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Abstract. Intrusion Detection Systems (IDS) have been investigated
for many years and the field has matured. Nevertheless, there are still
important challenges, e.g., how an IDS can detect new and complex
distributed attacks. To tackle these problems, we propose a distributed
Reinforcement Learning (RL) approach in a hierarchical architecture of
network sensor agents. Each network sensor agent learns to interpret local
state observations, and communicates them to a central agent higher up
in the agent hierarchy. These central agents, in turn, learn to send signals
up the hierarchy, based on the signals that they receive. Finally, the agent
at the top of the hierarchy learns when to signal an intrusion alarm. We
evaluate our approach in an abstract network domain.

1 Introduction

As computer networks and information systems become more critical and com-
plex, researchers are looking for new techniques to protect these assets. In this
paper we present our work on the application of distributed reinforcement learn-
ing to allow cooperative network devices to identify and categorize faults, attacks
and in general, any abnormal state in the network. The use of heterogeneous
agents to detect distributed denial of service without central processing or man-
agement is an area with very little previous work. The number of studies that use
machine learning techniques to scale up the solution to inter-domain networks
or to adapt it to changes in traffic and attack behavior is scarce as well.

From a machine learning perspective, network intrusion and fault detection
provides challenging scenarios to test and develop new multi-agent reinforce-
ment learning techniques. To achieve reliable intrusion detection, RL will need
to deal with noisy inputs and large discrete or continuous state-action spaces.
We have chosen a hierarchical architecture of agents to provide a coordination
scheme and learning mechanisms using data from distributed sources. The paper
is structured as follows. In Section 2 we present a brief overview of the problem of
detecting and categorizing Distributed Denial of Service Attacks, a review of IDS
and point out some of the challenges these systems are still facing. The last part
of this section is an overview of Multi-Agent Reinforcment Learning (MARL)
and the problems that it faces as the number of agents and input information
grows. In Section 3 we explain our proposed technique and the assumptions
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that we made when designing it. In Section 4 we show some results obtained
from testing different architectures varying the number of agents, the number of
states per sensor agent, the exploration/exploitation strategy, the distribution
of attacks as input information and the agent architecture. Finally in Section 5
we point out our conclusions and an outlook to future work.

2 Background

In this section we introduce some concepts and terminology that provide the
background to our approach.

2.1 Denial of Service Attacks

Denial of Service (DoS) attacks are very common in today’s internet infrastruc-
ture. In a DoS, the attacker tries to exhaust key resources of the target to refuse
a service to the legitimate users. DoS can be performed directly to attack a
target or they can be an effect of other security problems such as the spreading
of self replicating code or worms. A more worrisome type of this threats is the
Distributed Denial of Service Attack (DDoS). DDoS are launched from several
sources attacking one target. The effect would depend on the number of sources,
the available bandwidth for each of them and the vulnerability that they are
exploiting.

Defenses against DoS and DDoS are complex to design due to several factors.
DoS are always accompanied by a heavy use of some kind of resource. If this
resource is not heavily used, it is easy to identify the threat comparing normal
to abnormal activity. DDoS use a distributed control with thousands of attack-
ers spreading all over the Internet. To accurately identify and stop them it is
necessary to coordinate several entities along the path of the DoS attack [10,20].
Under this assumption Mirkovic and Reiher [9] in their Taxonomy of DoS at-
tacks and defenses state: ”the need for a distributed response at many points on
the Internet”.

2.2 Intrusion Detection Systems

Intrusion Detection Systems are just one part of the whole collection of tech-
nologies and processes needed to protect computer networks and information
systems from intruders and attacks. In combination with firewalls, IDSs are the
first line of defense in many computer networks. An IDS monitors hosts or net-
works searching for abnormal or non-authorized activity. When they find attack
activity, they record the event and they may perform defensive actions. There
are two basic types of IDS: anomaly intrusion detection and misuse/signature
intrusion detection. Anomaly IDS uses different methods to detect abnormal ac-
tivity; they vary from simple statistical methods to more complex AI techniques.
Misuse or signature intrusion detection system use rule matching to detect intru-
sions. These IDSs compare system activity with specific intrusion rules that are
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generally hard coded. When the observed activity matches the intrusion pattern
an intrusion is detected.

Because Anomaly IDSs compare current activity with a model of normal be-
havior they can detect unknown attacks when the network state is deviating
from normal activity. However, non-malicious activity that does not match nor-
mal behavior can also trigger the intrusion mechanism. This results in a high
rate of false positives or false alarms in anomaly IDSs. On the other hand,
misuse-signature IDS are very reliable and they have low rates of false positives.
Nevertheless, they lack the ability to detect new types of attacks. Other dimen-
sions along which IDSs can be categorized are the type of response to detected
intrusions (passive or active), the type of data-processing and the data-collection
(centralized or distributed), and the source of the audit data (host or network).

As computer networks become more complex systems and threats on them are
reaching global magnitudes researchers are looking for novel approaches to adapt
IDS to these new needs. Some authors [2,3,11,16,19] point out that the use of a
rich diversity of sensor information may achieve the development of more reli-
able IDS. The rationale behind this is that sensor variety is needed because each
sensor perceives different information depending on its capabilities, its function
and where it is deployed in the network. The amount of information required
to infer malicious activity using distributed heterogeneous sensor architectures
would overwhelm any human network manager and automatic processing be-
comes necessary.

2.3 Reinforcement Learning

Our approach to intrusion and fault detection is based on RL, where each net-
work node is learning to send signals to other nodes in a network hierarchy.
Before describing the details of this approach, we briefly introduce the main RL
concepts.

In RL, agents or programs sense their environment in discrete time steps and
they map those inputs to local state information. RL agents execute actions and
observe the feedback from the environment or a trainer in the form of positive or
negative rewards. After performing an action and receiving a reward, the agent
observes any change in the environment and it updates its policy in order to opti-
mize the reward received for future actions [18]. There are different approaches to
calculate the optimal policy and to maximize the obtained reward over the time.
One of the most widely used techniques is Q-learning. In Q-learning as in other
Temporal-Difference-Learning methods the agent iteratively tries to estimate the
value function. To estimate the value function, Q-learning constructs a table (Q-
table) whose rows are states and columns are actions. The agent in each state s
chooses an action a, observes the reward r and the next state s′. Then it updates
the estimated Q-value denoted by Q̂ in Equation (1). In this equation α is the
learning rate with a value 0 < α < 1 and γ is a constant with value 0 < γ < 1
that represents the relative value of delayed versus immediate rewards.

Q̂(s, a) ← (1 − α)Q̂(s, a) + α(r + γ maxa Q̂(s′, a′)) (1)
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The exploration/exploitation problem is a specific challenge that is present in
reinforcement learning algorithms. To obtain the best reward, the agent tends to
prefer actions that have been proved to provide high rewards. In order to discover
these actions the agent needs to try actions that have not been tested. We say
that the agent exploits actions that lead to better expected rewards but also it
needs to explore other actions that may lead it to better rewards in the future
[18]. In order to converge to the optimal policy, the agent needs to explore and to
exploit actions. One simple solution is to use a random strategy. While in theory
this strategy guarantees convergence; in practice it is very slow. A more subtle
alternative is to let the agent explore actions in the beginning of the learning and
progressively start choosing those actions that prove to lead to better expected
rewards. ε-greedy and Boltzmann use this alternative. ε-greedy is a semi-uniform
random exploration strategy; it uses a small value as a base probability to choose
an action. The downside of e-greedy is that it chooses among all the actions with
the same probability. To address this problem Boltzmann strategy, also called
softmax action selection rules, weights each action with a probability according
to their expected value using the given equation Equation.2:

P (a) =
eQ(s,an)/T

∑i
0 eQ(s,ai)/T

(2)

T is a positive number called temperature. Under high values of temperature
the action selection tends to choose equally between all actions. Low values of
temperature favor actions with high expected values. In practice to speed up
convergence, the value of the temperature is decreased exponentially.

Reinforcement Learning has been adopted to solve problems where on-line
learning is needed and where the construction of a model is difficult or not pos-
sible. For more complex problems involving the interaction of several agents,
RL becomes an appealing yet challenging alternative due to several factors. The
curse of dimensionality that affects standalone RL and other machine techniques
has an even bigger effect in MARL, as the number of agents and states increase
and it becomes difficult to scale these systems to a large number of agents. Dif-
ferent approaches from function approximation techniques [8,17] to hierarchical
reinforcement learning [1,5] have been proposed to scale MARL to large number
of agents.

Some of the main issues surrounding MARL are:

1. In single agent RL, agents need to adapt their behavior in accordance with
their own actions and how they change the environment. In addition to this,
MARL agents also need to adapt to other agents’ learning and actions.

2. MARL agents do not always have a full view of the environment and even if
they have, they normally cannot predict the actions of other agents and the
changes in the environment [6].

3. The credit assignment problem [15] describes the difficulty of deciding which
agent is responsible for successes or failures of the multi-agent system. Re-
lated to this, the question arises on how to split the reward signal among the
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agents. The reward can be the same for all agents (global reward) or it can
be assigned based on the individual contribution of the agent (local reward).

3 Agent Architecture and Operation

The security of computer networks is provided by devices such as IDS. As pre-
viously mentioned IDS monitor the network and detect abnormal or non au-
thorized activity. When it detects suspicious activity, it records the event and
in some cases performs defensive actions. The use of a rich diversity of sensor
information may achieve more reliable detection of abnormal events in the net-
work. Different network devices can provide diverse information based on their
capabilities, their local network state observations, and their location in the
network.

To process the information of distributed heterogeneous sensors to infer
malicious activity there are multiple choices ranging from central control and
management to peer to peer agent interaction; and from flat topologies to hier-
archical central management and clustering. Since it is infeasible to assume that
agents are able to communicate their complete local state observations (due to
bandwidth restrictions), we have chosen an approach that is somewhere between
central management and distributed control.

We propose a hierarchical architecture of Distributed Intrusion Detection Sys-
tems (DIDS) integrated by remote sensor agent diversity and reinforcement
learning to detect and categorize DDoS Attacks. In this approach distributed
sensors process the local state information and pass on short signals up a hierar-
chy of RL-IDS agents. With these signals the RL-IDS agents learn to distinguish
abnormal activity from a diversity of sources. The lower the hierarchical level
of the agent is; the more local information it is processing. The result is that
high-level hierarchical agents have a better overview of the current state of the
whole network. Under this consideration the agent on top of the hierarchy learns
whether or not to trigger an overall alarm to the network operator.

Our base topology or Basic Cell is shown in Figure 1. It is composed of one
central agent and n sensor agents. Sensor agents are in the form of network
devices and they vary in capabilities and information that they can process.
Each sensor agent receives only partial information about the global state of the
network and they map local state information to communication signals which
they send to the central agent (RL-IDS) of the cell (the signal constitutes the
action of the sensor agent). The RL-IDS agent tries to model the state of the
monitored network through these signals and decides in turn on a signal action.
If the signal is in accordance with the real state of the monitored network, all
the agents receive a positive reward. If the action is inaccurate, all the agents
receive a negative reward. The goal is that after a certain number of iterations
of the algorithm, every agent would know for each state the action that they
need to execute to obtain positive rewards.

To expand the sensor architecture to analogous computer network architec-
tures we created a hierarchical architecture with 2 levels as shown in Figure 2.
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Fig. 1. Basic Cell of Agents. Each Sensor Agent sends communication signals to the
RL-IDS agent.

Fig. 2. Hierarchical Architecture: Each RL-IDS agent inside cells communicates with
a higher level RL-IDS

This architecture is build from m cells with n agents per cell. In this topology
each cell’s RL-IDS agents receive local information from sensor agents and learn
what signal to trigger to the next RL-IDS higher up in the hierarchy. Then,
via the signals from the lower-level RL-IDS agents and the reward function,
the high-level hierarchical RL-IDS agent in the topology learns which signal to
trigger to the network operator or to the next hierarchical level RL-IDS. If we
considered h as the number of hierarchical levels and n as the number of sensor
agents per cell and the number of cells that one single RL-IDS can handle, the
number of agents in a topology is denoted by Equation (3).

TotalNumberOfAgents =
h∑

i=0

nh−1 (3)
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We have opted to use a hierarchical architecture of agents instead of a flat
one because we consider that the former adapts better to the topologies of real
computer networks. These systems are constructed by several hierarchical layers
where the lower layers perform data access to users and high layers perform high
speed packet switching. Our hierarchical architecture is also easily adapted to
process intrusion detection between different networks domains similarly as it
occurs in real Internet interconnections.

4 Experiments and Results

We applied our algorithm to different agent architectures varying the number
of agents, the exploration/exploitation strategy, the number of states per sensor
agent, the distribution of attacks as input information and the agent architecture.
In these initial experiments, we fell back on an idealized model of a network that
nevertheless poses the principal learning and coordination challenges of the real-
world case.

Each agent uses a modified version of Q-learning (see Equation (4) below)
to learn which action to execute in a specific state. The value of this function
is the maximum discounted cumulative reward or the value of executing action
a in the state s plus the value of following the optimal policy afterward. The
action selection strategy during learning is provided by Boltzmann exploration.
Boltzmann exploration uses a decreasing factor (T) known as temperature to
slowly decrease exploration over time. To measure the learning performance we
used accuracy, precision, recall and specificity (Table 1). These four variables
give us more information about the relation between False Positives (FP) and
False Negatives (FN) and between FN-FP and the correct categorized events
(True Negatives and True Positives).

Q̂(s, a) ← Q̂(s, a) + α(r − Q̂(s, a)) (4)

Table 1. Performance Metrics

Measure Formula Meaning

Accuracy (TP + TN) / (TP + TN + FP + FN) The percentage of positive
predictions that is correct

Precision TP / (TP + FP) The percentage of positive labeled
instances that was predicted
as positive. Also defined as
Intrusion Detection Rate

Recall TP / (TP + FN) The percentage of negative
labeled instances that was
predicted as negative

Specificity TN / (TN + FP) The percentage of predic-
tions that is correct
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In the simplest experiment, we created a cell with two sensor agents and one
RL-IDS agent. We set up the sensor agents to have 2 states (0 and 1). Note
that each sensor agent cannot observe the states of other sensor agents and that
the combination of all states of the sensor agents represents the global state of
the network. In this simple scenario we have 4 states ([0,0],[0,1],[1,0],[1,1]) where
state [1,1] represents an abnormal network state that would require an alarm
signal from the RL-IDS. The sensor agents have to learn to produce the right
signal action to the RL-IDS agent, while this agent needs to learn to interpret
these signals. In our basic scenario there are only two sensor signals A and B.
The RL-IDS must learn which signals from the sensor agents represent a normal
state of the network or a warning state. As it can be observed in Figure 3, the
agents in this test are able to detect and categorize the normal and abnormal
states of the network.
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Fig. 3. Two Sensor Agents: After less than 1,000 iterations the RL-IDS agent learns
how to identify abnormal activity through the signals from sensor agents

In general the global state of the network is simulated by randomly choosing
between normal and abnormal states. Following a uniform distribution of pos-
sible states in tests with more than two agents creates a very small number of
abnormal states compared with the number of normal states. This distribution
of training data biased the agents to learn that the safer action was not to gen-
erate any alarm action at all. The result is a low performance in the intrusion
detection rate and recall variables as shown in the second row of Table 2 and in
Fig.5 To solve this problem we provide a minimum of 25% of abnormal states
in the training data. With this new set up, the agents were able to learn to act
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correctly with higher levels of accuracy. Still the intrusion detection rate was
low. In other words, the agents generated high rates of false positives.

We found that the agents had little time to explore all the no-attack states
and to fix the Q-values that were miscalculated as result of the credit assignment
problem and the partial observation of the environment. To tackle this problem
we extended the exploitation phase of the exploration/exploitation strategy to
allow the agents to exploit actions and to modify the values of their Q-tables. To
carry out this task we divided the exploration/exploitation strategy in two parts.
The first part was the initial Boltzmann strategy where agents slowly decrease
exploration over time accordingly to a decreasing factor (T). The second part
was a total exploitive strategy where agents do not explore actions any more. We
denoted this as a pure exploitive strategy. The level of pure exploitation is given by
Equation 5. The results presented in Table 2 and marked as with pure exploitive
strategy uses a level value of 0.5. In other words the agents explore/exploit 50%
of the time accordingly to a Boltzmann strategy and exploit actions the rest
of the time. In Figure 4 there is a graphical comparsion between tests with
four agents. One of the test was performed with 25% of abnormal activity and
Boltzmann strategy (exploitive Level = 1). The other test was performed with
25% of abnormal activity and an exploitive level equal to 0.5. As shown, the
use of new strategy (Boltzmann + total exploitive) provided higher values of
accuracy (See Table 2 for comparsion between three agents) as well as high
values of intrusion detection rates compared with test with only Boltzmann
exploration/exploitation.

ExploitiveLevel =
Number of pure exploitive iterations

total of iterations
(5)

The next step in our testing was to increase the number of states and review
the maximum numbers of agents per cell with acceptable levels of performance.
As shown in Figure 5; when we increased the number of agents the levels of
precision went down due to high rates of false negatives. Under this assumption
we considered that the maximum number of agents per cell is less than 6. As it
can be observed in Table 2 the remaining variables had very little effect as the
number of agents increased. This is the effect of the previously mentioned prob-
lems often found in MARL such as credit assignment, partial observation, curse
of dimensionality and mis-coordination penalized with high negative rewards.
It is important to note that the number of iterations presented in the graphs
of Figure 5 and Figure 6 are per hierarchical level; for a test with 9 agents in
2 hierarchical levels the test needs 10,000 iterations per level (as shown in the
figures) or 20,000 iterations in total to reach the performance levels listed.

In order to adapt our architecture to detect abnormal activity on inter-domain
networks or in intra-domain networks with geographical zones we develop a hi-
erarchical architecture of agents (See Figure 2). In this new architecture sensor
agents and RL-IDS inside a cell learn how to identify local normal and abnormal
activity. Once they have learned this, the RL-IDS agents inside the cells send
communication signals to the next RL-IDS in the hierarchy which is learning
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Fig. 4. Intrusion Detection Rate Four Agents with different Exploitive levels of Explo-
ration/Exploitation and 25% abnormal activity

Table 2. Performace (Percentages)

Test Accu. Error Prec. Error Recall Error Spec. Error

Two sensor
agents (3)

98.9 1.1 90.0 10.0 90.0 10.0 100.0 0.0

Three sensor agents 96.1 0.8 10.0 10.0 10.0 10.0 100.0 0.0

Three sensor
agents (1)(2)

99.9 0.0 92.0 5.0 90.0 7.5 100.0 0.0

Six sensor agents
(1)(2)

99.5 0.2 37.9 11.3 100.0 0.0 99.5 0.2

Six sensor agents
Hierarchical (9
total) (1)(2)

99.9 0.0 90.0 10.0 90.0 10.0 100.0 0.0

9 sensor agents
Hierarchical (13
total) (1)(2)

99.9 0.0 85.0 7.5 100.0 0.0 100.0 0.0

27 sensor agents
Hierarchical (40
total) (1)(2)(3)

99.9 0.0 83.0 8.0 100.0 0.0 100.0 0.0

(1) 25 abnormal training, (2) Pure exploitive strategy, (3) 2 states per sensor agent
10,000 iterations in all tests.
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Fig. 6. Performance Metrics with Nine Agents

to signal in turn. This procedure is repeated iteratively until it reaches the last
RL-IDS in the topology, i.e. the agent responsible for determining the state of
the whole system. We compared the performance of 6 agents using this hierarchi-
cal design with 2 levels against the flat approach of 6 agents in one cell. We found
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that this architecture presents high levels of performance on all of our metrics
than the flat approach.

Additionally, this approach permits the use of more than 6 agents arranged in
various hierarchical levels. We expanded the architecture up to 9 sensor agents
and 4 RL-IDS agents (13 agents in total) in 2 hierarchical levels and up to 27
sensor agents and 13 RL-IDS agents (40 agents in total) in three hierarchical
levels. These tests shown (Figure 6) very acceptable levels of performance on all
of our metrics.

5 Conclusion and Further Work

This paper presented RL experiments in an abstract network model where dis-
tributed network sensor agents learn to send signals up a hierarchy of agents.
Higher agents in the hierarchy learn how to interpret local collected information
from these signals and signal an overall abnormal state to the network operator
when it is necessary. We presented solutions that enable the agents to learn an
accurate signal policy and we have shown that the approach scales up to a large
number of agents. In future work we plan to port the abstract network model to
a realistic network simulation.

In our work, we used a fairly straightforward Q-update function and simple
exploration/exploitation strategy. We intended to use this simple approach and
to focus on the hierarchical mechanism to expand our proposal to several con-
nected cells resembling real computer network environments. We do believe that
a more complex approach to exploration/exploitation strategy or to calculating
the value function may yield similar results but with fewer iterations, more input
features and more agents per cell. We also plan to apply some techniques from
single-state games [7], hierarchical reinforcement learning [1,5] function approx-
imation [8,13,17] techniques and others [4,14].
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