
M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 170–181, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Non-specific Binding in Gel-Based DNA
Computers

Clifford R. Johnson
clifford.johnson@usc.edu

Abstract. In attempting to automate the computation of n-variable 3-CNF SAT
problems using DNA, two physical architectures were scrutinized, the "in-line"
architecture and the "waste-well" architecture. Computer modeling of the
effects of non-specific binding predicted that the in-line version would not work
for problems of more than 7 variables. According to the model, the "wrong
answer" DNA strands would swamp out the "correct answer" DNA strands in
the final computation module. And in fact, the in-line architecture never
performed a computation higher than 6 variables.

To perform a 20 variable instance of the 3-CNF SAT problem a manual
version of the waste-well architecture was employed. Surprisingly though, after
analysis of the modeling results, it appears that through a simple protocol
change, the in-line architecture may have been able to perform higher order
computations.

1 Introduction

The first molecular computation was performed by Len Adleman at the University of
Southern California in 1994. Using DNA molecules to perform the computation,
Adleman solved a 7-city, Directed Hamiltonian Path Problem [1]. The molecular
implementation used to solve the 7-city DHPP was surprisingly simple. However
because of the use of enzymes (ligase) to covalently ligate strands, it was apparent
that it would be almost impossible to scale-up the computation, i.e., to solve larger
problems, using this paradigm. The making and breaking of covalent bonds using
enzymes is notoriously inefficient; 40% reaction completion is considered good. It's
messy, difficult, inefficient, error prone. Additionally, the envisioned simplicity of
molecular computation disappears - computation schemes begin to look like Rube
Goldberg devices. For computations on the order of a 20 variable problem (about
8,000 times more complex than the 7 city problem), a new molecular paradigm was
necessary, one that could somehow avoid biology's inherent messiness.

A new paradigm was formulated based on Richard Lipton's method for encoding
DNA to represent binary strings [2,3], and was called the "modified sticker model"
[4]. It involves no enzymes, and no covalent bond formation or destruction. The
computation is performed simply through the hybridization and denaturing of DNA
hydrogen bonds. This is the paradigm used to perform the 20 variable 3-CNF SAT
problem published in Science [5], which remains at this time, the most complex
problem solved using molecules.

 Modeling Non-specific Binding in Gel-Based DNA Computers 171

For the most part, molecular computations are performed by hand, at the lab bench.
The computation of the instance of the 20 variable 3-CNF SAT problem [5], took 2 to
3 man-weeks to perform by hand. This is labor intensive and error prone. One of the
project goals was the automation of the computation process. In trying to automate
the computation of 3-CNF SAT problems, the question arose: What physical
hardware configuration is best? Two different architectures vied for the honor: One
was called the "in-line" architecture; the other was called the "waste-well"
architecture. Both architectures were actually implemented and tested.

Computer modeling of the effects of non-specific binding (NSB) predicted that the
in-line version would not work for problems of more than 7 variables - the wrong
"answer" DNA strands would swamp out the "correct answer" DNA strands in the
final computation module. In fact, the in-line architecture never performed a
computation higher than 6 variables, and the waste well architecture was employed to
perform the 20 variable computation. Surprisingly though, after analysis of the
modeling results, it appears that through a simple protocol change, the in-line
architecture may have been able to perform higher order computations.

2 The 3-CNF SAT Problem

The Satisfiability problem (SAT) is of interest both historically and theoretically.
Historically, the SAT problem was the first to be shown to be NP complete.
Theoretically, the SAT problem plays a critical role in computer science applications
and theory. In practice, the SAT problem is fundamental in solving many application
problems in database design, CAD-CAM, robotics, scheduling, integrated circuit
design, computer networking, and so on. "Methods to solve the SAT problem play a
crucial role in the development of efficient computing systems." [6] SAT problems
are a set of computationally intractable NP-complete problems. Problems in Class NP
are considered intractable because as the number of variables increases linearly, the
computation time increases exponentially. For example, a 100 variable instance of a
3-SAT problem might take IBM's Big Blue, computing at 135 teraFLOPS, 3.2 million
centuries to solve, essentially the problem is unsolvable.

The SAT Problem
The goal of the SAT problem is to determine whether there exists a satisfying truth
assignment for a given Boolean expression. That is:

Let U = {x1, x2,..., xn} be a set of n Boolean variables. A truth assignment for U is
a function T : U → {true, false}. Corresponding to each variable xi are two literals,
xi and ¬xi (not xi) that can be assigned to the variable. A literal xi is t r ue under T
iff T(xi) = true; a literal ¬xi is t r u e under T iff T(xi) = false).

A set of literals surrounded by parentheses is called a clause, and a set of
clauses is called a formula.

A satisfying assignment for a formula, φ is called a solution.
The restriction of SAT to instances where all clauses have length k is called k-

SAT.

172 C.R. Johnson

The Conjunctive Normal Form (CNF)
Let φ be a formula. Let C be the set of clauses for that formula. φ is a formula in
conjunctive normal form (CNF), implies that a truth assignment T : U → {true, false}
satisfies c∈ C iff at least one literal in c is true under T. T satisfies φ iff it satisfies
every clause in φ.

Equation 1 shows an instance of a 10 variable 3-CNF SAT problem with 14 clauses.
Notice that there are 3 literals per clause separated by the OR symbol v, and that each
clause is separated by the AND symbol ^. This is the conjunctive normal form for a
formula 3-SAT problem.

(X2 v X4 v X9) ^ (X8 v ¬X10 v X5) ^ (¬X6 v ¬X8 v ¬X10) ^ (X2 v ¬X4 v ¬X9) ^
φ = (¬X9 v ¬X3 v X6) ^ (X10 v X5 v X7) ^ (¬X7 v X1 v ¬X2) ^ (X2 v ¬X4 v X9) ^
 (X3 v X6 v ¬X8) ^ (¬X5 v X7 v X1) ^ (¬X2 v ¬X4 v ¬X9) ^ (X2 v X4 v ¬X9) ^
 (¬X1 v ¬X2 v X4) ^ (X2 v ¬X4 v X9)

(1)

Here φ has the unique solution:
X1 = F, X2 = T, X3 = T, X4 = F, X5 = F, X6 = F, X7 = F, X8 = T, X9 = F, X10 = T.

To solidify these concepts in an informal fashion, think of this as a kind of

Agatha Christie murder mystery. Ten professors, named Professor X1, Professor
X2, ..., and Professor X10, are invited to dinner. Some of the professors may
have been "eliminated" on their way to dinner. We want to know who made it
to the dinner, and who didn't. The clauses provide clues. For example, the first
clause tells us that either Professor X2 arrived, OR Professor X4 arrived, OR
Professor X9 arrived for dinner that night. The second clause, for example,
tells us that either Professor X8 arrived, OR Professor X10 did not arrive, OR
Professor X5 did arrive for dinner.

If we put all of the clues (clauses) together, we get the solution to the
mystery. In the unique solution for φ for Equation 1, we see that Professor X1 did
not arrive to dine, whereas Professor X2 did, and so on. Here is the interesting
part. If one were to try to solve Equation 1, without knowing the answer
beforehand, it would take a very long time to find the solution, even for this
relatively short 10 variable problem. Yet once we are given a solution for φ, it
is very easy to verify. We just check to see if at least one literal in each clause is true.
(This can be seen with Equation 1.) This is the essence of Class NP problems.
Problems in Class NP are very, very hard to solve. Yet once a solution is found, it
can be verified quickly.

3 The Molecular Implementation of the 3-CNF SAT Problem

The implementation paradigm is remarkably straightforward:

1. To represent all possible variable assignments for the chosen n-variable
SAT problem, a Lipton encoding [7] for DNA strands is chosen. For
each of the n variables x1, x2, . . ., xn, two distinct 15 base value
sequences are designed - one representing true (T), XkT, and one

 Modeling Non-specific Binding in Gel-Based DNA Computers 173

representing false (F), XkF. Each of the 2n truth assignments is
represented by a sequence of (n X 15) bases consisting of the
concatenation of one value sequence for each variable. In this way all
possible assignments are encoded. DNA molecules with library
sequences are termed library strands; a combinatorial pool containing
library strands is termed a library.

2. The probes used for separating the library strands have sequences that
are W-C (Watson-Crick) complements of the value sequences.

3. The clauses of an n-var CNF SAT problem are formed with acrylamide
gel modules in which the probes for the clause are covalently bonded to
the acrylamide gel. For example, for the last clause of Eq. 1, (X2 v
¬X4 v X9) the W-C complementary probes for X2T , X4F, X9T are
covalently bound to the acrylamide gel. (Figure 1.)

Strands satisfying

clause are captured.

Computational

module

Failing strands pass

through to waste.

Combinatorial

Library

A

B

Probes

Fig. 1. A and B. A computation. A The combinatorial library enters the gel module which tests
the clause (X2 v ¬X4 v X9) using covalently bound DNA probes that are W-C complimentary
to X2, ¬X4, and X9. B Strands that do not satisfy the clause, pass through to waste.

4 The Physical Architectures

The Molecular Algorithm

1. Under hybridizing conditions (temperature at 15º C), introduce the
DNA strand library into the first module via electrophoresis. (This
library represents all possible variable assignments.)

2. Under hybridizing conditions, those strands that satisfy the clause,
hybridize to the probes and remain in the gel module. Those strands
that do not satisfy the clause pass through.

174 C.R. Johnson

3. The gel module is then heated to 65 º C to release the hybridized
(satisfying) strands, which are then passed via electrophoresis to the
next cooled module and a new computation.

4. The strands captured in the final module represent those variable
assignments that have successfully satisfied all of the clauses and thus
represent a solution.

5. The final gel module is removed to extract the DNA molecules for
PCR amplification and sequencing of the answer.

Note that this molecular algorithm for the SAT computation is massively

parallel.
Two different architectures were considered as candidates for automating this

algorithm for solving CNF SAT computations using DNA - the in-line architecture
and the waste-well architecture.

The In-Line Architecture
The premise of this geometry (Fig. 2)
is that as long as the next module
down stream is heated, a valid
computation can be performed. Fig.
3 diagrams the in-line device set-up
during a computation. In Fig. 3,
capture Module 1 is heated to release the combinatorial library, which then moves via
electrophoresis to Module 2. The cooled Capture Module 2 captures those strands
satisfying its clause while those strands not satisfying the clause pass through to the
next consecutive module (Module 3), which is held hot. Theoretically, no strands
should remain in the adjacent down-stream module (Module 3) as the temperature is
raised to the same release temperature as in Module 1. All non-satisfying strands
continue on to Module 4 (which is at room temperature) theoretically clearing out
Module 3. As the Hot-Cold-Hot manifold moves to the right performing
computations, all of the non-satisfying strands will eventually empty to the waste
reservoir, in theory.

Note that all of the library strands pass through all of the computation modules
in this configuration. It is assumed that the heating of down-stream modules is
sufficient to release all of the oligonucleotides residing therein and will cause no
contamination in the upcoming computation. In short, NSB (non-specific binding) is
assumed to be inconsequential.

Though a 6-variable problem was solved using the above set-up, the in-line
architecture didn't work for larger n's. Trying to solve a 10-variable problem using
the in-line architecture, proved fruitless; and in fact, to solve the 20-variable problem
later on, an un-automated version of the waste-well architecture was employed - it
was necessary to perform each of the computations by hand.

However, contradicting the assumption that NSB was inconsequential was some
experimental evidence that detectable levels of NSB were indeed present in the gels.
Computational test runs were performed using 32P labeled library. The library was
sent through a series of 24 sample modules, using an in-line construction similar to
the one in Fig. 2. Some of these modules acted as capture/release modules; some

Fig. 2. Schematic of the in-line architecture

 Modeling Non-specific Binding in Gel-Based DNA Computers 175

were simple agarose modules; and some simple acrylamide modules. At the end of
the test, all had some level of residual radioactivity as measured with a Beckman
Scintillation Counter. The residual radioactivity varied from 0.8% of the total counts
to 6.5% of the total counts. When gels were removed from the glass modules
(generally the gels slid out very easily), it was determined that about ¼ of the
radiation was retained in the glass module, even after squirting distilled water through
the gel trough to remove contaminants. The interpretation of these results was: (1)
NSB was occurring on the glass surface, and (2) some sort of NSB / oligonucleotide
retention was occurring in the gel itself. It is not known what the mechanism is for
the retention of oligonucleotides in the gel. Inclusions, micro-fissures, poor gel
formation, impurities, or some sort of bonding with the gel, any or all might be
responsible for the phenomenon. Some of the radioactivity was probably due to
radioactive mononucleotides. However, assuming that NSB is inconsequential is a
problematic premise.

↓

↓↓

↓

↑

↑

↑ ↓→

↓

Gel Running

 Buffer

(-)

Hot Cold Hot

(+)

Agarose

 Capture Layer

A B C ↓
↑

Fig. 3. The In-line Architecture. A 35-cm glass tube loaded with the library module, then with
intercalated blank gel modules, and clause modules. The system was fitted with three water
jackets (A, B, C). Library strands in the capture layer inside of (A) are released and move into
the capture layer inside of (B). There, library strands with subsequences complementary to the
probes are captured and retained. The rest of the strands passed into the capture layer inside of
(C) but because (C) is kept hot the strands passed through unhindered.

The advantage of the in-line architecture is its simplicity. It is basically a glass

tube packed with computation modules at equally spaced intervals, intercalated by
gel. To automate the architecture one simply moves a Hot-Cold-Hot manifold down
the glass tube (refer to Fig. 3). The disadvantage of the in-line system is that all
library strands, "good" strands and "bad," go through every computation module, thus
possibly contaminating the modules.

176 C.R. Johnson

The Waste-Well Architecture
The second geometry (Fig. 4) is
called the waste-well geometry. In
this architecture, the non-satisfying
strands of a computational step
avoid passing through every
downstream module by going to a
waste buffer well, where they are
destroyed. Again, strands are
released from module 1, which then
pass through module 2. Those strands that satisfy the Module 2 clause are captured
and those that do not pass through the module. However, instead of continuing
downstream possibly contaminating pristine modules, they are diverted immediately
to a waste well, where they are destroyed. This second geometry was specifically
conceived to obviate the accumulating effects of NSB. The waste well architecture is
not as simple as the in-line architecture but it does preclude the effects of NSB.

This paradigm forms the architecture for the first functional automated molecular
computer [8] solving instances of 10 variable 3-CNF SAT problems.

The advantage of the waste-well architecture is that unsuccessful DNA strands go
to waste immediately after the computation, thus leaving downstream modules
pristine. The disadvantage of the waste-well architecture is that it is complicated to
construct [8].

5 The Mathematical Model

A priori, modeling the adsorption (i.e., NSB) of DNA in a gel based system would seem
very difficult. First, one would have to determine the dominant forces involved in the
binding reaction both to the gel and to the silica. For silica, some studies indicate that
three effects, namely: (i)
shielded intermolecular
electrostatic forces, (ii)
dehydration of the DNA
and silica surfaces, and
(iii) intermolecular hy-
drogen bond formation
in the DNA–silica
contact layer, are the
dominant contributors
to adsorption.[9] For
gels, which are mostly
fluid, a balance of
forces maintains the gel
form (sometimes even
disturbing them infinitesimally can bring on a phase transitions and/or collapsing of
the gel).[10] As mentioned above, inclusions, micro-fissures, poor gel formation,
impurities, or some other sort of bonding of DNA with the gel, might contribute to NSB.

A B

Fig. 5. Composite radioactive image showing prog-ression
of a computation

Fig. 4. Schematic of the "waste-well" architecture

 Modeling Non-specific Binding in Gel-Based DNA Computers 177

These factors would make modeling of NSB a virtual nightmare. However, by using an
output/input model, and describing the difference of input - output as due to NSB, one
can arrive at a useful model that seems to be consistent with experimental data. To
determine the ratio of molecules left behind in each computational module, that is:

(input-output)/input
experimental data is needed.

Fig. 5 was obtained using a Storm phosphor imaging sys-tem. The progression of a
computation using lib-rary labeled with 32P was imaged. Arrow A points to the first
module in the computation. Here, the heavy residual radio-activity in this module is
probably due to radio-active mononucleotides, and not to NSB of the library strands.
Thereafter, residual radiation dropped drastically; but there was always a slight amount
left. This "slight amount" was deemed to be due to NSB of library strands, and ranged in
value from .05% to 1% (barely visible in the above image). Arrow B points to the 7th
module with a NSB of about 0.1%. To the right of the module we can just barely see a
partial solution progressing through a computation.

Modeling the In-Line Architecture
The model uses the following two assumptions:

1. Non-specific binding takes place in cold modules and has a very low
constant of disassociation; i.e., it takes hours instead of seconds for NSB
disassociation to occur, even at the elevated temperatures used to denature
the probes from the library strands (65ºC).

2. Both complimentary and non-complimentary strands bind non-specifically
with equal rates.

Both assumptions are reasonable. Assumption 1 ignores NSB in hot modules, yet
it is apparent from experimental data that once NSB takes place, it takes hours for
those strands to become disassociated.

The model is a set of linear difference equations that take into account binding and
dissociation ratios under various conditions. The simulation was run on a spread
sheet (Excel).

In the model, the integers k, n, i refer to the following:

k refers to the number of variables in the computation;
n refers to the computation step that is in progress;
i refers to the capture module that is in progress;

Let X, Y be 2k vectors, the components of which represent percentages of

concentrations of each truth assignment strand of the combinatorial DNA.
Xi - this vector represents the percentage of released strands entering module i

after having left module (i – 1).
Yi - this vector represents the percentage of strands binding in module i.

We can represent the state of various quantities of interest for each i th module at

the n th computational step as a series of linear equations:

178 C.R. Johnson

1. Yi
n = Ci Xi

n i > n; Yi
n gives the percentage of strands complimentary

to the probes of the ith module that actually bind to those probes. Ci is a
2k x 1 matrix of binding efficiencies.

2. Xi+1
n = [1 - Ci] Xi

n ; Xi+1
n gives the percentage of strands that did not

bind to the i th module and which will continue on to the (i th + 1)
module.

3. Xi+1
n+1 = Ri Yi

n ; Ri is a 2k x 1 matrix of release efficiencies; Xi+1
n+1 gives

the percentage of strands released from a capture module after it is
heated.

4. Ei
n = Hi Xi

n ; E
i represents the percentage of strands that bind non-

specifically to the ith module at the n th step. Hi is a 2k x 1 matrix of
non-specific binding efficiencies.

5. ETotal = ∑n=1
n=k+4 Ei

n - Y
i =k+4

n=k+4 ; E
Total gives the total percentage of

strands that have bound non-specifically in the final module.

Using Excel for the simulation, we get the following surface graph (Fig. 6) that
shows the effects of NSB vs. various binding efficiencies for a 6 variable computation.
If we assume that we need at least 10 correct solution strands to every 1 error strand to
un-ambiguously PCR amplify the read out, we see that NSB will prevent the correct
readout of an answer. In general, we see that with even very small amounts of NSB, the
ratio of good strands to contaminating (bad) strands drops drastically. Binding
efficiency - the efficiency with which strands bind to their proper complementary probe
- contributes to the problem, but not by very much.

0.
00

%

0.
20

%

0.
40

%

0.
75

%

1.
50

%

10
0%

97
% 93

% 85
%

0.00

20.00

40.00

60.00

80.00

100.00

G
o

o
d

 t
o

 B
ad

% NSB

Binding Eff.

Surface Graph of Good to Bad Ratio of PCR-able Strands

80.00-100.00

60.00-80.00

40.00-60.00

20.00-40.00

0.00-20.00

Fig. 6. Error Surface Graph

 Modeling Non-specific Binding in Gel-Based DNA Computers 179

Ef f e c t s of Bi nding and N S B on Good t o B ad R at io of P C R - a bl e

S t r ands

0. 00

10. 00

20. 00

30. 00

40. 00

50. 00

60. 00

70. 00

80. 00

0. 00% 0.50% 1.00% 1.50% 2.00% 2.50%

% N o n S p e c i f i c B i n d i n g

100% Binding Efficiency 95% Binding Efficiency

88 % Binding Efficiency

Fig. 7. Binding Efficiency Effect

This is seen more clearly in Fig. 7. In Fig. 7, we compare the ratios of correct
answer strands to wrong strands found in the final module for three different binding
efficiencies. 100% binding is the ideal, i.e., when all of the strands that should bind to
probes in the final module do in fact bind; 95% binding is the efficiency claimed by
the technical staff at Mosaic;1 and 88% binding is the lowest efficiency obtained
experimentally in the laboratory. As is seen in Fig. 7, for a 6 variable problem, any
rate higher than 0.15% for NSB may cause problems in solution resolution. Fig. 8
extrapolates these results to problems of higher complexity.

Fig. 8 shows the results of the simulation for a NSB rate of 0.1%. The x-axis
represents computational complexity, i. e., the number of variables in a 3-CNF SAT
computation. From Fig. 8, we see that at the 0.1% rate, the percentage of NSB
strands is equal to the percentage of answer strands for a 7 variable SAT problem.
This corresponds closely with experimental observation.

Experimental results, phosphor imaging data and computation runs, are consistent
with the modeling simulations - that is that the build up of contaminating strands due
to NSB in the final module will swamp out the correct answer strands for
computations with n > 7. So, if the model's premises are true, there seems to be no
way to circumvent this build-up, and the in-line architecture seems to be condemned
to toy computations of just a few variables.

Or is it?
The surprise lies in the way the final capture module is handled. From the DNA6

paper "Solution of a Satisfiability problem on a gel based DNA computer," [4]

1 Personal communication.

180 C.R. Johnson

0.000E+00

5.000E-02

1.000E-01

1.500E-01

2.000E-01

2.500E-01

3.000E-01

3.500E-01

4.000E-01

4.500E-01

5.000E-01

0 5 10 15 20 25 30

% Answ er strand

% NSB in f inal module

n =

Theoretical crossover point,

n = 7, where oligos due to

non-specific binding out-

number the answer strands.

Fig. 8. Swamping Effect of Non-Specific Binding

we see that the gel is extracted from the glass tube and the final capture layer is
dissected away. It is then crushed and soaked in 5 ml of water. The captured answer
strands are then extracted from the gel by incubating the gel at 65ºC for 12 hours.

This procedure allows contaminating strands the time to leach out of the final gel
module into solution along with the answer strands. Even though the dissociation
time for NSB is on the order of hours, 65ºC for 12 hours is long enough for all DNA
strands, answer strands as well as error strands, to be eluted from the crushed gel.

A better procedure would be, at the end of the computation, under denaturing
conditions (65ºC), to elute the answer strands either into a pristine gel module or onto
an elution membrane via electrophoresis, for half an hour. This would allow the
answer strands cleared out of the final computation module leaving behind the error
strands. Here, the long dissociation time for NSB works for us.

6 Conclusion

The in-line architecture is attractive because of its simplicity and the apparent ease of
automatability. However, the in-line geometry was plagued by the effects of non-
specific binding. We have seen that a simple protocol change would probably have
lessened the effects of non-specific binding.

However, many different and poorly understood factors affect the phenomenon of
non-specific binding – the type of gel, the buffer, the type of glass, can all affect non-
specific binding. To properly characterize non-specific binding would be a lengthy
and frustrating undertaking. In fact, the best strategy is probably to employ a
geometry that precludes the effects of non-specific binding, that is, to use something

 Modeling Non-specific Binding in Gel-Based DNA Computers 181

like the waste-well architecture that was eventually employed, albeit manually, in the
20 variable computation [5], and as an automated DNA computer in solving 10
variable SAT problems[8].

Acknowledgements

I would like to thank Rebecca A. Anderson for her support on this project.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994)

2. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer. In:
Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of a DIMACS
Workshop, April 4, 1995. DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, vol. 27, pp. 37–65. Princeton University. American Mathematical
Society, Providence, RI (1996)

3. Lipton, R.: DNA Solution of Hard Computational Problems. Science 268(5210), 542–545
(1995)

4. Braich, R., Johnson, C., Rothemund, P.W.K., Hwang, D., Chelyapov, N., Adleman, L.:
Satisfiability Problem on a Gel Based DNA Computer. In: Condon, A., Rozenberg, G.
(eds.) DNA 2000. LNCS, vol. 2054, Springer, Heidelberg (2001)

5. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a 20-
Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002)

6. Gu, J., Pardalos, P., Du, D. (eds.): Preface, Satisfiability Problem: Theory and
Applications. DIMACS Series in Discrete Mathematics and Computer Science, American
Mathematical Society, Providence, Rhode Island (1997)

7. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer. In:
Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of a DIMACS
Workshop, April 4, 1995. DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, vol. 27, pp. 37–65. Princeton University. American Mathematical
Society, Providence, RI (1996)

8. Johnson, C.: Automating the DNA Computer. In: Mao, C., Yokomori, T. (eds.) DNA
Computing. LNCS, vol. 4287, Springer, Heidelberg (2006)

9. Melzak, K.A., Sherwood, C.S., Turner, R.F.B., Haynes, C.A.: Driving forces for DNA
adsorption to silica in perchlorate solutions. J. of Colloid and Interface Science (181),
635–644 (1996)

10. Tanaka, T.: Gels. Scientific American 244(1), 124–138 (1981)

	Modeling Non-specific Binding in Gel-Based DNA Computers
	Introduction
	The 3-CNF SAT Problem
	The Molecular Implementation of the 3-CNF SAT Problem
	The Physical Architectures
	The Mathematical Model
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

