


Lecture Notes in Computer Science 4848
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Max H. Garzon Hao Yan (Eds.)

DNA Computing

13th International Meeting on DNA Computing, DNA13
Memphis, TN, USA, June 4-8, 2007
Revised Selected Papers

13



Volume Editors

Max H. Garzon
The University of Memphis
Computer Science
209 Dunn Hall, TN 38152-3240, U.S.A.
E-mail: mgarzon@memphis.edu

Hao Yan
Arizona State University
The Biodesign Institute
1001 S. McAllister Ave, Tempe, AZ 85287-5601, USA
E-mail: hao.yan@asu.edu

Library of Congress Control Number: 2008920717

CR Subject Classification (1998): F.1, F.2.2, I.2.9, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77961-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77961-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12225927 06/3180 5 4 3 2 1 0



 

 

Preface 

Biomolecular/DNA computing is now well established as an interdisciplinary field 
where chemistry, computer science, molecular biology, physics, and mathematics 
come together with the common purpose of fundamental scientific understanding of 
biology and chemistry and its applications. This international meeting has been the 
premier forum where scientists with different backgrounds and a common focus meet 
to present their latest results and entertain visions of the future. In this tradition, about 
100 participants converged in Memphis, Tennessee to hold the 13th International 
Meeting on DNA Computing during June 4–8, 2007, under the auspices of the 
International Society for Nanoscale Science, Computation and Engineering (ISNSCE) 
and The University of Memphis.  

The call for papers encouraged submissions of original, recent, and promising 
experimental and theoretical results in the field. The Call for Papers elicited some 62 
submissions, almost perfectly balanced among the major theoretical and experimental 
categories. It is evidence of how well the interdisciplinary nature of the conference 
has truly matured that the major criterion of quality, agreed upon in advance by the 
Program Committee (PC), produced a nearly balanced program as well across the two 
major categories, full papers and talks with an abstract only. The program with the 
greatest perceived impact consisted of 24 papers for plenary oral talks; in addition, 15 
full-paper posters and 10 poster abstracts were accepted, of which  5 authors were 
invited to give five short demos in a new submission category this year.  

The conference program retained the structure now customary for this meeting. It 
began with four tutorials on Monday June 4. The customary introductory tutorials to 
biochemistry and computation were delivered by Thom LaBean (Duke University, 
“Basic Bioscience for Computer Scientists”) and Vinhthuy Phan (University of 
Memphis, “Basic Computer Science for Bioscientists”) in the morning, while Ned 
Seeman (New York University, “Structural DNA Nanotechnology”), and  Byoung-
Tak Zhang (Seoul National University, “Molecular Evolutionary Computation In 
Vitro and In Silico”) delivered the advanced tutorials in the afternoon. An exciting set 
of four invited talks by Charles Bennett (IBM Research, “Brownian Molecular 
Computers and the Thermodynamics of Computation”), David Harel (Weizmann 
Institute, “In Silico Biology”), Paul Rothemund (Caltech, “DNA Origami”) and Steve 
Skienna (SUNY- Stony Brook, “Designing Useful Viruses”) for the main conference 
provided a most appropriate setting for the recurring themes of self-assembly, 
encodings, as well as intriguing new trends in what may be termed the design and bio-
engineering of robust biocomputers. Perhaps one day we will regard these budding 
new ideas as the onset of true interdisciplinary outcomes of the DNA conference. On 
Friday, we held the Third Symposium on Nanotechechnology, with four pointed 
lectures on cutting-edge developments in the field by Bob Austin (Princeton 
University, “The City of Cells: Adaptation and Evolution on a Chip”), William Shih 
(Harvard Medical School, “From Structural DNA Nanotechnology to Membrane-
Protein NMR Structure”), Bernie Yurke (Lucent Technologies, “The Dynamic DNA 
Nanoworld”) and Todd Yeates (UCLA, “Progress and Challenges in Designing 



VI Preface 

 

Proteins for Self-Assembly”).  Complementary poster reception, tours of Memphis’s 
major attractions, and a banquet at the Botanic Gardens facilitated the discussion of 
ideas arising from this program.  

This volume consists of a selection of invited papers accepted for presentation at 
the conference and revised after feedback at the event. We can identify roughly six 
major themes in the contributions, as described in the table of contents.  They appear 
to convey a much clearer focus and purpose in the realization of the potential in the 
field, despite their apparent similarity to topics addressed early in the history of the 
conference over a decade ago. Robustness and scalability in analyses, tools, and 
applications seem to characterize well the overall nature of these contributions, both 
experimental and theoretical, across all the major themes.  

Many people generously provided much of their time and energy in organizing this 
meeting. We thank all 12 invited speakers for offering thought-provoking talks in the 
main conference, the symposium, and the tutorials, as well as the authors for their 
quality submissions. Authors and reviewers also deserve kudos for submissions and 
their positive attitude and patience in proving the new manuscript submission system 
at http://dna13.memphis.edu/subs effective in alleviating the burden on the PC in the 
various submission, review and feedback rounds upto camera-ready copy. The 
invaluable help from the Organizing Committee, assistants Makram Raboudi, Sujoy 
Roy, Jennifer Grazier, as well as Cheryl Hayes and Yolanda Feifer in the computer 
science department, made possible a very smooth meeting that everyone seemed to 
enjoy. We are also indebted to the Steering Committee, led by Lila Kari, for the terse 
and timely reminders that made possible the content on the following pages. Not least, 
DNA13 would simply not have been possible without the support of our sponsors. We 
are grateful to all of them for their contributions.  

 
 

October 2007                                                                            Max H. Garzon 
Hao Yan 



 

Organization 

Program Committee 

Alessandra Carbone 
Mark Daley 
Max Garzon (Co-chair) 
Ashish Goel 
Hendrik Jan Hoogeboom 
Thomas LaBean 
Giancarlo Mauri 
Satoshi Murata 
Andrei Paun 
Ion Petre 
John A. Rose 
Yasubumi Sakakibara 
Dipankar Sen 
Ehud Shapiro 
William Shih 
Friedrich C. Simmel 
Lloyd Smith U 
David Soloveichik 
Petr Sosik 
Milan Stojanovic 
Ron Weiss 
Masahito Yamamoto 
Masayuki Yamamura 
Hao Yan (Co-chair) 

Université Pierre et Marie Curie, France  
University of Western Ontario, Canada  
University of Memphis, USA  
Stanford University, USA  
Leiden University, The Netherlands  
Duke University, USA  
University of Milan-Bicocca, Italy  
Tokyo Instute of Technology, Japan  
Louisiana Tech University, USA  
University of Turku, Finland  
Ritsumeikan APU, Japan  
Keio University, Japan  
Simon Fraser University, Canada  
Weizmann Institute, Israel  
Harvard Medical School, USA  
University of Munich, Germany  
Wisconsin-Madison, USA  
CalTech, USA  
Universidad Politechnica de Madrid, Spain  
Columbia University, USA  
Princeton University, USA  
Hokkaido University, Japan  
University of Tokyo, Japan  
Arizona State University, USA  
 

Steering Committee 

Lila Kari, Computer Science  
(Chair) 

Leonard Adleman (Honorary 
member) 

Anne Condon 
 
Masami Hagiya 
Natasha Jonoska 
Chengde Mao 
Giancarlo Mauri 
 
Satoshi Murata 
 

University of Western Ontario, Canada 
 
Computer Science, University of Southern  
    California, USA 
Computer Science University of British  
    Columbia, Canada 
Computer Science, University of Tokyo, Japan  
Mathematics, University of South Florida, USA  
Chemistry, Purdue University, USA  
Computer Science, University of Milan-Biccoca 
    Italy  
Computer Science, Tokyo Institute of  
     Technology, Japan  



VIII Organization 

Gheorge Paun 
 
John Reif 
Grzegorz Rozenberg 
 
Nadrian Seeman 
Andrew Turberfield 
Erik Winfree 

Computer Science, RomanianAcademy/ 
     University of Seville, Romania/Spain  
Computer Science, Duke University, USA  
Computer Science, University of Leiden,  
     The Netherlands  
Chemistry, New York University, USA  
Physics, University of Oxford, UK  
Computer Science/Computation and Neural 
     Systems, Caltech, USA 

Organizing Committee 

Derrel Blain         Computer Science, The University of Memphis, USA 
Russell Deaton       Computer Science and Engineering, 

           The University of Arkansas, USA 
Susannah Gal        Biological Sciences, Binghamton University, USA  
Max Garzon (Chair)     Computer Science, The University of Memphis, USA  
Andrew Neel        Computer Science, The University of Memphis, USA 
Vinhthuy Phan       Computer Science, The University of Memphis, USA 

Sponsors 

The University of Memphis  
     (The Provost Office, Bioinformatics Program, and Computer Science Department) 
Air Force Office of Scientific Research (AFOSR) 
The Army research Lab (ARO/ARL) 
The University of Arkansas, College of Engineering (Dean Saxena’s Offfice) 
An anonymous sponsor (by choice). 
 

 



Table of Contents

Self-assembly

Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1)
Glues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete,
Mashhood Ishaque, Eynat Rafalin, Robert T. Schweller, and
Diane L. Souvaine

Activatable Tiles: Compact, Robust Programmable Assembly and
Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Urmi Majumder, Thomas H. LaBean, and John H. Reif

Constant-Size Tileset for Solving an NP-Complete Problem in
Nondeterministic Linear Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Yuriy Brun

Solutions to Computational Problems Through Gene Assembly . . . . . . . 36
Artiom Alhazov, Ion Petre, and Vladimir Rogojin

Biomolecular Machines and Automata

Toward Minimum Size Self-Assembled Counters . . . . . . . . . . . . . . . . . . . . . . 46
Ashish Goel and Pablo Moisset de Espanés

A Realization of DNA Molecular Machine That Walks Autonomously
by Using a Restriction Enzyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Hiroyuki Sekiguchi, Ken Komiya, Daisuke Kiga, and
Masayuki Yamamura

Autonomous Programmable Nanorobotic Devices Using DNAzymes . . . . 66
John H. Reif and Sudheer Sahu

Multi-fueled Approach to DNA Nano-Robotics . . . . . . . . . . . . . . . . . . . . . . 79
Akio Nishikawa, Satsuki Yaegashi, Kazumasa Ohtake, and
Masami Hagiya

Experimental Validation of the Transcription-Based Diagnostic
Automata with Quantitative Control by Programmed Molecules . . . . . . . 89

Miki Hirabayashi, Hirotada Ohashi, and Tai Kubo

DNA Memory with 16.8M Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Masahito Yamamoto, Satoshi Kashiwamura, and Azuma Ohuchi



X Table of Contents

Codes for DNA Memories and Computing

Combining Randomness and a High-Capacity DNA Memory . . . . . . . . . . 109
Atsushi Kameda, Satoshi Kashiwamura, Masahito Yamamoto,
Azuma Ohuchi, and Masami Hagiya

Design of Code Words for DNA Computers and Nanostructures with
Consideration of Hybridization Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Tetsuro Kitajima, Masahiro Takinoue, Ko-ichiroh Shohda, and
Akira Suyama

Dynamic Neighborhood Searches for Thermodynamically Designing
DNA Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Suguru Kawashimo, Hirotaka Ono, Kunihiko Sadakane, and
Masafumi Yamashita

Sequence Design Support System for 4 × 4 DNA Tiles . . . . . . . . . . . . . . . . 140
Naoki Iimura, Masahito Yamamoto, Fumiaki Tanaka, and
Azuma Ohuchi

DNA Codes Based on Stem Similarities Between DNA Sequences . . . . . . 146
Arkadii D’yachkov, Anthony Macula, Vyacheslav Rykov, and
Vladimir Ufimtsev

Novel Techniques for DNA Computing in vitro

Heuristic Solution to a 10-City Asymmetric Traveling Salesman
Problem Using Probabilistic DNA Computing . . . . . . . . . . . . . . . . . . . . . . . 152

David Spetzler, Fusheng Xiong, and Wayne D. Frasch

An Approach for Using Modified Nucleotides in Aqueous DNA
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Angela M. Pagano and Susannah Gal

Modeling Non-specific Binding in Gel-Based DNA Computers . . . . . . . . . 170
Clifford R. Johnson

Stepwise Assembly of DNA Tile on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 182
Kotaro Somei, Shohei Kaneda, Teruo Fujii, and Satoshi Murata

An Interface for a Computing Model Using Methylation to Allow
Precise Population Control by Quantitative Monitoring . . . . . . . . . . . . . . . 191

Ken Komiya, Noriko Hirayama, and Masayuki Yamamura

Novel Techniques for DNA Computing in silico

Hardware Acceleration for Thermodynamic Constrained DNA Code
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Qinru Qiu, Prakash Mukre, Morgan Bishop, Daniel Burns, and
Qing Wu



Table of Contents XI

Hardware and Software Architecture for Implementing Membrane
Systems: A Case of Study to Transition P Systems . . . . . . . . . . . . . . . . . . . 211

Abraham Gutiérrez, Lúıs Fernández, Fernando Arroyo, and
Santiago Alonso

Towards a Robust Biocomputing Solution of Intractable Problems . . . . . 221
Marc Garćıa-Arnau, Daniel Manrique,
Alfonso Rodŕıguez-Patón, and Petr Sośık

Discrete Simulations of Biochemical Dynamics . . . . . . . . . . . . . . . . . . . . . . . 231
Vincenzo Manca

DNA Splicing Systems: An Ordinary Differential Equations Model and
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Elizabeth Goode and William DeLorbe

Models and Languages

Asynchronous Spiking Neural P Systems: Decidability and
Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Matteo Cavaliere, Omer Egecioglu, Oscar H. Ibarra, Mihai Ionescu,
Gheorghe Păun, and Sara Woodworth

On 5′ → 3′ Sensing Watson-Crick Finite Automata . . . . . . . . . . . . . . . . . . . 256
Benedek Nagy

Equivalence in Template-Guided Recombination . . . . . . . . . . . . . . . . . . . . . 263
Michael Domaratzki

Watson-Crick Conjugate and Commutative Words . . . . . . . . . . . . . . . . . . . 273
Lila Kari and Kalpana Mahalingam

DNA Coding Using the Subword Closure Operation . . . . . . . . . . . . . . . . . . 284
Bo Cui and Stavros Konstantinidis

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Staged Self-assembly:
Nanomanufacture of Arbitrary Shapes with O(1) Glues

Erik D. Demaine1, Martin L. Demaine1, Sándor P. Fekete2, Mashhood Ishaque3,
Eynat Rafalin4, Robert T. Schweller5, and Diane L. Souvaine3

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge,
MA 02139, USA�

{edemaine,mdemaine}@mit.edu
2 Institut für Mathematische Optimierung, Technische Universität Braunschweig, Pockelsstr. 14,

38106 Braunschweig, Germany
s.fekete@tu-bs.de

3 Department of Computer Science, Tufts University, Medford, MA 02155, USA��

{mishaq01,dls}@cs.tufts.edu
4 Google Inc.,���

erafalin@cs.tufts.edu
5 Department of Computer Science, University of Texas Pan American, 1201 W. University

Drive, Edinburg, Texas 78539, USA
schwellerr@cs.panam.edu

Abstract. We introduce staged self-assembly of Wang tiles, where tiles can be
added dynamically in sequence and where intermediate constructions can be
stored for later mixing. This model and its various constraints and performance
measures are motivated by a practical nanofabrication scenario through protein-
based bioengineering. Staging allows us to break through the traditional lower
bounds in tile self-assembly by encoding the shape in the staging algorithm in-
stead of the tiles. All of our results are based on the practical assumption that
only a constant number of glues, and thus only a constant number of tiles, can be
engineered, as each new glue type requires significant biochemical research and
experiments. Under this assumption, traditional tile self-assembly cannot even
manufacture an n × n square; in contrast, we show how staged assembly enables
manufacture of arbitrary orthogonal shapes in a variety of precise formulations
of the model.

1 Introduction

Self-assembly is the process by which an organized structure can form spontaneously
from simple parts. It describes the assembly of diverse natural structures such as crys-
tals, DNA helices, and microtubules. In nanofabrication, the idea is to co-opt nat-
ural self-assembly processes to build desired structures, such as a sieve for removing
viruses from serum, a drug-delivery device for targeted chemotherapy or brachyther-
apy, a magnetic device for medical imaging, a catalyst for enzymatic reactions, or a

� Partially supported by NSF CAREER award CCF-0347776 and DOE grant DE-FG02-
04ER25647.

�� Partially supported by NSF grant CCF-0431027.
��� Work performed while at Tufts University. Partially supported by NSF grant CCF-0431027.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{edemaine,mdemaine}@mit.edu
s.fekete@tu-bs.de


2 E.D. Demaine et al.

biological computer. Self-assembly of artificial structures has promising applications to
nanofabrication and biological computing. The general goal is to design and manufac-
ture nanoscale pieces (e.g., strands of DNA) that self-assemble uniquely into a desired
macroscale object (e.g., a computer).

Our work is motivated and guided by an ongoing collaboration with the Sackler
School of Graduate Biomedical Sciences that aims to nanomanufacture sieves, cat-
alysts, and drug-delivery and medical-imaging devices, using protein self-assembly.
Specifically, the Goldberg Laboratory is currently developing technology to bioengi-
neer (many copies of) rigid struts of varying lengths, made of several proteins, which
can join collinearly to each other at compatible ends. These struts occur naturally as
the “legs” of the T4 bacteriophage, a virus that infects bacteria by injecting DNA.
In contrast to nanoscale self-assembly based on DNA [WLWS98, MLRS00, RPW04,
BRW05, See98, SQJ04, Rot06], which is inherently floppy, these nanorod structures are
extremely rigid and should therefore scale up to the manufacture of macroscale objects.

The traditional, leading theoretical model for self-assembly is the two-dimensional
tile assembly model introduced by Winfree in his Ph.d. thesis [Win98] and first ap-
pearing at STOC 2000 [RW00]. The basic building blocks in this model are Wang tiles
[Wan61], unrotatable square tiles with a specified glue on each side, where equal glues
have affinity and may stick. Tiles then self-assemble into supertiles: two (super)tiles
nondeterministically join if the sum of the glue affinities along the attachment is at least
some threshold τ , called temperature. This basic model has been generalized and ex-
tended in many ways [Adl00, ACGH01, ACG+02, SW04, ACG+05, RW00, KS06].
The model should be practical because Wang tiles can easily simulate the practical sce-
nario in which tiles are allowed to rotate, glues come in pairs, and glues have affinity
only for their unique mates. In particular, we can implement such tiles using two unit-
length nanorods joined at right angles at their midpoints to form a plus sign.

Most theoretical research in self-assembly considers the minimum number of distinct
tiles—the tile complexity t—required to assemble a shape uniquely. In particular, if we
allow the desired shape to be scaled by a possibly very large factor, then in most mod-
els the minimum possible tile complexity (the smallest “tile program”) is Θ(K/ lg K)
where K is the Kolmogorov complexity of the shape [SW04]. In practice, the limit-
ing factor is the number of distinct glues—the glue complexity g—as each new glue
type requires significant biochemical research and experiments. For example, a set of
DNA-based glues requires experiments to test whether a collection of codewords have a
“conflict” (a pair of noncomplementary base sequences that attach to each other), while
a set of protein-based glues requires finding pairs of proteins with compatible geome-
tries and amino-acid placements that bind (and no other pairs of which accidentally
bind). Of course, tile and glue complexities are related: g ≤ t ≤ g4.

We present the staged tile assembly model, a generalization of the tile assembly
model that captures the temporal aspect of the laboratory experiment, and enables sub-
stantially more flexibility in the design and fabrication of complex shapes using a small
tile and glue complexity. In its simplest form, staged assembly enables the gradual ad-
dition of specific tiles in a sequence of stages. In addition, any tiles that have not yet
attached as part of a supertile can be washed away and removed (in practice, using a
weight-based filter, for example). More generally, we can have any number of bins (in



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 3

reality, batches of liquid solution stored in separate containers), each containing tiles
and/or supertiles that self-assemble as in the standard tile assembly model. During a
stage, we can perform any collection of operations of two types: (1) add (arbitrarily
many copies of) a new tile to an existing bin; and (2) pour one bin into another bin,
mixing the contents of the former bin into the latter bin, and keeping the former bin
intact. In both cases, any pieces that do not assemble into larger structures are washed
away and removed. These operations let us build intermediate supertiles in isolation and
then combine different supertiles as whole structures. Now we have two new complex-
ity measures in addition to tile and glue complexity: the number of stages—or stage
complexity s—measures the time required by the operator of the experiment, while the
number of bins—or bin complexity b—measures the space required for the experiment.1

(When both of these complexities are 1, we obtain the regular tile assembly model.)

Our results. We show that staged assembly enables substantially more efficient manu-
facture in terms of tile and glue complexity, without sacrificing much in stage and bin
complexity. All of our results assume the practical constraint of having only a small con-
stant number of glues and hence a constant number of tiles. In contrast, an information-
theoretic argument shows that this assumption would limit the traditional tile assembly
model to constructing shapes of constant Kolmogorov complexity.

For example, we develop a method for self-assembling an n × n square for arbi-
trary n > 0, using 16 glues and thus O(1) tiles (independent of n), and using only
O(log log n) stages, O(

√
log n) bins, and temperature τ = 2 (Section 4.2). Alterna-

tively, with the minimum possible temperature τ = 1, we can self-assemble an n × n
square using 9 glues, O(1) tiles and bins, and O(log n) stages (Section 4.1). In contrast,
the best possible self-assembly of an n×n square in the traditional tile assembly model
has tile complexity Θ(log n/ log log n) [ACGH01, RW00], or Θ(

√
log n) in a rather

extreme generalization of allowable pairwise glue affinities [ACG+05].
More generally, we show how to self-assemble arbitrary shapes made up of n unit

squares in a variety of precise formulations of the problem. Our simplest construction
builds the shape using 2 glues, 16 tiles, O(diameter) stages, and O(1) bins, but it
only glues tiles together according to a spanning tree, which is what we call the partial
connectivity model (Section 5.1). All other constructions have full connectivity: any two
adjacent unit squares are built by tiles with matching glues along their shared edge. In
particular, if we scale an arbitrary hole-free shape larger by a factor of 2, then we can
self-assemble with full connectivity using 8 glues, O(1) tiles, and O(n) stages and bins
(Section 5.2). We also show how to simulate a traditional tile assembly construction
with t tiles by a staged assembly using 3 glues, O(1) tiles, O(log log t) stages, O(t)
bins, and a scale factor of O(log t) (Section 5.3). If the shape happens to be monotone
in one direction, then we can avoid scaling and still obtain full connectivity, using 9
glues, O(1) tiles, O(log n) stages, and O(n) bins (details omitted in this version).

Table 1 summarizes our results in more detail, in particular elaborating on possible
trade-offs between the complexities. The table captures one additional aspect of our

1 Here we view the mixing time required in each stage (and the volume of each bin) as a
constant, mainly because it is difficult to analyze precisely from a thermodynamic perspective,
as pointed out in [Adl00]. In our constructions, we believe that a suitable design of the relative
concentrations of tiles (a feature not captured by the model) leads to reasonable mixing times.



4 E.D. Demaine et al.

Table 1. Summary of the glue, tile, bin, and stage complexities, the temperature τ , the scale
factor, the connectivity, and the planarity of our staged assemblies and the relevant previous work

n × n square Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [ACGH01, RW00] Θ( log n

log log n
) 1 1 2 1 full yes

Jigsaw technique (§4.1) 9 O(1) O(1) O(log n) 1 1 full yes
Crazy mixing (§4.2) 16 O(1) B O

(⌈ log n
B2

⌉
log B

)
2 1 full yes

Crazy mixing, B =
√

log n 16 O(1)
√

log n O(log log n) 2 1 full yes

General shape with n tiles Glues Tiles Bins Stages τ Scale Conn. Planar
Previous work [SW04] Θ(K/ log K) 1 1 2 unbounded partial no
Arbitrary shape with n tiles (§5.1) 2 16 O(log n) O(diameter) 1 1 partial no
Hole-free shape with n tiles (§5.2) 8 O(1) O(n) O(n) 1 2 full no
Simulation of 1-stage tiles T (§5.3) 3 O(1) O(|T |) O(log log |T |) 1 O(log |T |) partial no
Monotone shapes with n tiles (omitted) 9 O(1) O(n) O(log n) 1 1 full yes

constructions: Planarity. Consider two jigsaw puzzle pieces with complex borders ly-
ing on a flat surface. It may not be possible to slide the two pieces together while both
remain on the table. Rather, one piece must be lifted off the table and dropped into po-
sition. Our current model of assembly intuitively permits supertiles to be placed into
position from the third dimension, despite the fact that it may not be possible to as-
semble within the plane. A planar construction guarantees assembly of the final target
shape even if we restrict assembly of supertiles to remain completely within the plane.
This feature seems desirable, though it may not be essential in two dimensions because
reality will always have some thickness in the third dimension (2.5D). However, the
planarity constraint (or spatiality constraint in 3D) becomes more crucial in 3D assem-
blies, so this feature gives an indication of which methods should generalize to 3D; see
Section 6.

Related Work. There are a handful of existing works in the field of DNA self-assembly
that have proposed very basic multiple stage assembly procedures. John Reif introduced
a step-wise assembly model for local parallel biomolecular computing [Rei99]. In more
recent work Park et. al. have considered a simple hierarchical assembly technique for
the assembly of DNA lattices [PPA+06]. Somei et. al. have considered a microflu-
idic device for stepwise assembly of DNA tiles [SKFM05]. While all of these works
use some form of stepwise or staged assembly, they do not study the complexity of
staged assembly to the depth that we do here. Further, none consider the concept of bin
complexity.

2 The Staged Assembly Model

In this section, we present basic definitions common to most assembly models, then we
describe the staged assembly model, and finally we define various metrics to measure
the efficiency of a staged assembly system.

Tiles and tile systems. A (Wang) tile t is a unit square defined by the ordered quadruple
〈north(t), east(t), south(t), west(t)〉 of glues on the four edges of the tile. Each glue



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 5

is taken from a finite alphabet Σ, which includes a special “null” glue denoted null. For
simplicity of bounds, we do not count the null glue in the glue complexity g = |Σ| − 1.

A tile system is an ordered triple 〈T, G, τ〉 consisting of the tileset T (a set of distinct
tiles), the glue function G : Σ2 → {0, 1, . . . , τ}, and the temperature τ (a positive
integer). It is assumed that G(x, y) = G(y, x) for all x, y ∈ Σ and that G(null, x) = 0
for all x ∈ Σ. Indeed, in all of our constructions, as in the original model of Adleman
[Adl00], G(x, y) = 0 for all x �= y2, and each G(x, x) ∈ {1, 2, . . . , τ}. The tile
complexity of the system is |T |.
Configurations. Define a configuration to be a function C : Z

2 → T ∪{empty}, where
empty is a special tile that has the null glue on each of its four edges. The shape of a
configuration C is the set of positions (i, j) that do not map to the empty tile. The shape
of a configuration can be disconnected, corresponding to several distinct supertiles.

Adjacency graph and supertiles. Define the adjacency graph GC of a configuration C
as follows. The vertices are coordinates (i, j) such that C(i, j) �= empty. There is an
edge between two vertices (x1, y1) and (x2, y2) if and only if |x1 −x2|+ |y1 −y2| = 1.
A supertile is a maximal connected subset G′ of GC , i.e., G′ ⊆ GC such that, for every
connected subset H , if G′ ⊆ H ⊆ GC , then H = G′. For a supertile S, let |S| denote
the number of nonempty positions (tiles) in the supertile. Throughout this paper, we
will informally refer to (lone) tiles as a special case of supertiles.

If every two adjacent tiles in a supertile share a positive strength glue type on abutting
edges, the supertile is fully connected.

Two-handed assembly and bins. Informally, in the two-handed assembly model, any
two supertiles may come together (without rotation or flipping) and attach if their
strength of attachment, from the glue function, meets or exceeds a given temperature
parameter τ .

Formally, for any two supertiles X and Y , the combination set Cτ
(X,Y ) of X and Y

is defined to be the set of all supertiles obtainable by placing X and Y adjacent to each
other (without overlapping) such that, if we list each newly coincident edge ei with
edge strength si, then

∑
si ≥ τ .

We define the assembly process in terms of bins. Intuitively, a bin consists of an
initial collection of supertiles that self-assemble at temperature τ to produce a new
set of supertiles P . Formally, with respect to a given set of tile-types T , a bin is a pair
(S, τ) where S is a set of initial supertiles whose tile-types are contained in T , and τ is a
temperature parameter. For a bin (S, τ), the set of produced supertiles P ′

(S,τ) is defined
recursively as follows: (1) S ⊆ P ′

(S,τ) and (2) for any X, Y ∈ P ′
(S,τ), Cτ

(X,Y ) ⊆ P ′
(S,τ).

The set of terminally produced supertiles of a bin (S, τ) is P(S,τ) = {X ∈ P ′ | Y ∈ P ′,
Cτ

(X,Y ) = ∅}. We say the set of supertiles P is uniquely produced by bin (S, τ) if each
supertile in P ′ is of finite size. Put another way, unique production implies that every
producible supertile can grow into a supertile in P .

Intuitively, P ′ represents the set of all possible supertiles that can self-assemble from
the initial set S, whereas P represents only the set of supertiles that cannot grow any

2 With a typical implementation in DNA, glues actually attach to unique complements rather
than to themselves. However, this depiction of the glue function is standard in the literature
and does not affect the power of the model.



6 E.D. Demaine et al.

further. In the case of unique assembly of P , the latter thus represents the eventual, final
state of the self-assembly bin. Our goal is therefore to produce bins that yield desired
supertiles in the uniquely produced set P .

Given a collection of bins, we model the process of mixing bins together in arbitrarily
specified patterns in a sequence of distinct stages. In particular, we permit the following
actions: We can create a bin of a single tile type t ∈ T , we can merge multiple bins
together into a single bin, and we can split the contents of a given bin into multiple
new bins. In particular, when splitting the contents of a bin, we assume the ability
to extract only the unique terminally produced set of supertiles P , while filtering out
additional partial assemblies in P ′. Intuitively, given enough time for assembly and a
large enough volume of tiles, a bin that uniquely produces P should consist of almost
entirely the terminally produced set P . We formally model the concept of mixing bins
in a sequence of stages with the mix graph.

Mix graphs. An r-stage b-bin mix graph M consists of rb+1 vertices, m∗ and mi,j for
1 ≤ i ≤ r and 1 ≤ j ≤ b, and an arbitrary collection of edges of the form (mr,j , m∗)
or (mi,j , mi+1,k) for some i, j, k.

Staged assembly systems. A staged assembly system is a 3-tuple 〈Mr,b, {Ti,j}, {τi,j}〉
where Mr,b is an r-stage b-bin mix graph, each Ti,j is a set of tile types, and each τi,j is
an integer temperature parameter. Given a staged assembly system, for each 1 ≤ i ≤ r,
1 ≤ j ≤ b, we define a corresponding bin (Ri,j , τi,j) where Ri,j is defined as follows:

1. R1,j = T1,j (this is a bin in the first stage);

2. For i ≥ 2, Ri,j =
( ⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
∪ Ti,j .

3. R∗ =
⋃

k: (mr,k,m∗)∈Mr,b

P(R(r,k),τr,k)).

Thus, the jth bin in the ith stage takes its initial set of seed supertiles to be the ter-
minally produced supertiles from a collection of bins from the previous stage, the exact
collection specified by Mr,b, in addition to a set of added tile types Ti,j . Intuitively, the
mix graph specifies how each collection of bins should be mixed together when transi-
tioning from one stage to the next. We define the set of terminally produced supertiles
for a staged assembly system to be P(R∗,τ∗). In this paper, we are interested in staged as-
sembly systems for which each bin yields unique assembly of terminal supertiles. In this
case we say a staged assembly system uniquely produces the set of supertiles P(R∗,τ∗).

Throughout this paper, we assume that, for all i, j, τi,j = τ for some fixed global
temperature τ , and we denote a staged assembly system as 〈Mr,b, {Ti,j}, τ〉.

3 Assembly of 1 × n Lines

As a warmup, we develop a staged assembly for the 1 × n rectangle (“line”) using only
three glues and O(log n) stages. The assembly uses a divide-and-conquer approach
to split the shape into a constant number of recursive pieces. Before we turn to the
simple divide-and-conquer required here, we describe the general case, which will be
useful later. This approach requires the pieces to be combinable in a unique way, forc-
ing the creation of the desired shape. We consider the decomposition tree formed by



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 7

Fig. 1. A sample staged assembly system that
uniquely assembles a 1 × 10 line. The tem-
perature is τ = 1, and each glue a, b, c has
strength 1. The tile complexity is 3, the stage
complexity is 3, and the bin complexity is 2.

(a) (b)

Fig. 2. (a) The shifting problem encountered
when combining rectangle supertiles. (b) The
jigsaw solution: two supertiles that combine
uniquely into a fully connected square super-
tile.

the recursion, where sibling nodes should uniquely assemble to their parent. The stag-
ing proceeds bottom-up in this tree. The height of this tree corresponds to the stage
complexity, and the maximum number of distinct nodes at any level corresponds to the
bin complexity. The idea is to assign glues to the pieces in the decomposition tree to
guarantee unique assemblage while using few glues.

Theorem 1. There is a planar temperature-1 staged assembly system that uniquely pro-
duces a (fully connected) 1 × 2k line using 3 glues, 6 tiles, 6 bins, and O(k) stages.

Proof. The decomposition tree simply splits a 1 × 2k line into two 1 × 2k−1 lines. All
tiles have the null glue on their top and bottom edges. If the 1 × 2k line has glue a
on its left edge, and glue b on its right edge, then the left and right 1 × 2k−1 inherit
these glues on their left and right edges, respectively. We label the remaining two inner
edges—the right edge of the left piece and the left edge of the right piece—with a third
glue c, distinct from a and b. Because a �= b, the left and right piece uniquely attach
at the inner edges with common glue c. This recursion also maintains the invariant that
a �= b, so three glues suffice overall. Thus there are only

(3
2

)
= 6 possible 1 × 2k lines

of interest, and we only need to store these six at any time, using six bins. At the base
case of k = 0, we just create the nine possible single tiles. The number of stages beyond
that creation is exactly k.

Corollary 1. There is a planar temperature-1 staged assembly system that uniquely
produces a (fully connected) 1 × n line using 3 glues, 6 tiles, 10 bins, and O(log n)
stages.

Proof. We augment the construction of Theorem 1 applied to k = log n�. When we
build the 1 × 2i lines for some i, if the binary representation of n has a 1 bit in the ith
position, then we add that line to a new output bin. Thus, in the output bin, we accu-
mulate powers of 2 that sum to n. As in the proof of Theorem 1, three glues suffice to
guarantee unique assemblage in the output bin. The number of stages remains O(log n).



8 E.D. Demaine et al.

4 Assembly of n × n Squares

Figure 2(a) illustrates the challenge with generalizing the decomposition-tree technique
from 1×n lines to n×n squares. Namely, the naı̈ve decomposition of a square into two
n × n/2 rectangles cannot lead to a unique assembly using O(1) glues with tempera-
ture 1 and full connectivity: by the pigeon-hole principle, some glue must be used more
than once along the shared side of length n, and the lower instance of the left piece may
glue to the higher instance of the right piece. Even though this incorrect alignment may
make two unequal glues adjacent, in the temperature-1 model, a single matching pair
of glues is enough for a possible assembly.

4.1 Jigsaw Technique

To overcome this shifting problem, we introduce the jigsaw technique, a powerful tool
used throughout this paper. This technique ensures that the two supertiles glue together
uniquely based on geometry instead of glues. Figure 2(b) shows how to cut a square
supertile into two supertiles with three different glues that force unique combination
while preserving full connectivity.

Theorem 2. There is a planar temperature-1 staged assembly of a fully connected n×n
square using 9 glues, O(1) tiles, O(1) bins, and O(log n) stages.

Proof. We build a decomposition tree by first decomposing the n×n square by vertical
cuts, until we obtain tall, thin supertiles; then we similarly decompose these tall, thin
supertiles by horizontal cuts, until we obtain constant-size supertiles. Table 2 describes
the general algorithm. Figure 3 shows the decomposition tree for an 8 × 8 square. The
height of the decomposition tree, and hence the stage complexity, is O(log n).

We assign glue types to the boundaries of the supertiles to guarantee unique assem-
blage based on the jigsaw technique. The assignment algorithm is similar to the 1 × n
line, but we use three glues on each edge instead of one, for a total of nine glues instead
of three.

It remains to show that the bin complexity is O(1). We start by considering the
vertical decomposition. At each level of the decomposition tree, there are three types
of intermediate products: leftmost supertile, rightmost supertile and middle supertiles.
The leftmost and rightmost supertiles are always in different bins. The important thing

Table 2. Algorithm for vertical decomposition. (Horizontal decomposition is symmetric.).

Algorithm DecomposeVertically (supertile S):
— Here S is a supertile with n rows and m columns; S is not necessarily a rectangle.

1. Stop vertical partitioning when width is small enough:
If m ≤ 3, DecomposeHorizontally(S) and return.

2. Find the column along which the supertile is to be partitioned:
Let i := �(m + 1)/2�.
Divide supertile S along the ith column into a left supertile S1 and right supertile S2 such that
tiles at position (1, i) and (n, i) belong to S1 and the rest of the ith column belongs to S2.

3. Now decompose recursively:
DecomposeVertically (S1)
DecomposeVertically (S2)



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 9

Middle
supertiles

Leftmost
supertile

Rightmost
supertile

Fig. 3. Decomposition tree for 8 × 8 square in the jigsaw technique

to observe is that the middle supertiles always have the same shape, though it is possible
to have two different sizes—the number of columns can differ by one. In one of these
sizes, the number of columns is even and, in the other, the number is odd. Thus we
need to separate bins for the even- and odd-columned middle supertiles. For each of
the even- or odd-columned supertiles, each of left and right boundaries of the supertile
can have three choices for the glue types. Therefore, there is a constant number of
different types of middle supertiles at each level of the decomposition tree. Thus, for
vertical decomposition, we need O(1) bins. Each of the supertiles at the end of vertical
decomposition undergoes horizontal decomposition. A similar argument applies to the
horizontal decomposition as well. Therefore, the number of bins required is O(1).

4.2 Crazy Mixing

For each stage of a mix graph on B bins, there are up to Θ(B2) edges that can be
included in the mix graph. By picking which of these edges are included in each stage,
Θ(B2) bits of information can be encoded into the mix graph per stage. The large
amount of information that can be encoded in the mixing pattern of a stage permits a
very efficient trade-off between bin complexity and stage complexity. In this section,
we consider the complexity of this trade-off in the context of building n × n squares.

It is possible to view a tile system as a compressed encoding of the shape it assem-
bles. Thus, information theoretic lower bounds for the descriptional or Kolmogorov
complexity of the shape assembled can be applied to aspects of the tile system. From
this we obtain the following lower bound:

Theorem 3. Any staged assembly system with a fixed temperature and bin complexity
B that uniquely assembles an n × n square with O(1) tile complexity must have stage
complexity Ω( log n

B2 ) for almost all n.



10 E.D. Demaine et al.

Our upper bound achieves a stage complexity that is within a O(log B) factor of this
lower bound:

Theorem 4. For any n and B, there is a temperature-2 fully connected staged assembly
of an n×n square using 16 glues, O(1) tiles, B bins, and O( log n

B2 log B+log B) stages.

In the interest of space, the proofs of these two theorems are omitted in this version.
We conjecture that this stage complexity bound can be achieved by a temperature-1

assembly by judicious use of the jigsaw technique.

5 Assembly of General Shapes

In this section, we describe a variety of techniques for manufacturing arbitrary shapes
using staged assembly with O(1) glues and tiles.

5.1 Spanning-Tree Technique

The spanning-tree technique is a general tool for making an arbitrary shape with the
connectivity of a tree. We start with a sequential version of the assembly:

Theorem 5. Any shape S with n tiles has a partially connected temperature-1 staged
assembly using 2 glues, at most 24 tiles, O(log n) bins, and O(diameter(S)) stages.

Proof. Take a breadth-first spanning tree of the adjacency graph of the shape S. The
depth of this tree is O(diameter(S)). Root the tree at an arbitrary leaf. Thus, each
vertex in the tree has at most three children. Color the vertices with two colors, black
and white, alternating per level. For each edge between a white parent and a black child,
we assign a white glue to the corresponding tiles’ shared edge. For each edge between a
black parent and a white child, we assign a black glue to the corresponding tiles’ shared
edge. All other tile edges receive the null glue. Now a tile has at most three edges of its
color connecting to its children, and at most one edge of the opposite color connecting
to its parent.

To obtain the sequential assembly, we perform a particular postorder traversal of
the tree: at node v, visit its child subtrees in decreasing order of size. To combine at
node v, we mix the recursively computed bins for the child subtrees together with the
tile corresponding to node v. The bichromatic labeling ensures unique assemblage. The
number of intermediate products we need to store is O(log n), because when we recurse
into a second child, its subtree must have size at most 2/3 of the parent’s subtree.

5.2 Scale Factor 2

Although the spanning-tree technique is general, it probably manufactures structurally
unsound assemblies. Next we show how to obtain full connectivity of general shapes,
while still using only a constant number of glues and tiles.

Theorem 6. Any simply connected shape has a staged assembly using a scale factor
of 2, 8 glues, O(1) tiles, O(n) stages, and O(n) bins. The construction maintains full
connectivity.



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 11

Proof. Slice the target shape with horizontal lines to divide the shape into 1 × k strips
for various values of k, which scale to 2 × 2k strips. These strips can overlap along
horizontal edges but not vertical edges. Define the strip graph to have a vertex for each
strip and an edge between two strips that overlap along a horizontal edge. Because the
shape is simply connected, the strip graph is a tree. Root this tree at an arbitrary strip,
defining a parent relation.

A recursive algorithm builds the subtree of the strip graph rooted at an arbitrary
strip s. As shown in Figure 4(a), the strip s may attach to the rest of the shape at zero
or more places on its top or bottom edge. One of these connections corresponds to the
parent of s (unless s is the overall root). As shown in Figure 4(b), our goal is to form
each of these attachments using a jigsaw tab/pocket combination, where bottom edges
have tabs and top edges have pockets, extending from the rightmost square up to but
not including the leftmost square.

(a) (b)

(c)

Fig. 4. Constructing a horizontal strip in a factor-2 scaled shape (a), augmented by jigsaw tabs
and pockets to attach to adjacent pieces (b), proceeding column-by-column (c)

The horizontal edges of each tab or pocket uses a pair of glues. The unit-length upper
horizontal edge uses one glue, and the possibly longer lower horizontal edge uses the
other glue. The pockets at the top of strip s use a different glue pair from the tabs at
the bottom of strip s. Furthermore, the pocket or tab connecting s to its parent uses a
different glue pair from all other pockets and tabs. Thus, there are four different glue
pairs (for a total of eight glues). If the depth of s in the rooted tree of the strip graph
is even, then we use the first glue pair for the top pockets, the second glue pair for the
bottom tabs, except for the connection to the parent which uses either the third or fourth
glue pair depending on whether the connection is a top pocket or a bottom tab. If the
depth of s is odd, then we reverse the roles of the first two glue pairs with the last two
glue pairs. All vertical edges of tabs and pockets use the same glue, 8.

To construct the strip s augmented by tabs and pockets, we proceed sequentially from
left to right, as shown in Figure 4(c). The construction uses two bins. At the kth step, the
primary bin contains the first k−1 columns of the augmented strip. In the secondary bin,
we construct the kth column by brute force in one stage using 1–3 tiles and 0–2 distinct
internal glues plus the desired glues on the boundary. Because the column specifies only
two glues for horizontal edges, at the top and bottom, we can use any two other glues
for the internal glues. All of the vertical edges of the column use different glues. If k
is odd, the left edges use glues 1–3 and the right edges uses glues 4–6, according to y



12 E.D. Demaine et al.

coordinate; if k is even, the roles are reversed. (In particular, these glues do not conflict
with glue 8 in the tabs and pockets.) The only exception is the first and last columns,
which have no glues on their left and right sides, respectively. Now we can add the
secondary bin to the primary bin, and the kth column will uniquely attach to the right
side of the first k − 1 columns. In the end, we obtain the augmented strip.

During the building of the strip, we attach children subproblems. Specifically, once
we assemble the rightmost column of an attachment to one or two children strips, we
recursively assemble those one or two children subtrees in separate bins, and then mix
them into s’s primary bin. Because the glues on the top and bottom sides of s differ,
as do the glues of s’s parent, and because of the jigsaw approach, each child we add
has a unique place to attach. Therefore we uniquely assemble s’s subtree. Applying this
construction to the root of the tree, we obtain a unique assembly of the entire shape.

5.3 Simulation of One-Stage Assembly with Logarithmic Scale Factor

In this section, we show how to use a small number of stages to combine a constant
number of tile types into a collection of supertiles that can simulate the assembly of
an arbitrary set of tiles at temperature τ = 1, given that these tiles only assemble
fully connected shapes. In the interest of space, the details of this proof are omitted.
Extending this simulation to temperature-2 one-stage systems is an open problem.

Theorem 7. Consider an arbitrary single stage, single bin tile system with tile set T ,
all glues of strength at most 1, and that assembles a class of fully connected shapes.
There is a temperature-1 staged assembly system that simulates the one-stage assembly
of T up to an O(log |T |) size scale factor using 3 glues, O(1) tiles, O(|T |) bins, and
O(log log |T |) stages. At the cost of increasing temperature to τ = 2, the construction
achieves full connectivity.

6 Future Directions

There are several open research questions stemming from this work.
One direction is to relax the assumption that, at each stage, all supertiles self-assemble

to completion. In practice, it is likely that at least some tiles will fail to reach their termi-
nal assembly before the start of the next stage. Can a staged assembly be robust against
such errors, or at least detect these errors by some filtering, or can we bound the error
propagation in some probabilistic model.

Another direction is to develop a model of the assembly time required by a mixing
operation involving two bins of tiles. Such models exist for (one-stage) seeded self-
assembly—which starts with a seed tile and places singleton tiles one at a time—but
this model fails to capture the more parallel nature of two-handed assembly in which
large supertiles can bond together without a seed. Another interesting direction would
be to consider nondeterministic assembly in which a tile system is capable of building
a large class of distinct shapes. Is it possible to design the system so that certain shapes
are assembled with high probability?

Finally, we have focused on two-dimensional constructions in this paper. This focus
provides a more direct comparison with previous models, and it is also a case of prac-
tical interest, e.g., for manufacturing sieves. Many of our results also generalize to 3D



Staged Self-assembly: Nanomanufacture of Arbitrary Shapes 13

(or any constant dimension), at the cost of increasing the number of glues and tiles. For
example, the spanning-tree model generalizes trivially, and a modification to the jigsaw
idea enables many of the other results to carry over. So far, we have not worked out
the exact performance measures for these 3D analogs, but we do not expect this to be
difficult.

Acknowledgments. We thank M. S. AtKisson and Edward Goldberg for extensive dis-
cussions about the bioengineering application.

References

[ACG+02] Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting (electronic), pp. 23–32. ACM Press, New York (2002)

[ACG+05] Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Jour-
nal on Computing 34(6), 1493–1515 (2005)

[ACGH01] Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size
for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pp. 740–748. ACM Press, New York (2001)

[Adl00] Adleman, L.M.: Toward a mathematical theory of self-assembly. Technical Report
00-722, Department of Computer Science, University of Southern California (Jan-
uary 2000)

[BRW05] Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

[KS06] Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithm, pp. 571–580. ACM Press, New York (2006)

[MLRS00] Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using al-
gorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496
(2000)

[PPA+06] Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.:
Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly
procedures. Angewandte Chemie 45, 735–739 (2006)

[Rei99] Reif, J.: Local parallel biomolecular computation. In: Proc. DNA-Based Comput-
ers, pp. 217–254 (1999)

[Rot06] Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440, 297–302 (2006)

[RPW04] Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA sierpinski triangles. PLoS Biology 2(12), 424 (2004)

[RW00] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pp. 459–468. ACM Press, New York (2000)

[See98] Seeman, N.C.: DNA nanotechnology. In: Siegel, R.W., Hu, E., Roco, M.C. (eds.)
WTEC Workshop Report on R&D Status and Trends in Nanoparticles, Nanostruc-
tured Materials, and Nanodevices in the United States (January 1998)



14 E.D. Demaine et al.

[SKFM05] Somei, K., Kaneda, S., Fujii, T., Murata, S.: A microfluidic device for dna tile self-
assembly. In: DNA, pp. 325–335 (2005)

[SQJ04] Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that
folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

[SW04] Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti, C.,
Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 344–354.
Springer, Heidelberg (2005)

[Wan61] Wang, H.: Proving theorems by pattern recognition—II. The Bell System Technical
Journal 40(1), 1–41 (1961)

[Win98] Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena (1998)

[WLWS98] Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)



Activatable Tiles: Compact, Robust

Programmable Assembly and Other Applications

Urmi Majumder, Thomas H. LaBean, and John H. Reif

Department of Computer Science,
Duke University, Durham, NC, USA

{urmim,thl,reif}@cs.duke.edu
http://www.cs.duke.edu/∼reif

Abstract. While algorithmic DNA self-assembly is, in theory, capable
of forming complex patterns, its experimental demonstration has been
limited by significant assembly errors. In this paper we describe a novel
protection/deprotection strategy to strictly enforce the direction of tiling
assembly growth to ensure the robustness of the assembly process. Tiles
are initially inactive, meaning that each tile’s output pads are protected
and cannot bind with other tiles. After other tiles bind to the tile’s
input pads, the tile transitions to an active state and its output pads
are exposed, allowing further growth. We prove that an activatable tile
set is an instance of a compact, error-resilient and self-healing tile-set.
We also describe a DNA design for activatable tiles and a deprotection
mechanism using DNA polymerase enzymes and strand displacement.
We conclude with a discussion on some applications of activatable tiles
beyond computational tiling.

Keywords: DNA-assembly, error-correction, molecular computation.

1 Introduction

The potential of self-assembling DNA nanostructures is derived from the pre-
dictable properties of DNA hybridization as well as from the assembly’s theo-
retical power to instantiate any computable pattern [3]. Winfree [1] formalized
this process of tiling assembly growth when he proposed Tile Assembly Model
(TAM) which describes how a complex structure can spontaneously form from
simple components called “tiles”; this assembly can also perform computation.
However, the main problem for a practical implementation of TAM based as-
semblies is that tile additions are very error-prone. Experiments show that error
rates can be as high as 1% to 8% [4,5]. The primary kind of error encountered in
DNA tile assembly experiments is known as the error by insufficient attachment
[7], which occurs when a tile violates the TAM rule stating that a tile may only
be added if it binds strongly1 enough. Thus there is a mismatch between theo-
retical models of DNA tiles and reality, providing major challenges in applying
this model to real experiments.
1 In the TAM for temperature τ = 2, a tile binds strongly either using at least one

strong bond or two weak bonds.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 15–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.duke.edu/~reif


16 U. Majumder, T.H. LaBean, and J.H. Reif

There have been several designs of error-resilient tile sets [6,7,8] that perform
“proofreading” on redundantly encoded information [8] to decrease assembly
errors. Recall that the primary kinds of error in assembly experiments are: (i)
growth error that occurs when a tile with one weak bond attaches at a location
where a tile with two weak bonds should have been attached, (ii) facet nucleation
error that occurs when a weakly binding tile attaches to a site where no tile
should currently attach and (iii) spontaneous nucleation error that occurs when
a large assembly grows without a seed tile. Each of these error-resilient tile sets
[6,7,8], however, addresses only certain errors and proposes a construction that
works with limited classes of tile sets. Additionally, most constructions result in
greatly increased tile set size, hindering practical implementation. This leads to
a major open question in error-resilient self-assembly: Is it possible to design a
compact tile set that can address all three kinds of errors simultaneously? Our
activatable tile set is an effort towards achieving this ultimate goal.

Limitations of Previous Approaches towards Robust Assembly: Ex-
isting error-resilient tile sets assume directional growth. This is a very strong
assumption because experiments show that real tiles do not behave in such a
fashion. The assumption, however, underlies the growth model in TAM. Thus, a
potential solution to minimizing assembly errors is to enforce this directionality
constraint. Observe that if we start with a set of “deactivated” tiles which acti-
vate in a desired order, we can enforce a directional assembly at the same scale
as the original one. Such a system can be built with minimal modifications of
existing DNA nanostructures [9,10,11].

Previous Approaches to direct Tiling Assembly Procedures: The snaked-
proofreading technique of Chen et al. [7] provided the main inspiration for acti-
vatable tiles. This scheme replaces each original tile by a k×k block of tiles. The
assembly process for a block doubles back on itself such that nucleation error
cannot propagate without locally forcing another insufficient attachment. Can
such a growth order be enforced at the original scale of the assembly? Other
motivating work has been from Dirks et al. [2], who designed a system where
monomer DNA nanostructures, when mixed together, do not hybridize until an
initiator strand is added. Can the idea of triggered self-assembly be used in the
context of computational DNA tiling?

The answers to both questions are yes. The key idea is to start with a set of
“protected” DNA tiles, which we call activatable tiles ; these tiles do not assem-
ble until an initiator nanostructure is introduced to the solution. The initiator
utilizes strand displacement to “strip” off the protective coating on the input
sticky end(s) of the appropriate neighbors [12]. When the input sticky ends are
completely hybridized, the output sticky ends are exposed. DNA polymerase
enzyme can perform this deprotection, since it can act over long distances (e.g:
across tile core) unlike strand displacement. The newly exposed output sticky
ends, in turn, strip the protective layer off the next tile along the growing face
of the assembly. The use of polymerase in this context is justified because of
its successful use in PCR, a biochemistry technique often used for exponentially
amplifying DNA. PCR has been so successful that it has several commercial



Activatable Tiles: Compact, Robust Programmable Assembly 17

applications including genetic fingerprinting, paternity testing, hereditary dis-
ease detection, mutagenesis and more. Further PCR amplification of megabase
DNA has also been done [21]. In nature most organisms copy their DNA in the
same way making polymerase an excellent choice for reliable deprotection over
long distances. Many repeated rounds of primer polymerization are required in
conventional PCR. In contrast, we are using only a single round of primer poly-
merization (similar to a single round of PCR) to expose the desired sticky ends
in our activatable tiles. Other proteins, such as helicase which are useful for DNA
replication may be used for unwrapping our protection strand, but we have not
yet investigated this direction quite thoroughly. Another important observation
in this context is that although polymerase and the activatable tile are of com-
parable sizes, when the polymerase attaches to the primer, which is bound to
the protection strand, it is only bound at the concave open face of the assembly
(ensured by the sequential assembly growth) and hence there is no possibility of
steric hindrance.

Enzyme-free Activated Tiles: The most relevant previous work that has been
recently brought to our attention is probably that of Fujibayashi et al. [23,24]:
the Protected Tile Mechanism (PTM) and the Layered Tile Mechanism (LTM)
which utilize DNA protecting molecules to form kinetic barriers against spurious
assembly. Although this is an enzyme-free circuit, in the PTM, the output sticky
ends are not protected and thus they can bind to a growing assembly before
the inputs are deprotected and hence cause an error. In the LTM, the output
sticky ends are protected only by 3 nucleotides each and can be easily displaced
causing the above-mentioned error. Error resilience can only be guaranteed if we
can ensure a deprotection from input to output end.

Our Results and the Organization of the Paper: Section 1 introduced
the notion of deprotection and discussed the need for activatable tiles in com-
putational assemblies. Section 2 describes the abstract and kinetic models for
activatable tiles that build on Winfree’s original TAMs, with the primary differ-
ence being that each tile now has an associated finite state machine. In Section 3,
we prove that the activatable tile set is an instance of a compact, error-resilient
and self-healing tile set. In Section 4, we describe the DNA design of an example
one dimensional activatable tile and its deprotection using both strand displace-
ment and DNA polymerization. In Section 5 we discuss some applications of
activatable tiles beyond computational assemblies as a concentration/sensing
system and reaction catalyzation. In Section 6 we conclude the paper.

2 The Activatable Tile Assembly Models

An abstract model is a theoretical abstraction from reality that is often easier
to work with conceptually as well as mathematically. Since Winfree has already
established the framework for tiling assembly models with his TAM, we build our
abstract Activatable Tile Assembly Model (aATAM) and the kinetic Activatable
Tile Assembly Model (kATAM) discussed in this section on Winfree’s abstract
and kinetic TAMs respectively [1].



18 U. Majumder, T.H. LaBean, and J.H. Reif

Out2t

In1t

In2t

Out1t

(i)

(a)

S1tS1t

(b)

S1t

Out2t

In1t

In2t

Out1t

S2t S3t

S4t S5t

t

t

Out2t

In1t

In2t

Out1t

Out2t

In1t

In2t

Out1t

Out2t

In1t

In2t

Out1t

Out2t

In1t

In2t

Out1t

Out2t

In1t

In2t

Out1t

S2t

S3t S4t

S5t

In1t

P1t

In2tP2t In2t

In1t
LREt

Out2t

In1t

In2t

Out1t

(i)

Out2ut tt

In1t

In2t

Out1tt

t

t

O

(c)

(ii)

S1t S2t

S3t S4t

S5t

In1t

P1t

In2tP2t In2t

In1t
LREt

Fig. 1. (a-i) Original Abstract Rule Tile R, (a-ii) Protected version of R, (b) Different
states associated with the activatable R (aR), (c) State Transition Diagram for aR.
The In1t and the In2t denote the sticky ends that displaces the protections P1t and
P2t from the input ends of the tile t while LREt is the long range effector that displaces
the protection from the output end.

2.1 The Abstract Activatable Tile Assembly Model (aATAM)

The simplest version of activatable tiles starts with a set of “protected” rule
tiles2 that do not assemble until a pre-assembled initiator assembly, consisting
of a seed tile and multiple boundary tiles, is introduced to the mixture. In the
more complex version, the initiator is the seed tile alone and the boundary tiles
have a protection-deprotection scheme similar to that of the rule tiles.

The aATAM is similar to the original abstract TAM (aTAM) due to Winfree
[1] except that each tile type t has an associated finite state machine (FSM) Mt

and hence, each tile has a state. The new abstract rule tile is shown in Figure
1(a-ii). Unlike the original tile [Figure 1(a-i)], it has all its sides protected. The
states in the FSM Mt arise from the presence or absence of protection on the four
sides of the tile type t (as shown in Figure 1(b)). The state transition diagram
is shown in Figure 1(c).

2.2 The Kinetic Activatable Tile Assembly Model (kATAM)

The kATAM is based on Winfree’s original model kTAM, but due to the the
stochastic nature of the protection on all sides of the tile, additional errors need
to be modeled. Therefore we need more free parameters than just rf and rr,b for
modeling assembly growth. Figure 2 shows the different states possible in the
finite state machine for the kATAM and Figure 1(Right) shows the state tran-
sition diagram. In addition to the assumptions of kTAM, the main assumptions
of kATAM are: (i) The input protection is only reversible while the output pads
are still protected, (ii) Output protection is irreversible, meaning once a tile is

2 The three main types of tiles in TAM are : (i) Rule tiles, responsible for computa-
tion in algorithmic self-assembly, (ii) Seed tile that nucleates the assembly and (iii)
Boundary tiles that provide two dimensional input for computation.



Activatable Tiles: Compact, Robust Programmable Assembly 19

completely deprotected, it cannot return to the stage where every side of the tile
has a protective cover. Monomers in solution are thus either entirely protected
or entirely deprotected.

The main features of the kinetic model are: (1) a tile can get knocked off
the growth site after output deprotection. These unprotected tiles, however, are
added to the growth site at a different rate, r

′

f , that will later be shown to be
much smaller than rf , (2) with one input match, the tile in S8 (S2) transitions
to S9 (S3) at the rate of rdp (deprotection) and returns to S8 (S2) at the rate
of rp (protection), (3) When both inputs are matched, the output pads (S5) are
deprotected at the rate rdp out. Note that rdp, rp and rdp out are free parameters
whose value depends on the experimental situation. The kinetic parameters can
be derived for an example deprotection system. The description is omitted due
to space constraints. Interested readers can refer to [13].

Empty Growth Site(GS)

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

S1

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out2t

In1t

In2t

Out1t t

Correct Protected Tile
(CPT) in GS

S2

In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out2Out2Out2tt

In1n ttt

In2In2ttt

ut1OOuOOu t t
In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out2t

In1t

In2t

Out1t t In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out2t

In1t

In2t

Out1t t

CPT with one De-protected
Input in GS

In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out2Out2Out2tt

In1ttt

In2In2tt

ut1OOuOOu t t In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out2Out2Out2tt

In1n ttt

In2t

ut1OOuOOu t t

S3

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out2t

In1t

In2t

Out1t t

CPT with two
De-protected

Input in GS

In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out2Out2Out2tt

In1tt

In2t

ut1OOuOOu t t

CPT ith t

S4

In1t

In2t

ASSEMBLY

Out2t

In1t

In2t

Out1t t

Completely De-protected
Correct Tile(CT)

In1t

In2I t

ASSEMBLYLL

Out2Out tt

In1tt

In2t

Out1tt t

S5

G
R
O
W
I
N
G

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In3t

In4t

Out3t t’

Protected Tile with zero
input matches in GS

S6

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In3t

In4t

Out3t t’

Completely De-protected
Tile with zero
input matches

In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out4t

In33tt

In4t

Out33t t’

S7

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In1t

In4t

Out3t t’’

Protected Tile with one input 
match(POIMT) in GS

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In3t

In2t

Out3t t’’In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out4Out4Out4tt

In1n ttt

In4In4ttt

ut3OOuOOu t t’’ In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out4Out4Out4tt

In3n ttt

In2In2ttt

ut3OOuOOu t t’’

S8

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In1t

In4t

Out3t t’’

POIMT with one De-protected Input in GS

S9

In1t

In2t

G
R
O
W
I
N
G

ASSEMBLY

Out4t

In3t

In2t

Out3t t’’In1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

Out4Out4Out4tt

In1ttt

In4In4ttt

ut3OOuOOu t t’’ n1t

In2I t

G
R
O
W
I
N
G

ASSEMBLYLL

I

Out4Out4Out4tt

In33n ttt

In2In2tt

ut3OOuOOu t t’’In1t

In2t

ASSEMBLY

Out4t

In3t

In2t

Out3t t’ In1t

In2I t

ASSEMBLYLL

Out4t

In33tt

In2t

Out33t t’

Completely De-protected Tile with 
one input match

In1t

In2t

ASSEMBLY

Out4t

In1t

In4t

Out3t t’

S10

G
R
O
W
I
N
G

G
R
O
W
I
N
G

rf

rr,0

rdp

rp

rdp_out

rdp

rp

rr,1 rr,2

rr,2

r’fr’frr,0

rr,0rf

rr,0 r’f

rf

rr,0

rdp

rp

rr,1

Fig. 2. State transition diagram for kATAM

Forward Rate of Erroneous Tiles: Since there are many free parameters in
the kinetic model, such as rf , rr,b, rp and others we decrease the dimensionality
of the parameter space by combining some of the parameters together e.g. rp, rdp

and rdp out. This is done by computing the rate at which tiles become completely
deprotected after reaching a growth site, thus neglecting the intermediate states
in Figure 2. This new rate corresponds to the rate at which a tile reaches state
S5 if it is in S1. We call this rate reff and assume that reff is a function of Gse

such that reff = kf e(−2+ε1)Gse , where ε1 is a constant between 0 and 1. Note



20 U. Majumder, T.H. LaBean, and J.H. Reif

that reff is similar to rf in the original kTAM. Based on the continuous time
Markov Chain (CTMC) in Figure 2, we can evaluate reff as

reff = rf
rdp

(rdp + rr,0)
rdp

(rp + rdp + rr,1)
rdp out

(rdp out + rr,2 + rp)
. (1)

One primary assumptions in the model are

rr,1 > rf > reff > rr,2 and

rr,1 = e−Gse, rr,2 = e−2Gse , reff = e(−2+ε1)Gse , rf = e(−2+ε1+ε2)Gse

for some 0 < ε1, ε2 < 1. (2)

For simplicity of the model, we can ensure that ε2 � ε1 by adjusting the ki-
netic parameters in the deprotection system (e.g. toehold length in the strand
displacement events, nucleotide concentration and template length for polymer-
ization etc). Hence reff � rr,2. Another important assumption we make is that
DNA polymerization is irreversible and, hence, at equilibrium every tile is com-
pletely deprotected.

Based on these assumptions we can first obtain the expected fraction of com-
pletely deprotected tiles that leaves S5 as rr,2

rr,2+r∗ e−Gmc and hence derive r
′

f , the

forward rate of erroneous tiles as e(−2+ε2)Gse .

Fig. 3. Protection Strategy for a DNA Tile

3 Compact Proofreading with Activatable Tiles

Activatable tiles provide error-resilience to a growing assembly by enforcing di-
rectional growth. Ideally the output ends are never available until the corre-
sponding input ends are completely hybridized, thus preventing both errors by
insufficient attachment as well as nucleation errors. There is a small probability,
however, of errors by insufficient attachment caused by tiles that leave a growth
site after output deprotection. Furthermore, the computation still occurs at the
original scale, unlike Chen’s snaked proofreading technique [7] which increases
the lattice size by a multiplicative factor of k2. Hence, activatable tiles indeed



Activatable Tiles: Compact, Robust Programmable Assembly 21

provide compact error-resilience. Since the seed is the only completely unpro-
tected tile when the assembly begins and the concentration of completely unpro-
tected rule or boundary tiles existing in solution at any given time is very low,
activatable tiles can also prevent spontaneous nucleation and enforce “controlled
growth”.3 We can formally prove that activatable tiles are indeed an instance of
compact proofreading technique. Soloveichik et al. gave a concise definition of
compact proofreading [14] and we adapt it to our ATAM:

Definition 1. Given a small constant 0 < q < 1, a sequence of deterministic tile
systems {T1, T2, T3, . . .} is a compact proofreading scheme for pattern P if (i) TN

produces the full infinite pattern P under the aATAM, (ii) TN has poly(log N)
tile types (poly(n) denotes nO(1)) and (iii) TN produces the correct N ×N initial
portion of the pattern P with probability at least q in time O(Npoly(logN)) in
the kATAM for some values of the free parameters in the model.

Theorem 1. The activatable Tile System AN is a compact proofreading scheme.

Proof. Let the tile system in aTAM be TN and the activatable tile system be
AN . AN is the same as TN except that each tile type has an associated FSM.
Since in aATAM activatable tiles can bind to a growth site only if they can bind
strongly enough (just as in aTAM), AN can produce the whole system correctly
under aATAM so the first condition is satisfied. Moreover, |AN | = |TN |, the only
difference being that we start the assembly with a “protected” version of TN .
Since this work is concerned with only deterministic tile systems, the argument
of Soloveichik et al. [14] applies and we need only a constant number of tile types
so long the tile set has a locally deterministic assembly sequence.

The argument for the third condition is similar to that of Chen et al. [7]. In this
model, errors are only caused by insufficient attachments; these errors are caused
by tiles dissociating from growth sites after their output protection has been
stripped off. In an insufficient attachment event, first an unprotected monomer
(with a single binding site match) attaches at the rate of r

′

f . However, before this
tile is knocked off at the rate of rr,1, a second tile (protected/unprotected) can
attach to the first tile at the rate r

′

f + reff . Thus, based on the corresponding
CTMC we can say that the rate of an insufficient attachment is

rinsuf =
r

′

f (r
′

f + reff )

rr,1 + r
′
f + reff

= e(−3+ε1+ε2)Gse
1 + e−(ε1−ε2)Gse

1 + e−(1−ε1)Gse + e−(1−ε2)Gse
(3)

Our goal with respect to a particular growth site is to bury the correct tile k
levels deep before an insufficient attachment event occurs.4 In other words, if we
have a k × k square whose left bottom corner location is occupied by this tile,
then the k × k square completes before an insufficient attachment event occurs.
This puts the tile under consideration into a “k-frozen” state. The process of
3 Controlled growth is defined to be the growth occurring for parameter values in a

certain part of the kinetic parameter space, such that (i) growth does occur, (ii)
errors are rare and (iii) growth not seeded by the seed tile is rare [15].

4 The time taken for single tile attachment is O(1/reff ) which is less than 1/rinsuf .



22 U. Majumder, T.H. LaBean, and J.H. Reif

tile attaching or detaching in a 2D assembly can be modeled as a random walk.5

Note that the forward growth (tile association at the output ends of the current
tile) happens at the rate of reff + r

′

f while the backward growth (dissociation of
the current tile) has a rate of rr,2. Thus, the average rate of growth (the mean
of forward and backward rates) r is 1

2 (reff + r
′

f + rr,2) and the expected time
taken for this k × k square to grow is O(k4/r) since in a 2D random walk, we
have to take k4 steps in expectation in order to cover k2 locations.

Thus, for any small εinsuf , one can find a constant cinsuf such that, with
probability 1−εinsuf , no insufficient attachment happens at this specific location
but a correct tile becomes k-frozen within time O(k4/r). In other words, (k4/r) <
(cinsuf /rinsuf ). Hence, for a given k, such that with high probability a given
growth site is filled correctly and buried k levels deep in O(k4/r) time. For
constant kinetic parameters and k, this time is also constant. Hence we can use
the same argument as Adleman et al. [19] and show that the N × N square is
completed in expected O(N) time. ��

Compact Self-healing with Activatable Tiles: The impact of activatable
tiles goes beyond the compact error-resilience which is a primary concern for
fault tolerant self-assembly. In case of gross external damage, e.g. a hole created
in a growing tiling assembly, activatable tiles can repair the damage with minimal
error by enforcing directional growth. Since the original, self-assembled lattice
was formed by algorithmic accretion in the forward direction, only forward re-
growth is capable of rebuilding the correct structure. The protected monomers in
the solution ensure a forward directional accretion. There is a small probability,
however, of backward growth from the unprotected monomers that were once
part of the original tiling assembly and dissociated after outputs are deprotected.
The likelihood is comparatively small since the forward reaction rate depends on
concentration of the monomers and the protected tiles are much more abundant
than their unprotected counterparts. Defining size in terms of number of tiles,
we conclude the following theorem:

Theorem 2. With high probability, a damaged hole of size S (small compared
to the assembly size) is repaired in time O(S2), for suitable kATAM parameters.

Proof. Observe that the maximum rate of error due to backward growth is
bounded by r

′

f while the forward rate of growth is reff +r
′

f . Observe that r > r
′

f .
Using the same technique as in Theorem 1, we can prove that the hole can be
repaired in O(S2/r) by a 2D random walk on the set of S tile positions on the 2D
plane. We can further argue that for any small εheal (0 < εheal < 1), one can find
a constant cheal such that with probability 1 − εheal, (S2/r) < (cheal/r

′

f ). For a
given S, we can compute Gse so that there is no backward growth when a hole
of size at most S gets repaired in O(S2) time assuming constant parameters. ��

5 The stochastic process of tile attachment and detachment in self -assembly has often
been modeled as a random walk [7]. Further this is similar to the lattice gas model
where modeling interactions as random walks is quite well established.



Activatable Tiles: Compact, Robust Programmable Assembly 23

4 DNA Design of One Dimensional Activatable Tiles

The DNA design of one dimensional (1D) activatable tiles is very helpful in un-
derstanding the more complex DNA design of two dimensional (2D) activatable
tiles. It is also motivated by the need for a protection strategy for tiles that self-
assemble into a 1D lattice, such as the boundary of the computational tiling.
Hence we first describe the DNA design of a 1D activatable tile. Figure 3 gives
the sequence design of a 1D activated tile. Some of the key features of the tile
design are: (i) The sticky ends are protected by the protection strand M , (ii) For
adjacent tiles, the protection strand needs to be arranged in a different manner
so as to satisfy both constraints on the direction for sticky end matching as well
as the template for polymerization (not shown here), resulting in two kinds of
tile types, (iii) The 3 base portion (E) at the 3′ end of the protection strand
in the tile design prevents polymerization of the toehold H1, (iv) The portion
of the protection strand which hybridizes to the primer P is held tightly in a
hairpin loop of six bases between two subportions of the input sticky end, (v)
The fluorophore and the quencher are positioned such that the flourophore is
quenched only when correct tiles hybridize.

How does an activated tile deprotect its neighbor? The idea is quite simple:
the toehold H on the input sticky end S1 of the protected tile (say Tile 1) is
used to displace the protection strand M on it; after the input sticky end of
the Tile 1 and the output sticky end of the deprotected tile (say Tile 2) are
completely hybridized, the protection strand M is freed from the input end of
Tile 1; the primer P can now attach to the complementary portion P

′
on the

protection strand M that was earlier held tightly in a hairpin loop. Polymerase
next binds to the 3

′
end of the primer and extends it to the output end of Tile

1. Eventually, the output sticky end of Tile 1 is exposed.
Our DNA design for 2D activatable tiles is a direct extension of our 1D acti-

vatable tiles. Interested readers can refer to [13].

5 Other Applications of Activatable Tiles

Beyond the applications to computational tiling, activatable tiles can also be
used as a novel system for sensing and concentration. For example, one can
design a modified activatable tile to include a docking site for a specific target
molecule. Initially, the tiles are in the inactive state; they are neither bound to a
target molecule nor they are assembled together. When a target molecule binds
to the tile’s docking site, the tile transitions from an inactive to an active state.
Tiles in the active state can assemble. As the activated tiles assemble, the target
molecules are concentrated making an excellent concentration system.

Activatable tiles can also be used for reaction catalyzation. Suppose that for
some small k, the goal is to gather k distinct types of target molecules to initiate
or catalyze a chemical reaction. Just as with the sensing system, one can design
k distinct activated tiles, each with a docking site for a different target molecule.
These tiles become active only when they are carrying their target molecules.



24 U. Majumder, T.H. LaBean, and J.H. Reif

Once activated, these k distinct tiles assemble into a small tiling lattice, putting
the target molecules in close proximity, and allowing them to react. Additionally,
the reaction products can be used to disassemble the lattices and deactivate the
tiles, allowing them to be reused. Observe that the binding site on the same face
of each tile type is so designed that after assembly, the molecules bound to the
tiles will be close to each other. They are never bound inside the lattice and
therefore, the reaction can never become slower. Although this is quite a novel
idea, the concept of DNA directed chemistry has been explored quite extensively
in the recent years (See [22]).

6 Conclusion

In spite of the fact that it may be impossible to eliminate errors completely from
the assembly process, activatable tiles appear to be quite promising. Thus, as a
part of future work, we not only intend to have an experimental validation, but
also evaluate our deprotection strategy with computer simulation, particularly
compare it with the simulation results from Fujibayashi et al.’s enzyme-free ac-
tivated tile model [23,24]. We conclude with one interesting open question: Can
combining overlay redundancy techniques [16] with the idea of activatable tiles
further improve the compact error-resilience of self-assembly experiments?

Acknowledgments. This work is supported by NSF ITR Grants EIA-0086015
and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-0218359, and
DARPA/AFSOR Contract F30602-01-2-0561. The authors thank Erik Winfree
for bringing the work of Satoshi Murata to our attention. Majumder also thanks
Erik Halvorson for useful edits and discussion.

References

1. Winfree, E.: Algorithmic Self-Assembly of DNA Caltech (1998)
2. Dirks, R.M., Pierce, N.A.: PNAS 101(43), 15275–15278 (2004)
3. Wang, H.: Bell System Tech Journal 40(1), 1–41 (1961)
4. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Nano Letters 5(12), 2586–2592
5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: PLoS Biology 2 (12), 424 (2004)
6. Reif, J.H., Sahu, S., Yin, P.: DNA10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)

DNA Computing. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)
7. Chen, H.L., Goel, A.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA

Computing. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)
8. Winfree, E., Bekbolatov, R.: DNA 9. In: Chen, J., Reif, J.H. (eds.) DNA Comput-

ing. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)
9. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: Science 301(5641),

1882–1884 (2003)
10. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman,

N.C.: J. Am. Chem. Soc. 122, 1848–1860 (2000)
11. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Nature 394 (1998)
12. Thompson, B.J., Camien, M.N., Warner, R.C.: PNAS 73(7), 2299–2303 (July 1976)



Activatable Tiles: Compact, Robust Programmable Assembly 25

13. http://www.cs.duke.edu/∼reif/paper/urmi/activatable/activatable.pdf
14. Soloveichik, D., Winfree, E.: SICOMP 36(6), 1544–1569 (2007)
15. Winfree, E.: Simulations of Computing by Self-Assembly Caltech CS Report, 22

(1998)
16. Sahu, S., Reif, J.H.: DNA 12. In: Mao, C., Yokomori, T. (eds.) DNA Computing.

LNCS, vol. 4287, pp. 223–238. Springer, Heidelberg (2006)
17. Saturno, J., Blanco, L., Salas, M., Esterban, J.A: J. Bio. Chem. 270(52), 31235–

31243 (1995)
18. Thompson, B.J., Escarmis, C., Parker, B., Slater, W.C., Doniger, J., Tessman, I.,

Warner, R.C.: J. Mol. Biol. 91, 409–419 (1975)
19. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Proceedings of STOC. pp. 740–

748 (2001)
20. Schulman, R., Winfree, E.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)

DNA Computing. LNCS, vol. 3384, pp. 319–328. Springer, Heidelberg (2005)
21. Grothues, D., Cantor, C.R., Smith, C.L.: Nuc. Acid. Res. 21(5), 1321–1322 (1993)
22. Rosenbaum, D.M., Liu, D.R.: J. Am. Chem. Soc. 125, 13924–13925 (2003)
23. Fujibayashi, K., Murata, S.: DNA 10. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)

DNA Computing. LNCS, vol. 3384, pp. 113–127. Springer, Heidelberg (2005)
24. Fujibayashi, K., Zhang, D., Winfree, E., Murata, S.: In submission

http://www.cs.duke.edu/~reif/paper/urmi/activatable/activatable.pdf


Constant-Size Tileset for Solving an

NP-Complete Problem in Nondeterministic
Linear Time

Yuriy Brun

Department of Computer Science
University of Southern California

Los Angeles, CA 90089
ybrun@usc.edu

Abstract. The tile assembly model, a formal model of crystal growth, is
of special interest to computer scientists and mathematicians because it is
universal [1]. Therefore, tile assembly model systems can compute all the
functions that computers compute. In this paper, I formally define what
it means for a system to nondeterministically decide a set, and present a
system that solves an NP-complete problem called SubsetSum. Because
of the nature of NP-complete problems, this system can be used to solve
all NP problems in polynomial time, with high probability. While the
proof that the tile assembly model is universal [2] implies the construction
of such systems, those systems are in some sense “large” and “slow.” The
system presented here uses 49 = Θ(1) different tiles and computes in time
linear in the input size. I also propose how such systems can be leveraged
to program large distributed software systems.

1 Introduction

Self-assembly is a process that is ubiquitous in nature. Systems form on all
scales via self-assembly: atoms self-assemble to form molecules, molecules to form
complexes, and stars and planets to form galaxies. One manifestation of self-
assembly is crystal growth: molecules self-assembling to form crystals. Crystal
growth is an interesting area of research for computer scientists because it has
been shown that, in theory, under careful control, crystals can compute [2]. The
field of DNA computation demonstrated that DNA can be used to compute [3],
solving NP-complete problems such as the satisfiability problem [4,5]. This idea
of using molecules to compute nondeterministically is the driving motivation
behind my work.

Winfree showed that DNA computation is Turing-universal [6]. While DNA
computation suffers from relatively high error rates, the study of self-assembly
shows how to utilize redundancy to design systems with built-in error correc-
tion [7,8,9,10,11]. Researchers have used DNA to assemble crystals with patterns
of binary counters [12] and Sierpinski triangles [13], but while those crystals are
deterministic, generating nondeterministic crystals may hold the power to solv-
ing complex problems quickly.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 26–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Constant-Size Tileset for Solving an NP-Complete Problem 27

Two important questions about self-assembling systems that create shapes or
compute functions are: “what is a minimal tile set that can accomplish this goal?”
and “what is the minimum assembly time for this system?” For nondeterministic
computation, the following question is also important: “what is the probability
of assembling the crystal that encodes the solution?” Researchers have answered
these questions for n-long linear polymers [14] and n × n squares (minimum
tileset of size Θ( log n

log log n ) and optimal assembly time of Θ(n)) [15,16,17]. A key
issue related to assembling squares is the assembly of small binary counters,
which theoretically can have as few as 7 tile types [18].

Other early attempts at nondeterministic computation include a proposal by
Lagoudakis et al. to solve the satisfiability problem [19]. They informally define a
system that nondeterministically computes whether or not an n-variable boolean
formula is satisfiable using Θ(n2) distinct tiles. In contrast, all the systems I
present in this paper use Θ(1) distinct tiles.

Barish et al. have demonstrated a DNA implementation of tile systems, one
that copies an input and another that counts in binary [12]. Similarly, Rothe-
mund et al. have demonstrated a DNA implementation of a tile system that
computes the xor function, resulting in a Sierpinski triangle [13]. These sys-
tems grow crystals using double-crossover complexes [20] as tiles. The theoretical
underpinnings of these systems are closely related to the work presented here
because these systems compute functions.

1.1 Tile Assembly Model

The tile assembly model [15,1,2] is a formal model of crystal growth. It was
designed to model self-assembly of molecules such as DNA. It is an extension of
a model proposed by Wang [21]. The model was fully defined by Rothemund and
Winfree [15], and the definitions I use are similar to those. Full formal definitions
can be found in [22].

Intuitively, the model has tiles, or squares, that stick or do not stick together
based on various binding domains on their four sides. Each tile has a binding
domain on its north, east, south, and west side. The four binding domains,
elements of a finite alphabet Σ, define the type of the tile. The strength of the
binding domains are defined by the strength function g. The placement of some
tiles on a 2-D grid is called a configuration, and a tile may attach in empty
positions on the grid if the total strength of all the binding domains on that tile
that match its neighbors exceeds the current temperature (a natural number).
Finally, a tile system S is a triple 〈T, g, τ〉, where T is a finite set of tiles, g is a
strength function, and τ ∈ N is the temperature, where N = Z≥0.

Starting from a seed configuration S, tiles may attach to form new configura-
tions. If that process terminates, the resulting configuration is said to be final.
At some times, it may be possible for more than one tile to attach at a given
position, or there may be more than one position where a tile can attach. If for
all sequences of tile attachments, all possible final configurations are identical,
then S is said to produce a unique final configuration on S. The assembly time of



28 Y. Brun

the system is the minimal number of steps it takes to build a final configuration,
assuming maximum parallelism.

In [22] and [23], I give formal definitions of what it means for a tile system
to compute functions, both deterministically and nondeterministically. Here, I
am interested in computing a particular subset of functions, the characteristic
functions of subsets of the natural numbers. A characteristic function of a set
has value 1 on arguments that are elements of that set and value 0 on arguments
that are not elements of that set. Typically, in computer science, programs and
systems that compute such functions are said to decide the set. Since for all
constants m ∈ N, the cardinalities of N

m and N are the same, it makes sense to
talk about deciding subsets of N

m.
Let Ω ⊆ N

m be a set. A tile system S = 〈T, g, τ〉 nondeterministically decides
Ω with identifier tile r ∈ T iff for all a ∈ N

m, there exists a seed configuration S
that encodes a and for all final configurations F that S produces on S, r ∈ F (Z2)
iff a ∈ Ω, and there exists at least one final configuration F with r attached. In
other words, the identifier tile r attaches to one or more of the nondeterministic
executions iff the seed encodes an element of Ω.

This paper provides the definitions necessary for understanding the below
constructions and theorems. More complete versions of the definitions and formal
proofs of the theorems presented below can be found in [24]. In the remainder
of this paper, I require systems to encode their inputs in binary, and call the set
of tiles used to encode the input Γ .

2 Solving SubsetSum

SubsetSum is a well known NP-complete problem. The set SubsetSum is a set
of pairs: a finite sequence B = 〈B1, B2, · · · , Bn〉 ∈ N

n, and a target number
v ∈ N, such that 〈B, v〉 ∈ SubsetSum iff ∃c = 〈c1, c2, · · · , cn〉 ∈ {0, 1}n such
that

∑n
i=1 ciBi = v. In other words, the sum of some subset of numbers of B

equals exactly v.
In order to explain the system that nondeterministically decides SubsetSum,

I will first define three smaller systems that perform pieces of the necessary com-
putation. The first system subtracts numbers, and given the right conditions, will
subtract a Bi from v. The second system computes the identity function and just
copies information (this system will be used when a Bi should not be subtracted
from v). The third system nondeterministically guesseswhether the nextBi should
or should not be subtracted. Finally, I will add a few other tiles that ensure that the
computations went as planned and attach an identifier tile if the execution found
that 〈B, v〉 ∈ SubsetSum. The system works by nondeterministically choosing a
subset of B to subtract from v and comparing the result to 0.

2.1 Subtraction

In this section, I will describe a system that subtracts positive integers. It is
similar to one of the addition systems from [22], contains 16 tiles, and will
subtract one bit per row of computation.



Constant-Size Tileset for Solving an NP-Complete Problem 29

Figure 1(a) shows the 16 tiles of T−. The value in the middle of each tile t
represents that tile’s v(t) value. Intuitively, the system will subtract the ith bit
on the ith row. The tiles to the right of the ith location will be blue; the tile in
the ith location will be yellow; the next tile, the one in the (i+1)st location, will
be magenta; and the rest of the tiles will be green. The purpose of the yellow
and magenta tiles is to compute the diagonal line, marking the ith position on
the ith row.

S− is a system that is capable of subtracting numbers, and it does so in
time linear in the input. Full proofs of these statements are available in [24].
In Figure 1(b), the system computes 221 − 214 = 7 In Figure 1(c), the system
attempts to compute 221 − 246, but because 246 > 221, the computation fails.

0

*0

*0 #00
1

*1

*0 #01

1

*0

*1 #11
0

*1

*0 #10

0

0

#0#0 0

0

0

#1#1 0
1

1

#1#1 1

1

1

#0#0 1
*0

0

0 *00
*1

1
0 *01

*1

0

1 *11
*0

1

0 *10

0

0

0 00
1

1

0 01

1

0

1 11
0

1

0 10

(a)

0

*0

*0 #00

1

*1

*0 #01

1

*0

*1 #11

0

*1

*0 #10
0

0

#1#1 0

1

1

#1#1 1

1

1

#0#0 1

*0

0

0 *00

*1

1

0 *01

*0

1

0 *10
0

0

0 00
1

1

0 01

#0 0

#1 1

0
0

*1
1

1
1

1
1

1
1

0
0

1
1

1
1

#1 1

#1 1

#0 0

1

1

0 01
1

1

0 01
1

1

0 01
1

1

0 01

0

0

0 00
1

1

0 01
1

1

0 01
1

1

0 01
1

1

0 01

1

1

#1#1 1
1

1

#1#1 1
1

*0

*1 #11
*0

1

0 *10
0

0

0 00
1

1

0 01
1

1

0 01
1

1

0 01

1

1

#0#0 1
1

1

#0#0 1
0

0

0 00
1

1
0 01

1

1

0 01

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
*0

0

0 *00
1

1

0 01
1

1
0 01

#1 1

#0 0

#1 1

0

*0
*0 #00

0

*1

*0 #10
0

0

#0#0 0

0

0

#1#1 0
1

1

#1#1 1
1

1

#0#0 1
*1

1

0 *01
1

1

0 01
1

1

#0#0 1
1

1

#0#0 1
0

0

#0#0 0

1

1

#1#1 1
1

1

#1#1 1
0

0

#1#1 0
0

0

#1#1 0
*1

1

0 *01

0

0

#1#1 0
1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
0

0

#1#1 0
0

0
#1#1 0

0

0

#1#1 0
0

*1

*0 #10

(b)

0

*0

*0 #00

1

*1

*0 #01

1

*0

*1 #11

0

*1

*0 #10
0

0

#1#1 0

1

1

#1#1 1

1

1

#0#0 1

*0

0

0 *00

*1

1

0 *01

*0

1

0 *10
0

0

0 00
1

1

0 01

#0 0

#1 1

0
0

*1
1

1
1

1
1

1
1

0
0

1
1

1
1

#1 1

#1 1

#0 0

1

1

0 01
1

1

0 01
1

1

0 01
1

1

0 01

0

0

0 00
1

1

0 01
1

1

0 01
1

1

0 01
1

1

0 01

1

1

#1#1 1
1

1

#1#1 1
1

*0

*1 #11
*0

1

0 *10
0

0

0 00
1

1

0 01
1

1

0 01
1

1

0 01

1

1

#0#0 1
1

1

#0#0 1
0

0

0 00
1

1

0 01
1

1

0 01

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
*0

0

0 *00
1

1

0 01
1

1

0 01

#1 1

#1 1

#1 1
1

*0

*1 #11

1

1

#1#1 1
*0

1

0 *10
1

1

0 01
0

0

#1#1 0
1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1

0

0

#1#1 0
1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1

0

0

#1#1 0
1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1

0

0

#1#1 0

0

0

#1#1 0

0

0

#1#1 0
1

*0

*1 #11

1

1

#1#1 1
1

1

#1#1 1
1

*0

*1 #11
*0

1

0 *10

(c)

Fig. 1. There are 16 tiles in T− (a). The value in the middle of each tile t represents that
tile’s v(t) value. In (b), the system subtracts 214 = 110101102 from 221 = 110111012

to get 7 = 1112. The inputs are encoded along the bottom row (221 = 110111012) and
right-most column (214 = 110101102). The output is on the top row (7 = 000001112).
Because 214 ≤ 221, all the west binding domains of the left-most column contain a 0.
In (c), the system attempts to subtract 246 = 11110110 from 221 = 110111012 , but
because 246 > 221, the computation fails and indicates its failure with the top- and
left-most west binding domain containing a 1.



30 Y. Brun

This system is very similar to an adding system from [22], but not the smallest
adding system from [22]. While this system has 16 tiles, it is possible to design
a subtracting system with 8 tiles, that is similar to the 8-tile adding system
from [22].

2.2 Identity

I now describe a system that ignores the input on the right-most column, and
simply copies upwards the input from the bottom row. This is a fairly straight-
forward system that will not need much explanation. Figure 2(a) shows the 4
tiles in Tx and Figure 2(b) shows a sample execution of the Sx system.

x0

x0

#0 #00

x0

x0

#0 #10

x1

x1

#0 #01

x1

x1

#0 #11

(a)

#0 0

#1 1

x0
0

x1
1

x1
1

x1
1

x1
1

x0
0

x1
1

x1
1

#1 1

x0

x0

#0 #00
x1

x1

#0 #01

x1

x1

#0 #11
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1
#0 #01

x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #11
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1

#0 #01
x1

x1
#0 #01

x0

x0

#0 #00

(b)

Fig. 2. There are 4 tiles in Tx (a); the value in the middle of each tile t represents that
tile’s v(t) value. In an example of an Sx execution (b), the system simply copies the
input on the bottom row upwards, to the top column.

Sx is a system that is capable of computing the identify function, and it does
so in time linear in the input. Again, full proofs of these statements are available
in [24].

2.3 Nondeterministic Guess

In this section, I describe a system that nondeterministically decides whether or
not the next Bi should be subtracted from v. It does so by encoding the input
for either the S− system or the Sx system.

S? is a system that is capable of nondeterministically preparing a valid seed
configuration for either S− or Sx, and it does so in time linear in the input. Full
proofs of these statements are available in [24].

Figure 3 shows two possible executions of S?. In Figure 3(b), the system at-
taches tiles with ! east-west binding domains, preparing a valid seed for S−,
and in Figure 3(c), the system attaches tiles with x east-west binding domains,
preparing a valid seed for Sx. Only one tile, the orange tile, attaches nondeter-
ministically, determining which tiles attach to its west.



Constant-Size Tileset for Solving an NP-Complete Problem 31

x1

1

x ?1

*1

1

! ?1

x1

1

x x1
x0

0

x ?0

*0

0

! ?0

x0

0

x x0
x1

x1
x ?1

*1

x1

! ?1

x0

x0

x ?0

*0

x0

! ?0
1

1

! !1
0

0

! !0

x1

x1

x x1
x0

x0

x x0

1

x1

! !1
0

x0

! !0

x1

*1

x x1
x0

*0

x x0

1

*1

! !1
0

*0

! !0

(a)

*0

0

! ?0
1

1

! !1
0

0

! !0
0

0

! !0
0

0

! !0
0

*0

! !0
0

0

! !0
1
1

1
1

0
0

?

1

1

! !1
0
0

0
0

0
0

0
0

*0
0

(b)

x0

0

x ?0
x1

1

x x1
x0

0

x x0
x1

1

x x1
x0

0

x x0
1
1

1
1

0
0

0
0

0
0

0
0

*0
0

?

x0

*0
x x0

x0

0

x x0
x0

0

x x0
0
0

(c)

Fig. 3. There are 20 tiles in T? (a). The value in the middle of each tile t represents that
tile’s v(t) value. Unlike the red tiles, the orange tiles do not have unique east-south
binding domain pairs, and thus will attach nondeterministically. In (b), the system
attaches tiles with ! east-west binding domains, preparing a valid seed for S−, and in
(c), the system attaches tiles with x east-west binding domains, preparing a valid seed
for Sx.

|

|

0

|

|

!

|

|

x

|

|
#0

0
| |

*0

| |

x0

| |

|
|

|

|

*0 |top

|

left

?

?

#0 0b0

#1 1b1

0
0t0

1
1t1

Fig. 4. There are 9 tiles in T� (a); the black tile with a � in the middle will serve as
the identifier tile. There are 7 tiles in ΓSS (b); the value in the middle of each tile t
represents that tile’s v(t) value and each tile’s name is written on its left.

2.4 Deciding SubsetSum

I have described three systems that I will now use to design a system to decide
SubsetSum. Intuitively, I plan to write out the elements of B on a column and v
on a row, and the system will nondeterministically choose some of the elements
from B to subtract from v. The system will then check to make sure that no
subtracted element was larger than the number it was being subtracted from,
and whether the result is 0. If the result is 0, then a special identifier tile will
attach to signify that 〈B, v〉 ∈ SubsetSum.

Theorem 1. Let ΣSS = {0, 1, �0, �1, #0, #1, x0, x1, #0, #1, ?, !, 0, 1, x0,
x1, �0, �1}. Let TSS = T−∪Tx ∪T?∪T�, where T� is defined by Figure 4(a). Let
gSS = 1 and τSS = 2. Let SSS = 〈TSS , gSS , τSS〉. Then SSS nondeterministically
decides SubsetSum with the black � tile from T� as the identifier tile.

I refer the reader to [24] for a full proof of theorem 1.
Figure 5 shows an example execution of SSS . Figure 5(a) encodes a seed con-

figuration with v = 75 = 10010112 along the bottom row and B = 〈11 = 10112,



32 Y. Brun

?
#0 0

#1 1

0
0

1
1

|

|

0
0

1
1

0
0

1
1

1
1

#1 1

#1 1

?
#1 1

#1 1

#0 0

#0 0

#1 1

?
#1 1

#0 0
#0 0

#1 1
#0 0

#1 1

?
#1 1

#0 0

#0 0

#1 1

#1 1

#1 1

(a)

*1

1

! ?1
1

1

! !1
0

0

! !0
1

1

! !1
0

0

! !0
0

0

! !0
1

1

! !1

0

*0

*0 #00

0

*1

*0 #10

0

0

#0#0 0
0

0

#1#1 0
*0

0

0 *00
*1

1

0 *01
0

0

0 00
1

1

0 01
0

0

0 00
0

0

0 00
1

1

0 01

0

*1

*0 #10
1

1

0 01
0

0

0 00
0

0

0 00
1

1

0 01

0

0

#0#0 0
*1

1

0 *01
0

0

0 00
0

0

0 00
1

1

0 01

0

0

#1#1 0
0

0

#1#1 0
0

0

#1#1 0
0

*1

*0 #10
*0

0

0 *00
0

0

0 00
1

1

0 01

*0

0

! ?0
1

1

! !1
0

0

! !0
0

0

! !0
0

0

! !0
0

*0

! !0
0

0

! !0

1

*0

*1 #11
*1

0

1 *11
1

0

1 11
1

0

1 11
1

0

1 11
1

0

1 11
0

1

0 10

1

1

#0#0 1
1

*1

*0 #01
*1

1

0 *01
1

1

0 01
1

1

0 01
1

1

0 01
0

0

0 00

1

1

#0#0 1
1

1

#0#0 1
1

*1

*0 #01
*1

1

0 *01
1

1

0 01
1

1

0 01
0

0

0 00

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
0

*1

*0 #10
*1

1

0 *01
1

1

0 01
0

0

0 00

1

1

#1#1 1
1

1

#1#1 1
1

1

#1#1 1
0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01
0

0

0 00

x1

1

x ?1
x1

1

x x1
x0

0

x x0
x1

1

x x1
x0

0

x x0
x1

*1

x x1
x0

0

x x0

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

x0

x0

#0 #00
x1

x1

#0 #01
x1

x1

#0 #11
x1

x1

#0 #01
x0

x0

#0 #00
x1

x1

#0 #01
x0

x0

#0 #00

*1

x1

! ?1
1

x1

! !1
0

x0

! !0
1

x1

! !1
0

x0

! !0
1

x1

! !1
0

x0
! !0

0

*1

*0 #10
*1

1

0 *01
1

1

0 01
0

0

0 00
0

0

0 00
1

1
0 01

0

0

0 00

0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01
0

0

0 00
0

0
0 00

1

1

0 01
0

0

0 00

0

0

#1#1 0
0

0

#1#1 0
0

*1

*0 #10
*0

0
0 *00

0

0

0 00
1

1

0 01
0

0

0 00

0

0

#0#0 0
0

0

#0#0 0
0

0

#0#0 0
0

*0

*0 #00
*0

0

0 *00
1

1

0 01
0

0

0 00

0

0

#0#0 0
0

0

#0#0 0
0

0
#0#0 0

0

0

#0#0 0
0

*0

*0 #00
0

0

0 00

0

0

#1#1 0
0

0
#1#1 0

0

0

#1#1 0
0

0

#1#1 0
0

0

#1#1 0
0

*1

*0 #10
*1

1

0 *01

*0

0

0 *00

|

|

0

|

|

!

|

|

x

|

|

#0

0

| |

|

|

0

|

|

0

|

|

0

|

|

0

|

|

!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

|

|

#0

|

|

#0

|

|

#0

|

|

#0
|

|

#0

|

|
!

|

|

0

|

|

0

|

|

0

|

|

0

|

|

0

0

| |
0

| |

0

| |

0

| |

0

| |

*0

| |

|

|

?
#0 0

#1 1

0
0

1
1

|

|

0
0

1
1

0
0

1
1

1
1

#1 1

#1 1

?
#1 1

#1 1

#0 0

#0 0

#1 1

?
#1 1

#0 0

#0 0

#1 1

#0 0

#1 1

?
#1 1

#0 0

#0 0

#1 1

#1 1

#1 1

(b)

Fig. 5. An example of SSS solving a SubsetSum problem. Here, v = 75 = 10010112 ,
and B = 〈11 = 10112, 25 = 110012 , 37 = 1001012 , 39 = 1001112〉. The seed configura-
tion encodes v on the bottom row and B on the right-most column (a). The fact that
75 = 11+25+39 implies that 〈B, t〉 ∈ SubsetSum, thus at least one final configuration
(b) contains the � tile.



Constant-Size Tileset for Solving an NP-Complete Problem 33

25 = 110012, 37 = 1001012, 39 = 1001112〉 along the right-most column. Note
that the seed is encoded using the tiles shown in Figure 4(b). Tiles from TSS at-
tach to the seed configuration, nondeterministically testing all possible values of
c ∈ {0, 1}4. Figure 5(b) shows one such possible execution, the one that corre-
sponds to c = 〈1, 1, 0, 1〉. Because 11 + 25 + 39 = 75, the � tile attaches in the
top left corner.

The assembly time of SSS is linear in the size of the input (number of bits in
〈B, v〉), and assuming each tile that may attach to a configuration at a certain
position attaches there with a uniform probability distribution, the probability
that a single nondeterministic execution of SSS succeeds in attaching a � tile if
〈B, v〉 ∈ SubsetSum is at least

( 1
2

)n. The proofs of both these statements can
be found in [24].

Therefore, a parallel implementation of SSS , such as a DNA implementation
like those in [12,13], with 2n seeds has at least a 1 − 1

e ≥ 0.5 chance of correctly
deciding whether a 〈B, v〉 ∈ SubsetSum. An implementation with 100 times as
many seeds has at least a 1 −

( 1
e

)100 chance.
Note that TSS has 49 computational tile types and uses 7 tile types to encode

the input.

3 Software Systems

Fault and adversary tolerance have become not only desirable but required prop-
erties of software systems because mission-critical systems are commonly dis-
tributed on large networks of insecure nodes. Further, users of such distributed
systems may desire their private data to remain private. It is possible for com-
puters on a large network to act as tiles to compute. For example, one can solve
NP-complete problems by reducing them to SubsetSum and then using SSS to
solve them, as illustrated in Figure 6. Such a software system can leverage the
error-correction work in tile assembly [7,8,9,10,11] to automate fault and adver-
sary tolerance, and distribute computation over network in a way that no small
group of nodes nodes the private inputs to the computation [25,26,27].

NetworkClient

problem

in1, in2, ...

out1, out2, ...

Fig. 6. A schematic of a system implementing a tile-style architecture



34 Y. Brun

4 Contributions

The tile assembly model is a formal model of self-assembly and crystal growth.
Here, I defined what it means for a tile system to decide a set and designed
and explored a system that decides an NP-complete problem SubsetSum. The
system computes at temperature two and uses 49 computational tile types and 7
tile types to encode the input. The system computes in time linear in the input
size and each nondeterministic assembly has a probability of success of at least( 1

2

)n, and that probability can be brought exponentially close to 1 at a linear
cost in the number of seeds.

On the way to defining a system that decides SubsetSum, I also defined a
system that deterministically subtracts numbers. This system uses 16 computa-
tional tile types and executes in time linear in the input size. I stated without
proof that there exists an 8-tile subtracting system based on the 8-tile adding
system from [22].

Finally, I described some preliminary work on using theoretical self-assembly
to design complex computational software systems.

References

1. Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report
CS-TR:1998:22, California Insitute of Technology, Pasadena, CA, USA (1998)

2. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Insitute of
Technology, Pasadena, CA, USA (June 1998)

3. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

4. Braich, R., Johnson, C.R., Rothemund, P.W.K., Hwang, D., Chelyapov, N., Ad-
leman, L.: Solution of a satisfiability problem on a gel-based DNA computer. In:
Proceedings of DNA Computing: 6th International Workshop on DNA-Based Com-
puters (DNA 2000), Leiden, The Netherlands, pp. 27–38 (June 2000)

5. Braich, R., Chelyapov, N., Johnson, C.R., Rothemund, P.W.K., Adleman, L.: So-
lution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567),
499–502 (2002)

6. Winfree, E.: On the computational power of DNA annealing and ligation. DNA
Based Computers 199–221 (1996)

7. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2002), Madison, WI, USA, June 2003, vol. 2943, pp.
126–144. IEEE Computer Society Press, Los Alamitos (2003)

8. Baryshnikov, Y., Coffman, E.G., Seeman, N., Yimwadsana, T.: Self correcting self
assembly: Growth models and the hammersley process. In: Carbone, A., Pierce,
N.A. (eds.) DNA Computing. LNCS, vol. 3892, Springer, Heidelberg (2006)

9. Chen, H.L., Goel, A.: Error free self-assembly with error prone tiles. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, Springer,
Heidelberg (2005)

10. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling
assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS,
vol. 3384, Springer, Heidelberg (2005)



Constant-Size Tileset for Solving an NP-Complete Problem 35

11. Winfree, E.: Self-healing tile sets. Nanotechnology: Science and Computation, 55–
78 (2006)

12. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

13. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)

14. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-
assemblies: Equilibria, entropy, and convergence rates. In: Proceedings of the 6th
International Conference on Difference Equations and Applications (ICDEA 2001),
Augsburg, Germany (June 2001)

15. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the ACM Symposium on Theory of Computing (STOC
2000, Portland, OR, USA, pp. 459–468. ACM Press, New York (2000)

16. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanes, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the ACM Symposium on Theory of Computing (STOC 2002), Mon-
treal, Quebec, Canada, pp. 23–32. ACM Press, New York (2002)

17. Adleman, L., Goel, A., Huang, M.-D., de Espanes, P.M.: Running time and pro-
gram size for self-assembled squares. In: Proceedings of the ACM Symposium on
Theory of Computing (STOC 2002), Montreal, Quebec, Canada, pp. 740–748.
ACM Press, New York (2001)

18. de Espanes, P.M.: Computerized exhaustive search for optimal self-assembly coun-
ters. In: Proceedings of the 2nd Foundations of Nanoscience: Self-Assembled Ar-
chitectures and Devices (FNANO 2005), Snowbird, UT, USA, pp. 24–25 (April
2005)

19. Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 54, 141–154
(1999)

20. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13),
3211–3220 (1993)

21. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical
Journal 40, 1–42 (1961)

22. Brun, Y.: Arithmetic computation in the tile assembly model: Addition and mul-
tiplication. Theoretical Computer Science 378, 17–31 (2007)

23. Brun, Y.: Nondeterministic polynomial time factoring in the tile assembly model.
Theoretical Computer Science (2007), doi:10.1016/j.tcs.2007.07.051

24. Brun, Y.: Solving NP-complete problems in the tile assembly model. Theoretical
Computer Science (2007), doi:10.1016/j.tcs.2007.07.052

25. Brun, Y., Medvidovic, N.: An architectural style for solving computationally inten-
sive problems on large networks. In: Proceedings of Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (May 2007)

26. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property
of distributed systems’ software architectures. In: Proceedings of the 2nd Interna-
tional Workshop on Engineering Fault Tolerant Systems (EFTS 2007), Dubrovnik,
Croatia (September 2007)

27. Brun, Y.: Discreetly distributing computation via self-assembly. Technical Report
USC-CSSE-2007-714, Center for Software Engineering, University of Southern Cal-
ifornia (2007)



Solutions to Computational Problems Through

Gene Assembly�

Artiom Alhazov2, Ion Petre1,2, and Vladimir Rogojin2

1 Academy of Finland
2 Computational Biomodelling Laboratory

Turku Center for Computer Science, FIN-20520 Turku, Finland
aalhazov@abo.fi, ipetre@abo.fi, vrogojin@abo.fi

Abstract. Gene assembly in ciliates is an impressive computational
process. Ciliates have a unique way of storing their genetic information
in two fundamentally different forms within their two types of nuclei.
Micronuclear genes are broken into blocks (called MDSs), with MDSs
shuffled and separated by non-coding material; some of the MDSs may
even be inverted. During gene assembly, all MDSs are sorted in the cor-
rect order to yield the transcription-able macronuclear gene. Based on
the intramolecular model for gene assembly, we prove in this paper that
gene assembly may be used in principle to solve computational problems.
We prove that any given instance of the hamiltonian path problem may
be encoded in a suitable way in the form of an ‘artificial’ gene so that
gene assembly is successful on that gene-like pattern if and only if the
given problem has an affirmative answer.

1 Introduction

Ciliates are unicellular organisms existing for over a billion years, forming a
group of thousands of species. A common feature they share is that their cell
contains two kinds of nuclei that have different functionality - micronuclei act
as germline nuclei and macronuclei act as the somatic nuclei.

During the sexual reproduction, the macronuclei are destroyed and one hap-
loid micronucleus is transformed into a macronucleus. The gene operations have
a definite computational flavor: some DNA segments (internally eliminated se-
quences, IES) are eliminated, others (macronuclear destined sequences, MDS)
are reordered; some MDSs are also inverted. The process is driven by splicing
on specific sequences on the ends of MDSs, called pointers: the end of each MDS
matches the beginning of the MDS that should follow it in the assembled gene.
Two main models exist for the gene assembly, one intermolecular, see [13,14] and
one intramolecular, see [8,18]. In this article we consider the latter one.

In 1994 a famous experiment of L. Adleman took place giving an example
how biological processes can be interpreted as computing (a small instance of
� A. Alhazov (artiom@math.md) and V. Rogojin are on leave of absence from Institute

of Mathematics and Computer Science of Academy of Sciences of Moldova, Chisinau
MD-2028 Moldova.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 36–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Solutions to Computational Problems Through Gene Assembly 37

hamiltonian path problem, HPP was represented by DNA molecules and solved
by molecular biology tools). The current paper considers replacing such DNA
operations as annealing by ciliate operations, therefore, we speak about ciliate-
based computing.

Indeed, what ciliates do in gene assembly is sorting, inversion and excision
of DNA sequences. Therefore, our strategy is to encode an arbitrary instance
of HPP into a hypothetical micronuclear gene, assemble the gene using the in-
tramolecular model, and filter the result of the assembly to get the answer to
HPP, if there is any.

This is a novel approach to DNA computing, using a model for gene assembly
in ciliates. Although the computational flavor of ciliates has been shown pre-
viously in[13,14,15] where the Turing universality of various assembly models
was proved, this is the first attempt at using (in principle) gene assembly for
solving mathematical problems. If ever implemented in living cells, the solution
potentially has the advantage that the cell itself implements many steps of the
procedure, including selecting the resulting substring and its replication. It is
important to underline that we only propose here a conceptual (theoretical) ap-
proach to ciliate-based computing. We only briefly discuss some issues related
to potential experimental implementations of our approach in Section 8.

2 Definitions

For an alphabet Σ we denote by Σ∗ the set of all finite strings over Σ. We
denote the empty string by Λ. For strings u, v over Σ we say that u is a substring
of v, denoted u ≤ v, if v = xuy, for some strings x, y. Let Σ = {a | a ∈ Σ} be
complement symbols of Σ; we call u ∈ (Σ∪Σ)∗ a signed string. The complement
operation is extended to signed strings by a = a, a ∈ Σ and a1a2 · · ·ak =
ak · · · a2 a1, ai ∈ Σ ∪ Σ, 1 ≤ i ≤ k.

We call a (directed) graph a tuple G = (V, E), where V is a finite set of nodes,
and E ⊆ {(p, q) | p, q ∈ V } is a set of edges. A sequence q1q2 · · · qk of nodes
qi ∈ V , 1 ≤ i ≤ k is called a path if (qi, qi+1) ∈ E, 1 ≤ i ≤ k − 1.

The hamiltonian Path Problem for a directed graph G = (V, E), given the
initial node p and a final node q is the problem of deciding whether G has an
acyclic path from p to q containing all nodes of the graph (it is implicit in this
definition that all nodes are visited only once). Such a path is called hamiltonian.
The hamiltonian path problem is a known NP-complete problem, see [16].

For some results we need also the following graph construction, which we
call bipartite transformation: given a graph G = (V, E) we construct a graph
bi(G) = G′ = (V ′, E′) where V ′ = {p, p′ | p ∈ V } and E′ = {(p′, q) | (p, q) ∈
E} ∪ {(p, p′) | p ∈ V }. In other words, we split each node p in two nodes p and
p′ connected by an edge, and replace the edges (p, q) of the original graph by
(p′, q). This gives us a bipartite graph where every edge (p, q) in G corresponds
to a path pp′q in G′.

Consider a graph G = (V, E) with V = {p1, · · · , pn} and the hamiltonian
path problem from p1 to pn. Due to the technical reasons, throughout the paper



38 A. Alhazov, I. Petre, and V. Rogojin

we use the following transformation: add two nodes b, e �∈ V to G and look for
paths from b to e in graph ext(G, p1, pn) = G′′ = (V ∪{b, e}, E∪{(b, p1), (pn, e)}).
Notice that the edge from b is unique and so is the edge to e, and there are no
edges to b and no edges from e. Clearly, u is a path in G from p1 to pn if and
only if bue is a path in G′ from b to e. Therefore, this HPP is equivalent to the
original one.

Example 1. For the graph G1 = (V1 = {1, 2, 3}, E1 = {(2, 1), (3, 1), (3, 2)}) we
illustrate in Figure 1 the graph ext(G1, 3, 1).

�������	b ���������	3 �����������	2 ���������	1 ���������	e

Fig. 1. A hamiltonian path in ext(G1, 3, 1) is b321e

3 Gene Assembly

The following three molecular operations are postulated in the intramolecular
model to explain the gene assembly process, see [8] and [18]:

– Loop, Direct Repeat (ld) is applied on a pair of directly repeating pointers in
the molecule. The molecule folds on itself to form a loop so that recombina-
tion is facilitated on the two occurrences of that pointer. As a result, the part
of the molecule between repeating pointers is excised from the molecule in
the form of circular molecule, while the parts from both sides of the excised
molecule splice together;

– Hairpin, Inverted Repeat (hi) is applied on a pair of pointers, where one is
an inverted repeat of the other one. The molecule is folded as a hairpin to
facilitate recombination on those pointers. As a result of the operation, the
part of the molecule flanked by the repeating pointers is inverted;

– Double Loop, Alternating Direct Repeat (dlad) is applicable to the overlap-
ping direct repetitions of pointers, i.e., if we have a molecule of the form
· · · p · · · q · · · p · · · q · · · . The molecule folds to form a double loop so that a
double recombination on p and q is facilitated. As a result, the parts of
the molecule between the first and the second occurrences of p and q are
exchanged.

A sequence of nucleotides is considered to act as a pointer only when placed
at the border of an MDS and an IES. Note that after applying an operation
on a certain pointer, that pointer remains as a sequence of nucleotides in the
molecule, but ceases to participate in other operations, because it does not reside
anymore on the border between an IES and an MDS.

We represent each molecule through its sequence of MDSs. In turn, we repre-
sent each MDS through its incoming and outgoing pointers, as well as through
the sequence of pointers incorporated in the MDS as a result of applying previ-
ous operations. To formalize this definition, let ΣP = {p1, p2, · · · , pn} be the set



Solutions to Computational Problems Through Gene Assembly 39

of pointers. Then we represent an MDS by a triple M = (p, u, q) where p, q ∈ ΣP

are called incoming and outgoing pointers, respectively, and u ∈ Σ∗
P is the con-

tent. We say that the length of M is |M | = |puq|. Let us denote by ΣM the set
{(p, u, q) | p, q ∈ ΣP , u ∈ Σ∗

P } of all MDSs. The complement of an MDS (p, u, q)
is (q, u, p) and ΣM = {M | M ∈ ΣM}. Finally, we call descriptors the strings
from the set S = (ΣP ∪ ΣP ∪ ΣM ∪ ΣM )∗.

It is important to note that we consider in this paper descriptors in which
pointers may have an arbitrary number of occurrences. Although in any success-
ful assembly only two such occurrences are actually used, this multiplicity is the
foundation of our ciliate-based search algorithm for a solution to HPP: choos-
ing non-deterministically various occurrences of a given pointer in the assembly
yield the detection of various paths in the given graph.

We formalize the ld, hi, and dlad operations as rewriting rules on descriptors
as shown bellow. Note that all rewriting rules are non-deterministic: in general,
for a given input, a rule may be applied in several ways, leading to different
results. We assume here a non-deterministic computing paradigm: a descriptor
may be assembled successfully if there exists a sequence of rules leading to its
assembly, see bellow for formal details.

1 ψ1(q, u, p)ψ2(p, v, r)ψ3 ⇒ldp ψ1(q, upv, r)ψ3;
2.1 ψ1(p, u, q)ψ2(p, v, r)ψ3 ⇒hip ψ1pψ2(q, u p v, r)ψ3;
2.2 ψ1(q, u, p)ψ2(r, v, p)ψ3 ⇒hip ψ1(q, upv, r)ψ2 pψ3;
3.1 ψ1(p, u1, r1)ψ2(q, u2, r2)ψ3(r3, u3, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1pψ4(r4, u4qu2, r2)ψ3(r3, u3pu1, r1)ψ2qψ5;
3.2 ψ1(p, u1, r1)ψ2(r2, u2, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1pψ4qψ3(r3, u3pu1, r1)ψ2(r2, u2qu4, r4)ψ5;
3.3 ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, r3)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4(r4, u4qu2, r2)ψ3pψ2qψ5;
3.4 ψ1(r1, u1, p)ψ2(r2, u2, q)ψ3(p, u3, r3)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1(r1, u1pu3, r3)ψ4qψ3pψ2(r2, u2qu4, r4)ψ5;
3.1′ ψ1(p, u1, r1)ψ2(q, u2, p)ψ4(r4, u4, q)ψ5 ⇒dladp,q

ψ1pψ4(r4, u4qu2pu1, r1)ψ2qψ5;
3.2′ ψ1(p, u1, q)ψ3(r3, u3, p)ψ4(q, u4, r4)ψ5 ⇒dladp,q

ψ1pψ4qψ3(r3, u3pu1qu4, r4)ψ5;
3.3′ ψ1(r1, u1, p)ψ2(q, u2, r2)ψ3(p, u3, q)ψ5 ⇒dladp,q

ψ1(r1, u1pu3qu2, r2)ψ3pψ2qψ5;

where ψi are descriptors, q, r, ri are pointers, u, v, ui are sequences of pointers.
Consider also the operation cut on descriptors defined in the following way:

cut(ψ1(b, u, e)ψ2) = (b, u, e). We call an MDS (b, u, e) a successful assembly of
the descriptor ψ if (b, u, e) = cut(φ1(φ2(· · · φk(ψ) · · · ))), with φ1, · · · , φk being
some ld, hi, or dlad rules.



40 A. Alhazov, I. Petre, and V. Rogojin

For a descriptor ψ we denote by Lld(ψ) (Lhi(ψ), Ldlad(ψ)) the set of all MDSs
assembled successfully from ψ using only ld-rules (hi, dlad, respectively).

For more details about the formalization of the gene structure and the in-
tramolecular operations we refer to [4], [5], [6], [7], [9], [10], [11], [20], [21], as
well as to the monograph [3].

4 Computing Through Gene Assembly

Our principle of computing through gene assembly is the following: given a
(mathematical) problem, we encode its input into a descriptor as defined in
the previous section in such a way that the problem has a solution if and only
if the associated descriptor has a successful assembly with certain properties.
Moreover, the result of the assembly encodes the solution to the problem.

As our computational problem of choice we consider in this paper the hamil-
tonian path problem (HPP): given a directed graph G = (V, E) and two nodes
p, q ∈ V one needs to decide whether or not G has a hamiltonian path from p
to q. To solve the problem through the gene assembly by ld only, hi only or dlad
only, we encode the set of edges of graph G′ = ext(G, p, q) into certain descrip-
tors ψld

G, ψhi
G or ψdlad

G respectively. Also, we encode any path v in G′ through an
MDS Mv using a construction described bellow. We prove then in each case that
the graph G contains a hamiltonian path u if and only if descriptors ψld

G, ψhi
G and

ψdlad
G can be successfully assembled to descriptors containing MDS Mbue.
Let G = (V, E) be a directed graph and f = (p′, q′) ∈ E an edge of G. We

then associate to f the MDS Mf = (p′, Λ, q′). In general, for a set of edges
{(q1, q2), (q2, q3), · · · (qk−1, qk)} of G, we encode the path u = q1q2 · · · qk−1qk of
G through the MDS Mu = (q1, q2 · · · qk−1, qk).

We say that a node r appears in an MDS (p, u, q) if symbol r appears in the
string puq.

5 Computing Using ld Only

In this section we consider a (theoretical) solution to the hamiltonian path prob-
lem through gene assembly with ld only to be used throughout the assembly.

Let G = (V, E) be a directed graph with V = {p1, p2, · · · , pn}, n > 0, and
consider the hamiltonian path problem with p1 as the starting node and pn as
the ending node. We reduce it to the same problem for graph G′ = ext(G, p1, pn),
starting node b and ending node e.

We say that a descriptor ψG is associated to G if it is of the form

ψld
G = (b, Λ, p1)αn−1

G (pn, Λ, e), where αG =
∏

(p,q)∈E

(p, Λ, q) is a descriptor

encoding all edges of G. Note that in general there are many descriptors associ-
ated to G, depending on the order in which the edges are encoded in αG. As far
as our solution to HPP is concerned, we may freely choose any of them.



Solutions to Computational Problems Through Gene Assembly 41

Example 2. Consider the graph G1 from Example 1. Then ψld
G1

= (b, Λ, 3) (2, Λ, 1)
(3, Λ, 1)(3, Λ, 2) (2, Λ, 1)(3, Λ, 1)(3, Λ, 2)(1, Λ, e) is associated to G1, and Lld(ψld

G1
)

= {(b, 321, e), (b, 31, e)}.

Using the encoding presented above, we can now prove that gene assembly solves
the HPP problem. Let G be a directed graph and consider the hamiltonian path
problem from b to e for G′ = ext(G, p1, pn). Let ψld

G be an arbitrary descriptor
associated to G. Then the following results hold.

Lemma 1. Any successfully assembled MDS M ∈ Lld(ψld
G) is associated to a

path from b to e in G′.

Lemma 2. For every acyclic path u from b to e in G′, Mu ∈ Lld(ψld
G).

Theorem 1. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists M ∈ Lld(ψld

G) where all
nodes appear and |M | = |V |+2. In this case, M is an encoding of a hamiltonian
path of G′ = ext(G, p1, pn) from b to e.

6 Computing Using hi Only

In this section we consider a (theoretical) solution to the HPP problem through
the gene assembly by hi operation only.

Consider a directed graph G = (V, E) with V = {p1, · · · , pn}, n > 0 and the
hamiltonian path problem with p1 as the starting node and pn as the ending
node. We solve an equivalent HPP for G′ = ext(G, p1, pn) from b to e instead.

We say that a descriptor ψhi
G is associated to G if it is of the form

ψhi
G = (b, Λ, p1)

∏
(p,q)∈E∪{(pn,e)}

gp,q, where gp,q = (x, Λ, y)(p, Λ, q)(z, Λ, y)

is a descriptor encoding an edge (p, q). The order of the descriptors gp,q in ψhi
G

is not important.

Example 3. Consider the graph G1 from Example 1. Then ψhi
G1

= (b, Λ, 3)
(x, Λ, y)(2, Λ, 1)(z, Λ, y) (x, Λ, y)(3, Λ, 1)(z, Λ, y)(x, Λ, y)(3, Λ, 2)(z, Λ, y)(x, Λ, y)
(1, Λ, e)(z, Λ, y) is associated to G1. The corresponding successful assemblies are
Lhi(ψhi

G1
) = {(b, 321, e), (b, 31, e)}.

Using the encoding presented above, we can now prove that hi-operations solve
the HPP problem. Consider a directed graph G and the hamiltonian path prob-
lem from b to e for G′ = ext(G, p1, pn). Then the following results hold.

Lemma 3. Any successfully assembled MDS M ∈ Lhi(ψhi
G) is associated to a

path from b to e in G′.

We omit the proof, since its idea is similar to that from Lemma 1.



42 A. Alhazov, I. Petre, and V. Rogojin

Lemma 4. For every path u from b to e in G′ without repeating edges, there
exists an MDS Mu ∈ Lhi(ψhi

G).

Theorem 2. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists MDS M ∈ Lhi(ψhi

G)
where all nodes appear and |M | = |V | + 2. In this case, M is an encoding of a
hamiltonian path of G′ = ext(G, p1, pn) from b to e.

Consider the bipartite transformation bi(G) applied to graph G. In this case,
for any node p the edge (p, p′) is encoded only once, so only acyclic paths are
assembled. Therefore, the following corollary holds.

Corollary 1. The following statements are equivalent: (a) The hamiltonian path
problem for graph G = (V, E) and nodes p1, pn has an affirmative answer;
(b) there exists M ∈ Lhi(ψhi

bi(G)) where all nodes appear (c) there exists M ∈
Lhi(ψhi

bi(G)) with |M | = 2|V | + 2. Moreover, the MDS M from (b) and (c) is an
encoding of a hamiltonian path of ext(bi(G), p1, p

′
n) from b to e.

7 Computing Using dlad Only

We now consider a (theoretical) solution to the HPP problem through the gene
assembly using only dlad operation.

Consider a directed graph G = (V, E) with V = {p1, · · · , pn}, n > 0 and the
hamiltonian path problem in G′ = ext(G, p1, pn) from b to e.

We say that a descriptor ψdlad
G is associated to G if it is of the form

ψdlad
G = gb,p1

⎛
⎝ ∏

(p,q)∈E∪{(pn,e)}
gp,q

⎞
⎠ (r, x)|E|, where gp,q = (p, q)(x, y)

is a descriptor encoding an edge (p, q); we may choose any order of encoding
edges (with the exception gb,p1 must be the first) in ψdlad

G .

Example 4. Consider the graph G1 from Example 1. Then ψdlad
G1

= (b, Λ, 3)
(x, Λ, y)(2, Λ, 1)(x, Λ, y) (3, Λ, 1)(x, Λ, y)(3, Λ, 2)(x, Λ, y)(1, Λ, e)(x, Λ, y)(r, Λ, x)
(r, Λ, x)(r, Λ, x)(r, Λ, x)(r, Λ, x) is associated to G1. The successful assemblies are
Ldlad(ψdlad

G1
) = {(b, 321, e), (b, 31, e)}.

Equipped with this encoding, we now prove that dlad solves the HPP problem.
Consider a directed graph G and the hamiltonian path problem in G′ from b to
e. The following results hold.

Lemma 5. Any successfully assembled MDS M ∈ Ldlad(ψdlad
G ) is associated to

a path from b to e.

We omit the proof, since its idea is again similar to that in Lemma 1.

Lemma 6. For any path u without repeating edges, exists MDS
Mu ∈ Ldlad(ψdlad

G ).



Solutions to Computational Problems Through Gene Assembly 43

Theorem 3. The hamiltonian path problem for graph G = (V, E) and nodes
p1, pn has an affirmative answer if and only if there exists MDS M ∈ Ldlad(ψdlad

G )
where all nodes appear and |M | = |V | + 2. In this case, M is an encoding of a
hamiltonian path of G′ = ext(G, p1, pn) from b to e.

Consider the bipartite transformation bi(G) applied to graph G. In this case,
for any node p the edge (p, p′) is encoded only once, so only acyclic paths are
assembled. Therefore, the following corollary holds.

Corollary 2. The following statements are equivalent: (a) The hamiltonian path
problem for graph G = (V, E) and nodes p1, pn has an affirmative answer; (b)
there exists M ∈ Ldlad(ψdlad

bi(G)) where all nodes appear; (c) there exists M ∈
Ldlad(ψdlad

bi(G)) with |M | = 2|V |+2. Moreover, the MDS M from (b) and (c) is an
encoding of a hamiltonian path of ext(bi(G), p1, p

′
n) from b to e.

8 Discussion

It has been observed many times in the literature that gene assembly in ciliates
has a definite computational flavor. Two mathematical models were proposed to
model gene assembly as a computational process transforming one structure into
another one. Moreover, it has been shown that both models are Turing universal:
assuming that a Turing machine may be encoded in the form of an artificial gene
of high enough length and present in a high enough number of copies, then the
Turing machine may be simulated through gene assembly, see [13,14,15]. The
approach that we take in this paper is different. Given a mathematical problem
such as HPP, we ask the question how to encode the problem into a gene pattern
such that solving the problem is equivalent with assembling the gene. Using
each of the three operations ld, hi, and dlad, we show that the construction
is indeed possible, at least theoretically. It is important to underline here the
connection with the computational principle in the celebrated experiment of
Adleman [1]. While in [1], one encodes the given graph into a set of molecules
that recombine among themselves to yield in principle the encodings of all paths
through the graph, we encode our graph into a set of sequences that are placed
in an arbitrary order on a chromosome-like molecule. This molecule may be
assembled in many possible ways; in fact, the encodings of all paths of a certain
length may be assembled in this way. Although a micronuclear gene is presented
in several copies in a ciliate, it remains to be tested experimentally if a ciliate
would assemble two or more identical copies of our artificial gene into several
different forms. Answering this question would clarify the scale of a prototype
experiment to test our approach, in terms of the number of ciliates required.

Some recent results of [2] and [22] suggest that RNA-template could be used to
control and direct gene assembly. Based on this, one may attempt to implement
our ciliate-based solutions to HPP. For example, one may inject templates to
indicate all possibilities in which two MDSs may recombine. The amount of such
templates would thus be at most quadratic in the number of MDSs used by our
encoding. Clearly, this can only be validated through laboratory experiments.



44 A. Alhazov, I. Petre, and V. Rogojin

Acknowledgments

I. Petre gratefully acknowledges support by Academy of Finland, project 108421,
A. Alhazov and V. Rogojin gratefully acknowledge support by Academy of Fin-
land, project 203667.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 226, 1021–1024 (1994)

2. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.F.: RNA-Template Guided
DNA Assembly. In: Garzon, M., Yan, H. (eds.) Preliminary Proceedings on DNA13
meeting, University of Memphis, Memphis, p. 364 (2007)

3. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2003)

4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Formal sys-
tems for gene assembly in ciliates. Theoret. Comput. Sci. 292, 199–219 (2003)

5. Ehrenfeucht, A., Harju, T., Petre, I., Rozenberg, G.: Characterizing the micronu-
clear gene patterns in ciliates. Theory of Comput. Syst. 35, 501–519 (2002)

6. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: String and graph re-
duction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12,
113–134 (2001)

7. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Circularity and other
invariants of gene assembly in ciliates. In: Ito, M., Păun, G., Yu, S. (eds.) Words,
semigroups, and transductions, pp. 81–97. World Scientific, Singapore (2001)

8. Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene
(un)scrambling in ciliates. In: Landweber, L.F., Winfree, E. (eds.) Evolution as
Computation, pp. 216–256. Springer, Heidelberg (2001)

9. Harju, T., Petre, I., Li, C., Rozenberg, G.: Parallelism in gene assembly. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 138–148.
Springer, Heidelberg (2005)

10. Harju, T., Petre, I., Rozenberg, G.: Gene assembly in ciliates: Molecular operations.
In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical
Computer Science (2004)

11. Harju, T., Petre, I., Rozenberg, G.: Gene assembly in ciliates: formal frameworks.
In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical
Computer Science (2004)

12. Kari, L., Landweber, L.F.: Computational power of gene rearrangement. In: Win-
free, E., Gifford, D.K. (eds.) Proceedings of DNA Bases Computers, V. American
Mathematical Society, pp. 207–216 (1999)

13. Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution
to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA-
Based Computers, Philadelphia, PA, pp. 3–15 (1998)

14. Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Landwe-
ber, L.F., Winfree, E. (eds.) Evolution as Computation, Springer, New York (2002)

15. Onolt-Ishdorj, T., Petre, I., Rogojin, V.: Computational Power of Intramolecular
Gene Assembly. Computability in Europe (submitted 2007)

16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)



Solutions to Computational Problems Through Gene Assembly 45

17. Prescott, D.M.: The DNA of ciliated protozoa. Microbiol. Rev. 58(2), 233–267
(1994)

18. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA
processing in hypotrichous ciliates. Europ. J. Protistology 37, 241–260 (2001)

19. Petre, I.: Invariants of gene assembly in stichotrichous ciliates. IT, Oldenbourg
Wissenschftsverlag 3, 161–167 (2006)

20. Prescott, D.M., Rozenberg, G.: How ciliates manipulate their own DNA – A splen-
did example of natural computing. Natural Computing 1, 165–183 (2002)

21. Prescott, D.M., Rozenberg, G.: Encrypted genes and their reassembly in ciliates.
In: Amos, M. (ed.) Cellular Computing, Oxford University Press, Oxford (2003)

22. Vijayan, V., Nowacki, M., Zhou, Y., Doak, T., Landweber, L.: Programming a Cil-
iate Computer: Template-Guided In Vivo DNA Rearrangements in Oxytricha. In:
Garzon, M., Yan, H. (eds.) Preliminary Proceedings on DNA13 meeting, University
of Memphis, Memphis, p. 172 (2007)



Toward Minimum Size Self-Assembled Counters

Ashish Goel and Pablo Moisset de Espanés

Department of Management Science and Engineering and (by courtesy) Computer Science,
Stanford University, Terman 311, Stanford CA 94305

ashishg@stanford.edu
pmoisset@usc.edu

Abstract. DNA self-assembly is a promising paradigm for nanotechnology. In
this paper we study the problem of finding tile systems of minimum size that as-
semble a given shape in the Tile Assembly Model, defined by Rothemund and Win-
free [14]. We present a tile system that assembles an N × �log2 N� rectangle in
asymptotically optimal Θ(N) time. This tile system has only 7 tiles. Earlier con-
structions need at least 8 tiles [7]. We managed to reduce the number of tiles without
increasing the assembly time. The new tile system works at temperature 3.

The new construction was found by the combination of exhaustive computer-
ized search of the design space and manual adjustment of the search output.

1 Introduction

Self-Assembly (SA) is the process by which autonomous components assemble into
complexes following rules of local interaction only. SA is ubiquitous in Nature. Chem-
istry and Biology provide many examples, such as the formation of crystals and the
growth of some organisms. SA is a promising paradigm for assembling shapes and pat-
terns at molecular scale. The ability to construct many objects of intricate design may
be useful in the fields of nano-electronics [9] and Material Sciences. The Watson-Crick
law of pairing, together with the small size of bases, make DNA an attractive material
to build self-assembled systems. There are numerous experimental results that support
this approach [11,12,13,16,17,18,20].

Rothemund and Winfree proposed a theoretical model for DNA SA, the Tile Assem-
bly Model (TAM. In the TAM, the DNA compounds are modeled as square tiles with
glues on their sides. The individual tiles can stick to a growing assembly, as long as
the glues on their sides provide enough sticking strength. Adleman et al. [1] added the
notion of time complexity to the model. Some variants of the TAM have been explored
in [2,3,8].

In [14], Rothemund and Winfree studied the problem of assembling an N×N square
starting from a single tile. In their construction, they first built a rectangle from a base
row by simulating a binary counter. Then, they completed the square by other means.
Their counter construction required 12 tiles and needed Θ(N · log N) time to finish the
assembly. Adleman et al. [1] presented a new counter that assembles in asymptotically
optimal Θ(N) time, but requires 15 different tiles. Chen, Cheng, Goel and Moisset [7]
improved the result by finding a counter that uses only 8 tiles and also achieves Θ(N)
assembly time.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 46–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Toward Minimum Size Self-Assembled Counters 47

Reducing the number of tiles to assemble a given shape has a practical motivation.
The cost of materials, i.e. DNA, and the time to carry out an experiment is closely
related to the number of tiles in the design. Also, finding a smaller, or the smallest
number of tiles to accomplish a given task is a theoretical problem of independent
interest. Tiles that assemble a given shape are analogous to a computer program that
outputs that shape. Minimizing the number of required tiles is similar to minimizing
the program size.

In some computational problems, there is a trade-off between program size and run-
ning time. The natural question to ask is if reducing the number of tiles to build a
counter forces to increase the assembly time.

T he main results of the paper are: In Section 3, we show a set of 7 tiles that assembles
an N × �log2 N� rectangle from an initial base row in asymptotically optimal Θ(N)
time. It is the smallest counter known so far, and it does not incur an increased assembly
time. In spite of the small number of tiles, the construction is more involved than those
found in [1,14]. The proof of correctness of the new counter is non-trivial and it is
outlined in Section 4. For a complete, formal proof, see [4]. The counter with 7 tiles was
originally published in [5], but it was described informally and no proof of correctness
was given.

The process of finding a working design with only 7 tiles is of independent interest.
It relied an exhaustive computerized search. This search was not guaranteed to output
a correct design. It was only meant to suggest a candidate set of tiles which had to be
verified manually. In fact, the search program produced a set that was flawed, and had
to be corrected by hand. Interestingly, the manual modification of the candidate set fell
outside the design space our program searched. In any case, the resulting design is so
involved that it is unlikely that it could have been found without using the computer-
aided approach. Details of the search process will appear in [6].

2 Definitions

The Tile Assembly Model (TAM): The tile assembly model [14,1] extends the theo-
retical model of tiling by Wang [15] to include a mechanism for growth based on the
physics of molecular SA. We will present a succinct definition, with minor modifica-
tions for ease of explanation.

A tile is an oriented unit square with the north, east, south and west edges labeled
from some alphabet Σ of glues. For each tile t ∈ T , the labels of its four edges are
denoted σN (t), σE(t), σS(t), and σW (t). Sometimes we will describe a tile t as the
quadruple (σN (t), σE(t), σS(t), σW (t)). Consider the triple 〈T, G, τ〉 where T is a fi-
nite set of tiles, τ ∈ Z>0 is the temperature, and G is the glue strength function from
Σ to Z≥0, where Σ is the set of glues.

Given p = (x, y), p′ = (x′, y′) ∈ Z
2, we say p and p′ are position adjacent iff

|x − x′| + |y − y′| = 1. A shape is a finite, connected (under the adjacency relation
defined above) subset of Z

2. Let Dom(f) denote the domain of a function f . A supertile
S of T is a partial function from Z

2 to T such that Dom(S) is a shape. For a supertile
S, we will write [S] to represent Dom(S).



48 A. Goel and P. Moisset de Espanés

Let C and D be two supertiles. Suppose there exist some t ∈ T and some (x, y) ∈ Z
2

such that (x, y) �∈ Dom(C), D(x, y) = t and D = C except at (x, y). If (x, y +
1) ∈ Dom(C) and σN (t) = σS(C(x, y + 1)), let fN,C,t(x, y) = G(σN (t)) and
let fN,C,t(x, y) = 0 otherwise. Informally fN,C,t(x, y) is the strength of the bond
between C and the north side of t. Define fS,C,t(x, y), fE,C,t(x, y) and fW,C,t(x, y)
similarly. Then we say that tile t is attachable to C at position (x, y) iff fN,C,t(x, y) +
fS,C,t(x, y) + fE,C,t(x, y) + fW,C,t(x, y) ≥ τ , and we write C →T D to denote the
transition from C to D in attaching a tile to C at position (x, y). Informally, C →T D
iff D can be obtained from C by adding a tile t such that the total strength of interaction
between t and C is at least τ .

A tile system is a quadruple T = 〈T, s, G, τ〉, where T, G, τ are as above and s is
a special supertile called the “seed”. The notion of a derived supertile of a tile system
T = 〈T, s, G, τ〉 is defined recursively:

1. The seed s is a derived supertile of T, and
2. if C →T D and C is a derived supertile of T, then D is also a derived supertile of

T.

Informally, a derived supertile is either just the seed (condition 1 above), or obtained
by legal addition of a single tile to another derived supertile (condition 2).

A terminal supertile of the tile system T is a derived supertile A such that there is no
supertile B for which A →T B. Let →∗

T denote the reflexive transitive closure of →T.
If there is a terminal supertile A such that for any derived supertile B, B →∗

T A, we say
that the tile system uniquely produces A. A tile system T uniquely produces a shape W
iff it uniquely produces some supertile Γ and [Γ ] is identical (up to translation) to W .

We will now add the notion of running time to this model. We associate with each
tile t ∈ T a non-negative probability P (t), such that

∑
t∈T P (t) = 1. We assume that

the tile system has an infinite supply of each tile, and P (t) models the concentration of
tile t in the system. Now SA of the tile system corresponds to a continuous time Markov
process where the states are in a one to one correspondence with derived supertiles, and
the initial state corresponds to the seed s. Suppose a single tile t can be added to a
derived supertile C to produce supertile D. Then there is a transition from state C to
D in the Markov chain, and the rate of the transition is P (t). Suppose the tile system
produces a unique terminal supertile AT. In the Markov chain, the time for reaching
AT from s is a random variable. The “running time” of the SA process is defined as the
expected value of this random variable. Note that the Markov process modeling the SA
process is inherently parallel. For details, see [1].

A supertile Γ is full iff for all p, p′ ∈ [Γ ], if p′ = p + (1, 0) then σE(Γ (p)) =
σW (Γ (p′)) and if p′ = p − (1, 0) then σW (Γ (p)) = σE(Γ (p′)) and if p′ = p + (0, 1)
then σN (Γ (p)) = σS(Γ (p′)) and if p′ = p − (0, 1) then σS(Γ (p)) = σN (Γ (p′)).
Intuitively, a supertile is full if there are no glue mismatches in the abutting edges of
adjacent tiles.

General Purpose Counter (GPC): A quadruple 〈T, Ts, G, τ〉, where T and Ts are
finite sets of tiles with glues from some alphabet Σ, G : Σ → Z≥0, and τ is a
temperature, is a general purpose counter iff for all integers h > 1, for all integers
w ≥ �log2 h�, there exists a supertile sh,w of Ts such that:



Toward Minimum Size Self-Assembled Counters 49

1. 〈T ∪Ts, sh,w, G, τ〉 uniquely produces a supertile, denote it Γh,w, such that [Γh,w] =
{0, −1, . . . , −w + 1} × {0, 1, . . . , h − 1}.

2. [sh,w] = {0, −1, . . . , −w + 1} × {0}.
3. For all (x, y) ∈ {0, −1, · · · , −w + 1} × {1, 2, . . . , h − 1}, Γh,w(x, y) ∈ T .

Informally, the seed row sw has width w and is made out of tiles in Ts. The tiles in T
will grow the rest of the h × w rectangle on top of sw. The size of a GPC 〈T, Ts, G, τ〉
is |T |.
The General Purpose Counter problem: Given a temperature τ , find the least positive
integer m such that there exist an alphabet Σ and sets of tiles T and Ts with glues from
Σ, and there exists G : Σ → Z≥0, such that 〈T, Ts, G, τ〉 is a GPC and |T | = m.

Informally, we would like to find the smallest set of tiles that assembles a rectan-
gle whose size is determined solely by the initial supertile, i.e. the seed, of the SA
process. We would like the size of this set of tiles to be independent of the size of the
desired rectangle. We will also assume the shape of the seed has to be a horizontal line.
Constructions with these properties were used by Rothemund and Winfree [14] and
by Adleman et al. [1] as a “subroutine” to assemble squares. Since the techniques to
assemble rectangles in [14,1,7] are based on repeated addition of binary numbers, we
refer to these constructions as counters. Information theory imposes a logarithmic lower
bound on the width of the counter. Hence, we impose the w ≥ �log2 h� constraint. Our
choice of 2 as base of the logarithm is somewhat arbitrary.

3 A Counter of Size 7

In this section we present a GPC of size 7 that works at temperature 3. We also outline
the proof of correctness. Before describing the counter, we introduce some notation.

A supertile Γ is said to be rectangular iff there are positive integers w and h such
that [Γ ] = {0, −1, . . . , −w + 1} × {0, 1, . . . , h − 1}. We will call w and h the width
and height of Γ , respectively.

Let Γ be a rectangular supertile, and let w and h be the width and height of Γ , respec-
tively. For all k ∈ {0, 1, . . . , w − 1}, let CΓ,k = (Γ (−k, 0), Γ (−k, 1), . . . , Γ (−k, h −
1)). For all k ∈ {0, 1, . . . , w − 1}, we will refer to the restriction of Γ to {−k} ×
{0, 1, . . . , h} as the k-th column of Γ . Similarly, for all k ∈ {0, 1, . . . , h − 1}, let
RΓ,k = (Γ (−w +1, k), Γ (−w+2, k), . . . , Γ (0, k)). For all k ∈ {0, 1, . . . , h− 1}, we
will refer to the restriction of Γ to {0, −1, . . . , −w + 1} × {k} as the k-th row of Γ .

The set of tiles: We begin by giving a pictorial representation of the counter in
Figure 1. Define T = {T1, T2, · · · , T7}, and define the glue-strength function
G : {a, b, c, d, e, f, g}2 → {0, 1, 2, 3} so that G(a) = G(b) = 3, G(c) = G(d) =
G(e) = 2 and G(f) = G(g) = 1.

The supertile Bw: Given a sequence S, and a positive integer k, we will write Sk

to denote the k-th element of S. For all positive integers k and l, define Sk,l as the
subsequence of S comprising all elements from Sk through Sl. Define the sequence
concatenation operator • in the usual way. For all positive integers k, for all finite se-
quences S, we will write k × S to denote S • S • · · · • S, where S is concatenated k
times.



50 A. Goel and P. Moisset de Espanés

g g

c

g g

d

g g

b

gg

a

c

T T T T4 5 6 7

e

f

c

a

e

g f

b

d

d

c

gf

b

Tg T1 2 T3

Fig. 1. Counter with 7 tiles

Define the following infinite sequences of tiles with period 6.

D̄ = (T4, T3, T6, T2, T6, T5, T4, T3, T6, T2, T6, T5, . . .)
D = (T6, T5, T4, T1, T7, T3, T6, T5, T4, T1, T7, T3, . . .)
Ē = (T4, T1, T7, T3, T6, T5, T4, T1, T7, T3, T6, T5, . . .)
E = (T6, T2, T6, T5, T4, T3, T6, T2, T6, T5, T4, T3, . . .)

For all positive integers w, define the following w sequences of length 2w:

1. C(0,w) = 2w−1 × (T1, T7)
2. For all odd and positive k ≤ w − 1, C(k,w) = 2w−k−1 × (D̄1,2k • D1,2k)
3. For all even and positive k ≤ w − 1, C(k,w) = 2w−k−1 × (Ē1,2k • E1,2k)

For all positive integers w, define the rectangular supertile Bw in such a way that the
width of Bw is w, the height of Bw is 2w and for all (k, i) ∈ {0, 1, . . . , w − 1} ×
{0, 1, . . . , h − 1}, Bw(−k, i) = C

(k,w)
i+1 . Note that CBw,k = C(k,w). Define sw as the

0-th row of Bw. Figure 3 shows B3, as an example.

4 Results and Proof Outlines

We state now the main result of the paper:

Theorem 1. For all positive integers w, the tile system Tw = 〈T , G, sw, 3〉 uniquely
produces Bw.

Note that the height of Bw is exactly 2w. Minor modifications to sw allow the assembly
of rectangles of all heights up to 2w. The details about the modifications are omitted.

For reasons of space, we present only an informal outline of the proof of correctness
here. For details see [4].

The proof is constructive, showing that if sw is the seed row and the temperature is 3,
the tiles in T uniquely assemble Bw. The first step is to show that Bw is a full supertile,
i.e. there are no glue mismatches between adjacent tiles. This fact follows from the
definition of Bw. Then we prove that Bw can be derived from sw. The proof of this fact
is constructive, showing a particular derivation of Bw from sw. The process is sketched
in Figure 2.



Toward Minimum Size Self-Assembled Counters 51

Fig. 2. The inductive step

T4

T7

T4 T4

a

a

a

b

b

ba

b

c

c

c

c

c

d

d d

e

ac c

g

gf

gg

g g

g

g g

g

5 5

6

16

1

T

T

T

T

T

T

T T

TT

T T

T

T T

TT

T T7

6 1

2 3 7

3 5 7

7 6

1 3

ee

g

g

g

f

f

g

g

g

g

g

g

g

g

g

g

T1

d

e

g

g

gg

e e c

gg

Fig. 3. The supertile B3. The dashed line encloses s3.

We prove Bw can be derived from sw by induction on w, exploiting the recursive
structure of Bw. Roughly speaking, Bw contains two copies of Bw−1. Therefore, we use
the inductive hypothesis to prove that we can derive the supertile Bw,1 from sw. This
follows from Bw,1 being Bw−1 with an extra tile attached to its west side. It follows
form Bw being full that we can start growing the westmost column of Bw, deriving
Bw,2 from Bw,1. Using a similar argument, we add one row to the northmost side of
Bw,2 to obtain Bw,3. Now we use the inductive hypothesis, and grow another copy of
Bw−1 on top of Bw,3, yielding Bw,4. Finally, we use appeal to Bw being full to prove
we can finish assembly the westmost column of Bw.



52 A. Goel and P. Moisset de Espanés

We know that Bw is produced from sw. Therefore, we just need to prove that pro-
duction is unique, which is done through a case analysis.

We conclude by stating the time complexity of Tw is Θ(2w), which follows from the
derivation of Bw used to prove that Bw derives from sw, and from results in [10]. The
proof of the next theorem relies on Lemmas 3.3, 3.4, and 4.1, and Theorem 4.4 in [10].

Theorem 2. There exists a concentration function P : T → (0, 1) such that for all
positive integers w, the time complexity of Tw = 〈T , G, sw, 3〉 is Θ(2w).

Proof outline: Define P as a constant valued function with value 1/7. The bound Ω(2w)
is trivial. Call Ew the equivalent acyclic graph induced by the derivation of Bw de-
scribed in Figure 2. Ew is identical to the DAG GN defined in the proof of Lemma 3.3
in [10], if N = 2w. The length of the longest path in Ew is O(2w). By Theorem 4.4
in [10], the time complexity of Tw is O(2w). �

5 Open Problems

Although the counter presented here uses fewer tiles than any other known counter,
there are still some unanswered questions.

1. Our counter works at temperature 3, which is undesirable for lab implementations.
Experience shows [12,19] that it is possible to obtain a reasonable approximation
to the TAM at temperature 2 using DNA tiles. The question whether or not there
exists a GPC of size 7 at temperature 2 remains open.

2. Our counter produces full supertiles. Dropping that constraint could potentially
result in smaller counters that work at lower temperature. We are currently pursuing
that goal.

3. The exhaustive exploration techniques we used to find the tile system do not scale
up well past 7 or 8 tiles. This is consequence of the combinatorial explosion of the
design space as the number of tiles grow. Perhaps it is possible to find an efficient
algorithm that yields sub-optimal results.

Acknowledgments

We would like to thank Len Adleman, Ming-Deh Huang, Yuri Brun and Manoj Gopalkr-
ishnan for useful discussion, and especially Dustin Reishus for his comments on the first
manuscript.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for self-
assembled squares. In: Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pp. 740–748. ACM Press, New York (2001)

2. Aggarwal, G., Goldwasser, M., Kao, M., Schweller, R.T.: Complexities for generalized mod-
els of self-assembly. In: Proceedings of symposium on discrete algorithms, ACM Press, New
York (2004)



Toward Minimum Size Self-Assembled Counters 53

3. Cheng, Q., Moisset de Espanés, P.: Resolving two open problems in the self-assembly of
squares. Technical Report 03-793, University of Southern California (2003)

4. Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters. In: 13th
International Meeting on DNA Computing (2007)

5. Moisset de Espanés, P.: Computerized exhaustive search for optimal self-assembly counters.
In: FNANO 2005: Proccedings of the 2nd Annual Foundations of Nanoscience Conference,
pp. 24–25 (2005)

6. Moisset de Espanés, P.: Systems self-assembly: Multidisciplinary snapshots, N. Krasnogor,
S. Gustafson, D. Pelta, J.L. Verdegay (eds.) Elsevier (2007)

7. Goel, A., Chen, H., Cheng, Q., Moisset de Espanés, P.: Invadable self-assembly, combin-
ing robustness with efficiency. In: Proceedings of symposium on discrete algorithms, ACM
Press, New York (2004)

8. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature
programming (2006)

9. Rothemund, P., Cook, M., Winfree, E.: Self assembled circuit patterns. In: Proceedings of
DNA Computing, Springer, Heidelberg (2003)

10. Goel, A., Cheng, Q., Moisset de Espanés, P.: Optimal self-assembly of counters at tempera-
ture two. In: Foundation of Nanoscience (2004)

11. Rothemund, P.: Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, Univer-
sity of Southern California (2001)

12. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski
triangles. PLoS Biol. 2(12) (December 2004)

13. Rothemund, P.W.K.: Design of dna origami. In: ICCAD 2005: Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design, pp. 471–478. IEEE Com-
puter Society, Washington (2005)

14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares
(extended abstract). In: Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pp. 459–468. ACM Press, New York (2000)

15. Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical Journal 40,
1–42 (1961)

16. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Tech-
nology, Pasadena (1998)

17. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional
dna crystals (6 pages). Nature 394, 539–544 (1998)

18. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of dna: Some
theory and experiments. In: Proceedings of the Second Annual Meeting on DNA Based Com-
puters, Princeton University (June 1996)

19. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-
assembly. In: DNA, pp. 126–144 (2003)

20. Yurke, B., Turberfield, A., Mills Jr, A., Simmel, F., Neumann, J.: A dna-fuelled molecular
machine made of DNA. Nature 406, 605–608 (2000)



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 54–65, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Realization of DNA Molecular Machine That Walks 
Autonomously by Using a Restriction Enzyme 

Hiroyuki Sekiguchi, Ken Komiya, Daisuke Kiga, and Masayuki Yamamura 

Interdisciplinary Graduate School of Science and Engineering, 
Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8502, Japan 

sekiguchi@es.dis.titech.ac.jp,{komiya,kiga,my}@dis.titech.ac.jp 

Abstract. In this paper, we propose an autonomous molecular walking machine 
using DNA. This molecular machine follows a track of DNA equipped with 
many single-strand DNA stators arranged in a certain pattern. The molecular 
machine achieves autonomous walk by using a restriction enzyme as source of 
power.  With a proposed machine we can control its moving direction and we 
can easily extend walking patterns in two or three dimensions. Combination of 
multiple legs and ssDNA stators can control the walking pattern. We designed 
and performed a series of feasibility study with molecular biology experiments. 

1   Introduction 

Several molecular machines, which can walk along a DNA track, have been proposed 
[1-6]. Two of six molecular machines [1-2] need fuel DNA and cannot walk 
autonomously. The others have achieved autonomous walk by using DNA cleaving 
activity of a restriction enzyme or DNAzyme. “Walking DNAzyme”[3] and “free-
running DNA motor”[4] can walk along only one dimensional track. “Spider 
molecules”[5] has multiple legs and can walk along patterns in two or three 
dimensions, but it can only walk to random direction. There are few molecular 
machines that can walk autonomously on two or three dimensions along the designed 
route.  “Unidirectional DNA walker”[6] satisfies these features but it requires to 
design an appropriate ground pattern to program target patterns when we extend it to  
two or more dimension. 

In this paper, we propose new molecular walking machine that can achieve these 
requirements by using a restriction enzyme and a track of DNA equipped with many 
single-strand DNA stators arranged in a certain pattern. In the following, we first 
propose the conceptual scheme and show feasibility experiments with a restriction 
enzyme. 

2   A Molecular Walking Machine 

2.1   Mechanism How the Molecular Machine Walks 

The molecular machine presented in this paper, walks a track of DNA embedded with 
many single-strand DNA stators. We must prepare a set of ssDNA stators and arrange 



 A Realization of DNA Molecular Machine 55 

them in a certain pattern to form the track which the molecular machine follows. The 
molecular machine has more than three legs. Each of legs anneals one ssDNA stator, 
and ssDNA stators are equipped with enough distance so that one leg cannot anneal 
more than two ssDNA stators at once. We can design a route which the molecular 
machine walks, by patterning the ssDNA stators and legs. 

If nothing has occurred, a molecular machine walks randomly like “spidar 
molecules”. We introduced the idea for the molecular machine to cleave the ssDNA 
stators in the correct order to walk along the route we designed. 

Fig. 1 shows the reaction of three legs molecular walking machine. Fig. 1a shows a 
three legs molecular machine anneals the ssDNA stators. Green leg and red leg anneal 
green and red ssDNA stators. This is the basic state that the molecular machine binds 
the track of DNA. Blue leg cannot reach to blue ssDNA stators and is free-floating. 
The molecular machine must keep more than one legs free-floating to cleave ssDNA 
stators. 

b)

a)

c) f)

e)

d)

 

Fig. 1. The structure and reaction of the molecular walking machine 

In this stage, blue leg plays an important role to cleave green ssDNA stator. Fig. 1b 
shows the free-floating blue leg anneals green leg. In the later experiments, we selected a 
nicking enzyme “N.Alw I” to cleave the ssDNA stators. N.Alw I can bind and cleave 
green ssDNA stators when blue leg anneals green leg on the green ssDNA stator.  

After cleaving green ssDNA stator, green leg cannot keep annealing there. And blue 
leg is denatured from green leg, because that double-strand is designed unstable (Fig. 1c). 
After denatured from green ssDNA stator, blue leg gets to reach blue ssDNA stator. The 
molecular machine moves ahead to anneal blue ssDNA stator (Fig. 1d, e). 

Finally, blue leg anneals blue ssDNA stator. Red leg and blue leg anneal ssDNA 
stators (Fig. 1f).  This state is the same as the state Fig. 1a.  Green leg acts to cleave 
red ssDNA stator in the next step. Red leg will act to cleave blue ssDNA stator after 



56 H. Sekiguchi et al. 

the next step. A molecular machine can cleaves ssDNA stators in the order of green, 
red, blue, green, and so on, to repeat these motions. This is the mechanism that the 
track of ssDNA stators is cleaved in the correct order.  

2.2   Function of Cleaving ssDNA Stators 

It is important for this molecular walking machine to cleave the ssDNA stators. A 
nicking enzyme like N.Alw I binds to double-strand DNA at the recognition site and 
cleaves only one strand at the cut point to introduce a nick. So the molecular machine 
can cleave only ssDNA stators. 

the recognition site
the cut point

a) The primary position

b) Gimmick 1 : separate the recognition
site and the cut site

c) Gimmick 2 : the recognition site on
each leg1 and leg2

d) Leg1 and leg2 make the recognition
site double-strand, N.Alw I can bind
and cleave ssDNA stator

e) After cleaving, denatured all DNA
strands

leg1

leg2 ssDNA stator

 

Fig. 2. Function of cleaving DNA stators 

N.AlwI has another characteristic that is the cut point isn’t included in the 
recognition site (Fig. 2a).  A molecular machine uses this characteristic to control the 
activity of N.Alw I. We designed the molecular machine with following two gimmicks 
for the control. 

First gimmick is that the cut point and the recognition site of N.Alw I are separated 
into the different two DNA strands (Fig. 2b).  All ssDNA stators have the cut point 
and all legs of the molecular machine have the recognition site. The way of control a 
restriction enzyme is similar to that of using at “Programmable and autonomous 
computing machine”[7]. 

“Programmable and autonomous computing machine” uses a restriction enzyme 
“Fok I”. As the first choice, we considered using Fok I for the molecular machine. 
Fok I isn’t the nicking enzyme, so Fok I cleaves the molecular machine’s leg unless 
we protect that strand. We first examined to make the activity of Fok I the same as 
that of a nicking enzyme by using of phosrhorothioate-modified DNA [8-9]. Since, 
we couldn’t achieve expected activity, we determined to use N.Alw I. See the 
appendix for detail. 



 A Realization of DNA Molecular Machine 57 

Second gimmick is that the two legs of the molecular machine make the 
recognition site double-strand (Fig. 2c).  When only one leg anneals ssDNA stator, 
the recognition site is still single strand and N.Alw I cannot bind to cleave ssDNA 
stator. The other leg can anneal to make the recognition site double-stranded. Then 
N.Alw I can cleave ssDNA stator (Fig. 2d).  To achieve this function, a leg has two 
recognition sites; one is for the binding ssDNA stators and another is for the 
neighborhood ssDNA stators. A combination of the two recognition site leads to the 
cleaving reaction of Fig. 1. 

3   Experiment 

3.1   Activity of N.Alw I 

We first designed an experiment to know the activity of N.Alw I. We confirmed the 
DNA cleaving activity for the case that the recognition site and the cut point are in the 
different DNA strands. 

3.1.1   Materials and Methos 
For this experiment, we prepared four sets of DNA strands with different separation 
point, and one set of DNA strands without separate point for a control (Table. 1) 
(Fig. 3).  We named each strands N-X-Y, where X denotes the number of the separate 
point and Y denotes the length of each strands. “N-none” means a strand of no 
separate point and “N-c” means a complement of N-none. 

Each five sets of DNA strands were mixed at 0.5 μM in hybridization buffer. 
NEBuffer2 from New England Biolabs was used as the hybridization buffer. 3 units 
of N.Alw I from New England Biolabs were added to each five sets 20 μl solution. 
The five sets were incubated at 37ºC by 24hours. 

Table 1. DNA strands. The recognition site of N.Alw I is shown in bold type.  The cut point is 
indicated by /. 

Name Separate Point sequence(5’…3’) 

N-1-10 1 GATACATGGA  

N-2-11 2 GATACATGGAT 

N-3-12 3 GATACATGGATC 

N-4-13 4 GATACATGGATCA 

N-1-18 1 TCACGG/CTGAGACACTCT 

N-2-16 2 CACGG/CTGAGACACTCT 

N-3-17 3 ACGG/CTGAGACACTCT 

N-4-15 4 CGG/CTGAGACACTCT 

N-none None GATACATGGATCACGG/CTGAGACACTCT 

N-c  AGAGTGTCTCAGCCGTGATCCATGTATC 



58 H. Sekiguchi et al. 

4
3

2
1

 

Fig. 3. Separate points 

We ran the resulting solutions in 16% PAGE (non-denaturing gel and denaturing 
gel). 

3.1.2   Results 
Fig. 4 shows the results. We confirmed the activity of N.Alw I at the all sets. We 
found in the denaturing gel that N.Alw I at lane 8 cleaved the DNA strand “N-c”  
 

1 3 42 5 7 86 9 10

28mer

 

28mer

1 3 42 5 7 86 9 10

wrong
product

 

Fig. 4. Result of cleaving activity. 1)2) Separate point 1, 3)4) Separate point 2, 5)6) Separate 
point 3, 7)8) Separate point 4, 9)10) No separate, Odd number of lane : without N.Alw I , and 
even number of lane : with N.Alw I. 



 A Realization of DNA Molecular Machine 59 

which didn’t have the cut point. There were the set of DNA with separation point 4 in 
this solution. We supposed that double-strand DNA twists the recognition site and the 
cut point at the separation point, and N.Alw I cleaved wrong DNA strand. If we used 
separation point 4 at this molecular machine, N.Alw I would cleave not only ssDNA 
stators but also the legs of the molecular machine. Except for the result of lane 8, 
N.Alw I had the cleaving activity which this molecular machine needs. 

We determined to use separation point 1 for later experiments about the molecular 
machine. The molecular machine needs to anneal the ssDNA stators and to be 
denatured after cleavage. We need a significant difference in melting temperature 
before and after cleaving to lead to this behavior. For this reason, the molecular 
machine should cleave ssDNA stator into as large fragments as possible. 

3.2   Half Step of the Molecular Walking Machine 

As the next stage, we confirmed the behavior of this molecular machine’s legs. Each 
leg has two recognition sites which are for cleaving ssDNA stators and for cleaving 
the neighborhood ssDNA stators. The molecular machine cleaves ssDNA stators 
using two legs. We experimented to confirm that the two legs can make the 
recognition site double-stranded and cleave ssDNA stators. 

3.2.1   Materials and Methods 
We prepared three DNA strands for two legs molecular machine and one DNA strand 
for ssDNA stator (Table. 2).  In two legs, leg1 is a strand “N-L1”, leg2 is a strand “N-
L2”. Strand “N-L3” is to be a leg3, when the molecular machine has third leg. “N-S1” 
is ssDNA stator, annealed and cleaved by leg1. Fig. 5 shows N-L1, N-L2 and 
N-L3 build two legs molecular machine and the molecular machine anneals to  
N-S1.Reaction condition is the same as the experiment in chapter 3.1. 

Table 2. DNA strands. The recognition site of N.AlwI is shown in bold type. The cut point is 
indicated by /. 

Name Sequence(5’…3’) 

N-L1 TATAGATATCAAGTAGTCGATATGCTTCACAGTCTGATCTGAGGTGTGGAGACGTC
ATGTGCATGCCAGTGTACGATCCTGCAACG 

N-L2 GTGAAGCATATCGACTACTTGATATCTATAGACCTAGTAGTGCCGATCCAGATCT
ACGTTGCAGGA

N-L3 ACATGACGTCTCCACACCTCAGATCAGACT

N-S1 T   CGTA/CACTGGCATGC
 

3.2.2   Results 
Fig. 6 shows the result that the two legs molecular machine achieved to cleave ssDNA 
stator. By analtsis of denaturing gel electrophoresis, the band of 10 mer in lane 2 
shows N-S1 was cleaved by N.Alw I. The band of 10 mer corresponds to the cleaving 
products of N-S1. From non-denaturing gel, we found the two legs molecular 
machine annealed N-S1 at lane1. And lane 2 shows that the two legs molecular 



60 H. Sekiguchi et al. 

machine couldn’t keep annealing after cleaving, because the band of the cleaving 
products appeared on the different position of a band which denotes the two legs 
molecular machine.  

The result shows that the two legs cooperated to cleave N-S1 and the unconcerned 
parts for cleaving of the legs don’t have a critical effect on cleaving. We think that the 
molecular machine presented in this paper, can cleave and be denatured from ssDNA 
stators. Thus we achieved the motion that the molecular machine lifts up its legs. The 
molecular machine can walk ahead a half step. 

N-L2

N-L3

N-L1 N-S1

 

Fig. 5. Two Legs Molecular Machine 

1 2 1 2

Products
10mer

Products
10mer

N-L2

N-L3

N-S1

N-L1
N-L1
N-L2
N-L3
N-S1

N-L1
N-L2
N-L3

a) b)

 

Fig. 6. Activity of two leg machine. a) non-denaturing gel, b) denaturing gel. 1) without N.Alw 
I, 2) with N.Alw I. 

3   Discussion 

There are several further issues to discuss. Firstly, we need the motion to drop off the 
lifted legs for other half step. The motion is decomposed into two moves. One is a 



 A Realization of DNA Molecular Machine 61 

move to anneal the next ssDNA stator, the other is a move to anneal the leg which 
anneals the neighborhood ssDNA stator. To achieve other half step, we plan to 
examine the move to the leg annealing the neighborhood ssDNA stator at first. The 
move can be confirmed by an experiment using two legs machine and a track with 
two ssDNA stators. In this experiment, we should make the condition that leg1 and 
leg2 anneal each ssDNA stators. We are going to add a strand which should anneal 
leg1 and make the recognition site double-stranded, and then N.Alw I will be able to 
bind the recognition site and cleave the ssDNA stator. After cleaving, leg1 is going to 
move to anneal leg2 for cleaving the neighborhood stator. The move is similar to 
another move to the next ssDNA stator. If the two moves are realized, the molecular 
machine will achieve the motion to drop off the legs. To combine this motion and a 
motion to lift up the legs, the molecular machine can walk one step. If the molecular 
machine can repeat the one step, it should walk ahead.  

Secondly, remark that these anneal—cut—denature—anneal cycle is similar to 
‘’free running DNA motor’’ [5] if the walker has only two legs. They have already 
achieved multiple cycles under isothermal environment which means autonomous 
behavior. So we believe we can also achieve these cycles autonomously. The 
difference is using more than three legs leads to control the moving direction. We are 
now considering more about the combination of phosphorothioate-modified DNA and 
restriction enzymes. The results shown in appendix indicate the half of 
phosphorothioate-modified DNA is cut by Fok I. There are two alternative oxygen 
sites to be phosphorothioated in DNA backbone. We guess Fok I was only blocked by 
the specific phosphorothioation site. The recognition site and the cut site of Fok I 
have longer distance than any known nicking enzymes. We expect this provides good 
amount of freedom for sequence design for walkers with more than three legs. 

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

Generic stator grid

1
2

1
2
3
4

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

1

8

3

6

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

4 legs
walker

1

2

3

4

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

1

8

7

4

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2

8
7

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

3
4

6
5

3
4

6
5

1

2

7

4

a)

b)

c)

d)

e)
 

Fig. 7. Programming Two Dimmensional Patterns with Four Legs Walker 



62 H. Sekiguchi et al. 

Finally, we can program the behavior of our walking machine to make two or three 
dimmensional patterns when we achieve complete walking steps on multiple legs. 
Fig.7 shows a portion of such “programmable patterns”. Consider a general purpose 
stator grid and four legs walker. Fig.7a shows an example of a general purpose stator 
grid with eight kinds of sequences arranged with some regularity. If we program four 
legs walker with execution order “1-2-3-4” to move “go up straightly”, then a solution 
of walkers make a vertical stripe on the stator grid by cutting stators in the same order 
“1-2-3-4” as shown in Fig.7b. We can easily program other patterns like horizontal 
stripe, checker board, and so on, only by changing four legs layout of the walker even 
on only one general purpose stators grid. Moreover, we need only one kind of 
restriction enzyme even for any number of legs. This feature can reduce experimental 
complexity on tuning reaction condition for many kinds of restriction enzymes 
working in the same efficiency. 

4   Conclusion 

We proposed an autonomous walking machine that can follow a track with many 
ssDNA stators along the certain route on two or three dimensions by cleaving ssDNA 
stators. From a series of feasibility studies, we confirmed the molecular machine can 
cleave and be denatured from ssDNA stators. So it is able to walk ahead a half step. 
Although our experiments are still in quite preliminary level, but we believe it is an 
alternative to construct programmable autonomous walking machines.  

References 

1. Sherman, W.B., Seeman, N.C.: A Precisely Controlled DNA Biped Walking Device. Nano 
Lett. 4, 1203–1207 (2004) 

2. Shin, J.-S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Am. Chem. 
Soc. 126, 10834–10835 (2004) 

3. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme That Walks Processively and 
Autonomously along a One-Dimensional Track. Angew. Chem. Int. Ed. 44, 4355–4358 
(2005) 

4. Bath, J., Green, S.J., Turberfield, A.J.: A free-running DNA motor powered by a nicking 
enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005) 

5. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: 
Behavior of Polycatalytic Assemblies in a Substrate- Displaying Matrix. J. Am. Chem. 
Soc. 128, 12693–12699 (2006) 

6. Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., Reif, J.H.: A Unidirectional DNAWalker 
That Moves Autonomously along a Track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004) 

7. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable 
and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001) 

8. Verma, S., Eckstein, F.: Modified Oligonucleotides:Synthesis and Strategy for Users. Annu. 
Rev. Biochem. 67, 99–134 (1998) 

9. Taylor, J.W., Schmidt, W., Cosstick, R., Okruszek, A., Eckstein, F.: The use of 
phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. 
Nucleic Acids Res. 13, 8749–8764 (1985) 



 A Realization of DNA Molecular Machine 63 

Appendix: Fok I as a Nicking Enzyme 

We examined to achieve a function which is the same as a nicking enzyme by using 
Fok I and phosphorothioate-modified DNA. Fok I cleaves both of double-strand, this 
cleaving activity isn’t suitable for the molecular walking machine. We expected to 
block the cleaving activity at the cut point of one strand by phosphorothioatemodified 
DNA (Fig. 7). Remark that for our walking machine, only legs need phosphorothioate 
modification.  

We experimented to confirm the effect of phosphorothioate-modified DNA. We 
prepared five DNA strands for the experiment (Table. 3). The five DNA strands 
compose the following four sets; 

1) unmodified and separated the recognition site and the cut poin 
2) phosphorothioate-modified and separated the recognition site and the cut point 
3) unmodified and unseparated 
4) phosphorothioate-modified and unseparated 

Each four sets of DNA strands were mixed at 0.3 μM in hybridization buffer. 
NEBuffer4 from New England Biolabs was used as the hybridization buffer. 4 units 
of Fok I from New England Biolabs were added to each five sets 20 μl solution. The 
four sets were incubated at 37ºC by 2hours. 

We ran the resulting solutions in 16% PAGE (non-denaturing gel). 

33mer

13mer 20mer

33mer

33mer

13mer 7mer 13mer

13mer 7mer 13mer

24mer 9mer

1)a)

1)b)

2)a)

2)b)

13mer 20mer

 

Fig. 8. Phosphorothioate-modified point.1) Unmodified (F-13, F-20, F-33), a) before cleaving 
b) after cleaving. 2) Phosphorothioate-modified(F-13, F-20, F-33s), a) before cleaving b) after 
cleaving. 



64 H. Sekiguchi et al. 

Table 3. DNA strands. The recognition site of FokI is shown in bold type. The cut point is 
indicated by / , and s indicates the position of phosphorothioate-modified. 

Name Sequence(5’…3’) 

F-13 AGTCTAGGATGAT 

F-20 CGACGTG/CTGTACTCTGAGG 

F-13+20 AGTCTAGGATGATCGACGTG/CTGTACTCTGAGG 

F-33 CCTCAGAGT/ACAGCACGTCGATCATCCTAGACT 

F-33s CCTCAGAGTsACAGCACGTCGATCATCCTAGACT 
 

24mer

33mer

1 2 3 4 5 6 7 8

unreacted

 

Fig. 9. Result of experiment of phosphorothioate-modified. 1)2) Unmodified and separated (F-
13, F-20, F-33). 3)4) Phosphorothioate-modified and separated (F-13, F-20, F-33s). 5)6) 
Unmodified and not separated (F-13+20, F-33). 7)8) Phosphorothioate-modified and not 
separated (F-13+20, F-33s). Odd number of lane : without Fok I , Even number of lane : with 
Fok I. 

For this result, we found phosphorothioate-modified DNA could block the cleving 
activity a little (Fig. 8). There were phosphorothioate-modified DNA with separate 
point in lane 4, and no-modified DNA with separate point in lane 2. To compare the 
two lanes, we confirmed that phosphorothioate-modified DNA was cleaved. The 
length 24 mer band is the products of cleaving F-33 at the cut point, and there is the 
same band in lane 4. So this result shows phosphorothioate-modified DNA was 
cleaved. 

In this regard, however there is the length 33 mer band in lane 4. The band shows a 
few F-33s remained not to be cleaved. And there is the band which shows unreacted  
 



 A Realization of DNA Molecular Machine 65 

DNA strand. This band isn’t observed in lane 2. Unmodified DNA couldn’t block the 
cleaving activity. 

The effort to block the cleaving activity by phosphorothioate-modified DNA has 
failed. But it was observed phosphorothioate-modified DNA had the weak inhibition 
of the activity. We expect that using phosphorodithioate-modified DNA leads to 
stronger inhibition of the activity. The molecular machine may be able to get the 
cleaving function which it needs by phosphorodithioate-modified DNA. 



Autonomous Programmable Nanorobotic Devices Using
DNAzymes

John H. Reif and Sudheer Sahu

Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129, USA

{reif,sudheer}@cs.duke.edu

Abstract. A major challenge in nanoscience is the design of synthetic mole-
cular devices that run autonomously and are programmable. DNA-based syn-
thetic molecular devices have the advantage of being relatively simple to design
and engineer, due to the predictable secondary structure of DNA nanostructures
and the well-established biochemistry used to manipulate DNA nanostructures.
We present the design of a class of DNAzyme based molecular devices that are
autonomous, programmable, and further require no protein enzymes. The basic
principle involved is inspired by a simple but ingenious molecular device due to
Mao et al [25]. Our DNAzyme based designs include (1) a finite state automata
device, DNAzyme FSA that executes finite state transitions using DNAzymes,
(2) extensions to it including probabilistic automata and non-deterministic au-
tomata, (3) its application as a DNAzyme router for programmable routing of
nanostructures on a 2D DNA addressable lattice, and (4) a medical-related ap-
plication, DNAzyme doctor that provide transduction of nucleic acid expression:
it can be programmed to respond to the underexpression or overexpression of
various strands of RNA, with a response by release of an RNA.

1 Introduction

1.1 Prior Autonomous Molecular Computing Devices

In the last few years the idea of constructing complex devices at the molecular scale
using synthetic materials such as DNA has gone from theoretical conception to experi-
mental reality.

(a) DNA Tiling Assemblies. One theoretical concept that had considerable impact
on experimental demonstrations was that of Wang Tiling. This is an abstract model
that allows for a finite set of 2D rectangles with labeled sides to assemble 2D lattices
by appending together tiles at their matching sides. Winfree first proposed the use of
DNA nanostructures known as DNA tiles to achieve universal computations. DNA tiles
self-assemble into 2D lattices as determined by the tiles’ pads (ssDNA on the sides
of the tiles that can hybridize to other tiles’ pads). The last decade has seen major
successes in experimental demonstrations of the use of such DNA tiling assemblies to
construct patterned lattices and tiling computations. DNA tiling assemblies have been
used effectively in construction of periodic two-dimensional lattices, such as those made
from double-crossover (DX) DNA tiles [29], rhombus tiles [12], triple-crossover (TX)

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 66–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Autonomous Programmable Nanorobotic Devices Using DNAzymes 67

tiles [9], and “4x4” tiles [31], as well as triangle lattices [11] and hexagonal lattices [5].
They have also been used for the construction of patterned lattices [30] by designing the
DNA tile pads to program computations. The use of DNA tiling assembly has two major
advantages over most other methods for molecular computation, since it: (i) operates
entirely autonomously, without outside mediated changes, and (ii) does not require the
use of protein enzymes.

DNA tiling assemblies do have limitations: in particular, in general as currently con-
ceived, they do not allow for the molecular devices (the tiles in their case) to transition
between multiple states (except of course for their free or assembled states). In contrast,
many complex molecular mechanisms found in the cell can transition into multiple
states, allowing far more flexibility of application.

(b) Autonomous Molecular Computing Devices that Execute Multiple State
Transitions. There are only two other known methods for DNA computation that oper-
ate autonomously. Both use ingenious constructions, but require the use of enzymes.

(i) The whiplash PCR machines of [14,15,19,28]. These however, can only execute a
small number of steps before they require changes in the environment to execute further
steps. Also, they require the use of polymerase enzyme.

(ii) The autonomous DNA machines of Shapiro[4,2,3], which execute finite tran-
sitions using restriction enzymes. The autonomous DNA machine [3] demonstrated
molecular sensing and finite state response capabilities for that could be used for med-
ical applications (though the demonstrations were made in test tubes only, rather than
in natural biological environments as would be required for their medical applications).
Their paper was important motivational factor in the work described here.

1.2 Our Main Contribution

This paper provides the first known design for a DNA-RNA based devices that (a)
operates autonomously, (b) do not require the use of protein enzymes, and (c) allow for
the execution of multiple state transitions. Our designs make use of certain prior DNA
nanomechanical devices, which will be discussed below.

1.3 DNA Nanomechanical Devices

Prior Nonautonoumous Nanomechanical DNA Devices. A variety of DNA nanome-
chanical devices have been constructed that exhibit motions such as open/close
[23,24,34], extension/contraction [1,8,10], and rotation [13,26,32]. The motion of these
devices is mediated by external environmental changes such as the addition and removal
of DNA fuel strands [1,8,10,23,24,26,32,34] or the change of ionic strength of the so-
lution [13]. For example, non-autonomous progressive walking devices, mediated by
the addition and removal of DNA strands, were constructed both by Seeman [21] and
Pierce [22]. Although in many cases ingeniously designed, these devices need external
(human or automation-based) intervention for each step of their motions. These syn-
thetic DNA devices are in sharp contrast with cellular protein motors and machines on
macroscale that operate autonomously, without requiring any interference.



68 J.H. Reif and S. Sahu

Recent times have seen significant progress in con-

Fig. 1. Overview of Mao’s
crawler [25] constructed using
DNA enzyme

struction of DNA nanomechanical devices that exe-
cute autonomous, progressive motions. Reif [17] gave
two designs for autonomous DNA nanomechanical
devices that traverse bidirectionally along a DNA
nanostructure. Turberfield et al proposed using DNA
hybridization energy to fuel autonomous free-running
DNA machines [27]. Peng et al [33] was the first
to experimentally demonstrate an autonomous DNA
walker, which is an autonomous DNA device in which
a DNA fragment translocates unidirectionally along a
DNA nanostructure. It used DNA ligase and restric-
tion enzymes.

Recently Mao demonstrated two autonomous DNA
nanomechanical devices driven by DNA enzymes
(non-protein), namely (a) a tweezer [7,6] which is a DNA nanostructure that open and
closes autonomously and (b) a DNA crawler [25] using DNA enzyme (DNAzyme),
which traverses across a DNA nanostructure.

Their crawler device contains a DNAzyme that constantly extracts chemical energy
from its substrate molecules (RNA) and uses this energy to fuel the motion of the
DNA device. This DNAzyme-based crawler integrates DNAzyme activity and strand-
displacement reaction. They use 10-23 DNAzyme, which is a DNA molecule that can
cleave RNA with sequence specificity. The 10-23 DNAzyme contains a catalytic core
and two recognition arms that can bind to a RNA substrate. When the RNA substrate
is cleaved, the short fragment dissociate from the DNAzyme and that provides a toe-
hold for another RNA substrate to pair with short recognition arm of the DNAzyme.
The crawler device traverses on a series of RNA stators implanted on a nanostructure
as shown in Figure 1. Their crawler is the primary inspiration to our designs. While an
ingenious device, there are a number of limitations of Mao’s DNAzyme-based crawler:
(1) it did not demonstrate the loading and unloading of nanoparticles (2) it only tra-
verses along a one dimensional sequence of ssRNA strands (stators) dangling from a
DNA nanostructure, and its route is not programmable (3) it does not execute finite state
transitions beyond what are required to move (that is, it does not execute computations).

1.4 Overview of This Paper and Results

The goal of this paper is to address the above limitations, providing DNAzyme based
devices with substantially enhanced functionalities. We present the design of DNAzyme
FSA: a finite state machine based on the activity of DNAzyme and strand displacements
in Section 2. DNAzyme FSA can be easily extended to non-deterministic finite state au-
tomata and probabilistic automata as described in Section 2.6. In Section 3 we present
a medical related application of DNAzyme FSA referred to as DNAzyme doctor.
DNAzyme doctor is a molecular computer for logical control of RNA expression using
DNAzyme. Another application of DNAzyme FSA, DNAzyme router: a DNAzyme



Autonomous Programmable Nanorobotic Devices Using DNAzymes 69

based system for programmable routing of the walker on a 2D lattice is described in
Section 4. All the devices described in this paper are based on selective cleaving activity
of DNAzyme and strand displacement processes.

2 DNAzyme FSA: DNAzyme Based Finite State Automata

A finite state automata can be described as a 5-tuple (Σ, S, s0, δ, F ), where Σ is a finite
non-empty set of symbols called input alphabet, S is a finite non-empty set of states,
s0 ∈ S is an initial state, δ is the state transition function (δ : S × Σ → S), and F ⊂ S
is the set of final states.

In this section, we describe a DNAzyme based finite state automata, referred to as
DNAzyme FSA. At any time an RNA sequence encoding an input symbol is examined
by the DNAzyme FSA, then an appropriate state transition takes place, and then the
RNA sequence encoding the next input symbol is examined. This process continues till
all the input symbols are scanned and the output of the DNAzyme FSA is its state at the
end of process.

x1a1a2 x2b2 x2 b1 x1

01
x1a1a2 x2

0
x

x1a1x2a2
b1b2a1a2

t1t2t1t2t1t2t1t2

x1x2x2 x1x

x

(a) (b)

Fig. 2. (a) Encoding of 0 and 1 in DNAzyme FSA. (b) Protector strand partially hybridizes with
the input strand to form bulge loops. The sticky end formed at the end of the input strand outside
of the bulge loops represents the active input symbol. This scheme protects the input symbols
other than the currently active symbol from becoming active.

2.1 Encoding the Input Symbols

First of all, we describe the way the input is encoded for the DNAzyme FSA. Input
symbols 0 and 1 are encoded as the RNA sequences x1 · a1 · x2 · a2 and x1 · b1 · x2 · b2,
respectively, where a1, a2, b1, b2, x1, and x2 are RNA sequences, and · represents
concatenation. Figure 2 (a) illustrates this encoding of the input symbols. It should be
noted that 0 and 1 share common subsequences x1 and x2. Also, there is a special
subsequence x at the end of the input subsequence. This is central to the working of the
DNAzyme FSA as will be explained later.

2.2 Active Input Symbol

While encoding the input for DNAzyme FSA, it is essential to have a mechanism to
detect the current input symbol that is being scanned by DNAzyme FSA. We will refer
to this symbol as active input symbol. In order to implement this feature in DNAzyme
FSA only a small segment of the RNA strand encoding the input symbols is kept ac-
tive. Most part of it is kept protected by hybridization with a partially complementary
sequence, referred to as protecting sequence. It has not been shown in the figure but



70 J.H. Reif and S. Sahu

the protecting sequence should not be one continuous strand. Instead it should con-
tain nicks at various positions. This is necessary for the working of device and will be
explained later. The active input symbol is represented by the sticky end of the RNA
sequence encoding the input. We refer to this nanostructure as input nanostructure. Fig-
ure 2 (b) illustrates the idea. The input nanostructure encodes the input 010. The active
input symbol is rightmost 0 (in 010), and it is encoded by the sticky end of the input
nanostructure, and hence is active. However, the leftmost 0 and the 1 are encoded in the
protected portion of the input nanostructure. They have been protected by hybridization
with a protecting sequence. Since the protecting sequence is partially complementary to
the sequence encoding the input symbols, it results in the formation of bulge loops. In
the Figure 2 b) a2, a1, b2, and b1 contain a subsequence complementary to t2, while x2
and x1 contain subsequence complementary to t1. Since the RNA sequence encoding
input is partially complementary to the protecting sequence t2.t1.t2.t1... it forms the
bulge loop structure as shown in the Figure 2 (b). Each input symbol is hence repre-
sented by two bulge loops. It should be noted that the special sequence x at the end of
the input sequence and x̄ at the end of protecting sequence ensure that only the desired
alignment of protecting sequence with input sequence is favored. As a result, only the
desired input nanostructure as shown in Figure 2 (b) is formed.

2.3 States and Transitions

After the description of the input, next we describe the design of states and transitions
in finite state machine. In DNAzyme FSA, a network of DNAzymes is embedded on a
two-dimensional plane, and the input nanostructure is routed over it. The state of the
DNAzyme FSA at any time is indicated by the DNAzyme that holds the input nanos-
tructure at that time. During each state transition of DNAzyme FSA, the segment of
input nanostructure encoding the active input symbol is cleaved, the next bulge loop
opens up exposing the segment encoding next input symbol, thereby making it new
active input symbol, and the input nanostructure jumps to another DNAzyme that in-
dicates the new state of DNAzyme FSA. In subsequent paragraphs, we will explain in
details the complete process of state transition in DNAzyme FSA. As shown in Figure 3
(a), a state transition from one state to another is implemented as two evenly spaced
DNAzymes, referred to as transition machinery for that state transition. Each of these
DNAzymes is tethered to another DNA nanostructure, which forms part of the back-
bone of the DNAzyme FSA. DNAzyme D0,s1 and D′

0,s2
form the transition machinery

for state transition from state s1 to state s2 for input 0. Similarly, DNAzyme D1,s1 and
D′

1,s2
form the transition machinery for state transition from state s1 to state s2 for input

1. It should be noted that in our nomenclature the first subscript of the DNAzyme spec-
ifies the active input symbol and the second subscript specifies the states for a transition
machinery.

The foremost thing to ensure in DNAzyme FSA is that if the active input symbol
is 0, then the state transition for input 0 should be taken. Similarly, if the active input
symbol is 1, then the state transition for input 1 should be taken.

In the transition machinery for state transition for input 0, the DNAzymes D0,s1 and
D′

0,s2
contain DNA subsequences x2 · a1 · x1 and x1 · a2 · x2 respectively, at their free

ends. The DNA subsequences of D0,s1 is partially complementary to the RNA sequence



Autonomous Programmable Nanorobotic Devices Using DNAzymes 71

a1 a2 x2x1 x1x2

0

b1 b2 x2x1 x1x2

1

D0,s1 D'0,s2

D1,s1 D'1,s2

s1 s2

s1 s2

t1t2t1t2t1t2t1t2

x1a1x2a2

b1b2a1a2

t1t2t1t2t1t2t1t2

a1 a2 x2x1 x1x2

x1a1x2a2

b1b2a1a2

a2 x2x1

x1b1x2b2

b1b2a1a2

t1t2t1t2t1t2t1t2

b1 b2 x2x1 x1x2

x1b1x2b2

b1b2a1a2

b2 x2x1

D0,s1 D'0,s2

D0,s1 D'0,s2

D1,s1 D'1,s2

D1,s1
D'1,s2

x1x2x1x2 x1x2x1x2

t1t2t1t2t1t2t1t2 t1t2t1t2t1t2t1t2

x1x2x1x2 x1x2x1x2

(a) (b)

Fig. 3. (a) Figure illustrates the implementation of a state transition through DNAzymes. (b)
D0,s1 in the transition machinery for state transition at 0 combines with input nanostructure
when active input symbol encoded by the sticky end is 0. When the active input symbol encoded
by the sticky end is 1, D1,s1 in the transition machinery for state transition at 1 combines with
the input nanostructure.

that encode the symbol 0 (x1 ·a1 ·x2 ·a2). This ensures that only when the sticky end of
input nanostructure is x1 · a1 · x2 · a2, it can hybridize with the DNAzyme D0,s1 . Thus
a state transition for 0 is not taken in DNAzyme FSA, unless the active input symbol
is 0.

Similarly, in the transition machinery for state transition for input 1, the DNAzymes
D1,s1 and D′

1,s2
contain DNA subsequences x2 · b1 · x1 and x1 · b2 · x2 respectively, at

their free ends. These subsequences are partially complementary to the RNA sequence
that encode the symbol 1 (x1 · b1 · x2 · b2). As explained earlier, this ensures that a state
transition for 1 is not taken in the DNAzyme FSA, unless the active input symbol is 1.
Figure 3 (b) further illustrates the idea.

2.4 Description of State Transition

In this section, we will describe the movement of the input nanostructure over the
DNAzymes in a transition machinery to carry out the state transition in DNAzyme
FSA. Figure 4 (a) shows a transition machinery for input 0. Initially, the input nanos-
tructure is hybridized with the DNAzyme D0,s1 . The sticky end of the input nanostruc-
ture represents the active input symbol 0, and therefore, the transition at input 0 is to
be performed. First, the DNAzyme D0,s1 cleaves the input nanostructure as shown in
Figure 4 (a). Now the sticky end of input nanostructure has only x2 as complementary
subsequence to the subsequence x2 ·a1 ·x1 at the free end of DNAzyme D0,s1 . However,
the longer subsequence x2 ·a2 in its sticky end is complementary with the subsequence
a2 · x2 of DNAzyme D′

0,s2
. Therefore, a strand displacement process takes place with

the free ends of DNAzymes D0,s1 and D′
0,s2

competing against each other to hybridize
with sticky end (x2 · a2) of the input nanostructure. Since D′

0,s2
provides a longer com-

plementary subsequence, ultimately D0,s1 is displaced and the input nanostructure is
now hybridized with D′

0,s2
as shown in Figure 4 (a). It should be noted that the next

bulge loop gets opened in this process. An input symbol is encoded across two bulge



72 J.H. Reif and S. Sahu

x1a1x2
a2

b1

b2

a1

a2

t1
t2t1

t2
t1

t2
t1

t2

a2 x2x1

b1

b2

a1

a2

t2
t1

t2
t1

t2

a2 x2x1

x2
a2

b1

b2

a1

a2

t1

t2t1
t2

t1
t2

t1
t2

a2 x2x1

D
0,s1

D'
0,s2

s1 s2
0

D
0,s1

D'
0,s2

D
0,s1

D'
0,s2

x1

x1

x2

x2

x1

x1

x2

x2

x1

x2

x2

a2 x2x1

a1x2 x1

a1x2 x1

a1

a1 a2 x2x1 x1x2

t2
t1

t2
t1

t2

t2

a1

a2 x2

x1

x1

x2

b2

b1 x1

x2

x2

x1

a1

a2 x2

x1

x1

x2

t2
t1

t2
t1

t2

b1

a2 x2

x1

x1

x2

b2

b1 x1

x2

x2

x1

s1 s2

s3

s4

D

0

1

0 0,s1
D'

0,s2

D1,s2

D
0,s2

D'
0,s3

D'
1,s4

D
0,s1

D'
0,s2

D'
0,s2 D

0,s1

D
1,s2

D'
1,s4

D
0,s2

D'
0,s3

D
0,s2

D'
0,s3

D1,s2

D'1,s4

x2

b2
x1

a1

a2 x2x1

a2

a1 x1

x2

x2

x1

b1

b2 x2

x1

x1

x2a1 x1x2 a2 x2x1

x1b1x2
b2

x1

a1

x1
b1

x2

b2
x1

a1

(a) (b)

Fig. 4. (a) First half of a state transition by DNAzyme FSA from s1 to s2 at input 0 is illustrated.
Sequence encoding active input symbol 0 gets cleaved by DNAzyme D0,s1 , input nanostructure
moves to next DNAzyme D′

0,s2 by strand displacement, and the next bulge loop in the input
nanostructure opens up in the process. (b) Second half of a state transition by DNAzyme FSA
from s1 to s2 at input 0 is shown. The mechanism is similar to the first half. However, in this
part the next input symbol and next state transition of DNAzyme FSA is determined, and the
input nanostructure lands up on the appropriate transition machinery for the next state transition
to begin correctly.

loops in the input nanostructure. As the first half of the sticky end (x1 ·a1) encoding the
half of the active input symbol 0 got cleaved, the current sticky end is x2 · a2 · x1 · b1,
that contains half of the sequence encoding symbol 0 and half of the sequence encoding
the symbol 1. This completes the first half of the state transition by DNAzyme FSA.

The second half of the transition in DNAzyme FSA takes place in exactly similar
manner. Half of the sticky end (x2 · a2) of the input nanostructure that encodes the
remaining half of the active input symbol 0 gets cleaved, thus leaving only x1 as com-
plementary to free end of DNAzyme D′

0,s2
(x1 · a2 · x2). At this point the sticky end of

the input nanostructure is x1 · b1 which is half of the sequence that encodes the input
symbol 1. It indicates that the next active input symbol is 1 and therefore, the next state
transition should be from state s2 at input 1. This is ensured by the DNAzyme FSA
in the following way. Since the sticky end of the input nanostructure is (x1 · b1), the
DNAzyme D1,s2 that has the sequence x2 · b1 · x1 at its free end gets involved in strand
displacement with D′

0,s2
to hybridize with the sticky end (x1 · b1) of input nanostruc-

ture. Because of the longer complementary sequence D1,s2 ultimately displaces D′
0,s2

and hybridizes with the sticky end of nanostructure. This results in the opening of next
bulge loop in input nanostructure as shown in Figure 4 (b).

It should be noted that D0,s2 (with sequence x1 · b2 · x2 at its free end) does not
have sequences complementary to the sticky end (x1 · b1) of input nanostructure, so it
can not get involved in any strand displacement. Therefore, the input nanostructure is
guaranteed to move to the DNAzyme D1,s2 . After the opening of the next bulge loop,



Autonomous Programmable Nanorobotic Devices Using DNAzymes 73

the new sticky end (x1 · b1 · x2 · b2) of input nanostructure encodes the input symbol 1.
Thus, the input nanostructure lands up in the appropriate transition machinery for the
next state transition, and the next state transition at input 1 can begin correctly.

It can be argued in a similar manner that during the second half of the transition, if
the next active input symbol was to be 0, the input structure would have moved from
DNAzyme D′

0,s2
to D0,s2 instead of moving to D1,s2 . We omit the explanation here for

the sake of brevity.
Figure 4 (b) illustrates the second half of the state transition of DNAzyme FSA.
It should be noted that the strand displacement of the protector strand also takes

place during the process. But since it contains nicks, its fragments just wash away in
the solution when they get completely displaced.

2.5 Complete State Machine

The components described above can be integrated to implement the complete finite
state automata. Any state transition in the DNAzyme FSA can be implemented by two
DNAzymes as described earlier. These DNAzymes are embedded on a nanostructure
that forms the backbone of the DNAzyme FSA. The addressable nanostructures formed
by DNA origami [20] or fully-addressable DNA tile lattices [16] might provide use-
ful nanostructures for this backbone. Hence, the state machine can be laid out on this
nanostructure by implanting a network of DNAzymes on it. The input nanostructure
traverses over them in a programmable way and keeps getting cleaved in the process.

s1

s2 s3

0
0

1

0

1

1

x2
a1

x1 x1 a2 x2

x2
x1x1

b2
x2x2 b1

b1

x1

x2

a1

x1

x1

a2

x2

x1

b2

x2
x2

b1

x1

x1

b2

x2
x2

a1

x1

x1

a2

x2
D

D'

0,s1

0,s2 D'1,s1

D1,s2

D0,s2 D'0,s3

D'1,s3

D0,s3

D'0,s1
D1,s1

D1,s3

D'1,s2

Input  0110100

0
1

1

1

1

1

1

1

1

0000

0000

00

00

0000

1

1

1

1

1

1
000

1 1

1

1

1

1

(a) (b)

Fig. 5. (a) The DNAzyme implementation of the finite state machine shown on left. (b) Illustration
of programmable routing in two dimensions.

Figure 5 (a) shows an implementation of a DNAzyme FSA (at the right) for the finite
state automata (at the left). It should be noted that the DNAzymes shown in the Figure 5
(a) are actually implanted on a backbone nanostructure. The dashed lines represent the
sides of these DNAzymes that are embedded in the backbone nanostructure.

The output of the DNAzyme FSA is detected using insitu hybridization techniques.
The details of the protocol are described in [18].



74 J.H. Reif and S. Sahu

2.6 Non-deterministic and Probabilistic DNAzyme FSA

A nondeterministic finite state automata is a 5-tuple (Σ, S, s0, δ, F ), where Σ is a finite
set of input symbols, S is a finite set of states, δ is a state transition function (δ :
S × (Σ

⋃
{ε}) → P (S) where P (S) is the power set of S), ε is the empty string,

s0 ⊂ S is a set of initial states, and F ⊂ S is a set of final states.
A probabilistic finite state automata is a finite state automata in which the state

transitions are probabilistic in nature. It can be described as a 5-tuple (Σ, S, s0, δ, F ),
where Σ is a finite set of input symbols, S is a finite set of states, δ is a state transition
function (δ : S × Σ × S → [0, 1]), s0 ⊂ S is a set of initial states, and F ⊂ S is a set
of final states.

The idea extends to the non-deterministic automata directly. Different DNAzyme-
FSA described above will work in parallel inside a test-tube. Therefore, the above de-
scribed scheme will work for non-deterministic automata as well. In case there are
more than one transitions possible for one input from one state, each of them will be
taken in one DNAzyme-FSA or the other inside the solution, and thus exhibiting non-
deterministic nature of the automata. Regarding the output, if the output state in any
of the DNAzyme-FSA in solution is an accepting state (or final state), it implies the
acceptance of the input by the overall non-deterministic finite state automata.

In case the sequences of all the DNAzymes are identical, then the DNAzyme-FSA
described above becomes a probabilistic automata having equal probabilities of transi-
tions from any state to any other state. However, to construct an arbitrary probabilistic
finite state automata, the probabilistic transitions can be implemented by using par-
tially complementary sequences in the designs. The sequences of the DNAzymes for
transition are chosen in a way so that the ratios of probability of hybridization are in
accordance with the transition probabilities.

3 DNAzyme Doctor: A Molecular Computer for Logical Control
of RNA Expression Using DNAzyme

The finite state automaton described in Section 2 can be used in various computational
and routing applications. In this section we describe DNAzyme doctor, an application
related to medical field. It is an autonomous molecular computer for control of RNA
expression based on the overexpression and underexpression of other RNAs. Earlier
Shapiro[3] had constructed a molecular computer using protein enzymes for logical
control of RNA expression. DNAzyme doctor performs the same function, while com-
pletely eliminating the use of protein enzymes in the design. For the ease of illustration
let us consider a similar example as given in [3]. Suppose a disease is diagnosed posi-
tive if RNAs R1 is underexpressed, R2 is underexpressed, R3 is overexpressed, and R4
is overexpressed. Thus, the detection of the disease can be done by computing logical
AND of the above mentioned four RNA expression tests. In case it is established that
the disease exists, a curing drug should be released. While in any other case, the drug
should not be released. Figure 6 (a) illustrates the aforementioned logic in the form of
a state diagram.

The sequencesy1, y2, y3 and y4 are characteristic sequences of RNAs R1, R2, R3, and
R4 respectively. If R1 is overexpressed then y1 is in excess, and if R2 is overexpressed



Autonomous Programmable Nanorobotic Devices Using DNAzymes 75

R1 R2 R3 R4
Yes

Disease diagnosed
Release Drug

Negative Diagnosis
Stop the process

No

underexpressionoverexpression

NoNoNo

YesYesYes

R1 excess of y1
R3 R4

excess of y3 excess of y4
R2 excess of y2

y2y1 y3 y4

D1 D2 D3 D4

lack of y3 lack of y4

y1 y2 y3 y4

underexpressionoverexpression

(a) (b)

Fig. 6. (a)A state diagram for DNAzyme doctor that controls the release of a drug RNA on the
basis of the RNA expression tests for the a disease (b) The figure shows the consequences of
overexpression and underexpression of different RNAs on the concentrations of the respective
characteristic sequences. The overexpression of R1 and R2 results in excess of y1 and y2 respec-
tively, and they block the path of input nanostructure by hybridizing with D1 and D2. Similarly
underexpression of R3 and R4 results in excess of y3 and y4 respectively, to block the path of
input nanostructure.

then y2 is in excess. However, if R3 is underexpressed, then lack of y3 and if R4 is un-
derexpressed, then lack of y4. But a threshold concentration of y1, y2, y3, y4 is thrown
into the solution, therefore lack of y3 causes excess of y3, and lack of y4 causes excess
of y4.

Since the DNAzyme doctor only needs to perform a logical AND, it can be imple-
mented in a simple way. We make the input nanostructure walk over four DNAzyme
stators implanted on a nanostructure in a straight path (more details in [18] ). Each
DNAzyme stator represents one of the RNA expression test. In case the test is posi-
tive, the input nanostructure moves to next DNAzyme stator, otherwise it gets stuck
and ultimately floats away in the solution. Therefore, the successful traversal of input
nanostructure over all these DNAzyme stators implies that all tests are positive, and
hence positive diagnosis of the disease.

In case the first test is negative (ie. overexpression of R1), then excessively floating
y1 can bind to y1 part of the DNAzyme D1. Similarly if second, third, or fourth tests
are negative (ie.. overexpression of R2, underexpression of R3 or underexpression of
R4), then excessively floating y2, y3, or y4 can bind to y2, y3, y4 portions of DNAzyme
D2, D3, or D4, respectively. The principle idea is illustrated in Figure 6. More details
of DNAzyme doctor are presented in [18].

4 DNAzyme Router

For any arbitrary path along the network of DNAzymes in a given DNAzyme FSA, an
input nanostructure can be designed to traverse along that path. This principle can be
used for the design of a programmable routing system. The input nanostructure that
moves over the DNAzyme FSA is referred to as walker and the complete system as
DNAzyme router. The path of the walker is programmed through the state transitions
of the automata and the input symbols encoded in the walker. As an example, we can
create a state machine on a rectangular grid (Figure 5 (b)), in which you move right if
the input is 0, and towards bottom if the input is 1. Then an input nanostructure that



76 J.H. Reif and S. Sahu

represents the input 0110100 can be made to walk through the path shown by dashed
lines in Figure 5 (b).

It should be noted that in a DNAzyme router the path does not get destroyed as a
result of the motion of the walker. It is the input nanostructure (walker) that gets cleaved
in the process, which is equivalent to exhaustion of fuel as a result of motion. Most
remarkable feature of DNAzyme router is that we can have multiple walkers moving on
the grid independently, each having its own programmed path.

5 Conclusion

We have described the construction of various devices based on the DNAzymes.
DNAzymes evolve through invitro selection procedures, and these processes can be
designed to generate DNAzymes that cut distinct sequences. In the DNAzyme FSA,
the number of DNAzymes required is proportional to the number of transitions in the
automata. For binary-coded inputs the number of transitions is proportional to number
of states. It should be noted that each of the devices described in the paper need the
DNAzymes to be mounted on an addressable two-dimensional nanostructure such as
the ones constructed by Rothemund [20] or Park et al [16], which themselves are float-
ing in the solution. The molecular computer for logical control of RNA expression can
be useful in medical field if it can be used inside a cell, and the programmable walk-
ers can be a really useful tool in nanopartical transportation systems at nanoscale. In
conclusion, the designs provided in this paper might provide useful insight for research
into many interesting problems in nanotechnology.

Acknowledgement. The work is supported by NSF EMT Grants CCF-0523555 and
CCF-0432038.

References

1. Alberti, P., Mergny, J.: DNA duplex-quadruplex exchange as the basis for a nanomolecular
machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)

2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196
(2003)

3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular com-
puter for logical control of gene expression. Nature 429, 423–429 (2004)

4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable
and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

5. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA tri-
angles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)

6. Chen, Y., Mao, C.: Putting a brake on an autonomous DNA nanomotor. J. Am. Chem.
Soc. 126, 8626–8627 (2004)

7. Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme.
Angew. Chem. Int. Ed. 43, 3554–3557 (2004)

8. Feng, L., Park, S., Reif, J., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator.
Angew. Chem. Int. Ed. 42, 4342–4346 (2003)



Autonomous Programmable Nanorobotic Devices Using DNAzymes 77

9. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: The construc-
tion, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem.
Soc. 122, 1848–1860 (2000)

10. Li, J., Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315–318 (2002)
11. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA

triangles with flexible four-arm dna junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)
12. Mao, C., Sun, W., Seeman, N.: Designed two-dimensional DNA holliday junction arrays

visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)
13. Mao, C., Sun, W., Shen, Z., Seeman, N.: A DNA nanomechanical device based on the B-Z

transition. Nature 397, 144–146 (1999)
14. Matsuda, D., Yamamura, M.: Cascading whiplash pcr with a nicking enzyme. In: Hagiya,

M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 38–46. Springer, Heidelberg
(2003)

15. Nishikawa, A., Hagiya, M.: Towards a system for simulating DNA computing with whiplash
PCR. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Pro-
ceedings of the Congress on Evolutionary Computation, vol. 2, pp. 960–966, 6–9. IEEE
Press, Washington (1999)

16. Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-
size, fully addressable dna tile lattices formed by hierarchical assembly procedures. Angew.
Chem. Int. Ed. 45, 735–739 (2006)

17. Reif, J.: The design of autonomous DNA nanomechanical devices: Walking and rolling DNA.
In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 22–37. Springer,
Heidelberg (2003), Published in Natural Computing, DNA8 special issue, vol. 2, pp. 439–461
(2003)

18. Reif, J.H., Sahu, S.: Autonomous programmable dna nanorobotic devices using dnazymes.
Technical Report CS-2007-06, Duke University, Computer Science Department (2007)

19. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Pna-mediated whiplash pcr. In: Jonoska,
N., Seeman, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 104–116. Springer, Heidel-
berg (2002)

20. Rothemund, P.: Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA
origami. Nature (2005)

21. Sherman, W., Seeman, N.: A precisely controlled DNA biped walking device. Nano Lett. 4,
1203–1207 (2004)

22. Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126,
10834–10835 (2004)

23. Simmel, F., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63,
41913 (2001)

24. Simmel, F., Yurke, B.: A DNA-based molecular device switchable between three distinct
mechanical states. Appl. Phys. Lett. 80, 883–885 (2002)

25. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNAzyme that walks
processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44,
4355–4358 (2005)

26. Tian, Y., Mao, C.: Molecular gears: A pair of DNA circles continously rolls against each
other. J. Am. Chem. Soc. 126, 11410–11411 (2004)

27. Turberfield, A., Mitchell, J., Yurke, B., Mills, J.A.P., Blakey, M., Simmel, F.: DNA fuel for
free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

28. Winfree, E.: Whiplash pcr for o(1) computing. Technical Report 1998.23, Caltech (1998)
29. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional

DNA crystals. Nature 394(6693), 539–544 (1998)
30. Yan, H., LaBean, T., Feng, L., Reif, J.: Directed nucleation assembly of DNA tile complexes

for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)



78 J.H. Reif and S. Sahu

31. Yan, H., Park, S., Finkelstein, G., Reif, J., LaBean, T.: DNA-templated self-assembly of
protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

32. Yan, H., Zhang, X., Shen, Z., Seeman, N.: A robust DNA mechanical device controlled by
hybridization topology. Nature 415, 62–65 (2002)

33. Yin, P., Yan, H., Daniell, X., Turberfield, A., Reif, J.: A unidirectional DNA walker moving
autonomously along a linear track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004)

34. Yurke, B., Turberfield, A., Mills, J.A.P., Simmel, F., Neumann, J.: A DNA-fuelled molecular
machine made of DNA. Nature 406, 605–608 (2000)



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 79 – 88, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Multi-fueled Approach to DNA Nano-Robotics 

Akio Nishikawa1,*, Satsuki Yaegashi4, Kazumasa Ohtake3,4, and Masami Hagiya2,4 

1 Department of Economics, Fuji University, Hanamaki, Iwate, Japan 
 2 Department of Computer Science, University of Tokyo, Tokyo, Japan 

3 Department of Biochemistry, University of Tokyo, Tokyo, Japan  

4 CREST JST, Japan 
nisikawa@fuji-u.ac.jp, yaegashi@lyon.is.s.u-tokyo.ac.jp, 
ohtake@biochem.s.u-tokyo.ac.jp, hagiya@is.s.u-tokyo.ac.jp 

Abstract. An approach to multi-fueled DNA nano-robotics is described. We 
propose three types of driving force (i.e., fuel for DNA nano-robots): thermal 
fuel, pH fuel, and light fuel. The thermal fuel controls the hybridization of DNA 
molecules around the melting temperature. The pH fuel controls the 
hybridization of the so-called i-motif by changing the pH condition. The light 
fuel controls the hybridization of DNA oligomers that are intercalated with 
azobenzene by irradiation with UV or visible light. These three fuels are not 
mutually exclusive. However, experimental conditions for the fueling of DNA 
nano-robots show efficacy. Concrete ideas for using these three fuel types are 
proposed and discussed.  

Keywords: DNA nano-robotics, multi-fueled approach, thermal fuel, pH fuel, 
light fuel, azobenzene, i-motif. 

1   Introduction 

Beginning with the pioneering work of Yurke et al. [7], DNA nano-robotic systems 
have made steady progress. In particular, the notion of a DNA fuel has been used in 
many applications. For example, Pierce et al. [5] have constructed a DNA walking 
device, in which the steps are fueled by single strands of DNA, each corresponding to 
one step of the device. In fact, DNA fuel has become a versatile tool in DNA nano-
robotics. One advantage of DNA fuel is that different types of fuel with different base 
sequences can be used separately, so that they control the hybridization of different 
DNA molecules independently of one another. 

However, DNA fuel emits double-stranded DNA molecules as a waste product, 
which accumulates in the solution and eventually inhibits the desired reaction. 
Therefore, it is reasonable to seek other sources of fuel, ideally those that do not 
produce waste products, which can be used to control the hybridization of DNA 
molecules.  

Clearly, one can control the hybridization of DNA molecules by changing the 
temperature of the solution around the melting temperature of the molecules (thermal 

                                                           
∗ Corresponding author. 



80 A. Nishikawa et al. 

fuel). Another source of fuel is light. Takahashi et al. [6] have constructed DNA nano-
machines that can be controlled by light radiation. They used DNA molecules 
intercalated with azobenzene, which changes conformation from trans to cis under UV-
light irradiation and from cis to trans under visible light [1, 2]. A modified DNA 
molecule can hybridize with its complementary counterpart if the intercalated 
azobenzene molecules take the trans conformation (light fuel). Yet another source of fuel 
are protons. Liu and Balasubramanian [3] have proposed the use of the so-called i-motif 
for DNA nano-machines. Under the appropriate acidic condition, the i-motif adopts a 
folded form and does not hybridize with its complementary counterpart (pH fuel). 

Using these DNA molecules as different components that are controllable by 
different sources of fuel, one can confer complex behaviors on a nano-machine by 
controlling the injection of each type of fuel. Note that the thermal fuel and the light 
fuel do not produce waste. Although the pH fuel increases the salt concentration each 
time the pH is changed, it is considered more tractable (and is cheaper) than DNA 
fuel. 

The crucial issue in using these different sources of fuel is whether they can work 
independently of one another. If they do work independently, one can imagine various 
applications. For example, we can imagine a walking device on a DNA trail (Fig. 1), in 
which three types of DNA molecule protrude from the trail in a cyclic order. Each type 
of DNA is controlled by the corresponding type of fuel, i.e., thermal, pH, or light. 

Counterpart sequence for the above three 

photo-controllable sequence
pH-controllable sequence 
thermally controllable sequence

 

Fig. 1. The walking device 

The motion of the device can be controlled if the three types of fuel work 
independently. For example, the walking device can be designed to move in a single 
direction as follows: 

1. DNA oligomers that are thermally controllable, pH-controllable, and photo-
controllable, and which can hybridize with their counterpart oligomers, are 
prepared. Controllable signifies that it is possible to control the hybridization and 
denaturation of the target oligomer and its counterpart. The sequences of the 
thermally controllable oligomers are designed using melting temperature 
predictions, the sequences of the pH-controllable oligomers are designed based 
on the i-motif [3], and the photo-controllable oligomers are prepared by 
azobenzene intercalation [1, 2]. 

2. The walking device has two counterpart oligomers as the 'feet'. 



 Multi-fueled Approach to DNA Nano-Robotics 81 

3. The three types of oligomers are immobilized repeatedly on the DNA trail in a 
cyclic order. 

4. The initial condition is set up, e.g., the pH is set to 5.0 (acidic), the temperature is 
around 25°C (low), and the solution has been radiated with UV light (i.e., 
azobenzene is cis-formed). Then counterpart oligomers can only hybridize with 
the thermally controllable oligomers, i.e., one foot of the device hybridizes with a 
thermally controllable foot (Fig. 1). 

5. To move the device in the right direction, we first change the pH to 7.0 (neutral). 
The other foot then hybridizes with the adjacent pH-controllable oligomer. By 
raising the temperature to 45°C (high), the first foot is denatured. At this point, if 
we irradiate the solution with visible light, the first foot will hybridize with the 
adjacent photo-controllable oligomer. 

Figure 2 shows a similar DNA device based on the three types of fuel. In this 
system, the DNA trail forms a small triangle, and the device rotates the triangle like a 
motor. 

 

Fig. 2. The triangular trail 

As mentioned above, in order to realize such DNA devices, it is crucial that the 
three types of fuel can be controlled independently. The goal of the present study is to 
investigate how the three types of fuel can be controlled independently. In the present 
paper, we report the results of our preliminary experiments in which we have 
prepared three oligomers that are thermally controllable, pH-controllable, and photo-
controllable, as well as their counterparts, and observed their hybridization profiles 
under various conditions. 

Unfortunately, in the current design, the three types of fuel were not always 
independent of each another, although we observed some independence. For example, 
the pH fuel and the light fuel can be controlled almost independently. Even if the 
three types of fuel are not completely independent, the information gathered regarding 
independence should be useful for the future development of DNA nano-robots. 

2   Materials and Methods 

2.1   Materials 

We prepared four oligomers. The oligomer termed RG-motor is the so-called i-motif, 
as described by Liu and Balasubramanian [3]. This oligomer has four CCC motifs and 
 



82 A. Nishikawa et al. 

folds into a specific form under acidic pH conditions. The oligomer named Y-A12-
BHQ2, which is the complementary counterpart of RG-motor, is also taken from Liu 
and Balasubramanian [3], except that we replaced one T with A to slightly break the 
symmetry. Thus, it is complementary to a sub-sequence of RG-motor with two 
mismatches, which lower the melting temperatures of RG-motor and Y-A12-BHQ2. 
Given that RG-motor prefers the folded form, under acidic pH conditions, the hybrid 
of RG-motor and Y-A12-BHQ2 is denatured. Note that RG-motor has rhodamine 
green at its 5’-end, whereas Y-A12-BHQ2 has BHQ2 at its 3’-end. Therefore, while 
these oligomers hybridize to each together, the fluorescence associated with RG is 
quenched. 

The thermally controllable oligomer, Cy5-YY8, is complementary to the 3’-end 
10-mer segment of Y-A12-BHQ2. The length of Cy5-YY8 was adjusted to control the 
hybridization between it and Y-A12-BHQ2 at temperatures between 25°C and 45°C. 
Note also that Cy5-YY8 has Cy5 at its 5’-end, the fluorescence of which is quenched 
by BHQ2. 

The photo-controllable oligomer, TAMRA-YY7-AZ, has five azobenzenes 
intercalated into its side-chain. Without azobenzene, the oligomer is complementary 
to the 3’-end 13-mer segment of Y-A12-BHQ2. TAMRA-YY7-AZ also has TAMRA 
at its 5’-end, the fluorescence of which is quenched by BHQ2. 

The sequences of the oligomers are listed below. In the design of these sequences, 
we sometimes used the Hyther program, which is available through the web interface 
[4], for predicting the oligomer melting temperatures. 

RG-motor (pH-controllable sequence): 
5’-rhodamine green-CCCTAACCCTAACCCTAACCC-3’ 

Cy5-YY8 (thermally controllable sequence): 
5’-Cy5-CTAACTCTAA-3’ 

TAMRA-YY7-AZ (photo-controllable sequence): 
5’-TAMRA-CTAXACXTCXTAXACXAC-3’;  X = azobenzene 

Y-A12-BHQ2 (counterpart sequence): 
5’-GTTAGTGTTAGAGTTAG-BHQ2-3’ 

2.2   Selection of Fluorescent Groups and Buffers 

Before the preliminary experiments, we had to decide which fluorescent groups to 
attach to oligomers, as the multi-fueled approach needs efficient and stable 
fluorescence under acidic environments and irradiation of UV light. 

In general, as the pH decreases, the fluorescence becomes weaker. Furthermore, if 
the UV irradiation light is strong, the fluorescence generally degrades. However, the 
efficiency of fluorescence under these conditions depends greatly upon the 
fluorescent groups attached to the oligomers. Under acidic pH conditions, many 
fluorescent groups lose fluorescence. For example, FAM and Cy3 are not suitable for 
use under acidic pH conditions, such as pH 5.0. Although rhodamine green retains 
fluorescence under these conditions, the buffer used is of crucial importance. After 
examining several types of buffer, we found that SSC buffer was optimal. The so-
called Good buffers were not always adequate for our experiments. Even the best 



 Multi-fueled Approach to DNA Nano-Robotics 83 

combination of rhodamine green and SSC buffer requires some data normalization. 
UV-light irradiation also affects the efficiency of fluorescence. TAMRA and Cy5 are 
tolerant to UV light, compared with FAM and Cy3. Therefore, we chose rhodamine 
green, TAMRA, and Cy5 for our experiments.  

2.3   Methods 

We conducted two experiments, the first with azobenzene-intercalated oligomers, and 
the second with thermally controllable and pH-controllable oligomers. All three 
oligomer types could be mixed in a single solution, but since UV-light radiation 
requires different protocols and devices, we conducted that experiment separately 
with the azobenzene-intercalated oligomer. 

Experiment with Azobenzene-Intercalated Oligomers  
The 13-mer azobenzene-intercalated oligomer with TAMRA attached to the 5’-end of 
the sequence, TAMRA-YY7-AZ (5’-TAMRA-CTAXACXTCXTAXACXAC-3’; 
where X = azobenzene), was prepared in a tube with 1× SSC buffer to a final 
concentration of 0.1 μM. UV light at 360 nm was applied to the tube through a UV-
D36C glass filter (Asahi Techno Glass) with the UVP B-100AP 100-W lamp for 30 
min. The irradiated sample (400 μl) was transferred to a quartz cell and placed in a 
Hitachi F-2500 Spectrophotometer, the temperature of which was maintained with the 
LAUDA RC-6 apparatus. While the fluorescence of TAMRA was measured for 300 
seconds, the equivalent concentration of the quencher oligomer, Y-A12-BHQ2 (5'-
GTTAGTGTTAGAGTTAG-BHQ2-3'), which is partially complementary (13-mer) to 
TAMRA-YY7-AZ, was added to the cell to measure the fluorescence change of 
TAMRA. The fluorescence of TAMRA in the trans-form was also measured. Since 
the trans-form azobenzene allowed Y-A12-BHQ2 to hybridize, we also investigated 
whether TAMRA-YY7-AZ and Y-A12-BHQ2 were separated by UV irradiation for 
30 min. This experiment was carried out at 25°C and 45°C under neutral and acidic 
(pH 5.0) pH conditions. 

Experiment to Control the pH and Temperature 
The Cy5-YY8 and RG-motor oligomers were first mixed in a tube, at final 
concentrations of 0.1 μM, with 1× SSC. The quencher, Y-A12-BHQ2, was added at 
four-fold higher concentration for the duration of the fluorescence measurement, in 
order to measure the effect of quenching on each type of fluorescence. This 
measurement was performed in the cycle of neutral (pH 7.6), acidic, and neutral pH at 
25°C. In the cycle, 6 μl of 1 M HCl were added to the cell to produce the acidic pH 
condition, and 55μl of 0.1 M NaOH were applied to neutralize the acidic solution. In 
the same manner, each type of fluorescence was measured for the temperature cycle 
of 25°C , 45°C , and 25°C at neutral pH (pH 7.6).  

3   Results 

The purpose of the preliminary experiments was to check the feasibility of the multi-
fueled approach. For this purpose, we examined the basic behaviors of the DNA 
oligomers under various conditions generated by combinations of fueling operations. 



84 A. Nishikawa et al. 

1. For the temperature of the solution, we examined the alternatives of 25°C and 
45°C . 

2. For the pH of the solution, we examined the neutral pH condition (around pH 
7.0) and the acidic pH condition (around pH 5.0). 

3. For UV-light irradiation, we examined three alternatives: 
(a) The solution was irradiated with UV light before the hybridization reaction. 
(b) The solution was irradiated with UV light after the hybridization reaction. 
(c) The solution was not irradiated with UV light. 

DNA oligomers that are intercalated with azobenzene can be controlled in two 
ways. One way is to block hybridization beforehand using UV-light irradiation. 
The other way is to denature the double-stranded hybridized DNA by irradiation. 
These alternatives are based on the conformational change of azobenzene from 
trans to cis that occurs under UV-light irradiation. Since the cis-form of 
azobenzene hinders hydrogen bonding of base pairs, the conformational change 
from trans to cis is expected to cause denaturation or blockage of hybridization. 

 
Therefore, we examined various experimental conditions, each of which was a 

combination of one of the two thermal conditions, one of the two pH conditions, and 
one of the three light conditions. In total, we examined 12 (2×2×3) conditions. In 
addition, each condition was examined with the different fluorescent wavelengths of 
Cy5, rhodamine green, and TAMRA. As described in Materials and Methods, Cy5 
was attached to the oligomer for thermal control (Cy5-YY8), rhodamine green was 
attached to the oligomer for pH control (RG-motor), and TAMRA was attached to the 
oligomer for photo-control (TAMRA-YY7-AZ). All these oligomers are (partially) 
complementary to the counterpart oligomer (Y-A12-BHQ2), which is modified to 
have BHQ2 at its 3’-end so that the fluorescence is quenched when the oligomers 
hybridize. 

Table 1. Summary of the experimental results. The + symbol denotes that the spectrophotometer 
detected strong fluorescence coming from the fluorescent group of the DNA oligomers, which was 
not quenched by BHQ2 in the counterpart DNA oligomer. The − symbol denotes that the 
spectrophotometer did not detect strong fluorescence. The observation results in the meshed area do 
not coincide with the expected results. The ± symbol denotes a fluorescence level between + and −. 
The question mark symbol (?) indicates that fluorescence could not be measured, due to the 
extreme conditions.  

25°C 45°C  
No UV UV 

(before) 
UV 

(after) 
No UV UV 

(before) 
UV 

(after) 
Thermal − −  + + + 

pH − − − + + + 

Neutral 

(pH 7.0) 

Photo − + +  + ± 

Thermal − − − + + + 

pH + + + + + + 

Acidic 

(pH 5.0) 

Photo − + ± ? ? ? 



 Multi-fueled Approach to DNA Nano-Robotics 85 

In the experimental results shown in Table 1, the + symbol indicates that the 
observed fluorescence is almost as strong as that of the fluorescent group alone, while 
the − symbol means that the observed fluorescence is much weaker than that of the 
fluorescent group alone. Other symbols are mentioned in the next section. 

As explained in more detail in the next section, the observation results shown in 
the meshed area of Table 1 do not correlate with the expected outcomes. This means 
that the independence of these conditions is compromised. 

Owing to space limitations, we mention only a few examples of the observed 
fluorescent data. Figure 3 shows the result of changing the temperature and measuring 
the fluorescence from Cy5 attached to the thermally controllable oligomer (Cy5-
YY8). The observation was made with a mixture of Cy5-YY8, RG-motor, and Y-
A12-BHQ2, as described in Section 2.3, under the neutral pH condition. At 25°C, 
fluorescence was not observed (?), which indicates that Cy5-YY8 hybridizes with Y-
A12-BHQ2. At 45°C, fluorescence was observed (+), which indicates that Cy5-YY8 
and Y-A12-BHQ2 are denatured. In Figure 3, the fluorescence data are not 
normalized, as Cy5 is not influenced by temperature. 

Thermally controllable oligomer - Cy5
25°C-45°C-25°C and neutral

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

Time (sec)

C
y5

-F
L

45°C

25°C 25°C

 

Fig. 3. Results for the thermally controllable oligomer 

RG fluorescence at pH7.6-pH4.9-pH6.1 and 25oC

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

Time(sec)

R
G
 f
lu
o
re
s
c
e
n
c
e

ｐH check

HCｌ NaOH

 

Fig. 4. The results for the pH-controllable oligomer 

Figure 4 shows the results from changing the pH conditions and observing the 
fluorescence from RG attached to the pH-controllable oligomer. These observations 
were made for the mixture of Cy5-YY8, RG-motor, and Y-A12-BHQ2, as described 



86 A. Nishikawa et al. 

in Section 2.3, at 25°C. The pH condition was first changed from neutral to acidic 
using HCl. After the pH was measured (pH 4.9), NaOH was added to give the final 
pH condition (pH 6.1) for this experiment. 

Regarding the main focus of the present study, i.e., the independence of the three 
types of fuel, Figure 5 shows the results of one of the successful experiments. The 
fluorescence of TAMRA attached to the photo-controllable oligomer is shown under 
four different conditions. In the left panel, the fluorescence intensity in the absence of 
UV light is compared with that of the oligomer that was irradiated with UV light for 
30 min. Both measurements were conducted under the neutral pH condition at 25°C. 
In the right panel, the same comparison is made under the acidic pH condition at 
25°C. Although the fluorescence level under the acidic pH condition is lower, similar 
results were obtained under both conditions. These results indicate the independence 
of the light fuel from the pH fuel at 25°C. 

 
13mer azobenzene-oligomer+ BHQ2-counterpart

 without UV and after 30min UV light ( neutral and 25°C)

0

500

1000

1500

2000

0 200 400 600 800 1000

Time(sec)

T
A

M
R

A
-F

L

TAMRA-AzoBz noUV TAMRA-AzoBz UV 30min

BHQ2

13mer azobenzene-oligomer+ BHQ2-counterpart
 without UV and after 30min UV light (acidic pH5.0 and 25°C)

0

500

1000

1500

2000

0 200 400 600 800 1000

Time(sec)

T
A

M
R

A
-F

L

TAMRA-azo without UV. TAMRA-azo UV 30min

BHQ2

 

Fig. 5. Independence of the light fuel from the pH fuel at 25°C. The photo-controllable oligomer 
TAMRA-YY7-AZ was irradiated with UV light (black line) or not irradiated (gray line). Y-A12-
BHQ2 was added 300 sec after the start of the measurement period. In both panels, the 
fluorescence levels are adjusted to the time at which Y-A12-BHQ2 was added. 

13mer azobenzene-oligomer+ BHQ2-counterpart
 without UV and after 30min UV light ( neutral and 45°C)

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

Time(sec)

T
A

M
R

A
-F

L

TAMRA-AzoBz no UV TAMRA-AzoBz 30min UV

BHQ2

13mer azobenzene-oligomer+ BHQ2-counterpart
 without UV and after 30min UV light (acidic pH5.0 and 45°C)

0

500

1000

1500

2000

0 200 400 600 800 1000

Time(sec)

T
A

M
R

A
-F

L

TAMRA-AzoBz no UV TAMRA-AzoBz UV 30min

BHQ2

 

Fig. 6. An unsuccessful outcome regarding the independence of the light fuel from the pH fuel 
at 45°C 



 Multi-fueled Approach to DNA Nano-Robotics 87 

On the other hand, Figure 6 shows an experimental result under extreme condition. 
Under the acidic pH condition at 45°C  (right panel), the fluorescence level was 
extremely low compared with the other conditions.  

4   Discussion 

As shown in the previous section, the levels of independence among the three types of 
fuel are incomplete. The following observation results (Table 1, meshed area) did not 
coincide with the expected outcomes. 

1. The pH-controllable oligomer was denatured at 45°C even under the neutral pH 
condition. Although the pH-controllable sequence is seven bases longer than the 
thermally controllable oligomer, this difference in length appears to be 
insufficient, as the pH-controllable sequence contains some mismatches. 

2. Under the acidic pH condition at 25°C and the neutral pH condition at 45°C , 
when the solution was irradiated with UV light after the hybridization reaction 
with the photo-controllable oligomer, the fluorescence level was not sufficiently 
strong. This means that the photo-controllable oligomer was not denatured 
completely. 

3. Under the acidic pH-condition at 45°C, the fluorescence level of TAMRA was 
very low and unstable. This appears to be due to the severity of the conditions 
(pH 5.0 and 45°C) for the TAMRA fluorescence group. Although the 
hybridization reaction may have occurred as expected, methods other than 
fluorescence detection are required for reliable observations.  

5   Concluding Remarks 

We have proposed a multi-fueled approach to DNA nano-robotics and examined the 
feasibility of the approach in some preliminary experiments. Although the three types 
of fuel are not always independent of each other, combinations of the three fuels used 
under the appropriate experimental conditions have proven to be useful for DNA 
nano-robotics. 

To ensure that the three types of fuel function more independently of one another, it 
is necessary to examine the possibility of controlling the hybridization under milder 
conditions. Such mild conditions would also solve the problem encountered with 
fluorescence detection, as described in the previous section. 

Although some combinations of the three fuels have proven to be useful, their 
effectiveness was only shown qualitatively. In order to optimize experimental 
protocols and eventually construct motors and walkers, we need to make 
quantitatively estimation of the hybridization ratio in each combination. Calibration 
between the fluorescence level and the hybridization ratio is the first thing to be done. 

The sequences used for the experiments are not considered optimal. In order to re-
design them, it seems worthwhile to try in-vitro search of sequences in addition to 
ordinary free energy prediction based on the nearest neighbor model. 

The search for an alternative source of fuel is critically important.  



88 A. Nishikawa et al. 

References 

1. Asanuma, H., et al.: Photoregulation of the formation and dissociation of a DNA duplex by 
using the cis-trans isomerization of azobenzene. Angew. Chem. 38, 2293–2395 (1999) 

2. Asanuma, H., et al.: Photo-regulation of DNA function by azobenzene-tethered 
oligonucleotides. Nucleic Acids Res. Suppl. 3, 117–118 (2003) 

3. Liu, D., Balasubramanian, S.: A proton-fuelled DNA nanomachine. Angew. Chem. 115, 
5912–5914 (2003) 

4. SantaLucia Jr, J., et al.: HyTher, http://ozone3.chem.wayne.edu/ 
5. Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. 

Soc. 126, 10834–10835 (2004) 
6. Takahashi, K., Yaegashi, S., Asanuma, H., Hagiya, M.: Photo- and thermoregulation of 

DNA nanomachines. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, 
vol. 3892, pp. 336–346. Springer, Heidelberg (2006) 

7. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled 
molecular machine made of DNA. Nature 406, 605 (2000) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 89–98, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Experimental Validation of the Transcription-Based 
Diagnostic Automata with Quantitative Control by 

Programmed Molecules 

Miki Hirabayashi1, Hirotada Ohashi1, and Tai Kubo2 

1 Department of Quantum Engineering and Systems Science, The University of Tokyo,  
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan  

2 Neuroscience Research Institute, National Institute of Advanced Industrial Science and 
Technology (AIST), AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan  

miki@crimson.q.t.u-tokyo.ac.jp, ohashi@q.t.u-tokyo.ac.jp, 
tai.kubo@aist.go.jp 

Abstract. Biomolecular computing using the artificial nucleic acid technology 
is expected to bring new solutions to various health problems. We focus on the 
noninvasive transcriptome diagnosis by salivary mRNAs and present the novel 
concept of transcription-based diagnostic automata that are constructed by 
programmed DNA modules. The main computational element has a stem 
shaped promoter region and a pseudo-loop shaped read-only memory region for 
transcription regulation through the conformation change caused by targets. Our 
system quantifies targets by transcription of malachite green aptamer sequence 
triggered by the target recognition. This algorithm makes it possible to realize 
the cost-effective and sequence-specific real-time target detection. Moreover, in 
the in-vivo therapeutic use, this transcription-based system can release RNA-
aptamer drugs multiply at the transcription stage, different from the digestion-
based systems by the restriction enzyme which was proposed previously. We 
verified the sensitivity, the selectivity and the quantitative stability of the 
diagnostic automata in basic conditions. Our approach will provide promising 
applications of autonomous intelligent systems using programmed molecules.  

Keywords: Biomolecular computing, nucleic acid detection systems, DNA 
computing, molecular programming, autonomous diagnostic devices, molecular 
circuits. 

1   Introduction 

Salivary transcriptome diagnostics is expected as a novel clinical approach for early 
disease detection [1]. We describe herein a potential general approach to the rational 
construction of an intelligent sensor to detect the fluctuation of salivary mRNA 
biomarkers by transcriptional regulatory systems using molecular computation [2-9]. 

Recently, it was found that the combination of several disease-related salivary 
mRNA biomarkers yielded sensitivity (91%) and specificity (91%) to oral squamous 
cell carcinoma (OSCC) distinguishing from the controls [1]. The existing methods to 



90 M. Hirabayashi, H. Ohashi, and T. Kubo 

 

Fig. 1. (A) Operation principle of the detection system. (B) Expected main roles of error control 
elements. 

quantify these transcripts have several problems. For example, three methods of 
quantitative polymerase chain reaction (qPCR), which is commonly employed to 
validate a subset of differently expressed transcripts identified by microarray analysis, 

5’- 

(A) 

detector 
domain 

+ 

5’ 

reporter 
domain  

detector probe (D) reporter element (R)

antisense 
promoter  
sequence  

 

MG H 

N(CH3)2 

c 

+ 

D+R

+ 

(B) 

+ 

Role 1: reduction of background noise 

Role 2: amount control for detection  

error control  
element (E) 

D+E

+ + 

D+R+T+E 

-5’ 

+ 

D+ED+R

E 5’- 
3’- 

5’- 

target  
fragment (T) D+R+T 

T7 RNA 
polymerase

T 

3’- 
-5’ 

T 

T 

MGA 

MGA 

R 

D 

R 

(CH3)2N 

MGA

3’ 

-5’ 3’- 

D 

3’ 

5’ 

R 

3’ 

5’ 

3’ 
3’- 

-5’ 
-3’ 

E 
D 

3’- 

-5’ 
-3’ 

R 
D 

-5’ 

-5’ 

3’- 

-5’ 
-3’ 

E 
D 

3’- 

R 

3’- 

-5’ 

5’ 

3’- 

-3’ 

-5’ 

E 
 

D 

3’ 

R 

-3’ 

5’ 

3’- -5’ 

D 

3’ 

R 

-3’ 

T 

-5’ 

sense promoter  
sequence MG aptamer (MGA) 

-5’ 



 Experimental Validation of the Transcription-Based Diagnostic Automata 91 

have some drawback and advantage [10]. The method through agarose gel 
electrophoresis is less expensive but less accurate than others. The method using 
sequence-specific fluorescent reporter probes is accurate and reliable, but expensive. 
The method using SYBR Green dye labels all double-stranded (ds)DNA including 
any unexpected PCR products, however, it has the advantage in the cost performance. 
Here we present the cost-effective and sequence-specific intelligent systems using 
molecular computation for the transcriptome diagnosis and demonstrate the concept 
of new diagnostic automata.  

Our system consists of several computational elements (Fig. 1A). The detector 
probe has one stem for transcriptional regulation using the sense T7 promoter 
sequence and one read-only memory loop for target recognition. The stem is designed 
to significantly enhance their specificity in transcription regulation. The reporter 
element has an anti-sense promoter domain and a malachite green (MG) aptamer 
sequence domain. It can transcribe the aptameric sensor if the stem opens through the 
binding of a target oligonucleotide complementary to the memory sequence.  

As for the computational elements, Stojanovic’s group proposed molecular 
automata combined the standard oligonucleotide recognition element, a stem-loop 
molecular beacon with the MG aptamer itself as a part of computational elements and 
used on deoxyribozyme-based logic gates [11]. Here we utilize the transcription 
process of MG aptamer to detect the targets. As for the autonomous diagnostic and 
therapeutic systems using molecular computation, Shapiro’s group demonstrated 
digestion-based therapeutic systems by the restriction enzyme (FokI), which can 
release a single DNA molecule for therapy per therapeutic element according to 
diagnosis of biomarkers [9]. Our transcription-based system can transcribe RNA 
aptamer drugs [12] instead of the MG aptamer as much as needed under the control of 
programmed molecules, when it will be applied to the in-vivo treatment in the future. 
As for the additional computational elements, we introduced an error control element 
in order to increase the quantitative stability (Fig. 1B). This element has a target 
recognition domain and an inhibitor domain for detection probes, which was designed 
to reduce the background noise without inhibition of target recognition. Because our 
system adopts the conformation change to detect targets, we can control the 
conditions flexibly by using the additional programmed molecules such as this error 
control element. 

We confirmed the significant sensitivity, the selectivity and the quantitative 
stability of in basic conditions. These proof-of-concept results will contribute to bring 
us the realization of autonomous intelligent diagnostic and therapeutic devices using 
molecular-scale computation. 

2   Materials and Methods 

2.1   Preparation of Oligonucleotides 

DNA sequences of the oligonucleotide used for the construction of the three 
molecular computer components and two inputs are shown in Tables 1-3. The three 
components consist of the diagnostic system: detector probes, reporter elements, and 
error control elements. Oligonucleotides were custom-made and DNase/RNase free 



92 M. Hirabayashi, H. Ohashi, and T. Kubo 

HPLC purified by (Operon Biotechnologies, Tokyo, JAPAN) or (Hokkaido System 
Science, Sapporo, JAPAN) and used as received. Each sequence was folded using 
mFold server v 3.2 (URL: http://www.bioinfo.rpi.edu/applications/mfold) and 
visually examined to find sequences of low secondary structure.  

Computational Elements. (1) detector probe: The detector probe is a detector of a 
target sequence. It has a stem shaped sense T7 promoter region for the transcription 
regulation of reporter molecules and a pseudo-loop shaped read-only memory region 
for the target detection (Table 1). The detector probe could receive information from 
target inputs at the memory domain and transfer signals to the promoter domain 
through the conformation change by opening the stem. (2) reporter element: The 
reporter element is a output-producing element. It has an anti-sense T7 promoter 

Table 1. Single-stranded DNA models for computational elements  

Name DNA sequences (5'→3') Length 
Actin detector 5'-AGCTTAATACGACTCACTATAGGAC 

CTGAGGCTCTTTTCCAGCCTTTCCTAT
AG-3'  

54 

MG aptamer 
reporter 

5'-GGATCCATTCGTTACCTGGCTCTCGC 
CAGTCGGGATCCTATAGTGAGTCGTAT
TAAGCT-3′ 

59 

Actin error control 5'-TCTTGGGTATGGAATCCTGTGGAAA 
AAAAAAAAATCCTATAGTGAGTCGTA 
TTAAGCT-3' 

56 

Table 2. Profiling of computational elements 

Name Tm (calculated) GC % 
Actin detector domain  63.6 ℃ 54.0 
Actin error control domain 60.6 ℃ 50.0 
T7 promoter domain 57.0 ℃ 37.5 

Table 3. Single-stranded DNA models for input molecules 

Name DNA sequences (5'→3') Length 

β Actin  5'-CCACAGGATTCCATACCCAAGAAGG 
AAGGCTGGAAAAGAGCCTCAGG-3' 

47 

IL8 5'-CACCGGAAGGAACCATCTCCATCCC 
ATCTCACTGTGTGTAAACATGACTTCC
AAGCTG-3' 

47 

domain and an MG RNA aptamer sequence domain (Table 1). An MG aptamer 
increases the fluorescence of MG when bound [13-18], allowing us to know that the 
transcription occurs. The hybridization of a target at the memory region in the 
detector probe triggers the stem open and then the promoter region form a double 
strand with the reporter element. Consequently, the transcription of the MG aptamer 



 Experimental Validation of the Transcription-Based Diagnostic Automata 93 

sequence is active and fluorescence is observed by the addition of MG. These 
successive reactions will enable us to recognize the existence of targets. (3) error 
control element: The error control element is a supporting element to control the 
computing cascade. It consists of the sense promoter domain and the target 
recognition domain for the reduction of the background noise and the introduction of 
the threshold in the transcription process (Table 1). When the target recognition 
domain of this element does not bind to inputs, the sense promoter region has more 
accessibility to the promoter module and inhibits the transcription of the MG aptamer 
sequence. Consequently, it is expected that the element can reduce the background 
noise and increase the quantitative stability. 

Input Molecules. We used single-stranded (ss)DNAs to represent disease-related 
mRNA based on precedents in Ref. [9]. Two concentrations to represent mRNA 
levels: 0 μM for low level and 2-4 μM for high level at the detection stage. As 
disease-related biomarker models, β-actin and IL8 mRNAs were selected based on 
reported cancer association [1]. The β-actin gene is a representative house-keeping 
gene and the transcript of IL8 is one of salivary mRNA biomarkers for OSCC. DNA 
sequences used for the construction of the input models are shown in Table 3. These 
input ssDNA models include two recognition modules: one for detector probes and 
the other for error control elements. 

2.2   Instrumental  

Fluorescent spectra were taken on a microplate spectrofluorometer (Japan Molecular 
Devices, Tokyo, JAPAN, SpectraMax Gemini). Experiments were performed at the 
excitation wavelength (λex) of 620 nm and emission wavelength (λem) scan of 650-700 
nm. The spectra were exported to Microsoft Excel files. 

2.3   Diagnostic Computations  

Diagnostic computations consist of three steps: 1) mixing the detector probes for each 
input disease-related biomarker models and other computational elements and 
equilibrating them. 2) processing of the diagnostic string by T7 RNA polymerase 
supplementation. 3) quantifying of the fluorescence by MG supplementation.  

Step 1. Control of DNA Hybridization. Detector probes, input molecules and 
reporter elements were mixed in that order and diluted in annealing buffer (50 mM 
NaCl, 100 mM HEPES pH 7.4) to 3 μM concentration each. The reaction mixtures 
were incubated for 22 h at 45 oC following denaturation at 94 oC for 2 min in a PCR 
machine block. 
Step 2. Detection of Memory Recall. Hybridization mixture was subjected to 
transcription reaction using Ambion MEGAscript T7 Kit. The mixtures were 
incubated at 37 oC for up to 6 hours. 
Step 3. Observation of MG Binding. Two μL of the reaction mixtures and MG were 
mixed in binding buffer (50 mM Tris-HCl, pH = 7.4, 50 mM MgCl2, 1mM NaCl) 
with the final concentration of 10 μM of MG and the fluorescent spectra were taken. 



94 M. Hirabayashi, H. Ohashi, and T. Kubo 

3   Results 

We investigated fundamental properties of our transcription-based diagnostic 
systems: sensitivity, selectivity, quantitative stability and scalability. The sensitivity is 
served by the stem shaped promoter region and the selectivity is served by the 
pseudo-loop shaped recognition domain for the target sequence in the detector probe. 
The stable quantitative scalability is realized by introduction of the error control 
element.  

3.1   Sensitivity and Selectivity 

Figure 2 shows fluorescence time scans at the transcription stage using the detector 
probe (D), the reporter element (R), the target ssDNA (T), and the non-target ssDNA 
(NT). Each spectrum and data point represents the average of ten consecutive scans at 
λem = 675 nm. It is confirmed that the system can generate about two-fold 
fluorescence when it recognizes targets (Fig. 2A). Nonzero fluorescence without 
targets is attributed to the fact that the reporter probe itself has a function as an opener 
of the stem-shaped promoter region and induces the transcription of reporter 
molecules. By the reducing of this background noise, the sensitivity would be further 
improved. 

(A)

0

100

200

300

400

0 2 4 6 8

Time (hour)

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
) D+R+T

D+R

  

(B)

0

100

200

300

400

0 2 4 6 8

Time (hour)

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
) D+R+T+NT

D+R+NT

 

Fig. 2. Fluorescence time scans at the transcription stage. (A) Sensitivity of reporter probes. (B) 
Selectivity of detector probes in mixed conditions. Each data point represents the average of ten 
consecutive scans at λem = 675 nm. 

Figure 2B shows that the detector probes can recognize target fragments in the 
mixture conditions basically. However, it seems that the increase of molecular species 
or the total amount of oligonucleotides introduces decrease of temporal quantitative 
stability in the amount of fluorescence increase.  

3.2   Quantitative Stability and Scalability  

To find the solution of the quantitative stability problems, we introduced an error 
control element to the system.  

Figure 3 shows the increase of quantitative stability and controllability by the error 
control element (E). Figures 3A and 3B show that the error control element exhibits 



 Experimental Validation of the Transcription-Based Diagnostic Automata 95 

the fluorescent reduction effects without losing the ability of fluorescence recovery 
and the selectivity although the sensitivity is not enough compared with Fig. 2. On the 
other hand, Fig. 3C shows that half standard detector probes can not decrease the 
background noise without losing the ability of fluorescence recovery. In Fig. 3D, the 
error control element exhibits the fluorescent reduction effects, which are dependent 
on the amount of elements. The case of half amount of standard error control elements 
reduces basic fluorescence as in the case of half amount of standard detector probes  
without losing the ability of fluorescence recovery. The case of full standard error 
control elements can decrease the larger amount of basic fluorescence and shows no 
fluorescent recovery by targets. These features make it possible to set threshold for 
the detectable amount of targets by adjustment of error control elements. In addition, 
the case of half standard error control elements with targets in Fig. 3B shows the 
temporal quantitative stability in the amount of fluorescence increase compared with 
Fig. 2B and shows the improvement of sensitivity compared with the Fig. 3A. This 
sensitivity improvement may be brought by the promotion of the programmed 
reaction due to entropy increase. Moreover it is expected that the increase of reaction 
efficiency by using higher level of reaction mixture also improves the system 
sensitivity.  

(A)

0

50

100

150

0 2 4 6 8

Time (hour)

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
) D+R+0.5E+T

D+R+0.5E

(B)

0

50

100

150

0 2 4 6 8

Time (hour)

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
) D+R+0.5E+T+NT

D+R+0.5E+NT

 

(C)

0

100

200

D=1.0
D=0.5

D=0

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
)

without T

with T

 

(D)

0

100

200

E=0
E=0.5

E=1.0

F
lu
o
r
e
s
c
e
n
c
e

(
a
r
b
it
r
a
r
y
 
u
n
it
s
) without T

with T

 

Fig. 3. Quantitative stability and controllability tests using error control elements. (A) Noise 
reduction effects. (B) Examination of selectivity and quantitative stability. Each data point 
represents the average of ten consecutive scans at λem = 675 nm. (C) Background noise control 
by adjustment of the detector probe. (D) Background noise control by the error control element. 
Fluorescence at λem = 675 nm measured at 6 hours after the transcription starts. Each datum 
represents the average of ten consecutive measurements. 



96 M. Hirabayashi, H. Ohashi, and T. Kubo 

0

20

40

a  b       c  d

F
l
u
o
r
e
s
c
e
n
c
e
 
i
n
c
r
e
a
s
e

 
(
a
r
b
i
t
r
a
r
y
 
u
n
i
t
s
)

without NT

with NT

 

Fig. 4. Scalability of sensitivity with error control elements. Fluorescence increase by target 
detection at λem = 675 nm measured at 6 hours after the transcription starts. Low concentration: 
D+R+0.5E (a) or D+R+0.5E+NT (b) for T, and high concentration: 2D+2R+E (c) or 
2D+2R+E+2NT (d) for 2T. Each datum represents the average of ten consecutive 
measurements. 

Figure 4 shows that higher concentration improves the system sensitivity. This may 
be because the computational elements are short oligonucleotides and therefore the 
initiation becomes rare events when the concentration is low. Scalability remains 
intact in the relative complex cases with NT. This shows that the system can detect 
higher concentration of targets by using higher concentration of probes. The system 
sensitivity is improved with an increase in entropy as in the case of Fig. 3B. This 
phenomenon was observed through the preliminary experiments. We expect that this 
feature provides the promising consideration toward the practical use. 

We showed that the error control element can adjust the detection amount of 
targets and improve the system stability for quantitative detection. These results 
indicate that it is possible that we set the threshold of detection amount of targets and 
perform the quantitative stable detection by choosing optimized combination and 
concentration of appropriate programmed molecules such as detector probes and error 
control elements. 

4   Discussion 

We tested the new molecular computation algorithm for the transcriptome diagnosis 
and confirmed that it can supply the system which shows the significant sensitivity, 
selectivity and quantitative stability in mixed conditions, in which none, one, or two 
input disease-related biomarker models are present.  

Our transcription-based diagnostic automata have the following three remarkable 
features over existing quantitative methods for targets.  

(1) flexibility in programming: For the target detection, our system utilizes the 
transcriptional regulation based on the conformational change of the detector probe 
that is triggered by the target recognition. This enables the flexible control by 
additional programmed molecules such as proposed error control elements. Thus the 
construction of complicated and intelligent automata becomes possible.  



 Experimental Validation of the Transcription-Based Diagnostic Automata 97 

(2) cost-effective and sequence-specific real-time detection: The introduction of 
the MG-RNA-aptamer transcription for the fluorescence detection realizes the cost-
effective real-time observation. Moreover the transcription regulated by the specific 
target sequence in the pseudo-loop shaped read-only memory region enables the 
sequence-specific detection. This is a substantial feature for the parallel quantitative 
diagnostic operation.  

(3) potential ability for therapeutic automata: Because we adopts the 
transcription-based diagnostic systems instead of the digestion-based systems by the 
restriction enzyme, the controlled multiple release of RNA aptamer drugs is possible 
when this system is applied to the in-vivo therapeutic use. Our system has the 
prominent potential ability to organize the in-vivo therapeutic automata. 

In this paper, we demonstrated the new concept of transcription-based diagnostic 
automata. By additional programming, we will be able to detect the target 
combinations of up-regulated disease-related biomarkers. For example, it was 
reported that by using the combination of up-regulated salivary mRNAs: IL8 (24.3-
fold), SAT (2.98-fold) and H3F3A (5.61-fold) for OSCC prediction, the overall 
sensitivity is 90.6% [1]. The introduction of molecular gates to our systems will 
enable this kind of autonomous one-step diagnosis for OSCC. In the near future, the 
accurate and reliable control by programmed molecules may offer the easy self-
diagnostic tool using saliva. 

These results would bring us one step closer to the realization of new intelligent 
diagnostic automata based on biomolecular computation.  

References 

1. Li, Y., John, M.A.R.St., Zhou, X., Kim, Y., Sinha, U., Jordan, R.C.K., Eisele, D., 
Abemayor, E., Elashoff, D., Park, N.-H., Wong, D.T.: Salivary transcriptome diagnostics 
for oral cancer detection. Clin. Cancer Res. 10, 8442–8450 (2004) 

2. De Silva, A.P., McClenaghan, N.D.: Molecular-scale logic gates. Chemistry 10, 574–586 
(2004) 

3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 
20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002) 

4. Winfree, E., Liu, F.R., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998) 

5. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable 
and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001) 

6. Wang, H., Hall, J.G., Liu, Q., Smith, L.M.: A DNA computing readout operation based on 
structure-specific cleavage. Nat. Biotechnol. 19, 1053–1059 (2001) 

7. Saghatelian, A., Voelcker, N.H., Guckian, K.M., Lin, V.S.-Y., Ghadiri, M.R.: DNA-based 
photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125, 346–347 
(2003) 

8. Okamoto, A., Tanaka, K., Saito, I.: DNA logic gates. J. Am. Chem. Soc. 126, 9458–9463 
(2004) 

9. Benenson, Y., Gil, B.-D.U., Adar, R., Shapiro, E.: An autonomous molecular computer for 
logical control of gene expression. Nature 429, 423–429 (2004) 

10. Ginzinger, D.G.: Gene quantification using real-time quantitative PCR: An emerging 
technology hits the mainstream. Exp. Hematol. 30, 503–512 (2002) 



98 M. Hirabayashi, H. Ohashi, and T. Kubo 

11. Kolpashchikov, D.M., Stojanovic, M.N.: Boolean control of aptamer binding states. J. Am. 
Chem. Soc. 127, 11348–11351 (2005) 

12. Bunka, D.H.J., Stockley, P.G.: Aptamers come of age – at last. Nat. Rev. Microbiol. 4, 
588–596 (2006) 

13. Babendure, J.R., Adams, S.R., Tsien, R.Y.: Aptamers switch on fluorescence of 
triphenylmethane dyes. J. Am. Chem. Soc. 125(48), 14716–14717 (2003) 

14. Baugh, C., Grate, D., Wilson, C.: 2.8 A° crystal structure of the malachite green aptamer. 
J. Mol. Biol. 301(1), 117–128 (2000) 

15. Famulok, M.: Chemical biology: Green fluorescent RNA. Nature 430(7003), 976–977 
(2004) 

16. Grate, D., Wilson, C.: Laser-mediated, site-specific inactivation of RNA transcripts. Proc. 
Natl. Acad. Sci. USA 96(11), 6131–6136 (1999) 

17. Stojanovic, M.N., Kolpashchikov, D.M.: Modular aptameric sensors. J. Am. Chem. 
Soc. 126(30), 9266–9270 (2004) 

18. Hirabayashi, M., Taira, S., Kobayashi, S., Konishi, K., Katoh, K., Hiratsuka, Y., Kodaka, 
M., Uyeda, T.Q.P., Yumoto, N., Kubo, T.: Malachite green-conjugated microtubules as 
mobile bioprobes selective for malachite green aptamers with capturing/releasing ability. 
Biotechnol. Bioeng. 94(3), 473–480 (2006) 



DNA Memory with 16.8M Addresses

Masahito Yamamoto1,2, Satoshi Kashiwamura3, and Azuma Ohuchi1,2

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

2 CREST, Japan Science and Technology Agency (JST), Japan
3 HITACHI, Co. Ltd., Japan

Abstract. A DNA Memory with over 10 million (16.8M) addresses was
achieved. The data embedded into a unique address was correctly ex-
tracted through addressing processes based on the nested PCR. The
limitation of the scaling-up of the proposed DNA memory is discussed
by using a theoretical model based on combinatorial optimization with
some experimental restrictions. The results reveal that the size of the
address space of the DNA memory presented here may be close to the
theoretical limit. The high-capacity DNA memory can be also used in
cryptography (steganography) or DNA ink.

Keywords: DNA Computing, DNA memory, NPMM, Theoretical
capacity.

1 Introduction

Deoxyribonucleic acid (DNA) is well known as the blueprint of life, while it is
also an attractive material because of its excellent properties such as minute
size, extraordinary information density, and self-assembly. Focusing on these
facts in recent years, various works, especially studies in the research field of
DNA computing, have tried to develop a method for solving the combinatorial
problems or for developing DNA machines such as a DNA automata [1][2][3][4].

One of the most promising applications of DNA computing might be a DNA
memory. DNA molecules can store a huge amount of information in their se-
quences in extremely small spaces. The stored information on DNA can be kept
without deteriorating for a long period of time because DNA is very hard to col-
lapse [5]. Baum was the first to propose DNA memory, which can have a capacity
greater than the human brain in minute scale [6]. The model enables a massively
parallel associative search in a vast memory by utilizing the parallelism of DNA’s
hybridization. Rife et al. and Neel et al. have described DNA memory similar to
that of Baum’s model [7][8]. Recently, Chen et al. have proposed a DNA mem-
ory model that is capable of learning new data and recalling data associatively
[9]. Although various research has been conducted on the construction of DNA
memory, almost all of the works involve only proposals of models or only the
preliminary experiments on a very small scale. Even if they could operate cor-
rectly on a small scale, it is doubtful that the operation would be successful in
larger DNA memory because the efficiency and specificity of DNA’s chemical

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 99–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



100 M. Yamamoto, S. Kashiwamura, and A. Ohuchi

reaction become much more severe. Therefore, it is very important to prove the
technology through actual demonstration of the construction and addressing of
DNA memory.

In this work, a DNA memory with 16.8M addresses is achieved. Our proposed
DNA memory is addressable by using nested PCR and is named Nested Primer
Molecular Memory (NPMM) [10][11][12]. The size of NPMM may be the largest
pool of DNA molecules, which means that there are a large number of kinds
of DNA sequences and any kind of DNA sequence can be extracted from the
pool. The advantage of our memory is addressing based on amplification, which
can amplify the target sequences and not amplify the non-target sequences. By
using this amplification in several addressing steps, the probability of extraction
of non-target DNA sequences can be very low. In fact, it is shown that any
data can be retrieved with very high fidelity. The limitation of scaling-up of
the proposed DNA memory is also discussed by using a theoretical model based
on combinatorial optimization with some experimental restrictions. The results
reveal that the size of the address space of the DNA memory presented here may
be close to the theoretical limit. The high-capacity DNA memory can be also
used in cryptography (steganography) or DNA ink [13][14][15][16][17].

2 Nested Primer Molecular Memory

NPMM is the pool of DNA strands such that each strand codes both data in-
formation and its address information. The data information (ex. binary data,
strings, etc.) is expressed by encoded base sequence. The address information
consists of several layers and each layer contains several components (specific
DNA sequences) and is expressed by the combination of components on each
layer. These layers are divided into two portions and are located on both sides
of the data. In this work, we deal with the following one called 16.8M-NPMM:
three layers on each side (named XY , X ∈ {A, B, C}, Y ∈ {L, R}) and six-
teen sequences (20 mer) on each layer (named XY i, i ∈ {0, 1, 2 . . .15}). Each
DNA molecule is structured such as CL∗-CLlink-BL∗-BLlink-AL∗-ALlink-
Data-ARlink-AR∗-BRlink-BR∗-CRlink-CR∗ as shown in Fig 1. The notation
‘-’ means the concatenation of DNA sequences. The XY link (X ∈ {A, B, C},
Y ∈ {L, R}) indicates a linker section (20 mer) and these are used to con-
struct 16.8M-NPMM. The address information is expressed by the combination
of XY i denoted by such as [CLi, BLj, ALk, ARl, BRm, CRn] (i, j, k, l, m, n ∈
{0, 1, . . .15}). The address space of 16.8M-NPMM is about 16.8 million (= 166 =
16, 777, 216).

Operations for retrieving the stored data are executed by specifying each ad-
dress layer based on PCR. For easy understanding, we will now explain how to
retrieve the target information stored at [CL0, BL2, AL4, AR5, BR3, CR1] from
16.8M-NPMM (Fig. 2). For the first operation, PCR is performed for 16.8M-
NPMM using CL0 and CR1 as primer pairs (x is the complementary DNA



DNA Memory with 16.8M Addresses 101

Fig. 1. Sequence structure of each DNA strand in 16.8M-NPMM. The area expressing
the address information consists of six layers (XY , X ∈ {A, B, C}, Y ∈ {L, R}) and
ten sequences are defined in each layer (named XY i, i ∈ {0, 1, 2 . . . 15}). The address
space of 16.8M-NPMM is over 10 million.

sequence of x). As a result, we can extract the collection of DNA molecules
containing CL0 and CR1 from 16.8M-NPMM and exclude all DNA molecules
without CL0 or CR1. This is because PCR yields a significant difference in the
concentration between the amplified and non-amplified DNA molecules; there-
fore, we can disregard the non-amplified DNA. Next, we perform the second
PCR using BL2 and BR3 for the diluted solution after the first PCR. At this
point, we can extract the DNA molecules containing CR0, CR1, BL2 and BR3.
Next, we perform the third PCR for each diluted solution using AL4 and AR5.
After all PCRs are completed, we can extract only the DNA molecule expressing
[CL0, BL2, AL4, AR5, BR3, CR1] that codes the target data. Sequencing and
decoding the extracted DNA molecules allows us to retrieve the target data.

3 Construction and Addressing of 16.8M-NPMM

We carried out laboratory experiments to verify the behavior of NPMM
with over ten million address spaces. For simplicity and easy detection,
the stored information in 16.8M-NPMM is either Data20 (20 mer), Data40
(40 mer) or Data60 (60 mer). Data40 is embedded into a unique address
[CL0, BL0, AL0, AR0, BR0, CR0], and Data60 is embedded into another unique
address [CL8, BL8, AL8, AR8, BR8, CR8], while Data20 is in all addresses. By
observing the results of data extraction, the success of the addressing is evalu-
ated. Note that Data40 and Data60 are stored in only one address among 16.8M
addresses. We can detect the behavior very easily using only gel electrophoresis
due to the difference in length. All DNA sequences in this work were designed
by using a Two-Step Search Algorithm to avoid any mis-hybridization based on
Hamming Distance [18]. Of course, another algorithm for designing DNA se-
quences can be used[19][20][21]. Moreover, to avoid a secondary structure, they
are designed so that the free energy of each DNA molecule can reach a high score
by using an m-fold algorithm customized for DNA molecules [22][23][24][25].



102 M. Yamamoto, S. Kashiwamura, and A. Ohuchi

Fig. 2. Operations for retrieving the target DNA from NPMM are implemented in the
nested PCR. In this case, the target address is [CL0, BL2, AL4, AR5, BR3, CR1].
Only if specifying the target address is completed will the target DNA be extracted
from the large mixture of DNA molecules. If any other address is specified, non-target
DNA will be extracted. The faint portions are the areas eliminated by the previous
PCR.

3.1 Construction of 16.8M-NPMM

We prepare a DNA molecule such as Ci-CLlink, CLlink-Bj-BLlink, BLlink-
Ak-ALlink, ALlink-Data20-ARlink, ALlink-Data40-ARlink, BRlink-ARl -
ARlink, CRlink-BRm-BRlink and CRn-CRlink (i, j, k, l, m, n ∈ {0, 1 . . .15}).
The first step is to perform PCR for DNA containing Data20 using BLlink-Ak-
ALlink and BRlink-ARl-ARlink as primer pairs. This leads the AL and AR
layers to Data20 based on the priming reaction of the linker sections. Similarly,
other layers are also integrated using linker sections as knots. These steps pro-
duced about 16.8M whole addresses. Specific data (Data40 and Data60) are also
created using the same method. There were no unwanted products through each
experimental process (data not shown). Next, we measure the total amount of
the whole pool of memory molecules and the Data40 and Data60 are mixed into
the pool so that the number of each longer DNA and other DNA are equivalent.

3.2 Addressing from 16.8M-NPMM

We used sixteen kinds of addresses shown in Table 1 as test samples. The image
of PolyAcrylamide Gel (Fig. 3) shows the results of laboratory experiments for
the addressing operations. The three lanes in each surrounded area correspond
to each addressing. The most right lane indicates the result after the final PCR.
From the results of Fig. 3, we can see there was no minor band throughout the
whole experiment. DNA product 120 bp long was obtained only in address All 0



DNA Memory with 16.8M Addresses 103

Fig. 3. Result of PolyAcrylamide Gel Electrophoresis for addressing: he three lanes in
each surrounded area correspond to each addressing. Three lanes in each surrounded
area correspond to the result of the first PCR, the second PCR and the final PCR,
respectively. Alli means the address [CLi, BLi, ALi, ARi, BRi, CRi].

Table 1. Addressing Samples

Label Address Data

All 0 [CL0, BR0, AL0, AR0, BL0, CR0] Data20, Data40

All 8 [CL8, BL8, AL8, AR8,BR8, CR8] Data20, Data60

All i (i = 0, · · · , 15, i �= 0, 8) [CLi, BLi, ALi, ARi,BRi, CRi] Data20

and DNA product 140 bp long was obtained only in address All 8, while all other
addresses output product 100 bp long. Therefore, we can successfully extract the
corresponding data of each address among over 10 million addresses. Based on
these facts, although we did not confirm all addresses, we assume that NPMM
could reliably screen and extract a target DNA molecule from over 10 million
DNA mixtures. In DNA memory, it is most important to extract the target data
with high fidelity. Therefore, this experiment strongly supports the effectiveness
of NPMM.

4 Theoretical Analysis of Capacity Limitation

It is obvious that the scaling up of NPMM is limited due to some physical or
chemical restrictions such as the limitation of the amount of DNA in solution



104 M. Yamamoto, S. Kashiwamura, and A. Ohuchi

maximize
L�

i=1

n2
i

sub.to ni ≥ 2 (i ∈ {1, 2, . . . L}) (1)

N ≥
L�

i=1

2ni (2)

v(2ci − 1)

L�

j=i+1

n2
j + 2vci(ni − 1)

L�

j=i+1

n2
j ≤ P ∀i ∈ {1, 2, . . . L} (3)

ampci > α × non ampci ∀i ∈ {1, 2, . . . L} (4)

0 ≤ ci ≤ max cycle ∀i ∈ {1, 2, . . . L} (5)

P , L, N , v, α, max cycle : integer (given)

Fig. 4. Combinatorial optimization problem for NPMM analysis

and the number of DNA sequences available for the layer area. Therefore, it is
important to discern how far the capacity of NPMM can be extended. We pro-
pose an addressing model for analyzing NPMM capacity limitations based on the
combinatorial optimization problem. By solving this optimization problem, the
maximum capacity of NPMM and the optimal assignment of address sequences
to each address area can be obtained.

The capacity of NPMM depends on the address space and size of each da-
tum. However, since enlarging address space is more difficult experimentally, we
mainly discuss the enlargement of address space here. We deal with such models
as L layers (L is integer grater than one) and ni DNA sequences located on the
ith layer (ni ≥ 2, i ∈ {1, 2, . . .L}, i indicates a layer location from left side). For
simplicity, the data area is abbreviated.

First, we consider the requirements for operating NPMM correctly and then
write out a mathematical formula as constraints. Then, based on the constraints,
we establish an expression to calculate the maximum capacity of NPMM (Fig.
4). The expression outputs the arrangements of ni (i ∈ {1, . . . L}) maximizing
the address space while satisfying the constraints when input parameters are
given. The input parameters should be the ones used in laboratory experiments
to reflect the actual environment.

4.1 Model of the Addressing of NPMM

Input Parameters: P is the total number of primer molecules and should range
from 1.2 × 1013 to 5.0 × 1013. These values are practically appropriate for 100μl



DNA Memory with 16.8M Addresses 105

of PCR mixture. L is the number of layers. N is the total number of DNA
sequences for address layers, which are designed so carefully that they can be
available as PCR primer. v expresses the initial amount of each DNA strand
in NPMM and v must be greater than one. Otherwise, it means that several
address units are missing in memory. α expresses the rate between the total
number of amplified DNA strands and that of non-amplified DNA strands after
PCR. To succeed with each addressing process, α should be large enough so
that the non-amplified DNA strands can be eliminated. max cycle is the upper
limit of PCR cycles.

Objective function: The target function is calculated as follows:

Capacity =
L∏

i=1

n2
i .

Capacity, which is the width of address-space, depends on ni. That is, this
problem is an optimization problem to explore an arrangement ni to maximize
Capacity while satisfying the following constraints.

Constraints: These constraints are provided to ensure NPMM’s behavior. Con-
straint (1) is obviously to express the address structure of NPMM. Constraint
(2) ensures that all sequences located on each layer must be well-designed DNA
sequences that can avoid any mis-hybridization or mis-priming. Constraints (3),
(4) and (5) are established to make each addressing operation possible physically,
and these three constraints must be satisfied in each ith addressing operation
(i ∈ {1, 2, . . .L}). ci is the number of PCR cycles for addressing the ith layer.
Constraint (3) ensures that each addressing operation is able to work. The terms
ampci and non ampci are calculated as follows:

ampci = v

L∏
j=i+1

n2
j + v(2ci − 1)

L∏
j=i+1

n2
j

non ampci = v(n2
i − 1)

L∏
j=i+1

n2
j + 2vci(ni − 1)

L∏
j=i+1

n2
j .

ampci and non ampci indicate the total amount of amplified and non-amplified
DNA strands after the ith PCR, respectively. Therefore, ampci must greatly
exceed non ampci [26][27]. (Here, we use α.) Constraint (4) expresses the total
amount of amplified DNA molecules in the ith PCR. According to the principle of
PCR, the total amount of amplified DNA in the PCR is never greater than that of
the PCR primer. The former term is the increment of target DNA strands, which
are amplified exponentially. The latter term is the increment of non-target DNA
strands, which are linearly amplified from only one side priming. Constraint (5)
is defined to avoid excess PCR cycles because excess PCR cycles cause unwanted
reaction. That is, constraints (3), (4) and (5) ensure that a large difference in



106 M. Yamamoto, S. Kashiwamura, and A. Ohuchi

concentration is acquired between amplified and non-amplified DNA after PCR
for addressing the ith layer.

4.2 Computational Result

According to this expression, we explore the theoretical maximum capacity of
NPMM by exhaustive search. The input parameters are shown in Table 2. The
computational results are shown in Table 3.

Table 2. Parameter settings

P 5.0 × 1013

L 2,3,4
N 200
α 1000
v 100

max cycle 30

P is set to the standard number of primers used in 100 μl of PCR mixture. L is
the very important parameter for defining capacity. However, a large L makes
the laboratory experiments cumbersome and complicated. In this paper, we se-
lected L = 2, 3, 4 and analyzed in these cases. As for α and v, what values are
appropriate for a successful addressing operation are as yet unclear. Therefore,
we negatively set these values to 1,000 and 100, respectively. N is determined
based on works in the research field of DNA word design problems.

Table 3. Theoretical capacity of case of L = 2, 3, 4. The numbers in brackets means
the assignment of the number of address sequences, In the case of L = 2, it is shown
that the optimal assignment of the address sequences to (BL, AL, AR, BR) is (50, 50,
50, 50).

Layer L=2 L=3 L=4

Capacity 6,250,000 274,233,600 297,666,009
(50,50,50,50) (69,16,15,15,16,69) (71,9,9,3,3,9,9,71)

A chemical reaction inevitably includes fluctuations (for example, the devi-
ation of the number of DNA strands in NPMM and that of the amplification
efficiency), so v should be greater than 100 to accomplish operations of NPMM
with a high degree of fidelity. Therefore, the limitation of NPMM is expected up
to MEGA order. However, this is an ideal one when a PCR reaction is carried
at the maximum efficiency (amplification efficiency is always twice, and the un-
wanted reaction does not occur). Probably, practicable marginal capacity will
be slightly smaller, and so the 16.8M-NPMM of L = 3 we constructed here has
a large capacity considerably close to the practical limit.



DNA Memory with 16.8M Addresses 107

5 Concluding Remarks

In this work, we dealt with NPMM, which is our proposed DNA memory. We con-
structed NPMM with over 10 million address spaces (16.8M-NPMM), and then
several addresses were operated. From the experimental results, they showed
completely correct behavior. Furthermore, since we showed that 16.8M-NPMM
works with very high fidelity, we can conclude that DNA memory with 16.8M
address spaces is achieved. We established a technology that selects only specific
DNA from many kinds of DNA in mixture. The achievement of 16.8M DNA
memory may be the largest pool of DNA mixture so far.

The latter part mainly discusses the theoretical limitations of NPMM’s ca-
pacity. The behavior of NPMM was expressed by mathematical formula. By
solving a combinatorial optimization problem, we could estimate that the the-
oretical limitation is MEGA order. Taking the efficiency of a chemical reaction
into consideration, the process will become less practical.

Acknowledgements

We thank M. Hagiya, A. Suyama, A. Kameda and S. Yaegashi for helpful advice
and discussions. The work presented in this paper was partially supported by a
Grant-in-Aid for Scientific Research on Priority Area No.14085201 and a Grant-
in-Aid for Young Scientists (A) No. 17680025, Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266, 1021–1024 (1994)

2. Lipton, R.: DNA solution of hard combinatorial problems. Science 268, 542–545
(1995)

3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: So-
lution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502
(2002)

4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Pro-
grammable and autonomous computing machine made of biomolecules. Nature 414,
430–434 (2001)

5. Wong, P.C., Wong, K.K., Foote, H.: Organic Data Memory Using the DNA Ap-
proach. Communications of the ACM 46(1), 95–98 (2003)

6. Baum, E.B.: Building an Associative Memory Vastly Larger Than the Brain. Sci-
ence 268, 583–585 (1995)

7. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S.: Experimental Construction of Very Large Scale DNA Databases with
Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA Comput-
ing. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

8. Neel, A., Garzon, M.H., Penumatsa, P.: Improving the Quality of Semantic Re-
trieval in DNA-Based Memories with Learning. In: Negoita, M.G., Howlett, R.J.,
Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 18–24. Springer, Heidel-
berg (2004)



108 M. Yamamoto, S. Kashiwamura, and A. Ohuchi

9. Chen, J., Deaton, R., Wang, Y.Z.: A DNA-based memory with in vitro learning
and associative recall. Natural Computing 4(2), 83–101 (2005)

10. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A., Hierarchical,
D.N.A.: Memory based on Nested PCR. In: Hagiya, M., Ohuchi, A. (eds.) DNA
Computing. LNCS, vol. 2568, pp. 112–123. Springer, Heidelberg (2003)

11. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A.: Potential
for enlarging DNA memory: The validity of experimental operations of scaled-up
nested primer molecular memory. BioSystems 80, 99–112 (2005)

12. Kashiwamura, S., Yamamoto, M., Kameda, A., Ohuchi, A.: Experimental Chal-
lenge of Scaled-up Hierarchical DNA Memory Expressing a 10,000-Address Space.
In: Preliminary Proceeding of 11th International Meeting on DNA Based Comput-
ers. vol. 396 (2005)

13. Clelland, C.T., Risca, V., Bancroft, C.: Hiding message in DNA microdots. Na-
ture 399, 533–544 (1999)

14. Hashiyada, M.: Development of Biometric DNA Ink for Authentication Security.
Tohoku J. Exp. Med. 204, 109–117 (2004)

15. Hashiyada, M., Itakura, Y., Nagashima, T., Nata, M., Funayama, M.: Polymor-
phism of 17 STRs by multiplex analysis in Japanese population. Forensic Sci.
Int. 133, 250–253 (2003)

16. Itakura, Y., Hashiyada, M., Nagashima, T., Tsuji, S.: Proposal on Personal Identi-
fiers Generated from the STR Information of DNA. Int. J. Information Security 1,
149–160 (2002)

17. Kameda, A., Kashiwamura, S., Yamamoto, M., Ohuchi, A., Hagiya, M.: Combining
randomness and a high-capacity DNA memory. DNA13 (submitted 2007)

18. Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-Step Search for
DNA Sequence Design. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences E87-A (6), 1446–1453 (2004)

19. Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr, S.E.: Good
Encoding for DNA-Based Solutions to Combinatorial Problems. In: Landweber,
L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 44, pp. 247–258 (1999)

20. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid se-
quences for DNA computing based on a thermodynamic approach. Nucleic Acids
Research 33, 903–911 (2005)

21. Tulpan, D.C., Hoos, H.H., Condon, A.: Stochastic Local Search Algorithms for
DNA word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS,
vol. 2568, pp. 229–241. Springer, Heidelberg (2003)

22. Lyngso, L.B., Zuker, M., Pedersen, C.N.: Fast evaluation of internal loops in RNA
secondary structure prediction. Bioinformatics 15, 440–445 (1999)

23. SantaLucia, J., Allawi, H.T., Seneviratne, P.A.: Improved nearest-neighbor para-
meters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996)

24. Sugimoto, N., Nakano, S., Yoneyama, M., Honda, K.: Improved thermodynamic
parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic
Acids Research 24, 4501–4505 (1996)

25. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148
(1981)

26. McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR A Practical Approach. IRL
Press (1995)

27. McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR2 A Practical Approach. IRL
Press (1993)



Combining Randomness and a High-Capacity

DNA Memory

Atsushi Kameda1, Satoshi Kashiwamura2, Masahito Yamamoto1,2,
Azuma Ohuchi1,2, and Masami Hagiya1,3

1 Japan Science and Technology Corporation (JST-CREST)
2 Graduate School of Information Science and Technology, Hokkaido University
3 Graduate School of Information Science and Technology, University of Tokyo

hagiya@is.s.u-tokyo.ac.jp

Abstract. In molecular computing, it has long been a central focus to
realize robust computational processes by suppressing the randomness of
molecular reactions. To this end, several methods have been developed
to control hybridization reactions of DNA molecules by optimizing DNA
sequences and reaction parameters. However, another direction in the
field is to take advantage of molecular randomness rather than avoid
it. In this paper, we show that randomness can be useful in combination
with a huge-capacity molecular memory, and demonstrate its application
to an existing technology — DNA ink.

Keywords: DNA memory, molecular memory, DNA ink, randomness.

1 Introduction

A central focus in the field of molecular computing is to suppress random-
ness of molecular reactions to realize robust computational processes. Meth-
ods that employ this strategy include designing precise DNA sequences based
on energy predictions of DNA secondary structures, and carefully controlling
DNA hybridization by tuning reaction conditions such as temperature and salt
concentration.

For example, errors in the algorithmic self-assembly of DNA tiles occur be-
cause sticky ends that are not completely complementary may hybridize with
nonzero probability. Suppressing such errors is a central challenge in DNA nan-
otechnology. In addition to designing DNA sequences that reduce error prob-
ability, new machineries such as proof-reading and self-healing tiles have been
proposed [3,12].

Some molecular machines, such as Yurke’s tweezers [16] or our photo-regulated
hairpin machine [14], change their conformation according to inputs from the ex-
ternal environment. As a result, they can make state transitions, move toward
a specified direction, or produce outputs to the environment. However, confor-
mational change cannot occur with 100% probability, and thus to design robust
molecular machines, it is crucial to design DNA sequences that promote in-
tended conformational change and prohibit unintended changes. In the case of

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 109–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



110 A. Kameda et al.

DNA, because transformation of secondary structures roughly determines con-
formational change, predicting the energy landscape of secondary structures is
extremely important [10].

However, applications can also take advantage of randomness. In the seminal
work by Adleman [1], which initiated the field of DNA computing, the random
generation of paths in a directed graph was achieved via random hybridization
reactions. However, random generation was not essential, but only substituted
complete enumeration, which was required for solving the Hamiltonian path
problem and should be implemented by molecules. Therefore, our goal was to
create an application in which molecular randomness is essential.

In previous work, we developed a huge-capacity DNA memory, in which each
molecular address consists of 6 hexadecimal digits, and the entire address space
is about 16.8 million (words) [7,9]. The whole memory is managed as a solution of
about 1μl, using standard experimental techniques such as PCR. In the present
work, we employ molecular randomness caused by statistical fluctuations in a
sample with a low copy number of molecules. By simply diluting the solution,
one can easily obtain a unique memory state that cannot be replicated. More-
over, such a memory state can be amplified by PCR. Therefore, by combining
randomness and a huge-capacity memory, it is possible to construct DNA ink,
for example, which can never be reconstructed.

Here, we briefly describe our huge-capacity DNA memory, called Nested Primer
Molecular Memory (NPMM). Then we summarize the concept of DNA ink and
explain how to produce it using our proposed strategy. Finally, we report the re-
sults of a preliminary experiment we conducted to demonstrate the feasibility of
our method.

2 NPMM

We developed the NPMM under the JST CREST Molecular Memory Project [9].
Our goal was to overwhelm the random pool of size 220 (for solving a 20-variable
SAT problem) realized by Adleman’s group in 2002 [2], and construct a DNA
memory that can easily be managed by well established and standard experi-
mental techniques, such as PCR [7].

The result was a DNA memory composed of memory molecules with the
structure shown in Fig. 1 [15]. A memory molecule is a double strand of DNA
consisting of data at its center surrounded by 3-digit addresses. Because each
digit is chosen from among 16 sequences, and the address of each memory mole-
cule is 6 digits long, the whole address space is about 16.8 million (words), i.e.,
the whole set of 6-digit hexadecimal numbers.

The DNA memory is managed as a solution of about 1μl, as shown in Fig. 2.
To access each memory molecule, PCR (the established method for copying

DNA) is repeated, using address digits as nested primers. First, PCR is per-
formed using the outermost two digits denoted by C (CL and CR) as primers, so



Combining Randomness and a High-Capacity DNA Memory 111

CL BL AL BR CRARDATA

6-hierarchy 16-sequence NPMM (16.8M ≈ 16,777,216)

CL0

CL1

|

CL15

BL0

BL1

|

BL15

AL0

AL1

|

AL15

AR0

AR1

|

AR15

BR0

BR1

|

BR15

CR0

CR1

|

CR15

× × × ×Data× ×

Fig. 1. The structure of a memory molecule in NPMM

Fig. 2. NPMM in a 1-μl solution

that the molecules with CLi and CRj specified in their address are extracted and
amplified. Then the process is repeated for BL and BR (BLi and BRj), and AL and
AR (ALi and ARj).

It took a few years to construct the 16.8-million-address DNA memory [15]
because we had to develop new technologies or refine existing ones. A summary
follows.

Designing 16 sequences for each of 6 digits plus bridge sequences: We
designed 16 different 20-mer sequences for each of the 6 address digits, i.e., 96
different sequences in total. In addition, we designed bridge sequences, which
are placed between adjacent address digits and also used to bridge data and
the innermost digits. These sequences should not hybridize with one another,
but only with their complementary counterparts. We developed a new design
method for these sequences, called a two-step search [8].

Protocol for constructing memory molecules for each address: Mole-
cules of 16.8 million addresses should be synthesized as uniformly as possible.
NPMM is constructed in three steps: concatenating address digits with data
from the innermost to the outermost, performing PCR on DNA molecules whose
bridge sequences are complementary, and hybridizing these together. Regarding
uniformity, the ratio between the most and least concentrated types of molecules
was estimated between 2 and 3 during each step.



112 A. Kameda et al.

Protocol for accessing memory molecules with the specified address:
To selectively amplify the molecules with a specified address, we should optimize
various reaction parameters for PCR, such as the number of cycles. As a result,
we successfully accessed a single address out of 16.8 million addresses. To date,
we have accessed 16 different addresses.

Consequently, each address in the DNA memory consists of about 200 to 250
molecules. Using a mathematical model of our PCR reaction, we determined that
the current capacity is almost maximal for correctly accessing memory molecules
by their addresses.

3 DNA Ink

To the best of our knowledge, the concept of DNA ink was first proposed and
tested by Tsujii et al. in 2001 [5,6]. DNA molecules of a given sequence are diluted
in ink; after the ink is applied to paper, then extracted, the DNA molecules in the
ink can be analyzed to determine the sequence. DNA ink can be used for various
purposes related to encryption, steganography, and authentication. For example,
a secret key for encrypted communication can be sent in DNA ink. Contracts
can be signed using DNA ink, and paper money can be printed with DNA ink
to avoid counterfeiting. Brand-name products, such as Chanel or Prada, can be
made of strings dyed with DNA ink to ensure authenticity. It is also possible
to spray DNA ink over brand-name foods, such as Kobe beef, because DNA is
completely harmless in foods.

Recently, Suyama et al. developed a practical DNA ink under the JST CREST
Molecular Memory Project. The ink is composed of about 300 pairs of orthonor-
mal sequences, although it could be expanded to more than 10,000 sequences,
and thus can store 300 bits of information by including or excluding specific se-
quences. The orthonormal sequences employed in their DNA ink were originally
developed for DNA computing [13,11] and gene expression profiling [4].

The original DNA ink developed by Tsujii et al. [5,6] was limited in that it
required DNA sequencing to analyze the extracted ink. More importantly, the
contents of the ink could be exposed by attaching primers to DNA molecules
and amplifying them by PCR. Suyama et al. solved these problems by mixing
DNA ink with dummy DNA (which has primers in common with true DNA
and serves to mask the latter) and noise DNA (which consists of unused or-
thonormal sequences that hinder whole DNA amplification). Suyama et al. also
prepared a detection kit for their DNA ink, which contains dummy primers so
that even if the kit is analyzed, the true primers will not be revealed. To de-
tect the primers, one must use a special DNA chip, which itself also contains
dummy probes so that if the chip alone is analyzed, the true probes will not be
revealed.

Suyama et al. succeeded in recovering the correct information in DNA ink
extracted from paper using their detection kit and special DNA chip.



Combining Randomness and a High-Capacity DNA Memory 113

4 DNA Ink Constructed by Inducing Randomness at the
Molecular Level

With our method, molecular randomness is introduced by a very simple reaction:
diluting the solution. For example, if we dilute a given solution twice and dispense
the results into two tubes, A and B, then a single molecule in the original solution
is either in tube A or in tube B, with a probability of 1/2. If the original solution
contained 100 molecules and was diluted 100 times, then the probability that the
resulting tube contains one or more molecules is about 1 − e−1 = 0.63, because
the number of chosen molecules roughly follows the Poisson distribution with the
average value 1 and the probability that no molecule is chosen is approximately
equal to e−1. Similarly, if the original solution was diluted 200 times, then the
probability that the resulting tube contains one or more molecules is about
1 − e−0.5 = 0.39.

10 million types of molecules,

each with several hundred copies

dilution

5 million

molecules

in total PCR amplification

tossing a coin 10 million times

Fig. 3. DNA ink made by inducing randomness at the molecular level

Assume that a given solution contains 10 million types of molecules, each
with several hundred copies (Fig. 3; note that NPMM actually has 16.8 million
types of molecules, each with about 200 copies), and it is diluted to 5 million
molecules. The probability that at least one molecule of any given type remains
in the diluted solution is about 1−e−0.5 = 0.39, as described above. This process
of dilution is akin to tossing a coin 10 million times, when one side of the coin
turns up with a probability of 0.39.

After dilution, the solution is uniformly amplified by PCR. In NPMM, am-
plification requires common outermost primers in each memory molecule, or all
outermost digits as primers.

After amplification, each molecule that survived should have a reasonable
number of copies. Therefore, even if the amplified solution is further diluted,
those copies will remain. Let us call the solution obtained by PCR the master
ink. Each solution obtained by diluting the master ink should have the same
ingredients as those of the master ink. Therefore, each diluted solution can be
used as DNA ink corresponding to the master ink. The molecules extracted from



114 A. Kameda et al.

inked paper are then compared with those in the master ink. To this end, DNA
ink should contain an enough number of copies of each molecule.

The contents of the master ink can never be revealed completely; checking for
each type ofmolecule among millions ofmolecules is prohibitively time-consuming.
However, correctly verifying whether a given DNA ink was copied from the master
ink is much simpler, by checking for a reasonable number of addresses in the given
DNA ink and the master ink. In this way, DNA ink can be created by combining
molecular randomness with a huge-capacity DNA memory. Note that the contents
of the master ink are not known even to the creator of the ink.

One note of caution: if the DNA ink extracted from paper is amplified as a
whole, then the forged ink can be used as if it were obtained from the master
ink. To avoid this problem, one can apply various methods as in Suyama’s DNA
ink. For example, one can add short junk DNA molecules as noise, which are
more easily amplified by PCR.

5 Preliminary Experiment

To test the feasibility of our method, we conducted a preliminary experiment.
The overall setting of the experiment is shown in Fig. 4. We employed a partial
instance of NPMM obtained by completing the first two steps in the construction
process. This partial instance had four address digits, each with 10 sequences.
Thus, we had a total of 10,000 addresses, each with about 3 × 105 copies in a
1-μl solution. Because molecules in this memory have common bridge sequences
at both ends, they can be uniformly amplified using the bridge sequences as
primers. This greatly simplified the experiment.

BL* DATAAL* AR* BR*

( * ∈ { 0, 1, 2 � 9 } )

NPMM (Ten thousand kinds of DNA molecule)
The concentration of each DNA molecule:

3.0 x 105 molecules / ul

Dilution

10-4 10-5 10-6

30 molecules / ul 3.0 molecules / ul 0.3 molecules / ul

NPMM consists of ten thousand kinds of DNA molecule.

Fig. 4. Setting of the preliminary experiment



Combining Randomness and a High-Capacity DNA Memory 115

A. First PCR amplification
1. In a PCR reaction tube, prepare the following.
- distilled water 4.4μl
- 10 x PCR buffer 1.0μl
- 2 mM dNTP mix 1.0μl
- 25 mM MgSO4 0.4μl
- diluted NPMM solution 1.0μl (dilution ratios: 10−4, 10−5 and 10−6)
- 5 μM Primer [BL0] and c[BR0] 1.0μl each (‘c’ denotes complementary sequence)
- KOD plus DNA polymerase (TOYOBO) 0.2μl
- total volume 10μl
2. Perform 20 cycles of PCR
- preheat (94◦C for 2 min.)
↓
- denature (94◦C for 20 sec.)
- anneal and extension (65◦C for 10 sec.)
(Repeated 20 cycles)
PCR was performed by PTC-200 peltier thermal cycler (MJ Research).

B. Secondary PCR
1. Dilute the first PCR products by the ratio 10−3.
2. In a 96-well PCR reaction plate, prepare the following.
- distilled water 3.4μl
- 10 x PCR buffer 1.0μl
- 2 mM dNTP mix 1.0μl
- 25 mM MgSO4 0.4μl
- Diluted first PCR product 1.0μl
- 10 pM Primer set 1.0μl each
- KOD plus DNA polymerase (TOYOBO) 0.2μl
- 1/1000 diluted SYBR green I 1.0μl
- total volume 10μl
The primer pairs used in the experiment were ([AL0] and c[AR0]), ([AL0] and
c[AR1]), ([AL1] and c[AR0]), and ([AL1] and c[AR1]).
2. Perform 40 cycles of realtime PCR.
- preheat 95◦C for 2 min.
↓
- denature 94◦C for 20 sec.
- anneal and extension 65◦C for 10 sec.
(Repeated 40 cycles)
3. After PCR, perform melting curve analysis.

The confirmation of the existence of each address was made by the results
of amplification check comprised of measuring the SYBR green I fluorescence
and analyzing the melting curve. Realtime PCR was performed by DNA Engine
OPTICON 2 (MJ Research).

Fig. 5. Details of the PCR protocol



116 A. Kameda et al.

The details of the PCR protocol employed in the experiment are described in
Fig. 5.

Results: We diluted the solution by 10−4, 10−5, and 10−6, and then checked for
four addresses. First, we performed an initial PCR using the two digits BL0BR0
as primers, then performed a second PCR using AL0AR0, AL0AR1, AL1AR0, and
AL1AR1 as primers. This trial was repeated eight times for each set of primers
(Fig. 6).

At dilutions of 10−4 and 10−5, we detected molecules for each of the four
addresses. Note that the probability of having one or more molecules in the
diluted solution is about 1−e−30.0 = 0.999999 = 1 for 10−4 and about 1−e−3.0 =
0.95 for 10−5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Address

AL0AR0

AL0AR1

AL1AR0

AL1AR1

AL0AR0

AL0AR1

AL1AR0

AL1AR1

AL0AR0

AL0AR1

AL1AR0

AL1AR1

：The address exists.

：The address does not exist.

10＾-6

10＾-5

10＾-4

Address Exists

Does

not

exist

Total

The probability

of existence of

the address

AL0AR0 14 21 35 0.400

AL0AR1 9 26 35 0.257

AL1AR0 18 17 35 0.514

AL1AR1 10 25 35 0.286

AL0AR0 8 0 8 1.000

AL0AR1 8 0 8 1.000

AL1AR0 8 0 8 1.000

AL1AR1 7 1 8 0.875

AL0AR0 7 1 8 0.875

AL0AR1 8 0 8 1.000

AL1AR0 7 1 8 0.875

AL1AR1 8 0 8 1.000

10＾-4

10＾-6

10＾-5

Fig. 6. Results of the preliminary experiment

At a dilution of 10−6, only a random detection of addresses was achieved.
Therefore, we conducted more trials at this dilution, 35 in total. As a result, we
obtained the detection ratios for the four addresses: 14/35=0.400, 9/35=0.257,
18/35=0.514, and 10/35=0.286. The probability of having one or more molecules
in the diluted solution was estimated at about 1 − e−0.3 = 0.26 in this case.
Although some correlation existed among addresses (for ARj in particular), the
resulting pattern was nearly random.



Combining Randomness and a High-Capacity DNA Memory 117

It may be questionable whether PCR succeeded in amplifying a single mole-
cule because the actual number of molecules that remained in the diluted solu-
tions was not known. We carefully excluded wrong PCR products in the exper-
iment. However, we plan to perform DNA sequencing to assess the correctness
of the amplified solution.

One of the diluted solutions was amplified by the outermost primers, and the
result was further diluted. We checked each address in each diluted solution,
and verified that the detection pattern was uniform, which indicates that the
detection pattern using the outermost primers was correctly amplified by PCR.

6 Concluding Remark

Molecular authentication is considered to have a potential of becoming a killer
application of DNA and molecular computation. On the other hand, constructing
a random pool of DNA molecules has long been an active research topic in the
field. This paper proposed to apply achievements of the latter research to the
former application by inducing randomness at the molecular level.

We plan to eventually apply the 16.8-million-address molecular memory to
DNA ink. However, there is much to be done in analyzing the results of the
preliminary experiments. As noted above, the correctness of the PCR products
should be confirmed by DNA sequencing.

Acknowledgments

The work presented in this paper was partially supported by Grand-in-Aid for
Scientific Research on Priority Area No.14085202, Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

1. Leonard, M.: Adleman: Molecular Computation of Solutions to Combinatorial
Problems. Science 266, 1021–1024 (1994)

2. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: So-
lution to a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502
(2002)

3. Fujibayashi, K., Murata, S.: A Method of Error Suppression for Self-assembling
DNA Tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS,
vol. 3384, pp. 113–127. Springer, Heidelberg (2005)

4. Gotoh, O., Sakai, Y., Mawatari, Y., Gunji, W., Murakami, Y., Suyama, A.: Normal-
ized molecular encoding method for quantitative gene expression profiling. In: Car-
bone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892, p. 395. Springer,
Heidelberg (2006)

5. Itakura, Y., Hashiyada, M., Nagashima, T., Fukuyama, M.: Validation Experiment
Report on DNA Information for Personal Identification (Part I). Technical Report
of IEICE ISEC2001-12 (2001-05), The Institute of Electronics, Information and
Communication Engineers, pp. 1–8 (2001) (in Japanese)



118 A. Kameda et al.

6. Itakura, Y., Hashiyada, M., Nagashima, T., Tsuji, S.: Validation Experiment Re-
port on DNA Information for Personal Identification (Part II). Technical Report
of IEICE ISEC2001-13 (2001-05), The Institute of Electronics, Information and
Communication Engineers , 9–16 (2001) (in Japanese)

7. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A.: Hierarchical
DNA Memory Based on Nested PCR. In: Hagiya, M., Ohuchi, A. (eds.) DNA
Computing. LNCS, vol. 2568, pp. 112–123. Springer, Heidelberg (2003)

8. Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-Step Search for
DNA Sequence Design. IEICE E87-A(6), 1446–1453 (2004)

9. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A.: Potential for
Enlarging DNA Memory: The Validity of Experimental Operations of Scaled-up
Nested Primer Molecular Memory. BioSystems 80, 99–112 (2005)

10. Kubota, M., Hagiya, M.: Minimum Basin Algorithm: An Effective Analysis Tech-
nique for DNA Energy Landscapes. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)
DNA Computing. LNCS, vol. 3384, pp. 202–214. Springer, Heidelberg (2005)

11. Nitta, N., Suyama, A.: Autonomous biomolecular computer modeled after retrovi-
ral replication. In: Chen, J., Reif, J.H. (eds.) DNA Computing. LNCS, vol. 2943,
pp. 203–212. Springer, Heidelberg (2004)

12. Soloveichik, D., Winfree, E.: Complexity of Compact Proofreading for Self-
assembled Patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS,
vol. 3892, pp. 305–324. Springer, Heidelberg (2006)

13. Suyama, A.: Programmable DNA computer with application to mathematical and
biological problems. Preliminary Proceedings of the Eighth International Meeting
on DNA Based Computers, 91 (2002)

14. Takahashi, K., Yaegashi, S., Asanuma, H., Hagiya, M.: Photo- and Thermoregula-
tion of DNA Nanomachines. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing.
LNCS, vol. 3892, pp. 336–346. Springer, Heidelberg (2006)

15. Yamamoto, M., Kashiwamura, S., Ohuchi, A.: DNA Memory with 16.8M addresses.
DNA13 (submitted 2007)

16. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)



Design of Code Words for DNA Computers and

Nanostructures with Consideration of
Hybridization Kinetics

Tetsuro Kitajima, Masahiro Takinoue, Ko-ichiroh Shohda,
and Akira Suyama

Department of Life Science and Institute of Physics,
Graduate school of Arts and Sciences

The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

{kitajima, takinoue}@genta.c.u-tokyo.ac.jp, suyama@dna.c.u-tokyo.ac.jp

Abstract. Wehavedeveloped amethod for designing rapidly-hybridizing
orthonormal DNA sequences. Two conditions were used in the prediction
method. One condition concerned the stability of the self-folded secondary
structures of forward and reverse strands. The other condition concerned
the nucleation capability of complementary strands at the tails of their
self-folded secondary structures. These conditions were derived from the
complementary strands’ experimentally-determined hybridization rates’
dependenceon their stability andnucleation capability.Thesedependences
were examined for 37 orthonormal DNA sequences randomly selected
from our set of 300 orthonormal DNA sequences. By applying this new
method to the set of 300 orthonormal DNA sequences, more than 100
rapidly-hybridizing sequences were obtained.

1 Introduction

DNA computing and DNA nanotechnology employ remarkable features unique
to DNA and RNA molecules. The interactions and structures of DNA and RNA
molecules can be most successfully designed in terms of their base sequences
among various molecules. In DNA computing, programs and data are encoded
into DNA/RNA sequences, while in DNA nanotechnology, structures and func-
tions are encoded into DNA/RNA sequences. Thus, the design of DNA and RNA
sequences is a crucial step for DNA computing and DNA nanotechnology.

Various methods have been developed to design DNA and RNA sequences for
DNA computing and DNA nanotechnology[1,2,3,4,5,6,7,8,9]. Sets of DNA se-
quences of a uniform length and stability without mis-hybridizations and stable
self-folded structures have been designed and applied to DNA computing, DNA
probe sensors for genome analysis, and constructions of DNA nanostructures and
nanodevices. The design methods so far developed are based on thermodynamic
models. The stability of desirable and undesirable hybrids formed through inter-
molecular base-pairing, and the stability of self-folded structures formed through

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 119–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



120 T. Kitajima et al.

intramolecular base-pairing are calculated from base sequences by using thermo-
dynamic models and parameters.

In DNA computing and DNA nanotechnology, however, not only thermody-
namic properties but also the kinetic properties of DNA/RNA sequences sub-
stantially affect the results of computations and nanostructure constructions.
Non-uniform hybridization rates will make the speed at which instruction codes
are executed dependent on the content of the data, especially for computation on
autonomous DNA computers running under isothermal conditions. This data-
dependent execution speed makes the computation less reliable, while the non-
uniformity of the rates will also make the construction of DNA nanostructures
more complicated. Therefore, design methods in which kinetic properties are
also considered are essential for the further development of DNA computing and
DNA nanotechnology.

In this study, we have explored the DNA sequence dependence of hybridization
rates in order to develop a DNA sequence design method that takes the kinetic
properties of DNA/RNA hybridization into consideration. The rate of hybridiza-
tion of two complementary strands was measured for 37 DNA sequences randomly
chosen from our set of orthonormal DNA sequences 23 nucleotides long. The or-
thonormal sequences were designed to be orthogonal and normalized. This orthog-
onality means that every sequence in the set significantly hybridizes neither with
any sequences in the set other than its compliment nor with any concatenated se-
quences made of sequences in the set without its complement. Normalization in
this context means that every sequence has a uniform length and a uniform du-
plex stability, and has no very stable self-folded secondary structures that may
significantly hinder rapid hybridization with its complement. The orthonormal
DNA sequences were assured to have a uniform duplex stability not only by an
equal melting temperature but also by the equal free energy changes accompany-
ing duplex formation. However, the hybridization rate significantly depended on
the DNA sequences. The stability and the shape of the sequences’ self-folded sec-
ondary structures were examined to elucidate their relationships to the hybridiza-
tion rates. Based on these relationships, a method to design a DNA sequence for
rapidly-hybridizing orthonormal DNA sequences has been proposed.

2 Materials and Methods

2.1 DNA Sequences

The DNA sequences used in hybridization experiments and secondary structure
predictions were 37 orthonormal DNA sequences randomly selected from our 23-
mer orthonormal sequence set containing more than 300 DNA sequences. Their
sequences were as follows: 5’-GCATCTACACTCAATACCCAGCC-3’ ,

5’-CGTCTATTGCTTGTCACTTCCCC-3’ , 5’-GGCTCTATACGATTAAACTCCCC-3’ ,
5’-GAAGGAATGTTAAAATCGTCGCG-3’ , 5’-GCACCTCCAAATAAAAACTCCGC-3’ ,
5’-GAGAAGTGCTTGATAACGTGTCT-3’ , 5’-GCATGTGTAGTTATCAGCTTCCA-3’ ,
5’-CTAGTCCATTGTAACGAAGGCCA-3’ , 5’-GTCCCGGAAAATACTATGAGACC-3’ ,



Design of Code Words for DNA Computers and Nanostructures 121

5’-GAGTCCGCAAAAATATAGGAGGC-3’ , 5’-CATCTGAACGAGTAAGGACCCCA-3’ ,
5’-CGCGATTCCTATTGATTGATCCC-3’ , 5’-GGTGGCTTATTTACAGGCGTTAG-3’ ,
5’-TTCGGTTCTCTCCAAAAAAAGCA-3’ , 5’-GGCGCTTAAATCATCTTTCATCG-3’ ,
5’-CCGTCGTGTTATTAAAGACCCCT-3’ , 5’-CGAGAGTCTGTAATAGCCGATGC-3’ ,
5’-TGGCACTTATAGCTGTCGGAAGA-3’ , 5’-GGCTGTTTACAAAATCGAGCTAG-3’ ,
5’-TGCGAAATTTGAAAAATGGCTGC-3’ , 5’-GCATTGAGGTATTGTTGCTCCCA-3’ ,
5’-GGCTGTCAATTTATCAGGGAGGC-3’ , 5’-GCCTCAAGTACGACTGATGATCG-3’ ,
5’-GAAGCCCTATTTTGCAATTCCCC-3’ , 5’-CGCGGGTACGTTGATGTAACAAA-3’ ,
5’-ATGGGAACCTAAAAGTGTGGCTA-3’ , 5’-GAGTCAATCGAGTTTACGTGGCG-3’ ,
5’-TTCGCTGATTGTAGTGTTGCACA-3’ , 5’-GCCTCACATAACTGGAGAAACCT-3’ ,
5’-CCATCAGGAATGACACACACAAA-3’ , 5’-GGGATAGAACTCACGTACTCCCC-3’ ,
5’-CCATATCCGATTATTAGCGACGG-3’ , 5’-GGGATCAGTTGTACACTCCCTAG-3’ ,
5’-CTGTGATGATACCGTTCTTCACC-3’ , 5’-CGCGGTTGAAATAACTAATCGCG-3’ ,
5’-GGTCGAAACGTTATATTAACGCG-3’ , 5’-TAGCACCCGTTAAAACGGAAATG-3’ .

The DNA strands of 38 orthonormal sequences and their complements were
synthesized and purified by HPLC commercially (SYGMA genosys, Japan).

2.2 DNA Hybridization

The time course of the hybridization of two complementary DNA strands was
measured on a fluorescence spectrophotometer LS 55 (Perkin Elmer, USA) equip-
ped with a stopped-flow apparatus RX-2000 (Applied Photophysics, UK). Two
complementary DNA strands at 50 nM each in 1xSSC (0.015 M Na3 − citrate,
0.15 M NaCl) containing PicoGreen R© (Invitrogen, USA) were mixed rapidly
(a dead-time of 8 ms) at 25◦C through the use of the stopped-flow appara-
tus. The DNA duplex formation was followed by the fluorescence emission from
PicoGreen R© at 523 nm exited at 502 nm. PicoGreen R© is a dye for quantitating
double-stranded DNA (dsDNA) in the presence of single-stranded DNA/RNA.
The linear detection range of the dye extends over more than four orders of
magnitude in dsDNA concentration (from 25 pg/ml to 1,000 ng/ml), allowing
the precise observation of the time course of DNA hybridization.

2.3 Determination of Hybridization Rates

The time courses of the hybridization of two complementary DNA strands were
fitted to a single-exponential model:

I(t) = I∞ + A exp(−t/τ),

where I(t) is the observed fluorescence intensity at time t , I∞ is the final flu-
orescence intensity, A is the amplitude of hybridization, and 1/τ is the rate of
hybridization. The best-fit-values of the hybridization rates were obtained by
nonlinear regression using Origin 7.0 and Microsoft Excel solver. The goodness
of fit was measured by the value of R2, and was also confirmed visually through
every plot overlapping the observed data and the best-fit-curve.



122 T. Kitajima et al.

2.4 Secondary Structure Prediction

The self-folded secondary structures of the single DNA strands of 37 orthonormal
sequences were predicted by using the mfold system, which is a tool for predicting
RNA/DNA secondary structures by free energy minimization. For the prediction,
a condition of 0.195 M Na+ and 0 M Mg2+ was employed. This condition is
equivalent to the 1xSSC at which the hybridization experiments were performed.

3 Results and Discussion

3.1 Hybridization Rates of Orthonormal DNA Sequences

The hybridization rate of two complementary DNA strands was determined for
37 orthonormal DNA sequences randomly selected from our set of 300 ortho-
normal sequences 23 nucleotides long. The time course of the hybridization was
followed by measurement of the fluorescence intensity, which is proportional
to the concentration of hybrid duplexes formed (i.e., to that of the base-pair
stacks formed). The observed fluorescence intensity data were fitted to a single-
exponential model to determine the hybridization time τ . Figure 1 shows a typi-
cal time course of the hybridization and the best-fitting single exponential curve.
For all of the 37 orthonormal sequences, the hybridization rate was determined
from three independent hybridization experiments, which were highly repro-
ducible.

Figure 2 shows the distribution of the hybridization time determined for the
37 orthonormal sequences. The rate of hybridization significantly depended on
DNA sequences although all DNA duplexes have a uniform thermodynamic sta-
bility. Most of the sequences finished hybridizing in 200 s, but some of the se-
quences indicated a very slow hybridization (i.e., a hybridization time of more
than 15 min).

3.2 Hybridization Rates and the Stability of Self-folded Secondary
Structures

The hybridization rates of complementary strands of nucleic acids are affected by
the stability of the strands’ self-folded structures. The strands’ stable secondary
structures are shown to significantly reduce the rate of hybridization [10,11].
Therefore, those sequences that form very stable secondary structures were dis-
carded in the design of the set of 300 orthonormal DNA sequences. However, the
threshold value of the free energy change of secondary structure formation below
which sequences should be discarded was not evident, so that the set contains
secondary structure sequences with a wide range of stabilities: for some sequences
the value of the free energy change in secondary structure formation ΔG is pos-
itive, and for some other sequences ΔG is as low as -5 kcal/mol. Consequently,
the slow hybridization observed for some sequences may be due to the formation
of slightly stable secondary structures. Thus we examined the dependence of the
observed hybridization time τ on the stability of predicted secondary structures.



Design of Code Words for DNA Computers and Nanostructures 123

Fig. 1. Typical time course of the hybridization of orthonormal DNA sequence.
Two complementary DNA strands at 50 nM each were rapidly mixed at 25 ◦C
in 1xSSC in the presence of PicoGreen R©. The sequence of DNA was 5f-
CCATATCCgATTATTAgCgACgg-3f. The closed squares are observed fluorescence in-
tensities and the broken line is the best-fitting single-exponential curve obtained by
non-linear regression. The hybridization time, which is the reciprocal of the hybridiza-
tion rate, determined by the best-fitting curve was 1.5 × 102 s.

Fig. 2. Distribution of hybridization times of 37 orthonormal DNA sequences

Figure 3 shows the relationship between the stability of self-folded secondary
structure predicted using the mfold method and the observed hybridization time
τ . The stability of the secondary structure was measured in terms of the free
energy change ΔG in secondary structure formation. When the value of ΔG is
positive, the secondary structure is less stable than the unstructured coil. When
the value of ΔG is negative, the secondary structure is more stable than the un-
structured coil. Only the lowest energy structures were considered in this study,
though some sequences were predicted to have more than one possible structure.
Figure 3 indicates that two complementary strands, i.e., a forward and a reverse
strand, hybridized rapidly (τ < 240 s) when either of the two strands had a
positive value of ΔG. Especially when both of them had a positive ΔG value,
the hybridization was more rapid (τ < 120 s). When either of the two strands



124 T. Kitajima et al.

had a negative ΔG value, some of the DNA sequences showed slow hybridization
rates, while the other sequences still hybridized rapidly. Therefore, an increase
in the stability of the self-folded secondary structures actually decreased the
hybridization rates of two complementary strands. However, there must exist
factors that affect the rate of hybridization other than the stability of secondary
structures, because some DNA sequences with largely negative ΔG values still
hybridized rapidly.

Fig. 3. Dependence of the hybridization time τ on the stability of self-folded structures
of forward and reverse strands. The stability of the structure was measured in terms of
the predicted free energy change ΔG in secondary structure formation. Open squares
designate data of the orthonormal DNA sequences that have positive ΔG values for
both forward and reverse strands.

3.3 Hybridization Rates and the Nucleation Capability of
Self-folded Structures

The hybridization of nucleic acid strands requires the formation of a nucleus
composed of at least three contiguous base-pairs. As soon as nucleation occurs,
each duplex zips up to completion instantly. In the hybridization of short DNA
strands at low concentrations such as those studied here, it has long been ac-
cepted that the nucleation step is rate-limiting [12]. We thus examined how the
nucleation step affects the hybridization rate of complementary strands of the
37 orthonormal DNA sequences.

In the process of nucleation, each strand tries to find unpaired-base stretches
of complementary sequences. Those stretches are found only in the loop and tail
(end-coil) regions of self-folded strands. The length of the orthonormal sequences
studied here was as short as 23 nucleotides, so that the size of the loops found
in their secondary structures may not be large and flexible enough to perform
a rapid nucleation. Tails are, in contrast, more flexible, so that unpaired bases
found in the tails would more easily be involved in nucleation. We thus focused
on the length of tails and examined whether the self-folded secondary structures
of the orthonormal sequences have tails that are long enough for nucleation.

The orthonormal DNA sequences were classified into two groups, ‘nucleation-
inhibited’ and ‘nucleation-allowed’ sequences, according to the length of contigu-
ous unpaired-bases at the ends. A DNA sequence was defined as ‘nucleation-



Design of Code Words for DNA Computers and Nanostructures 125

Fig. 4. Self-folded structures of forward and reverse strands of two orthonormal DNA
sequences A and B. The most stable secondary structures of the forward (a) and the
reverse (b) strand of sequence A. Those of the forward (c) and the reverse (d) strand
of sequence B.

inhibited’ if neither tail at the 5f- nor the 3f-end of its forward strand can be
involved in the formation of a nucleus of 3 or 4 base-pairs. A DNA sequence was
defined as ‘nucleation-allowed’ if either tail at the 5f- or the 3f-end of its forward
strand can be involved in nucleation. The orthonormal DNA sequence shown in
Figures 4a and 4b, for example, is nucleation-inhibited. The 5f- end of the forward
strand has 13 contiguous unpaired-bases, which is long enough to form a nucleus
of 3 or 4 base-pairs (Fig. 4a). However, the 5f-end cannot be involved in nucle-
ation because the 3f-end of the reverse strand has no unpaired -base (Fig. 4b).
The 3f-end of the forward strand cannot be involved in nucleation either because
the 3f-end of the forward strand has 3 contiguous unpaired-bases and the 5f-end
of the reverse strand has only one unpaired-base. Therefore, for this orthonor-
mal DNA sequence nucleation is inhibited. On the other hand, the orthonormal
DNA sequence shown in Figures 4c and 4d is nucleation-allowed. The 5f- end of
the forward strand has one unpaired base and the 3f-end of the reverse strand has
also one unpaired base (Figs. 4c and 4d). The 5f-end of the forward strand, there-
fore, cannot be involved in nucleation. However, the 3f-end can be involved in the



126 T. Kitajima et al.

formation of a nucleus of 3 base-pairs because the 3f-end of the forward strand
and the 5f-end of the reverse strand, both ends have 3 contiguous unpaired-bases.
Therefore, for this orthonormal sequence nucleation is allowed.

Figure 5 indicates how the number of nucleation-inhibited and nucleation-
allowed sequences varied with the hybridization time τ . The number of
nucleation-inhibited sequences increased with the increase in hybridization time.
In contrast, the number of the nucleation-allowed sequences increased as the hy-
bridization time decreased. Therefore, nucleation at the tails of self-folded sec-
ondary structures should be one of the critical factors affecting the hybridization
rate.

3.4 Prediction of Orthonormal DNA Sequences Rapidly
Hybridizing with Complementary Strands

The effect of the self-folded secondary structures’ thermodynamic stability on
the hybridization rate (Fig. 3) and that of the nucleation capability at the tails of
self-folded secondary structures on the hybridization rate (Fig. 5) have provided
the basic concept of a method for the design of DNA code word sequences
rapidly hybridizing with complementary strands. Each of these effects by itself
was not sufficiently significant to determine the hybridization rate. Therefore, in
the design method both of these factors were taken into consideration.

The table summarizes how the number of rapidly-hybridizing orthonormal
DNA sequences and the number of slowly-hybridizing ones depended on the
self-folded secondary structures’ thermodynamic stability and the nucleation ca-
pability at the tails of the self-folded secondary structures. In the table, DNA
sequences with a hybridization time of less than 300 s are categorized as rapidly-
hybridizing sequence and those with 300 s or more are categorized as slowly-
hybridizing sequences. The hybridization-time threshold of 300 s was determined
according to the experimental conditions of our autonomous DNA computing
system RTRACS, and thus it is not exclusive to this design method.

From the results shown in the table, two conditions were derived to predict
rapidly-hybridizing orthonormal DNA sequences. In Condition 1, both the for-
ward and reverse strands of a sequence have positive ΔG values. Condition 1
self-evidently assures that the sequence is nucleation-allowed. In Condition 2,
the sum of the ΔG values of a sequences’ forward and reverse strands is larger
than -1 kcal/mol and the sequence is also nucleation-allowed. Condition 2 is
always applied after Condition 1; that is, Condition 2 is applied only to those
DNA sequences whose forward or reverse strands have a negative ΔG value.

By applying Condition 1 to the set of 37 orthonormal DNA sequences studied
here, 4 sequences were selected. Then by applying Condition 2, 12 sequences
were further selected. A total of 16 sequences out of the 37 orthonormal DNA
sequences were predicted as rapidly-hybridizing sequences. According to the
table, only one sequence out of the 16 sequences predicted is not a rapidly-
hybridizing sequence, while its hybridization time (330 s) was close to the thresh-
old time (300 s). The false positive rate of prediction, therefore, is as small as
6%. Our orthonormal DNA sequence set contains 300 sequences. We then applied



Design of Code Words for DNA Computers and Nanostructures 127

(A) (B)

Fig. 5. Change of the number of the nucleation-inhibited and the nucleation-allowed
orthonormal DNA sequences with the hybridization time τ . Hatched bars indicate the
number of the nucleation-allowed sequences, and the dashed bars that of nucleation-
inhibited sequences. The size of the nucleus allowed to form is 3 base-pairs (a) and 4
base-pairs (b).

Table 1. Summary of the dependence of the number of orthonormal DNA sequences
on the stability of self-folded secondary structures and the nucleation of complementary
strands at their tails

ΔGfwd + ΔGrev nucleation-inhibited nucleation-allowed
hybridization rate hybridization rate

(kcal / mol) (#) slow rapid slow rapid

Case 1: Both of ΔGfwd and ΔGrev are positive
0 0 0 4

Case 2: Either of ΔGfwd or ΔGrev is negative
+2 ∼ +1 0 0 0 1
+1 ∼ 0 0 0 0 2
0 ∼ −1 1 0 1 8

−1 ∼ −2 0 1 2 1
−2 ∼ −3 0 1 3 4
−3 ∼ −4 1 0 0 2
−4 ∼ −5 0 0 1 0
−5 ∼ −6 0 0 0 0
−6 ∼ −7 1 0 0 0
−7 ∼ −8 1 0 0 1
−8 ∼ −9 0 0 0 0
−9 ∼ −10 0 0 0 1

#) ΔGfwd and ΔGrev stand for ΔG of a forward strand and that of a reverse strand,
respectively.

both Conditions 1 and 2 to the set of 300 orthonormal DNA sequences. A set
of 108 rapidly-hybridizing sequences, which may contain 7-8 slowly-hybridizing
sequences, was obtained.



128 T. Kitajima et al.

The present prediction method using Conditions 1 and 2 may be satisfactory
because 108 sequences are sufficient for most studies using rapidly-hybridizing or-
thonormal DNA sequences. In a set of 300 orthonormal DNA sequences, however,
many sequences may still be predicted as slowly-hybridizing while they could ac-
tually be hybridizing rapidly, because the table contains many nucleation-allowed
sequences hybridizing rapidly with largely negative ΔG values of less than -
1 kcal/mol. If those sequences can be distinguished from other nucleation-allowed
sequences hybridizing slowly by using additional conditions, the predictability
of the method will be much increased. One promising condition would concern
the stability of short duplexes adjacent to the tails involved in nucleation. It is
conceivable that even when a sequence has a largely negative ΔG value indicat-
ing a globally-stable self-folded secondary structure, its complementary strands
should hybridize rapidly if the adjacent short duplexes are unstable. Such an ad-
ditional condition would increase the number of rapidly-hybridizing sequences
predicted by the method as keeping the false positive rate substantially low.

4 Conclusion

We have developed a method for designing rapidly-hybridizing orthonormal DNA
sequences. Two conditions are used in the prediction method. One condition con-
cerns the stability of the self-folded secondary structures of forward and reverse
strands, while the other concerns the nucleation at the tails of their self-folded
secondary structures. More than 100 rapidly-hybridizing orthonormal DNA se-
quences were obtained by the present prediction method.

Acknowledgements

This work was supported by a grant for SENTAN (Development of System and
Technology for Advanced Measurement and Analysis) from the Japan Science
and Technology Agency (JST), and by a grant-in-aid for the 21st Century COE
program “Research Center for Integrated Science” and for Scientific Research
on Priority Areas “Molecular Programming” from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.

References

1. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos,
H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids
Res. 33, 4951–4964 (2005)

2. Shortreed, M.R., Chang, S.B., Hong, D., Phillips, M., Campion, B., Tulpan, D.C.,
Andronescu, M., Condon, A., Hoos, H.H., Smith, L.M.: A thermodynamic approach
to designing structure-free combinatorial DNA word sets. Nucleic Acids Res. 33,
4965–4977 (2005)

3. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational nu-
cleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004)



Design of Code Words for DNA Computers and Nanostructures 129

4. Arita, M., Kobayashi, S.: Sequence design using template. New Generation Com-
puting 20, 263–277 (2002)

5. Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congres-
sus Numerantium 156, 99–110 (2002)

6. Penchovsky, R., Ackermann, J.: DNA library design for molecular computation. J.
Comp. Biol. 10, 215–229 (2003)

7. Feldkamp, U., Rauhe, H., Banzhaf, W.: Software Tools for DNA Sequence Design.
Genetic Programming and Evolvable Machines 4, 153–171 (2003)

8. Garzon, M., Deatorthonormal, J.: Codeword design and information encoding in
DNA ensembles. Natural Computing 3, 253–292 (2004)

9. Kari, L., Konstantinidis, S., Sośık, P.: Preventing undesirable bonds between DNA
codewords. Lect. Notes Comput. Sc. 3384, 182–191 (2005)

10. Kushon, S.A., Jordan, J.P., Seifert, J.L., Nielsen, H., Nielsen, P.E., Armitage, B.A.:
Effect of secondary structure on the thermodynamics and kinetics of PNA hy-
bridization to DNA hairpins. J. Am. Chem. Soc. 123, 10805–10813 (2001)

11. Gao, Y., Wolf, L.K., Georgiadis, R.M.: Secondary structure effects on DNA hy-
bridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 34,
3370–3377 (2006)

12. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry: Part III: The Behavior of
Biological Macromolecules. W. H. Freeman, San Francisco (1980)



Dynamic Neighborhood Searches for

Thermodynamically Designing DNA Sequence�

Suguru Kawashimo, Hirotaka Ono, Kunihiko Sadakane,
and Masafumi Yamashita

Dept. of Computer Science and Communication Engineering, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan

kawa@tcslab.csce.kyushu-u.ac.jp, {ono,sada,mak}@csce.kyushu-u.ac.jp

Abstract. We present a local search based algorithm designing DNA
short-sequence sets satisfying thermodynamical constraints about min-
imum free energy (MFE) criteria. In DNA12, Kawashimo et al. pro-
pose a dynamic neighborhood search algorithm for the sequence design
under hamming distance based constraints, where an efficient search is
achieved by dynamically controlling the neighborhood structures. Dif-
ferent from the hamming distance based constraints, the thermodynam-
ical constraints are generally difficult to handle in local-search type al-
gorithms. This is because they require a large number of evaluations
of MFE to find an improved solution, but the definition of MFE itself
contains time-consuming computation. In this paper, we introduce tech-
niques to reduce such time-consuming evaluations of MFE, by which the
proposed dynamic neighborhood search strategy become applicable to
the thermodynamical constraints in practice. In computational experi-
ments, our algorithm succeeded in generating better sequence sets for
many constraints than exiting methods.

Keywords: DNA Sequence Design Algorithm, Local Search, Statistical
Thermodynamical Constraints.

1 Introduction

Designing DNA sequence sets is a fundamental issue in the fields of nanotech-
nology and nanocomputing, e.g., Adleman’s DNA solution for the Hamiltonian
path [1], DNA tiling with its self-assemble [22], hairpin-based state machine [10]
and so on. One aspect of DNA computing / technology is to control the DNA
molecules reactions. For a robust “computation”, it is desirable that DNA mole-
cules react only in expected ways, because unexpected secondary structures of
DNA sequences may cause error, for example. Sequence design is an approach for
a robust computation by designing DNA sequences that satisfy some constraints
to avoid unexpected molecular reactions. Since expected or unexpected reactions
depend on the applications or the purposes, several representative constraints
� This research partly received financial support from Scientific research fund of Min-

istry of Education, Culture, Sports, Science and Technology.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 130–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Dynamic Neighborhood Searches 131

are usually considered as below mentioned. Another requirement for DNA se-
quence sets is to be large. This is because designed DNA sequences are used as
elemental components of computation; the amount of resources on DNA com-
putation is proportional to the size of a sequence set. In summary, systematic
methodologies are required to design large set of sequences, which satisfy certain
types of constraints.

In the sequence design, constraints are introduced to prohibit unexpected
secondary structures of DNA sequences, and several types of prohibition are
proposed. Roughly speaking, the types of prohibitions are classified into combi-
natorial types and thermodynamical types. Combinatorial constraints are based
on the idea that base conjugations of DNA sequences are regarded as a kind
of combinatorial pattern matching, while the thermodynamical constraints are
based on the thermodynamical property of the molecular reaction mechanism,
in which conformations of small (resp., large) Gibbs standard free energies tend
to be stable (resp., unstable). Although the thermodynamical ones seem to be
more sophisticated, many algorithmic studies of the sequence design have treated
combinatorial constraints due to their simplicity. Also the combinatorial prop-
erties help to bring efficient algorithms from combinatorics or combinatorial
optimization fields [3,4,19,20]. On the other hand, there are few studies under
thermodynamical constraints from the combinatorial algorithmic point of view;
one example that the authors know is a Stochastic Local Search method by
Tulpan et al. [21].

In this paper, we consider DNA sequence design algorithm under thermody-
namical constraints from the viewpoint of the combinatorial optimization. More
precisely, we propose a local-search type algorithm for the DNA sequence de-
sign under thermodynamical ones. A local search is a method to find a good
solution by replacing a current solution with a better (improving) solution in
its neighborhood until no better solution is found. In DNA12, the authors pro-
posed a dynamic neighborhood search algorithm for DNA sequence design prob-
lem [11], which targets on short-sequence sets under combinatorial constraints.
The algorithm is equipped with high search performance by changing the neigh-
borhood structures dynamically. The computational experiments show a good
design power of the algorithm; it succeeded in generating better sequence sets
than exiting methods [3,4,19]. Also by the nature of local search methods, it has
a good flexibility; we can finely adjust the constraints. Therefore, we attempt
to implement the idea of our previous algorithm for the thermodynamical con-
straints, especially Minimum Free Energy (MFE, for short) constraints, in this
paper.

However, such an implementation is nontrivial in general. The Gibbs standard
free energy is an energy value associated with the conformation of a sequence
or sequences given, and the MFE is the minimum value among free energies of
all the possible structures. Namely, the definition of MFE itself contains a time-
consuming calculation, and in fact its time complexity is O(n3) time where n is
the length of a given sequence. That is, a large amount of evaluations of MFE
values are not practical, which implies that a local-search type algorithms are



132 S. Kawashimo et al.

not suitable since they need to repeatedly evaluate many solution values. A main
contribution of this paper is to overcome this difficulty; we present two techniques
to circumvent the heavy calculations. One is to realize an effective neighborhood
search. For this purpose, we store extra data among bases of DNA sequences, by
which we can find a base involved with the violation for MFE constraints. The
other is to realize an efficient evaluation of MFEs. In neighborhood searches,
most of neighbor solutions are apparently worse, and only a few of them are
candidates of improving solutions. For screening such apparently worse solutions,
we introduce a preprocessing phase in the search; instead of applying O(n3) time
MFE calculation, we utilize an approximate calculation of the MFE.

By these techniques, our search framework introduced in [11] becomes applica-
ble to the MFE-based constraints in practice. In order to see the performance
of our approach, we conduct computational experiments for various settings of
MFE constraints. The results show that we succeeded in designing a large set of
sequences for many case. One virtue of our algorithm is that it is a practical local
search: It is quite flexible and is easy to introduce a new constraint. Moreover,
if a non-local-search type algorithm finds a (good) sequence set, then we may
obtain an even better solution by applying our algorithm to the solution.

1.1 Related Work

Many studies consider the thermodynamical natures of DNA computing from
various points of view (e.g., [14,16]), and the thermodynamical qualities of se-
quence sets are also discussed in several papers. Especially, Dirks et al. [7] discuss
various thermodynamical criteria of designing secondary structures, and Rose et
al. [15] propose a statistical thermodynamic error model in DNA computing.

Tulpan et al. succeeded in designing sequence sets under very complicated
thermodynamical constraints by Stochastic Local Search method [21], though
the running time is not clear because they evaluated the search time except the
calculation of energy values in their experiments. They also proposed new ther-
modynamical constraints. One advantage of their method is that they can treat
complicated constraints as well as ours, since it is a local-search type algorithm.
Garzon et al. also designed sequence sets [9]. They designed sequence set un-
der combinatorial constraint as preprocessing, and remove thermodynamically
violated sequences from the set obtained in preprocessing by the reduction to
the minimum vertex cover problem (actually, they consider the maximum in-
dependent set). However the minimum vertex cover problem itself is known to
be NP-hard. Tanaka et al. used random-generation based method [18]. To re-
duce the calculating-time of evaluation, they proposed approximate method of
calculating MFE by the greedy manner.

The remainder of the paper is organized as follows: Section 2 gives prelimi-
naries of the paper, thermodynamical constraints, and basic definitions for local
search. Section 3 discusses how the heavy MFE calculations can be embedded
into our search framework. Section 4 shows the results of computational experi-
ments, and then Section 5 concludes the paper.



Dynamic Neighborhood Searches 133

2 Preliminaries

2.1 Definitions and MFE Constraints

A DNA sequences s is a string over {A,T,C,G}. A DNA sequence or sequences
form secondary structures by the Watson-Crick property, which are also called
conformations. Each conformation of a sequence (or sequences) has a Gibbs
standard free energy. The Minimum Free Energy (MFE, for short) of a sequence
(resp., sequences) is the minimum value among free energies of all possible con-
formations of a sequence (resp., sequences). It is known that a conformation with
a small Gibbs standard free energy is more stable than ones with larger Gibbs
standard free energies. The Gibbs standard free energy values are measured
through actual experiments and we can compute the value for one conformation
in linear time of the length of the sequence.

Let s, s′ be DNA sequences of length n, then s, s′ ∈ {A, T, G, C}n. Sequences
are represented by s = s1s2 · · · sn, and s′ = s′1s′2 · · · s′n. In these representations,
the left end of a sequence corresponds to 5′ end of a DNA sequence. In addition,
wcc(s) denotes the Watson-Crick complement sequence of DNA sequence s, here,
wcc(s) is the sequence which reverse s and replaced each A in s by T and vice
versa, replaced each G in s by C and vice versa.

Let S be the sequence set. In the context of the sequence design problems, we let
“hybridization” refer to “the phenomenon that a sequence in S forms completely
hydrogen bonds with its complement sequence”, and “miss-hybridization” refer
to “conformations which are not hybridization”. The constraints described below
are introduced in order to avoid miss-hybridization.

The MFE between s and s′ is represented by ΔG(s, s′) which can be calculated
O(n3)-time by the dynamic programming [2,12,23].

Let wcc(S) = {wcc(s)|s ∈ S}. Given threshold parameters tww, twc, and tcc,
we define the following constraints based on the MFE measure:

Word-Word Constraint: for all pairs of s, s′ in S, ΔG(s, s′) ≥ tww.
That is, ΔGww(S) def= mins,s′∈S{ΔG(s, s′)} ≥ tww.

Word-Complement Constraint: for all pairs of s in S, s′ in wcc(S),
and s �= wcc(s′), ΔG(s, s′) ≥ twc.
That is, ΔGwc(S) def= mins∈S,s′∈wcc(S),s�=wcc(s′){ΔG(s, s′)} ≥ twc.

Complement-ComplementConstraint: for all pairs of s, s′ in wcc(S),
ΔG(s, s′) ≥ tcc. That is, ΔGcc(S) def= mins,s′∈wcc(S){ΔG(s, s′)} ≥ tcc.

Note that, in these constraints, self reactions of one sequence are under consid-
eration. On the other hand, we do not concern with pseudo-knots.

In this paper, we adopt only three constraints for the sequence design, fol-
lowing the work by Garzon et al. [9]. This does not mean that our algorithm is
specified to these constraints, and it is applicable to many other criteria based
on MFE (e.g. energy gap [21]). For other criteria, such as melting temperature



134 S. Kawashimo et al.

and DNA error rate [15], though we may need careful adjustments, it is also
applicable.

By using these, our problem is described as “find S such that ΔGww(S) ≥ tww,
ΔGwc(S) ≥ twc and ΔGcc(S) ≥ tcc for large tww, twc, and tcc”.

2.2 Local Search, Neighborhood and Objective Functions

A local search is a method to find a solution by replacing a current solution
with a solution which has better objective function value in its neighborhood
until no better solution is found. In DNA12, we proposed a local search based
algorithm for DNA sequence design problem under combinatorial constraints. In
this paper, we apply this algorithm for thermodynamical constraints. We hope
interested readers refer to [11], in which more details about our algorithm can
be found1.

We define the neighborhood of S (we represent it as N(S)) for the local search
as follows: sequence sets obtained by flipping 1 base of a sequence belonging to
S. Due to the simplicity of the definition, we can flexibly apply it to various
constraints.

In this problem, we need to design the set such as ΔGww(S) ≥ tww, ΔGwc(S)
≥twc, and ΔGcc(S) ≥ tcc. Therefore, when we take together these constraints,
the objective function is described as follows:

ΔGmin(S) def= min{ΔGww(S) − tww, 0} +
min{ΔGwc(S) − twc, 0} +

min{ΔGcc(S) − tcc, 0}. (1)

By definition, ΔGmin(S) = 0 means that it satisfies the constraints, and it takes
O(m2n3) time to evaluate ΔGmin(S).

3 Techniques to Reduce MFE Evaluations

In the local search, to determine if the neighbor solution is an improving solution
or not, its solution value should be calculated. This operation is executed many
times, since the size of neighborhood is usually very large. As mentioned above
it takes O(m2n3) time to evaluate one solution, but that running time can be
reduced in our neighborhood search, because all pairs of sequences for S and all
pairs of sequences for S′ ∈ N(S) are overlapping. By reusing the calculation of
ΔGmin(S), the calculation of ΔGmin(S′) for S′ ∈ N(S) can be done in O(mn3)
time.

However, it is still too time-consuming. That is, naive local search type algo-
rithms may not work well. In this section, we explain two techniques by which
we skip such a large amount calculations. One is a device to effectively check
neighbor solutions, and the other is to screen bad solutions without calculating
the exact ΔG(s, s′).
1 In this paper, we use the new framework which is simplified and improved from the

previous one.



Dynamic Neighborhood Searches 135

3.1 Effective Neighborhood Search

In the neighborhood search, we need to evaluate ΔGmin of neighborhood solu-
tions to determine if we move to the solution or not. This means that evaluating
ΔGmin for worse solutions is wasting time; by effectively finding an improving
solution we can reduce the calculation of ΔGmin values. In this subsection, we
explain how to realize a fast discovery of improving solutions. More concretely,
we define a good order of checking the neighbor solutions, in which solutions to
be likely improvements have high priorities.

To define the ordering, we use an array min related as counters for bases
in S; min related is on all the bases in S, and min related(si) for a base si

of s ∈ S stores the number of occurrences of base si for ΔGx(S) where x ∈
{ww,wc,cc }. The idea itself was introduced in the previous work [11], but it is
extended from the previous one. Here, an “occurrence of base si for ΔGx(S)”
means the following two conditions are satisfied: (i) s containing the base si and
another sequence s′ have the MFE value equal to ΔGx(S) and (ii) in the MFE
structure of the ΔGx(S), si forms hydrogen bonds. If a base has a large value
of min related, the base may be critical for ΔGmin(S), therefore flipping such a
base probably improves the solution value. On the other hand, flipping bases with
min related = 0 does not change the solution value by definition. Therefore, we
define the search order of neighbor solutions in N(S) according to min related
values of the descending order. In case of ties, i.e., some bases have a same
value of min related, we use another array bond related to determine the order.
The bond related on all the bases similarly stores the number of occurrences
of a base for hydrogen bonds about not MFE-structures of ΔGmin(S) but all
MFE-structures. By a similar argument, we define the search order for ties in
min related according to bond related of the descending order.

Table 1 shows results of preliminary computational experiments concerning
the effectively of min related and bond related. This result shows that the or-
dering based on min related and bond related apparently realizes an effective
search.

Table 1. Result of the preliminary experiments for min related and bond related

n m τ
time; with min related

average / standard deviation
time; random order

average / standard deviation

8 30 -6.0(kcal/mol) 1.87(sec)/ 0.81(sec) 19.34(sec)/ 11.03(sec)
12 50 -10.0(kcal/mol) 5.79(sec)/ 4.54(sec) 120.61(sec)/116.17(sec)
15 20 -6.0(kcal/mol) 29.65(sec)/19.91(sec) 137.47(sec)/ 35.52(sec)
16 30 -8.0(kcal/mol) 34.31(sec)/ 9.40(sec) 255.44(sec)/ 87.65(sec)
20 40 -6.0(kcal/mol) 29.00(sec)/16.77(sec) 480.69(sec)/270.04(sec)

Give a length n, a size m, and τ . Randomly generate initial set which has m sequences,
and apply our algorithm to improve the set until it satisfies ΔGww(S) ≥ τ , ΔGwc(S) ≥
τ , and ΔGcc(S) ≥ τ . We measure the running-time to satisfy the constraint with
min related and bond related or random order. We perform 50 trials for each condition.



136 S. Kawashimo et al.

3.2 Efficient Evaluation of MFEs

In neighborhood structures of the search, a good solution has a few good neighbor
solutions and many worse neighbor solutions in general. This means that we need
to check many neighbor solutions with worse solution values to find a neighbor
solution with a better solution value. This means that the total evaluation-
time is mainly occupied by evaluations of worse solutions; if we can quickly
reject such bad solutions, we may greatly reduce the total evaluation-time. In
this subsection, we explain how to screen bad solutions efficiently. We introduce
a preprocessing phase that computes an approximate MFE values. A similar
approach is also used in [18], but in a little different context2.

We define the approximate MFE as the minimum Gibbs standard free energy
under the restriction in which self reaction in one sequence is forbidden and the
size of loop is bounded3. The approximate MFE is denoted by ΔGapp(s, s′). This
value itself can be computed in O(ln2) time by dynamic programming in theory,
where l is the maximum-loop-size. Clearly ΔGapp(s, s′) ≥ ΔG(s, s′) holds.

We define ΔGapp(S) as an approximate of ΔGmin(S) (equation (1)) in which
ΔGapp(s, s′) is used instead of ΔG(s, s′). To check if a neighbor solution Snew is
an improvement from Sold, we perform the following operation using ΔGapp(S)
in the preprocessing phase:

(1) Calculate ΔGapp(Snew). If ΔGapp(Snew) ≥ ΔGmin(Sold), we can determine
that Snew is not an improvement of Sold. (End this routine.) Otherwise, go
to (2).

(2) Calculate ΔGmin(Snew). If ΔGmin(Snew) ≥ ΔGmin(Sold), we determine
that Snew is not an improvement of Sold. Otherwise, we determine that
Snew is an improvement. End this routine.

The performance of this operation depends on the approximation quality of
ΔGapp(s, s′). If we set sufficiently large maximum-loop-size l, then the approx-
imation quality is good enough but it takes large time, since the value can be
computed in O(ln2) time. Therefore, to see the quality of ΔGapp(s, s′) for a
small l, we perform preliminary computational experiments. In the experiments,
we randomly generate 10000 pairs of sequences, and calculate ΔG(s, s′) and
ΔGapp(s, s′) for each pair. Table 2 shows the results.

As shown in this table, the calculating-times of ΔGapp(s, s′) are much faster
than ΔG(s, s′), while the approximation ratios are good for short lengths. This
might be because short sequences hardly take self reactions. In particular, the
calculating-times of ΔGapp(s, s′) are 1/4 to 1/5 compared with that of ΔG(s, s′),
while the ratio of ΔGapp(s, s′) = ΔG(s, s′) are very high especially for small
lengths. This result if preferable when we design sets of short sequences. There-
fore, we adopt the screening phase by ΔGapp(s, s′) in our search strategy.

2 In [18], they introduce a notion of “degree” k, and an O(kn2) time greedy algorithm
for the approximation is proposed.

3 The function pairfold mfe nointra included PairFold package [2] can calculate
this.



Dynamic Neighborhood Searches 137

Table 2. Preliminary Experiments for ΔGapp(s, s
′)

n match
ratio

ΔGapp(s, s′) − ΔG(s, s′)
average / standard deviation

time of
ΔG(s, s′)

time of
ΔGapp(s, s′)

8 99.91% 0.00043(kcal/mol) / 0.01646(kcal/mol) 1.69(sec) 0.45(sec)
12 97.33% 0.01472(kcal/mol) / 0.11472(kcal/mol) 6.50(sec) 1.25(sec)
15 91.70% 0.05370(kcal/mol) / 0.14155(kcal/mol) 13.61(sec) 2.81(sec)
16 88.52% 0.07915(kcal/mol) / 0.30228(kcal/mol) 14.06(sec) 3.24(sec)
20 68.50% 0.30268(kcal/mol) / 0.66313(kcal/mol) 30.7(sec) 6.30(sec)

We set the parameters (n,l)=(8,2),(12,2),(15,4),(16,5),(20,6) in this experiment.
Column “match ratio” shows the ratio of pairs satisfying ΔGapp(s, s

′) = ΔG(s, s′).

4 Computational Experiments

We implement the algorithm, and perform computational experiments. We use
PairFold package [2] for calculation of MFEs. The setting temperature is 37̊ C.
The cpu-times of experiments are between 2 hours and 24 hours.

We compare our results with Garzon et al. [9], also we compare with Deaton
et al. [6]4. Penchovsky et al. [13], Shortreed et al. [17], Braich et al. [5] and
Faulhammer et al. [8].

Table 3. Results of Computational Experiments

No n ΔGww(S) ΔGwc(S) ΔGcc(S) size of ours size of compared set

1 8 -3.3 -5.4 -3.9 237 (Garzon)132
2 8 -5.3 -6.5 -5.5 233 (Garzon)173
3 12 -3.5 -9.3 -4.5 152 (Shortreed)64
4 12 -5.9 -9.9 -5.9 321 (Garzon)617
5 12 -9.2 -11.2 -10.0 689 (Garzon)1424
6 15 -4.3 -8.3 -4.3 80 (Braich)40
7 15 -3.7 -10.4 -4.5 85 (Faulhammer)20
8 15 -6.0 -14.9 -7.3 92 (Garzon)42
9 15 -12.3 -15.3 -12.3 224 (Garzon)96
10 16 -7.5 -8.1 -8.5 141 (Shortreed)64
11 16 -1.5 -8.7 -3.9 53 (Penchovsky)24
12 20 -7.7 -7.2 -10.2 88 (Deaton)40

Table 3 shows the result. Column “size of ours” (resp., “size of compared
set”) shows size of sets obtained by our method (resp., the size of sets reported
in [5,6,8,9,13,17]). Columns ΔGww(S), ΔGwc(S), and ΔGcc(S) represent para-
meters used in the experiment, which are obtained by the compared method5.
For example, in No.1, we design S such as ΔGww(S) = −3.3, ΔGwc(S) = −5.4,

4 Deaton’s set includes nucleotide “h”, we treat “h” as “g”.
5 Except Garzon’s set, values are calculated by us with published PairFold package.



138 S. Kawashimo et al.

ΔGcc(S) = −3.9, which are based on the result of Garzon’s set with size 132.
Sequence sets with greater sizes are better if the values of ΔGx(S) are same.

For the cases of No.1–3, and 6–12, our sets have the same ΔGx(S) values as
the sets generated by the existing methods, however sizes of these are greater.
That is to say, in spite that the sets generated by our method are larger, our
sets cause “miss-hybridization” as well as compared sets. This implies that our
method can design good sets and efficient for thermodynamical constraints.

Only for the cases of No.4 and 5, although these have same ΔGx(S) values,
the sizes of sets generated by our method are smaller than these generated by
Garzon et al. Thus, we consider that our method is suitable for designing short
sequence sets which are relatively small. However our method does not lose its
worth even for the longer sequences, because we can treat the set generated by
Garzon et al. as the initial set and may improve it.

5 Conclusion

In this paper, we present a local search type algorithm for short-sequence design
under the thermodynamical constraints. Since local search type algorithms are
not practical under the thermodynamical constraints due to time-consuming op-
erations, we propose two thechniques for efficient computations. One of the tech-
niques is the effective order in neighborhood search, and the other is a bounding
technique to skip the search for apparently bad solution, by the preprocessing
phase with approximate MFE. In the computational experiments, we succeeded
in designing better sequence sets than the existing methods in the case where
the sizes of sets are relatively small. Also for larger sets, our method is easy to
be combined with non-local search methods such as [9].

As future work, further reduction of computational time is considered. For
example, recalculation of MFE values for a new solution is time-consuming, but it
can be reduced because the difference between the new and the previous solutions
is very small; many internal calculations for MFE values can be reused. Applying
our method to more complicated constraints, such as hairpin state machine [10]
which have properties of “sequence set design” and “reverse folding problem”,
is another interesting issue.

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266(5187), 1021–1024 (1994)

2. Andronescu, M., Zhang, Z., Condon, A.: Secondary Structure Prediction of Inter-
acting RNA Molecules. J. of Molecular Biology 345(5), 987–1001 (2005),
www.rnasoft.ca/download.html

3. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation
Computing 20(3), 263–273 (2002)

4. Asahiro, Y.: Simple Greedy Methods for DNA Word Design. Proc. of 9th World
Multi-Conference on Systemics, Cybernetics and Informatics 3, 186–191 (2005)

www.rnasoft.ca/download.html


Dynamic Neighborhood Searches 139

5. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a
20-Variable 3-SATProblem on a DNA Computer. Science 296(5567), 499–502 (2002)

6. Deaton, R., Kim, J., Chen, J.: Design and test of noncrosshybridizing oligonu-
cleotide building blocks for DNA computers and nanostructures. Applied Physics
Letters 82(8), 1305–1307 (2003)

7. Dirks, R., Lin, M., Winfree, E., Pierce, N.: Paradigms for computational nucleic
acid design. Nucleic Acids Research 32(4), 1392–1403 (2004)

8. Faulhammer, D., Cukras, A., Lipton, R., Landweber, L.: Molecular computation:
RNA solutions to chess problems. Proc. of the National Academy of Sciences of
the United States of America 97(4), 1385–1389 (2000)

9. Garzon, M., Phan, V., Roy, S., Neel, A.: In Search of Optimal Codes for DNA
Computing. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287,
pp. 143–156. Springer, Heidelberg (2006)

10. Kameda, A., Yamamoto, M., Ohuchi, A., Yaegashi, S., Hagiya, M.: Unravel Four
Hairpins! In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp.
381–392. Springer, Heidelberg (2006)

11. Kawshimo, S., Ono, H., Sadakane, K., Yamashita, M.: DNA Sequence Design by
Dynamic Neighborhood Searches. In: Mao, C., Yokomori, T. (eds.) DNA Comput-
ing. LNCS, vol. 4287, pp. 157–171. Springer, Heidelberg (2006)

12. Lyngsø, R., Zuker, M., Pedersen, C.: Fast evaluation of internal loops in RNA
secondary structure prediction. Bioinfomatics 15, 440–445 (1999)

13. Penchovsky, R., Ackermann, J.: DNA Library Design for Molecular Computation.
J. of Computational Biology 10(2), 215–229 (2003)

14. Reif, J., Sahu, S., Yin, P.: Complexity of Graph Self-assembly in Accretive Systems
and Self-destructible Systems. In: Carbone, A., Pierce, N.A. (eds.) DNA Comput-
ing. LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

15. Rose, J., Deaton, R., Suyama, A.: Statistical thermodynamic analysis and design
of DNA-based computers. Natural Computing 3, 443–459 (2004)

16. Shiozaki, M., Ono, H., Sadakane, K., Yamashita, M.: A Probabilistic Model of
DNA Conformational Change. In: Mao, C., Yokomori, T. (eds.) DNA Computing.
LNCS, vol. 4287, pp. 274–285. Springer, Heidelberg (2006)

17. Shorteed, M., Chang, S., Hong, D., Phillips, M., Campion, B., Tulpan, D., An-
dronescu, M., Condon, A., Hoos, H., Smith, L.: A thermodynamic approach to
designing struct-free combinatorial DNA word set. Nucleic Acids Research 33(15),
4965–4977 (2005)

18. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid se-
quences for DNA computing based on a thermodynamic approach. Nucleic Acids
Research 33(3), 903–911 (2005)

19. Tulpan, D., Hoos, H., Condon, A.: Stochastic Local Search Algorithms for DNA
Word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568,
pp. 229–241. Springer, Heidelberg (2003)

20. Tulpan, D., Hoos, H.: Hybrid Randomized Neighborhoods Improve Stochastic Local
Search for DNA Code Design. In: Xiang, Y., Chaib-draa, B. (eds.) Advances in Arti-
ficial Intelligence. LNCS (LNAI), vol. 2671, pp. 418–433. Springer, Heidelberg (2003)

21. Tulpan, D., Andronescu, M., Changf, S., Shortreed, M., Condon, A., Hoos, H.,
Smith, L.: Thermodynamically based DNA strand design. Nucleic Acids Re-
search 33(15), 4951–4964 (2005)

22. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of DNA
crystals. Nature 394, 539–544 (1998)

23. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using ther-
modynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)



Sequence Design Support System

for 4 × 4 DNA Tiles

Naoki Iimura1, Masahito Yamamoto2, Fumiaki Tanaka3, and Azuma Ohuchi2

1 NTT DoCoMo Hokkaido, Inc.
iimura@complex.eng.hokudai.ac.jp

2 Graduate School of Information Science and Technology, Hokkaido University
{masahito,ohuchi}@complex.eng.hokudai.ac.jp

3 Graduate School of Information Science and Technology, Univercity of Tokyo
fumi95@is.s.u-tokyo.ac.jp

Abstract. A DNA computation model by DNA tiles needs sequence
design in order to correctly form tile structure and self-assembly. We de-
sign sequence, demonstrate biochemical experiments by a trial and error
approach, and, repeatedly analyze tiles. Because no integrated sequence
design system computes data that indicates properties of sequences, we
must analyze designed sequences by hand and many types of software. In
this paper, we develop a sequence design support system for 4× 4 DNA
tiles that analyzes and optimizes tile sequences to support sequence de-
sign. The most remarkable feature of this system is optimization based
on free energy. The optimization strategy is developed so that the energy
of perfect tile is the stablest.

1 Introduction

New computation models and DNA nanotechnology by DNA tiles based on
Watson-Crick complementarity pairing [1, 2] have been proposed. We have to
design a stable tile sequence that minimizes mis-hybridization because these
computation models by DNA tiles presupposes correct hybridization. However,
sequence design is never easy due to the repetition of the trial and error approach.
In DNA computing, sequence design that forms a wanted structure or does not
form an unwanted structure has been researched in terms of various indexes,
including melting temperature, GC content, free energy, and so on. Conventional
work of DNA tile sequence design minimizes the reuse of the fragment of sequence
without these indexes [3, 4]. This method allows sequence design that does not
cause unnecessary hybridization regardless of the simple algorithm. However, it
has problems. It does not consider the distinction of stability by base pair or
loop structure and does not quantify the evaluation of tiles. Thus, if we design
and analyze sequences by other evaluation indexes to solve these problems, we
need to use many types of software[5–8].

In this paper, we develop a sequence design support system for a 4× 4 DNA
tile. The 4×4DNA tile developed by Yan et al, consists of nine sequences: one
CORE, four SHELL, and four ARM sequences (Fig. 1). This tile has four-way

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 140–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Sequence Design Support System for 4 × 4 DNA Tiles 141

Fig. 1. Definition of sequence name Fig. 2. Necessary hybridizations for 4×4
DNA tile

arms (north, south, east, and west) made of a single strand DNA molecule called
“sticky-end” and forms a DNA self-assembly by connecting with other tiles. Ap-
plications of the 4×4 DNA tile have been proposed and demonstrated by several
research groups[9, 10].Our system has two features for design support. First,
it can analyze existing sequence data that are often used when designing se-
quences. Second, it can design them using optimization based on the stability
evaluation of DNA tiles by free energy. Free energy is introduced because it can
reduce mis-hybridization by making necessary hybridization stable and unnec-
essary hybridization unstable. Our proposed system are designed so that the
evaluation function of tile structures can be easily replaced.

2 Design Strategy

The stability of tile structure allows sequence design that minimizes mis-
hybridization. From the standpoint of tile stability, correct tile structure without
mis-hybridization is considered the most stable; that is, the free energy of the
correct tile must be the lowest. We apply free energy, which is an index that
can evaluate the stability of loop structure and base pairs in DNA computing,
to the stability of a 4×4 DNA tile. There are two kinds of free energy: of the
secondary structure within a single strand DNA molecule, and of the hybridiza-
tion between two single strand DNA molecules, however, there is no effective
prediction method of free energy of a DNA tile. Here we are trying to quantify
the stability of tile structure by these free energies.

We suppose that the whole tile structure becomes more stable as each nec-
essary hybridization portion stabilizes, therefore, the summation of necessary
hybridization calculated by the free energy between two sequences can indicate
tile stability. Necessary hybridization is a base pair to form tile structure, as
shown in Fig. 2. Because these necessary hybridization portions may incorrectly
form loop structure, bulge loop, and so on, evaluation of the bond strength of
the base pair is used to judge correct hybridization. Furthermore, it is desirable
that the stablest structure is only the one structure of any and all structure
with the potential to be formed by tile sequences. The reason for this is that



142 N. Iimura et al.

sequences decrease the possibility of forming correct tiles if the structure that
does not form tile is as stable as the tile structure.

Desirable sequences have lower energy if the tile is formed correctly and higher
energy if the tile is not formed. In other words, desirable sequences have a big
difference between the lowest and second lowest energy. A device is needed to de-
sign these sequences as well as to stabilize necessary hybridization. Our method
incorporates inhibitory factors to avoid forming the secondary structure of a sin-
gle strand DNA molecule and unnecessary hybridization. The inhibitory factor
calculated by the free energy within the sequence and between two sequences
reduces tile stability. Sequence forming correct tile are designed by optimization
based on tile stability by free energy.

3 Support System

We developed a sequence design system with the previous strategy based on
free energy. The system also has an analysis function of existing tiles besides
sequence design by optimization because sequence design comprehensively uses
not only free energy but also various indexes. These functions should reduce
computational costs.

3.1 Analysis Module

We often comprehensively judge tile sequences by amount of data. Before ana-
lyzing a tile, the system requests sequence length and SHELL sequences from
users, who input sequence data following the input forms on the screen. Figs. 3
and 4 are examples of the screen. Fig. 3 shows the input form of the sequence
length of a CORE fragment that is hybridized to the SHELL sequence. This
system deals with any tile size and any bulge loop in the corner of CORE. Fig.
4 shows the input form to enter the SHELL sequences. We adopt nucleic code,
which has A, G, T, C, S(G or C), H(A,T or C), N(A,T,C or C), and so on by
IUPAC, because input forms need to accept existing sequences and constraints
for allocating bases. The input of sequence by nucleic code can directly, enter
existing sequences, and randomly allocate bases if GC pairs or AT pairs are
fixed. Additionally, a user can avoid including specific sequence fragments in a
sequence when the system randomly allocates bases.

Fig. 5 shows a screen of the analysis result. The system analyzes the following
data after a user inputs the essential data:

(1) GC content of each sequence
(2) Melting temperature of each sequence

The value indicates the melting temperature between each sequence and its
complementary sequence.

(3) Free energy of each sequence
This value indicates the stability of the secondary structure within a single
strand DNA molecule and that is calculated with MFOLD [5, 6].



Sequence Design Support System for 4 × 4 DNA Tiles 143

Fig. 3. Input form of CORE sequence
data

Fig. 4. Input form of SHELL sequences

Fig. 5. Sytem interface Fig. 6. Optimization interface

(4) Free energy between sequences that do not require hybridization
This value indicates the stability of hybridization between sequences that
should not be hybridized to form tiles. The system calculates the free energy
between CORE–CORE sequences, between SHELL[i]–SHELL[j] sequences
(i �= j), and between ARM[i]–ARM[j] sequences (i �= j) with PAIRFOLD [7]
(Fig. 1). The combination of two sequences in all sequences is not calculated
in terms of computation cost.

(5) Free energy between sequences that require hybridization to form tiles
This value indicates the stability of hybridization between sequences that
should be hybridized and stabilized to form tiles. A 4×4 DNA tile has 16
necessary hybridization parts (Fig. 2). The system uses a fragment of se-
quence along with a motif of the tile.

The values of (4) and (5) are displayed by click on the motif.



144 N. Iimura et al.

3.2 Optimization Module

This system can optimize an existing or a brand-new tile by free energy known
as a more precise index of hybridization stability than other indexes in DNA
computing [11]. Our system introduces free energy into the evaluation function
that uses the weighting addition of the free energy in the previous section; that
is, the sum of free energy (3)–(5). The evaluation function for any tile x is as
follows.

E(x) = I1 + αI2 + βI3

I1 = Σ (free energy values of (3))
I2 = Σ (free energy values of (4))
I3 = −Σ (free energy values of (5))

Terms I1, I2, andI3 indicate the bond strength of the secondary structure
within a single strand, the bond strength of mis-hybridization between non-
objective sequences, and the bond strength of hybridization between fragments
of objective sequences, respectively. A sequence qualifies as a stable tile as each
value increases.

The optimization algorithm adopts a hill-climbing algorithm. The system re-
tains the nucleic code and the avoidance fragment in principle while optimizing
sequences; furthermore, it can set constraints of GC content in each sequence.
Optimization steps are initially 1,000, which a user can increase to 2,000. Run-
ning time is about nine minutes on a PC with 3.0 GHz Pentium4 processor
and 512 MB RAM running Windows XP, if optimization steps are 2,000. Fig. 6
shows the interface of optimization. We can confirm the optimization progress
and stop it if required. The system displays the sequence and analysis results at
that time.

3.3 I/O Module

The system has the following convenient additional functions. I/O module inputs
and outputs sequence data. The system can save and read sequences, their length,
and the result of analysis or optimization by an XML document. This function
not only save data but also alleviates input. The preparation of XML documents
as templates of tile size facilitates various optimizations. Furthermore, the system
can print these data.

4 Discussions and Concluding Remarks

We have designed sequences by minimizing the reuse of fragment of sequence
and have analyzed their melting temperature, free energy, and so on by many
types of software. Our system can analyze these data of existing sequences, op-
timize sequences by free energy, and analyze and design sequences from scratch.
Optimization results have verified that optimized sequences can form tile cor-
rectly in terms of free energy. However, the actual verification of sequence needs



Sequence Design Support System for 4 × 4 DNA Tiles 145

biochemical experiments in vitroD Our system provides sequences that users
want to design by inputting by nucleic code, setting specific fragments to avoid,
setting the constraints of GC content, and changing the parameters of the eval-
uation function. We consider that this reflects knowledge gained by biochemical
experiment into the system. Additionally, the system can design sequences that
are not designed by the conventional algorithms.

We suggest that sequences by this system form a tile and self-assembly more
precisely. However, we may need to consider the concentration of each sequences,
curvature of tiles, other optimization methods and constraints in the future.

References

1. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

2. Yan, H., Feng, L., LaBean, T.H., Reif, J.H.: Parallel Molecular Computations of
Pairwise Exclusive-Or (XOR) Using DNA ”String Tile” Self-Assembly. J. Am.
Chem. Soc. 125(47), 14246–14247 (2003)

3. Seeman, N.C.: De Nove Design of Sequence for Nucleic Acid Structual Engineering.
Jornal of Biomolecular Structure & Dynamics 8, 739–1102 (1990)

4. Wei, B., Wang, Z., Mi, Y.: Uniquimer: Software of De Novo DNA Sequence Gen-
eration for DNA Self-Assembly -An Introduction and the Related Applications in
DNA Self-Assembly. Journal of Computational and Theoretical Nanoscience 4(1),
133–141 (2007)

5. Zuker, A.M., Mathews, B.D.H., Turner, C.D.H.: Algorithms and Thermodynamics
for RNA Secondary Structure Prediction: A Practical Guide. In: Barciszewski,
J., Clark, B.F.C. (eds.) RNA Biochemistryand Biotechnology. NATO ASI Series,
Kluwer Academic Publisers, Dordrecht (1999)

6. Zuker, M.: Mfold web server for nulceic acid folding and hybridization prediction.
Nucleic Acids Reserch 31(13), 3406–3415 (2003)

7. Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNA soft: A
suite of RNA secondary structure prediction and design software tools. Nucleic
Acids Research 31(13), 3416–3422 (2003)

8. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Re-
search 31(13), 3429–3431 (2003)

9. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-Templated
Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 301,
1882–1884 (2003)

10. Park, S.H., Yan, H., Reif, J.H., LaBean, T.H., Finkelstein, G.: Electronic nanostruc-
tures templated on self-assembled DNA scaffolds. Nanotechnology 15, S525–S527
(2004)

11. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid se-
quences for DNA computing based on a thermodynamic approach. Nucleic Acids
Research 33(3), 903–911 (2005)



DNA Codes Based on Stem Similarities Between

DNA Sequences

Arkadii D’yachkov1, Anthony Macula2, Vyacheslav Rykov3,
and Vladimir Ufimtsev3

1 Moscow State University, Moscow 119992, Russia
agd-msu@yandex.ru

2 Air Force Res. Lab., IFTC, Rome Research Site, Rome NY 13441, USA
macula@geneseo.edu

3 University of Nebraska at Omaha, 6001 Dodge St., Omaha, NE 68182-0243 USA
vrykov@mail.unomaha.edu

Abstract. DNA codes consisting of DNA sequences are necessary for
DNA computing. The minimum distance parameter of such codes is a
measure of how dissimilar the codewords are, and thus is indirectly a
measure of the likelihood of undetectedable or uncorrectable errors oc-
curring during hybridization. To compute distance, an abstract metric,
for example, longest common subsequence, must be used to model the
actual bonding energies of DNA strands. In this paper we continue the
development [1,2,3] of similarity functions for q-ary n-sequences The the-
oretical lower bound on the maximal possible size of codes, built on the
space endowed with this metric, is obtained. that can be used (for q = 4)
to model a thermodynamic similarity on DNA sequences. We introduce
the concept of a stem similarity function and discuss DNA codes [2]
based on the stem similarity. We suggest an optimal construction [2] and
obtain random coding bounds on the maximum size and rate for such
codes.

1 Introduction

In order to accomplish DNA computing, it is necessary to have DNA libraries,
also known as DNA codes, of large size and small energies of hybridization be-
tween the DNA sequences. The ultimate criterion for the value of a metric for
DNA codes is the degree to which it approximates actual bonding energies, which
in turn determines the degree to which distance approximates the likelihood of
one codeword mistakenly binding to the reverse complement of another code-
word. We can use a branch of mathematics known as coding theory, that was
initiated around the same time that the structure of DNA was discovered, to
study the space of DNA sequences endowed with a measure of distance (metric).
The introduced measure of distance between DNA sequences has an immediate
application in determining the similarities between genes, expressed as DNA se-
quences, in any existing genome. Codes built on spaces of DNA sequences can
be implemented in Biomolecular Computing and could have other important
applications.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 146–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



DNA Codes Based on Stem Similarities Between DNA Sequences 147

2 Notations, Definitions

The symbol � denotes definitional equalities and the symbol [n] � {1, 2, . . . , n}
denotes the set of integers from 1 to n. Let q = 2, 4, . . . be an arbitrary even inte-
ger, A � {0, 1, . . . , q−1} be the standard q-nary alphabet. Consider two arbitrary
q-nary n-sequences x = (x1, x2, . . . , xn) ∈ An and y = (y1, y2, . . . , yn) ∈ An.
By symbol z = (z1, z2, . . . , z�) ∈ A�, � ∈ [n], we will denote a common subse-
quence [5] of length |z| � � between x and y. The empty subsequence z of length
|z| � 0 is a common subsequence between any sequences x and y.

Definition 1. Let 1 ≤ b ≤ r ≤ n be arbitrary integers. A fixed r-sequence
a = (a1, a2, . . . , ar), ai ∈ A = {0, 1, . . . , q − 1}, i ∈ [r], is called a common
block for sequences x and y (briefly, common (x,y)-block) of length r if sequences
x and y (simultaneously) contain a as a subsequence consisting of r consecutive
elements of x and y. We will say that a common (x,y)-block a yields r− (b−1)
common b-stems ai, ai+1, . . . , ai+(b−1), i ∈ [r − (b − 1)], containing b adjacent
symbols of the given common (x,y)-block.

Definition 2. Let 1 ≤ t ≤ � ≤ n be integers. A sequence z = (z1, z2, . . . , z�),
zi ∈ A, i ∈ [�], is called a common t-block subsequence of length |z| � � between
x and y if z is an ordered collection of non-overlapping (separated) common
(x,y)-blocks and the length of each common (x,y)-block in this collection is ≥ t.

Let Zt(x,y) be the set of all common t-block subsequences between x and y. For
any z ∈ Zt(x,y), we denote by k(z,x,y), 1 ≤ k(z,x,y) ≤ |z|/t , the minimal
number of common (x,y)–blocks which constitute the given subsequence z.

Note that for any integer b, 2 ≤ b ≤ t, the difference |z| − (b − 1) k(z,x,y),
z ∈ Zt(x,y), is a total number of common b-stems containing adjacent symbols
in common (x,y)-blocks constituting z ∈ Zt(x,y).

Definition 3. For any fixed integer b, 2 ≤ b ≤ n,we define

Sb(x,y) � max
b≤t≤n

max
z∈Zt(x,y)

{|z| − (b − 1) k(z,x,y)} , Sb(x,y) ≥ 0.

If Zb(x,y) = ∅, then we will say that Sb(x,y) � 0. The number

Sb(x,y) = Sb(y,x) ≤ Sb(x,x) = n − (b − 1), x ∈ An, y ∈ An,

is called an b-stem similarity between x and y. For b = 2, the concept of 2-stem
similarity and its biological motivation were suggested in [1].

Definition 4. [1,2]. If q = 2, 4, . . ., then x̄ � (q−1)−x, x ∈ A = {0, 1, . . . , q−
1}, is called a complement of a letter x. For x = (x1, x2, . . . , xn−1, xn) ∈ An,
we define its reverse complement x̃ � (x̄n, x̄n−1, . . . , x̄2, x̄1) ∈ An. If y � x̃,
then x = ỹ for any x ∈ An. If x = x̃, then x is called a self reverse complemen-
tary sequence. If x �= x̃, then a pair (x , x̃) is called a pair of mutually reverse
complementary sequences.



148 A. D’yachkov et al.

Let x(1),x(2), . . . ,x(N), where x(j) � (x1(j), x2(j), . . . , xn(j)) ∈ An, j ∈ [N ],
be codewords of a q-ary code X = {x(1),x(2), . . . ,x(N)} of length n and size N ,
where N = 2, 4, . . . be an even number. Let b, 2 ≤ b ≤ n, and D, b ≤ D ≤ n − 1,
be arbitrary integers.

Definition 5. A code X is called a DNA (n, D)-code based on b-stem similarity
Sb(x,y) (briefly, (n, D)-code) if the following two conditions are fulfilled.

(i). For any number j ∈ [N ] there exists j′ ∈ [N ], j′ �= k, such that x(j′) =

x̃(j) �= x(j). In other words, X is a collection of N/2 pairs of mutually reverse
complementary sequences.

(ii). For any j, j′ ∈ [N ], where j �= j′, the similarity

Sb(x(j),x(j′)) ≤ n − D − 1, b ≤ D ≤ n − 1. (1)

Definition 6. Let Nb(n, D) be the maximum size for DNA (n, D)-codes based
on b-stem similarity. If d, 0 < d < 1, is a fixed number, then

Rb(d) � lim
n→∞

logq Nb(n, �nd�)
n

(2)

is called a rate of DNA (n, �nd�)-codes based on b-stem similarity.

3 Random Coding Bounds

Let b, 2 ≤ b ≤ n, and s, 0 ≤ s ≤ n − (b − 1), be arbitrary integers and

Pb(n, s) � {(x,y) ∈ An × An : Sb(x,y) = s},

Pb(n, s) � {x ∈ An : Sb(x, ˜̄x) = s},

be sets of pairs (x,y) ∈ An × An (sequences x ∈ An) for which the given
similarities be equal to s. Applying combinatorial arguments which are similar
to the corresponding arguments of paper [2] for the block similarity function,
one can check that the following statement is true.

Lemma 1. The size

|Pb(n, s)| ≤ q2n−s ·
min{s , (n−s)/(b−1)}∑

k=1

q−(b−1)k
(

s − 1
k − 1

) (
n − s − (b − 2)k

k

)2

.

(3)
The set Pb(n, s) is empty if s ≥ 3 is odd. If s ≥ 2 is even, then the size

|Pb(n, s)|≤qn−s/2 ·
min{s , (n−s)/(b−1)}∑

k=1

q−(b−1)k/2
(

s/2 − 1
k/2 − 1

) (
n − s − (b − 2)k

k

)
.

(4)



DNA Codes Based on Stem Similarities Between DNA Sequences 149

Lemma 1 and the standard random coding method [2] lead to Theorems 1 and 3
which give lower bounds on the size Nb(n, D) and rate Rb(d) of DNA codes based
on b-stem similarity.

Theorem 1. If D ≥ b ≥ 2 are fixed integers and n → ∞, then

Nb(n, D) ≥ 1
4

· (Db − 1)! · q(b−1)Db

(
D−(b−2) Db

Db

)2
· qD

· qn

nDb−1 · (1+o(1)), Db �
⌊

D

b − 1

⌋
. (5)

For the case b = 2, number D2 = D ≥ 2 and bound (5) has the form

N2(n, D) ≥ (D − 1)!
4

· qn

nD−1 · (1 + o(1)), D ≥ 2. (6)

For the case D = b ≥ 3, number Db = 1 and bound (5) has the form

Nb(n, b) ≥ qn−1

16
· (1 + o(1)), b ≥ 3. (7)

An improvement of asymptotic lower bounds (6)-(7) follows from formula (8)
for Nb(n, b) presented in the theorem.

Theorem 2. [2] If n = qm, m = 1, 3, 5, . . ., then

Nb(n, b) =
qn−1 + q

2
, 2 ≤ b ≤ n − 1. (8)

Introduce the standard symbol

hq(u) � −u logq u − (1 − u) logq(1 − u), 0 < u < 1, (9)

for the binary entropy function.

Theorem 3. (i). The rate

Rb(d) ≥ Rb(d) � min
0≤u≤d

{(1 − u) − Eb(u)}, (10)

where
Eb(u) � max

0≤v≤min{ u
b−1 , 1−u}

Fb(v, u), (11)

Fb(v, u) � −(b − 1)v + (1 − u)hq

(
v

1 − u

)
+

+ 2 [u − (b − 2)v] hq

(
v

u − (b − 2)v

)
. (12)

(ii). Let db, 0 < db < 1, be the unique root of equation 1 − d = Eb(d). If
0 < d < db, then the rate Rb(d) > 0 and the following lower bound

Rb(d) ≥ Rb(d) � (1 − d) − Eb(d), 0 < d < db, (13)

holds.



150 A. D’yachkov et al.

We will say that the number db, 0 < db < 1, is a critical distance fraction for the
random coding bound Rb(d).

Maximization (11)-(12). The derivative of binary entropy function (9) is

h′
q(v) = logq

1 − v

v
, 0 < v < 1.

Thus, the partial derivative of function Fb(v, u) is

∂Fb(v, u)
∂v

= −(b − 1) + logq

(1 − u) − v

v
+

+2
[
−(b − 2)hq

(
v

u − (b − 2)v

)
+

u

u − (b − 2)v
logq

u − (b − 1)v
v

]
. (14)

Taking into account that hq

(
v

u−(b−2)v

)
=

=
v

u − (b − 2)v
logq

u − (b − 2)v
v

+
u − (b − 1)v
u − (b − 2)v

logq

u − (b − 2)v
u − (b − 1)v

,

one can easily check that (14) can be rewritten in the form

∂Fb(v, u)
∂v

= −(b − 1) + 3 logq

1
v

+ logq[(1 − u) − v]+

+2(b − 1) logq[u − (b − 1)v] − 2(b − 2) logq[u − (b − 2)v].

Therefore, for any fixed u, 0 < u < 1, equation ∂Fb(v,u)
∂v = 0 is equivalent to

equation

(
1 − u

v
− 1

) [u

v
− (b − 1)

]2(b−1) [u

v
− (b − 2)

]−2(b−2)
= qb−1,

u

v
≥ b − 1.

(15)

Let v = v(u) be the unique root of (15). This means that function

Eb(u) = Fb(v(u), u) = −(b − 1)v(u) + (1 − u)hq

(
v(u)
1 − u

)
+

+ 2 [u − (b − 2)v(u)] hq

(
v(u)

u − (b − 2)v(u)

)
.

If we substitute parameter v for w � u/v > b − 1, then equation (15) has the

form
(

1 − u

u
w − 1

)
[w − (b − 1)]2(b−1) [w − (b − 2)]−2(b−2) = qb−1, w > b − 1.



DNA Codes Based on Stem Similarities Between DNA Sequences 151

Hence, the root v = v(u) can be calculated using the following recurrent method:

w1 � b, wm+1 = (b − 1) +
√

q

{
[wm − (b − 2)]2(b−2)

1−u
u wm − 1

} 1
2(b−1)

, m = 1, 2, . . . ,

v = v(u) =
u

lim
m→∞ wm

. (16)

If q = 4, then numerical values of critical distance fractions db, b = 2, 3, . . .9,
along with the corresponding optimal parameters

v(db), 0 ≤ v(db) ≤ min
{

db

b − 1
, 1 − db

}
, b = 2, 3, . . . 9,

for maximization (11)-(12) are given below:

b 2 3 4 5 6 7 8 9
db 0.4792 0.6676 0.7931 0.8768 0.9299 0.9618 0.9798 0.9896

v(db) 0.1903 0.1166 0.0744 0.0461 0.0272 0.0153 0.0082 0.0043
.

References

1. D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Tor-
ney D.C.: A Weighted Insertion—Deletion Stacked Pair Thermodynamic Metric for
DNA Codes. In: Proc. of 10th Int. Workshop on DNA Computing. Milan, Italy, pp.
90–103 (2004)

2. D’yachkov, A.G., Macula, A.J., Torney, D.C., Vilenkin, P.A., White, P.S., Ismag-
ilov, I.K., Sarbayev, R.S.: On DNA Codes. Probl. Peredachi Informatsii (in Russian)
41(4), 57–77 (2005). English translation: Problems of Information Transmission
41(4), 349–367 (2005)

3. D’yachkov, A.G., Erdos, P.L., Macula, A.J., Rykov, V.V., Torney, D.C., Tung, C.S.,
Vilenkin, P.A., White, P.S.: Exordium for DNA Codes. J. Comb. Optimization 7(4),
369–379 (2003)

4. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Dokl. Akad. Nauk USSR (in Russian) 163, 845–848 (1965), English trans-
lation: J. Soviet Phys.–Doklady 10, 707–710 (1966)

5. Levenshtein, V.I.: Efficient Reconstruction of Sequences from Their Subsequences
and Supersequences. J. Comb. Th., Ser. A 93, 310–332 (2001)



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 152–160, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Heuristic Solution to a 10-City Asymmetric Traveling 
Salesman Problem Using Probabilistic DNA Computing 

David Spetzler, Fusheng Xiong, and Wayne D. Frasch 

Molecular and Cellular Biology Graduate Program, and 
Faculty of Biomedicine and Biotechnology, School of Life Sciences, 

Arizona State University, PO Box 874501 Tempe, AZ 85287-4501, USA 
frasch@asu.edu 

Abstract. DNA hybridization was used to make a probabilistic computation to 
identify the optimal path for a fully connected asymmetric 10 city traveling 
salesman problem. Answer set formation was achieved using a unique DNA 
20mer for each edge capable of hybridizing to half of each neighboring vertex. 
This allowed the vertex 20mers to be linked in all possible combinations to 
form paths through the network. Hybridization occurred in the presence of an 
excess of vertex 20mers, while edge 20mers were added in limiting amounts 
inversely proportional to the weight of each edge, resulting in the paths with the 
least cumulative weight being the most abundant. Correct answers, 230bp in 
length, contained a single copy of each vertex and were purified by PAGE and 
by successive magnetic bead affinity separations with probes for each vertex. 
Answer detection was accomplished using LCR of probes complementary to 
each vertex in a manner that identified the sequential order of vertices in each 
path by identifying vertex pairs. Optimal answer identification was 
accomplished using a conventional computer by normalizing the abundance of 
vertex pairings, and was found to be the same as that calculated by in silico.  

Keywords: DNA computing, Traveling Salesman Problem, Ligation, Hybridiza-
tion, Denaturing PAGE, Magnetic affinity.  

1   Introduction 

The use of DNA for making computations was first demonstrated by the successful 
computation of the solution to a 7 node Hamiltonian path problem (HPP) [1]. 
Methods to solve numerical optimization problems have been developed to expand 
the types of problems able to be solved using DNA computing [2-11].  Yamamoto et 
al. [12] accounted for the weight of each edge using a DNA concentration-dependent 
regime to design a computational method for a 6 node shortest path problem. 
Temperature has also been used to solve other numerical optimization problems with 
limited success.  Although a subset of optimal solutions was purified, it was not 
possible to determine the optimal solution using this method [13]. 

One of the major limiting factors of DNA computing is that the number of 
molecules required to form every possible solution to an NP-complete problem is too 
large to generate [14]. Current methods consume a significant amount of the DNA 



 Heuristic Solution to a 10-City Asymmetric Traveling Salesman Problem 153 

forming incorrect solutions which must be thrown away, thus requiring more DNA to 
generate a complete solution set.  Recent evidence also indicates that formation of 
secondary structures can occlude the correct solutions to make answer determination 
extremely difficult.  Both of these factors have proved to be barriers preventing larger 
problems from being solved.   

We now report an approach to DNA computing that generates a subset of the 
solution space composed of the solutions with the highest optimality rating, and does 
not require that the answer set includes every possible solution. Using this method, we 
have successfully solved a random instance of the fully connected 10 city asymmetric 
traveling salesman problem (Table 1) which has 3.3 million possible solutions. The 
NP completeness result for the Traveling Salesman problem implies that not all 
problem instances are hard .  There are many different approaches to solve this type 
of problem, including exact and heuristic solutions.  Conventional computers have 
completed hard instances of the problem, with thousands of cities, though at a cost of 
years of computing time.  The TSP remains the standard optimization problem used to 
test new approaches as the struggle to solve NP problems continues.  

Table 1. The distance matrix for the problem solved 
p

Aa B C D E F G H I J

A *** 55.2 34.05 31.75 53.85 39.95 36 39.9 36.55 52.6 
B 63.95 *** 54.25 54.95 72.6 45.05 71.65 50.55 52.75 52.15 
C 51.35 47.6 *** 41.45 39.8 57.8 55.2 32.75 34.85 37.05 
D 46.65 46.25 54.6 *** 49.4 45.55 55.9 52 57.35 54.6 
E 49.9 39.1 42.65 52.4 *** 25.9 39.85 38.85 37.95 33.1 
F 59.7 49.15 47.8 56.9 58.05 *** 48.05 46.6 48.4 47.7 
G 51.25 36.7 43.95 43 42.45 40.25 *** 64.2 47.8 46.95 
H 58.1 35.85 53.7 45.05 47.3 43 84.25 *** 42.8 41.9 
I 52.9 38.2 40.35 33.45 36.5 65.2 35 29.7 *** 30.95 
J 60.05 39.1 40.65 55.75 41 41.1 45.1 58.65 43.95 *** 

 
       a

 Each letter is a different vertex in the graph. 
*** indicate paths that are not contained in the subset generated. 

2   Methods 

Computer design included three sequential steps to solve a problem that will find the 
most efficient path to visit all vertices once and only once, and then return to the 
starting vertex. In step 1, answer set formation was achieved using a combination of 
unique DNA 20mers for each vertex and edge.  Hybridization of the edges occurs 
between the first half of one vertex and the second half of another.  This allowed the 
unique vertex 20mers to be linked sequentially in all possible combinations to form 
paths through the network upon addition of ligase. The start and end vertex sequences 
contained an additional GC end cap which raised the melting point which eliminated 
nonspecific annealing during PCR. The computation was performed by adding all 



154 D. Spetzler, F. Xiong, and W.D. Frasch 

vertex 20mers in excess, while edge 20mers were added in limiting amounts that 
varied relative to the efficiency factor determined for that edge. 

 A set of 10 unique 20-mer sequences were designed using the software developed 
by Tanaka [15] to represent each vertex which were synthesized by Invitrogen. An 
additional 90 oligomers were synthesized containing all possible combinations of the 
complementary sequences to join any two city sequences together.  The oligo 
sequences were designed to minimize cross hybridization, self-assembly and 
secondary structure formation and have similar thermal properties (melting 
temperature, between 61.3-61.8oC and GC content (25-30%). The yield of the 
sequences synthesized was used to define the distance matrix for the problem solved.   

The initial answer DNA pool was generated by combining saturating amounts of 
vertex sequences with limiting amounts of edge sequences.  The concentration of each 
edge was inversely proportional to the cost of that edge.  The result was a population 
of heterogeneous sequences that formed upon hybridization and ligation of the 
sequences.  The approximate concentration ratio for the hybridization and ligation 
reaction was set at 10:1 (vertex:edge). This ensured that vertex oligo concentrations 
were saturated while edge concentrations were limiting and varied in concentration so 
that a potential linking between any pair of vertices was dependent upon 
concentration of the corresponding edge sequence. Table 1 shows concentration 
differences for all linkers that were used to solve the 10-city problem.   

The initial answer pool was generated using a two step process. First, initial 
hybridization/ligation was conducted in the absence of the ending vertex sequence 
and all linkers to the ending vertex. This greatly reduced formation of shorter answer 
sequences, thus improving the hybridization/ligation efficiency. Secondly, the 
hybridization/ligation was allowed to continue with the addition of fresh ligase, the 
ending vertex sequence and corresponding linkers.  Hybridization-ligation products 
were purified through sequential PCR amplifications using the 5’-starting and the 3’-
ending vertex primers with the target DNA templates that were extracted from the 
profiled PAGE gel containing previous PCR products.  

Unless specified otherwise, PCR was performed in a 0.5 ml microcentrifuge tube 
with a total volume of 50 μl reaction mixture containing 10 mM Tris-HCl, pH 8.3, 50 
mM KCl, 1.5 mM MgCl2 and 0.001% gelatin, 200 μM each dNTP (ATP, GTP, CTP 
and TTP), 0.4 μM each of the starting and the ending primer, 2.5 U Taq DNA 
polymerase (New England BioLabs, MA, USA) and 50-100 ng DNA template.  PCR 
reactions were carried out using a PJ2000 DNA thermal cycler that was programmed 
for a “Hot start” at 94oC for 2.5 min followed by 35 cycles. Each cycle consisted of a 
denaturing step at 94oC for 0.5 min, an annealing step at 68-70oC for 40 sec, and an 
extension step at 72oC for 30 sec. These cycles were concluded by a final extension 
for 3 min at 72oC.  

The PCR products were profiled on a 6% denaturing polyacrylamide gel (the ratio 
of acrylamide to bisacrylamide was 29:1) in 1 x TBE buffer (90 mM Tris-borate, pH 
8.3, 83 mM boric Acid, and 2 mM EDTA) at room temperature under 10 volts/cm. 
After electrophoresis, the gel was stained with ethidium bromide (1 mg/ml) for 10 
min. The image profile was visualized and photographed under a UV transilluminator 
(UVP BioDoc-ItTM system, UVP).   

In Step 2, Answer sorting was achieved in two stages. First, answer sequences 
were separated by PAGE, the 230mer band was excised from the gel, and the DNA 



 Heuristic Solution to a 10-City Asymmetric Traveling Salesman Problem 155 

was amplified by PCR using the procedures described by Xiong et.al [16]. This 
PAGE separation, PCR amplification step was repeated five times to insure that only 
230mer DNA was present. Second, the purified 230mer answer DNA was probed for 
the presence of each vertex sequence sequentially using magnetic affinity separation.  
Specifically, magnetic affinity separations were carried out by incubating 0.75 μl of 
vertex probe (400 μM), 149 μl 5x Binding/Washing (B/W) buffer with 150 μl of the 
M-280 beads (~1.5 mg, Dynal Biotech ASA, Osho, Norway), which were pre-washed 
3 times with 500 μl B/W buffer for each time. After 45min at RT, the beads were 
separated using a magnetic separator. After washing 3 times using B/W buffer (500 μl 
each time), 90 μl of the ssDNA solutions was added along with 30 μl 20x SSC. After 
being gently vortexed and incubated at room temperature for 50-60 min, the DNA 
solutions hybridized to the immobilized probes were retained on the magnetic beads 
through biotin-streptavidin interaction. Those strands missing single or multiple 
vertex sequences were washed away (2 x SSC, 2 times with 500 μl each time, and 
then 0.5 x SSC, once, 500 μl). The captured duplexed answer sequences were 
dissociated from the biotinylated vertex probe in 80 μl of 0.1 N NaOH for 6-10 min. 
After separation using a magnetic separator, the collected supernatant containing the 
screened ssDNA solutions was neutralized by adding 8.2 μl of 1 N HCl, 10 μl of H2O, 
2 μl of 0.25 M Tris-Cl, pH 7.5.  

In Step 3, ligation chain reaction (LCR) [17] combined with PAGE gel 
electrophoresis was implemented to characterize the answer pool. The answers were 
determined by performing a series of LCR reactions to determine the number of times 
one vertex preceded another. Complementary sequences to two vertex sequences were 
added at a time to determine the abundance of ordered pairs in the answer sequences.  
Since only one of the primers was phosphorylated, the probe that was phosphorylated 
on the 5’ end dictated the order that the primers could link.  Ligation chain reactions  
 

A              M          B              M             CA              M          B              M             C

 

Fig. 1. A: The result of the two step hybridization and ligation reaction.  The arrow shows 
where the 230 bp band was excised.  B:  Result of repeated rounds of PCR amplification on the 
230bp band excised from the page gel for size separation. C: Result of PCR amplification of 
isolated 230-mer band after magnetic affinity purification containing the solutions to the 
problem.  M: is the molecular marker, the brightest band is 100 bp. 



156 D. Spetzler, F. Xiong, and W.D. Frasch 

were run for each possible vertex-vertex pairing, 90 reactions, and the products were 
profiled on PAGE gel.  The relative abundance of each product measured as total 
density using UVP GDS-8000 BioImaging system.   

Quantitative determination of the yield of LCR product was accomplished by the 
following procedure: (1) measure total density of the upper DNA band (the LCR 
product) and the lower DNA band (the PCR probes); (2) measure total density of the 
100-mer band (the brightest one) from the DNA ladder; (3) normalize the total density 
of LCR product and probes against the 100-mer DNA ladder; (4) calculate the ratio of 
the normalized total density of PCR product over the normalized total density of PCR 
probe was calculated.  This value represents a global measure of the abundance of 
each particular city pairing, and is used to determine the answer to the DNA 
calculation.   

3   Results   

Using a two-step hybridization/ligation protocol, an initial answer pool was generated 
with an amount of DNA distributed in the 230-mer region visible by PAGE, the 
required length for correct answers to the 10-city problem (Figure 1, Lane A). The 
hybridization/ligation products were actually distributed over a wide range of sizes 
and DNA sequences as large as ~500-mers were observed. This implies larger 
hybridization/ligation products were generated and that the techniques and protocols 
developed here for the 10-city problem are sufficient for larger problems. 

Sequences formed that did not correspond to correct answers to the traveling 
salesman problem being solved were removed in two stages. First, correct answers 
must contain a single copy of each city sequence and thus should be 230bp in length. 
The 230mer answer band was excised from a gel to eliminate incorrect answers with 
too few or too many cities and was amplified by PCR. Four successive excision-
amplifications yielded pure correct answers only when the PAGE step was done at 
65ºC (Figure 1, Lane B).  This band corresponding to the correct length for solutions 
was then collected for subsequent purification by magnetic affinity separation. Second, 
avidin-coated magnetic beads were bound to biotinylated oligo probes complementary  
 

A B C D EA B C D E

F G H I JF H JG I
 

Fig. 2. PAGE profiles of ligation chain reaction product for all potential vertex pairings.  For 
each LCR reaction, 230-mer DNA solutions plus two pairs of probes were included.  The lower 
band is composed of probes that were not ligated.  The upper bands are probes that were ligated 
and thus indicate the presence of that ordered pair in the answer pool. 



 Heuristic Solution to a 10-City Asymmetric Traveling Salesman Problem 157 

the sequence for each vertex. These beads were used to probe the answer sequences 
sequentially to ensure every vertex was present. After all nine magnetic affinity 
separations, the remaining answer sequences that contained all vertices gave rise to a 
sharp 230mer band when separated by PAGE (Figure 1, Lane C). 

The answer sequences were mixed with complementary sequences to two vertices 
that became covalently linked by ligase when the vertices were adjacent in a specific 
order. This was repeated for all combinations of vertex pairs, n2-n required tests 
(Figure 2), and the relative abundance of all potential vertex pairings was determined. 
Thus, the concentration of each edge was determined from which the optimal pathway 
was deduced (Table 2).  This was accomplished by normalizing the abundance of 
vertex pairings against the constant amount of city probes in each PAGE lane. Special 
attention was taken to perform the LCR with equal amounts of probe. The 
concentration of each probe was measured in triplicate using a NanoDrop ND-1000 
spectrophotometer and a saturated concentration for each probe was used in the 
reaction. This ensured the yield of LCR product for a given link between two vertices 
was limited by the abundance of the corresponding answers.  

Table 2. Matrix formed through the LCR gel read out 

Aa B C D E F G H I J
A  * * * 0.30 0.16 0.26 0.23 0.26 0.47 0.24 0 . 0 0 0.08 
B 0 . 1 1 * * * 0.27 0.09 0.14 0.15 0.17 0.19 0.17 0.06 
C 0 . 1 6 0.27 * * * 0.10 0.16 0.13 0.13 0.18 0.13 0.09 
D 0 . 0 9 0.05 0.05 * * * 0.01 0.07 0.06 0.06 0.10 0.06 
E 0 . 1 7 0.17 0.07 0.15 * * * 0.19 0.05 0.09 0.02 0.15 
F 0 . 1 6 0.03 0.11 0.10 0.29 * * * 0.04 0.10 0.11 0.14 
G 0 . 0 6 0.01 0.06 0.00 0.00 0.01 * * * 0.00 0.05 0.08 
H 0 . 0 3 0.00 0.03 0.00 0.00 0.01 0.03 * * * 0.14 0.10 
I 0 . 1 1 0.08 0.09 0.10 0.04 0.07 0.03 0.04 * * * 0.23 
J 0 . 1 2 0.09 0.17 0.18 0.14 0.10 0.04 0.11 0 . 2 * * * 

 
a

 Each letter is a different vertex in the graph. 
*** indicate paths that are not contained in the subset generated. 

 
The optimal answer obtained by the DNA computer was found to be the same as 

that calculated by a conventional computer. The DNA computer generated about 
246,960 answer sets in total, which was 6.8% of the 3.3 million possible correct 
answers.   

A conventional computer ranked the 1000 most optimal answers from best to worst 
and compared the answers generated by the DNA computer (Figure 3). The DNA 
computer successfully generated the 24 most optimal answers. The first answer not 
included was the 25th most optimal. The number of answers excluded by the DNA 
computer increased proportionately to the decrease in optimality. Of those sequences 
that did represent a correct answer, the majority of them corresponded to answers that 
had a high optimality rating.  This occurred because the reaction mixture was 
 



158 D. Spetzler, F. Xiong, and W.D. Frasch 

0

50

100

150

200

250

300

0 200 400 600 800 1000
Solution Rank

N
u

m
b

er
 o

f M
is

se
d

 S
o

lu
tio

n
s

 

Fig. 3. The number of solutions that were missed as ranked by their optimality 

composed of a variable amount of pathway sequences, such that the lower the cost of 
travel between two vertices, the more abundant the pathway.  Thus, those sequences 
that represent good answers form a larger portion of the population.   

4   Conclusion 

These results demonstrate that our DNA computer presented here has successfully 
computed the 10 city problem.  The first pathway through the network that was not 
contained by the subset of solutions generated by the DNA computer was the 25th 
most optimal solution.  Thus, our method reduced the number of possible solutions 
while still retaining the most efficient pathway.  Since this is a stochastic calculation, 
there is a chance that the optimal solution will not be created.  However, since we do 
not readout particular solutions, but instead study the profile of the ordered pairs of 
vertices contained in the answer pool, it is likely that the paths that are involved in the 
optimal pathway will still be present.  Thus, our readout method will allow the 
optimal path to be determined even though it might not be present in the DNA 
solution.   

The distance matrix we chose to solve was not constrained, and solving it suffices 
to show that the technique can be used to solve any problem of lesser complexity.  In 
the problem solved here, the number of possible solutions paths through the network 
of cities is limited by the rows and columns with the fewest possible transitions.  Each 
row or column with fewer than 9 transitions limits the number of degrees of freedom 
that any path may travel.  For example, vertex H may only be traveled to from 
vertices I or J, thus it has a degree of freedom of 6.  To find the maximum number of 
potential solutions, we begin with the path that has the smallest degree of freedom and 
continue to the next smallest from there. In this case the number of possible solutions 



 Heuristic Solution to a 10-City Asymmetric Traveling Salesman Problem 159 

can be calculated by taking the minimum of the lowest degree of freedom and the 
number of remaining vertices to move to.  In this way we can determine that the 
matrix generated by the DNA computer has at most (7*7*7!) = 246,960s or 6.8% of 
the possible solutions of the original problem.  Thus the DNA computer has served to 
reduce a problem with 3.3 million possible solutions to one with 246,960.  This is a 
statistical sampling of the total population that is weighted towards better solutions.  
Although there can be no guarantee that the optimal solution will be found, but it is 
highly likely that a near optimal solution will be. Since the number of solutions is 
small enough to be searched, we used a standard laptop computer to perform a brute 
search of all possible solutions to find the optimal solution, AFEJBCDIHGA.  We 
compared this solution to the optimal solution of the original problem defined by the 
initial concentrations of all the pathways. The power of such a method to solve large 
optimization problems lies in the combination of biological and silicon computing and 
represents the most practical implementation of biological computing to date.  
However there are still significant obstacles to useful DNA computing.  With all 
current methods as the number of vertices increase, the reaction volume increases as 
well.  This problem is limiting due to the large percentage of sequences that may not 
form correct solutions.  Until a method can be developed where each molecule forms 
a solution, acquiring a large enough sample of the solution population may be 
prohibitive for problems with more variables.  Work is underway to establish this 
upper limit.   

Acknowledgements 

We would like to thank Justin York for helpful discussions. This work was supported 
by funding from DARPA/DSO and AFOSR to W.D.F. 

References 

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. 
Science 266(5187), 1021–1024 (1994) 

2. Reif, J.H., LaBean, T.H., Sahu, S., Yan, H., Yin, P.: Design, simulation, and experimental 
demonstration of self-assembled DNA nanostructures and motors. Unconventional 
Programming Paradigms 3566, 173–187 (2005) 

3. Seeman, N.C., Wang, H., Yang, X.P., Liu, F.R., Mao, C.D., Sun, W.Q., Wenzler, L., Shen, 
Z.Y., Sha, R.J., Yan, H., Wong, M.H., Sa-Ardyen, P., Liu, B., Qiu, H.X., Li, X.J., Qi, J., 
Du, S.M., Zhang, Y.W., Mueller, J.E., Fu, T.J., Wang, Y.L., Chen, J.H.: New motifs in 
DNA nanotechnology. Nanotechnology 9(3), 257–273 (1998) 

4. Schmidt, K.A., Henkel, C.V., Rozenberg, G., Spaink, H.P.: DNA computing using single-
molecule hybridization detection. Nucleic Acids Research 32(17), 4962–4968 (2004) 

5. Shin, S.Y., Lee, I.H., Kim, D., Zhang, B.T.: Multiobjective evolutionary optimization of 
DNA sequences for reliable DNA computing. Ieee Transactions on Evolutionary 
Computation 9(2), 143–158 (2005) 

6. Qu, H.Q., Zhu, H., Peng, C.: New algorithms for some NP-optimization problems by DNA 
computing. Progress in Natural Science 12(6), 459–462 (2002) 



160 D. Spetzler, F. Xiong, and W.D. Frasch 

7. Shao, X.G., Jiang, H.Y., Cai, W.S.: Advances in biomolecular computing. Progress in 
Chemistry 14(1), 37–46 (2002) 

8. Tostesen, E., Liu, F., Jenssen, T.K., Hovig, E.: Speed-up of DNA melting algorithm with 
complete nearest neighbor properties. Biopolymers 70(3), 364–376 (2003) 

9. Kim, D., Shin, S.Y., Lee, I.H., Zhang, B.T.: NACST/Seq: A sequence design system with 
multiobjective optimization. DNA Computing 2568, 242–251 (2003) 

10. Lipton, R.J.: DNA Solution of Hard Computational Problems. Science 268(5210), 542–
545 (1995) 

11. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: 
RNA solutions to chess problems. Proceedings of the National Academy of Sciences of 
the United States of America 97(4), 1385–1389 (2000) 

12. Yamamoto, M., Kameda, A., Matsuura, N., Shiba, T., Kawazoe, Y., Ohuchi, A.: A 
separation method for DNA computing based on concentration control. New Generation 
Computing 20(3), 251–261 (2002) 

13. Lee, J.Y., Shin, S.Y., Park, T.H., Zhang, B.T.: Solving traveling salesman problems with 
DNA molecules encoding numerical values. Biosystems 78(1-3), 39–47 (2004) 

14. Hartmanis, J.: Response to the Essays on Computational-Complexity and the Nature of 
Computer-Science. Acm Computing Surveys 27(1), 59–61 (1995) 

15. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for 
DNA computing based on a thermodynamic approach. Nucleic Acids Res. 33(3), 903–911 
(2005) 

16. Xiong, F., Spetzler, D., Frasch, W.: Elimination of Secondary Structure for DNA 
Computing. In: Proceedings of DNA13 (2007) 

17. Yamanishi, K., Yasuno, H.: Ligase chain reaction (LCR). Hum. Cell. 6(2), 143–147 
(1993) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 161–169, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Approach for Using Modified Nucleotides in Aqueous 
DNA Computing 

Angela M. Pagano1 and Susannah Gal2 

1 SUNY Cortland, Department of Biological Sciences, P.O. Box 2000, 
Cortland, NY 13045, USA 

paganoA@cortland.edu 
2 Binghamton University, Department of Biological Sciences, P.O. Box 6000, 

Binghamton, NY 13902, USA 
sgal@binghamton.edu 

Abstract. The concept of aqueous computing involves the use of large numbers 
of initially identical molecules to serve as memory registers in a fluid 
environment.  Here, we consider a new approach to aqueous computing where 
modified nucleotides are used to ‘write’ on double-stranded DNA molecules to 
establish the logical values of true or false for a set of clauses.  We introduce an 
implementation scenario where binding proteins specific to each modification 
can be used to selectively isolate DNA fragments with these modified 
nucleotides.  In addition, we present initial results showing successful 
incorporation and detection of modifications as well as separation of modified 
molecules using binding proteins.  As there are millions of molecules with 
corresponding binding proteins, this approach has the potential to yield 
unlimited computing power as compared with other aqueous computing 
methods.  

1   Introduction 

The successful use of molecular biology methods as computational tools by Adelman 
[1] has led to the development of a variety of DNA computing techniques.  Aqueous 
computing as proposed by Head and Gal [2] (with an invitation to participate in Head 
et al. [3]) uses large numbers of initially identical molecules, such as DNA, which 
serve as memory registers in a fluid environment.  Bit values (e.g., 0, 1) can be 
“written” on the molecule and subsequently “read” to determine solutions to 
computational problems.  A major advantage of aqueous computing is that the fluid 
memory can be proportioned out and mixed back together such that problems 
requiring an exponential number of steps to solve conventionally, involve only a 
linear number of steps in this method.   

Initial approaches to aqueous computing in our lab have involved the use of DNA 
and enzymes to perform the writing step [3]. Restriction enzymes cut DNA at specific 
sites along the molecule leaving overhangs at the cut site.  Overhanging ends are 
filled in using a DNA polymerase, producing blunt ends.  DNA fragments are then 
pieced back together using DNA ligase.  The resultant “written” molecule is a longer 
DNA strand which can no longer be cut by the same restriction enzyme. This method 



162 A.M. Pagano and S. Gal 

has successfully been used to solve a 3-variable satisfiability (SAT) problem and a 
3x3 Knight problem [3, 4].  However, this approach requires significant time – 
approximately two days for each “write” operation – as well as loss of DNA at each 
step, thereby limiting its utility in solving larger computations. 

More recently, methylation of DNA [5] has been explored as a means to perform 
the writing step in an aqueous computing approach.  In the “written” molecule, 
methylation of a restriction enzyme site prevents the enzyme from cutting the DNA.  
A site is assigned bit zero (false) if the site has been methylated and bit one (true) if 
unmethylated.  The advantage here is the use of a single enzyme (vs. three) in the 
write step, although methylases are not as efficient in modifying DNA as restriction 
enzymes.  Additionally, pairs of methylases are required to represent each state of a 
variable; for instance p and p’.  Thus, for a 4-variable problem, eight methylases for 
eight different restriction enzyme sites would be required.  Partial success in solving a 
3-variable, 4-clause SAT problem has been demonstrated with this method [5].  
Hence, there are still significant challenges in applying DNA methylation to 
computational problems. 

Here we propose a new approach to aqueous computing where the “writing” step 
involves the labeling of DNA with different molecules incorporated into nucleotides.   
These modified nucleotides are used to selectively isolate DNA fragments using 
binding proteins specific to the label of interest.  We demonstrate an implementation 
strategy for using these binding proteins in aqueous computing, the successful 
incorporation of 4 different modified nucleotides into DNA, and isolation of DNA 
labeled with two of these modified nucleotides using binding proteins.  The 
commercial availability of modified nucleotides and corresponding binding proteins 
allows for potentially larger computations while the ease of incorporation, we felt, 
would likely speed up computation time. 

2   Materials and Methods 

The plasmid DNA, pBluescript SKII (Stratagene Incorporated, La Jolla, CA) was 
used as the starting hardware.  Labeled PCR product was derived from the 
amplification of the approximately 200 base pair multiple cloning site of this plasmid 
with combinations of four different modifications:  Alexa Fluor-488 universal primer 
(Integrated DNA Technologies, Coralville, IA), BODIPY-FL modified reverse primer 
(BODIPY-FL from Invitrogen, Carlsbad, CA; amine reactive reverse primer from 
Integrated DNA Technologies), biotin as either a reverse primer (Integrated DNA 
Technologies) or as biotin-aha-dCTP (Invitrogen), and digoxigenin (DIG) dUTP in a 
PCR labeling mix (Roche Diagnostics, Indianapolis, IN).  Taq polymerase was 
obtained from New England Biolabs (Ipswich, MA).  Resultant labeled DNAs were 
purified using the QIAquick PCR Purification Kit (Qiagen, Valencia, CA). 

To ensure specificity of our detection system, binding proteins – linked to the 
enzyme horse radish peroxidase (HRP) for chemiluminescent detection or alkaline 
phosphatase (AP) for colorimetric detection – for the specific labels were tested for 
cross reactivity using a dot blot.  For the blots, 1µl samples of each modified DNA 
were dotted onto a nylon membrane and permanently bound using a UV crosslinker.  
Four membranes were set up such that each antibody could be tested against each 



 An Approach for Using Modified Nucleotides in Aqueous DNA Computing 163 

modified DNA and their respective positive controls.  Membranes were incubated in 
blocking solution (5% BSA, 0.1% Tween-20) for 30 minutes prior to one hour of 
incubation with the binding protein diluted in blocking solution.  Blots were rinsed 
twice in wash solution (1x TBS, 0.1% Tween) to eliminate excess antibody prior to 
detection.  For the biotin binding protein streptavidin (Roche Diagnostics), detection 
of binding was visualized via a chemiluminescent substrate for HRP (Pierce Biotech 
Incorporated, Rockford, IL).  For other modifications, antibodies to DIG (Roche 
Biotech Incorporated), Alexa Fluor-488 (Invitrogen), and BODIPY-FL (Invitrogen) 
were used.  The DIG antibodies are provided with a conjugated AP while the other 
two modifications were visualized through a secondary anti-rabbit antibody linked to 
AP.  This enzyme was visualized using colorimetric detection with nitro blue 
tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) (Roche Biotech 
Incorporated), substrates of alkaline phosphatase.  

To separate DNA labeled with different modifications, we used magnetic beads linked 
to binding proteins.  The specific modifications of interest bind to the beads which are 
easily separated from other molecules using a small magnet.  We focused initial bead 
binding experiments on DNA labeled with Alexa Fluor and/or biotin.  For capture of 
biotinylated DNA, streptavidin linked magnetic beads were purchased from Roche.  For 
capture of Alexa Fluor labeled DNA, anti-Alexa Fluor-488 beads were created using 
Magna-Bind carboxyl derivatized magnetic beads using the manufacturer’s protocol 
(Pierce).  Our initial cross-linking of the anti-Alexa Fluor-488 antibody to the beads 
indicated approximately 65% of the antibody was removed from the solution and thus is 
presumed to be attached to the beads.  Approximately one modification per antibody 
could bind to the bead, which is more or less as expected given a level of binding of 
approximately 0.1 pmole Alexa Fluor-488 per 5ul of beads.  

For binding, labeled DNA was incubated with the magnetic beads in PBS (130mM 
NaCl, 2mM KCl, 20mM Na2HPO4, 2mM NaH2PO4, pH 7.4)) and EDTA (10mM) and 
placed on a shaker for 30 minutes at room temperature.  At the end of this time, the 
unbound fraction was removed.  Initially, to test binding, beads were boiled for 5 
minutes in 1x PBS to remove the bound fraction.  Visualization of bound and 
unbound fractions of bead reactions was done through dot blot or Southern blot.  For 
Southern blots, all samples were run on a 10% polyacrylamide Tris borate EDTA 
Ready Gel (BioRad Corporation, Richmond, CA) and the presence of DNA detected 
using ethidium bromide.  Gels were transferred to a nylon membrane and 
modifications detected using the appropriate binding protein and reactions as above.  
We later tried to remove the bound modified DNA fragments using mild conditions so 
that the DNA remained double-stranded (allowing for rebinding to new beads).  We 
tried a number of conditions including low pH (0.1M glycine pH 2.5), formamide 
(95-1% at 65ºC), Tris EDTA (10mM, 1mM at 70ºC), NaOH (0.1N with 1mM EDTA 
at room temperature), Tris (10mM at 55ºC) and SDS (1% in 50mM Tris 10mM 
EDTA at 65ºC for 10 minutes).  Visualization and detection were done as above. 

3   Implementation and Results 

To implement the use of modified nucleotides into a logic problem, we first define  
the coding of DNA strands.  In our case, each modification represents a variable  



164 A.M. Pagano and S. Gal 

(e.g., “p”) that satisfies two conditions.  The presence of the modification is taken as 
the true condition (p) while its absence is taken as the false condition (p’).  For 
example, let’s say we randomly assign the DNA modified by Alexa Fluor-488 and 
biotin with the variables p and q, respectively.  If a DNA molecule is labeled with the 
Alexa Fluor-488 modification, we consider the molecule to be “True” at variable p.  If 
it is labeled with biotin, we consider the molecule to be “True” at variable q.  The 
AND logical operator is satisfied when the DNA molecule contains all variables that 
satisfy the specified clause (e.g., DNA labeled with both biotin and Alexa Fluor-488 
satisfies p AND q).  The OR logical operator is satisfied when the DNA contains 
either one or both variables that satisfy the specified clause (e.g., DNA labeled with 
either biotin or Alexa Fluor-488 or both modifications satisfies p OR q).   

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Encoding strategy to incorporate modifications into DNA strands.  Primers (P) and 
nucleotides (N) containing specific chemical modifications (shapes on strands) can be used in 
the PCR to create DNA fragments with those chemical modifications as shown.  Specific 
chemical modifications include fluorescent compounds such as Alexa Fluor-488 and Bodipy-
FL or non-fluorescent ones such as digoxigenin (DIG) and biotin.  These four chemical 
modifications have successfully been incorporated into DNA fragments (see below).  

The writing step (encoding) corresponds to incorporation of the modified 
nucleotides or primers using PCR (Figure 1).  Oligonucleotide primers and 
nucleotides with specific modifications are readily available commercially 
(Invitrogen, Carlsbad, CA and Integrated DNA Technologies, Coralville, IA).  
Reading corresponds to the separation and detection of modified and unmodified 
molecules.  Modified nucleotides are separated using specific binding proteins linked 
to magnetic beads.  The solution to a computational problem is confirmed through 
detection of the presence or absence of the modification on the DNA via dot blot or 
Southern blot as described in the methods. 

3.1   Step 1 of Implementation:  Incorporation of Modified Nucleotides 

In the first step toward implementation, we have successfully labeled PCR fragments 
with 4 different modifications – 2 fluorescent ones, Alexa Fluor-488 and Bodipy-FL 
(Figure 2), and 2 others, DIG and biotin.  The former two were most successfully 
incorporated using PCR primers with these attached fluorescent moieties as 
nucleotides with these modifications were not effectively incorporated by Taq 
 

P 

N



 An Approach for Using Modified Nucleotides in Aqueous DNA Computing 165 

 
 

Fig. 2.  PCR products incorporating fluorescent modifications.   DNA was labeled using 
modified primers with either BODIPY-FL (A) or Alexa Fluor-488 (B) in the PCR and then 
separated using 10% acrylamide gel in Tris-borate EDTA buffer.  Fluorescent products were 
directly visualized using UV light.  

polymerase.  DIG could be incorporated as a dUTP nucleotide derivative while biotin 
has been used to label PCR products either using a biotinylated primer or using 
biotinylated dCTP.  Because modifications can be incorporated as either primers or 
nucleotides, it is possible to create DNA with all 16 combinations of the four labels.  

3.2   Step 2 of Implementation:  Separation of Modified Nucleotides 

In the second step, modified nucleotides are separated using specific binding proteins 
linked to magnetic beads (Figure 3).  The specific modifications of interest bind to the 
 

 

Fig. 3.  Steps in computing p OR q.  Labeled DNAs (‘True’) are represented by p, q and r.  
Unlabeled DNAs (‘False’) are represented by p’, q’, r’.  Each Boolean variable represents a 
distinct modification incorporated into the DNA.  This figure represents a scheme for the 
isolation of the labeled DNAs (bound to the binding proteins) although this approach could 
alternatively be used for retention of unbound material.  

    A            B

~230 bp 



166 A.M. Pagano and S. Gal 

beads (bound fraction) and are separated from other molecules using a small magnet.  
Unlabeled DNAs (unbound fraction) are removed from the tube, leaving only 
sequences that satisfy the specified clause.  Thus, we can isolate either the molecules 
with the modification or those without it allowing one modification to represent both 
p and p’. 
 

3.3   Step 3 of Implementation:  Detection and Isolation of DNA with Modified 
Nucleotides 

We obtained commercially available binding proteins for each of these four modified 
nucleotides and tested them for cross reactivity with non-specific modifications.  In 
all cases, the binding proteins recognized only the appropriately labeled PCR products 
and positive controls (Figure 4).  This specificity should allow us to use the binding 
proteins coupled to magnetic beads as a tool to separate those DNA with modified 
nucleotides from those without (“True”/“False”). 

Our next goal was to bind the modified DNA to magnetic beads and work out 
conditions for removal of the bound material from the beads without denaturing the 
DNA strands (as shown in Figure 3).  We chose to focus initial bead binding 
experiments on DNA with only 2 modifications – Alexa Fluor-488 and biotin.  Both 
streptavidin and anti-Alexa Fluor linked beads were able to successfully bind labeled 
PCR products (Figure 5). We had some difficulty, however, with the magnetic beads 
modified for the binding of Alexa Fluor labeled DNA.  Initial cross-linking of the 
anti-Alexa Fluor antibody to the Magna-Bind magnetic beads indicated that 65% of 
the antibody was removed from the solution and thus presumed to be attached to the 
beads.  When these beads were washed (involves adding buffer, mixing and pulling 
 

 
 

 
 
 
 
 
 
 
 

Fig. 4. Dot blots results testing cross-reactivity of binding proteins.  PCR products and controls 
labeled with specific modified nucleotides (AF = Alexa Fluor-488, BO = BODIPY-FL, DIG = 
digoxigenin, B = biotin, + = positive control) were dotted onto nylon membrane and treated with 
UV light to crosslink the DNA permanently to the membrane.  Membranes were incubated with 
specific antibodies or binding proteins (a) anti-DIG, b) anti-BODIPY, c) anti-Alex Fluor, and d) 
streptavidin (binds biotin)) to identify the modified products.  Binding proteins were then localized 
either using alkaline phosphatase (a, b, & c) or horse radish peroxidase as described in the methods.  
Dark spots on the membranes indicate the presence of antibodies or binding proteins at that 
location.  Binding proteins recognized only specific modifications and not other unrelated 
compounds.  

 

AF      BO     DIG      B        + 

 (a) (b) 

BO        DIG       B       AF      + 

(c) 

AF       BO     DIG      B           + 

(d)

AF      DIG       B       BO       +  



 An Approach for Using Modified Nucleotides in Aqueous DNA Computing 167 

 
 
 
 
 
 

Fig. 5.  Southern blot of fractions from binding and release reactions.  DNAs were separated 
using 10% acrylamide gel in Tris-borate EDTA buffer transferred to nylon membranes and then 
detected using streptavidin-HRP (Panel A) or anti-Alexa Fluor antibodies (Panel B). Panel A. PCR 
products labeled with biotin (lane 3) were incubated with streptavidin magnetic beads and the 
unbound fraction saved (lane 1).  The bound material was released from the beads by boiling in 1x 
PBS (lane 2).  Panel B. PCR products labeled with Alexa Fluor-488 and biotin (lane 1) were 
incubated with magnetic beads coated with anti-Alex Fluor antibodies and the unbound material 
was removed before (lane 2) and after washing (lane 3).  The bound material was then removed 
with an incubation in 1% SDS in 50mM Tris 10mM EDTA at 65ºC for 10 minutes (lane 4).  

the beads out of solution using a magnet), the washes contained traces of the antibody 
suggesting that some of the antibody must have been coming off of the beads.  We 
have also noted variability in the amount of Alexa-fluor modified DNA binding to the 
beads, presumably for this reason. 

Removing the bound modified DNA fragments using mild enough conditions such 
that the DNA stayed double-stranded remained more of a challenge.  Many of the 
standard approaches – high pH or high temperature – cause melting of the DNA 
which would result in mixing of top and bottom strands.  This reorganization of 
strands may produce different combinations of the modifications than existed in the 
original sample.  Treatment with SDS (1% in 50mM Tris 10mM EDTA at 65ºC for 10 
minutes) seemed to remove a substantial amount of the bound modified DNA while 
not causing melting of the strands (see Figure 5B).  We tried a number of other 
treatment conditions which either showed no signal in the removed DNA, multiple 
bands or higher bands suggesting melting of the DNA fragments (results not shown). 

4   Conclusions and Future Work 

Using different molecules incorporated into nucleotides, we successfully labeled PCR 
fragments with 4 different modifications.  We found that two of these modifications 
(Alexa Fluor-488 and BODIPY-FL) were more efficiently incorporated into the PCR 
product as modified primers.  Given that the remaining modifications (biotin and 
DIG) can be incorporated at any position along the DNA strand, we expect to be able 
to create all 16 different types of DNA (with and without each of the 4 modified 
nucleotides) for use in computing problems.   

For two of these modifications, biotin and Alexa Fluor-488, we were able to show 
the ability of binding proteins linked to magnetic beads to isolate labeled DNA 
fragments.  However, we are still working on determining conditions for removing 
bound DNA from the beads without separating the strands.  Treatment with SDS 
worked well but this approach incurs the added challenge of removing this reagent 
before rebinding, creating an extra step in the computing process.   An ideal approach 
would be one involving temperature as that would involve no additional purification 

 (A)     1     2      3 (B)       1       2      3     4



168 A.M. Pagano and S. Gal 

steps before rebinding the released DNA.  We are working, therefore, on temperature 
conditions where the binding interaction is disrupted but DNA hybridization is not 
affected [6].   

Our experiments demonstrate that DNA can be successfully modified to contain a 
variety of fluorescent and non-fluorescent labels. We propose an experimental plan 
for implementation of the aqueous computing approach using these modified 
molecules.  We use DNA for its convenience and ease in incorporating these 
modifications, however, any molecule can be used as the memory register.  In our 
case, each modification on the DNA represents a variable that satisfies two 
conditions.  The presence of the modification results in the true condition (p) while its 
absence gives us the false condition (p’).  The results presented here allow for the 
creation of logically consistent molecules at four variables with labeling of only four 
sites.  We expect to be able to scale-up this approach since there are at least 12 
fluorescent and 3 non-fluorescent modifications with commercially available binding 
proteins.  However, each binding protein would need to be tested for specificity to 
their appropriate modification as described in the methods.  Any binding protein 
showing cross reactivity could be further purified using affinity column 
chromatography to remove the undesired binding protein fraction. 

With all of these chemical compounds incorporated, either as modified primers or 
nucleotides, we would be able to solve 15-variable problems.  Thus, this approach has 
potentially greater computing power than methylation which would require 30 distinct 
enzymes for the same number of variables.  Additionally, modifications used in this 
approach are not site specific (as are methylases and restriction enzymes), allowing us 
to label anywhere along the DNA strand.  Fluorescent molecules are of particular 
interest since they can also be visually detected using gel electrophoresis, a 
spectrophotometer, or fluorescence activated cell sorter.  Direct visualization would 
eliminate the need for chemical detection via dot blot or Southern blot, speeding up 
computational time.  In general, there are millions of compounds to which binding 
proteins exist.  So, in reality, there is no limit to the power of this approach to aqueous 
computing provided we can work out the conditions for its implementation.  

 
Acknowledgments.  The authors would like to acknowledge support from the Air 
Force for this project, contract number AFOSR FA87500620002. 

References 

1. Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 
1021–1024 (1994) 

2. Head, T., Gal, S.: Aqueous computing: Writing into fluid memory. Bulletin of the European 
Association for Theoretical Computer Science 75, 190–198 (2001) 

3. Head, T., Chen, X., Yamamura, M., Gal, S.: Aqueous computing: A survey with an 
invitation to participate. J. Computer Science & Technology 17, 672–681 (2002) 

4. Head, T., Chen, X., Nichols, M.J., Yamamura, M., Gal, S.: Aqueous solutions of 
algorithmic problems: Emphasizing knights on a 3X3. In: Jonoska, N., Seeman, N.C. (eds.) 
DNA Computing. LNCS, vol. 2340, pp. 191–202. Springer, Heidelberg (2002) 

 



 An Approach for Using Modified Nucleotides in Aqueous DNA Computing 169 

5. Gal, S., Monteith, N., Shkalim, S., Huang, H., Head, T.: Methylation of DNA may be used 
as a computational tool: Experimental evidence. In: Mahdavi, K., Culshaw, R., Boucher, J. 
(eds.) Current Developments in Mathematical Biology, vol. 38, pp. 1–14. World Scientific, 
New Jersey (2007) 

6. Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J., Uhlén, M.: The 
biotin-streptavidin bond can be reversibly broken using water at elevated temperatures. 
Electrophoresis 26, 501–510 (2005) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 170–181, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Modeling Non-specific Binding in Gel-Based DNA 
Computers 

Clifford R. Johnson 
clifford.johnson@usc.edu 

Abstract. In attempting to automate the computation of n-variable 3-CNF SAT 
problems using DNA, two physical architectures were scrutinized, the "in-line" 
architecture and the "waste-well" architecture.  Computer modeling of the 
effects of non-specific binding predicted that the in-line version would not work 
for problems of more than 7 variables.  According to the model, the "wrong 
answer" DNA strands would swamp out the "correct answer" DNA strands in 
the final computation module.  And in fact, the in-line architecture never 
performed a computation higher than 6 variables.   

To perform a 20 variable instance of the 3-CNF SAT problem a manual 
version of the waste-well architecture was employed.  Surprisingly though, after 
analysis of the modeling results, it appears that through a simple protocol 
change, the in-line architecture may have been able to perform higher order 
computations. 

1   Introduction 

The first molecular computation was performed by Len Adleman at the University of 
Southern California in 1994.  Using DNA molecules to perform the computation, 
Adleman solved a 7-city, Directed Hamiltonian Path Problem [1].  The molecular 
implementation used to solve the 7-city DHPP was surprisingly simple.  However 
because of the use of enzymes (ligase) to covalently ligate strands, it was apparent 
that it would be almost impossible to scale-up the computation, i.e., to solve larger 
problems, using this paradigm.  The making and breaking of covalent bonds using 
enzymes is notoriously inefficient; 40% reaction completion is considered good.  It's 
messy, difficult, inefficient, error prone.  Additionally, the envisioned simplicity of 
molecular computation disappears - computation schemes begin to look like Rube 
Goldberg devices.  For computations on the order of a 20 variable problem (about 
8,000 times more complex than the 7 city problem), a new molecular paradigm was 
necessary, one that could somehow avoid biology's inherent messiness. 

A new paradigm was formulated based on Richard Lipton's method for encoding 
DNA to represent binary strings [2,3], and was called the "modified sticker model" 
[4].  It involves no enzymes, and no covalent bond formation or destruction.  The 
computation is performed simply through the hybridization and denaturing of DNA 
hydrogen bonds.  This is the paradigm used to perform the 20 variable 3-CNF SAT 
problem published in Science [5], which remains at this time, the most complex 
problem solved using molecules.   



 Modeling Non-specific Binding in Gel-Based DNA Computers 171 

For the most part, molecular computations are performed by hand, at the lab bench.  
The computation of the instance of the 20 variable 3-CNF SAT problem [5], took 2 to 
3 man-weeks to perform by hand.  This is labor intensive and error prone.  One of the 
project goals was the automation of the computation process.  In trying to automate 
the computation of 3-CNF SAT problems, the question arose: What physical 
hardware configuration is best?  Two different architectures vied for the honor: One 
was called the "in-line" architecture; the other was called the "waste-well" 
architecture.  Both architectures were actually implemented and tested.   

Computer modeling of the effects of non-specific binding (NSB) predicted that the  
in-line  version would not work for problems of more than 7 variables - the  wrong 
"answer" DNA strands would swamp out the "correct answer" DNA strands in the 
final computation module.  In fact, the in-line architecture never performed a 
computation higher than 6 variables, and the waste well architecture was employed to 
perform the 20 variable computation.  Surprisingly though, after analysis of the 
modeling results, it appears that through a simple protocol change, the in-line 
architecture may have been able to perform higher order computations. 

2   The 3-CNF SAT Problem 

The Satisfiability problem (SAT) is of interest both historically and theoretically.  
Historically, the SAT problem was the first to be shown to be NP complete.  
Theoretically, the SAT problem plays a critical role in computer science applications 
and theory.  In practice, the SAT problem is fundamental in solving many application 
problems in database design, CAD-CAM, robotics, scheduling, integrated circuit 
design, computer networking, and so on.  "Methods to solve the SAT problem play a 
crucial role in the development of efficient computing systems."  [6]  SAT problems 
are a set of computationally intractable NP-complete problems.  Problems in Class NP 
are considered intractable because as the number of variables increases linearly, the 
computation time increases exponentially.  For example, a 100 variable instance of a 
3-SAT problem might take IBM's Big Blue, computing at 135 teraFLOPS, 3.2 million 
centuries to solve, essentially the problem is unsolvable.  

The SAT Problem 
The goal of the SAT problem is to determine whether there exists a satisfying truth 
assignment for a given Boolean expression.  That is: 

Let U = {x1, x2,..., xn} be a set of n Boolean variables.  A truth assignment for U is 
a function T : U → {true, false}.  Corresponding to each variable xi are two literals, 
xi and ¬xi (not xi) that can be assigned to the variable.  A literal xi is t r ue  under T 
iff T(xi) = true; a literal ¬xi is t r u e  under T iff  T(xi) = false).   

A set of literals surrounded by parentheses is called a clause, and a set of 
clauses is called a formula.  

A satisfying assignment for a formula, φ is called a solution.  
The restriction of SAT to instances where all clauses have length k is called k-

SAT.  
 



172 C.R. Johnson 

The Conjunctive Normal Form (CNF) 
Let φ be a formula.  Let C be the set of clauses for that formula.  φ is a formula in 
conjunctive normal form (CNF), implies that a truth assignment T : U → {true, false} 
satisfies c∈ C iff at least one literal in c is true under T.  T satisfies φ iff it satisfies 
every clause in φ.  

Equation 1 shows an instance of a 10 variable 3-CNF SAT problem with 14 clauses.  
Notice that there are 3 literals per clause separated by the OR symbol v, and that each 
clause is separated by the AND symbol ^.  This is the conjunctive normal form for a 
formula 3-SAT problem. 

(   X2 v   X4 v   X9 ) ^ (   X8   v ¬X10 v X5 ) ^ ( ¬X6 v ¬X8 v ¬X10 ) ^ ( X2 v ¬X4 v ¬X9 ) ^ 
φ  = ( ¬X9 v ¬X3 v   X6 ) ^ (   X10 v    X5  v X7 ) ^ ( ¬X7 v   X1 v ¬X2  ) ^ ( X2  v ¬X4 v   X9 ) ^ 
 (   X3 v   X6 v ¬X8 ) ^ ( ¬X5   v    X7  v X1 ) ^ ( ¬X2 v ¬X4 v ¬X9  ) ^ ( X2  v   X4 v ¬X9 ) ^ 
 ( ¬X1 v ¬X2 v   X4 ) ^ (   X2   v  ¬X4  v X9 )     

(1)

 

Here φ has the unique solution:  
X1 = F, X2 = T, X3 = T, X4 = F, X5 = F, X6 = F, X7 = F, X8 = T, X9 = F, X10 = T. 

 
To solidify these concepts in an informal fashion, think of this as a kind of 

Agatha Christie murder mystery.  Ten professors, named Professor X1, Professor 
X2, ..., and Professor X10, are invited to dinner.  Some of the professors may 
have been "eliminated" on their way to dinner.  We want to know who made it 
to the dinner, and who didn't.  The clauses provide clues.  For example, the first 
clause tells us that either Professor X2 arrived, OR Professor X4 arrived, OR 
Professor X9 arrived for dinner that night.  The second clause, for example, 
tells us that either Professor X8 arrived, OR Professor X10 did not arrive, OR 
Professor X5 did arrive for dinner.   

If we put all of the clues (clauses) together, we get the solution to the 
mystery.  In the unique solution for φ for Equation 1, we see that Professor X1 did 
not arrive to dine, whereas Professor X2 did, and so on.  Here is the interesting 
part.  If one were to try to solve Equation 1, without knowing the answer 
beforehand, it would take a very long time to find the solution, even for this 
relatively short 10 variable problem.  Yet once we are given a solution for φ, it 
is very easy to verify.  We just check to see if at least one literal in each clause is true. 
(This can be seen with Equation 1.) This is the essence of Class NP problems.  
Problems in Class NP are very, very hard to solve.  Yet once a solution is found, it 
can be verified quickly. 

3   The Molecular Implementation of the 3-CNF SAT Problem 

The implementation paradigm is remarkably straightforward: 

1. To represent all possible variable assignments for the chosen n-variable 
SAT problem, a Lipton encoding [7] for DNA strands is chosen.  For 
each of the n variables x1, x2, . . ., xn, two distinct 15 base value 
sequences are designed - one representing true (T), XkT, and one 



 Modeling Non-specific Binding in Gel-Based DNA Computers 173 

representing false (F), XkF.  Each of the 2n truth assignments is 
represented by a sequence of (n X 15) bases consisting of the 
concatenation of one value sequence for each variable. In this way all 
possible assignments are encoded.  DNA molecules with library 
sequences are termed library strands; a combinatorial pool containing 
library strands is termed a library.   

2. The probes used for separating the library strands have sequences that 
are W-C (Watson-Crick) complements of the value sequences. 

3. The clauses of an n-var CNF SAT problem are formed with acrylamide 
gel modules in which the probes for the clause are covalently bonded to 
the acrylamide gel.  For example, for the last clause of Eq. 1, ( X2   v  
¬X4  v X9 ) the W-C complementary probes for X2T ,  X4F,  X9T are 
covalently bound to the acrylamide gel.  (Figure 1.) 

Strands satisfying 

clause are captured.

Computational 

module 

Failing strands pass 

through to waste. 

Combinatorial 

Library 

A 

B 

Probes 

 

Fig. 1. A and B. A computation. A The combinatorial library enters the gel module which tests 
the clause  (X2 v ¬X4 v X9) using covalently bound DNA probes that are W-C complimentary 
to X2, ¬X4, and  X9. B Strands that do not satisfy the clause, pass through to waste. 

4   The Physical Architectures  

The Molecular Algorithm  
  

1. Under hybridizing conditions (temperature at 15º C), introduce the 
DNA strand library into the first module via electrophoresis.  (This 
library represents all possible variable assignments.) 

2. Under hybridizing conditions, those strands that satisfy the clause, 
hybridize to the probes and remain in the gel module.  Those strands 
that do not satisfy the clause pass through. 



174 C.R. Johnson 

3. The gel module is then heated to 65 º C to release the hybridized 
(satisfying) strands, which are then passed via electrophoresis to the 
next cooled module and a new computation.   

4. The strands captured in the final module represent those variable 
assignments that have successfully satisfied all of the clauses and thus 
represent a solution. 

5. The final gel module is removed to extract the DNA molecules for 
PCR amplification and sequencing of the answer. 

 
Note that this molecular algorithm for the SAT computation is massively 

parallel.   
Two different architectures were considered as candidates for automating this 

algorithm for solving CNF SAT computations using DNA - the in-line architecture 
and the waste-well architecture.   

 
The In-Line Architecture 
The premise of this geometry (Fig. 2) 
is that as long as the next module 
down stream is heated, a valid 
computation can be performed.  Fig. 
3 diagrams the in-line device set-up 
during a computation.  In Fig. 3, 
capture Module 1 is heated to release the combinatorial library, which then moves via 
electrophoresis to Module 2.  The cooled Capture Module 2 captures those strands 
satisfying its clause while those strands not satisfying the clause pass through to the 
next consecutive module (Module 3), which is held hot.  Theoretically, no strands 
should remain in the adjacent down-stream module (Module 3) as the temperature is 
raised to the same release temperature as in Module 1.  All non-satisfying strands 
continue on to Module 4 (which is at room temperature) theoretically clearing out 
Module 3.  As the Hot-Cold-Hot manifold moves to the right performing 
computations, all of the non-satisfying strands will eventually empty to the waste 
reservoir, in theory.   

Note that all of the library strands pass through all of the computation modules 
in this configuration.  It is assumed that the heating of down-stream modules is 
sufficient to release all of the oligonucleotides residing therein and will cause no 
contamination in the upcoming computation.  In short, NSB (non-specific binding) is 
assumed to be inconsequential. 

Though a 6-variable problem was solved using the above set-up, the in-line 
architecture didn't work for larger n's.  Trying to solve a 10-variable problem using 
the in-line architecture, proved fruitless; and in fact, to solve the 20-variable problem 
later on, an un-automated version of the waste-well architecture was employed - it 
was necessary to perform each of the computations by hand. 

However, contradicting the assumption that NSB was inconsequential was some 
experimental evidence that detectable levels of NSB were indeed present in the gels.  
Computational test runs were performed using 32P labeled library.  The library was 
sent through a series of 24 sample modules, using an in-line construction similar to 
the one in Fig. 2.  Some of these modules acted as capture/release modules; some 

Fig. 2. Schematic of the in-line architecture 



 Modeling Non-specific Binding in Gel-Based DNA Computers 175 

were simple agarose modules; and some simple acrylamide modules.  At the end of 
the test, all had some level of residual radioactivity as measured with a Beckman 
Scintillation Counter.  The residual radioactivity varied from 0.8% of the total counts 
to 6.5% of the total counts.  When gels were removed from the glass modules 
(generally the gels slid out very easily), it was determined that about ¼ of the 
radiation was retained in the glass module, even after squirting distilled water through 
the gel trough to remove contaminants.  The interpretation of these results was: (1) 
NSB was occurring on the glass surface, and (2) some sort of NSB / oligonucleotide 
retention was occurring in the gel itself.  It is not known what the mechanism is for 
the retention of oligonucleotides in the gel.  Inclusions, micro-fissures, poor gel 
formation, impurities, or some sort of bonding with the gel, any or all might be 
responsible for the phenomenon.  Some of the radioactivity was probably due to 
radioactive mononucleotides.  However, assuming that NSB is inconsequential is a 
problematic premise. 

↓

↓↓

↓

↑

↑

↑ ↓→

↓

Gel Running 

    Buffer

(-)

Hot Cold Hot

(+)

Agarose

      Capture Layer

A B C ↓
↑

 

Fig. 3. The In-line Architecture. A 35-cm glass tube loaded with the library module, then with 
intercalated blank gel modules, and clause modules.  The system was fitted with three water 
jackets (A, B, C).  Library strands in the capture layer inside of (A) are released and move into 
the capture layer inside of (B).  There, library strands with subsequences complementary to the 
probes are captured and retained.  The rest of the strands passed into the capture layer inside of 
(C) but because (C) is kept hot the strands passed through unhindered. 

 
The advantage of the in-line architecture is its simplicity.  It is basically a glass 

tube packed with computation modules at equally spaced intervals, intercalated by 
gel.  To automate the architecture one simply moves a Hot-Cold-Hot manifold down 
the glass tube (refer to Fig. 3).  The disadvantage of the  in-line  system is that all 
library strands, "good" strands and "bad," go through every computation module, thus 
possibly contaminating the modules.   

 
 



176 C.R. Johnson 

The Waste-Well Architecture  
The second geometry (Fig. 4) is 
called the waste-well geometry.  In 
this architecture, the non-satisfying 
strands of a computational step 
avoid passing through every 
downstream module by going to a 
waste buffer well, where they are 
destroyed.  Again, strands are 
released from module 1, which then 
pass through module 2.  Those strands that satisfy the Module 2 clause are captured 
and those that do not pass through the module.  However, instead of continuing 
downstream possibly contaminating pristine modules, they are diverted immediately 
to a waste well, where they are destroyed.  This second geometry was specifically 
conceived to obviate the accumulating effects of NSB.  The waste well architecture is 
not as simple as the in-line architecture but it does preclude the effects of NSB. 

This paradigm forms the architecture for the first functional automated molecular 
computer [8] solving instances of 10 variable 3-CNF SAT problems. 

The advantage of the waste-well architecture is that unsuccessful DNA strands go 
to waste immediately after the computation, thus leaving downstream modules 
pristine.  The disadvantage of the waste-well architecture is that it is complicated to 
construct [8].  

5   The Mathematical Model 

A priori, modeling the adsorption (i.e., NSB) of DNA in a gel based system would seem 
very difficult.  First, one would have to determine the dominant forces involved in the 
binding reaction both to the gel and to the silica. For silica, some studies indicate that 
three effects, namely: (i) 
shielded intermolecular 
electrostatic forces, (ii) 
dehydration of the DNA 
and silica surfaces, and 
(iii) intermolecular hy-
drogen bond formation 
in the DNA–silica 
contact layer, are the 
dominant contributors 
to adsorption.[9] For 
gels, which are mostly 
fluid, a balance of 
forces maintains the gel 
form (sometimes even 
disturbing them infinitesimally can bring on a phase transitions and/or collapsing of 
the gel).[10]  As mentioned above, inclusions, micro-fissures, poor gel formation, 
impurities, or some other sort of bonding of DNA with the gel, might contribute to NSB.  

A B

Fig. 5. Composite radioactive image showing prog-ression 
of a computation 

Fig. 4. Schematic of the "waste-well" architecture 



 Modeling Non-specific Binding in Gel-Based DNA Computers 177 

These factors would make modeling of NSB a virtual nightmare.  However, by using an 
output/input model, and describing the difference of input - output as due to NSB,  one 
can arrive at a useful model that seems to be consistent with experimental data.  To 
determine the ratio of molecules left behind in each computational module, that is:  

(input-output)/input 
experimental data is needed. 

Fig. 5 was obtained using a Storm phosphor imaging sys-tem.  The progression of a 
computation using lib-rary labeled with 32P was imaged.  Arrow A points to the first 
module in the computation.  Here, the heavy residual radio-activity in this module is 
probably due to radio-active mononucleotides, and not to NSB of the library strands.  
Thereafter, residual radiation dropped drastically; but there was always a slight amount 
left.  This "slight amount" was deemed to be due to NSB of library strands, and ranged in 
value from .05% to 1%  (barely visible in the above image).  Arrow B points to the 7th 
module with a NSB of about 0.1%.  To the right of the module we can just barely see a 
partial solution progressing through a computation. 

 
Modeling the  In-Line  Architecture 
The model uses the following two assumptions: 

1. Non-specific binding takes place in cold modules and has a very low 
constant of disassociation; i.e., it takes hours instead of seconds for NSB 
disassociation to occur, even at the elevated temperatures used to denature 
the probes from the library strands (65ºC). 

2. Both complimentary and non-complimentary strands bind non-specifically 
with equal rates. 

Both assumptions are reasonable.  Assumption 1 ignores NSB in hot modules, yet 
it is apparent from experimental data that once NSB takes place, it takes hours for 
those strands to become disassociated.  

The model is a set of linear difference equations that take into account binding and 
dissociation ratios under various conditions.  The simulation was run on a spread 
sheet (Excel).  

 
In the model, the integers k, n, i refer to the following: 

k refers to the number of variables in the computation; 
n refers to the computation step that is in progress;    
i  refers to the capture module that is in progress;  

 
Let X, Y be 2k vectors, the components of which represent percentages of 

concentrations of each truth assignment strand of the combinatorial DNA.   
Xi  - this vector represents the percentage of released strands entering module i 

after having left module (i – 1).   
Yi  - this vector represents the percentage of strands binding in module i. 

 
We can represent the state of various quantities of interest for each i th module at 

the n th computational step as a series of linear equations: 



178 C.R. Johnson 

1. Yi
n = Ci  Xi

n   i  >  n; Yi
n gives the percentage of strands complimentary 

to the probes of the ith module that actually bind to those probes.  Ci is a 
2k x 1 matrix of binding efficiencies. 

2. Xi+1
n  = [ 1 - Ci ]  Xi

n  ; Xi+1
n gives the percentage of strands that did not 

bind to the i th module and which will continue on to the (i th + 1) 
module. 

3. Xi+1
n+1 =  Ri  Yi

n  ;  Ri  is a 2k x 1 matrix of release efficiencies; Xi+1
n+1 gives 

the percentage of strands released from a capture module after it is 
heated. 

4. Ei
n  =  Hi Xi

n  ;   E
i represents the percentage of strands that bind non-

specifically to the ith module at the n th step.  Hi is a 2k x 1 matrix of 
non-specific binding efficiencies. 

5. ETotal  =  ∑n=1
n=k+4  Ei

n    -  Y
i =k+4

n=k+4 ;  E
Total gives the total percentage of 

strands that have bound non-specifically in the final module. 
 

Using Excel for the simulation, we get the following surface graph (Fig. 6) that 
shows the effects of NSB vs. various binding efficiencies for a 6 variable computation.  
If we assume that we need at least 10 correct solution strands to every 1 error strand to 
un-ambiguously PCR amplify the read out, we see that NSB will prevent the correct 
readout of an answer.  In general, we see that with even very small amounts of NSB, the 
ratio of good strands to contaminating (bad) strands drops drastically.  Binding 
efficiency - the efficiency with which strands bind to their proper complementary probe 
- contributes to the problem, but not by very much. 

 

0.
00

%

0.
20

%

0.
40

%

0.
75

%

1.
50

%

10
0%

97
% 93

% 85
%

0.00

20.00

40.00

60.00

80.00

100.00

G
o

o
d

 t
o

 B
ad

% NSB

Binding Eff.

Surface Graph of Good to Bad Ratio of PCR-able Strands

80.00-100.00

60.00-80.00

40.00-60.00

20.00-40.00

0.00-20.00

 

Fig. 6. Error Surface Graph 



 Modeling Non-specific Binding in Gel-Based DNA Computers 179 

Ef f e c t s of  Bi nding and N S B  on Good t o  B ad R at io  of  P C R - a bl e  

S t r ands

0. 00

10. 00

20. 00

30. 00

40. 00

50. 00

60. 00

70. 00

80. 00

0. 00% 0.50% 1.00% 1.50% 2.00% 2.50%

% N o n S p e c i f i c  B i n d i n g

100% Binding Efficiency 95% Binding Efficiency

88 % Binding Efficiency
 

Fig. 7. Binding Efficiency Effect 

This is seen more clearly in Fig. 7.  In Fig. 7, we compare the ratios of correct 
answer strands to wrong strands found in the final module for three different binding 
efficiencies.  100% binding is the ideal, i.e., when all of the strands that should bind to 
probes in the final module do in fact bind; 95% binding is the efficiency claimed by 
the technical staff at Mosaic;1 and 88% binding is the lowest efficiency obtained 
experimentally in the laboratory.  As is seen in Fig. 7, for a 6 variable problem, any 
rate higher than 0.15% for NSB may cause problems in solution resolution.  Fig. 8 
extrapolates these results to problems of higher complexity. 

Fig. 8 shows the results of the simulation for a NSB rate of 0.1%.  The x-axis 
represents computational complexity, i. e., the number of variables in a 3-CNF SAT 
computation.  From Fig. 8, we see that at the 0.1% rate, the percentage of NSB 
strands is equal to the percentage of answer strands for a 7 variable SAT problem.  
This corresponds closely with experimental observation.   

Experimental results, phosphor imaging data and computation runs, are consistent 
with the modeling simulations - that is that the build up of contaminating strands due 
to NSB in the final module will swamp out the correct answer strands for 
computations with  n > 7.  So, if the model's premises are true, there seems to be no 
way to circumvent this build-up, and the in-line architecture seems to be condemned 
to  toy computations of just a few variables.   

Or is it? 
The surprise lies in the way the final capture module is handled.  From the DNA6 

paper "Solution of a Satisfiability problem on a gel based DNA computer," [4] 
 

                                                           
1 Personal communication. 



180 C.R. Johnson 

0.000E+00

5.000E-02

1.000E-01

1.500E-01

2.000E-01

2.500E-01

3.000E-01

3.500E-01

4.000E-01

4.500E-01

5.000E-01

0 5 10 15 20 25 30

% Answ er strand

% NSB in f inal module

n =

Theoretical crossover point,  

n = 7, where oligos due to 

non-specific binding out-

number the answer strands. 

 

Fig. 8. Swamping Effect of Non-Specific Binding 

we see  that the gel is extracted from the glass tube and the final capture layer is 
dissected away.  It is then crushed and soaked in 5 ml of water.  The captured answer 
strands are then extracted from the gel by incubating the gel at 65ºC for 12 hours.    

This procedure allows contaminating strands the time to leach out of the final gel 
module into solution along with the answer strands.  Even though the dissociation 
time for NSB is on the order of hours, 65ºC for 12 hours is long enough for all DNA 
strands, answer strands as well as error strands, to be eluted from the crushed gel.  

A better procedure would be, at the end of the computation, under denaturing 
conditions (65ºC), to elute the answer strands either into a pristine gel module or onto 
an elution membrane via electrophoresis, for half an hour.  This would allow the 
answer strands cleared out of the final computation module leaving behind the error 
strands.  Here, the long dissociation time for NSB works for us. 

6   Conclusion 

The in-line architecture is attractive because of its simplicity and the apparent ease of 
automatability.  However, the in-line geometry was plagued by the effects of non-
specific binding.  We have seen that a simple protocol change would probably have 
lessened the effects of non-specific binding.   

However, many different and poorly understood factors affect the phenomenon of 
non-specific binding – the type of gel, the buffer, the type of glass, can all affect non-
specific binding.  To properly characterize non-specific binding would be a lengthy 
and frustrating undertaking.  In fact, the best strategy is probably to employ a 
geometry that precludes the effects of non-specific binding, that is, to use something 



 Modeling Non-specific Binding in Gel-Based DNA Computers 181 

like the waste-well architecture that was eventually employed, albeit manually, in the 
20 variable computation [5], and as an automated DNA computer in solving 10 
variable SAT problems[8]. 

Acknowledgements 

I would like to thank Rebecca A. Anderson for her support on this project. 

References 

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. 
Science 266, 1021–1024 (1994) 

2. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer. In: 
Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of a DIMACS 
Workshop, April 4, 1995. DIMACS: Series in Discrete Mathematics and Theoretical 
Computer Science, vol. 27, pp. 37–65. Princeton University. American Mathematical 
Society, Providence, RI (1996) 

3. Lipton, R.: DNA Solution of Hard Computational Problems. Science 268(5210), 542–545 
(1995) 

4. Braich, R., Johnson, C., Rothemund, P.W.K., Hwang, D., Chelyapov, N., Adleman, L.: 
Satisfiability Problem on a Gel Based DNA Computer. In: Condon, A., Rozenberg, G. 
(eds.) DNA 2000. LNCS, vol. 2054, Springer, Heidelberg (2001) 

5. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a 20-
Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002) 

6. Gu, J., Pardalos, P., Du, D. (eds.): Preface, Satisfiability Problem: Theory and 
Applications. DIMACS Series in Discrete Mathematics and Computer Science, American 
Mathematical Society, Providence, Rhode Island (1997) 

7. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer. In: 
Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of a DIMACS 
Workshop, April 4, 1995. DIMACS: Series in Discrete Mathematics and Theoretical 
Computer Science, vol. 27, pp. 37–65. Princeton University. American Mathematical 
Society, Providence, RI (1996) 

8. Johnson, C.: Automating the DNA Computer. In: Mao, C., Yokomori, T. (eds.) DNA 
Computing. LNCS, vol. 4287, Springer, Heidelberg (2006) 

9. Melzak, K.A., Sherwood, C.S., Turner, R.F.B., Haynes, C.A.: Driving forces for DNA 
adsorption to silica in perchlorate solutions. J. of Colloid and Interface Science (181), 
635–644 (1996) 

10. Tanaka, T.: Gels. Scientific American 244(1), 124–138 (1981) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 182–190, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Stepwise Assembly of DNA Tile on Surfaces 

Kotaro Somei1, Shohei Kaneda2, Teruo Fujii2, and Satoshi Murata1 

1 Interdisciplinary Graduate School of Science and Engineering, 
Tokyo Institute of Technology, Yokohama, 226-8502 Japan 

somei@mrt.dis.titech.ac.jp, murata@dis.titech.ac.jp 
2 Institute of Industrial Science, 

The University of Tokyo, Tokyo, 153-8505 Japan 
{shk,tfujii}@iis.u-tokyo.ac.jp 

Abstract. A method of solid-phase self-assembly for building DNA 
nanostructure in a microfluidic device is proposed in this paper. In this method, 
pre-assembled DNA lattice is anchored on solid surface, which gives nuclei for 
further growth of the lattice. Flushing out the solution around the nuclei by flow 
and replace it by different solution enables us stepwise self-assembly in a single 
chamber at the constant temperature. The results of experiment to verify 
feasibility of the proposed method will be shown. 

Keywords: DNA tile, self-assembly, stepwise assembly, microfluidic device. 

1    Introduction 

The production technology of the nanometer order is divided roughly into two 
categories: top-down, and bottom-up. The top-down production technology, typified 
by semiconductor processing technology, achieves the resolution of less than a hundred 
nanometer based on lithography technology. This technology is applied in the 
MEMS/NEMS, enabling the fabrication of microsensors, micromotors and other 
micromachines. However, top-down processing technology has an essential drawback; 
the size of manufacturing facilities greatly increases as the processing method evolves 
to be more sophisticated. On the other hand, the bottom-up technology realizes 
nanoscale objects made of atoms, molecules and nanoparticles, not by using external 
apparatus but by designing interaction among them. This kind of technique, where 
those components coalesce into complicated nanostructures by self-organization, is 
now drawing increased attention. Especially, active researches are done on the 
self-assembly of biomolecules such as DNA and proteins, and on the self-organization 
using polymer. The bottom-up technology does not require a huge plant for production 
while making minute processing possible; however there still remain numerous 
problems with practical applications such as low reliability during the assembly 
process. 

The DNA nanotechnology was initiated in 1982 by Seeman when he proposed 
self-assembled nanostructures made of DNA molecules [1]. The key in this technology 
is immobilization of Holliday junction (crossover) to make well-defined DNA 
structures. Winfree and Seeman utilized one of such structures called DX (double 



 Stepwise Assembly of DNA Tile on Surfaces 183 

crossover) tile to realize a patterned lattice made of these tiles [2]. This method allows 
us to construct not only simple pattern such as periodic stripes or barcodes, but also the 
complex algorithmic pattern such as Sierpinski’s fractal [3]. However, it is very 
difficult to obtain perfect DNA lattices in one-pot reaction. The growth process of DNA 
lattice is strongly influenced by the concentration of monomer tiles as well as the 
temperature of the solution [4]. As the reaction progresses, decreased concentration of 
monomer tiles in the tube is inevitable which results in erroneous assembly.  

Reif proposed another method of DNA tile self-assembly called the hierarchical 
assembly procedure [5]. In this method, instead of mixing all kinds of DNA in a single 
step, several equimolar DNA solutions are combined at an appropriate temperature for 
the self-assembly of one specific subcomponent. Each subcomponent is independently 
assembled, and then mixed with solution of another subcomponent at higher 
temperature to build higher order components and so on. In this manner, they built fully 
addressable DNA lattice made of larger DNA tiles called 4×4 tile [6]. Advantage of this 
method is that it requires less kinds of orthogonal sequence of DNA than that of one-pot 
self-assembly. 

We have proposed a method of DNA tile assembly by using microfluidic device 
[7,8]. We expect that the microfluidic device is advantageous to obtain large 
high-quality DNA lattice, because it provides a reaction chamber in which the 
concentration of each DNA component can be kept optimal concentration for the 
crystals’ growth. For this purpose, we have designed and fabricated a special 
microfluidic device utilizing capillary pump and open reaction chamber that enables 
real-time, direct AFM observation [7]. We also confirm the flow in the microchannel 
enhance the hybridization efficiency between immobilized DNA on the wall and DNA 
molecule in the solution [8]. 

In this paper, we propose a stepwise self-assembly on surfaces for building DNA 
nanostructure in a microfluidic device. In our method, pre-assembled DNA lattices are 
anchored on the microfluidic channel, which serves as nuclei for further growth of the 
DNA lattices. Flushing out the solution around the nuclei and switching solutions by 
flow enables us to realize stepwise self-assembly whose can produce the results similar 
to those of the hierarchical assembly procedure, even in a single reaction chamber. This 
method also enables us to build a layered structure of DNA lattice at a constant 
temperature. In the following sections, we show the detail of the concept of the 
stepwise self-assembly on surfaces and the results of experiment to verify feasibility of 
the proposed method.  

2   Concept of Stepwise Self-assembly on Surfaces 

Schematic of the stepwise self-assembly on surfaces is given in Fig.1. This method is 
suitable for building layered DNA tile lattices with reduced number of orthogonal 
sticky ends [7]. Note that our method is not limited to this but also effective in building 
nano-objects with structured hierarchy.  

For ease of understanding, a simple example is used hereafter. Three kinds of 
solution are prepared,  

 



184 K. Somei et al. 

Connecting tile

White tile

Black tile
Same sticky ends

One pot reaction Stepwise assembly

Immobilized seed tile

Flash out

Add gray tiles

Add white tiles

 
 

Fig. 1. Stepwise assembly on surfaces 

each of which containing a single type of DNA tiles. They are shown as black, gray, 
and white tiles in the Figure. The incision of four edges represents the sequence of 
sticky end. Each tile can only be connected to the particular tiles with complementary 
sticky ends. Here, we assume that the white tiles and black tiles have the identically 
shaped sticky ends to reduce the number of different sticky ends. Moreover, we 
designed so that both the white and the black tiles are allowed to attach themselves only 
to gray tiles, limiting the possibility to the combination of either gray-and-white or 
gray-and-black. 

One-pot reaction, where all three types of the tiles are simultaneously thrown into a 
tube, results in  randomly patterned lattice (Fig.1 left). On the other hand, the 
solid-phase self-assembly enables us to build well-defined pattern in stepwise fashion. 
First, pre-assembled seed lattices (initial nuclei) are anchored on a surface by 
hybridization between the immobilized DNA and the seed lattice. Next, a solution 
containing only gray tiles is applied. After the reaction, any unconnected DNA tile is 
washed off with the buffer flow. Then, another solution containing either black or white 
tiles is applied so the new tiles can hybridize with the previous layer of gray tiles. 
Further application of the solution containing gray tiles will build a new foundation for 
yet another layer of black or white tiles. By repeating this process, arbitrary layered 
pattern can be made from only three kinds of tiles. Also note that the whole process can 
be done under the same temperature, thus we do not have to change the length of sticky 
ends for each stage of assembly.  

 



 Stepwise Assembly of DNA Tile on Surfaces 185 

3   Pre-assembly of Nuclei and Their Anchoring on a Gold Surface 

In order to initialize lattice growth in the solid-phase, we need crystal nuclei (seed 
lattices). They must have well-defined lattice structure for the further growth. For this 
purpose, we prepared a DNA tile lattice made of two columns of DNA tiles (called 2- 
column DNA lattice, hereafter) (Fig.2.A). 

Ligase

3℃2hour

25℃5hour

Can’t connect…

A

B C

 
Fig. 2. Pre-assembly of 2-column lattice 

3.1   2-Column DNA Lattice 

A simple DNA tile set, consisting of two DX tiles is used to make a 2-column DNA 
lattice. Original tile set generates a large periodic lattice with alternating row of two 
kinds of tiles, however the shape of the lattice cannot be defined (Fig.2.B). We 
modified the original tile set to obtain a 2-columned lattice (Fig. 2.C). Here, the strands 
that comprise lower sticky ends for the gray tile is removed from the original set. We 
used the same sequence as in the literature [2] for all the strands. The solution must be 
kept at low temperature (3ºC), because this lattice is formed by only one matching 
sticky ends. Also we have to stabilize the structure by ligation. Then the solution 
containing the 2-columin lattices is applied on the gold surface, and anchored by an 
immobilized ssDNA (Fig.2.A). 

The pre-assembly of the 2-column DNA lattice was evaluated by gel electrophoresis. 
The experimental protocols are as follows: 1) A DNA solution for the 2-column lattice 
is heated up to 95ºC (ssDNA 1 μM, 1×TAE, MgCl2 12.5 mM). 2) It is slowly cooled 
down to room temperature in water bath (Styrofoam container filled with hot water). It 



186 K. Somei et al. 

takes overnight. 3) Ligase (T4 DNA Liagase; Takara) is applied to the solution and kept 
at 10 ºC for 2 hours. The resultant solution was evaluated by gel electrophoresis 
(15%PAGE, 250V, 45 min, room temperature) (Table.1 and Fig.3). Lane 1 is a 
reference experiment where a full DNA lattice is formed. Most ingredients of the 
solution remained on the top of gel because of their size. The 2-colum lattice is in Lane 
3. The long smear region between full lattice and a band of monomer tile indicates it 
 

Table 1. Experimental condition 
 

 Sample Ligase 
Lane 1 Full DNA lattice O 
Lane 2 Full DNA lattice X 
Lane 3 2-column DNA lattice O 
Lane 4 2-column DNA lattice X 
Lane 5 White tile O 
Lane 6 White tile X 

 

1 2 3 4 5 6

←26mer (sticky end)

←48 mer (Gray tile)

←70 mer (White tile)

←Gray tile
←White tile

← Full DNA lattice

2 column DNA lattice

 

Fig. 3. Gel electrophoresis 
 

forms aggregated structure of various sizes. Ligation process was omitted for lanes 2 
and 4. Here, we did not observe any larger structure than a monomer tile. It implies that 
the 2-column lattices are broken during the electrophoresis.  

3.2   Anchoring of 2-Column Lattice  

The pre-assembled 2-column lattice is anchored on a solid surface by the following 
protocols: 1) A 36-base ssDNA (5’-TCA CTC TAC CGC ACC AGA ATG GAG ATT  
 



 Stepwise Assembly of DNA Tile on Surfaces 187 

TTT TTT TTT-SH-3’) is put onto gold surface patterned on a glass substrate (72mm x 
50 mm, Matsunami). This strand was immobilized by Au-SH bonding (DNA: 50 µM, 
MgCl2: 200 mM). 2) The surface was rinsed with buffer (1×TAE, MgCl2 12.5 mM). 3) 
Solution of 2-column lattice (1µM of each ssDNA, 1×TAE, MgCl2 12.5 mM) was 
applied on the surface. The lattice is anchored by hybridization with the immobilized 
ssDNA (4 hours). One of the sticky end for upper (light gray) tile was modified with 
FITC for evaluation by fluorescence. 4) The surface was rinsed again with buffer.  
Anchoring of the 2-colimn lattice is confirmed by fluorescence intensity (Table.2, 
Fig.4, 5). As control experiments, another ssDNA with FITC that do not match with the 
immobilized strand were also tested. The correct combination of the immobilized  

 
Table 2. Experimental condition 

 

 Immobilization Sample 
No.1 O 2-column lattice 
No.2 X 2-column lattice 
No.3 O Mismatched ssDNA 
No.4 X Mismatched ssDNA 
No.5 O None 

 

No.1          No.2           No.3           No.4          No.5  

Fig. 4. Image of fluorescence microscope (excitation wavelength: 488nm, Emission wavelength: 
530nm) 

0

10

20

30

40

50

60

70

No.1 No.2 No.3 No.4 No.5

F
lu
o
r
e
s
c
e
n
c
e
 I
n
t
e
n
s
it
y
 (
A
.U
.)

 
 

Fig. 5. Fluorescent intensity of each sample 



188 K. Somei et al. 

strand and the 2-column lattice showed the highest intensity. Intensity of other cases 
were at the same level of background (No.5). 

4   Stepwise Self-assembly of DNA Tile on Surfaces 

We examined the stepwise self-assembly initiated by the anchored pre-assembled 
2-column DNA lattice. In order to demonstrate the method, two kinds of DNA tiles 
(gray and white tile in Fig.6) are prepared. Only the white tile was modified by FITC, 
and also, only the gray tiles can associate with the 2-column lattice. The lattice can 
grow only when applying solutions in the order of “gray, wash, white, wash, gray, wash 
….” Fig.6.A illustrates first two steps of such “correct” sequence for the growth. By 
contrast, Fig.6.B illustrates “wrong” sequence (white, wash, gray, wash, …). In this 
case, white tiles cannot associate with the 2-column lattice, thus no further growth 
occurs. In other words, the growth of DNA lattice must be dependent on the order of 
solution applied to the nuclei.  

2-column DNA lattice

A

B

 

Fig. 6. Experimental scheme of stepwise assembly 

This was examined by the following protocols: 1) A 2-column DNA is anchored by 
the same process described in section 3.2. 2) 2 hours later, its surface was washed by 
buffer and was dried quickly by N2 blower. 3) A solution of monomer DNA tiles was 
applied on the surface and left for two hours to allow the association of the tiles. 4) 
Then the surface was washed and dried again. This process was repeated according to 
the specific order of application.  

Four kinds of different sequence were compared (Table.3). Fig.7 and 8 show the 
results of fluorescence intensity measurement. Only No.1 has high intensity, which 
implies that DNA lattice grows from 2-column DNA lattice only when the monomer 
solution is applied in the correct order. 



 Stepwise Assembly of DNA Tile on Surfaces 189 

Table 3. Experimental condition 

 1st Step 2nd Step 3rd Step 
No.1 2-column DNA lattice Gray tile White tile 
No.2 2-column DNA lattice White tile Gray tile 
No.3 2-column DNA lattice Gray tile None 
No.4 2-column DNA lattice White tile None 

 

No.1              No.2              No.3              No.4  

Fig. 7. Image of fluorescence microscope 

0

10

20

30

40

50

60

No.1 No.2 No.3 No.4 No.5

F
lu
o
r
e
s
c
e
n
c
e
 I
n
t
e
n
s
it
y
 (
A
.U
.)

 
 

Fig. 8. Fluorescent intensity 

5   Conclusion 

In this paper, a method of stepwise self-assembly of DNA tile on surfaces is proposed. 
First, a 2-column DNA lattice as a seed structure is made and anchored on a surface by 
hybridization. The formation of the 2-colum lattice and its anchoring on the surface is 
confirmed by fluorescence microscope. Next, the stepwise self-assembly around the 
anchored seed lattice is evaluated by applying solutions in different order. We verified 
that only the correct sequence allows the lattice to grow. Although our experiment was 
simple, it was designed to demonstrate the feasibility and potential of fabricating 
complicated DNA nanostructure by the solid-phase self-assembly. 

All the experiments shown here were done on a glass plate. We have to verify that 
the same process is valid in the microfluidic device. According to our preliminary 
experiment, there are hardly any problems except for the absorption of fluorescent 
particle in PDMS matrix of the microfluidic device. We think this is solved by some 



190 K. Somei et al. 

straightforward approach. For the future work, we have to observe the surface with 
AFM to directly examine the product. Improving yield for multi-step assembly is also 
an important issue. 

Acknowledgement 

This work is supported by Ministry of Education, Culture, Sports, and Science and 
Technology of Japan under Grant-in-Aid for Scientific Research on Priority Areas, No. 
170590001, 2006. 

References 

[1] Seeman, N.C.: Nucleic Acid Junctions and Lattices. Journal of Theoretical Biology 99, 
237–247 (1982) 

[2] Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of 
two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998) 

[3] Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic Self-Assembly of DNA Sierpinski 
Triangles. PLoS Biology 2(12), 424 (2004) 

[4] Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D Thesis, California Institute of 
Technology (1998) 

[5] Reif, J.: Local Parallel Biomolecular Computation. In: Rubin, H., Wood, D.H. (eds.) 
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 48, pp. 
217–254 (1999) 

[6] Park, S., Pistol, C., Ahn, S., Reif, J., Lebeck, A., Dwyer, C., LaBean, T.: Finite-size, 
Fully-Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. 
Angew. Chem, Int. Ed. 45, 735–739 (2006) 

[7] Somei, K., Kaneda, S., Fujii, T., Murata, S.: A Microfluidic Device for DNA Tile 
Self-Assembly. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892, pp. 
325–335. Springer, Heidelberg (2006) 

[8] Somei, K., Kaneda, S., Fujii, T., Murata, S.: Hybridization in a Microfluidic Device for 
DNA Tile Self-Assembly. In: Proc. Foundations of Nanoscience, Self-Assembled 
Architectures and Devices (FNANO 2006), pp. 148–152 (2006) 



An Interface for a Computing Model Using Methylation
to Allow Precise Population Control by Quantitative

Monitoring

Ken Komiya, Noriko Hirayama, and Masayuki Yamamura

Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate
School of Science and Engineering, Tokyo Institute of Technology

{komiya,my}@dis.titech.ac.jp

Abstract. We developed an interface to enable feedback control for a methylation-
based computing model, in which a bit string is represented by the methylated and
unmethylated status of the specific locations on a DNA molecule. On construc-
tion of a reaction system for the computational purpose, it is problematic that an
open loop system without feedback control is easy to lose the molecular variety
required for computation. It is, thus, important for the methylation-based com-
puting to achieve quantitative sensing for feedback control. Difference in methy-
lation status can be converted into the sequence variation by the bisulfite reac-
tion. As a consequence, distribution between methylated and unmethylated DNA
molecules could be quantitatively monitored by combining the polymerase chain
reaction (PCR) using methylation specific primers with quantitative PCR. In the
present study, we experimentally investigated the feasibility of the proposed inter-
face for controlling the population of a library of DNA registers that have distinct
methylated patterns representing different bits. Result indicated that, quantitative
measurement of population was successfully performed by discriminative ampli-
fication using the methylation-specific primer. This interface, which allows us to
generate a homogenous or biased library as expectedly, would be useful for mole-
cular evolutionary computation and molecular learning.

1 Introduction

Development of the technique to quantitatively monitor the population of molecules al-
lows precise population control through computation. In many DNA-based computing
models, it is assumed that modifications on a variety of DNA molecules encoding dis-
tinct information are equivalently and completely performed by reactions implemented
as computational procedure. However, it seems impossible to achieve error-free mod-
ifications using biological reactions. As an alternative, an interface allowing feedback
control is effective to achieve precise and robust computation, and thus, essential for
making DNA-based computing practical. In early studies of DNA-based computing,
several solutions to combinatorial problems were demonstrated by taking advantage of
hybridization between complementary sequences of DNA molecules. Molecules that
encoded the correct solution were successfully selected out of a library of molecules
that encoded candidate solutions [1,2]. In those exercises, whether the population of

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 191–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



192 K. Komiya, N. Hirayama, and M. Yamamura

candidate solutions had the unexpected bias did not matter since molecules of the ex-
cessive amount to the problem size were contained in a test tube. Towards molecular
solution to large scale problems or molecular implementation of evolutionary compu-
tation [3] and learning [4], construction of a tractable reaction system, provided with
an interface for quantitative monitoring to avoid the unintended bias in the molecular
library, is expected as a breakthrough.

In the present study, we developed an interface to enable feedback control for a
methylation-based computing model, in which a bit string is represented by the methy-
lated and unmethylated status of the specific locations on a DNA molecule. Difference
in methylation status of DNA molecules can be converted into the sequence variation
by the bisulfite reaction [5]. As a consequence, distribution between methylated and un-
methylatad DNA molecules could be quantitatively monitored by combining the PCR
using methylation specific primers [6] with quantitative PCR. We experimentally in-
vestigated the feasibility, necessity and effectiveness of the proposed interface for gen-
eration of the random library of DNA registers that have distinct methylated patterns
representing different bits, each of the expected amount.

2 Methylation Computing

2.1 Methylation-Based Aqueous Computing

Methylation here refers to the reaction performed by methyltransferase, or methylase
in short, to add a methyl group to a cytosine or adenine on a double-stranded DNA
molecule. It is known that, many bacteria have their own pair of restriction and methy-
lation enzymes sharing a short recognition sequence [7] and methylation plays a role
to keep their inherent DNA from self-attacking by the restriction enzyme acting as a
protection system against the foreign DNA. In eukaryotes, methylation takes part in
regulation of gene expression. Methylation pattern on DNA is succeeded as epigenetic
information by hemi-methyltransferase that methylates a hemi-methylated DNA, that
is, an unmethylated strand of a double-stranded DNA molecule is methylated accord-
ing to another methylated strand [8]. Inspired by the strategy of nature, in which ge-
netic information is stored in double-stranded DNA molecules and only necessary parts
are processed by cooperative enzymes on demand, computation using double-stranded
DNA molecules and sequence specific enzymes, such as restriction enzymes and methy-
lases, would be promising. Although hybridization by single-stranded DNA molecules
with their complements to transform into the double-stranded form is utilized for the
central process in many DNA-based computing, it might be difficult to achieve pre-
cise control of that process in competition with formation of a number of sub-optimal
structures [9].

The use of methylation for aqueous computing [10] and Boolean logic [11] was,
so far, proposed. Aqueous computing is a characteristic computing model to imple-
ment content addressable parallel processing, using molecules dissolved in water as
nano-scale registers. In an aqueous solution, the location of a vast number of mole-
cules is randomized. When a solution is partitioned into a chosen number of portions,
every portion contains the same variety of molecules. Different modifications on mole-
cules can be performed in parallel in each portion, and then, partitioned portions can



An Interface for a Computing Model Using Methylation 193

be united again into a single solution. In aqueous computing, each molecule has iden-
tifiable ”stations” and computation is performed by altering station settings according
to the constraints. In contrast to the conventional paradigm in DNA-based computing,
called Adleman-Lipton’s paradigm, in which computation begins with the initial step to
generate a library of molecules encoding all candidate solutions, aqueous computation
begins with a single variety of molecules, and thus prevents us from sequence design
that is often harder than the given problem to be solved, and keeps the number of molec-
ular varieties as small as possible through computation. Many NP-complete algorithmic
problem families can theoretically be solved by a single aqueous algorithm [12]. Among
many potential reactions proposed to implement aqueous computing [12,13,14,15], the
use of methylation as writing operation has the advantages. Erase operation could be
performed by PCR since DNA polymerase can not reproduce the methylation status of
the template. Copy operation could also be achieved by combinatorial use of DNA poly-
merase with hemi-methyltransferase. Thus, a rewritable and amplifiable DNA-RAM
would be realized. Restriction enzymes, that can not digest their specific cutting sites
only when those sites are methylated, provide readout of methylation status. A solution
to 3-variable, 4-clause satisfiability problem was attempted [16], using multi-cloning
site of a plasmid, methylases and restriction enzymes. Under an assumption that every
reaction can be performed at the sufficient efficiency, many problems including the
NP-complete can be solved only by methylation and digestion. However, fine control
of methylation and digestion reactions for faultless discrimination has not yet been
established.

On construction of a reaction system for the computational purpose, it is commonly
problematic that an ”open loop” system without feedback control is easy to lose the
molecular variety required for computation. It is, thus, important for the methylation-
based aqueous computing to develop an interface allowing feedback control by quanti-
tative monitoring.

2.2 Interface for Quantification of Methylation

The bisulfite reaction is the method to determine the methylation status of cytosine
residues in a DNA molecule by converting intact cytosines in a single-stranded DNA
molecule to uracils whereas 5-methylcytosines are unreactive [5] (Fig. 1A). After the
conversion, the resulted DNA is subjected to the reaction for discriminating the se-
quence variation derived from methylation. By PCR with the primer that is complemen-
tary to the methylated region, and thus has mismatches to the unmethylated DNA and
with Pol I-type DNA polymerase that lacks the 3’ to 5’ exonuclease activity for proof-
reading, methylation-specific PCR can be performed [6]. Quantitative PCR (qPCR) is
the method to determine the relative amount of target DNA by comparing the cycle
number at which the exponential increase of fluorescence intensity begins to be de-
tected. qPCR using SYBR Green, which can do without expensive fluorescent probes
to be carefully designed, is tractable. For achieving an interface to quantitatively mon-
itor the methylation status, we employed qPCR using SYBR Green with primers, each
having one single mismatch at its 3’ end with either the methylated or unmethylated
station of DNA register. (Fig. 1B).



194 K. Komiya, N. Hirayama, and M. Yamamura

3 Materials and Methods

3.1 Preparation of a DNA Register

We prepared by PCR amplification a short double-stranded DNA molecule, R4S, of 80
base pairs (bp) as a DNA register of high density, having four stations to be altered
by methylation. The sequence of R4S was generated by simply putting recognition se-
quences of HhaI and HpaII methylases and restriction enzymes between the sequences
commonly used in molecular biology study as primers for T7 promotor and M13, involv-
ing recognition sequences of HaeIII and AluI in them. All oligonucleotides used in the
experiment were commercially synthesized and purified by Sigma Genosys (Fig. 1C).

PCR reaction for preparation was performed in a 50-µl solution containing PrimeS-
TAR HS DNA polymerase (Takara Bio) buffer, 0.2mM dNTP, primers P1 and P2 (50
pmol each), 1.25 units PrimeSTAR HS DNA polymerase, and 3.9 ng R4S. Reaction mix-
ture was incubated at 98oC for 2min, then subjected to the thermalcycle condition of 30
cycles (98oC for 10 sec, 55oC for 5 sec, 72oC for 10 sec) followed by an incubation at
72oC for 2min. PCR product was purified by 16% polyacrylamide gel electrophoresis
(PAGE).

3.2 Methylation Specific Amplification

For the confirmation of discriminative amplification using the methylation-specific or
non-methylation-specific primer that has only one single mismatch at its 3’ end, we
performed realtime PCR either with the control oligonucleotide, methyl-R4S or non-
methyl-R4S, of the sequences same as the bisulfite-converted R4S after methylation
on all four stations or before methylation, respectively. PCR reaction was performed at
a 20-µl scale in the rTaq DNA polymerase (Toyobo) buffer containing 2.5 mM mag-
nesium chloride, 0.2mM dNTP, 5 pmol the methylation-specific or non-methylation-
specific primer, 5 pmol the reverse primer P2 bisulfite, 2 units rTaq DNA polymerase,
1X SYBR Green I (Molecular Probes) and 40 pg the control oligonucleotide. Reaction
mixture was incubated at 95oC for 2min, then subjected to the thermalcycle condition
of over 30 cycles (95oC for 30 sec, 40oC for 30 sec, 72oC for 30 sec) followed by an
incubation at 72oC for 2min. Fluorescence intensity was measured at every annealing
step with Mx3005P (Stratagene).

3.3 Quantification of Methylation

We first optimized digestion reaction to determine the least amounts of restriction en-
zymes required for complete digestion of unmethylated DNA, then optimized methyla-
tion reaction to determine the least amounts of methylases required for complete blocking
of digestion. All methylases and HhaI, HaeIII, AluI restriction enzymes were purchased
from New England Biolabs. HpaII and HindIII restriction enzymes from Takara Bio. Di-
gestion reaction was performed at a 25-µl scale with 25 ng methylated or unmethylated
R4S in the buffer recommended by the supplier, NEBuffer 4 with BSA for HhaI, NEB-
uffer 2 for HaeIII and AluI, L buffer for HpaII, and M buffer for HindIII, respectively.
Reaction mixture was incubated at 37oC for 1 hour. Methylation reaction was performed



An Interface for a Computing Model Using Methylation 195

C5'
m

G

Bisulfite reaction

U

Methylation specific PCR

m

C

A G

U
A

m

C

3' 5'

3' C
G

i) Transfomation into the double-stranded form by polymerization

ii) Methylation specific polymerization

G

| | | | | | | || | | | | | | | | | | | | | | || | | | | | | |

| | | | | | | |

U
A

m

C
G

| | | | | | | |

| | | | | | | |

iii) Amplified products fter the sufficient number of cycles

G
| | | | | | | || | | || | | | | | | || | | |

A

G
| | | | | | | || | | |

G
| | | | | | | || | | |

G
| | | | | | | || | | || | | | | | | || | | |

A

| | | | | | | || | | |

A
| | | | | | | || | | |

A

T

B.
NH

N

O
N

2

HN

O
N

O

Cytosine

Uracil

A.

NH

N

O
N

2

O

N

O
N

SO3
-

SO3
-

i )

ii )

iii )

5' 3'
5' 3'

5' 3'

C C
T

T

T

C

C

C

C

C

C

T

T

T

T

TAATACGACTCACTATAGGG-GCGC-GTAAAACGAA-GGCC-TGTGTCAA-AGCT-TTTTCCTG-CCGG-AGTTTTCCCAGTCACGAC

HhaI HpaIIAluIHaeIII

Station 1 Station 2 Station 3 Station 4R4S

TAATACGACTCACTATAGGG

P1 P2

GTCGTGACTGGGAAAA

P1 converted

TAATATGATTTATTATAGGG ATCATAACTAAAAAAACT

P2 converted

Amplification primer

Methylation-specific primer

Non-Methylation-specific primer

AluI-CHhaI-C HpaII-CHaeIII-C

GATTTATTATAGGGGC GTGTAAAATGAAGGC GGTTTGTGTTAAAGC AAAGTTTTTTTTTGTC

GATTTATTATAGGGGT GTGTAAAATGAAGGT GGTTTGTGTTAAAGT AAAGTTTTTTTTTGTT

AluI-THhaI-T HpaII-THaeIII-T

DNA register and the converted Controls

methyl-R4S
TAATATGATTTATTATAGGG-GCGT-GTAAAATGAA-GGCT-TGTGTTAA-AGCT-TTTTTTTG-TCGG-AGTTTTTTTAGTTATGAT

non-methyl-R4S

TAATATGATTTATTATAGGG-GTGT-GTAAAATGAA-GGTT-TGTGTTAA-AGTT-TTTTTTTG-TTGG-AGTTTTTTTAGTTATGAT

5'

3'

C.

Fig. 1. A. Bisulfite reaction Cytosine is converted to uracil by i) sulphonation, ii) deamination,
and iii) desulphonataion. 5-methyl cytosine remains unconverted. B. methylation specific PCR
The black horizontal lines, vertical lines and dashed arrows indicate DNA strands, base par-
ings and extensions by DNA polymerase, respectively. The letter, m in a circle indicates the
methylation at the 5th carbon of cytosine. The gray horizontal lines with the 3’ terminal base,
C and T represent the methylation-specific and non-methylation-specific primers, respectively.
Only the primers perfectly matching with the template can hybridize upon PCR amplification. C.
Sequences used in this study Recognition sequences of methylases to implement stations are
indicated by rectangles. Cytosines in the sequence of DNA register (R4S) to be methylated, of
the methylation control (methyl-R4S), and at the 3’ end of the methylation-specific primers are
indicated by the bold letters. Thymines of the non-methylation control (non-methyl-R4S) and at
the 3’ end of the non-methylation-specific primers are indicated by the gray bold letters.



196 K. Komiya, N. Hirayama, and M. Yamamura

at a 10-µl scale with 50 ng R4S and 80 µM S-adenosylmethionine in the Methylase Buffer
1 (50 mM Tris-HCl (pH 7.5), 10 mM EDTA, 5 mM 2-mercaptoethanol) for HhaI, AluI
and HpaII, or the Methylase Buffer 2 (50 mM NaCl, 50 mM Tris-HCl (pH 8.5), 10 mM
DTT) for HaeIII. Reaction mixture was incubated at 37oC for 1 hour.

The bisulfite reaction is ordinarily performed for the conversion of long genomic
DNA. The short DNA register of this study required some modifications of the common
protocol to avoid the damage and loss of DNA. After the partial methylation reaction
(details in reaction conditions are described in Sec. 4.2), we performed bisulfite reac-
tion following the instruction of MethylEasy DNA Bisulphite Modification Kit (Human
Genetic Signatures) except for the incubation time reduced to 3 hours for the bisulfite
reaction step and the temperature lowered to -20oC for the isopropanol precipitation
step. Finally, we quantified the amounts of the methylated and unmethylated DNA reg-
isters for HhaI and HeIII stations to determine the population by methylation specific
qPCR. The experimental protocol was same as Sec. 3.2 and the control oligonucleotide,
methyl-R4S or non-methyl-R4S (each 0.4 to 400 pg) were also amplified to generate
the standard curves for quantification. The amounts of DNA were calculated using the
software MxPro (Stratagene).

4 Results

4.1 Methylation Specific Amplification

Fig. 2 illustrates the resulted amplification plots for 8 specific primers. Clear discrimi-
nation was confirmed for methylation status of the stations implemented by HhaI and
HaeIII recognition sites, but not for AluI. For the station of HpaII, discrimination was
achieved, though the efficiency of amplification was low probably due to the short
length of the amplified product unsuitable for qPCR.

4.2 Quantification of Methylation

Fig. 3A illustrates the results of optimized methylation and digestion reactions. Al-
though complete digestion by AluI restriction enzyme and perfect blocking of HaeIII-
digestion by HaeIII methylase could not be achieved by increasing the amount of en-
zyme and/or incubation time, the alternative use of HindIII restriction enzyme whose
recognition sequence involves that of AluI and repeated methylation reactions by HaeIII
methylase, respectively, allowed almost digital discrimination between the methylated
and unmethylated status, confirmed by visual inspection of PAGE analysis. Complete
writing and readout operation on all of four stations appeared to be achieved. The de-
termined least amounts of HhaI, HaeIII, HindIII and HpaII required for the complete
digestion were 4.0, 4.4, 12 and 4.0 units/25 ng DNA, respectively. The determined least
amounts of HhaI, HaeIII, AluI and HpaII methylases required for the perfect blocking
were 1.5, 5.5 (3 times), 2.4 and 1.0 units/50 ng DNA, respectively.

Fig. 3C illustrates the amplification plots obtained by qPCR for the stations of HhaI
and HaeIII, following the partial methylation reaction. For HaeIII station, methylation
was performed only one time with 5.5 units HaeIII methylase. For other stations, methy-
lation was performed under an incubation at 37oC for 45 min with 30% amount of



An Interface for a Computing Model Using Methylation 197

Methylation
control

Non-methylation
control

F
lu

o
re

sc
e
n
ce

 (
A

. 
U

.)
F

lu
o
re

sc
e
n
ce

 (
A

. 
U

.)

F
lu

o
re

sc
e
n
ce

 (
A

. 
U

.)
F

lu
o
re

sc
e
n
ce

 (
A

. 
U

.)

F
lu

o
re

sc
e

n
ce

 (
A

. 
U

.)
F

lu
o

re
sc

e
n

ce
 (

A
. 
U

.)

F
lu

o
re

sc
e

n
ce

 (
A

. 
U

.)
F

lu
o

re
sc

e
n

ce
 (

A
. 
U

.)

Cycles Cycles

Cycles Cycles

Cycles Cycles

Cycles Cycles

Fig. 2. Discrimination between the methylated and unmethylated status by methylation
specific PCR The black and gray curves are the amplification plots of methylation specific
PCR with the methylation-specific and non-methylation-specific primers, respectively. The curve
represented by the bold or dashed line indicates the matched (methylation control with
the methylation-specific primer or non-methylation control with the non-methylation-specific
primer) or mismatched (methylation control with the non-methylation-specific primer or non-
methylation control with the methylation-specific primer) template-primer pair, respectively.

the respective methylase required for perfect blocking. The calculated values of the
methylated population were 37.1% and 81.7% for the stations of HhaI and HaeIII,
respectively.



198 K. Komiya, N. Hirayama, and M. Yamamura

P C

AluIHhaI HpaIIHaeIIIMethylase
Restriction 
  enzyme

HhaI HpaII

marker

HindIII

PC P C CP

HaeIII

100 bp

marker

A.

HaeIII

HhaI

CyclesCycles

Cycles Cycles

Fl
uo

re
sc

en
ce

 (A
. U

.)
Fl

uo
re

sc
en

ce
 (A

. U
.)

Fl
uo

re
sc

en
ce

 (A
. U

.)
Fl

uo
re

sc
en

ce
 (A

. U
.)

C. Methylated population Unmethylated population

MU M1

AluIHhaI HpaII HaeIIIMethylase
Restriction 
  enzyme HhaI HpaII

marker MU MU MU
HindIII HaeIII

100 bp

AluI
marker U M2 M3

B.

Fig. 3. A. Digital discrimination between the methylated and unmethylated status U and M
denotes the lanes of the unmethylated and methylated DNA registers, subjected to digestion, re-
spectively. M1, M2 and M3 denotes the methylation repeated for 1, 2 and 3 times. Comparing
to the 20-bp ladder marker, bands of uncut DNA appeared at the position of around 80 bp and
bands of cut DNA appeared at the appropriate positions. B. Confirmation of partial methyla-
tion P and C denotes the lanes of DNA registers, digested after methylation reaction under the
condition for partial and complete methylation, respectively. Partial methylation was confirmed
by the incomplete digestion in the lanes P. C. Quantification of methylation status The gray and
black curves in the left panels are the amplification plots of the methylation control as standards
and the partially methylated samples, respectively, with the methylation-specific primer. Those
in the right panels are the amplification plots of the non-methylation control as standards and the
partially methylated samples, respectively, with the non-methylation-specific primer.



An Interface for a Computing Model Using Methylation 199

5 Discussion

The experimental results presented in the current work provide a clear validation of
the feasibility of an interface for quantitative monitoring of methylation status. This in-
terface allows feedback control of the computation implemented by methylation, and
thus enables precise population control through computation. For molecular solution to
combinatorial problems at a large scale, generation of a homogenous library is impor-
tant, that is, molecules encoding all distinct candidate solutions in a test tube should
be given the equal chance to be processed. Molecular learning and evolutionary com-
putation, as an optimization process under some constraints, would take advantages of
the ability of biomolecules that had evolved in nature by optimizing their properties
according to the environment, and thus, be a promising direction to expand DNA-based
computing. For evolutionary computation, how to maintain the diversity of a library
is an issue. Similarly to that techniques to generate truly random numbers have been
devised for making a library with the expected population in conventional evolutionary
computation in silico [17], molecular evolutionary computation in vitro also requires
establishing the technique to construct a homogenous or biased molecular library as
expectedly. For the molecular learning in which the population of molecules is changed
according to the difference between the amount of those consistent with training ex-
amples and those inconsistent [4], quantitative sensing is necessitated at each round of
training. When the proposed interface is applied to molecular learning and evolutionary
computation, parallel operation in a 1.5-ml test tube containing a library of molecules
beyond the size of 1018 could surpass conventional computers and retrieve the attraction
of DNA-based computing. Moreover, a distinctive feature that outcome of computation
is an aqueous solution containing molecules adapted to a certain constraint, might lead
to engineering of an intelligent aqueous solution or a functional molecule set for biolog-
ical and diagnosis purposes. For the next step of the present study, the functionality of
feedback control with a quantitative interface in methylation-based computing should
be investigated in the experiment.

Acknowledgements

This research was partially supported by the Ministry of Education, Culture, Sports, Sci-
ence and Technology of Japan, Grant-in-Aid for Scientific Research on Priority Areas
(14085101) and Young Scientists (B) (18700298). We thank to Tom Head and Susannah
Gal at Binghamton Univ. and Daisuke Kiga at TITech for their kind advisements.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266,
1021–1024 (1994)

2. Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique prob-
lem. Science 278, 446–449 (1997)

3. Zhang, B.-T., Jang, H.-Y.: Molecular programming: Evolving genetic programs in a test tube.
In: 2005 Genetic and Evolutionary Computation Conference, Proceedings, vol. 2, pp. 1761–
1768 (2005)



200 K. Komiya, N. Hirayama, and M. Yamamura

4. Sakakibara, Y.: Population computation and majority inference in test tube. In: DNA Com-
puting. 7th Int’l Workshop on DNA-Based Computers, pp. 82–91 (2002)

5. Hayatsu, H., Wataya, Y., Kai, K., Iida, S.: Reaction of sodium bisulfite with uracil, cytosine,
and their derivatives. Biochemistry 9, 2858–2866 (1970)

6. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D., Baylin, S.B.: Methylation-specific
PCR: A novel PCR assay for methylation status of CpG islands. Proc. Nat. Acad. Sci.
USA 93, 9821–9826 (1996)

7. Roberts, R., Vincze, T., Posfai, J., Macelis, D.: REBASE - restriction enzymes and DNA
methyltransferases. Nuc. Acics Res. 33, D230–D232 (2005), http://rebase.neb.com

8. Bacolla, A., Pradhan, S., Robert, R.J., Wells, R.D.: Recombinant human DNA (cytosine-5)
methyltransferase. ii. steady-state kinetics reveal allosteric activation by methylated DNA. J.
Biol. Chem. 274, 33011–33019 (1999)

9. Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nu-
cleic acids. Biophys. J. 87, 215–226 (2004)

10. Head, T.: Writing by methylation proposed for aqueous computing. In: Mitrana, C.M.-V.V.
(ed.) Where Mathematics, Computer Science, Linguistics and Biology Meet, pp. 353–360.
Kluwer Academic Publishers, Dordrecht (2001)

11. Dimitrova, N., Gal, S.: Methylogic: Implementaion of Boolean logic using DNA methyla-
tion. In: DNA Computing. 12th Int’l Workshop on DNA-Based Computers, pp. 404–417
(2006)

12. Head, T., Yamamura, M., Gal, S.: Aqueous computing: writing on molecules. In: 1999
Congress on Evolutionary Computation, Proceedings, pp. 1006–1010 (1999)

13. Head, T., Rozenberg, G., Bladergroen, R.S., Breek, C.K.D., Lommerse, P.H.M., Spaink, H.:
Computing with DNA by operating on plasmid. BioSystems 57, 87–93 (2000)

14. Yamamura, M., Hiroto, Y., Matoba, T.: Another realization of aqueous computing with pep-
tide nucleic acid. In: DNA Computing. 7th Int’l Workshop on DNA-Based Computers, pp.
213–222 (2002)

15. Takahashi, N., Kameda, A., Yamamoto, M., Ohuchi, A.: Aqueous computing with DNA
hairpin-based RAM. In: DNA Computing. 10th Int’l Workshop on DNA-Based Computers,
pp. 355–364 (2005)

16. Gal, S., Monteith, N., Shkalim, S., Huang, H., Head, T.: Methylation of DNA may be useful
as a computational tool: Experimental evidence. In: Mahdavi, K., Culshaw, R., Boucher,
J. (eds.) Current Developments in Mathematical Biology. Series in Knots and Everything,
vol. 38, pp. 1–14. World Scientific (2007)

17. Kita, H., Yamamura, M.: A functional specialization hypothesis for designing genetic algo-
rithms. Proceedings of 1999 IEEE International Conference on Systems, Man and Cybernet-
ics III, 579–584 (1999)

http://rebase.neb.com


M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 201–210, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Hardware Acceleration for Thermodynamic Constrained 
DNA Code Generation 

Qinru Qiu1, Prakash Mukre1, Morgan Bishop2, Daniel Burns2, and Qing Wu1 

1  Department of Electrical and Computer Engineering, Binghamton University,  
Binghamton, NY 13902 

2  Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome, NY 13441 
qqiu@binghamton.edu, pmukre1@binghamton.edu,  

Morgan.Bishop@rl.af.mil, Daniel.Burns@rl.af.mil, 
qwu@binghamton.edu 

Abstract. Reliable DNA computing requires a large pool of oligonucleotides 
that do not cross-hybridize. In this paper, we present a transformed algorithm to 
calculate the maximum weight of the 2-stem common subsequence of two DNA 
oligonucleotides. The result is the key part of the Gibbs free energy of the DNA 
cross-hybridized duplexes based on the nearest-neighbor model. The trans-
formed algorithm preserves the physical data locality and hence is suitable for  
implementation using a systolic array. A novel hybrid architecture that consists 
of a general purpose microprocessor and a hardware accelerator for accelerating 
the discovery of DNA under thermodynamic constraints is designed, imple-
mented and tested. Experimental results show that the hardware system pro-
vides more than 250X speed-up compared to a software only implementation.  

1   Introduction 

A single DNA strand (i.e. oligonucleotides) is a sequence of four possible nucleotides 
denoted as A, C, G and T. Short DNA sequences can be synthesized easily and be 
used for different applications, including high density information storage [2], mo-
lecular computation of hard combinatorial problems [1], and molecular barcodes to 
identify individual modules in complex chemical libraries [3]. These applications rely 
on the specific hybridization between DNA code words and their Watson-Crick com-
plements.  The key to success in DNA computing is the availability of a large collec-
tion of DNA code word pairs that do not cross-hybridize.   

The capability of hybridization between two oligonucleotides is determined by the 
base sequences of the hybridizing oligonucleotides, the location of potential mis-
matches, the concentrations of the molar strand, the temperature of the reaction and 
the length of the sequences [4]. The melting temperature (Tm) is a parameter that char-
acterizes these factors [4]. It is defined as the temperature at which 50% of the DNA 
molecules have been separated to single strands. Another closely related measure of 
the relative stability of a DNA duplex is its Gibbs free energy, denoted as ΔGO. The 
nearest-neighbor (NN) model [7][10] was proven to be an effective and accurate es-
timation of the free energy. In [12], the concept of t-stem block insertion-deletion 



202 Q. Qiu et al. 

codes was introduced that captures the key aspects of the nearest neighbor model. In 
the same reference, a dynamic programming algorithm is presented to calculate the 
maximum weight of the t-stem common subsequence. 

Search methods for DNA codes are extremely time-consuming [5], and this has 
limited research on DNA codeword design, especially for codes of length greater than 
about 12-14 bases.  For example, the largest known DNA codeword library, which 
has been generated based on the edit distance constraint with length 16 and edit dis-
tance 10, consists of 132 pairs, and composing such codes takes several days on a 
cluster of 10 G5 processors, with no guarantee of optimality.  

In [8], we presented a novel accelerator for the composition of reverse comple-
ment, edit distance, DNA codes of length 16. It incorporates a hardware GA, hard-
ware edit distance calculation, and hardware exhaustive search which extends an ini-
tial codeword library by doing a final scan across the entire universe of possible code 
words. The proposed architecture consists of a host PC, a hardware accelerator im-
plemented in reconfigurable logic on a field programmable gate array (FPGA) and a 
software program running in a host PC that controls and communicates with the hard-
ware accelerator. The proposed architecture uses a modified genetic algorithm that 
uses a locally exhaustive, mutation-only heuristic tuned for speed. The architecture 
reduces the search time from 6+ days (on 10 Pentium processors) to 1.5 hours, 
achieving an effective 1000X speed-up, and it produces locally optimum codes. 

The edit distance metric only provides a first order approximation of the free en-
ergy of binding of DNA duplexes. To improve the quality of DNA codes, more accu-
rate metrics based on the thermodynamics of binding of DNA duplexes must be con-
sidered. This paper focuses on implementing the nearest-neighbor based free energy 
calculation on a reconfigurable hardware accelerator. We present a transformed algo-
rithm to calculate the maximum weight of the 2-stem common subsequence of two 
DNA oligonucleotides. The result is the key part of the Gibbs free energy of the DNA 
cross-hybridized (CH) duplexes based on the nearest-neighbor model. The trans-
formed algorithm preserves the physical data locality and hence is suitable for imple-
mentation using a systolic array. A new hardware accelerator for accelerating the dis-
covery of locally optimum DNA codes with thermodynamic constraints is described. 
At this writing the proposed architecture provides more than 250X speed-up com-
pared to a software only implementation.  

The remainder of this paper is organized as follows: Section 2 describes the trans-
formed algorithm and its hardware implementation using a 2D systolic array. Section 
3 presents our formulation of the problem, and the solution technique in hardware 
GA. Section 4 provides a performance comparison between the software version and 
the hardware version of the codeword search. Section 5 presents final conclusions. 

2   Calculation of NN Free Energy Using 2D Systolic Array 

The thermodynamics of binding of nucleic acids has been widely studied and reported 
in the literature. The nearest-neighbor (NN) model [10] was proven to be an effective 
and accurate estimate of the thermodynamic binding energy. The NN model assumes 
that stability of a DNA duplex depends on the identity and orientation of neighboring 
base pairs. There are 10 possible NN pairs: AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, 



 Hardware Acceleration for Thermodynamic Constrained DNA Code Generation 203 

CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Based on the NN model, the total free 
energy change of a DNA duplex at temperature T can be calculated by the following 
equation: 

Terminal ,

NNs 

,,, )()( ATT

CrickWatsoni

stackTsymmetryTinitiationTT GiGGGtotalG οοοοο Δ++Δ+Δ=Δ ∑
−∈

 (1) 

where initiationTG ,
οΔ  is the initiation energy,  symmetryTG ,

οΔ  is a parameter that re-

flects whether the duplex is self-complementary, Terminal , ATTGοΔ is a parameter that 

accounts for the differences between duplexes with terminal AT versus terminal GC, 

and )(, iG stackT
οΔ  gives the thermodynamic energy of Watson-Crick NN duplex i, 

which is determined by the structure of the primary sequence of the DNA duplex. 
This work focuses on accelerating the calculation of NN free energy using recon-
figurable hardware and applies it to hardware based DNA code word search. 

We developed a dynamic programming algorithm to calculate the NN free energy 
based on the technique presented in [12]. Given a CH duplex ': yx , where 'y  is the 

Watson-Crick complement of y, we define 3 matrices. They include a suffix matrix (s) 
which stores the longest common suffix between x and y, a weighted suffix matrix 
(ws) which stores the accumulated weight of each common stem-2 and an energy ma-
trix (e) which stores the accumulated free energy of the possible NNs. The value of 
the ijth entry of these matrices can be calculated using the following equations. 

 

⎩
⎨
⎧ =+

= −−
otherwise                               0

][][ if              11,1 jyixs
s ji
ij  (2) 

⎩
⎨
⎧ −=−=−+

= −−
otherwise                                                                               0

]1[]1[&][][ if            ])[],1[(1,1
,

iyixjyixixixwws
ws ji

ji  (3) 

⎪
⎩

⎪
⎨

⎧

=+−

+−+−

=

−−−−

−−−−−−

−−−−−−−−

otherwise                                                                           ),,max(

 ][][ if                            ),   ....,.         

, ,max(

,11,1,1

,11,,3,3,,

3,32,2,2,21,1,

jijiji

jijijisjsiji

jijijijijiji

ij

eee

jyixeeewsws

ewswsewsws

e
ijij

 (4) 

 
The parameter w(a[i-1],a[i]) is the stack-pair free energy between nearest-neighbor 

base pairs a[i-1] and a[i]. The bottom right entry of the e matrix gives the NN free en-
ergy of ': yx .  

Systolic array processing has been widely used in parallel computing to enhance 
computational performance.  The general systolic architecture has N×N connected 
processors, as shown in Figure 1 (b). Each processor performs an elementary calcula-
tion. The processor P(i,j) reads data from its up stream neighbors P(i-1,j), P(i,j-1) and 
P(i-1, j-1), and propagates the results to its down stream neighbors P(i+1,j), P(i,j+1) 
and P(i+1, j+1). After an initialization, or latency period that fills the pipeline, the ar-
ray generates one result per 2 clock periods. 



204 Q. Qiu et al. 

Equations (2)~(4) cannot be directly mapped to a 2D systolic array architecture be-
cause to calculate ije  we need the value of djdiws −− , ( djdie −− , ), ijsd ≤≤1 . The 

variable ije  is calculated by processor P(i,j). The variables djdiws −− , and djdie −− ,  

are calculated by processor P(i-d, j-d). If the calculation of ije  is performed at clock 

period t, then the calculations of djdiws −− , and djdie −− ,  for the same DNA duplex 

are performed at clock period dt 2− . Because cells in the systolic array will register 
the new input and update their results every 2 clock periods, it is not possible for us to 
access the values of djdiws −− , and djdie −− , at clock period t if d is greater than 1. 

One way to handle this problem is to store the values of djdiws −− , and djdie −− , in 

memory or in registers. Because the maximum value of sij can be as high as the length 
of the DNA strand, which in our case is 16, this solution would require duplication of 
each cell in the systolic array 16 times. This is not practical as it significantly in-
creases the hardware cost. 

In this work, we use function transformation to simplify the hardware design. We 
define a minimum weighted suffix matrix (min_ws) which stores the minimum value 
of the difference between djdiws −− , and 1,1 −−−− djdie , where ijsd ≤≤1 . The ijth 

entry of min_ws can be calculated as  
 

⎩
⎨
⎧ =−

= −−
otherwise                                         1,000,000

][][ if   ),min( 1,1 jyixewsmin_ws
min_ws jiij1-j1,-i

ij  (5) 

when ][][ jyix ≠ , min_wsij will be set to an extremely large number, otherwise, it is 

the minimum between min_wsi-1,j-1 and wsij-ei-1,j-1. The calculation of eij and wsij is 
transformed into the following equations. 

 

⎩
⎨
⎧ ≠=−+

= −−−−
otherwise0

000,000,1&][][ if     ])[],1[( 1,11,1
,                                                                               

wsmin_jyixixixwws
ws jiji

ji  (6) 

⎩
⎨
⎧ =−

=
−−−−

−−
otherwise                                             ),,max(

 ][][ if                      ),,max(

,11,1,1

,11,,

jijiji

jiji1-j1,-iji
ij eee

jyixeemin_wsws
e  (7) 

 
Equations (5)~(7) are equivalent to equations (2)~(4), however, only information 

from adjacent cells is needed in the calculation, hence, they can be implemented using 
the systolic array architecture.  

The hardware design of the 2D systolic array can be derived directly from equa-
tions (5)~(7). The systolic array is an n×n array of identical cells. Each cell in the ar-
ray has 7 inputs, among which the inputs ei-1,j and x[i-1, j] are from the cell that is  
located above, the inputs ei,j-1 and y[i, j-1] are from the cell that is located to the left, 
and the inputs ei-1,j-1, wsi-1,j-1 and min_wsi-1,j-1 are from the cell that is located to the up-



 Hardware Acceleration for Thermodynamic Constrained DNA Code Generation 205 

per left. Each cell performs the computations that are described in equations (5)~(7). 
For cell (i,j), the outputs xi,j and yi,j are equal to the inputs xi-1,j and yi,j-1. Figure 1 (a) 
gives the structure of each cell, including its input/output connections and the compu-
tation implemented. The variables xi,j and yi,j are represented as 2 bit binary numbers 
with A=00, C=01, G=10, and T=11. The variables ei,j, wsi,j and min_wsi,j are repre-
sented as 14 bit signed integer numbers. 

The overall architecture of the 2D systolic array as well as the data dependency and 
timing information are shown in Figure 1 (b). In order to prevent ripple through op-
eration, the cells in the even columns and even rows or odd columns and odd rows are 
synchronous to each other and perform computations in the same clock period. The 
rest of the cells are also synchronous to each other but perform the computation in the 
next clock period. Streams of operands enter a set of shift registers along the edges of 
the array that synchronize the presentation of bases in the operands with the results of 
calculations that propagate through the array diagonally.   

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j
ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j
ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

(a) Cell architecture (b) 2D systolic array 
 

Fig. 1. 2D systolic array for maximum weighted 2-stem common subsequence 

3   Problem Formulation and Solution Technique 

We consider each DNA codeword as a sequence of length n in which each symbol is 
an element of an alphabet of 4 elements. Let ):( yxG  denote the nearest neighbor 

free energy of duplex ': yx .  In this work, we focus on searching for a set of DNA 

codeword pairs S, where S consists of a set of DNA strands of length n and their re-
verse complement strands e.g. {(s1, s1’), (s2, s2’), …}, where (s1, s1’) denotes a strand 
and its Watson-Crick complement.  The problem can be formulated as the following 
constrained optimization problem: 

 
||max S  (8) 



206 Q. Qiu et al. 

( )  ,):'(),':(max                                   such that 1111 gssGssGrangeg ≤≤−  (9) 

( )  )':'(),:'(),':(),:(max 21212121
, 122

gssGssGssGssGrangeg
ssSs

≤≤−
≠∈

 (10) 

where g and range are user defined threshold called CH upper bound and CH range. 
Equation (8) indicates that our objective is to maximize the size of the DNA code-
word library. Constraints (9)~(10) specify that the NN free energy of any CH du-
plexes must be lower than or equal to g but greater than or equal to g-range. The 
range was initially introduced because we thought that adding the code words that are 
too far away from the rest of the library would restrict future growth of the library. 
Therefore, we only add code words that are “just good enough”. Later in the experi-
ments we found that the range has little impact on library size, however, it has a sig-
nificant impact on the convergence speed of the GA. 

The optimization problem is solved using a genetic algorithm. A genetic algorithm 
(GA) is a stochastic search technique based on the mechanism of natural selection and 
recombination. Potential solutions, which are also called individuals, are evolved 
from generation to generation, with selection, mating, and mutation operators that 
provide an effective combination for exploring the global search space.  

Given a codeword library S, the fitness of each individual d reflects how well the 
corresponding codeword fits into the current codeword library. Two values define the 
fitness, the reject_num and max_match. The reject_num is the number of codewords 
in the library which do not satisfy the condition (9)~(10) and 

( ))':'(),:'(),':(),:(maxmax_ 21212121
12,2

ssGssGssGssGmatch
ssSs ≠∈

= . 

A traditional GA mutation function might randomly pick an individual in the popu-
lation, randomly pick a pair of bits in the individual representing one of its 16 bases, 
and randomly change the base to one of the 3 other bases in the set of 4 possible 
bases. In the proposed algorithm, however, we randomly select an individual, but then 
exhaustively check all of the 48 possible base changes.  This is an attempt to speed 
beneficial evolution of the population by minimizing the overhead that would be as-
sociated with randomly picking this individual again and again in order to test those 
mutations.  We also specify that if none of the 48 mutations were beneficial, a random 
individual will be generated to replace the individual. For more details about the ge-
netic algorithm and its hardware implementation, refer to [8]. In this work, we extend 
the architecture of the hardware GA presented in [8] to incorporate the consideration 
of nearest-neighbor free energy. The 2D systolic array that is presented in section 4 is 
used as the fitness evaluation module and the main state machine controller of the GA 
is modified so that it checks constraints (9)~(10). 

4   Experimental Results and Discussions 

A hardware accelerator that uses a stochastic GA to build DNA codeword libraries of 
codeword length 16 has been designed, implemented, and tested. The design was  
implemented on the reconfigurable computing platform that is composed of a desktop 
computer and an Annapolis WildStar–Pro FPGA board [9].  The FPGA board is 



 Hardware Acceleration for Thermodynamic Constrained DNA Code Generation 207 

plugged into the PCI-X slot of the host system. The WildStar-Pro uses one XC2VP70 
FPGA that has 74,448 programmable logic cells. The hardware accelerator uses about 
80% of the logic resources. It runs at a 45 MHz clock frequency. A hardware based 
code extender that uses exhaustive search to complete the codeword library generated 
from GA was also designed and implemented. All the code word libraries that have 
been found are verified using the online tool SynDCode[11]. Since the GA is a sto-
chastic algorithm, all results reported are the average of 5 runs. 

The first set of experiments compares the performance of the hardware-based and 
the software-only DNA codeword search. Two versions of each search algorithm 
were implemented. They are denoted as “deterministic search” (DS) and “randomized 
search” (RS).  A population  size of 16 was used for both versions.  The population 
for DS was initialized using 16 sequential internal values from 0x000003F0 to 
0x000003FF, which correspond to DNA codewords 3’AATTTAAAAAAAAAAA’5  
through 3’TTTTTAAAAAAAAAAA’5, while the population for RS was initialized 
randomly. When a new codeword is found, or when none of the mutated codewords 
has lower fitness than the original individual, a new individual is generated to replace 
the original one. In DS, a counter is used to generate the new individual. The counter 
is initialized to 0x000006D6. In RS, the new individual is generated randomly. We 
found that random search is more effective than the deterministic search. However, in 
order to compare the speed of hardware-based implementation and software-based 
implementation, we must ensure that the two systems perform exactly the same com-
putation tasks.  This is achievable only with a deterministic algorithm. All experi-
ments were run with g = 8.5 and range = 1.0, and were terminated after 300 code 
word pairs were found.  

Figure 2 shows the time required to build large thermodynamically constrained 
DNA code word libraries, for software running on a single processor workstation, and 
for the hardware accelerator. The lower curves indicate faster speed. As we can see, 
the software-based deterministic search has the lowest performance, while the hard-
ware-based random search has the highest performance. The hardware-based deter-
ministic search provides approximately 240X speed-up compared to the software-only 
version while the hardware-based random search provides approximately 260X 
 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

# code word pairs

Ti
m

e 
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

HW-deterministic
SW-deterministic

HW-random
SW-rand
HW-random
SW-rand

# code word pairs

Ti
m

e 
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

 

Fig. 2. Comparison between hardware-based and software-based implementation 



208 Q. Qiu et al. 

speed-up compared to the software-only version. Compared to deterministic search, 
random search provides approximately 3.7X and 4X speed-ups using software-only 
and hardware-based implementations respectively. The plot also shows that the curves 
for software-only implementation and the hardware-based implementation are almost 
parallel to each other, which indicates that they both have the same complexity. 
Therefore, the performance gain that has been achieved by using hardware accelera-
tion is a constant ratio.  

The second set of experiments evaluates the impact of CH range on the speed and 
quality of the code word search. Figure 3 (a) gives the time to find 400 code word 
pairs for different CH ranges. In the next experiment, we ran the GA until it con-
verged (i.e. could not find any new code words for 10 minutes), and then used ex-
haustive search to complete the codeword library. Figure 3 (b) shows the size of the 
final library. As we can see, the GA converges faster when the range is set to an ap-
propriate value. For example, compared to range = 0.5, the runtime of GA is 26% and 
24% longer at range= 0.05 and 3.0 respectively. Contrary to our original belief, the 
distance range does not have significant impact on library size. The size of final lo-
cally optimum libraries found with the addition of ES differ by only 3%. Exhaustive 
search usually finishes within 2 hours, depending on the number of words not found 
by GA.  

(b) Library size under different range 

400

410

420

430

440

450

Library found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3

# 
co

de
 p

ai
rs

400

410

420

430

440

450

Library found by GA Extended LibraryLibrary found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3
range=0.05 range=0.1 range=0.5
range=1 range=3

# 
co

de
 p

ai
rs

(a) Time to find 400 code word pairs 

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

 

Fig. 3. Impact of different ranges on the search speed and library size 

The third set of experiments compared the search speed for different CH upper 
bounds (g). We varied the CH upper bound from 6.5 to 10.0 and ran GA-based code 
word search. Figure 4 (a) shows the number of code word pairs found in 5 minutes for 
CH upper bounds from 5 to 8.0 while Figure 4 (b) shows the runtime required to find 
300 code word pairs for CH upper bound from 8.5 to 10.  The results indicate that the 
time to find 300 code words increases exponentially as CH upper bound increases. 

The significance of the hardware accelerator is that for the first time it enables us to 
evaluate different code word search algorithms and explore the lower bound of opti-
mal code word library size in a reasonable amount of time. For example, without the 
hardware accelerator, each experiment in our second set would have taken more than 
20 days. 

 



 Hardware Acceleration for Thermodynamic Constrained DNA Code Generation 209 

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e 
w

or
d 

pa
irs

(a) # code word pairs found in 5 minutes

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e 
w

or
d 

pa
irs

(a) # code word pairs found in 5 minutes

0

5

10

15

20

8.5 9 9.5 10
CH upper bound

R
un

tim
e 

(s
ec

)

(b) Time to find 300 code word pairs

0

5

10

15

20

0

5

10

15

20

8.5 9 9.5 108.5 9 9.5 10
CH upper bound

R
un

tim
e 

(s
ec

)

(b) Time to find 300 code word pairs
(a) # code word pairs found in 5 minutes. (b) Time to find 300 code word pairs.  

Fig. 4. Code word search under different CH upper bound 

While it is true that the hardware accelerator does not explicitly consider con-
straints preventing bulges or internal loops, the free energy metric checking in a 2D 
systolic does impose those constraints implicitly by covering all sliding of the mers 
against each other.  We believe that it should be possible to extend this work to in-
clude other secondary constraints commonly used in DNA code design, such as CG 
content, disallowing specific sequences, and checking all concatenations of two li-
brary words against each other (i.e. 32 mers vs 32 mers) in future hardware versions. 
Interestingly, scaling up to 32 mer x 32 mer checking may or may not result in longer 
checking times. The challenge of using hardware to calculate the free energy of DNA 
codewords of length 32 is that it may require more programmable hardware resources 
than any present single chip FPGA can provide. Possible solutions are to implement a 
large systolic array using multiple connected FPGAs and perform all computations in 
parallel, or implement a small systolic array on one FPGA and time-multiplex the 
computation, or await larger future generation FGPAs.  While the first two solutions 
are feasible today, compared to the first solution, the second solution has lower cost 
but also lower performance. Careful tradeoff decisions must be made based on the 
available resources, and the given cost and performance requirements.  It is also noted 
that DNA code design problem is only slightly different than the tag-antitag and probe 
set design problem faced in composing diagnostic micro arrays, where mers of length 
25-60 must be checked in many alignments against longer mers drawn from large and 
potentially multiple genomes.  Hardware accelerators similar to our own should be 
adaptable to that problem.  Finally, DNA codes designed in-silicon for both problems 
must be checked by fabrication and wet chemistry experiments run under use condi-
tions to verify their true utility  

5   Conclusions  

In this work, we propose a novel systolic array architecture to calculate the nearest-
neighbor free energy of DNA duplexes that is based on a transformed version of a dy-
namic programming approach. A single chip FPGA hardware accelerator has been 
developed that builds large, locally optimum libraries of DNA codewords with GA 
and exhaustive search, both based on thermodynamic energy constraints. The present 
version, run at 45 MHz clock frequency, provided more than a 250X speedup over a 
software only approach running on a 2.5 GHz Pentium processor. 



210 Q. Qiu et al. 

References 

[1] Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence 266, 1021–1024 (1994) 

[2] Mansuripur, M., Khulbe, P.K., Kuebler, S.M., Perry, J.W., Giridhar, M.S., Peyghambar-
ian, N.: Information Storage and Retrieval using Macromolecules as Storage Media. In: 
Optical Data Storage (2003) 

[3] Brenner, S., Lerner, R.A.: Encoded Combinatorial Chemistry. Natl. Acad. Sci. USA 89, 
5381–5383 (1992) 

[4] Deaton, R., Garzon, M.: Thermodynamic Constraints on DNA-based Computing. In: 
Computing with Bio-Molecules: Theory and Experiments, Springer, Heidelberg 

[5] Brenneman, A., Condon, A.: Strand Design for Biomolecular Computation. Theoretical 
Computer Science 287, 39–58 (2002) 

[6] Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of Nucleic Acid Sequences 
for DNA Computing based on a Thermodynamic Approach. Nucleic Acids Re-
search 33(3), 903–911 (2005) 

[7] Santalucia, J.: A Unified View of polymer, dumbbell, and oligonucleotide DNA nearest 
neighbor thermodynamics. In: Natl. Acad. Sci. Biochemistry, pp. 1460–1465 (1998) 

[8] Qiu, Q., Burns, D., Wu, Q., Mukre, P.: Hybrid Architecture for Accelerating DNA Code-
word Library Searching. In: IEEE Symposium on Computational Intelligence in Bioin-
formatics and Computational Biology (2007) 

[9] Annapolis Micro System, http://www.annapmicro.com/ 
[10] SantaLucia Jr., J., Hicks, D.: The thermodynamics of DNA Structural Motifs. Annu. Rev. 

Biophys. Biomol. Struct. 33, 415–440 (2004) 
[11] Bishop, M.A., Macula1, A.J., Renz, T.E.: SynDCode: Cooperative DNA Code Generat-

ing Tool. In: 3rd Annual Conference of Foundations of Nanoscience (2006) 
[12] D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Torney, 

D.C.: A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA 
Codes. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, 
pp. 90–103. Springer, Heidelberg (2005) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 211–220, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Hardware and Software Architecture for Implementing 
Membrane Systems: A Case of Study to Transition P 

Systems 

Abraham Gutiérrez, Luís Fernández, Fernando Arroyo, and Santiago Alonso 

Natural Computing Group - Universidad Politécnica de Madrid 
28031 Madrid, Spain 

{abraham, setillo, farroyo, salonso}@eui.upm.es 

Abstract. Membrane Systems are computation models inspired in some basic 
features of biological membranes. Many variants of such computing devices have 
already been investigated. Most of them are computationally universal, i.e., equal 
in capacity to Turing machines. Some variant of these systems are able to trade 
space for time and solve, by making use of an exponential space, intractable 
problems in a feasible time. This work presents a software architecture that 
completes the generic hardware prototype based on microcontrollers presented in a 
previous work. This parallel hardware/software architecture is based on a low cost 
universal membrane hardware component that allows to efficiently run any kind of 
membrane systems. This solution was less enclosed and floppier than the hardware 
specifically designed, and cheaper than those based on clusters of PC’s.  

Keywords: Natural Computing, Transition P System, Hardware implementations, 
Software architecture. 

1   Introduction 

Membrane computing is a new computational model based on the membrane structure 
of living cells [1]. It must be stressed that they are not intended to model the 
functioning of biological membranes. Rather, they explore the computational 
character of various features of membranes that can be used for modeling new 
computational paradigms inspired by Nature. This model has become, during last 
years, a powerful framework for developing new ideas in theoretical computation and 
connecting the Biology with Computer Science. 

The membrane structure of a P System is a hierarchical arrangement of 
membranes, embedded in a skin membrane, the one which separates the system from 
its environment. A membrane without any membrane inside is called elementary. 
Each membrane defines a region that contains a multiset of objects, and a set of 
evolution rules. The objects are represented by symbols from a given alphabet. The 
objects can pass through membranes, the membranes can change their permeability, 
they can dissolve, or they can divide. These features are used in defining transitions 
between different system configurations, and these sequences of transitions are used 
to define computations. Membrane systems are synchronous, in the sense that a global 



212 A. Gutiérrez et al. 

clock is assumed, i.e., the same clock holds for all regions of the system. At each time 
unit, a transformation of a system configuration takes place by applying rules in all 
regions, in a nondeterministic and maximally parallel manner. This means that the 
objects to evolve and the rules governing this evolution are chosen in a 
nondeterministic way. 

Nowadays, membrane systems have been sufficiently characterized from a 
theoretical point of view. Their computational power has been settled – many variants 
are computationally complete. However, the way in which these models can be 
implemented is an open problem today. As usually happens, implementation of these 
systems has been attacked from two different approaches: software and hardware 
models. An overview of membrane computing software can be found in [3]. It can be 
found several membrane systems simulators very elaborated [2]. However, the 
hardware model seems to be the most appropriate -apart from the biological 
implementation– able to obtain the massive parallelization membrane systems claim. 

The main research lines in hardware model design are, hardware ad-hoc and 
simulation over local networks using cluster of microprocessors: 

• The hardware specifically designed has the advantage of being a massively parallel 
solution [5][6][7]. Their weak point resides in the lack of flexibility that presents, 
because this type of solutions only allows the simulation of a specific kind of 
membrane systems (for each membrane system a specific hardware is needed). 
They are also very enclosed solutions because they can be applied only to a very 
little range of problems (reduced number of objects in the alphabet and small 
number of evolution rules). 

• The solutions based on cluster of microprocessors [4] and local networks have as 
main advantage the use of very common and well-known architectures. They are 
floppy systems also because a change at software level allows the simulation of 
any kind of membrane systems. Its main problem, as Ciobanu recognizes [4], is 
caused by the network congestion. Although there are new studies that solve these 
problems [11], the best simulation times are reached always with few units, so the 
obtained solutions have a low degree of parallelism.  

Our solution, based on the use of microcontrollers, tries to be an intermediate point 
among the previously exposed research lines: 

• Microcontroller architecture is as flexible as cluster of microprocessors and less 
enclosed and floppier than the hardware specifically designed.  

• Microcontroller architecture has more level of potential parallelism than cluster of 
microprocessors but does not have intrinsic parallel nature of the hardware 
specifically designed. 

• Finally, it is the cheapest architecture (8 US$ approximately per basic unit).  

Due to the balance between flexibility, parallelism and cost reached by this 
architecture it’s very possible to obtain better results than the previous works did. 

This work is structured as follows: firstly presents basic units of the hardware 
prototype. Secondly, algorithms for applying evolution rules in Transition P systems 
are characterized. After that, next sections are devoted to present the software 
architecture developed and how the algorithms are adapted to the hardware prototype. 
Finally, the obtained results and some conclusions are presented. 



 Hardware and Software Architecture for Implementing Membrane Systems 213 

2   Hardware Prototype  

The designed prototype expects to simulate the operation of just one membrane, and 
not the whole system. It makes use of three basic components: a microcontroller that 
carries out the processing unit features, an EEPROM memory that carries out the 
storage unit features and a communications bus. For a complete description of this 
prototype see [12]. 

2.1   Processing Unit: PIC16F88 Microcontroller 

The microcontroller stores and run the program that simulates the behaviour of the 
membrane. The possibility of change this program, without modifying the associate 
hardware, provides a great flexibility to the solution allowing the simulation of any 
kind of membrane system.  

The election of PIC (Peripheral Interface Controller) 16F88, comes determined by 
its low cost ($1.90), that allows us to think about solutions with a high grade of 
potential parallelism and also because of being the half rank microcontroller that 
provides the minimum necessary requirements: a enough processing speed (20Mhz, 
200 nanosecond instruction execution), a suitable word wide (8bits), a possibility of 
manipulating data with a sufficient precision (8bits) and a easy–to-program 
instruction set (only 35 single word instructions). 

2.2   Storage Unit: 24LC1025 Eeprom 

The memory module defines the compartment that delimits the membrane and it is the 
container of its main components: the evolution rules and the multisets. The large 
store capacity of this memory module makes the solution less enclosed than the 
hardware specifically designed, being valid for a bigger range of problems. 

The solution presented in this prototype uses a 24LC1025 memory module, also 
manufactured by Microchip Inc. Technology, that gathers a reduced cost ($4,50) and 
a great storage capacity (128 Kbytes). It uses a low consumption CMOS technology 
(3mA in writing process), with a maximum writing cycle of 5ms and is guaranteed for 
more than a million of write operations. It is also compatible with I2C protocol, 
supporting the standard mode of 100 KHz and the fast mode of 400 KHz, which 
allows a suitable speed for the kind of application that we are developing. 

2.3   Communication Bus: I2C Bus 

The communication bus allows the effective communication among the membranes, 
facilitating the distribution of the information for the whole system. It is also the 
responsible for content exchange between the memory module and the microcontroller. 

The prototype uses the I2C bus (Inter Integrated Circuit Bus) of Philips 
Semiconductors implemented in MSSP module (Master Synchronous Serial Port) of 
the own microcontroller. I2C defines a synchronous, bidirectional protocol, of master-
slave type that uses a serial bus, formed by two threads, to which several devices can 
be connected by a very simple hardware. Each wired device to the bus is recognized 
by an only address that differentiates it of the rest of the wired components. One of 



214 A. Gutiérrez et al. 

the advantages from the usage of this kind of bus is its simplicity which allows us to 
connect new components, for example, we can simply expand the storage capacity of 
our solution until 512 Kbytes adding other three memory modules (24LC1025) to the 
same bus, that they would be accessed making use of the available address lines. 

2.4   General Structure of the Circuit 

The following figure shows us the general structure of the circuit used for the 
implementation of universal membrane hardware component; the connection between 
the microcontroller and the memory module through the I2C bus: 

 

Fig. 1. General circuit diagram 

3   Software Architecture  

The proposed software solution tries to define a generic architecture that allows its 
adaptation to any kind of membrane system, in the simplest possible way. It arranges 
the developed features in three layers: a low layer that provides the basic routines for 
hardware performance; an intermediate layer composed by the modules that provide 
the main routines to manipulate membrane systems; and a higher layer, or 
implementation layer, in which the algorithms for different models of membrane 
systems are defined. 

3.1   Data Structures 

There are five main structures in our architecture: multiset structure, evolution rules 
structure, rules table structure, applicable rules bitmap structure and priority rules 
bitmap structure. 

Each region of a membrane can potentially host an unlimited number of objects, 
represented by the symbols from a given alphabet. In our case, these objects are not 
implemented individually but only their multiset is represented using the Parikh 
vector: let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a 
symbol ai in x is denoted by | x |ai; the Parikh vector associated with x with respect to 



 Hardware and Software Architecture for Implementing Membrane Systems 215 

a1, ..., an is (| x |a1 , ..., | x |an) = (m1, ...,mn). In our implementation, it is possible to 
choose between 8-bit and 16-bit per object, which allows to store up to 27 = 128 or up 
to 215 = 32768 instances of an object (the remaining bit is being used to detect a 
capacity overflow). This value limits the maximum number of object instances that 
can be stored, but it is easy to change this restriction if it is necessary. 

The byte's order reflects the order of the objects within the alphabet and 
consequently, the byte position directly indicates which symbol's multiplicity is being 
stored. There are no restrictions for the number of objects of the alphabet, just the 
maximum capacity of the memory. To indicate the end of the multiset a special 
character is used.  

To represent the evolution rules we use the same type of vector, indicating the end 
of each rule by a special character too. When the membrane is first loaded in the 
EEPROM memory, a memory map is created with information about the beginning 
address of each evolution rule in our memory. This table is initialized only at the 
beginning of the simulation and do not change afterwards (the P System's evolution 
rules do not change throughout a computation, except when membrane is dissolved).  

Furthermore, after the application of a rule inside the membrane, the program 
constantly computes whether a rule can be applied or not. The routine takes the 
membrane rules as inputs and generates a bitmap array, the applicable rules bitmap, 
indicating the set of applicable rules. This bitmap is later used to select applicable 
rules. 

The last main structure is the priority rules bitmap. It consists in a byte array per 
evolution rule indicating their priority regarding the rest of the rules. This structure is 
used to select the rule to be active. 

3.2   Hardware Abstraction Layer (HAL) 

This is an abstraction layer, implemented with a set of routines libraries, between the 
physical hardware of the prototype and the specific software that runs on higher 
layers. Its function is to hide differences in hardware from the simulation software, so 
it not needs to be changed to run on systems with different hardware. A HAL allows 
routines from intermediate layer to communicate with lower level components, such 
as directly with hardware. This allows portability of the implemented code to a 
variety of microcontrollers, with different memory modules or even different 
communication buses. This layer is composed by four main modules: 

• The microcontroller.inc module takes charge of providing the necessary 
subroutines for the initialization and basic operation of the microcontroller. 
Emphasize among others, the routines that work with the inner memory of the 
microcontroller (flash memory for general purpose and eeprom memory for main 
program).  

• The memory.inc module takes charge of providing the necessary subroutines for 
the initialization and basic operation of the memory modules, as well as the 
management operations (load and recovery) of their main contents: multisets and 
evolution rules. To facilitate individualized accesses to different contents a random 
access reading system has been configured. 



216 A. Gutiérrez et al. 

• The bus.inc module takes charge of providing the necessary subroutines for the 
initialization and basic operation of the I2C bus, as well as the communication 
operations between different membranes and different components in the 
prototype. The defined routines are specifically adjusted to the requirements 
imposed by the information manipulation. The bus fast mode support (400 KHz) 
has been used. 

• The synchronization.inc module takes charge of providing the necessary 
subroutines for the correct synchronization of the different components. It also 
includes subroutines that allow implementing the necessary synchronization barrier 
in the membrane evolution steps. Special care has been take it with the reading and 
writing operations in the storage device (maximum writing cycle of 5ms) or in the 
microcontroller enabled areas. 

3.3   Membrane Basic Runtime Layer (MBRL) 

This layer defines a set of routine libraries that provide a common interface to the top 
layer (MIL). They make use of routines implemented in the low layer (HAL). This 
interface is made up of generic functions that allow carrying out the basic operations 
present in most of the membrane systems. Four main modules compose this layer: 

• The multiset.inc module takes charge of providing the necessary subroutines for 
storage, retrieval and management of multiset defined in a membrane. We can find 
routines like: load_multiset, restore_multiset, write_multiset, read_multiset… 

• The rules.inc module takes charge of providing the necessary subroutines for 
storage, retrieval and management of evolution rules defined in a membrane. We 
can find routines like: load_rules, restore_rules, next_rule, applicable_rules, 
select_ramdon_rule… 

• The priority.inc module takes charge of providing the necessary subroutines for 
storage, retrieval and management of priority map defined among different 
evolution rules of a membrane. We can find routines like: load_priorities_vector, 
restore_priorities_vector, set_rule_priority, get_rule_priority… 

• The communication.inc module takes charge of providing the necessary 
subroutines for information communication and message passing among the 
different membranes that compose a system. It processes the transfer commands 
present in the evolution rules (inj, outj, here). It is also the module in charge of 
implementing the operations associated to membrane permeability.  We can find 
routines like: send_to_region, dissolve_region, pause_computation, 
resume_computation… 

3.4   Membrane Implementation Layer (MIL) 

In this layer are located the programs that implements the different kinds of 
membrane systems. In our case we have three programs that implements the P System 
algorithms described in the next section. These programs make use of routine libraries 
present in the intermediate architecture level (MBRL). New implementations may 
need the adaptation of some of the MBRL libraries. 

The following image shows the structure of the proposed software architecture: 



 Hardware and Software Architecture for Implementing Membrane Systems 217 

 

 
 
 
 

Membrane Basic Runtime Layer

multiset.inc

priority.inc

rules.inc

communication.inc

P-Systems

ActivesTissues

StepByStep.asm

MaxApp.asm

Exhaustive.asm

 
 
 
 

Hardware Abstraction Layer

microcontroller.inc

memory.inc

bus.inc

synchronization.inc

Membrane Implementation Layer

 

Fig. 2. Software Architecture Layers 

4   Implemented Transition P System  

In this paper we implement three algorithms. The first one is widely used on 
simulation tools, and the other two are new algorithms based on applicability 
benchmarks for evolution rules in which, a certain degree of parallelism is obtained –
at a given iteration step of the algorithm, a given evolution rule is applied several 
times over the multiset of objects–. A total parallelism cannot be achieved but these 
new algorithms go one step ahead in two different senses: firstly, implementations are 
closed to the theoretical model and to biology, and secondly, due to parallel 
application of evolution rules by chunks, it will be more efficient. For a complete 
description of these algorithms see [8][11]. 

4.1   Step by Step Algorithm 

In literature about simulation tools of membrane systems [9], it is widely used an 
algorithm in which rules are applied one by one in a set of micro-steps of evolution, in 
particular, during the process of calculating the multiset of evolution rules. This algorithm 
involves the random selection of one of the active evolution rules and the modification of 
the multiset of objects until the set of active evolution rules became empty.  

4.2   Maximal Applicability Algorithm 

This algorithm is based on considering the maximal applicability benchmark of 
evolution rules over a multiset of objects [8]. Process is as follows: once an evolution 



218 A. Gutiérrez et al. 

rule has been selected in a non deterministic manner, the rule is applied a random 
number of times between 1 and the maximal applicability benchmark, per iteration. It 
is expected that this higher consume of objects will accelerate the end of execution. 

4.3   Elimination Rules Algorithm 

Process is as follows: all rule, different from X, in the active rules set is applied. The 
number of times that is applied will be a random number between 0 and its maximal 
applicability. This way, each one has the possibility of being applied. Rule X is 
applied an equal number of times to its maximal applicability. This way the rule is not 
any more active and therefore, it disappears from the active rules set. 

5   Hardware Testing 

Before construction phase different kinds of tests have been carried out over 
individualized components and over the complete prototype. So many simulations 
have been carried out using software simulation tools and emulation test boards. The 
testing process has gone by four phases: synchronization test, program test, simulation 
test and emulation test.  

5.1   Synchronization Test 

One of the most important elements for a good operation of the proposed solution is 
the communication bus, mainly, if we think of a board composed by hundred of 
components like those presented in this work. To obtain a great productivity, the fast 
mode (400 KHz) of the I2C bus it has been used. This implies the adaptation of all 
signals and necessary delays for all the components. To make this adjustment the 
communication has been proven for each one component with the bus. Their 
behaviors have been defined using a signal analyzer. 

5.2   Programs Test 

For the simulation programs and the library routines we used the MicroChip MPLAB 
IDE integrated environment (integrated toolset for the development of embedded 
applications employing Microchip's PIC®). The programming tool was macro 
assembler MPASM, that generates relocatable object files for the MPLINK object 
linker, Intel® standard HEX files, MAP files to detail memory usage and symbol 
reference, absolute LST files that contain source lines and generated machine code 
and COFF files for debugging. 

5.3   Simulation Test 

For the complete software simulation of the prototype the Proteus IDE integrated 
environment has been used.  Its correct operation for the different algorithms has been 
verified. In this tool all obtained factors in previous tests have been considered 
(synchronization analysis and program fine tuning). 



 Hardware and Software Architecture for Implementing Membrane Systems 219 

5.4   Emulation Test: In Circuit Debugger 

Once stopped the software simulation tests, the prototype has been proven on a tests 
board. This way, the real operation of the prototype is verified. For it MPLAB ICD2 
trainer has been used. 

6   Conclusions 

In this work we present a parallel hardware/software architecture based on a low cost 
universal membrane hardware component that allows to run efficiently any kind of 
membrane systems. The solution is based on generic hardware such as 
microcontrollers. So, the resulting architecture is less enclosed and floppier than the 
hardware specifically designed. Moreover, it has a higher parallelism degree than 
cluster of microprocessors and it is the cheapest solution.   

In particular, as a test of their flexibility, in this work three different algorithms for 
application of evolution rules in Transition P Systems (the basic variant of membrane 
systems) are implemented. Moreover adding the necessary software components, 
algorithms for active membranes P-systems, tissues-like P-systems or many variants 
of the proposed model could be implemented. 

In addition, the propose architecture does not impose functionality or arrangement 
restrictions to their basic units. It can be adapted without problems to different 
software architectures [8], like: Parallel architecture oriented to membranes, Parallel 
architecture oriented to processors and Parallel architecture oriented to rules. It can 
be also adapted to different hardware architectures [11] like: Peer to Peer 
architecture, Master-Slave architecture and the new Hierarchic architectures. 

References 

1. Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences, 61 
(2000), Turku Center of Computer Science-TUCS Report nº 208 (1998) 

2. Păun, Gh.: Membrane computing. Basic ideas, results, applications. In: Pre-Proceedings of 
First International Workshop on Theory and Application of P Systems, Timisoara, 
Romania, pp. 1–8 (September 26-27, 2005) 

3. Ciobanu, G., Pérez-Jiménez, M., Paun, G.: Applications of Membrane Computing. Natural 
Computing Series. Springer, Heidelberg (2006) 

4. Ciobanu, G., Wenyuan, G.: A P system running on a cluster of computers, Membrane 
Computing. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) 
Membrane Computing. LNCS, vol. 2933, pp. 123–150. Springer, Heidelberg (2004) 

5. Petreska, B., Teuscher, C.: A reconfigurable hardware membrane system. In: Alhazov, A., 
Martín-Vide, C., Paun, G. (eds.) Preproceedings of the Workshop on Membrane 
Computing, Tarragona, pp. 343–355 (July 2003) 

6. Fernández, L., Martínez, V.J., Arroyo, F., Mingo, L.F: A Hardware Circuit for Selecting 
Active Rules in Transition P Systems. In: Workshop on Theory and Applications of P 
Systems. Timisoara (Rumanía) (September 2005) 

7. Martínez, V., Fernández, L., Arroyo, F., Gutiérrez, A.: A hardware circuit for the 
application of active rules in a Transition P Systems region. In: Fourth International 
Conference Information Research and Applications, Bulgaria, Varna (June 20-25, 2006) 



220 A. Gutiérrez et al. 

8. Fernandez, L., Arroyo, F.: Parallel Software Architectures Analysis for P-Systems 
Implementation. In: NCA 2006, Natural Computing and Applications Workshop. 8th 
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing 
Timisoara, Romania (September 26-29, 2006) 

9. Arroyo, F., Luengo, C., Baranda, A.V., Mingo, L.F.: A software simulation of transition P 
systems in Haskell. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) 
Membrane Computing. LNCS, vol. 2597, pp. 19–32. Springer, Heidelberg (2003) 

10. Fernández, L., Arroyo, F., García, I., Gutiérrez, A.: Parallel software architectures for 
implementing P systems. In: AROB 12th 2007, XII International Symposium on Artificial 
Life and Robotics, Oita, JAPAN (January 25-27, 2007) 

11. Tejedor, A., Fernández, L., Arroyo, F., Bravo, G.: An architecture for attacking the 
bottleneck communication in P System. In: AROB 12th 2007, XII International 
Symposium on Artificial Life and Robotics, Oita, JAPAN (January 25-27, 2007) 

12. Gutiérrez, A., Fernández, L., Arroyo, F., Martínez, V.: Design of a hardware architecture 
based on microcontrollers for the implementation of membrane systems. In: SYNASC 
2006, 8th International Symposium on Symbolic and Numeric Algorithms for Scientific 
Computing Timisoara, Romania (September 26-29, 2006) 



M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 221–230, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Towards a Robust Biocomputing Solution of Intractable 
Problems 

Marc García-Arnau1,*, Daniel Manrique1, Alfonso Rodríguez-Patón1, and Petr Sosík1,2  

1 Departamento Inteligencia Artificíal, Universidad Politécnica de Madrid (UPM) 
Boadilla del Monte s/n – 28660 Madrid, Spain 

mgarciaarnau@alumnos.upm.es 
2 Institute of Computer Science, Faculty of Philosophy and Science, Silesian University 

Bezručovo nám. 13, 74601 Opava, Czech Republic 

Abstract. An incremental approach to construction of biomolecular algorithms 
solving intractable problems is presented. The core idea is to build gradually the 
space of candidate solutions and remove invalid solutions as soon as possible. 
We demonstrate two examples of this strategy: a P system with replication and 
inhibitors for solving the Maximum Clique Problem for a graph, and an incre-
mental DNA algorithm for the same problem inspired by the membrane solu-
tion. The DNA implementation is based on the parallel filtering DNA model 
featuring error-resistance of the employed operations. The algorithm is com-
pared with two standard papers that addressed the same problem and its DNA 
implementation in the past. The comparison is carried out on the basis of a se-
ries of computational and physical parameters. The incremental algorithm fea-
tures a dramatically lower cost in terms of time, the number and size of DNA 
strands, together with a high error-resistance. A probabilistic analysis shows 
that physical parameters (volume of the DNA pool, concentration of the solu-
tion-encoding strands) and error-resistance of the algorithm should allow to 
process in vitro instances of graphs with hundreds to thousands of vertices. 

Keywords: Membrane Computing, DNA Computing, NP-Complete problem, 
Maximum Clique Problem, Incremental Strategy. 

1   Introduction 

One of the major sources of popularity of biomolecular computing in 1990’s was the 
promise to solve computationally intractable problems in polynomial (often linear) 
time due to the massive parallelism, minute energy consumption and nanoscale di-
mensions of biomolecular computing elements. After the pioneering experiment pub-
lished in [1], an explosion of publications appeared, many of them proposing molecu-
lar solutions of NP-complete problems. Soon another abstract biocomputing model 
emerged: membrane systems (also known as P systems), inspired by the structure and 
behaviour of living cells [20]. For an overview of both fields see [22], [3], [21] or 
online resources.  

However, although it has been theoretically possible to solve NP-complete prob-
lems in polynomial time, researchers have not managed to limit the exponential 
                                                           
* Corresponding author.  



222 M. García-Arnau et al. 

growth of some resources involved in problem solving, such as the number of mole-
cules. Another serious issue is the unreliability of biological operations, leading to er-
rors exponentially growing with the number of iterations. Therefore, a great deal of 
effort in molecular computing was put into optimizing these issues. We mention sev-
eral possible strategies: the adaptation of especially space-efficient classical algo-
rithms to a DNA scenario [18]. The creation of constructive algorithms designed to 
optimize the number of DNA strands [4]. The reduction of the number of biological 
operations needed and the resulting risk of error [15]. The application of dynamic 
DNA programming techniques [6], or the creation of computational models based on 
a destructive strategy over RNA strands as in [9]. These and other similar papers sug-
gest a compromise between space optimization and algorithm time, without overlook-
ing the number and complexity of the operations involved. Despite this effort, the 
biggest known instance of the SAT problem solved yet in vitro by a biocomputing 
machinery has 20 variables [23]. 

In this paper we propose an incremental strategy for biomolecular solutions of in-
tractable problems. The core idea is rather simple: to build gradually the space of can-
didate solutions and remove invalid solutions as soon as possible. We demonstrate 
two biocomputing algorithms based on this strategy for solving the Maximum Clique 
Problem for a graph: a P system with replication and inhibitors, and an incremental 
DNA algorithm based on the parallel filtering model. Mathematical analysis of the al-
gorithm, including its error-resistance and scalability, proves superior parameters 
when compared to standard approaches. 

The article is organized as it follows. Section 2 reviews the Maximum Clique Prob-
lem and proposes a P system with an incremental strategy to solve the problem. In 
Section 3 we propose an implementation of the incremental strategy using a DNA al-
gorithm. The efficiency of the proposed solution is compared in Section 4 with that of 
two standard papers that tackled the same problem earlier in [19] and [11]. A series of 
computational and physical parameters are defined to make this comparison. Section 
5 sets out final remarks  

2   Incremental Strategy in P Systems 

2.1   The Maximum Clique Problem and Related Work 

Let G = (V, E) be a graph with n nodes. A clique in G is a subset V' ⊂ V such that 
each two vertices in V' are connected by an arc in E. The Maximum Clique Problem 
then involves finding the biggest subset V' of totally connected nodes in the graph. 

Over the last decade, many papers have tackled this problem from the natural com-
puting paradigm point of view. For example, a theoretical proposal of a DNA solution 
was presented in [2]. However, a DNA bioalgorithm to solve this problem was im-
plemented for the first time in [19]. Later many others have addressed the same prob-
lem from different viewpoints. For example, the work of [5] focuses on the relation 
between evolutionary computing and DNA computing. Later, a parallel algorithm us-
ing fluids displacement in a three-dimensional microfluidic system was presented in 
[8]. Almost simultaneously another microflow reactor was used in [17] to solve the 
same problem using a brute force strategy. An aqueous algorithm was proposed in 



 Towards a Robust Biocomputing Solution of Intractable Problems 223 

[11] to solve the same instance of the problem as in [19]. Finally, the work of [24] is 
an example of use of the DNA computing sticker model to get all the cliques of size K 
of a graph. 

2.2   A P System with Replicated Rewriting and Inhibitors 

P systems with replicated rewriting are defined as membrane systems whose basic ob-
jects are not symbols but structured elements, like strings. These systems contain mul-
tisets of strings that are processed using replicated rewriting rules, that is, rules that, 
apart from modifying strings, can increase the number of their copies. Each such rule 
consists of n≥1 subrules. When a rule is applied to a string, the string is first repli-
cated into n copies and then each subrule is applied to one copy [14]. 

Another idea is the use of promoters or inhibitors in P systems with a clear biologi-
cal inspiration [7], [12]. A rule modelling a biological reaction can or cannot take 
place in the presence of certain enzymatic proteins. In our case, for each rule Ri of the 
P system, we define a set of inhibitors Ui containing those objects aj in presence of 
which the rule cannot be applied.  

Consider a graph G and the complementary graph G′ = (V, E') containing all edges 
missing in the original graph G. Then only those sets of vertices that do not contain 
nodes linked by an arc in E' are valid cliques. Then E' is what we will call the con-
straints set, which will be implemented by sets of inhibitors in our P system.  

Hence, the P system proposed here uses the information from the constraint set E' 
to gradually build only those cliques of G that are valid, thereby minimizing the num-
ber of strings in the system. Given a graph G = ( Eaa n},...,,{ 1 ), we formally define 

this P system as a construct: 
 
Π = )...,,,...,,,,( 11 nn RRMMV μ , where: 

 
}1|,{ nidaV i ≤≤=  

nn ...]]][...[[ 2112=μ  

niwithMdM i ≤≤== 2},{};{1 λ  

niEaaVaUwithoutdoutdadR jijiUii i
≤≤∈∈=→= ¬ 1},'},{|{)},(||),({  

In the above description, V is an alphabet consisting of an auxiliary symbol d and 
symbols a1 ,…, an representing the nodes of the graph. Furthermore, Π has a mem-
brane structure μ composed of n embedded membranes. Initially, the innermost mem-
brane 1 contains the string with a single symbol d, whereas the other membranes are 
empty (Mi = {λ}, 2 ≤ i ≤ n). Each membrane contains a set of rules Ri with replication. 
Each rule is of the form 

kUkkUU tarvtarvtarvX ¬¬¬→ ),(||...||),(||),(
21 2211 , where 

VX ∈ , *Vvi ∈ , *VUi ⊂  and }1|{},{ njinhereouttar ji ≤≤∪∈ , for ki ≤≤1 . 

The sets Ui are finite and their elements are called inhibitor strings. A subrule 

iUii tarvX ¬→ ),(  is applicable to a string w only if w contains X and does not contain 

any inhibitor string of Ui. If a rule of the above form is applied to a string w, then for 
each its applicable subrule a separate copy of w is created, to which the subrule is ap-



224 M. García-Arnau et al. 

plied. This application means that one occurrence of X in w is rewritten by vi and the 
resulting string is sent to the membrane indicated by tari. In this manner, the number 
of the processed strings can increase during the computation. At each step, each string 
in each membrane i to which at least one rule in Ri is applicable, must be processed by 
one such rule. Other strings pass unchanged into the next step. 

In the P system described above, each set Ri contains a single rule composed of 
a pair of subrules ri,a: iUi outdad ¬→ ),( and ri,b: ),( outdd → . The system starts to 

work by applying the two rewriting subrules of membrane 1 to the string d. At the 
first step, two strings are created and sent to membrane 2. The process is repeated 
in each membrane applying their respective rules Ri so that, step by step, all the 
valid cliques of the graph are generated. Note that the subrules ri,b are always ap-
plicable to all strings, whereas the subrules ri,a are only applicable to strings which 
do not contain any of the symbols aj representing vertices linked by an arc in G' to 
the node ai. At step n the system outputs a set of strings corresponding to all valid 
cliques for the graph G, the biggest of which is the solution to the Maximum 
Clique Problem.  

Therefore, the P system algorithm presented above generates simultaneously all the 
valid cliques of the graph G. It could be improved to separate the solutions represent-
ing maximal cliques. However, when implemented in the DNA framework, one can 
use tools specific for DNA computing for this separation. Hence we leave a solution 
of the separation problem for the next sections. 

3   A Robust DNA Algorithm for the Maximum Clique Problem 

The computational benefits of using DNA molecules come from their chemical prop-
erties, mainly from the Watson-Crick complementarity principle. Also the massive 
parallelism of performed operations is of crucial importance, as well as an extremely 
low energy consumption and volume compared to the classical silicon technology. 
DNA strands are formed by repeating four types of nitrogen bases {A, C, G, T} at-
tached to a sugar-phosphate backbone. Chemical properties of DNA guarantee that 
adenine (A) can only pair with thymine (T), whereas guanine (G) can only pair with 
cytosine (C).  

Since the pioneering Adleman’s DNA computational model, several other DNA 
computing models have been presented. Recently, in the monograph [3] and other 
publications, authors focus on the reliability and error-resistance of the elementary lab 
operations used for DNA computing. For example, properties of so-called parallel fil-
tering model, first presented in [2], are thoroughly examined in [3]. Therefore, we 
adopt this model as a basis of our implementation of the P system described in Sec-
tion 2.2. However, to preserve advantages of our incremental solution construction, 
we enrich the parallel filtering model with the operation Append implemented by the 
Parallel Overlap Assembly (POA). Also, we replace the operation Copy with a similar 
operation Replicate. While Copy was designed just to split the content of a test tube 
into k other tubes of equal volumes, Replicate actually replicates the content of a 
source tube using the PCR operation. To summarize, the following operations on 
DNA single-stranded molecules (oligos) are used: 



 Towards a Robust Biocomputing Solution of Intractable Problems 225 

1. Union (t1, t2, t3): Mixes multisets of strings (i.e. tubes) t1 and t2 to form their union 
in t3.  

2. Replicate (t1, t2, t3): Replicates the contents of a tube t1 into two tubes t2 and t3 such 
that each of t2 and t3 contains (at least) one copy of  each strand originally present 
in t1, which is emptied. 

3. Remove (t,{ai}): Given a tube t and a set of strings {ai}, we remove from t all the 
strings containing some ai as a substring. 

4. Append (t1, a): Given a tube t1, append the string a to the end of all the strings the 
tube contains. If t1 is empty, then the result of the operation is just {a}. 

5. MeasureStrings (t): Measure the strings of tube t to identify the longest one(s). 

Following the design instructions in [19], the use of 20-base long oligos (20-mer) 
to encode each node ai of the problem domain is considered. Therefore, a clique con-
sisting of k vertices will be represented as a catenation of k 20-mers. Each of these  
20-mers must contain a restriction enzyme binding site, for example GATC for the 
enzyme MboI. The same enzyme is used for all the 20-mers. For a possible imple-
mentation of the operations listed above we refer to [3]. We only note that the opera-
tion Append (t1, a) is implemented using POA. For each element ai we need exactly 

1−i  append operators of the form ijaa ji <≤−− 1,'3'5 . Now we present the DNA 

algorithm working in linear time with respect to the number of nodes |V|, which solves 
the Maximum Clique Problem. 

.

.//)(

}

.//),,(

.//),(

.//})1,'},{|{,(

.//),,(

{

),...,2,1,(

11

1132

2

2

132321

problemthesolvesthatcliquetheis

onebiggestThetinstringsDNAthemeasuresstepThistingsMeasureStr

ttreconstructotubestwothemergesstepThistttUnion

cliquesvalidthealltoanodeaddsstepThisatAppend

cliquesinvalidofRemovalijEaaatRemove

ttubeemptiesandtandttubesgeneratesstepThistttReplicate

beginniVa

ii

jij

i

<≤∈

=∈∀

 

Contrary to the algorithms used in [1], [19], [24], [3] and many other authors, the 
initial test tube does not contain the pool of all the possible candidate solutions of the 
problem. Instead, it contains a certain amount (say, p = 20) of copies of an initial 20-
mer (primer binding site) representing empty cliques. This amounts the number of 
copies of each future solution strand to ensure that, despite potential errors, the com-
putation would proceed correctly. The strings representing the problem solution (valid 
cliques for the input graph) are built gradually, as in the P system described above.  

4   Comparison with Standard Approaches 

In this section, we compare our incremental algorithm with standard strategies used in 
[19] and [11] to solve the Maximum Clique Problem. The former one proposes the 
use of a brute force strategy. The cliques are represented as binary strings of n pairs of 
elements (position, value). The position component indicates the respective node, 



226 M. García-Arnau et al. 

whereas the value component indicating whether or not the node is in the clique. The 
cases yes (not) are represented by an empty (10 bp long) strand, respectively. Once 
the space of all possible problem solutions ( n2  possible cliques) has been generated, a 
series of restriction enzymes are applied to break the strands encoding all the invalid 
cliques. Hence, these strands are not multiplied in the successive PCR cycles. As a re-
sult, gel electrophoresis can be applied in the last step to measure the strands in the set 
and identify the optimum problem solution.  

On the contrary, [11]. proposes the use of plasmids (circular DNA molecules) as a 
binary data medium. Information about the clique is encoded in a 175 bp subsegment 
of the plasmid, called MCS (Multiple Cloning Site). That subsegment is further di-
vided into n regions called stations. Each station represents a node of the graph and is 
associated with a particular restriction enzyme. The model has an operation Reset(k) 
which sets the value of station k to 0, increasing its size by 4 bp. Initially, all the sta-
tions are set to 1, indicating that all the nodes are present in the clique. The initial 
amount of molecules corresponds to the size of the solution space ( n2 ) and remains 
constant during the solution. Cyclically, a step is carried out for every arc {ai, aj} that 
is in the complementary graph G'. The solution space is split into two subsets t1 and t2 
in each step. The molecules in t1 are subject to the Reset(ai) operation and the mole-
cules in t2 to the Reset(aj) operation. Finally, the contents of t1 and t2 are poured into a 
single set. At the end of the algorithm, the number of 1’s in the molecules is counted 
to determine the maximum clique that solves the problem. 

We have chosen the following set of computational and physical parameters for the 
intended comparison of the three algorithms.  

 
1. No. of iterations: How many abstract iterations (due to the used model) the algo-

rithm requires.  
2. No. of different molecules per iteration: The number of different molecules (not 

copies of the same molecule) the algorithm generates prior to the first iteration and 
then after each iteration.  

3. Solution ratio after the last iteration: Calculated as the number of molecules en-
coding a solution to the problem / total number of molecules. Reflects the state af-
ter the last iteration.  

4. Minimum solution ratio: Similar as the previous parameter, but measured as a 
minimum over all the iterations including the initial state prior to the first iteration.  

5. No. of operations: Total number of principal biological operations carried out by 
the algorithm. We have counted the number of Cut operations using restriction en-
zymes for the brute force algorithm, each Reset on a station for the aqueous algo-
rithm, and each Remove and Append for the incremental algorithm.  

6. Mean string size per iteration: The weighted mean size of the present molecules 
taken prior to the first iteration and then after each iteration. Measured in terms of 
number of bases or base pairs (bp). For the aqueous algorithm, the size refers to the 
MSC region of the plasmid.  

7. Total mean string size: Arithmetic mean of the values in the previous parameter. 
8. No. of restriction enzymes: The total amount of restriction enzymes required by the 

algorithm.  

We analyse the performance of the three algorithms in the case of random Erdös – 
Renyi graphs [13]. Let G = (V, E) be a random graph with n nodes and let p be the 



 Towards a Robust Biocomputing Solution of Intractable Problems 227 

density of G, i.e., a fixed probability that two randomly chosen nodes are connected 
by an edge. Let the nodes be indexed 0, 1,…, n – 1. We fix the following notation: 

 
2/)1()( −= npnEcard , average number of edges of graph G 

2/)1()1()'( −−== nnpEcardq , average no. of edges of the complementary graph 

2/)1( −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= cc

c p
c

n
N , average number of cliques of size c, 2/)1(1 −≤≤ nnc  

∑
−

=
=

2/)1(

1

nn

c
cNs , average total number of all cliques in G 

ppnm n /))1(1( −−−= , avg. no. of nodes connected to a node with a lower index 

)1( 1−−= npnt , average number of nodes of G incidental with at least one edge in E' 

]1)2/(log2)(loglog2)(log2[max ++−= ennc bbbb , asymptotic clique number of G, 

where b=1/p 

))/1(1( 2
max ncqr −−= , avg. no. of edges in E' incidental with a clique of size cmax 

 
The formulas for 〈Nc〉 and cmax given above can be found in [16] or [13]. We use 

the notation [x] to denote the integer closest to a real value x. The other formulas are 
derived by rather straightforward application of elements of the probability theory and 
graph theory. Then the parameters of the three algorithms are the following: 

Table 1. General comparison between the three DNA algorithms studied in Section 4 

 
Brute force  
algorithm 

Aqueous  
algorithm  

Incremental 
algorithm 

No. of iterations q q n 

No. of different mo-
lecules per iteration 

min s+1 
max 2n 

min 1 
max 2n 

min 1 
max s 

Solution ratio after 
the last iteration 1

1

+s
 r−2  

s

1  

Minimum solution 
ratio 

n−2  r−2  
s

1  

No. of operations 2 q 2 q m+n 

Mean string size per 
iteration1 

min 20(n+1) + 5n 
max 20(n+1)+10n 

min 25(n+1)  
max 25(n+1)+4n 

min 20 
max 20 + 20 cmax 

No. of restriction 
enzymes2 t t 1 

1 upper bounds could eventually be further improved 
2 a single restriction enzyme is used in the Incremental algorithm 



228 M. García-Arnau et al. 

Most of the formulas in Table 1 follow rather easily by careful inspection of the 
three described algorithms. The solution ratio for the aqueous algorithm may deserve 
an explanation. Each step of the algorithm corresponding to an edge incidental with a 
maximal size clique halves the number of molecules which will encode this clique af-
ter the last iteration.  

As a test case we assume a rather dense graph with n = 1000 nodes and the edge 
probability p = 1/3. Results of the calculation are summarized in Table 2. The size of 
the chosen graph is dramatically higher than that of the largest problem cases which 
have been up-to-date successfully solved in biocomputing labs. The more surprising 
is the observation that even in this case the number of molecules of the incremental 
algorithm reaches values easily manageable in a test tube, and that concentrations of 
solution-encoding molecules are quite probably detectable.  

Table 2. Comparison between algorithms for the case of a graph with n = 1000 and p = 1/3 

 
Brute force  
algorithm 

Aqueous  
algorithm  

Incremental 
algorithm 

No. of iterations 333000 333000 1000 

No. of different mo-
lecules per iteration 

min 3.3 e +9  
max 1.07 e +301 

min 1  
max 1.07 e +301 

min 1 
 max 3.3 e +9 

Solution ratio after 
the last iteration 

3.0 e –10 4.96 e –2194 3.0 e –10 

Minimum solution 
ratio 

9.33 e –302 4.96 e –2194 3.0 e –10 

No. of operations 666000 666000 1997 

Mean string size per 
iteration 

min 25020 
max 30020 

min 25025  
max 29025 

min 20 
max 240 

No. of restriction 
enzymes 

1000 1000 1 

5   Conclusion 

We have presented an incremental strategy of biomolecular computing which is based 
on a subsequent building of the solution space and eliminating non-perspective partial 
solutions. This is in contrast with traditional approaches which generate initially a 
large pool of candidate solutions and then filter out invalid elements. Two variants of 
a biomolecular algorithm based on the incremental strategy for solving the Maximum 
Clique Problem have been presented. Finally, we have compared our algorithm with 
two other standard DNA approaches that solved this problem earlier.  

A series of computational and physical parameters have been used to carry out the 
comparison. The incremental strategy features a number of advantages in terms of ef-
ficiency and error-resistance. The comparison results focusing on the efficiency are 
summarized in Table 1 and 2. It follows that even for large problem cases (thousands 



 Towards a Robust Biocomputing Solution of Intractable Problems 229 

of vertices) the incremental strategy can provide a tractable solution measured in the 
number different molecules, of steps and the size of the DNA pool. 

Concerning the error-resistance of the incremental strategy, its key property is the 
need for step-by-step replication of partial solutions. Therefore, one cycle of the PCR 
and POA operations are a part of each iteration of the algorithm. The PCR is consid-
ered one of the sources of errors in DNA computing, due to possible mutations, and 
also due to the fact that it can quickly multiply residual molecules encoding invalid 
solutions which should have been destroyed during the Remove operation. Hence, one 
could expect rather high error rate when the number of iterations grows. Assume, e.g., 
the probability of failure of the operation Remove on an individual molecule pE = 
0.005 (i.e., 0.5%). A probabilistic analysis (not included for space limitations) ex-
plains, rather surprisingly, why even for large graphs with as much as n = 500 nodes 
and k =100 copies of each molecule in the test tube, the algorithm would report, on 
average, 0.0047 false cliques larger that the actual maximal clique, implying a very 
low probability of error. 

All the results presented in this paper are based on a theoretical model. However, 
the operations required to implement our algorithm have already been carried out in 
laboratory many times and their features are known. In any case, another project  
to test in the lab an in-vitro implementation of the proposed algorithm is under  
consideration. 

Acknowledgements 

 This research has been partially funded by the Spanish Ministry of Science and Edu-
cation under projects TIN2006-15595 and DEP2005-00232-C03-03, by the Ramón y 
Cajal Program of the Spanish Ministry of Science and Technology, and by the Czech 
Science Foundation, grant No. 201/06/0567. 

References 

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994) 

2. Amos, M., Gibbons, A., Hodgson, D.: Error-resistant implementation of DNA computa-
tions. In:  Proceedings of the Second Annual Meeting on DNA Based Computers. Prince-
ton University, pp. 87–101 (1996) 

3. Amos, M.: Theoretical and experimental DNA computation. Springer, Heidelberg (2005) 
4. Bach, E., Condon, A., Glaser, E., Tanguay, C.: DNA models and algorithms for NP-

complete problems. In: Proceedings of the 11th IEEE Conference on Computational Com-
plexity, pp. 290–300. IEEE Computer Society Press, Los Alamitos (1996) 

5. Bäck, T., Kok, J.N., Rozenberg, G.: Evolutionary computation as a paradigm for DNA-
based computing. In: Landweber, L., Winfree, E., Lipton, R., Freeland, S. (eds.) Proceed-
ings: DIMACS Workshop on Evolution as Computation, Princeton, NJ, pp. 67–88 (1999) 

6. Baum, E.B., Boneh, D.: Running dynamic programming algorithms on a DNA computer. 
In: Proceedings of the Second Annual Meeting on DNA Based Computers, Princeton Uni-
versity, pp. 141–147 (1996) 



230 M. García-Arnau et al. 

7. Bottoni, P., Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promot-
ers/inhibitors. Acta Informatica 38, 695–720 (2002) 

8. Chiu, D.T., Pezzoli, E., Wu, H., Stroock, A.D., Whitesides, G.M.: Using three-
dimensional microfluidic networks for solving computationally hard problems. In: Pro-
ceedings of the National Academy of Sciences of USA, vol. 98, pp. 2961–2966 (2001) 

9. Cukras, A.R., Faulhammer, D., Lipton, R.J., Landweber, L.F.: Chess games: a model for 
RNA based computation. Biosystems 52, 35–45 (1999) 

10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Read-
ing (1992) 

11. Head, T., Yamamura, M., Gal, S.: Aqueous computing: Writing on molecules. In: Pro-
ceedings of Congress on Evolutionary Computation, IEEE Service Center, Piscataway, pp. 
1006–1010 (1999) 

12. Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. Journal of Universal 
Computer Science 10, 581–599 (2004) 

13. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley & Sons, Chichester 
(2000) 

14. Krishna, S.N., Rama, R.: P Systems with replicated rewriting. Journal of Automata, Lan-
guages and Combinatorics 6, 345–350 (2001) 

15. Manca, V., Zandron, C.: A clause string DNA algorithm for SAT. In: Jonoska, N., See-
man, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 172–181. Springer, Heidelberg 
(2002) 

16. Matula, D.W.: On the complete subgraphs of a random graph. In: Bose, R.C., et al. (eds.) 
Proc. 2nd Chapel Hill Conf. Combinatorial Math. and its Applications, pp. 356–369. Univ. 
North Carolina, Chapel Hill (1970) 

17. McCaskill, J.S.: Optically programming DNA computing in microflow reactors. Biosys-
tems 59, 125–138 (2001) 

18. Ogihara, M.: Breadth first search 3-SAT algorithms for DNA computers. Technical Report 
629, University of Rochester, NY (1996) 

19. Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique 
problem. Science 278, 446–449 (1997) 

20. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 
108–143 (2000) 

21. Păun, G.: Membrane Computing. In: An Introduction, Springer, Heidelberg (2002) 
22. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. In: New Computing Paradigms, 

Springer, Heidelberg (1998) 
23. Ravinderjit, B., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a 20 

variable 3-SAT problem on a molecular computer. Science 296, 499–502 (2002) 
24. Zimmermann, K.H.: Efficient DNA sticker algorithms for NP-complete graph problems. 

Computer Physics Communications 144, 297–309 (2002) 



Discrete Simulations of Biochemical Dynamics

Vincenzo Manca

Department of Computer Science, University of Verona, Italy
vincenzo.manca@univr.it

Abstract. Metabolic P systems, shortly MP systems, are a special class of P sys-
tems, introduced for expressing biological metabolism. Their dynamics are com-
puted by metabolic algorithms which transform populations of objects according
to a mass partition principle, based on suitable generalizations of chemical laws.
The definition of MP system is given and a new kind of regulation mechanism is
outlined, for the construction of computational models from experimental data of
given metabolic processes.

Keywords: P Systems, Metabolism, Discrete Biological Models.

1 Introduction

In [7] a discrete perspective was introduced in the analysis of metabolic processes,
which was then developed in papers [2,9,4,8,10,11], and which is focused on the no-
tion of Metabolic P systems, shortly MP systems. Here, we outline the possibility of
deducing an MP model, for a given metabolic process, from a suitable macroscopic
observation of its behavior along a certain number of steps.

MP systems are a special type of P systems [12] which were proven to effec-
tively model the dynamics of several biochemical processes: the Belousov-Zhabotinsky
reaction (Brusselator) the Lotka-Volterra dynamics, the SIR (Susceptible-Infected-
Recovered epidemic) [1], the leukocyte selective recruitment in the immunological
response [5,1], the Protein Kinase C activation [2], circadian rhythms, mitotic cycles
[8], [6]1.

The perspective introduced by MP systems can be synthesized by a principle which
replaces the mass action principle. We call it the mass partition principle because, ac-
cording to it, the system is observed along a discrete sequence of steps, and at each
step, all the matter of any kind of substance, consumed in the time interval between two
consecutive steps, is partitioned among all the reactions which need it for producing
their products. If we are able to determine the amount of reactants that any reaction
takes in that step, according to the stoichiometry of the reactions (which we assume to
know), we can perfectly establish the amount of substances consumed and produced
between two steps, therefore all the dynamics can be discovered. As a consequence
of mass partition principle, two important aspects follow. In MP system rules act on

1 The package Psim, developed in Java within the research group on Natural Computing led by
the author, at the Department of Computer Science of the University of Verona (Italy), provides
representations and dynamics generations of MP systems (Psim is available from the site of
the Center for BioMedical Computing, at the University of Verona: www.cbmc.it).

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 231–235, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



232 V. Manca

object populations, rather than on single objects. Moreover, dynamics is deterministic
at population level, but nothing can be said about the dynamical evolution of single
objects.

2 Metabolic P Systems

MP systems are deterministic P systems where the transition to the next state (after
some specified interval of time) is calculated according to a mass partition strategy,
that is, the available matter of each substance is partitioned among all reactions which
need to consume it. A special class of MP systems was proved to be stongly related to
differential models [4]. The notion of MP system we consider here is based on those
given in [8,10,11].

Let us consider a set X of substances and a set of R of reactions over them, as
pairs of strings, represented in the arrow notation according to which any rule r ∈ R
is identified by αr → βr with αr, βr strings over X (αr represents the reactants of r,
while βr represents the products of r, for example, aab → cd is a reaction where two
molecules of a with a molecule of b react by producing a molecule of c and a molecule
of d).

For a string γ and a symbol x we denote by |γ|x the number of occurrences of
the symbol x in γ, while |γ| is the length of γ. Then, the stoichiometric matrix AR

correspondent to a set R of reactions over a set X of substances is defined by set-
ting AR = (AR(x, r) | x ∈ X, r ∈ R) and, for every x ∈ X and r ∈ R,
AR(x, r) = |βr|x − |αr|x. Moreover, we define Rα(x) = {r ∈ R | |αr|x > 0}.
Two reactions r1, r2 are competing if r1, r2 ∈ Rα(x) for some substance x ∈ X . We
call regulator, of a reaction r, any reactant of r or any reactant of a reaction which is
competing with r.

Definition 1 (MP System). An MP system is a construct

M = (X, R, Q, U, ν, σ, τ, q0, Φ)

where:

– X = {x1, . . . , xn} is a finite set of substances (the types of molecules);
– R = {r1, . . . , rm} is a finite set of reactions over X;
– Q is the set of states, that is, the functions q : X → R from substances to real num-

bers. The state q of the instant i can be identified as a vector (x1[i], x2[i], . . . , xn[i])
of real numbers, constituted by the values which are assigned, by q, to the elements
of X .

– U = {u1, . . . , um} is the set of reaction units, where, for each rule r, ur is a func-
tion from states to real numbers (the amount of molar quantity consumed/produced
by the rule r in correspondence to any occurrence of reactant/product occurring in
it);

– ν is a natural number which specifies the number of molecules of a (conventional)
mole of M , as population unit of M ;

– σ is a function which assigns to each x ∈ X , the mass σ(x) of a mole of x (with
respect to some measure unit);



Discrete Simulations of Biochemical Dynamics 233

– τ is the temporal interval between two consecutive states;
– q0 ∈ Q is the initial state, also denoted by X [0] = (x1[0], x2[0], . . . , xn[0]);
– Φ is a set of regulation maps.

The temporal evolution of an MP system M is calculated by means of the following sys-
tem of autonomous first-order difference equations (1) (2), called metabolic algorithm,
where X [i] and U [i] are the vectors of substance quantities and reaction units at step
i, AR is the stoichiometric matrix of dimension n × m corresponding to the reactions
of R (n is the number of different substances and m the number of reactions), Φ is the
vector of functions (as many as the reactions), and ×, + are the usual matrix product
and vector sum:

X [i + 1] = (AR × U [i] ) + X [i] (1)

U [i] = Φ(X [i]) (2)

The parameters τ, ν, μ have no role in the mathematical definition of dynamics. Never-
theless, they are essential for giving a determinate physical meaning to the numerical
values, according to a specific time/mass measure scale.

3 Metabolic Algorithms and Log-Gain Regulation

Given a real metabolic system that we can observe for a certain number of steps, is it
possible to determine an MP system which could predict, within an acceptable approx-
imation, the future behaviour of the given system? We will show how this task could be
achieved. In fact, in some cases, we can determine, in a systematic way, an MP system
which is an adequate model of some observed metabolic dynamics.

In order to discover the reaction units at each step, we introduce the notion of log-
gain regulation. In fact, it seems to be perfectly natural that a proportion should exist
among the relative variation of substances and the relative variation of the reaction unit
of r. The relative variation of a substance x is defined as the ratio Δ(x)/x. In differen-
tial notation (with respect to the time variable), this ratio is related to dx

dt /x, and from

elementary calculus we know that it is the same as d(lg x)
dt . This equation explains the

term “log-gain” for expressing relative variations. In this way, we can derive the values
of the reaction units at any observation time, therefore, these parameters determine the
dynamics of MP systems. More precisely, we set the following principle.

Principle 2 (Log Gain Regulation). For i ≥ 0 let Lg(ur[i]) = (ur[i+1]−ur[i])/ur[i]
be the log-gain of the reaction unit ur at the step i, and let Lg(x[i]) = (x[i+1]−
x[i])/x[i] be the log-gain of the substance x at the same step, then Lg(ur[i]) is a linear
combination of the log-gains of the regulators of r:

Lg(ur[i]) =
∑
x∈X

pr,xLg(x[i]) + pr (3)

pr,x with x ∈ X are the log-gain parameters. If the parameter pr,x �= 0, then x is a
regulator of r. The parameter pr is called the log-gain offset of the rule r.



234 V. Manca

Given the dynamics of a system that we observe for a sufficient number of steps, we
want to know, with a sufficient precision, the (molar) quantities of all different kinds of
molecules, for a sequence of steps. Let us denote these quantities with the sequence, for
i = 0, . . . k, of vectors:

X [i] = (x1[i], x2[i], . . . , xn[i])

Moreover, we assume to know the structure of the system, that is, kinds of substances,
reactions, time unit, molar unit, and initial state. We want to predict the vectors X [i]
for steps i > k, which follows the observation steps. We solve the problem when we
discover the regulation maps Φ.

Let us consider the system of equations LG[i] + ΔS[i + 1], obtained by putting
together system (3) at step i with system (1) of Definition 1 at step i + 1. We call it
observation module. This system of equations has n + m equations. The variables of
this system are the reaction units and the log-gain parameters (and offsets). In general,
the number of these variables: u1[i + 1], u2[i + 1], . . . , um[i + 1], . . . is greater than
the number of equations. Moreover, in order to discover the dynamics underlying the
passage of the MP system, from one step to its next step, it is enough to know. at any
step. the value of reaction units. Despite the difference between the number of equations
and the number of variables, the following theorem holds, as a consequence of log-gain
principle (we omit the proof).

Theorem 3. The system LG[i] + ΔS[i + 1] has one and only one solution.

Let us assume to know U [0] (in fact, there are some methods for determining it [11]).
The value X [0] is known because it corresponds to the initial state of the system. There-
fore, if we solve this system for i = 0, that is, LG[0]+ΔS[1], we get the value of U [1].
So, if vectors X [i] for i = 1, . . . , k, are given by observation, we can apply the same
procedure, again for i = 1, 2, . . . , k, and get U [2], U [3], . . . , U [k + 1].

Now assume that these vectors depend on the substance quantities with some poly-
nomial dependence of a given degree, say a third degree, then we can use some standard
interpolation tools for finding the functional dependence of vector U with respect to the
substance quantities. The resulting polynomials are some approximations of the regu-
lation functions Φ we are searching for, and our task was completed. In fact, now we
can use the metabolic system (1) (2) of Definition 1 for computing the evolution of the
given MP systems in all the steps i for i > k.

We applied this method to many metabolic systems (e.g. Lotka-Volterra, Brussela-
tor, and Mitotic Cycles) and we were able to reconstruct, almost exactly their dynamics.
But this procedure assumes the knowledge of U [0]. Actually, there are several possibili-
ties under investigation. However, we discovered experimentally a very interesting fact,
which deserves a more subtle theoretical investigation. If we consider the system ΔS[0]
and choose as U [0] one of its infinite solutions (imposing some additional very natural
constraints), then in many cases, we found that, independently from the chosen value of
U [0], after a small number of steps, say k = 3 steps, our procedure will generate, with
a great approximation, the same vectors U [i+k], for all i > 0. This means that the data
collected in the observation steps are sufficient to determine the functions which, on the
basis of substance quantities, regulate the dynamics of the system.



Discrete Simulations of Biochemical Dynamics 235

Numerical elaborations of our simulations were performed by MATLAB R© standard
operators (backslash operator for square matrix left division or in the least squares sense
solution) and interpolation was performed by polynomials of third degree. Specific ob-
servation strategies were adopted, by using about one hundred steps. In almost all cases,
the observed dynamics were correctly reconstructed. This means that the regulation
functions, deduced according to the outlined method, provided MP systems with the
same dynamics of the observed systems. In conclusion, in the case of natural systems,
from suitable observations, we could discover, with good approximation, the under-
lying dynamical regulation maps, and consequently, reliable computational models of
their dynamic. However, applications of our method to more complex dynamics and
deeper theoretical analyses of the simulation results will be topics for further research.

References

1. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics, pp. 81–
126. in [3]

2. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of
Foundations of Computer Science 17(1), 27–48 (2006)

3. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing.
Springer, Heidelberg (2006)

4. Fontana, F., Manca, V.: Discrete solutions of differential equations by metabolic P systems.
Theoretical Computer Science 372, 165–182 (2007)

5. Franco, G., Manca, V.: A membrane system for the leukocyte selective recruitment. In:
Martı́n-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Com-
puting. LNCS, vol. 2933, pp. 180–189. Springer, Heidelberg (2004)

6. Franco, G., Guzzi, P.H., Mazza, T., Manca, V.: Mitotic Oscillators as MP Graphs. In: Hooge-
boom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp.
382–394. Springer, Heidelberg (2006)

7. Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems: Applications to
biological phenomena. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salo-
maa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

8. Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems (to appear)
doi:10.1016/j.biosystems.2006.11.009

9. Manca, V.: MP systems approaches to biochemical dynamics: Biological rhythms and os-
cillations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006.
LNCS, vol. 4361, pp. 86–99. Springer, Heidelberg (2006)

10. Manca, V.: Metabolic P Systems for Biochemical Dynamics. Progress in Natural Sci-
ences (Invited Paper) 17(4), 384–391 (2007)

11. Manca, V.: The Metabolic Algorithm for P Systems: Principles and Applications. Theoretical
Computer Science (to appear, 2007)

12. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)



DNA Splicing Systems

An Ordinary Differential Equations Model and Simulation

Elizabeth Goode and William DeLorbe

Mathematics Department, Towson University, Towson MD 21252, USA

Abstract. DNA splicing in the test tube may generate DNA molecules
other than well-formed ones having two blunt ends. We introduce an ex-
ample splicing system that generates all possible molecular types. We use
differential equations to model the system, and Mathematica to simulate
its dynamics. We find that most simulation results match our predictions,
and acknowledge that a more comprehensive program is needed for fur-
ther investigations. This is the first model and simulation of which we
are aware that specifically treats the fact that several molecular types in
addition to well-formed molecules may be present in a splicing system,
even at equilibrium.

Keywords: DNA, splicing systems, limit languages, differential eqs.

1 Introduction

In [4] Tom Head introduced splicing systems to model the generative power of
double-stranded DNA (dsDNA) in the presence of appropriate enzymes that
cut and paste dsDNA. Researchers have explored many extensions of the basic
theory. One of the most important results assumes a finite initial number of
different dsDNA sequences and a finite number of enzymes. In this case the
splicing language generated by the system is a regular language in the Chomsky
hierarchy of formal languages. (See [1], [12], and [13].) Other formulations of
splicing yield systems that perform universal computation. (See [5], [10], [8], [9],
and [14].)

In discussions several years ago Head noted that in the laboratory splicing can
generate molecules that are transient in the sense that they are used up as the
splicing operation “runs to completion.” In light of this, the molecules of interest
are those left in the test tube at equilibrium. In [3] these persistent molecules are
called limit words of the system, and the corresponding formal language is the
limit language. In its standard formulation, the splicing language is defined as the
set of well-formed molecules (i.e., those having two blunt ends) that are created
anytime during the evolution of the system, and the limit language is those
well-formed molecules present at equilibrium. In the test tube, however, splicing
produces molecules that are not well-formed, i.e. molecules that have one or
two sticky ends and/or molecules that are circular. Results concerning circular
molecules appear in [6], [11] and [15]. Pixton’s cut-and-paste splicing systems

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



DNA Splicing Systems: An Ordinary Differential Equations Model 237

introduced in [13] and cutting/recombination systems presented by Freund et.
al. in [2] specifically treat sticky ends. When this type of splicing model is applied
as done in Examples 2.6 and 2.7 in [3], both the splicing and the limit languages
are interpreted to include molecules that are not well-formed. A cut-and-paste
example of a limit language with circular strings appears in [3].

In [3] Pixton introduced the first differential equations model of the limit
behavior of a splicing system. The system generated only well-formed molecules
during iterated cutting and pasting, thus the full power of the cut-and-paste
model was not required. A dynamical systems model of splicing that treats all
molecule types has not appeared before, nor has a computer simulation of any
splicing dynamics been given to date. In this work we model a system that
generates all the molecule types and give a computer simulation of its dynamics.

Sect. 2 contains a brief explanation of the cut-and-paste approach to splicing.
In Sect. 3 we introduce our example system, and Sect. 4 contains the differential
equations that model its dynamics. In Sect. 4 we also verify that the amount of
dsDNA stays constant throughout the reaction. In Sect. 5 appear results from
the Mathematica simulation and a discussion of how they compare with our
predictions about how the system should behave. Over time the example system
generates progressively longer molecules. Our program models molecules up to a
fixed length, therefore we see only the initial system dynamics. We need a more
comprehensive simulation program for further investigation.

2 Cut-and-Paste Splicing

A splicing system (σ, I) is a mathematical model of the generative behavior of
dsDNA in the presence of certain enzymes. Biochemically speaking, I models an
initial set of well-formed dsDNA, and σ models a test-tube environment in which
possibly several restriction enzymes (site-specific cutting enzymes) and a ligase
(a pasting enzyme) act simultaneously. The splicing language σ∗(I) = L models
the set of all molecules that appear anytime during iterated splicing. The limit
language L∞ ⊂ L represents the set of molecules that persist when the system
reaches equilibrium. In either language, a circular word w is denoted byˆw.

We use Pixton’s cut-and-paste model of splicing from [13] because it clearly
shows the 3-step splicing operation (2 cuts and 1 paste). The model has special
symbols called “end markers” that encode the blunt ends as well as the sticky
ends generated during cutting. A cutting rule αzβ encodes the cutting action
xzy =⇒ xα + βy, and a pasting rule αwβ corresponds to the pasting action
xα + βy =⇒ xwy. Thus a splicing rule (u1, v1; u2, v2) in the standard splicing
notation seen in [3] is represented by two cutting rules α1u1v1β1 and α2u2v2β2
and one pasting rule α1u1v2β2. In this case α1 encodes the sticky end on the
”left” half after cutting between u1 and v1 and β2 encodes the sticky end on the
”right” half after cutting between u2 and v2. The pasting rule reconstitutes u1v2
when the sticky ends α1 and β2 are reattached.



238 E. Goode and W. DeLorbe

3 The Example Splicing System

Example 1 (The Model System). The initial set is I = {ρ(uxu)10ρ} = {N10} .
The rule set in σ has one rule that is used for both cutting and pasting: γuuγ.
The words in L = σ∗(I) and L∞ are the same. Verification of (1) is left to the
reader.

L = ρ (uxu)(uxu)+ρ + ρ(uxu)∗uxγ + γxu(uxu)∗ρ + γx(uux)∗γ + (̂uux)+ . (1)

Explanation of Ex. 1: The initial set contains many copies of one strand,
denoted N10, that is the concatenation of ten copies of a dsDNA sequence F
having two sticky ends. One can think of an F -unit as a sequence uxu, where
the suffix u concatenated with the prefix u forms a restriction (cut) site uu. We
shall assume this F -unit reads as its own reverse complement so its orientation
in space will not impact the reading of its sequence. Although F -units have
sticky overhangs, we shall assume the N10 molecules are well-formed and have
blunt ends, indicated by ρ, that cannot ligate together. Such molecules can be
manufactured by ”filling in” the necessary nucleotides to blunt the sticky ends
of N10 and dephosphorylating these ends. We ignore these small end deviations.
Because the initial blunt ends are dephosphorylated and new ones are not created
during iterated splicing, blunt-end ligation never occurs.

The system has a ligase that catalyzes the covalent bonds necessary to paste
any two molecules whose complementary sticky ends come into close proximity
with one another and hybridize. There is one restriction enzyme that cuts only
at site uu, and uu occurs only between copies of F . We shall assume the cut
produces sticky overhangs that are reverse complements of one another. Such
sticky ends and an F -unit that is its own reverse complement impact the counting
involved when writing the differential equations. Specifically:
1) when molecule Z is cut with the restriction enzyme to generate Z1 and Z2,
not only can Z1 and Z2 rehybridize and ligate together to reform Z, but Z1 can
rotate 180◦ in space and ligate to another copy of Z1, and
2) circular molecules can form because a dsDNA fragment can circularize if it
has two complementary sticky ends.

Another implication is stated in the following lemma:

Lemma 1. All molecules with matching ends (both blunt or both sticky) gener-
ated by the system of Ex. 1 have palindromic sequences.

Proof. A word in L with sticky ends has the form γx(uux)∗γ = γ(xuu)∗xγ. A
word with blunt ends has the form ρ(uxu)(uxu)+ρ = ρ (uxu)+(uxu)ρ. ��

There are four basic types of molecules that appear in the system. An initial
N -type molecule can be cut between copies of the F -unit to produce two new
molecules, called A-type molecules, each having one blunt end and one sticky
overhang. An A-type molecule can be cut between F -units to produce a shorter
A-type molecule and a B-type molecule having sticky overhangs on both ends.
(See Fig. 1.) The B-type molecule can ligate to itself to form a circular C-type



DNA Splicing Systems: An Ordinary Differential Equations Model 239

molecule. Creation of N , A and B-type molecules can occur in other ways once
the system generates all four molecular types.

Molecules are characterized by length as well as type. An Nk molecule is the
concatenation of k copies of the F -unit. Both of its ends inherit ρ, the blunt
end filling performed on the initial set of N10 molecules. We denote the set
of all Nk-type molecules by Nk. We will abuse this notation and let Nk also
denote the cardinality of set Nk. This will be unambiguous in context. We use
similar notation for the other molecule types, i.e., there are Ak, Bk and Ck-type
molecules in sets Ak, Bk and Ck having cardinality Ak, Bk and Ck, respectively.

Fig. 1. The N , B, and A-type molecules appear left to right. The C-type is not shown.

4 The Ordinary Differential Equations Model

In this section we introduce the ordinary differential equations that describe the
change in the number of each type of molecule in one time step, i.e. in one small
time interval denoted by Δt. We assume only one action occur on a given strand
of DNA in a given time step. For example, a molecule could be cut in a given
time step, or one paste with another molecule, but not both in the same time
step. We use parameters α and β, where α is the probability that a given pair
of molecules X and Y will paste to yield XY in a unit of time, and β is the
probability that a cut operation will occur at a given site on a given molecule X
in a unit of time. Note α and β will vary with the concentrations of the reactants.

We let Z denote the total number of Z-type molecules of any length for
Z ∈ {N, A, B, C}, i.e., Z =

∑
k Zk. We now derive (2) and (3).

Nk changes as Nk molecules are created and destroyed. Consider first that
an Nk molecule has k − 1 cutting sites, so the probability it will be cut in one
time unit is β(k − 1). The net change in Nk due to this is −β(k − 1)NkΔt. An
Ai molecule and an Aj molecule can paste together to form an Nk molecule if
i + j = k. At first glance it appears this reaction generates α

∑
i+j=k AiAjΔt

new Nk molecules in each step. However, the paste of a particular pair of Ai

and Aj molecules is counted twice because an AiAj molecule rotated in space
and is thus also counted an AjAi molecule. The change in Nk due to pasting
A molecules is therefore 1

2α
∑

i+j=k AiAjΔt. The rate of change N ′
k appears

in (2).
Next we find A′

k. An Ak molecule can form if short A and B-type molecules
paste together. The paste can occur two different ways since B molecules can
rotate 180◦. We sum Ai and Bj when i + j = k to find a 2α

∑
i+j=k AiBjΔt

contribution to Ak in one time step. Ak molecules also form if an Nm molecule
with m > k is cut to form an Ak and an Am−k molecule. The cut can (gener-
ally) occur in two places in Nm for fixed m, yielding 2βNm new Ak molecules.
Summing over all m > k yields a 2β

∑
m>k NmΔt change in Ak. Last, Ak’s form



240 E. Goode and W. DeLorbe

if an Am molecule for m > k is cut to produce an Ak and a Bm−k molecule. For
fixed m this can occur at one site in an Am molecule, contributing βAm to Ak

in one time step. The corresponding net change in Ak is β
∑

m>k AmΔt.
An Ak molecule is lost when it pastes with another A molecule to produce a

longer A molecule. This contributes a −αAAkΔt net change to Ak. Also, an Ak

molecule can paste with a B molecule in two ways (recall B’s 180◦ rotation),
each with probability αΔt. The resulting net change in Ak is −2αBAkΔt. Lastly,
an Ak molecule can be cut to produce shorter B and A molecules. Each Ak has
k − 1 cutting sites so there are (k − 1)Ak possible cuts that together contribute
a net change of −β(k − 1)AkΔt to Ak. The A′

k equation appears in (3).
For brevity we omit the derivations of B′

k and C′
k appearing in (4) and (5).

N ′
k =

1
2
α

∑
i+j=k

AiAj − β(k − 1)Nk (2)

A′
k = 2α

∑
i+j=k

AiBj+2β
∑
m>k

Nm+β
∑
m>k

Am−αAAk−2αBAk−β(k−1)Ak (3)

B′
k = 2α

∑
i+j=k

BiBj + β(k)Ck + β
∑
m>k

Am + 2β
∑
m>k

Bm

− αBk − 2αABk − 4αBBk − β(k − 1)Bk (4)

C′
k = αBk − β(k)Ck (5)

Lemma 2. The amount of material in the test-tube remains constant over time
during the reaction according to this model, i.e. the total number of F -units
remains unchanged from one time step to the next.

Proof. Let variables X, P, Q, and R denote the numbers of F -units stored in
molecules of type N, A, B and C, respectively, at time t. By definition we have:

X(t) =
∑

k

kNk, P (t) =
∑

k

kAk, Q(t) =
∑

k

kBk, and R(t) =
∑

k

kCk. (6)

We use (2) – (6) to find the terms in X ′, P ′, Q′ and R′.
The two terms in X ′ are

1
2
α

∑
k

∑
i+j=k

kAiAj =
1
2
α

∑
i,j

(i + j)AiAj = αPA , and (7)

−β
∑

k

k(k − 1)Nk = −β
∑
m

m(m − 1)Nm . (8)



DNA Splicing Systems: An Ordinary Differential Equations Model 241

The six terms in P ′ are

2α
∑

k

∑
i+j=k

kAiBj = 2αQA + 2αPB , (9)

2β
∑

k

∑
m>k

kNm = β
∑
m

(
2

∑
m>k

k

)
Nm = β

∑
m

m(m − 1)Nm , (10)

β
∑

k

∑
m>k

kAm =
1
2
β

∑
m

m(m − 1)Am, (11)

−α
∑

k

kAAk = −αPA , (12)

−2α
∑

k

kBAk = −2αPB , and (13)

−β
∑

k

k(k − 1)Ak = −β
∑
m

m(m − 1)Am . (14)

The eight terms in Q′ are

2α
∑

k

∑
i+j=k

kBiBj = 4αQB, (15)

β
∑

k

k2Ck = βkR, (16)

2β
∑

k

∑
m>k

kBm = β
∑
m

m(m − 1)Bm, (17)

β
∑

k

∑
m>k

kAm =
1
2
β

∑
m

m(m − 1)Am, (18)

−2α
∑

k

kABk = −2αQA, (19)

−4α
∑

k

kBBk = −4αQB, (20)

−α
∑

k

kBk = −αQ , and (21)

−β
∑

k

k(k − 1)Bk = −β
∑
m

m(m − 1)Bm . (22)

Lastly, the two terms in R′ are

α
∑

k

kBk = αQ , and (23)

−β
∑

k

k2Ck = −βkR . (24)

The total number of F -units present at time t in the system is given by

M(t) = X(t) + P (t) + Q(t) + R(t) . (25)



242 E. Goode and W. DeLorbe

To prove the lemma we verify that M ′ = X ′ + P ′ + Q′ + R′ = 0. We must
check the cancelations that occur between the terms in (7) – (24).

X ′ terms αPA in (7) and −β
∑

m m(m − 1)Nm in (8) cancel with P ′ terms
−αPA in (12) and β

∑
m m(m−1)Nm in (10). Four terms for P ′ remain. Working

backwards, −β
∑

m m(m − 1)Am in (14) cancels with term 1
2β

∑
m m(m − 1)Am

that appears twice – once in (11) and once in (18). Then −2αPB in (13) and 2αPB
in (9) cancel. Finally, 2αQA in (9) cancels with the Q′ term −2αQA in (19).

For the remaining Q′ terms, first observe β
∑

m m(m − 1)Bm in (17) and
−β

∑
m m(m − 1)Bm in (22) cancel, and 4αQB in (15) and −4αQB in (20)

cancel. Then last two terms for Q′, βkR in (16) and −αQ in (21), cancel with
(24) and (23) for R′. This completes the cancelations and shows M ′ = 0. ��

5 Simulation Results and Discussion

We use Mathematica to implement the dynamics of the example splicing system
introduced in Sec. 3. Our code treats molecules up to 20 F -units long. The graphs
given in this section show some of our simulation results. 1

In Fig. 2, the left-hand graph shows the number of N10 molecules decreases
shortly after the system is initialized. This is expected because initial molecules
can be immediately cut to produce Ak-type molecules for k < 10. The right-
hand graph shows an (expected) increase in the number Ai-type molecules for
2 ≤ i ≤ 9. These molecules appear as the N10 molecules begin to be cut. It is
interesting that all of these curves coincide, so only one curve appears. This is
because there are exactly nine cutting sites in an N10 molecule, each is equally
likely to be cut, and each cut produces one Aj and one Ak where j + k = 10.
B-type molecules should appear once A molecules are present, because B’s are
generated when A molecules are cut. As expected, the left-hand graph in Fig. 3

1×10-8 2×10-8 3×10-8 4×10-8

6.07×1022

6.07×1022

6.07×1022

6.07×1022

6.07×1022
N10 molecules

1×10-8 2×10-8 3×10-8 4×10-8

2×1010
4×1010
6×1010
8×1010
1×1011

1.2×1011
1.4×1011

Ak molecules, 2�k�9

Fig. 2. The left-hand graph shows the initial decline in the number of N10 molecules
(black curve) over time in seconds. The right-hand graph shows that the numbers of
Ai molecules, 2 < i < 9, initially increase at identical rates, thus their graphs coincide
(single curve).

1 In all graphs in this paper, the x-axis is time in seconds after the system is initialized,
and the y-axis is the number of molecules present.



DNA Splicing Systems: An Ordinary Differential Equations Model 243

shows that Bk molecules with k < 9 appear just after Ai molecules for 1 ≤
i ≤ 9 first appear in Fig. 2. Notice that the smaller the k, the more quickly the
corresponding Bk curve rises. This makes sense because these Bk molecules are
coming from cuts of the Ak molecules, 1 ≤ k ≤ 9, which are present in equal
numbers. There are, for example, more ways to generate a B2 molecule than a
B8 molecule because any of the Ai molecules for i > 2 can be cut to create a
B2 molecule, whereas only an Ai for i > 8 can be cut to make a B8 molecule.
Similarly, Nk molecules for k < 10 appear after A molecules less than length 10
appear because an Ai can paste with an Aj for i + j < 10 to create such an Nk

molecule. The right-hand graph in Fig. 3 shows this dynamic. Notice that the
larger k is, the more quickly Nk increases. (Why?) Space constraints require us to
omit a simulation of Nk molecules for 10 ≤ k ≤ 20, but we can report that they
also appear shortly after the Ai molecules for 1 ≤ i ≤ 9 appear, in proportions
that also make sense. Observe the very low numbers of B molecules in the left
graph. Are those being generated and destroyed immediately thereafter? Or
are most reactants that generate these B molecules involved in other reactions,
leaving few to generate the B’s? Deeper study is required.

1×10-8 2×10-8 3×10-8 4×10-8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B2, B4, B6, B8 molecules

1×10-8 2×10-8 3×10-8 4×10-8

2.5×109
5×109

7.5×109
1×1010

1.25×1010
1.5×1010

N2, N5, N7 and N9 molecules

Fig. 3. The left-hand graph shows the increase in Bk molecules for k = 2 (top curve),
k = 4 (higher middle curve), k = 6 (lower middle curve) and k = 8 (lowest curve). The
right-hand graph shows the increase in Nj molecules for j = 2 (lowest curve), j = 5
(lower middle curve), j = 7 (higher middle curve), and j = 9 (highest curve).

The graphs in Fig. 4 show some longer molecules. The left graph shows the
A11 molecules. An Ak molecule for k ≥ 10 can arise from the paste of an Ai and
Bj molecule if i + j > 9. From Figs. 2 and 3 we see such A and B molecules
are present before the A11’s appear. An N j molecule with j > 11 can be cut to
form an A11 and an Aj−11 molecule. We reported above that N j molecules for
10 ≤ j ≤ 18 can (and do) arise once Ak molecules with 1 ≤ k ≤ 9 are available.
In Fig. 2 we see that such A molecules appear before the A11’s appear here.
The right-hand graph in Fig. 4 shows the N19 and N20 molecules. Either can
result from the paste of two A-type molecules if A’s longer than 9 are available.
Because Ak molecules with k > 9 do not appear immediately, as seen in the
Fig. 4, the time lag before the N19 and N20 molecules appear makes sense.
The A11 molecules should (and do) appear before the Nk molecules for k > 20,



244 E. Goode and W. DeLorbe

4.79914×10-8

250000

500000

750000

1×106
1.25×106
1.5×106

A11

4.79914×10-8
80000

100000

120000

140000

N19 & N20 molecules

Fig. 4. The left-hand graph shows a rapid increase in the number of A11 molecules
(curve) when they appear at time t ≈ 4.799 × 10−8 seconds. The right graph shows
that N19 (top curve) and N20 (bottom curve) molecules appear immediately after the
A11 molecules appear.

because such an N molecule at this stage of the game requires the paste of two A
molecules, with at least one longer than 11. In fact, no Nk molecules for k > 20
ever appear because our code only handles molecules up to length 20. Indeed,
the simulation halts very shortly after the A11’s appear. We interpret this to
indicate that an Nk molecule for k > 20 was in fact generated.

6 Suggestions for Questions

While we think the splicing and limit languages given in Sect. 3 for Ex. 1 satisfy
the definitions laid out in [3], it is still not clear how the relative numbers of
the different molecules will evolve over an extended period of time. For example,
while N10 molecules are destroyed when cut to form A molecules as long as A9,
some of these A molecules paste back together to recreate N10. Others paste to
form longer N molecules which again generate short A molecules that, in turn,
replenish the N10’s. Over the long run there are more ways to create an N10

than destroy one. We can easily count the finitely many ways to destroy one,
whereas counting the number of ways to create one becomes ominous if there
are A-type molecules of arbitrary length in the system. But the fact remains
that any molecule can be destroyed at any time. The question is further com-
plicated by the assumption that virtually infinitely many copies of each initial
string is present at time t = 0. Would various upper bounds on initial quantities
affect the long-range behavior of the system? Or would the limit languages have
similar structures despite the amount of initial material? What is the best way
to define and investigate this ”structure?” A simultaneous graphical comparison
of the quantities of certain molecular types and sizes at a fixed time t might
be informative. Which molecules should we compare? Those of similar type, or
perhaps those of similar size across all types? This problem begs for a more
comprehensive simulation program that can run the system for many more time
steps, and provide more graphical output. Finally, real experimental data from
”the bench” would help us evaluate the viability of our model.



DNA Splicing Systems: An Ordinary Differential Equations Model 245

Acknowledgements. I extend my sincerest thanks to all the helpful and hard-
working people who made DNA13 and this LNCS volume possible, especially
Max Garzon.

References

1. Culik II, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Ap-
plied Mathematics 31, 261–277 (1991)

2. Freund, R., Csuhaj-Varjú, E., Wachtler, F.: Test tube systems with cut-
ting/recombination operations. In [7]

3. Goode, E., Pixton, D.: Splicing to the limit. In: Jonoska, N., Păun, G., Rozenberg,
G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 189–201. Springer,
Heidelberg (2003)

4. Head, T.: Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology 49(6), 737–759
(1987)

5. Head, T., Păun, G., Pixton, D.: Generative mechanisms suggested by DNA recom-
bination. In [14]

6. Mauri, G., Bonizzoni, P., DeFelice, C., Zizza, R.: DNA and circular splicing. In:
Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 117–129.
Springer, Heidelberg (2001)

7. Pacific Symposium on Biocomputing (1997),
http://WWW-SMI.Stanford.EDU/people/altman/psb97/index.html

8. Păun, G.: Regular extended H systems are computationally universal. J. Autom.
Lang. Comb. 1(1), 27–36 (1996)

9. Păun, G.: Controlled H systems and the Chomsky Hierarchy. Fundam. Inf. 30(1),
45–57 (1997)

10. Păun, G. (ed.): Computing with Bio-Molecules: Theory and Experiments. Springer,
New York (1998)

11. Pixton, D.: Linear and circular splicing systems. In: INBS 1995. Proceedings of the
First International Symposium on Intelligence in Neural and Biological Systems,
p. 181. IEEE Computer Society, Washington (1995)

12. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics 69(1-
2), 101–124 (1996)

13. Pixton, D.: Splicing in abstract families of languages. Theoretical Computer Sci-
ence 234, 135–166 (2000)

14. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, New
York (1996)

15. Siromoney, R., Subramanian, K.G., Rajkumar Dare, V.: Circular DNA and splicing
systems. In: ICPIA 1992. Proceedings of the Second International Conference on
Parallel Image Analysis, pp. 260–273. Springer, London (1992)

http://WWW-SMI.Stanford.EDU/people/altman/psb97/index.html


Asynchronous Spiking Neural P Systems:

Decidability and Undecidability

Matteo Cavaliere1, Omer Egecioglu2, Oscar H. Ibarra2, Mihai Ionescu3,
Gheorghe Păun4, and Sara Woodworth2

1 Microsoft Research-University of Trento CoSBi, Italy
cavaliere@cosbi.eu

2 Dept. of Computer Science, University of California, Santa Barbara, USA
{omer, ibarra, swood}@cs.ucsb.edu

3 Research Group on Mathematical Linguistics, Universitat Rovira i Virgili,
Tarragona, Spain

armandmihai.ionescu@urv.cat
4 Institute of Mathematics of the Romanian Academy, Bucharest, Romania

george.paun@imar.ro, gpaun@us.es

Abstract. In search for “realistic” bio-inspired computing models, we
consider asynchronous spiking neural P systems, in the hope to get a
class of computing devices with decidable properties. However, although
the non-synchronization is known in general to decrease the computing
power, in the case of using extended rules (several spikes can be pro-
duced by a rule) we obtain again the equivalence with Turing machines
(interpreted as generators of sets of vectors of numbers). The problem
remains open for the case of restricted spiking neural P systems, whose
rules can only produce one spike. On the other hand, we prove that asyn-
chronous spiking neural P systems, with a specific way of halting, using
extended rules and where each neuron is either bounded or unbounded,
are equivalent to partially blind counter machines and, therefore, have
many decidable properties.

1 Spiking Neural P Systems – An Informal Presentation

In the present paper we continue the investigation of spiking neural P systems
(SN P systems, in short). A survey of results and the biological motivations for
these systems can be found in [5] and [2]. In the meantime, two main research
directions were particularly active in this area of membrane computing: looking
for classes of systems with tractable (for instance, decidable) properties, and
looking for the possibility of using SN P systems for efficiently solving compu-
tationally hard problems. Along the second research line are the investigations
related to the possibility of simulating an SN P system by a Turing machine with
a polynomial slowdown (preliminary results can be found in [3]) and those trying
to improve the efficiency of SN P systems, e.g., by enhancing the parallelism of
the system (see, for instance, [7]).

In this paper we report several recent results concerning the first topic men-
tioned above – specifically, removing the synchronization (common in many
membrane computing models), calling them asynchronous SN P systems. These

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 246–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Asynchronous Spiking Neural P Systems: Decidability and Undecidability 247

systems were introduced in [6] with the aim of incorporating, into membrane
computing, specific ideas from spiking neurons, a field that is being heavily in-
vestigated in neural computing (see, e.g., [8]).

An SN P system consists of a set of neurons placed in the nodes of a directed
graph and sending signals (spikes) along the arcs of the graph (they are called
synapses). Thus, the architecture is that of a tissue-like P system, with only
one kind of object present in the cells (the reader is referred to [10,11] for an
introduction to membrane computing and to [12] for the up-to-date information
about this research area). The objects evolve by means of spiking rules placed in
the nodes and enabled when the (number of) spikes present in the nodes fulfill
specified regular expressions. When a spiking rule is executed in a neuron, spikes
are produced and sent to all neurons connected by an outgoing synapse from the
neuron where the rule was applied.

Two main types of results were obtained for synchronous (i.e, with obligatory
use of the rules) systems using standard rules (producing one spike): computa-
tional completeness ([6]) in the case when no bound was imposed on the number
of spikes present in the system, and a characterization of semilinear sets of num-
bers in the case when a bound was imposed. Improvements in the form of the
regular expressions and normal forms can be found in [4].

In the proofs of these results, the synchronization plays a crucial role, but
both from a mathematical point of view and from a neuro-biological point of
view it is rather natural to consider non-synchronized systems (even if a neuron
has a rule enabled in a given time unit, this rule is not necessarily used).

The synchronization is in general a powerful feature, useful in controlling the
work of a computing device. However, it turns out that the loss in power entailed
by removing the synchronization is compensated in the case of SN P systems
where extended rules (producing several spikes) are used: such systems are still
equivalent with Turing machines.

On the other hand, we also show that a restriction which looks, at first sight,
ratherminor, has a crucial influence on the power of the systems anddecreases their
computing power: in particular, we identify a class of asynchronous SN P systems
equivalent to partially blind countermachines (i.e., not computationally complete)
and for which the configuration reachability, membership (in terms of generated
vectors), emptiness, infiniteness, and disjointness problems can be decided.

2 SN P Systems – Formal Definitions

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of extended rules of the form E/ac → ap; d, where E is

a regular expression with a the only symbol used, c ≥ 1, and p, d ≥ 0,
with c ≥ p; if p = 0, then d = 0, too.



248 M. Cavaliere et al.

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
4. out ∈ {1, 2, . . . , m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called extended firing (we also say spiking)
rule; a rule E/ac → ap; d with p = d = 0 is written in the form E/ac → λ
and is called a forgetting rule. If L(E) = {ac}, then the rules are written in the
simplified form ac → ap; d and ac → λ. A rule of the type E/ac → a; d and
ac → λ is said to be restricted (or standard).

A rule is bounded if it is of the form ai/ac → ap; d, where 1 ≤ c ≤ i, p ≥ 0,
and d ≥ 0. A neuron is bounded if it contains only bounded rules. A rule is
called unbounded if is of the form ai(aj)∗/ac → ap; d, where i ≥ 0, j ≥ 1, c ≥
1, p ≥ 0, d ≥ 0. (In all cases, we also assume c ≥ p; this restriction rules out
the possibility of “producing more than consuming”, but it plays no role in
arguments below and can be omitted.) A neuron is unbounded if it contains only
unbounded rules. A neuron is general if it contains both bounded and unbounded
rules. An SN P system is bounded if all the neurons in the system are bounded. It
is unbounded if it has bounded and unbounded neurons. Finally, an SN P system
is general if it has general neurons (i.e., it contains at least one neuron which
has both bounded and unbounded rules).

If the neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the rule
E/ac → ap; d ∈ Ri is enabled and it can be applied. This means that c spikes are
consumed, k−c spikes remain in the neuron, the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately, if
d = 1, then the spikes are emitted in the next step, and so on. In the case d ≥ 1,
if the rule is used in step t, then in steps t, t+1, t+2, . . . , t+ d− 1 the neuron is
closed; this means that during these steps it uses no rule and it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and sends spikes along
it, then the spikes are lost). In step t + d, the neuron spikes and becomes again
open, hence can receive spikes (which can be used in step t+d+1). The p spikes
emitted by a neuron σi are replicated and they go to all neurons σj such that
(i, j) ∈ syn (each σj receives p spikes). If the rule is a forgetting one of the form
E/ac → λ then, when it is applied, c ≥ 1 spikes are removed.

In an asynchronous SN P system in each time unit any neuron is free to use
a rule or not (a global clock, marking the time for all neurons, is considered).
Hence, in each time unit, each neuron can use either zero or one rule. Even if
enabled, a rule is not necessarily applied, the neuron can remain still not used
in spite of the fact that it contains rules which are enabled by its contents. If
the contents of the neuron is not changed, a rule which was enabled in a step t
can fire later. If new spikes are received, then it is possible that other rules will
be enabled – and applied or not.

It is important to point out that when a neuron spikes, its spikes immediately
leave the neuron and reach the target neurons simultaneously (i.e., there is no
time needed for passing along a synapse from one neuron to another neuron).

The initial configuration of the system is described by the numbers n1, . . . , nm

representing the initial number of spikes present in each neuron. Using the rules as
suggested above, we can define transitions among configurations. Any sequence of



Asynchronous Spiking Neural P Systems: Decidability and Undecidability 249

transitions starting in the initial configuration is called a computation. A compu-
tation is successful if it reaches a configuration where all bounded and unbounded
neurons are open but none is fireable (i.e., the SN P system has halted). The re-
sult of a computation is defined here as the total number of spikes sent into the
environment by the output neuron.

Successful computations which send no spike out can be considered as gener-
ating the number zero, but in what follows we adopt the convention to ignore
number zero when comparing the computing power of two devices.

SN P systems can also be used for generating sets of vectors, by considering
several output neurons, σi1 , . . . , σik

. In this case, the system is called a k-output
SN P system. Here a vector of numbers, (n1, . . . , nk), is generated by counting the
number of spikes sent out by neurons σi1 , . . . , σik

respectively during a success-
ful computation. We denote by Nnsyn

gen (Π) [Psnsyn
gen (Π)] the set [the set of vectors,

resp.] of numbers generated in the non-synchronized way by a system Π , and by
NSpiktotEPnsyn

m (α, deld) [PsSpiktotEPnsyn
m (α, deld)], α ∈ {gen, unb, boun}, d ≥

0, the family of such sets of numbers [sets of vectors of numbers, resp.] generated by
systems of type α (gen stands for general, unb for unbounded, boun for bounded),
with at most m neurons and rules having delay at most d. (The subscript tot re-
minds us of the fact that we count all spikes sent to the environment.)

A 0-delay SN P system is one where the delay in all the rules of the neurons
is zero. Because in this paper we always deal with 0-delay systems, the delay
(d = 0) is never specified in the rules. Because there is no confusion, in this
paper, asynchronous SN P systems are often simply called SN P systems.

In the next section we present a module of the construction from the proof
of the universality theorem, and this can illustrate and clarify the above defini-
tions. On that occasion we also use the standard way to pictorially represent a
configuration of an SN P system. Specifically, each neuron is represented by a
“membrane”, marked with a label and having inside both the current number of
spikes (written explicitly, in the form an for n spikes present in a neuron) and
the evolution rules. The synapses linking the neurons are represented by directed
edges (arrows) between the membranes. The output neuron is identified by both
its label, out, and pictorially by a short arrow exiting the membrane and point-
ing to the environment. Examples of SN P systems working in an asynchronous
way can be found in the technical report [1].

3 Computational Completeness of General SN P Systems

We now show that the power of general neurons (with extended rules) can com-
pensate the loss of power entailed by removing the synchronization.

Theorem 1. NSpiktotEPnsyn
∗ (gen, del0) = NRE.

Proof. (sketch) We only prove that NRE ⊆ SpiktotEPnsyn
∗ (gen, del0) and to

this aim, we use the characterization of NRE (i.e., the family of sets of numbers
computed by Turing machines) by means of counter machines (abbreviated CM),
[9]. Let M = (m, H, l0, lh, I) be a counter machine with m counters, such that



250 M. Cavaliere et al.

the result of a computation is the number stored in counter 1 and this counter
is never decremented during the computation. We construct a spiking neural P
system Π as follows.

For each counter r of M let tr be the number of instructions of the form
li : (SUB(r), lj , lk), i.e., all SUB instructions acting on counter r (of course, if
there is no such a SUB instruction, then tr = 0, which is the case for r = 1).
Denote by

T = 2 · max{tr | 1 ≤ i ≤ m} + 1.

For each counter r of M we consider a neuron σr in Π whose contents cor-
respond to the contents of the counter. Specifically, if the counter r holds the
number n ≥ 0, then the neuron σr will contain 3Tn spikes.

With each label l of an instruction in M we also associate a neuron σl. Initially,
all these neurons are empty, with the exception of the neuron σl0 associated with
the start label of M , which contains 3T spikes. This means that this neuron is
“activated”. During the computation, the neuron σl which receives 3T spikes
will become active. Thus, simulating an instruction li : (OP(r), lj , lk) of M means
starting with neuron σli activated, operating the counter r as requested by OP,
then introducing 3T spikes in one of the neurons σlj , σlk , which becomes in this
way active. When activating the neuron σlh , associated with the halting label
of M , the computation taking place in the counter machine M is completely
simulated in Π ; we will then send to the environment a number of spikes equal
to the number stored in the first counter of M . Neuron σ1 is the output neuron of
the system. Further neurons will be associated with the counters and the labels
of M ; all of them being initially empty.

The construction consists of modules simulating the ADD and SUB instruc-
tions of M , as well as a final module. We present here, in Figure 1, only the SUB
module.

Let us start with 3T spikes in neuron σli and no spike in other neurons,
except neurons associated with counters; assume that neuron σr holds a number
of spikes of the form 3Tn, n ≥ 0. Assume also that this is the sth instruction
of this type dealing with counter r, for 1 ≤ s ≤ tr, in a given enumeration of
instructions (because li precisely identifies the instruction, it also identifies s).

Some time, neuron σli spikes and sends 3T − s spikes both to σr and to σi,0.
These spikes can be forgotten in this latter neuron, because 2T < 3T − s < 4T .
At a certain time, also neuron σr will fire, and will send 2T + s or 3T + s spikes
to neuron σi,0. If no spike is here, then no other action can be done, also these
spikes will eventually be removed, and no continuation is possible (in particular,
no spike is sent out of the system).

If neuron σi,0 does not forget the spikes received from σli (this is possible,
because of the non-synchronized mode of using the rules), then eventually neuron
σr will send here either 3T + s spikes – in the case where it contains more than
3T −s spikes (hence counter r is not empty), or 2T +s spikes – in the case where
its only spikes are those received from σli . In either case, σi,0 accumulates more
than 4T spikes, hence it cannot forget them.



Asynchronous Spiking Neural P Systems: Decidability and Undecidability 251

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
	

�
�

�
	

�
�

�
�

�
�

�
	

�
�

�
��

�

�

	

����
�

���

�

�
�

�
���

	

	








�

�
�

��
�

�
��

	

li

a3T → a3T−s

r

a3T−s(a3T )+/a6T−s → a3T+s

a3T−s → a2T+s

i, 0

aq → λ

for 2T < q < 4T

a5T → a2T

a6T → a3T

i, 1

a2T → λ

a3T → a3T

i, 2

a3T → λ

a2T → a2T

i, 3

a3T → λ

a2T → a2T

i, 4
a4T → a3T

lj
a3T → aδ(lj)

lk
a3T → aδ(lk)

Fig. 1. Module SUB (simulating li : (SUB(r), lj , lk))

Depending on the number of spikes accumulated, either 6T or 5T , neuron σi,0
eventually spikes, sending 3T or 2T spikes, respectively, to σi,1, σi,2, and σi,3.
The only possible continuation of neuron σi,1 is to activate neuron σlj (precisely
in the case where the first counter of M was not empty). Neurons σi,2 and σi,3
will eventually fire and either forget their spikes or send 4T spikes to neuron
σi,4, which activates σlk (in the case where the first counter of M was empty).

It is important to note that if any neuron σi,u, u = 1, 2, 3, skips using the rule
which is enabled and receives further spikes, then no rule can be applied there
anymore and the computation is blocked, without sending spikes out.

The simulation of the SUB instruction is correct in both cases, and no “wrong”
computation is possible inside the module from Figure 1. What remains to ex-
amine is the possible interferences between modules, for instance, between neu-
rons σr for which there are several SUB instructions, and this was the reason
of considering the number T in writing the contents of neurons and the rules.
Specifically, each σr for which there exist tr SUB instructions can send spikes to
all neurons σi,0 as in Figure 1. However, only one of these target neurons also
receives spikes from a neuron σli , the one identifying the instruction which we
want to simulate. By a careful analysis of the number of spikes a neuron can
receive, the reader can check that the only computations in Π which can reach
the neuron σlh associated with the halting instruction of M are the computa-
tions which correctly simulate the instructions of M and correspond to halting
computations in M .

In a similar way we construct the ADD and FIN modules of an SN P system
Π (the reader can find the detailed construction in the technical report [1]).
Hence Nnsyn

gen (Π) = N(M).



252 M. Cavaliere et al.

Theorem 1 can be extended by allowing more output neurons and then simu-
lating a k-output CM, producing in this way sets of vectors of natural numbers.

4 Characterization of Unbounded SN P Systems by
Partially Blind Counter Machines

For the constructions in this section, we restrict the SN P systems syntactically to
make checking a valid computation easier. Specifically, for an SN P system with
unbounded neurons σ1, . . . , σk (one of which is the output neuron) we assume as
given non-negative integers m1, . . . , mk, and for the rules in each σi we impose
the following restriction: If mi > 0, then ami /∈ L(E) for any regular expression
E appearing in a rule of neuron σi. This restriction guarantees that if neuron
σi contains mi spikes, then the neuron is not fireable. It follows that when the
following conditions are met during a computation, the system has halted and
the computation is valid: (1) All bounded neurons are open, but none is fireable,
and (2) each σi contains exactly mi spikes (hence none is fireable, too). This way
of defining a successful computation, based on a vector (m1, . . . , mk), is called
μ-halting. In the notation of the generated families we add the subscript μ to N
or to Ps, in order to indicate the use of μ-halting.

A partially blind k-output CM (k-output PBCM) is a k-output CM, where
the counters cannot be tested for zero. The counters can be incremented by 1
or decremented by 1, but if there is an attempt to decrement a zero counter,
the computation aborts (i.e., the computation becomes invalid). Note that, as
usual, the output counters are nondecreasing. Again, by definition, a successful
generation of a k-tuple requires that the machine enters an accepting state with
all non-output counters zero.

We denote by NPBCM the set of numbers generated by PBCMs and by
PsPBCM the family of sets of vectors of numbers generated by using k-output
PBCMs. It is known that k-output PBCMs can be simulated by Petri nets, and
vice-versa. Hence, PBCMs are not universal.
Basic Construction: Let C be a partially blind counter. It is operated by
a finite-state control. C can only store nonnegative integers. It can be incre-
mented/decremented but when it is decremented and the resulting value become
negative, the computation is aborted. Let i, j, d be given fixed nonnegative in-
tegers with i ≥ 0, j > 0, d > 0. Initially, C is incremented (from zero) to some
m ≥ 0. Depending on the finite-state control (which is non-deterministic), one of
the following operations is taken at each step: (1) C remains unchanged; (2) C is
incremented by 1; (3) If the contents of C is of the form i+ kj (for some k ≥ 0),
then C is decremented by d. Note that in (3) we may not know whether i+ jk is
greater than or equal to d, or what k is (the multiplicity of j), since we cannot
test for zero. But if we know that C is of the form i + jk, when we subtract d
from it and it becomes negative, it aborts and the computation is invalid, so we
are safe. Note that if C contains i + jk and is greater than or equal to d, then
C will contain the correct value after the decrement of d. We can implement the
computation using only C and the finite-state control as follows:



Asynchronous Spiking Neural P Systems: Decidability and Undecidability 253

Case: i < j. Define a modulo-j counter to be a counter that can count from 0 to
j−1. We can think of the modulo-j counter as an undirected circular graph with
nodes 0, 1, . . . , j−1, where node s is connected to node s+1 for 0 ≤ s ≤ j−2 and
j − 1 is connected to 0. Node s represents count s. We increment the modulo-j
counter by going through the nodes in a “clockwise” direction. So, e.g., if the
current node is s and we want to increment by 1, we go to s + 1, provided
s ≤ j − 2; if s = j − 1, we go to node 0. Similarly, decrementing the modulo-j
counter goes in the opposite direction, i.e., “counter-clockwise” – we go from s
to s − 1; if it is 0, we go to s − 1.

The parameters of the machine are the triple (i, j, d) with i ≥ 0, j > 0, d > 0.
We associate with counter C a modulo-j counter, J , which is initially in node
(count) 0. During the computation, we keep track of the current visited node
of J . Whenever we increment/decrement C, we also increment/decrement J .
Clearly, the requirement that the value of C has to be of the form i + kj for
some k ≥ 0 in order to decrement by d translates to the J being in node i, which
is easily checked.
Case: i ≥ j. Suppose i = r + sj where s > 0 and 0 ≤ r < j. There are two
subcases: d > i−j and d ≤ i−j. We can show (we omit the “tricky” consruction
here) that both subcases can also be implemented.

Using the above construction we get the following, rather surprising result.

Theorem 2. NμSpiktotEPnsyn
∗ (unb, del0) = NPBCM .

Proof. (sketch) We describe how a PBCM M simulates an unbounded 0-delay
SN P system Π . Let B be the set of bounded neurons; assume that there are
g ≥ 0 such neurons. The bounded neurons can easily be simulated by M in its
finite control. So we focus more on the simulation of the unbounded neurons.
Let σ1, . . . ., σk be the unbounded neurons (one of which is the output neuron).
M uses counters C1, . . . , Ck to simulate the unbounded neurons. M also uses a
nondecreasing counter C0 to keep track of the spikes sent by the output neuron
to the environment. Clearly, the operation of C0 can easily be implemented by
M . We introduce another counter, called ZERO (initially has value 0), whose
purpose will become clear later.

Assume for the moment that each bounded neuron in B has only one rule,
and each unbounded neuron σt (1 ≤ t ≤ k) has only one rule of the form
ait(ajt)∗/adt → aet . M incorporates in its finite control a modulo-jt counter, Jt,
associated with counter Ct, implemented by using the above basic construction.
One step of Π is simulated in five steps by M as follows:

1. Non-deterministically choose a number 1 ≤ p ≤ g + k.
2. Non-deterministically select a subset of sizepof theneurons inB∪{σ1, . . . , σk}.
3. Check if the chosen neurons are fireable. The neurons in B are easy to

check, and the unbounded neurons can be checked using their associated
Jt’s (modulo-jt counters). If at least one is not fireable, abort the computa-
tion by decrementing counter ZERO by 1.



254 M. Cavaliere et al.

4. Decrement the chosen unbounded counter by their dt’s and update their
associated Jt’s. The chosen bounded counters are also easily decremented by
the amounts specified in their rules (in the finite control).

5. Increment the chosen bounded counters and unbounded counters by the total
number of spikes sent to the corresponding neurons by their neighbors (again
updating the associated Jt’s of the chosen unbounded counters). Also, incre-
ment C0 by the number of spikes the output neuron sends to the environment.

At some point, M non-deterministically guesses that Π has halted: It checks
that all bounded neurons are open and none is fireable, and the unbounded neu-
rons have their specified values of spikes. M can easily check the bounded neurons,
since they are stored in the finite control. For the unbounded neurons, M decre-
ments the corresponding counter by the specified number of spikes in that neuron.
Clearly, C0 = x (for some number x) with all other counters zero if and only if the
SN P system outputs x with all the neurons open and non-fireable (i.e., the system
has halted) and the unbounded neurons containing their specified values.

It is straightforward to verify that the described construction generalizes to
when the neurons have more than one rule. An unbounded neuron with m rules
will have associated with it m modulo-jtm counters, one for each rule and during
the computation, and these counters are operated in parallel to determine which
rule can be fired. A bounded neuron with multiple rules is easily handled by the
finite control. We then have to modify item 3 above to:
3’. Non-deterministically select a rule in each chosen neuron. Check if the cho-
sen neurons with selected rules are fireable. The neurons in B are easy to check,
and the unbounded neurons can be checked using the associated Jt’s (modulo-jt

counters) for the chosen rules. If at least one is not fireable, abort the computa-
tion by decrementing counter ZERO by 1.

The proof of the converse, which we omit (for lack of space), is an intricate
modification of the simulation in the proof of Theorem 1. Because each neuron
can only have either bounded rules or unbounded rules (but not both), the
simulation by PBCM is possible.

Theorem 2 can be generalized to the case with multiple outputs:

Theorem 3. PsμSpiktotEPnsyn
∗ (unb, del0) = PsPBCM .

This is the best possible result we can obtain, since if we allow bounded rules and
unbounded rules in the neurons, SN P systems become universal (Theorem 1).

It is known that PBCMs with only one output counter can only generate
semilinear sets of numbers. Hence:

Corollary 1. Unbounded 0-delay SN P systems with μ-halting can only generate
semilinear sets of numbers.
The results in the following corollary can be obtained using Theorem 3 and the
fact that they hold for k-output PBCMs.

Corollary 2. 1. The sets of k-tuples generated by k-output unbounded 0-delay
SN P systems with μ-halting is closed under union and intersection, but not
under complementation.



Asynchronous Spiking Neural P Systems: Decidability and Undecidability 255

2. The membership, emptiness, infiniteness, disjointness, and reachability prob-
lems are decidable for k-output unbounded 0-delay SN P systems with μ-
halting (for reachability, we do not need to define what is a halting configura-
tion as we are not interested in tuples the system generates); but containment
and equivalence are undecidable.

5 Final Remarks

Many issues remain to be investigated for asynchronous SN P systems. We only
mention two of them: whether or not asynchronous SN P systems with standard
rules (i.e., that can only produce one spike) are Turing complete and whether or
not the decidability results proved in Section 4 can be proved by using the usual
halting (i.e., by removing the μ-halting).

Acknowledgments. The work of O. Egecioglu, O.H. Ibarra, and S. Woodworth
was supported in part by NSF Grants CCF-0430945 and CCF-0524136. The
work of M. Ionescu was supported by “Formación de Profesorado Universitario”
fellowship from MEC, Spain.

References

1. Cavaliere, M., Egecioglu, O., Ibarra, O.H., Woodworth, S., Ionescu, M., Păun, Gh.:
Asynchronous spiking neural P systems. Tech. Report 9/2007 Microsoft Research
- University of Trento, Centre for Computational and Systems Biology,
http://www.cosbi.eu

2. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, Gh., Pérez-Jiménez, M.J.:
Spiking neural P systems with extended rules: Universality and languages, Natural
Computing (special issue devoted to DNA12 Conf.) (to appear)

3. Gutiérrez-Naranjo, M.A., et al.: Proceedings of Fifth Brainstorming Week on Mem-
brane Computing, Fenix Editora, Sevilla (in press, 2007)

4. Ibarra, O.H., Păun, A., Păun, Gh., Rodŕıguez-Patón, A., Sosik, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theoretical Computer Sci. (to appear)

5. Ionescu, M., Păun, A., Păun, Gh., Pérez-Jiménez, M.J.: Computing with spiking
neural P systems: Traces and small universal systems. In: Mao, C., Yokomori,
T., Zhang, B.-T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 32–42. Springer,
Heidelberg (2006)

6. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71(2-3), 279–308 (2006)

7. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems with exhaustive
use of rules. Intern. J. of Unconventional Computing (to appear)

8. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge
(1999)

9. Minsky, M.: Computation – Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

10. Păun, Gh.: Membrane Computing – An Introduction. Springer, Berlin (2002)
11. Păun, Gh.: Introduction to membrane computing. In: Ciobanu, G., Păun, Gh.,

Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, Springer, Hei-
delberg (2006)

12. The P Systems Web Page, http://psystems.disco.unimib.it

http://www.cosbi.eu
http://psystems.disco.unimib.it


On 5′ → 3′ Sensing Watson-Crick Finite
Automata

Benedek Nagy

Faculty of Informatics, University of Debrecen, Hungary
GRLMC, Rovira i Virgili University, Tarragona, Spain

nbenedek@inf.unideb.hu

Abstract. In this paper we introduce a variation of Watson-Crick au-
tomata in which both heads read the doubled DNA strand form 5’ to
3’. The sensing version of these automata recognize exactly the linear
context-free languages. The deterministic version is not so powerful, but
all fixed-rated linear (for instance even-linear) languages can be accepted
by them. Relation to other variations of Watson-Crick automata and
pushdown automata are presented. The full-reading version of sensing
5′ → 3′ automata recognizes non context-free languages as well.

1 Introduction

The theory of Watson-Crick (WK) automata is one of the main fields of DNA
computing. Finite automata are well known and frequently used. They have a
tape and, consequently, 1 input head reading the tape. The WK automata are
such extension that work on WK tape, i.e. on double stranded tape; and it has
an input head for each of the heads [3]. Several variations are presented in [7].
Their accepting power is intensively studied, several relations to formal language
theory are shown. Formal languages are one of the bases of computer science.
The class of linear languages is between the regular and context-free ones. A
special subclass of linear grammars and languages, the even-linear one, – having
rules in a symmetric shape – was investigated in [1]. In [2] the definition was ex-
tended to fix-rated linear languages. The terms k-linear grammars and k-regular
languages were used. In the literature the terms k-linear grammars/languages
are frequently used to refer metalinear grammars/languages [4], as they are ex-
tensions of the linear ones. Therefore we prefer the term fix-rated (k-rated) linear
for those restricted linear grammars/languages that are used in [2]. The classes
of k-rated linear languages are between the linear and regular ones.

In the nature the direction 5’ to 3’ is preferred, both DNA and RNA poly-
merase use this direction. The proteins get their meaning in this way and mRNA
is read in this direction by ribosome. Therefore, it is a very natural idea to con-
sider WK automata in which both of the heads are moving from the end 5’ to 3’,
i.e. in the same direction concerning the structure of the DNA. In this paper we
introduce and analyse these 5′ → 3′ WK automata. The sensing version of these
automata finishes the process of the input word when the heads meet. Several

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 256–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On 5′ → 3′ Sensing Watson-Crick Finite Automata 257

variations of these automata will be investigated. A class of 5′ → 3′ WK au-
tomata recognizes exactly the linear languages. Another class recognizes exactly
the even-linear languages. Moreover all k-rated linear languages can be accepted
by deterministic 5′ → 3′ WK automata. Their accepting powers comparing to
the Chomsky hierarchy and other WK automata ([6,7]) are also presented.

2 Preliminaries

In this section we recall some well-known concepts of DNA computing and formal
language theory ([7,4]). We also fix our notation.

Let V be an alphabet, i.e. a finite non-empty set of symbols (letters) and
ρ ⊆ V × V be its complementary relation. For instance V = {A, C, G, T } is
usually used in DNA computing with the Watson-Crick complementary relation
{(T, A), (A, T ), (C, G), (G, C)}. The strings built up by complementer pairs of
letters are double strands (of DNA). The sets of these strings are the languages.

A 5-tuple A = (V, Q, s, F, δ) is a finite state machine (finite automaton),
with the (input) alphabet V , the finite (non-empty) set of states Q, the initial
state s ∈ Q and the set of final (accepting) states F ⊆ Q. The function δ is
the transition function: δ : Q × (V ∪ λ) → 2Q / δ : Q × V → Q for non-
deterministic/deterministic finite automaton (λ refers for the empty word). A
word w is accepted by a finite automaton if there is a run starting with s, ending
in a state in F and the symbols of the transitions of the path yield w.

A Watson-Crick finite automaton (WK automaton) is a finite automaton
working on a Watson-Crick tape, that is a double stranded sequence (molecule)
in which the lengths of the strands are equal and the elements of the strands

are pairwise complements of each other:
[

a1
b1

] [
a2
b2

]
...

[
an

bn

]
=

[
a1 a2 ... an

b1 b2 ... bn

]

with ai, bi ∈ V and (ai, bi) ∈ ρ (i = 1, ..., n). Formally a WK automaton is
M = (V, ρ, Q, s, F, δ), where ρ ⊆ V ×V is a symmetric relation, V, Q, s and F are
the same as at finite automata, and the transition mapping δ : Q×

(V ∪{λ}
V ∪{λ}

)
→ 2Q.

The elementary difference between finite automata and WK automata besides
the doubled tape is the number of heads. The WK automata scan separately each
of the two strands, in a correlated manner.

Now we recall some language families related to the Chomsky hierarchy. A
grammar is a construct G = (N, V, S, H), where N, V are the non-terminal and
terminal alphabets; S ∈ N is the initial letter; H is a finite set of derivation rules.
A rule is a pair written as v → w (v ∈ (N ∪ V )∗N(N ∪ V )∗, w ∈ (N ∪ V )∗).
For the concepts of derivation (⇒∗) we refer to [4]. The generated language
L = {w|S ⇒∗ w ∧ w ∈ V ∗}. Two grammars are equivalent if they generate the
same language (mod λ). Due to the form of the rules we have the next classes
• context-sensitive (CS): uAv → uwv with A ∈ N and u, v, w ∈ (N ∪V )∗, w �= λ.
• context-free (CF): A → v with A ∈ N and v ∈ (N ∪ V )∗.
• linear (Lin): A → v, A → vBw; where A, B ∈ N and v, w ∈ V ∗.
• k-rated linear (k-Lin): linear and for each rule of the form A → vBw: k = |w|

|v|
with a fixed rational number k (|v| denotes the length of v).



258 B. Nagy

• Specially with k = 1: even-linear (1-Lin) grammars.
• Specially with k = 0: regular (Reg) A → w, A → wB; with A, B ∈ N , w ∈ V ∗.

The language family regular/linear etc. contains the languages that are gen-
erated by regular/linear etc. grammars. For various types of grammars various
normal forms are introduced. Every linear grammar has an equivalent grammar
with rules are in forms of A → aB, A → Ba, A → a. Every even-linear language
can be generated by rules of forms A → aBb, A → a, A → λ. Every regular gram-
mar has equivalent with rules of types A → aB, A → a (A, B ∈ N, a, b ∈ V ).

The deterministic and non-deterministic finite automata recognize exactly
the regular languages. For context-free and linear languages the pushdown and
1-turn pushdown automata fits. Their deterministic versions accept the deter-
ministic context-free (dCF) and deterministic linear (dLin) languages.

3 The 5′ → 3′ WK Automata

At the definition of WK automata we left open the interpretation of δ and the
condition of acceptance of a word. Now we specialize them to get 5′ → 3′ WK
automata. In a 5′ → 3′ WK automaton both heads start from the 5′ end of
the appropriate strand. Physically they read the double stranded sequence in
opposite direction (Fig. 1 (a)). A 5′ → 3′ WK automaton is sensing, if the heads
sense that they are meeting. In sensing 5′ → 3′ WK automata the process of the
input string ends if for all pairs of the string one of the letters is read. In full
reading version both heads read the whole strand from the end 5′ to the end 3′.

3.1 The Sensing 5′ → 3′ WK Automata

The sensing 5′ → 3′ automata (5′ → 3′ sWK) finish the reading of the input
word, when the heads meet. In the last step both heads may step and then the
automaton recognizes that all the input word is processed, since the heads meet.
Otherwise we have the following agreement. In case only 1 pair of the input
sequence is not being processed yet and so, both heads are at that position, they
recognize each other and only one of the heads (the first one) can read the letter
to finish processing the input word, the other head reads λ.

These automata can be represented graphically in a similar way as other finite
automata. In transitions we put pair of symbols (a, b) meaning that the first head
(upper strand) is reading symbol a, the second one (lower strand) is reading b
and both are stepping (Fig. 1 (c)). Any (or both) of a and b can be λ.

Theorem 1. The class of linear languages is exactly the one that is accepted by
sensing WK finite automata.

The proof is constructive in both directions. A WK automaton can be con-
structed for any linear grammar in a similar way as a finite automaton can be
constructed from a regular grammar having rules in normal form. Starting from
a linear grammar in normal form, the transitions are of the forms B ∈ δ(A,

(
a
λ

)
)

and B ∈ δ(A,
(

λ
a

)
) (A, B ∈ Q, a ∈ V ). Similarly, one can construct a linear



On 5′ → 3′ Sensing Watson-Crick Finite Automata 259

grammar based on the given automaton. As a special consequence of these con-
structions we define a ‘normal form’ for these automata. In simple, or shortly,
5′ → 3′ sSWK automata at most 1 head moves at every transition.

Corollary 1. For each 5′ → 3′ sWK there is an equivalent 5′ → 3′ sSWK.
The transitions of a simple automata can be (a, λ) and (λ, a). Alternative nota-
tions → a and ← a indicate the direction of the moving head (Fig. 1 (b)).

3.2 The Deterministic Sensing 5′ → 3′ WK Automata

A WK automaton is deterministic if at each possible case of the triplets of actual
state Q and letters under the heads

(
a
b

)
there is at most 1 possible step (including

the steps, where 1 of the heads does not read the letter).

Example 1. Let L = {w|w ∈ {a, b}∗, w = wR} be the language of palindromes.
Fig. 1 (b) shows a deterministic simple 5′ → 3′ sWK automaton accepting L.

The deterministic version of these automata is weaker than the non-deterministic
one: {anbn} ∪ {a3nbn} is accepted by a non-deterministic 5′ → 3′ sWK trying
both possibilities non-deterministically. With finite control it is impossible to ac-
cept this language in deterministic way. Now we consider the k-rated languages.

Theorem 2. For any value of k, every k-rated linear language is accepted by
deterministic 5′ → 3′ sWK automata.

Based on the normal form for the grammar the order of the steps of the heads
can be fixed forehead. The proof that these languages can be accepted by de-
terministic automata is analogous with the set-construction (the proof of the
equivalence of deterministic and non-deterministic finite automata). The class
that is accepted by deterministic 5′ → 3′ sWK automata strictly contains the
k-rated linear languages, as the next example shows.

Example 2. The grammar ({S, A}, {a, b}, S, {S → aAa, S → bAbb, A → aaaSb,
A → λ}) generates a linear language that is not k-rated linear (for any value of
k), but it can be accepted by a deterministic 5′ → 3′ sWK automaton.

3.3 The Both-Head Stepping 5′ → 3′ sWK Automata

Let 5′ → 3′ BWK denote those WK automata in which both heads must step
at every transition step (but the case if only 1 letter is not processed yet in
a sensing automaton). So, a 5′ → 3′ sBWK automaton has transitions type
B ∈ δ(A,

(
a
b

)
) and possibly C ∈ δ(A,

(
a
λ

)
), where C is a final state and there is

not any transition from the final states which can be reached by such transitions.
See Fig. 1 (c).

Theorem 3. The even-linear languages are exactly those languages that
i) are accepted by 5′ → 3′ sBWK automata;
ii) are accepted by deterministic 5′ → 3′ sBWK automata.



260 B. Nagy

Case i) can be proven by the same constructions as in Theorem 1: the result is
1-linear. The automaton has transitions without finishing the input word only
type B ∈ δ(A,

(
a
b

)
). If the input has only 1 unread letter, then only the first

head steps finishing the word and accepting it. The proof, that the deterministic
version accepts all these languages goes in the same way as at Theorem 2.

3.4 The Full Reading 5′ → 3′ sWK Automata

In the full reading variation of the 5′ → 3′ sWK automata (5′ → 3′ fsWK) each
head reads the whole word, but in different directions. It is easy to prove that

Lemma 1. Every linear language is accepted by a 5′ → 3′ fsWK automaton.
Furthermore, 5′ → 3′ fsWK can accept more languages:

Example 3. The automaton shown in Fig. 1 (d) accepts the language {anbncn}
if both heads read the whole input word. Moreover it works without sensing.
This language is not even context-free; it cannot be accepted by 5′ → 3′ sWK.

4 Comparison with Other Automata

Finite automaton (even with 2 heads) cannot recognize the language of correct
bracket expressions. This language (DYCK) is a dCF language. The palindrome
language is not a dCF language, but it is accepted by a deterministic 5′ → 3′

WK finite automaton. Therefore, the classes of dCF languages and of languages
accepted by deterministic 5′ → 3′ WK automata are incomparable. Moreover
the set of dLin languages is incomparable with the class of languages accepted
by deterministic 5′ → 3′ sWK automata: the language {anba2n} ∪ {anca3n} is
only in the first class, while the language of palindromes only in the second one.

Usually in the literature the heads of the WK automata move in the same
direction starting from the same end of the doubled sequence ([5,6,7]). The lan-
guage {anbn} is accepted by the traditional and by the 5′ → 3′ WK automata,
moreover, the deterministic sensing version can be used. The 5′ → 3′ automata
accept the language {wwR|w ∈ V ∗}, that cannot be accepted by any 2-head
finite automata with heads moving to the same direction. The ’copy’-language
({ww|w ∈ V ∗}) can be recognized by a traditional non-deterministic WK au-
tomata, but it cannot be accepted by any 5′ → 3′ WK finite machines. The
languages {anbncn} and {anbmcndm} can be accepted by traditional determin-
istic and by deterministic 5′ → 3′ fsWK automata, as well.

5 Summary and Concluding Remarks

In this paper the sensing 5′ → 3′ WK automata have been introduced. Full
reading versions were also analysed. The simple version in which only 1 head can
move in a step proved to be equivalently powerful to the non-restricted versions.
Some subclasses such as deterministic and/or versions in which both heads step



On 5′ → 3′ Sensing Watson-Crick Finite Automata 261

Fig. 1. Examples for 5′ → 3′ WK automata and hierarchy of language classes

at the same time were presented. As a summary, Fig. 1 (e) shows the hierarchy
of language families accepted by various 5′ → 3′ sWK finite automata (d stands
for deterministic, s for sensing, fs for full-reading sensing, B for both-head step
at the same time, S for simple versions) and their relation to the classical classes.
The arrows show strict inclusions, the nodes not having directed paths between
them are representing incomparable classes. There is a future work to analyse
the non-sensing and other (stateless, all final etc.) versions of 5′ → 3′ WK.

Acknowledgements. The author thanks the comments of the reviewers and

the support of DNA13, OTKA T049409 and of the , Hungary.

References

1. Amar, V., Putzolu, G.R.: On a Family of Linear Grammars. Information and Con-
trol 7(3), 283–291 (1964)

2. Amar, V., Putzolu, G.R.: Generalizations of Regular Events. Information and Con-
trol 8(1), 56–63 (1965)

3. Freund, R., Paun, G., Rozenberg, G., Salomaa, A.: Watson-Crick finite automata.
In: Third Annual DIMACS Symp. on DNA Based Computers, Philadelphia, pp.
305–317 (1997)

4. Hopcroft, J.E., Ullmann, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)



262 B. Nagy

5. Hromkovic, J.: On one-way two-head deterministic finite state automata. Computers
and Artificial Intelligence 4(6), 503–526 (1985)

6. Petre, E.: Watson-Crick-Automata. Journal of Automata, Languages and Combi-
natorics 8(1), 59–70 (2003)

7. Păun, G., Rozenberg, G., Salomaa, A.: DNA computing. In: New computing para-
digms, Springer, Berlin (1998)



Equivalence in Template-Guided Recombination�

Michael Domaratzki

Department of Computer Science
University of Manitoba

Winnipeg, MB R3T 2N2 Canada
mdomarat@cs.umanitoba.ca

Abstract. We consider theoretical properties of the template-guided
recombination operation. In particular, we consider the decidability of
whether two sets of templates are equivalent, that is, whether their ac-
tion is the same for all operands. We give a language-theoretic charac-
terization of equivalence which leads to decidability results for common
language classes. In particular, we show a positive answer for regular sets
of templates. For context-free sets of templates, the answer is negative.

1 Introduction

The rearrangement of DNA in stichotrichous ciliates has received a significant
amount of attention in the literature as a model of natural computing. Several
potential formal models for the rearrangement have been proposed, including
both intra-molecular and inter-molecular models. Ehrenfeucht et al. [7] give a
detailed overview of ciliate DNA rearrangement and an investigation of one of
the proposed models.

Template-guided recombination (TGR) is one of the formal models for recom-
bination of DNA in stichotrichs. The model, proposed by Prescott et al. [9], has
been the subject of much research in the literature [3,4,5,6,8]. Much of this work
on TGR has focused on examining the closure properties of the operation. For
example, McQuillan et al. [8] have recently shown that if a context-free language
is iteratively operated upon with a regular set of templates (see Section 2 for
definitions), then the resulting language is a context-free language which can be
effectively constructed.

TGR specifies a set of templates which defines how the operation works:
changes to the set of templates affect how the TGR operation functions on its
operand, which represents the scrambled DNA in the ciliate. It is reasonable,
therefore, to ask exactly what changes to the set of templates affect the op-
eration of TGR. This is the question we address in this paper: given two sets
of templates, do they define equivalent TGR operations? We give a natural
condition on subwords of templates which exactly characterizes equivalence for
template sets over an alphabet of at least three symbols.

From this characterization, we then establish decidability results: given two
regular sets of templates, it is decidable whether they are equivalent. We also
� Research supported in part by a grant from NSERC.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 263–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



264 M. Domaratzki

show an interesting universality result: determining whether a set of templates
is equivalent to the universal set of all templates is not difficult, as it can be
decided even for recursive sets. However, for alphabets of size at least three,
there exists a fixed regular set of templates T0 such that it is undecidable if a
given context-free set of templates is equivalent to T0.

As a proposed model for natural computing, understanding the equivalence
of template sets is a critical prerequisite for understanding the potential for
employing the natural computing power of ciliate DNA rearrangement. Under
the hypothesis that a distinct set of DNA material (the templates) exactly guides
rearrangement, a potential method for altering of the computational action of
the rearrangement is a modification of the set of templates which are present
during rearrangement.

With the results in this paper, we are able to determine exactly the situations
in which modifying the set of templates modifies the computational process of
rearrangement which occurs. For a recent survey of experimental results and
hypotheses in identifying exogenic factors affecting ciliate DNA rearrangement,
see Cavalcanti and Landweber [2]. Recent experimental results lend some support
to the TGR model. Vijayan et al. [11] demonstrate that the addition of permuted
RNA to the parental macronucleus does affect the rearrangement process during
conjugation, and a modified micronucleus is produced.

Recently, Angeleska et al. [1] have reconsidered the TGR model by incorpo-
rating RNA templates (either single-stranded or double-stranded RNA). Their
model does not incorporate any part of the RNA template into the rearranged
DNA and reduces the number of required cuts to the DNA backbones. How-
ever, as noted by the authors, the new model does not have any impact when
considered as an inter-molecular operation of formal languages as we do here.

2 Preliminary Definitions

We use the tools of formal language theory to study TGR. For additional back-
ground on formal languages, see Rozenberg and Salomaa [10]. Let Σ be a finite
set of symbols, called letters ; we call Σ an alphabet. Then Σ∗ is the set of all
finite sequences of letters from Σ, which are called words. The empty word ε
is the empty sequence of letters. We denote by Σ+ the set of non-empty words
over Σ, i.e., Σ+ = Σ∗ −{ε}. The length of a word w = w1w2 · · · wn ∈ Σ∗, where
wi ∈ Σ, is n, and is denoted by |w|.

A word x ∈ Σ∗ is a prefix of a word y ∈ Σ∗ if there exists w ∈ Σ∗ such that
y = xw. Similarly, x is a suffix of y if there exists u ∈ Σ∗ such that y = ux.
If x ∈ Σ∗, then pref(x) (resp., suff(x)) is the set of all prefixes (resp., suffixes)
of x. We also use the notation first(x) and last(x) to denote the first and last
letter of a non-empty word. That is, if x ∈ Σ+ and x = x1x2 where x1 ∈ Σ and
x2 ∈ Σ∗, then first(x) = x1. Similarly, if x = y1y2 where y1 ∈ Σ∗ and y2 ∈ Σ,
then last(x) = y2.

A language L is any subset of Σ∗. Given languages L1, L2 ⊆ Σ∗, their con-
catenation is defined by L1L2 = {xy : x ∈ L1, y ∈ L2}. Given an alphabet Σ,



Equivalence in Template-Guided Recombination 265

we use the notation Σk to denote the set of all words in Σ∗ of length k, while
Σ≥k (resp., Σ≤k) denotes the set of all words in Σ∗ of length k or greater (resp.,
length k or less).

A deterministic finite automaton (DFA) is a five-tuple M = (Q, Σ, δ, q0, F )
where Q is the finite set of states, Σ is the alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final
states. We extend δ to Q × Σ∗ in the usual way: δ(q, ε) = q for all q ∈ Q, while
δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ. A word w ∈ Σ∗ is
accepted by M if δ(q0, w) ∈ F . The language accepted by M , denoted L(M), is
the set of all words accepted by M , i.e., L(M) = {w ∈ Σ∗ : δ(q0, w) ∈ F}.
A language is called regular if it is accepted by some DFA. If L is a regular
language, the state complexity of L, denoted by sc(L), is the minimum number
of states in any DFA which accepts L.

We assume the reader is familiar with the classes of context-free and recur-
sive languages. A language is a context-free if it is generated by a context-free
grammar. A language is recursive if it is accepted by a Turing machine which
halts on all inputs. The classes of regular, context-free and recursive languages
form a strict hierarchy of inclusions.

2.1 Template-Guided Recombination

We now give the formal definition of TGR, which was proposed by Prescott et
al. [9] and first studied as a formal operation by Daley and McQuillan [4]. If
n1, n2 ≥ 1 and x, y, z, t ∈ Σ∗ are words, we denote by (x, y) �t,n1,n2 z the fact
that we can write

x = u1αβv1 (1)
y = v2βγu2 (2)
z = u1αβγu2 (3)
t = αβγ (4)

with α, β, γ, u1, u2, v1, v2 ∈ Σ∗, |α|, |γ| ≥ n1 and |β| = n2. If n1, n2 are un-
derstood, then we denote the relation �t,n1,n2 by �t. The word t is called the
template.

Intuitively, x and y are the DNA strands which are to be recombined using
the template t. The regions v1 and v2 represent the internal eliminated sequences
(IESs) which do not form part of the final rearranged sequence, and β, which
has a minimum length restriction, represents the pointer sequences in the ciliate
DNA. Note that in the definition of (x, y) �t z, the words x and y are sepa-
rate DNA sequences and so TGR is an inter-molecular model for ciliate DNA
recombination. Recently, however, an intra-molecular TGR has been considered
as well [3].

If T, L ⊆ Σ∗ are languages, then �T,n1,n2 (L) is defined by

�T,n1,n2 (L) = {z : ∃x, y ∈ L, t ∈ T such that (x, y) �t,n1,n2 z}.



266 M. Domaratzki

Again, we use the notation �T (L) if n1, n2 are understood or unimportant. The
language T is the set of templates.

We require the following simple observation about TGR:

Observation 1. If x, y, z, t ∈ Σ∗ such that (x, y) �t,n1,n2 z, then |z| − (|x| +
|y|) = −n2 − (|v1| + |v2|), where v1, v2 are as in (1)–(4).

We now come to the definition of equivalence for sets of templates. Let n1, n2 ≥ 1.
For T1, T2 ⊆ Σ∗, we say that T1 and T2 are (n1, n2)-equivalent, denoted by
T1 ≡n1,n2 T2, if �T1 (L) =�T2 (L) for all L ⊆ Σ∗. By T1 	n1,n2 T2, we mean
�T1 (L) ⊆�T2 (L) for all languages L ⊆ Σ∗. Note that T1 ≡n1,n2 T2 if and only if
T1 	n1,n2 T2 and T2 	n1,n2 T1 hold. We also note that ≡n1,n2 is an equivalence
relation.

We consider the relationships between ≡n1,n2 and ≡n′
1,n′

2
for different values

of n1, n2, n
′
1, n

′
2. We can show that these relations are incomparable.

Theorem 2. Let Σ be an alphabet with size at least two and n1, n2 ≥ 1. The
relations ≡n1,n2 and ≡n1,n2+1 (resp., ≡n1,n2 and ≡n1+1,n2) are incomparable.

3 Language Theoretic Characterization

We can now give our main result, a language-theoretic characterization of equiv-
alence of sets of templates. Let (C1) be the following condition:

∀t, t1, t2 ∈ Σ∗ with |t| = 2n1 + n2,

if t1tt2 ∈ T1 then ∃t′1 ∈ suff(t1), t′2 ∈ pref(t2)(t′1tt
′
2 ∈ T2).

(C1)

Condition (C1) is illustrated in Figure 1: for every subword t of length 2n1 +n2
in a template in T1, there must be an extension of t in T2 which agrees with the
template in T1 on the subwords flanking t.

Fig. 1. Illustration of condition (C1)

Our main result uses condition (C1) to characterize equivalence of sets of
templates:

Theorem 3. Let Σ be an alphabet with |Σ| ≥ 3, n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗.
The condition (C1) holds if and only if T1 	n1,n2 T2.



Equivalence in Template-Guided Recombination 267

Proof. (⇒): Suppose that (C1) holds. Let L be an arbitrary language and let
x ∈�T1 (L). Then there exist y, z ∈ L, t ∈ T1 such that (y, z) �t x. Write x, y, z, t
as

y = u1αβv1,

z = v2βγu2,

x = u1αβγu2,

t = αβγ,

where |α|, |γ| ≥ n1, |β| = n2 and u1, u2, v1, v2 ∈ Σ∗. Now write α = α1α2 and
γ = γ1γ2 where |α2| = n1 and |γ1| = n1. Thus, α2βγ1 is a subword of t of
length 2n1 + n2. By (C1), let α′

1 ∈ suff(α1) and γ′
2 ∈ pref(γ2) be chosen so that

t′ = α′
1α2βγ1γ

′
2 ∈ T2. Let α1 = α′′

1α′
1 and γ2 = γ′

2γ
′′
2 for appropriate choices of

α′′
1 , γ′′

2 . Note that

y = u1α
′′
1 (α′

1α2β)v1,

z = v2(βγ1γ
′
2)γ

′′
2 u2,

x = u1α
′′
1α′

1α2βγ1γ
′
2γ

′′
2 u2.

Thus, (y, z) �t′ x and so x ∈�T2 (L). We conclude that T1 	n1,n2 T2.
(⇐): Suppose for all L ⊆ Σ∗, we have �T1 (L) ⊆�T2 (L). Let t, t1, t2 ∈ Σ∗

with |t| = 2n1 + n2 and t1tt2 ∈ T1. Let t0 = t1tt2. Further, write t = αβγ where
|α| = |γ| = n1 and |β| = n2. Now, let X1, X2 ∈ Σ be letters chosen so that they
satisfy

X1 = first(γ), X2 = last(α),
X1 = last(γt2), X2 = first(t1α).

Note that this is possible since Σ has at least three letters.
Define the language L ⊆ Σ∗ as L = {t1αβX1, X2βγt2}. Note that t0 ∈

�T1 (L) ⊆�T2 (L), as (t1αβX1, X2βγt2) �t0 t0. Thus, there exist x, y ∈ L and
t′ ∈ T2 such that (x, y) �t′ t0. There are three cases, according to the choices for
x, y.

(a) x = t1αβX1, y = X2βγt2. Thus, we must be able to write

x = t1αβX1 = u1α
′β′v1,

y = X2βγt2 = v2β
′γ′u2,

t0 = t1αβγt2 = u1α
′β′γ′u2,

t′ = α′β′γ′,

where |α′|, |γ′| ≥ n1, |β′| = n2. Note that by Observation 1, |t1αβγt2| =
|t1αβX1|+ |X2βγt2|−n2 −|v1|−|v2|. Simplifying, we get that |v1|+ |v2| = 2.
We claim that |v1| = |v2| = 1. If not, then |v1| = 2 and |v2| = 0 or |v1| = 0
and |v2| = 2. We prove that the first case produces a contradiction; the
second case is symmetrical.



268 M. Domaratzki

If |v1| = 2 and |v2| = 0, then the equality t1αβX1 = u1α
′β′v1 implies that

|u1α
′β′| = |t1αβ| − 1 and (as |β| = |β′| = n2) |t1α| − 1 = |u1α

′|. Further
X2βγt2 = β′γ′u2. Consider now that

t1αβγt2 = u1α
′β′γ′u2

= u1α
′X2βγt2

In this case, as |t1α| − 1 = |u1α
′|, we have that X2 = last(α), a contra-

diction to our choice of X2. (The case |v1| = 0 and |v2| = 2 produces the
contradiction that X1 = first(γ).)

Therefore, |v1| = |v2| = 1. Thus, v1 = X1, v2 = X2 and we get that
t1αβ = u1α

′β′ and βγt2 = β′γ′u2. We immediately conclude that β = β′ as
both have length n2. As |α′| ≥ n1 = |α|, the equality t1αβ = u1α

′β′ implies
that there exists t′1 ∈ suff(t1) such that α′ = t′1α. Similarly, γ′ = γt′2 for some
t′2 ∈ pref(t2) by the equality βγt2 = β′γ′u2. Finally, as t′ = α′β′γ′ = t′1αβγt′2
and t′ ∈ T2, we note that condition (C1) holds, as required.

(b) x = X2βγt2. Then regardless of the choice of y ∈ L, we have that

x = X2βγt2 = u1α
′β′v1 (5)

y = v2β
′γ′u2 (6)

t0 = t1αβγt2 = u1α
′β′γ′u2 (7)

Thus, equating (5) and (7), we get that X2 = first(t1α), a contradiction.
(c) y = t1αβX1. This is similar to case (b); we ultimately arrive at the contra-

diction X1 = last(γt2).

We conclude that in all applicable cases, condition (C1) holds. ��

Example 1. Consider the following example with n1 = n2 = 1:

T1 = {baaab, caaac},

T2 = {baaab, caa, aac}.

Note that condition (C1) does not hold: for t = aaa, t1 = t2 = c, there is no prefix
t′2 of t2 and suffix t′1 of t1 such that t′1aaat′2 is in T2. Verifying Theorem 3, we
note that caaac ∈�T1 ({aac, caa}), but the same word is not in �T2 ({aac, caa}).

This example shows that condition (C1) cannot be replaced with the following
more simple condition:

∀t ∈ sub2n1+n2(T1), ∃t′1, t
′
2 ∈ Σ∗(t′1tt

′
2 ∈ T2). (8)

(here subm(L) is the set of all subwords of length m in L), since (8) does hold for
the above sets T1 and T2. Intuitively, (8) is not an adequate formulation since it
does not enforce that the chosen words t′1, t

′
2 agree with the regions surrounding

the occurrence of t as a subword of length 2n1 + n2 in a template in T1.

We note that condition (C1) in Theorem 3 does not place any restrictions on
templates in T1 of length less than 2n1 +n2. Further, the extensions constructed



Equivalence in Template-Guided Recombination 269

(i.e., t′1tt
′
2 in (C1)) also have length at least 2n1+n2. Thus, there is no restriction

on templates less than this critical length 2n1 + n2. In other words, if T1 ≡n1,n2

T2, then T1 ∩ Σ≤2n1+n2−1 and T2 ∩ Σ≤2n1+n2−1 can be modified completely
arbitrarily and equivalence will still hold.

Finally, we do not know if the condition |Σ| ≥ 3 in Theorem 3 can be improved
to |Σ| ≥ 2. However, the case of |Σ| = 1 is, as would be expected, trivial. In the
case of a unary alphabet, we can replace condition (C1) by the following simpler
condition:

∀t ∈ T1, |t| ≥ 2n1 + n2, ∃t′ ∈ T2, 2n1 + n2 ≤ |t′| ≤ |t|.

We omit the proof.

4 Decidability Results

We now turn to employing Theorem 3 to demonstrate that we can determine
algorithmically whether two sets of templates are equivalent. We first demon-
strate that we can do so if the two sets of templates are regular. To establish
this, we show that if T1 and T2 do not satisfy (C1), a bound on the length of a
template in T1 demonstrating this fact can be given:

Lemma 1. Let T1, T2 ⊆ Σ∗ be regular sets of templates, with sc(Ti) = mi for
i = 1, 2. If (C1) does not hold, then there exists t ∈ T1 with |t| ≤ m12m2+2n1+n2
which witnesses this fact.

Proof. Let Mi = (Qi, Σ, δi, qi, Fi) be DFAs with |Qi| = mi and L(Mi) = Ti for
i = 1, 2.

The proof is by contradiction: Assume that (C1) does not hold. Let t ∈ T1 be
the shortest template that witnesses the fact that (C1) does not hold. Suppose
that t has length strictly greater than m12m2 +2n1 +n2. As (C1) does not hold,
there exists a decomposition of t as t = t1t

′t2 such that |t′| = 2n1 + n2, and for
all pairs (t′1, t

′
2) where t′1 ∈ suff(t1) and t′2 ∈ pref(t2), t′1tt

′
2 /∈ T2.

By the length of t, we must have that either |t1| > m12m2−1 or |t2| >
m12m2−1. Assume first that |t1| > m12m2−1. Let k = |t1| and t1 = η1η2 · · · ηk

where ηi ∈ Σ for all 1 ≤ i ≤ k.
For all 1 ≤ j ≤ k, let Πj ⊆ Q2 be the set of states

Πj = {δ2(q2, s) : s ∈ suff(η1 · · · ηj)}.

Note that

(a) q2 ∈ Πj for all 1 ≤ j ≤ k, since ε ∈ suff(η1 · · · ηj).
(b) If q ∈ Πj and t′2 ∈ pref(t2), then δ2(q, ηj+1 · · · ηkt′t′2) /∈ F2; if this state were

in F2, then the subtemplate ηi · · · ηkt′t′2 ∈ T2 for some i with 1 ≤ i ≤ j + 1
(exactly the index i such that δ(q2, ηi · · · ηj) = q ∈ Πj).

By (a), there are at most 2m2−1 possibilities for Πj . Then considering all of
the pairs (Πi, δ1(q1, η1 · · · ηi)) for all 1 ≤ i ≤ k, as k > m12m2−1, there must
exist 1 ≤ j < j′ ≤ k such that (Πj , δ1(q1, η1 · · · ηj)) = (Πj′ , δ1(q1, η1 · · · ηj′ )).



270 M. Domaratzki

Claim. The template t0 = η1η2 · · · ηjηj′+1ηj′+2 · · · ηkt′t2 witnesses that (C1)
does not hold.

Proof. First, t0 ∈ T1. To see this, note that δ1(q1, η1 · · · ηj) = δ1(q1, η1 · · · ηj′ ) by
choice of j, j′, and so substituting the prefix η1 · · · ηj for η1 · · · ηj′ does not affect
the finality of M1 after reading the entire template, and t0 is accepted by M1.

Next, for each suffix t′′ of η1 · · · ηjηj′+1 · · · ηk and each prefix t′2 of t2 we
must have that t′′t′t′2 /∈ T2. For the suffixes of ηj′+1 · · · ηk (and any prefix of
t2), this holds since they are also suffixes of t1. Consider then a suffix of the
form ηi · · · ηjηj′+1 · · · ηk for some 1 ≤ i ≤ j. Note that δ2(q2, ηi · · · ηj) ∈ Πj =
Πj′ . Thus, there exists a suffix ηr · · · ηj′ of η1 · · · ηj′ such that δ2(q2, ηi · · · ηj) =
δ2(q2, ηr · · · ηj′ ). By (b) above, for all t′2 ∈ pref(t2), δ(q2, ηi · · · ηjηj′+1 · · · ηkt′t′2) =
δ(q2, ηr · · · ηj′ηj′+1 · · · ηkt′t′2) /∈ F2 and thus, ηi · · · ηjηj′+1 · · · ηkt′t′2 /∈ T2 for any
prefix t′2 of t2, as required. ��

Now, as j < j′, we have that t0 is shorter than t, contrary to our assumption that
t was the shortest template in T1 such that (C1) does not hold. The case where
|t2| > m12m2−1 is similar. Thus, we must have that |t| ≤ m12m2 + 2n1 + n2. ��

Corollary 1. Let n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗ (|Σ| ≥ 3) be effective regular sets
of templates. Then it is decidable whether T1 ≡n1,n2 T2.

Proof. We can assume without loss of generality that T1, T2 ⊆ Σ≥2n1+n2 , as we
have observed that templates of length less than this critical length do not affect
equivalence.

By Theorem 3, T1 ≡n1,n2 T2 if and only if (C1) holds twice, with T1 and T2
in both roles. To test (C1), it suffices to test all words up to the length given by
Lemma 1. ��

Note that Corollary 1 is not an efficient algorithm: it requires checking an ex-
ponential number of templates up to a bound which is itself exponential in the
size of the minimal DFA for T1.

We note the following alternative proof for Corollary 1 which does not use
Lemma 1, suggested to us by an anonymous referee. Let t ∈ Σ∗ and T ⊆ Σ∗

be arbitrary, and let # /∈ Σ. Define T ‡ t = {t1#t2 : t1tt2 ∈ T }. Note that if
t is not a subword of t′, then t′ does not contribute anything to T ‡ t. It is not
difficult to demonstrate that T ‡ t is regular for all regular sets of templates T
and all t ∈ Σ∗. We then note that

T1 	n1,n2 T2 ⇐⇒ ∀t ∈ Σ2n1+n2 , T1 ‡ t ⊆ Σ∗(T2 ‡ t)Σ∗.

That is, T1 	n1,n2 T2 if and only if every word in T1 ‡ t has a subword in T2 ‡ t.
This subword must necessarily have an occurrence of #, which has effectively
replaced t, and so we capture (C1) exactly. Therefore, the process of testing the
above condition for all words of length 2n1 + n2 gives an alternate method of
deciding whether T1 	n1,n2 T2.



Equivalence in Template-Guided Recombination 271

We can now give a somewhat surprising positive decidability result for recur-
sive sets of templates. In particular, we can establish a universality equivalence
result:

Theorem 4. Let n1, n2 ≥ 1 and Σ be an alphabet of size at least three. Given
an effectively recursive set of templates T ⊆ Σ∗, we can determine whether
T ≡n1,n2 Σ∗.

However, we also have the following result, which demonstrates that there is at
least one regular set of templates such that determining equivalence for context-
free sets of templates is undecidable:

Theorem 5. Let Δ be an alphabet of size at least three and n1, n2 ≥ 1. There
exists a fixed regular set of templates T0 ⊆ Δ∗ such that the following problem
is undecidable: Given a context-free set of templates T ⊆ Δ∗, is T ≡n1,n2 T0?

5 Conclusions

In this paper, we have considered equivalence of sets of templates. With a natural
condition on extending subwords of the critical length 2n1 + n2 in one set of
templates to a template in the equivalent set, we have exactly characterized the
equivalence of two sets of templates for alphabets of size three or more, which is
sufficient for modelling biological processes. It is open whether the construction
can be reduced to an alphabet of size two.

Using this characterization, we have shown that it is decidable whether two
regular sets of templates are equivalent. This uses a result which establishes
that if two regular sets of templates are not equivalent, a witness can be found
within some finite bound. We have also established two other decidability results.
First, deciding equivalence to the set of all possible templates is easier than
might be expected: we can determine such an equivalence for recursive sets of
templates. However, there exists a fixed regular set of templates T0 such that it
is undecidable whether a given context-free set of templates is equivalent to T0.

We mention the problem of equivalence for iterated TGR, which has been
defined as a formal operation by Daley and McQuillan [4]. Iterated TGR serves
as a more realistic biological model of DNA rearrangement in ciliates. It is not
difficult to show that if T1 ≡n1,n2 T2, then the iterated TGR operations using
T1 and T2 are also equivalent. Thus, equivalence of two sets of templates implies
the equality of the corresponding iterated TGR operations using T1 and T2.
However, the converse, i.e., whether equivalence of templates in iterated TGR
implies equivalence for non-iterated TGR, is open and a topic for future research.

Acknowledgments

We thank the referees of DNA 13 for their helpful comments, and in particular,
the suggested alternative proof of Corollary 1.



272 M. Domaratzki

References

1. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.: RNA-Guided DNA Assem-
bly. Journal of Theoretical Biology 248(4), 706–720 (2007); Abstract appears in:
Garzon, M., Yan, H. (eds.) DNA 13. LNCS, vol. 4848. Springer, Heidelberg (2007)

2. Cavalcanti, A., Landweber, L.: Insights into a biological computer: Detangling
scrambled genes in ciliates. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nan-
otechnology: Science and Computation, pp. 349–360. Springer, Heidelberg (2006)

3. Daley, M., Domaratzki, M., Morris, A.: Intra-molecular template-guided recom-
bination. International Journal of Foundations of Computer Science (to appear,
2007) Preliminary technical report,
http://www.cs.acadiau.ca/research/technicalReports

4. Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Com-
puter Science 330, 237–250 (2005)

5. Daley, M., McQuillan, I.: On computational properties of template-guided DNA
recombination in ciliates. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing.
LNCS, vol. 3892, pp. 27–37. Springer, Heidelberg (2006)

6. Daley, M., McQuillan, I.: Useful templates and iterated template-guided DNA re-
combination in ciliates. Theory of Computing Systems 39, 619–633 (2006)

7. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation in
Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2004)

8. McQuillan, I., Salomaa, K., Daley, M.: Iterated TGR languages: Membership prob-
lem and effective closure properties. In: Chen, D.Z., Lee, D.T. (eds.) COCOON
2006. LNCS, vol. 4112, pp. 94–103. Springer, Heidelberg (2006)

9. Prescott, D., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for
IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology 222, 323–330 (2003)

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997)

11. Vijayan, V., Nowacki, M., Zhou, Y., Doak, T., Landweber, L.: Programming a
Ciliate Computer: Template-Guided IN Vivo DNA Rearrangements in Oxytricha.
In: Garzon, M., Yan, H. (eds.) DNA 13: Preliminary Proceedings, p. 172 (2007)

http://www.cs.acadiau.ca/research/technicalReports


Watson-Crick Conjugate and Commutative

Words

Lila Kari and Kalpana Mahalingam

University of Western Ontario,
Department of Computer Science,
London, ON, Canada N6A 5B7
{lila, kalpana}@csd.uwo.ca

Abstract. This paper is a theoretical study of notions in combina-
torics of words motivated by information being encoded as DNA strands
in DNA computing. We generalize the classical notions of conjugacy
and commutativity of words to incorporate the notion of an involution
function, a formalization of the Watson-Crick complementarity of DNA
single-strands. We define and study properties of Watson-Crick conju-
gate and commutative words, as well as Watson-Crick palindromes. We
obtain, for example, a complete characterization of the set of all words
that are not Watson-Crick palindromes. Our results hold for more general
functions, such as arbitrary morphic and antimorphic involutions. They
generalize classical results in combinatorics of words, while formalizing
concepts meaningful for DNA computing experiments.

1 Introduction

Theoretical DNA Computing is an area of biomolecular computing that has seen
a surge of activity in recent years. It loosely encompasses contributions to fun-
damental research in computer science originated in or motivated by research in
DNA computing. Examples are numerous and they include theoretical aspects of
self-assembly [1], [20], DNA sequence design [11], [17], and mathematical prop-
erties of DNA-encoded information [10], [8].

This paper constitutes a contribution to the field of theoretical DNA com-
puting by investigating a generalization of the classical notions of conjugacy and
commutativity of words motivated by DNA-encoded information. The main idea
is that information-encoding strings that are used in DNA computing experi-
ments have an important property that differentiates them from their electronic
computing counterparts. This property is the Watson-Crick complementarity
between DNA single-strands that allows information-encoding strands to po-
tentially interact. Mathematically, this translates into generalizing the identity
function, which is the only one operating in the electronic realm, to an arbitrary
involution function. An involution is a function θ such that θ2 equals the iden-
tity. Given an alphabet Σ, an antimorphic involution, i.e., an involution θ with
the additional property that θ(uv) = θ(v)θ(u) for all strings u, v ∈ Σ∗, is the
mathematical notion that formalizes the Watson-Crick complementarity. Indeed,

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 273–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



274 L. Kari and K. Mahalingam

an antimorphic involution captures the two main properties of the Watson-Crick
complement of a DNA strand, namely its being the reverse (antimorphic prop-
erty) complement (involution property) of the original strand. Replacing identity
with involutions paves thus the way to concepts that are both meaningful formal-
izations of information-encoding DNA strands, and mathematically interesting
generalizations of classical concepts in formal language theory, coding theory
and combinatorics of words.

For example, using the concept of involutions one obtains generalizations of
the classical notions of prefix codes, suffix codes and comma-free codes [12], [13].
In addition to being of theoretical interest, these notions prove to be meaningful
in the context of DNA computing experiments. Indeed, if θ is the Watson-Crick
involution, then a θ-sticky-free, or θ-overhang-free code is a set of words where no
unwanted hybridizations of a certain type occur between DNA codewords. More
recently, in [14] we extended the concept of bordered and unbordered words to
involution-bordered and involution-unbordered words.

In this paper we extend the notions of conjugate and commutative words to
Watson-Crick conjugate and Watson-Crick commutative words. Our results hold
in a more general context where the function θ involved is an arbitrary morphic
or antimorphic involution. To put these results in context, they augment stud-
ies of combinatorial properties of words which have meaningful applications in
numerous other fields. For example, word properties such as periodicity and bor-
deredness play a role in many areas including string searching algorithms [4,5,6],
data compression [7,21] and in the study of coding properties of sets of words
[2,19] as well as sequence assembly in computational biology [18]. Relevant to
this paper, there are several classical results about conjugacy of words and words
that commute [19]. In addition, in [3] the authors extend certain combinatorial
properties of conjugacy of words to partial words with an arbitrary number of
holes. An authoritative text on the study of combinatorial properties of strings
would be [16].

Thepaper is organizedas follows.Webeginby reviewingbasic concepts of combi-
natorics ofwords and thedefinitionofθ-borderedand θ-unborderedwords for anar-
bitrarymorphic or antimorphic involutionθ. InSection2,wealso define the concept
of θ-conjugacy on words. If θ is the antimorphicWatson-Crick involution, this gives
rise to the notion ofWatson-Crick conjugatewords. Figure 1 illustrates the interac-
tion between two DNA strands u and v over the DNA alphabet Δ = {A, C, G, T }
that are Watson-Crick conjugates to each other. We show that for a morphic invo-
lution θ, the θ-conjugacy on words is reflexive, symmetric and transitive. We also
obtain several properties of θ-conjugate words including a general characterization
of the words that are θ-conjugate in Proposition 1. These results generalize well-
known properties of conjugate words [19].

In Section 3, we introduce the concept of θ-commutativity on words for
an arbitrary morphic or antimorphic involution θ, and its particular case of
Watson-Crick commutativity. Figure 3 illustrates the interaction between two
DNA strands u and v that Watson-Crick commute. We obtain several prop-
erties of words that θ-commute, including their characterization (Proposition



Watson-Crick Conjugate and Commutative Words 275

3), and properties of the set Cθ(1) of words that cannot be written as a con-
catenation of two non-empty words x, y such that x θ-commutes with y. These
properties generalize classical properties of words that commute, [19]. We define
the notion of θ-palindrome that was obtained independently in [9]. Note that if
θ is the Watson-Crick involution, then the notion of Watson-Crick palindromes
coincides with the term “palindrome” as used by molecular biologists. We define
a relation on words using the θ-commutativity and show that, for an antimor-
phic involution θ, the set of all θ-palindromes can be characterized using this
relation.

2 Watson-Crick Conjugate Words

Before introducing the notion of Watson-Crick conjugate words, we review some
basic concepts of combinatorics of words. An alphabet Σ is a finite non-empty set
of symbols. A word u over Σ is a finite sequence of symbols in Σ. We denote by
Σ∗ the set of all words over Σ, including the empty word λ and, by Σ+, the set
of all non-empty words over Σ. We note that with the concatenation operation
on words, Σ∗ is the free monoid and Σ+ is the free semigroup generated by
Σ. For a word w ∈ Σ∗, the length of w is the number of symbols in w and
is denoted by |w|. For a word w, the set of its prefixes/ suffixes are defined as
follows: Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗, w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈
Σ∗, w = vu}.

Bordered words were initially called “overlapping words” and unbordered
words were called “non-overlapping words”. For properties of bordered and un-
bordered words we refer the reader to [19,22]. In [14], we extended the concept
of bordered words to involution bordered words. We now recall some notions
defined and used in [22] and [14].

Definition 1. Let θ be either a morphic or an antimorphic involution on Σ∗.

1. For v, w ∈ Σ∗, w ≤p v iff v ∈ wΣ∗.
2. For v, w ∈ Σ∗, w ≤θ

s v iff v ∈ Σ∗θ(w).
3. ≤θ

d =≤p ∩ ≤θ
s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θ
d u, i.e., u = vx =

yθ(v).
5. For w, v ∈ Σ∗, w <p v iff v ∈ wΣ+.
6. For w, v ∈ Σ∗, w <θ

s v iff v ∈ Σ+θ(w).
7. <θ

d =<p ∩ <θ
s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θ
d u.

9. For u ∈ Σ+, define Lθ
d(u) = {v|v ∈ Σ∗, v <θ

d u}.
10. νθ(u) = |Lθ

d(u)|.
11. Dθ(i) = {u|u ∈ Σ+, νθ(u) = i}.
12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that

v <θ
d u, i.e., u = vx = yθ(v) for some x, y ∈ Σ+.

13. A non-empty word which is not θ-bordered is called θ-unbordered.



276 L. Kari and K. Mahalingam

A word u in Σ∗ is a conjugate of w in Σ∗ if there exists v ∈ Σ∗ such that
uv = vw. Note that conjugacy on words is an equivalence relation. In [3], the
authors showed that conjugacy on partial words is reflexive and symmetric but
not transitive. In this section we extend the concept of conjugacy of words to
incorporate the notion of an involution function and show that θ-conjugacy on
words is reflexive. We also show that θ-conjugacy on words is symmetric and
transitive when θ is a morphic involution.

Definition 2. Let θ be either a morphic or an antimorphic involution. A word
u is a θ-conjugate of another word w if uv = θ(v)w for some v ∈ Σ∗.

Example 1. Let Σ = {a, b} and θ be an antimorphic involution which maps a to
b and vice versa. Let u = aba and w = bab. Then u is a θ-conjugate of w since
aba · b = θ(b) · bab.

u

w

u

w

(a) (b)

Fig. 1. If u is Watson-Crick conjugate of w, then u and the Watson-Crick complement
of w overlap, resulting thus in one of the two intermolecular hybridizations shown above

For any DNA string u over the DNA alphabet Δ = {A, G, C, T }, the Watson-
Crick conjugates of u are defined as the DNA strings w such that uv = θ(v)w for
some v ∈ Δ∗. In this case, θ is the Watson-Crick involution which maps A �→ T ,
C �→ G and viceversa such that θ is an antimorphic involution. In the following
example we find all the Watson-Crick conjugates of a given DNA string.

Example 2. Let Δ = {A, G, C, T } be the DNA alphabet and let u = ATAG.
Then the Watson-Crick Conjugates of u are given by Conjθ(u) = {ATAG,
TAGT, AGAT, GTAT, CTAT }. For all w ∈ Conjθ(u), there exists a v ∈ Σ∗

such that uv = θ(v)w. These words v respectively are T , AT , TAT , CTAT .

The characterization of θ-conjugate words in Proposition 2 will show that if u
and w are Watson-Crick conjugates, then u and the Watson-Crick complement
of w overlap, hence forming the hybridization in Fig 1.

Note that for all u ∈ Σ∗, u is a θ-conjugate of u since uλ = θ(λ)u. Also u is a
θ-conjugate of θ(u) since uθ(u) = θ(θ(u))θ(u) and hence for all u, v ∈ Σ∗, uv is a
θ-conjugate to vθ(u) since uvθ(u) = θ(θ(u))vθ(u). Even though we concentrate
on Watson-Crick conjugates, we provide results that hold for any general morphic
or an antimorphic involution. In the next lemma we show that the θ-conjugacy
of words is transitive when θ is a morphic involution.



Watson-Crick Conjugate and Commutative Words 277

Lemma 1. Let u, v, w ∈ Σ+ such that u is a θ-conjugate of w and w is a
θ-conjugate of v.

1. If θ is a morphic involution then u is a θ-conjugate of v.
2. If θ is an antimorphic involution then u is not necessarily a θ-conjugate of

v.

Proof. 1. Let θ be a morphic involution. Since u is a θ-conjugate of w and w
is a θ-conjugate of v then there exists r, s ∈ Σ∗ such that ur = θ(r)w and
ws = θ(s)v which implies that urs = θ(r)θ(s)v. Hence urs = θ(rs)v and u
is a θ-conjugate of v.

2. Let θ be an antimorphic involution. Then u is not necessarily a θ-conjugate
of v. For example let Σ = {a, b} and θ(a) = b and let u = aba, w = bab and
v = bba. Note that aba is a θ-conjugate of bab since aba · b = θ(b) · bab. Also
bab is a θ-conjugate of bba since bab · ba = θ(ba) · bba. Suppose there exist
a y ∈ Σ∗ such that aba · y = θ(y) · bba then θ(y) = ax for some x ∈ Σ∗

which implies that y = θ(x)b which is not possible since y has to be of the
form za. Hence the θ-conjugacy relation is not transitive for an antimorphic
involution θ.

�	

Lemma 2. Let x, y ∈ Σ∗ such that x is a θ-conjugate of y.

1. If θ is an antimorphic involution then for all u ∈ Σ∗ ux is a θ-conjugate of
yθ(u).

2. If θ is a morphic involution then there exists a u ∈ Σ∗ such that ux is not a
θ-conjugate of yθ(u).

Proof. 1. Let θ be an antimorphic involution. Since x is a θ-conjugate of y there
exists v ∈ Σ∗ such that xv = θ(v)y and hence uxvθ(u) = uθ(v)yθ(u). Take
r = vθ(u), then θ(r) = θ(vθ(u)) = uθ(v) which implies that uxr = θ(r)yθ(u)
hence ux is a θ-conjugate of yθ(u).

2. Let θ be a morphic involution and let Σ = {a, b} such that θ(a) = b. Note
that for x = abb and y = bbb, x is a θ-conjugate of y since x · b = θ(b) · bbb.
But for u = ab ux is not a θ-conjugate of yθ(u). Also for w = ux = ababb,
the set of all θ-conjugates is C = {babaa, bbaba, bbbab, abbba, babbb, ababb}
and clearly yθ(u) = bbbba /∈ C.

�	

Proposition 1. Let u be a θ-conjugate of w such that uv = θ(v)w for some
v ∈ Σ∗. Then for a morphic involution θ there exists x, y ∈ Σ∗ such that u = xy
and one of the following hold:

1. w = yθ(x) and v = (θ(x)θ(y)xy)iθ(x) for some i ≥ 0.
2. w = θ(y)x and v = (θ(x)θ(y)xy)iθ(x)θ(y)x for some i ≥ 0.

Proof. Let θ be a morphic involution. Given uv = θ(v)w for some v ∈ Σ∗. Then
we either have |u| < |v| or |v| ≤ |u|. Suppose |u| ≥ |v| then u = θ(v)α and w = αv



278 L. Kari and K. Mahalingam

for some α ∈ Σ∗. Hence for v = θ(x), u = xy and w = yθ(x). Assume that
|u| < |v|. Then there exits p1 ∈ Σ+ such that θ(v) = up1 and v = p1w. Hence
v = p1w = θ(u)θ(p1). Suppose |u| < |p1| then there exists p2 ∈ Σ+ such that
p1 = θ(u)p2 and θ(p1) = p2w and hence uθ(p2) = p2w and v = θ(p2)θ(w)w =
θ(u)uθ(p2). Continuing this way we can find a pn ∈ Σ+ such that |u| > |pk| and
v = an

j θ(xn) for aj = θ(u) when j is odd and aj = u when j is even. When n

is even, we have n = 2k and v = (θ(u)u)kθ(x2k) with uθ(x2k) = x2kw which
implies u = x2kr = xy and w = rθ(x2k) = yθ(x) and v = (θ(x)θ(y)xy)kθ(x).
When n is odd n = 2k + 1 for some k and v = (θ(u)u)2k−1θ(u)θ(x2k+1) with
θ(u)θ(x2k+1) = x2k+1w. Then we have θ(u) = x2k+1r = θ(x)θ(y) and w =
rθ(x2k+1) = θ(y)x and v = (θ(x)θ(y)xy)2k−1θ(x)θ(y)x. �	

Corollary 1. For a morphic involution θ on Σ∗, θ-conjugacy on words is a
symmetric relation.

Example 3. Let Σ = {a, b} and let θ be a morphic involution which maps a to b
and viceversa. From Proposition 1 for w = ux = ababb, the set of all θ-conjugates
are C = {babaa, bbaba, bbbab, abbba, babbb, ababb}.

Proposition 2. Let u be a θ-conjugate of w. Then for an antimorphic involu-
tion θ, there exists x, y ∈ Σ∗ such that either u = xy and w = yθ(x) (Figure 1,
(a)) or w = θ(u) (Figure 1, (b)).

Corollary 2. Let θ be either a morphic or an antimorphic involution and let u
be a θ-conjugate of w for u, w ∈ Σ+. Then either uw or wu is θ-bordered.

Let u be a θ-conjugate of w. Then for an antimorphic involution θ, either uw
or wu precisely form a hairpin-like structure. For example, choose a DNA string
u = ATAGCT and one of its Watson-Crick conjugates w = GCTTAT . Then
uw = ATAGCTGCTTAT = (ATA)GCTGCTθ(ATA), as illustrated in Fig. 2.

Fig. 2. The DNA string GCTTAT is a Watson-Crick conjugate of ATAGCT , and
their catenation ATAGCTGCTTAT forms a hairpin

3 Watson-Crick Commutative Words

Two words x and y are said to commute when xy = yx, [19]. In this section we
define the concept of θ-commutative words and show that commutative words
are a special case of θ-commutative words when θ is identity. We also introduce
the θ-commutativity order and characterize the set of all θ-palindromes for an
antimorphic involution θ.



Watson-Crick Conjugate and Commutative Words 279

Definition 3. Let θ be either a morphic or an antimorphic involution.

1. For x, y ∈ Σ∗, x is said to θ-commute with y if xy = θ(y)x.
2. We define the θ-commutativity order as v ≤θ

c u iff u = vx = θ(x)v for some
x ∈ Σ∗.

3. Lθ
c(u) = {v|v ∈ Σ∗, v ≤θ

c u}.
4. νθ

c (u) = |Lθ
c(u)|.

5. For i ≥ 1, define Cθ(i) = {u|u ∈ Σ+, νθ
c (u) = i}.

6. A word x ∈ Σ∗ is called a θ-palindrome if x = θ(x).

Suppose uv = θ(v)u holds. Then, if v = λ, then u is a θ-conjugate of u. (This also
implies that u θ-commutes with λ.) Otherwise, it means that u θ-commutes with v.
For any non-empty DNA strings u and v over the DNA alphabet Δ = {A, G, C, T },
we say that u Watson-Crick commutes with v if uv = θ(v)u where θ is the Watson-
Crick involution. The word u ∈ Δ∗ is called a Watson-Crick palindrome if u =
θ(u) where θ is the Watson-Crick involution. In what follows, we will show that for
the Watson-Crick involution θ if u θ-commutes with v , then u is a Watson-Crick
palindrome and either u is a prefix of θ(v) or θ(v) is a prefix of u.

Example 4. Consider a string u = AGCT over the DNA alphabet Δ. Let θ be
the Watson-Crick involution and v = CTAGAGCT . Then u θ-commutes with
v since uv = AGCT · CTAGAGCT = θ(CTAGAGCT ) · AGCT = θ(v)u.

u

v

u

v
u

u

Fig. 3. If theDNAstringuWatson-Crick commuteswith v, thenoneof the intermolecular
hybridizations (a) or (b) occurs and, in addition, u is a Watson-Crick palindrome (c).

If the word u Watson-Crick commutes with the word v, the characterization
in Proposition 3 will show that u and v will form one of the hybridizations in
Figure 3.

Observation 1 Let θ be either a morphic or an antimorphic involution on Σ∗.

1. For all u ∈ Σ+, u ∈ Lθ
c(u), i.e., u ≤θ

c u.
2. Cθ(1) = {u ∈ Σ+|v ≤θ

c u ⇔ v = u}.
3. For all u ∈ Σ+ such that u is a θ-palindrome we have λ ∈ Lθ

c(u).
4. For all a ∈ Σ such that a �= θ(a), a+ ⊆ Cθ(1).



280 L. Kari and K. Mahalingam

Note that Cθ(1) is the set of all words that cannot be written as a catenation of
two non-empty words x and y such that x θ-commutes with y. Cθ(1) is the set of
all words u that have only one element in the set Lθ

c(u) namely u. In particular, θ-
palindromes are not in Cθ(1). In the next lemma we show that for an antimorphic
involution θ, the set Lθ

c(u) is a totally ordered set with respect to ≤θ
c .

Lemma 3. For an antimorphic involution θ and u ∈ Σ+, Lθ
c(u) is a totally

ordered set with ≤θ
c.

The proof technique of the following proposition is similar to that of Proposition
1 and hence we omit the proof.

Proposition 3. Let u, v ∈ Σ+ such that u θ-commutes with v, i.e., uv = θ(v)u.

1. If θ is an antimorphic involution then u = x(yx)i, v = yx where i ≥ 0
(Figure 3 (a), or (b)) and u (Figure 3, (c)) as well as x, y are θ-palindromes,
where x ∈ Σ+, y ∈ Σ∗.

2. If θ is a morphic involution then u = x(yx)i and v = yx where yx = θ(x)θ(y)
and i ≥ 0 with y ∈ Σ∗ and x ∈ Σ+.

It was shown in [15] that when u = xy such that x, y ∈ Pθ and for an antimorphic
involution θ, u can be written as (αβ)n with x = (αβ)iα and y = β(αβ)n−i−1 .
The authors also proved that for u = xy = θ(y)θ(x) for a morphic involution θ,
either u = αm for α ∈ Pθ or u = [αθ(α)]n for some α ∈ Σ+. We use these results
and Proposition 3 to deduce the following corollary.

Corollary 3. Let u, v ∈ Σ+ such that u θ-commutes with v.

1. If θ is a morphic involution then one of the following hold:
(a) u = αm and v = αn for some m, n ≥ 1, α ∈ Pθ.
(b) u = θ(α)[αθ(α)]m and v = [αθ(α)]n for some n ≥ 1 and k ≥ 0 with

α ∈ Σ+.
2. If θ is an antimorphic involution, u = β(αβ)n and v = (αβ)m for some

α, β ∈ Pθ with m ≥ 1 and n ≥ 0.

Based on the definitions and the previous two results we have the following
observation.

Lemma 4. Let w ∈ Σ+ and θ be an antimorphic involution. Then w is a θ-
palindrome iff there exists v ∈ Σ∗ such that v �= w and v ≤θ

c w.

Note that Lemma 4 states that, for an antimorphic involution θ, a word w ∈
Cθ(1) iff w is not a θ-palindrome, i.e., the set L = Σ∗ \ Cθ(1) is the set of all
θ-palindromes.

Note that for a word w which is not a θ-palindrome for an antimorphic in-
volution θ, Lθ

c(w) may be an emptyset. For example, let Σ = {a, b}, and θ be
an antimorphic involution that maps a to b and vice versa. Let w = ababa, then
θ(w) = babab. Clearly w �= θ(w). Note that

– w = abab · a �= θ(a) · abab = babab.
– w = aba · ba �= θ(ba) · aba = baaba.



Watson-Crick Conjugate and Commutative Words 281

– w = ab · aba �= θ(aba) · ab = babab.
– w = a · baba �= θ(baba) · a = babaa.

Thus it is clear that for w = ababa there does not exist a v ∈ Σ∗ such that
w = vx = θ(x)v and thus Lθ

c(w) = ∅.

Lemma 5. Let θ be either a morphic or an antimorphic involution. For all
u ∈ Σ+, θ(Lθ

c(u)) = Lθ
c(θ(u)).

Lemma 6. Let θ be either a morphic or an antimorphic involution. Then for
all u ∈ Cθ(1) we have u+ ⊆ Cθ(1).

It is shown in [14], that if u and v are θ-unbordered for an antimorphic involution
θ, then for u = u1u2 such that u1, u2 ∈ Σ+, u1vu2 is also θ-unbordered. But it
is not true for words in Cθ(1). We illustrate it in the following example.

Example 5. Let Σ = {a, b} and let θ be an antimorphic involution that maps a
to b and vice versa. Note that u = abb ∈ Cθ(1) since u �= θ(u) and ab · b �= a · ab
and a · bb �= aa · a. Let v = a and v ∈ Cθ(1) since v �= θ(v). But u1vu2 with
u1, u2 ∈ Σ+ is either a ·a · bb or ab ·a · b. Note that both aabb, abab /∈ Cθ(1) since
aabb = θ(aabb) and abab = θ(abab).

Proposition 4. Let u, v ∈ Cθ(1) and θ(Pref(u))∩ Suff(v) = ∅.
1. If θ is an antimorphic involution then uv ∈ Cθ(1).
2. If θ is a morphic involution then uv is not necessarily in Cθ(1).

Proof. 1. Let θ be an antimorphic involution. Suppose for some u, v ∈ Cθ(1),
uv /∈ Cθ(1) then there exists α ∈ Σ+ such that uv = pα = θ(α)p. Then
we have the following cases. If |α| ≤ |v| and |θ(α)| ≤ |u|, we have v = rα
and u = θ(α)s then α ∈ θ(Pref(u))∩Suff(v) a contradiction. If |α| ≤ |v|
and |θ(α)| ≤ |uv| we have v = rα and θ(α) = us then α = θ(s)θ(u) and
v = rθ(s)θ(u) for some r, s ∈ Σ∗ which implies θ(u) ∈ θ(Pref(u))∩ Suff(v)
which is a contradiction. If |α| ≤ |uv| and |θ(α)| ≤ |u| we have α = rv and
u = θ(α)s then u = θ(v)θ(r)s for some r, s ∈ Σ∗ which implies θ(v) ∈ Pref(u)
and hence v ∈ θ(Pref(u))∩ Suff(v) which is a contradiction. If |α| ≤ |uv| and
|θ(α)| ≤ |uv| we have α = rv and θ(α) = us then α = rv = θ(s)θ(u). Then
we have the following subcases:
– If |v| = |u| then θ(u) = v.
– If |u| < |v| then v = βθ(u) for some β ∈ Σ+ and θ(u) ∈ θ(Pref(u))∩

Suff(v).
– If |v| < |u| then θ(u) = βv for some c ∈ Σ+ and θ(u2)θ(u1) = βv with

u = u1u2 and |u1| = |v| which implies θ(u1) ∈ θ(Pref(u))∩ Suff(v).
All the above cases arrive at a contradiction. Hence uv ∈ Cθ(1).

2. Let u = ab and v = a over the alphabet set Σ = {a, b} and let θ be a morphic
involution that maps a to b and vice versa. Then θ(u) = ba and θ(v) = b.
Note that u, v ∈ Cθ(1). Also Pref(u) = {a, ab} , θ(Pref(u)) = {b, ba} and
Suff(v) = {a}. Note that θ(Pref(u))∩ Suff(v) = ∅. But uv = aba /∈ Cθ(1)
since a · ba = θ(ba) · a = aba which implies that a ∈ Lθ

c(uv).
�	



282 L. Kari and K. Mahalingam

Note that the converse of the statement 1 in Proposition 4 does not hold in
general. Let Σ = {a, b} and θ be an antimorphic involution that maps a to b
and vice versa. Let u = aba and v = abb. Then θ(u) = bab and θ(v) = aab. Note
that u �= θ(u) and v �= θ(v) and u, v ∈ Cθ(1). For uv = abaabb, θ(uv) = aabbab
and

– abaab · b �= θ(b) · abaab = aabaab.
– abaa · bb �= θ(bb) · abaa = aaabaa.
– aba · abb �= θ(abb) · aba = aababa.
– ab · aabb �= θ(aabb) · ab = aabbab.
– a · baabb �= θ(baabb) · a = aabbaa.

Hence uv ∈ Cθ(1). But Pref(u) = {a, ab, aba}, Suff(v) = {b, bb, abb} and
θ(Pref(u)) = {b, ab, bab}. Thus b ∈ θ(Pref(u))∩ Suff(v) �= ∅.

Lemma 7. Let θ be either a morphic involution or an antimorphic involution
and let Σ be such that for all a ∈ Σ, θ(a) �= a. Then Dθ(1) ⊆ Cθ(1).

In [14], it was shown that for an antimorphic involution θ, the set of all θ-
bordered words is regular. Note that from Lemma 4, Cθ(1) is the set of all non
θ-palindromes for an antimorphic involution θ. We show using pumping lemma
for regular languages that Σ∗\Cθ(1) is not regular and hence Cθ(1) is not regular
for an antimorphic involution θ.

Lemma 8. When θ is an antimorphic involution, the set of all θ-palindrome
words is not regular.

Proof. Let Σ = {a, b} and let θ be an antimorphic involution that maps a �→ b
and viceversa. Assume that the language L of all θ-palindromes is regular and
let n be the constant given by the pumping lemma. Chose w = anbn and note
that w = θ(w) and hence w is a θ-palindrome. Let w = anbn = xvy such that
|xv| ≤ n and |v| > 0. Then z = xviy contains more a’s than b’s for all i and
hence z is not a θ-palindrome. Thus L = Σ∗ \ Cθ(1) is not regular. �	
In our last proposition we construct a context-free grammar that generates the set
of all θ-palindromes over a finite alphabet set for an antimorphic involution θ.

Proposition 5. For an antimorphic involution θ, the set L = Σ∗ \ Cθ(1) is
context-free.

Proof. Let Σ be a finite alphabet set and let G = ({X, Y }, Σ, X, R) where
R = {X → λ, Y → λ, X → aiXθ(ai) for all ai ∈ Σ and X → biY , Y → biY for
all bi ∈ Σ such that bi = θ(bi) }. It is easy to check that G generates the set of
all θ-palindromes over Σ and G is context-free. Hence L(G) = Σ∗ \ Cθ(1). �	
It is shown in Proposition 5.4 in [14] that for a morphic involution θ, the set of
all θ-bordered words is not context-free. It is also clear from Proposition 5.4 in
[14] that L = Σ∗ \ Cθ(1) is not context-free when θ is a morphic involution.

Acknowledgment. Research supported by NSERC and Canada Research Chair
grants for Lila Kari.



Watson-Crick Conjugate and Commutative Words 283

References

1. Adleman, L.: Towards a mathematical theory of self-assembly. Technical Report
00-722, Department of Computer Science, University of Southern California (2000)

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Orlando Florida (1985)
3. Blanchet-Sadri, F., Luhman, D.: Conjugacy on partial words. Theoretical Com-

puter Science 289, 297–312 (2002)
4. Boyer, R., Moore, J.: A fast string searching algorithm. Communication of the

ACM 20, 762–772 (1977)
5. Crochemore, M., Perrin, D.: Two-way string matching. Journal of Association of

Computing Machinery 38, 651–675 (1991)
6. Crochmore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)
7. Crochmore, M., Mignosi, F., Restivo, A., Salemi, S.: Text compression using an-

tidictionaries. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 261–270. Springer, Heidelberg (1999)

8. Daley, M., McQuillan, I.: On computational properties of template-guided DNA
recombination. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS,
vol. 3892, pp. 27–37. Springer, Heidelberg (2006)

9. de Luca, A., de Luca, A.: Pseudopalindrome closure operators in free monoids.
Theoretical Computer Science 362, 282–300 (2006)

10. Domaratzki, M.: Hairpin structures defined by DNA trajectories. In: Mao, C.,
Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 182–194. Springer,
Heidelberg (2006)

11. Garzon, M., Phan, V., Roy, S., Neel, A.: In search of optimal codes for DNA
computing. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287,
pp. 143–156. Springer, Heidelberg (2006)

12. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Informatica 40, 119–157 (2003)

13. Kari, L., Konstantinidis, S., Losseva, E., Sosik, P., Thierrin, G.: Hairpin struc-
tures in DNA words. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS,
vol. 3892, pp. 158–170. Springer, Heidelberg (2006)

14. Kari, L., Mahalingam, K.: Involution bordered words. International Journal of
Foundations of Computer Science (accepted, 2007)
http://www.csd.uwo.ca/∼lila/invbor.pdf

15. Kari, L., Mahalingam, K., Seki, S.: Language equations on Watson-Crick words,
manuscript

16. Lothaire, M.: Combinatorics of Words. Cambridge University Press, Cambridge
(1997)

17. Marathe, A., Condon, A., Corn, R.: On combinatorial DNA word design. In: Win-
free, E., Gifford, D. (eds.) Proc. of DNA Based Computers 5, DIMACS Series in
Discrete Math. and Theoretical Comp. Sci. pp. 75–89 (1999)

18. Margaritis, D., Skiena, S.: Reconstructing strings from substrings in rounds. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pp. 613–620 (1995)

19. Shyr, H.J.: Free Monoids and Languages. Hon Min Book Company (2001)
20. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled

patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892,
pp. 305–324. Springer, Heidelberg (2006)

21. Storer, J.A.: Data Compression: Methods and Theory. Computer Science Press,
Rockville (1998)

22. Yu, S.S.: d-minimal languages. Discrete Applied Mathematics 89, 243–262 (1998)

http://www.csd.uwo.ca/~lila/invbor.pdf


DNA Coding Using the Subword Closure

Operation�

Bo Cui and Stavros Konstantinidis

Department of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada

bo.cui@smu.ca, s.konstantinidis@smu.ca

Abstract. We investigate the problem of encoding arbitrary data into
the words of a DNA language that is defined via the subword closure
operation, which appears to be useful in various situations related to
data encodings. We present a few theoretical results on the subword
closure operation as well as an initial implementation of a web-system
that computes DNA languages according to the user’s parameters, and
performs encodings of data into these languages.

1 Introduction

A language L is any set of words over some alphabet Σ. The prime example of
alphabet in this paper is the DNA alphabet {a, c, g, t}. A subword of L is any
word that occurs in some word of L; that is, u is a subword of L if there is a word
of the form xuy in L. The expression Subk(L) denotes the set of all subwords of
L of length k. We are interested in languages L whose subwords of length k, for
some fixed parameter k, satisfy some desirable constraint. This topic is motivated
by various questions related to DNA codes and combinatorial channels. Here we
present a few theoretical results on the subword closure operation as well as an
initial implementation of a web-system that computes DNA languages according
to the user’s parameters, and performs encodings of data into these languages.

Definition 1. A subword constraint is any nonempty set S of words of length k,
for some fixed k ≥ 1. We say that a language L satisfies the subword constraint
S if every subword of L of length k belongs to S; that is, Subk(L) ⊆ S.

The symbols Σ∗, Σm, Σ≥m denote, respectively, the sets of all words; all words of
length m; and all words of length at least m. In [10], a particular type of subword
constraint was used to model bond-free DNA languages (see further below in this
section), and the study of this constraint led to the technical concept of subword
closure operation ⊗: S⊗ = {w ∈ Σ∗ : Subk(w) ⊆ S} Thus, S⊗ is the language
of all words w such that every subword of w of length k belongs to S.

We list now a few examples to demonstrate that the concepts of subword
constraint and subword closure operation are interesting objects of study.
� Research supported by NSERC.

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 284–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



DNA Coding Using the Subword Closure Operation 285

In [6], a language L is called a θ-k-code, where θ is an involution, if θ(x) �= y
for any subwords x, y in Subk(L). The relationship θ(x) = y indicates that the
molecules corresponding to x and y can form chemical bonds between them. The
θ-k-code property is meant to ensure that DNA strands cannot form unwanted
hybridizations during DNA computations, and has been tested successfully in
practice [12]. In [10], the concept of θ-k-code is extended to the Hamming bond-
free property: H(θ(x), y) > d for any subwords x, y in Subk(L), where H is
the Hamming distance function between words. When d = 0 the Hamming
bond-free property coincides with the θ-k-code property. Obviously, if a language
L is Hamming bond-free then L ⊆ S⊗, for some subword constraint S with
H(θ(u), v) > d for all u, v in S.

The gc-ratio of words that represent DNA molecules is an important parame-
ter related to the melting temperature of these molecules [11]. Let S be the set
of all DNA words of length k such that the ratio of g and c’s over k is about
50%. Then a language L has a gc-ratio of about 50% for subwords of length k,
if it satisfies the subword constraint S.

Another example where the subword constraint and operation are relevant is
when describing a combinatorial channel [9] via a set of edit strings. There are
probably other situations where the subword constraint and closure concepts
might be useful.

We note that there are other methods and systems available addressing prob-
lems related to DNA coding – see for instance [14,11,13]. However, these ap-
proaches are not comparable to ours as they address different DNA properties
(other than the bond-free property discussed here), or they do not address the
general encoding problem for arbitrary subword constraints.

The paper is organized as follows. The next section presents some theoretical
results on the subword closure S⊗. In Section 3, we propose a method of encoding
arbitrary data words into the words of such a language L. The method is designed
for any S independently of the application. Section 4 contains simple algorithms
and heuristics for the method of Section 3. Finally, Section 5 gives some details
of a web-system that implements certain aspects of the method of Section 3.

2 Some Results on the Subword Closure Operation

The density of a language L is the function that returns, for each nonnegative
integer n, the number of words in L of length n [15]. We use the expression |L(n)|
for the density value on n. This quantity is related to the efficiency (in terms
of information capacity) of the language when it is used for encoding data. The
next result provides an exact formula for the density of the language S⊗ for any
subword constraint S.

Theorem 1. For any subword constraint S of some length k, the density func-
tion |S⊗(l)|, for l > k, is given by the following recursive formula

|S⊗(l)| =
∑

a∈Σ,v1a∈Sufk−1(S)

∑
b∈Σv1a

|S⊗
bv1

(l − 1)|,



286 B. Cui and S. Konstantinidis

where Σv = {b ∈ Σ : bv ∈ S} and S⊗
v (l) is the set of all words in S⊗ of length l

that end with v, for any word v of length k − 1.

In many cases, a language is required to satisfy a certain type of subword con-
straint as opposed to a particular constraint S. For example, if a language L
should be Hamming bond-free for some parameters d, k, there are many differ-
ent choices for the subword constraint S such that L ⊆ S⊗. The next result
(Theorem 2) characterizes languages that are maximal with respect to a set of
constraints: Let k be a positive integer. A k-subword property Pk is a set of sub-
word constraints of length k such that, if S ∈ Pk, then S′ ∈ Pk for any subset
S′ of S. A language L is maximal with respect to Pk if L satisfies a subword
constraint in Pk and there is no language L′ that satisfies a subword constraint
in Pk and properly contains L.

The next result uses the ordinary concept of maximality: a maximal set of Pk

is any set S in Pk which is not a proper subset of another set in Pk.

Theorem 2. Let Pk be a k-subword property. The set of all languages that are
maximal with respect to Pk is equal to {S⊗ : S is a maximal set of Pk}.

It is interesting to note that in [10] a specific instance of the above result was
obtained for the case of Hamming bond-free languages using a longer proof.

3 Encoding Data into S⊗

In this section we propose a method of encoding words of Σ∗ into the language
S⊗, where S is a subword constraint of some length k. In [10] it is shown that,
given a trie T accepting the set S, we can construct a deterministic finite au-
tomaton trie(S)⊗ accepting S⊗ whose number of states is equal to the number
of states in T . However, it is not clear how one, in general, can encode arbitrary
words into S⊗ using the automaton trie(S)⊗. The approach we take here is as
follows. We define a subset B(l) of S⊗ whose words are of some fixed length
l ≥ k such that B(l)∗ ⊆ S⊗, that is, if we concatenate zero or more words of
B(l), the resulting word is in S⊗ – hence, it satisfies the subword constraint
S. In practice, the cardinality |B(l)| of B(l) should be sufficiently small so that
B(l) can fit into a look-up memory table. Let m be the smallest positive integer
such that |Σ|m ≤ |B(l)|, that is, m = �log|Σ| |B(l)|	. Then we can define any
injective mapping enc : Σm → B(l), and we can encode any arbitrary word
of the form w1 · · ·wn, with each wi ∈ Σm, as enc(w1) · · · enc(wn) in S⊗. Con-
versely, the encoded word can be decoded uniquely as w1 · · · wn. The encoding
and decoding processes can be done via the look-up table that implements the
mapping enc.

Theorem 3. Let S be a subword constraint of some length k. Consider the
following non-deterministic method: (1) Pick a nonempty subset Se of S. (2)
Let Sb = ∩u∈SeSb(u), where Sb(u) = {z ∈ S : uz ∈ S⊗}, for any word u. (3)
Let B = S⊗ ∩ SbΣ∗ ∩ Σ∗Se; that is, B consists of all words in S⊗ that begin
with a word in Sb and end with a word in Se. (4) Define, for any l ≥ k, the set
B(l) = B ∩ Σl. The following statements hold true.



DNA Coding Using the Subword Closure Operation 287

1. The catenation closure of B is a subset of S⊗; that is, B∗ ⊆ S⊗.
2. There is l ≥ k such that B(l) is nonempty if and only if S⊗ is infinite.
3. If the automaton trie(S)⊗ has a pair of 2-way communicating cycles (see the

Appendix) then the set B(l) can be chosen to be arbitrarily large.

The above method would work in practice if the set B(l) contains at least two ele-
ments – in this case it is not difficult to see that, for any n, there is an ln such that
B(ln) contains at least n elements. As stated above, a sufficient condition is that
trie(S)⊗ has a pair of 2-way communicating cycles. We conjecture that no such set
B(l) can be found when there is no pair of 2-way communicating cycles.

4 The Method of Theorem 3

The method of Theorem 3 is nondeterministic and depends on the choice of the
initial subset Se of S, which must be nonempty. Clearly there are 2|S|−1 choices.
A good choice would be one that produces a large set B(l). Intuitively, when
Se is chosen to be large then Sb will be small and vice versa. However, it is not
obvious how one can address mathematically this tradeoff. Our experimentation
suggests that the following two guidelines are usually helpful: (i) If we pick a
word u to be in Se then we should also pick from S words whose suffix of length
k − 1 is equal to the suffix of u of length k − 1. (ii) List all the sets Sb(u) in
decreasing order of cardinality, say Sb(u1), . . . , Sb(un). Pick words in Se such
that, for these words, the corresponding sets are listed continuously, i.e., as in
Sb(ui), . . . , Sb(ui+t).

With these guidelines, we have a few choices for Se. For each choice, we can
calculate the size of B(l) and pick the choice with the largest size of B(l). Ta-
ble 1 shows an example using S = {aaa, caa, gaa, aca, cca, gca, aga, cga, gga, aac,
cac, aag}. Note that Choice 6 does not follow the second guideline, so the size
of B(10) for this choice is much smaller than the other choices.

5 Implemented System

In this section we describe our progress to the design and implementation of
a web system for generating languages satisfying arbitrary subword constraints
according to the method of Theorem 3. The system also allows one to enter
an arbitrary data word over the DNA alphabet or the keyboard alphabet, and
returns the encoded DNA word that satisfies the given subword constraints.
Although the system is intended to work for arbitrary subword constraints, the
examples in this paper are related to DNA-related constraints. The web interface
can be found at http://cs.smu.ca/~b cui/DNA13/ Currently the system is
designed for fast response time and, therefore, it accepts only small values of k
– the length of the subword constraint. The implementation language is C++
including libraries of the Grail project for finite state machines [4]. The flow of
control of the system is given in Figure 1. A user can enter the subword constraint
S via a text file, or via a special interface for the case of DNA constraints. The



288 B. Cui and S. Konstantinidis

Table 1. Comparison of the sizes of a few B(10)’s arising from different choices of Se’s

Choices Se Sb B(10)

Choice 1 {aaa, caa, gaa, aca, cca, gca, {aaa, aac, aag} 150
aga, cga, gga, aac, cac, aag}

Choice 2 {aaa, caa, gaa, aca, cca, gca, {aaa, aca, aac, aag} 180
aga, cga, gga, aac, cac}

Choice 3 {aaa, caa, gaa, aca, cca, {aaa, aca, aga, aac, aag} 150
gca, aga, cga, gga}

Choice 4 {aaa, caa, gaa, aca, cca, gca} {aaa, caa, aca, aga, 180
aac, aag, cac}

Choice 5 {aaa, caa, gaa} {aaa, caa, gaa, aca, 150
aga, aac, aag, cac}

Choice 6� {aaa, caa, gaa, aga, cga, gga} {aaa, aca, aga, aac, aag} 111

Enter number of needed blocks (codewords) : N

Enter subword constraint S of some length k 

Generate a few sets Se and pick one using the 

two guidelines of Section 4.4 

Based on the chosen Se, compute Sb and an 

automaton for the set B 

Decide if there is an  l  such that  |B(l)|>N. In this 

case, output the blocks of B(l) and the automaton

accepting B(l). 

Fig. 1. The flow chart of the system

choice of l is based on Theorem 1. If the system decides that no set B(l) exists for
the given parameters, this simply means that the heuristic guidelines of Section 5
did not work. We refer the reader to [2] for further details on the system.

Appendix

For a deterministic automaton A, [p1, v1, . . . , pn, vn, pn+1] denotes the path that
starts at state p1, forms the word v1 between the states p1 and p2, then the



DNA Coding Using the Subword Closure Operation 289

word v2 between the states p2 and p3, etc. When pn+1 = p1 then the path is
called a cycle. Two cycles [p1, v1, p1] and [p2, v2, p2] are called equivalent if they
can be written in the form [p1, x1, p2, x2, p1] and [p2, x2, p1, x1, p2], respectively.
The automaton A is said to have a pair of communicating cycles, if there are
two non-equivalent cycles [p1, v1, p1] and [p2, v2, p2] in A such that there is a
path of the form [p1, u1, p2]. The pair of communicating cycles is called 2-way
communicating if, in addition, there is a path in A of the form [p2, u2, p1].

References

1. Chen, J., Reif, J.H. (eds.): DNA Computing. LNCS, vol. 2943. Springer, Heidelberg
(2004)

2. Cui, B.: Encoding methods for DNA languages. MSc Thesis, Dept. Math. and
Computing Science, Saint Mary’s University, Halifax, Canada (2007)

3. Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA Computing. LNCS, vol. 3384, pp.
7–10. Springer, Heidelberg (2005)

4. Grail+: Department of Computer Science. University of Western Ontario, London,
Canada. http://www.csd.uwo.ca/Research/grail/

5. Hagiya, M., Ohuchi, A. (eds.): DNA Computing. LNCS, vol. 2568. Springer, Hei-
delberg (2003)

6. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: [1], 58–68.
7. Jonoska, N., Seeman, N.C. (eds.): DNA Computing. LNCS, vol. 2340. Springer,

Heidelberg (2002)
8. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions and DNA encoding. In: Brauer,

W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002)

9. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal
of Automata, Languages and Combinatorics 9(2/3), 293–309 (2004)

10. Kari, L., Konstantinidis, S., Sośı, k.P.: Bond-free languages: formalizations, max-
imality and construction methods. Intern. Journal of Foundations of Computer
Science 16(5), 1039–1070 (2005) (Conference version in [3], 169–181)

11. Kobayashi, S., Kondo, T., Arita, M.: On template method for DNA sequence de-
sign. In: [5], pp. 205–214

12. Mahalingam, K.: Involution codes: With application to DNA strand design. PhD
Thesis, Dept. Mathematics, University of South Florida, Florida, USA (2004)

13. Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: [1],
pp. 37–46

14. Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Developing
support system for sequence design in DNA computing. In: [7], pp. 129–137

15. Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Berlin (1997)

http://www.csd.uwo.ca/Research/grail/


Author Index

Alhazov, Artiom 36
Alonso, Santiago 211
Arroyo, Fernando 211

Bishop, Morgan 201
Brun, Yuriy 26
Burns, Daniel 201

Cavaliere, Matteo 246
Cui, Bo 284

D’yachkov, Arkadii 146
DeLorbe, William 236
Demaine, Erik D. 1
Demaine, Martin L. 1
Domaratzki, Michael 263

Egecioglu, Omer 246

Fekete, Sándor P. 1
Fernández, Lúıs 211
Frasch, Wayne D. 152
Fujii, Teruo 182

Gal, Susannah 161
Garćıa-Arnau, Marc 221
Goel, Ashish 46
Goode, Elizabeth 236
Gutiérrez, Abraham 211

Hagiya, Masami 79, 109
Hirabayashi, Miki 89
Hirayama, Noriko 191

Ibarra, Oscar H. 246
Iimura, Naoki 140
Ionescu, Mihai 246
Ishaque, Mashhood 1

Johnson, Clifford R. 170

Kameda, Atsushi 109
Kaneda, Shohei 182
Kari, Lila 273
Kashiwamura, Satoshi 99, 109

Kawashimo, Suguru 130
Kiga, Daisuke 54
Kitajima, Tetsuro 119
Komiya, Ken 54, 191
Konstantinidis, Stavros 284
Kubo, Tai 89

LaBean, Thomas H. 15

Macula, Anthony 146
Mahalingam, Kalpana 273
Majumder, Urmi 15
Manca, Vincenzo 231
Manrique, Daniel 221
Moisset de Espanés, Pablo 46
Mukre, Prakash 201
Murata, Satoshi 182

Nagy, Benedek 256
Nishikawa, Akio 79

Ohashi, Hirotada 89
Ohtake, Kazumasa 79
Ohuchi, Azuma 99, 109, 140
Ono, Hirotaka 130

Pagano, Angela M. 161
Păun, Gheorghe 246
Petre, Ion 36

Qiu, Qinru 201

Rafalin, Eynat 1
Reif, John H. 15, 66
Rodŕıguez-Patón, Alfonso 221
Rogojin, Vladimir 36
Rykov, Vyacheslav 146

Sadakane, Kunihiko 130
Sahu, Sudheer 66
Schweller, Robert T. 1
Sekiguchi, Hiroyuki 54
Shohda, Ko-ichiroh 119
Somei, Kotaro 182
Sośık, Petr 221
Souvaine, Diane L. 1
Spetzler, David 152
Suyama, Akira 119



292 Author Index

Takinoue, Masahiro 119
Tanaka, Fumiaki 140

Ufimtsev, Vladimir 146

Woodworth, Sara 246
Wu, Qing 201

Xiong, Fusheng 152

Yaegashi, Satsuki 79

Yamamoto, Masahito 99, 109, 140

Yamamura, Masayuki 54, 191

Yamashita, Masafumi 130


	Title Page
	Preface
	Organization
	Table of Contents
	Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues
	Introduction
	The Staged Assembly Model
	Assembly of $1 \times n$ Lines
	Assembly of $n \times n$ Squares
	Jigsaw Technique
	Crazy Mixing

	Assembly of General Shapes
	Spanning-Tree Technique
	Scale Factor 2
	Simulation of One-Stage Assembly with Logarithmic Scale Factor

	Future Directions

	Activatable Tiles: Compact, Robust Programmable Assembly and Other Applications
	Introduction
	The Activatable Tile Assembly Models
	The Abstract Activatable Tile Assembly Model (aATAM)
	The Kinetic Activatable Tile Assembly Model (kATAM)

	Compact Proofreading with Activatable Tiles
	DNA Design of One Dimensional Activatable Tiles
	Other Applications of Activatable Tiles
	Conclusion

	Constant-Size Tileset for Solving an NP-Complete Problem in Nondeterministic Linear Time
	Introduction
	Tile Assembly Model

	Solving SubsetSum
	Subtraction
	Identity
	Nondeterministic Guess
	Deciding $SubsetSum$

	Software Systems
	Contributions

	Solutions to Computational Problems Through Gene Assembly
	Introduction
	Definitions
	Gene Assembly
	Computing Through Gene Assembly
	Computing Using \mathsf{ld} Only
	Computing Using \mathsf{hi} Only
	Computing Using \mathsf{dlad} Only
	Discussion

	Toward Minimum Size Self-Assembled Counters
	Introduction
	Definitions
	A Counter of Size 7
	Results and Proof Outlines
	Open Problems

	A Realization of DNA Molecular Machine That Walks Autonomously by Using a Restriction Enzyme
	Introduction
	A Molecular Walking Machine
	Mechanism How the Molecular Machine Walks
	Function of Cleaving ssDNA Stators

	Experiment
	Activity of N.Alw I
	Half Step of the Molecular Walking Machine

	Discussion
	Conclusion
	References

	Autonomous Programmable Nanorobotic Devices Using DNAzymes
	Introduction
	Prior Autonomous Molecular Computing Devices
	Our Main Contribution
	DNA Nanomechanical Devices
	Overview of This Paper and Results

	DNAzyme FSA: DNAzyme Based Finite State Automata
	Encoding the Input Symbols
	Active Input Symbol
	States and Transitions
	Description of State Transition
	Complete State Machine
	Non-deterministic and Probabilistic DNAzyme FSA

	DNAzyme Doctor: A Molecular Computer for Logical Control of RNA Expression Using DNAzyme
	DNAzyme Router
	Conclusion

	Multi-fueled Approach to DNA Nano-Robotics
	Introduction
	Materials and Methods
	Materials
	Selection of Fluorescent Groups and Buffers
	Methods

	Results
	Discussion
	Concluding Remarks
	References

	Experimental Validation of the Transcription-Based Diagnostic Automata with Quantitative Control by Programmed Molecules
	Introduction
	Materials and Methods
	Preparation of Oligonucleotides
	Instrumental
	Diagnostic Computations

	Results
	Sensitivity and Selectivity
	Quantitative Stability and Scalability

	Discussion
	References

	DNA Memory with 16.8M Addresses
	Introduction
	Nested Primer Molecular Memory
	Construction and Addressing of 16.8M-NPMM
	Construction of 16.8M-NPMM
	Addressing from 16.8M-NPMM

	Theoretical Analysis of Capacity Limitation
	Model of the Addressing of NPMM
	Computational Result

	Concluding Remarks

	Combining Randomness and a High-Capacity DNA Memory
	Introduction
	NPMM
	DNA Ink
	DNA Ink Constructed by Inducing Randomness at the Molecular Level
	Preliminary Experiment
	Concluding Remark

	Design of Code Words for DNA Computers and Nanostructures with Consideration of Hybridization Kinetics
	Introduction
	Materials and Methods
	DNA Sequences
	DNA Hybridization
	Determination of Hybridization Rates
	Secondary Structure Prediction

	Results and Discussion
	Hybridization Rates of Orthonormal DNA Sequences
	Hybridization Rates and the Stability of Self-folded Secondary Structures
	Hybridization Rates and the Nucleation Capability of Self-folded Structures
	Prediction of Orthonormal DNA Sequences Rapidly Hybridizing with Complementary Strands

	Conclusion

	Dynamic Neighborhood Searches for Thermodynamically Designing DNA Sequence
	Introduction
	Related Work

	Preliminaries
	Definitions and MFE Constraints
	Local Search, Neighborhood and Objective Functions

	Techniques to Reduce MFE Evaluations
	Effective Neighborhood Search
	Efficient Evaluation of MFEs

	Computational Experiments
	Conclusion

	Sequence Design Support Systemfor 4 × 4 DNA Tiles
	Introduction
	Design Strategy
	Support System
	Analysis Module
	Optimization Module
	I/O Module

	Discussions and Concluding Remarks
	References

	DNA Codes Based on Stem Similarities Between DNA Sequences
	Introduction
	Notations, Definitions 
	Random Coding Bounds

	Heuristic Solution to a 10-City Asymmetric Traveling Salesman Problem Using Probabilistic DNA Computing
	Introduction
	Methods
	Results
	Conclusion
	References

	An Approach for Using Modified Nucleotides in Aqueous DNA Computing
	Introduction
	Materials and Methods
	Implementation and Results
	Step 1 of Implementation: Incorporation of Modified Nucleotides
	Step 2 of Implementation: Separation of Modified Nucleotides
	Step 3 of Implementation: Detection and Isolation of DNA with Modified Nucleotides

	Conclusions and Future Work
	References

	Modeling Non-specific Binding in Gel-Based DNA Computers
	Introduction
	The 3-CNF SAT Problem
	The Molecular Implementation of the 3-CNF SAT Problem
	The Physical Architectures
	The Mathematical Model
	Conclusion
	References

	Stepwise Assembly of DNA Tile on Surfaces
	Introduction
	Concept of Stepwise Self-assembly on Surfaces
	Pre-assembly of Nuclei and Their Anchoring on a Gold Surface
	2-Column DNA Lattice
	Anchoring of 2-Column Lattice

	Stepwise Self-assembly of DNA Tile on Surfaces
	Conclusion
	References

	An Interface for a Computing Model Using Methylation to Allow Precise Population Control by Quantitative Monitoring
	Introduction
	Methylation Computing
	Methylation-Based Aqueous Computing
	Interface for Quantification of Methylation

	Materials and Methods
	Preparation of a DNA Register
	Methylation Specific Amplification
	Quantification of Methylation

	Results
	Methylation Specific Amplification
	Quantification of Methylation

	Discussion

	Hardware Acceleration for Thermodynamic Constrained DNA Code Generation
	Introduction
	Calculation of NN Free Energy Using 2D Systolic Array
	Problem Formulation and Solution Technique
	Experimental Results and Discussions
	Conclusions
	References

	Hardware and Software Architecture for Implementing Membrane Systems: A Case of Study to Transition P Systems
	Introduction
	Hardware Prototype
	Processing Unit: PIC16F88 Microcontroller
	Storage Unit: 24LC1025 Eeprom
	Communication Bus: I2C Bus
	General Structure of the Circuit

	Software Architecture
	Data Structures
	Hardware Abstraction Layer (HAL)
	Membrane Basic Runtime Layer (MBRL)
	Membrane Implementation Layer (MIL)

	Implemented Transition P System
	Step by Step Algorithm
	Maximal Applicability Algorithm
	Elimination Rules Algorithm

	Hardware Testing
	Synchronization Test
	Programs Test
	Simulation Test
	Emulation Test: In Circuit Debugger

	Conclusions
	References

	Towards a Robust Biocomputing Solution of Intractable Problems
	Introduction
	Incremental Strategy in P Systems
	The Maximum Clique Problem and Related Work
	A P System with Replicated Rewriting and Inhibitors

	A Robust DNA Algorithm for the Maximum Clique Problem
	Comparison with Standard Approaches
	Conclusion
	References

	Discrete Simulations of Biochemical Dynamics
	Introduction
	Metabolic P Systems
	Metabolic Algorithms and Log-Gain Regulation

	DNA Splicing Systems An Ordinary Differential Equations Model and Simulation
	Introduction
	Cut-and-Paste Splicing
	The Example Splicing System
	The Ordinary Differential Equations Model
	Simulation Results and Discussion
	Suggestions for Questions

	Asynchronous Spiking Neural P Systems: Decidability and Undecidability
	Spiking Neural P Systems -- An Informal Presentation
	SN P Systems -- Formal Definitions
	Computational Completeness of General SN P Systems
	Characterization of Unbounded SN P Systems by Partially Blind Counter Machines
	Final Remarks

	On $5'longrightarrow3'$ Sensing Watson-Crick Finite Automata
	Introduction
	Preliminaries
	The $5'longrightarrow3'$ WK Automata
	The Sensing $5'longrightarrow3'$ WK Automata
	The Deterministic Sensing $5'longrightarrow3'$ WK Automata
	The Both-Head Stepping $5'longrightarrow3'$ sWK Automata
	The Full Reading $5'longrightarrow3'$ sWK Automata

	Comparison with Other Automata
	Summary and Concluding Remarks

	Equivalence in Template-Guided Recombination
	Introduction
	Preliminary Definitions
	Template-Guided Recombination

	Language Theoretic Characterization
	Decidability Results
	Conclusions

	Watson-Crick Conjugate and Commutative Words
	Introduction
	Watson-Crick Conjugate Words
	Watson-Crick Commutative Words

	DNA Coding Using the Subword Closure Operation
	Introduction
	Some Results on the Subword Closure Operation
	Encoding Data into $S^\otimes$
	The Method of Theorem 3
	Implemented System

	Author Index



