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Preface

This book contains selected and revised papers of the European Symposium on
Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS), editions
2005, 2006 and 2007, held in Paris, Brussels and Maastricht.

The goal of the ALAMAS symposia, and this associated book, is to increase
awareness and interest in adaptation and learning for single agents and multi-
agent systems, and encourage collaboration between machine learning experts,
software engineering experts, mathematicians, biologists and physicists, and give
a representative overview of current state of affairs in this area. It is an inclusive
forum where researchers can present recent work and discuss their newest ideas
for a first time with their peers.

The symposia series focuses on all aspects of adaptive and learning agents and
multi-agent systems, with a particular emphasis on how to modify established
learning techniques and/or create new learning paradigms to address the many
challenges presented by complex real-world problems.

These symposia were a great success and provided a forum for the presen-
tation of new ideas and results bearing on the conception of adaptation and
learning for single agents and multi-agent systems. Over these three editions
we received 51 submissions, of which 17 were carefully selected, including one
invited paper of this year’s invited speaker Simon Parsons. This is a very com-
petitive acceptance rate of approximately 31%, which, together with two review
cycles, has led to a high-quality LNAI volume.

We hope that our readers will be inspired by the papers included in this
volume.

Organizing a scientific event like ALAMAS, and editing an associated book,
requires the help of many enthusiastic people. First of all, the organizers would
like to thank the members of the Program Committee, who guaranteed a scien-
tifically strong and interesting LNAI volume. Secondly, we would like to express
our appreciation to the invited speakers of the the editions 2005, 2006 and 2007:
Michael Rovatsos (2005), Tom Lenaerts (2006), Eric Postma (2007), and Simon
Parsons (2007), for their distinguished contributions to the symposium program.
Finally, we also would like to thank the authors of all contributions for submit-
ting their scientific work to the ALAMAS symposium series.

November 2007 Karl Tuyls
Ann Nowé

Zahia Guessoum
Daniel Kudenko
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To Adapt or Not to Adapt – Consequences of

Adapting Driver and Traffic Light Agents
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Abstract. One way to cope with the increasing traffic demand is to in-
tegrate standard solutions with more intelligent control measures. How-
ever, the result of possible interferences between intelligent control or
information provision tools and other components of the overall traffic
system is not easily predictable. This paper discusses the effects of inte-
grating co-adaptive decision-making regarding route choices (by drivers)
and control measures (by traffic lights). The motivation behind this is
that optimization of traffic light control is starting to be integrated with
navigation support for drivers. We use microscopic, agent-based mod-
elling and simulation, in opposition to the classical network analysis, as
this work focuses on the effect of local adaptation. In a scenario that
exhibits features comparable to real-world networks, we evaluate differ-
ent types of adaptation by drivers and by traffic lights, based on local
perceptions. In order to compare the performance, we have also used a
global level optimization method based on genetic algorithms.

1 Introduction

Urban mobility is one of the key topics in modern societies. Especially in medium
to big cities, the urban space has to be adapted to cope with the increasing needs
of transportation. In transportation engineering, the expression of the transport
needs is called demand. This demand (in terms volume of vehicles, pedestri-
ans, freight, etc.) is commonly used to evaluate transport supply. This is the
expression of the capacity of transportation infrastructures and modes. Supply
is expressed in terms of infrastructure (capacity), service (frequency), and other
characteristics of the network. The increasing demand of transport needs we ob-
serve nowadays has to be accommodated either with increasing supply (e.g. road
capacity), or with a better use of the existing infrastructure. Since an expan-
sion of the capacity is not always socially or economically attainable or feasible,

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 1–14, 2008.
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2 A.L.C. Bazzan et al.

transportation and traffic engineering seek to optimize the management of both
supply and demand using concepts and techniques from intelligent transporta-
tion systems (ITS). These refer to the application of modern technologies in the
operation and control of transportation systems [12].

From the side of supply, several measures have been adopted in the last years,
such as congestion charging in urban areas (London), restriction of traffic in
the historical centre (Rome, Paris, Amsterdam), alternace of vehicles allowed to
circulate in a given day (São Paulo, Mexico City).

From the point of view of the demand, several attempts exist not only to di-
vert trips both spatially as well as temporally, but also to distribute the demand
within the available infrastructure. In this context, it is now commonly recog-
nized that the human actor has to be brought into the loop. With the amount
of information that we have nowadays, it is almost impossible to disregard the
influence of real-time information systems over the decision-making process of
the individuals.

Hence, within the project “Large Scale Agent-based Traffic Simulation for
Predicting Traffic Conditions”, our long term goal is to tackle a complex problem
like traffic from the point of view of information science. This project seeks
to integrate microscopic modelling tools developed by the authors for traffic
and transportation control and management. These range from traffic signal
optimization [1], binary route choice, and effect of information on commuters
[4], to microscopic modelling of physical movement [7].

An important milestone in the project is to propose a methodology to inte-
grate complex behavioral models of human travellers reacting to traffic patterns,
and control measures, focusing on distributed and decentralized methods. Clas-
sically, this is done via network analysis. Using this technique, it is assumed that
individual road users seek to optimize their individual costs regarding the trips
they make by selecting the “best” route among the ones they have experienced
or have been informed about. This is the basis of the well known traffic network
analysis based on Wardrop’s equilibrium principle [17]. This method predicts a
long term average state of the network. However, since it assumes steady state
network supply and demand conditions, this equilibrium-based method cannot,
in most cases, cope with the dynamics of the modern transportation systems.
Moreover, it is definitely not adequate for answering questions related to what
happens in the network within a given day, as both the variability in the de-
mand and the available capacity of the network tend to be high. Just think
about changing weather conditions from day to day and within a single day!

In summary, as equilibrium-based concepts overlook this variability, it seems
obvious that they are not adequate for microscopic modelling and simulation.
Therefore, the general aim of this paper is to investigate what happens when
different actors adapt, each having its own goal. The objective of local traffic
control is obviously to find a control scheme that minimizes queues in a spatially
limited area (e.g. around a traffic light). The objective of drivers is normally to
minimize their individual travel time – at least in commuting situations. Finally,
from the point of view of the whole system, the goal is to ensure reasonable
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travel times for all users, which can be highly conflicting with some individual
utilities (a social dilemma). This is a well-known issue: for instance, Tumer and
Wolpert [15] have shown that there is no general approach to deal with this
complex question of collectives.

Specifically, this paper investigates which strategy is the best for drivers (e.g.
adaptation or greedy actions). Similarly, traffic lights can act greedily or simply
carry out a “well-designed” signal plan. At which volume of local traffic does
decentralized control of Traffic Lights start to pay off? Does isolated, single-
agent reinforcement learning make sense in dynamic traffic scenarios? What
happens when many drivers adapt concurrently? These are hot topics not only
in traffic research, but also in a more general multi-agent research as they refer to
co-adaptation.

In this paper we depart from binary route choice scenarios and use a more
realistic one, that shows features such as: heterogeneity of origin-destination
pairs, heterogeneous capacity, and agents knowing about a set of routes between
their origins and destinations. To the best of our knowledge, the question on what
happens when drivers and traffic lights co-adapt in a complex route scenario has
not been tackled so far.

In the next section we review these and related issues. In section 3 we describe
the approach and the scenario. Section 4 discusses the results, while section 5
presents the concluding remarks.

2 Background: Supply and Demand in Traffic Engineering

Learning and adaptation is an important issue in multiagent systems. Here, we
concentrate on pieces of related work which either deal with adaptation in traffic
scenarios directly or report on close scenarios.

2.1 Management of Traffic Demand

Given its complexity, the area of traffic simulation and control has been tackled
by many branches of applied and pure sciences, such as mathematics, physics,
computer science, engineering, geography, and architecture. Therefore, several
tools exist that target only a part of the overall problem. For example, sim-
ulation tools in particular are quite old (1970s) and stable. On the side of de-
mand forecasting, the arguably most used computational method is the so-called
4-step-process [11]. It consists of: trip generation, destination choice, mode
choice, and route assignment. Route assignment includes route choice and a very
basic traffic flow simulation that may lead to a Nash Equilibrium. Over the years,
the 4-step-process has been improved in many ways, most mainly by (i) combin-
ing the first three steps into a single, traveller-oriented framework (activity-based
demand generation (ABDG)) and by (ii) replacing traditional route assignment
by so-called dynamic traffic assignment (DTA). Still, in the actual implementa-
tions, all travellers’ information gets lost in the connection between ABDG and
DTA, making realistic agent-based modelling at the DTA-level difficult.
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Another related problem is the estimation of the overall state of the com-
plete traffic network from partial sensor data. Although many schemes exist for
incident detection, there are only few applications of large scale traffic state es-
timation. One exception is www.autobahn.nrw.de. It uses a traffic microsimula-
tion to extrapolate between sensor locations, and it applies intelligent methods
combining the current state with historical data in order to make short-term
predictions. However, the travellers themselves are very simple: They do not
know their destinations, let alone the remainder of their daily plan. This was
a necessary simplification to make the approach work for simulating the real
infrastructure. However, for evaluating the effects of travellers’ flexible decision
making, it is necessary to overcome this simplification for integrating additional
information about dynamic decision-making context.

A true integration of these and other approaches is still missing. Agent tech-
nology offers the appropriate basis for this. However, until now agent-based sim-
ulations with a scale required for the simulation of real-world traffic networks
have not been developed.

2.2 Real-Time Optimization of Traffic Lights

Signalized intersections are controlled by signal-timing plans (we use signal plan
for short) which are implemented at traffic lights. A signal plan is a unique set
of timing parameters comprising the cycle length L (the length of time for the
complete sequence of the phase changes), and the split (the division of the cycle
length among the various movements or phases). The criterion for obtaining
the optimum signal timing at a single intersection is that it should lead to the
minimum overall delay at the intersection. Several plans are normally required
for an intersection to deal with changes in traffic volume. Alternatively, in a
traffic-responsive system, at least one signal plan must be pre-defined in order
to be changed on the fly.

In [1], a MAS based approach is described in which each traffic light is mod-
elled as an agent, each having a set of pre-defined signal plans to coordinate
with neighbours. Different signal plans can be selected in order to coordinate
in a given traffic direction. This approach uses techniques of evolutionary game
theory. However, payoff matrices (or at least the utilities and preferences of the
agents) are required. These figures have to be explicitly formalized by the de-
signer of the system.

In [10], groups of traffic lights were considered and a technique from dis-
tributed constraint optimization was used, namely cooperative mediation. How-
ever, this mediation was not decentralized: group mediators communicate their
decisions to the mediated agents in their groups and these agents just carry
out the tasks. Also, the mediation process may take long in highly constrained
scenarios, having a negative impact in the coordination mechanism.

Also a decentralized, swarm-based model of task allocation was developed in
[9], in which the dynamic group formation without mediation combines the ad-
vantages of decentralization via swarm intelligence and dynamic group formation.

www.autobahn.nrw.de
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Regarding the use of reinforcement learning for traffic control, some applica-
tions are reported. Camponogara and Kraus [2] have studied a simple scenario
with only two intersections, using stochastic game-theory and reinforcement learn-
ing. Their results with this approach were better than a best-effort (greedy), a
random policy, and also better than Q-learning [18]. In [8] a set of techniques were
tried in order to improve the learning ability of the agents in a simple scenario.
Performance of reinforcement learning approaches such as Q-learning and Priori-
tized Sweeping in non-stationary environments are compared in [13]. Co-learning
is discussed in [19] (detailed here in Section 2.3).

Finally, a reservation-based system [3] is also reported but it is only slightly
related to the topics here because it does not include conventional traffic lights.

2.3 The Need for Integration

Up to now, only few attempts exist to integrate supply and demand in a single
model. We review three of them here.

Learning Based Approach. A paper by [19] describes the use of reinforce-
ment learning by the traffic light controllers (agents) in order to minimize the
overall waiting time of vehicles in a small grid. Additionally, agents learn a value
function which estimates the expected waiting times of single vehicles given dif-
ferent settings of traffic lights. One interesting issue tackled in this research is
that a kind of co-learning is considered: value functions are learned not only by
the traffic lights, but also by the vehicles which thus can compute policies to
select optimal routes to the respective destinations. The ideas and results pre-
sented in that paper are interesting. However, it makes strong assumptions that
may hinder its use in the real world: the kind of communication and knowledge
or, more appropriate, communication for knowledge formation has high costs.
Traffic light controllers are supposed to know vehicles destination in order to
compute expected waiting times for each. Given the current technology, this is
a quite strong assumption. Secondly, it seems that traffic lights can shift from
red to green and opposite at each time step of the simulation. Third, there is no
account of experience made by the drivers based on their local experiences only.
What about if they just react to (few) past experiences? Finally, drivers being
autonomous, it is not completely obvious that they will use the best policy com-
puted by the traffic light and not by themselves. Therefore, in the present paper,
we depart from these assumptions regarding communication and knowledge the
actors must have about each other.

Game Theoretic Approach. In [16] a two-level, three-player game is dis-
cussed that integrates traffic control and traffic assignment, i.e. both, the con-
trol of Traffic Lights and the route choices by drivers are considered. Complete
information is assumed, which means that all players (including the population
of drivers) have to be aware of the movements of others. Although the paper
reports interesting conclusions regarding e.g. the utility of cooperation among
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the players, this is probably valid only in that simple scenario. Besides, the as-
sumption that drivers always follow their shortest routes is difficult to justify
in a real-world application. In the present paper, we want to depart from both,
the two-route scenario and the assumption that traffic management centres are
in charge of the control of Traffic Lights. Rather, we follow a trend of decen-
tralization, in which each traffic light is able to sense its environment and react
accordingly and autonomously, without having its actions computed by a central
manager as it is the case in [16]. Moreover, it is questionable whether the same
mechanism can be used in more complex scenarios, as claimed. The reason for
this is the fact that when the network is composed of tens of links, the number
of routes increases and so the complexity of the route choice, given that now it
is not trivial to compute the network and user equilibria.

Methodologies. Liu and colleagues [6] describe a modelling approach that
integrates microsimulation of individual trip-makers’ decisions and individual
vehicle movements across the network. Moreover their focus is on the description
of the methodology that integrates both demand and supply dynamics, so that
the applications are only briefly described and not many options for the operation
and control of Traffic Lights are reported. One scenario described deals with
a simple network with four possible routes and two control policies. One of
them can roughly be described as greedy, while the other is fixed signal plan
based. In the present paper, we do not explore the methodological issues as in
[6] but, rather, investigate in more details particular issues of the integration
and interaction between actors from the supply and demand side.

3 Co-adaptation in an ITS Framework

Figure 1 shows a scheme of our approach based on the interaction between supply
and demand. This framework was developed using the agent-based simulation
environment SeSAm [5] for testing the effects of adaptation of different elements
of the supply and demand. The testbed consists of sub-modules for specification
and generation of the network and the agents – traffic lights and drivers. Cur-
rently the approach generates the network (grid or any other topology), supports
the creation of traffic light control algorithms as well as signal plans, the creation
of routes (route library), and the algorithms for route choice. The movement of
vehicles is queue-based.

The basic scenario we use is a typical commuting scenario where drivers re-
peatedly select a route to go from an origin to a destination. As mentioned
before, we want to go beyond simple two-route or binary choice scenario; we
deal with route choice in a network with a variety of possible routes. Thus, it
captures desirable properties of real-world scenarios.

We use a grid with 36 nodes connected using one-way links, as depicted in
Figure 2. All links are one-way and drivers can turn to two directions in each
crossing. Although it is apparently simple, this kind of scenario is realistic and,
from the point of view of route choice and equilibrium computation, it is also
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Fig. 1. Elements of Co-Adaptation in an ITS Framework

a very complex one as the number of possible routes between two locations
is high.

In contrast to simple two-route scenarios, it is possible to set arbitrary origins
(O) and destinations (D) in this grid. For every driver agent, its origin and des-
tination are randomly selected according to probabilities given for the links: To
render the scenario more realistic, neither the distribution of O-D combinations,
nor the capacity of links is homogeneous. On average, 60% of the road users have
the same destination, namely the link labelled as E4E5 which can be thought as
something like a main business area. Other links have, each, 1.7% probability of
being a destination. Origins are nearly equally distributed in the grid, with three
exceptions (three “main residential areas”): links B5B4, E1D1, and C2B2 have,
approximately, probabilities 3, 4, and 5% of being an origin respectively. The
remaining links have each a probability of 1.5%. Regarding capacity, all links
can hold up to 15 vehicles, except those located in the so called “main street”.
These can hold up to 45 (one can think it has more lanes). This main street is
formed by the links between nodes B3 to E3, E4, and E5.

The control is performed via decentralized Traffic Lights. These are located in
each node. Each of the Traffic Lights has a signal plan which, by default, divides
the overall cycle time – in the experiments 40 time steps – 50-50% between the
two phases. One phase corresponds to assigning green to one direction, either
north/south or east/west.

The actions of the Traffic Lights consist in running the default plan or to
prioritize one phase. The particular strategies are:

i. fixed: always keep the default signal plan
ii. greedy: allow more green time for the direction with higher current occupancy
iii. use single agent Q-learning

Regarding the demand, the main actor is the simulated driver. The simulation
can generate any number of them; in the experiments we used 400, 500, 600,
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E1D1, C2B2), and the “main street” (darker line). Numbers at the links represent the
green times for the particular direction (determined by global optimization).

and 700 driver agents. Every driver is assigned to a randomly selected origin-
destination pair. Initially it is informed about only a given number of routes. The
experiments presented next were performed with each agent knowing five routes.
These route options are different for each driver and were generated using an
algorithm that computes the shortest path (one route) and the shortest path via
arbitrary detours (the other four). We notice that, due to topological constraints,
it was not always possible to generate five routes for each driver. One example
is the following: origin and destination are too close. Thus, in a few cases they
know less than this number, but at least one. Drivers can use three strategies to
select a route (before departure):

i. random selection
ii. greedy: always select the route with best average travel time so far
iii. probabilistically: for each route, the average travel time perceived so far is

use to compute a probability to select that route again.

The actual movement of the driver agents through the net is queue-based.

4 Results and Discussion

4.1 Metrics and Parameters

In order to evaluate the experiments, travel time (for drivers) and occupation
(for links) were measured. We discuss here only the mean travel time over the
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last 5 trips (henceforward attl5t) and travel time in a single trip. All experiments
were repeated 20 times.

The following parameters were used: time out for the simulation of one trip
(tout) equal to 300 when the number of drivers is 400 or 500; 400 when there are
600 drivers; and 500 when there are 700 drivers.

The percentage of drivers who adapt is either 0 or 100 (in this case all act
greedily) but any value can be used; percentage of Traffic Lights that act greedily
is either 0 or 100; a link is considered jammed if its occupancy is over 50%; cycle
length for signal plans is 40 seconds.

For the Q-learning, there is an experimentation phase of 10×tout, the learning
rate is α = 0.1 and the discount rate is λ = 0.9.

4.2 Global Optimization

For the sake of comparison, we show the results of a centralized approach be-
fore we continue with the main focus of the paper on local (co-)adaptation ap-
proaches. We use a centralized and heuristic optimization method in order to
compute the optimal split of the cycle time between two traffic directions at each
intersection.

This centralized optimization was performed using the DAVINCI (Developing
Agent-based simulations Via INtelligent CalIbration) Calibration Toolkit for
SeSAm, that is a general purpose calibration and optimization tool for sim-
ulation. Although DAVINCI provides several global search strategies such as
genetic algorithm (GA), simulated annealing or gradient based search, here we
have used standard GA only, with a fitness proportional selection.

The input parameters for the GA are the default split values for each of the
36 traffic light agents (see next). The optimization objective is to minimize the
average travel time over all drivers in a scenario with 400 drivers, where all
drivers have only one route (the shortest path).

For a cycle length of 40 seconds, we have set seven possible values for the
split at each intersection: 5/35, 10/30, 15/25, 20/20, ..., 35/5. Using four bits to
codify each of these splits, for each of the 36 intersection, this leads to 144 bits
for each GA string. We have allowed the GA to run for 100 generations.

The resulting optimized splits can be seen in Figure 2: numbers depicted close
to the respective links indicate how much green time the link receives in the best
solution found by the GA. Using these optimized splits, the average travel time
of drivers is 105. This value can be used as a benchmark to assess the utility of
adapting drivers and Traffic Lights in a decentralized way.

4.3 Drivers and Traffic-Lights Learning in a Decentralized Way

In this section we discuss the simulations and results collected when drivers
and Traffic Lights co-adapt using different strategies, as given in Section 3. As
a measure of performance, we use the attl5t defined previously (Section 4.1).
These are summarized in Table 1. For all scenarios described in this subsection,
400 drivers were used. As said, all experiments were repeated 20 times. Standard
deviations are not higher than 4% of the mean value given here.
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Table 1. Average Travel Time Last 5 Trips (attl5t) for 400 drivers, under different
conditions

Type of Simulation Average Travel Time
Last 5 Trips

greedy drivers / fixed traffic lights 100

probabilistic drivers / fixed traffic lights 149

greedy drivers / greedy traffic lights 106

probabilistic drivers / greedy traffic lights 143

greedy drivers / Qlearning traffic lights 233

probabilistic drivers / Qlearning traffic lights 280

Greedy or Probabilistic Drivers; Fixed Traffic Lights. In the case of
probabilistic drivers, the attl5t is 149 time units, while this is 100 if drivers
act greedily. The higher travel time is the price paid for the experimentation
that drivers continue doing, even though the optimal policy was achieved long
before (remember that the attl5t is computed only over the last 5 trips). The
greedy action is of course much better after the optimal policy was learned.
In the beginning of a simulation run, when experimentation does pay off, the
probabilistic driver performs better.

Notice that this travel time is slightly better than the one found by the
heuristic optimization tool described before, which was 105. In summary, greedy
actions by the drivers work because they tend to select the routes with the short-
est path and this normally distributes drivers more evenly than the case where
drivers take longer routes.

Greedy or Probabilistic Drivers; Greedy Traffic Lights. When Traffic
Lights also act greedily we can see that this does not automatically improve the
outcome (in comparison with the case in which Traffic Lights are fixed): the attl5t
is 106. This happens because the degree of freedom of Traffic Lights’ actions is
low, as actions are highly constrained. For example, acting greedily can be highly
sub-optimal when, for instance, traffic light A serves direction D1 (thus keeping
D2 with red light) but the downstream flow of D1 is already jammed. In this
case, the light might indeed provide green for vehicles on D1 but these cannot
move due to the downstream jam. Worse, jam may appear on the previously
un-jammed D2 too due to the small share of green time. This explains why
acting greedily at Traffic Lights is not necessarily a good policy. The travel time
of 106, when compared to the travel time found by the centralized optimization
tool (105), is of course similar. This is not surprising because the decentralized
strategy does exactly the same as the centralized optimizer, namely drivers use
their best route and Traffic Lights optimize greedily.

Q-Learning Traffic Lights. We have expected Q-learning to perform bad be-
cause it is already known that it does not have a good performance in noisy and
non-stationary traffic scenarios [13]. In order to test this, we have implemented a
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Q-learning mechanism in the traffic lights. Available actions are: to open the phase
serving either one direction (e.g. D1), or the other (D2). The states are the com-
bination of abstract states in both approaching links, i.e. {D1 jammed, D1 not
jammed} × {D2 jammed, D2 not jammed}.

The low performance of Q-learning in traffic scenarios is due basically to the
fact that the environment is non-stationary, not due to the poor discretization of
states. Convergence is not achieved before the environment changes again, and
thus Traffic Lights remain in the experimentation phase.

4.4 Scenarios with More Drivers

For more than 400 drives, we only investigate the cases of greedy drivers / fixed
Traffic Lights versus the scenario in which both drivers and Traffic Lights act
greedily. This was done in order to test whether or not increasing volume of
traffic (due to increasing number of drivers in the network) would cause greedy
Traffic Lights to perform better. This is expected to be the case since once the
number of drivers increases, greedy actions by the drivers alone do not bring
much gain; some kind of control in the Traffic Lights is expect to be helpful in
case of high occupancy of the network. Notice that 400, 500, 600 and 700 drivers
mean an average occupancy of ≈ 40%, 47%, 59%, and 72% per link respectively.

In Table 2 the attl5t for these numbers of drivers are shown. The case for
400 drivers was discussed above. With more than 600 drivers, the attl5t is lower
when Traffic Lights also act greedily. In the case of 700 drivers, the improvement
in travel time (411 versus 380) is about 8%. Thus, the greedy traffic lights are
successful in keeping the occupancy of links lower, resulting in a reduction of
travel times.

Table 2. Average Travel Time Last 5 Trips for Different Number of Drivers and
Different Adaptation Schemes

Average Travel Time Last 5 Trips

Type of Simulation Nb. of Drivers
400 500 600 700

greedy drivers / fixed traffic lights 100 136 227 411

greedy drivers / greedy traffic lights 106 139 215 380

4.5 Overall Discussion

In the experiments presented, one can see that different strategies concerning the
adaptivity of drivers, as well as of Traffic Lights have distinct results in different
settings. We summarize here the main conclusions.

For the 6×6 network depicted, increasing the links capacity from 15 to 20 would
lead to travel time levels that are the same we have achieved without this increase
in capacity, i.e. substituting this increase by a better use of the available infrastruc-
ture. This is important because increasing network capacity is not always econom-
ically feasible, so that other measures must be taken. Diverting people by giving
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information to them, has only limited performance. Thus the idea is to use the
control infrastructure in a more intelligent way. Therefore, we have explored the
capability of the Traffic Lights to cope with the increasing demand.

Regarding travel time, it was shown that the strategies implemented in the
Traffic Lights pay off in several cases, especially when the demand increases. We
have also measured the number of drivers who arrive before time tout. This is not
shown here but, to give a general idea of the figures, bad performance (around
75% arrived) was seen only when the drivers adapt probabilistically. The general
trend is that when the traffic lights also adapt, the performance increases, for
all metrics used.

Regarding the use of Q-learning, as said, single-agent learning, i.e. each agent
learns isolated using Q-learning, is far from optimum here due to the non-
stationarity nature of the scenario. This is true especially for those links located
close to the main destination and the main street as they tend to be part of each
driver’s trip so that the pattern of volume of vehicles changes dramatically. A
possible solution is to use collaborative Traffic Lights. In this case, traffic light
A would at least ask/sense traffic light B downstream whether or not it shall
act greedily. This however leads to a cascade of dependencies among the Traffic
Lights. In the worst case, everybody has to consider everybody’s state. Even
if this is done in a centralized way (which is far from desirable), the number
of state-action pairs prevents the use of multiagent Q-learning in its standard
formulation.

5 Conclusion

Several studies and approaches exist for modelling travellers’ decision-making.
In commuting scenarios in particular, probabilistic adaptation in order to max-
imize private utilities is one of those approaches. However, there is hardly any
attempt to study what happens when both the driver and the traffic light use
some evolutionary mechanism in the same scenario or environment, especially if
no central control exist. In this case, co-adaptation happens in a decentralized
fashion. This is an important issue because, although ITS have reached a high
technical standard, the reaction of drivers to these systems is fairly unknown. In
general, the optimization measures carried out in the traffic network both affect
and are affected by drivers’ reactions to them. This leads to a feedback loop that
has received little attention to date. In the present paper we have investigated
this loop by means of a prototype tool constructed in an agent-based simulation
environment. This tool has modules to cope with the demand and the supply
sides, as well as to implement the ITS modules and algorithms for the learning,
adaptation etc.

Results show an improvement regarding travel time and occupancy (thus, both
the demand and supply side) when all actors co-evolve, especially in large-scale
situations e.g. involving hundreds of drivers. This was compared with situations
in which either only drivers or only Traffic Lights evolve, in different scenarios,
and with a centralized optimization method.
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This work can be extended in many directions. First, we are already working
to integrate the tools developed by the authors independly for supply and de-
mand, namely ITSUMO [14] and MATSim (http://www.matsim.org/) which
are simulators with far more capabilities than the prototype described here, and
allow the modeling of even more realistic scenarios. For instance, drivers’ trips
can be described in MATsim in a richer way including activities that compose a
trip such as dropping children at school, shopping, etc. The results are not expect
to differ in the general trends, though, unless en-route adaptation is added.

Therefore, a second extension relates to the implementation of en-route adap-
tation of drivers in reaction to the perception of jammed links.

Finally, another extension is the use of heuristics for multiagent reinforcement
learning in order to improve its performance. This is not trivial as it is known
that reinforcement learning for non-stationary environments is a hard problem,
especially when several agents are involved. In this context we also want to test
a scenario where drivers and traffic lights learn taking turns.
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Abstract. We study optimal control in large stochastic multi-agent sys-
tems in continuous space and time. We consider multi-agent systems
where agents have independent dynamics with additive noise and con-
trol. The goal is to minimize the joint cost, which consists of a state
dependent term and a term quadratic in the control. The system is de-
scribed by a mathematical model, and an explicit solution is given. We
focus on large systems where agents have to distribute themselves over a
number of targets with minimal cost. In such a setting the optimal con-
trol problem is equivalent to a graphical model inference problem. Exact
inference will be intractable, and we use the mean field approximation to
compute accurate approximations of the optimal controls. We conclude
that near to optimal control in large stochastic multi-agent systems is
possible with this approach.

1 Introduction

A collaborative multi-agent system is a group of agents in which each member
behaves autonomously to reach the common goal of the group. Some examples
are teams of robots or unmanned vehicles, and networks of automated resource
allocation. An issue typically appearing in multi-agent systems is decentralized
coordination; the communication between agents may be restricted, there may
be no time to receive all the demands for a certain resource, or an unmanned
vehicle may be unsure about how to anticipate another vehicles movement and
avoid a collision.

In this paper we focus on the issue of optimal control in large multi-agent sys-
tems where the agents dynamics are continuous in space and time. In particular
we look at cases where the agents have to distribute themselves in admissible
ways over a number of targets. Due to the noise in the dynamics, a configura-
tion that initially seems attainable with little effort may become harder to reach
later on.

Common approaches to derive a coordination rule are based on discretizations
of space and time. These often suffer from the curse of dimensionality, as the
complexity increases exponentially in the number of agents. Some successfull
ideas, however, have recently been put forward, which are based on structures
that are assumed to be present [1,2].
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Here we rather model the system in continuous space and time, following the
approach of Wiegerinck et al. [3]. The agents satisfy dynamics with additive
control and noise, and the joint behaviour of the agents is valued by a joint cost
function that is quadratic in the control. The stochastic optimization problem
may then be transformed into a linear partial differential equation, which can
be solved using generic path integral methods [4,5]. The dynamics of the agents
are assumed to factorize over the agents, such that the agents are coupled by
their joint task only.

The optimal control problem is equivalent to a graphical model inference prob-
lem [3]. In large and sparsely coupled multi-agent systems the optimal control
can be computed using the junction tree algorithm. Exact inference, however,
will break down when the system is both large and densely coupled. Here we
explore the use of graphical model approximate inference methods in optimal
control of large stochastic multi-agent systems. We apply the mean field approx-
imation to show that optimal control is possible with accuracy in systems where
exact inference breaks down.

2 Stochastic Optimal Control of a Multi-agent System

We consider n agents in a k-dimensional space R
k, the state of each agent a is

given by a vector xa in this space, satisfying stochastic dynamics

dxa(t) = ba(xa(t), t)dt + Bua(t)dt + σdw(t), (1)

where ua is the control of agent a, ba is an arbitrary function representing au-
tonomous dynamics, w is a Wiener process, and B and σ are k × k matrices.

The agents have to reach a goal at the end time T , they will pay a cost φ(x(T ))
at the end time depending on their joint end state x(T ) = (x1(T ), . . . , xn(T )),
but to reach this goal they will have to make an effort which depends on the
agents controls and states over time. At any time t < T , the expected cost-to-go
is

C(x, t, u(t → T )) =〈
φ(x(T )) +

∫ T

t

dθ V (x(θ), θ) +
n∑

a=1

∫ T

t

dθ
1
2
ua(θ)�Rua(θ)

〉
, (2)

given the agents initial state x, and the joint control over time u(t → T ). R
is a symmetric k × k matrix with positive eigenvalues, such that ua(θ)�Rua(θ)
is always a non-negative number, V (x(θ), θ) is the cost for the agents to be
in a joint state x(θ) at time θ. The issue is to find the optimal control which
minimizes the expected cost-to-go.

The optimal controls are given by the gradient

ua(x, t) = −R−1B�∂xaJ(x, t), (3)
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where J(x, t) the optimal expected cost-to-go, i.e. the cost (2) minimized over
all possible controls; a brief derivation is contained in the appendix. An impor-
tant implication of equation (3) is that at any moment in time, each agent can
compute its own optimal control if it knows its own state and that of the other
agents: there is no need to discuss possible strategies! This is because the agents
always perform the control that is optimal, and the optimal control is unique.

To compute the optimal controls, however, we first need to find the optimal
expected cost-to-go J . The latter may be expressed in terms of a forward diffusion
process:

J(x, t) = −λ log
∫

dy ρ(y, T |x, t)e−φ(y)/λ, (4)

ρ(y, T |x, t) being the transition probability for the system to go from a state
x at time t to a state y at the end time T . The constant λ is determined by
the relation σσ� = λBR−1B�, equation (14) in the appendix. The density
ρ(y, θ|x, t), t < θ ≤ T , satisfies the forward Fokker-Planck equation,

∂θρ = −V

λ
−

n∑
a=1

∂�
ya

baρ +
n∑

a=1

1
2
Tr

(
σσ�∂2

ya
ρ
)
. (5)

The solution to this equation may generally be estimated using path integral
methods [4,5], in a few special cases a solution exists in closed form:

Example 1. Consider a multi-agent system in one dimension in which there is
noise and control in the velocities of the agents, according to the set of equations{

dxa(t) = ẋa(t)dt
dẋa(t) = ua(t)dt + σdw(t).

Note that this set of equations can be merged into a single equation of the
form (1) by a concatenation of xa and ẋa into a single vector. We choose the
potential V = 0. Under the task where each agent a has to reach a target with
location μa at the end time T , and arrive with speed μ̇a, the end cost function
φ can be given in terms of a product of delta functions, that is

e−φ(x,ẋ)/λ =
n∏

a=1

δ(xa − μa)δ(ẋa − μ̇a),

and the system decouples into n independent single-agent systems. The dynamics
of each agent a is given by a transition probability

ρa(ya, ẏa, T |xa, ẋa, t) =

1√
det(2πc)

exp

(
−1

2

∥∥∥∥c−1/2
(

ya − xa − (T − t)ẋa

ẏa − ẋa

)∥∥∥∥
2
)

, (6)

where

c =
1
6

(
2(T − t)3 3(T − t)2

3(T − t)2 6(T − t)

)
σ2.
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The optimal control follows from equations (3) and (4) and reads

ua(xa, ẋa, t) =
6(μa − xa − (T − t)ẋa) − 2(T − t)(μ̇a − ẋa)

(T − t)2
. (7)

The first term in the control will steer the agent towards the target μa in a
straight line, but since this may happen with a speed that differs from μ̇a with
which the agent should arrive, there is a second term that initially ‘exaggerates’
the speed for going in a straight line, so that in the end there is time to adjust
the speed to the end speed μ̇a.

2.1 A Joint Task: Distribution over Targets

We consider the situation where agents have to distribute themselves over a
number of targets s = 1, . . . , m. In general, there will be mn possible combina-
tions of assigning the n agents to the targets—note, in example 1 we considered
only one assignment. We can describe this by letting the end cost function φ be
given in terms of a positive linear combination of functions

Φ(y1, . . . , yn, s1, . . . , sn) =
n∏

a=1

Φa(ya, sa)

that are peaked around the location (μs1 , . . . , μsn) of a joint target (s1, . . . , sn),
that is

e−φ(y)/λ =
∑

s1,...,sn

w(s1, . . . , sn)
n∏

a=1

Φa(ya, sa),

where the w(s1, . . . , sn) are positive weights. We will refer to these weights as
coupling factors, since they introduce dependencies between the agents. The
optimal control of a single agent is obtained using equations (3) and (4), and is
a weighted combination of single-target controls,

ua =
m∑

s=1

pa(s)ua(s) (8)

(the explicit (x, t) dependence has been dropped in the notation). Here ua(s) is
the control for agent a to go to target s,

ua(s) = −R−1B�∂xaZa(s), (9)

with Za(s) defined by

Za(sa) =
∫

dyaρa(ya, T |xa, t)Φa(ya, sa).

The weights pa(s) are marginals of the joint distribution

p(s1, . . . , sn) ∝ w(s1, . . . , sn)
n∏

a=1

Za(sa). (10)

p thus is a distribution over all possible assignments of agents to targets.
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Example 2. Consider the multi-agent system of example 1, but with a different
task: each of the agents a = 1, . . . , n has to reach a target s = 1, . . . , n with
location μs at the end time T , and arrive with zero speed, but no two agents
are allowed to arrive at the same target. We model this by choosing an end cost
function φ(x, ẋ) given by

e−φ(x,ẋ)/λ =
∑

s1,...,sn

w(s1, . . . , sn)
n∏

a=1

δ(ya − μa)δ(ẏa)

with coupling factors

w(s1, . . . , sn) =
n∏

a,a′=1

exp
( c

λn
δsa,sa′

)
.

For any agent a, the optimal control under this task is a weighted average of
single target controls (7),

ua(xa, ẋa, t) =
6(〈μa〉 − xa − (T − t)ẋa) + 2(T − t)ẋa

(T − t)2
, (11)

where 〈μa〉 the averaged target for agent a,

〈μa〉 =
n∑

s=1

pa(s)μs.

The average is taken with respect to the marginal pa of the joint distribution

p(s1, . . . , sn) ∝ w(s1, . . . , sn)
n∏

a=1

ρa(μsa , 0, T |xa, ẋa, t),

the densities ρa given by (6).

In general, and in example 2 in particular, the optimal control of an agent will
not only depend on the state of this agent alone, but also on the states of other
agents. Since the controls are computed anew at each instant in time, the agents
are able to continuously adapt to the behaviour of the other agents, adjusting
their control to the new states of all the agents.

2.2 Factored End Costs

The additional computational effort in multi-agent control compared to single-
agent control lies in the computation of the marginals of the joint distribution
p, which involves a sum of at most mn terms. For small systems this is feasible,
for large systems this will only be feasible if the summation can be performed
efficiently. Whether an efficient way of computing the marginals exists, depends
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on the joint task of the agents. In the most complex case, to fulfil the task each
agent will have to take the joint state of the entire system into account. In less
complicated cases, an agent will only consider the states of a few agents in the
system, in other words, the coupling factors will have a nontrivial factorized
form:

w(s1, . . . , sn) =
∏
A

wA(sA),

where the A are subsets of agents. In such cases we may represent the couplings,
and thus the joint distribution, by a factor graph; see Figure 1 for an example.

1 , 2

1 2

1 , 4

4

2 , 3

3

2 , 4 3 , 4

Fig. 1. Example of a factor graph for a multi-agent system of four agents. The cou-
plings are represented by the factors A, with A = {1, 4}, {1, 2}, {2, 4}, {3, 4}, {2, 3}.

2.3 Graphical Model Inference

In the previous paragraph we observed that the joint distribution may be repre-
sented by a factor graph. This implies that the issue of assigning agents to targets
is equivalent to a graphical model inference problem. Both exact methods (junc-
tion tree algorithm [6]) and approximate methods (mean field approximation [7],
belief propagation [8]) can be used to compute the marginals in (8). In this paper
we will use the mean field (MF) approximation to tackle optimal control in large
multi-agent systems.

In the mean field approximation we minimize the mean field free energy, a
function of single agent marginals qa defined by

FMF({qa}) = −〈λ log w〉q −
∑

a

〈λ log Za〉qa − λ
∑

a

H(qa),

where q(s) = q1(s1) · · · qn(sn). Here the H(qa) are the entropies of the distribu-
tions qa,

H(qa) = −
∑

s

qa(s) log qa(s).

The minimum
JMF = min

{qa}
FMF({qa})

is an upper bound for the optimal cost-to-go J , it equals J in case the agents
are uncoupled. FMF has zero gradient in its local minima, that is,

0 =
∂F (q1(s1), . . . , qn(sn))

∂qa(sa)
a = 1, . . . , n,
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with additional constraints for normalization of the probability vectors qa. So-
lutions to this set of equations are implicitely given by the mean field equations

qa(sa) =
Za(sa) exp (〈log w|sa〉)∑n

s′
a=1 Za(s′a) exp (〈log w|s′a〉) (12)

where 〈log w|sa〉 the conditional expectation of log w given sa,

〈log w|sa〉 =
∑

s1,...,sn\sa

( ∏
a′ �=a

qa′(sa′)
)

log w(s1, . . . , sn).

The mean field equations are solved by means of iteration, and the solutions are
the local minima of the mean field free energy. Thus the mean field free energy
minimized over all solutions to the mean field equations equals the minimum
JMF.

The mean field approximation of the optimal control is found by taking the
gradient of the minimum JMF of the mean field free energy, similar to the exact
case where the optimal control is the gradient of the optimal expected cost-to-go,
equation (3):

ua(x, t) = −R−1
a B�

a ∂xaJMF(x, t) =
∑
sa

qa(sa)ua(xa, t; sa).

Similar to the exact case, it is an average of single-agent single-target optimal
controls ua(xa, t; sa), the controls ua(xa, t; sa) given by equation (9), where the
average is taken with respect to the mean field approximate marginal qa(sa) of
agent a.

3 Control of Large Multi-agent Systems

Exact inference of multi-agent optimal control is intractable in large and densely
coupled systems. In this section we present numerical results from approximate
inference in optimal control of a large multi-agent system. We focus on the system
presented in example 2. A group of n agents have to distribute themselves over
an equal number of targets, each target should be reached by precisely one agent.
The agents all start in the same location at t = 0, and the time they reach the
targets lies at T = 1, as illustrated in figure 3. The variance of the noise equals
0.1 and the control cost parameter R equals 1, both are the same for each agent.
The coupling strength c in the coupling factors equals −10. For implementation,
time had to be discretized: each time step Δt equaled 0.05 times the time-to-go
T − t.

We considered two approximate inference methods for obtaining the marginals
in (8), the mean field approximation described in section 2.3, and an approxi-
mation which at each moment in time assigns each agent to precisely one target.
In the latter method the agent that is nearest to any of the targets is assigned
first to its nearest target, then, removing this pair of agent and target, this is
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repeated for the remaining agents and targets, until there are no more remain-
ing agents and targets. We will refer to this method as the sort distances (SD)
method.

For several sizes of the system we computed the control cost and the required
CPU time to calculate the controls. This we did under both control methods.
Figures 2(a) and (b) show the control cost and the required CPU time as a
function of the system size n; each value is an average obtained from 100 sim-
ulations. To emphasize the necessity of the approximate inference methods, in
figure 2(b) we included the required CPU time under exact inference; this quan-
tity increases exponentially with n, as we may have expected, making exact
inference intractable in large MASs. In contrast, both under the SD method and
the MF method the required CPU time appears to increase polynomially with n,
the SD method requiring less computation time than the MF method. Though
the SD method is faster than the MF method, it also is more costly: the control
cost under the SD method is significantly higher than under the MF method.
The MF method thus better approximates the optimal control.
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Fig. 2. The control cost (a) and the required CPU Time in seconds (b) under the
exact method (· − ·), the MF method (−−), and the SD method (—)

Figure 3 shows the positions and the velocities of the agents over time, both
under the control obtained using the MF approximation and under the control
obtained with the SD method. We observe that under MF control, the agents
determine their targets early, between t = 0 and t = 0.5, and the agents ve-
locities gradually increase from zero to a maximum value at t = 0.5 to again
gradually decrease to zero, as required. This is not very surprising, since the
MF approximation is known to show an early symmetry breaking. In contrast,
under the SD method the decision making process of the agents choosing their
targets takes place over almost the entire time interval, and the velocities of
the agents are subject to frequent changes; in particular, as time increases the
agents who have not yet chosen a target seem to exchange targets in a frequent
manner. This may be understood by realising that under the SD method agents
always perform a control to their nearest target only, instead of a weighted com-
bination of controls to different targets which is the situation under MF control.
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Fig. 3. A multi-agent system of 15 agents. The positions (a) and the velocities (b) over
time under MF control, and the positions (c) and the velocities (d) over time under
SD control.

Further more, compared with the velocities under the MF method the velocities
under the SD method take on higher maximum values. This may account for
the relatively high control costs under SD control.

4 Discussion

In this paper we studied optimal control in large stochastic multi-agent systems
in continuous space and time, focussing on systems where agents have a task
to distribute themselves over a number of targets. We followed the approach of
Wiegerinck et al. [3]: we modeled the system in continuous space and time, result-
ing in an adaptive control policy where agents continuously adjust their controls
to the environment. We considered the task of assigning agents to targets as a
graphical model inference problem. We showed that in large and densely coupled
systems, in which exact inference would break down, the mean field approxima-
tion manages to compute accurate approximations of the optimal controls of the
agents.

We considered the performances of the mean field approximation and an alter-
native method, referred to as the sort distances method, on an example system
in which a number of agents have to distribute themselves over an equal number



24 B. van den Broek, W. Wiegerinck, and B. Kappen

of targets, such that each target is reached by precisely one agent. In the sort
distances method each agent performs a control to a single nearby target, in
such a way that no two agents head to the same target at the same time. This
method has an advantage of being fast, but it results in relatively high control
costs. Because each agent performs a control to a single target, agents switch
targets frequently during the control process. In the mean field approximation
each agent performs a control which is a weighted sum of controls to single tar-
gets. This requires more computation time than the sort distances method, but
involves significantly lower control costs and therefore is a better approximation
to the optimal control.

An obvious choice for a graphical model inference method not considered in
the present paper would be belief propagation. Results of numeric simulations
with this method in the context of multi-agent control, and comparisons with the
mean field approximation and the exact junction tree algorithm will be published
elsewhere.

There are many possible model extensions worthwhile exploring in future re-
search. Examples are non-zero potentials V in case of a non-empty environment,
penalties for collisions in the context of robotics, non-fixed end times, or bounded
state spaces in the context of a production process. Typically, such model ex-
tensions will not allow for a solution in closed form, and approximate numerical
methods will be required. Some suggestions are given by Kappen [4,5]. In the
setting that we considered the model which describes the behaviour of the agents
was given. It would be worthwhile, however, to consider cases of stochastic op-
timal control of multi-agent systems in continuous space and time where the
model first needs to be learned.
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A Stochastic Optimal Control

In this appendix we give a brief derivation of equations (3), (4) and (5), starting
from (2). Details can be found in [4,5].

The optimal expected cost-to-go J , by definition the expected cost-to-go (2)
minimized over all controls, satisfies the stochastic Hamilton-Jacobi-Bellman
(HJB) equation

−∂tJ = min
u

n∑
a=1

(
1
2
u�

a Rua + (ba + Bua)� ∂xaJ +
1
2
Tr

(
σσ�∂2

xa
J
))

+ V,

with boundary condition J(x, T ) = φ(x). The minimization with respect to u
yields equation (3), which specifies the optimal control for each agent. Substi-
tuting these controls in the HJB equation gives a non-linear equation for J . We
can remove the non-linearity by using a log transformation: if we introduce a
constant λ, and define Z(x, t) through

J(x, t) = −λ log Z(x, t), (13)

then

1
2
u�

a Rua + (Bua)�∂xaJ = −1
2
λ2Z−2(∂xaZ)�BR−1B�∂xaZ,

1
2
Tr

(
σσ�∂2

xa
J
)

=
1
2
λZ−2(∂xaZ)�σσ�∂xaZ − 1

2
λZ−1Tr

(
σσ�∂2

xa
Z

)
.

The terms quadratic in Z vanish when σ�σ and R are related via

σσ� = λBR−1B�. (14)

In the one dimensional case a constant λ can always be found such that equa-
tion (14) is satisfied, in the higher dimensional case the equation puts restrictions
on the matrices σ and R, because in general σσ� and BR−1B� will not be pro-
portional.

When equation (14) is satisfied, the HJB equation becomes

∂tZ =

(
V

λ
−

n∑
a=1

b�a ∂xa −
n∑

a=1

1
2
Tr

(
σσ�∂2

xa

))
Z

= −HZ, (15)
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where H a linear operator acting on the function Z. Equation (15) is solved
backwards in time with Z(x, T ) = e−φ(x)/λ. However, the linearity allows us to
reverse the direction of computation, replacing it by a diffusion process, as we
will now explain.

The solution to equation (15) is given by

Z(x, t) =
∫

dyρ(y, T |x, t)e−φ(y)/λ, (16)

the density ρ(y, ϑ|x, t) (t < ϑ ≤ T ) satisfying the forward Fokker-Planck equa-
tion (5). Combining the equations (13) and (16) yields the expression (4) for the
optimal expected cost-to-go.



Continuous-State Reinforcement Learning

with Fuzzy Approximation
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Abstract. Reinforcement learning (RL) is a widely used learning para-
digm for adaptive agents. There exist several convergent and consistent
RL algorithms which have been intensively studied. In their original form,
these algorithms require that the environment states and agent actions
take values in a relatively small discrete set. Fuzzy representations for
approximate, model-free RL have been proposed in the literature for the
more difficult case where the state-action space is continuous. In this
work, we propose a fuzzy approximation architecture similar to those
previously used for Q-learning, but we combine it with the model-based
Q-value iteration algorithm. We prove that the resulting algorithm con-
verges. We also give a modified, asynchronous variant of the algorithm
that converges at least as fast as the original version. An illustrative
simulation example is provided.

1 Introduction

Learning agents can tackle problems that are difficult to solve with pre-program-
med solutions. Reinforcement learning (RL) is a popular learning paradigm for
adaptive agents, thanks to its mild assumptions on the environment (which can
be a nonlinear, stochastic process), and thanks to its ability to work without an
explicit model of the environment [1,2]. At each time step, an RL agent perceives
the complete state of the environment and takes an action. This action causes
the environment to move into a new state. The agent then receives a scalar
reward signal indicating the quality of this transition. The agent’s objective is
to maximize the cumulative reward over the course of interaction. There exist
several convergent and consistent RL algorithms which have been intensively
studied [1,2,3]. Unfortunately, these algorithms apply in general only to problems
having discrete and not too large state-action spaces since, among others, they
require to store estimates of cumulative rewards for every state or state-action
pair. For problems with discrete but large state-action spaces, or continuous
state-action spaces, approximate algorithms have to be used.

In this paper, we analyze the convergence of some model-based reinforcement
learning algorithms exploiting a fuzzy approximation architecture. Our algo-
rithms deal with problems for which the complexity comes from the state space,

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 27–43, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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but not the action space, i.e., where the state space contains an infinite or ex-
tremely large number of elements and the action space is discrete and moderate
in size. Most of our results also hold in the case where the action space is large
or continuous, but in that case require a discretization procedure that selects
a moderate number of representative actions. A significant number of related
fuzzy approximators have been proposed, e.g., for Q-learning [4, 5, 6] or actor-
critic algorithms [6, 7, 8, 9, 10]. However, most of these approaches are heuristic
in nature, and their theoretical properties have not been investigated. Notable
exceptions are the actor-critic algorithms in [8, 9].

On the other hand, a rich body of literature concerns the theoretical analy-
sis of approximate RL algorithms, both in a model-based setting [11, 12, 13, 14]
and when an a priori model is not available [15, 16, 17, 18, 19].1 While conver-
gence is not ensured for an arbitrary approximator (see [11, 14] for examples
of divergence), there exist approximation schemes that do provide convergence
guarantees. These mainly belong to the family of linear basis functions, and are
encountered under several other names: kernel functions [15, 16], averagers [13],
interpolative representations [17]. Some authors also investigate approximators
that alter their structure during learning in order to better represent the so-
lution [16, 20, 21]. While some of these algorithms exhibit impressing learning
capabilities, they may face convergence problems [16].

Here, we consider an approximator that represents the Q-function using a
fuzzy partition of the state space. While similar representations have previ-
ously been used in fuzzy Q-learning, in this paper the fuzzy approximator is
combined with the model-based Q-value iteration algorithm. The resulting al-
gorithm is shown to converge. Afterwards, we propose a variant of this algo-
rithm, which we name asynchronous fuzzy Q-iteration, and which we show con-
verges at least as fast as the original version. Asynchronous Q-iteration has been
widely used in exact RL, but its approximate counterpart has not been studied
before.

The remainder of this paper is structured as follows. Section 2 describes briefly
the RL problem and reviews some relevant results from the dynamic program-
ming theory. Section 3 introduces the approximate Q-iteration algorithm, which
is an extension of the classical Q-iteration algorithm to cases where function
approximators are used. Section 4 presents the proposed fuzzy approximator.
The properties of synchronous and asynchronous approximate Q-iteration using
this approximator are analyzed in Section 5. Section 6 applies the algorithms
introduced to a nonlinear control problem with four continuous state variables,
and compares the performance of the algorithms with that of Q-iteration with
radial basis function approximation. Section 7 describes possible extensions of
the algorithm for stochastic tasks and online learning. Section 8 outlines ideas
for future work and concludes the paper.

1 Some authors use ‘model-based RL’ when referring to algorithms that build a model
of the environment from interaction. We use the term ‘model-learning’ for such
techniques, and reserve the name ‘model-based’ for algorithms that rely on an a
priori model of the environment.
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2 Reinforcement Learning

In this section, the RL task is briefly introduced and its optimal solution is
characterized. The presentation is based on [1, 2].

Consider a deterministic Markov decision process (MDP) with the state space
X , the action space U , the transition function f : X × U → X , and the reward
function ρ : X × U → R.2 As a result of the agent’s action uk in state xk at the
discrete time step k, the state changes to xk+1 = f(xk, uk). At the same time,
the agent receives the scalar reward signal rk+1 = ρ(xk, uk), which evaluates the
immediate effect of action uk, but says nothing about its long-term effects.3

The agent chooses actions according to its policy h : X → U , using uk =
h(xk). The goal of the agent is to learn a policy that maximizes, starting from
the current moment in time (k = 0) and from any state x0, the discounted
return:

R =
∞∑

k=0

γkrk+1 =
∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) and xk+1 = f(xk, uk) for k ≥ 0. The discounted return com-
pactly represents the reward accumulated by the agent in the long run. The learn-
ing task is therefore to maximize the long-term performance, while only receiving
feedback about the immediate, one-step performance. This can be achieved by
computing the optimal action-value function.

An action-value function (Q-function), Qh : X × U → R, gives the return of
each state-action pair under a given policy h:

Qh(x, u) = ρ(x, u) +
∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) for k ≥ 1. The optimal action-value
function is defined as Q∗(x, u) = maxh Qh(x, u). Any policy that picks for every
state the action with the highest optimal Q-value:

h∗(x) = argmax
u

Q∗(x, u) (3)

is optimal, i.e., it maximizes the return (1).
A central result in RL, upon which many algorithms rely, is the Bellman

optimality equation:

Q∗(x, u) = ρ(x, u) + γ max
u′∈U

Q∗(f(x, u), u′) ∀x, u (4)

2 Throughout the paper, the standard control-theoretic notation is used: x for state, X
for state space, u for control action, U for action space, f for environment dynamics.
We denote reward functions by ρ, to distinguish them from the instantaneous rewards
r and the return R. We denote policies by h.

3 A stochastic formulation is possible. In that case, expected returns under the prob-
abilistic transitions must be considered.
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This equation can be solved using the Q-value iteration algorithm. Let the set
of all Q-functions be denoted by Q. Define the Q-iteration mapping T : Q → Q,
which computes the right-hand side of the Bellman equation for any Q-function:

[T (Q)](x, u) = ρ(x, u) + γ max
u′∈U

Q(f(x, u), u′) (5)

Using this notation, the Bellman equation (4) states that Q∗ is a fixed point of
T , i.e., Q∗ = T (Q∗). The following result is also well-known.

Theorem 1. T is a contraction with factor γ < 1 in the infinity norm, i.e., for
any pair of functions Q and Q′, it is true that ‖T (Q) − T (Q′)‖∞ ≤ γ ‖Q − Q′‖∞.

The Q-value iteration (Q-iteration, for short) algorithm starts from an arbitrary
Q-function Q0 and in each iteration κ updates the Q-function using the formula
Qκ+1 = T (Qκ). From Theorem 1, it follows that T has a unique fixed point, and
since from (4) this point is Q∗, the iterative scheme converges to Q∗ as κ → ∞.

Q-iteration uses an a priori model of the task, in the form of the transition and
reward functions f , ρ. There also exist algorithms that do not require an a priori
model. Model-free algorithms like Q-learning work without an explicit model,
by learning directly the optimal Q-function from real or simulated experience
in the environment. Model-learning algorithms like Dyna estimate a model from
experience and use it to derive Q∗ [1].

3 Q-iteration with Function Approximation

In general, the implementation of Q-iteration (5) requires that Q-values are
stored and updated explicitly for each state-action pair. If some of the state
or action variables are continuous, the number of state-action pairs is infinite,
and an exact implementation is impossible. Instead, approximate solutions must
be used. Even if the number of state-action pairs is finite but very large, exact
Q-iteration might be impractical, and it is useful to approximate the Q-function.

The following mappings are defined in order to formalize approximate Q-
iteration (the notation follows [17]).

1. The Q-iteration mapping T , defined by equation (5).
2. The approximation mapping F : R

n → Q, which for a given value of the
parameter vector θ ∈ R

n produces an approximate Q-function Q̂ = F (θ). In
other words, the parameter vector θ is a finite representation of Q̂.

3. The projection mapping P : Q → R
n, which given a target Q-function Q

computes the parameter vector θ such that F (θ) is as close as possible to Q
(e.g., in a least-squares sense).

The notation [F (θ)](x, u) refers to the value of the Q-function F (θ) for the
state-action pair (x, u). The notation [P (Q)]l refers to the l-th component in the
parameter vector P (Q).
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Approximate Q-iteration starts with an arbitrary (e.g., identically 0) param-
eter vector θ0 and at each iteration κ updates it using the composition of the
mappings P , T , and F :

θκ+1 = PTF (θκ) (6)

Unfortunately, the approximate Q-iteration is not guaranteed to converge for
an arbitrary approximator. Counter-examples can be found for the related value-
iteration algorithm (e.g., [11]), but they apply directly to the Q-iteration algo-
rithm, as well. One particular case in which approximate Q-iteration converges
is when the composite mapping PTF is a contraction [11,13]. This property will
be used below to show that fuzzy Q-iteration converges.

4 Fuzzy Q-iteration

In this section, we propose a fuzzy approximation architecture similar to those
previously used in combination with Q-learning [4,6], and apply it to the model-
based Q-iteration algorithm. The theoretical properties of the resulting fuzzy
Q-iteration algorithm are investigated in Section 5.

In the sequel, it is assumed that the action space is discrete. We denote it by
U0 = {uj |j = 1, . . . , M}. For instance, this discrete set can be obtained from the
discretization of an originally continuous action space. The state space can be
either continuous or discrete. In the latter case, fuzzy approximation is useful
when the number of discrete states is large.

The proposed approximation scheme relies on a fuzzy partition of the state
space into N sets Xi, each described by a membership function μi : X → [0, 1].
A state x belongs to each set i with a degree of membership μi(x). In the sequel
the following assumptions are made:

1. The fuzzy partition has been normalized, i.e.,
∑N

i=1 μi(x) = 1, ∀x ∈ X .
2. All the fuzzy sets in the partition are normal and have singleton cores, i.e.,

for every i there exists a unique xi for which μi(xi) = 1 (consequently,
μi(xi) = 0 for all i 	= i by Assumption 1). The state xi is called the core
(center value) of the set Xi. This second assumption is required here for
brevity in the description and analysis of the algorithms; it can be relaxed
using results of [11].

For two examples of fuzzy partitions that satisfy the above conditions, see
Figure 1, from Section 6.

The fuzzy approximator stores an N ×M matrix of parameters, with one com-
ponent θi,j corresponding to each core-action pair (xi, uj).4 The approximator
takes as input a state-action pair (x, uj) and outputs the Q-value:

Q̂(x, uj) = [F (θ)](x, uj) =
N∑

i=1

μi(x)θi,j (7)

4 The matrix arrangement is adopted for convenience of notation only. For the the-
oretical study of the algorithms, the collection of parameters is still regarded as a
vector, leading e.g., to ‖θ‖∞ = maxi,j |θi,j |.
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Algorithm 1. Synchronous fuzzy Q-iteration
1: θ0 ← 0; κ ← 0
2: repeat
3: for i = 1, . . . , N, j = 1, . . . , M do
4: θκ+1,i,j ← ρ(xi, uj) + γ maxj

∑N
i=1 μi(f(xi, uj))θκ,i,j

5: end for
6: κ ← κ + 1
7: until ‖θκ − θκ−1‖∞ ≤ δ

This is a linear basis-functions form, with the basis functions only depending
on the state. The approximator (7) can be regarded as M distinct approximators,
one for each of the M discrete actions.

The projection mapping infers from a Q-function the values of the approxi-
mator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (8)

Note this is the solution θ to the problem:∑
i=1,...,N,j=1,...,M

|[F (θ)](xi, uj) − Q(xi, uj)|2 = 0

The approximator (7), (8) shares some strong similarities with several classes
of approximators that have already been used in RL: interpolative representa-
tions [11], averagers [13], and representative-state techniques [19].

The Q-iteration algorithm using the approximation mapping (7) and projec-
tion mapping (8) can be written as Algorithm 1. To establish the equivalence
between Algorithm 1 and the approximate Q-iteration in the form (6), observe
that the right-hand side in line 4 of Algorithm 1 corresponds to [T (Q̂κ)](xi, uj),
where Q̂κ = F (θκ). Hence, line 4 can be written θκ+1,i,j ← [PTF (θκ)]i,j and
the entire for loop described by lines 3–5 is equivalent to (6).

Algorithm 2 is a different version of fuzzy Q-iteration, that makes more effi-
cient use of the updates by using the latest updated values of the parameters θ
in each step of the computation. Since the parameters are updated in an asyn-
chronous fashion, this version is called asynchronous Q-iteration (in Algorithm 2
parameters are updated in sequence, but they can actually be updated in any
order and our results still hold). Although the exact version of asynchronous
Q-iteration is widely used [1, 2], the asynchronous variant has received little
attention in the context of approximate RL. To differentiate between the two
versions, Algorithm 1 is hereafter called synchronous fuzzy Q-iteration.

5 Convergence of Fuzzy Q-iteration

In this section, the convergence of synchronous and asynchronous fuzzy
Q-iteration is established, i.e., it is shown that there exists a parameter vector
θ∗ such that for both algorithms, θκ → θ∗ as κ → ∞. In addition, asynchronous
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Algorithm 2. Asynchronous fuzzy Q-iteration
1: θ0 ← 0; κ ← 0
2: repeat
3: θ ← θκ

4: for i = 1, . . . , N, j = 1, . . . , M do
5: θi,j ← ρ(xi, uj) + γ maxj

∑N
i=1 μi(f(xi, uj))θi,j

6: end for
7: θκ+1 ← θ
8: κ ← κ + 1
9: until ‖θκ − θκ−1‖∞ ≤ δ

fuzzy Q-iteration is shown to converge at least as fast as the synchronous version.
The distance between F (θ∗) and the true optimum Q∗, as well as the subopti-
mality of the greedy policy in F (θ∗), are also shown to be bounded [11,13]. The
consistency of fuzzy Q-iteration, i.e., the convergence to the optimal Q-function
Q∗ as the maximum distance between the cores of adjacent fuzzy sets goes to 0,
is not studied here, and is a topic for future research.

Proposition 1. Synchronous fuzzy Q-iteration (Algorithm 1) converges.

Proof. The proof follows from the proof of convergence of (synchronous) value
iteration with averagers [13], or with interpolative representations [11]. This is
because fuzzy approximation is an averager by the definition in [13], and an
interpolative representation by the definition in [11]. The main idea of the proof
is that PTF is a contraction with factor γ < 1, i.e., ‖PTF (θ) − PTF (θ′)‖∞ ≤
γ ‖θ − θ′‖∞, for any θ, θ′. This is true thanks to the non-expansive nature of P
and F , and because T is a contraction. �

It is shown next that asynchronous fuzzy Q-iteration (Algorithm 2) converges.
The convergence proof is similar to that for exact asynchronous value iteration [2].

Proposition 2. Asynchronous fuzzy Q-iteration (Algorithm 2) converges.

Proof. Denote n = N · M , and rearrange the matrix θ into a vector in R
n,

placing first the elements of the first row, then the second etc. The element at
row i and column j of the matrix is now the l-th element of the vector, with
l = (i − 1) · M + j.

Define for all l = 0, . . . , n recursively the mappings Sl : R
n → R

n as:

S0(θ) = θ, [Sl(θ)]l =

{
[PTF (Sl−1(θ))]l if l = l

[Sl−1(θ)]l if l ∈ {1, . . . , n} \ l

In words, Sl corresponds to updating the first l parameters using approxi-
mate asynchronous Q-iteration, and Sn is a complete iteration of the approx-
imate asynchronous algorithm. Now we show that Sn is a contraction, i.e.,



34 L. Buşoniu et al.

‖Sn(θ) − Sn(θ′)‖∞ ≤ γ ‖θ − θ′‖∞, for any θ, θ′. This can be done element-by-
element. By the definition of Sl, the first element is only updated by S1:

|[Sn(θ)]1 − [Sn(θ′)]1| = |[S1(θ)]1 − [S1(θ′)]1|
= |[PTF (θ)]1 − [PTF (θ′)]1|
≤ γ ‖θ − θ′‖∞

The last step follows from the contraction mapping property of PTF .
Similarly, the second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ′)]2| = |[S2(θ)]2 − [S2(θ′)]2|
= |[PTF (S1(θ))]2 − [PTF (S1(θ′))]2|
≤ γ ‖S1(θ) − S1(θ′)‖∞
= γ max{|[PTF (θ)]1 − [PTF (θ′)]1| ,

|θ2 − θ′2| , . . . , |θn − θ′n|}
≤ γ ‖θ − θ′‖∞

where ‖S1(θ) − S1(θ′)‖∞ is expressed by direct maximization over its elements,
and the contraction mapping property of PTF is used twice. Continuing in this
fashion, we obtain |[Sn(θ)]l − [Sn(θ′)]l| ≤ γ ‖θ − θ′‖∞ for all l, and thus Sn is a
contraction. Therefore, asynchronous fuzzy Q-iteration converges. �
This proof is actually more general, showing that approximate asynchronous Q-
iteration converges for any approximation mapping F and projection mapping P
for which PTF is a contraction. It can also be easily shown that synchronous and
fuzzy Q-iteration converge to the same parameter vector; indeed, the repeated
application of any contraction mapping will converge to its unique fixed point
regardless of whether it is applied in a synchronous or asynchronous (element-
by-element) fashion.

We now show that asynchronous fuzzy Q-iteration converges at least as fast
as the synchronous version. For that, we first need the following monotonicity
lemma. In this lemma, as well as in the sequel, vector and function inequalities
are understood to be satisfied element-wise.

Lemma 1 (Monotonicity of PTF ). If θ ≤ θ′, then PTF (θ) ≤ PTF (θ′).

Proof. It will be shown in turn that F , T , and P are monotonous. To show that
F is monotonous we show that, given θ ≤ θ′, it follows that for all x, uj :

[F (θ)](x, uj) ≤ [F (θ′)](x, uj) ⇔
N∑

i=1

μi(x)θi,j ≤
N∑

i=1

μi(x)θ′i,j

The last inequality is true by the assumption θ ≤ θ′.
To show that T is monotonous we show that, given Q ≤ Q′, it follows that:

[T (Q)](x, u) ≤ [T (Q′)](x, u)
⇔ ρ(x, u) + γ max

u′∈U
Q(f(x, u), u′) ≤ ρ(x, u) + γ max

u′∈U
Q′(f(x, u), u′)

⇔ max
u′∈U

Q(f(x, u), u′) ≤ max
u′∈U

Q′(f(x, u), u′)
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The last inequality is true because Q(f(x, u), u′) ≤ Q′(f(x, u), u′) for all u′,
which follows from the assumption Q ≤ Q′.

To show that P is monotonous we show that, given Q ≤ Q′, it follows that
for all i, j:

[P (Q)]i,j ≤ [P (Q′)]i,j ⇔ Q(xi, uj) ≤ Q′(xi, uj)

The last inequality is true by assumption. Therefore, the composite mapping
PTF is monotonous. �
Proposition 3. If a parameter vector θ satisfies θ ≤ PTF (θ) ≤ θ∗, then:

(PTF )k(θ) ≤ Sk(θ) ≤ θ∗ ∀k ≥ 1

Proof. This follows from the monotonicity of PTF , and can be shown element-
wise, in a similar fashion to the proof of Proposition 2. Note that this result is
an extension of Bertsekas’ result on exact value iteration [2]. �
In words, Proposition 3 states that k iterations of asynchronous fuzzy Q-iteration
move the parameter vector at least as close to the convergence point as k itera-
tions of the synchronous algorithm.

The following bounds on the sub-optimality of the convergence point, and of
the policy corresponding to this point, follow from [11,13].

Proposition 4. If the action space of the original problem is discrete and all
the discrete actions are used for fuzzy Q-iteration, then the convergence point θ∗

of asynchronous and synchronous fuzzy Q-iteration satisfies:

‖Q∗ − F (θ∗)‖∞ ≤ 2ε

1 − γ
(9)

‖Q∗ − Qĥ∗‖∞ ≤ 4γε

(1 − γ)2
(10)

where ε = minQ

∥∥Q∗ − Q
∥∥
∞ is the minimum distance between Q∗ and any fixed

point Q of the composite mapping FP , and Qĥ∗
is the Q-function of the approx-

imately optimal policy ĥ∗(x) = arg maxu[F (θ∗)](x, u).

For example, any Q-function that satisfies Q(x, uj) =
∑N

i=1 μi(x)Q(xi, uj) for all
x, j is a fixed point of FP . In particular, if the optimal Q-function has this form,
i.e., is exactly representable by the chosen fuzzy approximator, the algorithm
will converge to it, and the corresponding policy will be optimal (since in this
case ε = 0).

In this section, we have established fuzzy Q-value iteration as a theoretically
sound technique to perform approximate RL in continuous-variable tasks. In
addition to the convergence of both synchronous and asynchronous fuzzy Q-
iteration, it was shown that the asynchronous version converges at least as fast
as the synchronous one, and therefore might be more desirable in practice. When
the action space is discrete, the approximation error of the resulting Q-function
is bounded (9) and the sub-optimality of the resulting policy is also bounded (10)
(the latter may be more relevant in practice). These bounds provide confidence
in the results of fuzzy Q-iteration.
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6 Example: 2-D Navigation

In this section, fuzzy Q-iteration is applied to a two-dimensional (2-D) simulated
navigation problem with continuous state and action variables. A point-mass
with a unit mass value (1kg) has to be steered on a rectangular surface such
that it gets close to the origin in minimum time, and stays there. The state x
contains the 2-D coordinates of the point mass, cx and cy, and its 2-D veloc-
ity: x = [cx, cy, ċx, ċy]T. The motion of the point-mass is affected by friction,
which can vary with the position, making the dynamics non-linear. Formally,
the continuous-time dynamics of this system are:[

c̈x

c̈y

]
=

[
ux

uy

]
− b(cx, cy)

[
ċx

ċy

]
(11)

where the control input u = [ux, uy]T is a 2-D force (acceleration), and the scalar
function b(cx, cy) is the position-dependent damping coefficient (friction). All the
state and action variables are bounded. The bounds are listed in Table 1, along
with the meaning and units of all the variables.

Table 1. Variables for the navigation problem

Symbol Parameter Domain; Unit

cx, cy horizontal, vertical coordinate [−5, 5] m
ċx, ċy horizontal, vertical velocity [−2, 2] m/s
ux, uy horizontal, vertical control force [−1, 1] N
b damping coefficient R

+ kg/s

To obtain the transition function f for RL, time is discretized with a step
of Ts = 0.2 s, and the dynamics (11) are numerically integrated between the
sampling instants.5 The goal of reaching the origin in minimum time is expressed
by the following reward function:

ρ(x, u) =

{
10 if ‖x‖∞ ≤ 0.2
0 otherwise

(12)

This means that the coordinates and the velocities along each axis have to be
smaller than 0.2 in magnitude for the agent to get a non-zero reward.

The control force is discretized into 9 discrete values: U0 = {−1, 0, 1} ×
{−1, 0, 1}. These correspond to full acceleration into the 4 cardinal directions,
diagonally, and no acceleration at all. Each of the individual velocity domains
is partitioned into a triangular fuzzy partition with three fuzzy sets centered at
{−2, 0, 2}, as in Figure 1, left. Since the triangular partition satisfies Assump-
tions 1, 2, the set of cores completely determines the shape of the membership
functions. Triangular partitions are also used for the position coordinates. Dif-
ferent partitions of the position variables are used for each of the two damping
landscapes considered in the sequel.
5 The numerical integration algorithm is the Dormand-Prince variant of Runge-Kutta,

as implemented in the MATLAB 7.2 function ode45.
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Fig. 1. Left: triangular fuzzy partition for ċx ∈ [−2, 2]. Each membership function is
plotted in a different line style. The partition for ċy is identical. Right: composition of
the fuzzy partitions for ċx, ċy , yielding the two-dimensional fuzzy partition for [ċx, ċy ]T.
Each membership surface is plotted in a different style. The original single-dimensional
fuzzy partitions are highlighted in full black lines.

The fuzzy partition of the state space X = [−5, 5]2 × [−2, 2]2 is then de-
fined as follows. One fuzzy set is computed for each combination (i1, i2, i3, i4)
of individual sets for the four state components: μcx,i1 ; μcy,i2 ; μċx,i3 ; and μċy,i4 .
The membership function of each composite set is defined as the product of the
individual membership functions, applied to their individual variables:

μ(x) = μcx,i1(cx) · μcy,i2(cy) · μċx,i3(ċx) · μċy,i4(ċy) (13)

where x = [cx, cy, ċx, ċy]T. It is easy to verify that the fuzzy partition computed
in this way still satisfies Assumptions 1, 2. This way of building the state space
partition can be thought of as a conjunction of one-dimensional concepts corre-
sponding to the fuzzy partitions of the individual state variables. An example of
such a composition for the two velocity variables is given in Figure 1, right.

6.1 Uniform Damping Landscape

In a first, simple scenario, the damping was kept constant: b(cx, cy) = b0 =
0.5 kg/s. Identical triangular fuzzy partitions were defined for cx and cy, with
the cores in {−5, −2, −0.3, −0.1, 0, 0.1, 0.3, 2, 5}. Asynchronous and synchronous
fuzzy Q-iteration were run with the discount factor γ = 0.98 and the threshold
δ = 0.01 (see Algorithms 1 and 2). The parameters γ and δ are set somewhat
arbitrarily, but their variation around the given values does not significantly
affect the computed policy. The asynchronous algorithm converged in 339 iter-
ations; the synchronous one in 343. Therefore, in this particular problem, the
speed of convergence for the asynchronous algorithm is close to the speed for
the synchronous one (i.e., the worst-case bound). The policies computed by the
two algorithms are similar.

A continuous policy was obtained by interpolating between the best local
actions, using the membership degrees as weights: ĥ∗(x) =

∑N
i=1 μi(x)uj∗

i
, where

j∗i is the index of the best local action for the core state xi, j∗i = argmaxj [F (θ∗)]
(xi, uj) = argmaxj θ∗i,j .
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Fig. 2. Left: The policy for constant damping, when ċx = ċy = 0. The direction and
magnitude of the control force in a grid of sample points (marked by dots) is indicated
by lines. Thick, black lines indicate exact policy values in the cores of the fuzzy sets
(marked by thick, black dots). Right: A set of representative trajectories, each given
in a different shade of gray. The initial velocity is always zero. The position of the
point-mass at each sample is indicated by dots. The closer the dots, the smaller the
velocity is. The accumulated discounted return is displayed alongside each trajectory,
rounded off toward zero.

Figure 2 presents a slice through the computed policy for zero velocity,
ĥ∗(cx, cy, 0, 0), and plots some representative trajectories. The zero-velocity slice
is clearly different from the optimal continuous-action policy, which would steer
the agent directly towards the goal zone from any position. Also, since the ac-
tions are originally continuous, the bound (10) does not apply. Nevertheless, the
zero-velocity slice presented in the figure is close to the best that can be achieved
with the given action quantization.

6.2 Varying Damping Landscape

In the second scenario, to increase the difficulty of the problem, the damping
(friction with the surface) varies as an affine sum of L Gaussian functions:

b(cx, cy) = b0 +
L∑

i=1

bi exp

[
− (cx − gx,i)2

σ2
x,i

− (cy − gy,i)2

σ2
y,i

]
(14)

The chosen values were: b0 = 0.5, L = 2, b1 = b2 = 8, gx,1 = 0, gy,1 = −2.3,
σx,1 = 2.5, σx,2 = 1.5, and for the second Gaussian function: gx,2 = 4.7, gy,2 = 1,
σx,2 = 1.5, σy,2 = 2. So, the damping is largest (around 8.5 kg/s) at positions
(0, −2.3) and (4.7, 1). The damping variation can be observed in Figure 3, where
the surface is colored darker when the damping is larger.

The fuzzy set cores for the position partition are marked by thick black
dots in Figure 3, left. They were chosen based on prior knowledge about the
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Fig. 3. Left: The policy for varying damping (14), when ċx = ċy = 0. Darker areas
indicate larger damping. The direction and magnitude of the control force in a grid of
sample points is indicated. The thick, black lines indicate exact policy values in the
cores of the fuzzy partition. Right: A set of representative controlled trajectories with
the associated returns.

position of the high-friction areas. The cores include representative points around
these areas, and some points near the goal. Asynchronous and synchronous fuzzy
Q-iteration were run with the same settings as before, and converged in the same
number of iterations. Figure 2 presents a slice through the resulting policy for
zero velocity, ĥ∗(cx, cy, 0, 0), together with several sample trajectories. It can be
clearly seen how the policy steers around the high-friction areas, and how the
interpolation helps in providing meaningful commands between the fuzzy cores.

6.3 Comparison with RBF Q-iteration

There exist other approximators than fuzzy partitions that could be combined
with Q-iteration to yield convergent algorithms. These approximators are usually
restricted classes of linear basis functions, satisfying conditions related to (but
different from) Assumption 2 of Section 4. As space limitations do not allow for
an extensive comparison of fuzzy Q-iteration with such algorithms, this section
compares it with one of them, namely Q-iteration with normalized radial basis
function (RBF) approximation.

Define a set of N normalized RBFs ϕi : X → R, i = 1, . . . , N , as follows:

ϕi(x) =
ϕ

i
(x)∑N

i′=1 ϕ
i′(x)

, ϕ
i
(x) = exp

(
−

d∑
d′=1

(xd′ − xi,d′)2

σ2
i,d′

)
(15)

where ϕ
i
are (unnormalized) Gaussian axis-oriented RBFs, xi is the d-dimensio-

nal center of the i-th RBF, and σi is its d-dimensional radius. Axis-oriented RBFs
were selected for a fair comparison, because the triangular fuzzy partitions are
also defined separately for each variable and then combined.
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Denote ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T. Assume that x1, . . . , xN are all distinct
from each other. Form the matrix ϕ = [ϕ(x1), . . . , ϕ(xN )] ∈ R

N×N , which is
invertible by construction. Define also a matrix Q ∈ R

N×M that collects the
Q-values of the RBF centers: Qi,j = Q(xi, uj). RBF Q-iteration uses the follow-
ing approximation and projection mappings:

[F (θ)](x, uj) =
N∑

i=1

ϕi(x)θi,j , P (Q) = (ϕ−1)TQ (16)

The convergence of RBF Q-iteration to a fixed point θ∗ can be guaranteed if:
N∑

i′=1,i′ �=i

ϕi′(xi) <
1 − γ/γ′

2
(17)

for all i and some γ′ ∈ (γ, 1). Equation (17) restricts the sum of the values that
the other RBFs take at the center of the i-th RBF. This is an extension of the
result in [11] for normalized RBFs (the original result is given for un-normalized
basis functions).

For a fair comparison with fuzzy Q-iteration, the number of RBFs is set equal
to the number of fuzzy membership functions, and their centers are identical to
the cores of the fuzzy membership functions. In order to have a set of radii ensur-
ing convergence, that is a set of radii satisfying the inequalities (17), a problem
involving linear constraints has been solved. The details of this procedure are
left out due to space constraints.

When used with the same reward function and action quantization as fuzzy
Q-iteration, RBF Q-iteration was unable to learn an appropriate solution. To
help the algorithm, a finer quantization of the action space was provided: U =
{−1, −0.2, 0, 0.2, 1}× {−1, −0.2, 0, 0.2, 1}, and the reward function was changed
to include a quadratic term in the state:

ρ(x, u) = −x′T diag(0.2, 0.2, 0.1, 0.1)x′ +

{
10 if ‖x‖∞ ≤ 0.2
0 otherwise

(18)

where x′ = f(x, u) and diag(·) denotes a square matrix with the elements given
as arguments on the diagonal, and zeros elsewhere.

The results for varying damping are presented in Figure 4 (compare with
Figure 3). A discrete policy was used, because it gave better results than the in-
terpolated policy. To make the comparison with fuzzy Q-iteration easier, the
original reward function (12) was used to compute the returns. Comparing
the returns of the respective trajectories, the performance of the policy com-
puted with RBF Q-iteration is worse than for fuzzy Q-iteration. From some of
the initial states considered the RBF policy is not able to reach the goal region
at all. In the left part of Figure 4, it can be seen that the RBF policy is incor-
rect on an entire vertical band around cx = 1. Also, there is no sign that the
high-damping regions are considered in the policy.6

6 In the uniform damping case, the goal region is reached by the RBF policy from all
the considered initial states, but in a longer time than using the fuzzy policy.
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Fig. 4. Left: The discrete policy for RBF Q-iteration and varying damping. Right: A
set of representative system trajectories when controlled with the RBF policy, with the
associated returns.

A possible reason for the worse results of RBF approximation is that the Q-
functions obtained by RBF interpolation are less smooth than those obtained
with triangular fuzzy partitions (which lead essentially to multi-linear interpola-
tion). This effect becomes more pronounced due to the convergence constraints
(17) imposed on the RBF radii.

7 Possible Extensions

Although the results above were given for deterministic MDPs, fuzzy Q-iteration
can be extended to stochastic problems. For instance, the asynchronous update
in line 5 of Algorithm 2 becomes in the stochastic case θi,j ← E

{
ρ(xi, uj , x

′) +
γ maxj

∑N
i=1 μi(x′)θi,j

}
. Here, x′ is sampled from the density function f(xi, uj , ·)

of the next state given xi and uj . If this expectation can be computed exactly
(e.g., there is a finite number of possible successor states), our results apply.
In general, Monte-Carlo estimation can be used to compute the expectation.
Asymptotically, as the number of samples grows to infinity, the estimate con-
verges to the true expectation and our results can again be applied. When the
number of samples is finite, [12] provides error bounds for the value iteration
algorithm. These bounds could be extended to the Q-value iteration algorithm.

Fuzzy approximation can also be used online and without a model, with an
arbitrary (but fixed) exploration policy, by applying the results of [17]. The
same paper provides an adaptive multi-stage algorithm that converges to the
true optimum as the basis functions (fuzzy membership functions, in this case)
become infinitely dense in the state space.

An intermediate step is to use an offline algorithm, but with arbitrary state
samples that might be different from the fuzzy cores. For this case, the dynamics
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and reward function of a discrete MDP with the state space equal to the set of
fuzzy cores can be computed as in [19]. A solution to this discrete MDP can be
computed with a model-based algorithm, and from this an approximate solution
to the original problem can be derived.

8 Conclusion and Future Work

In this work, we have considered a model-based reinforcement learning approach
employing parametric fuzzy approximators to represent the state-action value
functions. We have proposed two different ways for updating the parameters
of the fuzzy approximator, a synchronous and an asynchronous one. We have
shown that both updates lead to convergent algorithms, with the asynchronous
version converging at least as fast as the synchronous one. The algorithms per-
formed well in a nonlinear control problem with four continuous state variables.
Fuzzy Q-iteration also performed better than Q-iteration with normalized RBF
approximation.

There exist other approximators than fuzzy partitions and RBF that could
be combined with Q-iteration to yield convergent algorithms. These approxima-
tors are usually restricted classes of linear basis functions, satisfying conditions
related to (but different from) Assumption 2 of Section 4. It would certainly
be interesting to investigate which convergent approximator provides the best
performance when combined with approximate Q-iteration.

The fuzzy approximator plays a crucial role in our approach. It determines
the computational complexity of fuzzy Q-iteration, as well as the accuracy of the
solution. While we considered in this paper that the membership functions were
given a priori, we suggest as a future research direction to develop techniques
to determine for a given accuracy an approximator with a small number of
membership functions. The computational cost of these techniques should not
be larger than using a more complex, pre-designed approximator that ensures the
same accuracy. Another interesting direction would be to study the consistency
properties of fuzzy Q-iteration: whether the algorithm converges to the optimal
solution as the distance between fuzzy cores decreases to 0.
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Abstract. In agent-based computational economics, many different trading
strategies have been proposed. Given the kinds of market that such trading strate-
gies are employed in, it is clear that the performance of the strategies depends
heavily on the behavior of other traders. However, most trading strategies are
studied in homogeneous populations, and those tests that have been carried out
on heterogeneous populations are limited to a small number of strategies. In this
paper we extend the range of strategies that have been exposed to a more ex-
tensive analysis, measuring the performance of eight trading strategies using an
approach based on evolutionary game theory.

1 Introduction

An auction, according to [2], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, a bid, or an offer to sell at a given price, an ask — and which gives priority to
higher bids and lower asks. The rules of the auction determine, on the basis of the offers
that have been made, the allocation of goods and money between traders. Auctions
have been widely used in solving real-world resource allocation problems [9], and in
structuring stock or futures exchanges [2]. Auctions are used for three reasons: (i) to
increase the speed of sale by providing a public forum where buyers and sellers can
look for trading partners (ii) to reveal information about traders’ valuations allowing
efficient transactions to take place, and (iii) to prevent dishonest dealing between the
representatives of the seller and the buyer.

There are many different kinds of auction. One of the most widely used is the double
auction (DA), in which both buyers and sellers are allowed to exchange offers simulta-
neously. The flexibility of double auctions means that their study is of great importance,
both to theoretical economists and those seeking to implement real-world market places.
The continuous double auction (CDA) is a DA in which traders make deals continuously
throughout the auction (rather than, for example, at the end of the auction). The CDA

is one of the most common exchange institutions, and is in fact the primary institution
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for trading of equities, commodities and derivatives in markets such as New York Stock
Exchange (NYSE) and Chicago Mercantile Exchange.

Models of CDAs have been extensively studied using both human traders and
computerized agents. Starting in 1955, Smith carried out numerous experiments in-
vestigating the behavior of such markets, documented in papers such as [22,23]. The
experiments in [22], for example, involved human traders and showed that even with
limited information available, and only a few participants, the CDA can achieve very
high efficiency, comes close to the theoretical equilibrium, and responds rapidly to
changing market conditions. This result was in contrast to classical theory, which sug-
gested that high efficiency would require a very large number of traders. Smith’s results
led to the suggestion that double auction markets are bound to lead to efficiency irre-
spective of the way that traders behave. Gode and Sunder [6] tested this hypothesis,
introducing two automated trading strategies which they dubbed “zero-intelligence”.
The two strategies Gode and Sunder studied were zero intelligence without constraint
(ZI-U) and zero intelligence with constraint (ZI-C). ZI-U traders make offers at ran-
dom, while ZI-C traders make offers at random, but are constrained so as to ensure
that traders do not make a loss (it is clear that ZI-U traders can make a loss, and so
can easily lead to low efficiency markets). In the experiments reported in [6], the ZI-
C traders gained high efficiency and came close enough to the performance of human
traders that Gode and Sunder claimed that trader intelligence is not necessary for the
market to achieve high efficiency and that only the constraint on not making a loss is
important1.

This position was attacked by Cliff and Bruten [1], who showed that if supply and
demand are asymmetric, the average transaction prices of ZI-C traders can vary sig-
nificantly from the theoretical equilibrium2. They then introduced the zero intelligence
plus (ZIP) trader, which uses a simple machine learning technique to decide what of-
fers to make based on previous offers and the trades that have taken place. ZIP traders
outperform ZI-C traders, achieving both higher efficiency and approaching equilibrium
more closely across a wider range of market conditions (though [1][page 60] suggests
conditions under which ZIP will fail to attain equilibrium), prompting Cliff and Bruten
to suggest that ZIP traders embodied the minimal intelligence required.

A range of other trading algorithms have been proposed — including those that took
part in the Santa Fe double auction tournament [18,19], the reinforcement learning
Roth-Erev approach (RE) [17] and the expected-profit maximizing Gjerstad-Dickhaut
approach (GD) [5] — and the performance of these algorithms have been evaluated un-
der various market conditions. However, many of the studies of trader behavior leave
something to be desired. In particular, those described above, with the honorable ex-
ception of the Santa Fe tournament [18], concentrated on the efficiency of markets as
a whole and on markets in which the population of traders was homogeneous (in other
words they all used the same strategy for deciding what to bid).

1 In fact, for the markets tested in [6], even the ZI-U traders achieved pretty high efficiency, they
were just outperformed by ZI-C traders in this regard.

2 The experiments in [6], while reflecting typical market conditions, might be considered to
represent easy conditions from which to attain equilibrium. In contrast, the experiments in
[22] show convergence to equilibrium from a much wider range of initial conditions.
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Both of these aspects are unsatisfactory from the perspective of someone who is
interested in deciding whether to use a specific automated trader in a given market. If
you want to adopt a trading agent to bid on your behalf, you don’t much care about the
efficiency of the market. What you care about is the profit you will make, and you’ll
quite happily use a ZI-C trader if it makes you more profit than a ZIP trader. Furthermore,
even if we look at profit, it is not enough to know what a given type of trader will do
in a homogeneous population. You’re only going to want to use that ZI-C trader if you
know that it will get you a good profit across all possible combinations of traders that
you will encounter (in a game-theoretic sense you’d like adopting the ZI-C trader to
be a dominant strategy). Tesauro and Das addressed both these problems [24]. In their
paper, they examined the profit generated by a modified version of GD (MGD), ZI-C,
ZIP, and the Kaplan strategy [19] from the Santa Fe double auction tournament in both
homogeneous populations and mixed populations. The mixed populations studied in
[24] were made up of two different kinds of trader, with one trader of one type, and the
remainder of the traders being of the second type3.

One way to consider the results of the kind of study carried out in in [24] is as
an analysis of the stability of a homogeneous population. If the analysis shows that a
single trader using strategy A in a population of B traders gets a higher profit than
a homogeneous population of traders using strategy B, then there is an incentive to
introduce a single A trader into a homogeneous B population, and that population is
not stable. However, this kind of analysis does not say whether introducing a second
A trader, or a third, or a fourth will necessarily be appropriate. As a result, these “one-
to-many” experiments, while they will tell us something about the relative merits of
A and B, will not give us any idea of the optimal mixture of traders (or, alternatively,
what is the best strategy to adopt given the existing mix). To get closer to identifying
the optimal mix, Walsh et al. [26] adopted techniques from evolutionary game theory,
and applied them to more complex mixtures of trading strategies than were used in
[24], an approach that has become known as heuristic strategy analysis. In particular,
one can compute plausible equilibria for heterogeneous populations, and thus identify
combinations of trading strategies that are likely to be adopted (assuming that traders
are picked from a limited pool of possible strategies).

This paper extends the work of [24] and [26] exploring a larger set of trading strate-
gies, thus expanding our understanding of the interaction between trading strategies,
and giving us a more complete understanding of the possible equilibria that may arise
in a continuous double auction. Such an analysis can also provide the groundwork for
learning new kinds of trading strategy, as illustrated in [13], as well as for evaluating
new varieties of auction such as those in [11].

2 Preliminaries

In this section we describe the precise scenario that we analyse in the rest of the
paper.

3 The same kind of analysis was later carried used by Vytelingum et al. to evaluate their risk-
based bidding strategy [25].
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2.1 The Market

We are concerned with a specific kind of continuous double auction market (CDA). We
have a population of traders, each of which is either a buyer or seller. Buyers have a
supply of money which they seek to exchange for a certain kind of good, and sellers
have a supply of that good which they seek to exchange for money. Each trader has a
private value that specifies the value that they place on each unit of the good. Once the
market opens, buyers place bids, specifying to all other traders in the market the amount
of money that they are willing to exchange for a unit of the good (though we deal with
traders that wish to trade multiple units of the good, they do this sequentially). Sellers
make asks, specifying the amount of money they require in exchange for a unit of the
good. We use the terms offer and shout to mean either a bid or an ask.

The market is controlled by an auctioneer, who notes all the offers, and, as each
offer is made (offers are made sequentially in the implementation we use) compares
the highest bid with the lowest ask. If the highest bid is higher, or equal to, the lowest
ask, the offers are matched, and the auctioneer establishes a trade price or sale price.
The trade price is constrained to be no greater than the bid price and no less than the
ask price — the auctioneer chooses the trade price to fall in this bid/ask spread4. A
trader with an offer that is matched is obligated to make the exchange at the trade price.
(The existence of the auctioneer, and the obligation to trade once offers have matched
distinguish our setup from, for example, that in the Santa Fe tournament where traders
identified matches for themselves, and could choose whether or not to exchange when
matches occurred [18].) If a bid is higher than two or more asks, the auctioneer gives
priority to the lower ask, and if an ask is made that is lower than two or more bids, the
auctioneer gives priority to the higher bid.

2.2 The Traders

The traders we consider in this paper are all automated — what economists would call
program traders. Each trader uses a specific strategy to choose what offers to make. The
trading strategies we study in this paper are a mixture of established strategies from the
literature, and some that we came up with ourselves. Those from the literature are:

– Zero Intelligence with Constraint (ZI-C), as introduced by Gode and Sunder [6].
Traders employing this strategy submit offers that are generated randomly subject
to a simple constraint. This constraint states that bids are drawn from a uniform
distribution between the buyer’s private value and a specified lower bound (typi-
cally 0) while asks are restricted to the range between seller’s private value and a
specified higher bound (a value higher than any trader thinks the good in question
is worth).

– Zero Intelligence Plus (ZIP), as introduced in [1]. ZIP traders use a simple heuristic
to adjust their offers. Broadly speaking, traders increase their profit margin5 if re-
cent market activity suggests that doing so will still allow them to trade, and reduce

4 Typical rules for choosing where to set the trade price are to set it in the middle of the bid/ask
spread, or to set it to the value of the earlier of the two offers to be made.

5 The profit margin for a trader is the difference between their private value and their offer price.
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their profit margin if recent market activity suggests they are making offers too far
from where the market is trading. The traders employ a simple form of machine
learning to adjust their offers, smoothing out fluctuations in the market.

– Truth-Telling (TT). Traders using this strategy submit shouts equal to their private
value for the resource being traded. TT is an interesting strategy to experiment with
since in strategy-proof markets6 TT will be a dominant strategy. The failure of TT to
dominate is thus an indication of the degree to which traders in a particular market
can benefit by clever strategic behavior.

– Pure Simple (PS), is an inadvertent copy of the strategy “Gamer” which was an
entrant in the Santa Fe tournament [19][page 90]7, and traders using PS bid a con-
stant 10% below their private value. This is not a strategy that one would expect to
perform well — Gamer placed 24th out of 30 entries in the Santa Fe tournament —
but, like TT is a useful control, and one that comfortably out-performs TT. Indeed,
as shown in [27], with the right choice of margin, PS can be very efficient.

– Roth-Erev (RE), introduced in [17], is a strategy that considers the problem of what
offer to make as being a reinforcement learning problem. RE experiments, making
offers and recording how many times they are successful, and makes choices based
on the expected value of each possible offer, computed using the past probability
of success. We set the free parameters of RE as described in [10].

– Gjerstad-Dickhaut (GD) as introduced in [5]. A GD trader makes its decision on
what to offer based on previous offers, but unlike RE, GD uses offers made by all
other traders. A GD trader uses this list of past offers to estimate the likelihood of
any sensible bid (that is one in the gap between the highest bid and the lowest ask
at the time the offer is made) being accepted, and uses this probability distribution
to compute the offer with the highest expected profit.

Those we came up with are:

– Linear Gjerstad-Dickhaut (GDL). GD runs more slowly than other trading strategies
that we have been using, and it spends most of its time computing the probabil-
ity of offers being accepted — it computes this by fitting recent offers to a cubic
equation, and then uses the cubic to define the cumulative probability of a given
offer being accepted. Frustrated by the running time of experiments that used GD,
we replaced the cubic with a piecewise linear approximation to create GDL, which
runs considerably faster, hoping that the performance drop would not be too great.

– Estimated Equilibrium Price (EEP). If all traders are rational (in other words make
profitable offers) and make offers around the theoretical equilibrium, then the mar-
ket will be efficient. Thus bidding at the theoretical equilibrium is good for the
market as a whole. We were interested to test whether bidding at the theoretical
equilibrium is also good for individual agents and EEP is an attempt to evaluate
this. EEP seeks to make offers at the theoretical equilibrium, estimating this as the
mid-point of the highest accepted ask and the lowest accepted bid so far, and so our
estimate of the equilibrium is similar to of [25].

6 A strategy proof market, such as that discussed in [8], is one in which traders cannot manipulate
results in their favor by misrepresenting the extent to which they value resources.

7 The copy was inadvertent since we devised PS in ignorance of the existence of Gamer.
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This is, clearly, not an exhaustive selection — we could, for instance, have included the
RB strategy from [25] — but is a large enough set of strategies to be going on with.

Note that though the many of the strategies we use are adaptive, in the sense that the
offers they make change over time in response to other offers, a given trader uses the
same strategy throughout a given auction. This contrasts with the work of Posada [15,16]
which studies agents that are allowed to switch bidding strategy during an auction.

2.3 The Simulation Environment

All of the experiments reported here are based on the open-source JASA auction simu-
lator [12], devised by Steve Phelps of the University of Liverpool. The current version
of JASA implements a CDA marketplace much as described in [24] as well as all the
trading strategies described above. In JASA the auction runs for a number of days, and
each day is broken up into discrete rounds. In each round, every trader is selected to
make an offer, and this selection takes place in a random order. At the end of every day,
every trader has its initial allocation of goods and money replenished, so that trading
on every day in a given experiment takes place under the same conditions, but trading
strategies that record information will remember what took place in previous days.

We ran every experiment described here for five trading days, and each day consisted
of 300 rounds. The private values of traders are drawn at the start of the first trading day
of each experiment from a uniform distribution between 100 and 200. Every experiment
was repeated 100 times.

3 Heterogeneous Trading Populations

In this section we describe the first series of experiments we carried out with mixed
populations of traders. The methodology used for this series of experiments is that of
[24], outlined above. For the first group of experiments we used 20 traders, 10 buyers
and 10 sellers. For each of the eight trading strategies, we ran an experiment in which all
but one agent used that strategy and the remaining agent used another strategy, carrying
out one such “one-in-many” experiment for each of the other strategies. In other words,
we tested every “one-in-many” combination. For all these experiments, we measured
the average profit of traders using both the trading strategies under test.

Tables 1 and 2 show the results of “one-in-many” tests for the first group of exper-
iments, those involving 20 agents. Note that the standard deviations of the payoffs are
usually high, as a result of the fact that we are picking the private value of the “one”
agent at random. As a result it is inevitable that there will be times when the “one”
agent is an extra-marginal trader8 because it has a low private value (the “one” agent
is always a buyer) and in a market of savvy traders will not make any profit. Such oc-
currences will increase the standard deviation. Since the high standard deviations make
direct comparisons of the profits difficult, we carried out hypothesis tests (in particular
t-tests) to find out the confidence level for the “one” to “many” pairs of payoffs.

8 An extra-marginal trader is one with a private value to the right of the intersection of the
supply and demand curves for the market, and so should not trade if the market operates at its
theoretical equilibrium.
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These results give some suggestion of the complexities of bidding in continuous
double auctions. If we think of Tables 1 and 2 as payoff matrices for the game where
one player picks the strategy for the “one”, and the other picks the strategy for the
“many”, we can immediately rule out TT as a choice — it is dominated. This is the
same kind of analysis that is used in [25] to argue for the success of RB traders. How-
ever, we also found more complex relationships than in [24,25]. Thus, once we have
eliminated TT from consideration, PS can be eliminated as a strategy for the “one”, as it
performs worse than any of the “many” against which it might be played, but it works
as a “many” strategy against ZIC. In a similar way, ZIC is not a great performer, but as
a “many” strategy will outperform PS, and as “one” strategy will outperform RE. RE

performs poorly as a majority strategy, but can generate higher profits than ZIP, a strong
performer, when it is the “one” (though the low confidence we have for this results
suggests that this performance is not consistent).

Looking at the high performing strategies, if an agent with a strategy other than GD

or GDL is in an otherwise homogeneous GD or GDL populations, that agent will do
better by switching to GD or GDL. In other words, GD and GDL come close to being
dominant strategies for the “one”. However each prevents the other from dominating.
The performance of GDL is rather impressive — it even performs slightly better than
GD does when it’s the lone strategy amongst a population of PS, RE, TT, EEP or ZIC

strategies (in most cases both in terms of the raw average payoff and confidence that it
outperforms the general population). Thus, it seems that the switch from cubic to linear
approximation might not only not hurt the strategy, but might even improve it.

When we look at slightly less well-performing strategies than GD and GDL, the situ-
ation is less clear. Indeed from Tables 1 and 2 it is hard to get a good feel for the relative
merits of RE, ZIP and EEP. A lone RE trader will outperform a set of ZIP traders, a lone
ZIP trader will outperform sets of EEP traders and RE traders, while a lone EEP trader
will outperform sets of RE and ZIP traders.

4 Evolutionary Game-Theoretic Analysis

Since we can’t easily see how some combinations of strategies stack up against one
another using the analysis in the previous section, we turn to a more sophisticated ap-
proach, heuristic strategy analysis. Heuristic strategy analysis was first proposed by
Walsh et al. [26] precisely for the analysis of double auctions, and we have used it for
this purpose in several papers [13,14] though on a rather smaller scale than here.

4.1 Heuristic Strategy Analysis

The idea behind the heuristic strategy analysis is as follows. If we wanted to obtain a
game theoretic solution to the continuous double auction, we would need to compute a
payoff matrix that gives the expected outcome for an agent that bids in a particular way.
Indeed, since there is no dominant strategy9 we would need to compute such a payoff
matrix for all possible offers or combinations thereof (since the CDA offers multiple

9 Unlike, for example, the case of the buyer’s bid double auction [7].
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opportunities for making offers we would need to consider all possible offers that might
be made at all opportunities). Clearly such a matrix would be extremely large, and
that is why there is no analytical solution to the auction [21]. However, we can get
around the need to consider all possible combinations of offers. Since there are a number
of powerful strategies for computing the best offer to make — exactly the ones we
have been studying so far — we can reasonably assume that each trader in the auction
picks one of these heuristic strategies and lets that strategy pick offers. Under such an
assumption, not only does the game we are trying to analyse become a single step game,
but the number of possible strategies reduces to those that we know work well.

Now, for small numbers of players and heuristic strategies, we can construct a rela-
tively small normal-form payoff matrix which we can analyse using game theory. This
heuristic payoff matrix is calibrated by running many simulations of the auction. If we
restrict the analysis to symmetric games in which each agent has the same set of strate-
gies and the same distribution of private values (or types in the usual terminology of
game theory), we can reduce the size of the payoff matrix, since we simply need to
specify the number of agents playing each strategy to determine the expected payoff to
each agent. Thus for a game with k strategies, we present entries in the heuristic payoff
matrix as vectors of the form:

p = (p1, ...pk) (1)

where pi specifies the number of agents who are playing the ith strategy. Each entry
p ∈ P is mapped onto an outcome vector q ∈ Q of the form:

q = (q1, ...qk) (2)

where qi specifies the expected payoff to the ith strategy. For a game with n agents, the
number of entries in the payoff matrix is given by

s =
(n + k − 1)!
n!(k − 1)!

(3)

For small n and small k this results in payoff matrices of manageable size. For n = 20,
k = 3, as in the experiments we consider here, the symmetric payoff matrix contains
just 231 entries.

Given the payoff matrix, we have a full description of a game in which traders pick
between the heuristic strategies, and we can carry out an equilibrium analysis on that
game. Any equilibria that we find are only equilibria for the game of choosing between
heuristic strategies, not for the game of choosing a sequence of bids in a double auc-
tion — it is possible, for example, for traders to use different heuristic strategies than
the ones we have analysed, in which case the equilibrium analysis will not help. How-
ever, as argued in [13], the equilibria of the heuristic strategy game are useful precisely
because they only consider strategies that are commonly known and widely used. If
we consider an exhaustive set of widely used strategies, we can be confident that no
commonly known strategy will generate different equilibria from the ones we find, and
thus the equilibria stand some chance of persisting until new trading strategies become
established.
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4.2 Evolutionary Game Theory

Now, even given the heuristic payoff matrix, standard game theory does not tell us
which of the many possible Nash equilibrium strategies will result. Evolutionary game
theory [3,20] and its variants attack this problem by positing that, rather than comput-
ing the Nash strategies for a game using brute-force and then selecting one of these to
play, traders are more likely to gradually adjust their strategy over time in response to
to repeated observations of their own and others’ payoffs. One approach to evolution-
ary game-theory uses the replicator dynamics equation to specify the frequency with
which different pure strategies should be played depending on the payoffs of different
strategies:

ṁj = [u(ej , m) − u(m, m)] mj (4)

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all players play
m, and u(ej , m) is the average payoff to pure strategy j when all players play m, and
ṁj is the first derivative of mj with respect to time. Strategies that gain above-average
payoff become more likely to be played, and this equation models a simple process
of learning by copying, in which agents switch to strategies that appear to be more
successful10. For any initial mix of strategies we can find the eventual outcome from
this co-evolutionary process by solving ṁj = 0 for all j to find the final mixed-strategy
of the converged population. This model has the attractive properties that: (i) all Nash
equilibria of the game are stationary points under the replicator dynamics; and (ii) all
focal points of the replicator dynamics are Nash equilibria of the evolutionary game.

What this means is that the Nash equilibrium solutions are a subset of the stationary
points of the direction field of the dynamics specified by equation 4. Although not all
stationary points are Nash equilibria, we can use the direction field to see which solu-
tions are more likely to be discovered by boundedly-rational agents. The Nash equilib-
ria at which a larger number of initial states will end up, are equilibria that are more
likely to be reached (assuming an initial distribution that is uniform, and that the repli-
cator dynamics is an accurate reflection of the way that traders adjust their strategy11).

4.3 Results

We applied the analysis as described so far to sets of strategies we used in the “one-to-
many” experiments, concentrating on the strategies which we felt had the most interest-
ing interactions. Since the computational complexity of establishing the payoff matrix
depends on not only the number of traders, but also on the number of strategies, we
restricted our analysis to sets of three strategies (which also makes the results easier
to visualize), and for every strategy vector p, allocated the given set of strategies ran-
domly between all traders (so that a given strategy has equal probability of being used
by a buyer or a seller). Some of the results we obtained may be found in Figures 1
and 2.

10 Though they switch between auctions rather than in the middle as in [15,16].
11 Though the Nash equilibria cannot be disputed, the route by which they are reached is de-

pendent upon the precise assumptions encoded in the replicator dynamics, and those, like all
assumptions, are open to argument.



Using Evolutionary Game-Theory 55

Fig. 1. Replicator dynamics direction field for 20 traders in a CDA where (top) the traders choose
between the ZIP, GD and GDL strategies, and (bottom) the traders choose between the ZIP, GDL

and EEP strategies



56 K. Cai, J. Niu, and S. Parsons

Fig. 2. Replicator dynamics direction field for 20 traders in a CDA where (top) the traders choose
between the ZIP, GD and GDL strategies, and (bottom) the traders choose between the ZIP, GDL

and EEP strategies
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Figure 1 analyses the performance of GDL and GD. While the “one-to-many” experi-
ments suggested that neither of these strategies dominates the other, the upper replicator
dynamics plot in Figure 1 suggests that, at least in the presence of ZIP — which as [1]
and our own analysis suggest is a pretty good strategy and thus a likely choice in trad-
ing scenarios — there is one equilibrium in which all traders adopt GDL, and there is
another in which about half of the traders use GDL, the rest adopting GD. If we switch
GD for a lesser strategy, such as EEP, as in the lower part of Figure 1, then the only
equilibrium is when all traders adopt GDL.

The results in Tables 1 and 2 suggest that the relationship between ZIP and EEP

deserves a little more attention since one EEP trader out performs the average ZIP trader
when the latter are in a majority, while one ZIP trader will outperform the majority EEP

traders. In other words, neither dominates the other. The upper part of Figure 2 shows
us how this relationship plays out when the other possible strategy is TT. Here ZIP is
powerful enough that it is a pure strategy equilibrium, but there is a second equilibrium
in which roughly half of the traders use EEP and half use ZIP. The lower part of Figure 2
shows us that switching ZIP for RE allows EEP to become a pure strategy equilibrium
and that RE is also a pure strategy equilibrium. Overall this suggests that, when faced
with EEP, RE is a less powerful strategy than ZIP.

5 Conclusions

The main point of this paper is to report on work that has extended the analysis of
the continuous double auction, and, in particular, the relative performance of trading
strategies for making offers in the continuous double auction. As things stand, it is not
clear whether there is a dominant strategy for the auction. However, if there is, then we
will only discover it empirically, and the best way that we currently have for making
this discovery is to continue to analyse the performance of different strategies against
one another. The approach taken in this paper is one, we believe promising, way to
do this. The “one-to-many” experiments that we started with allow us to identify pairs
of strategies where one strategy does not dominate the other (that is when “one” of
both strategies outperforms the “many” of the other). The heuristic strategy analysis
experiments then home in on the relative merits of these strategies, giving us a way to
compute equilibrium solutions for the continuous double auction under the assumption
that traders are restricted to pick from a fixed set of trading strategies. The results we get
are, as one would expect from a heuristic analysis, approximate, and not as exhaustive
as the analysis of the double auction in [27]. However, unlike those of [27], our results
are not restricted to a single trading strategy.

From this perspective, we can conclude three things. First, we can conclude that
our analysis has shown, once again, the value of evolutionary game theory in analysing
complex games. Second, we can conclude that the analysis has highlighted the powerful
performance of our GDL variant of GD. Third, we can conclude that EEP, while not a
winning strategy is also not a losing strategy in every situation. All of these results,
though, should be taken with a pinch of salt — all performances in the CDA, as we have
stressed above, are conditional on the mix of strategies present, and as [13] shows, it
is perfectly possible to find (indeed, automatically generate) a strategy that beats GD.
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However, given the dependence of results on the mix, the only course open to us is to
keep expanding the set of strategies that are analysed in competition to each other, and
with that aim our work is a straightforward extension of that of [24] and [26]. Of course,
we can go further in this direction, and a natural way to do this is to extend the set of
strategies with RB from [25] and the meta-strategy studied in [15,16].

Finally, we should note that the research described here, like that of [24] and [26],
only views matters from the perspective of the traders. The analysis is all couched in
terms of the profits generated by different strategies — as described above, this is an
analysis that is appropriate from the perspective of selecting a trader to operate on one’s
behalf. This research will not, in contrast, tell one much about the effect of the different
trading strategies on the market as a whole. For that, one must turn to work like that
of [4].
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Abstract. In this paper, we investigate the use of parallelization in
reinforcement learning (RL), with the goal of learning optimal policies
for single-agent RL problems more quickly by using parallel hardware.
Our approach is based on agents using the SARSA(λ) algorithm, with
value functions represented using linear function approximators. In our
proposed method, each agent learns independently in a separate simula-
tion of the single-agent problem. The agents periodically exchange infor-
mation extracted from the weights of their approximators, accelerating
convergence towards the optimal policy. We develop three increasingly
efficient versions of this approach to parallel RL, and present empirical
results for an implementation of the methods on a Beowulf cluster.

1 Introduction

Reinforcement learning (RL) is by far the most popular machine learning method
employed in agent applications, due to its suitability to the paradigm of situated
agents. However, real-world applications of RL have been hampered by the fact
that the standard algorithms do not scale up well in complex feature-rich envi-
ronments. Therefore, scaling up RL is of crucial importance for these techniques
to make their way into practical real-world solutions.

The approach we take in this paper is to parallelize the RL process in order
to speed up convergence. The primary goal of such an approach would be to
find good solutions to single-agent learning problems more quickly than is pos-
sible using non-parallel hardware. This focus differs from most previous work on
Multi-Agent Learning [1,2], which is primarily concerned with agents that share
an environment and learn to coordinate or compete. While there have been pre-
liminary analyses [3,4] demonstrating the promise of a parallel approach to RL,
the cost of inter-agent communication has tended to be excluded from the anal-
ysis. There are currently no parallel algorithms for RL that are practical for
solving large-scale problems using real parallel hardware.

In this paper, we present an approach where the parallel agents learn using
identical simulations of a given single-agent RL domain. Each parallel agent
uses SARSA, a popular RL algorithm, and represents its value function using
a linear function approximator. The features of the approximator are generated
using tile-coding [5]. Agents extract information from their value functions which

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 60–74, 2008.
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is then exchanged by passing messages over a limited bandwidth network. By
aggregating the information each agent has learned from the environment, the
agents converge more quickly towards an optimal policy. We first present an
algorithm where agents periodically merge their approximators, then refine the
method to reduce its communication overhead. Finally, we define a similar asyn-
chronous algorithm which eliminates the synchronization penalty suffered by the
other algorithms. A Beowulf cluster of networked Linux computers provides the
basis for a true parallel implementation of the method.

2 Reinforcement Learning Background

A reinforcement learning problem can be described formally as a Markov De-
cision Process (MDP). An MDP is a tuple < S, A, T, R >, where S is a set of
problem states, A is a set of actions, T (s, a, s′) → [0, 1] is a function which de-
fines the probability that taking action a in state s will result in a transition to
state s′, and R(s, a, s′) → R defines the reward received when such a transition
is made.

If all the parameters of the MDP are known, an optimal policy can be found
by dynamic programming. If T and R are initially unknown, however, then RL
methods can learn an optimal policy from direct interaction with the environment.

2.1 SARSA

The SARSA algorithm [6] is a well-established reinforcement learning method,
perhaps not as popular as Q-learning [5], but with properties that often make
it more stable than Q-learning when combined with a function approximator
[7]. The SARSA algorithm is used to learn the function Qπ(s, a), defined as the
expected total discounted return when starting in state s, executing action a and
thereafter using the policy π to choose actions:

Qπ(s, a) =
∑
s′

T (s, a, s′) [R(s, a, s′) + γQπ(s′, π(s′))]

The discount factor γ ∈ [0, 1] determines the relative importance of short
term and long term rewards. For each s and a we store a floating point number
Q(s, a) for the current estimate of Qπ(s, a). As experience tuples < s, a, r, s′, a′ >
are generated through interaction with the environment, a table of state-action
values is updated using the following rule:

Q(s, a) ← (1 − α)Q(s, a) + α(r + γQ(s′, a′))

The learning rate α ∈ [0, 1] determines how much the existing estimate of
Qπ(s, a) contributes to the new estimate. If the agent’s policy tends towards
greedy choices as time passes, then under certain conditions the Q(s, a) estimates
are guaranteed to converge to the optimal value function Q∗(s, a), as was proved
in [8]. To achieve this, we use an ε-greedy [5] exploration strategy, where ε ∈ [0, 1]
determines the probability of a random (non-greedy) action. The value of ε
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decays towards zero over the course of the learner’s lifetime. We also use a
replacing eligibility trace [9] in combination with the SARSA algorithm.

2.2 Value Function Approximation

In more complex learning domains, the number of states |S| can be infeasibly
large, or even infinite. To use RL methods in these domains, an enumeration of
states can be avoided by describing each state using a finite set of state features. It
is often the case that states with similar state features have similar value and/or
require a similar action to be taken. If this is the case, function approximation
can be used to represent the state-action value function Q(s, a) during learning.

A linear value function approximation uses a set of n basis functions {φi(s, a)}
and a set of n weights {θi} to express an approximate value function Q̃:

Q̃(s, a) =
n∑

i=1

θiφi(s, a)

Each basis function φi can be interpreted as a single learning feature. We
use tile-coding [5] to generate the set of features {φi}. The features are grouped
into a number of tilings, which are sets of binary features which partition the
state space. In any state, only one of the features from each tiling is active
(value=1.0), and the remainder are inactive (value=0.0). Each tiling is offset in
the state space by a different amount, improving the generalization which can be
achieved. The weights of the approximator are trained using a gradient descent
rule. For details of an efficient implementation of the SARSA algorithm with
linear function approximation and eligibility traces, we refer the reader to [10].

3 Parallelization

In related research, parallel methods which partition the state space have been
proposed [11]. These may be appropriate for MDP planning, but are inappro-
priate for learning in an MDP where the transition and reward parameters are
not known, for the following reasons:

– The transition function is initially unknown, so a partition minimizing inter-
partition transitions can only be derived from external prior knowledge of
the problem.

– One advantage of RL is that value function updates are focused on states
with a high probability of visitation under the current policy. Restricting
updates to an agent’s partition changes the overall distribution of updates.

– If value function approximation is being used, this change in the distri-
bution of updates may break the conditions required for converging to a
near-optimal policy.

In this paper we have pursued an alternative approach, one where each par-
allel agent learns an approximate value function for the whole state space. This
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means that agents do not have exclusive specializations, so there may be some
duplication of effort. The advantage of this approach is that all the agents can
focus on the states with a high probability of visitation, and can generalize based
on identical criteria.

We assume that an identical simulation of a single-agent learning problem is
available to each agent. While this restricts our approach to learning in simula-
tion only, almost all practical applications of RL involve some degree of environ-
ment simulation, so this assumption is reasonable. The basic parallel architecture
which is used in this paper is thus illustrated in Figure 1. During learning each
parallel agent interacts with a local simulation and updates its own private value
function. There also exists a channel for inter-process communication (IPC).

Process 1 Value
functionAgentSimulation

Process 3 Value
functionAgentSimulation

Process 2 Value
functionAgentSimulation

channel
Communication

Fig. 1. The basic parallel architecture underlying the parallel RL methods described
in this paper

To accelerate learning, the agents must periodically exchange information over
the communication channel, allowing one agent to exploit information learned
by another. The environmental knowledge acquired by each agent is expressed in
the weights {θi} of the linear value function approximation. Therefore we need to
define a communication and update mechanism which allows one agent’s weights
to be affected by another agent.

We also assume that all the agents use the same set of learning features {φi}.
This has some important advantages:

– No mechanism is required for projecting from one set of basis functions to
another.

– The only weights from other agents that are relevant for modifying one
agent’s value of θi are the other agents’ values for θi.

– A weight θi has the same meaning for every agent, a set of weights is effi-
ciently communicated as either the full vector θ, or a sparse set of index-value
tuples {(i, θi)}.
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Communicating the weights {θi} forms the basis of all the methods described
in this paper. However, we have found that if the only parameters updated and
communicated by the agents are the weights, parallelism is difficult to exploit.
This is because the weights only provide an estimate of the value of a feature.
They provide no information about how often a feature has been updated, or
how much a weight has changed since an agent last communicated. A comparison
of the relative experience of agents in each area of the state space seems to be
vital for good parallelization.

4 Algorithms

We now describe our basic algorithm, and two refinements which reduce com-
munication overhead.

4.1 Merging Value Functions

Our basic method (algorithm M) is based on a synchronous merging operation,
which takes place after every p steps in the simulation. Parameter p is known
here as the merge period. Note that p defines the number of discrete simulation
time steps which take place between consecutive merges, it does not define a
period of real time. Parameter p requires careful selection to trade off the cost of
communication delays against the reduced number of simulation steps required
for convergence.

To favour the weight estimates of agents with more experience in each area
of the state space, each of the agents maintains an additional set of parameters
{ci}. Parameter ci counts the number of times binary feature φi has been active
since the last merge. We call this parameter a visit count.

We can use visit counts to define a weighted average of the agents’ feature
value estimates (lines 7–13 of Listing 1), favouring agents with more experience
of a particular feature.

Initially we implemented the merging process using a central manager agent,
which received weights and visit counts from all the agents, calculated the merged
weights and broadcast the result. This naive implementation performed poorly
for larger numbers of agents, since for na agents the growth of the merging time
was O(na). Our second implementation used the MPI parallel programming in-
terface [12] to calculate the merged weights using two distributed computations,
one for each of the summations required. With this implementation, the growth
of the merging time was reduced to O(log na). The merging time is also directly
proportional to the number of features {φi}.

We use the term experiment to mean a single run of our parallel method, with
na agents starting with the same initial weights, performing learning episodes in
parallel and communicating every p time steps. Each experiment finishes after a
fixed time tend. We produce results averaged over a set of experiments to smooth
out noise from random exploration.
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Listing 1. Pseudocode for algorithm M
Require: θn,i is the ith weight of agent n
Require: cn,i is the ith visit count of agent n
1: Initialize all θn,i and cn,i to 0
2: while time elapsed < tend do
3: for each agent n in parallel do
4: for step = 1 to p do
5: Increment cn,i for each active feature φi

6: Execute a simulation step. Update weights {θn,i}
7: for all i do
8: n ←

∑
n cn,iθn,i (parallel summation)

9: d ←
∑

n cn,i (parallel summation)
10: if d �= 0 then
11: for each agent n in parallel do
12: θn,i ← n/d
13: cn,i ← 0

4.2 Selecting the Most Significant Information

Algorithm M potentially exchanges a great deal of redundant information be-
tween the agents. This is because every weight and visit count of every agent is
used in the distributed calculation of the merged weights.

If the change in a particular agent’s weight θi since the last merge (Δθi) is
close to zero, it could mean one of two things: (a) feature φi has not been active
since the last merge, or (b) feature φi has been active, but weight θi is already
a good prediction of the value of the feature. In either case, all the agents will
already have a value for θi that is close to the best current estimate, so there is
little benefit in communicating such a small change.

Conversely, the largest values of Δθi occur when an area of the state space is
encountered that hasn’t yet been seen by any of the agents. In these cases, some
weights change rapidly to approximate the value function structure in the new
area. This is valuable information to transmit to the other agents.

This leads us to define algorithm SM, which is more selective about the infor-
mation communicated between the agents. It remains synchronous, with each of
the agents communicating with the others every p simulation steps.

Variable θref
i is used to store the value of weight θi at various stages. The

weights {θi} are modified during learning, but the variables {θref
i } are not af-

fected, allowing Δθi = θi − θref
i to be tracked for each feature. The weights can

now be ranked in significance according to |Δθi|. When Δθi is communicated to
other agents, θref

i is reset to the value of θi.
We choose a number (ncom) of weights to communicate out of the total number

of weights (ntot). Again, choosing parameter ncom is part of a trade-off between
communication costs and learning efficiency. Even if ncom is much smaller than
ntot we can achieve significant convergence speed-ups.
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Listing 2. Pseudocode for algorithm SM
1: Initialize all θi and θref

i to 0
2: while time elapsed < tend do
3: Execute p simulation steps, updating weights {θi}
4: Calculate Δθi = θi − θref

i for all i
5: best ← indices of ncom largest values of |Δθi|
6: m ← {(i, Δθi) | i ∈ best}
7: Send message m to all agents (including self)
8: mset ← receive 1 message from each agent
9: for all i do

10: cset ← {Δθi | m ∈ mset, (i, Δθi) ∈ m}
11: if cset �= ∅ then
12: n ←

∑
Δθi∈cset

|Δθi|.Δθi

13: d ←
∑

Δθi∈cset

|Δθi|

14: θref
i ← θref

i + n/d
15: θi ← θref

i

To combine several agents’ changes, another weighted average is used (see
lines 12–15 of Listing 2). We had tried taking the mean of the changes, but
performance was poor, because a large change discovered by one agent would be
drowned out by the other agents making small changes.

4.3 Using Asynchronous Communication

In algorithm SM the learning and communicating phases of the agents are tightly
synchronized. After every interval of p learning steps, an agent must broadcast
its changes and wait to receive a message from every other agent before learning
can continue. This results in several inefficiencies:

– At the end of each learning interval, the agents all broadcast their messages
at the same time, causing their shared network to become congested.

– If the network used by the agents is slow, an agent may be idle for some
time waiting for messages. This time could potentially be used for further
learning.

– If the agents all discover very similar changes near the start of the learning
period, there is no way to find this out until the communications start at
the end of the learning period. This means that many of the limited number
of changes in each broadcast message could be wasted.

We address these issues with Algorithm ASM, using asynchronous message
passing to implement merging. We use the same mechanism of ranking the
weights using |Δθi|, but avoid the need for the agents to synchronize every p
steps.
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Listing 3. Pseudocode for algorithm ASM
1: Initialize all θi and θref

i to 0
2: while time elapsed < tend do
3: Execute one simulation step and update weights {θi}
4: if p steps have been taken since last broadcast then
5: Calculate Δθi = θi − θref

i for all i
6: best ← indices of ncom largest values of |Δθi|
7: m ← {(i, Δθi) | i ∈ best}
8: Send message m to the other agents
9: for all i ∈ best do

10: θref
i ← θi

11: for all messages m received since last check do
12: for all (i, Δθ′

i) ∈ m do
13: Δθi ← θi − θref

i

14: θref
i ← θref

i + Δθ′
i

15: if sign(Δθ′
i) �= sign(Δθi) then

16: θi ← θi + Δθ′
i

17: else if |Δθ′
i| > |Δθi| then

18: θi ← θref
i

We use a staggered approach to spread out the messages over time. Given
na agents, the first agent broadcasts p/na steps after the start of the exper-
iment, the second agent after 2p/na steps, the third agent after 3p/na steps
and so on. Each agent then broadcasts after every p steps counting from its
first broadcast. In the absence of synchronization, small variations in the dy-
namic load of processors will disrupt this uniform pattern. As long as random
variations keep the broadcasts fairly well spread out this is not a problem. An al-
ternative approach is to schedule broadcasts randomly with a Poisson process of
period p.

Algorithm ASM ranks the weights and constructs messages in the same way
as Algorithm SM (see Section 4.2). It differs in that learning can resume im-
mediately after a message has been sent, and that messages from other agents
can be processed separately as and when they arrive. Δθi here represents a local
change in θ yet to be communicated.

When an agent receives a message, each change Δθ′i received from the remote
agent is compared with the local change Δθi. If Δθ′i and Δθi have equal signs
it is important that part of the local change is cancelled out in response to the
remote change (see lines 15–18 of Listing 3). Otherwise it is likely the agents will
overshoot the true value for this weight, interfering with convergence.

4.4 Is Communication Really Necessary?

At this point, it is reasonable to ask whether communication is a necessary
component of our approach. To demonstrate that it is, we designed a baseline
(algorithm B) where the agents learn in parallel, but in isolation (they do not
communicate). The agents record the length of each episode during learning.
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After learning, each agent calculates its mean performance1 over the final 10%
of the duration of the experiment. This is used as a measure of the quality of
the policy learned by each agent. The policy with the highest quality is output
as the result from the set of agents.

5 Evaluation

Our evaluation was based on a distributed-memory parallel system: a Beowulf
cluster of Linux machines. Each node of the cluster had a 1GHz Pentium III
processor and 768MB of memory. The nodes were connected with a switched
100Mbs Ethernet network. The method was implemented in C++ using the
MPICH implementation of the MPI parallel programming interface [12].

Two of our evaluation domains are established RL benchmark problems: the
Mountain-Car task and the Acrobot task. These problem domains were imple-
mented according to the descriptions given in [10].

In addition, we required a domain where problems of increasing difficulty
could be defined in order to investigate our method’s performance in large-scale
problems. For this purpose, we used a stochastic grid world domain which is
similar to the Puddle-world [7].

Goal region

Wall

"Sticky"
areas

Start

Fig. 2. An instance of the stochastic grid world used as one of the evaluation domains

In this domain, an agent learns to move along a near-optimal path from a
starting position to a goal position in a 2D environment. An instance of the grid
world is defined by a bitmap image file, such as the one shown in Figure 2. Black
pixels in the image denote walls, which are impassable. A red pixel indicates
the agent’s starting point and a group of green pixels indicates a goal region to
which the agent must travel. Blue pixels represent sticky areas where movement
actions have stochastic outcomes. In a sticky area, there is some probability that
1 In our evaluation domains, mean episode length is used as a performance measure.
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Fig. 3. Algorithm B in the Grid World task
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Fig. 4. Algorithm M in the Grid World task

the agent’s action may fail, the agent remaining stuck for an extra time step.
The more saturated the blue color of the pixel, the greater the probability that
the agent’s movement actions will fail.

Note that in contrast to the way grid world domains are usually defined, the
distance the agent moves after each action need not be equal to one pixel. The
move distance s can be an arbitrary value, ranging from multiple pixels down
to a fraction of a pixel. What this means is that a domain instance defined by
a single image can be made progressively more difficult in quantitative steps by
reducing the size of s. Note also that the resolution of the approximator tiles
can vary independently of both the image resolution and the move distance s.
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6 Results

If each agent is given a fixed number of simulation steps to learn from, the per-
formance achievable during the experiment depends on how often the agents
communicate. If communication had no cost, we could get arbitrarily close to
perfect parallelization by reducing the period between communications towards
zero. In practice, messages take some time to travel between the agents. There-
fore, the period between communications is chosen to trade off learning efficiency
against the cost of communicating.

In the graphs presented here, the performance achieved (i.e. the mean episode
length) is plotted against the real time which has elapsed since the start of the
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experiment. This allows the success of the trade-off to be assessed, with the
downside that results will vary depending on the network latency/bandwidth of
a particular system.

First, we present results for the stochastic grid world domain. A problem
instance of size 256x256 was solved using 16,384 weights for each value function.
Initial values of ε = 0.1 and α = 0.2 were decayed linearly to zero over the
experiment time. Additionally, λ = 0.95, γ = 1.0, and a reward of −1.0 was
given on every time step. The results in Figures 3–6 are averaged over 10 runs.
For all the results we chose the number of runs to firmly establish statistical
significance (clearly separating the confidence intervals), but did not include the
error ranges in the graphs to keep them readable.

The results for baseline algorithm B are shown in Figure 3. The addition of
more agents only produces a very small speed-up, constrained by the variance of
a single agent’s performance. For experiments with high variance in performance,
such as the standard Mountain-Car task, adding the first few agents does produce
a reasonable speed-up. Adding further agents results in diminishing returns.

Figure 4 shows the results for algorithm M with merge period p = 50000.
Because the agents send all the weight values over the network during ev-
ery merge, the communication costs grow rapidly. Using 2 or 4 agents results
in a speed-up significantly better than algorithm B. Going beyond 4 agents
means that any learning speedup is cancelled out by an increase in merging
time.

The results for algorithm SM (see Figure 5) used parameters p = 100000 and
ncom = 1024. Communication costs grow much more slowly, so we are able to
achieve much better parallel speed-ups for both 8 and 16 agents.

The results for algorithm ASM (see Figure 6) use the same values of p and
ncom. An extra boost in performance (especially for larger numbers of agents)
is achieved by moving to an asynchronous communication model.
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Table 1. Time (in seconds) required for different numbers of agents to achieve a mean
episode length under 145 steps in the Mountain Car task (averaged over 100 runs)

Algorithm Number of agents
1 2 4 8 16

B 0.45 0.29 0.23 0.21 0.20

M 0.45 1.54 1.55 1.47 1.71

SM 0.45 0.36 0.26 0.22 0.17

ASM 0.45 0.33 0.25 0.21 0.17

Table 2. Time (in seconds) required for different numbers of agents to achieve a mean
episode length under 140 steps in the Acrobot task (averaged over 100 runs)

Algorithm Number of agents
1 2 4 8 16

B 0.77 0.67 0.56 0.53 0.46

M 0.77 1.82 2.49 N/A N/A

SM 0.77 0.72 0.65 0.56 0.53

ASM 0.77 0.72 0.60 0.45 0.33

Tables 1 and 2 summarize the performance of the four algorithms in the
Mountain-Car and Acrobot tasks. In addition, the graph in Figure 7 provides a
more detailed view of the performance of algorithm ASM in the Mountain-Car
task. Algorithm M is clearly too inefficient under these bandwidth constraints.
Algorithm ASM produces the best performance as the number of agents is in-
creased, although it is also interesting to note that for small numbers of agents
Algorithm B performs very well in these two domains. For a complete set of
results and detailed experimental settings the reader is referred to [13].

7 Related Work

The novelty of this work compared to previous research lies in the implemen-
tation of a parallel RL system based on real hardware with real resource con-
straints. By evaluating this system in comparison to a simulation of parallel
agents, the limiting nature of communication costs has become clear, and future
work in this area must consider the quantity of information exchanged between
agents in addition to the potential speed-up achievable with this information.
Previous studies of parallel RL [3,4] have not modeled communication costs.

While the focus of this work has been on how to use parallelization to find
solutions to single-agent RL problems more quickly, research in this area has the
potential to influence work on cooperative multi-agent learning [1,2]. In this area
there is the additional challenge of finding an abstraction that hides the differ-
ences between two agents, allowing them to share information during learning.



Parallel Reinforcement Learning with Linear Function Approximation 73

In other related work, Ahmadabadi & Asadpour [14] investigate a number
of different measures of an agent’s “expertness” at a particular task, allowing
knowledge from a number of agents to be combined in proportion to their rel-
ative competence. Wingate & Seppi [15] presented a parallel approach to MDP
planning which is based on partitioning the state space. Each parallel agent in
their method exploits the locality of the state space by communicating only the
values of states at the boundaries of its partition, sending them exclusively to
agents with adjoining partitions.

8 Conclusions

We have presented three increasingly efficient versions of a method for parallel
RL. In several different domains our method has been shown to learn good poli-
cies more quickly with parallel hardware. Our empirical analysis has shown that
the quantity of information exchanged between agents is the main factor limiting
performance on a distributed memory parallel system. To our knowledge, this
is the first method proposed for parallel RL that is appropriate for speeding up
learning using real parallel hardware.

While we have not presented any theoretical proof of convergence, our em-
pirical study of these methods showed that they work well in a wide range of
domains, providing strong evidence that the methods will be very useful in prac-
tice. Many of the RL methods currently in use, such as SARSA(λ) with linear
approximation and a GLIE2 exploration strategy (used by individual agents in
our approach), have not yet been proven to converge but perform well in practice.

In future work, we plan to conduct similar experiments on parallel systems
with different network characteristics. We will also examine whether performance
can be improved further using alternative criteria for ranking the weights.
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Abstract. One of the major difficulties in applying Q-learning to real-
world domains is the sharp increase in the number of learning steps
required to converge towards an optimal policy as the size of the state
space is increased. In this paper we propose a method, PLANQ-learning,
that couples a Q-learner with a STRIPS planner. The planner shapes
the reward function, and thus guides the Q-learner quickly to the opti-
mal policy. We demonstrate empirically that this combination of high-
level reasoning and low-level learning displays significant improvements
in scaling-up behaviour as the state-space grows larger, compared to both
standard Q-learning and hierarchical Q-learning methods.

1 Introduction

Even though Q-learning is the most popular reinforcement learning algorithm
to date, it scales poorly to problems with many state variables, where the state
space becomes so large that the time taken for Q-learning to converge becomes
infeasible. While hierarchical reinforcement learning [1] has shown some promise
in this area, there remain similar scaling issues.

In this paper, we propose a method, PLANQ-learning, that combines STRIPS
planning with Q-learning. A high-level STRIPS plan that achieves the goal of
the Q-learner is computed, and is then used to guide the learning process. This
is achieved by shaping the reward function based on the pre- and post-conditions
of the individual plan operators. This enables it to converge to the optimal policy
more quickly.

We begin this paper with background information on Q-learning and STRIPS
planning, and proceed to describe their combination in the PLANQ-learning al-
gorithm. We then introduce the evaluation domain, and present empirical results
that compare the PLANQ-learner’s performance to that of a standard Q-learner.
While these first results are encouraging, a much greater improvement in per-
formance is achieved by incorporating a state-abstraction mechanism. The per-
formance of this extended PLANQ-learner is compared with a MAX-Q learner
[2], a hierarchical algorithm that is also able to exploit the state abstraction.
The results show that PLANQ is superior in its scaling-up properties both in
terms of time steps and CPU time, but exhibits a large variance in the CPU
time expended per time step.

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 75–86, 2008.
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2 Q-Learning

A reinforcement learning problem can be described formally as a Markov Deci-
sion Process (MDP). We can describe an MDP as a 4-tuple < S, A, T, R >, where
S is a set of problem states, A is the set of available actions, T (s, a, s′) → [0, 1]
is a function which defines the probability that taking action a in state s will
result in a transition to state s′, and R(s, a, s′) → R defines the reward received
when such a transition is made.

If all the parameters of the MDP are known then an optimal policy can
be calculated using dynamic programming. However, if T and R are initially
unknown then reinforcement learning methods can learn an optimal policy by
interacting with the environment and observing what transitions and rewards
result from these interactions.

The Q-learning algorithm [3] is a popular reinforcement learning method with
strong theoretical convergence guarantees. It also performs well in practice if
the number of states |S| is not too large. The goal of Q-learning is to learn the
function Q∗(s, a), defined as the expected total discounted return when starting in
state s, executing action a and thereafter using the optimal policy π∗ to choose
actions:

Q∗(s, a) =
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]

The discount factor γ ∈ [0, 1) defines to what degree rewards in the short term
outweigh rewards in the long term. Intuitively, Q∗(s, a) describes the utility of
taking action a in state s. For each s and a we store a floating point number
Q(s, a) as our current estimate of Q∗(s, a). As experience tuples < s, a, r, s′ >
are generated, the table of Q-values is updated using the following rule:

Q(s, a) ← (1 − α)Q(s, a) + α(r + γ max
a′

Q(s′, a′))

The learning rate α ∈ [0, 1] determines the extent to which the existing esti-
mate of Q∗(s, a) contributes to the new estimate. An exploration strategy is also
required to make the trade-off between exploration and exploitation. In these
experiments, a simple ε-greedy strategy is used [3].

3 AI Planning

A classical AI planning problem consists of an initial state, a set of actions or
operators which can be used to move between states, and a set of goal states
to be reached. To solve the planning problem, a sequence of operators must be
found which transforms the initial state to one of the goal states. States (and
sets of states) are typically described using statements in first-order predicate
logic.

The STRIPS representation [4] and its descendants form the basis of most
AI planning systems. This representation can be used for planning in first order
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domains without requiring the complexity of a full theorem proving system. A
STRIPS state is represented by a list of the literals which are true in that state.
A STRIPS goal is a conjunction of positive literals. Each STRIPS operator is
represented by three components:

Preconditions. The literals which must be true in a state for the operator to
be applicable in that state.

Add List The literals which become true in the state which results after ap-
plying the operator.

Delete List. The literals which become false in the state which results after
applying the operator.

The latest generation of STRIPS planning software based on the influential
Graphplan algorithm [5] has achieved orders of magnitude gains in speed over
previous algorithms. Graphplan itself is based on a data structure called a plan-
ning graph, which encodes which literals can be made true after n time steps,
and which are mutually exclusive at that time step.

Our initial experiments used the FastForward or FF planner [6], which uses
the Graphplan algorithm on a relaxed version of the planning problem. The
planning graph then forms the basis of a heuristic for forward search. In our
current system we use our own implementation of the Graphplan algorithm,
which eliminates parsing and file operations to minimise the CPU time used by
the planner.

4 The State Space Explosion

The key problem which arises when reinforcement learning is applied to large
real-life problems is referred to as the state-space explosion, or the curse of di-
mensionality. The “flat” state space S used by a traditional reinforcement learner
can generally be expressed as the Cartesian product of n simpler state variables,
X1 ×X2 × . . .×Xn. As we scale-up to larger problems by increasing the number
of state variables involved, the size of the state space S grows exponentially with
n. Since the learning time grows at least as fast as the size of the state space, the
learning time will also grow exponentially. Even if these were only binary state
variables, |S| would be equal to 2n, and learning would soon become infeasible
if n became much larger than about 20.

It is clear that for the fully general case of an MDP with 2n states, there
is an inescapable limit on how large we can allow n to grow and still find the
optimal policy in a reasonable amount of time. Thankfully, real-life learning
problems do not always exhibit the generality of an unconstrained MDP model.
In a particular region of the state space, there may be only a few state variables
which are relevant to the action choice. Alternatively, there may be a large group
of states with similar state features which can be considered interchangeable in
terms of state value and optimal action choice.

Traditionally researchers have used techniques such as function approximation
[7] and hierarchical reinforcement learning [1] to exploit the internal structure
of an MDP to make reinforcement learning feasible.
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5 The PLANQ-Learning Algorithm

In this paper we introduce a new approach to reinforcement learning in large-
scale problems, using symbolic AI plans to explicitly represent prior knowledge
of the internal structure of a MDP, and exploiting this knowledge to constrain
the number of action steps required before an adequate policy is obtained. We
have named this approach PLANQ-learning.

The definition of an adequate policy will vary according to the application
domain, but we use this wording to emphasize that our goal is not to find the
optimal policy, but to find an acceptable policy in a reasonable amount of time.

The approach explored in this paper uses a STRIPS knowledge base and
planner to define the desired high-level behaviour of an agent, and reinforcement
learning to learn the unspecified low-level behaviour. One low-level behaviour
must be learned for each STRIPS operator in the knowledge base. There is no
need to specify separately a reward function for each of these operators - instead
a reward function is derived directly from the logical preconditions and effects of
the STRIPS operator.

As well as a knowledge base describing the high-level operators to be learned,
the agent has access to an interface which, given a low-level reinforcement learn-
ing state (representing low-level low level percepts), can construct a high-level
set of STRIPS literals which describe the state. This includes the current goal
of the agent. This limits our learning agent to domains where the only reward
received is associated with reaching one of a set of goal states.

Initially the agent has no plan, so it uses the above interface to turn the
initial state into a STRIPS problem description. The STRIPS planner takes
this problem description and returns a sequence of operators which solves the
problem. The agent has a subordinate Q-learning agent to learn each operator,
so the Q-learner corresponding to the first operator in the plan is activated.

The activated Q-learner takes responsibility for choosing actions, while the
primary agent monitors the high-level descriptions of subsequent states. When
the high level description changes, the primary agent performs one or more of
the following operations:

Goal Changed. If the overall goal of the agent is detected to have changed, a
new plan is needed, so the agent must run the STRIPS planner again.

Effects Satisfied. If the changes specified by the Add and Delete Lists of the
operator have taken place, the Q-learner has been successful, and receives a
reward of +1. The Q-learner for the next operator in the plan is activated.

Preconditions Violated. If the effects are unsatisfied but a precondition has
become false, the operator is assumed to have failed.1 The Q-learner receives
a reward of -1, and the STRIPS planner is activated for re-planning.

Operator In Progress. If the effects are unsatisfied and the preconditions in-
violate, either the effects are partially complete, or a irrelevant literal has
changed truth value. The current Q-learner receives reward 0 and continues.

1 This implies that all post-conditions are achieved in the same time step. To relax this
restriction, we could specify an invariant for each operator to detect failure events.
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6 Evaluation Domain

The evaluation domain used here is a grid world which consists of both smaller
grid squares and the larger region squares which contain groups of grid squares.
The region squares represent target areas to which the mobile robot must navi-
gate. Using region squares for the agent’s goal rather than individual grid squares
is preferable for our purposes, since the regions are intended to provide the basis
for qualitative spatial reasoning in our system at a later date. There is only one
active (i.e. goal) region square at any time, and whenever the robot enters the
active region, it receives a reward, and a new goal region is chosen at random.
The robot is situated in one of the grid squares, and faces in one of the four
compass directions, north, east, south and west.

 gn  = 5

 rn  = 3

Robot

Target region

Grid squares

Region edges

N

Fig. 1. An instance of the evaluation domain

The simplicity of this domain makes it an ideal choice for illustration purposes.
In addition, the size of the state space can be easily altered by changing the
grid size, and planning knowledge can be incorporated in the form of high level
movement operations.

To evaluate performance as the state space is scaled-up, we define a class of
these problems, where the regions are arranged in a square of side nr (see Figure
1). Each region contains a square set of grid squares, of side ng. Hence the size
of the state space S, which encodes the position and direction of the robot, as
well as the current destination region, is:

|S| = 4n2
gn

4
r

There are only three actions available to the robot: turn left, turn right and
forward. Turn left turns the robot 90◦ anticlockwise to face a new compass
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direction. Turn right makes a 90◦ clockwise turn. Forward will move the robot
one square forward in the current face direction, unless the robot is at the edge
of the entire map of grid squares, in which case it has no effect.

The robot receives a reward of 0 on every step, except on a step where the
robot moves into the active region. When this happens, the robot receives a
reward of 1 and a new active region is picked at random from the remaining
regions. This introduces a small element of stochasticity to the domain, but this
is not significant for the PLANQ-learner, since it will re-plan each time the goal
(the active region) changes.

The high level STRIPS representation of the evaluation domain abstracts
away the state variables corresponding to the face direction of the robot and the
position of the grid square it occupies in the current region. The representation
is limited to reasoning at the region level, to plan a path between the current
and target regions using a knowledge base which encodes an adjacency relation
over the set of regions.

Each region at a position (x, y) is represented as a constant r x y. The
adj(r1,r2,dir) predicate encodes the fact that region r2 can be reached from
region r1 by travelling in the direction dir, which can be one of the compass
points N,S,E or W. The at(r) predicate is used to encode the current location of
the robot, and to define the goal region to be reached.

The operators available are NORTH, SOUTH, EAST and WEST, which correspond
to low-level behaviours to be learned for moving in each of the four compass
directions.

The Planning Domain Definition Language [8] was used to pass data to the
FF planner. An example of a planning problem in PDDL format is shown in
Figure 2.

(:objects r_0_0 r_0_1
r_1_0 r_1_1)

(:init (adj r_0_0 r_1_0 E)
(adj r_0_0 r_0_1 S)
(adj r_0_1 r_1_1 E)
(adj r_0_1 r_0_0 N)
(adj r_1_0 r_0_0 W)
(adj r_1_0 r_1_1 S)
(adj r_1_1 r_0_1 W)
(adj r_1_1 r_1_0 N)
(at r_0_1))

(:goal (at r_0_0)))

Fig. 2. Part of the PDDL problem encoding for nr = 2
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Fig. 3. Results of Experiment 1: these graphs demonstrate that as larger values of
nr are considered, the performance advantage of PLANQ-learning over Q-learning
becomes progressively smaller

7 Experiment 1: Results

In our first experiment, the PLANQ-learner was evaluated using a variety of val-
ues for nr and ng. For purposes of comparison, a standard Q-learning agent and
an agent using a hand-coded version of the optimal policy were also evaluated
in the domain.

The standard Q-learner uses the full state space S as defined above, and
chooses between the three low-level actions, turn left, turn right and forward.
Like the PLANQ-learner, it receives a reward of 1 on a step where it enters a
goal region, and a reward of 0 everywhere else. In all these experiments, the
learning rate α is 0.1, the discount factor γ is 0.9, and the ε-greedy parameter ε
is decayed linearly from 1.0 to 0.0 over the course of the experiment. We choose
a decay rate for ε such that any slower decay rate will not improve the quality
of the solution.

Examples of the performance of the agents over time are shown in Figure 3.
The Q-learning agent consistently learns the true optimal policy. The PLANQ-
learner learns a good policy, but not quite the optimal one. This is because
the planning model of the grid world does not model the cost of making turns
- the plans {NORTH, EAST, NORTH, EAST} and {NORTH, NORTH, EAST, EAST}
are considered equally suitable by the planner, but in reality the latter plan has
a better reward rate. This results in slightly sub-optimal performance.

In both of the experiments, the PLANQ-learner finds a good policy several
times more quickly than the Q-learner. This is to be expected: the Q-learner must
learn both high and low-level behaviours, whereas the PLANQ-learner need only
learn the low-level behaviour. However it can be observed that the advantage
of the PLANQ-learner over the Q-learner is less in the nr = 5 experiment than
in the nr = 3 experiment. The general trend for the PLANQ-learner to lose
advantage as nr increases is discussed in the next section.
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8 Problems with Experiment 1

The learning speed-up achieved by the PLANQ-learner over the Q-learner can
be attributed to the temporal abstraction inherent in the STRIPS formulation of
the problem domain. The temporal abstraction allows us to express the overall
problem as a number of sequential sub-problems, each of which is easier to learn
than the overall task. Because the PLANQ-learner can learn the sub-tasks sepa-
rately, it can finish learning more quickly than the Q-learner, which must tackle
the problem as a whole.

However, the advantage offered by temporal abstraction grows smaller as we
scale up to larger domains because we have not supplied a state-abstraction to
the PLANQ-learner. A state abstraction allows state variables to be excluded
from the learner’s state space if they are not relevant to learning a particular task
(or subtask). For instance, to learn the behaviour for the NORTH operator, only
the direction and the position of the agent within the current region is relevant
- the identities of the current and destination regions are irrelevant.

Without the state abstraction, the PLANQ-learner has no way of knowing
that the experience learned for moving NORTH from r0,1 to r0,0 can be exploited
when moving from r2,1 to r2,0 (writing rx,y to represent the region at position
(x, y) in the region grid). This means that the quality of a partially-learned
operator can vary considerably in different regions of the grid world.

The PLANQ-learner needs to perform enough exploration in the state space
to learn the operator separately in all the regions in which it is applicable. As nr

increases, the time taken to perform this exploration approaches the time taken
by the Q-learner to learn the entire problem from scratch.

9 Adding State Abstraction

To exploit the STRIPS representation of PLANQ effectively, we incorporated
a state abstraction mechanism into our system. Each of the STRIPS operators
was annotated with the names of the state variables which were relevant for
learning that operator (see bottom right of Figure 4). The Q-learner for that
operator learns with a state space consisting only of these relevant variables. This
speeds up learning by generalising the experience from one region to improve
performance in another region.

However, supplying this extra information to the PLANQ-learner gives it a
significant advantage over the Q-learner, and comparing their learning times is
unlikely to be useful. A more revealing comparison would be with a hierarchical
Q-learner [1] which can take advantage of the temporal and state abstractions
already exploited by PLANQ. We selected a hierarchical Q-learner based on the
MAX-Q reward function decomposition [2].

The hierarchy used by the MAX-Q learner (see Figure 4) is based on four
abstract actions corresponding to the STRIPS operators of PLANQ. The desired
behaviour of each abstract action is determined by an internal reward function
supplied as part of the hierarchy. The high-level task in the hierarchy is to find a
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East South

North West Relevant state variables
Robot direction
Robot x−offset within region
Robot y−offset within region

Relevant state variables
Current region x−pos

Destination region x−pos
Destination region y−pos

Current region y−pos

Temporal Abstraction State Abstraction

Abstract actions

High−level control

abstract actions
Policy for choosing

Fig. 4. Temporal and state abstractions used by MAX-Q

policy for executing the abstract actions to maximise the reward obtained from
the environment. The hierarchy also encodes which state variables are relevant
for learning each operator, and which state variables are relevant for learning
the high-level policy for choosing abstract actions.

10 Experiment 2: Results

Figure 5 shows the results obtained by the augmented PLANQ-learner and the
MAX-Q learner for two instances of the evaluation domain. The PLANQ-learner
consistently achieves a policy close to the optimal within a constant number of
steps (around 100,000). Once it has learned a good policy for achieving each of
the operators in an arbitrary 5x5 region (thanks to the state abstraction), the
PLANQ-learner has enough information to achieve a good rate of return in a
region square of arbitrary size. In other words, the number of steps needed for
the PLANQ-learner to achieve a good rate of return is dependent only on ng,
not on nr.

The MAX-Q learner on the other hand needs to learn both the low-level
abstract actions and the high-level policy for choosing abstract actions. By ex-
ploiting both this temporal abstraction and the state abstraction information
supplied with the hierarchy, the MAX-Q learner can achieve a hierarchically-
optimal policy [2] in orders of magnitude less time than the original Q-learner
takes to achieve a good rate of return. However, the number of steps the MAX-Q
learner needs to achieve this policy does increase with nr, since the high-level
policy becomes more difficult to learn. So as the value of nr is increased, the
PLANQ-learner outperforms MAX-Q to a greater degree.
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Fig. 5. Results of Experiment 2: The PLANQ learner using state abstraction consis-
tently learns a near-optimal policy in around 105 time steps as we increase the value of
nr. In contrast, the MAX-Q learner takes an increasing number of time steps to learn
a policy of similar quality as nr is increased.

11 Computational Requirements

Although PLANQ achieved a good policy after fewer actions in the environment
than the other agents, it is important to consider the CPU time required to
calculate each action choice. Our original implementation used the FF planner
and the STRIPS encoding shown in Figure 2. This scaled very poorly in terms
of CPU time - we could only obtain results for nr ≤ 6.

To improve the scaling properties of PLANQ, we implemented our own version
of a Graphplan planner, eliminating costly operations such as parsing and file-
access, but still providing a fully functional domain-independent planner.

We also adopted an alternative STRIPS encoding of the evaluation domain,
shown in Figure 6. This involves encoding a subset of the natural numbers with
the successor relation s(a,b), and representing the x and y coordinates inde-
pendently as x(n) and y(n). Replacing the adjacency relation with a successor

(:objects n0 n1 n2)

(:init (s n0 n1)
(s n1 n2)
(x n0)
{y n0))

(:goal (x n1) (y n2)))

Fig. 6. Alternative PDDL problem encoding for nr = 3
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Fig. 7. CPU time required to achieve 95% optimal performance when ng = 5

relation means that the number of formulae in the initial conditions is O(nr) in-
stead of O(n2

r), which makes a great improvement to the performance of PLANQ.
Figure 7 shows the amount of CPU time taken for PLANQ to learn a policy

with 95% optimal performance. While the MAXQ learning method is infeasible
for nr > 20, PLANQ can learn to make near-optimal action choices in under
a minute while nr < 50. However, as nr approaches 70, PLANQ also starts to
become infeasible.

A key limitation of the PLANQ algorithm in its current form is the large
variance in CPU time required per time step. On most steps an action choice
can be made in a few microseconds, but if the planner needs to be invoked the
choice may be delayed for 50 or 100 milliseconds. For systems with real-time
constraints this is clearly unacceptable, and we plan to address this problem in
future research.

12 Conclusions and Related Work

In this series of experiments, we have shown that an AI planning algorithm based
on the STRIPS representation can be combined successfully with reinforcement
learning techniques, resulting in an agent which uses an explicit symbolic de-
scription of its prior knowledge of a learning problem to constrain the number of
action steps required to learn a policy with a good (but not necessarily optimal)
rate of return.

The STRIPS representation used in this work is limited to describing prob-
lems which are deterministic, fully observable, and goal oriented. To overcome
some of these limitations, the PLANQ method could be adapted to use a more
complex planner which can reason about stochastic action effects and plan qual-
ity. However, we believe that prior knowledge encoded in the limited STRIPS
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representation will still be useful for speeding up the learning of many problems,
even if some aspects of those problems are inexpressible in the representation.

Our technique for deriving a reward function from the pre-conditions and ef-
fects of a STRIPS operator is similar to that used by Ryan [9], although his
work is primarily concerned with teleo-reactive planning in contrast to the clas-
sical STRIPS plans used in our work.

Boutilier et al. [10] employ symbolic plans to solve factored MDPs with reward
functions expressible as an additive combination of sub-goals. Partially-ordered
plans are used as an intermediate representation for constructing a high quality
solution which makes a trade-off between the sub-goals.
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Abstract. The goal of multi-agent systems is to build robust intelligent
systems capable of existing in complex environments. Agents must decide
with whom to interact. In this paper we investigate how agents may bias
their interactions in environments where alternative game payoffs are
available. We present a number of game theoretic simulations involving
a range of agent interaction models. Through a series of experiments we
show the effects of modelling agent interactions when games representing
alternative levels of benefit and risk are offered. Individual agents may
have a preference for games of a certain risk. We also present analysis of
population dynamics, examining how agents bias their peer interactions
throughout each generation. We also address the topic of implicit trust,
where agents reflect levels of trust through the payoffs presented in a
game offer. In this interaction model agents may use levels of trust to
choose opponents and to determine levels of risk associated with a game.

1 Introduction

In this paper we examine how agents bias their interactions within a game the-
oretic environment. Traditionally, interaction models such as spatial [1], tagging
[13], kin selection [4] or trust [11] have been used. Each of these interaction mod-
els involve players biasing their interactions based on individual preferences for
particular peers. These preferences have been based on relatedness, similarity,
proximity or trustworthiness. However, to date, research has not examined the
effects of agents having individual preferences for desired goals, preferred levels
of risk or the necessity to obtain particular services. In this paper we use game
theoretic simulations to examine individual agent’s preferences for certain game
utilities. Therefore, agents must decide with which of their peers to interact, and
also for what payoffs they should interact. We examine the important extension
of implicit trust which allows players agree game payoffs based on levels of trust.
We conduct these simulations using the well known Iterated Prisoner’s Dilemma
(IPD). We have extended this game to allow players offer and accept games of
differing payoffs. In this paper we address the following research questions:

1. What are the effects of biasing peer interactions based on individual game
preferences?

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 87–101, 2008.
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2. What are the effects of biasing peer interactions and choosing games of risk
when game values can be agreed and influenced by trust?

In the following section we will present some background research describing
previous work involving tagging, trust and choice and refusal environments. Sub-
sequent sections will outline our simulator design, strategy set and experimental
setup. Finally in our results section we will present a series of experiments and
provide analysis and commentary of the data. Stemming from these experimental
results we will outline our conclusions.

2 Background Research

In this paper we are primarily concerned with how agents bias their interactions.
An agent’s ability to structure its interactions can fundamentally effect its in-
dividual performance and as a result the overall performance of the population.
Previous research involving this topic includes techniques such as spatial, tag-
ging, kin selection and trust. In this section we will discuss some of this existing
research.

2.1 Spatial, Tagging and Kin Selection

The emergence of cooperation is influenced by the ability of agents to bias their
interactions towards their cooperative peers and away from their non-cooperative
peers. Numerous interaction models have been examined which have facilitated
this process. Kin selection is one mechanism which involves groups of related
individuals [4,16]. In this model related individuals are more likely to interact
than those who are not related. Another well known interaction model involves
agents being located on a spatial topology such as a grid [1]. Agents are more
likely to interact with those peers located on adjacent cells of the grid.

Other alternative interaction models have also been proposed in recent times
such as tag-mediated interactions models [5,13]. These models allow agents bias
their peer interactions based on abstract topologies. Agents of a similar tag value
are more likely to interact than others. Tags are similar to visible markings
or labels which can be used by agents to bias their interactions. Interactions
that are initially random can become highly structured through these visible
markings. Tags have been shown to benefit the emergence of cooperation in agent
societies through partitioning the agent population and limiting interactions.
This involves clustering around certain gene values which resemble groups [7].
The success of these interaction models depends on cooperative groups not being
invaded by less cooperative strategies [6]. In this paper we will present a number
of tag-mediated interaction models which allow players to bias their interactions
based on preferences for certain games.

These interaction models succeed through allowing populations of agents to
limit their peer interactions, thereby resembling subgroups. This prevents coop-
erative clusters from being exploited by non-cooperative peers. In reality this
population partitioning is not always possible. Therefore, more realistic agent
interaction models such as choice and refusal (CandR) have been proposed.
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2.2 Choice and Refusal

Choice and refusal (CandR) models are more expressive agent interaction mod-
els which allow agents interact freely within their environment. Choice and re-
fusal environments have been studied initially by Stanley, Ashlock and Smucker
[14] and more recently by Howley and O’Riordan [9]. These environments are
fundamentally different with those previously described interaction models. No
population partitioning is enforced, as all agents are free to interact with each
other. Agents usually bias their interactions through indicators of trust based
on previous interactions.

2.3 Trust

Trust is fundamental to engendering cooperation in real world agent environ-
ments. Many agent interaction models rely heavily on rigorous population parti-
tioning in order to maintain cooperation as in spatial, tagging and kin selection
models. These techniques are not suited to environments where agents require
the freedom to individually choose peer interactions. Real world multi-agent sys-
tems, like trading environments, use more elaborate interaction metrics such as
trust. There are not many formal definitions of trust, but one has been proposed
describing trust as a form of risk [3]. They state the relationship between trust
T and risk R as the following:

R =
1
T

(1)

This equation is partly based on the observations of Marsh. He states that
‘entering into a trusting relationship is choosing to take an ambiguous path
that can lead to either benefit or cost depending on the behaviours of others’
[10,15]. A peer’s reliability can be determined through their track record which is
represented by a metric called trust. Many variants of trust have been proposed
including extensions which are classified as reputation models.

An important dimension of trust involves the concept of implicit trust [8].
This concept has been proposed in order to extend our interpretation of trust
beyond its more traditional parameters. These traditional concepts of trust have
almost exclusively used agent-level metrics to assist agent decision making. They
predominantly use static games which do not reflect the changing relationships
between agents. In reality game interaction values should reflect the previous
actions of players in the same way as market dynamics involving pricing always
reflect the actions of competitors. An example of these dynamics would be a
duopoly between two producers in a market, or more commonly an oligopoly,
which is a market dominated by a small number of producers. In these mar-
kets producers can collude through limiting supply to the market and therefore
maximise payoffs.

These non-static payoff dynamics have not previously been examined in re-
lation to trust and multi-agent systems where much attention has been paid
to static games such as the IPD. Implicit trust allows agents reflect trust levels
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through two distinct mechanisms. Firstly, through determining peer interac-
tions, and secondly, through agreeing the payoffs or utilities for peer interac-
tions. Traditional trust models have only considered agents’ decisions to interact
or not, while in reality this decision is often heavily influenced by the utilities
involved.

A closely related topic to trust is that of reputation. Reputation is usually
modelled through the use of a centralised blackboard system or through message
passing. Reputation models are based on aggregating trust metrics and allowing
this information to be made available to other agents [2]. Agents who are trusted
by many agents are usually said to have a good reputation while conversely
agents who are not trusted are considered to have a bad reputation.

2.4 The Iterated Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is a simple two-player game where each player
must make a decision to either cooperate (C) or defect (D). Both players decide
simultaneously and therefore have no prior knowledge of what the other has
decided. If both players cooperate they receive a specific payoff. If both defect
they receive a lower payoff. If one cooperates and the other defects then the
defector receives the maximum payoff and the cooperator receives the minimum.
The payoff matrix outlined in Table 1 demonstrates the potential payoffs for each
player.

Table 1. Prisoner’s Dilemma Payoff Matrix

Players Choice Cooperate Defect

Cooperate (λ1, λ1) (λ2, λ3)
Defect (λ3, λ2) (λ4, λ4)

The dilemma is a non-zero-sum, non-cooperative and simultaneous game. For
the dilemma to hold in all cases, certain constraints must be adhered to. The
following is the first constraint:

λ2 < λ4 < λ1 < λ3 (2)

These conditions result in λ2 being the sucker’s payoff, λ1 is the reward for
mutual cooperation, λ4 is the punishment for mutual defection, and λ3 provides
the incentive or temptation to defect. The second constraint is the following:

2λ1 > λ2 + λ3 (3)

This constraint prevents players taking alternating turns receiving the sucker’s
payoff (λ2) and the temptation to defect (λ3), therefore maximising their score.

The following λ values are commonly used in the Prisoner’s Dilemma: λ1 =
3, λ2 = 0, λ3 = 5, λ4 = 1.
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In the non-iterated game, the rational choice is to defect, while in the finitely
repeated game, it is rational to defect on the last move and by induction to
defect all the time.

3 Simulator Design

In this section we outline our overall simulator design. We begin with an intro-
duction to the game cycle. We describe how we extended the Iterated Prisoner’s
Dilemma (IPD) to allow agents express preferences for certain types of games.
We also outline our strategy set.

Fig. 1. Game Cycle

In Fig. 1. we show the general structure of the game cycle. Initially, agents
determine their peer interactions depending on the interaction model being sim-
ulated. Agents then play their selected opponents. Subsequently, payoffs are
calculated and used as a measure of fitness for our evolutionary algorithm. This
evolutionary algorithm uses replicator dynamics based on fitness to determine
agent representation in successive generations.

3.1 The Extended IPD

The extended IPD remains predominantly the same as the traditional game
described previously. It remains a simple two player dilemma which is non-
zero-sum, non-cooperative and played simultaneously. For this game to remain a
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Table 2. Adapted IPD Payoff Matrix

Players Choice Cooperate Defect

Cooperate (λ1, λ1) (λ2, TD)
Defect (TD,λ2) (λ4, λ4)

Prisoner’s Dilemma it must still remain within the constraints of the original
game as outlined above. The extended game uses the following adapted payoff
matrix.

In this game λ1, λ2, λ4 remain constant while the value of TD is determined
by the players involved in each game interaction. For the game to remain a
dilemma the value of TD must remain within the following range of values:

λ1 < TD < 2 × λ1 (4)

The IPD payoff values used throughout this research are as follows: λ1 = 5000,
λ2 = 0, λ3 = TD, λ4 = 1. The TD value must always remain within the following
range: λ1 < TD < 2×λ1. These λ values provide an expressive range of possible
TD values.

3.2 Strategy Set

In order to define a strategy set we draw upon existing research involving IPD
strategies which use three bit strategy sets [12]. In our model each strategy
genome includes four primary strategy genes representing probabilities of coop-
eration in an initial move pi and in response to a cooperation pc or defection pd.
The final strategy gene pt represents their game preference for TD values. This
strategy value, in the range of zero to one, represents their preference for higher
or lower TD values. Zero represents the minimum TD value while one repre-
sents the maximum. Some strategies will prove more conservative than others in
preferring games with low TD values while others will be less conservative. The
resulting strategy genome looks like the following:

Genome = pi, pc, pd, pt (5)

4 Interaction Models

In this paper we present simulations involving four distinct agent interaction
models. In our simulator we use populations of 1000 agents. We present ex-
periments showing the average of 50 experiments which were simulated over 100
generations. Each of these interaction models are closely related and extend each
other until finally we present an interaction model which can be considered an
implicit trust model. We will now present a number of distinct but related agent
interaction models which we will use throughout our experiments.
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4.1 Tagging Model Fixed Payoffs

This first agent interaction model is a simple tag-mediated interaction model.
Agents bias their interactions probabilistically based on the similarity of their pt

genes. We use this as a experimental base case, and therefore all four λ payoffs
remain fixed. The probabilities of two agents interacting is based on their pt

gene similarity. Agents make game offers to selected peers based on players’ pt

gene similarity. Agents are less likely to interact with those peers who have a
dissimilar pt gene. We use a formula originally proposed in research involving
tag-mediated interactions [13]. The dissimilarity of two individuals (A and C) is
defined as follows:

dA,C = |pA
t − pC

t | (6)

Through using this equation agents can use the resulting probabilities to de-
termine their peer interactions.

4.2 Tagging Model with Variable Payoffs

This interaction model extends the previous model by allowing players agree a
desired TD payoff in each of their game interactions. As explained in Section
3.1 the value of TD in the extended game is limited to a particular range of
values. The value of TD is determined by the agents and reflects their individual
preferences. An agent i makes game offers with a TD reflecting its pt gene. A
low pt gene will result in a low TD value and vice-versa for high pt genes. An
agent j interacts probabilistically based on the similarity of its pt gene and the
TD offered.

4.3 Trust Model with Variable Payoffs

The third interaction model differs from the previous models by introducing
choice and refusal (CandR) to players. This allows players to interact freely and
independent of any tag bias. In this model an agent i will make game offers based
on levels of cooperation over previous rounds. This is considered a good indicator
of trust. This differs significantly from the previous two models as players are
free to make game offers independent of their pt gene. The decision of agents
to accept or reject game offers is based on their pt gene preference for the TD
offered. A player who prefers games with a low TD is less likely to accept a game
with a high TD.

4.4 Implicit Trust Model

The final interaction model extends the previous interaction model sufficiently
to be classified as an implicit trust model. The CandR environment remains,
and agents continue to make game offers to selected peers based on average
cooperation. One important extension allows players make game offers which
reflect their level of trust in their chosen opponent. We allow agents revise their
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game preference to reflect levels of trust in their opponent. In this model an agent
i adjusts its game preference to reflect trust in an opponent j. Agent i may offer
a game with a TD value which reflects its trust in j. Agent j chooses game offers
based on its trust for agent i. Since game preferences are determined through
trust the game preferences throughout the population will closely track levels of
trust in the population. If trust falls then preferences for high risk games will
fall and vice-versa. We classify this interaction model as an implicit trust model
since individual game offers reflect levels of trust [8]. In these environments, if
there are high levels of trust, there will be significant rewards to agents who
are prepared to defect. One of our primary concerns in this paper is the effect
of extending well known interaction models to reflect implicit trust. We discuss
this in the following section of this paper.

5 Experimental Results

In this section we will present a series of experimental results involving each of
our interaction models. Each experiment represents an average of 50 runs over
100 generations.

5.1 Agent Game Preferences

In the experiment shown in Fig. 2. we examine the average game preferences
throughout the agent population. These levels are determined by measuring the
average pt gene values used throughout the population.

In the experiment shown in Fig. 2. we identify the game preferences of agents
in three interaction models. The base case interaction model (tagging with fixed
payoffs) shows no change in preferences for games of higher or lower risk. This is
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as a result of this base case using fixed payoffs throughout all game interactions.
In this environment the game preference pt gene has no effect on agents perfor-
mance therefore experiences no evolutionary pressure. Over repeated simulations
its average value remains around 0.5.

In the tag-mediated interaction model which permits agents to use their pt

gene to determine game payoffs, we identify an overall decrease in the average
value of this pt gene throughout the population. This is subsequent to an initial
increase in this value. Initially exploitation is rewarded in games where the play-
ers use higher pt genes. These agents immediately gain an advantage although
this is quickly undermined through their mutual defection which undermines
their fitness. All exploiters are quickly outperformed by any mutually coopera-
tive pairings and these emerge to dominate the population. These strategies all
have low pt genes as there is no benefit for cooperative strategies to have high
pt genes.

In the third interaction model, agents make game offers to peers based on
payoffs received throughout their previous interactions. This extension results
in a more stable average pt gene level throughout the population. This average
pt gene is as a result of agents initially being rewarded for exploitation and
subsequently over exploiting each other. This only effects strategies who enter
high TD payoff games. As a result of this mainly cooperative strategies emerge
to dominate the population, and these strategies are not rewarded for having
high pt genes. Because of the trust scheme agent interaction are not a rigidly
structured based on pt genes. Therefore there is a greater tolerance of higher pt

gene values. We also noticed a heightened degree of tolerance throughout these
populations where intermittent exploitation was acceptable. This was easier to
achieve in a CandR environment as the population is not partitioned by tag
groups. Furthermore, CandR environments facilitate repeated interactions more
easily between agents for these relationships of convenience.

The data in Table 3. presents some statistical analysis of the results shown in
the above graph. In a two tailed t-test, the results were found to be statistically
significant with a 95% confidence interval.

Table 3. pt Statistics

Agent Interaction Model μPt σ

Tagging Fixed Payoffs 0.510 0.00101
Tagging Variable Payoffs 0.251 0.10231
CandR Trust Model Variable 0.359 0.10419

In the final experiment involving game preferences we examine the average
game preference using the implicit trust model. This experiment uses a different
measurement scale as preferences are different for each agent relationship. We
calculate levels of game preferences throughout all games in each generation. We
use a separate graph (Fig. 3.) and table (Table 4.) to represent these results.
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Table 4. presents some statistical analysis of of the data presented in these
simulations.

Table 4. Game Preference Statistics

Agent Interaction Model μGamePreference σ

Implicit Trust Model 0.960 0.05069

In the shown experiment (Fig. 3.) we identify a significant increase in the
average game preference throughout the population. In contrast to the previous
interaction models, these agents prefer games of higher risk throughout their
interactions. We measure average game preferences throughout the population.
Agents benefit from participating in a CandR environment by repeatedly playing
their most trusted peers.

5.2 Average Fitness

In Fig. 4. we observe levels of average fitness in our simulations across 100
generations. From the results shown we identify the levels of fitness achieved
throughout each of our interaction models. Each interaction model achieved
high levels of fitness, which indicates that they were effective in allowing agents
bias their interactions.

5.3 Pairwise Interactions

In the experiment shown in Fig. 5. we present data examining levels of inter-
actions between agents throughout the population. Agents can be considered
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nodes in a graph where edges represent interactions between specific nodes in
the population. By calculating the average degree of each vertex we can gain an
indication of levels of connectivity throughout the population. If G = (V, E) is
a simple graph, and deg(v) is the degree of a vertex v ∈ V in G. The average
degree in P is defined as follows:

D =
∑
v∈V

deg(v)
| V | (7)

The experiment shown in Fig. 5. presents levels of node connectivity through-
out each of the interaction models.

In Fig. 5. we observe levels of pairwise interactions between agents throughout
the population. We notice the low levels of pairwise interactions in each of our
CandR interaction models. This is as a result of agents being able to reduce
their pairwise interactions to their most trusted peers. Game offers are based
solely on payoffs received. Tagging models are not as discerning regarding their
peer interactions and therefore maintain high levels of interactions. We also
note that groups in CandR environments are slower to adopt new members and
this significantly effects levels of interactions throughout the population. This
phenomenon does not occur in the tag interaction models.

5.4 Repeated Interactions

In the following experiment we consider levels of dependencies between agents
throughout the population. Through measuring the levels of repeated interac-
tions between nodes in the population we can evaluate the strength of these
dependencies between agents. Let wij denote the weight of the edge eij connect-
ing vertex i and j (wij = 0 if there is no edge connecting vertex i and j, and
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wij = n if player i and j have had n game interactions). Repeated interactions
are calculated using the following equation:

W =
∑

eij∈E

wij

D
(8)

In the experiment shown in Fig. 6. we present a series of results for each of
our interaction models. These metrics of repeated interactions between agents
indicate how dependencies between agents develop in each interaction model.
From the results presented we note that each of our tagging models converge
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rapidly. The significant difference in repeated interactions between these two
interaction models stems from the distribution of agents across tag groups. In
the fixed payoff tag model the population converges to a small number of tag
value groups whereas in the variable payoff tag model there remains a larger
number of tag value groups throughout the population. This significantly effects
levels of repeated interactions as agents in small isolated groups will interact very
heavily with each other and thereby contribute to increased levels of repeated
interactions throughout the population.

In our CandR models we identify the slower convergence of the population on
levels of repeated interactions. This stems from groups being slower to interact
heavily with their fellow group members. This characteristic does not occur in
the tag interaction models.

6 Conclusions

In this paper we have presented a series of experiments showing the fundamen-
tal differences between a number of agent interaction models. We have shown
that through simple extensions to each interaction model, significant individ-
ual characteristics can emerge. We have provided a detailed examination of
how agents can have a preference for games of a certain payoff risk. We have
also examined how these agent preferences effect the overall behaviour of the
population.

Earlier in this paper we posed two research questions regarding individual
agent preferences for types of games, and also preferences based on trust. Firstly,
we can conclude that tags which bias agent interactions based on game prefer-
ence engender cooperation throughout the population. This is similar to tag
models discussed in previous research [13,7]. From the results presented we can
conclude that through allowing agents agree game payoffs there is merely an
initial benefit to agents who choose games of higher risk. These strategies are
quickly undermined by their own greed and replaced by much more cooperative
strategies who prefer games of lower risk. Throughout out simulations involving
variable payoffs we identified a significant amount of intermittent exploitation.
This involves strategies maintaining their fitness through intermittently exploit-
ing opponents while still maintaining quite cooperative relationships.

The second question posed earlier in this paper concerns the final two in-
teraction models. These interaction models allow unhindered selection of peers
and therefore allow agents exclude any non-cooperative peers. This results in the
emergence of groups of heavily interacting agents. Membership of these groups is
difficult to achieve for non group members once the group has emerged. Group
members are very hesitant to interact with new agents and prefer to interact
repeatedly with their fellow group members. From our implicit trust simulations
we can clearly identify the preference of players to choose games of higher risk
once they are in groups where this cannot be heavily exploited. This reinforces
and extends previous research involving implicit trust [8].
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7 Summary

In this paper we have shown through a series of simple extensions to an IPD envi-
ronment that significant behavioural characteristics can emerge through adapt-
ing the IPD to include games of varying payoff. We have identified the emergence
of strategies who’s game preference fundamentally effects their success over time.
In both tag and trust environments we identified the dominance of cooperative
strategies who prefer games of low risk. Implicit trust differs from this as game
preferences are in effect, a function of cooperation, and will always remain high
in a cooperative environment like the one simulated.
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Abstract. Adaptability is a fundamental property of any intelligent sys-
tem. In this paper, we present how adaptability in multi-agent systems
can be implemented by means of collaborative logic-based learning. The
proposed method is based on two building blocks: (1) a set of operations
centred around inductive logic programming for generalizing agents’ ob-
servations into sets of rules, and (2) a set of communication strategies for
sharing acquired knowledge among agents in order to improve the col-
laborative learning process. Using these modular building blocks, several
learning algorithms can be constructed with different trade-offs between
the quality of learning, computation and communication requirements,
and the disclosure of the agent’s private information. The method has
been implemented as a modular software component that can be inte-
grated into the control loop of an intelligent agent. The method has
been evaluated on a simulated logistic scenario, in which teams of trad-
ing agents learn the properties of the environment in order to optimize
their operation.

1 Introduction

Adaptability is generally accepted as a fundamental property of any intelligent
system. It underpins system’s ability to operate effectively in open, changing
environments, in which control mechanisms cannot be specified in advance.

Various approaches towards engineering adaptability have been proposed. Our
framework uses inductive logic programming (ILP), a logic-based relational learn-
ing technique. We have chosen ILP because it has a number of properties attrac-
tive for multi-agent applications, including high expressivity and transferability
of learned models, and the ability to incorporate background knowledge.

Inter-agent communication is the second pillar of our approach. Different
types of communication are possible in multi-agent learning, ranging from in-
direct signalling through raw observation exchange up to high-level sharing of
generalized knowledge in the form of rules and patterns. Although essential for
efficient learning in the multi-agent setting, the communication can – if designed
incorrectly – actually impair the learning process, and expose agents to privacy
and/or security risks. A key research question in this context is how the com-
munication (or the lack of) influences the quality and speed of the adaptation
process.
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Taking the above into account, we have developed a multi-agent extension of
ILP, which supports different levels of inter-agent communication. The method
has been implemented as a Java-based component that can be integrated with ex-
isting control mechanisms. Specifically, we have incorporated the module into the
reflective-cognitive agent architecture [1] used in the agent platform A-globe[2].
We have carried out a number of experiments on a complex logistic scenario
and evaluated the impact of each information sharing strategy on key evaluation
criteria: the quality of adaptation, computation resources and communication
resources required.

The paper proceeds as follows. In Section 2 we provide a brief introduction
to logic-based learning methods, with particular emphasis on inductive logic
programming, and their application to multi-agent learning. Section 3 introduces
the A-globe multi-agent learning framework and describes the different learning
methods implemented. In Section 4, we empirically test all the methods on a
realistic multi-agent logistic scenario and discuss each method’s strengths and
weaknesses. Section 5 discusses in detail assumptions and limitations of our
approach. Finally, Section 6 provides concluding remarks and outlines several
directions for future research.

1.1 Related Work

The majority of research on learning in multi-agent systems focuses on reactive
reward-based approaches and their application to inter-agent coordination [3].
Considerably less work exists on higher-level concept learning and the role ex-
plicit inter-agent communication in multi-agent learning. Provost and Hennessy
[4] present learning agents learning from disjoint subsets of a training set and
show that rules good for the whole dataset are good for at least one of the learn-
ing agents. Colton et al. [5] use cooperative agents to create a theory in the
domains of pure mathematics. Their agents share created concepts and decide
which of the received concepts will be re-assessed. Panait and Luke [6] present
an exhaustive review of cooperative methods for multi-agent learning. They dis-
cuss the role of communication in learning, distinguishing between direct and
indirect communication.

When narrowed down to logic-based techniques, the body of research on
multi-agent learning turns out surprisingly limited. Kazakov [7] discusses the
application of ILP for single-agent learning in the multi-agent setting. Agents
individually learn the properties of environment using the Progol ILP system.
In contrast to our approach, no communication between agents takes place. Her-
nandez [8] discusses the application of first-order decision tree induction system
ACE to learn about applicability of plans in a BDI architecture. There is no
inter-agent communication beyond plain observation exchange and the learn-
ing system is not integrated into agent’s reasoning architecture. Bartlett and
Kazakov [9] describe agents exchanging rules describing routes to resource in
their environment. Finally, Alonso [10] advocates the application of ILP and
other logic-based techniques to learning in complex multi-agent domains such as
conflict simulations.
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2 Logic-Based Machine Learning

Learning methods based on formal logic offer a very flexible, extensible represen-
tation language, in which observation data, background knowledge and learned
models can be expressed. The prominent logic-based learning method is Induc-
tive Logic Programming (ILP)[11]. ILP is built on three pillars: first-order logic1

as the representation formalism for both training examples (the object language)
and theories learned (the concept language), background knowledge in the form
of predicates, which extend the concept language, and, finally, induction as a
method of learning. ILP is normally used for supervised learning. In addition to
the set of labelled training examples, ILP also takes background knowledge as
the input to the learning process. The output of learning is a theory, essentially
a set of Horn-logic rules which, combined with the background knowledge, can
be used to derive classification of unlabelled examples.

ILP has several unique properties which makes it particularly suitable for the
application in the multi-agent domain:

– Expressivity: Relates both to the description of training examples and the
models produced. The application of methods that can work with expressive
models is particularly important in complex domains where knowledge-based
planning and/or complex coordination is necessary [6].

– Background Knowledge: ILP methods can incorporate prior knowledge
capturing important concepts and rules known to hold in the domain, which-
can significantly improve the efficiency of learning.

– Transparency and Communicability: Theories produced by ILP meth-
ods are expressed in a transparent format. This allows to communicate data
and learned models between cooperating learning agents.

– Semantic Interoperability: ILP expresses knowledge in a way that is
compatible with Semantic Web technologies centred around relational rep-
resentation formats and description logics [12,13].

ILP methods obviously also have some disadvantages. Perhaps the biggest is
their very high computational requirements, although this might be viewed as
the necessary price for the flexibility offered.

3 A-globe Multi-agent Learning

Following the description of used logic-based learning, we now describe the design
and implementation of our multi-agent learning framework. First, we introduce
key concepts used in the framework. We then describe three model adaptation
operations, and show how they can be arranged into different learning algorithms
with different performance characteristics and different level of inter-agent com-
munication.
1 More precisely the Horn logic, a subset of first-order logic also used as a basis for

logic programming (Prolog).



Collaborative Learning with Logic-Based Models 105

3.1 Conceptual Framework

Let us first describe several important concepts of the A-globe learning frame-
work:

observation is an event considered for learning, i.e., essentially a training ex-
ample; an agent can obtain observations either directly by monitoring its
own actions, or by communicating with other agents.

observation set is a set of observations the agent has aggregated; each agent
has it own observation set, which is used as the training set for the ILP
method and/or shared with other agents.

model2 is the theory obtained by generalizing the observation set; each agent
has its own model, which it uses to control its behaviour (or, more precisely,
those aspects of the behaviour influenced by learning).

The elements of the learning framework are depicted in Figure 1 including the
way they are shared.

Environment

Observation
set

Model

Observation (s)

Model

Observation

Fig. 1. Conceptual schema of A-globe learning framework

3.2 Model Adaptation Operations

A-globe learning framework uses three model-adaptation operations – induce,
merge and filter – which are applied on the agent’s observation set and model
in order to adapt agent behaviour:

– Induce (E → M) is the induction operation provided by the ILP algorithm.
Using the induce operation, agents generate a model generalizing its set of
recorded observations.

2 Note that we use the term model in its machine learning interpretation as a con-
struct derived through the inductive learning process; its meaning is unrelated to
the terminology used in formal logic. We decided to use the term model over theory
as the latter is specific to ILP.
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– Merge (M1, M2 → M) operation unifies two models into a single model
which approximates the behaviour of the original models.

– Filter (M, E → E′) operation reduces the observation set by removing
those positive observations that are already covered by the given model. In
the context of collaborative learning, observation filtering saves agents from
having to generalize observations that have been already generalized and
allows it to specialize on the area of the problem space that has not been
yet covered.

The adaptation operations can be viewed as modular algorithmic blocks which
can be arranged into different learning workflows (see Section 3.4). The realiza-
tion of model adaptation operations can be domain-specific. Their implementa-
tion for our experimental setting is described in Section 4.2.

3.3 Inter-agent Communication

As already mentioned, communication has a fundamental impact on the effi-
ciency of any multi-agent learning algorithm. A-globe learning framework was
therefore designed to support different levels of inter-agent communication. This
allows to experiment with the role of communication in multi-agent learning,
but, from the practical perspective, also allows customizing the learning method
to fit the desired application scenario.

We currently distinguish three different types of communication:

1. No communication: This is a trivial case; there is no communication be-
tween agents, and, consequently, agents adapt in isolation.

2. Low-level communication (Observation sharing): Agents exchange
raw observations they acquired. This type of communication establishes
shared information among agents and allows them to learn from more com-
plete trainig sets.

3. High-level communication (Model sharing): Agents exchange models
they created by generalizing their observation sets. This type of communi-
cation aims at establishing shared understanding among agents.

In the context of this communication hierarchy, we are interested in the interplay
between low-level and high-level communication, and particularly in the role of
compression provided by the inductive learning process. On one hand, the com-
pression leads to a reduction in the amount of communication, on the other,
though, it might decrease the quality of resulting models. The compression is in-
teresting also from the perspective of protecting the agent’s private knowledge as
it allows collaborative learning without the need to disclose specific details about
agents past operation. This might be of great importance for certain application
domains.

3.4 Learning Workflows

The three model adaptation operations described in Section 3.2 can be arranged
into a range of different learning workflows, which then comprise the basis of
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Add Induce
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Agent’s
observation set

Generalized 
agent’s model

Fig. 2. Observe and Generalize workflow

Merge

Agent’s
model

Received
model

Revised
agent’s model

Fig. 3. Integrate by Merge workflow

Filter Induce

observation set

Received
model

Model covering 
the filtered set

Merge

observation set

Revised 

Selected 
model

Fig. 4. Integrate by Filtering workflow

different learning methods (see Section 4.2). So far, we have implemented three
such workflows, the first employing low-level while the remaining two high-level
inter-agent communication.

– Observe and Generalize workflow (Figure 2) is the basis of the low-level
collaboration learning method. It is used after the agent receives a new ob-
servation. The observation is recorded in the agent’s observation set and the
induce operation is applied to update the agent’s model.
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– Integrate by Merge workflow (Figure 3) is used in the high-level col-
laboration method after receiving a model from another agent. The received
model is integrated with the recipient agent’s existing model using the merge
operation.

– Integrate by Filtering workflow is also used in the high-level collabora-
tion method (Figure 4). The aim of the workflow to promote specialization
between agents. First, a subset of the received model is selected, which is not
in contradiction with recipient’s observations. The selected model is used to
reduce the agent’s observation set through the filter operation. The reduced
observation set is subsequently generalized to a new, more specialized model,
and this model is merged with the model that triggered the integration.

4 Experiments

We have conducted a range of experiments on a realistic multi-agent logistics
scenario ACROSS . The scenario serves as Gerstner lab’s integrated testbed for
a wide range of agent-based techniques, not limited to multi-agent learning.

The goal of the experiments was to evaluate the performance of the proposed
collaborative methods in enabling the adaptability of individual agents and their
teams. By comparing methods using different levels of inter-agent communica-
tion, we also wanted to gain insight in the trade-offs that exist between the key
performance characteristics: the quality of adaptation, computational resources
and communication resources required.

4.1 Scenario

ACROSS is a logistic scenario extended with adversarial behaviour and imple-
mented on top of the A-globe 3[2] agent platform. In the scenario, truck trans-
porter agents deliver goods between producers and consumers. The transporter
agents can form coalitions in order to improve their chances when competing for
transport tasks.

In addition to the transporter agents, adversarial bandit agents operate in
the domain. Bandit agents attack and rob transporter agents, preventing them
from completing their transport tasks, and consequently reducing their profit.
Transporter agents are therefore strongly motivated to try and avoid the at-
tacks. The activity of bandit agents is, however, not uniform. Each bandit
agent has a set of preferences specifying in which areas and under which condi-
tions it attacks. The preferences are described by a relational Horn logic theory
taking into account factors such as location, cargo transported, or delivery
destination.

For the purpose of learning, the operation of transporter agents is segmented
into a series of discrete observations. In the scenario, each observation corre-
sponds to the act of passing a particular road segment. A transporter agent can
either successfully traverse the road segment, or be robbed while attempting to
3 http://agents.felk.cvut.cz/aglobe
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Fig. 5. ACROSS multi-agent logistic scenario

do so. Note that while from the fact that the transporter has been robbed we can
conclude that the segment is dangerous, we cannot conclude the contrary from
the fact that the segment has been traversed safely – this is because robberies
happen when the transporter meets a bandit, i.e. only with a certain probability.

In this scenario, we therefore only have positive examples. Each robbery pro-
duces a positive example 4 but there are no negative examples (in a logical
sense). We therefore use an ILP algorithm that is able to learn from positive-
only examples. Information about safe traversals is, however, not completely
discarded and it is used to prioritize candidate models during learning (see also
Section 4.2).

In order to operate more safely, agents try to learn bandits’ preferences and
restrictions, and utilize this knowledge in their planning. Individual agents need
not create a theory for all possible circumstances, but only for those that are
relevant to their properties and the regions they operate in. By sharing the
information and models of bandits’ behaviour with partners in the coalition,
using techniques described in Section 3, agents improve their adaptation process,
and consequently their performance in the scenario.

Example. Let us illustrate learning in ACROSS with an example. In this case,
a bandit agent uses the following rule do decide whether or not to attack:

4 The observation is positive from the perspective of ILP which learns the concept of
“dangerous roads” here.
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attack(Transporter):-
endCity(Transporter, C1),
cityRegion(C1, ’central’),
startCity(Transporter, C2),
cityRegion(C2, ’central’),
notEqual(C1, C2).

This bandit agent attacks only transporter agents carrying goods between two
different cities in the central region.

Operating in this domain, a transporter agent could learn the following rule5

representing its view of the bandit the agent’s behavior:

attack(Transporter):-
endCity(Transporter, C1),
cityTribe(C1, ’midlanders’),
startCity(Transporter, C2),
cityPopulation(C2, ’village’).

On the first sight, the rule learned by the transporter agent looks quite different
to the actual rule guiding the bandit the agent’s behaviour. However, because
of the fact that most locations in the central region belong to the midlanders
tribe (and vice versa), and some locations next to the border of the central
region are villages, this rule in fact closely approximates the actual behaviour of
the bandit agent.

Note that the rule learned by the agent uses variables and conjunctions of
different predicates to concisely express a condition that covers a large number
of specific situations. The same condition would have to be represented as a long
enumeration of specific cases if relational, logic-based learning were not used.

4.2 Experiment Setup

Altogether, we have experimented with four types of methods, each utilizing a
different level of inter-agent communication (see also Section 3.3).

– No learning – this is a trivial case implemented mainly for comparison;
here agents do not adapt their behaviour.

– Isolated learning – in this case, agents learn individually based solely
on the observations they gather on their own; there is no communication
between agents.

– Low-level collaborative learning – this is the collaborative learning uti-
lizing low-level inter-agent communication involving raw observation ex-
change.

– High-level collaborative learning – this is the most sophisticated method
whereby the agents share the rules they have learned from their observations
(which are not shared).

5 This is just an example, the learned model usually consists of several rules of this
kind.
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We have used a specific implementation of model adaptation operations and
workflows described in Section 3. The induce operation has been implemented
using a relational subgroup discovery ILP algorithm. The algorithm uses propo-
sitionalization of the underlying relational problem and is described e.g. in [14].
The merge operation (see Section 3.2) is implemented as the concatenation of
the two models, i.e. of the two sets of rules. In the integrate by filtering work-
flow (see Section 3.4), the full received model is selected as the input to the
workflow. Because, as mentioned in Section 4.1, the scenario uses positive-only
learning and there are no negative examples (in a logical sense), no contradic-
tions can arise and the above implementation of merge and integrate by filtering
leads to internally consistent models.

In the experiment, we have used five transporter agents, three bandit agents
randomly passing the map and robbing transported goods, and twelve location
agents providing and consuming resources, and therefore acting as departure
and destination points for transporter agents. In each run, all transporter agent
use the same learning method.

4.3 Evaluation Criteria

For each method, we were evaluating the following criteria:

Number of attacks per transporter agent. This number should decrease as
agents learn to avoid dangerous roads. It is therefore inverse to the perfor-
mance (also termed quality) of the adaptation mechanism.

Communication load measures the amount of information exchanged between
agents. The measure is defined as the number of observations in the case of
low-level communication, and the number or rules in the case of high-level
communication.

Computational load amounts to the total CPU time consumed by the learn-
ing algorithm (with the ILP induction taking by far the largest part).

4.4 Results

We finally present the results of our experiments. Figure 6 shows the daily num-
ber of attacks (days correspond to simulation cycles). Although the long-term
average (over many simulation days) of the daily number of attacks is, in the
case of non-adapting agents, constant, there exist short term fluctuations when
evaluated on per day basis. This is the case in our scenario where there is an
increase in daily numbers of attacks in the first half of the simulation.

In order to get a better understanding of the improvement gained by the ap-
plication of learning, we evaluate the adaptation performance of each method.
The performance is computed as the ratio between the numbers of attacks on
adaptive agents utilizing the respective method versus non-adaptive agents. For
example, the value of 3 on a particular day means that adaptive agents were
attacked three times less than non-adaptive agents. The resulting graph in
Figure 7 therefore gives an account of the quality of adaptation provided by each
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Fig. 6. Number of attacks per day. The values are average per-agent values over the
whole team (5 agents).

method. The low-level collaborative method gives the best performance, with
the high-level collaborative method and the non-collaborative method achieving
similar, lower performance.

Adaptation quality is, however, only one of the criteria we are interested in.
For computation and communication requirements, the daily axis has limited
significance, and we therefore present these variables in the following table as
averages over the entire simulation.

Method isolated low-level high-level

average computation per day (s) 99 221 55
average communication per day (messages) 0 4103 437

From this table, it is immediately apparent that the high adaptation quality
of the low-level collaborative method is negatively offset by its very high re-
source requirements. The method needs four times more computational resources
and nearly ten times more communication than the high-level collaborative
method.

Thus, in order to provide more comprehensive comparison, taking into account
all three evaluation criteria, we have created Figure 8. For each criterion, the
graph shows the relative score6 of each method with respect to the best score

6 The score is equal to the actual value in the case of the adaptation quality metric
and is inverse of the actual value in the case of computational and communication
requirements (in order to have “the higher, the better” semantics).
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Fig. 7. Adaptation performance measured as the improvement (i.e. the decrease) in
the number of attacks in comparison with the non-adaptive agent

achieved for the criterion. Thus, the best method for each criterion has the score
of 100%.

4.5 Discussion

When examined closely, Figure 8 presents an interesting picture. It shows that
none of the methods is uniformly better than the others. In fact, for each evalua-
tion criterion a different method is the winner. When taking the isolated learning
as the basis for comparison, we see that the addition of low-level communica-
tion improves the adaptation quality at the expense of very high communication
requirements and significant increase in the computation load. High-level com-
munication, on the other hand, decreases the computation requirements while
having only modest communication needs.

Overall, the adaptation quality of the high-level collaborative method is
slightly disappointing. We believe that this is mainly due to simplistic implemen-
tation of the merge operation in our method. With the current implementation,
a large fraction of potentially important information about merged models is
not taken into account (such as the number of examples from which the models
were derived, the area covered by these examples etc.). With an implementa-
tion that takes such additional information into account, the performance could
potentially be significantly improved.

Given the complexity of the experimental scenario, it is however difficult to
draw more general conclusions at this stage. More experimentation on carefully
designed benchmark problems is necessary, and it is therefore the next task we
want to focus on in our research.
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Fig. 8. Overall comparison using all three evaluation criteria. The values depicted are
relative scores with respect to the best method in each category (=100%).

5 Assumptions and Limitations

In this section, we comment on several assumptions that were exploited in the
design of the presented learning framework. These assumptions place certain
limitations on the method and need to be understood properly for the method
to be applied successfully.

A fundamental assumption (referred to as the model independence assump-
tion) is that models and their quality are independent from agents that have
constructed them and/or that are using them, i.e., that a model created by a
specific agent can be transferred to and utilized by another agent without sig-
nificant loss of quality.

One case in which the independence assumption can be violated is a biased
distribution of observations, either by the observations (and thus also training
examples) being limited only to a small subspace of the space of all possible
observations, or by the observations having highly non-uniform class distribution
(e.g. most observations belonging to a single class). In our simulation, such a
situation can arise when agent operation, and consequently also observations it
receives, is restricted to a particular subarea of the island. The model generated
from such a biased training set can bear very little relevance to other areas
of the island. When acquired by agents working in those areas, such a model
can actually worsen their performance. Similar situation can arise when class
distribution is heavily skewed and agents do have examples from all classes.

Another case in which the model independence assumption can be violated is
when agents differ in their ability to acquire observations, in particular with re-
spect to the attributes they can observe. In our simulation, e.g., one transporter
may not be able to evaluate city population while the others may not know regions.
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The performance of our current approach may degrade in situations where
the model independence assumption does not hold. The exact quantification of
such degradation and possible extensions of the approach for the case of context-
dependent models presents an important area for the future research.

6 Conclusions

We have presented a novel logic-based method for collaborative multi-agent
learning. The method uses Horn logic as the underlying representation. This
gives it several significant advantages over propositional learning techniques, as
well as makes it interoperable with existing and emerging semantic web stan-
dards. Semantic interoperability, the ability to represent complex structured
concepts and to incorporate background knowledge makes the method attractive
also for applications in autonomic computing. The method supports different lev-
els of inter-agent communication. Low-level communication involving raw data
exchange results in better adaptation on the expense of very high communica-
tion and computational requirements. High-level communication, on the other
hand, does not achieve the same adaptation performance but needs only a small
fraction of resources required by the method relying on low-level communication.
It has an additional advantage of protecting agent’s private information by only
sharing generalized models and not specific training data, which might disclose
details about the agent’s past behaviour. In practice, the existence of different
performance trade-offs allows to choose the method best suited for the specific
application scenario.

In the future, we plan to perform more systematic, in-depth evaluation of
the method, both on realistic scenarios and on more abstract benchmark prob-
lems designed specifically to test the performance of the method. An important
longer-term research direction is the development of manipulation methods for
logic-based models (esp. merging and generalization of theories). This should
significantly improve the performance of high-level collaborative learning, and
could have wider applicability in the field of distributed logic-based learning.
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Abstract. Many multi-agent systems are intended to operate together with or
as a service to humans. Typically, multi-agent systems are designed assuming
perfectly rational, self-interested agents, according to the principles of classical
game theory. However, research in the field of behavioral economics shows that
humans are not purely self-interested; they strongly care about whether their re-
wards are fair. Therefore, multi-agent systems that fail to take fairness into ac-
count, may not be sufficiently aligned with human expectations and may not reach
intended goals. Two important motivations for fairness have already been identi-
fied and modelled, being (i) inequity aversion and (ii) reciprocity. We identify a
third motivation that has not yet been captured: priority awareness. We show how
priorities may be modelled and discuss their relevance for multi-agent research.

1 Introduction

Modelling agents for a multi-agent system requires a thorough understanding of the
type and form of interactions with the environment and other agents in the system,
including any humans. Since many multi-agent systems are designed to interact with
humans or to operate on behalf of them, for instance in bargaining [1,2], agents’ be-
havior should often be aligned with human expectations; otherwise, agents may fail to
reach their goals.

Usually, multi-agent systems are designed according to the principles of a standard
game-theoretical model. More specifically, the agents are perfectly rational and opti-
mize their individual payoff disregarding what this means for the utility of the entire
population. Experiments in behavioral economics have taught us that humans often do
not behave in such a self-interested manner [3,4,5]. Instead, they take into account the
effects of their actions on others; i.e., they strive for fair solutions and expect others
to do the same. Therefore, multi-agent systems using only standard game-theoretical
principles risk being insufficiently aligned with human expectations. A prime example
is the ultimatum game [4], in which purely rational players will not be able to obtain
a satisfactory payoff. More generally speaking, the importance of fairness should be
studied in any problem domain in which the allocation of limited resources plays an
important role [6]. Examples from our own experience include decentralized resource
distribution in large storage facilities [7], aircraft deicing [8], and representing humans
in bargaining (e.g., [1,9]).

Thus, designers of many multi-agent systems should take the human conception of
fairness into account. If the motivations behind human fairness are sufficiently under-
stood and modelled, the same motivations can be transferred to multi-agent systems.
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More precisely, descriptive models of human fairness may be used as a basis for pre-
scriptive models, used to control agents in multi-agent systems in a way that guarantees
alignment with human expectations. This interesting track of research ties in with the
descriptive agenda formulated by Shoham [10] and the objectives of evolutionary game
theory [5,11].

In the remainder of this paper, we first briefly discuss related work in the area of
fairness models. Then, we look at problems in which priorities play a role. We show
that current descriptive models do not predict human behavior in such problems. Next,
we provide our descriptive model, priority awareness, and perform experiments to show
that the model performs a much better prediction of human behavior. We conclude with
some directions for future work.

2 Related Work

Already in the 1950’s people started looking at fairness, for instance in the Nash bar-
gaining game [12]. Recently, research in behavioral economics and evolutionary game
theory has examined human behavior in the ultimatum game and the public goods game
[3,4,5,13,14]. In all cases, it was observed that standard game theoretical models predict
a very selfish outcome in comparison to the fair outcomes reached by human players.
In other cases, e.g. the Traveler’s Dilemma [15], it was shown that humans can actually
obtain a higher payoff by failing to find the rational solution, i.e., the Nash equilibrium.
Using neuroscientific research, such as MRI scanning [16] and disrupting certain ar-
eas if the brain using magnetic stimulation [17], it has been assessed which brain areas
are likely to be responsible for fair behavior. The current state of the art provides two
important descriptive models of human fairness.

Inequity aversion. The first descriptive model for human fairness is inequity aversion.
In [4], this is defined as follows: “Inequity aversion means that people resist inequitable
outcomes; i.e., they are willing to give up some material payoff to move in the direction
of more equitable outcomes”. To model inequity aversion, an extension of the classical
game theoretic actor is introduced, named homo egualis [4,5]. Homo egualis agents are
driven by the following utility function:

ui = xi − αi

n − 1

∑
xj>xi

(xj − xi) − βi

n − 1

∑
xi>xj

(xi − xj) (1)

Here, ui is the utility of agent i ∈ {1, 2, . . . , n}, which is based on its own reward, xi,
minus a term for other agents doing better (weighed by αi), and minus a term for other
agents doing worse (weighed by βi). Agents using the homo egualis utility function
care more about inequity if it is to their disadvantage than if it is to their advantage;
i.e., αi > βi. Research with human subjects provides strong evidence that this is a
valid assumption [4]. The β parameter must be in the interval [0, 1] to keep behavior
realistic; with a higher value for β, agents would be willing to throw away money in
order to reduce inequity.
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Results obtained in the ultimatum game can be explained by this model as follows
[4], assuming that the total sum of money to be shared is 1.1 First, the proposal chosen
by player 1 depends on his β parameter; if β ≥ 0.5, player 1 will offer 0.5 to player 2.
If β < 0.5, player 1’s utility function is always increasing. This means that the player
would like to keep the whole sum for himself. However, if he knows player 2’s α pa-
rameter, he knows how much player 2 is willing to accept at least, i.e., f(αi) = αi

1+2αi
;

for a lower proposal, player 2’s utility will be negative, making it more attractive to
reject the proposal. Note that limαi→∞ f(αi) = 0.5; thus, player 2 can demand up
to half of the sum to be shared. Knowing or estimating this demand, player 1 will
propose just enough. It is interesting to note that the initiative thus seems to shift to
the second player; the first player can only choose whether 0.5 is a good proposal
or not, and if not, he needs to decide purely on the basis of what the second player
wants.

Reciprocal fairness. Second, various researchers argue that fairness arises most notably
in the presence of reciprocity [3,4,5,18,19], i.e., agents can reward and punish others.
The notion of reciprocity is already implicitly present in the homo egualis actor; as
has been explained above, agents that observe a negative utility with a certain reward
distribution, are better off rejecting this distribution. To further model this motivation
for fairness, a second actor is developed, named homo reciprocans [3,5]. This actor
responds friendly to cooperation of others by maintaining this level of cooperation, and
responds to defection by retaliating against the offender(s), even if this reduces her
own payoff. In iterated games, this usually leads to an equilibrium in which all players
behave in a fair way.

The inequity-averse and reciprocal models are predominantly descriptive: they de-
scribe and model human behavior. Another line of research is devoted to developing
prescriptive or computational models. More precisely, computational models provide
agents in adaptive multi-agent systems with mechanisms to obtain valid solutions, i.e.,
reward distributions (x1, . . . , xn) for which certain conditions are met. Various research
initiatives formulate conditions that relate to fairness and develop mechanisms such as
bargaining protocols and utility functions to obtain valid solutions under these condi-
tions. Most notably, in the area of Computational Social Choice, fairness conditions
and mechanisms relate to the well-being of society as a whole. This well-being can be
measured in various ways, such as utilitarian social welfare (i.e., maximized average re-
ward), egalitarian social welfare (i.e., maximized minimal reward), or Pareto-optimality
(see [6,20] for a comprehensive overview). In this work, we present a novel measure
for the fairness of an agent society; more precisely, we develop a new descriptive model
with which reward distributions (x1, . . . , xn) can be evaluated. Future work will focus
on the mechanisms to obtain valid solutions under these conditions.

1 For readers unfamiliar with the ultimatum game: in this game, the first player proposes how to
divide a sum of money with the second player. If the second player rejects this division, neither
gets anything. If the second accepts, the first gets his demand and the second gets the rest. The
individually rational solution to this game is for the first player to propose the lowest possible
amount, and for the second player to accept. Human players however consistently offer more,
and reject low offers.
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3 Fairness in Priority Problems

3.1 Priority Problems

In many situations, humans actually consider it fair that each of them gets a (slightly)
different reward, because they take into account additional information. For instance,
everybody can agree that priority mail should be delivered faster than regular mail.
Such situations are present in many common applications of multi-agent systems and
should therefore be addressed when looking at fairness. The nature of the additional
information can vary; examples include wealth, probabilities of people belonging to a
certain group or priorities involved in the task at hand. We will denote this additional
information with one value per agent, i.e., the priority. Currently, we assume that the
priority values are true and are known by all agents.

3.2 Example and Human Response

In a certain furniture store, customers wait at a service desk while employees fetch the
items ordered. Obviously, a customer will not be happy if he observes that five other
customers are helped while he is still waiting at the service desk. Neither will customers
requesting the most popular item be pleased when they discover that they all have to
wait for five minutes because another customer has ordered an extremely rare item. In
other words, customers are willing to accept that someone who orders a common item
(i.e., an item with high probability of being ordered) is helped slightly more quickly
than someone who orders a rare item (with low probability of being ordered).

To investigate how humans deal with such a problem, in [7], we discuss a test of
human fairness in a small shop environment, inspired by this example. The store at
hand sells two types of fruit (see Figure 1), located at A and B respectively. The human
respondents are given the probabilities that customers wish to order the fruit at A (say,
p) or the fruit at B (1 − p) and are then asked to place the robot somewhere on the
line AB, such that all customers will be satisfied. We found that human behavior in this
test is not appropriately predicted by analytical measures. More precisely, if p > 0.5,
analytical measures would place the robot at A (in order to minimize expected waiting
time) or in the middle (in order to minimize the variance in waiting time). Humans on
the other hand tend to place the robot somewhere between A and the middle. Thus,
they perform a trade-off between the expected waiting time and the variance (i.e., they
choose a more fair solution). The larger p becomes, the closer to A the robot is placed.
We then tried to apply the two known motivations for fairness (inequity aversion and
reciprocity) and found that these did not predict human behavior either.

3.3 Why Current Descriptive Models Do Not Work

More generally speaking, both inequity-averse and reciprocal models cannot be used
to sufficiently describe the human conception of fairness in problems where priorities
play a role. As a result, they are also not immediately suitable as a starting point for
prescriptive models, as needed for multi-agent systems.
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Grapes
(A)

Robot

1. Customers place order 
2. Order given to robot 
3. Robots fetches fruit 
4. Robot brings fruit to customer 

5 meters 5 meters 

Lychees  
(B)

Fig. 1. A human fairness test in a small shop environment

Inequity aversion. In [4,5], the homo egualis model, which is inequity-averse, is ap-
plied to the ultimatum game and the public goods game. Obtained results are in line with
human behavior, as long as the model’s parameters are chosen carefully. Moreover, the
homo egualis utility function may lead to different payoffs for different agents. How-
ever, there are two problems when trying to use the egualis model for more complicated
settings, including those where priorities play a role.

First, as clearly indicated in [4], in many situations, people actually like to be better
than other people, and the homo egualis actor does not model this behavior. In priority
problems, people do not only tolerate, but even encourage inequity; agents with a high
priority should actually like (and be allowed) to be better than agents with a low priority.
Priorities would have to be encoded in an indirect way using the model’s parameters
(most notably αi); moreover, an agent demanding more than half of the reward at hand
would not be possible with this model. Second, if we wish to use homo egualis in
order to find solutions in which a maximal, fairly distributed reward is obtained, we
can only do this when (i) the total reward is constant and independent from the agents’
actions, (ii) agents take ‘their piece of the pie’ one after the other and (iii) there exists
a dependency between the (private) parameters of the agents participating. In practice,
this entails that the agents should actually bargain about the model’s parameters. In this
case, it would be easier to simply bargain about the actual reward.

Reciprocal fairness. Asking our players to place the robot “such that all customers
are satisfied” implicitly introduces a threat of punishment to this player; if customers
are dissatisfied, they might not return to the shop in question. The outcomes of the test
might therefore be explainable in terms of reciprocity. However, there are (once again)
two problems when trying to apply a reciprocal model to the customer game.

First, reciprocal models assume a setting in which players receive explicit punish-
ments (or rewards) after performing a certain action. In case of our test, no explicit
feedback was given to the respondents. Second, even if explicit punishments are avail-
able, the reciprocal model itself does not allow agents to compute when to punish; it
just states that there is an option to do so if an ‘unfair’ action has been observed. As has
been mentioned earlier, the homo egualis model can be used to calculate the minimal
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amount a player should offer in the ultimatum game; below this amount, the other player
experiences a negative utility and is thus better off rejecting the offer (i.e., he applies
punishment). However, as has been shown above, in more complicated situations, such
as problems where the total reward is not constant, or problems in which priorities play
a role, the homo egualis model is not easily, if at all, usable. In other words, reciprocal
fairness itself is actually more a conceptual model than a descriptive model.

4 Our Proposed Descriptive Model: Priority Awareness

4.1 Fairness Boundaries

In order to describe a fair distribution of rewards over (potentially many) agents with
priorities, we introduce a new, descriptive notion of fairness: priority awareness. We
define two boundaries in our model. To keep reward distributions within the boundaries,
we introduce a parameter α ∈ [0, 1], called the greediness parameter.2 With α = 0, all
agents are satisfied when the total reward is shared evenly (i.e., everybody gets the same
reward). With α = 1, agents want a reward that is proportional to their priority value.
Note that situations where α < 0 (someone gets less than equal share even though
his priority is not lower) as well as situations where α > 1 (someone gets more than
a priority-based share) are common in the world around us. However, these situations
are generally considered to be unfair. Reward distributions obtained by setting the α
parameter to valid values can therefore be best described as being ‘not definitely unfair’;
i.e., we do not allow reward distributions that can immediately be marked as unfair.

4.2 Formal Model

More formally, in our model, we distinguish n different agents i, each with a priority
value pi and a given reward Ri. The priority values are defined such that

∑n
i=1 pi = 1

and ∀i : 0 < pi ≤ 1. We introduce the greediness parameter α ∈ [0, 1] and define the
following class of fairness functions fα(i), applied to agents i:

fα(i) =
1
n

+ α

(
pi − 1

n

)
(2)

Now, we say that agents i and j have a fair share with respect to each other and the
parameter α if and only if their rewards Ri and Rj satisfy the following equation:

Ri

fα(i)
=

Rj

fα(j)
(3)

To simulate the flexibility of human fairness, our model needs to tolerate a (small)
range of α-values. Therefore, we need to decide on upper and lower bounds for α, i.e.
α ∈ [αmin, αmax]. These upper and lower bounds then specify how tolerant we are with

2 In the remainder of this text, we assume that every agent uses the same α-value. The model
can easily be equipped with ‘personal’ values for α, similar to the homo egualis model.
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respect to differences in reward. Using these bounds, we define a score function for any
pair of agents i and j as follows:

s (i, j) =

{
1 ∃α ∈ [αmin, αmax] : Ri

fα(i) = Rj

fα(j)
0 otherwise

(4)

Thus, two agents i and j yield a s(i, j) of 1 if the reward of agent i is within an interval
around the reward of individual j, as specified by the minimum and maximum allowed
α-values. The utility for each agent i ∈ {0, 1, . . . , n} is now determined as:

ui =
1

n − 1

n∑
j=1,i�=j

s(i, j) (5)

Thus, each agent scores 1 for every other agent that has a fair reward compared to this
agent’s reward. In the worst case, an agent obtains a utility of 0. In the best case, an
agent has a fair reward compared to all other agents and therefore ‘scores’ n − 1 times;
we divide the result, n − 1, by n − 1, yielding a utility of 1. Thus, ui ∈ [0, 1] for all i.

5 Initial Model Validation

To validate our model conceptually, we have performed a number of experiments with
human subjects. We will provide an overview of the results here, showing that priorities
indeed matter to people, and that our ideas about tolerated intervals might correspond
to human behavior.

5.1 Two Simple Tasks

Initially, we performed two small experiments, each using a group of 50 subjects, with
different subjects for each experiment. Respondents were asked to mark which of the
given answers they considered to be fair. We categorized each possible answer as either
within or outside our model’s boundaries. The first experiment concerned the fruit store
test described in Section 3.2. The second experiment contained two questions, both
examples of problems in which priorities play a role (Table 1).

In the first experiment, with a setting of p = 0.6, 42 people place the robot somewhat
closer to the grapes than to the lychees. Five people place the robot at the grapes; three
people place the robot in the middle. Thus, 45 out of 50 positions selected are within our
model’s boundaries. When the probability that grapes are requested is increased to 0.9,
the robot is placed closer to the grapes by everyone who has not placed it at the grapes
already. Once again, 45 out of 50 answers given were within our model’s boundaries –
the five ‘misses’ are obviously correlated to the first five. Thus, in the first experiment,
our model described 90% of the answers.

In the second experiment, 180 answers were given (respondents could select multiple
answers, see Table 2). Of these 180 answers, 164 were within our model’s boundaries.
Thus, in the second experiment, our model described 91% of the human answers.
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Table 1. Some small experiments in human fairness

1. A mail company offers priority stamps and regular stamps. Priority stamps are twice as expensive. How should the
delivery time of priority mail compare to that of regular mail?
a. First deliver each priority mail and after that, if there is time, deliver regular mail. b. Deliver priority mail twice as fast as
regular mail. c. Deliver priority mail faster than regular mail if possible. d. Deliver all mail just as fast. e. Deliver regular mail
faster than priority mail.
2. You just had dinner with a large group of people. You all ate and drank different things, so everybody’s bill is
different. The waiter now brings one bill. How should the bill be distributed?
a. The person that has used the most expensive food and drinks pays everything. b. Everybody pays his/her own bill. c.
Everybody pays so that the amount paid is somewhat proportional to the expenses done. d. Everybody pays the same. e.
People that have eaten less expensive food pay more.

Table 2. The results for the experiments presented above

Question Answ. a Answ. b Answ. c Answ. d Answ. e Sum
α > 1 α = 1 α ∈ 〈0, 1〉 α = 0 α < 0

1 20% 48% 30% 1% 0% 79
2 0% 39% 34% 28% 0% 101

Total 180
Correct 164

Cover 91%

5.2 A Prioritized Ultimatum Game

After these initial experiments, we created a larger, more structured experiment, af-
ter the example of many experiments with human fairness in ultimatum games (for an
overview of such experiments, see [4]). In almost every existing experiment, it is ob-
served that an offer of 50% is very common, and is almost always accepted. Offers
below 20% are hardly ever offered, and when they are, they are often rejected.

We asked students and staff members of three faculties of the University of Maas-
tricht to participate in our ultimatum-game survey, which was developed in cooperation
with an experimental psychologist. 3 We asked respondents various control questions,
and a rather large number of ultimatum game dilemmas were presented. Respondents
were then asked how much they would offer (as a first player) or accept at least (as
a second player). In the end, 170 surveys were submitted, of which 160 were usable
for analysis. Of these 160 respondents, 38 were familiar with the ultimatum game; the
remaining 122 were not.

To introduce the notion of priorities more explicitly in the ultimatum game, we varied
two quantities. First, after playing some standard ultimatum games, participants were
told that the other player was ten times poorer or ten times wealthier than they were.
We expected that people would either be fair to poorer people (i.e., give them more) or
exploit poorer people (i.e., give them less, because they will accept anyway). Second,
the amount of money that had to be divided was varied between EUR.10, EUR.1.000
and EUR.100.000, to determine whether this had any effect on people’s attitude with
respect to poorer, equal or richer people. We will now present the most important results,

3 The survey can still be viewed at http://www.cs.unimaas.nl/steven.dejong/survey
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Fig. 2. Offers done by the first player in the ultimatum game, depending on the amount at stake
and the relative wealth of the other player. Offers are binned in 12 bins, of which the lower bound
is displayed in every chart.
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which are graphically represented in Figure 2. Note that the answers concerning the
second player have not been included; in all cases, respondents answered consistently
for the first and second player, meaning that they always offered at least the amount
they personally would accept.

Equal players. Note that priority awareness only allows differences in reward if the
agents actually have a different priority. Thus, in the ultimatum game, the fact that the
first player may keep more than 50% to himself, can only be explained by our model if
we assume that this player has a higher priority. This is actually not a strange thing to
assume; after all, the first player was chosen as the one who should perform the offer.
He can thus make a strategic choice. The second player, on the other hand, can only
decide whether or not to accept, which is a distinctively less strategic choice, especially
in one-shot games. Since human players usually indicate that they would accept less
than 50%, we can conclude that both players are in agreement about the fact that the
first player has a higher priority.

Since we were asking people to imagine they had to divide money, instead of giving
them actual money to divide, we needed to assess whether this difference had an impor-
tant impact on the results. This, fortunately, was not the case; the behavior we found was
in line with behavior found earlier [4]. For instance, most people were willing to give
away 50%, and some people offered less. With an increasing amount, we see that the
first player keeps more to himself; this behavior is not punished by the second player.
Clearly, the first player’s priority increases with an increasing amount at stake. This is
rather obvious; after all, it is a lot more difficult to say no to 10% of EUR.100.000 than
to 10% of EUR.10. Interestingly, most literature on this subject states that the amount at
stake does not influence the offered (and accepted) proportion (e.g., see [4]). However,
experiments with high amounts at stake were mostly performed in relatively poor coun-
tries, simply because research institutes cannot afford to let people play games worth
EUR.100.000 in Europe; perhaps, this explains why such ‘high-stake’ games have such
a fair outcome in general.

Richer or poorer players. Players’ behavior in the normal ultimatum game can already
be successfully explained using the homo egualis utility function [4]. However, the re-
sults of our survey show that priorities explicitly matter to human players of the ultima-
tum game. Before confronting participants with ultimatum games in which players had
unequal wealth, we asked them whether they had thus far assumed that the other player
was poorer, wealthier or equally wealthy. 92% of the participants assumed that the other
player was equally wealthy; the remaining 8% was almost equally divided between the
other two options. Subsequently, the participants were confronted with games in which
the other player was ten times more or less wealthy. Results indicate that people are
actually fair to poorer people, and expect the same in return from richer people; poorer
opponents were given substantially more money than equal people, richer opponents
were given substantially less. Once again, all participants were willing to accept their
own offers. This indicates that the second player’s priority decreases with increasing
relative wealth.
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Implications. Given the two observations above, we see that priorities indeed matter to
human players; thus, the first player is able to keep more for himself when the amount at
stake increases. Moreover, depending on the relative wealth of the second player, more
or less is given. This behavior clearly is not sufficiently described by the homo egualis
function; most notably, (1) the relation between the amount at stake and the relative
wealth of participants is not sufficiently described, and (2) the significant number of
participants who offer more than half of the amount at stake to a poor second player, is
not described by homo egualis at all. The priority awareness model is able to capture this
behavior in a straightforward way, using the notion of priorities. For a precise alignment
of the priorities with human behavior, more experiments may be necessary.

6 Conclusion and Future Work

In this paper, we have argued why fairness is an important issue for designers of many
multi-agent systems. We discussed two existing descriptive models of human fairness
and introduced a third model, called priority awareness. In contrast to the two existing
models, this model is able to describe human behavior in problems where priorities play
an important role. We demonstrated this in various experimental settings.

It is important to realize that this model, like the other two models, does not say any-
thing about the optimality of a reward distribution. For instance, a situation in which
everyone gets a reward of 0 may very well be fair, but is obviously sub-optimal. In
practical situations, people would like to obtain an optimally fair reward distribution,
meaning that (a) the reward is distributed in a fair way and (b) the total reward is maxi-
mized, i.e., the distribution is Pareto-optimal [21]. In our model, this may entail select-
ing the most optimal α-value. However, more research is needed to assess how fairness
may be reached, given optimality requirements.

In the near future, we will conduct more experiments with human subjects in order
to support and refine our priority-aware fairness model. One important issue in the
ultimatum game, for example, is that some people consider the first player to have the
highest priority, regardless of the problem settings at hand, whereas other people are
more sensitive to relative wealth. This indicates that priorities might not always lead to
a situation in which ‘half or more’ is tolerated.

As an important current line of research, we are investigating how fairness can ac-
tually be engineered into a multi-agent system; our current, descriptive model already
allows us to determine utility values for agents, which can for instance be used to learn
a fair policy – in the future, we would like to develop a prescriptive model, with which
agents can determine which action would be best.
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Abstract. The application of reinforcement learning algorithms to mul-
tiagent domains may cause complex non-convergent dynamics. The repli-
cator dynamics, commonly used in evolutionary game theory, proved to
be effective for modeling the learning dynamics in normal form games.
Nonetheless, it is often interesting to study the robustness of the learning
dynamics when either learning or structural parameters are perturbed.
This is equivalent to unfolding the catalog of learning dynamical scenar-
ios that arise for all possible parameter settings which, unfortunately,
cannot be obtained through “brute force” simulation of the replicator
dynamics. The analysis of bifurcations, i.e., critical parameter combina-
tions at which the learning behavior undergoes radical changes, is manda-
tory. In this work, we introduce a one-parameter bifurcation analysis of
the Selten’s Horse game in which the learning process exhibits a set of
complex dynamical scenarios even for relatively small perturbations on
payoffs.

1 Introduction

Game Theory (GT) [9] provides formal models (i.e., games) for the study of
the interaction between self-interested rational agents, whose goal is the maxi-
mization of the return (i.e., payoff). In particular, GT identifies the conditions
for the existence of equilibria (e.g., Nash equilibria), i.e., strategic configura-
tions in which no agent can change her strategy without worsening her payoff.
Nonetheless, the computation of equilibria requires each agent to have a complete
knowledge of the game (actions available to other agents and their payoffs).

On the other hand, Reinforcement Learning (RL) [11] enables autonomous
agents to learn the optimal strategy that maximizes the return through a direct
interaction with an unknown environment. Multiagent Reinforcement Learn-
ing [8] extends the traditional single-agent RL approach to game theoretic prob-
lems in which several agents interact. Although RL algorithms are guaranteed to
find the optimal (Nash) strategy in problems with stationary environments, they
may fail to converge in environments where other learning agents are involved. As
a result, the learning process may exhibit very complex non-convergent (periodic
or aperiodic) dynamics [6,10] that are often difficult to study by stochastically
simulating single runs of execution.

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 129–144, 2008.
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Evolutionary Game Theory (EGT) [4] studies the evolution of populations
of agents as dynamical systems, notably with the replicator dynamics equation.
The translation of Q-learning [13], one of the main RL algorithms, into suit-
able replicator dynamics [1,12] makes possible the study of the dynamics of the
learning processes as the study of nonlinear dynamical systems. The simula-
tion (numerical integration) of the replicator dynamics therefore provides an
alternative approach to study the behavior of learning agents, which is however
effective only when all parameter values are assigned. In fact, as better explained
in Sec. 4.2, how robust the observed learning dynamics are, when either learning
parameters or parameters defining the structure of the game change because of
noise or system perturbations, cannot be assessed by simply organizing extensive
simulations.

Bifurcation analysis [7] provides strong theoretical foundations and effective
numerical techniques to study the robustness of a dynamical system to param-
eter perturbations. In particular, robustness, called structural stability in the
dynamical system jargon, is lost at the critical parameter combinations, called
bifurcations, at which arbitrarily small parameter perturbations induce radical
qualitative, other than quantitative, changes in the system dynamics.

In this paper, we introduce bifurcation theory and we apply it to the analysis
of the dynamics of the learning process in a three agents representative exten-
sive form game: the Selten’s Horse. We investigate the problem characteristics
and the learning solutions through a bifurcation analysis with respect to one
of the payoffs of the game. In particular, we show that the dynamical system
can repeatedly loose structural stability even in relatively small payoff intervals,
that multiple stationary and non-stationary (periodic) attractors can be present,
and that several bifurcations regulate their appearance, disappearance, and the
catastrophic transitions between them.

The rest of the paper is organized as follows. In Section 2 we introduce def-
initions of normal and extensive form games. In Section 3 we briefly review
Q-learning and how its dynamics can be translated into replicator-like dynam-
ics. An introduction to bifurcation analysis is provided in Section 4 and, finally,
in Section 5 we analyze the Selten’s Horse game as a case study for bifurcation
analysis of multiagent reinforcement learning systems.

2 Game Theory Background

2.1 Normal Form Games

In Game Theory, games are defined as conflict situations between agents. In
a normal form game, agents execute actions simultaneously according to their
strategies and the outcome of the game is a payoff for each agent. Formally:

Definition 1. A normal form game Γ is defined by the tuple 〈N , A, R〉, where:
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– N = {1, . . . , n} is the set of agents in the game
– A = A1×. . .×Ai×. . .×An is the set of joint actions a = (a1, . . . , ai, . . . , an),

where ai is an element of the set Ai = {ai1, . . . , aij , . . . , aimi} of the mi

actions available to agent i (mi = m in the following)
– R = {R1, . . . , Rn} is the set of payoff functions, where Ri : A → � is the

payoff function for agent i that maps each joint action to a numerical payoff

Furthermore, we define:

– X = X1 × . . . × Xi × . . . × Xn as the set of joint strategies x = (x1, . . . ,xi,
. . . ,xn), where strategy xi = (xi1, . . . , xij , . . . , xim) is a probability distribu-
tion over the action set Ai, so that xi ∈Σm ={xi : 0 ≤ xij ≤ 1,

∑m
j=1 xij =1},

where Σm is the m-dimensional simplex
– ρ = {ρ1, . . . , ρn} as the set of expected payoff functions, where ρi : X → �

is the expected payoff function for agent i that maps each joint strategy to
a numerical payoff, that is the sum of the payoffs for all the possible joint
actions weighted by their probabilities according to the joint strategy

At each round of the game, each agent chooses an action ai, a joint action a is
executed, and a payoff Ri(a) is returned. When an agent plays deterministically
one action (say aij with xij = 1), then the strategy is pure, otherwise is a
mixed strategy. The joint action of all agents but agent i is usually denoted as
a−i =(a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =A1×· · ·×Ai−1×Ai+1×· · ·×An. Similarly,
the joint strategy of all the agents but i is defined as x−i = (x1, . . . ,xi−1,
xi+1, . . . ,xn). In the following, we refer to matrix games, in which the payoff
functions Ri are matrices Pi with dimensions |Ai| × |A−i|, i.e. ρi(x) = xiPix−i.

The main solution concept in a normal form game is the Nash equilibrium.

Definition 2. Given a normal form game Γ = 〈N , A, R〉, the joint strategy
x∗ = (x∗

1, . . . ,x
∗
n) is a Nash equilibrium when:

ρi(x∗
1, . . . ,x

∗
i , . . . ,x

∗
n) ≥ ρi(x∗

1, . . . ,xi, . . . ,x∗
n), ∀i ∈ N , ∀xi ∈ Σm. (1)

In a Nash equilibrium none of the agent can improve her expected payoff by
changing her strategy while all other agents keep playing the same strategies. In
other words, each strategy x∗

i is the best response to x∗
−i.

2.2 Extensive Form Games

In contrast with normal form games, extensive form games describe the sequen-
tial structure of decision making explicitly, and therefore allow the study of
situations in which agents play one after the other and possibly several times at
different stages of the game round [9]. An extensive form game is represented by
a tree (Fig. 1). Each node represents a state of play of the game. The game be-
gins at a unique initial node, and flows through the tree along a path determined
by the actions taken by the agents until a terminal node is reached, where the
game ends and payoffs are assigned to agents. At each non-terminal node only
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Fig. 1. A two agents, two actions, extensive form game with imperfect information.
Dotted lines represent information sets. Labels at decision nodes identify the agent
that plays, labels on edges agents’ actions, and values at leaves agents’ payoffs.

one agent plays by choosing among a set of available actions, each action being
represented by an edge leading from a node to another. Games in which each
agent knows exactly the node in the tree where she plays are games with perfect
information, otherwise information is imperfect. The agents’ uncertainty about
the state is represented by information sets that group the states that cannot
be distinguished by the agents. Formally:

Definition 3. An extensive form game is a tuple Γ = 〈N , G, {Ri}, ι, {Hi},
{Ai}〉, where:

– N is the set of the agents
– G = 〈S, s0, T 〉 is a finite tree with a set of decision nodes S, a unique initial

node s0 ∈ S and, a set of terminal nodes T
– Ri : T → � is the payoff function for agent i that maps each terminal node

to a numerical payoff
– ι : S → N is the agent function that maps decision nodes to the agent that

plays at that node
– let H be the set of information sets h ⊂ S that partitions the set of decision

nodes: S =
⋃

h∈H h and ∀h, h′ ∈ H, h ∩ h′ = ∅; H is partitioned into sets
of information sets which belong to the same agent: Hi = {h ∈ H, ∀s ∈
h, ι(s) = i}

– Ai(h) is the set of actions available to agent i = ι(s) in each information set
h ∈ Hi, such that s ∈ h

Unlike normal form games, in the extensive form the strategies are defined as
functions of the information set perceived by the agent, i.e., xi(h) = (xi1(h),
. . . , xim(h)), h ∈ Hi. This is due to the fact that agent i may play more than
once at different stages of the game. Thus, in the following, we denote by xi the
functional strategy over the information sets, while the joint strategy x is called
strategy profile of the game.

In extensive form games some refinements of the Nash equilibrium are usually
adopted as solution concepts. In the following, we focus only on the sequential
equilibrium of Kreps and Wilson [5], which is the most suitable equilibrium for
extensive form games with imperfect information. In fact, the sequential equilib-
rium takes into account not only the strategies, but also the agents’ beliefs about
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the state of the game. A belief for agent i is defined as a probability distribution
μi(h) = (μi1, . . . , μij , . . . , μi|h|) over the states in the perceived information set
h ∈ Hi, where μij is the probability for agent i to be in the j-th state of h.
The set of beliefs μ = (μ1, . . . μi, . . . , μn) is called system of beliefs. The ex-
pected payoff ρi(x|μi) for agent i, given her belief μi and a joint strategy x, is
defined as the expected payoff when the probability to be in the states of her
information sets is exactly given by her belief. The system of beliefs together
with the strategy profile define an assessment σ = 〈μ,x〉. A sequential equilib-
rium is an assessment σ∗ = 〈μ∗,x∗〉 such that the strategies in x∗ are mutual
best responses (sequential rationality) and the beliefs in μ∗ are consistent with
the probability distribution induced by x∗ on the states of the game (Bayesian
consistency). Finally, the notion of consistency in the sense of Kreps and Wilson
also requires the existence of a sequence of assessments σk = 〈μk,xk〉, each with
fully mixed xk and Bayesian consistent μk, that converges to σ∗. Technically,
this latter condition avoids that beliefs on information sets never visited at the
sequential equilibrium remain undetermined. More formally:

Definition 4. An assessment σ∗ = 〈μ∗,x∗〉 is a sequential equilibrium of an
extensive form game Γ if:

– (sequential rationality):

ρi(x∗
1, . . . ,x

∗
i , . . . ,x

∗
n|μ∗

i ) ≥ ρi(x∗
1, . . . ,xi, . . . ,x∗

n|μ∗
i ), ∀i ∈ N . (2)

– (Bayesian consistency): the joint strategy x∗ induces a probability distribution
on states equal to the system of beliefs μ∗

– (Kreps and Wilson consistency): there is a sequence σk =〈μk,xk〉, such that

xk → x∗, k → ∞ (3)

being xk fully mixed and μk consistent with xk

2.3 From Extensive Form to Normal Form Games

Sometimes it is convenient to transform a game from its extensive form to a
normal form, so as to benefit from the results coming from the normal form
representations. The transformation from extensive to normal form can be done
as follows. The set of agents N remains the same. For any agent i, the set
of actions Ai in the normal form game contains one action for each possible
sequence of choices that the agent takes at decision nodes s such that ι(s) = i.
Finally, payoff functions are such that for each joint action the payoff is defined
as that obtained at the termination node reached in the extensive form game.

It can be shown [9] that sequential equilibria of the extensive form game are
always preserved as Nash equilibria of the normal form game. Nonetheless, other
Nash equilibria could be generated, and this may prevent learning algorithms
designed for normal form games, that are generically aimed at converging to
Nash equilibria, from successfully solving extensive form games.
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3 Reinforcement Learning and Q-Learning Dynamics

RL is a learning paradigm that enables an agent to learn the optimal strat-
egy to solve a given task through a trial-and-error process of direct interaction
with an unknown environment. At each time instant, the state of the envi-
ronment evolves in response to the action taken by the agent and a reward
is returned. The goal of a reinforcement learning agent is to learn the strat-
egy x∗ that maximizes the rewards through time. More formally, a strategy
x(s) = (x1(s), . . . , xi(s), . . . , xm(s)) is defined as a mapping from a state s to a
probability distribution over actions, where xi(s) is the probability of taking ac-
tion i in state s. The quality of a strategy x can be measured by the action value
function Qx(s, a), defined as the expected sum of discounted rewards obtained
by taking action a in state s and following x thereafter:

Qx(s, a) = E
[∑∞

k=0δ
krk|a(0) = a

]
where δ ∈ [0, 1) is the discount factor, and rk is the reward returned at time
k. The optimal action value function Q∗(s, a) is defined as the function whose
value is maximum in each state-action pair. Learning the optimal strategy x∗

is equivalent to learning the optimal action value function Q∗(s, a). In order to
learn Q∗(s, a), the agent needs to explore all possible actions in all the states of
the environment. On the other hand, as the learning progresses, in order to assess
the performance of her strategy, the agent should exploit the estimation of the
action value function by taking in each state the greedy action, i.e., the action
whose action value is highest. A common exploration policy is the Boltzmann
strategy:

xi(s) =
eτQ(s,ai)∑m

j=1 eτQ(s,aj)
(4)

where τ is the exploitation factor (the lower [higher] τ , the higher [lower] the
exploration).

While the agent explores the environment according to Eq. 4, the estimation of
the action value function should be updated on the basis of the rewards received
by the agent. In Q-learning [13], one of the most used RL update rules, when
the agent takes an action a and receives a reward r, the action value function is
updated as:

Q(s, a) = (1 − α)Q(s, a) + α
(
ri + δ max

a′
Q(s′, a′)

)
(5)

where α ∈ [0, 1] is the learning rate and s′ is the state after the execution of a.
In a multiagent context, the environment is populated by n agents, at each

time instant k the state evolves according to the joint action a(k), and the re-
ward for each agent depends on the joint action as well. In the simple case in
which the interaction between the agents is described by a normal form game,
the environment is characterized by a single state, and the reward ri is defined by
the payoff function Ri(a) (Sec. 2.1). Although Q-learning is guaranteed to find
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Fig. 2. In the replicator dynamics equations, a learning agent is represented by a set
of m populations of identical agents that play pure strategies with proportions such
that their densities correspond to the probability to play that strategy

the optimal strategy (that in normal form games corresponds to a Nash equilib-
rium) in stationary environments under very loose hypotheses [13], in multiagent
problems payoffs depend on the joint action and, since agents do not know the
other strategies, each agent perceives a non-stationary environment. Thus, the
learning process is not guaranteed to converge and may exhibit complex dynam-
ics that are often difficult to study by stochastically simulating single runs of
execution.

Evolutionary Game Theory (EGT) is the application of population genetics-
inspired models to game theory. With respect to classical game theory, it is more
focused on the dynamics of proportions (i.e., the relative abundance or density,
also called frequency) of homogeneous populations of agents all playing the same
action. As depicted in Fig. 2, agent i can be imagined as a large population of
xi identical strategists, or, equivalently, as m homogeneous sub-populations of
pure strategists, one for each action aij ∈ Ai with proportions nij = xij , j =
1, . . . , m. Thus, a pure strategist playing action aij is randomly extracted from
the population with the same probability xij according to which agent i plays
that action. Then, assuming that the game is repeatedly played many times in
any small time interval dt and that from time to time (but still many times in
dt) a pure strategist is randomly extracted from the population and offered the
option of switching to the pure strategy of another randomly selected strategist,
the continuous-time dynamics of the sub-population proportions or, equivalently,
the strategy dynamics, are ruled by the replicator dynamics:

ẋij = xij [(Pix−i)i − xiPix−i] (6)

where Pi is the payoff matrix of agent i. In [12], the Q-learning dynamics in nor-
mal form games is proved to converge to the following replicator-like dynamics:

ẋij = xijατ [(Pix−i)i − xi · Pix−i] + xijατ
m∑

k=1

xik ln
(

xik

xij

)
(7)

where the number of ordinary differential equations (ODEs) for agent i can be
reduced to |Ai| − 1, since the probabilities xij , j = 1 . . . , n sum to 1.
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Fig. 3. A skeleton of 13 trajectories for a second-order dynamical system

4 Bifurcation Analysis of Dynamical Systems

In this section we recall the main notions on non-linear dynamical systems,
with particular emphasis on structural stability and bifurcations. The following
sections are adapted from [2] (Appendix A). We refer the reader to [7] for a more
complete treatment of bifurcation theory.

4.1 Dynamical Systems Background

A continuous-time finite-dimensional dynamical system is defined by a system
of ordinary differential equations (ODEs):

ẋ(t) = f(x(t)) (8)

where the state vector x is n-dimensional and ẋ is its time derivative. Given
the initial state x(0), the ODEs uniquely define a trajectory of the system, i.e.,
the state vector x(t) for all t ≥ 0. Trajectories can be easily obtained through
simulation (i.e., numerical integration). The set of all trajectories is the state
portrait of the system. In Fig. 3 a representative example of 13 trajectories from
a two-dimensional (i.e., n = 2) system is reported. Three trajectories (A, B, C)
are points (corresponding to constant solutions of the system) called equilibria,
while one (γ) is a closed trajectory (corresponding to a periodic solution of the
system) called limit cycle. The behavior of the trajectories allow one to conclude
that A is a repellor (no trajectory starting closing to A tends or remains close
to A), B is a saddle (almost all trajectories starting close to B go away from
B but two trajectories tend to B and compose the so-called stable manifold ;
the two trajectories emanating from B compose the unstable manifold) while
C and γ are attractors (all trajectories starting close to C [γ] tend to C [γ]).
Attracting equilibria and cycles are said to be (asymptotically) stable (globally
stable if they attract all initial conditions, technically with the exclusion of sets
with no measure in state space), while saddles and repellors are unstable. The
trajectories in Figure 3 also identify the basin of attraction of each attractor: in
fact all trajectories starting above [below] the stable manifold of the saddle tend
toward the limit cycle γ [the equilibrium C].
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The study of the stability of equilibria can be done through linearization of
the dynamical system at equilibrium points, that is, by approximating the be-
havior of the system in the vicinity of an equilibrium x̄ through the linear system
d/dt(x − x̄) = ∂f/∂x|x=x̄(x − x̄). This way, it is possible to study the stabil-
ity of x̄ by looking at the eigenvalues λi, i = 1, . . . , n of the Jacobian matrix
∂f/∂x|x=x̄. If all the eigenvalues have negative real part then the equilibrium
is stable, while if at least one eigenvalue has positive real part the equilibrium
is unstable. Similarly, the stability of limit cycles can be analyzed through lin-
earization of the (n−1)-dimensional discrete-time dynamical system whose state
is defined by the intersections of the system trajectories close to the limit cycle
with a given transversal manifold (the so-called Poincaré section). Whenever
these intersections converge to the equilibrium at which the cycle intersects the
manifolds the limit cycle is stable, otherwise is unstable.

4.2 Structural Stability and Bifurcation Analysis

The goal of the structural stability analysis is the study of the asymptotic be-
havior of parametrized families of dynamical systems of the form:

ẋ = f(x(t),p) (9)

where p is a vector of parameters.
If a parameter is slightly perturbed, by continuity the position and form of the

asymptotic behaviors of trajectories, namely attractors, saddles, and repellors,
are smoothly affected (e.g., an equilibrium might slightly move or a limit cycle
might become slightly bigger or faster), but all trajectories remain topologically
the same (e.g., stable equilibria and cycles remain attractive). In regions of the
domain of p in which this continuity holds, the system is structurally stable. The
above continuity argument fails at particular parameter values called bifurcation
points [7], which correspond in state space to collisions of attractors, saddles, and
repellors. Thus, the robustness of the dynamical characteristics of the system,
as summarized by the state portrait, depends on how far the parameters are
from bifurcation points. A thorough robustness investigation therefore requires
to produce the catalog of all possible modes of behavior of the system family,
i.e., its complete bifurcation analysis. An exhaustive review of bifurcation theory
is certainly beyond the scope of this paper. In the following, we focus on three
types of bifurcations involving a single parameter p that are relevant for the case
study in Sec. 4: saddle-node, Hopf, and homoclinic bifurcations.

The saddle-node bifurcation corresponds to the collision, at a critical value
p∗, of two equilibria: a stable node N (i.e., a stable equilibrium characterized by
real eigenvalues of the linearized system) and, in its simplest two-dimensional
formulation, a saddle S (Fig- 4-top). For p < p∗, N has two negative eigenval-
ues, while the eigenvalues of S are one positive and one negative. For p > p∗ no
equilibrium is present, so that at the bifurcation point p = p∗ the largest eigen-
value of N and the smallest eigenvalue of S both vanish. In short, a saddle-node
bifurcation can be identified by the change of sign of one of the eigenvalues of an
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Fig. 4. Example of saddle-node (top), Hopf (mid) and homoclinic (bottom) bifurcations
in a two-dimensional dynamical system

equilibrium when a parameter p is varied. Geometrically, two equilibria, which
are non necessarily a node and a saddle in higher-dimensional systems, collide
and disappear as p crosses the bifurcation.

The second type of bifurcation, the Hopf bifurcation, involves the appearance
of limit cycles. With reference to two-dimensional systems, if a focus, that is
an equilibrium with two complex conjugate eigenvalues, is stable for p < p∗

and becomes unstable at p = p∗, then a stable limit cycle γ may appear for
p > p∗ (the so-called supercritical case, see Figure 4-mid). But the cycle may
also be unstable and surround the stable focus for p < p∗ (subcritical case)
and the distinction between the two cases depends upon the nonlinear terms
in the expansion of the function f in Eq. 8 and is typically implemented in
software packages for numerical bifurcation analysis [3,7]. In both cases, however,
the cycle is small for p close to p∗, so that the Hopf bifurcation can be seen
geometrically as the collision of a vanishing cycle with a focus. Moreover, the
pair of complex conjugate eigenvalues cross the imaginary axis of the complex
plane at the bifurcation, thus changing the stability of the equilibrium.

Finally, the homoclinic bifurcation is characterized by the collision of a limit
cycle and a saddle (Figure 4-bottom). When p approaches p∗, the cycle γ gets
closer to saddle S, so that the period of the cycle diverges, since the state of the
system moves very slowly when close to S. At the bifurcation (p = p∗) the cycle
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touches the saddle and collides with its stable and unstable manifolds which
coincide at the bifurcation. The identification of a homoclinic bifurcation cannot
rely on the analysis of eigenvalues but involve the global behavior of the system.
For this reason, the homoclinic bifurcation is classified as a global bifurcation, in
contrast with local bifurcations that can be detected through eigenvalue analysis.

Whenever a perturbation of the parameter from p to p + Δ (p < p∗ < p + Δ)
triggers a transient toward a macroscopically different asymptotic regime (i.e., a
different attractor), the bifurcation at p∗ is called catastrophic. By contrast, if the
catastrophic transition is not possible, the bifurcation is called noncatastrophic.

Although one might hope to detect bifurcations by simulating the system for
various parameter settings and initial conditions, saddles, which have a funda-
mental role in bifurcation analysis, cannot be studied just through simulation.
In fact, any small approximation introduced by the numerical scheme of inte-
gration would lead to trajectories that miss the saddle and go away from it
along its unstable manifold. Moreover, the “brute force” simulation approach is
never effective and accurate in practice, since bifurcations are often related to a
loss of stability of equilibria and cycles, so that the length of simulations need
to be dramatically increased while approaching the bifurcation. This is why the
proper tools for numerical bifurcation analysis are based on continuation (see [7],
Chap.10 and [3]), a simulation-free numerical method which locates bifurcations
by continuing equilibria and cycles in parameter space, that is by studying their
position in the state space when the parameter is changed.

5 Bifurcation Analysis on the Selten’s Horse Game

In the following, we illustrate the results of the bifurcation analysis on the Sel-
ten’s horse game [4] (named from its inventor and from the shape of its tree).
This game, commonly adopted in GT for the study of sequential equilibria, is
particularly suitable for our analysis because (i) it involves more than two agents,
(ii) it is an extensive form game and (iii) one agent has imperfect information
about the state of the game. All these factors of complexity lead to the definition
of a complex learning system exhibiting interesting dynamics. At the same time,
the game is simple enough to allow an intuitive analysis of its dynamics and a
detailed bifurcation analysis on one of the payoffs.

5.1 Learning Dynamics in the Selten’s Horse Game

The Selten’s horse game [4] (Fig. 5-left) is an extensive form game with imperfect
information involving three agents with two actions each (Ai = {li, ri}, i =
1, 2, 3). While both agents 1 and 2 have perfect information about the state of
the game, agent 3 cannot distinguish the state in which it plays (dotted line in
the figure), that is, she is characterized by a single information set containing the
two decision nodes where she plays. According to Definition 4, the game has a
unique sequential equilibrium strategy (r1, r2, r3) (we omit the derivation for lack
of space). On the other hand, as one can easily verify, in the equivalent normal
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Fig. 5. Selten’s Horse game and payoff tables of the equivalent normal form game.
Parameter p is set to 5 in the original configuration of the game.

form game (Fig. 5) there are two Nash equilibria (r1, r2, r3) and (l1, r2, l3) (in
bold in payoff tables), while there are no mixed equilibria. The joint strategy for
this game is the vector x = (x1,x2,x3), where xi = (xi1, xi2) (being xi2 = 1−xi1)
is the strategy of agent i. Strategy xi = (1, 0) corresponds to action li, while
xi = (0, 1) is action ri.

In the following, we analyze the dynamics of the strategies when all the agents
learn through Q-learning. As discussed in Section 3, for the study of the learning
process, we derive the dynamical system defined by the replicator dynamics for
x11, x21 and x31 as defined in Eq. 7, where

P1 =
[
4 1 4 1
5 2 3 3

]
P2 =

[
4 1 p 2
4 1 3 3

]
P3 =

[
4 4 0 0
1 1 2 0

]

are the payoff matrices, where p is equal to 5 in the original setting.
The replicator dynamics is bounded in the open 3-dimensional cube of the

state space (x11, x21, x31) (the other three variables can be eliminated as xi2 =
1 − xi1). The faces of the cube cannot be reached due to the exploration log-
arithmic terms in Eq. 7. The sequential equilibrium (r1, r2, r3) corresponds to
point (0, 0, 0) in the state space, while the other Nash equilibrium is (1, 0, 1).

Let us first consider the dynamics of the system in its original settings (panel
5 in Fig. 7). Although the equivalent normal form game has two Nash equilibria,
the learning process converges to a point close to the sequential equilibrium.
Starting from any initial joint strategy, the trajectories of the system reach a
globally stable equilibrium close to the joint strategy (r1, r2, r3). This would be
the expected solution from a game theoretical perspective, since (r1, r2, r3) is the
unique sequential equilibrium in the game. At the opposite, the learning dynam-
ics continues and, because of the residual exploration of the agents converges to
a different equilibrium point. By exploring action l2, agent 2 allows agent 3 to
play r3 and obtain a payoff greater than 0 (the payoff of agent 3 at the sequential
equilibrium). Then, agent 3 takes advantage by mixing her strategy toward l3,
since this tempts agent 2 to play l2 more frequently. In fact, the payoff of agent
2 for action l2 is a weighted average between 5 and 2 depending on the agent
3 mixed strategy (Fig. 5), and the result can be greater than 3 (the equilib-
rium payoff). This is possible because of the payoff for agent 2 in (r1, l2, l3) is
sufficiently high, while this scenario is likely to change for lower values of the



Bifurcation Analysis of Reinforcement Learning Agents 141

Fig. 6. Bifurcation diagram of the learning system. The curve identifies the number of
equilibria and the value of their x31 component for each value of p in the considered
range. The shaded area represents the x31 excursion along a family of stable limit
cycles present in interval 3. Vertical dotted lines indicate bifurcation points (SN1,SN2:
saddle-node, HO: homoclinic; H: Hopf). Dashed and solid parts of equilibrium curve
distinguish unstable and stable equilibria (e.g., one stable and two unstable equilibria
characterized by increasing value of x31 are present in interval 4). Parameter values:
α = 0.3, τ = 0.6. Diagram obtained through the software package Matcont [3].

payoff. This means that, from this preliminary analysis, the system is expected
to preserve structural stability only for a limited range of values of the payoff (in
the following parameter p) and to possibly show complex dynamics otherwise.
This is the reason for the following bifurcation analysis with respect to p.

5.2 Bifurcation Analysis

The bifurcation analysis of the learning system is reported in Fig. 6 (for vari-
able x31) and Tab. 1 and identifies five qualitatively different learning dynamics
corresponding to five intervals of p (the learning dynamics are shown in Fig. 7).
As discussed in Section 4, the identification of the bifurcations cannot be done
by simulating the system for different values of p. A complete bifurcation anal-
ysis needs the continuation of equilibria and cycles in parameter space and the
identification of the parameter values in which the system looses its structural
stability.

The analysis starts with p = 5, the value in the original game setting, at which,
as already discussed in Sec. 5.1, the system is characterized by a globally stable
equilibrium close to (0, 0, 0). The numerical continuation of this equilibrium with
respect to p allows to track its position for different parameter values and pro-
duces the curve in Fig. 6. By decreasing p from its original value, the equilibrium
moves away from (0, 0, 0). In fact, in order to tempt agent 2 to play l2, agent 3 is
forced to mix her strategy more and more toward l3, but so doing she vanishes
her own return. Similar considerations can be made for x11 and x21. Further
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Table 1. Bifurcation analysis of the replicator dynamics with respect to parameter p

Parameter Bifurcation

p1 = 3.04651 SN1
p2 = 3.06392 H
p3 = 3.07235 HO
p4 = 3.17361 SN2

Interval Equilibria Limit Cycles

[1] p < p1 1 globally stable -
[2] p1 ≤ p < p2 2 stable, 1 saddle -
[3] p2 ≤ p < p3 1 stable, 2 saddles 1 stable
[4] p3 ≤ p < p4 1 globally stable, 2 saddles -
[5] p ≥ p4 1 globally stable -

reductions of p are less easy to interpret on an intuitive ground, also because
a different mix of Nash/sequential pure/mixed equilibria might arise, and this
is indicative of impending dynamical complexity. In fact, the first bifurcation is
encountered at p=p1 (SN1), a saddle-node bifurcation at which the equilibrium
collides with a saddle and they both disappear for p < p1. Notice, however, that
the equilibrium is not globally stable in intervals 2 and 3, since three more bi-
furcations occur for p1 < p < 5, but involve other equilibria of the system and
are therefore initially unnoticed by the local continuation of the equilibrium.
The continuation direction reverts at a saddle-node bifurcation, so that we now
continue the saddle for increasing values of p. The first encountered bifurcation
is another saddle-node (SN2) at p=p4, approaching which one of the two stable
eigenvalues of the saddle vanishes, as well as one of the two unstable eigenvalues
of another saddle, characterized by only one stable eigenvalue. The two saddles
collide at the bifurcation and do not exist for p > p4, while the continuation
proceeds by tracking the new saddle for decreasing values of p. The two unstable
eigenvalues are real close to p4, but become complex (saddle-focus) somewhere
before the Hopf bifurcation (H) detected at p=p2. The Hopf is supercritical, so
that a family of stable limit cycles can be continued for increasing values of p
starting from p=p2 (shaded area in Fig. 6). The saddle-focus becomes stable by
crossing the bifurcation and its continuation to lower values of p does not point
out new losses of structural stability. Moreover, the equilibrium becomes globally
stable for p < p1 and x31 approaches 1 as p is further reduced. At the same time,
x11 and x21 approach 1 and 0, respectively, so that the equilibrium approaches
(1, 0, 1), i.e., the other Nash equilibrium of the original game. In particular, it
is easy to verify that (1, 0, 1) is Nash for all p and can be shown to be the only
sequential equilibrium for p sufficiently small. Finally, increasing p from p=p2,
the family of limit cycles is interrupted by an homoclinic bifurcation (HO) at
p=p3, where the cycle gets in contact with the saddle originated at (SN1).

All together, the bifurcation analysis shows that the learning dynamics are
dominated by two sequential equilibria, (0, 0, 0) for large values of p and (1, 0, 1)
for small values of p, in the sense that close to them there is an equilibrium of
the learning dynamics (the lower [upper] equilibrium in Fig. 6 for large [small]
p) which attracts all initial conditions (see intervals 1 and 5 and in particular
interval 4 where, though the presence of two saddles, all trajectories, except those
composing the saddle stable manifolds, converge to the stable equilibrium). The
switch from one equilibria to the other as p is varied involves two catastrophes :
the homoclinic bifurcation for increasing values of p (HO) and the saddle-node



Bifurcation Analysis of Reinforcement Learning Agents 143

Fig. 7. Learning dynamics for five different values of p (3.0, 3.05, 3.07, 3.1, 5)

(SN1) for decreasing values of p. In particular, in the first case, the learning
dynamics follow the family of limit cycles. The period of the cycle diverges as
the bifurcation is approached and the joint strategy remains for most of the time
very close to the saddle, at the point that finite-time simulations can erroneously
reveal convergence to a stable equilibrium. Crossing the bifurcation, the cycle
suddenly disappears and the dynamics converge to the lower equilibrium.

Finally notice that in intervals 2 and 3 the system has two alternative attrac-
tors, two equilibria in 2 and an equilibrium and a cycle in 3. The attractor which
is reached by the learning process depends on the initial joint strategy and the
saddle (actually its stable manifold) delimits the two attraction basins.

6 Conclusions and Future Works

In this paper we applied bifurcation analysis to the study of Q-learning mul-
tiagent dynamics in the continuous-time limit provided by the replicator dy-
namics of evolutionary game theory. A preliminary one-parameter analysis of
the Selten’s Horse game is presented as a case study. The first result of the
analysis is that in extensive form games with imperfect information Q-learning
may exhibit complex learning dynamics, including multiple stable equilibria and
periodic non-convergent attractors. Furthermore, the analysis pointed out that
Q-learning is not robust to payoff perturbations and that the corresponding dy-
namical system looses stability in four different bifurcation points. In particular,
at the two catastrophic bifurcations, small variations of the payoff correspond
to radically different asymptotic regimes, thus leading the three agents to signif-
icantly change their strategies. In general, we showed that bifurcation analysis
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can be an effective way to study the structural stability of learning systems
and that it could also be used to compare the robustness of different learning
algorithms.

Although the bifurcation analysis presented in the paper focused on a struc-
tural parameter (i.e., a payoff), the same analysis can be carried out when
learning parameters are varied, and this could lead to useful suggestions about
parameter settings. A preliminary joint analysis with respect to the payoff p and
the exploitation factor τ showed that for low values of τ (high exploration) the
bifurcation points disappear and the system is globally structurally stable, while
for high values of τ (low exploration) the system becomes more robust to payoff
perturbations as the regions of structural stability become larger.

In general, we believe that this novel, though preliminary, analysis opens inter-
esting scenarios for a more complete investigation of the dynamics of multiagent
learning systems. Future efforts will be devoted to: (i) the development of a repli-
cator dynamics model more compliant to learning algorithms (e.g., decreasing
learning rates and exploration factors), (ii) two parameters bifurcation analy-
sis (e.g., a joint analysis with respect to learning and structural parameters),
(iii) study of more complex games (e.g., signaling game, bilateral negotiations,
auctions).
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Abstract. In this paper we present a new, non-pheromone-based algorithm in-
spired by the behaviour of bees. The algorithm combines both recruitment and
navigation strategies. We investigate whether this new algorithm outperforms
pheromone-based algorithms, inspired by the behaviour of ants, in the task of
foraging. From our experiments, we conclude that (i) the bee-inspired algorithm
is significantly more efficient when finding and collecting food, i.e., it uses fewer
iterations to complete the task; (ii) the bee-inspired algorithm is more scalable,
i.e., it requires less computation time to complete the task, even though in small
worlds, the ant-inspired algorithm is faster on a time-per-iteration measure; and
finally, (iii) our current bee-inspired algorithm is less adaptive than ant-inspired
algorithms.

1 Introduction

In this paper we introduce a new, non-pheromone-based, algorithm inspired by the so-
cial behaviour of honeybees. The algorithm consists of two strategies. First, a recruit-
ment strategy which is used to distribute knowledge to other members of the colony.
More precisely, by ‘dancing’ inside the hive agents are able to directly communicate
distance and direction towards a destination, in analogy to bees ‘dancing’ inside the
hive [1]. Second, a navigation strategy which is used to efficiently navigate in an un-
known world. For navigation, agents use a strategy named Path Integration (PI). This
strategy is based on PI in bees with which they are able to compute their present loca-
tion from their past trajectory continuously and, as a consequence, can return to their
starting point by choosing the direct route rather than retracing their outbound trajectory
[2,3].

Pheromone-based algorithms are inspired by the behaviour of ants. For an overview,
we refer to [4]. In summary, ants deposit pheromone on the path they take during travel.
Using this trail, they are able to navigate towards their nest or food. Ants employ an
indirect recruitment strategy by accumulating pheromone trails. When a trail is strong
enough, other ants are attracted to it and will follow this trail towards a destination.
More precisely, the more ants follow a trail, the more that trail becomes attractive for
being followed. This is known as an autocatalitic process. Short paths will eventually
be preferred but it takes a certain amount of time before such pheromone trails emerge.

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 145–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Although ant and bee foraging strategies differ considerably, both species solve the
foraging problem efficiently. In the field of Computer Science, researchers have become
inspired by the behaviour of social insects, since the problems these insects cope with
are similar to optimization problems humans wish to solve efficiently, for instance,
the Shortest Path Problem. Ant-inspired algorithms are already used to address such
problems successfully [4]. Bee-inspired algorithms are less extensively studied and re-
search into them only started recently. For instance, [5,6,7,8] all present bee-inspired
algorithms which pose solutions to different types of problems by employing bee re-
cruitment behaviour. In [2] the navigation behaviour of bees is investigated and applied
in a robot. However, these algorithms use only one aspect of bee behaviour, i.e., the
recruitment behaviour or navigation behaviour respectively. As such, there are still two
important open issues. First, recruitment and navigation algorithms are currently only
studied separately; a combined algorithm is undiscovered land. Second, since a com-
bined bee-inspired algorithm currently does not exist, comparative studies have not yet
been performed. We want to investigate whether our bee-inspired algorithm poses a bet-
ter solution to the foraging problem than a ant-inspired algorithm. More precisely, we
want to investigate whether paths emerge faster with our bee-inspired algorithm. Such
a comparative study would need to focus on the efficiency, scalability, and adaptability
of the algorithms.

Our research addresses both issues. First, a new bee-inspired algorithm, which im-
plements both bee recruitment and bee navigational strategies, is presented. Second, we
have developed a simulation environment, named BEEHAVE, in which foraging algo-
rithms can be compared directly. Using BEEHAVE, we are able to compare the bee-
inspired algorithm with an ant-inspired algorithm (with features of Ant Colony System
and MAX-MIN Ant System [4]). Extensive experiments have been performed with re-
spect to efficiency and scalability. Moreover, we are able to give an indication of the
adaptability of the new bee-inspired algorithm. In this paper, we present an overview of
our research [9].

The remainder of this paper is structured as follows. In Section 2, we describe the
biological background of bee behaviour. Section 3 describes how to model bee be-
haviour. Section 4 describes the simulation environment and the experiments. Finally, in
Section 5, we present the conclusion and two options for future research.

2 Biological Background

Foraging honeybees display two types of behaviour, i.e., recruitment and navigation
behaviour. In order to recruit other colony members for food sources, honeybees in-
form their nest mates of the distance and direction of these food sources by means of
a waggling dance performed on the vertical combs in the hive [1]. This dance (i.e., the
bee language) consists of a series of alternating left-hand and right-hand loops, inter-
spersed by a segment in which the bee waggles her abdomen from side to side. The
duration of the waggle phase is a measure of the distance to the food. The angle be-
tween the sun and the axis of a bee’s waggle segment on the vertical comb, represents
the azimuthal angle between the sun and a target location, i.e., the direction in which
a recruit should fly [1,10,11] (see Figure 1). The ‘advertisement’ for a food source can
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Fig. 1. Distance and direction by waggling dance. Waggling straight up on the vertical comb
indicates a food source which is located at an azimuthal angle of 0◦ while waggling straight
down indicates a food source located at an azimuthal angle of 180◦. Figure is taken from [13].

be adopted by other members of the colony. The decision mechanism for adopting an
‘advertised’ food-source location by a potential recruit, is not completely understood. It
is considered that the recruitment amongst bees is a function of the quality of the food
source [12].

Different species of social insects, such as honeybees and desert ants, make use of
non-pheromone-based navigation. Non-pheromone-based navigation mainly consists of
Path Integration (PI) which is the continuous update of a vector by integrating all an-
gles steered and all distances covered [2]. A PI vector represents the insects knowledge
of direction and distance towards its destination. To construct a PI vector, the insect
does not use a mathematical vector summation as a human does, but employs a com-
putationally simple approximation [3]. Using this approximation, the insect is able to
return to its destination directly. More precisely, when the path is unobstructed, the in-
sect solves the problem optimally. However, when the path is obstructed, the insect has
to fall back on other strategies such as exploration or landmark navigation [14,15] to
solve the problem. Obviously, bees are able to fly, i.e., when they encounter an obstacle,
they can mostly choose to fly over it. However, even if the path is unobstructed, bees
tend to navigate over the entire path using landmarks. The landmarks divide the entire
path in segments and each landmark has a PI vector associated with it. This behaviour
decreases navigation errors and ensures robustness. In the remainder of this paper, we
refer to a home-pointing PI vector as a Home Vector (HV). PI is used in both exploration
and exploitation. During exploration insects constantly update their HV. It is however,
not used as an exploration strategy. During exploitation, the insects update both their
HV and the PI vector indicating the food source, and use these vectors as a guidance to
a destination.
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3 Modelling Bee Behaviour

In contrast to existing algorithms [5,6,7,8], our new algorithm combines both biological
behaviours previously mentioned. First, recruitment behaviour is implemented in anal-
ogy with biological bees’ dance behavior. Agents share information on previous search
experience (i.e., the direction and distance toward a certain food source) only when they
are in the hive. Agents in the hive can then decide whether to exploit previous search
experience obtained from other agents in the hive, or to exploit their own search experi-
ence, if available. As mentioned earlier, bees use a (still) unknown decision mechanism
to decide whether to exploit another bee’s experience. In our bee-inspired algorithm,
the decision is based on distance assessment. More precisely, an agent will exploit an-
other agent’s experience if this experience indicates food sources at a shorter distance
from the hive than the food source currently known by the agent. Second, the navigation
behaviour used in the bee-inspired algorithm either exploits previous search experience
(of the agent itself or of another agent in the hive) or lets the agent explore the world
using an exploration strategy similar to a Lévy flight [16]. Exploiting previous search
experience is guided by the PI vector that agents either have constructed themselves or
have adopted from another agent in the hive.

The general structure of our bee-inspired algorithm is quite similar to that of algo-
rithms in Ant Colony Optimization [4]. It implements both recruitment and navigation
behaviour and consists of three functions.1

First, ManageBeesActivity() handles agents’ activity based on their internal state.
Each agent is in one of six internal states. In each state a specific behaviour is per-
formed. State changes are outlined in Algorithm 1. Agent state ‘AtHome’ indicates
that the agent is located at the hive. While in this state, the agent determines to which
new state it will go. Agent state ‘StayAtHome’ also indicates that the agent is located
at the hive. However, while in this state it will remain there unless there is previous
search experience available to exploit. Previous search experience is represented by a
PI vector indicating a food source. If such experience is available, the agent will leave
the hive to exploit the previous search experience. Agent state ‘Exploitation’ indicates
that the agent is exploiting previous search experience. An agent either exploits its own
search experience or acquires a PI vector from other agents inside the hive. The agent
determines which cell to move to in order to match the PI vector indicating the food
source. Agent state ‘Exploration’ indicates that the agent is exploring its environment
in search for food. Agent state ‘HeadHome’ indicates that the agent is heading home
without carrying any food. The agent reaches home by following its Homing Vector
(HV). The HV is a PI vector indicating the hive. From the moment an agent starts its
foraging trip, this HV is continuously calculated for each agent. Agent state ‘Carry-
ingFood’ indicates that the agent has found food and that it is carrying the food back
toward the hive. The agent’s return path depends on the same HV as with agent state
‘HeadHome’.

1 The last function, DaemonActions(), can be used to implement centralized actions which
cannot be performed by single agents, such as collection of global information which can be
used to decide whether it is useful to let an agent dance. In this paper, DaemonActions() is
not used.
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Algorithm 1. Agent internal-state changes
1: if State is StayAtHome then
2: if Vector exists then
3: Exploitation
4: end if
5: else if Agent not AtHome then
6: if Agent has food then
7: CarryingFood
8: else if Depending on chance then
9: HeadHome, Exploration or Exploitation

10: end if
11: else if Exploit preference AND state is AtHome then
12: if Vector exists then
13: Exploitation
14: else
15: Exploration
16: end if
17: else if StayAtHome preference AND state is AtHome then
18: if Vector exists then
19: Exploitation
20: else
21: StayAtHome
22: end if
23: else
24: Exploration
25: end if

Second, CalculateV ectors() is used to compute the PI vectors for each agent, i.e.,
the HV and possibly the PI vector indicating the food source. A PI vector essentially
consists of two values, one indicating the direction and the other indicating the distance.
Our algorithm uses an exact PI vector calculation which rules out the directional and
distance errors that biological PI is prone to make [3,15]. It does, however, work in a
similar way. A new PI vector is always calculated with respect to the previous one. In
order to calculate the new homing distance, we use the cosine rule and rewrite it as:

b =
√

a2 + c2 − 2ac × cosβ (1)

Using Equation 1, a represents the distance traveled since the last turn was made,
c the old homing distance, and b the new homing distance. β is the angle turned with
respect to the old homing angle. Using Equation 1 we can now calculate α (the angle
used for adjusting the old homing angle), once again by using the cosine rule.

α = arccos
(

a2 − b2 − c2

−2bc

)
(2)

Values obtained by Equation 1 and Equation 2 are used to construct the new PI
vector.
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Fig. 2. The BEEHAVE tool

Bee behaviour’s main feature is that it naturally constructs a direct, optimal path be-
tween a starting point (i.e., the hive) and a destination (i.e., the food source). One could
argue that bee behaviour is a natural way of constructing options in a Markov Decision
Process (MDP). Options are courses of action within a MDP whose results are state
transitions of extended and variable duration [17]. Such courses of action have proven
very useful in speeding up learning and planning, ensuring robustness and allowing
the integration of prior knowledge into AI systems [18]. An option is specified by a
set of states in which the option can be initiated, an internal policy and a termination
condition. If the initiation set and the termination condition are specified, traditional
reinforcement learning methods can be used to learn the internal policy of the option.
In bee behaviour, the basic actions consist out of moving in different directions over
the nodes in a MDP (i.e., the foraging world). The option’s policy is represented by the
(artificial) bee’s PI vector, where the starting state is the hive and the termination state
is the food source location.

4 Simulation Environment and Experiments

To conduct comparative experiments with the bee-inspired algorithm and the ant-
inspired algorithm, we created a simulation environment. This environment is called
BEEHAVE and is illustrated in Figure 2.

To obtain our data, three experiments have been performed. The experiments were
conducted in (i) a small-sized world (i.e., Experiment 1; 110 cells), (ii) a medium-
sized world (i.e., Experiment 2; 440 cells), and (iii) a large-sized world (i.e., Exper-
iment 3; 2800 cells). Experiment 1 and 2 each contain five different problem cases
(i.e., unobstructed, obstructed, food-source displacement, obstructed with food-source
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(a) Medium world, basic case (b) Small world, two bridges case

Fig. 3. Simulation worlds

displacement, and multiple foodsources). Experiment 3 only consists of one problem
case, i.e., the unobstructed problem case. Each experiment is executed with both the
ant-inspired algorithm and the bee-inspired algorithm (i.e., our new algorithm). Exper-
iment 1 is executed with 50 and 100 agents, while Experiment 2 is executed with 100
and 250 agents. Chosing higher numbers of agents in either of the two experiments
leads to agents flooding in the world, preventing any path from arising. The results of
Experiment 1 and 2 are used to obtain our main conclusions. Experiment 3 is used to
determine how scalable the algorithms are. The algorithms’ scalability is measured with
respect to the world size and the number of agents used. In Experiment 3 the number of
agents is set to 500.

The comparison is based on efficiency, scalability and adaptability. In Figure 3(a),
an example of a medium-sized world is presented. Figure 4 and 5 present the corre-
sponding result figures. The former shows a histogram of the total iterations needed
for completing the foraging task at hand. The latter shows a histogram of the average
computation time needed per iteration.

Considering efficiency, in Figure 4, we can observe that the bee-inspired algorithm is
more efficient, since it uses significantly fewer iterations to complete the task at hand.
With an increasing number of agents, the (relative and absolute) efficiency of the al-
gorithm rises. These are typical results found in this research, i.e., they occur in every
experiment performed.

In Figure 5(a), we present a histogram of the average computation time needed per
iteration in a medium-sized experiment with 100 agents. We observe that the algorithms
on average will settle around a computation time of 108ms and 106ms per iteration, re-
spectively. In Figure 5(b) we observe that with 250 agents, the bee-inspired algorithm
has a mean of 353ms while the ant-inspired algorithm’s mean is 341ms and has a wide
spread. Even though a statistical test reveals that in both cases, the difference is sig-
nificant in favour of the ant-inspired algorithm, the total computation time required to
complete the task is still much lower for the bee-inspired algorithm. Once again, these
are typical results; they occur in every small- and medium-sized experiment performed.

Considering scalability, we take into account (i) increasing the number of agents
and (ii) increasing the size of the world. With respect to agent scalability, in Table 1,
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(a) Using 100 agents.

(b) Using 250 agents.

Fig. 4. Histogram of the number of iterations needed in medium-sized, basic-case experiments,
with a number of agents as indicated. Black indicates the occurrences for the bee-inspired algo-
rithm. Grey indicates the occurrences for the ant-inspired algorithm. Results are obtained after
300 experimental runs.

Table 1. Performance ratios between the ant-inspired algorithm (Pb) and the bee-inspired algo-
rithm (NPb). I.e., Pb

NPb
ratio. Ratios marked with a (*) are influenced by the maximum number

of timesteps available. Due to the fact that experiments are terminated after 2500 timesteps, the
ant-inspired algorithm was not always able to complete the task set while the bee-inspired algo-
rithm always did. The marked ratios values therefore could actually be even higher if we allowed
for more timesteps.

World size (number of agents) Time/Timestep # Timestep Total used time
200 × 200 (50 agents) 1.18 3.09 3.35

200 × 200 (100 agents) 0.94 3.24 3.04
300 × 300 (100 agents) 0.98 (*)3.90 (*)3.81
300 × 300 (250 agents) 0.97 3.69 (3.56
600 × 600 (500 agents) 0.99 (*)3.31 (*)3.27
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(a) Using 100 agents.

(b) Using 250 agents.

Fig. 5. Histogram of the average computation time needed per iteration in medium-sized, basic-
case experiments, with a number of agents as indicated. Black indicates the occurrences for the
bee-inspired algorithm. Grey indicates the occurrences for the ant-inspired algorithm. Results are
obtained after 300 experimental runs.

we can observe that when we increase the number of agents and keep the world size
constant, ratios decrease (i.e., the ant-inspired algorithm is more scalable with respect
to the number of agents). With respect to world scalability, in Table 1, we can observe
that when we increase the world size and keep the number of agents constant, ratios
increase (i.e., the bee-inspired algorithm is more scalable with respect to the size of
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Fig. 6. Histogram of the number of iterations needed in small-sized, two bridges case experiment.
Black indicates the occurrences for the bee-inspired algorithm. Grey indicates the occurrences for
the ant-inspired algorithm. Results are obtained after 20 experiments with 50 agents.

the world). Overall, the bee-inspired algorithm is more scalable than the ant-inspired
algorithm since it finishes its tasks much faster.

Considering adaptability, we performed an experiment in which the task set was
the Deneubourg Bridge [19]. Figure 3(b) shows the world in which the experiment is
performed. In this two-bridges world, the short path is blocked after a certain number of
timesteps. The ant-inspired algorithm performs better than the bee-inspired algorithm
in such a world, see Figure 6. This is because of the fact that by using pheromone trails,
the ant-inspired algorithm has more information about the world than the bee-inspired
algorithm. The latter will try to exploit its most direct path even when this most direct
path is blocked. The ant-inspired algorithm however, will eventually move towards the
unblocked path due to the accumulated pheromone on this path. To enable the bee-
inspired algorithm to obtain this environmental information, some extra features have
to be added, such as landmark navigation. The results indicate that the ant-inspired
algorithm is more adaptive than the current bee-inspired algorithm.

5 Conclusion

Taking into account the results of the experiments in this research, we may conclude that
our bee-inspired algorithm is significantly more efficient than the ant-inspired algorithm
when finding and collecting food.

Concerning scalability, we may conclude that the ant-inspired algorithm is most scal-
able with respect to the number of agents used, while the bee-inspired algorithm is
most scalable with respect to the size of the world used. The latter might be a desir-
able feature; multi-agent systems are mostly applied in large worlds. Furthermore, we
may conclude that even in smaller worlds, our bee-inspired algorithm requires less total
computation time than an ant-inspired algorithm, even if in some cases, the latter re-
quires less computation time per iteration. Besides these benefits, we have to note that
our bee-inspired algorithm is less adaptive than the ant-inspired algorithm.

Currently, we are extending the recruitment behaviour of our artificial bees. More
precisely, we are adding quality assessment for the artificial bee’s decision on dance
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following. Furthermore, we are extending the simulation environment to make it able to
construct worlds that are even more dynamic (i.e., moving obstacles and food sources
varying in quality). In order to make the algorithm more adaptive, we are investigat-
ing whether it is possible to navigate on landmarks. Such landmarks could possibly be
created (and decided on) through cooperation between agents or eventually created cen-
trally by the Deamonactions() function (as known in ACO). We are also evaluating
to which problems the algorithm could be applied and whether graph-based problems
could also make use of path approximation via PI vectors.

We give two more options for future research. First, it might be interesting to con-
struct a hybrid algorithm. By extending the bee-inspired algorithm with, for example,
pheromone direction markers, we could improve the algorithm’s adaptability possibly
without decreasing its efficiency or scalability. Second, by combining PI strategies with
potential field searching [20], we could improve local search.
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Abstract. N-player prisoner dilemma games have been adopted and
studied as a representation of many social dilemmas. They capture a
larger class of social dilemmas than the traditional two-player prisoner’s
dilemma. In N-player games, defection is the individually rational strat-
egy and normally emerges as the dominant strategy in evolutionary sim-
ulations of agents playing the game.

In this paper, we discuss the effect of a specific type of spatial con-
straint on a population of learning agents by placing agents on a graph
structure which exhibits a community structure. We show that, by or-
ganising agents on a graph with a community structure, cooperation can
exist despite the presence of defectors. Furthermore, we show that, by
allowing agents learn from agents in neighbouring communities, cooper-
ation can actually spread and become the dominant robust strategy.

Moreover, we show that the spread of cooperation is robust to the
introduction of noise into the system.

Keywords: Cooperation, N-Player Prisoner’s dilemma, Community
structure.

1 Introduction

The placing of constraints on agent interactions and the subsequent analysis
of the resulting effect of these constraints on the society has been studied in
a range of subdomains in multi-agent and artificial life societies. These include
spatial constraints[8][6][13], tagging mechanisms[16] and trust and reputation
systems[15]. Recently, there has been much interest in studying the emergent
behaviour of agents playing in social dilemma games constrained by spatial con-
straints defined by some form of graph structure; these include small world
graphs[24][22] and scale free graphs[23][19]. In these graphs constraints may ex-
ist on the clustering coefficient, the distribution of the node degree values and
the average shortest path between two nodes.

A further interesting property of many real-world social networks is that of
community structure. Given the existence of a community structure in many
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real-world social networks[11], questions arise regarding the effect of community
structure on societies of agents playing in social dilemmas. Does the existence
of community structure promote the emergence of cooperation?

This paper examines N-player social dilemmas. In the recent work on analysing
the effect of various graph structures on agent interactions, the focus has been on
the more widely studied two-player dilemma. In this work, we focus on the more
general case, the N-player prisoner’s dilemma. It has been argued that the N-player
extension has greater generality and applicability to real-life situations [3].

In particular, we consider the effect of enforcing a community structure on a
society of agents participating in N-player social dilemmas. We show that, by
having a high degree of community structure, we can ensure that cooperative
agents can insulate themselves from neighbouring non-cooperating strategies.
By further adopting an update mechanism, whereby members of neighbouring
communities can update their strategy to imitate that of a more successful strat-
egy, we show that cooperation can actually spread throughout the society. We
also show that, despite introducing considerable levels of noise to the learning
process, cooperation can remain as the outcome.

Our simulations show that a high degree of community structure coupled with
simple learning mechanisms can lead to the spread of cooperative behaviours,
resulting in a robust stable cooperative society. In this paper we are interested in
exploring the effect community structure has on the emergence of cooperation.
It is plausible to propose that there is two-way relationship between these two
features and that the emergence of cooperation and trust relationships can lead
to the emergence of community structure. However, in this paper, we restrict
our focus to one side of this relationship i.e. on the effect community structure
can have on the emergence of cooperation.

2 Related Work

2.1 N-Player Social Dilemmas

An oft-studied game to model agent interaction is the N-player iterated pris-
oner’s dilemma. N-player dilemmas are characterised by having many partici-
pants, each of whom may choose to cooperate or defect. These choices are made
autonomously without any communication between participants. Any benefit or
payoff is received by all participants; any cost is borne by the cooperators only.
A well-known example is the Tragedy of the Commons[5]. In this dilemma, land
(the commons) is freely available for farmers to use for grazing cattle. For any
individual farmer, it is advantageous to use this resource rather than their own
land. However, if all farmers adopt the same reasoning, the commons will be
over-used and soon will be of no use to any of the participants, resulting in an
outcome that is sub-optimal for all farmers.

In the N-player dilemma game there are N participants. Each player is con-
fronted with a choice: to either cooperate (C) or defect(D). We will represent
the payoff obtained by a strategy which defects given i cooperators as D(i) and
the payoff obtained by a cooperative strategy given i cooperators as C(i).
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Defection represents a dominant strategy, i.e. for any individual, moving from
cooperation to defection is beneficial for that player (they still receive a benefit
without the cost):

D(i) > D(i − 1) 0 < i ≤ N − 1 (1)

C(i) > C(i − 1) 0 < i ≤ N − 1 (2)

D(i) > C(i) 0 < i ≤ N − 1 (3)

However, if all participants adopt this dominant strategy, the resulting sce-
nario is sub-optimal and, from a group point of view, an irrational outcome
ensues:

C(N) > D(0) (4)

If any player changes from defection to cooperation, the performance of the
society improves, i.e. a society with i + 1 cooperators attains a greater payoff
than a society with i cooperators:

(i + 1)C(i + 1) + (N − i − 1)D(i + 1) > (i)C(i) + (N − i)D(i) (5)

If we consider payoffs for this game, we can see that D dominates C and that
total cooperation is better for participants than total defection.

The N-person game has greater generality and applicability to real life sit-
uations. In addition to the problems of energy conservation, ecology and over
population, many other real-life problems can be represented by the N-player
dilemma paradigm.

Several evolutionary simulations exist which study the performance of differ-
ent strategy types playing the N-player game. This work has shown that, without
placing specific constraints on the interactions, the number of participants or the
strategies involved, the resulting outcome is that of defection[17][25].

2.2 Community Structure

In studying the two-player game, many researchers have explored the effect of
placing spatial constraints on the population of interacting agents. These in-
clude, among others, experimentation with grid size and topology [12], graph
structure in a choice/refusal framework [20], different learning mechanisms and
topologies[10], small world[22], scale-free graphs[19] and graphs where the actual
graph topology emerges over time [18].

In more recent work analysing small world and scale-free networks, researchers
are often interested in key properties of these graphs. In this paper, we are
interested in one key property of a graph: that of community structure. This
property has also been explored in recent work[9]. A graph is said to have a
community structure if collections of nodes are joined together in tightly knit
groups between which there are only looser connections. This property has been
shown to exist in many real-world social networks[11].

Our work differs from previous research exploring the emergence of coopera-
tion in populations of agents organised according to a given graph topology in
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two ways. Firstly, we deal with the N-player dilemma where direct reciprocity
towards, or punishment against, an agent is not possible (which is required in
work that allows agents modify their connections towards other agents[18]) and
secondly we utilise two update rules.

Many algorithms have been proposed to measure the degree of community
structure in graphs. One such approach is that of hierarchical clustering. An
alternative approach is that proposed by Girvan and Newman[11]. The betwee-
ness of an edge is defined as the number of minimum paths connecting pairs
of nodes that go through that edge. The algorithm repeatedly removes these
edges. Donetti and Munoz[4] present another algorithm which involves extract-
ing the eigenvectors of a laplacian matrix representing the graph. In this paper,
we define graphs that have a predefined level of community structure. We sys-
tematically tune parameters to control the level of community structure present
in the graph. Hence we do not need to utilise algorithms to measure the level of
community structure as is necessitated when dealing with real-world data.

3 Model

3.1 Graph Structure

In the simulations described in this paper, agents are located on nodes of a
graph. The graph is an undirected weighted graph. The weight associated with
any edge between nodes represents the strength of the connection between the
two agents located at the nodes. This determines the likelihood of these agents
participating together in games.

The graph is static throughout the simulation: no nodes are added or removed
and the edge weights remain constant.

We use a regular graph: all nodes have the same degree. In this paper, nodes
have four neighbours. We use two different edge weight values in each graph: one
(a higher value) associated with the edges within a community and another (a
lower value) associated with the edges joining agents in adjacent communities.
All weights used in the this work are in range [0,1].

The graph is depicted in Fig. 1, where the thicker lines represent intra-
community links (larger value as edge weight) and the thinner lines indicate
inter-community links between neighbouring communities. Each rectangle with
thick lines represents a community of agents; the corners of these rectangles
represent and agent.

3.2 Agents Interactions and Learning

Interaction Model. Agents in this model can have a strategy of either coop-
eration (C) or defection (D). Agents interact with their neighbours in a N-player
prisoner’s dilemma. The payoffs received by the agents are calculated accord-
ing to the formula proposed by Boyd and Richerson [2], i.e. cooperators receive
(Bi/N) − c and defectors receive Bi/N , where B is a constant (in this paper,
B is set to 5), i is the number of cooperators involved in the game, N is the
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Fig. 1. Graph structure

number of participants and c is another constant (in this paper, c is set to 3).
The values of B and c are chosen because they fulfill the requirements needed
to ensure a dilemma.

Each agent may participate in several games. The algorithm proceeds as fol-
lows: for each agent a in the population, agents are selected from the immediate
neighbourhood of agent a to participate in the game. Neighbouring agents are
chosen to participate with a probability equal to the edge of the weight between
the nodes. This means that, for a society with a high community structure, most
games involve members of an agent’s local community. This allows a high de-
gree of insulation from agents in neighbouring communities. An agent’s fitness is
calculated as the average payoff received in the interactions during a generation.

3.3 Learning

Agents may change their behaviours by comparing their payoff to that of neigh-
bouring agents. We adopt a simple update rule whereby an agent may update
their strategy to that used by more successful strategies. Following each round of
games, agents are allowed to learn from their neighbours. Again these neighbours
are chosen stochastically; the neighbours are chosen according to the weight of
the edge between agent and neighbour.

We incorporate a second update mechanism. The motivation for its inclusion
is as follows: following several iterations of learning from local neighbours, each
community is likely to be in a state of equilibrium—either total cooperation or
total defection. Agents within these groups are receiving the same reward as their
immediate neighbours. However, neighbouring communities may be receiving
different payoffs. An agent that is equally fit as its immediate neighbours may
look further afield to identify more successful strategies.
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In the first update rule, agents consider other agents who are immediate neigh-
bours. Let s adj(x) denote the immediate neighbours of agents x chosen stochas-
tically according to edge weight. The probability of an agent x updating their
strategy to be that of a neighbouring agent y is given by:

w(x, y).f(y)
Σz∈s adj(x)w(x, z).f(z)

(6)

where f(y) is the fitness of an agent y and w(x, y) is the weight of the edge
between x and y.

The second update rule allows agents to look further afield from their own
location and consider the strategies and payoffs received by agents in this larger
set, i.e. agents update to a strategy y according to:

w(x, y).f(y)
Σz∈adj(adj(x))w(x, z).f(z)

(7)

where again f(y) is the fitness of agent y and now w(x, z) refers to the weight of
the path between x and z. We use the product of the edge weights as the path
weight. Note that in the second rule, we don’t choose the agents in proportion
to their edge weight values; we instead consider the complete set of potential
agents in the extended neighbourhood. In this way all agents in a community
can be influenced by a neighbouring cooperative community.

Using the first update rule, agents can learn from their immediate neighbours
and adopt a strategy of a more successful agent. Using the second rule, agents
can look at their immediate neighbours and their neighbours’ neighbours; this
effectively gives them a larger set from which to learn. This is necessary in cases
where a particular community has converged on some behaviour which is less
successful than that adopted by a neighbouring community.

In our experiments we use a population of 800 agents; we allow simulations to
run for 300 generations. In each generation, agents interact with their selected
neighbours, update their scores based on these interactions and then learn from
their immediate neighbours using the local update rule. Every four generations,
agents also look to a larger community and learn from an agent in a larger set of
agents. The motivation behind this is based on the notion that agents will learn
from a wider set if their own neighbourhood has settled into an equilibrium
state—which will be true following a set of local interactions. In our experi-
ments, four generations is usually sufficient to allow a local community reach an
equilibrium point.

4 Results and Discussion

In this section, we present the results of a number of simulations illustrating the
effect of varying levels of community structure on cooperation in a population
of agents playing an N-player prisoner’s dilemma.
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Fig. 2. Defection spreading in a regular graph

By setting the intra-community links to be high (1.0) and then varying the
inter-community link weights from 0 to 1, we can model different levels of commu-
nity structure. If we set the inter-community link weights to be 1, we have no com-
munity structure; we merely have a regular graph. If we set the inter-community
links to zero then we have a population of separate isolated communities.

In any given N-player prisoner’s dilemma game, a defector will score bet-
ter than a cooperator. If we allow poorly performing strategies to imitate the
behaviour of more successful strategies we see that there are two possible re-
sultant equilibrium states—total defection and total cooperation. If any of the
initial strategies are defectors, others will imitate that strategy and defection
will emerge. If the initial state contains all cooperators, then cooperation will
exist as an equilibrium state. Given n players, the probability of having a state
of total cooperation is 1/2n; the probability of a non-cooperative equilibrium
state is 1− (1/2n). As n increases our chances of a cooperative equilibrium state
decreases rapidly.

If we consider the scenario with no community structure, agents will have 5
players in every game. If any defector exists in the original population, defection
will spread throughout. This is illustrated in Fig. 2, which depicts ten separate
runs of the simulator resulting in a similar outcome—that of total defection.

By introducing a community structure, clusters of cooperators in a community
can survive by participating in mutually beneficial cooperative games. By having
inter-community links of weight zero, the local update rule will ensure that
all groups will reach an equilibrium state and the population will then remain
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Fig. 3. Robust clusters of cooperators with local update rule and isolated communities

static with a minority of cooperative clusters existing in a large population of
defectors. This allows robust groups of cooperators to exist in the environment
but cooperation cannot spread throughout the population. We illustrate this for
ten separate runs in Fig. 3.; in this simulation agents learn according to the local
update rule only.

By allowing some interaction between neighbouring communities—i.e. having
weights greater than zero with the update rules as described—we can have co-
operation spreading through the population. If the relative difference between
inter- and intra- community becomes too small, the community structure col-
lapses, as does cooperation. The following graph (Fig. 4) shows a series of runs
for differing values of inter-community links; these are the average of 20 runs.

As can be seen, for high levels of community structure (i.e. when the inter-
community links are 0.1, 0.2), cooperation quickly emerges as a societal norm. As
the community structure is decreased we see societies with both cooperation and
defection co-existing. As the inter-community link weights reach higher values
(0.7, 0.8, 0.9), we see defection spreading as the dominant behaviour.

We see sizable fluctuations among the runs with intermediate levels of commu-
nity structure. These can be explained as follows: some members of communities
of defectors neighbouring a cooperative community are likely to change their
behaviour to cooperation following the second update rule. This occurs every
four generations for all of the runs. Following this increase, we have a series of
local updates, which leads to these cooperators being exploited and then adopt-
ing defection by updating their strategy according to the first update rule. This
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Fig. 4. Graph of number of cooperators over time for varying levels of community
structure

leads to a subsequent dip in the cooperation; this occurs periodically throughout
the simulation.

5 Robustness to Noise

The majority of work in multi-agent systems assumes a clean, noise-free envi-
ronment i.e., moves are perfectly transmitted and received and agents learning a
new strategy do so perfectly. There have been several efforts to model the effect
of noise and to define strategies to deal with such effects [21],[7][14][1].

In much of the previous work, the emphasis has been placed on the effect
of noise on reactive strategies. Previous research has promoted higher degrees
of tolerance towards strategies whose moves may be mis-interpreted or mis-
implemented[21]. Hence, strategies do not react as immediately or with the same
degree of punishment.

In this work, agents with simple strategies participate in a one-shot N-player
game; hence agents are not able to retaliate. Given this constraint, we imple-
ment noise in a different manner. Instead of allowing perfect imitation of more
successful strategies, we introduce a probability of mis-imitation. The greater
the level of noise, the more likely an agent is to fail to imitate a more successful
strategy.

The effect of such noise on agents playing in these simulations is as follows: as
strategies in a cluster of defectors attempt to imitate neighbouring cooperative
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Fig. 5. Cooperation levels with noise

agents, there is an increased probability of not all agents successfully imitating
their neighbours. The will lead to a cluster with mixed strategies which will
quickly lead to an equilibrium of defection being reached. This slows down the
spread of cooperation.

We run a number of simulations with the noise set to be the following the
values (5%, 10%, 20%, 30%, 40% and 50%). For larger values, cooperation does
not spread.

As can be seen in Fig. 5, cooperation can still emerge in the population as
the dominant strategy despite the presence of noise in the agents’ learning of
strategies.

6 Conclusions and Future Work

Most investigations into the N-player social dilemma to date have shown the
dominance of defection. In evolutionary simulations, defection often emerges. In
our experiments, motivated by the recent work in identifying community struc-
ture in many real world social networks, we include different levels of community
structure. We build graphs where we can tune the level of community structure.

In our experiments, we show that the presence of community structure can
allow cooperation to be robust in the presence of defectors when using a simple
learning rule whereby agents imitate nearby fitter agents. Furthermore, when
allowing agents to periodically imitate from a larger set of nearby agents, we
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show that cooperation can emerge given the presence of a sufficiently strong
community structure in the graph. We also show that cooperation will still spread
even there is a relatively large level of noise in the learning of strategies by agents.

In this work, we examined how spatial constraints involving community struc-
ture can induce cooperation in a population of agents. Future work will also ex-
amine the role cooperation and cooperative relationships play in the emergence
of community structure in societies of agents.

Future work will involve further exploration of several of the experimental
parameters e.g. in this work we set the degree to be four for all nodes; it would
be interesting to explore the effect of varying this value and also the effect of
having variation in the degree throughout the graph. We will also involve further
investigation into the effects resulting from community structure by considering
the introduction of other types of noise, larger strategy sets and also on a wider
range of graphs incorporating more features of real world social networks.
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Abstract. Hierarchical learning automata are shown to be an excellent
tool for solving multi-stage games. However, most updating schemes used
by hierarchical automata expect the multi-stage game to reach an ab-
sorbing state at which point the automata are updated in a Monte Carlo
way. As such, the approach is infeasible for large multi-stage games (and
even for problems with an infinite horizon) and the convergence process
is slow. In this paper we propose an algorithm where the rewards don’t
have to travel all the way up to the top of the hierarchy and in which
there is no need for explicit end-stages.

1 Introduction

Over the past decade, a substantial amount of research was focused on compre-
hending [1] and solving single-stage games (e.g. joint-action learners [2]; ESRL
[3,4] or Commitment Sequences [5]). Only recently the focus has shifted to pro-
viding algorithms and techniques for solving the more challenging multi-stage
games instead of single-stage games.

The research on the learning behaviors of automata started with the work of
Tsetlin [6] in the 1960’s. In their research Tsetslin and co-workers introduced
finite action deterministic automata in stationary random environments. It was
shown that under certain conditions the automata behaved asymptotically op-
timal. Further research [7,8,9] looked at more challenging problems such as non-
deterministic environments and variable-structure, continuous action learning
automata. Learning automata (LA) research led to many practical applications
in field the engineering.
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Recently, learning automata also became popular in the field of multi-agent re-
inforcement learning [10]. Early on, researchers looked at how multiple automata
in a single environment could be interconnected and still find stable solutions
[11]. One of the advantages of using learning automata in this field is that they
are independent learners that without the use of communication. Furthermore,
they operate without information concerning the number of other participants,
their strategies or their pay-off which are constraints of some multi-agent rein-
forcement learning techniques (such as joint-action learners [2]). Another reason
for using learning automata as the underlying framework for building a multi-
agent system are the theoretical characteristics. The model of a learning au-
tomaton has a well funded mathematical basis. Both for the single automaton
as in the multi-automata case convergence theorems exist [8]. A final motivation
for using for using learning automata is that they have proved their usefulness
in many applications. In [12], results on learning automata games formed the
basis for a new multi-agent reinforcement learning approach to learning single
stage, repeated normal form games. Many real-world problems, however, are
naturally translated into multi-stage problems [13]. Therefore in this paper we
are concerned with learning in sequential games where the agents have to take
a sequence of actions [14].

Thathachar and Ramakrishnan [15,16] introduced the concept of a hierar-
chical LA (HLA) in which the actions are distributed over a tree-structured
hierarchy of LA. In such a hierarchy different actions have to be taken before
an explicit end-stage is reached. Games between hierarchical learning automata
agents can be represented by multi-stage games or multi-agent Markov decision
problems [14]. The authors proved that hierarchical learning automata converge
to a single path in any common interest multi-stage tree using a Monte Carlo
reward. Furthermore they proved that HLA converge faster and more accurately
than the equivalent single automaton (which can be constructed by taking the
union of all the actions of all the automata at the lowest level of the hierarchy).
In [17] it was shown that hierarchical learning automata agents can solve tree-
structured multi-stage games with episodic tasks by using a Monte Carlo way of
updating, collecting rewards obtained along the path of the multi-stage game.
However, until now only episodic tasks could be considered.

Standard single agent reinforcement learning techniques, such as Q-learning
[18], which are by nature designed to solve sequential decision problems, use
the mechanism of bootstrapping to handle non-episodic tasks. Bootstrapping
means that values or estimates are learned on the basis of other estimates [11].
The use of next state estimates allows reinforcement learning to be applied to
non-episodic tasks.

Multi-agent learning approaches that bootstrap exist; an overview of ap-
proaches based on Q-learning and through it on the Bellman equations is given in
[19]. However in these approaches, agents are not independent learners since they
need to know the actions taken by other agents and their associated rewards,
in order to learn Q-values of joint-actions. Besides this, only weak convergence
assurances are given.
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Our work focuses on common interest games. In previous research we re-
ported on a technique for solving coordination problems in simple tree-structured
multi-stage games. This Hierarchical Exploring Selfish Reinforcement Learners
(HESRL) [3] technique was based on the convergence theorems of hierarchical
learning automata. In this setting the hierarchy is only informed about its prob-
ability of success when reaching an end-stage. This implies that the updating
mechanism cannot be used in games without an explicit end-stage (i.e. infinite
horizon problems). One way to solve this problem is to introduce bootstrapping
[20] into the setup. If agents get informed immediately of the quality of an ac-
tion we can use them in infinite horizon problems. In this paper, we introduce
bootstrapping for independent HLA agents in multi-stage games. First, instead
of computing a single combined reward each time an end-stage is reached and
handing this reward back to each level of the agents, we will now compute a
reward tailored for each level of the agent. We call this algorithm Intermediate
Rewards. Second, the learning automata in the hierarchy will be updated on the
basis of estimates, and these estimates will be propagated from child to parent
in the LA hierarchy. Just as in single agent learning, we can develop updates
going from the 1-step back-up mechanism to the complete Monte Carlo update
mechanism. Empirical results show that HLA agents based on Intermediate Re-
wards and 1-step backups are capable of solving multi-stage games in a more
efficient way. The results also show a higher percentage of convergence to the
optimal path in large multi-stage games and a faster convergence [21].

In the next section we repeat the concept of bootstrapping in classical single
agent reinforcement learning. We continue in Section 3 with multi-stage games,
the LA model and its properties. In Section 4 we explain how we can add boot-
strapping to our learning automata model. In Section 5 we discuss the effect of
bootstrapping on several large random generated multi-stage games. In the last
section we conclude and propose future work.

2 Bootstrapping in a Single-Agent Environment

Reinforcement learning is the problem faced by an agent that learns behavior
through trial-and-error interactions with a dynamic environment [11]. To op-
timize the reward received from the environment it is operating in, the agent
should exploit actions that it has found to be good. However discovering bet-
ter actions is only possible by trying out new ones, meaning the agent should
explore. This trade-off is fundamental and in the stationary, Markovian case
convergence to the optimal policy1 can be guaranteed.

Single agent control problems in stationary environments can be successfully
modeled as Markov decision processes (MDPs). An MDP is defined by a set of
states S, a set of actions A, a transition function2 T : S×A → P (S) that outputs
1 A policy is a mapping from states to actions. An optimal policy is a mapping which

maximizes some long-run measure of reinforcement.
2 This function models the probability of ending up in a next state when an agent

takes an action in a certain state.
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a probability distribution over S and a reward function R : S×A → P (R) which
implicitly specifies the agent’s task.

Without prior knowledge of the transition probabilities or rewards, an MDP
can be solved online by the theory of reinforcement learning [11].

Common reinforcement learning methods, which can be found in [22,11] are
structured around estimating value functions. A value of a state or state-action
pair, is the total amount of reward an agent can expect to receive in the future,
starting from that state. One way to approximate the optimal policy is to find
the optimal value function.

For instance the Q-learning algorithm, which is a value iteration method (see
[11,23]) bootstraps its estimate for the state-action value Qt+1(s, a) at time t+1
upon the estimate for Qt(s′, a′) with s′ the state where the learner arrives after
taking action a in state s:

Qt+1(s, a) ← (1 − α)Qt(s, a) + α(rt + γ max
a′

Qt(s′, a′)) (1)

with α the usual step size parameter, γ ∈ [0, 1] a discount factor and rt the
immediate reinforcement received at time step t.

Non-bootstrapping evaluation methods such as Monte Carlo methods update
their estimates based on actual returns. For instance the every-visit Monte Carlo
method updates a state-action value Q(s, a) at time t + n (with n the time for
one episode to finish) based on the actual return Rt and the previous value:

Qt+n(s, a) ← (1 − α)Qt(s, a) + αRt

with
Rt = rt+1 + γrt+2 + γ2rt+3 + . . . + γn−1rn+1

and t is the time at which (s, a) occurred.
Methods that learn their estimates, to some extend, on the basis of other

estimates (i.e. they bootstrap) are called Temporal Difference learning methods.
The Q-learning algorithm (equation 1) can be classified as a TD(0) algorithm.
The back-up for each state is based on the next reward, an estimation of the
remaining rewards is given by the value of the state one step later. One says that
Q-learning is therefore a 1-step TD method. It is possible to consider backups
based on a weighted combination as follows:

R
(n)
t = rt+1 + γrt+2 + . . . + γn−1rt+n + γnVt(st+n) (2)

In the limit, all real rewards up-until-termination are used. This means that there
is no bootstrapping, this is the Monte Carlo method. Thus there is a spectrum
ranging from using simple 1-step returns to using full-backup returns.

The whole spectrum of backup schemes is denoted as TD(λ) methods, where
parameter λ weights the contributions of the n-step returns R

(n)
t .

Rλ
t = (1 − λ)

∞∑
n=1

λn−1R
(n)
t
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In a sense, TD(λ) methods form a bridge from simple 1-step TD(0) methods
to Monte Carlo methods. What was presented here is the so-called theoretical
or forward view of TD(λ) methods. An equivalent backward view exists, which
allows for an on-line implementation.

Advantages of TD methods over Monte Carlo methods include the fact that
TD methods can be naturally implemented in an on-line, fully incremental fash-
ion. With Monte Carlo methods, only off-line updating is possible, since only
at the end of an episode the actual full return is known. This makes the latter
method unsuited for contuining tasks. Moreover, TD methods learn from each
transition, which can sometimes speed-up learning time.

3 Multi-agent Learning in Multi-stage Games

3.1 Multi-stage Game

A multi-stage game is a game where the participating agents have to take a
sequence of actions. An MDP can be extended to the multi-agent case, referred
to as a Multi-agent Markov decision process (MMDP). Formally an MMDP is a
quintuple 〈S, A, Ai∈A, T, R〉 where S is the set of states, A the set of agents, Ai

is the finite set of actions available to agent i, T : S×A1 ×A2 × . . .×An → P (S)
the transition function and R : S × A1 × A2 × . . . × An → P (R) the reward
function.

An MMDP can be viewed as a standard MDP in which the actions are im-
plemented over multiple agents and the transitions depend on the joint-actions.
Similar to an MDP, a credit assignment problem is present in an MMDP and
because actions are distributed, coordination problems might occur. This makes
the decision problem more complex and harder to solve.

In the remainder of this paper we limited ourselves to tree-structured multi-
stage games. This means that there are no loops between the game stages and
once branches are separated their paths will never be joined again.

An example of such a tree-structured multi-stage game can be seen in Figure 1.
In this particular example, the MMDP consists of 6 states. The game starts in
state s1. Here, both agents have to take an action resulting in the joint-action
(ai,bk). Based on this joint-action the game continues to either state s2 or s3
(both states give a numerical feedback of 0). In this second stage, again both
agents must choose an action aij and bkl. If the agents are in state s3 no matter
how the joint-action (aij ,bkl) looks like, the agents will always end up in state s6
resulting in an average payoff of 0.75 (i.e. the probability of receiving a reward
of 1 is 0.75) for both agents. If the agents ended up in state s2 after the first
stage then the agents have to deal with a coordination problem. If the agents
can coordinate on either joint-actions (a11, b11), (a12, b12),(a21, b21) or (a22, b22)
they both receive a pay-off of 1.0 (the probability of receiving a reward of 1 is 1).
Miscoordination on the other hand will be penalized heavily with a penalty of
0.0 (the probability of receiving a reward of 1 is 0). When the agents end up in
state s4, s5 or s6 the game ends. Based on the rewards rm obtained in process of
reaching an end state a weighted reward can be formed: rtotal = θ1r1 + . . .+θsrs.
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Fig. 1. An example of a simple MMPD, the Opt-In Opt-Out game [14]

The weights can be adjusted to completely in- or exclude a reward at a certain
stage.

We can view a multi-stage game as a sequence of single state games. The
reward matrices for the 2 stages of the game of Figure 1 are given in Figure 2.
Note that in this multi-stage decision problem, we have a coordination problem

M1 =

(
0.0 0.0
0.0 0.0

)
M2 =

⎛
⎜⎜⎝

1.0 0.0 0.75 0.75
0.0 1.0 0.75 0.75

0.75 0.75 1.0 0.0
0.75 0.75 0.0 1.0

⎞
⎟⎟⎠

Fig. 2. Reward matrices of the Opt-In Opt-Out multi-stage decision problem from
Figure 1. Typically this game will be played with a weight θ1 = 0 for matrix M1 since
this matrix doesn’t contribute to the game since all rewards are 0.0.

at the second stage. Also note that the second matrix is divided into 4 separate
sub-matrices. We do this to depict that when the agents reach the second stage,
they don’t play the complete game, only a part of it. Which part is decided
by the actions in the first stage. For instance if at the first stage, both agents
select their first actions, in the second stage the sub-matrix in the upper-left
corner is played. If the agents in the first stage both play their second action,
the sub-matrix in the lower-right corner is activated in the second stage and
so on.

3.2 Learning Automata Model

A learning automaton is an independent entity that is situated in a random
environment and is capable of taking actions autonomously. The stochastic en-
vironment is responsible for generating a scalar value indicating the quality of
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the action taken by the learning automaton. This scalar value, which we call
reward, is then fed back into the learning automaton.

Let us first describe the environment formally. An environment is a triple
〈A, c,R〉 with A the possible sets of inputs into the environment, c = [c(1) . . .
c(n)] the penalty vector storing a chance of success (= c(i)) for each action i,
and R the set of possible scalar rewards the environment can generate (based
on at ∈ A: the action taken at time step t and c(at): the probability of success
for that action). The experimental setting in this paper sets: R = {0, 1}, where
0 denotes failure and 1 denotes success.

A learning automaton can be expressed as a quadruple 〈A,R,p, U〉. A =
{a(1), . . . , a(n)} denotes the set of actions the learning automaton can take.
Rt(at(i)) ∈ R is the input that is given to the LA to indicate the quality
of the chosen action. Note that we deliberately reused the symbols A and R
because the output from the environment is the input into the LA and vice
versa.

The probabilities of the automaton for selecting action at(i) are stored in
the vector pt = [pt(1), . . . , pt(n)]. The restrictions on pt(i) are the following:∑n

i=1 pt(i) = 1 and 0 ≤ pt(i) ≤ 1. Thus all the probabilities sum up to 1 and
each probability lays within the interval [0, 1]. Note that at the beginning of the
game all action probabilities are chosen equal: p0(1) = p0(2) = . . . = p0(n) = 1

n .
Each iteration the action probabilities are updated based on the reinforcement
obtained from the environment. For the experiments in this paper, we used
the Linear Reward-Inaction (LR−I) [8] scheme. Let at = a(i) be the action
chosen at time step t. Then the action probability vector p is updated accor-
ding to

pt+1 = pt + αrt(eat − pt) (3)

with α the step size parameter and eat a unit vector with unity at position
at. The LR−I has been studied widely and has several nice properties such as
ε-optimality and absolute expediency. For more details we refer to [8,7,9].

3.3 Pursuit Automaton

The automata model discussed above is the most basic update scheme of learning
automata and is used in the Monte Carlo and Intermediate Rewards algorithms.
In the literature many variants have been described, each with their own set of
characteristics and theoretical properties.

The learning automata using the n-step algorithm are modeled as pursuit
automata. A pursuit learning automaton keeps, in addition to its probability
vector, two extra vectors Z and V. Vector Z keeps the total reward obtained in
response to each action and vector V records the number of times each action
has been visited. The action probabilities are indirectly updated using these
vectors. The update goes as follows: let at = a(i) be the action chosen at time
step t. Then Z and V are updated according to:
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Zt+1(i) = Zt(i) + rt (4)
Zt+1(j) = Zt(j), ∀j 	= i (5)
Vt+1(i) = Vt(i) + 1 (6)
Vt+1(j) = Vt(j), ∀j 	= i (7)

The average reinforcement obtained for each action at(i) can be calculated as:
dt(i) = Zt(i)

Vt(i)
. Note that we need Vt(i) > 0 for dt(i) to be defined. The action

probabilities are now updated as

pt+1 = pt + α(eMt − pt) (8)

with eMt a unit vector where the index Mt = arg maxi dt(i).
One interesting feature of the pursuit algorithm is that the updating of the

action probabilities is not directly related to the received reward. This means
that the reward doesn’t need to remain in the interval [0, 1] which is very usefull
in application domains.

3.4 Hierarchies of Learning Automata

While learning automata make for convenient agents, one of their interesting
properties is that they can be combined into more complex structures such as
hierarchies.

Environment

. . . . . . . . . . . .

LA

LA 0 LA n

LA 00 LA 0m LA n0 LA nm

0 n

0 m 0 m

. . .

. . .. . .

Fig. 3. An agent constructed in with a hierarchy of learning automata

A hierarchical LA works as follows. The first automaton that is active is
the root at the top of the hierarchy: LA. This automaton selects one of its
n actions. If, for example, the automaton selects action 2, the learning au-
tomaton that will become active is learning automaton LA 2. Then this
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active learning automaton is eligible for selecting an action. Based on this action,
another learning automaton on the next level will become active. This process
repeats itself until one of the learning automata at the bottom of the hierarchy
is reached.

3.5 The Interaction Between Learning Automata Hierarchies

The interaction of the two hierarchical agents in Figure 4 goes as follows. At the
top level (or in the first stage) Agent 1 and Agent 2 meet each other in a game
with stochastic rewards. They both take an action using their top level learning
automata LA A and LA B. Performing actions ai by LA A and bk by LA B
is equivalent to choosing automata LA Ai and LA Bk to take actions at the
next level. The response of environment E1: rt ∈ {0, 1}, is a success or failure,
where the probability of success is given by c1

ik . At the second level the learning
automata LA Ai and LA Bk choose their actions aij and bkl respectively and
these will elicit a response from environment of which the probability of getting
a positive reward is given by c2

ij,kl. At the end of the episode all the automata
that were involved in one of the games, update their action selection probabilities
based on the actions performed and the responses of the environments.

LA A

LA A1 LA A2

LA B

LA B1 LA B2

M2 = [c2
ij,kl]4×4

M1 = [c1
ik]2×2
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Fig. 4. An interaction of two agents constructed by learning automata hierarchies.
The top-level automata play a single stage game and produce a reward r1. Then one
learning automata of each hierarchy at the second level play another single stage game,
resulting in reward r2.



178 M. Peeters, K. Verbeeck, and A. Nowé

4 Introducing Bootstrapping in the Learning Automata
Approach

4.1 Monte Carlo

In the Monte Carlo method, the updating of the probabilities is based on av-
eraged sample returns. This averaged return is usually generated at the end
of an episode. Monte Carlo methods thus work best in episodic tasks where
eventually each strategy leads to a clear end state. Each time such a clear end
state is reached, an averaged return is generated by calculating a weighted sum
of all the returns obtained. This sum is then given to all learning automata
that were active during the last episode in order to update their action prob-
abilities. Thus when we reach an end stage at time step t we generate the
following sum: R = θ1r1 + θ2r2 + . . . + θtrt where ri is the reward gener-
ated at time step i. Note that the following restrictions apply on the weights∑t

i=1 θi = 1 and 0 ≤ θi ≤ 1.
In [24] the authors proved that if all the automata of the hierarchical learning

automata update their action probabilities at each stage using the LR−I update
scheme and if the composite reward is constructed as a Monte Carlo reward (as
described above) and at each level the step sizes of the automata are chosen suf-
ficiently small then the expected payoff of the overall system is non-decreasing.
This result means that the hierarchical learning automata using a LR−I update
scheme will always converge to a pure equilibrium path in an identical pay-off
multi-stage game. To which path the automata will converge to is not known.
Neither is known how (sub-)optimal this path is. This largely depends on the
initial settings of the action probability distribution and on the step size used.
Under the assumption that the learning rate is set sufficiently small, the agents
will converge to a Nash path in the game (i.e. a Nash equilibrium of the corre-
sponding single stage game).

4.2 Intermediate Rewards

In [25,26] we introduced an update mechanism based on Intermediate Rewards.
With this technique the learning automata at level l only get informed about
the immediate reward and the rewards on the remainder of the path. It doesn’t
get informed about the rewards that are given to automata on the levels above
because the learning automaton at this level has no direct influence over them
and they would clutter up its combined reward. In [27] a theoretical proof that
hierarchical learning automata using only the rewards of the remainder of the
path will converge to an equilibrium path in an identical pay-off multi-stage
game (under the same conditions we described above for the traditional Monte
Carlo technique) is given.

The complete algorithm can be found in Algorithm 1. Because the learning
automata get updated at the end of an episode, the intermediate rewards tech-
nique is still an off-line algorithm.
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Algorithm 1. Intermediate Rewards Algorithm
1: All the learning automata: initialise action probabilities: ∀a ∈ A : p0(a) = 1

|A|
2: for each trial do
3: Activate the top LA of the hierarchies
4: for each level l in hierarchy h do
5: The active learning automata take action al

t(h)
6: ⇒ joint-action a = [al

t(1), . . . , a
l
t(h), . . .]

7: Store immediate reward rt (team reward based on a)
8: end for
9: for each level l in hierarchy h do

10: Compute combined reward: Rl(h) = θtrt + θt+1rt+1 + . . . + θT rT

11: Update the automaton that was active at level l in hierarchy h with reward
Rl(h)

12: end for
13: end for

4.3 1-Step Estimates

In the 1-Step Estimates technique, which we introduced in [21], the updating
of the learning automata will no longer take place at an explicit end-stage. The
automata get informed immediately about the local reward they receive for their
actions. In addition each automaton has estimates about the long term reward
for each of its actions. These estimates are updated by combing the immediate
rewards with an estimate of possible rewards that this action might give on the
remainder of the path (see Line 10 and 11 in Algorithm 2). The behavior of
the algorithm is controlled by three parameters: α, γ and ρ. α is the step size
parameter from Equation 1, γ is the discount factor as used in Equation 2, and
ρ controls the influence of the difference between the combined reward and the
old-estimate on the new-estimate.

4.4 n-Step Rewards

The 1-step algorithm described above can easily be extended to the general n-
step case. This creates a whole range of updating algorithms for multi-stage
games, similar to the range of algorithms that exist for the single agent case.
Algorithms 4–6 shows the general n-step updating algorithm for pursuit learn-
ing automata. The parameters α, γ and ρ are equivalent to those of the 1-step
algorithm.

The algorithm is a natural extension of the 1-step algorithm and works as fol-
lows (we make a reference to the lines of the algorithm). The interaction between
the hierarchies remains the same as for the Monte Carlo case (and the 1-step
case). The learning automata at the top of the hierarchies start by selecting
an action. Based on this joint-action the environment generates a reward and
this reward is handed to the automata. Since this is the immediate reward, the
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Algorithm 2. 1-Step Estimates for Pursuit Automata
1: All the learning automata: Initialise action probabilities: ∀a ∈ A : p0(a) = 1

|A|
2: Initialise my-estimates: ∀a ∈ A : myest(a) = 0 (estimates for all the actions,

meaning: what is the long term reward associated with this action)
3: Initialise children-estimates: ∀a ∈ A : est0(a) = 0 (estimates for all the children,

meaning: what is the average of the long term rewards for the learning automaton
associated with this action)

4: for each trial do
5: Activate the top LA of the hierachies
6: for each level l in hierarchy h do
7: Take action al

t(h)
8: ⇒ joint-action a = [al

t(1), . . . , a
l
t(h), . . .]

9: Observe immediate reward rt (reward based on a)
10: Compute Rt = rt + γest(al

t(h))
11: Update my-estimates: myest(al

t(h)) = myest(al
t(h)) + ρ[Rt − myest(al

t(h))]
12: Update action probability p using myest(al

t(h)) as the reward for the LR−I

scheme
13: Propagate Rt up to parent ⇒ see Algorithm 3: Updating estimates
14: end for
15: end for

Algorithm 3. Updating Estimates
1: κ is the estimate received from the child (the last action this automaton took was

al
t(h))

2: est(al
t(h)) ← est(al

t(h)) + ρ(κ − est(al
t(h)))

Algorithm 4. n-Step Estimates for Pursuit Automata
1: All the learning automata: Initialise action probabilities: ∀a ∈ A : p0(a) = 1

|A|
2: Initialise the estimates of all the actions: ∀a ∈ A : myEstimates(a) = 0 (estimates

for all the actions, meaning: what is the long term reward associated with this
action)

3: Initialise estimates for the learning automata at level n ∀a ∈ A :
nStepEstimates0(a) = 0 (for each action this learning automaton has, keep an
estimate of the automata at level n + 1 of the branch connected to the action)

4: for each trial do
5: Activate the top LA of the hierachies
6: for each level l in hierarchy h do
7: Take action al

t(h)
8: ⇒ joint-action a = [al

t(1), . . . , a
l
t(h), . . .]

9: Observe immediate reward rt+1 (reward based on a) and store it for later use

10: Propagate rt+1 up to the parent ⇒ see Algorithm 5: Receive reward
11: end for
12: end for
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automata cannot yet generate the n-step truncated return (if n > 1) instead they
propagate this reward to their parents (Algorithm 4 line 10). The automata that
receive this reward check whether this is the nth reward they have received (Al-
gorithm 5 line 1). If so, they compute the n-step truncated return (Algorithm
5 line 2), update the estimates of the long term reward of their own actions
(Algorithm 5 line 3), update their probabilities (Algorithm 5 line 4) and keep
their nth-level-grandparents up-to-date by providing them with an accurate esti-
mate (Algorithm 5 line 5). If the parents didn’t receive the nth reward yet (thus
they can’t compute the n-step reward), they just propagate the reward to their
parents (Algorithm 5 lines 6 and 7).

In addition to propagating the immediate rewards, the automata also prop-
agate their updated estimates. The parents receiving an estimate from their
children check wether it is the estimate they need to compute the n-step trun-
cated return (i.e. the estimate coming from level (n + 1)th) and they adjust the
estimates of their nth-level-grandchildren if necessary. This process continues for
each level of the hierarchies.

Algorithm 5. Receive reward rx

1: if rx is the nth reward I receive then
2: Compute the n-step truncated return: R

(n)
t = rt + γrt+1 + . . . + γn−1rt+n +

γn nStepEstimates(al
t(h))

3: Update myEstimates(al
t(h)) = myEstimates(al

t(h)) + ρ[R
(n)
t −

myEstimates(al
t(h))]

4: Update action probability p using myEstimates(al
t(h)) as the reward for the

LR−I scheme
5: Propagate myEstimates(al

t(h)) up to parent ⇒ see Algorithm 6: Updating esti-
mates

6: else
7: if this wasn’t the nth reward, this reward also needs to go to the parent: Propa-

gate rx up to the parent ⇒ see Algorithm 5: Receive reward
8: end if

Algorithm 6. Receive estimate κ

1: if this estimate comes from the n + 1th level then
2: nStepEstimates(al

t(h)) ← nStepEstimates(al
t(h)) + ρ(κ −

nStepEstimates(al
t(h)))

3: else
4: Keep propagating estx up in the hierarchy ⇒ see Algorithm 6: Receive estimate
5: end if

5 Empirical Results

This section reports on various results obtained comparing the different learning
techniques on hierarchical learning automata playing multi-stage games. For
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the Monte Carlo updating and the Intermediate Rewards method, there are
theoretical proofs guaranteeing that the HLA converge to an equilibrium path
in any common interest multi-stage game. For each experiment, we report on
the accuracy of the techniques in function of the learning rate used.

5.1 Repeated Experiment on One Randomly Generated Game

All the algorithms discussed above are tested with this first type of game.
Figures 5(a)–5(d) give the average rewards for Monte Carlo updating, Inter-
mediate Rewards, 1-step updating and 3-step updating respectively for a range
of learning rates for a multi-stage game of 7 stages. The layout of the game is
the following: at the first stage, there is only one state. In this state the game
starts and because the automata have 2 actions, there are 4 joint-actions. Each
of these joint-actions leads to a different state. Thus at the second stage we have
4 different states. Using the same reasoning, in each of these 4 states, there are 4
joint-actions leading to a different state. At the last level there are (27)2 = 16.384
different states and since each path to one of these states is different, there are
16.384 possible solutions to this game.

Each state keeps 4 reward values (one for each joint-action). In the first set
of experiments, we generated the rewards randomly. Meaning that the reward
probabilities of all the reward matrices entries are sampled from a uniform dis-
tribution in [0, 1]. The optimal path of this game is unique and was found to
give a average reward of 0.853117 (this was the largest reward we found by sum-
ming up all the rewards along one path and dividing this value by the number
of stages). For every run, this game is repeatedly played by the hierarchies of
learning automata until they are converged to one path in the game. Learning
automata theory guarantees that the hierarchies converge to an equilibrium path
in every run of the game. The theory does not guarantee that the agents will
converge to the optimal path in the game. For each learning rate, the results
are averaged over 1000 runs and the reward matrices remain the same in every
experiment.

The results show that by using the Intermediate Reward technique, the aver-
age reward increases from 0.7 (using Monte Carlo) to almost 0.8 (using Interme-
diate Rewards). The variance of the rewards to which the hierarchies converge,
remains the same. The results of the 1-step and 3-step algorithm show that the
average convergence can remain at the same high level (compared to Monte Carlo
updating) while the variance of the solution-paths is much lower. This means
that if the hierarchies converge to a sub-optimal solution, they are more likely
to converge to a sub-optimal solution with an average reward that is almost as
good as the optimal.

We also did experiments with a game of 8 and 9 stages. The results we ob-
tained are in line with the ones presented above. Thus the Intermediate Rewards
algorithm outperforms the Monte Carlo technique, however the variance of the
rewards obtained remains large. The 1-step and n-step algorithms converged to
the same high average reward while also lowering the variance of the rewards
obtained.
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(a) The average reward using Monte Carlo
rewards for various learning rates. The re-
wards are averaged over 1000 runs.
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(b) The average reward using intermediate
rewards for various learning rates. The re-
wards are averaged over 1000 runs.
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(c) The average reward using the 1-step
reward for various learning rates. The re-
wards are averaged over 1000 runs.
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(d) The average reward using the 3-step
reward for various learning rates. The re-
wards are averaged over 1000 runs.

Fig. 5.

5.2 Experiments of a Series of 1000 Random Games

While the results presented above support the hypothesis that an n-step update
outperforms the Monte Carlo and Intermediate Reward algorithms, this conclu-
sion is based on experimental results for one single randomly generated game.
To make a more thorough comparison, we ran the same tests, but this time,
for each value of the learning rate we averaged the obtained reward over 1000
d ifferent randomly generated games. Thus after each of the 1000 runs, we reset
the values of the reward matrices to a random number in [0, 1].
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●●

●

●

●
●

●

●
●

●

●

●
● ●

● ●●

● ●

●

● ●

●

●

●

●

Learning Rate

A
ve

ra
ge

 R
ew

ar
d

0.0001 0.0031 0.0061 0.0091 0.0121 0.0151 0.0181

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) The average reward using Monte Carlo
rewards for various learning rates. The re-
wards are averaged over 1000 runs.
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(b) The average reward using the 4-step
reward for various learning rates. The re-
wards are averaged over 1000 runs.

Fig. 6.
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(a) The average reward using intermediate
rewards for various learning rates. The re-
wards are averaged over 100 runs.
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(b) The average reward using the 5-step
reward for various learning rates. The re-
wards are averaged over 100 runs.

Fig. 7.

In the experiment we used 2 hierarchies of 8 levels, with 2 actions per au-
tomaton. This gives a total of (28)2 = 65.563 solution paths. Figures 6(a)–6(b)
shows the results for the Monte Carlo algorithm and the 4-step reward.

The results confirm our hypotheses. The average reward when using the Monte
Carlo algorithm is systematically lower compared to the average reward of any
of the n-step algorithms (the plot shown is for the 4-step algorithm, but this is
true for the range 1-step to 8-step, although the performance differs).
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As for a last test, we repeated the previous experiment with a game of 10
levels. The total number of possible solution paths becomes (210)2 = 1.048.576.
Figures 7(a)–7(b) show the results for the intermediate rewards algorithm and a
5-step algorithm. The results for these experiments are averaged over 100 runs.
Again, the same conclusions can be drawn. Notice that we increased the value
of the n-step reward according to the number of stages in the game (= number
of levels in the hierarchies). Our findings suggest that the best results are given
when the value of the n-step is set to half the number of stages in the game.

All of our results demonstrate that the performance increases when the hierar-
chical learning automata use an n-step updating algorithm. Because our second
set of experiments is carried out over 1000 different randomly generated games,
our observations cannot be related to some particularity of the game.

6 Conclusion

The work in this paper shows that hierarchical learning automata are excellent
tools for building a learning multi-agent systems that can solve a broad range of
sequential decision problems. Learning automata can model independent learn-
ers that operate without information about the other players or their actions.
Furthermore, they don’t use any communication. The research started from the
Monte Carlo update technique in which the automata are informed about all the
rewards gathered along the path when the game reaches an end-stage. This im-
poses two problems. The learning automata receive information about the com-
plete path, while they can only control the rewards which depend on the decision
at their level in the hierarchy. Thus a part of the information they receive is irrele-
vant to them, however, they cannot choose to ignore this information because it is
incorporated in the overall reward signal they receive. The solution we proposed,
called Intermediate Rewards, solves this problem by using a reward signal which
incorporates only the rewards that are collected on the remainder of the path, and
as such are different per level of the hierarchy. By using this update mechanism,
the empirical results show that the average convergences are to a path that leads
to a higher reward. The Intermediate Rewards algorithm still needs an explicit
end-stage in the multi-stage decision process. This problem can be solved by us-
ing only local information combined with estimates of the rest of the rewards (i.e.
they bootstrap). The range of n-step algorithms are precisely created for this ob-
jective. The automata use only immediate rewards from the first n levels combined
with an estimate of the rewards after n steps to update their probabilities. Em-
pirical results show that the convergence is more accurate and faster compared to
Monte Carlo updating and Intermediate Rewards algorithm.

The algorithms presented in this paper provide tools for searching for good
to optimal solutions in a large solution space by a team of independent, learning
agents. The use of learning automata as building blocks for a learning multi-agent
system provides for a well funded theoretical basis for multi-agent reinforcement
learning. This theory was used for creating a proof of convergence for some of
our algorithms.
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In future research, the introduction of eligibility traces in hierarchical learning
automata will be investigated. By using eligibility traces, the learning automata
can be updated on-line incorporating the complete spectrum of 1-step to n-step
rewards. The empirical evidence shows that our algorithms always converge to a
pure path. This needs to be investigated theoretically. Other research will focus
on applying the algorithms in more general multi-stage games in which the flow
of information is no longer confined in the tree structure.
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Abstract. For a number of years we have been working towards the goal of
automatically creating auction mechanisms, using a range of techniques from
evolutionary and multi-agent learning. This paper gives an overview of this work.
The paper presents results from several experiments that we have carried out, and
tries to place these in the context of the overall task that we are engaged in.

1 Introduction

The allocation of resources between a set of agents is a challenging problem, and one
that has been much studied in artificial intelligence. Resource allocation problems are
especially difficult to solve efficiently in an open system if the values that agents place
on resources, or the values of their human principals, are private and unobservable. In
such a situation, the difficulty facing somebody wishing to allocate the resources to
those who value them most highly, is that participating agents cannot necessarily be
relied upon to report those values truthfully — there is nothing to prevent “greedy”
agents from exaggerating their resource requirements.

To overcome this problem, it has been suggested that resource allocation be solved
using market mechanisms [4,32,59] in which agents support their value-claims with
hard cash. This has two advantages. First it punishes greedy agents by making them
pay for the resources that they have oversubscribed to. (Alternatively one can think of
this as preventing agents from oversubscribing by forcing them to pay a higher price
than they would otherwise have to pay for the resources they actually need.) Second,
it allocates resources to the agents who pay the most, which should be the agents who
value the resources most highly. Auctions are a subclass of market mechanisms that
have received particular attention. This is due to the fact that, when well designed,
auctions can achieve desired economic outcomes like high allocative efficiency.

Designing mechanisms to achieve specific economic requirements, such high effi-
ciency or maximal social welfare, against self-interested intelligent traders, is no trivial
matter, as can be seen from accounts of the auction design process for the recent ra-
dio spectrum auctions in Europe [25] and the US [11,30]. The economic theory of
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mechanism design [20] approaches the task of designing efficient resource allocation
mechanisms by studying the formal, analytical properties of alternative mechanisms.
Mechanism design views auctions as form of game, and applies traditional analytic
methods from game theory to some kinds of auctions [28], for example the second-
price sealed-bid auctions or Vickrey auctions [55].

The high complexity of the dynamics of some other auction types, especially double-
sided auctions [14] or DAs, however makes it difficult to go further in this direction
[27,49,58]. As a result, researchers turned to experimental approaches. Smith pioneered
the experimental approach [51], conducting auctions involving human traders that re-
vealed many of the properties of double auctions. For example, his work showed that in
continuous double auctions or CDAs, even a handful of traders can lead to high overall
efficiency, and transaction prices can quickly converge to the theoretical equilibrium.
More recently has come the suggestion that economists should take an “engineering
approach” [44,46] to problems in microeconomics in general, building models of auc-
tions, testing them experimentally, and refining them to create robust markets. We see
our work as being part of this engineering approach to market design.

One approach to the computational design of markets is to use techniques from ma-
chine learning to explore the space of possible ways in which agents might act in par-
ticular markets. For example, reinforcement learning has been used to explore bidding
patterns in auctions [34,44] and establish the ways in which price-setting behavior can
affect consumer markets [54]. Our work is in this line. However, we differ from much
of the existing work on machine learning in computational market design by using ma-
chine learning to design the auction rules themselves, rather than just in the service of
exploring their behavior. We refer to this line of work as automated mechanism design,
and the idea behind this paper is to summarize the work that we have been doing over
the past few years on automated mechanism design. It does not provide any new re-
sults, but instead sketches the relationship between the series of experiments that we
have carried out, describes the results that we have obtained, and tries to explain how
all we have done fits into the overall scope of our work.

We should stress that we are not trying to evolve entire auction mechanisms. The
computational complexity of doing so places this out of our reach at the moment. In-
stead we concentrate on parts of an existing mechanism, the continuous double auction,
and look to automatically tune them for specific situations. Our work is experimental,
and so comes with no formal guarantees. It thus stands in stark contrast to the work
of Conitzer and Sandholm [9,10], which looks to create entire mechanisms subject to
absolute guarantees on their performance. However, our work, like that of Cliff and
Byde [5,57], addresses much more complex mechanisms, and we ourselves as address-
ing the same problem as Conitzer and Sandholm, but from the perspective of Wellman’s
empirical game theory [23,56].

2 Background

2.1 Auctions, Briefly

To frame our work, we borrow from Friedman’s [14] attempt to standardize terminology
in which exchange is the free reallocation of goods and money between a set of traders.
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A market institution lays down the rules under which this exchange takes place, and an
auction is a specific kind of market institution. A given institution defines what infor-
mation traders can exchange, and how the reallocation of goods and money will occur,
a process known as clearing the market. In an auction, the only information that traders
can exchange are offers to buy at a given price, called bids, and offers to sell at a given
price, called asks, and an auction gives priority to higher bids and lower asks. An auc-
tion can allow only buyers or only sellers to make offers, in which case it is one-sided,
or it can allow both, in which case it is two-sided. A double auction is a two-sided auc-
tion, and from here on we will only deal with double auctions. In a double auction, the
aim of the mechanism is to pair buyers and sellers, matching pairs such that the buyer
is prepared to pay a higher price than the seller wants. We are most interested in two
kinds of double auction. The clearing house (CH) auction matches traders by collecting
offers over a period and, at the end of that period, identifying the matching pairs. The
continuous double auction (CDA), in contrast, constantly looks for matches, identifying
one as soon as it has some bid that is greater than some ask. Once matches have been
found, a transaction price is set, somewhere in the interval between bid and ask.

In common with most work on double auctions, we only deal with the auction of a
single kind of good, and we assume that every trader has a private value for the good
— the price that the good is really worth to the agent. A rational buyer will not bid
above its private value, and a rational seller will not ask below that value. If we know
the private values of a set of traders, we can construct supply and demand curves for
the market they are involved with, as in Figure 1. Here the heavy line, the supply curve,
indicates that one seller has a private value of 50 — below that value no goods will be
sold, and once the price rises to 50 exactly one good will be sold. The second trader
has a private value of 60 and at a price of 60, exactly two goods will be sold. Similarly,
there is one buyer who is willing to pay 140, and at that price one good will be bought,
but as soon as the price falls to 130, two goods will be bought.

The intersection of the supply and demand curve indicates the point at which supply
and demand are in balance — here any price between 90 and 100 will see exactly five
goods bought and sold. Economic theory predicts that this equilibrium situation is what
will hold if 20 traders with the indicated private values get together to trade. However
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the theory offers no clues as to how the traders will figure out which of them should
trade, and at what price, and it is clear that it is not in the traders’ interest to make offers
that are truthful and indicate their private value — a trade which shades their offer,
stating a lower price than their private value if they are a buyer, will make a profit if that
offer is accepted.

If we know the private values of the traders, then, as described above, we can com-
pute the equilibrium. Combining information about the equilibrium with information
about what actually happens in the market, we can compute metrics that summarize the
performance of the market. The actual overall profit, pra, of an auction is the sum of
the actual profits of buyers and sellers:

pra = pra
b + pra

s

and these are computed as:

pra
b =

∑
i

vi − pi

pra
s =

∑
j

pj − vj

where pi is the price of a trade made by buyer i and vi is the private value of buyer i for
all buyers who trade and pj is the price of a trade made by seller j and vj is the private
value of buyer j for all sellers who trade. The theoretical or equilibrium profit, pre, is:

pre = pre
b + pre

s (1)

the sum of the equilibrium profits of buyers and sellers, the profit that they would make
if all trades took place at the equilibrium price p0, the price predicted by theory. These
can be computed as:

pre
b =

∑
i

vi − p0

pre
s =

∑
j

p0 − vj

The allocative efficiency of an auction is then:

ea =
pra

pre
(2)

which is often expressed as a percentage. Of course, this is the same as:

ea =
pra

b + pra
s

pre
b + pre

s

The allocative efficiency measures how close the market is to the equilibrium that theory
predicts in terms of profit for traders. All other things being equal, economists prefer
markets with high efficiency since this indicates that the market is transferring goods
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to the buyers that value them most from the sellers that value them least. This maxi-
mizes social welfare, making the traders as happy as possible. Allocative efficiency is
maximal if just the traders to the left of the intersection between supply and demand
curves in Figure 1 end up trading. While measuring allocative efficiency is useful, it
says nothing about price. An auction that trades at equilibrium will be efficient, but
high efficiency does not indicate that the market is trading near the equilibrium price
[16]. The convergence coefficient, α, was introduced by Smith [51] to measure how far
an active auction is away from the equilibrium point. It measures the RMS deviation of
transaction prices from the equilibrium price:

α =
100
p0

√√√√ 1
n

n∑
i=1

(pi − p0)2 (3)

These are the measures that we will make most use of in this paper.
Our experimental work follows the usual pattern for work on automated trading

agents. We run each auction for a number of trading days, with each day being bro-
ken up into a series of rounds. A round is an opportunity for agents to make offers, and
we distinguish different days because at the end of a day, agents have their inventories
replenished. As a result, every buyer can buy goods every day, and every seller can
sell every day. Days are not identical because agents are aware of what happened the
previous day. Thus it is possible for traders to learn, over the course of several days,
the optimal way to trade. Following [34], we use a k-double-auction transaction pricing
rule [49], in which the transaction price for each matched bid-ask pair is set according
to the following function:

pt = kpa + (1 − k)pb (4)

where pt is the transaction price, pa is the ask price, pb is the bid price and k is a
parameter that can be adjusted by the auction designer. This is a discriminatory pricing
rule since the price may be different for each transaction. In contrast, a uniform pricing
rule ensures all transactions take place at the same price. In [34] and in much of our
work, k is taken to be 0.5. To run most of the simulations described here we used JASA

[21]1, which supports a wide range of auction types and trading strategies, and which
matches bids and asks using the 4-heap algorithm [60].

2.2 Related Work

Much of the computational work on analyzing markets has been concerned with algo-
rithms that can be used to decide what price to trade at. From the economics side, this
work has often been motivated by the lack of an adequate theory of price formation —
a theory that says how individuals decide what offers to make (though as Smith [51]
demonstrated, this doesn’t stop individuals being good at making these decisions) —
and the desire to understand what makes markets work. From the computer science

1 More accurately, JASA was developed as a result of the need to write software to run the
simulations. The initial version of JASA was designed and written by Steve Phelps, and more
recently has been contributed to by Jinzhong Niu and Kai Cai.
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side, the motivation has usually been to find algorithms that can trade profitably and
which can achieve high efficiency.

Gode and Sunder [16,17] were among the first to address this question, claiming
that no intelligence is necessary for the goal of achieving high efficiency — so the
outcome is due to the auction mechanism itself. They introduced two trading strategies:
zero intelligence without constraint (ZI-U) and zero intelligence with constraint (ZI-C),
and showed that ZI-U, the more naı̈ve version, which shouts an offer at a random price
without considering whether it is losing money or not, performs poorly. In contrast,
ZI-C, which lacks the motivation of maximizing profit just like ZI-U but guarantees no
loss, generates high efficiency solutions [16]. These results were however questioned by
Cliff and Bruten [4,7], who thought Gode and Sunder’s conclusion was not convincing
because the scenarios considered were not as comprehensive as in Smith’s experiments,
and showed that in different scenarios the ZI-C agents performed poorly, especially in
terms of convergence to the theoretical equilibrium.

Cliff and Bruten further [4,6] designed a simple adaptive trading strategy called zero
intelligence plus or ZIP, and showed ZIP worked better than ZI-C, generating high effi-
ciency outcomes and converging to the equilibrium price. This led Cliff and Bruten to
suggest that ZIP embodied the minimum intelligence required by traders. Subsequent
work has led to the development of many further trading strategies, the best known of
which include Roth and Erev’s [12,45] reinforcement learning strategy, which we call
RE, Gjerstad and Dickhaut’s [15] approach, commonly referred to as GD, which uses
the past history of accepted bids and asks to compute the expected value of every offer a
trader might make, and the simplification of ZIP introduced by Preist and van Tol [43].

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that auction mechanisms play an important role in deter-
mining the outcome of an auction, and this is further borne out by the work of Tesauro
and Das [53] and Walsh et al. [58]2 For example, if an auction is strategy-proof, the
best strategy for a traders is not to bother to conceal their private values, but to re-
veal them, and in such auctions complex trading agents are not required. While typical
double auctions are not strategy-proof, McAfee [29] has derived a form of double auc-
tion that is strategy-proof (though this strategy-proofness comes at the cost of lower
efficiency).

3 Evolving the Whole System

Our initial approach to automated mechanism design was to use techniques from evolu-
tionary computing. Inspired by the biological metaphor of evolution, genetic algorithms
(GAs) [19] code aspects of a solution to a problem in an artificial “chromosome” (typi-
cally a binary string) and then breed a population of chromosomes using techniques like
crossover (combining bits of the strings from different individuals) and mutation (flip-
ping individual bits). Genetic programming (GP) [26] extends this approach by evolv-
ing not a bit-string-encoded solution to a problem, but an actual program to solve the
problem itself. Programs are encoded as s-expressions and modeled as trees (nodes are

2 This work also points out that results hinge on both auction design and the mix of trading
strategies used, a point we will return to later.
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Fig. 2. Evolving traders: efficiency by generation

function names and branches arguments of those functions); and these trees are sub-
ject to crossover (swapping subtrees from different programs) and mutation (replacing
subtrees with random subtrees). Whichever approach is used, the best individuals, eval-
uated using a fitness function, are kept and “bred”; and bad individuals are rejected.
However, deciding which individuals are the best is a hard problem.

Both genetic algorithms and genetic programming perform a search through the
space of possible solutions with the theoretical advantage that random jumps around
the search space — created by crossover and mutation — can prevent the system from
getting stuck in local optima, unlike other machine learning techniques. Unfortunately,
in practice this is not always the case, at least partly because what constitutes the best
fitness measure can change over time. To overcome this problem, some researchers have
turned to co-evolution, for example [1,18,33].

In co-evolution, simultaneously evolving populations of agents interact, providing
each other with a fitness measure that changes as the agents evolve. In successful ap-
plications, an “arms race” spiral develops where each population spurs the other to
advance and the result is continuous learning for all populations. However, this has
been notoriously difficult to achieve. Often populations settle into a mediocre stable
state, reaching a local optimum and being unable to move beyond it. Consequently,
there is a growing body of work examining the dynamics of co-evolutionary learning
environments in an attempt to identify phenomena that contribute to success [2,8,13].
In the context of auction design, it is possible to look at a number of different forms
of co-evolution. First, different traders co-evolve against one another, with different
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Fig. 3. Evolving traders and auctioneer: efficiency by generation

offer-making strategies being the co-evolving populations, each attempting to gain an
advantage over the others. Since all traders are looking to maximize their profits, they
are to some extent in competition, although it is possible for a number of successful
traders to coexist. Second, traders co-evolve against the auction mechanism itself — the
auctioneer if you will — as the co-evolving populations. The traders’ aim is to achieve
high profits while the auction(eer)’s aim is to provide an efficient market. While these
aims need not be mutually exclusive, they may also be in conflict.

In [38], we explored a simple approach to co-evolving mechanisms, attempting to
evolve the rules by which traders decided how to make offers, and the rules by which
the auctioneer decides to set trade prices based upon those offers. When evolving rules
for the traders alone, setting prices using a standard rule, we obtained the results in
Figure 2. When we simultaneously evolved rules for traders and rules for the auction-
eer, we obtained the results in Figure 3. While the efficiency of the whole system is
not particularly high when we only evolve traders3, when we evolve both traders and
auctioneer, we obtain quite respectable efficiencies of around 95%.

There is a problem with these results, however. The problem is that it appears that
the systems that we managed to evolve were systems that had fallen into the trap of a
mediocre stable state. If we look at the kinds of rule that the traders were learning to
use in these experiments, they are of the form:

3 An average efficiency of around 75% compares poorly with the results reported in the literature
for automated trading strategies, and with our own work [3].
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if(not(QuoteBidPrice < (PrivateValue * 0.081675285))
{

PrivateValue
}

else
{

PrivateValue * 0.081675285
}

where QuoteBidPrice is the highest unmatched bid (this is a rule for a buyer). In
other words, the traders were learning to make a constant markup, but nothing more
sophisticated than that. While such a strategy can be quite successful when competing
against traders doing the same — as discussed by [61] — we know that it does not
compete well with more sophisticated strategies [3,47]4. Even more worrying, the auc-
tioneer was clearly not learning meaningful strategies — a typical evolved pricing rule
was:

BidPrice - constant

which, once again, is not a terribly sophisticated strategy, and one that it is possible to
imagine traders, more sophisticated than the ones we were able to co-evolve, learning
to exploit.

4 Evolving Traders

One of the problems we identified with our attempt to evolve both traders and auctioneer
from scratch was that this approach makes it too hard to learn sophisticated strategies
for making offers. Starting, as is standard in genetic programming, from random strate-
gies5 means that the traders have to make huge strides to reach even the same level of
sophistication as, for example, ZIP. Since traders can achieve reasonable levels of profit
with the fixed margin rules we were discovering, there is little evolutionary pressure for
them to continue to evolve, and lots of competitive strategies to drown out any muta-
tions that aren’t immediately successful. These observations led us to try to learn new
trading strategies by starting from existing strategies.

As described in [37], we adopted the heuristic strategy analysis of Walsh et al. [58].
In its original form, the aim of this approach was to be able to compute plausible equi-
libria of the double auction. While performing a game theoretic analysis of the auction
is infeasible (as discussed above) because of the number of players and the large number
of possible actions at each of the many stages, it is possible to analyze double auctions
at higher level of abstraction. The idea is to reduce the game to that of picking the best
trading strategy from the literature. Thus, if you are interested in auctions with 10 par-
ticipants, you pick a range of strategies for those participants, run a number of iterations
of the auction, and that allows you to establish certain properties of the auction.

4 The fixed margin strategy “Gamer” was not competitive in the Santa Fe tournament [47], and
the fixed-markup strategy PS is one of the weakest strategies of those analyzed in [3].

5 That is strategies composed of randomly selected functions, not strategies that bid at random
— the latter perform surprisingly well [16].
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Fig. 4. The replicator dynamics direction field for a 12-agent clearing-house with trading strate-
gies RE, TT and GD, (a) with the payoffs obtained in experiments and (b) with +5% payoffs to
RE

Now, it is clear that such a static analysis will not tell us much about the auction. Why
should the participants in the auction pick the strategies that you choose, particularly
if those strategies aren’t very successful? To deal with this problem, Walsh et al. used
evolutionary game theory [52] to compute Nash equilibrium. The idea can be glossed
as follows — rather than always selecting one strategy, traders are more likely to grad-
ually adjust their strategy over time in response to to repeated observations of their own
and others’ payoffs. The adjustment can be modeled using the following replicator dy-
namics equation to specify the frequency with which different trading strategies should
be used depending on our opponent’s strategy:

ṁj = [u(ej , m) − u(m, m)] mj (5)

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all players play
m, and u(ej, m) is the average payoff to pure strategy j when all players play m,
and ṁj is the first derivative of mj with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this equation models a simple
co-evolutionary process of mimicry learning, in which agents switch to strategies that
appear to be more successful.

Now, for any initial mixed-strategy we can find the eventual outcome of this co-evo-
lutionary process by solving ṁj = 0 for all j. This tells us the points at which the mixed
strategy no longer changes — the stationary points of the replicator dynamics — and
allows us to discover the final mixed-strategy that corresponds to the mixed strategy we
started with. Repeating this for a range of initial mixed strategies allows us to discover
all the stationary points that might develop. This model has the attractive properties
that:

1. all Nash equilibria of the game are stationary points under the replicator dynamics;
and
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2. all focal points of the replicator dynamics are Nash equilibria of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in the stationary points of the direc-
tion field of the dynamics specified by equation 5, and the replicator dynamics allows
us to identify the Nash equilibria. Although not all stationary points are Nash equi-
libria, by overlaying a dynamic model of learning on the equilibria we can see which
solutions are more likely to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range of initial states will end up,
are equilibria that are more likely to be reached (assuming an initial distribution that is
uniform).

Figure 4 (a) gives the direction field for a 12-agent clearing-house with traders al-
lowed to pick between the RE, TT and GD strategies. This is a standard 2-simplex where
the coordinates of any point represent a mixture of trading strategies. Each vertex de-
notes a situation in which all traders use a single trading strategy. Any point on an edge
of the simplex denotes a situation in which all traders use one of the two strategies de-
noted by the vertices joined by the side. Thus every point on the bottom of the simplex
in Figure 4 (a) denotes a mixture of strategies such that some traders use TT and some
use GD.

We can see that in Figure 4 (a) GD is a best-response to itself, and hence is a pure-
strategy equilibrium. We also see it has a very large basin of attraction — for any
randomly-sampled initial configuration of the population, most of the flows end up in
the bottom-right-hand-corner. Additionally, there is a second mixed-strategy equilibria
at the coordinates (0.88, 0.12, 0) in the field, corresponding to an 88% mix of TT and
a 12% mix of RE, however the attractor for this equilibrium is much smaller than the
pure-strategy GD equilibrium; only 6% of random starts terminate here as against 94%
for pure GD. Hence, according to this analysis, we would expect most of the population
of traders to adopt the GD strategy.

From the point of view of evolving new trading strategies, the interesting thing is that
GD is not as dominant as it might appear from Figure 4 (a). If we perform a sensitivity
analysis to assess the robustness of GD’s performance, by removing 2.5% of its payoffs
and assigning them to RE, along with 2.5% of the payoffs from TT, then we get the di-
rection field in Figure 4 (b). This second direction field gives us a qualitatively different
set of equilibria — the RE strategy becomes a best-response to itself with a large basin
of attraction (61%) — and allows us to conclude that a slightly improved version of RE

can compete well against GD.
To test this conclusion, as described in [37], we used a genetic algorithm to search

for such an improved version of RE, searching through parameter settings for a combi-
nation of four strategies — the original version of RE, a variation on RE introduced in
[34], stateless Q-learning, and a strategy that randomly selects offers — evaluating the
evolved strategies by the size of the basin of attraction they attain under the replicator
dynamics. The GA converged on a version of stateless Q-learning, and Figure 5 shows
how this optimized strategy OS performs against TT, GD, and the original version of
RE. Our conclusion is that it is possible to evolve trading strategies to compete with the
best hand-coded strategies provided that one has the hand-coded strategies to evolve
against.
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Fig. 5. Replicator dynamics direction field for a 12-agent clearing-house auction showing inter-
action between the GA optimized strategy OS and (a) TT and GD, and (b) TT and RE

5 Evolving Mechanisms

One lesson to draw from Sections 3 and 4 is that one can evolve better traders if that
evolution takes place in a more structured way. Rather than evolving the OS strategy
from scratch, we structured it as a search through the parameters of a set of existing
trading strategies, and rather than evolving the auction pricing rule at the same time,
we fixed the pricing rule to one that is commonly adopted. This section describes two
experiments that we carried out to explore if it possible to do the reverse — evolve
aspects of the auction mechanism given traders using a known trading strategy.

5.1 Evolving a Pricing Rule

The first experiment that we carried out in evolving parts of an auction mechanism
separately from the traders is described in detail in [39], and considered the evolution
of the rule for setting trade prices given the prices bid by buyers pb and asked by sellers
ps. This work used a continuous double auction with 30 buyers and 30 sellers, all of
them using the RE strategy to pick offers. To evaluate the rules we evolved, we used the
measure F :

F =
ea

2
+

m̂pb + m̂ps

4
(6)

where ea is as defined in (2), and mpb and mps measure the market power of the buyers
and sellers respectively, that is the extent to which the profits made by those groups
differ from what they would be at theoretical equilibrium:

mpb =
prb − pre

b

pre
b

mps =
prs − pre

s

pre
s
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Fig. 6. The results of evolving a pricing rule, (a) the rule itself, (b) the difference between the rule
and the k = 0.5 rule

and m̂pb and m̂ps are normalized versions of these measures:

m̂pb =
1

1 + mpb

m̂ps =
1

1 + mps

We used genetic programming to evolve the rules. The functions that could be used in
the genetic program consisted of the terminals ASKPRICE and BIDPRICE, rep-
resenting pa and pb respectively, together with the standard set of arithmetic functions
{+, −, ×, ÷}, and a function representing a random constant in the range [0, 1]. Thus
all we assumed about the pricing function is that it was an arithmetic function of the bid
and ask prices.

As mentioned above, pricing rules were evaluated using the measure F from (6) —
we used each rule to run a series of auctions, and used the value that F reported for the
auctions as the fitness of the rule. The following:

((0.6250385(0.93977016(ASKPRICE+0.76238054)))
+ (((((-0.19079465)/(ASKPRICE-(((BIDPRICE +BIDPRICE)/
(((((ASKPRICE-1)+1.6088724)/(((1-ASKPRICE) -(ASKPRICE/
ASKPRICE))+(2.5486426+(BIDPRICE + 0.000012302072))))
+((BIDPRICE/ASKPRICE)+((BIDPRICE+BIDPRICE)+(1.430315)/
(BIDPRICE . ASKPRICE)))))ASKPRICE)) ...

are the first few terms of a pricing rule that was evolved after 90 generations. It has been
algebraically simplified, but as can be seen it is still far from straightforward, something
that is not surprising given the way that standard genetic programming approaches han-
dle the evolution of a program. Plotting the surface of the transaction price as a function
of pb and pa, given in Figure 6 (a), and comparing it with the surface for:

0.5pa + 0.5pb
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shows — the difference between the two rules is given in Figure 6 (b) — that these two
functions are approximately equal apart from a slight variation when the ask price is
very small or when the ask price is equal to the bid price. Thus the experiment effec-
tively evolved a pricing rule for a discriminatory-price k double auction with k = 0.5
from the space of all arithmetic functions of ask and bid price. Our main conclusion
from this is that our approach is able to evolve an eminently sensible rule, since the
rule it came up with is virtually indistinguishable from one that has been widely used
in practice6.

5.2 Minimizing Price Fluctuation

The work described in the previous section looked at optimizing one very specific part
of the continuous double auction, the rule for setting trade prices, with respect to one
specific measure, that in (6). We can apply the same kind of optimization to different
aspects of the auction mechanism, and with different measures in mind. [35] describes
some experiments with some alternatives.

In particular, [35] is concerned with minimizing Smith’s measure α (3), and thus
fluctuations in the transaction price of the auction. The choice to minimize α was partly
in order to see if it was possible to minimize this metric while keeping the efficiency
of the auction high — testing the extent to which performance of the auction could be
optimized — but one can imagine that this is also an attractive feature of an auction.
If the auction has a low α, then transactions are, by definition, close to the theoretical
equilibrium point. If this can be achieved for a range of trading strategies, then there is
some guarantee that, no matter how a trader bids, the price that trader pays will be in
some sense fair, saving the trader the burden of needing to bid cleverly.

To minimize α, we looked at learning a new pricing rule, a rule between that often
used in a continuous double auction — where the price is the average of the bid and the
ask — and the usual rule for a clearing house auction — where the price is the price that
clears the market7. In essence, this new rule looks at the n most recent matching bid/ask
pairs, and averages over them to obtain the transaction price. Figure 7 (a) compares the
value of α for a continuous double auction with 10 buyers and 10 sellers all of which
trade using the ZI-C strategy and the k = 0.5 pricing rule with that of the value of α for
the same auction that sets prices using the average of the last 4 matched sets of bid and
ask8. We only considered auctions involving ZI-C traders in order to make the problem
of minimizing price fluctuation as hard as possible — ZI-C, making offers randomly,
typically gives high values of α compared with other trading strategies.

Clearly the moving average rule is effective in reducing α, but the value it attains is
still high compared with the levels attained using different trading strategies. Auctions

6 It is also possible to argue in the other direction — that since we came up with the k = 0.5
rule, the rule makes sense for scenarios like the one that we were investigating.

7 The price that would be the theoretical equilibrium if the bids and asks were truthful.
8 Note that the rule uses at most four sets of matched bids and asks. Since the auction is continu-

ous, the price of the trade between the first matched pair of offers is exactly that of the k = 0.5
rule since there is only one matched bid and ask pair to use, the price of the second trade is the
average of the first two matched bids and the first two matched asks and the price of the third
trade is the average of the first three matched sets.
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Fig. 7. The value of α for a double auctions with ZI-C traders (a) comparing the standard con-
tinuous double auction price rule with the sliding-window pricing rule, and (b) comparing α for
different versions of the shout improvement rule. The gray lines denote one standard deviation
above and below the average value over 400 iterations.

with traders that only use GD attain α values of around 4. To try to reduce fluctuation
even more, we examined another aspect of the auction, the rule the auctioneer uses
for accepting shouts as being valid. The idea is to generalize the “New York Stock
Exchange (NYSE) rule”, the rule used in that market, among others, which insists that
successive bids and asks for the same good improve on each other. In other words,
successive bids must increase, and successive asks must decrease. The generalization
we adopted makes a running estimate of the equilibrium price for the market, and the
shout acceptance rule (which we call the “shout improvement” rule) requires that bids
are above this estimate and asks are below it. Note that our rule, unlike the NYSE rule,
continues to apply after an individual good has been traded — indeed, as Figure 7 (b)
shows, the effect of the rule on α improves over time.

In fact, it turns out that there is one last tweak to the shout improvement rule that
it behooves us to add. If the rule is applied strictly as described, the estimate of the
equilibrium price can get badly thrown off by errant offers at the start of the auction (and
errant offers are common with ZI-C traders). To ameliorate this situation, we introduce
a parameter δ, an increment that is applied to the estimated equilibrium price to relax
the improvement rule — bids above the estimate minus δ and asks below the estimate
plus δ are considered valid. Figure 7 (b) shows the effect of different values of δ.

Overall, the combination of these measures can reduce α for all-ZI-C markets to a
value around 6 with little or no loss of efficiency. Indeed, for some values of δ, the
efficiency of the all ZI-C market is greater than that of an all ZI-C market under the
usual CDA mechanism. In addition, it seems that these new market rules do not hurt
the performance of markets consisting of more sophisticated traders. We tested the same
market rules when the traders all used GD, and found that, if anything, the new rules
reduced α and increased efficiency.
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6 Evaluating Mechanisms

The work on mechanisms that we have described so far has looked to optimize one
specific aspect of an auction, and has shown that this is achievable. However, the kind
of evaluation of auctions that we have used in this work, focusing on a single measure
when agents are all of the same type — in the sense of which bidding strategy they
used — seems a bit narrow, and so we have experimented with alternative forms of
evaluating of mechanisms.

6.1 Comparing Markets

In [40] we experimented with using heuristic strategy analysis to compute metrics for
different types of auction. The motivation for doing this is as follows. Most of the prop-
erties that we might use to rate auctions, whether efficiency, Smith’s α, or metrics like
price dispersion [16], differ for the same auction as the traders use different trading
strategies. They are not properties of the traders, since the same traders generate differ-
ent efficiencies, αs and price dispersions in different auctions, but they are not entirely
properties of the auctions either. Thus it is difficult to say with authority that a given
auction has a given property. What we can do, however, is to use a heuristic strategy
analysis to establish what mixtures of trading strategies will hold at equilibrium, and
use this to compute an estimate of the properties that we are interested in.

Figure 8 shows the results of a heuristic strategy analysis for the continuous double
auction and the clearing house auction with different numbers of traders. For all of these
analyses we used three trading strategies, truth telling TT, the Roth-Erev strategy RE that
we used in the first pricing rule experiment, and the modification of ZIP proposed by
Preist and van Tol (PVT) [43]. Our choice of strategies was intended to examine the
relative performance of the human-like RE strategy9 and the simple “program trader”
provided by PVT, with the performance of TT measuring how far the markets are from
being strategy-proof (in a strategy-proof market there is no advantage to not telling the
truth about one’s valuation for a good).

There are a number of conclusions that one can draw from the plots in Figure 810.
First, there is a significant difference between the direction fields of the continuous
double auction and the clearing house auction for any number of traders. While each
strategy is a pure strategy equilibrium, the basins of attraction are rather different as
are the locations, along the edges and in the middle of the direction field, of the mixed
equilibria. Second, the difference becomes more marked the larger the number of agents
— the basin of attraction of TT shrinks as the CDA includes more traders, and grows as
the CH includes more traders. The latter is in accordance with theoretical results [48]
which predict that the disadvantages of truth-telling decline as the number of traders
grows. Third, truth telling is not dominant in any of the markets, so none of them are
strategy proof.

9 Roth and Erev originally introduced their approach as a way of replicating human behavior in
games [45].

10 Note that we have not indicated the direction of the field on the plots in the interests of read-
ability — the direction of flow is from the middle of the simplex towards the edges.
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Fig. 8. The replicator dynamics direction field for double auctions with trading strategies TT, RE

and PVT

It is also possible to draw more quantitative conclusions. Taking 1000 random start-
ing points within the direction fields for each of the 10 agent clearing house and con-
tinuous double auctions, we established which of the pure strategy equilibria these
starting points led to. Assuming that the starting points, each of which represents a mix
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Table 1. Probabilities of equilibria for 10 agent markets

Equilibrium CH probability payoff CDA probability payoff
TT 0.38 1.00 0.05 0.86
RE 0.11 0.99 0.70 0.97
PvT 0.51 0.99 0.25 0.94

of trading strategies, are equally likely, we could then compute the relative frequency
of occurrence of the pure strategies — these are given in Table 1. Now, since we can
easily establish whatever metrics we want for the equilibrium points (again these are
given in Table 1), we can use the probabilities of reaching these equilibria to determine
the expected value of the metrics. For example for the 10 trader CDA we can compute
the expected efficiency as:

0.05 × 0.86 + 0.70 × 0.97 + 0.25 × 0.94 = 0.96

compared with

0.38 × 1.00 + 0.11 × 0.99 + 0.51 × 0.99 = 0.99

for the 10 trader CH.
Note that the assumption of equally likely start points is not the only assumption

involved in this computation. Since the probability of arriving at a particular equilib-
rium is a function of the replicator dynamics, we are also assuming that the replicator
dynamics is an accurate description of trader behavior. One can argue this either way
— the only guarantee that the replicator dynamics give is that the stationary points in
the field are Nash equilibria.

6.2 Direct Competition Between Markets

The comparison between markets described above is useful, but indirect. It compares
markets while still thinking of the markets as operating in isolation — it tells us nothing
about how the markets would fare if they were in running in parallel, as markets often
do in the real world11. In [36], we looked at the relative performance of markets when
they are in competition with one another for traders.

To this end, we ran a series of experiments12 where traders were offered a choice
of markets at the start of every trading day, making this choice using simple reinforce-
ment learning based on the profit that they made in the markets (learning which mar-
kets were profitable over time). The profit that a given trader makes in a market is the
profit from trade — the difference between the trade price and the private value of the

11 For example, Shah and Thomas [50] describe the competition between India’s National Stock
Exchange and the established Bombay Stock Exchange for trade in the stock of Indian com-
panies when the National Stock Exchange opened.

12 These experiments were run using JCAT [22], an extension of JASA [21] that allows multiple
markets and provides both a mechanism for markets to charge traders, and for traders to decide
which market provides them with the best profit.
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Fig. 9. Four markets that compete for traders

trader — minus any charges imposed by the markets. We allowed markets to charge
because this is a feature of real markets, and because the profit made by markets is a
natural basis of comparison.

Figure 9 shows some typical results from [36]. Figure 9 (a), which gives the number
of traders in each market at the start of every trading day, shows how, as the agents
learn, the markets stratify by charges. As one might expect, the lowest charging mar-
ket attracts the largest number of traders and the highest charging market attracts the
smallest number of traders. Note that even the highest charging market continues to at-
tract some traders — those that make a good profit even with the charges. Figure 9 (b),
which gives the cumulative profit of each market on each day, shows how the lowest
charging market catches the higher charging markets over time. These results are for
markets with a simple, fixed, policy for charging. [36] also considers adaptive charging
policies — one that undercuts all other markets, one that cuts prices until it has a large
market share and then increases prices, and one that works like ZIP — showing that
the relationship between such policies has some of the complexity of the relationship
between trading strategies.

7 Conclusion

Auctions are a powerful mechanism for resource allocation in multi-agent systems and
elsewhere, and there are many situations in which one might make use of them. How-
ever, it is not advisable to employ auctions “off-the-peg” — as some expensive failures
have demonstrated [31] — instead, it is necessary to carefully tailor auction mechanisms
for the particular niche that they are required to fill. Our work is intended to automate
this tailoring process. Using a combination of evolutionary computation, reinforcement
learning, and evolutionary game theory, we have successfully tailored variants of the
double auction for different purposes, and traders to operate in these auctions, and our
future work aims to extend the scope of this automated generation. In particular, we
can easily imagine combining the techniques we have described here into a high-level



Auctions, Evolution, and Multi-agent Learning 207

process for co-evolving markets and traders. For a fixed mechanism we could evolve
traders, as in Section 4, and then fix the equilibrium set of traders and evolve parts of
the mechanism as in Section 5, evaluating evolved mechanisms just as we did in Sec-
tion 6.1. Repeating this process will then allow us to create traders that can operate
in the new mechanism. Demonstrating this co-evolutionary spiral is the focus of our
current work.

We should note that while this high-level co-evolution is the long term goal of our
work on applying machine learning to mechanism design, there are plenty of other
areas in which we can profitably use machine learning in the design of auction mecha-
nisms. Two areas, in particular, intrigue us greatly. One is the idea, introduced by Posada
[41,42], that it is possible for traders to employ a “meta-strategy” in which their task is
to learn which of the standard trading strategies is best adopted, and to do this learning
during the course of an auction. While this approach is similar to the evolutionary game
theoretic analysis we discussed in Section 4, it differs in that traders switch strategies
during the course of an auction rather than between auctions. We are interested to exam-
ine the equilibria that emerge from this kind of behavior. Another interesting idea, also
related to the analysis in Section 4, is that of [24], in which heuristic search is employed
to find equilibrium points. Adopting such an approach should significantly reduce the
computation required to find equilibria when compared with out current, exhaustive,
search.
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Abstract. Intrusion Detection Systems (IDS) have been investigated
for many years and the field has matured. Nevertheless, there are still
important challenges, e.g., how an IDS can detect new and complex
distributed attacks. To tackle these problems, we propose a distributed
Reinforcement Learning (RL) approach in a hierarchical architecture of
network sensor agents. Each network sensor agent learns to interpret local
state observations, and communicates them to a central agent higher up
in the agent hierarchy. These central agents, in turn, learn to send signals
up the hierarchy, based on the signals that they receive. Finally, the agent
at the top of the hierarchy learns when to signal an intrusion alarm. We
evaluate our approach in an abstract network domain.

1 Introduction

As computer networks and information systems become more critical and com-
plex, researchers are looking for new techniques to protect these assets. In this
paper we present our work on the application of distributed reinforcement learn-
ing to allow cooperative network devices to identify and categorize faults, attacks
and in general, any abnormal state in the network. The use of heterogeneous
agents to detect distributed denial of service without central processing or man-
agement is an area with very little previous work. The number of studies that use
machine learning techniques to scale up the solution to inter-domain networks
or to adapt it to changes in traffic and attack behavior is scarce as well.

From a machine learning perspective, network intrusion and fault detection
provides challenging scenarios to test and develop new multi-agent reinforce-
ment learning techniques. To achieve reliable intrusion detection, RL will need
to deal with noisy inputs and large discrete or continuous state-action spaces.
We have chosen a hierarchical architecture of agents to provide a coordination
scheme and learning mechanisms using data from distributed sources. The paper
is structured as follows. In Section 2 we present a brief overview of the problem of
detecting and categorizing Distributed Denial of Service Attacks, a review of IDS
and point out some of the challenges these systems are still facing. The last part
of this section is an overview of Multi-Agent Reinforcment Learning (MARL)
and the problems that it faces as the number of agents and input information
grows. In Section 3 we explain our proposed technique and the assumptions
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that we made when designing it. In Section 4 we show some results obtained
from testing different architectures varying the number of agents, the number of
states per sensor agent, the exploration/exploitation strategy, the distribution
of attacks as input information and the agent architecture. Finally in Section 5
we point out our conclusions and an outlook to future work.

2 Background

In this section we introduce some concepts and terminology that provide the
background to our approach.

2.1 Denial of Service Attacks

Denial of Service (DoS) attacks are very common in today’s internet infrastruc-
ture. In a DoS, the attacker tries to exhaust key resources of the target to refuse
a service to the legitimate users. DoS can be performed directly to attack a
target or they can be an effect of other security problems such as the spreading
of self replicating code or worms. A more worrisome type of this threats is the
Distributed Denial of Service Attack (DDoS). DDoS are launched from several
sources attacking one target. The effect would depend on the number of sources,
the available bandwidth for each of them and the vulnerability that they are
exploiting.

Defenses against DoS and DDoS are complex to design due to several factors.
DoS are always accompanied by a heavy use of some kind of resource. If this
resource is not heavily used, it is easy to identify the threat comparing normal
to abnormal activity. DDoS use a distributed control with thousands of attack-
ers spreading all over the Internet. To accurately identify and stop them it is
necessary to coordinate several entities along the path of the DoS attack [10,20].
Under this assumption Mirkovic and Reiher [9] in their Taxonomy of DoS at-
tacks and defenses state: ”the need for a distributed response at many points on
the Internet”.

2.2 Intrusion Detection Systems

Intrusion Detection Systems are just one part of the whole collection of tech-
nologies and processes needed to protect computer networks and information
systems from intruders and attacks. In combination with firewalls, IDSs are the
first line of defense in many computer networks. An IDS monitors hosts or net-
works searching for abnormal or non-authorized activity. When they find attack
activity, they record the event and they may perform defensive actions. There
are two basic types of IDS: anomaly intrusion detection and misuse/signature
intrusion detection. Anomaly IDS uses different methods to detect abnormal ac-
tivity; they vary from simple statistical methods to more complex AI techniques.
Misuse or signature intrusion detection system use rule matching to detect intru-
sions. These IDSs compare system activity with specific intrusion rules that are
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generally hard coded. When the observed activity matches the intrusion pattern
an intrusion is detected.

Because Anomaly IDSs compare current activity with a model of normal be-
havior they can detect unknown attacks when the network state is deviating
from normal activity. However, non-malicious activity that does not match nor-
mal behavior can also trigger the intrusion mechanism. This results in a high
rate of false positives or false alarms in anomaly IDSs. On the other hand,
misuse-signature IDS are very reliable and they have low rates of false positives.
Nevertheless, they lack the ability to detect new types of attacks. Other dimen-
sions along which IDSs can be categorized are the type of response to detected
intrusions (passive or active), the type of data-processing and the data-collection
(centralized or distributed), and the source of the audit data (host or network).

As computer networks become more complex systems and threats on them are
reaching global magnitudes researchers are looking for novel approaches to adapt
IDS to these new needs. Some authors [2,3,11,16,19] point out that the use of a
rich diversity of sensor information may achieve the development of more reli-
able IDS. The rationale behind this is that sensor variety is needed because each
sensor perceives different information depending on its capabilities, its function
and where it is deployed in the network. The amount of information required
to infer malicious activity using distributed heterogeneous sensor architectures
would overwhelm any human network manager and automatic processing be-
comes necessary.

2.3 Reinforcement Learning

Our approach to intrusion and fault detection is based on RL, where each net-
work node is learning to send signals to other nodes in a network hierarchy.
Before describing the details of this approach, we briefly introduce the main RL
concepts.

In RL, agents or programs sense their environment in discrete time steps and
they map those inputs to local state information. RL agents execute actions and
observe the feedback from the environment or a trainer in the form of positive or
negative rewards. After performing an action and receiving a reward, the agent
observes any change in the environment and it updates its policy in order to opti-
mize the reward received for future actions [18]. There are different approaches to
calculate the optimal policy and to maximize the obtained reward over the time.
One of the most widely used techniques is Q-learning. In Q-learning as in other
Temporal-Difference-Learning methods the agent iteratively tries to estimate the
value function. To estimate the value function, Q-learning constructs a table (Q-
table) whose rows are states and columns are actions. The agent in each state s
chooses an action a, observes the reward r and the next state s′. Then it updates
the estimated Q-value denoted by Q̂ in Equation (1). In this equation α is the
learning rate with a value 0 < α < 1 and γ is a constant with value 0 < γ < 1
that represents the relative value of delayed versus immediate rewards.

Q̂(s, a) ← (1 − α)Q̂(s, a) + α(r + γ maxa Q̂(s′, a′)) (1)
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The exploration/exploitation problem is a specific challenge that is present in
reinforcement learning algorithms. To obtain the best reward, the agent tends to
prefer actions that have been proved to provide high rewards. In order to discover
these actions the agent needs to try actions that have not been tested. We say
that the agent exploits actions that lead to better expected rewards but also it
needs to explore other actions that may lead it to better rewards in the future
[18]. In order to converge to the optimal policy, the agent needs to explore and to
exploit actions. One simple solution is to use a random strategy. While in theory
this strategy guarantees convergence; in practice it is very slow. A more subtle
alternative is to let the agent explore actions in the beginning of the learning and
progressively start choosing those actions that prove to lead to better expected
rewards. ε-greedy and Boltzmann use this alternative. ε-greedy is a semi-uniform
random exploration strategy; it uses a small value as a base probability to choose
an action. The downside of e-greedy is that it chooses among all the actions with
the same probability. To address this problem Boltzmann strategy, also called
softmax action selection rules, weights each action with a probability according
to their expected value using the given equation Equation.2:

P (a) =
eQ(s,an)/T∑i
0 eQ(s,ai)/T

(2)

T is a positive number called temperature. Under high values of temperature
the action selection tends to choose equally between all actions. Low values of
temperature favor actions with high expected values. In practice to speed up
convergence, the value of the temperature is decreased exponentially.

Reinforcement Learning has been adopted to solve problems where on-line
learning is needed and where the construction of a model is difficult or not pos-
sible. For more complex problems involving the interaction of several agents,
RL becomes an appealing yet challenging alternative due to several factors. The
curse of dimensionality that affects standalone RL and other machine techniques
has an even bigger effect in MARL, as the number of agents and states increase
and it becomes difficult to scale these systems to a large number of agents. Dif-
ferent approaches from function approximation techniques [8,17] to hierarchical
reinforcement learning [1,5] have been proposed to scale MARL to large number
of agents.

Some of the main issues surrounding MARL are:

1. In single agent RL, agents need to adapt their behavior in accordance with
their own actions and how they change the environment. In addition to this,
MARL agents also need to adapt to other agents’ learning and actions.

2. MARL agents do not always have a full view of the environment and even if
they have, they normally cannot predict the actions of other agents and the
changes in the environment [6].

3. The credit assignment problem [15] describes the difficulty of deciding which
agent is responsible for successes or failures of the multi-agent system. Re-
lated to this, the question arises on how to split the reward signal among the
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agents. The reward can be the same for all agents (global reward) or it can
be assigned based on the individual contribution of the agent (local reward).

3 Agent Architecture and Operation

The security of computer networks is provided by devices such as IDS. As pre-
viously mentioned IDS monitor the network and detect abnormal or non au-
thorized activity. When it detects suspicious activity, it records the event and
in some cases performs defensive actions. The use of a rich diversity of sensor
information may achieve more reliable detection of abnormal events in the net-
work. Different network devices can provide diverse information based on their
capabilities, their local network state observations, and their location in the
network.

To process the information of distributed heterogeneous sensors to infer
malicious activity there are multiple choices ranging from central control and
management to peer to peer agent interaction; and from flat topologies to hier-
archical central management and clustering. Since it is infeasible to assume that
agents are able to communicate their complete local state observations (due to
bandwidth restrictions), we have chosen an approach that is somewhere between
central management and distributed control.

We propose a hierarchical architecture of Distributed Intrusion Detection Sys-
tems (DIDS) integrated by remote sensor agent diversity and reinforcement
learning to detect and categorize DDoS Attacks. In this approach distributed
sensors process the local state information and pass on short signals up a hierar-
chy of RL-IDS agents. With these signals the RL-IDS agents learn to distinguish
abnormal activity from a diversity of sources. The lower the hierarchical level
of the agent is; the more local information it is processing. The result is that
high-level hierarchical agents have a better overview of the current state of the
whole network. Under this consideration the agent on top of the hierarchy learns
whether or not to trigger an overall alarm to the network operator.

Our base topology or Basic Cell is shown in Figure 1. It is composed of one
central agent and n sensor agents. Sensor agents are in the form of network
devices and they vary in capabilities and information that they can process.
Each sensor agent receives only partial information about the global state of the
network and they map local state information to communication signals which
they send to the central agent (RL-IDS) of the cell (the signal constitutes the
action of the sensor agent). The RL-IDS agent tries to model the state of the
monitored network through these signals and decides in turn on a signal action.
If the signal is in accordance with the real state of the monitored network, all
the agents receive a positive reward. If the action is inaccurate, all the agents
receive a negative reward. The goal is that after a certain number of iterations
of the algorithm, every agent would know for each state the action that they
need to execute to obtain positive rewards.

To expand the sensor architecture to analogous computer network architec-
tures we created a hierarchical architecture with 2 levels as shown in Figure 2.
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Fig. 1. Basic Cell of Agents. Each Sensor Agent sends communication signals to the
RL-IDS agent.

Fig. 2. Hierarchical Architecture: Each RL-IDS agent inside cells communicates with
a higher level RL-IDS

This architecture is build from m cells with n agents per cell. In this topology
each cell’s RL-IDS agents receive local information from sensor agents and learn
what signal to trigger to the next RL-IDS higher up in the hierarchy. Then,
via the signals from the lower-level RL-IDS agents and the reward function,
the high-level hierarchical RL-IDS agent in the topology learns which signal to
trigger to the network operator or to the next hierarchical level RL-IDS. If we
considered h as the number of hierarchical levels and n as the number of sensor
agents per cell and the number of cells that one single RL-IDS can handle, the
number of agents in a topology is denoted by Equation (3).

TotalNumberOfAgents =
h∑

i=0

nh−1 (3)
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We have opted to use a hierarchical architecture of agents instead of a flat
one because we consider that the former adapts better to the topologies of real
computer networks. These systems are constructed by several hierarchical layers
where the lower layers perform data access to users and high layers perform high
speed packet switching. Our hierarchical architecture is also easily adapted to
process intrusion detection between different networks domains similarly as it
occurs in real Internet interconnections.

4 Experiments and Results

We applied our algorithm to different agent architectures varying the number
of agents, the exploration/exploitation strategy, the number of states per sensor
agent, the distribution of attacks as input information and the agent architecture.
In these initial experiments, we fell back on an idealized model of a network that
nevertheless poses the principal learning and coordination challenges of the real-
world case.

Each agent uses a modified version of Q-learning (see Equation (4) below)
to learn which action to execute in a specific state. The value of this function
is the maximum discounted cumulative reward or the value of executing action
a in the state s plus the value of following the optimal policy afterward. The
action selection strategy during learning is provided by Boltzmann exploration.
Boltzmann exploration uses a decreasing factor (T) known as temperature to
slowly decrease exploration over time. To measure the learning performance we
used accuracy, precision, recall and specificity (Table 1). These four variables
give us more information about the relation between False Positives (FP) and
False Negatives (FN) and between FN-FP and the correct categorized events
(True Negatives and True Positives).

Q̂(s, a) ← Q̂(s, a) + α(r − Q̂(s, a)) (4)

Table 1. Performance Metrics

Measure Formula Meaning

Accuracy (TP + TN) / (TP + TN + FP + FN) The percentage of positive
predictions that is correct

Precision TP / (TP + FP) The percentage of positive labeled
instances that was predicted
as positive. Also defined as
Intrusion Detection Rate

Recall TP / (TP + FN) The percentage of negative
labeled instances that was
predicted as negative

Specificity TN / (TN + FP) The percentage of predic-
tions that is correct
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In the simplest experiment, we created a cell with two sensor agents and one
RL-IDS agent. We set up the sensor agents to have 2 states (0 and 1). Note
that each sensor agent cannot observe the states of other sensor agents and that
the combination of all states of the sensor agents represents the global state of
the network. In this simple scenario we have 4 states ([0,0],[0,1],[1,0],[1,1]) where
state [1,1] represents an abnormal network state that would require an alarm
signal from the RL-IDS. The sensor agents have to learn to produce the right
signal action to the RL-IDS agent, while this agent needs to learn to interpret
these signals. In our basic scenario there are only two sensor signals A and B.
The RL-IDS must learn which signals from the sensor agents represent a normal
state of the network or a warning state. As it can be observed in Figure 3, the
agents in this test are able to detect and categorize the normal and abnormal
states of the network.
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Fig. 3. Two Sensor Agents: After less than 1,000 iterations the RL-IDS agent learns
how to identify abnormal activity through the signals from sensor agents

In general the global state of the network is simulated by randomly choosing
between normal and abnormal states. Following a uniform distribution of pos-
sible states in tests with more than two agents creates a very small number of
abnormal states compared with the number of normal states. This distribution
of training data biased the agents to learn that the safer action was not to gen-
erate any alarm action at all. The result is a low performance in the intrusion
detection rate and recall variables as shown in the second row of Table 2 and in
Fig.5 To solve this problem we provide a minimum of 25% of abnormal states
in the training data. With this new set up, the agents were able to learn to act
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correctly with higher levels of accuracy. Still the intrusion detection rate was
low. In other words, the agents generated high rates of false positives.

We found that the agents had little time to explore all the no-attack states
and to fix the Q-values that were miscalculated as result of the credit assignment
problem and the partial observation of the environment. To tackle this problem
we extended the exploitation phase of the exploration/exploitation strategy to
allow the agents to exploit actions and to modify the values of their Q-tables. To
carry out this task we divided the exploration/exploitation strategy in two parts.
The first part was the initial Boltzmann strategy where agents slowly decrease
exploration over time accordingly to a decreasing factor (T). The second part
was a total exploitive strategy where agents do not explore actions any more. We
denoted this as a pure exploitive strategy. The level of pure exploitation is given by
Equation 5. The results presented in Table 2 and marked as with pure exploitive
strategy uses a level value of 0.5. In other words the agents explore/exploit 50%
of the time accordingly to a Boltzmann strategy and exploit actions the rest
of the time. In Figure 4 there is a graphical comparsion between tests with
four agents. One of the test was performed with 25% of abnormal activity and
Boltzmann strategy (exploitive Level = 1). The other test was performed with
25% of abnormal activity and an exploitive level equal to 0.5. As shown, the
use of new strategy (Boltzmann + total exploitive) provided higher values of
accuracy (See Table 2 for comparsion between three agents) as well as high
values of intrusion detection rates compared with test with only Boltzmann
exploration/exploitation.

ExploitiveLevel =
Number of pure exploitive iterations

total of iterations
(5)

The next step in our testing was to increase the number of states and review
the maximum numbers of agents per cell with acceptable levels of performance.
As shown in Figure 5; when we increased the number of agents the levels of
precision went down due to high rates of false negatives. Under this assumption
we considered that the maximum number of agents per cell is less than 6. As it
can be observed in Table 2 the remaining variables had very little effect as the
number of agents increased. This is the effect of the previously mentioned prob-
lems often found in MARL such as credit assignment, partial observation, curse
of dimensionality and mis-coordination penalized with high negative rewards.
It is important to note that the number of iterations presented in the graphs
of Figure 5 and Figure 6 are per hierarchical level; for a test with 9 agents in
2 hierarchical levels the test needs 10,000 iterations per level (as shown in the
figures) or 20,000 iterations in total to reach the performance levels listed.

In order to adapt our architecture to detect abnormal activity on inter-domain
networks or in intra-domain networks with geographical zones we develop a hi-
erarchical architecture of agents (See Figure 2). In this new architecture sensor
agents and RL-IDS inside a cell learn how to identify local normal and abnormal
activity. Once they have learned this, the RL-IDS agents inside the cells send
communication signals to the next RL-IDS in the hierarchy which is learning
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Fig. 4. Intrusion Detection Rate Four Agents with different Exploitive levels of Explo-
ration/Exploitation and 25% abnormal activity

Table 2. Performace (Percentages)

Test Accu. Error Prec. Error Recall Error Spec. Error

Two sensor
agents (3)

98.9 1.1 90.0 10.0 90.0 10.0 100.0 0.0

Three sensor agents 96.1 0.8 10.0 10.0 10.0 10.0 100.0 0.0

Three sensor
agents (1)(2)

99.9 0.0 92.0 5.0 90.0 7.5 100.0 0.0

Six sensor agents
(1)(2)

99.5 0.2 37.9 11.3 100.0 0.0 99.5 0.2

Six sensor agents
Hierarchical (9
total) (1)(2)

99.9 0.0 90.0 10.0 90.0 10.0 100.0 0.0

9 sensor agents
Hierarchical (13
total) (1)(2)

99.9 0.0 85.0 7.5 100.0 0.0 100.0 0.0

27 sensor agents
Hierarchical (40
total) (1)(2)(3)

99.9 0.0 83.0 8.0 100.0 0.0 100.0 0.0

(1) 25 abnormal training, (2) Pure exploitive strategy, (3) 2 states per sensor agent
10,000 iterations in all tests.
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Fig. 6. Performance Metrics with Nine Agents

to signal in turn. This procedure is repeated iteratively until it reaches the last
RL-IDS in the topology, i.e. the agent responsible for determining the state of
the whole system. We compared the performance of 6 agents using this hierarchi-
cal design with 2 levels against the flat approach of 6 agents in one cell. We found
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that this architecture presents high levels of performance on all of our metrics
than the flat approach.

Additionally, this approach permits the use of more than 6 agents arranged in
various hierarchical levels. We expanded the architecture up to 9 sensor agents
and 4 RL-IDS agents (13 agents in total) in 2 hierarchical levels and up to 27
sensor agents and 13 RL-IDS agents (40 agents in total) in three hierarchical
levels. These tests shown (Figure 6) very acceptable levels of performance on all
of our metrics.

5 Conclusion and Further Work

This paper presented RL experiments in an abstract network model where dis-
tributed network sensor agents learn to send signals up a hierarchy of agents.
Higher agents in the hierarchy learn how to interpret local collected information
from these signals and signal an overall abnormal state to the network operator
when it is necessary. We presented solutions that enable the agents to learn an
accurate signal policy and we have shown that the approach scales up to a large
number of agents. In future work we plan to port the abstract network model to
a realistic network simulation.

In our work, we used a fairly straightforward Q-update function and simple
exploration/exploitation strategy. We intended to use this simple approach and
to focus on the hierarchical mechanism to expand our proposal to several con-
nected cells resembling real computer network environments. We do believe that
a more complex approach to exploration/exploitation strategy or to calculating
the value function may yield similar results but with fewer iterations, more input
features and more agents per cell. We also plan to apply some techniques from
single-state games [7], hierarchical reinforcement learning [1,5] function approx-
imation [8,13,17] techniques and others [4,14].
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Abstract. Learning Automata (LA) were recently shown to be valuable
tools for designing Multi-Agent Reinforcement Learning algorithms. One
of the principal contributions of LA theory is that a set of decentralized,
independent learning automata is able to control a finite Markov Chain
with unknown transition probabilities and rewards. This result was re-
cently extended to Markov Games and analyzed with the use of limiting
games. In this paper we continue this analysis but we assume here that
our agents are fully ignorant about the other agents in the environment,
i.e. they can only observe themselves; they do not know how many other
agents are present in the environment, the actions these other agents
took, the rewards they received for this, or the location they occupy in
the state space. We prove that in Markov Games, where agents have
this limited type of observability, a network of independent LA is still
able to converge to an equilibrium point of the underlying limiting game,
provided a common ergodic assumption and provided the agents do not
interfere each other’s transition probabilities.

1 Introduction

Learning automata (LA) are independent, adaptive decision making devices that
were previously shown to be very useful tools for building new multi-agent re-
inforcement learning algorithms in general [1]. The main reason for this is that
even in multi-automata settings, LA still exhibit nice theoretical properties. One
of the principal contributions of LA theory is that a set of decentralized learning
automata is able to control a finite Markov Chain with unknown transition prob-
abilities and rewards. Recently this result has been extended to the framework
of Markov Games, which is a straightforward extension of single-agent markov
decision problems (MDPs) to distributed multi-agent decision problems [2].

In a Markov Game, actions are the result of the joint action selection of all
agents and rewards and state transitions depend on these joint actions. More-
over, each agent has its own private reward function. When only one state is
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assumed, the Markov game is actually a repeated normal form game well known
in game theory, [3]. When only one agent is assumed, the Markov game reduces
to an MDP. Due to the individual reward functions for each agent, it usually is
impossible to find policies which maximise the summed discounted rewards for
all agents at the same time. The latter is possible in the so-called team games or
multi-agent MDPs (MMDPs). In this case, the Markov game is purely coopera-
tive and all agents share the same reward function. In MMDPs the agents should
learn how to find and agree on the same optimal policy. In a general Markov
game, an equilibrium policy is sought; i.e. a situation in which no agent alone can
change its policy to improve its reward when all other agents keep their policy
fixed. It was shown that in the set-up of [4] a network of independent learning
automata is able to reach equilibrium strategies in Markov Games [4] provided
some common ergodic assumptions are fulfilled.

In the case of single state multi-agent problems, the equilibrium strategies coin-
cides with the Nash equilibria of the corresponding normal form game. In the case
of multi stage problems, limiting games can be used as analysis tool. The limiting
game of a correspondingmulti-agentmulti-state problem can be defined as follows:
each joint agent policy is viewed as a single play between players using the agent’s
policies as their individual actions. The payoff given to each player is the expected
reward for the corresponding agent under the resulting joint policy. Analyzing the
multi state problem now boils down to explaining the behaviour of the multi-agent
learning technique in terms of Nash equilibria in this limiting game.

In this paper we continue the analysis of networks of LA but we assume here
that our agents are fully ignorant about the other agents in the environment,
i.e. they can only observe themselves; they do not know how many other agents
are present in the environment, the locations they occupy, the actions they took,
or the rewards they received for this. We prove that in Markov Games, where
agents have this limited type of observability, a network of independent LA is
still able to find an equilibrium point of the underlying limiting game, provided a
common ergodic assumption is satisfied and provided the agents do not interfere
with each other’s transition probabilities.

This paper is organized as follows. In the next section the definitions of MDPs,
MMDPs and Markov games are given. We then give an example of a simple 2-
agent grid game with limited observability and its corresponding limiting game.
In Section 4 learning automata theory is summarised; the LA network mod-
els used for controlling respectively MDPs and Markov games with full state
observability are discussed. Next, in section 5 the LA update mechanism for
agents with limited observability is given. This model is analyzed in section 6.
Some illustrations are added in section 7. Finally we conclude in the last section.

2 Markov Games

2.1 Definition of an MDP

The problem of controlling a finite Markov Chain for which transition probabili-
ties and rewards are unknown, called a Markov Decision Problem (MDP), can be



226 P. Vrancx, K. Verbeeck, and A. Nowé

formalised as follows. Let S = {s1, . . . , sN} be the state space of a finite Markov
chain {xl}l≥0 and Ai = {ai

1, . . . , a
i
ri

} the action set available in state si. Each
starting state si, action choice ai ∈ Ai and ending state sj has an associated
transition probability T ij(ai) and reward Rij(ai). The overall goal is to learn a
policy α , or a set of actions, α = (a1, . . . , aN) with aj ∈ Aj so that the expected
average reward J(α) is maximized:

J(α) ≡ liml→∞
1
l
E

[
l−1∑
t=0

Rx(t)x(t+1)(α)

]
(1)

The policies we consider are limited to stationary, nonrandomized policies.
Under the assumption that the Markov chain corresponding to each policy α is
ergodic, it can be shown that there exists an optimal pure strategy in any state,
independent of the time at which the state is occupied [5]. A Markov chain
{xn}n≥0 is said to be ergodic when the distribution of the chain converges to a
limiting distribution π(α) = (π1(α), . . . , πN (α)) with ∀i, πi(α) > 0 as n → ∞.
Thus, there are no transient states and the limiting distribution π(α) can be
used to rewrite Equation 1 as:

J(α) =
N∑

i=1

πi(α)
N∑

j=1

T ij(α)Rij(α) (2)

2.2 Definition of a Markov Game

An extension of single agent Markov decision problems (MDPs) to the multi-
agent case can be defined by Markov Games [2]. In a Markov Game, actions
are the joint result of multiple agents choosing an action separately. Note that
Ai

k = {ai
k1, . . . , a

i
kir

} is now the action set available in state si for agent k, with
k : 1 . . . n, n being the total number of agents present in the system. Transition
probabilities T ij(ai) and rewards Rij

k (a) now depend on a starting state si,
ending state sj and a joint action from state si, i.e. ai = (ai

1, . . . a
i
n) with ai

k ∈ Ai
k.

The reward function Rij
k (a) is now individual to each agent k. Different agents

can receive different rewards for the same state transition. Since each agent k has
its own individual reward function, defining a solution concept becomes difficult.
Again we will only treat non-randomized policies and we will assume that the
Markov Game is ergodic in the sense that there are no transient states presents
and a limiting distribution on the joint policies exists. We can now use Equation
2 to define the expected reward for agent k , for a given joint policy α.

Jk(α) =
N∑

i=1

πi(α)
N∑

j=1

T ij(α)Rij
k (α) (3)

Due to the individual reward functions of the agents, it is in general impossible
to find an optimal policy for all agents. Instead, equilibrium points are sought.
In an equilibrium, no agent can improve its reward by changing its policy if
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all other agents keep their policy fixed. In a special case of the general Markov
game framework, the so-called team games or multi-agent MDPs (MMDPs) [6]
optimal policies exist. In this case, the Markov game is purely cooperative and
all agents share the same reward function. This specialization allows us to define
the optimal policy as the joint agent policy, which maximizes the payoff of all
agents. An MMDP can therefore also be seen as an extension of the single agent
MDP to the multi-agent case.

3 The Limiting Game of a Simple Grid Problem; Limited
State Observability

As an example we describe a 2-agent coordination problem depicted in Figure 1.
The game consists of only two grid locations L1 and L2. Two agents A and B
try to coordinate their behavior in order to receive the maximum reward. Each
time step both agents can take one of 2 possible actions. If an agent chooses
action 0 it stays in the same location, if it chooses action 1 it moves to the other
grid location. The transitions in the grid are stochastic, with a action 1 having a
probability of 0.9 to change location and a probability of 0.1 to stay in the same
location and visa versa for action 0. Each agent chooses an action based only on
its present location. The agents cannot observe the location or action of the other
agent. The agents receive a reward that is determined by their joint location after
moving. Table 1 gives reward functions R1 and R2 for 2 different learning prob-
lems in the grid of Figure 1. Column 1 gives the joint location of the agent, while
columns 2 and 3 give the reward for both agents under reward functions R1 and
R2 respectively. This problem can be transformed into a Markov game by consid-
ering the product space of the locations and actions. A state in the Markov game

0 0

1

Agent A Agent B

{L1,L1} {L1,L2}

{L2,L1} {L2,L2}

{0,1}

{1,0}

{0,1}

{1,0}

{1,1}

{1,
1}

{0,0}

{0,0}{0,0}

{0,0}

Fig. 1. (Top)The grid-world game with 2 grid locations and 2 non-mobile LA in every
location.(Bottom) Markov game representation of the same game.
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Table 1. Reward functions for 2 different Markov Games. Each function gives a reward
(r1, r2) for agent 1 and 2 respectively. Rewards are based on the joint locations of both
agents after moving. Function R1 results in a Team Game with identical payoffs for
both agents, while R2 specifies a conflicting interest Markov game.

state R1 R2

{L1,L1} (0.01,0.01) (0.5,0.5)
{L1,L2} (1.0,1.0) (0.0,1.0)
{L2,L1} (0.5,0.5) (1.0,0.0)
{L2,L2} (0.01,0.01) (0.1,0.1)

consists of the locations of both agents, e.g. S1 = {L1, L1} when both agents are
in grid cell 1. The actions that can be taken to move between the states are the
joint actions resulting from the individual actions selected by both agents. The
limiting game corresponding to each reward function can be determined by cal-
culating the expected reward for each policy in the grid game, provided that the
corresponding markov chain is ergodic. This is the case here, so we can calculate
transition probabilities for the given grid world problem. For instance in location
{L1, L1} with joint action {0, 0} chosen, the probability to stay in state {L1, L1}
is 0.81. The probabilities corresponding to moves to states {L1, L2}, {L2, L1} and
{L2, L2} are 0.09, 0.09 and 0.01 respectively. The transition probabilities for all
states and joint action pairs can be calulated this way. With the transition prob-
abilities and the rewards known, we can use Equation 3 to calculate the expected
reward.

The complete limiting games corresponding to both reward functions are
shown in Table 2. Reward function R1 results in a common interest game with
a suboptimal equilibrium giving a payoff of 0.4168 and the optimal equilibrium

Table 2. Limiting games for the reward functions given in Table 1 (Top)Common
interest game with both an optimal and a suboptimal equilibrium (Bottom) Conflicting
interest game with a dominated equilibrium. Equilibria are indicated in bold.

agent 1
policy {0,0} {0,1} {1,0} {1,1}

a
g
en

t
2 {0,0} 0.38 0.48 0.28 0.38

{0,1} 0.28 0.1432 0.4168 0.28
{1,0} 0.48 0.8168 0.1432 0.48
{1,1} 0.38 0.48 0.28 0.38

agent 1
policy {0,0} {0,1} {1,0} {1,1}

a
g
en

t
2 {0,0} (0.4,0.4) (0.28,0.68) (0.52,0.12) (0.4,0.4)
{0,1} (0.68,0.28) (0.496,0.496) (0.864,0.064) (0.68,0.28)
{1,0} (0.12,0.52) (0.064,0.864) (0.176,0.176) (0.12,0.52)
{1,1} (0.4,0.4) (0.28,0.68) (0.52,0.12) (0.4,0.4)
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resulting in a payoff of 0.8168. Reward function R2 results in a conflicting in-
terest limiting game with a single equilibrium giving a reward of 0.176 to both
players. In this game several plays exist that give both players a higher payoff
than the equilibrium play. Note that the underlying limiting game in case of full
observability would be different. In this case, an agent policy can be described
based on joint state-information rather than single agent locations. In this case
an agents’ policy is described by a 4-tuple, i.e. for each state of the correspond-
ing Markov game an action is given. This would result in an underlying limiting
game of size 24 × 24.

4 Learning Automata

Learning Automata are simple reinforcement learners originally introduced to
study human behavior. The objective of an automaton is to learn an optimal
action, based on past actions and environmental feedback. Formally, the automa-
ton is described by a quadruple {A, β, p, U} where A = {a1, . . . , ar} is the set
of possible actions the automaton can perform, p is the probability distribution
over these actions, β is a random variable between 0 and 1 representing the
evironmental response, and U is a learning scheme used to update p.

4.1 A Simple LA

A single automaton is connected in a feedback loop with its environment. Ac-
tions chosen by the automaton are given as input to the environment and the
environmental response to this action serves as input to the automaton. Sev-
eral automaton update schemes with different properties have been studied.
Important examples of linear update schemes are linear reward-penalty, linear
reward-inaction and linear reward-ε-penalty. The philosophy of these schemes
is essentially to increase the probability of an action when it results in a suc-
cess and to decrease it when the response is a failure. The general algorithm is
given by:

pm(t + 1) = pm(t) + αr(1 − β(t))(1 − pm(t)) − αpβ(t)pm(t) (4)
if am is the action taken at time t

pj(t + 1) = pj(t) − αr(1 − β(t))pj(t) + αpβ(t)[(r − 1)−1 − pj(t)] (5)
if aj �= am

The constants αr en αp are the reward and penalty parameters respectively.
When αr = αp the algorithm is referred to as linear reward-penalty (LR−P ),
when αp = 0 it is referred to as linear reward-inaction (LR−I) and when αp is
small compared to αr it is called linear reward-ε-penalty (LR−εP ).

4.2 Parameterized Learning Automata

Parameterized Learning Automata (PLA) keep a real number, internal state vec-
tor u, which is not necessarily a probability vector. The probabilities of various
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actions are generated based on this vector u and a probability generating func-
tion g : �M ×A → [0, 1]. The probability of action ai at time t is then given by
pai(t) = g(u(t), ai) with g(u, ai) ≥ 0 and

∑
ai

g(u, ai) = 1, i = 1 . . . |A|, ∀u.1

This system allows for a richer update mechanism by adding a random pertur-
bation term to the update scheme, using ideas similar to Simulated Annealing.
It can be shown that owing to these perturbations, PLA are able to escape local
optima. When the automaton receives a feedback r(t), it updates the parameter
vector u instead of directly modifying the probabilities. In this paper we use
following update rule proposed by Thathachar and Phansalkar [7]:

ui(t + 1) = ui(t) + bβ(t)
δ ln g

δ ui
(u(t), α(t)) + bh′(ui(t)) +

√
bsi(t) (6)

with:

h(x) =

⎧⎨
⎩

−K(x − L)2n x ≥ L
0 |x| ≤ L

−K(x + L)2n x ≤ −L
(7)

where h′(x) is the derivative of h(x), {si(t) : k ≥ 0} is a set of i.i.d. variables with
zero mean and variance σ2, b is the learning parameter, σ and K are positive
constants and n is a positive integer. In this update rule, the second term is a
gradient following term, the third term is used to keep the solutions bounded
with |ui| ≤ L and the final term is a random noise term that allows the algorithm
to escape local optima that are not globally optimal. In [7] the authors show that
the algorithm converges weakly to the solution of the Langevin equation, which
globally maximizes the appropriate function.

4.3 Automata Games

Automata games, [8,9] were introduced to see if learning automata could be in-
terconnected so as to exhibit group behavior that is attractive for either modeling
or controlling complex systems. A play a(t) = (a1(t) . . . an(t)) of n automata is a
set of strategies chosen by the automata at stage t. Correspondingly, the outcome
is now a vector β(t) = (β1(t) . . . βn(t)). At every instance, all automata update
their probability distributions based on the responses of the environment. Each
automaton participating in the game operates without information concerning
the number of participants, their strategies, their payoffs or actions. In general
non zero sum games [9] it is shown that when the automata use a LR−I scheme
and the game is such that a unique pure equilibrium point exists, convergence
is guaranteed. In cases where the game matrix has more than one pure equilib-
rium, which equilibrium is found depends on the initial conditions. Summarized
we have the following [10]

Theorem 1. [10] When the automata game is repeatedly played with each player
making use of the LR−I scheme with a sufficiently small step size, then local
convergence is established towards pure Nash equilibria.

1 An example probability generating function is given in the experiments section.
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For team games, in which all players receive the same pay-off for each play,
Thathachar and Phansalkar [7] show that a group of PLA using update scheme 6
will converge to the global optimum, even when suboptimal equilibria exist.

4.4 A Network of LA Solving an MDP

The (single agent) problem of controlling a Markov chain can be formulated as
a network of automata in which control passes from one automaton to another.
In this set-up every action state2 in the Markov chain has a LA that tries to
learn the optimal action probabilities in that state with learning scheme given
in Equations (4,5). Only one LA is active at each time step and transition to the
next state triggers the LA from that state to become active and take some action.
LAi active in state si is not informed of the one-step reward Rij(ai) resulting
from choosing action ai ∈ Ai in si and leading to state sj . When state si is
visited again, LAi receives two pieces of data: the cumulative reward generated
by the process up to the current time step and the current global time. From
these, LAi computes the incremental reward generated since this last visit and
the corresponding elapsed global time. The environment response or the input
to LAi is then taken to be:

βi(ti + 1) =
ρi(ti + 1)
ηi(ti + 1)

(8)

where ρi(ti + 1) is the cumulative total reward generated for action ai in state
si and ηi(ti + 1) the cumulative total time elapsed. The authors in [5] denote
updating scheme as given in Equations (4,5) with environment response as in
(8) as learning scheme T1. The following results were proved:

Lemma 1 (Wheeler and Narendra, 1986). The (N state) Markov chain
control problem can be asymptotically approximated by an identical payoff game
of N automata.

Theorem 2 (Wheeler and Narendra, 1986). Associate with each action
state si of an N state Markov chain, an automaton LAi using learning scheme
T1 and having ri actions. Assume that the Markov Chain, corresponding to each
policy α is ergodic. Then the decentralized adaptation of the LA is globally ε-
optimal3 with respect to the long-term expected reward per time step, i.e. J(α).

4.5 A Network of LA Solving a Markov Game; Full State
Observability

In a Markov Game the action chosen at any state is the joint result of individual
action components performed by the agents present in the system. The LA
2 A system state is called an action state, when the agent can select more than one

action.
3 A LA is said to behave ε-optimal when it approaches the optimal action probability

vector arbitrarily close.
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network of the previous section can be extended to the framework of Markov
Games just by putting a simple learning automaton for every agent in each
state [4].

Instead of putting a single learning automaton in each action state of the
system, we propose to put an automaton LAi

k in each action state si with i :
1 . . .N and for each agent k, k : 1 . . . n. At each time step only the automata of a
single state are active; a joint action triggers the LA from that state to become
active and take some joint action.

As before, LA LAi
k active for agent k in state si is not informed of the one-

step reward Rij(ai) resulting from choosing joint action ai = (ai
1, . . . , a

i
n) with

ai
k ∈ Ai

k in si and leading to state sj . When state si is visited again, all automata
LAi

k receive two pieces of data: the cumulative reward collected by agent k to
which the automaton belongs up to the current time step and the current global
time. From these, all LAi

k compute the incremental reward generated since this
last visit and the corresponding elapsed global time. The environment response
or the input to LAi

k is exactly the same as in Equation 8.
The following result was proven in [4]:

Theorem 3. The Learning Automata model proposed for ergodic Markov games
with full state observability converges to an equilibrium point in pure strategies
for the underlying limited game.

5 A Network of LA Solving a Markov Game; Limited
State Observability

The main difference with the previous setup for learning Markov games [4] is
that in this paper we do not assume that agents can observe the complete sys-
tem state. Instead, each agent learns directly in its own observation space, by
associating a learning automaton with each distinct state it can observe. Since
an agent does not necessarily observe all state variables, it is possible that it
associates the same LA with multiple states, as it cannot distinguish between
them. For example, in the 2-location grid world problem of section 3, an agent
associates a LA with each location it can occupy, while the full system state
consists of the joint locations of all agents. As a consequence, it is not possible
for the agents to learn all policies. For instance in the 2-location problem, the
automaton associated by agent A with location L1 is used in state S1 = {L1, L1}
as well as state S2 = {L1, L2}. Therefore it is not possible for agent A to learn
a different action in state S1 and S2. This corresponds to the agent associating
actions with locations, without modeling the other agents.

The definition of the update mechanism here is exactly the same as in the
previous model, the difference is that here agents only update their observable
states which we will call locations to differentiate with the global system state
of the corresponding Markov game. This will give the following: LAi

k, active for
agent k in location li is not informed of the one-step reward Ri

j(a
i) resulting

from choosing joint action ai = (ai
1, . . . , a

i
n) with ai

k ∈ Ai
k in si and leading to
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location lj . Instead, when location li is visited again, automaton LAi
k receive

two pieces of data: the cumulative reward for the agent k up to the current time
step and the current global time. From these, automaton LAi

k computes the
incremental reward generated since this last visit and the corresponding elapsed
global time. The environment response or the input to LAi

k is then taken to be:
βi(ti +1) = ρi(ti+1)

ηi(ti+1) where ρi(ti +1) is the cumulative total reward generated for
action ai in location li and ηi(ti + 1) the cumulative total time elapsed. We still
assume that the Markov chain of system states generated under each joint agent
policy α is ergodic. In the following, we will show that even when the agents
have only knowledge of their own location, in some situations it is still possible
to find an equilibrium point of the underlying limiting game.

6 Illustration on the Simple Grid Problem

Figure 2 (Left) and (Right) show the results obtained with the LR−I update
scheme in the Markov games using reward function R1 and R2 respectively.
Since we are interested in the value that the agents converge to, we show a single
typical run, rather than an average over multiple runs. To show convergence to
the different equilibria we restart the agents every 2 million time steps, with
action probabilities initialized randomly.

We can observe that with in the game with reward function R1 agents move
to either the optimal or the suboptimal equilibrium of the underlying limit-
ing game given in Table 2(Top), depending on their initialization. Using R2
the agents always converge to same, single equilibrium of the limiting game of
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Fig. 2. Results for the grid world problem of Figure 1 (Left)Average reward over time
for agent 1, using identical rewards of R1 (Right) Average reward over time for both
agents, using reward function R2. Settings were αp = 0, αr = 0.05.
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Table 3. Results of LR−I and PLAs on the small grid world problem with reward func-
tion R1. Table shows the average convergence to each equilibrium, total convergence
over all trials and average time steps needed for convergence. Standard deviations are
given between parentheses. PLA settings were b = 0.1, σ = 0.2, K = L = n = 1.

Eq. Exp. Reward Average (/20) Total (/12500) Avg Time

LR−I ((1,0),(0,1)) 0.41 1.73(3.39) 1082
1218.78(469.53)

αr = 0.1 ((0,1),(1,0)) 0.82 15.62(4.62) 9762

LR−I ((1,0),(0,1)) 0.41 0.82(3.30) 515
11858.85(5376.29)

αr = 0.01 ((0,1),(1,0)) 0.82 19.14(3.34) 11961

PLA
((1,0),(0,1)) 0.41 0.08(0.33) 50

21155.24(8431.28)
((0,1),(1,0)) 0.82 19.81(0.59) 12380

Table 2(Bottom). Even when the agents start out using policies that give a
higher payoff, over time they move to the equilibrium.

Figure 2 (Left) shows that even when all automata receive the same reward
convergence to the global optimum is not guaranteed using the LR−I scheme. To
obtain improved convergence to the optimum we apply the algorithm with PLA
in each location. Each PLA has a parametervector u = (u0, u1) with parameters
corresponding to actions 0 and 1. The action probabilities are calculated using
following probability generating function:

g(u(t), ai) =
eui(t)∑
j euj(t)

(9)

Table 3 shows a comparison of PLA with LR−I on the grid world problem
with reward function R1. For these experiments, each automaton was initialized
to play action 0 with a probability of 0.18, 0.35, 0.5, 0.65, or 0.82. This gives a
total of 625 initial configurations for the 4 automata in the grid world problem.
For each configuration, 20 runs were performed, resulting in a total of 12500 runs
for each algorithm. Table 3 gives the average number of times the algorithms
converged to each of the equilibria, the total equilibrium convergence over all
runs and the average amount of time steps needed for all LA to converge. A
learning automaton was considered to have converged if it played a single action
with a probability of 0.98 or more. Each trial was given a maximum of 250000
time steps to let the automata converge. It is immediately clear from Table 3
that the PLA converge to the optimal equilibrium far more often, but on average
take more time to converge.

Figure 3 shows results on an initial configuration for which the LR−I automata
always converge to the suboptimal equilibrium. The PLA, however, are able to
escape the local optimum and converge to the globally optimal equilibrium point.
Due to the random noise added to the update scheme, the PLA do receive a
slightly lower pay-off than is predicted in Table 2(a).
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Fig. 3. Comparison of PLA with LR−I on the grid world problem of Figure 1, using
reward function R1. The automata were initialized to play their suboptimal equilibrium
action with probability 0.82. Settings were αr = 0.01 for LR−I and b = 0.1, σ =
0.2, K = L = n = 1 for the PLA.

7 Theoretical Analysis

The above illustration shows the convergence of the proposed LA-model to one
of the equilibrium points of the underlying limiting game. In case of the 2-
state example given above, we can observe that with reward function R1 agents
move to either the optimal or the suboptimal equilibrium, depending on their
initialization. Using R2 the agents always converge to same, single equilibrium.
Even when the agents start out using policies that give a higher payoff, over
time they move to the equilibrium. We can justify these results with a proof of
convergence.

Theorem 4. The network of LA that was proposed here for myopic agents in
Markov Games, converges to a pure equilibrium point of the limiting game pro-
vided that the Markov chain of system states generated under each joint agent
policy is ergodic and agents’ transition probabilities4 do not depend on other
agents’ activities.

Proof Outline. This result will follow from the fact that a game of reward-
inaction LA will always converge to a pure equilibrium point of the game, see
Theorem 1.
4 We refer here to transitions of the local agent state e.g. an agent’s movement in the

grid. Transitions between system states in the global Markov game generally depend
on the actions of all agents present in the system, as can been seen in the example
of Figure 1.
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Consider all LA present in the system. The interaction between these LA can
be formulated as a game with each LA as a player. Rewards in this game are
triggered by the joint LA actions as follows: the joint action of all LA in the
game corresponds to a joint agent policy. This policy has an expected average
reward Ji for each agent i. All LA that are associated with agent i (but which
reside in different locations of the system) will get exactly this reward in the
LA game. In [5] it is shown that under the ergodicity requirement stated above,
this game approximates the LA interaction, even though the LA in the system
update in an asynchronous manner.

The idea is to prove that this LA game has the same equilibrium points as the
limiting game the agents are playing. If this is the case the result follows from
Theorem 1. It is easy to see that an equilibrium in the limiting game is also an
equilibrium of the LA-game, since in any situation where it is impossible for a
single agent to improve its reward, it is also impossible for a single automaton
to improve its reward.

Now assume that we can find an equilibrium policy α in the LA-game that is
not an equilibrium point of the limiting game. In this case an agent a and a new
policy β can be found that produces more reward for agent a than policy α and
differs from α in the actions of at least 2 LA, belonging to the same agent a.

A single agent Markov problem can then be formulated for agent a as follows:
the state space is exactly the set of locations for agent a, the action set consist of
the action set of agent a (and these can be mapped to joint actions by assuming
that the other agents are playing their part of policy α), the transitions are given
by agent a’s transitions (they were assumed to be independent from other agents
activities) and finally the rewards for a given action of agent a is given by the
rewards for the corresponding joint actions were the other agents play their policy
part of α. For this Markov chain the result of [5] applies (see theorem 2): the
problem can be approximated by a limiting game τ with only optimal equilibria.
However it cannot be the case that agent a’s part of policy α is an optimal
equilibrium in τ , since the part of policy β gives a better reward.

In [5] it is shown that a better policy can be constructed by changing the
action in only one state of the MDP. So this means that a single automaton
of agent a can change its action to receive a higher reward than agent a’s part
of policy α. However, this contradicts the original assumption of α being an
equilibrium point of the LA game. Therefore, the assumption made was wrong,
an equilibrium point from the LA game should also be an equilibrium point in
the limiting game.

8 Related Work

Few approaches toward analyzing multi-stage MAS settings can be found in
literature. In [11] the Nash Q-values of the equilibrium point of the limiting
game are considered. Nash Q-values are Q-functions over joint actions. These
are updated based on the Nash equilibrium behavior over the current Nash Q-
values. The idea is to let these Q-values learn to reach the Nash Q-values of the
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equilibrium of the limiting game through repeated play. However only in very
restrictive cases, this actually happens. Besides, the approach assumes that the
agents have full knowledge of the system: the agents know their current joint
state, the joint action played and the reinforcement signals all agents receive. In
[12] team Markov Games are also approximated as a sequence of intermediate
games. In team Markov Games, all agents get the same reward function and the
agents should learn to select the same optimal equilibrium strategy. The authors
present optimal adaptive learning and prove convergence to a Nash equilibrium
of the limiting game, however agents know the joint actions played, they all
receive the same reward and thus are able to build the game structure. In [13]
the agents are not assumed to have a full view of the world. All agents contribute
to a collective global reward function, but since domain knowledge is missing,
independent agents use filtering methods in order to try to recover the underlying
true reward signal from the noisy one that is observed. This approach seems to
work well in the example domains shown.

9 Discussion

In this paper the behavior of individual agents learning in a shared environment
is analyzed by considering the single stage limiting game, obtained by considering
agent policies as single actions. We show that when agents are fully ignorant
about the other agents in the environment and only know their own current
location, a network of learning automata can still find an equilibrium point of
the underlying single stage game, provided that the Markov game is ergodic and
that the agents do not interfere each others transition probabilities.

We have shown that local optimum points of the underlying limiting games
are found using the LR−I update scheme. The parameterized learning automata
scheme enables us to find global optimum points in case of team Markov Games
[7]. In more general Markov games coordinated exploration techniques could be
considered to let the agents reach more fair solutions [14].
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Abstract. Finding the right data representation is essential for virtually
every machine learning task. We discuss an extension of this representa-
tion problem. In the collaborative representation problem, the aim is to
find for each learning agent in a multi-agent system an optimal data rep-
resentation, such that the overall performance of the system is optimized,
while not assuming that all agents learn the same underlying concept.
Also, we analyze the problem of keeping the common terminology in
which agents express their hypothesis as compact and comprehensible as
possible by forcing them to use the same features, where this is possi-
ble. We analyze the complexity of this problem and show under which
conditions an optimal solution can be found. We then propose a simple
heuristic algorithm and show that this algorithm can efficiently be im-
plemented in a multi-agent system. The approach is exemplified on the
problem of collaborative media organization and evaluated on a several
synthetic and real world datasets.

1 Introduction

Finding an adequate data representation is a key to successful machine learning.
Such a representation is often expressed in terms of a feature space, the space in
which items in the universe of discourse are described. The problem of finding an
optimal feature space can be denoted as representation problem. Methods that
solve this problem are referred to as feature extraction or feature construction
methods [1]. This term covers such diverse approaches as feature extraction
from raw data, feature selection, feature space transformation, dimensionality
reduction, meta data extraction, etc.

Feature extraction is a very general approach. By constructing appropriate
features, simple data mining algorithms can be extended to handle complex
concepts, as e.g. trigonometric relationships, without modifying them [2]. Ker-
nel methods, that have found increasing attention in the recent years, can be
regarded as feature transformation methods as well [3]. They do however not
create the target feature space explicitly but through an implicit mapping. The
same holds for dimensionality reduction methods such as Principal Component
Analysis (PCA) or Singular Value Decomposition (SVD) (see e.g. [4]).

A family of methods that are particularly powerful for feature extraction are
so called wrapper approaches [5]. The idea of wrapper approaches is to invoke

K. Tuyls et al. (Eds.): Adaptive Agents and MAS III, LNAI 4865, pp. 239–254, 2008.
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the target (machine learning) method subsequently with different feature sets
and to apply an objective function to measure how well suited a feature set is
for solving the problem. Optimization algorithms can then be used to select an
optimal feature set. A downside of this generality is, however, that the optimiza-
tion process can be computationally very demanding. This can be especially a
problem in agent system that work with restricted resources. e.g. autonomous
robots. If we face only a single learning task, there is not much, that we can do
about this.

In many current scenarios, not a single, separated task is learned, but rather
several, partially related ones. Work in multi-agent learning, for instance, focuses
primarily on the question of how agents can share their experience to improve
the overall performance of a system. Usually it is assumed that the agents learn
the same or similar concepts. They can profit from the experience other agents
made or evolve a common behavior by sharing training examples or by asking
other agents for advice ([6,7,8]). This principle has been applied for supervised
as well as for reinforcement learning.

A related topic that recently regained a lot of attention is multi-task learning
[9,10]. The idea is, that solving learning several tasks, that are related to each
other, at once, may be easier than solving them individually. This assumption
is based on the observation, that some learning tasks resemble each other to
some extent and that parameters to solve these tasks resemble each other as
well. First approaches to multi-task learning used for instance a common set
of inner neurons in a neural net, which they shared among several tasks [9].
These common neurons encode common parameters among different tasks. More
current methods for multi-task learning make use of SVM, kernel methods [11,12]
and Gaussian processes [13] to achieve a corresponding effect. The idea in all
cases is to have a class of models (for instance SVM) and several learning tasks.
Then a distribution among the parameters of the models is assumed, that allows
to group tasks into clusters of tasks with similar parameters. [14] discussed the
problem of outlier tasks and how to robustify existing approaches to multi-task
learning. Finally, [15] proposes an interesting variant to the problem by allowing
to calculate a small number of artificial features, that are common to all tasks.

Almost all approaches to multi-task and to multi-agent learning make very
restrictive assumptions. For instance, they assume that all learners use the same
underlying model class and the same set of features. Multi-task learning does
furthermore assume that all learning tasks are solved at once in parallel.

In this work, a more general viewpoint is taken. Based on the paradigm of
wrapper approaches, the problem of selecting appropriate features is analyzed
as a combinatorial optimization problem. We assume a possibly very large set of
features X . The task is to find for each agent and each task a subset X⊆ X such
that the estimated accuracy, by the task is solved, is optimized.

Furthermore, we want the union set of all local feature sets to be as small as
possible. Features are the building blocks with which the agents express their
hypothesis about the concept they aim to capture. It is desirable that the agents
use a common vocabulary (and thus features) to express hypothesis. First, this
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allows agents not only to share examples but also hypothesis or other infor-
mation in subsequent steps. Second, agent systems are rarely closed systems.
Often these systems communicate with other systems or with human users. This
communication is simplified a lot, if all agents use the same or a similar terminol-
ogy. Imagine, for instance, agents that inform users about the relation between
different environmental factors and water pollution at different places. From a
point of view of accuracy, it could be for instance equally well for a given agent
to express the degree of water pollution in relation to water temperature or in
relation to the amount of bacteria in the water. If, however, all agents expressed
their hypothesis in terms of water temperature so far, it will be confusing for the
user to hear about the number of bacteria in a new case. Even worse, this will
make it very hard for her, to compare the hypothesis given by different agents.
If all agents express their hypothesis in terms of water temperature, comparing
hypothesis is on the other hand a very simple task. Therefore, it can even pay
to force agents to use the same features, if this means that the overall accuracy
is slightly decreased.

We will analyze how concepts as feature relevance or redundancy and min-
imality, well known from single-task learning, can be generalized to the case
of multi-agent learning. This will lead to the collaborative representation prob-
lem, thus the problem of finding an optimal local feature set for each agent and
each task in a set of tasks. It will be shown that constraints on the order in
which tasks are solved have an influence on whether we can guarantee to find
an optimal solution. Based on this analysis, a simple, heuristic algorithm, called
prioritized forward selection, is proposed. This algorithm solves two problems.
First, it forces the agents to use the same features and thus the same vocabulary
to express their hypothesis. Second, it helps agents to achieve a faster increase
in accuracy while performing feature selection compared to traditional forward
selection by helping them to focus on relevant features only. If resources are
limited, good results can be achieved, even if only few cycles of feature selection
are performed.

2 Feature Extraction and Feature Relevance

Almost all research on feature extraction has focused on classification and re-
gression tasks. In the following we assume, that a feature X is a vector, assigning
a continuous value to each observation in a given domain. Sets of features will
be denoted as X. The set of all possible features is denoted as X .

Classification is defined as follows.

Definition 1. The aim of classification as a learning task is to find a function
h : X → C that approximates a true concept f : X → C given some observations.
[4]

Classification plays an important role in may applications, such as pattern recog-
nition, decision support, information retrieval, etc. Given a classification task,



242 M. Wurst

we can separate the features in X into relevant features and irrelevant features
according to this task.

In [16] a systematic analysis of feature relevance is given. The authors argue,
that concerning a (classification) task, features can not only be relevant or ir-
relevant, but relevant features must be further divided into weakly and strongly
relevant features. The following formalization follows the presentation in [17].

Definition 2. A feature X ∈ X is strongly relevant for classification with re-
spect to features X, iff

P (C|X) �= P (C|X\{X})

Thus omitting feature X changes in the conditional probability distribution con-
cerning the class value.

Definition 3. A feature X ∈ X is weakly relevant for classification with respect
to features X, iff

P (C|X) = P (C|X\{X})

and

∃X′ ⊆ (X\{X}) : P (C|X′, X) �= P (C|X′)

For features that are weakly relevant, omitting them may lead to a change in
the conditional probability, depending on which other features are selected.

Definition 4. A feature X ∈ X is irrelevant for classification with respect to
features X, iff

∀X′ ⊆ (X\{X}) : P (C|X′, X) = P (C|X′)

If a feature can be omitted without affecting the conditional distribution not
regarding which other features are selected, it is irrelevant for the classification
task, as it can be omitted under all circumstances.

Feature extraction solves the combinatorial problem of finding a subset X ⊆ X
that contains no irrelevant and as few weakly relevant features as possible. Exist-
ing approaches to feature selection can be roughly classified in wrappers, filters
and embedded methods [1]. Filters select features without invoking the actual
learning process. They mostly produce a ranking of the features, according to
their relevance. While these methods are very efficient, they usually cannot cap-
ture feature interaction appropriately, as features are regarded only individually
and not in combination with each other. Embedded method are feature selec-
tion methods that are part of an existing data mining algorithm. An example
are decision tree learners.
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3 Generalized Feature Relevance and Minimal Subsets

Almost all existing work on feature relevance and redundancy has been focusing
on classification tasks. While classification plays an important role for agent
learning, there are many other relevant tasks, such as clustering, that should be
regarded as well.

Following the paradigm of wrapper approaches, we give a very general defi-
nition of an agent learning task. The idea is, that a data mining task is a black
box, the gets a feature set as input and delivers a quality measure as output.
We will denote this quality as accuracy in the following.

Definition 5. An agent learning task is any task for which we can define a
accuracy measure that depends on the subset of features X′ ⊆ X that the agent
uses to solve the task

q : 2X → R

For the special case of classification, the quality is estimated as the expected clas-
sification error on new observations [4]. Other quality functions can be defined,
for instance, for clustering tasks [18].

Given a set of features X ⊆ X we define the following.

Definition 6. A feature X ∈ X is strongly relevant with respect to features X,
iff

∀X′ ⊆ X\{X} : q(X′) < q(X′∪{X})

Thus omitting the feature X leads always to a performance that is inferior than
the one achieved if X is part of the feature space.

Definition 7. A feature X ∈ X is weakly relevant with respect to features X,
iff it is not strongly relevant and

∃X′ ⊆ X : q(X′\{X}) < q(X′)

For features that are weakly relevant, omitting them may lead to a decrease in
performance dependent on the which other features are used for data mining.
Many learners can for instance easily deal with linear transformations of features
(e.g. SVM). If a feature and a linear transformation of the feature are contained
in the features space, both features are not strongly relevant, as either one can
be omitted, as long as the other one is used.

Definition 8. A feature X ∈ X is irrelevant with respect to features X, iff

¬∃X′ ⊆ X : q(X′\{X}) < q(X′)
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If a feature can be omitted without affecting the accuracy not regarding which
other features are used, it is irrelevant for the task, as it can be omitted under
all circumstances.

Now we can give a formal definition for combinatorial feature extraction
problem.

Definition 9. An optimal, minimal feature set is such a set of features X ⊆ X
that q(X) is maximized and there is no X′ ⊆ X , such that q(X) = q(X′) and
|X′| < |X|.
This is also sometimes referred to as minimal sufficient feature subset for the
case of classification (see e.g. [1], page 20). It is not necessary to state that a
minimal feature set should not contain any redundant or irrelevant features, as
this is entailed by the minimality condition.

Finding an optimal feature set is a non-trivial problem. As we cannot make
any assumption concerning the nature of q, optimizing this objective function
involves in the worst case evaluating each subset of X which is exponential in
the size of this set.

Several search heuristics have been proposed (see e.g. [1]). Probably best
known are forward selection and backward elimination. The forward selection
algorithms starts with an empty set of features X = ∅. In each round, each fea-
ture not yet in the X is added to the current feature set and the quality of the
resulting feature set is assessed. In each round, a single feature that increases
the objective function maximally is added to the current set of features. If no
such feature exists the algorithm terminates.

Backward elimination starts with a given feature set X = X and removes in
each round the feature for which the resulting feature set leads to an optimal
accuracy. If no such feature exists or if all features were deselected, the algorithm
terminates.

4 The Collaborative Representation Problem

A set of learning tasks will be denoted as T . We assume that each agent solves
exactly one agent learning task, such that there is a one-to-one relation between
tasks and agents.

Each task ti ∈ T is connected to an objective function qi, as described above.

Definition 10. The overall accuracy of a several data mining tasks T is the
sum over all individual qualities

q∗T (X1, ..,Xi, .,X|T|) =
|T |∑
i=1

qi(Xi)

where Xi ⊆ X denotes the feature set used to solve task ti.

Given more than one learning agent, we can generalize the notion of feature
relevance and feature set optimality. To do so, we regard the accumulated feature
set that contains exactly the features that are used for at least one task in T .
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Definition 11. The accumulated set of features is the union of all locally se-
lected features

XT =
|T |⋃
i=1

Xi

Example 1. Assume an application in which personal agents learn the prefer-
ences of their users concerning music. Also assume, that we can extract three
features from each music clip that represent, for instance, loudness Xl, rhythm
Xr and color Xc of the music, thus X = {Xl, Xr, Xc}. Each user defines a
learning task for her personal agent by tagging music clips with a positive or
a negative label, according whether she likes them or not. This results in one
agent learning task per user, for which we assume a true but unknown concept
fi. For each of the users, another subset of X maybe relevant. For the first
user, preferences may only depend on the loudness, which should be high, e.g.
f1 ≡ X > 2.3. For a second user, preference may depend on the loudness and the
rhythm, e.g. f2 ≡ Xl +Xr > 3. For a third user, the preferences could depend on
the loudness again, which should however be small in this case, e.g. f3 ≡ Xl < 1.
The task for each agent is to find a subset of features and a predictive model,
that captures the preferences of the corresponding user in a way that allows pre-
dictions with a high accuracy. If the true concepts were known, optimal feature
subsets X1 = {Xl}, X2 = {Xl, Xr} and X3 = {Xl} could be selected easily.
The accumulated set of features is then XT = {Xl, Xr}. In a real application,
we can only approximate the real concepts fi by hypothesis, as described above.

We can now generalize the notions of strongly and weakly relevant features.

Definition 12. A feature X ∈ XT is globally strongly relevant with respect to
features XT, iff it is strongly relevant for at least one task t ∈ T .

If X is deleted from XT the overall accuracy decreases, as it must by definition
decrease for at least one task.

Definition 13. A feature X ∈ XT is globally weakly relevant with respect to
features XT, iff it is not globally strongly relevant and is weakly relevant at least
for one task t ∈ T .

Globally weakly relevant features can be omitted, as long as there are alternative
features left that replace them in a way that does not affect the global accuracy.

Definition 14. A feature X ∈ XT is globally irrelevant with respect to features
XT, iff it is irrelevant for every task.

Globally irrelevant features can be omitted from XT in any case without affecting
the accuracy at all, as by definition, they do not affect the accuracy of any
individual agent learning task.
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Definition 15. An optimal set of feature sets selects for each task ti ∈ T a
set of features Xi ⊆ X in a way that q∗(X1, ...,X|T|) is maximized and that
there does not exist another set of features X′

1...X′
|T| for each task, such that

q∗(X1, ...,X|T|) = q∗(X′
1, ...,X′

|T|) and |XT
′| < |XT|, where X′

T =
⋃|T |

i=1 X′
i.

An optimal, minimal set of feature sets X1...X|T| does not contain any globally
irrelevant features or features that are redundant with respect to XT.

Why does it matter, whether the set of accumulated features is minimal?
Assume the following example.

Example 2. A first agent tries to learn the concept f1(Xa, Xb, Xc, Xd) ≡ Xa +
Xb > 4 from data, a second agents tries to learn f2(Xa, Xb, Xc, Xd) = Xb+Xd <
2. We assume, that Xb = Xc. In this case, it would be perfectly reasonable from
a accuracy point of view, to select X1 = {Xa, Xb} and X2 = {Xc, Xd}. Both
feature sets are locally optimal and do not contain redundant features. The accu-
mulated feature set XT = {Xa, Xb, Xc, Xd} does however contain redundancy.
This is not desirable for several reasons. First, if the feature sets are inspected
by a human user, it is hard for her to see the relationship between the tasks.
Assume an analyst, that tries to discover patterns in several branches of a large
company. It is much easier to recognize patterns or influence factors known from
another case than being faced with completely new features. Second, features
can be seen as atomic parts of a representation language to express a hypothesis.
To allow for optimal cooperation, agents should share the same representation
language, as far as this is possible. Thus it would be much better, if both agents
chose Xb (or Xc) leading to an accumulated feature set X′

T = {Xa, Xb, Xd} or
X′′

T = {Xa, Xc, Xd} respectively, both of which do not contain any redundant
features.

5 Distributed Feature Extraction

The problem of distributed feature extraction, is the task of finding a set of
optimal (and minimal) feature sets Xi ⊆ X for each task t ∈ T .

This problem inherits its NP-completeness from the single-task optimization
problem as we can neither make any assumption on the nature of the objective
functions qi nor on how they are related. As for the single-task case, we can still
apply heuristic search schemes.

A very obvious way to do distributed feature extraction would be to apply
heuristic optimization in each agent individually. There are two reasons, why
not to do so:

1. It would not necessarily yield an accumulated feature set that is optimal and
minimal. This is however a desirable property, as was shown above.

2. Solving several learning tasks can be computationally less expensive, than
solving them independently, if it is possible to share information among
these learning tasks. In the remainder of this chapter we will show different
methods of how to do so.
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In this section we present a simple generalized forward selection algorithm
that will be the point of departure for further optimizations. First, we must
further specify the scenario, we are talking about, in terms of the temporal
order in which tasks are solved. While for stating the distributed representation
problem, the order in which the tasks are solved did not have any significance,
this order plays an important role for solving it.

In the following we assume an order relation on tasks, that denotes that the
agent have to solve a task before another one is solved.

Definition 16. The temporal order relation for tasks ≺⊆ T 2 represents con-
straints on the order, in which the tasks have to be solved, i.e. ti ≺ tj, denotes
that task ti must be solved by the agents before tj is solved, which as a conse-
quence means, that the feature set Xi must be chosen, before Xj is chosen. ≺ is
assumed to be transitive and anti-symmetric.

If there are no restrictions on the order in which the learning tasks must be solved
by the agents, a simple approach to find a minimal subset of accumulated features
is to solve all tasks at once. Let us assume an agent, that enumerates all possible
subsets X ⊆X . For each subset X, optimal feature selection is applied for each
task separately and the accumulated accuracy and the size of the accumulated
feature set is measured. Similar to optimal feature selection for a single task, this
would also lead to an optimal and minimal feature set for several tasks (although
it would be computationally extremely expensive).

However, in many applications we cannot assume that all tasks are solved at
once. Mostly, tasks are solved in some kind of a temporal order. In real world
scenarios, agents face new tasks continuously. Still, the system has to output
some result for the first task it faces.

Given constraints on the order in which task are solved, can we still find an
optimal and minimal feature set? Surprisingly, the answer is no, in general. In
fact, it is not possible to formulate any algorithm that guarantees to find such
a set in general, given at least two tasks ti, tj ∈ T that are in temporal relation
to each other.

Theorem 1. There is no algorithm that can guarantee to find an optimal, min-
imal set of feature sets, given that ∃ti, tj ∈ T : ti ≺ tj.

Proof. As a proof, we construct a counter example. Assume that the feature
selection algorithm would first face ti, for which the concept fi(Xa, Xb) ≡ (Xa <
4) should be induced. Assume, that Xa = Xb, for Xb < 4 and Xa = 4 else. For
this task, either {Xa} or {Xb} can be chosen to optimize it. Let us assume that
{Xa} is chosen. The second task tj the concept fj(Xa, Xb) ≡ Xb > 10 is faced. In
this case, {Xb} must be chosen. This leads to a non-minimal overall feature set
XT = {Xa, Xb}. If for ti, {Xb} would have been chosen, the we could construct
a similar example leading to the a non-minimal subset XT = {Xa, Xb}. Thus
any choice for the first task, can turn out to be suboptimal in the second task.
Therefore, no algorithm that solves ti and tj in sequential order can guarantee
to yield a minimal and optimal set of features XT.
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While this is somewhat discouraging, it still allows us to look for heuristic ap-
proaches that lead at least to approximately minimal sets of feature sets.

6 Prioritized Forward Selection

In the following, an extension to forward selection is proposed, that is denoted
as prioritized forward selection. The basic idea is, that if we solve a task t,
we first take a look at all tasks T ′, that already are solved. This leads to the
accumulated feature set XT′ =

⋃
ti∈T ′ Xi containing all feature used in at least

one task, already solved or currently solved. Then we perform forward selection
twice. First, we perform forward selection using only the features in XT′ . Thus
an agent first tries to optimize the local feature set using only such features
already used by other agents and thus already part of the common vocabulary.
This is done just as in the case of traditional forward selection by subsequently
adding features until no further improvement can be achieved. Then the agent
performs a second forward selection using all remaining features in X . This can
be combined with a threshold ε, such that new features are only added, if this
increases the performance above a certain level.

Prioritized forward selection serves two purposes. First, it helps to at least
heuristically find small accumulated feature sets, which is an important prop-
erty when facing feature extraction for several tasks. A second purpose, at least
equally important, is that efficiency and even accuracy can be increased.

The idea is the following. We assume that in most application areas, some of
the tasks in T resemble each other to some extend and require similar feature sets
to be solved optimally. If good solutions for some tasks were already identified,
applying these “know-to-work-well” features on new tasks seems quite promising,
as if the new task is similar to an existing one, the set XT′ will already contain
all relevant features. Selecting features from XT′ is always more efficient than
selecting from X , as XT′ ⊆ X . Especially, if we consider feature construction,
where X might contain millions of possible features, this can make the problem
for subsequent tasks much easier to solve.

Furthermore, it may even lead to better solutions. Agents often work with
bounded resources. As a consequence, they must terminate the feature extrac-
tion process after a given amount of time, or after the performance is “good
enough”, thus a given accuracy threshold is exceeded. Finding relevant features
as early as possible is therefore crucial, as it can speed up the process of finding
a good solution. Given a maximum effort an agent allows for optimization, it can
even improve the solutions. If good solutions are evaluated late in the feature
extraction process, they might not be found at all, if the process is terminated
early on.

The approach proposed above can easily be implemented in a multi-agent
system. The idea is, that each agent facing a learning task queries the other
agents for features. Each agent that already solved its task responds with the
features used in an optimal and minimal solution. In this way, the set XT′ ⊆ X
is assembled in a fully distributed way.
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We propose a model for feature sharing that is based on the contract net
protocol. Agents send a queries for features to other agents and receive bids,
possibly containing a score of how well the feature performed. Then they actually
request the features.

We propose an optional scoring framework especially tailored to the collab-
orative media organization application presented in section 7 or similar ap-
plications. Agents query other agents with a message that contains a set of
observation example ids. In the case of collaborative media organization, this
could be an identifier that uniquely identifies media items. These observation
ids may additionally contain label or feedback information. We denote the last
case as supervised feature query, while an unsupervised feature query denotes
the case in which no such information is available.

An agent i that receives an unsupervised query measures the information con-
tent of all features in Xi on the requested observations. This is the amount of
information contained in the feature, in the sense of information theory. Obvi-
ously, if this value is small (for instance all observations have the same value
for a feature), the feature is not likely to be relevant to the requesting agent.
Image, for instance, a first user that tries to separate her rock and pop music. A
second user provides features for some of these music items that consist of man-
ual annotations of these items by tags. Unfortunately, this user tagged all of the
requested items only with the tag “rock”. In this case, the feature would have
the same value for all items and would not be helpful for learning a hypothesis
that separates them. In our practical applications, these threshold were set to
zero, thus only definitely useless features were omitted.

On a request, agent i returns the label of the best features together with
their score as bid to the requesting agent. This agent consecutively requests
feature value for the feature with the best bids, incorporates them and applies
prioritized forward selection. This process terminates as there are no more bids
or as the requesting agent does not have resources for further optimization. If
the requesting agent receives a bid on a feature it already uses, it can simply
ignore it.

Supervised feature queries works very similar as their unsupervised variant.
In this case features are evaluated according to the information gain, given the
class values. This approach can only be applied to classification problems, while
unsupervised queries could be applied to any problem. The discussion of this
problem is beyond the scope of this work.

7 Application to Distributed Multimedia Organization

Our reference application is the distributed media organization framework
Nemoz1. Nemoz is a multi-agent system that support users to organize their mu-
sic collections by applying distributed machine learning algorithms. Each user
may create arbitrary classification schemes to organize her locally stored music
items. Such schemes may be highly personal, e.g. based on mood, time of day,
1 http://nemoz.sf.net
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personal genres etc. One important task of the agents is to assign new items
to these classes automatically. This requires agents to create classifiers for each
user-created tag structure using diverse features ranging from meta-data to au-
dio features. To improve the efficiency of the system, prioritized forward selection
is used.

Nemoz is an ideal test case for our approach and multi-agent learning in gen-
eral. First, the management of multi media data is a very hard task, requiring
cost intensive preprocessing. Second, media collections are usually inherently
distributed. Third, music is stored and managed on a large variety of different
devices with very different capabilities concerning network connection and com-
putational power. This demands for adaptive methods to distribute the work
load dynamically. As shown above, agents can decide autonomously, how much
effort they put in feature extraction and transformation. Agents with low capa-
bilities can therefore profit from the presence of agents with high computational
capabilities.

8 Evaluation

The advantage of using prioritized forward selection in multi-agent learning was
argued to be two-fold. First, the size of the accumulated feature set can be
reduced. This effectively reduces the vocabulary in which the agents describe
their hypothesis about the underlying relationship they are trying to represent
and makes the learned models and their differences much easier to comprehend.
Second, by focusing on promising features only, agents are able to find good
feature set quicker. This is essential in time-critical applications, were agents
work with bounded resources.

Correspondingly we would like to clarify the following two questions:

(Q1) Is PFS able to reduce the size of the accumulated feature set com-
pared to traditional forward selection? How does this affect the av-
eraged accuracy?

(Q2) Does PFS achieve a faster accuracy increase in the feature selection
process compared to traditional forward selection?

To analyze these questions we use six datasets, four synthetic ones and two
real-world datasets.

The first real world data set is taken from the Nemoz application described
in section 7. This dataset contains the 39 tag structures on 1886 audio files.
Each tag structure is a hierarchical taxonomy in which each inner node or leaf
node may contain references to a subset of the underlying audio files. These tag
structures reflect the ways in which the students organized their files. The task
is to assign new audio files to these personal tag structures automatically. This
reduces the effort for the users to tag new audio files while still enabling them to
use personal categories instead of predefined ones. Each audio file is described
by a set of 49 features. These features were extracted from the raw wave data
using the method described in [2] and were shown to work well in a wide variety



Multi-agent Learning by Distributed Feature Extraction 251

Table 1. Overview of the datasets: the number of examples for each task (examples),
the number of different classes for the tasks (classes), the number of features (feat..),
the number of relevant features (rel. feat.), the number of underlying generic functions
(funct.) and a reference of the datasets (ref.). The number of relevant features and the
number of generative functions are only known for the synthetic datasets.

tasks examples classes feat. rel. feat. funct. ref.

synth1 5 93 - 108 2 7 4 1
synth2 5 90 - 111 2 20 4 1
synth3 10 86 - 112 2 15 10 3
synth4 10 87 - 116 2 30 10 3
garageband 39 16 - 674 2-9 49 ? ? [19]
register 9 92 - 777 2 26 ? ? [20]

of applications. For the given experiments, only the top level of each taxonomy
was used. This leads to 39 datasets. The number of classes varies between 2 and
9. The dataset is publicly available. Details can be found in [19].

The second dataset is taken from an application of automatically classifying
musical instruments which is essential for decentralized sound optimization. This
dataset contains 9 different tasks. Each tasks corresponds to a single musical
instrument and contains examples for notes played in alto and bass. The aim
is to separate high and low notes for each instrument. All notes are stored as
wave forms. From these waveforms 26 features were extracted. The dataset is
described in detail in [20] and can be obtained from the corresponding authors.

The first synthetic dataset was created in the following way. First, an ar-
bitrary, multidimensional, polynomial function was chosen. This function was
applied to 200 examples with six attributes assigned random values based on a
Gaussian-distribution with zero mean and standard deviation one. Of the six at-
tributes, four are relevant to the function, two are irrelevant. Using a threshold,
a binary label for each example was inferred. This threshold was chosen such,
that the amount of positive and negative examples was about equal. Then each
individual data set (each task) was created by first selecting a random subset of
examples. The probability of selecting an example was set to 0.5. For each task,
a noise term was applied to the label attribute by flipping a label value with
probability 0.05. Five tasks were generated in this way. The remaining three
datasets were created accordingly, varying the number of generative functions
and the number of irrelevant features. These datasets and the generator can
be obtained on request from the author. The most important properties of the
individual datasets are described in table 1.

Each of the datasets constitutes a scenario that is evaluated independently
from the other scenarios. In each scenario, we assume that each agent is assigned
exactly one task. Thus solving the garageband dataset, for instance, involves 39
agents. These agents solve their corresponding tasks in an arbitrary total se-
quential order. Each agent performs feature selection to its assigned task. In a
first experiment traditional forward selection was used, in a second one prior-
itized forward selection was used. Also, a third experiment was performed not
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Fig. 1. The development of the accuracy in the course of feature selection. The accuracy
increases faster for PFS. If the agents can only afford to perform some few cycles, the
resulting accuracy is higher. In general, the accuracy achieved by traditional forward
selection can be slightly higher, as the minimality criterion is not optimized. For the
other datasets, similar observations can be made.

using feature selection at all. Each feature set is evaluated on a task by apply-
ing 10-fold stratified cross-validation to the corresponding examples. As learning
algorithm, Nearest Neighbor is used.

Traditional and prioritized forward selection are compared in terms of the
average estimated accuracy over all tasks, the size of the accumulated feature
set and the speed with which the accuracy increases in the feature selection
process. The latter property is captured as graph, with the number of steps
(feature set evaluations) on the x-axis and the current best accuracy on the y-
axis. This graph is created by first creating a graph for each task in a set of
tasks. Then these graphs are averaged. All experiments were performed with
Rapid Miner2 and the distributed data mining simulator3 both of which can be
obtained as open source software.

Table 2 and table 3 show the results for average accuracy and total number
of features. Figure 1 shows the averaged accuracy for all six datasets depending
on the number of evaluations performed.

We can see the following. Traditional forward selection produces the larger
or equally large sets of aggregated features over all six datasets. PFS selects on
five of six datasets less features than traditional forward selection. Concerning
accuracy, PFS mostly performs equally well or only slightly worse. This supports
that PFS can actually reduce the size of the aggregated feature set without sac-
rificing too much accuracy. In figure 1 we see, that the increase in accuracy is
much faster for PFS than for traditional forward selection. This answers ques-
tions two. Later tasks can exploit the work done on preceding tasks by directly
focusing on promising features. This works even if the tasks are heterogeneous.

2 http://www.rapid-i.de
3 http://www-ai.cs.uni-dortmund.de/SOFTWARE/ddm simulator
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Table 2. The average accuracy for traditional and prioritized forward selection and for
learning without feature selection. As can be seen, feature selection can improve the
accuracy. PFS produces mostly equal or only slightly inferior average accuracy over all
tasks.

synth1 synth2 synth3 synth4 garageband register

no selection 0.72 0.74 0.61 0.58 0.45 0.96
FS 0.79 0.79 0.76 0.79 0.61 0.96
PFS 0.79 0.79 0.74 0.79 0.59 0.96

Table 3. The size of the accumulated feature set for traditional and prioritized forward
selection and for learning without feature selection. As can be seen, the number of
features used by the agents is smaller for PFS in almost all cases.

synth1 synth2 synth3 synth4 garageband register

no selection 7 20 15 30 49 26
FS 5 6 15 24 43 16
PFS 5 4 9 20 27 11

With an increasing number of alternative and irrelevant features, the difference
between PFS and traditional forward selection may become even stronger, as
can be seen on the dataset synth2.

9 Conclusion

Selecting an adequate set of features is a key to successful machine learning in
many domains. In this work, the problem of selecting optimal sets of features
for several learning agents was discussed. We formalized this problem as combi-
natorial optimization problem. It was shown that a particularly interesting task
is to find feature sets, that fulfill two conditions. First, each agent should use a
feature set that allows to solve the learning task it faces optimally. Second, the
union of features should be as small a possible. This reduces the terminology
used by the agents to represent their hypothesis and thus leads to more coherent
and interpretable results.

It was shown that if we assume temporal constraints on the order in which
the agents have to accomplish the learning tasks, there is no algorithm that is
guaranteed to produce an optimal and minimal solution. We therefore propose
a heuristic approach, called prioritized forward selection. Using this approach,
each agent aims to use features already used by other agents to solve a task.
Only if this does not lead to any further improvement, novel features are added.

Sharing features, and thus representation, among agents is a very general
approach. We exemplified this approach on the task of classification. The meth-
ods proposed here would be, however, applicable to many other agent learning
problems as well, including clustering and reinforcement learning.



254 M. Wurst

References

1. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations
and Applications (Studies in Fuzziness and Soft Computing). Springer-Verlag, New
York (2006)

2. Mierswa, I., Morik, K.: Automatic feature extraction for classifying audio data.
Machine Learning Journal 58, 127–149 (2005)

3. Schlkopf, B., Smola, A.J.: Learning with Kernels — Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer series in statistics. Springer, Heidelberg
(2001)

5. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97, 273–324 (1997)

6. Nunes, L., Oliveira, E.: Learning from multiple sources. In: Proc. of the Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
1106–1113 (2004)

7. Kapetanakis, S., Kudenko, D.: Reinforcement learning of coordination in hetero-
geneous cooperative multi-agent systems. In: Adaptive Agents and Multi-Agent
Systems, pp. 119–131 (2005)
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