29
14 IS+56 blr // return (to BB)

(c) Instrumentation function

Fig. 9. Instrumentation location when the link register (LR) needs to be freed

To enable the insertion of the BL instruction in the instrumentation location
the LR must be available for use at the instrumentation location so its contents
can be overwritten by the link operation of the branch. If the LR is not free,
a register spill code needs to be added. Figure 9 shows the instrumentation
function ( A) and how we branch to it using a single branch instruction (9(a)
and an intermediate stub (9(b)). The intermediate stub includes the store/restore
of LR and holds a pointer (at BB STUB-8) to the instrumentation location to
enable the instrumentation function overwrite the branch instruction with a
NOP. Althouhg we add an intermediate stub for each instrumentation location
and thus increase the code size, these stubs are executed only once so they do
not pollute the caches.

Note that the instrumentation function includes cache invalidation instruc-
tions. Although these instructions introduce many cycles, they are executed only
once and ensure that the modified code is used on the next execution cycle. Dur-
ing the off-line instrumentation phases, all the locations that are instrumented
with a BL instruction are recorded to create a mapping between the location of
the BL instruction and tested locations. After completing the tests, the recorded
locations in the image are examined by going over all the locations that were
instrumented by the BL and if the BL was replaced with a NOP the location is
marked as ’visited’. The use of the NOP as indication of coverage reduces the
need for external bookkeeping of visited locations and thus reduces the space
needed for recording visited locations.
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Abstract. Unit testing plays a major role in the software development process.
It enables the immediate detection of bugs introduced into a unit whenever code
changes occur. Hence, unit tests provide a safety net of regression tests and vali-
dation tests which encourage developers to refactor existing code. Nevertheless,
not all software systems contain unit tests. When changes to such software are
needed, writing unit tests from scratch might not be cost effective.

In this paper we propose a technique which automatically generates unit tests
for software that does not have such tests. We have implemented GenUTest, a tool
which captures and logs inter-object interactions occurring during the execution
of Java programs. These interactions are used to generate JUnit tests. They also
serve in generating mock aspects – mock object like entities, which assist the
testing process. The interactions are captured using the aspect oriented language
AspectJ.

1 Introduction

Unit testing plays a major role in the software development process. A unit is the small-
est testable part of an application; in the object oriented paradigm it is a class. A unit test
consists of a fixed sequence of method invocations with fixed arguments. It explores a
particular aspect of the behavior of the Class Under Test, hereafter CUT. Testing a unit
in isolation is one of the most important principles of unit testing. However, the CUT
usually depends on other classes, which might even not exist yet. Mock objects [9] are
used to solve this problem by helping the developer break those dependencies during
testing, thus testing the unit in isolation.

Extreme Programming (XP) [23] adopts an approach that requires that all the soft-
ware classes have unit tests; code without unit tests may not be released. Whenever
code changes introduce a bug into a unit, it is immediately detected. Hence, unit tests
provide a safety net of regression tests and validation tests. This encourages developers
to refactor working code, i.e., change its internal structure without altering the external
behavior [6].

The number of unit tests for a given project might be very large. For instance, Mi-
crosoft reported that the code for unit tests is often larger than the code of the project [4].
In order to effectively manage unit tests, execute them frequently, and analyze their
results, a unit testing framework should be used [23]. The framework automatically
executes all unit tests and reports their results. One of the most popular unit testing
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frameworks is JUnit [25, 7], which helps to standardize the way unit tests are written
and executed.

The maintenance phase is estimated to comprise at least 50% of the software’s total
life cycle [15]. At this phase, the software is already being used, and future versions of
the software, which include new features as well as bug fixes, continue to be developed.
Unit tests can assist developers during the maintenance phase. Nevertheless, not all
developed software contains unit tests. Writing effective tests is a hard and tedious
process, and developing them from scratch at the maintenance phase might not be cost
effective. In this case they are usually not written, and maintenance continues to be a
difficult process.

We propose a technique which automatically generates unit tests for systems that do
not have such tests. This is achieved by capturing and recording the execution of the
software in order to obtain test cases. The recorded data can then be used to construct
unit tests for the software.

We have implemented GenUTest, a tool which captures and logs inter-object inter-
actions occurring during the execution of Java programs. The recorded interactions are
then used to generate JUnit tests that assist in the testing process.

Figure 1 presents a high level view of GenUTest’s architecture and highlights the
steps in each of the three phases of GenUTest: capture phase, generation phase, and
test phase. In the capture phase the program is modified to include functionality to
capture its execution. When the modified program executes, inter-object interactions
are captured and logged. The generation phase utilizes the log to generate unit tests and
mock aspects, mock object like entities. In the test phase, the unit tests are used by the
developer to test the code of the program.

The interactions are captured by utilizing AspectJ, the most popular Aspect Oriented
Programming (AOP) extension for the Java language [20, 8]. AOP has been proposed
as a powerful programming paradigm that helps to modularize crosscutting concerns,
behavior that cuts across the typical divisions of responsibility, such as logging. AOP
captures crosscutting concerns and encapsulates them in a single module – the aspect.
An aspect contains advices, which are code fragments that are inserted into other mod-
ules using a weaving mechanism. An advice modifies the behavior of the code or adds
new behavior. It can be applied to join points, points of interest in the flow of a pro-
gram, such as object instantiation, method-call, variable access, etc. An advice code
can be specified to be executed before or after the locations specified by a join point, or
it can even replace it completely. Finally, a pointcut is an expression that specifies the
collection of join points where an advice is to be executed.

We are not aware of any other tool which utilizes aspects for the capturing process.
Compared to conventional instrumentation techniques, aspects provide a clean and
structured way to implement the capture functionality. One advantage of our approach
is that it makes it is easy to implement the tool for other aspect oriented programming
languages. In addition, GenUTest automatically generates mock aspects, which assist
in testing units in isolation. The mocks aspects, which use AspectJ, can easily be com-
bined with the unit tests in an almost seamless manner.

The rest of the paper is organized as follows. In Section 2 we describe the cap-
ture phase, and Section 3 explains how unit tests are generated from the captured data.
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Fig. 1. GenUTest architecture

Section 4 elaborates on the creation of mock aspects. Section 5 discusses related work,
and we conclude with Section 6 which describes initial experiments performed and
discusses future plans.

2 The Capture Phase

This section describes how interactions between objects are captured and logged. To
illustrate our ideas we employ a simple example which we use throughout the paper.
This is an integer stack implemented using a linked list. In addition to the conventional
stack operations, the stack also supports a reverse operation, which reverses the order
of the items in the stack. Figure 2 presents a UML sequence diagram which describes a
possible scenario of the stack behavior 1.

In order to perform the capture phase for a given program P , specific capture func-
tionality has to be added to P . The functionality is added by instrumenting P with the
capture code. Instrumentation is a technique which changes a program in order to mod-
ify or to extend its behavior. The AspectJ compiler does the instrumentation using a
weaving mechanism. This mechanism enables code modifications defined in advices to

1 The numbers in italic are used to denote method intervals which are explained in Section 3.
Note that in order to make it easier for the reader to follow the example, we use dashed lines
to denote return from a call even for the constructor.
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Fig. 2. A sequence diagram describing a scenario of the stack behavior

be performed at specific join points, which specify well defined locations in the control
flow of the program. A pointcut is an expression that specifies the collection of join
points where an advice is to be executed. We show parts of the AspectJ code used, with
explanations aimed at the reader not familiar with AspectJ.

The call(signature) join point refers to the location where acall to amethod with a given
signature is invoked. For example, call(public void IntStack.push(int))
specifies all the locations that call the methodpushof theIntStack class, with a single
integer argument.

In GenUTest, we need to match all constructor-calls, all method-calls, and all
read/write field-accesses in P . The pointcut is defined as follows:

pointcut all_calls(): call(* *(..)) || call(new *(..)) ||
call(get *..*) || call(set *..*) &&
!within(GenUTest.*);

The first two calls match all method-calls and all constructor-calls, respectively. The
other two match all read/write field-accesses. The !within(GenUTest.*) join
point ensures that only designated join points within P are matched. The two wildcards
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(‘*’ and ‘..’) enable matching a set of signatures. Constructor-calls and field-accesses
can also be viewed as method-calls, and will be considered as such for the rest of the
paper.

Capturing a method-call involves recording the method’s signature and the target ob-
ject of the call. Returned values and thrown exceptions are recorded as well. The type of
the arguments and the return value can be one of the following: primitive, object, or ar-
ray. For instance, the attributes of the IntStack_2.push(3) (cf. Figure 2) are: the
AspectJ signature, which consists of full name (IntStack_2.push()), arguments
type (int), access modifier (public), and the return type (void); the target object
(IntStack_2); the arguments values (3); the return value (none); and the exception
thrown by the method (none).

The instrumented program P ′ is executed and the actual capturing begins. The cap-
ture code, which is specified by the advice, is responsible for obtaining the above men-
tioned attributes. This is achieved using an AspectJ reflective construct (thisJoinPoint).
After the attributes of the method-calls are obtained, they are serialized and logged
using a library which supports the serialization of complex nested objects (this is espe-
cially important for arrays) [28].

The capturing process ends after all method-calls have been logged. The log is used
in the generation phase to create unit tests. Due to lack of space, we have simplified the
description of the capture phase. The full discussion consists of a lot of implementation
details, and can be found in [13].

3 The Unit Test Generation Phase

After the method-calls have been captured, unit tests can be generated. The generation
process is described in this section.

Unit tests are created only for those methods that can be examined, i.e., methods that
either return a value or throw an exception. In the example, when IntStack serves as
the CUT, GenUTest generates a unit test only for the pop()method-call (cf. Figure 3).

1 @Test public void testpop1()
2 {
3 // test execution statements
4 IntStack IntStack_2 = new IntStack(); // mi [1,4]
5 IntStack_2.push(2); // mi [5,8]
6 IntStack_2.push(3); // mi [9,12]
7 IntStack_2.reverse(); // mi [13,24]
8 int intRetVal6 = IntStack_2.pop(); // mi [25,28]
9

10 // test assertion statements
11 assertEquals(intRetVal6,2);
12 }

Fig. 3. Unit test generated for pop() method-call
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Test generation is a two step operation. In the first step GenUTest generates the
Java statements that execute the test. In the second step GenUTest generates assertion
statements that determine whether the test has passed.

3.1 Step I: Test Generation

The Java statements generation algorithm contains two mutually recursive procedures,
restoreObjectState and generateStatement. The procedure restoreObjectState selects
the method-calls which are needed to execute the test, whereas generateStatement
generates Java statements that execute those method-calls. In the stack example, the
method-calls new IntStack(), push(2), push(3), reverse(), and pop()
are selected by restoreObjectState, and their corresponding test statements (lines 4 to 8
in Figure 3) are generated by generateStatement.

1. The restoreObjectState procedure: This procedure obtains as input an object id
objid (which represents the object obj) and a time stamp T . The concrete state of
the object at a given point of time T is defined by the values of its state variables at
that time. We represent an object state using method-sequences [17]. In GenUTest
this representation consists of the sequence of captured method-calls that had been
invoked on the object till T . Time is represented by a global sequence number
which is incremented in the capture phase before a method begins execution and
after it finishes execution. The interval [before, after] is called the method interval.
This interval is recorded, during the capture phase, together with the attributes of
the method-call (cf. Section 2). Using the before value of the method interval, an
order relation can be applied to method-calls.

In order to test obj at its correct state, all method-calls invoked on obj prior to T
need to be reinvoked. Suppose that the method m() had been invoked at time T . Us-
ing the method intervals, restoreObjectState reconstructs all method-calls that had
been invoked prior to that specific invocation. For example, let us refer to the ob-
ject IntStack_2 in Figure 2. To invoke the reverse()method which occurred
at time stamp 13 on the object IntStack_2, the methods new IntStack(),
push(2), and push(3), which had occurred before time stamp 13, must be
reinvoked.

2. The generateStatement procedure: This procedure generates a Java method-call
statement with the following form:

<return variable>=(<return type>)<object reference>.
<method name>(<arg #1,..., arg #n>);

The object reference is a string representation of the target object. It is formed
by concatenating the object type (obtained from the method signature) with the
object id. For example, an IntStack object with the object id 2 is represented as
“IntStack_2”. The return variable name is formed by creating a unique string
representation. The arguments’ array is traversed by the procedure to obtain the
values of the arguments. The representation depends on the argument’s type:
(a) A primitive value is represented according to Java rules. For instance, float val-

ues are suffixed with the character ’f’. Character strings are handled according
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to Java String rules (e.g., newlines and tabs are replaced with ’\n’ and ’\t’,
respectively) and then are surrounded by a pair of quotes.

(b) An objects is represented by an object reference. To ensure that the object is in
the correct state when it is used, restoreObjectState must be invoked with the
relevant arguments, which in turn leads to the invocation of generateStatement.

(c) An array is represented by the following code fragment:
new <ArrayType> { <elem #1>, ..., <elem #n> } ,
where elements are represented according to their type.

In the following example we demonstrate how both procedures work on a more
complicated example involving objects. Figure 4 presents the method-calls occurring
at consecutive method intervals for three different objects: obj1, obj2, and obj3.

Fig. 4. Method-calls invoked on the objects obj1, obj2, and obj3

Suppose GenUTest encounters the method-callobj1.foo1(obj2)which had oc-
curred at time stamp 31. In order to invoke the method-call, GenUTest must restore obj1,
the target object, to its correct state at time stamp 31. This is achieved by the proce-
dure restoreObjectState which selects the constructor-call obj1 = new Type1()
that had occurred at time stamp 1. Then the procedure generateStatement is invoked
in order to generate the Java statement for the method-call obj1.foo1(obj2).
During the execution of the generation procedure, it encounters the argument obj2
and in order to restore this object to its correct state at time stamp 31, the proce-
dure invokes restoreObjectState. Then, restoreObjectState selects the constructor-call
obj2 = new Type2() and the method-call obj2.goo1(obj3) which had oc-
curred at time stamps 5 and 21, respectively. For the latter method-call, generateState-
ment is invoked in order to generate its corresponding Java statements. It encounters
the argument obj3, and invokes restoreObjectState in order to restore the argument to
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1 Type1 obj1 = new Type1();
2 Type3 obj3 = new Type3();
3 Type2 obj2 = new Type2();
4 obj3.initialize();
5 obj2.goo1(obj3);
6 obj1.foo1(obj2);

Fig. 5. Statements generated to restore the correct state of obj1 and obj2.

its correct state at time stamp 21. Eventually, the algorithm generates the statements as
shown in Figure 5.

After generating the statements, the algorithm performs some post processing tasks.
One of those tasks is the removal of redundant statements. For example, when re-
placing the method-call obj1.foo1(obj2) in the previous example with the call
obj1.foo1(obj2,obj3), then the statements at lines 2 and 4 in Figure 5 would be
generated twice. This leads to an incorrect sequence of statements which in some cases
might affect the state of the objects. The post processing task detects and disposes of
such redundant statements.

3.2 Step II: Test Assertion

The assertion statements generated by GenUTest determine whether the test has passed.
There are two cases to handle: 1) the method returns a value and, 2) the method throws
an exception.

For the first case, GenUTest generates statements which compare the value returned
by the test (valuetest) with the captured return value (valuecaptured). Primitive val-
ues can be directly compared using one of JUnit’s asserts statements. In the example,
intRetVal6 (valuetest) is compared to 2 (valuecaptured) (cf. Figure. 3, line 11).

When the returned values are objects or arrays, the comparison is more complicated.
First, GenUTest generates the statements that restore the state of valuecaptured (as de-
scribed in Section 3.1). Then, GenUTest checks whether an equals method had been
implemented for the objects being compared. If equals exists, GenUTest generates a
JUnit assertTrue statement which simply checks equality by invoking the equals
method. Otherwise, special statements are generated to compare the concrete state of
the two objects. This is achieved using the Java reflection mechanism, which enables
to discern information about the fields of the objects. Then, the discovered fields are
compared according to their types.

For the second case, when a method throws an exception, GenUTest generates a
statement that informs JUnit that an exception of a specific kind is to be thrown. The
exception kind is obtained from the captured attributes of the method-call. For exam-
ple, suppose the method pop() is invoked on a newly created object IntStack_3.
This is an attempt to remove an item from an empty stack. Thus, an exception of type
NoSuchElementException is thrown. GenUTest informs JUnit to expect an ex-
ception of this type. Figure 6 presents the generated code for this scenario.
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1 @Test(expected= NoSuchElementException.class)
2 public void testpop2() {
3 // test execution statements
4 IntStack IntStack_3 = new IntStack();
5 IntStack_3.pop();
6 }

Fig. 6. Unit test generated for exception throwing pop() method-call

4 The Mock Aspect Generation Phase

In this section we describe what mock objects are and what virtual mocks are. We then
introduce a new concept, namely mock aspect, explain its advantages, and describe how
it is generated.

Testing a unit in isolation is one of the most important principles of unit testing.
However, most units are not isolated, and the dependencies between units complicate
the test process. Moreover, the developer’s intervention is required. One of the common
approaches to deal with this issue is the use of mock objects [9].

A mock object is a simulated object which mimics the behavior of a real object in a
controlled way. It is specifically customized to the Class Under Test (CUT). It can be
programmed to expect a specific sequence of method-calls with specific arguments, and
to return a specific value for each method-call. A mock object has the same interface as
the real object it mimics. The references of a CUT to real objects can be replaced with
references to mock objects, leaving the CUT unaware of which objects are addressed.
In order to support the creation of mock objects, the CUT’s code must be modified.
Virtual mocks [27] utilize aspects to enable units to use mock objects, without having
to modify the code of the CUT. This is achieved by defining pointcuts that match real
object method-calls. The associated advices which are performed at those pointcuts
redirect the method-calls to the mock objects.

Developing mock objects is a hard and tedious process. This involves activities such
as declaring new classes, implementing methods, and adding lots of bookkeeping code.
The process can be simplified using mock object frameworks. Such frameworks (e.g.,
EasyMock [21]) do the job for us. This is achieved by instructing the framework to
expect a certain sequence of method calls and to return specific values.

We make use of the advantages of both mock objects and virtual mocks. We have
defined a new concept, the mock aspect. A mock aspect is an aspect which intervenes in
the execution of the CUT. Being an aspect, it has pointcuts and advices. The pointcuts
match method-calls invoked by the CUT on real objects. The advices directly mimic
the behavior of the real object, as opposed to virtual mocks, which act as mediators to
the mock objects. GenUTest automatically generates mock aspects. Once created, the
mock aspects can easily be integrated with the CUT to enable testing it in isolation.

Figure 7 illustrates two kinds of method calls. An invocation of a CUT
method from within the unit test is called an incoming method-call. An outgo-
ing method-call is an invocation of a method in some other class from within
the CUT. In the example (cf. Figure 2), the incoming method-calls of IntStack
are: new IntStack(), push(2), push(3), reverse(), and pop(),
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Fig. 7. A Class Under Test (CUT) and its incoming and outgoing method-calls

whereas its outgoing method calls are: addFirst(2), addFirst(3), get(0),
get(1), etc.

The mock aspect has pointcuts which match outgoing method-calls. For each method
in objecti, 1 ≤ i ≤ n, there exists a different pointcut. Each pointcut matches all the
outgoing method-calls to a specific method. For example, all outgoing method-calls
to the method addFirst() are matched by a single pointcut declaration, and are
handled by a single advice. This advice mimics the effect of all these outgoing method-
calls. Thus, it needs to know which particular outgoing method-call to mimic.
Before continuing, we provide some definitions and observations.

Definition 1. mi
(

A()
)

is the method interval of method-call A(), i.e.,
[beforeA, afterA].

Definition 2. Method-call A() contains method-call B() if mi
(

A()
)

contains
mi

(

B()
)

, i.e., [beforeA, afterA] ⊃ [beforeB, afterB].

Following these definitions, we observe that:

1. Method-call B() resides within the control flow of method-call A() iff method-call
A() contains method-call B().

2. An outgoing method-call of the CUT is contained in exactly one incoming method-
call. An incoming method-call, on the other hand, may contain several outgoing
method-calls. For example, the outgoing method-calls get(0) and get(1) are
contained in the one incoming method-call reverse(), while reverse() con-
tains several other outgoing method-calls, besides those two.

Definition 3. Outgoing
(

I()
)

is the sequence < Io1(), Io2(), ..., Ion() >, where I() is
an incoming method-call and Io1(), Io2(), ..., Ion() are all the outgoing method-calls
contained in I().

Suppose the outgoing method-call o() is contained in the incoming method-call I(), and
suppose that it is the jth element in outgoing

(

I()
)

. Then, o() is uniquely identified by
the pair

(

mi(I()), j
)

.
In Figure 2 there are four outgoing method-calls to the method addFirst(). The

first outgoing method-call, addFirst(2), is contained in the incoming method-call
push(2). Hence, mi

(

push(2)
)

is [5, 8], outgoing
(

push(2)
)

is < addFirst(2) >,
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and addFirst(2) is uniquely identified by the pair ([5, 8], 1). Similarly, the second
outgoing method-calladdFirst(3) is uniquely identified by the pair ([9, 12], 1). Both
the third and fourth outgoing method-calls, addFirst(3) and addFirst(2), are
contained in the incoming method-call reverse(). Thus, mi

(

reverse()
)

is [13, 24]
and outgoing(reverse()) is < new, get(0), addF irst(3), get(1), addF irst(2) >.
The outgoing method-calls, addFirst(3) and addFirst(2), are uniquely iden-
tified by the pairs ([13, 24], 1) and ([13, 24], 2), respectively.

In order to identify a specific outgoing method-call, the advice needs to:

1. Know all the incoming method-calls of the CUT.
2. Keep track of the outgoing method-calls sequence for each incoming method-call.

The mock aspect generation algorithm works as follows:

1. For each incoming method-call I() of the CUT, outgoing
(

I()
)

is calculated.
2. Each outgoing method-call is uniquely identified.
3. The mock aspect code is created.

This requires generating the following: aspect headers, pointcuts, bookkeeping
statements, and statements that mimic the outgoing method-call. The bookkeep-
ing statements are responsible for uniquely identifying the outgoing method-calls.
These statements include matching method intervals of the incoming method-calls
and maintaining inner counters to keep track of sequence of outgoing method-calls.
For an outgoing method-call that returns a primitive value, the statement mimicking
its behavior is one that returns the value. When an object is returned, it needs to be
in the correct state. This is achieved by using the procedure restoreObjectState
described in Section 3.

Figure 8 shows a code snippet of the mock aspect for the CUT IntStack. This code
mimics outgoing method-calls to the method get().

5 Related Work

There exist various tools that automatically generate unit tests. Unit test creation in
those tools requires generating test inputs, i.e., method-call sequences, and providing
test assertions which determine whether a test passes.

There are several techniques to generate test inputs. Tools such as [3, 12, 10, 1], cat-
egorized as random execution tools, generate a random sequence of method calls with
random arguments. Symbolic execution tools, such as [18, 16, 2], generate a sequence of
method calls with symbolic arguments. By statically analyzing the CUT’s code they pro-
vide real values for the arguments. Capture and replay tools, e.g. [19, 14, 11, 5], capture
and record method sequences, argument values, and return values observed in the real,
or test, executions of software. The recorded data can be replayed for testing purposes.

The capture and replay tools can also serve the creation of test assertions. This is done
by employing the recorded values. In order to provide test assertions other techniques can
be used as well. Tools such as [3] analyze exceptions thrown by the CUT and determine
whether they uncover faults in the CUT. Some tools, e.g. [12, 4, 2], infer an operational
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1 // ensure that only CUT outgoing methods
2 // are intercepted and prevent advices
3 // from intercepting themselves
4 pointcut restriction(): !adviceexecution() &&
5 && this(testedClass) && !target(testedClass);
6
7 int around(): restriction() &&
8 call (Object java.util.LinkedList.get(int))
9 {

10 // match current incoming method interval [before,after]
11 // to associated incoming interval [13,24]
12 if (before == 13 && after == 24) {
13 // match inner counter
14 if (innerCounter == 1) {
15 innerCounter++;
16 return 3;
17 }
18 // match inner counter
19 if (innerCounter == 2) {
20 innerCounter++;
21 return 2;
22 }
23 }
24 }

Fig. 8. A code snippet of the mock aspect generated for IntStack

model from manual tests or from user specifications. Violations of pre-conditions, post-
conditions, or invariants may suggest faulty behavior of the code under test.

GenUTest generates both method calls and test assertions based on the method-call
sequences and the values captured in real executions. Thus, it is related to capture and
replay tools. In [19, 14, 11, 5] the capture process of Java programs is implemented by
applying complicated instrumentation techniques on the target’s bytecode. These may
include renaming interfaces, adding members and methods to existing classes, handling
language specific constructs, and even modifying Java runtime libraries. The instrumen-
tation technique used in GenUTest is quite simple and relies on weaving aspects. This is
sufficient to effectively implement the capture mechanism in a natural and elegant man-
ner. Furthermore, it is easy to implement the tool for other aspect oriented programming
languages. Saff et al. [14], in their work on automatic test factoring, partition the system
into two parts, a tested component T and its environment E. They limit the capturing
and recording process to the interactions that occur between T and E only. These inter-
actions are used to generate mock objects that comprise E’, the mimicked environment.
During testing, T is tested with E’, and E’ can only be used for this particular partition.
In addition, it is required that T will be instrumented to enable the use of mock objects.
Similar techniques are used in SCARPE [11], where the replay scaffolding technique
can also be used to mock the behavior of the environment.
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GenUTest captures and record interactions between all objects in the system. Besides
the creation of mock aspects, GenUTest also generates unit tests. Each unit test is in an
independent entity, thus the developer can execute any subset of them. Moreover, their
use does not require the instrumentation of the CUT.

The techniques employed in our work, in [11], and in [14], are based on method
sequence object representation. In the works described in [19] and in [5], the concrete
state of an invoked object prior and after each method-call is captured and recorded as
well. In Substra [19], the captured object states are used to infer constraints on the or-
der of invoked method-calls. Based on these constraints new method-call sequences are
generated with random values for arguments. In [5] the object states and sequences are
used to create entities called differential unit test cases. Their motivation and goals are
similar to those discussed in our paper. However, the use of concrete object states incurs
a heavy price on the performance and storage requirements of their framework. Also,
since concrete object state representation is composed of all the fields of an object, it is
more sensitive to changes introduced into the unit as compared to the method sequence
representation comprised of public method invocations. Thus, method sequence repre-
sentation seems to be more suitable for unit testing, which perform black box testing of
the unit, and for refactoring.

6 Conclusion

GenUTest is a tool that captures the execution of Java programs and automatically gen-
erates unit tests and corresponding mock aspects.

We have employed GenUTest in several open source projects. One is a small sized
project called NanoXML [26]. It is an XML parser consisting of 24 classes and about
7,700 lines of code. Another project that we have used to test GenUTest is JODE (Java
Optimize and Decompile Environment) [24], a medium sized Java project which con-
sists of approximately 160 classes and about 35,000 lines of code. GenUTest effectively
captured interactions and generated unit tests and mock objects. We intend to examine
GenUTest also with larger examples.

The unit tests generated by GenUTest depend on the specific run of the CUTs. In or-
der to examine code coverage of a given run, we have used the EclEmma code coverage
tool [22]. It turned out that the execution of the generated unit tests achieve less code
coverage than the execution of the system test from which they are derived.

In the future, we intend to increase the code coverage obtained by the generated
unit tests. We will also improve the tool, for example by better handling inner classes,
supporting multi-threaded programs, performance, etc.
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