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Abstract. Gene assembly in ciliates is an impressive computational
process. Ciliates have a unique way of storing their genetic information
in two fundamentally different forms within their two types of nuclei.
Micronuclear genes are broken into blocks (called MDSs), with MDSs
shuffled and separated by non-coding material; some of the MDSs may
even be inverted. During gene assembly, all MDSs are sorted in the cor-
rect order to yield the transcription-able macronuclear gene. Based on
the intramolecular model for gene assembly, we prove in this paper that
gene assembly may be used in principle to solve computational problems.
We prove that any given instance of the hamiltonian path problem may
be encoded in a suitable way in the form of an ‘artificial’ gene so that
gene assembly is successful on that gene-like pattern if and only if the
given problem has an affirmative answer.

1 Introduction

Ciliates are unicellular organisms existing for over a billion years, forming a
group of thousands of species. A common feature they share is that their cell
contains two kinds of nuclei that have different functionality - micronuclei act
as germline nuclei and macronuclei act as the somatic nuclei.

During the sexual reproduction, the macronuclei are destroyed and one hap-
loid micronucleus is transformed into a macronucleus. The gene operations have
a definite computational flavor: some DNA segments (internally eliminated se-
quences, IES) are eliminated, others (macronuclear destined sequences, MDS)
are reordered; some MDSs are also inverted. The process is driven by splicing
on specific sequences on the ends of MDSs, called pointers: the end of each MDS
matches the beginning of the MDS that should follow it in the assembled gene.
Two main models exist for the gene assembly, one intermolecular, see [13,14] and
one intramolecular, see [8,18]. In this article we consider the latter one.

In 1994 a famous experiment of L. Adleman took place giving an example
how biological processes can be interpreted as computing (a small instance of
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hamiltonian path problem, HPP was represented by DNA molecules and solved
by molecular biology tools). The current paper considers replacing such DNA
operations as annealing by ciliate operations, therefore, we speak about ciliate-
based computing.

Indeed, what ciliates do in gene assembly is sorting, inversion and excision
of DNA sequences. Therefore, our strategy is to encode an arbitrary instance
of HPP into a hypothetical micronuclear gene, assemble the gene using the in-
tramolecular model, and filter the result of the assembly to get the answer to
HPP, if there is any.

This is a novel approach to DNA computing, using a model for gene assembly
in ciliates. Although the computational flavor of ciliates has been shown pre-
viously in[13,14,15] where the Turing universality of various assembly models
was proved, this is the first attempt at using (in principle) gene assembly for
solving mathematical problems. If ever implemented in living cells, the solution
potentially has the advantage that the cell itself implements many steps of the
procedure, including selecting the resulting substring and its replication. It is
important to underline that we only propose here a conceptual (theoretical) ap-
proach to ciliate-based computing. We only briefly discuss some issues related
to potential experimental implementations of our approach in Section 8.

2 Definitions

For an alphabet Σ we denote by Σ∗ the set of all finite strings over Σ. We
denote the empty string by Λ. For strings u, v over Σ we say that u is a substring
of v, denoted u ≤ v, if v = xuy, for some strings x, y. Let Σ = {a | a ∈ Σ} be
complement symbols of Σ; we call u ∈ (Σ∪Σ)∗ a signed string. The complement
operation is extended to signed strings by a = a, a ∈ Σ and a1a2 · · ·ak =
ak · · · a2 a1, ai ∈ Σ ∪ Σ, 1 ≤ i ≤ k.

We call a (directed) graph a tuple G = (V, E), where V is a finite set of nodes,
and E ⊆ {(p, q) | p, q ∈ V } is a set of edges. A sequence q1q2 · · · qk of nodes
qi ∈ V , 1 ≤ i ≤ k is called a path if (qi, qi+1) ∈ E, 1 ≤ i ≤ k − 1.

The hamiltonian Path Problem for a directed graph G = (V, E), given the
initial node p and a final node q is the problem of deciding whether G has an
acyclic path from p to q containing all nodes of the graph (it is implicit in this
definition that all nodes are visited only once). Such a path is called hamiltonian.
The hamiltonian path problem is a known NP-complete problem, see [16].

For some results we need also the following graph construction, which we
call bipartite transformation: given a graph G = (V, E) we construct a graph
bi(G) = G′ = (V ′, E′) where V ′ = {p, p′ | p ∈ V } and E′ = {(p′, q) | (p, q) ∈
E} ∪ {(p, p′) | p ∈ V }. In other words, we split each node p in two nodes p and
p′ connected by an edge, and replace the edges (p, q) of the original graph by
(p′, q). This gives us a bipartite graph where every edge (p, q) in G corresponds
to a path pp′q in G′.

Consider a graph G = (V, E) with V = {p1, · · · , pn} and the hamiltonian
path problem from p1 to pn. Due to the technical reasons, throughout the paper
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we use the following transformation: add two nodes b, e �∈ V to G and look for
paths from b to e in graph ext(G, p1, pn) = G′′ = (V ∪{b, e}, E∪{(b, p1), (pn, e)}).
Notice that the edge from b is unique and so is the edge to e, and there are no
edges to b and no edges from e. Clearly, u is a path in G from p1 to pn if and
only if bue is a path in G′ from b to e. Therefore, this HPP is equivalent to the
original one.

Example 1. For the graph G1 = (V1 = {1, 2, 3}, E1 = {(2, 1), (3, 1), (3, 2)}) we
illustrate in Figure 1 the graph ext(G1, 3, 1).

�������	b ���������	3 �����������	2 ���������	1 ���������	e

Fig. 1. A hamiltonian path in ext(G1, 3, 1) is b321e

3 Gene Assembly

The following three molecular operations are postulated in the intramolecular
model to explain the gene assembly process, see [8] and [18]:

– Loop, Direct Repeat (ld) is applied on a pair of directly repeating pointers in
the molecule. The molecule folds on itself to form a loop so that recombina-
tion is facilitated on the two occurrences of that pointer. As a result, the part
of the molecule between repeating pointers is excised from the molecule in
the form of circular molecule, while the parts from both sides of the excised
molecule splice together;

– Hairpin, Inverted Repeat (hi) is applied on a pair of pointers, where one is
an inverted repeat of the other one. The molecule is folded as a hairpin to
facilitate recombination on those pointers. As a result of the operation, the
part of the molecule flanked by the repeating pointers is inverted;

– Double Loop, Alternating Direct Repeat (dlad) is applicable to the overlap-
ping direct repetitions of pointers, i.e., if we have a molecule of the form
· · · p · · · q · · · p · · · q · · · . The molecule folds to form a double loop so that a
double recombination on p and q is facilitated. As a result, the parts of
the molecule between the first and the second occurrences of p and q are
exchanged.

A sequence of nucleotides is considered to act as a pointer only when placed
at the border of an MDS and an IES. Note that after applying an operation
on a certain pointer, that pointer remains as a sequence of nucleotides in the
molecule, but ceases to participate in other operations, because it does not reside
anymore on the border between an IES and an MDS.

We represent each molecule through its sequence of MDSs. In turn, we repre-
sent each MDS through its incoming and outgoing pointers, as well as through
the sequence of pointers incorporated in the MDS as a result of applying previ-
ous operations. To formalize this definition, let ΣP = {p1, p2, · · · , pn} be the set
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of pointers. Then we represent an MDS by a triple M = (p, u, q) where p, q ∈ ΣP

are called incoming and outgoing pointers, respectively, and u ∈ Σ∗
P is the con-

tent. We say that the length of M is |M | = |puq|. Let us denote by ΣM the set
{(p, u, q) | p, q ∈ ΣP , u ∈ Σ∗

P } of all MDSs. The complement of an MDS (p, u, q)
is (q, u, p) and ΣM = {M | M ∈ ΣM}. Finally, we call descriptors the strings
from the set S = (ΣP ∪ ΣP ∪ ΣM ∪ ΣM )∗.

It is important to note that we consider in this paper descriptors in which
pointers may have an arbitrary number of occurrences. Although in any success-
ful assembly only two such occurrences are actually used, this multiplicity is the
foundation of our ciliate-based search algorithm for a solution to HPP: choos-
ing non-deterministically various occurrences of a given pointer in the assembly
yield the detection of various paths in the given graph.

We formalize the ld, hi, and dlad operations as rewriting rules on descriptors
as shown bellow. Note that all rewriting rules are non-deterministic: in general,
for a given input, a rule may be applied in several ways, leading to different
results. We assume here a non-deterministic computing paradigm: a descriptor
may be assembled successfully if there exists a sequence of rules leading to its
assembly, see bellow for formal details.

1 ψ1(q, u, p)ψ2(p, v, r)ψ3 ⇒ldp ψ1(q, upv, r)ψ3;
2.1 ψ1(p, u, q)ψ2(p, v, r)ψ3 ⇒hip ψ1pψ2(q, u p v, r)ψ3;
2.2 ψ1(q, u, p)ψ2(r, v, p)ψ3 ⇒hip ψ1(q, upv, r)ψ2 pψ3;
3.1 ψ1(p, u1, r1)ψ2(q, u2, r2)ψ3(r3, u3, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1pψ4(r4, u4qu2, r2)ψ3(r3, u3pu1, r1)ψ2qψ5;
3.2 ψ1(p, u1, r1)ψ2(r2, u2, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1pψ4qψ3(r3, u3pu1, r1)ψ2(r2, u2qu4, r4)ψ5;
3.3 ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, r3)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4(r4, u4qu2, r2)ψ3pψ2qψ5;
3.4 ψ1(r1, u1, p)ψ2(r2, u2, q)ψ3(p, u3, r3)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4qψ3pψ2(r2, u2qu4, r4)ψ5;
3.1′ ψ1(p, u1, r1)ψ2(q, u2, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1pψ4(r4, u4qu2pu1, r1)ψ2qψ5;
3.2′ ψ1(p, u1, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1pψ4qψ3(r3, u3pu1qu4, r4)ψ5;
3.3′ ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3qu2, r2)ψ3pψ2qψ5;

where ψi are descriptors, q, r, ri are pointers, u, v, ui are sequences of pointers.
Consider also the operation cut on descriptors defined in the following way:

cut(ψ1(b, u, e)ψ2) = (b, u, e). We call an MDS (b, u, e) a successful assembly of
the descriptor ψ if (b, u, e) = cut(φ1(φ2(· · · φk(ψ) · · · ))), with φ1, · · · , φk being
some ld, hi, or dlad rules.
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For a descriptor ψ we denote by Lld(ψ) (Lhi(ψ), Ldlad(ψ)) the set of all MDSs
assembled successfully from ψ using only ld-rules (hi, dlad, respectively).

For more details about the formalization of the gene structure and the in-
tramolecular operations we refer to [4], [5], [6], [7], [9], [10], [11], [20], [21], as
well as to the monograph [3].

4 Computing Through Gene Assembly

Our principle of computing through gene assembly is the following: given a
(mathematical) problem, we encode its input into a descriptor as defined in
the previous section in such a way that the problem has a solution if and only
if the associated descriptor has a successful assembly with certain properties.
Moreover, the result of the assembly encodes the solution to the problem.

As our computational problem of choice we consider in this paper the hamil-
tonian path problem (HPP): given a directed graph G = (V, E) and two nodes
p, q ∈ V one needs to decide whether or not G has a hamiltonian path from p
to q. To solve the problem through the gene assembly by ld only, hi only or dlad
only, we encode the set of edges of graph G′ = ext(G, p, q) into certain descrip-
tors ψld

G, ψhi
G or ψdlad

G respectively. Also, we encode any path v in G′ through an
MDS Mv using a construction described bellow. We prove then in each case that
the graph G contains a hamiltonian path u if and only if descriptors ψld

G, ψhi
G and

ψdlad
G can be successfully assembled to descriptors containing MDS Mbue.
Let G = (V, E) be a directed graph and f = (p′, q′) ∈ E an edge of G. We

then associate to f the MDS Mf = (p′, Λ, q′). In general, for a set of edges
{(q1, q2), (q2, q3), · · · (qk−1, qk)} of G, we encode the path u = q1q2 · · · qk−1qk of
G through the MDS Mu = (q1, q2 · · · qk−1, qk).

We say that a node r appears in an MDS (p, u, q) if symbol r appears in the
string puq.

5 Computing Using ld Only

In this section we consider a (theoretical) solution to the hamiltonian path prob-
lem through gene assembly with ld only to be used throughout the assembly.

Let G = (V, E) be a directed graph with V = {p1, p2, · · · , pn}, n > 0, and
consider the hamiltonian path problem with p1 as the starting node and pn as
the ending node. We reduce it to the same problem for graph G′ = ext(G, p1, pn),
starting node b and ending node e.

We say that a descriptor ψG is associated to G if it is of the form

ψld
G = (b, Λ, p1)αn−1

G (pn, Λ, e), where αG =
∏

(p,q)∈E

(p, Λ, q) is a descriptor

encoding all edges of G. Note that in general there are many descriptors associ-
ated to G, depending on the order in which the edges are encoded in αG. As far
as our solution to HPP is concerned, we may freely choose any of them.
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Example 2. Consider the graph G1 from Example 1. Then ψld
G1

= (b, Λ, 3) (2, Λ, 1)
(3, Λ, 1)(3, Λ, 2) (2, Λ, 1)(3, Λ, 1)(3, Λ, 2)(1, Λ, e) is associated to G1, and Lld(ψld

G1
)

= {(b, 321, e), (b, 31, e)}.

Using the encoding presented above, we can now prove that gene assembly solves
the HPP problem. Let G be a directed graph and consider the hamiltonian path
problem from b to e for G′ = ext(G, p1, pn). Let ψld

G be an arbitrary descriptor
associated to G. Then the following results hold.

Lemma 1. Any successfully assembled MDS M ∈ Lld(ψld
G) is associated to a

path from b to e in G′.

Lemma 2. For every acyclic path u from b to e in G′, Mu ∈ Lld(ψld
G).

Theorem 1. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists M ∈ Lld(ψld

G) where all
nodes appear and |M | = |V |+2. In this case, M is an encoding of a hamiltonian
path of G′ = ext(G, p1, pn) from b to e.

6 Computing Using hi Only

In this section we consider a (theoretical) solution to the HPP problem through
the gene assembly by hi operation only.

Consider a directed graph G = (V, E) with V = {p1, · · · , pn}, n > 0 and the
hamiltonian path problem with p1 as the starting node and pn as the ending
node. We solve an equivalent HPP for G′ = ext(G, p1, pn) from b to e instead.

We say that a descriptor ψhi
G is associated to G if it is of the form

ψhi
G = (b, Λ, p1)

∏

(p,q)∈E∪{(pn,e)}
gp,q, where gp,q = (x, Λ, y)(p, Λ, q)(z, Λ, y)

is a descriptor encoding an edge (p, q). The order of the descriptors gp,q in ψhi
G

is not important.

Example 3. Consider the graph G1 from Example 1. Then ψhi
G1

= (b, Λ, 3)
(x, Λ, y)(2, Λ, 1)(z, Λ, y) (x, Λ, y)(3, Λ, 1)(z, Λ, y)(x, Λ, y)(3, Λ, 2)(z, Λ, y)(x, Λ, y)
(1, Λ, e)(z, Λ, y) is associated to G1. The corresponding successful assemblies are
Lhi(ψhi

G1
) = {(b, 321, e), (b, 31, e)}.

Using the encoding presented above, we can now prove that hi-operations solve
the HPP problem. Consider a directed graph G and the hamiltonian path prob-
lem from b to e for G′ = ext(G, p1, pn). Then the following results hold.

Lemma 3. Any successfully assembled MDS M ∈ Lhi(ψhi
G) is associated to a

path from b to e in G′.

We omit the proof, since its idea is similar to that from Lemma 1.
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Lemma 4. For every path u from b to e in G′ without repeating edges, there
exists an MDS Mu ∈ Lhi(ψhi

G).

Theorem 2. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists MDS M ∈ Lhi(ψhi

G)
where all nodes appear and |M | = |V | + 2. In this case, M is an encoding of a
hamiltonian path of G′ = ext(G, p1, pn) from b to e.

Consider the bipartite transformation bi(G) applied to graph G. In this case,
for any node p the edge (p, p′) is encoded only once, so only acyclic paths are
assembled. Therefore, the following corollary holds.

Corollary 1. The following statements are equivalent: (a) The hamiltonian path
problem for graph G = (V, E) and nodes p1, pn has an affirmative answer;
(b) there exists M ∈ Lhi(ψhi

bi(G)) where all nodes appear (c) there exists M ∈
Lhi(ψhi

bi(G)) with |M | = 2|V | + 2. Moreover, the MDS M from (b) and (c) is an
encoding of a hamiltonian path of ext(bi(G), p1, p

′
n) from b to e.

7 Computing Using dlad Only

We now consider a (theoretical) solution to the HPP problem through the gene
assembly using only dlad operation.

Consider a directed graph G = (V, E) with V = {p1, · · · , pn}, n > 0 and the
hamiltonian path problem in G′ = ext(G, p1, pn) from b to e.

We say that a descriptor ψdlad
G is associated to G if it is of the form

ψdlad
G = gb,p1

⎛

⎝
∏

(p,q)∈E∪{(pn,e)}
gp,q

⎞

⎠ (r, x)|E|, where gp,q = (p, q)(x, y)

is a descriptor encoding an edge (p, q); we may choose any order of encoding
edges (with the exception gb,p1 must be the first) in ψdlad

G .

Example 4. Consider the graph G1 from Example 1. Then ψdlad
G1

= (b, Λ, 3)
(x, Λ, y)(2, Λ, 1)(x, Λ, y) (3, Λ, 1)(x, Λ, y)(3, Λ, 2)(x, Λ, y)(1, Λ, e)(x, Λ, y)(r, Λ, x)
(r, Λ, x)(r, Λ, x)(r, Λ, x)(r, Λ, x) is associated to G1. The successful assemblies are
Ldlad(ψdlad

G1
) = {(b, 321, e), (b, 31, e)}.

Equipped with this encoding, we now prove that dlad solves the HPP problem.
Consider a directed graph G and the hamiltonian path problem in G′ from b to
e. The following results hold.

Lemma 5. Any successfully assembled MDS M ∈ Ldlad(ψdlad
G ) is associated to

a path from b to e.

We omit the proof, since its idea is again similar to that in Lemma 1.

Lemma 6. For any path u without repeating edges, exists MDS
Mu ∈ Ldlad(ψdlad

G ).
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Theorem 3. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists MDS M ∈ Ldlad(ψdlad

G )
where all nodes appear and |M | = |V | + 2. In this case, M is an encoding of a
hamiltonian path of G′ = ext(G, p1, pn) from b to e.

Consider the bipartite transformation bi(G) applied to graph G. In this case,
for any node p the edge (p, p′) is encoded only once, so only acyclic paths are
assembled. Therefore, the following corollary holds.

Corollary 2. The following statements are equivalent: (a) The hamiltonian path
problem for graph G = (V, E) and nodes p1, pn has an affirmative answer; (b)
there exists M ∈ Ldlad(ψdlad

bi(G)) where all nodes appear; (c) there exists M ∈
Ldlad(ψdlad

bi(G)) with |M | = 2|V |+2. Moreover, the MDS M from (b) and (c) is an
encoding of a hamiltonian path of ext(bi(G), p1, p

′
n) from b to e.

8 Discussion

It has been observed many times in the literature that gene assembly in ciliates
has a definite computational flavor. Two mathematical models were proposed to
model gene assembly as a computational process transforming one structure into
another one. Moreover, it has been shown that both models are Turing universal:
assuming that a Turing machine may be encoded in the form of an artificial gene
of high enough length and present in a high enough number of copies, then the
Turing machine may be simulated through gene assembly, see [13,14,15]. The
approach that we take in this paper is different. Given a mathematical problem
such as HPP, we ask the question how to encode the problem into a gene pattern
such that solving the problem is equivalent with assembling the gene. Using
each of the three operations ld, hi, and dlad, we show that the construction
is indeed possible, at least theoretically. It is important to underline here the
connection with the computational principle in the celebrated experiment of
Adleman [1]. While in [1], one encodes the given graph into a set of molecules
that recombine among themselves to yield in principle the encodings of all paths
through the graph, we encode our graph into a set of sequences that are placed
in an arbitrary order on a chromosome-like molecule. This molecule may be
assembled in many possible ways; in fact, the encodings of all paths of a certain
length may be assembled in this way. Although a micronuclear gene is presented
in several copies in a ciliate, it remains to be tested experimentally if a ciliate
would assemble two or more identical copies of our artificial gene into several
different forms. Answering this question would clarify the scale of a prototype
experiment to test our approach, in terms of the number of ciliates required.

Some recent results of [2] and [22] suggest that RNA-template could be used to
control and direct gene assembly. Based on this, one may attempt to implement
our ciliate-based solutions to HPP. For example, one may inject templates to
indicate all possibilities in which two MDSs may recombine. The amount of such
templates would thus be at most quadratic in the number of MDSs used by our
encoding. Clearly, this can only be validated through laboratory experiments.
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