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Abstract. We introduce staged self-assembly of Wang tiles, where tiles can be
added dynamically in sequence and where intermediate constructions can be
stored for later mixing. This model and its various constraints and performance
measures are motivated by a practical nanofabrication scenario through protein-
based bioengineering. Staging allows us to break through the traditional lower
bounds in tile self-assembly by encoding the shape in the staging algorithm in-
stead of the tiles. All of our results are based on the practical assumption that
only a constant number of glues, and thus only a constant number of tiles, can be
engineered, as each new glue type requires significant biochemical research and
experiments. Under this assumption, traditional tile self-assembly cannot even
manufacture an n × n square; in contrast, we show how staged assembly enables
manufacture of arbitrary orthogonal shapes in a variety of precise formulations
of the model.

1 Introduction

Self-assembly is the process by which an organized structure can form spontaneously
from simple parts. It describes the assembly of diverse natural structures such as crys-
tals, DNA helices, and microtubules. In nanofabrication, the idea is to co-opt nat-
ural self-assembly processes to build desired structures, such as a sieve for removing
viruses from serum, a drug-delivery device for targeted chemotherapy or brachyther-
apy, a magnetic device for medical imaging, a catalyst for enzymatic reactions, or a

� Partially supported by NSF CAREER award CCF-0347776 and DOE grant DE-FG02-
04ER25647.

�� Partially supported by NSF grant CCF-0431027.
��� Work performed while at Tufts University. Partially supported by NSF grant CCF-0431027.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{edemaine,mdemaine}@mit.edu
s.fekete@tu-bs.de


2 E.D. Demaine et al.

biological computer. Self-assembly of artificial structures has promising applications to
nanofabrication and biological computing. The general goal is to design and manufac-
ture nanoscale pieces (e.g., strands of DNA) that self-assemble uniquely into a desired
macroscale object (e.g., a computer).

Our work is motivated and guided by an ongoing collaboration with the Sackler
School of Graduate Biomedical Sciences that aims to nanomanufacture sieves, cat-
alysts, and drug-delivery and medical-imaging devices, using protein self-assembly.
Specifically, the Goldberg Laboratory is currently developing technology to bioengi-
neer (many copies of) rigid struts of varying lengths, made of several proteins, which
can join collinearly to each other at compatible ends. These struts occur naturally as
the “legs” of the T4 bacteriophage, a virus that infects bacteria by injecting DNA.
In contrast to nanoscale self-assembly based on DNA [WLWS98, MLRS00, RPW04,
BRW05, See98, SQJ04, Rot06], which is inherently floppy, these nanorod structures are
extremely rigid and should therefore scale up to the manufacture of macroscale objects.

The traditional, leading theoretical model for self-assembly is the two-dimensional
tile assembly model introduced by Winfree in his Ph.d. thesis [Win98] and first ap-
pearing at STOC 2000 [RW00]. The basic building blocks in this model are Wang tiles
[Wan61], unrotatable square tiles with a specified glue on each side, where equal glues
have affinity and may stick. Tiles then self-assemble into supertiles: two (super)tiles
nondeterministically join if the sum of the glue affinities along the attachment is at least
some threshold τ , called temperature. This basic model has been generalized and ex-
tended in many ways [Adl00, ACGH01, ACG+02, SW04, ACG+05, RW00, KS06].
The model should be practical because Wang tiles can easily simulate the practical sce-
nario in which tiles are allowed to rotate, glues come in pairs, and glues have affinity
only for their unique mates. In particular, we can implement such tiles using two unit-
length nanorods joined at right angles at their midpoints to form a plus sign.

Most theoretical research in self-assembly considers the minimum number of distinct
tiles—the tile complexity t—required to assemble a shape uniquely. In particular, if we
allow the desired shape to be scaled by a possibly very large factor, then in most mod-
els the minimum possible tile complexity (the smallest “tile program”) is Θ(K/ lg K)
where K is the Kolmogorov complexity of the shape [SW04]. In practice, the limit-
ing factor is the number of distinct glues—the glue complexity g—as each new glue
type requires significant biochemical research and experiments. For example, a set of
DNA-based glues requires experiments to test whether a collection of codewords have a
“conflict” (a pair of noncomplementary base sequences that attach to each other), while
a set of protein-based glues requires finding pairs of proteins with compatible geome-
tries and amino-acid placements that bind (and no other pairs of which accidentally
bind). Of course, tile and glue complexities are related: g ≤ t ≤ g4.

We present the staged tile assembly model, a generalization of the tile assembly
model that captures the temporal aspect of the laboratory experiment, and enables sub-
stantially more flexibility in the design and fabrication of complex shapes using a small
tile and glue complexity. In its simplest form, staged assembly enables the gradual ad-
dition of specific tiles in a sequence of stages. In addition, any tiles that have not yet
attached as part of a supertile can be washed away and removed (in practice, using a
weight-based filter, for example). More generally, we can have any number of bins (in
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reality, batches of liquid solution stored in separate containers), each containing tiles
and/or supertiles that self-assemble as in the standard tile assembly model. During a
stage, we can perform any collection of operations of two types: (1) add (arbitrarily
many copies of) a new tile to an existing bin; and (2) pour one bin into another bin,
mixing the contents of the former bin into the latter bin, and keeping the former bin
intact. In both cases, any pieces that do not assemble into larger structures are washed
away and removed. These operations let us build intermediate supertiles in isolation and
then combine different supertiles as whole structures. Now we have two new complex-
ity measures in addition to tile and glue complexity: the number of stages—or stage
complexity s—measures the time required by the operator of the experiment, while the
number of bins—or bin complexity b—measures the space required for the experiment.1

(When both of these complexities are 1, we obtain the regular tile assembly model.)

Our results. We show that staged assembly enables substantially more efficient manu-
facture in terms of tile and glue complexity, without sacrificing much in stage and bin
complexity. All of our results assume the practical constraint of having only a small con-
stant number of glues and hence a constant number of tiles. In contrast, an information-
theoretic argument shows that this assumption would limit the traditional tile assembly
model to constructing shapes of constant Kolmogorov complexity.

For example, we develop a method for self-assembling an n × n square for arbi-
trary n > 0, using 16 glues and thus O(1) tiles (independent of n), and using only
O(log log n) stages, O(

√
log n) bins, and temperature τ = 2 (Section 4.2). Alterna-

tively, with the minimum possible temperature τ = 1, we can self-assemble an n × n
square using 9 glues, O(1) tiles and bins, and O(log n) stages (Section 4.1). In contrast,
the best possible self-assembly of an n×n square in the traditional tile assembly model
has tile complexity Θ(log n/ log log n) [ACGH01, RW00], or Θ(

√
log n) in a rather

extreme generalization of allowable pairwise glue affinities [ACG+05].
More generally, we show how to self-assemble arbitrary shapes made up of n unit

squares in a variety of precise formulations of the problem. Our simplest construction
builds the shape using 2 glues, 16 tiles, O(diameter) stages, and O(1) bins, but it
only glues tiles together according to a spanning tree, which is what we call the partial
connectivity model (Section 5.1). All other constructions have full connectivity: any two
adjacent unit squares are built by tiles with matching glues along their shared edge. In
particular, if we scale an arbitrary hole-free shape larger by a factor of 2, then we can
self-assemble with full connectivity using 8 glues, O(1) tiles, and O(n) stages and bins
(Section 5.2). We also show how to simulate a traditional tile assembly construction
with t tiles by a staged assembly using 3 glues, O(1) tiles, O(log log t) stages, O(t)
bins, and a scale factor of O(log t) (Section 5.3). If the shape happens to be monotone
in one direction, then we can avoid scaling and still obtain full connectivity, using 9
glues, O(1) tiles, O(log n) stages, and O(n) bins (details omitted in this version).

Table 1 summarizes our results in more detail, in particular elaborating on possible
trade-offs between the complexities. The table captures one additional aspect of our

1 Here we view the mixing time required in each stage (and the volume of each bin) as a
constant, mainly because it is difficult to analyze precisely from a thermodynamic perspective,
as pointed out in [Adl00]. In our constructions, we believe that a suitable design of the relative
concentrations of tiles (a feature not captured by the model) leads to reasonable mixing times.
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Table 1. Summary of the glue, tile, bin, and stage complexities, the temperature τ , the scale
factor, the connectivity, and the planarity of our staged assemblies and the relevant previous work

n × n square Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [ACGH01, RW00] Θ( log n

log log n
) 1 1 2 1 full yes

Jigsaw technique (§4.1) 9 O(1) O(1) O(log n) 1 1 full yes
Crazy mixing (§4.2) 16 O(1) B O

(⌈ log n
B2

⌉
log B

)
2 1 full yes

Crazy mixing, B =
√

log n 16 O(1)
√

log n O(log log n) 2 1 full yes

General shape with n tiles Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [SW04] Θ(K/ log K) 1 1 2 unbounded partial no
Arbitrary shape with n tiles (§5.1) 2 16 O(log n) O(diameter) 1 1 partial no
Hole-free shape with n tiles (§5.2) 8 O(1) O(n) O(n) 1 2 full no
Simulation of 1-stage tiles T (§5.3) 3 O(1) O(|T |) O(log log |T |) 1 O(log |T |) partial no
Monotone shapes with n tiles (omitted) 9 O(1) O(n) O(log n) 1 1 full yes

constructions: Planarity. Consider two jigsaw puzzle pieces with complex borders ly-
ing on a flat surface. It may not be possible to slide the two pieces together while both
remain on the table. Rather, one piece must be lifted off the table and dropped into po-
sition. Our current model of assembly intuitively permits supertiles to be placed into
position from the third dimension, despite the fact that it may not be possible to as-
semble within the plane. A planar construction guarantees assembly of the final target
shape even if we restrict assembly of supertiles to remain completely within the plane.
This feature seems desirable, though it may not be essential in two dimensions because
reality will always have some thickness in the third dimension (2.5D). However, the
planarity constraint (or spatiality constraint in 3D) becomes more crucial in 3D assem-
blies, so this feature gives an indication of which methods should generalize to 3D; see
Section 6.

Related Work. There are a handful of existing works in the field of DNA self-assembly
that have proposed very basic multiple stage assembly procedures. John Reif introduced
a step-wise assembly model for local parallel biomolecular computing [Rei99]. In more
recent work Park et. al. have considered a simple hierarchical assembly technique for
the assembly of DNA lattices [PPA+06]. Somei et. al. have considered a microflu-
idic device for stepwise assembly of DNA tiles [SKFM05]. While all of these works
use some form of stepwise or staged assembly, they do not study the complexity of
staged assembly to the depth that we do here. Further, none consider the concept of bin
complexity.

2 The Staged Assembly Model

In this section, we present basic definitions common to most assembly models, then we
describe the staged assembly model, and finally we define various metrics to measure
the efficiency of a staged assembly system.

Tiles and tile systems. A (Wang) tile t is a unit square defined by the ordered quadruple
〈north(t), east(t), south(t), west(t)〉 of glues on the four edges of the tile. Each glue
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is taken from a finite alphabet Σ, which includes a special “null” glue denoted null. For
simplicity of bounds, we do not count the null glue in the glue complexity g = |Σ| − 1.

A tile system is an ordered triple 〈T, G, τ〉 consisting of the tileset T (a set of distinct
tiles), the glue function G : Σ2 → {0, 1, . . . , τ}, and the temperature τ (a positive
integer). It is assumed that G(x, y) = G(y, x) for all x, y ∈ Σ and that G(null, x) = 0
for all x ∈ Σ. Indeed, in all of our constructions, as in the original model of Adleman
[Adl00], G(x, y) = 0 for all x �= y2, and each G(x, x) ∈ {1, 2, . . . , τ}. The tile
complexity of the system is |T |.
Configurations. Define a configuration to be a function C : Z

2 → T ∪{empty}, where
empty is a special tile that has the null glue on each of its four edges. The shape of a
configuration C is the set of positions (i, j) that do not map to the empty tile. The shape
of a configuration can be disconnected, corresponding to several distinct supertiles.

Adjacency graph and supertiles. Define the adjacency graph GC of a configuration C
as follows. The vertices are coordinates (i, j) such that C(i, j) �= empty. There is an
edge between two vertices (x1, y1) and (x2, y2) if and only if |x1 −x2|+ |y1 −y2| = 1.
A supertile is a maximal connected subset G′ of GC , i.e., G′ ⊆ GC such that, for every
connected subset H , if G′ ⊆ H ⊆ GC , then H = G′. For a supertile S, let |S| denote
the number of nonempty positions (tiles) in the supertile. Throughout this paper, we
will informally refer to (lone) tiles as a special case of supertiles.

If every two adjacent tiles in a supertile share a positive strength glue type on abutting
edges, the supertile is fully connected.

Two-handed assembly and bins. Informally, in the two-handed assembly model, any
two supertiles may come together (without rotation or flipping) and attach if their
strength of attachment, from the glue function, meets or exceeds a given temperature
parameter τ .

Formally, for any two supertiles X and Y , the combination set Cτ
(X,Y ) of X and Y

is defined to be the set of all supertiles obtainable by placing X and Y adjacent to each
other (without overlapping) such that, if we list each newly coincident edge ei with
edge strength si, then

∑
si ≥ τ .

We define the assembly process in terms of bins. Intuitively, a bin consists of an
initial collection of supertiles that self-assemble at temperature τ to produce a new
set of supertiles P . Formally, with respect to a given set of tile-types T , a bin is a pair
(S, τ) where S is a set of initial supertiles whose tile-types are contained in T , and τ is a
temperature parameter. For a bin (S, τ), the set of produced supertiles P ′

(S,τ) is defined
recursively as follows: (1) S ⊆ P ′

(S,τ) and (2) for any X, Y ∈ P ′
(S,τ), Cτ

(X,Y ) ⊆ P ′
(S,τ).

The set of terminally produced supertiles of a bin (S, τ) is P(S,τ) = {X ∈ P ′ | Y ∈ P ′,
Cτ

(X,Y ) = ∅}. We say the set of supertiles P is uniquely produced by bin (S, τ) if each
supertile in P ′ is of finite size. Put another way, unique production implies that every
producible supertile can grow into a supertile in P .

Intuitively, P ′ represents the set of all possible supertiles that can self-assemble from
the initial set S, whereas P represents only the set of supertiles that cannot grow any

2 With a typical implementation in DNA, glues actually attach to unique complements rather
than to themselves. However, this depiction of the glue function is standard in the literature
and does not affect the power of the model.
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further. In the case of unique assembly of P , the latter thus represents the eventual, final
state of the self-assembly bin. Our goal is therefore to produce bins that yield desired
supertiles in the uniquely produced set P .

Given a collection of bins, we model the process of mixing bins together in arbitrarily
specified patterns in a sequence of distinct stages. In particular, we permit the following
actions: We can create a bin of a single tile type t ∈ T , we can merge multiple bins
together into a single bin, and we can split the contents of a given bin into multiple
new bins. In particular, when splitting the contents of a bin, we assume the ability
to extract only the unique terminally produced set of supertiles P , while filtering out
additional partial assemblies in P ′. Intuitively, given enough time for assembly and a
large enough volume of tiles, a bin that uniquely produces P should consist of almost
entirely the terminally produced set P . We formally model the concept of mixing bins
in a sequence of stages with the mix graph.

Mix graphs. An r-stage b-bin mix graph M consists of rb+1 vertices, m∗ and mi,j for
1 ≤ i ≤ r and 1 ≤ j ≤ b, and an arbitrary collection of edges of the form (mr,j , m∗)
or (mi,j , mi+1,k) for some i, j, k.

Staged assembly systems. A staged assembly system is a 3-tuple 〈Mr,b, {Ti,j}, {τi,j}〉
where Mr,b is an r-stage b-bin mix graph, each Ti,j is a set of tile types, and each τi,j is
an integer temperature parameter. Given a staged assembly system, for each 1 ≤ i ≤ r,
1 ≤ j ≤ b, we define a corresponding bin (Ri,j , τi,j) where Ri,j is defined as follows:

1. R1,j = T1,j (this is a bin in the first stage);

2. For i ≥ 2, Ri,j =
( ⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
∪ Ti,j .

3. R∗ =
⋃

k: (mr,k,m∗)∈Mr,b

P(R(r,k),τr,k)).

Thus, the jth bin in the ith stage takes its initial set of seed supertiles to be the ter-
minally produced supertiles from a collection of bins from the previous stage, the exact
collection specified by Mr,b, in addition to a set of added tile types Ti,j . Intuitively, the
mix graph specifies how each collection of bins should be mixed together when transi-
tioning from one stage to the next. We define the set of terminally produced supertiles
for a staged assembly system to be P(R∗,τ∗). In this paper, we are interested in staged as-
sembly systems for which each bin yields unique assembly of terminal supertiles. In this
case we say a staged assembly system uniquely produces the set of supertiles P(R∗,τ∗).

Throughout this paper, we assume that, for all i, j, τi,j = τ for some fixed global
temperature τ , and we denote a staged assembly system as 〈Mr,b, {Ti,j}, τ〉.

3 Assembly of 1 × n Lines

As a warmup, we develop a staged assembly for the 1 × n rectangle (“line”) using only
three glues and O(log n) stages. The assembly uses a divide-and-conquer approach
to split the shape into a constant number of recursive pieces. Before we turn to the
simple divide-and-conquer required here, we describe the general case, which will be
useful later. This approach requires the pieces to be combinable in a unique way, forc-
ing the creation of the desired shape. We consider the decomposition tree formed by
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Fig. 1. A sample staged assembly system that
uniquely assembles a 1 × 10 line. The tem-
perature is τ = 1, and each glue a, b, c has
strength 1. The tile complexity is 3, the stage
complexity is 3, and the bin complexity is 2.

(a) (b)

Fig. 2. (a) The shifting problem encountered
when combining rectangle supertiles. (b) The
jigsaw solution: two supertiles that combine
uniquely into a fully connected square super-
tile.

the recursion, where sibling nodes should uniquely assemble to their parent. The stag-
ing proceeds bottom-up in this tree. The height of this tree corresponds to the stage
complexity, and the maximum number of distinct nodes at any level corresponds to the
bin complexity. The idea is to assign glues to the pieces in the decomposition tree to
guarantee unique assemblage while using few glues.

Theorem 1. There is a planar temperature-1 staged assembly system that uniquely pro-
duces a (fully connected) 1 × 2k line using 3 glues, 6 tiles, 6 bins, and O(k) stages.

Proof. The decomposition tree simply splits a 1 × 2k line into two 1 × 2k−1 lines. All
tiles have the null glue on their top and bottom edges. If the 1 × 2k line has glue a
on its left edge, and glue b on its right edge, then the left and right 1 × 2k−1 inherit
these glues on their left and right edges, respectively. We label the remaining two inner
edges—the right edge of the left piece and the left edge of the right piece—with a third
glue c, distinct from a and b. Because a �= b, the left and right piece uniquely attach
at the inner edges with common glue c. This recursion also maintains the invariant that
a �= b, so three glues suffice overall. Thus there are only

(3
2

)
= 6 possible 1 × 2k lines

of interest, and we only need to store these six at any time, using six bins. At the base
case of k = 0, we just create the nine possible single tiles. The number of stages beyond
that creation is exactly k.

Corollary 1. There is a planar temperature-1 staged assembly system that uniquely
produces a (fully connected) 1 × n line using 3 glues, 6 tiles, 10 bins, and O(log n)
stages.

Proof. We augment the construction of Theorem 1 applied to k = log n�. When we
build the 1 × 2i lines for some i, if the binary representation of n has a 1 bit in the ith
position, then we add that line to a new output bin. Thus, in the output bin, we accu-
mulate powers of 2 that sum to n. As in the proof of Theorem 1, three glues suffice to
guarantee unique assemblage in the output bin. The number of stages remains O(log n).
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4 Assembly of n × n Squares

Figure 2(a) illustrates the challenge with generalizing the decomposition-tree technique
from 1×n lines to n×n squares. Namely, the naı̈ve decomposition of a square into two
n × n/2 rectangles cannot lead to a unique assembly using O(1) glues with tempera-
ture 1 and full connectivity: by the pigeon-hole principle, some glue must be used more
than once along the shared side of length n, and the lower instance of the left piece may
glue to the higher instance of the right piece. Even though this incorrect alignment may
make two unequal glues adjacent, in the temperature-1 model, a single matching pair
of glues is enough for a possible assembly.

4.1 Jigsaw Technique

To overcome this shifting problem, we introduce the jigsaw technique, a powerful tool
used throughout this paper. This technique ensures that the two supertiles glue together
uniquely based on geometry instead of glues. Figure 2(b) shows how to cut a square
supertile into two supertiles with three different glues that force unique combination
while preserving full connectivity.

Theorem 2. There is a planar temperature-1 staged assembly of a fully connected n×n
square using 9 glues, O(1) tiles, O(1) bins, and O(log n) stages.

Proof. We build a decomposition tree by first decomposing the n×n square by vertical
cuts, until we obtain tall, thin supertiles; then we similarly decompose these tall, thin
supertiles by horizontal cuts, until we obtain constant-size supertiles. Table 2 describes
the general algorithm. Figure 3 shows the decomposition tree for an 8 × 8 square. The
height of the decomposition tree, and hence the stage complexity, is O(log n).

We assign glue types to the boundaries of the supertiles to guarantee unique assem-
blage based on the jigsaw technique. The assignment algorithm is similar to the 1 × n
line, but we use three glues on each edge instead of one, for a total of nine glues instead
of three.

It remains to show that the bin complexity is O(1). We start by considering the
vertical decomposition. At each level of the decomposition tree, there are three types
of intermediate products: leftmost supertile, rightmost supertile and middle supertiles.
The leftmost and rightmost supertiles are always in different bins. The important thing

Table 2. Algorithm for vertical decomposition. (Horizontal decomposition is symmetric.).

Algorithm DecomposeVertically (supertile S):
— Here S is a supertile with n rows and m columns; S is not necessarily a rectangle.

1. Stop vertical partitioning when width is small enough:
If m ≤ 3, DecomposeHorizontally(S) and return.

2. Find the column along which the supertile is to be partitioned:
Let i := �(m + 1)/2�.
Divide supertile S along the ith column into a left supertile S1 and right supertile S2 such that
tiles at position (1, i) and (n, i) belong to S1 and the rest of the ith column belongs to S2.

3. Now decompose recursively:
DecomposeVertically (S1)
DecomposeVertically (S2)
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Middle
supertiles

Leftmost
supertile

Rightmost
supertile

Fig. 3. Decomposition tree for 8 × 8 square in the jigsaw technique

to observe is that the middle supertiles always have the same shape, though it is possible
to have two different sizes—the number of columns can differ by one. In one of these
sizes, the number of columns is even and, in the other, the number is odd. Thus we
need to separate bins for the even- and odd-columned middle supertiles. For each of
the even- or odd-columned supertiles, each of left and right boundaries of the supertile
can have three choices for the glue types. Therefore, there is a constant number of
different types of middle supertiles at each level of the decomposition tree. Thus, for
vertical decomposition, we need O(1) bins. Each of the supertiles at the end of vertical
decomposition undergoes horizontal decomposition. A similar argument applies to the
horizontal decomposition as well. Therefore, the number of bins required is O(1).

4.2 Crazy Mixing

For each stage of a mix graph on B bins, there are up to Θ(B2) edges that can be
included in the mix graph. By picking which of these edges are included in each stage,
Θ(B2) bits of information can be encoded into the mix graph per stage. The large
amount of information that can be encoded in the mixing pattern of a stage permits a
very efficient trade-off between bin complexity and stage complexity. In this section,
we consider the complexity of this trade-off in the context of building n × n squares.

It is possible to view a tile system as a compressed encoding of the shape it assem-
bles. Thus, information theoretic lower bounds for the descriptional or Kolmogorov
complexity of the shape assembled can be applied to aspects of the tile system. From
this we obtain the following lower bound:

Theorem 3. Any staged assembly system with a fixed temperature and bin complexity
B that uniquely assembles an n × n square with O(1) tile complexity must have stage
complexity Ω( log n

B2 ) for almost all n.
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Our upper bound achieves a stage complexity that is within a O(log B) factor of this
lower bound:

Theorem 4. For any n and B, there is a temperature-2 fully connected staged assembly
of an n×n square using 16 glues, O(1) tiles, B bins, and O( log n

B2 log B+log B) stages.

In the interest of space, the proofs of these two theorems are omitted in this version.
We conjecture that this stage complexity bound can be achieved by a temperature-1

assembly by judicious use of the jigsaw technique.

5 Assembly of General Shapes

In this section, we describe a variety of techniques for manufacturing arbitrary shapes
using staged assembly with O(1) glues and tiles.

5.1 Spanning-Tree Technique

The spanning-tree technique is a general tool for making an arbitrary shape with the
connectivity of a tree. We start with a sequential version of the assembly:

Theorem 5. Any shape S with n tiles has a partially connected temperature-1 staged
assembly using 2 glues, at most 24 tiles, O(log n) bins, and O(diameter(S)) stages.

Proof. Take a breadth-first spanning tree of the adjacency graph of the shape S. The
depth of this tree is O(diameter(S)). Root the tree at an arbitrary leaf. Thus, each
vertex in the tree has at most three children. Color the vertices with two colors, black
and white, alternating per level. For each edge between a white parent and a black child,
we assign a white glue to the corresponding tiles’ shared edge. For each edge between a
black parent and a white child, we assign a black glue to the corresponding tiles’ shared
edge. All other tile edges receive the null glue. Now a tile has at most three edges of its
color connecting to its children, and at most one edge of the opposite color connecting
to its parent.

To obtain the sequential assembly, we perform a particular postorder traversal of
the tree: at node v, visit its child subtrees in decreasing order of size. To combine at
node v, we mix the recursively computed bins for the child subtrees together with the
tile corresponding to node v. The bichromatic labeling ensures unique assemblage. The
number of intermediate products we need to store is O(log n), because when we recurse
into a second child, its subtree must have size at most 2/3 of the parent’s subtree.

5.2 Scale Factor 2

Although the spanning-tree technique is general, it probably manufactures structurally
unsound assemblies. Next we show how to obtain full connectivity of general shapes,
while still using only a constant number of glues and tiles.

Theorem 6. Any simply connected shape has a staged assembly using a scale factor
of 2, 8 glues, O(1) tiles, O(n) stages, and O(n) bins. The construction maintains full
connectivity.
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Proof. Slice the target shape with horizontal lines to divide the shape into 1 × k strips
for various values of k, which scale to 2 × 2k strips. These strips can overlap along
horizontal edges but not vertical edges. Define the strip graph to have a vertex for each
strip and an edge between two strips that overlap along a horizontal edge. Because the
shape is simply connected, the strip graph is a tree. Root this tree at an arbitrary strip,
defining a parent relation.

A recursive algorithm builds the subtree of the strip graph rooted at an arbitrary
strip s. As shown in Figure 4(a), the strip s may attach to the rest of the shape at zero
or more places on its top or bottom edge. One of these connections corresponds to the
parent of s (unless s is the overall root). As shown in Figure 4(b), our goal is to form
each of these attachments using a jigsaw tab/pocket combination, where bottom edges
have tabs and top edges have pockets, extending from the rightmost square up to but
not including the leftmost square.

(a) (b)

(c)

Fig. 4. Constructing a horizontal strip in a factor-2 scaled shape (a), augmented by jigsaw tabs
and pockets to attach to adjacent pieces (b), proceeding column-by-column (c)

The horizontal edges of each tab or pocket uses a pair of glues. The unit-length upper
horizontal edge uses one glue, and the possibly longer lower horizontal edge uses the
other glue. The pockets at the top of strip s use a different glue pair from the tabs at
the bottom of strip s. Furthermore, the pocket or tab connecting s to its parent uses a
different glue pair from all other pockets and tabs. Thus, there are four different glue
pairs (for a total of eight glues). If the depth of s in the rooted tree of the strip graph
is even, then we use the first glue pair for the top pockets, the second glue pair for the
bottom tabs, except for the connection to the parent which uses either the third or fourth
glue pair depending on whether the connection is a top pocket or a bottom tab. If the
depth of s is odd, then we reverse the roles of the first two glue pairs with the last two
glue pairs. All vertical edges of tabs and pockets use the same glue, 8.

To construct the strip s augmented by tabs and pockets, we proceed sequentially from
left to right, as shown in Figure 4(c). The construction uses two bins. At the kth step, the
primary bin contains the first k−1 columns of the augmented strip. In the secondary bin,
we construct the kth column by brute force in one stage using 1–3 tiles and 0–2 distinct
internal glues plus the desired glues on the boundary. Because the column specifies only
two glues for horizontal edges, at the top and bottom, we can use any two other glues
for the internal glues. All of the vertical edges of the column use different glues. If k
is odd, the left edges use glues 1–3 and the right edges uses glues 4–6, according to y



12 E.D. Demaine et al.

coordinate; if k is even, the roles are reversed. (In particular, these glues do not conflict
with glue 8 in the tabs and pockets.) The only exception is the first and last columns,
which have no glues on their left and right sides, respectively. Now we can add the
secondary bin to the primary bin, and the kth column will uniquely attach to the right
side of the first k − 1 columns. In the end, we obtain the augmented strip.

During the building of the strip, we attach children subproblems. Specifically, once
we assemble the rightmost column of an attachment to one or two children strips, we
recursively assemble those one or two children subtrees in separate bins, and then mix
them into s’s primary bin. Because the glues on the top and bottom sides of s differ,
as do the glues of s’s parent, and because of the jigsaw approach, each child we add
has a unique place to attach. Therefore we uniquely assemble s’s subtree. Applying this
construction to the root of the tree, we obtain a unique assembly of the entire shape.

5.3 Simulation of One-Stage Assembly with Logarithmic Scale Factor

In this section, we show how to use a small number of stages to combine a constant
number of tile types into a collection of supertiles that can simulate the assembly of
an arbitrary set of tiles at temperature τ = 1, given that these tiles only assemble
fully connected shapes. In the interest of space, the details of this proof are omitted.
Extending this simulation to temperature-2 one-stage systems is an open problem.

Theorem 7. Consider an arbitrary single stage, single bin tile system with tile set T ,
all glues of strength at most 1, and that assembles a class of fully connected shapes.
There is a temperature-1 staged assembly system that simulates the one-stage assembly
of T up to an O(log |T |) size scale factor using 3 glues, O(1) tiles, O(|T |) bins, and
O(log log |T |) stages. At the cost of increasing temperature to τ = 2, the construction
achieves full connectivity.

6 Future Directions

There are several open research questions stemming from this work.
One direction is to relax the assumption that, at each stage, all supertiles self-assemble

to completion. In practice, it is likely that at least some tiles will fail to reach their termi-
nal assembly before the start of the next stage. Can a staged assembly be robust against
such errors, or at least detect these errors by some filtering, or can we bound the error
propagation in some probabilistic model.

Another direction is to develop a model of the assembly time required by a mixing
operation involving two bins of tiles. Such models exist for (one-stage) seeded self-
assembly—which starts with a seed tile and places singleton tiles one at a time—but
this model fails to capture the more parallel nature of two-handed assembly in which
large supertiles can bond together without a seed. Another interesting direction would
be to consider nondeterministic assembly in which a tile system is capable of building
a large class of distinct shapes. Is it possible to design the system so that certain shapes
are assembled with high probability?

Finally, we have focused on two-dimensional constructions in this paper. This focus
provides a more direct comparison with previous models, and it is also a case of prac-
tical interest, e.g., for manufacturing sieves. Many of our results also generalize to 3D
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(or any constant dimension), at the cost of increasing the number of glues and tiles. For
example, the spanning-tree model generalizes trivially, and a modification to the jigsaw
idea enables many of the other results to carry over. So far, we have not worked out
the exact performance measures for these 3D analogs, but we do not expect this to be
difficult.

Acknowledgments. We thank M. S. AtKisson and Edward Goldberg for extensive dis-
cussions about the bioengineering application.
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