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Abstract. We present a local search based algorithm designing DNA
short-sequence sets satisfying thermodynamical constraints about min-
imum free energy (MFE) criteria. In DNA12, Kawashimo et al. pro-
pose a dynamic neighborhood search algorithm for the sequence design
under hamming distance based constraints, where an efficient search is
achieved by dynamically controlling the neighborhood structures. Dif-
ferent from the hamming distance based constraints, the thermodynam-
ical constraints are generally difficult to handle in local-search type al-
gorithms. This is because they require a large number of evaluations
of MFE to find an improved solution, but the definition of MFE itself
contains time-consuming computation. In this paper, we introduce tech-
niques to reduce such time-consuming evaluations of MFE, by which the
proposed dynamic neighborhood search strategy become applicable to
the thermodynamical constraints in practice. In computational experi-
ments, our algorithm succeeded in generating better sequence sets for
many constraints than exiting methods.

Keywords: DNA Sequence Design Algorithm, Local Search, Statistical
Thermodynamical Constraints.

1 Introduction

Designing DNA sequence sets is a fundamental issue in the fields of nanotech-
nology and nanocomputing, e.g., Adleman’s DNA solution for the Hamiltonian
path [1], DNA tiling with its self-assemble [22], hairpin-based state machine [10]
and so on. One aspect of DNA computing / technology is to control the DNA
molecules reactions. For a robust “computation”, it is desirable that DNA mole-
cules react only in expected ways, because unexpected secondary structures of
DNA sequences may cause error, for example. Sequence design is an approach for
a robust computation by designing DNA sequences that satisfy some constraints
to avoid unexpected molecular reactions. Since expected or unexpected reactions
depend on the applications or the purposes, several representative constraints
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are usually considered as below mentioned. Another requirement for DNA se-
quence sets is to be large. This is because designed DNA sequences are used as
elemental components of computation; the amount of resources on DNA com-
putation is proportional to the size of a sequence set. In summary, systematic
methodologies are required to design large set of sequences, which satisfy certain
types of constraints.

In the sequence design, constraints are introduced to prohibit unexpected
secondary structures of DNA sequences, and several types of prohibition are
proposed. Roughly speaking, the types of prohibitions are classified into combi-
natorial types and thermodynamical types. Combinatorial constraints are based
on the idea that base conjugations of DNA sequences are regarded as a kind
of combinatorial pattern matching, while the thermodynamical constraints are
based on the thermodynamical property of the molecular reaction mechanism,
in which conformations of small (resp., large) Gibbs standard free energies tend
to be stable (resp., unstable). Although the thermodynamical ones seem to be
more sophisticated, many algorithmic studies of the sequence design have treated
combinatorial constraints due to their simplicity. Also the combinatorial prop-
erties help to bring efficient algorithms from combinatorics or combinatorial
optimization fields [3,4,19,20]. On the other hand, there are few studies under
thermodynamical constraints from the combinatorial algorithmic point of view;
one example that the authors know is a Stochastic Local Search method by
Tulpan et al. [21].

In this paper, we consider DNA sequence design algorithm under thermody-
namical constraints from the viewpoint of the combinatorial optimization. More
precisely, we propose a local-search type algorithm for the DNA sequence de-
sign under thermodynamical ones. A local search is a method to find a good
solution by replacing a current solution with a better (improving) solution in
its neighborhood until no better solution is found. In DNA12, the authors pro-
posed a dynamic neighborhood search algorithm for DNA sequence design prob-
lem [11], which targets on short-sequence sets under combinatorial constraints.
The algorithm is equipped with high search performance by changing the neigh-
borhood structures dynamically. The computational experiments show a good
design power of the algorithm; it succeeded in generating better sequence sets
than exiting methods [3,4,19]. Also by the nature of local search methods, it has
a good flexibility; we can finely adjust the constraints. Therefore, we attempt
to implement the idea of our previous algorithm for the thermodynamical con-
straints, especially Minimum Free Energy (MFE, for short) constraints, in this
paper.

However, such an implementation is nontrivial in general. The Gibbs standard
free energy is an energy value associated with the conformation of a sequence
or sequences given, and the MFE is the minimum value among free energies of
all the possible structures. Namely, the definition of MFE itself contains a time-
consuming calculation, and in fact its time complexity is O(n3) time where n is
the length of a given sequence. That is, a large amount of evaluations of MFE
values are not practical, which implies that a local-search type algorithms are
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not suitable since they need to repeatedly evaluate many solution values. A main
contribution of this paper is to overcome this difficulty; we present two techniques
to circumvent the heavy calculations. One is to realize an effective neighborhood
search. For this purpose, we store extra data among bases of DNA sequences, by
which we can find a base involved with the violation for MFE constraints. The
other is to realize an efficient evaluation of MFEs. In neighborhood searches,
most of neighbor solutions are apparently worse, and only a few of them are
candidates of improving solutions. For screening such apparently worse solutions,
we introduce a preprocessing phase in the search; instead of applying O(n3) time
MFE calculation, we utilize an approximate calculation of the MFE.

By these techniques, our search framework introduced in [11] becomes applica-
ble to the MFE-based constraints in practice. In order to see the performance
of our approach, we conduct computational experiments for various settings of
MFE constraints. The results show that we succeeded in designing a large set of
sequences for many case. One virtue of our algorithm is that it is a practical local
search: It is quite flexible and is easy to introduce a new constraint. Moreover,
if a non-local-search type algorithm finds a (good) sequence set, then we may
obtain an even better solution by applying our algorithm to the solution.

1.1 Related Work

Many studies consider the thermodynamical natures of DNA computing from
various points of view (e.g., [14,16]), and the thermodynamical qualities of se-
quence sets are also discussed in several papers. Especially, Dirks et al. [7] discuss
various thermodynamical criteria of designing secondary structures, and Rose et
al. [15] propose a statistical thermodynamic error model in DNA computing.

Tulpan et al. succeeded in designing sequence sets under very complicated
thermodynamical constraints by Stochastic Local Search method [21], though
the running time is not clear because they evaluated the search time except the
calculation of energy values in their experiments. They also proposed new ther-
modynamical constraints. One advantage of their method is that they can treat
complicated constraints as well as ours, since it is a local-search type algorithm.
Garzon et al. also designed sequence sets [9]. They designed sequence set un-
der combinatorial constraint as preprocessing, and remove thermodynamically
violated sequences from the set obtained in preprocessing by the reduction to
the minimum vertex cover problem (actually, they consider the maximum in-
dependent set). However the minimum vertex cover problem itself is known to
be NP-hard. Tanaka et al. used random-generation based method [18]. To re-
duce the calculating-time of evaluation, they proposed approximate method of
calculating MFE by the greedy manner.

The remainder of the paper is organized as follows: Section 2 gives prelimi-
naries of the paper, thermodynamical constraints, and basic definitions for local
search. Section 3 discusses how the heavy MFE calculations can be embedded
into our search framework. Section 4 shows the results of computational experi-
ments, and then Section 5 concludes the paper.
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2 Preliminaries

2.1 Definitions and MFE Constraints

A DNA sequences s is a string over {A,T,C,G}. A DNA sequence or sequences
form secondary structures by the Watson-Crick property, which are also called
conformations. Each conformation of a sequence (or sequences) has a Gibbs
standard free energy. The Minimum Free Energy (MFE, for short) of a sequence
(resp., sequences) is the minimum value among free energies of all possible con-
formations of a sequence (resp., sequences). It is known that a conformation with
a small Gibbs standard free energy is more stable than ones with larger Gibbs
standard free energies. The Gibbs standard free energy values are measured
through actual experiments and we can compute the value for one conformation
in linear time of the length of the sequence.

Let s, s′ be DNA sequences of length n, then s, s′ ∈ {A, T, G, C}n. Sequences
are represented by s = s1s2 · · · sn, and s′ = s′1s′2 · · · s′n. In these representations,
the left end of a sequence corresponds to 5′ end of a DNA sequence. In addition,
wcc(s) denotes the Watson-Crick complement sequence of DNA sequence s, here,
wcc(s) is the sequence which reverse s and replaced each A in s by T and vice
versa, replaced each G in s by C and vice versa.

Let S be the sequence set. In the context of the sequence design problems, we let
“hybridization” refer to “the phenomenon that a sequence in S forms completely
hydrogen bonds with its complement sequence”, and “miss-hybridization” refer
to “conformations which are not hybridization”. The constraints described below
are introduced in order to avoid miss-hybridization.

The MFE between s and s′ is represented by ΔG(s, s′) which can be calculated
O(n3)-time by the dynamic programming [2,12,23].

Let wcc(S) = {wcc(s)|s ∈ S}. Given threshold parameters tww, twc, and tcc,
we define the following constraints based on the MFE measure:

Word-Word Constraint: for all pairs of s, s′ in S, ΔG(s, s′) ≥ tww.
That is, ΔGww(S) def= mins,s′∈S{ΔG(s, s′)} ≥ tww.

Word-Complement Constraint: for all pairs of s in S, s′ in wcc(S),
and s �= wcc(s′), ΔG(s, s′) ≥ twc.
That is, ΔGwc(S) def= mins∈S,s′∈wcc(S),s�=wcc(s′){ΔG(s, s′)} ≥ twc.

Complement-ComplementConstraint: for all pairs of s, s′ in wcc(S),
ΔG(s, s′) ≥ tcc. That is, ΔGcc(S) def= mins,s′∈wcc(S){ΔG(s, s′)} ≥ tcc.

Note that, in these constraints, self reactions of one sequence are under consid-
eration. On the other hand, we do not concern with pseudo-knots.

In this paper, we adopt only three constraints for the sequence design, fol-
lowing the work by Garzon et al. [9]. This does not mean that our algorithm is
specified to these constraints, and it is applicable to many other criteria based
on MFE (e.g. energy gap [21]). For other criteria, such as melting temperature
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and DNA error rate [15], though we may need careful adjustments, it is also
applicable.

By using these, our problem is described as “find S such that ΔGww(S) ≥ tww,
ΔGwc(S) ≥ twc and ΔGcc(S) ≥ tcc for large tww, twc, and tcc”.

2.2 Local Search, Neighborhood and Objective Functions

A local search is a method to find a solution by replacing a current solution
with a solution which has better objective function value in its neighborhood
until no better solution is found. In DNA12, we proposed a local search based
algorithm for DNA sequence design problem under combinatorial constraints. In
this paper, we apply this algorithm for thermodynamical constraints. We hope
interested readers refer to [11], in which more details about our algorithm can
be found1.

We define the neighborhood of S (we represent it as N(S)) for the local search
as follows: sequence sets obtained by flipping 1 base of a sequence belonging to
S. Due to the simplicity of the definition, we can flexibly apply it to various
constraints.

In this problem, we need to design the set such as ΔGww(S) ≥ tww, ΔGwc(S)
≥twc, and ΔGcc(S) ≥ tcc. Therefore, when we take together these constraints,
the objective function is described as follows:

ΔGmin(S) def= min{ΔGww(S) − tww, 0} +
min{ΔGwc(S) − twc, 0} +

min{ΔGcc(S) − tcc, 0}. (1)

By definition, ΔGmin(S) = 0 means that it satisfies the constraints, and it takes
O(m2n3) time to evaluate ΔGmin(S).

3 Techniques to Reduce MFE Evaluations

In the local search, to determine if the neighbor solution is an improving solution
or not, its solution value should be calculated. This operation is executed many
times, since the size of neighborhood is usually very large. As mentioned above
it takes O(m2n3) time to evaluate one solution, but that running time can be
reduced in our neighborhood search, because all pairs of sequences for S and all
pairs of sequences for S′ ∈ N(S) are overlapping. By reusing the calculation of
ΔGmin(S), the calculation of ΔGmin(S′) for S′ ∈ N(S) can be done in O(mn3)
time.

However, it is still too time-consuming. That is, naive local search type algo-
rithms may not work well. In this section, we explain two techniques by which
we skip such a large amount calculations. One is a device to effectively check
neighbor solutions, and the other is to screen bad solutions without calculating
the exact ΔG(s, s′).
1 In this paper, we use the new framework which is simplified and improved from the

previous one.
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3.1 Effective Neighborhood Search

In the neighborhood search, we need to evaluate ΔGmin of neighborhood solu-
tions to determine if we move to the solution or not. This means that evaluating
ΔGmin for worse solutions is wasting time; by effectively finding an improving
solution we can reduce the calculation of ΔGmin values. In this subsection, we
explain how to realize a fast discovery of improving solutions. More concretely,
we define a good order of checking the neighbor solutions, in which solutions to
be likely improvements have high priorities.

To define the ordering, we use an array min related as counters for bases
in S; min related is on all the bases in S, and min related(si) for a base si

of s ∈ S stores the number of occurrences of base si for ΔGx(S) where x ∈
{ww,wc,cc }. The idea itself was introduced in the previous work [11], but it is
extended from the previous one. Here, an “occurrence of base si for ΔGx(S)”
means the following two conditions are satisfied: (i) s containing the base si and
another sequence s′ have the MFE value equal to ΔGx(S) and (ii) in the MFE
structure of the ΔGx(S), si forms hydrogen bonds. If a base has a large value
of min related, the base may be critical for ΔGmin(S), therefore flipping such a
base probably improves the solution value. On the other hand, flipping bases with
min related = 0 does not change the solution value by definition. Therefore, we
define the search order of neighbor solutions in N(S) according to min related
values of the descending order. In case of ties, i.e., some bases have a same
value of min related, we use another array bond related to determine the order.
The bond related on all the bases similarly stores the number of occurrences
of a base for hydrogen bonds about not MFE-structures of ΔGmin(S) but all
MFE-structures. By a similar argument, we define the search order for ties in
min related according to bond related of the descending order.

Table 1 shows results of preliminary computational experiments concerning
the effectively of min related and bond related. This result shows that the or-
dering based on min related and bond related apparently realizes an effective
search.

Table 1. Result of the preliminary experiments for min related and bond related

n m τ
time; with min related

average / standard deviation
time; random order

average / standard deviation
8 30 -6.0(kcal/mol) 1.87(sec)/ 0.81(sec) 19.34(sec)/ 11.03(sec)
12 50 -10.0(kcal/mol) 5.79(sec)/ 4.54(sec) 120.61(sec)/116.17(sec)
15 20 -6.0(kcal/mol) 29.65(sec)/19.91(sec) 137.47(sec)/ 35.52(sec)
16 30 -8.0(kcal/mol) 34.31(sec)/ 9.40(sec) 255.44(sec)/ 87.65(sec)
20 40 -6.0(kcal/mol) 29.00(sec)/16.77(sec) 480.69(sec)/270.04(sec)

Give a length n, a size m, and τ . Randomly generate initial set which has m sequences,
and apply our algorithm to improve the set until it satisfies ΔGww(S) ≥ τ , ΔGwc(S) ≥
τ , and ΔGcc(S) ≥ τ . We measure the running-time to satisfy the constraint with
min related and bond related or random order. We perform 50 trials for each condition.
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3.2 Efficient Evaluation of MFEs

In neighborhood structures of the search, a good solution has a few good neighbor
solutions and many worse neighbor solutions in general. This means that we need
to check many neighbor solutions with worse solution values to find a neighbor
solution with a better solution value. This means that the total evaluation-
time is mainly occupied by evaluations of worse solutions; if we can quickly
reject such bad solutions, we may greatly reduce the total evaluation-time. In
this subsection, we explain how to screen bad solutions efficiently. We introduce
a preprocessing phase that computes an approximate MFE values. A similar
approach is also used in [18], but in a little different context2.

We define the approximate MFE as the minimum Gibbs standard free energy
under the restriction in which self reaction in one sequence is forbidden and the
size of loop is bounded3. The approximate MFE is denoted by ΔGapp(s, s′). This
value itself can be computed in O(ln2) time by dynamic programming in theory,
where l is the maximum-loop-size. Clearly ΔGapp(s, s′) ≥ ΔG(s, s′) holds.

We define ΔGapp(S) as an approximate of ΔGmin(S) (equation (1)) in which
ΔGapp(s, s′) is used instead of ΔG(s, s′). To check if a neighbor solution Snew is
an improvement from Sold, we perform the following operation using ΔGapp(S)
in the preprocessing phase:

(1) Calculate ΔGapp(Snew). If ΔGapp(Snew) ≥ ΔGmin(Sold), we can determine
that Snew is not an improvement of Sold. (End this routine.) Otherwise, go
to (2).

(2) Calculate ΔGmin(Snew). If ΔGmin(Snew) ≥ ΔGmin(Sold), we determine
that Snew is not an improvement of Sold. Otherwise, we determine that
Snew is an improvement. End this routine.

The performance of this operation depends on the approximation quality of
ΔGapp(s, s′). If we set sufficiently large maximum-loop-size l, then the approx-
imation quality is good enough but it takes large time, since the value can be
computed in O(ln2) time. Therefore, to see the quality of ΔGapp(s, s′) for a
small l, we perform preliminary computational experiments. In the experiments,
we randomly generate 10000 pairs of sequences, and calculate ΔG(s, s′) and
ΔGapp(s, s′) for each pair. Table 2 shows the results.

As shown in this table, the calculating-times of ΔGapp(s, s′) are much faster
than ΔG(s, s′), while the approximation ratios are good for short lengths. This
might be because short sequences hardly take self reactions. In particular, the
calculating-times of ΔGapp(s, s′) are 1/4 to 1/5 compared with that of ΔG(s, s′),
while the ratio of ΔGapp(s, s′) = ΔG(s, s′) are very high especially for small
lengths. This result if preferable when we design sets of short sequences. There-
fore, we adopt the screening phase by ΔGapp(s, s′) in our search strategy.

2 In [18], they introduce a notion of “degree” k, and an O(kn2) time greedy algorithm
for the approximation is proposed.

3 The function pairfold mfe nointra included PairFold package [2] can calculate
this.
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Table 2. Preliminary Experiments for ΔGapp(s, s′)

n match
ratio

ΔGapp(s, s′) − ΔG(s, s′)
average / standard deviation

time of
ΔG(s, s′)

time of
ΔGapp(s, s′)

8 99.91% 0.00043(kcal/mol) / 0.01646(kcal/mol) 1.69(sec) 0.45(sec)
12 97.33% 0.01472(kcal/mol) / 0.11472(kcal/mol) 6.50(sec) 1.25(sec)
15 91.70% 0.05370(kcal/mol) / 0.14155(kcal/mol) 13.61(sec) 2.81(sec)
16 88.52% 0.07915(kcal/mol) / 0.30228(kcal/mol) 14.06(sec) 3.24(sec)
20 68.50% 0.30268(kcal/mol) / 0.66313(kcal/mol) 30.7(sec) 6.30(sec)

We set the parameters (n,l)=(8,2),(12,2),(15,4),(16,5),(20,6) in this experiment.
Column “match ratio” shows the ratio of pairs satisfying ΔGapp(s, s′) = ΔG(s, s′).

4 Computational Experiments

We implement the algorithm, and perform computational experiments. We use
PairFold package [2] for calculation of MFEs. The setting temperature is 37̊ C.
The cpu-times of experiments are between 2 hours and 24 hours.

We compare our results with Garzon et al. [9], also we compare with Deaton
et al. [6]4. Penchovsky et al. [13], Shortreed et al. [17], Braich et al. [5] and
Faulhammer et al. [8].

Table 3. Results of Computational Experiments

No n ΔGww(S) ΔGwc(S) ΔGcc(S) size of ours size of compared set

1 8 -3.3 -5.4 -3.9 237 (Garzon)132
2 8 -5.3 -6.5 -5.5 233 (Garzon)173
3 12 -3.5 -9.3 -4.5 152 (Shortreed)64
4 12 -5.9 -9.9 -5.9 321 (Garzon)617
5 12 -9.2 -11.2 -10.0 689 (Garzon)1424
6 15 -4.3 -8.3 -4.3 80 (Braich)40
7 15 -3.7 -10.4 -4.5 85 (Faulhammer)20
8 15 -6.0 -14.9 -7.3 92 (Garzon)42
9 15 -12.3 -15.3 -12.3 224 (Garzon)96
10 16 -7.5 -8.1 -8.5 141 (Shortreed)64
11 16 -1.5 -8.7 -3.9 53 (Penchovsky)24
12 20 -7.7 -7.2 -10.2 88 (Deaton)40

Table 3 shows the result. Column “size of ours” (resp., “size of compared
set”) shows size of sets obtained by our method (resp., the size of sets reported
in [5,6,8,9,13,17]). Columns ΔGww(S), ΔGwc(S), and ΔGcc(S) represent para-
meters used in the experiment, which are obtained by the compared method5.
For example, in No.1, we design S such as ΔGww(S) = −3.3, ΔGwc(S) = −5.4,

4 Deaton’s set includes nucleotide “h”, we treat “h” as “g”.
5 Except Garzon’s set, values are calculated by us with published PairFold package.
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ΔGcc(S) = −3.9, which are based on the result of Garzon’s set with size 132.
Sequence sets with greater sizes are better if the values of ΔGx(S) are same.

For the cases of No.1–3, and 6–12, our sets have the same ΔGx(S) values as
the sets generated by the existing methods, however sizes of these are greater.
That is to say, in spite that the sets generated by our method are larger, our
sets cause “miss-hybridization” as well as compared sets. This implies that our
method can design good sets and efficient for thermodynamical constraints.

Only for the cases of No.4 and 5, although these have same ΔGx(S) values,
the sizes of sets generated by our method are smaller than these generated by
Garzon et al. Thus, we consider that our method is suitable for designing short
sequence sets which are relatively small. However our method does not lose its
worth even for the longer sequences, because we can treat the set generated by
Garzon et al. as the initial set and may improve it.

5 Conclusion

In this paper, we present a local search type algorithm for short-sequence design
under the thermodynamical constraints. Since local search type algorithms are
not practical under the thermodynamical constraints due to time-consuming op-
erations, we propose two thechniques for efficient computations. One of the tech-
niques is the effective order in neighborhood search, and the other is a bounding
technique to skip the search for apparently bad solution, by the preprocessing
phase with approximate MFE. In the computational experiments, we succeeded
in designing better sequence sets than the existing methods in the case where
the sizes of sets are relatively small. Also for larger sets, our method is easy to
be combined with non-local search methods such as [9].

As future work, further reduction of computational time is considered. For
example, recalculation of MFE values for a new solution is time-consuming, but it
can be reduced because the difference between the new and the previous solutions
is very small; many internal calculations for MFE values can be reused. Applying
our method to more complicated constraints, such as hairpin state machine [10]
which have properties of “sequence set design” and “reverse folding problem”,
is another interesting issue.
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