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Abstract. Metabolic P systems, shortly MP systems, are a special class of P sys-
tems, introduced for expressing biological metabolism. Their dynamics are com-
puted by metabolic algorithms which transform populations of objects according
to a mass partition principle, based on suitable generalizations of chemical laws.
The definition of MP system is given and a new kind of regulation mechanism is
outlined, for the construction of computational models from experimental data of
given metabolic processes.
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1 Introduction

In [7] a discrete perspective was introduced in the analysis of metabolic processes,
which was then developed in papers [2,9,4,8,10,11], and which is focused on the no-
tion of Metabolic P systems, shortly MP systems. Here, we outline the possibility of
deducing an MP model, for a given metabolic process, from a suitable macroscopic
observation of its behavior along a certain number of steps.

MP systems are a special type of P systems [12] which were proven to effec-
tively model the dynamics of several biochemical processes: the Belousov-Zhabotinsky
reaction (Brusselator) the Lotka-Volterra dynamics, the SIR (Susceptible-Infected-
Recovered epidemic) [1], the leukocyte selective recruitment in the immunological
response [5,1], the Protein Kinase C activation [2], circadian rhythms, mitotic cycles
[8], [6]1.

The perspective introduced by MP systems can be synthesized by a principle which
replaces the mass action principle. We call it the mass partition principle because, ac-
cording to it, the system is observed along a discrete sequence of steps, and at each
step, all the matter of any kind of substance, consumed in the time interval between two
consecutive steps, is partitioned among all the reactions which need it for producing
their products. If we are able to determine the amount of reactants that any reaction
takes in that step, according to the stoichiometry of the reactions (which we assume to
know), we can perfectly establish the amount of substances consumed and produced
between two steps, therefore all the dynamics can be discovered. As a consequence
of mass partition principle, two important aspects follow. In MP system rules act on

1 The package Psim, developed in Java within the research group on Natural Computing led by
the author, at the Department of Computer Science of the University of Verona (Italy), provides
representations and dynamics generations of MP systems (Psim is available from the site of
the Center for BioMedical Computing, at the University of Verona: www.cbmc.it).
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c© Springer-Verlag Berlin Heidelberg 2008



232 V. Manca

object populations, rather than on single objects. Moreover, dynamics is deterministic
at population level, but nothing can be said about the dynamical evolution of single
objects.

2 Metabolic P Systems

MP systems are deterministic P systems where the transition to the next state (after
some specified interval of time) is calculated according to a mass partition strategy,
that is, the available matter of each substance is partitioned among all reactions which
need to consume it. A special class of MP systems was proved to be stongly related to
differential models [4]. The notion of MP system we consider here is based on those
given in [8,10,11].

Let us consider a set X of substances and a set of R of reactions over them, as
pairs of strings, represented in the arrow notation according to which any rule r ∈ R
is identified by αr → βr with αr, βr strings over X (αr represents the reactants of r,
while βr represents the products of r, for example, aab → cd is a reaction where two
molecules of a with a molecule of b react by producing a molecule of c and a molecule
of d).

For a string γ and a symbol x we denote by |γ|x the number of occurrences of
the symbol x in γ, while |γ| is the length of γ. Then, the stoichiometric matrix AR

correspondent to a set R of reactions over a set X of substances is defined by set-
ting AR = (AR(x, r) | x ∈ X, r ∈ R) and, for every x ∈ X and r ∈ R,
AR(x, r) = |βr|x − |αr|x. Moreover, we define Rα(x) = {r ∈ R | |αr|x > 0}.
Two reactions r1, r2 are competing if r1, r2 ∈ Rα(x) for some substance x ∈ X . We
call regulator, of a reaction r, any reactant of r or any reactant of a reaction which is
competing with r.

Definition 1 (MP System). An MP system is a construct

M = (X, R, Q, U, ν, σ, τ, q0, Φ)

where:

– X = {x1, . . . , xn} is a finite set of substances (the types of molecules);
– R = {r1, . . . , rm} is a finite set of reactions over X;
– Q is the set of states, that is, the functions q : X → R from substances to real num-

bers. The state q of the instant i can be identified as a vector (x1[i], x2[i], . . . , xn[i])
of real numbers, constituted by the values which are assigned, by q, to the elements
of X .

– U = {u1, . . . , um} is the set of reaction units, where, for each rule r, ur is a func-
tion from states to real numbers (the amount of molar quantity consumed/produced
by the rule r in correspondence to any occurrence of reactant/product occurring in
it);

– ν is a natural number which specifies the number of molecules of a (conventional)
mole of M , as population unit of M ;

– σ is a function which assigns to each x ∈ X , the mass σ(x) of a mole of x (with
respect to some measure unit);
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– τ is the temporal interval between two consecutive states;
– q0 ∈ Q is the initial state, also denoted by X [0] = (x1[0], x2[0], . . . , xn[0]);
– Φ is a set of regulation maps.

The temporal evolution of an MP system M is calculated by means of the following sys-
tem of autonomous first-order difference equations (1) (2), called metabolic algorithm,
where X [i] and U [i] are the vectors of substance quantities and reaction units at step
i, AR is the stoichiometric matrix of dimension n × m corresponding to the reactions
of R (n is the number of different substances and m the number of reactions), Φ is the
vector of functions (as many as the reactions), and ×, + are the usual matrix product
and vector sum:

X [i + 1] = (AR × U [i] ) + X [i] (1)

U [i] = Φ(X [i]) (2)

The parameters τ, ν, μ have no role in the mathematical definition of dynamics. Never-
theless, they are essential for giving a determinate physical meaning to the numerical
values, according to a specific time/mass measure scale.

3 Metabolic Algorithms and Log-Gain Regulation

Given a real metabolic system that we can observe for a certain number of steps, is it
possible to determine an MP system which could predict, within an acceptable approx-
imation, the future behaviour of the given system? We will show how this task could be
achieved. In fact, in some cases, we can determine, in a systematic way, an MP system
which is an adequate model of some observed metabolic dynamics.

In order to discover the reaction units at each step, we introduce the notion of log-
gain regulation. In fact, it seems to be perfectly natural that a proportion should exist
among the relative variation of substances and the relative variation of the reaction unit
of r. The relative variation of a substance x is defined as the ratio Δ(x)/x. In differen-
tial notation (with respect to the time variable), this ratio is related to dx

dt /x, and from

elementary calculus we know that it is the same as d(lg x)
dt . This equation explains the

term “log-gain” for expressing relative variations. In this way, we can derive the values
of the reaction units at any observation time, therefore, these parameters determine the
dynamics of MP systems. More precisely, we set the following principle.

Principle 2 (Log Gain Regulation). For i ≥ 0 let Lg(ur[i]) = (ur[i+1]−ur[i])/ur[i]
be the log-gain of the reaction unit ur at the step i, and let Lg(x[i]) = (x[i+1]−
x[i])/x[i] be the log-gain of the substance x at the same step, then Lg(ur[i]) is a linear
combination of the log-gains of the regulators of r:

Lg(ur[i]) =
∑

x∈X

pr,xLg(x[i]) + pr (3)

pr,x with x ∈ X are the log-gain parameters. If the parameter pr,x �= 0, then x is a
regulator of r. The parameter pr is called the log-gain offset of the rule r.
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Given the dynamics of a system that we observe for a sufficient number of steps, we
want to know, with a sufficient precision, the (molar) quantities of all different kinds of
molecules, for a sequence of steps. Let us denote these quantities with the sequence, for
i = 0, . . . k, of vectors:

X [i] = (x1[i], x2[i], . . . , xn[i])

Moreover, we assume to know the structure of the system, that is, kinds of substances,
reactions, time unit, molar unit, and initial state. We want to predict the vectors X [i]
for steps i > k, which follows the observation steps. We solve the problem when we
discover the regulation maps Φ.

Let us consider the system of equations LG[i] + ΔS[i + 1], obtained by putting
together system (3) at step i with system (1) of Definition 1 at step i + 1. We call it
observation module. This system of equations has n + m equations. The variables of
this system are the reaction units and the log-gain parameters (and offsets). In general,
the number of these variables: u1[i + 1], u2[i + 1], . . . , um[i + 1], . . . is greater than
the number of equations. Moreover, in order to discover the dynamics underlying the
passage of the MP system, from one step to its next step, it is enough to know. at any
step. the value of reaction units. Despite the difference between the number of equations
and the number of variables, the following theorem holds, as a consequence of log-gain
principle (we omit the proof).

Theorem 3. The system LG[i] + ΔS[i + 1] has one and only one solution.

Let us assume to know U [0] (in fact, there are some methods for determining it [11]).
The value X [0] is known because it corresponds to the initial state of the system. There-
fore, if we solve this system for i = 0, that is, LG[0]+ΔS[1], we get the value of U [1].
So, if vectors X [i] for i = 1, . . . , k, are given by observation, we can apply the same
procedure, again for i = 1, 2, . . . , k, and get U [2], U [3], . . . , U [k + 1].

Now assume that these vectors depend on the substance quantities with some poly-
nomial dependence of a given degree, say a third degree, then we can use some standard
interpolation tools for finding the functional dependence of vector U with respect to the
substance quantities. The resulting polynomials are some approximations of the regu-
lation functions Φ we are searching for, and our task was completed. In fact, now we
can use the metabolic system (1) (2) of Definition 1 for computing the evolution of the
given MP systems in all the steps i for i > k.

We applied this method to many metabolic systems (e.g. Lotka-Volterra, Brussela-
tor, and Mitotic Cycles) and we were able to reconstruct, almost exactly their dynamics.
But this procedure assumes the knowledge of U [0]. Actually, there are several possibili-
ties under investigation. However, we discovered experimentally a very interesting fact,
which deserves a more subtle theoretical investigation. If we consider the system ΔS[0]
and choose as U [0] one of its infinite solutions (imposing some additional very natural
constraints), then in many cases, we found that, independently from the chosen value of
U [0], after a small number of steps, say k = 3 steps, our procedure will generate, with
a great approximation, the same vectors U [i+k], for all i > 0. This means that the data
collected in the observation steps are sufficient to determine the functions which, on the
basis of substance quantities, regulate the dynamics of the system.
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Numerical elaborations of our simulations were performed by MATLAB R© standard
operators (backslash operator for square matrix left division or in the least squares sense
solution) and interpolation was performed by polynomials of third degree. Specific ob-
servation strategies were adopted, by using about one hundred steps. In almost all cases,
the observed dynamics were correctly reconstructed. This means that the regulation
functions, deduced according to the outlined method, provided MP systems with the
same dynamics of the observed systems. In conclusion, in the case of natural systems,
from suitable observations, we could discover, with good approximation, the under-
lying dynamical regulation maps, and consequently, reliable computational models of
their dynamic. However, applications of our method to more complex dynamics and
deeper theoretical analyses of the simulation results will be topics for further research.
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3. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing.
Springer, Heidelberg (2006)

4. Fontana, F., Manca, V.: Discrete solutions of differential equations by metabolic P systems.
Theoretical Computer Science 372, 165–182 (2007)

5. Franco, G., Manca, V.: A membrane system for the leukocyte selective recruitment. In:
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