
Constant-Size Tileset for Solving an
NP-Complete Problem in Nondeterministic

Linear Time

Yuriy Brun

Department of Computer Science
University of Southern California

Los Angeles, CA 90089
ybrun@usc.edu

Abstract. The tile assembly model, a formal model of crystal growth, is
of special interest to computer scientists and mathematicians because it is
universal [1]. Therefore, tile assembly model systems can compute all the
functions that computers compute. In this paper, I formally define what
it means for a system to nondeterministically decide a set, and present a
system that solves an NP-complete problem called SubsetSum. Because
of the nature of NP-complete problems, this system can be used to solve
all NP problems in polynomial time, with high probability. While the
proof that the tile assembly model is universal [2] implies the construction
of such systems, those systems are in some sense “large” and “slow.” The
system presented here uses 49 = Θ(1) different tiles and computes in time
linear in the input size. I also propose how such systems can be leveraged
to program large distributed software systems.

1 Introduction

Self-assembly is a process that is ubiquitous in nature. Systems form on all
scales via self-assembly: atoms self-assemble to form molecules, molecules to form
complexes, and stars and planets to form galaxies. One manifestation of self-
assembly is crystal growth: molecules self-assembling to form crystals. Crystal
growth is an interesting area of research for computer scientists because it has
been shown that, in theory, under careful control, crystals can compute [2]. The
field of DNA computation demonstrated that DNA can be used to compute [3],
solving NP-complete problems such as the satisfiability problem [4,5]. This idea
of using molecules to compute nondeterministically is the driving motivation
behind my work.

Winfree showed that DNA computation is Turing-universal [6]. While DNA
computation suffers from relatively high error rates, the study of self-assembly
shows how to utilize redundancy to design systems with built-in error correc-
tion [7,8,9,10,11]. Researchers have used DNA to assemble crystals with patterns
of binary counters [12] and Sierpinski triangles [13], but while those crystals are
deterministic, generating nondeterministic crystals may hold the power to solv-
ing complex problems quickly.
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Two important questions about self-assembling systems that create shapes or
compute functions are: “what is a minimal tile set that can accomplish this goal?”
and “what is the minimum assembly time for this system?” For nondeterministic
computation, the following question is also important: “what is the probability
of assembling the crystal that encodes the solution?” Researchers have answered
these questions for n-long linear polymers [14] and n × n squares (minimum
tileset of size Θ( log n

log log n ) and optimal assembly time of Θ(n)) [15,16,17]. A key
issue related to assembling squares is the assembly of small binary counters,
which theoretically can have as few as 7 tile types [18].

Other early attempts at nondeterministic computation include a proposal by
Lagoudakis et al. to solve the satisfiability problem [19]. They informally define a
system that nondeterministically computes whether or not an n-variable boolean
formula is satisfiable using Θ(n2) distinct tiles. In contrast, all the systems I
present in this paper use Θ(1) distinct tiles.

Barish et al. have demonstrated a DNA implementation of tile systems, one
that copies an input and another that counts in binary [12]. Similarly, Rothe-
mund et al. have demonstrated a DNA implementation of a tile system that
computes the xor function, resulting in a Sierpinski triangle [13]. These sys-
tems grow crystals using double-crossover complexes [20] as tiles. The theoretical
underpinnings of these systems are closely related to the work presented here
because these systems compute functions.

1.1 Tile Assembly Model

The tile assembly model [15,1,2] is a formal model of crystal growth. It was
designed to model self-assembly of molecules such as DNA. It is an extension of
a model proposed by Wang [21]. The model was fully defined by Rothemund and
Winfree [15], and the definitions I use are similar to those. Full formal definitions
can be found in [22].

Intuitively, the model has tiles, or squares, that stick or do not stick together
based on various binding domains on their four sides. Each tile has a binding
domain on its north, east, south, and west side. The four binding domains,
elements of a finite alphabet Σ, define the type of the tile. The strength of the
binding domains are defined by the strength function g. The placement of some
tiles on a 2-D grid is called a configuration, and a tile may attach in empty
positions on the grid if the total strength of all the binding domains on that tile
that match its neighbors exceeds the current temperature (a natural number).
Finally, a tile system S is a triple 〈T, g, τ〉, where T is a finite set of tiles, g is a
strength function, and τ ∈ N is the temperature, where N = Z≥0.

Starting from a seed configuration S, tiles may attach to form new configura-
tions. If that process terminates, the resulting configuration is said to be final.
At some times, it may be possible for more than one tile to attach at a given
position, or there may be more than one position where a tile can attach. If for
all sequences of tile attachments, all possible final configurations are identical,
then S is said to produce a unique final configuration on S. The assembly time of
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the system is the minimal number of steps it takes to build a final configuration,
assuming maximum parallelism.

In [22] and [23], I give formal definitions of what it means for a tile system
to compute functions, both deterministically and nondeterministically. Here, I
am interested in computing a particular subset of functions, the characteristic
functions of subsets of the natural numbers. A characteristic function of a set
has value 1 on arguments that are elements of that set and value 0 on arguments
that are not elements of that set. Typically, in computer science, programs and
systems that compute such functions are said to decide the set. Since for all
constants m ∈ N, the cardinalities of N

m and N are the same, it makes sense to
talk about deciding subsets of N

m.
Let Ω ⊆ N

m be a set. A tile system S = 〈T, g, τ〉 nondeterministically decides
Ω with identifier tile r ∈ T iff for all a ∈ N

m, there exists a seed configuration S
that encodes a and for all final configurations F that S produces on S, r ∈ F (Z2)
iff a ∈ Ω, and there exists at least one final configuration F with r attached. In
other words, the identifier tile r attaches to one or more of the nondeterministic
executions iff the seed encodes an element of Ω.

This paper provides the definitions necessary for understanding the below
constructions and theorems. More complete versions of the definitions and formal
proofs of the theorems presented below can be found in [24]. In the remainder
of this paper, I require systems to encode their inputs in binary, and call the set
of tiles used to encode the input Γ .

2 Solving SubsetSum

SubsetSum is a well known NP-complete problem. The set SubsetSum is a set
of pairs: a finite sequence B = 〈B1, B2, · · · , Bn〉 ∈ N

n, and a target number
v ∈ N, such that 〈B, v〉 ∈ SubsetSum iff ∃c = 〈c1, c2, · · · , cn〉 ∈ {0, 1}n such
that

∑n
i=1 ciBi = v. In other words, the sum of some subset of numbers of B

equals exactly v.
In order to explain the system that nondeterministically decides SubsetSum,

I will first define three smaller systems that perform pieces of the necessary com-
putation. The first system subtracts numbers, and given the right conditions, will
subtract a Bi from v. The second system computes the identity function and just
copies information (this system will be used when a Bi should not be subtracted
from v). The third system nondeterministically guesseswhether the nextBi should
or should not be subtracted. Finally, I will add a few other tiles that ensure that the
computations went as planned and attach an identifier tile if the execution found
that 〈B, v〉 ∈ SubsetSum. The system works by nondeterministically choosing a
subset of B to subtract from v and comparing the result to 0.

2.1 Subtraction

In this section, I will describe a system that subtracts positive integers. It is
similar to one of the addition systems from [22], contains 16 tiles, and will
subtract one bit per row of computation.
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Figure 1(a) shows the 16 tiles of T−. The value in the middle of each tile t
represents that tile’s v(t) value. Intuitively, the system will subtract the ith bit
on the ith row. The tiles to the right of the ith location will be blue; the tile in
the ith location will be yellow; the next tile, the one in the (i+1)st location, will
be magenta; and the rest of the tiles will be green. The purpose of the yellow
and magenta tiles is to compute the diagonal line, marking the ith position on
the ith row.

S− is a system that is capable of subtracting numbers, and it does so in
time linear in the input. Full proofs of these statements are available in [24].
In Figure 1(b), the system computes 221 − 214 = 7 In Figure 1(c), the system
attempts to compute 221 − 246, but because 246 > 221, the computation fails.
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Fig. 1. There are 16 tiles in T− (a). The value in the middle of each tile t represents that
tile’s v(t) value. In (b), the system subtracts 214 = 110101102 from 221 = 110111012

to get 7 = 1112. The inputs are encoded along the bottom row (221 = 110111012) and
right-most column (214 = 110101102). The output is on the top row (7 = 000001112).
Because 214 ≤ 221, all the west binding domains of the left-most column contain a 0.
In (c), the system attempts to subtract 246 = 11110110 from 221 = 110111012 , but
because 246 > 221, the computation fails and indicates its failure with the top- and
left-most west binding domain containing a 1.
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This system is very similar to an adding system from [22], but not the smallest
adding system from [22]. While this system has 16 tiles, it is possible to design
a subtracting system with 8 tiles, that is similar to the 8-tile adding system
from [22].

2.2 Identity

I now describe a system that ignores the input on the right-most column, and
simply copies upwards the input from the bottom row. This is a fairly straight-
forward system that will not need much explanation. Figure 2(a) shows the 4
tiles in Tx and Figure 2(b) shows a sample execution of the Sx system.
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Fig. 2. There are 4 tiles in Tx (a); the value in the middle of each tile t represents that
tile’s v(t) value. In an example of an Sx execution (b), the system simply copies the
input on the bottom row upwards, to the top column.

Sx is a system that is capable of computing the identify function, and it does
so in time linear in the input. Again, full proofs of these statements are available
in [24].

2.3 Nondeterministic Guess

In this section, I describe a system that nondeterministically decides whether or
not the next Bi should be subtracted from v. It does so by encoding the input
for either the S− system or the Sx system.

S? is a system that is capable of nondeterministically preparing a valid seed
configuration for either S− or Sx, and it does so in time linear in the input. Full
proofs of these statements are available in [24].

Figure 3 shows two possible executions of S?. In Figure 3(b), the system at-
taches tiles with ! east-west binding domains, preparing a valid seed for S−,
and in Figure 3(c), the system attaches tiles with x east-west binding domains,
preparing a valid seed for Sx. Only one tile, the orange tile, attaches nondeter-
ministically, determining which tiles attach to its west.
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Fig. 3. There are 20 tiles in T? (a). The value in the middle of each tile t represents that
tile’s v(t) value. Unlike the red tiles, the orange tiles do not have unique east-south
binding domain pairs, and thus will attach nondeterministically. In (b), the system
attaches tiles with ! east-west binding domains, preparing a valid seed for S−, and in
(c), the system attaches tiles with x east-west binding domains, preparing a valid seed
for Sx.

|

|

0

|

|

!

|

|

x

|

|
#0

0
| |

*0

| |

x0

| |

|
|

|

|

*0 |top

|

left

?

?

#0 0b0

#1 1b1

0
0t0

1
1t1

Fig. 4. There are 9 tiles in T� (a); the black tile with a � in the middle will serve as
the identifier tile. There are 7 tiles in ΓSS (b); the value in the middle of each tile t
represents that tile’s v(t) value and each tile’s name is written on its left.

2.4 Deciding SubsetSum

I have described three systems that I will now use to design a system to decide
SubsetSum. Intuitively, I plan to write out the elements of B on a column and v
on a row, and the system will nondeterministically choose some of the elements
from B to subtract from v. The system will then check to make sure that no
subtracted element was larger than the number it was being subtracted from,
and whether the result is 0. If the result is 0, then a special identifier tile will
attach to signify that 〈B, v〉 ∈ SubsetSum.

Theorem 1. Let ΣSS = {0, 1, �0, �1, #0, #1, x0, x1, #0, #1, ?, !, 0, 1, x0,
x1, �0, �1}. Let TSS = T−∪Tx ∪T?∪T�, where T� is defined by Figure 4(a). Let
gSS = 1 and τSS = 2. Let SSS = 〈TSS , gSS , τSS〉. Then SSS nondeterministically
decides SubsetSum with the black � tile from T� as the identifier tile.

I refer the reader to [24] for a full proof of theorem 1.
Figure 5 shows an example execution of SSS . Figure 5(a) encodes a seed con-

figuration with v = 75 = 10010112 along the bottom row and B = 〈11 = 10112,
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(b)

Fig. 5. An example of SSS solving a SubsetSum problem. Here, v = 75 = 10010112 ,
and B = 〈11 = 10112, 25 = 110012 , 37 = 1001012 , 39 = 1001112〉. The seed configura-
tion encodes v on the bottom row and B on the right-most column (a). The fact that
75 = 11+25+39 implies that 〈B, t〉 ∈ SubsetSum, thus at least one final configuration
(b) contains the � tile.
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25 = 110012, 37 = 1001012, 39 = 1001112〉 along the right-most column. Note
that the seed is encoded using the tiles shown in Figure 4(b). Tiles from TSS at-
tach to the seed configuration, nondeterministically testing all possible values of
c ∈ {0, 1}4. Figure 5(b) shows one such possible execution, the one that corre-
sponds to c = 〈1, 1, 0, 1〉. Because 11 + 25 + 39 = 75, the � tile attaches in the
top left corner.

The assembly time of SSS is linear in the size of the input (number of bits in
〈B, v〉), and assuming each tile that may attach to a configuration at a certain
position attaches there with a uniform probability distribution, the probability
that a single nondeterministic execution of SSS succeeds in attaching a � tile if
〈B, v〉 ∈ SubsetSum is at least

( 1
2

)n. The proofs of both these statements can
be found in [24].

Therefore, a parallel implementation of SSS , such as a DNA implementation
like those in [12,13], with 2n seeds has at least a 1 − 1

e ≥ 0.5 chance of correctly
deciding whether a 〈B, v〉 ∈ SubsetSum. An implementation with 100 times as
many seeds has at least a 1 −

( 1
e

)100 chance.
Note that TSS has 49 computational tile types and uses 7 tile types to encode

the input.

3 Software Systems

Fault and adversary tolerance have become not only desirable but required prop-
erties of software systems because mission-critical systems are commonly dis-
tributed on large networks of insecure nodes. Further, users of such distributed
systems may desire their private data to remain private. It is possible for com-
puters on a large network to act as tiles to compute. For example, one can solve
NP-complete problems by reducing them to SubsetSum and then using SSS to
solve them, as illustrated in Figure 6. Such a software system can leverage the
error-correction work in tile assembly [7,8,9,10,11] to automate fault and adver-
sary tolerance, and distribute computation over network in a way that no small
group of nodes nodes the private inputs to the computation [25,26,27].

NetworkClient

problem

in1, in2, ...

out1, out2, ...

Fig. 6. A schematic of a system implementing a tile-style architecture
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4 Contributions

The tile assembly model is a formal model of self-assembly and crystal growth.
Here, I defined what it means for a tile system to decide a set and designed
and explored a system that decides an NP-complete problem SubsetSum. The
system computes at temperature two and uses 49 computational tile types and 7
tile types to encode the input. The system computes in time linear in the input
size and each nondeterministic assembly has a probability of success of at least( 1

2

)n, and that probability can be brought exponentially close to 1 at a linear
cost in the number of seeds.

On the way to defining a system that decides SubsetSum, I also defined a
system that deterministically subtracts numbers. This system uses 16 computa-
tional tile types and executes in time linear in the input size. I stated without
proof that there exists an 8-tile subtracting system based on the 8-tile adding
system from [22].

Finally, I described some preliminary work on using theoretical self-assembly
to design complex computational software systems.
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