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Preface

This book contains selected and revised papers of the European Symposium on
Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS), editions
2005, 2006 and 2007, held in Paris, Brussels and Maastricht.

The goal of the ALAMAS symposia, and this associated book, is to increase
awareness and interest in adaptation and learning for single agents and multi-
agent systems, and encourage collaboration between machine learning experts,
software engineering experts, mathematicians, biologists and physicists, and give
a representative overview of current state of affairs in this area. It is an inclusive
forum where researchers can present recent work and discuss their newest ideas
for a first time with their peers.

The symposia series focuses on all aspects of adaptive and learning agents and
multi-agent systems, with a particular emphasis on how to modify established
learning techniques and/or create new learning paradigms to address the many
challenges presented by complex real-world problems.

These symposia were a great success and provided a forum for the presen-
tation of new ideas and results bearing on the conception of adaptation and
learning for single agents and multi-agent systems. Over these three editions
we received 51 submissions, of which 17 were carefully selected, including one
invited paper of this year’s invited speaker Simon Parsons. This is a very com-
petitive acceptance rate of approximately 31%, which, together with two review
cycles, has led to a high-quality LNATI volume.

We hope that our readers will be inspired by the papers included in this
volume.

Organizing a scientific event like ALAMAS, and editing an associated book,
requires the help of many enthusiastic people. First of all, the organizers would
like to thank the members of the Program Committee, who guaranteed a scien-
tifically strong and interesting LNAT volume. Secondly, we would like to express
our appreciation to the invited speakers of the the editions 2005, 2006 and 2007:
Michael Rovatsos (2005), Tom Lenaerts (2006), Eric Postma (2007), and Simon
Parsons (2007), for their distinguished contributions to the symposium program.
Finally, we also would like to thank the authors of all contributions for submit-
ting their scientific work to the ALAMAS symposium series.

November 2007 Karl Tuyls
Ann Nowé

Zahia Guessoum

Daniel Kudenko
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To Adapt or Not to Adapt — Consequences of
Adapting Driver and Traffic Light Agents

Ana L.C. Bazzan', Denise de Oliveira!, Franziska Kliigl?, and Kai Nagel®
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Salzufer 17-19, 10587 Berlin, Germany
nagel@vsp.tu-berlin.de

Abstract. One way to cope with the increasing traffic demand is to in-
tegrate standard solutions with more intelligent control measures. How-
ever, the result of possible interferences between intelligent control or
information provision tools and other components of the overall traffic
system is not easily predictable. This paper discusses the effects of inte-
grating co-adaptive decision-making regarding route choices (by drivers)
and control measures (by traffic lights). The motivation behind this is
that optimization of traffic light control is starting to be integrated with
navigation support for drivers. We use microscopic, agent-based mod-
elling and simulation, in opposition to the classical network analysis, as
this work focuses on the effect of local adaptation. In a scenario that
exhibits features comparable to real-world networks, we evaluate differ-
ent types of adaptation by drivers and by traffic lights, based on local
perceptions. In order to compare the performance, we have also used a
global level optimization method based on genetic algorithms.

1 Introduction

Urban mobility is one of the key topics in modern societies. Especially in medium
to big cities, the urban space has to be adapted to cope with the increasing needs
of transportation. In transportation engineering, the expression of the transport
needs is called demand. This demand (in terms volume of vehicles, pedestri-
ans, freight, etc.) is commonly used to evaluate transport supply. This is the
expression of the capacity of transportation infrastructures and modes. Supply
is expressed in terms of infrastructure (capacity), service (frequency), and other
characteristics of the network. The increasing demand of transport needs we ob-
serve nowadays has to be accommodated either with increasing supply (e.g. road
capacity), or with a better use of the existing infrastructure. Since an expan-
sion of the capacity is not always socially or economically attainable or feasible,

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAT 4865, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 A.L.C. Bazzan et al.

transportation and traffic engineering seek to optimize the management of both
supply and demand using concepts and techniques from intelligent transporta-
tion systems (ITS). These refer to the application of modern technologies in the
operation and control of transportation systems [12].

From the side of supply, several measures have been adopted in the last years,
such as congestion charging in urban areas (London), restriction of traffic in
the historical centre (Rome, Paris, Amsterdam), alternace of vehicles allowed to
circulate in a given day (Sao Paulo, Mexico City).

From the point of view of the demand, several attempts exist not only to di-
vert trips both spatially as well as temporally, but also to distribute the demand
within the available infrastructure. In this context, it is now commonly recog-
nized that the human actor has to be brought into the loop. With the amount
of information that we have nowadays, it is almost impossible to disregard the
influence of real-time information systems over the decision-making process of
the individuals.

Hence, within the project “Large Scale Agent-based Traffic Simulation for
Predicting Traffic Conditions”, our long term goal is to tackle a complex problem
like traffic from the point of view of information science. This project seeks
to integrate microscopic modelling tools developed by the authors for traffic
and transportation control and management. These range from traffic signal
optimization [1I], binary route choice, and effect of information on commuters
[4], to microscopic modelling of physical movement [7].

An important milestone in the project is to propose a methodology to inte-
grate complex behavioral models of human travellers reacting to traffic patterns,
and control measures, focusing on distributed and decentralized methods. Clas-
sically, this is done via network analysis. Using this technique, it is assumed that
individual road users seek to optimize their individual costs regarding the trips
they make by selecting the “best” route among the ones they have experienced
or have been informed about. This is the basis of the well known traffic network
analysis based on Wardrop’s equilibrium principle [I7]. This method predicts a
long term average state of the network. However, since it assumes steady state
network supply and demand conditions, this equilibrium-based method cannot,
in most cases, cope with the dynamics of the modern transportation systems.
Moreover, it is definitely not adequate for answering questions related to what
happens in the network within a given day, as both the variability in the de-
mand and the available capacity of the network tend to be high. Just think
about changing weather conditions from day to day and within a single day!

In summary, as equilibrium-based concepts overlook this variability, it seems
obvious that they are not adequate for microscopic modelling and simulation.
Therefore, the general aim of this paper is to investigate what happens when
different actors adapt, each having its own goal. The objective of local traffic
control is obviously to find a control scheme that minimizes queues in a spatially
limited area (e.g. around a traffic light). The objective of drivers is normally to
minimize their individual travel time — at least in commuting situations. Finally,
from the point of view of the whole system, the goal is to ensure reasonable
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travel times for all users, which can be highly conflicting with some individual
utilities (a social dilemma). This is a well-known issue: for instance, Tumer and
Wolpert [I5] have shown that there is no general approach to deal with this
complex question of collectives.

Specifically, this paper investigates which strategy is the best for drivers (e.g.
adaptation or greedy actions). Similarly, traffic lights can act greedily or simply
carry out a “well-designed” signal plan. At which volume of local traffic does
decentralized control of Traffic Lights start to pay off? Does isolated, single-
agent reinforcement learning make sense in dynamic traffic scenarios? What
happens when many drivers adapt concurrently? These are hot topics not only
in traffic research, but also in a more general multi-agent research as they refer to
co-adaptation.

In this paper we depart from binary route choice scenarios and use a more
realistic one, that shows features such as: heterogeneity of origin-destination
pairs, heterogeneous capacity, and agents knowing about a set of routes between
their origins and destinations. To the best of our knowledge, the question on what
happens when drivers and traffic lights co-adapt in a complex route scenario has
not been tackled so far.

In the next section we review these and related issues. In section Bl we describe
the approach and the scenario. Section [ discusses the results, while section
presents the concluding remarks.

2 Background: Supply and Demand in Traffic Engineering

Learning and adaptation is an important issue in multiagent systems. Here, we
concentrate on pieces of related work which either deal with adaptation in traffic
scenarios directly or report on close scenarios.

2.1 Management of Traffic Demand

Given its complexity, the area of traffic simulation and control has been tackled
by many branches of applied and pure sciences, such as mathematics, physics,
computer science, engineering, geography, and architecture. Therefore, several
tools exist that target only a part of the overall problem. For example, sim-
ulation tools in particular are quite old (1970s) and stable. On the side of de-
mand forecasting, the arguably most used computational method is the so-called
4-step-process [I1]. It consists of: trip generation, destination choice, mode
choice, and route assignment. Route assignment includes route choice and a very
basic traffic flow simulation that may lead to a Nash Equilibrium. Over the years,
the 4-step-process has been improved in many ways, most mainly by (i) combin-
ing the first three steps into a single, traveller-oriented framework (activity-based
demand generation (ABDG)) and by (ii) replacing traditional route assignment
by so-called dynamic tra c assignment (DTA). Still, in the actual implementa-
tions, all travellers’ information gets lost in the connection between ABDG and
DTA, making realistic agent-based modelling at the DTA-level difficult.
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Another related problem is the estimation of the overall state of the com-
plete traffic network from partial sensor data. Although many schemes exist for
incident detection, there are only few applications of large scale traffic state es-
timation. One exception is www.autobahn.nrw.de. It uses a traffic microsimula-
tion to extrapolate between sensor locations, and it applies intelligent methods
combining the current state with historical data in order to make short-term
predictions. However, the travellers themselves are very simple: They do not
know their destinations, let alone the remainder of their daily plan. This was
a necessary simplification to make the approach work for simulating the real
infrastructure. However, for evaluating the effects of travellers’ flexible decision
making, it is necessary to overcome this simplification for integrating additional
information about dynamic decision-making context.

A true integration of these and other approaches is still missing. Agent tech-
nology offers the appropriate basis for this. However, until now agent-based sim-
ulations with a scale required for the simulation of real-world traffic networks
have not been developed.

2.2 Real-Time Optimization of Traffic Lights

Signalized intersections are controlled by signal-timing plans (we use signal plan
for short) which are implemented at traffic lights. A signal plan is a unique set
of timing parameters comprising the cycle length L (the length of time for the
complete sequence of the phase changes), and the split (the division of the cycle
length among the various movements or phases). The criterion for obtaining
the optimum signal timing at a single intersection is that it should lead to the
minimum overall delay at the intersection. Several plans are normally required
for an intersection to deal with changes in traffic volume. Alternatively, in a
traffic-responsive system, at least one signal plan must be pre-defined in order
to be changed on the fly.

In [I], a MAS based approach is described in which each traffic light is mod-
elled as an agent, each having a set of pre-defined signal plans to coordinate
with neighbours. Different signal plans can be selected in order to coordinate
in a given traffic direction. This approach uses techniques of evolutionary game
theory. However, payoff matrices (or at least the utilities and preferences of the
agents) are required. These figures have to be explicitly formalized by the de-
signer of the system.

In [I0], groups of traffic lights were considered and a technique from dis-
tributed constraint optimization was used, namely cooperative mediation. How-
ever, this mediation was not decentralized: group mediators communicate their
decisions to the mediated agents in their groups and these agents just carry
out the tasks. Also, the mediation process may take long in highly constrained
scenarios, having a negative impact in the coordination mechanism.

Also a decentralized, swarm-based model of task allocation was developed in
[9], in which the dynamic group formation without mediation combines the ad-
vantages of decentralization via swarm intelligence and dynamic group formation.
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Regarding the use of reinforcement learning for traffic control, some applica-
tions are reported. Camponogara and Kraus [2] have studied a simple scenario
with only two intersections, using stochastic game-theory and reinforcement learn-
ing. Their results with this approach were better than a best-e ort (greedy), a
random policy, and also better than Q-learning [18]. In []] a set of techniques were
tried in order to improve the learning ability of the agents in a simple scenario.
Performance of reinforcement learning approaches such as Q-learning and Priori-
tized Sweeping in non-stationary environments are compared in [I3]. Co-learning
is discussed in [19] (detailed here in Section 23).

Finally, a reservation-based system [3] is also reported but it is only slightly
related to the topics here because it does not include conventional traffic lights.

2.3 The Need for Integration

Up to now, only few attempts exist to integrate supply and demand in a single
model. We review three of them here.

Learning Based Approach. A paper by [19] describes the use of reinforce-
ment learning by the traffic light controllers (agents) in order to minimize the
overall waiting time of vehicles in a small grid. Additionally, agents learn a value
function which estimates the expected waiting times of single vehicles given dif-
ferent settings of traffic lights. One interesting issue tackled in this research is
that a kind of co-learning is considered: value functions are learned not only by
the traffic lights, but also by the vehicles which thus can compute policies to
select optimal routes to the respective destinations. The ideas and results pre-
sented in that paper are interesting. However, it makes strong assumptions that
may hinder its use in the real world: the kind of communication and knowledge
or, more appropriate, communication for knowledge formation has high costs.
Traffic light controllers are supposed to know vehicles destination in order to
compute expected waiting times for each. Given the current technology, this is
a quite strong assumption. Secondly, it seems that traffic lights can shift from
red to green and opposite at each time step of the simulation. Third, there is no
account of experience made by the drivers based on their local experiences only.
What about if they just react to (few) past experiences? Finally, drivers being
autonomous, it is not completely obvious that they will use the best policy com-
puted by the traffic light and not by themselves. Therefore, in the present paper,
we depart from these assumptions regarding communication and knowledge the
actors must have about each other.

Game Theoretic Approach. In [I6] a two-level, three-player game is dis-
cussed that integrates traffic control and traffic assignment, i.e. both, the con-
trol of Traffic Lights and the route choices by drivers are considered. Complete
information is assumed, which means that all players (including the population
of drivers) have to be aware of the movements of others. Although the paper
reports interesting conclusions regarding e.g. the utility of cooperation among
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the players, this is probably valid only in that simple scenario. Besides, the as-
sumption that drivers always follow their shortest routes is difficult to justify
in a real-world application. In the present paper, we want to depart from both,
the two-route scenario and the assumption that traffic management centres are
in charge of the control of Traffic Lights. Rather, we follow a trend of decen-
tralization, in which each traffic light is able to sense its environment and react
accordingly and autonomously, without having its actions computed by a central
manager as it is the case in [I6]. Moreover, it is questionable whether the same
mechanism can be used in more complex scenarios, as claimed. The reason for
this is the fact that when the network is composed of tens of links, the number
of routes increases and so the complexity of the route choice, given that now it
is not trivial to compute the network and user equilibria.

Methodologies. Liu and colleagues [6] describe a modelling approach that
integrates microsimulation of individual trip-makers’ decisions and individual
vehicle movements across the network. Moreover their focus is on the description
of the methodology that integrates both demand and supply dynamics, so that
the applications are only briefly described and not many options for the operation
and control of Traffic Lights are reported. One scenario described deals with
a simple network with four possible routes and two control policies. One of
them can roughly be described as greedy, while the other is fixed signal plan
based. In the present paper, we do not explore the methodological issues as in
[6] but, rather, investigate in more details particular issues of the integration
and interaction between actors from the supply and demand side.

3 Co-adaptation in an ITS Framework

Figure[llshows a scheme of our approach based on the interaction between supply
and demand. This framework was developed using the agent-based simulation
environment SeSAm [0] for testing the effects of adaptation of different elements
of the supply and demand. The testbed consists of sub-modules for specification
and generation of the network and the agents — traffic lights and drivers. Cur-
rently the approach generates the network (grid or any other topology), supports
the creation of traffic light control algorithms as well as signal plans, the creation
of routes (route library), and the algorithms for route choice. The movement of
vehicles is queue-based.

The basic scenario we use is a typical commuting scenario where drivers re-
peatedly select a route to go from an origin to a destination. As mentioned
before, we want to go beyond simple two-route or binary choice scenario; we
deal with route choice in a network with a variety of possible routes. Thus, it
captures desirable properties of real-world scenarios.

We use a grid with 36 nodes connected using one-way links, as depicted in
Figure 2l All links are one-way and drivers can turn to two directions in each
crossing. Although it is apparently simple, this kind of scenario is realistic and,
from the point of view of route choice and equilibrium computation, it is also
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Fig. 1. Elements of Co-Adaptation in an ITS Framework

a very complex one as the number of possible routes between two locations
is high.

In contrast to simple two-route scenarios, it is possible to set arbitrary origins
(O) and destinations (D) in this grid. For every driver agent, its origin and des-
tination are randomly selected according to probabilities given for the links: To
render the scenario more realistic, neither the distribution of O-D combinations,
nor the capacity of links is homogeneous. On average, 60% of the road users have
the same destination, namely the link labelled as E4E5 which can be thought as
something like a main business area. Other links have, each, 1.7% probability of
being a destination. Origins are nearly equally distributed in the grid, with three
exceptions (three “main residential areas”): links B5B4, E1D1, and C2B2 have,
approximately, probabilities 3, 4, and 5% of being an origin respectively. The
remaining links have each a probability of 1.5%. Regarding capacity, all links
can hold up to 15 vehicles, except those located in the so called “main street”.
These can hold up to 45 (one can think it has more lanes). This main street is
formed by the links between nodes B3 to E3, E4, and E5.

The control is performed via decentralized Traffic Lights. These are located in
each node. Each of the Traffic Lights has a signal plan which, by default, divides
the overall cycle time — in the experiments 40 time steps — 50-50% between the
two phases. One phase corresponds to assigning green to one direction, either
north/south or east/west.

The actions of the Traffic Lights consist in running the default plan or to
prioritize one phase. The particular strategies are:

i. fixed: always keep the default signal plan
ii. greedy: allow more green time for the direction with higher current occupancy
iii. use single agent Q-learning

Regarding the demand, the main actor is the simulated driver. The simulation
can generate any number of them; in the experiments we used 400, 500, 600,
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Fig. 2. 6x6 grid showing the main destination (E4E5), the three main origins (B5B4,
E1D1, C2B2), and the “main street” (darker line). Numbers at the links represent the
green times for the particular direction (determined by global optimization).

and 700 driver agents. Every driver is assigned to a randomly selected origin-
destination pair. Initially it is informed about only a given number of routes. The
experiments presented next were performed with each agent knowing five routes.
These route options are different for each driver and were generated using an
algorithm that computes the shortest path (one route) and the shortest path via
arbitrary detours (the other four). We notice that, due to topological constraints,
it was not always possible to generate five routes for each driver. One example
is the following: origin and destination are too close. Thus, in a few cases they
know less than this number, but at least one. Drivers can use three strategies to
select a route (before departure):

i. random selection
ii. greedy: always select the route with best average travel time so far
iii. probabilistically: for each route, the average travel time perceived so far is
use to compute a probability to select that route again.

The actual movement of the driver agents through the net is queue-based.

4 Results and Discussion

4.1 Metrics and Parameters

In order to evaluate the experiments, travel time (for drivers) and occupation
(for links) were measured. We discuss here only the mean travel time over the
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last 5 trips (henceforward attl5t) and travel time in a single trip. All experiments
were repeated 20 times.

The following parameters were used: time out for the simulation of one trip
(tout) equal to 300 when the number of drivers is 400 or 500; 400 when there are
600 drivers; and 500 when there are 700 drivers.

The percentage of drivers who adapt is either 0 or 100 (in this case all act
greedily) but any value can be used; percentage of Traffic Lights that act greedily
is either 0 or 100; a link is considered jammed if its occupancy is over 50%; cycle
length for signal plans is 40 seconds.

For the Q-learning, there is an experimentation phase of 10 X ¢,,¢, the learning
rate is & = 0.1 and the discount rate is A = 0.9.

4.2 Global Optimization

For the sake of comparison, we show the results of a centralized approach be-
fore we continue with the main focus of the paper on local (co-)adaptation ap-
proaches. We use a centralized and heuristic optimization method in order to
compute the optimal split of the cycle time between two traffic directions at each
intersection.

This centralized optimization was performed using the DAVINCI (Developing
Agent-based simulations Via INtelligent Callbration) Calibration Toolkit for
SeSAm, that is a general purpose calibration and optimization tool for sim-
ulation. Although DAVINCI provides several global search strategies such as
genetic algorithm (GA), simulated annealing or gradient based search, here we
have used standard GA only, with a fitness proportional selection.

The input parameters for the GA are the default split values for each of the
36 traffic light agents (see next). The optimization objective is to minimize the
average travel time over all drivers in a scenario with 400 drivers, where all
drivers have only one route (the shortest path).

For a cycle length of 40 seconds, we have set seven possible values for the
split at each intersection: 5/35, 10/30, 15/25, 20/20, ..., 35/5. Using four bits to
codify each of these splits, for each of the 36 intersection, this leads to 144 bits
for each GA string. We have allowed the GA to run for 100 generations.

The resulting optimized splits can be seen in Figure[2 numbers depicted close
to the respective links indicate how much green time the link receives in the best
solution found by the GA. Using these optimized splits, the average travel time
of drivers is 105. This value can be used as a benchmark to assess the utility of
adapting drivers and Traffic Lights in a decentralized way.

4.3 Drivers and Traffic-Lights Learning in a Decentralized Way

In this section we discuss the simulations and results collected when drivers
and Traffic Lights co-adapt using different strategies, as given in Section Bl As
a measure of performance, we use the attl5t defined previously (Section ETI).
These are summarized in Table[Il For all scenarios described in this subsection,
400 drivers were used. As said, all experiments were repeated 20 times. Standard
deviations are not higher than 4% of the mean value given here.
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Table 1. Average Travel Time Last 5 Trips (attl5t) for 400 drivers, under different
conditions

Type of Simulation Average Travel Time
Last 5 Trips
greedy drivers / fixed traffic lights 100
probabilistic drivers / fixed traffic lights 149
greedy drivers / greedy traffic lights 106
probabilistic drivers / greedy traffic lights 143
greedy drivers / Qlearning traffic lights 233
probabilistic drivers / Qlearning traffic lights 280

Greedy or Probabilistic Drivers; Fixed Traffic Lights. In the case of
probabilistic drivers, the attl5t is 149 time units, while this is 100 if drivers
act greedily. The higher travel time is the price paid for the experimentation
that drivers continue doing, even though the optimal policy was achieved long
before (remember that the attl5t is computed only over the last 5 trips). The
greedy action is of course much better after the optimal policy was learned.
In the beginning of a simulation run, when experimentation does pay off, the
probabilistic driver performs better.

Notice that this travel time is slightly better than the one found by the
heuristic optimization tool described before, which was 105. In summary, greedy
actions by the drivers work because they tend to select the routes with the short-
est path and this normally distributes drivers more evenly than the case where
drivers take longer routes.

Greedy or Probabilistic Drivers; Greedy Traffic Lights. When Traffic
Lights also act greedily we can see that this does not automatically improve the
outcome (in comparison with the case in which Traffic Lights are fixed): the attl5t
is 106. This happens because the degree of freedom of Traffic Lights’ actions is
low, as actions are highly constrained. For example, acting greedily can be highly
sub-optimal when, for instance, traffic light A serves direction D; (thus keeping
Dy with red light) but the downstream flow of D is already jammed. In this
case, the light might indeed provide green for vehicles on D but these cannot
move due to the downstream jam. Worse, jam may appear on the previously
un-jammed Dy too due to the small share of green time. This explains why
acting greedily at Traffic Lights is not necessarily a good policy. The travel time
of 106, when compared to the travel time found by the centralized optimization
tool (105), is of course similar. This is not surprising because the decentralized
strategy does exactly the same as the centralized optimizer, namely drivers use
their best route and Traffic Lights optimize greedily.

Q-Learning Traffic Lights. We have expected Q-learning to perform bad be-
cause it is already known that it does not have a good performance in noisy and
non-stationary traffic scenarios [I3]. In order to test this, we have implemented a
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Q-learning mechanism in the traffic lights. Available actions are: to open the phase
serving either one direction (e.g. Dy), or the other (D3). The states are the com-
bination of abstract states in both approaching links, i.e. {D; jammed, Dy not
jammed} x {Dy jammed, Dy not jammed}.

The low performance of Q-learning in traffic scenarios is due basically to the
fact that the environment is non-stationary, not due to the poor discretization of
states. Convergence is not achieved before the environment changes again, and
thus Traffic Lights remain in the experimentation phase.

4.4 Scenarios with More Drivers

For more than 400 drives, we only investigate the cases of greedy drivers / fixed
Traffic Lights versus the scenario in which both drivers and Traffic Lights act
greedily. This was done in order to test whether or not increasing volume of
traffic (due to increasing number of drivers in the network) would cause greedy
Traffic Lights to perform better. This is expected to be the case since once the
number of drivers increases, greedy actions by the drivers alone do not bring
much gain; some kind of control in the Traffic Lights is expect to be helpful in
case of high occupancy of the network. Notice that 400, 500, 600 and 700 drivers
mean an average occupancy of &~ 40%, 47%, 59%, and 72% per link respectively.

In Table [ the attibt for these numbers of drivers are shown. The case for
400 drivers was discussed above. With more than 600 drivers, the attl5t is lower
when Traffic Lights also act greedily. In the case of 700 drivers, the improvement
in travel time (411 versus 380) is about 8%. Thus, the greedy traffic lights are
successful in keeping the occupancy of links lower, resulting in a reduction of
travel times.

Table 2. Average Travel Time Last 5 Trips for Different Number of Drivers and
Different Adaptation Schemes

Average Travel Time Last 5 Trips
Type of Simulation Nb. of Drivers
400 500 600 700
greedy drivers / fixed traffic lights 100 136 227 411
greedy drivers / greedy traffic lights 106 139 215 380

4.5 Overall Discussion

In the experiments presented, one can see that different strategies concerning the
adaptivity of drivers, as well as of Traffic Lights have distinct results in different
settings. We summarize here the main conclusions.

For the 6 x 6 network depicted, increasing the links capacity from 15 to 20 would
lead to travel time levels that are the same we have achieved without this increase
in capacity, i.e. substituting this increase by a better use of the available infrastruc-
ture. This is important because increasing network capacity is not always econom-
ically feasible, so that other measures must be taken. Diverting people by giving
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information to them, has only limited performance. Thus the idea is to use the
control infrastructure in a more intelligent way. Therefore, we have explored the
capability of the Traffic Lights to cope with the increasing demand.

Regarding travel time, it was shown that the strategies implemented in the
Traffic Lights pay off in several cases, especially when the demand increases. We
have also measured the number of drivers who arrive before time t,,;. This is not
shown here but, to give a general idea of the figures, bad performance (around
75% arrived) was seen only when the drivers adapt probabilistically. The general
trend is that when the traffic lights also adapt, the performance increases, for
all metrics used.

Regarding the use of Q-learning, as said, single-agent learning, i.e. each agent
learns isolated using Q-learning, is far from optimum here due to the non-
stationarity nature of the scenario. This is true especially for those links located
close to the main destination and the main street as they tend to be part of each
driver’s trip so that the pattern of volume of vehicles changes dramatically. A
possible solution is to use collaborative Traffic Lights. In this case, traffic light
A would at least ask/sense traffic light B downstream whether or not it shall
act greedily. This however leads to a cascade of dependencies among the Traffic
Lights. In the worst case, everybody has to consider everybody’s state. Even
if this is done in a centralized way (which is far from desirable), the number
of state-action pairs prevents the use of multiagent Q-learning in its standard
formulation.

5 Conclusion

Several studies and approaches exist for modelling travellers’ decision-making.
In commuting scenarios in particular, probabilistic adaptation in order to max-
imize private utilities is one of those approaches. However, there is hardly any
attempt to study what happens when both the driver and the traffic light use
some evolutionary mechanism in the same scenario or environment, especially if
no central control exist. In this case, co-adaptation happens in a decentralized
fashion. This is an important issue because, although ITS have reached a high
technical standard, the reaction of drivers to these systems is fairly unknown. In
general, the optimization measures carried out in the traffic network both affect
and are affected by drivers’ reactions to them. This leads to a feedback loop that
has received little attention to date. In the present paper we have investigated
this loop by means of a prototype tool constructed in an agent-based simulation
environment. This tool has modules to cope with the demand and the supply
sides, as well as to implement the ITS modules and algorithms for the learning,
adaptation etc.

Results show an improvement regarding travel time and occupancy (thus, both
the demand and supply side) when all actors co-evolve, especially in large-scale
situations e.g. involving hundreds of drivers. This was compared with situations
in which either only drivers or only Traffic Lights evolve, in different scenarios,
and with a centralized optimization method.
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This work can be extended in many directions. First, we are already working
to integrate the tools developed by the authors independly for supply and de-
mand, namely ITSUMO [I4] and MATSim (http://www.matsim.org/) which
are simulators with far more capabilities than the prototype described here, and
allow the modeling of even more realistic scenarios. For instance, drivers’ trips
can be described in MATsim in a richer way including activities that compose a
trip such as dropping children at school, shopping, etc. The results are not expect
to differ in the general trends, though, unless en-route adaptation is added.

Therefore, a second extension relates to the implementation of en-route adap-
tation of drivers in reaction to the perception of jammed links.

Finally, another extension is the use of heuristics for multiagent reinforcement
learning in order to improve its performance. This is not trivial as it is known
that reinforcement learning for non-stationary environments is a hard problem,
especially when several agents are involved. In this context we also want to test
a scenario where drivers and traffic lights learn taking turns.
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Abstract. We study optimal control in large stochastic multi-agent sys-
tems in continuous space and time. We consider multi-agent systems
where agents have independent dynamics with additive noise and con-
trol. The goal is to minimize the joint cost, which consists of a state
dependent term and a term quadratic in the control. The system is de-
scribed by a mathematical model, and an explicit solution is given. We
focus on large systems where agents have to distribute themselves over a
number of targets with minimal cost. In such a setting the optimal con-
trol problem is equivalent to a graphical model inference problem. Exact
inference will be intractable, and we use the mean field approximation to
compute accurate approximations of the optimal controls. We conclude
that near to optimal control in large stochastic multi-agent systems is
possible with this approach.

1 Introduction

A collaborative multi-agent system is a group of agents in which each member
behaves autonomously to reach the common goal of the group. Some examples
are teams of robots or unmanned vehicles, and networks of automated resource
allocation. An issue typically appearing in multi-agent systems is decentralized
coordination; the communication between agents may be restricted, there may
be no time to receive all the demands for a certain resource, or an unmanned
vehicle may be unsure about how to anticipate another vehicles movement and
avoid a collision.

In this paper we focus on the issue of optimal control in large multi-agent sys-
tems where the agents dynamics are continuous in space and time. In particular
we look at cases where the agents have to distribute themselves in admissible
ways over a number of targets. Due to the noise in the dynamics, a configura-
tion that initially seems attainable with little effort may become harder to reach
later on.

Common approaches to derive a coordination rule are based on discretizations
of space and time. These often suffer from the curse of dimensionality, as the
complexity increases exponentially in the number of agents. Some successfull
ideas, however, have recently been put forward, which are based on structures
that are assumed to be present [T2].

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 152G} 2008.
© Springer-Verlag Berlin Heidelberg 2008



16 B. van den Broek, W. Wiegerinck, and B. Kappen

Here we rather model the system in continuous space and time, following the
approach of Wiegerinck et al. [3]. The agents satisfy dynamics with additive
control and noise, and the joint behaviour of the agents is valued by a joint cost
function that is quadratic in the control. The stochastic optimization problem
may then be transformed into a linear partial differential equation, which can
be solved using generic path integral methods [4lJ5]. The dynamics of the agents
are assumed to factorize over the agents, such that the agents are coupled by
their joint task only.

The optimal control problem is equivalent to a graphical model inference prob-
lem [3]. In large and sparsely coupled multi-agent systems the optimal control
can be computed using the junction tree algorithm. Exact inference, however,
will break down when the system is both large and densely coupled. Here we
explore the use of graphical model approximate inference methods in optimal
control of large stochastic multi-agent systems. We apply the mean field approx-
imation to show that optimal control is possible with accuracy in systems where
exact inference breaks down.

2 Stochastic Optimal Control of a Multi-agent System

We consider n agents in a k-dimensional space R”, the state of each agent a is
given by a vector x, in this space, satisfying stochastic dynamics

dae(t) = ba(xa (), t)dt + Bug(t)dt + odw(t), (1)

where u, is the control of agent a, b, is an arbitrary function representing au-
tonomous dynamics, w is a Wiener process, and B and ¢ are k x k matrices.

The agents have to reach a goal at the end time T, they will pay a cost ¢(x(T"))
at the end time depending on their joint end state z(T") = (x1(T),...,z,(T)),
but to reach this goal they will have to make an effort which depends on the
agents controls and states over time. At any time ¢ < T', the expected cost-to-go
is

Cz, t,ut = 1T)) =

T n T
<¢(m(T))+/ d@V(g;(@)ﬁHZ/t do ;ua(G)TRua(9)>7 (2)

t

given the agents initial state x, and the joint control over time u(t — T). R
is a symmetric k x k matrix with positive eigenvalues, such that s (0) " Ru,(6)
is always a non-negative number, V(z(6),0) is the cost for the agents to be
in a joint state xz(f) at time 6. The issue is to find the optimal control which
minimizes the expected cost-to-go.

The optimal controls are given by the gradient

Ua(xat) = _RilBTa’vaJLTvt)a (3)
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where J(z,t) the optimal expected cost-to-go, i.e. the cost (Z) minimized over
all possible controls; a brief derivation is contained in the appendix. An impor-
tant implication of equation (3] is that at any moment in time, each agent can
compute its own optimal control if it knows its own state and that of the other
agents: there is no need to discuss possible strategies! This is because the agents
always perform the control that is optimal, and the optimal control is unique.

To compute the optimal controls, however, we first need to find the optimal
expected cost-to-go J. The latter may be expressed in terms of a forward diffusion
process:

J(@,t) = —Alog / dy p(y, Tz, )4/, (4)

p(y,T|z,t) being the transition probability for the system to go from a state
x at time t to a state y at the end time T'. The constant A is determined by
the relation 00’ = ABR™'B', equation (@) in the appendix. The density
p(y, 0]z, t), t <O < T, satisfies the forward Fokker-Planck equation,

Vo< |
69p:_)\ —Z@Lbap+Z2Tr (UUTagap). (5)
a=1 a=1

The solution to this equation may generally be estimated using path integral
methods [4/5], in a few special cases a solution exists in closed form:

Ezample 1. Consider a multi-agent system in one dimension in which there is
noise and control in the velocities of the agents, according to the set of equations

dxa(t) = o (t)dt
{ dig(t) = ug(t)dt + odw(t).

Note that this set of equations can be merged into a single equation of the
form () by a concatenation of x, and %, into a single vector. We choose the
potential V = 0. Under the task where each agent a has to reach a target with
location p, at the end time 7', and arrive with speed fi,, the end cost function
¢ can be given in terms of a product of delta functions, that is

n

e_‘ﬁ(x’i)/A = H 6(3311 - Hfa)(s(iﬂa - ,l.j,a),

a=1

and the system decouples into n independent single-agent systems. The dynamics
of each agent a is given by a transition probability

2

) ©

pa(yaa yaaT‘xaa ‘@aat) =

R s
V/det(2mc) 2 Ya — Zq

where
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The optimal control follows from equations (@) and [{]) and reads

T vt N
The first term in the control will steer the agent towards the target u, in a
straight line, but since this may happen with a speed that differs from i, with
which the agent should arrive, there is a second term that initially ‘exaggerates’
the speed for going in a straight line, so that in the end there is time to adjust
the speed to the end speed ji,.

2.1 A Joint Task: Distribution over Targets

We consider the situation where agents have to distribute themselves over a
number of targets s = 1,...,m. In general, there will be m™ possible combina-
tions of assigning the n agents to the targets—mnote, in example [[l we considered
only one assignment. We can describe this by letting the end cost function ¢ be
given in terms of a positive linear combination of functions

n

(p(yla"-vynaslwuvsn) = H@a(yavsa)

a=1
that are peaked around the location (s, , ..., s, ) of a joint target (s1,...,8n),
that is N
e~ W)/ = Z wW(S1,...,5n) H Do, (Ya, Sa),
S1,y...58n a=1
where the w(sy,...,s,) are positive weights. We will refer to these weights as

coupling factors, since they introduce dependencies between the agents. The
optimal control of a single agent is obtained using equations (3)) and [@), and is
a weighted combination of single-target controls,

Uq = Zpa(s)ua(s) (8)

(the explicit (z,t) dependence has been dropped in the notation). Here u,(s) is
the control for agent a to go to target s,

Ua(s) - _R_lBTaxn,Za(s)a (9)
with Z,(s) defined by

Za(sa) :/dyapa(ya7T|$aat)¢a(yaa3a)~

The weights p,(s) are marginals of the joint distribution

n

p(S1,. .y 8n) ocw(sl,...,sn)HZa(sa). (10)

a=1

p thus is a distribution over all possible assignments of agents to targets.
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Ezample 2. Consider the multi-agent system of example [I} but with a different
task: each of the agents a = 1,...,n has to reach a target s = 1,...,n with
location us at the end time T', and arrive with zero speed, but no two agents
are allowed to arrive at the same target. We model this by choosing an end cost
function ¢(z, &) given by

e @D = N sy, sn) [T 9Wa — 11a)6(3a)

S14e-458n a=1

with coupling factors

w(S1,...,8,) = ﬁ exp (;nésa,sa,).

a,a’=1

For any agent a, the optimal control under this task is a weighted average of
single target controls (),
6(</~La> —Tgq — (T - t)ia) + 2(T - t)i'a

U (Ta, o, t) = (T — 1) , (11)

where (u,) the averaged target for agent a,

n

(Ha) = Zpa(s),“s-

s=1

The average is taken with respect to the marginal p, of the joint distribution

n

p(817 . .,Sn) X ’U](Sl, . 'aSTL) H pﬂ(usaa07T|$aaja7t)a

a=1
the densities p, given by (@).

In general, and in example [ in particular, the optimal control of an agent will
not only depend on the state of this agent alone, but also on the states of other
agents. Since the controls are computed anew at each instant in time, the agents
are able to continuously adapt to the behaviour of the other agents, adjusting
their control to the new states of all the agents.

2.2 Factored End Costs

The additional computational effort in multi-agent control compared to single-
agent control lies in the computation of the marginals of the joint distribution
p, which involves a sum of at most m™ terms. For small systems this is feasible,
for large systems this will only be feasible if the summation can be performed
efficiently. Whether an efficient way of computing the marginals exists, depends
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on the joint task of the agents. In the most complex case, to fulfil the task each
agent will have to take the joint state of the entire system into account. In less
complicated cases, an agent will only consider the states of a few agents in the
system, in other words, the coupling factors will have a nontrivial factorized

form:
w(81,...,8n) = HU/A(SA),
A

where the A are subsets of agents. In such cases we may represent the couplings,
and thus the joint distribution, by a factor graph; see Figure [l for an example.

e 2] [2a] [ 5a]]23]

Fig. 1. Example of a factor graph for a multi-agent system of four agents. The cou-
plings are represented by the factors A, with A = {1,4},{1,2},{2,4}, {3,4},{2,3}.

2.3 Graphical Model Inference

In the previous paragraph we observed that the joint distribution may be repre-
sented by a factor graph. This implies that the issue of assigning agents to targets
is equivalent to a graphical model inference problem. Both exact methods (junc-
tion tree algorithm [6]) and approximate methods (mean field approximation [7],
belief propagation [8]) can be used to compute the marginals in (). In this paper
we will use the mean field (MF) approximation to tackle optimal control in large
multi-agent systems.

In the mean field approximation we minimize the mean field free energy, a
function of single agent marginals g, defined by

Fur({ga}) = —(Alogw)y — > (Mog Za)g, — AZH o),

a

where ¢(s) = q1(s1) - - - gn(sn). Here the H(q,) are the entropies of the distribu-

tions qq,
Z qa(s)10g qa(s).

The minimum
JuF = ?IH}} Fur({¢a})
da

is an upper bound for the optimal cost-to-go J, it equals J in case the agents
are uncoupled. Fyr has zero gradient in its local minima, that is,

aF(Ql(*Sl)a ) Q’n(sn))

0=
8Qa(5a)

a=1,...,n,
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with additional constraints for normalization of the probability vectors q,. So-
lutions to this set of equations are implicitely given by the mean field equations

Ga(5a) = Za(8a) exp ({logw|s,))
S X0 21 Za(sy) exp ((log wlsy,))

where (log w|s,) the conditional expectation of logw given s,,

togulss) = 30 ((TL o) ot co0)

814380 \Sa  @'Fa

(12)

The mean field equations are solved by means of iteration, and the solutions are
the local minima of the mean field free energy. Thus the mean field free energy
minimized over all solutions to the mean field equations equals the minimum
JMF-

The mean field approximation of the optimal control is found by taking the
gradient of the minimum Jyp of the mean field free energy, similar to the exact
case where the optimal control is the gradient of the optimal expected cost-to-go,
equation (B):

ua(2,t) = =Ry "Bl 0., Jur (2, 1) = an(sa)ua(z‘a,t; Sq)-

Similar to the exact case, it is an average of single-agent single-target optimal
controls u, (x4, t; S4), the controls ug (x4, t; S.) given by equation (@), where the
average is taken with respect to the mean field approximate marginal g,(s,) of
agent a.

3 Control of Large Multi-agent Systems

Exact inference of multi-agent optimal control is intractable in large and densely
coupled systems. In this section we present numerical results from approximate
inference in optimal control of a large multi-agent system. We focus on the system
presented in example[2l A group of n agents have to distribute themselves over
an equal number of targets, each target should be reached by precisely one agent.
The agents all start in the same location at ¢ = 0, and the time they reach the
targets lies at T' = 1, as illustrated in figure Bl The variance of the noise equals
0.1 and the control cost parameter R equals 1, both are the same for each agent.
The coupling strength ¢ in the coupling factors equals —10. For implementation,
time had to be discretized: each time step At equaled 0.05 times the time-to-go
T—t.

We considered two approximate inference methods for obtaining the marginals
in (@), the mean field approximation described in section 23] and an approxi-
mation which at each moment in time assigns each agent to precisely one target.
In the latter method the agent that is nearest to any of the targets is assigned
first to its nearest target, then, removing this pair of agent and target, this is
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repeated for the remaining agents and targets, until there are no more remain-
ing agents and targets. We will refer to this method as the sort distances (SD)
method.

For several sizes of the system we computed the control cost and the required
CPU time to calculate the controls. This we did under both control methods.
Figures Rl(a) and (b) show the control cost and the required CPU time as a
function of the system size n; each value is an average obtained from 100 sim-
ulations. To emphasize the necessity of the approximate inference methods, in
figure[Z(b) we included the required CPU time under exact inference; this quan-
tity increases exponentially with n, as we may have expected, making exact
inference intractable in large MASs. In contrast, both under the SD method and
the MF method the required CPU time appears to increase polynomially with n,
the SD method requiring less computation time than the MF method. Though
the SD method is faster than the MF method, it also is more costly: the control
cost under the SD method is significantly higher than under the MF method.
The MF method thus better approximates the optimal control.

5 10°
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4 08’101 il
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Q3 5,0 U .-
(@) z 10 1 _,«‘
2 © 0 k/
1 107
0 5 10 15 0 5 10 15
n n
(a) Cost (b) CPU Time

Fig. 2. The control cost (a) and the required CPU Time in seconds (b) under the
exact method (- — -), the MF method (——), and the SD method (—)

Figure [3 shows the positions and the velocities of the agents over time, both
under the control obtained using the MF approximation and under the control
obtained with the SD method. We observe that under MF control, the agents
determine their targets early, between ¢ = 0 and ¢ = 0.5, and the agents ve-
locities gradually increase from zero to a maximum value at ¢ = 0.5 to again
gradually decrease to zero, as required. This is not very surprising, since the
MF approximation is known to show an early symmetry breaking. In contrast,
under the SD method the decision making process of the agents choosing their
targets takes place over almost the entire time interval, and the velocities of
the agents are subject to frequent changes; in particular, as time increases the
agents who have not yet chosen a target seem to exchange targets in a frequent
manner. This may be understood by realising that under the SD method agents
always perform a control to their nearest target only, instead of a weighted com-
bination of controls to different targets which is the situation under MF control.
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Fig. 3. A multi-agent system of 15 agents. The positions (a) and the velocities (b) over
time under MF control, and the positions (¢) and the velocities (d) over time under
SD control.

Further more, compared with the velocities under the MF method the velocities
under the SD method take on higher maximum values. This may account for
the relatively high control costs under SD control.

4 Discussion

In this paper we studied optimal control in large stochastic multi-agent systems
in continuous space and time, focussing on systems where agents have a task
to distribute themselves over a number of targets. We followed the approach of
Wiegerinck et al. [3]: we modeled the system in continuous space and time, result-
ing in an adaptive control policy where agents continuously adjust their controls
to the environment. We considered the task of assigning agents to targets as a
graphical model inference problem. We showed that in large and densely coupled
systems, in which exact inference would break down, the mean field approxima-
tion manages to compute accurate approximations of the optimal controls of the
agents.

We considered the performances of the mean field approximation and an alter-
native method, referred to as the sort distances method, on an example system
in which a number of agents have to distribute themselves over an equal number
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of targets, such that each target is reached by precisely one agent. In the sort
distances method each agent performs a control to a single nearby target, in
such a way that no two agents head to the same target at the same time. This
method has an advantage of being fast, but it results in relatively high control
costs. Because each agent performs a control to a single target, agents switch
targets frequently during the control process. In the mean field approximation
each agent performs a control which is a weighted sum of controls to single tar-
gets. This requires more computation time than the sort distances method, but
involves significantly lower control costs and therefore is a better approximation
to the optimal control.

An obvious choice for a graphical model inference method not considered in
the present paper would be belief propagation. Results of numeric simulations
with this method in the context of multi-agent control, and comparisons with the
mean field approximation and the exact junction tree algorithm will be published
elsewhere.

There are many possible model extensions worthwhile exploring in future re-
search. Examples are non-zero potentials V' in case of a non-empty environment,
penalties for collisions in the context of robotics, non-fixed end times, or bounded
state spaces in the context of a production process. Typically, such model ex-
tensions will not allow for a solution in closed form, and approximate numerical
methods will be required. Some suggestions are given by Kappen [45]. In the
setting that we considered the model which describes the behaviour of the agents
was given. It would be worthwhile, however, to consider cases of stochastic op-
timal control of multi-agent systems in continuous space and time where the
model first needs to be learned.
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A Stochastic Optimal Control

In this appendix we give a brief derivation of equations ([B)), @) and (&), starting
from (2)). Details can be found in [45].

The optimal expected cost-to-go J, by definition the expected cost-to-go (2I)
minimized over all controls, satisfies the stochastic Hamilton-Jacobi-Bellman
(HJIB) equation

"1 1
-0y J = minz (2u;Rua + (bg + Bua)T Oy, J + 2Tr (O'UTaiaJ)> +V,
a=1

with boundary condition J(z,T) = ¢(x). The minimization with respect to u
yields equation (B]), which specifies the optimal control for each agent. Substi-
tuting these controls in the HJB equation gives a non-linear equation for J. We
can remove the non-linearity by using a log transformation: if we introduce a
constant A, and define Z(z,t) through

J(x,t) = —Alog Z(x, 1), (13)
then

;uIRua + (Bug) " 0,,J = — ;)\QZ*Q((?%Z)TBR*BT&QJQZ

1 1 1
ST (0002, 0) = (N2 72(0:.2) 00 00,2 — N2V Tx (007 0}, Z) .

T

The terms quadratic in Z vanish when o' o and R are related via

oo =ABR™'B. (14)

In the one dimensional case a constant A can always be found such that equa-
tion (Id]) is satisfied, in the higher dimensional case the equation puts restrictions
on the matrices o and R, because in general oo ' and BR~'B" will not be pro-
portional.

When equation ([I4) is satisfied, the HJB equation becomes

0z = (‘; = bade, =Y ;Tr(ggTaga)> Z
a=1 a=1

— —HZ, (15)
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where H a linear operator acting on the function Z. Equation (IH) is solved
backwards in time with Z(z,T) = e~%(®)/*. However, the linearity allows us to
reverse the direction of computation, replacing it by a diffusion process, as we
will now explain.

The solution to equation (X)) is given by

Z(w,t) = / dyp(y, Tz, t)e= W/, (16)

the density p(y,d|z,t) (t < ¥ < T) satisfying the forward Fokker-Planck equa-
tion (Bl). Combining the equations (I3) and (I6) yields the expression (@) for the
optimal expected cost-to-go.
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Abstract. Reinforcement learning (RL) is a widely used learning para-
digm for adaptive agents. There exist several convergent and consistent
RL algorithms which have been intensively studied. In their original form,
these algorithms require that the environment states and agent actions
take values in a relatively small discrete set. Fuzzy representations for
approximate, model-free RL have been proposed in the literature for the
more difficult case where the state-action space is continuous. In this
work