
Deterministic Algorithms for Rank Aggregation
and Other Ranking and Clustering Problems

Anke van Zuylen� and David P. Williamson��

School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853

Fax: (607) 255-9129
avz2@cornell.edu
dpw@cs.cornell.edu

Abstract. We consider ranking and clustering problems related to the
aggregation of inconsistent information. Ailon, Charikar, and Newman
[1] proposed randomized constant factor approximation algorithms for
these problems. Together with Hegde and Jain, we recently proposed
deterministic versions of some of these randomized algorithms [2]. With
one exception, these algorithms required the solution of a linear pro-
gramming relaxation. In this paper, we introduce a purely combinator-
ial deterministic pivoting algorithm for weighted ranking problems with
weights that satisfy the triangle inequality; our analysis is quite simple.
We then shown how to use this algorithm to get the first deterministic
combinatorial approximation algorithm for the partial rank aggregation
problem with performance guarantee better than 2. In addition, we ex-
tend our approach to the linear programming based algorithms in Ailon
et al. [1] and Ailon [3]. Finally, we show that constrained rank aggrega-
tion is not harder than unconstrained rank aggregation.

Keywords: derandomization, rank aggregation, feedback arc set in tour-
naments.

1 Introduction

We consider the problem of ranking or clustering a set of elements, based on
input information for each pair of elements. The objective is to find a solution
that minimizes the deviation from the input information. For example, we may
want to cluster webpages based on similarity scores, where for each pair of pages
we have a score between 0 and 1, and we want to find a clustering that minimizes
the sum of the similarity scores of pages in different clusters plus the sum of (one
minus the similarity score) for pages in the same cluster. Another example arises
in meta-search engines for Web search, where we want to get robust rankings
that are not sensitive to the various shortcomings and biases of individual search
engines by combining the rankings of the individual search engines [4].

� Supported by NSF grant CCF-0514628.
�� Supported by NSF grant CCF-0514628.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 260–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deterministic Algorithms for Rank Aggregation 261

More formally, in the weighted minimum feedback arc set problem in tourna-
ments, we are given a set of elements V , nonnegative weights w(i,j) and w(j,i) for
each pair of distinct elements i and j, and we want to find a permutation π that
minimizes the weight of pairs of elements out of order with respect to the per-
mutation, i.e.

∑
π(i)<π(j) w(j,i). We say the weights satisfy probability constraints

if for any pair i, j, w(i,j) + w(j,i) = 1, or the triangle inequality if for any triplet
i, j, k, w(i,j) + w(j,k) ≥ w(i,k). We will sometimes refer to this problem as the
ranking problem. In the rank aggregation problem, the input is a collection of
orderings of V , and w(i,j) is the fraction of orderings in which i is ordered before
j; note that these weights obey both the probability constraints and triangle
inequality. In the constrained version of the ranking problem, we are also given a
partial order P as input and the output permutation π must be consistent with
P , i.e. if (i, j) ∈ P then π(i) < π(j).

In the weighted clustering problem, we are given a set of elements V , and
values w+

{i,j} and w−
{i,j} for every distinct pair of elements i, j. We want to find

a clustering minimizing
∑

i,j in different clusters w+
{i,j} +

∑
i,j in same cluster w−

{i,j}.
We say the weights satisfy probability constraints if for every i, j ∈ V , w+

{i,j} +
w−

{i,j} = 1. We will say the weights satisfy the triangle inequality if for every
triple i, j, k, w−

{i,j} + w−
{j,k} ≤ w−

{i,k} and w+
{i,j} + w−

{j,k} ≤ w+
{i,k}. The problem

where exactly one of w+
{i,j} and w−

{i,j} is 1 (and the other 0) is called correlation
clustering. The clustering problem corresponding to rank aggregation, in which
we want to aggregate a collection of clusterings of the same set of elements,
is called consensus clustering. We can also have a constrained version of the
weighted clustering problem by giving as input sets of pairs of items P+ and
P−, where pairs in P+ must be in the same output cluster, while pairs in P−

must be in different output clusters.
Both rank aggregation and consensus clustering are NP-hard [4,5], so the more

general problems of ranking or clustering with weights that satisfy the triangle
inequality or probability constraints, or both, are also NP-hard.

Ailon, Charikar and Newman [1] give the first constant-factor approximation
algorithms for the unconstrained ranking and clustering problems with weights
that satisfy either triangle inequality constraints, probability constraints, or
both. Their algorithms are randomized and based on Quicksort: the algorithms
recursively generate a solution by choosing a random vertex as “pivot” and
ordering all other vertices with respect to the pivot vertex according to some
criterion. For example, in the first type of algorithm they give for the ranking
problem, a vertex j is ordered before the pivot k if w(j,k) ≥ w(k,j) or ordered
after k otherwise. Next, the algorithm recurses on the two instances induced by
the vertices before and after the pivot.

In the case of rank aggregation and consensus clustering, a folklore result is
that returning the best of the input rankings or clusterings is a 2-approximation
algorithm. Ailon, Charikar and Newman also show that one can obtain better
approximation factors for rank aggregation and consensus clustering by returning
the best of their algorithm’s solution and the best input ranking/clustering.

262 A. van Zuylen and D.P. Williamson

For instance, for rank aggregation, they obtain a randomized 11
7 -approximation

algorithm using their first type of algorithm, and a randomized 4
3 -approximation

algorithm using their second, LP-based, algorithm.
There has been a good deal of follow-up work since the Ailon et al. paper.

Ailon and Charikar [6] extend the pivot-based approximation algorithms for clus-
tering to hierarchical clustering. Coppersmith, Fleischer, and Rudra [7] give a
simple greedy 5-approximation algorithm for the ranking problem when weights
obey the probability constraints. Van Zuylen, Hegde, Jain and Williamson [2]
give deterministic variants of the pivoting algorithms in Ailon et al. and Ailon
and Charikar and extend them to the constrained versions of these problems.
All but one of their algorithms require solving an LP relaxation of the problem,
and their techniques do not extend to the improved results in the Ailon et al.
paper for rank aggregation and consensus clustering. They do give a combina-
torial approximation algorithm for the ranking problem when weights obey the
probability constraints, with a performance guarantee of 4 in the unconstrained
case, and 6 for constrained problems.

Kenyon-Mathieu and Schudy [8] show that there exists a polynomial-time ap-
proximation scheme for unconstrained weighted feedback arc set in tournaments
with weights satisfying b ≤ w(i,j) + w(j,i) ≤ 1 for all i, j ∈ V for some b > 0.
Note that this includes problems satisfying the probability constraints and hence
includes the rank aggregation problem as a special case. Their approximation
scheme assumes the availability of a solution with cost that is not more than
a constant factor α from optimal. To get a (1 + ε)-approximate solution, the
running time of their algorithm is doubly exponential in 1

ε , 1
b and α.

Ailon [3] considers the partial rank aggregation problem, which was intro-
duced by Fagin, Kumar, Mahdian, Sivakumar and Vee [9,10]. Unlike full rank
aggregation, the input rankings do not have to be permutations of the same
set of elements. Instead, input rankings are allowed to be top-m rankings, i.e.
permutations of only a subset of the elements (in which case we make the nat-
ural assumption that the unranked elements all share the position after the last
ranked element), or the rankings may be p-ratings, i.e. mappings from V to
{1, . . . , p}, as is the case for example in movie rankings. More precisely, a partial
ranking of a set of elements V is a function π : V → {1, . . . , |V |}. If π is bijective,
it is a full ranking. We will say the distance between two partial rankings π1 and
π2 is the number of pairs i, j such that π1(i) < π1(j), and π2(i) > π2(j). The
goal of partial rank aggregation is, given � partial rankings of V , to output a
permutation of the elements of V that minimizes the sum of the distances from
the � input rankings. Note that the output is required to be a permutation, and
cannot be a partial ranking. Ailon [3] generalizes and improves some of the re-
sults from Ailon et al. to partial rank aggregation. He shows that perturbing the
solution to the linear programming relaxation and using these perturbed values
as probabilities gives a randomized 3

2 -approximation algorithm for partial rank
aggregation. Since his analysis only uses the fact that the weights satisfy the
triangle inequality, this also yields 3

2 -approximation algorithm for ranking with
triangle inequality constraints on the weights.

Deterministic Algorithms for Rank Aggregation 263

1.1 Our Results

Our goals in obtaining the results for this paper were twofold. First, we wanted
to do an implementation study of the various pivoting algorithms. But none
of the deterministic pivoting algorithms thus far are especially practical. The
PTAS of Kenyon-Mathieu and Schudy is of theoretical interest only. Although
the deterministic algorithms of Van Zuylen et al. are polynomial-time, with the
exception of their combinatorial algorithm for ranking with probability con-
straints, they require solving a linear program with O(n2) variables and O(n3)
constraints for n = |V |, which with standard LP packages is likely to be slow
for even moderate values of n. Thus we give purely combinatorial, determinis-
tic pivoting algorithms. For weights obeying the triangle inequality, we give a
2-approximation algorithm, whose analysis is particularly simple. In the case of
rank aggregation and consensus clustering, we give an 8

5 -approximation algo-
rithm. The 8

5 -approximation algorithm extends to the partial rank aggregation
problem as well. This gives the first combinatorial algorithm for partial rank
aggregation with an approximation guarantee less than 2. The running time of
our combinatorial algorithms is O(n3) compared to O(n2) for their randomized
counterparts in Ailon et al.

Second, we wished to give deterministic algorithms matching the best ran-
domized algorithms of Ailon et al. and Ailon in the case of rank aggregation
and partial aggregation, and correlation and consensus clustering. It is a fun-
damental question whether everything computable in randomized polynomial
time is computable in deterministic polynomial time (something that the recent
primes in P result by Agrawal, Kayal, and Saxena [11] provided some additional
evidence for). The techniques from Ailon et al. and Ailon are not amenable to
standard techniques of derandomization, but we show (in the current paper and
[2]) that we can amortize in place of the expectation and make the random-
ized algorithm deterministic. In particular, we show how to derandomize the
4
3 -approximation algorithm of Ailon et al. for rank aggregation and consensus
clustering, the 5

2 -approximation algorithm of Ailon et al. for ranking and clus-
tering with probability constraints, and the 3

2 -approximation algorithm of Ailon
for partial rank aggregation. These algorithms invoke an interesting two-step
derandomization, in which we first choose a pivot so as to minimize a ratio of
expectations; then we apply the method of conditional expectations to decide
how to order (cluster) the elements with respect to the pivot.

Finally, we show that if the weights satisfy the triangle inequality, then any
approximation result that holds for unconstrained ranking or clustering problems
also holds for constrained problems, by showing a sequence of local moves that
remove any violations of the constraints and do not increase the cost of the
solution.

In the remainder of the paper, we will only discuss our results for ranking, and
not for clustering. It is straightforward to translate these results to the clustering
setting (see Ailon et al. [1] and Van Zuylen et al. [2]).

264 A. van Zuylen and D.P. Williamson

Table 1. The table summarizes the best known approximation guarantees. Italicized
entries are expected approximation guarantees from randomized algorithms. ‘A’ refers
to Ailon [3], ‘ACN’ refers to Ailon, Charikar and Newman [1], ‘KS’ refers to Kenyon-
Mathieu and Schudy [8], ‘ZHJW’ refers to Van Zuylen, Hegde, Jain, and Williamson
[2] and ‘ZW’ refers to this paper.

Ranking
prob. constr. triangle ineq. full rank agg. partial rank agg

Combin. 4(ZHJW), 3(ACN) 2(ZW), 2(ACN), 8
5 (ZW), 11

7 (ACN) 8
5 (ZW)

LP based 5
2 (ZW), 5

2 (ACN) 3
2 (ZW), 3

2 (A) 4
3 (ZW), 4

3 (ACN) 3
2 (ZW), 3

2 (A)
PTAS 1 + ε(KS) 1 + ε(KS)

Clustering
prob. constr. triangle ineq. consensus clustering

Combinatorial 6(ZHJW), 3(ACN) 2(ZW), 2(ACN) 8
5 (ZW), 11

7 (ACN)
LP based 5

2 (ZW), 5
2 (ACN) 2(ZHJW), 2(ACN) 4

3 (ZW), 4
3 (ACN)

2 Combinatorial Pivoting Algorithms

Given an instance of the weighted feedback arc set problem in tournaments,
suppose we form a tournament G = (V, A) by including arc (i, j) only if w(i,j) ≥
w(j,i) (breaking ties arbitrarily). This is called the majority tournament in Ailon
et al. [1]. Clearly, if the tournament is acyclic, then it corresponds to an optimal
permutation: the cost for pair i, j in any solution is at least min{w(i,j), w(j,i)},
and this lower bound is met for every pair.

Ailon, Charikar and Newman [1] propose a simple algorithm to obtain a per-
mutation that costs at most 3 times the optimum if the weights satisfy the
triangle inequality, or at most 2 times the optimum if the weights satisfy both
triangle inequality and probability constraints. Their algorithm, FAS-Pivot, is
given below. We use the following notation: We denote by G(V ′) the subgraph
of G induced by V ′ ⊂ V . If π1 and π2 are permutations of disjoint sets V1, V2,
we let π1, π2 denote the concatenation of the two permutations.

FAS-Pivot(G = (V, A))

Pick a pivot k ∈ V .
VL = {i ∈ V : (i, k) ∈ A}, VR = {i ∈ V : (k, i) ∈ A}.
Return FAS-Pivot(G(VL)), k, FAS-Pivot(G(VR)).

In Ailon, Charikar and Newman’s algorithm, a pivot is chosen randomly. In
our deterministic versions of this algorithm, we will propose different ways of
choosing the pivot, depending on the information we have about the input.

For a pair i, j with (i, j) in the majority tournament A, we will let wij =
w(i,j) and w̄ij = w(j,i). Note that this implies that wij = max(w(i,j), w(j,i)) and
w̄ij = min(w(i,j), w(j,i)). Then if a pair i, j is ordered according to A, the cost

Deterministic Algorithms for Rank Aggregation 265

incurred by the algorithm is w̄ij , and for each pair not ordered according to A,
the cost is wij . We will call the first type of arcs “forward arcs” and the second
“backward arcs”.

Ailon, Charikar and Newman bound the expected cost for the backward arcs
if the pivot is chosen randomly. Subsequently, Van Zuylen, Hegde, Jain and
Williamson showed that one can obtain a deterministic version of this algorithm
by first solving a linear programming relaxation, and then carefully choosing the
pivot vertex based on the solution to the linear program. We show that if the
weights satisfy the triangle inequality, then we can give a deterministic algorithm
that does not require us to solve a linear program and that achieves the same
guarantees as in Van Zuylen et al. for this case. The idea of our algorithm is to
use w̄ij as a “budget” for vertex pair i, j, and to show that we can always choose
a pivot so that the cost of the backward arcs created by pivoting on this vertex
is at most twice the budget for these arcs.

Theorem 1. There exists a deterministic combinatorial 2-approximation algo-
rithm for weighted feedback arc set in tournaments with triangle inequality.

Proof. We use the algorithm described above, but specify how to choose a good
pivot. For a given pivot k, we let Tk(V) ⊂ A be the set of arcs that become
backward by pivoting on k when the set of vertices in the recursive call is V .
Our choice of pivot is then:

Pick k ∈ V minimizing1

∑
(i,j)∈Tk(V) wij

∑
(i,j)∈Tk(V) w̄ij

(1)

As was observed in [2], (i, j) is a backward arc if (k, i) and (j, k) in A, in
other words, exactly when (i, j) is in a directed triangle in A with the pivot k.
Therefore Tk(V) contains exactly the arcs that are in a directed triangle with
k in G(V). The cost incurred for the arcs in Tk(V) if k is the pivot is equal to∑

(i,j)∈Tk(V) wij , and we have a lower bound on the cost in any feasible solution
for these vertex pairs of

∑
(i,j)∈Tk(V) w̄ij .

Let T be the set of directed triangles in G(V), and for a triangle t =
(i, j), (j, k), (k, i), let w(t) = wij +wjk +wki and let w̄(t) = w̄ij + w̄jk + w̄ki. If we
sum

∑
(i,j)∈Tk(V) wij over all k ∈ V , i.e.

∑
k∈V

∑
(i,j)∈Tk(V) wij , then we count

wij exactly once for every pivot k such that (i, j), (j, k), (k, i) is a directed tri-
angle, hence

∑
k∈V

∑
(i,j)∈Tk(V) wij =

∑
t∈T w(t). Similarly,

∑
(i,j)∈Tk(V) w̄ij =

∑
t∈T w̄(t).
Now, note that for t = (i, j), (j, k), (k, i), by the triangle inequality on the

weights, wij = w(i,j) ≤ w(i,k) + w(k,j) = w̄ki + w̄jk, or more generally wa ≤∑
a′∈t:a′ �=a w̄a′ for any a ∈ t. Hence w(t) ≤ 2w̄(t). Thus we have that

∑

k∈V

∑

(i,j)∈Tk(V)

wij =
∑

t∈T

w(t) ≤ 2
∑

t∈T

w̄(t) =
∑

k∈V

∑

(i,j)∈Tk(V)

w̄ij .

1 Throughout this work, we define a ratio to be 0 if both numerator and denominator
are 0. If only the denominator is 0, we define it to be ∞.

266 A. van Zuylen and D.P. Williamson

Hence, there exists some k such that
∑

(i,j)∈Tk(V) wij ≤ 2
∑

(i,j)∈Tk(V) w̄ij ,
and the cost incurred for the backward arcs when pivoting on k is not more than
2 times the lower bound on the cost for these vertex pairs. ��

As in Ailon, Charikar and Newman [1], we can do better in the case of rank
aggregation. In fact, we will extend the ideas from Ailon, Charikar and Newman
[1], and Ailon [3] to give a combinatorial 8

5 -approximation algorithm for partial
rank aggregation.

In the partial rank aggregation problem, we are given � partial rankings
π1, . . . , π� where πk : V → {1, . . . , |V |} for k = 1, . . . , �. In the (full) rank ag-
gregation problem, π1, . . . , π� are bijective. We let w(i,j) = 1

�

∑�
k=1 1(πk(i)<πk(j))

and note that the weights for the partial rank aggregation problem satisfy the
triangle inequality.

A well-known 2-approximation for full rank aggregation outputs one of the
input permutations at random: the expected cost for pair i, j is 2w(i,j)w(j,i) which
is not more than 2w̄ij . It follows that returning the best input permutation is
also a 2-approximation algorithm.

Ailon [3] proposes the algorithm RepeatChoice for partial rank aggregation.
Let π1, . . . , π� be the input rankings; π will be our final output ranking. We start
by setting π(i) = 1 for all i ∈ V . Then we repeatedly choose an input ranking
πk uniformly at random without replacement; we check each i, j ∈ V and if
π(i) = π(j) but πk(i) < πk(j), we modify π so that now π′(i) < π′(j). We can
do this by setting π′(h) = π(h) if π(h) ≤ π(i) and π′(h) = π(h) + 1 if h = j or
π(h) > π(i).

Note that π may not yet be a full ranking: We will say that i ≡ j if πk(i) =
πk(j) for every input ranking πk. At the end of the RepeatChoice procedure, we
arbitrary break the ties between i, j, i ≡ j, so that π is a full ranking. For ease
of exposition, we will henceforth assume that there are no pairs i, j such that
πk(i) = πk(j) for all k = 1, . . . , �, although our results also hold if such pairs do
exist.

The probability that i is ranked before j is w(i,j)

w(i,j)+w(j,i)
which incurs a cost

of w(j,i). Since i is either ranked before j, or j before i, the expected cost for
pair i, j is 2w(j,i)w(i,j)

w(i,j)+w(j,i)
. If we define the majority tournament G = (V, A) as

above, and let wij = max{w(i,j), w(j,i)} and w̄ij = max{w(i,j), w(j,i)} as before,
then the total expected cost for the permutation returned by RepeatChoice
is

∑
(i,j)∈A

2wijw̄ij

wij+w̄ij
≤ 2

∑
(i,j)∈A w̄ij . Ailon shows that this algorithm can be

derandomized.
Ailon, Charikar and Newman show that the best of their algorithm’s solution

and the best input permutation is a 11
7 -approximation algorithm for (full) rank

aggregation. We show that a similar guarantee can be given for our deterministic
algorithm, and moreover that this result also holds for partial rank aggregation,
i.e. the best of our algorithm’s solution, and the solution given by RepeatChoice
gives a combinatorial 8

5 -approximation algorithm for partial rank aggregation.

Theorem 2. There exists a deterministic combinatorial 8
5 -approximation algo-

rithm for partial rank aggregation.

Deterministic Algorithms for Rank Aggregation 267

Proof. We again use the algorithm described above, but specify a different way
of choosing a good pivot. Let Tk(V) ⊂ A be the set of arcs that become backward
by pivoting on k when the set of vertices in the recursive call is V . Let αij =
w(i,j) + w(j,i) = wij + w̄ij , and note that w̄ij = αij − wij . In our partial rank
aggregation algorithm, we use the following rule to choose a pivot vertex.

Pick k ∈ V minimizing

∑
(i,j)∈Tk(V)

(
8
5wij − 6

5
w2

ij

αij

)

∑
(i,j)∈Tk(V)(αij − wij)

(2)

We charge our pivoting algorithm 2
5 times the cost of the solution it generates,

plus 3
5 times the expected cost of the permutation returned by RepeatChoice.

We will show that the total cost charged is not more than 8
5 times the lower

bound given by
∑

(i,j)∈A w̄ij =
∑

(i,j)∈A(αij − wij). Taking the better solution
from the pivoting solution and the (derandomized) RepeatChoice solution then
gives a 8

5 -approximation algorithm.
The expected cost incurred by pair i, j in RepeatChoice is 2 w(i,j)w(j,i)

w(i,j)+w(j,i)
=

2wij(αij−wij)
αij

. The cost if i, j is ranked according to the majority tournament is
w̄ij = αij − wij , and if it is not ordered according to the majority tournament,
the cost is wij . Hence the charge for a forward arc is

2
5
(αij − wij) +

6
5

wij(αij − wij)
αij

≤ 2
5
(αij − wij) +

6
5
(αij − wij) =

8
5
(αij − wij)

The charge for a backward arc is

2
5
wij +

6
5

wij(αij − wij)
αij

=
8
5
wij − 6

5
w2

ij

αij
.

We will show that there always exists a pivot k such that the ratio in (2) is at
most 8

5 . This implies that the combined charge for the arcs that become backward
in one iteration can be bounded by 8

5 times the lower bound on their combined
cost in any feasible solution. Since the charge for a forward arc between a vertex
pair is also at most 8

5 times the lower bound for the vertex pair, the total charge
at the end of the algorithm is at most 8

5

∑
(i,j)∈A(αij − wij) =

∑
(i,j)∈A w̄ij ,

which is at most 8
5 times the optimal cost.

To show that a pivot with ratio at most 8
5 exists, we use the same techniques

as before. Let T again be the set of directed triangles in A, and for a triangle
t = (i, j), (j, k), (k, i), let w(t) = wij + wjk + wki, α(t) = αij + αjk + αki and

z(t) =
w2

ij

αij
+

w2
jk

αjk
+ w2

ki

αki
. Note that

∑

k∈V

∑

(i,j)∈Tk(V)

(
8
5
wij − 6

5
w2

ij

αij

)

=
8
5

∑

t∈T

w(t) − 6
5

∑

t∈T

z(t),

and ∑

k∈V

∑

(i,j)∈Tk(V)

(αij − wij) =
∑

t∈T

α(t) −
∑

t∈T

w(t).

268 A. van Zuylen and D.P. Williamson

Note that by the triangle inequality constraints, w(t) = w(i,j)+w(j,k)+w(k,i) ≤
w(i,j)+w(j,k)+(w(k,j)+w(j,i)) = αij +αjk. Similarly, we get that w(t) ≤ αij +αki

and w(t) ≤ αjk + αki. Adding these constraints, we get that w(t) ≤ 2
3α(t).

By these observations and Claim 3 below, we can conclude that 8
5

∑
t∈T w(t)−

6
5

∑
t∈T z(t) ≤ 8

5

(∑
t∈T α(t) −

∑
t∈T w(t)

)
, and hence there exists some k ∈ V

such that the ratio in (2) is at most 8
5 . ��

Claim 3. For w = (w1, w2, w3), and α = (α1, α2, α3) such that 0 ≤ wi ≤ αi ≤ 1
for i = 1, 2, 3, and

∑3
i=1 wi ≤ 2

3

∑3
i=1 αi:

16
3∑

i=1

wi − 6
3∑

i=1

w2
i

αi
− 8

3∑

i=1

αi ≤ 0

Proof. The proof uses standard techniques, and for space reasons is deferred to
the full version.

Lemma 4. The algorithms in Theorem 1 and 2 can be implemented in O(n3)
time.

Proof. We maintain a list of the directed triangles in G for which all three vertices
are currently contained in a single recursive call, and for each vertex we maintain
the total cost for the vertex pairs that get a backward arc if pivoting on that
vertex and the total budget for these pairs (i.e. the numerator and denominator
of (1) resp. (2)). If we disregard the time needed to obtain and update this
information, then a single recursive call takes O(n) time, and there are at most
O(n) iterations, giving a total of O(n2). Initializing the list of triangles and
the numerator and denominator of (1) or (2) for each vertex takes O(n3) time.
Over all recursive calls combined, the time needed to update the list of directed
triangles, and the numerator and denominator of (1) or (2) is O(n3): After
each pivot, we need to remove all triangles that either contain the pivot vertex,
or contain (i, j) where i and j are separated into different recursive calls, and
for each triangle removed from the list, we need to update the numerator and
denominator of (1) or (2) for the three vertices in the triangle. Assuming the
list of triangles is linked to the vertices and arcs contained in it and vice versa,
finding a triangle that contains a certain vertex or arc, removing it, and updating
the numerator and denominator for the vertices contained in it, can be done in
constant time. Finally, note that each triangle is removed from the list exactly
once. ��

3 Two-Step Derandomization of LP-Based Pivoting
Algorithms

We now show how to extend the ideas from [2] to derandomize the randomized
rounding algorithm in Ailon et al. [1], and the perturbed version in Ailon [3]. In
particular, this allows us to obtain a deterministic 5

2 -approximation algorithm
for ranking with probability constraints, and a 3

2 -approximation algorithm for

Deterministic Algorithms for Rank Aggregation 269

partial rank aggregation. Combined with the ideas from Theorem 2, this also
allows us to obtain a deterministic 4

3 -approximation algorithm for full rank ag-
gregation.

The linear program we will use is the following:

min
∑

i<j

(
x(i,j)w(j,i) + x(j,i)w(i,j)

)

s.t. x(i,j) + x(j,k) + x(k,i) ≥ 1 for all distinct i, j, k

(LP) x(i,j) + x(j,i) = 1 for all i
= j

x(i,j) ≥ 0 for all i
= j

Given an optimal solution x to this LP, we will write cij = cji = x(i,j)w(j,i) +
x(j,i)w(i,j).

Given an optimal solution x to the linear programming relaxation, in Ailon
et al. [1] a vertex i is ordered to the left of the pivot k with probability x(i,k),
and to the right of the pivot with probability x(k,i) = 1 − x(i,k). In Ailon [3], the
probabilities are perturbed by a function h that satisfies h(1−x) = 1−h(x). Since
we can always take h to be the identity, we assume without loss of generality
that the probabilities are always given by h(x).

FASLP-Pivot(V, x)

Pick a (random) pivot k ∈ V .
Set VL = ∅, VR = ∅.
For all i ∈ V, i �= k,

with probability h(x(i,k)): add i to VL,
else (with probability h(x(k,i))): add i to VR.

Return FASLP-Pivot(VL, x), k, FASLP-Pivot(VR, x).

We will say an arc (i, j) is a forward arc if the vertices i, j were in the same
recursive call in which one of them was the pivot, and we will say an arc (i, j) is
backward if the vertices i, j were in the same recursive call, in which some vertex
k
= i, j was the pivot, and i was added to VL and j was added to VR. Note the
difference from our previous definition of forward and backward arcs.

Let Tk(V) be the set of arcs that become backward in a recursive call on V
when k is the pivot. Note that Tk(V) is a random set, since VL, VR are random
sets. In particular, (i, j) ∈ Tk(V) with probability h(x(i,k))h(x(k,j)), and the

expected cost for the arcs that become backward arcs is E

[∑
(i,j)∈Tk(V) w(j,i)

]
=

∑
i∈V \{k}

∑
j∈V \{k} h(x(i,k))h(x(k,j))w(j,i).

We derandomize the algorithm in two steps. First we choose a pivot k such
that ratio of the expected cost for the arcs in Tk(V) and E

[∑
(i,j)∈Tk(V) cij

]
is

as small as possible. Then we use the method of conditional expectation [12] to
assign the vertices in V \{k} to VL or VR.

270 A. van Zuylen and D.P. Williamson

We define the following notation: Let VL, VR, V ′ be a partition of V \{k},
and let E

[
Bk(V)|VL, VR

]
be the expected total cost incurred in an iteration of

FASLP-Pivot for the backward and forward arcs when pivoting on k conditioned
on the vertices in VL and VR being ordered to the left and right of k respectively
(and the vertices in V ′ are ordered left or right with probability h(x(i,k)) and

h(x(k,i))). Let E

[
Ck(V)|VL, VR

]
be the expected total LP contribution for the

vertex pairs that are in forward or backward arcs in an iteration of FASLP-Pivot
when pivoting on k, again conditioned on VL, VR. Note that the conditional
expected cost for backward arcs is

E

[∑

(i,j)∈Tk(V)

w(j,i)|VL, VR

]
=

∑

i∈VL

∑

j∈VR

w(j,i) +
∑

i∈V ′

∑

j∈V ′

h(x(i,k))h(x(k,j))w(j,i)

+
∑

i∈VL

∑

j∈V ′

h(x(k,j))w(j,i) +
∑

i∈V ′

∑

j∈VR

h(x(i,k))w(j,i),

and the conditional expected LP budget for backward arcs can be computed
similarly. Hence we can easily compute these conditional expectations and we
get

E

[
Bk(V)|VL, VR

]
= E

[∑

(i,j)∈Tk(V)

w(j,i)|VL, VR

]
+

∑

i∈VL

w(k,i) +
∑

i∈VR

w(i,k)

+
∑

i∈V ′

(
h(x(i,k))w(k,i) + h(x(k,i))w(i,k)

)
,

and E

[
Ck(V)|VL, VR

]
= E

[∑

(i,j)∈Tk(V)

cij

∣
∣ VL, VR

]
+

∑

i∈V \{k}
cik.

DerandFASLP-Pivot(V, x)

Pick k ∈ V minimizing
E

��
(i,j)∈Tk(V) w(j,i)

�

E

��
(i,j)∈Tk(V) cij

� .

Set VL = ∅, VR = ∅.
For i ∈ V \{k}

If
E

�
Bk(V)

�� VL ∪ {i}, VR

�

E

�
Ck(V)

�� VL ∪ {i}, VR

� ≤
E

�
Bk(V)

�� VL, VR ∪ {i}
�

E

�
Ck(V)

�� VL, VR ∪ {i}
�

add i to VL,
else

add i to VR.
Return DerandFASLP-Pivot(VL, x), k, DerandFASLP-Pivot(VR, x).

Lemma 5. If h(x(i,j))w(j,i) + h(x(j,i))w(i,j) ≤ αcij and there always exists a
pivot k with ratio at most α, then DerandFASLP-Pivot is an α-approximation
algorithm.

Deterministic Algorithms for Rank Aggregation 271

Proof. In our analysis of DerandFASLP-Pivot, it will be convenient to consider
an “intermediate” derandomization of FASLP-Pivot. Let DFASLP-Pivot be the
algorithm that chooses a pivot as in DerandFASLP-Pivot, but then randomly
assigns vertices to VL and VR as in FASLP-Pivot.

We think of cij = x(i,j)w(j,i) + x(j,i)w(i,j) as the “LP budget” for vertex pair
i, j. We say a pair i, j gets decided in an iteration of DFASLP-Pivot if it either
gets a forward arc (i.e. one of i, j is the pivot) or a backward arc (i.e. one of them
gets assigned to VL and one to VR). Under the assumptions in the lemma, the
expected cost for the pairs that get decided in an iteration of DFASLP-Pivot is
at most α times the expected LP budget for these pairs: the total expected cost
for the pairs that get decided in an iteration of DFASLP-Pivot with pivot k is
E

[
Bk(V)

∣
∣ VL = ∅, VR = ∅

]
=

∑

i∈V \{k}

(
h(x(i,k))w(k,i) + h(x(k,i))w(i,k)

)
+ E

[∑

(i,j)∈Tk(V)

w(j,i)

]
,

and by the assumptions of the lemma this expected cost is at most

α
(∑

i∈V \{k}
cik + E

[∑

(i,j)∈Tk(V)

cij

])
= αE

[
Ck(V)

∣
∣ VL = ∅, VR = ∅

]
.

Hence DFASLP-Pivot is an expected α-approximation algorithm. By stan-
dard conditional expectation arguments, we know that if we consider some vertex
i ∈ V \(VL∪VR∪{k}) and E

[
Bk(V)

∣
∣ VL, VR

]
≤ αE

[
Ck(V)

∣
∣ VL, VR

]
, then we can

add i to either VL or VR and maintain the invariant that E

[
Bk(V)

∣
∣ VL, VR

]
≤

αE

[
Ck(V)

∣
∣ VL, VR

]
. Therefore, DerandFASLP-Pivot returns a a partition

VL, VR of V \{k} such that the cost of ordering the vertices in VL and VR to
the left and right of k respectively, is at most α times the total LP budget of
the pairs that get decided in that iteration. ��

Note that one can show that there always exists a pivot with ratio at most α,
by showing that

∑
k∈V E

[∑
(i,j)∈Tk(V) w(j,i)

]
≤ α

∑
k∈V E

[∑
(i,j)∈Tk(V) cij

]
for

any feasible LP solution. Using similar observations as in the proof of Theorem
1, it is possible to reduce this inequality to a certain inequality on triples of
vertices. Using Lemma 13 in [1] this gives us Corollary 6 and using an inequality
from [3] this implies corollory 7.

Corollary 6. DerandFASLP-Pivot with h(x) = x is a 5
2 -approximation algo-

rithm for weighted feedback arc set in tournaments with probability constraints.

Corollary 7. DerandFASLP-Pivot is a 3
2 -approximation algorithm for partial

rank aggregation and for ranking with weights that obey triangle inequality if we

use h(x) =

⎧
⎨

⎩

3
4x, 0 ≤ x ≤ 1

3
3
2x − 1

4 , 1
3 < x ≤ 2

3
3
4x + 1

4 , 2
3 < x ≤ 1

as proposed in [3].

272 A. van Zuylen and D.P. Williamson

We can obtain a 4
3 -approximation algorithm for rank aggregation by using the

techniques from Theorem 2 to show that the best of DerandFASLP-Pivot and
picking a random input permutation is within 4

3 of optimal. Similar to the
technique in the proof of Theorem 2 we replace the weight w(i,j) by 2

3w(i,j) +
1
3 (2w(i,j)w(j,i)), and show that DerandFASLP-Pivot returns a solution for which
the cost with respect to these new weights is at most 4

3 times optimal. Since the
cost with respect to these new weights is a convex combination of the cost of the
solution with respect to the original weights, and the cost of a randomly chosen
input permutation, we get that the best of the algorithm’s solution and the best
input permutation is a 4

3 -approximation algorithm. For space reasons the details
of the proof are deferred to the full version.

Theorem 8. There exists a deterministic 4
3 -approximation algorithm for rank

aggregation.

4 Constrained Problems

We now consider ranking problems where we are also given a partial order P ,
and the output permutation π must be consistent with P ; in other words, if
(i, j) ∈ P then π(i) < π(j). We make the natural assumption that the weights
are consistent with P , i.e. if (i, j) ∈ P then w(j,i) = 0. It is possible to use similar
techniques as in [2] to ensure that the algorithms in Section 2 return a feasible
solution. However, a stronger result is given by the following lemma, which says
that if the weights satisfy the triangle inequality, then any permutation that is
not consistent with P is not a local minimum. We thank Frans Schalekamp for
suggesting that this may be the case. This means that all results in this paper,
except for the result in Corollary 6, also hold for constrained problems.

Lemma 9. Given weights that satisfy the triangle inequality,a permutation π,
and a partial order P such that w(j,i) = 0 for (i, j) ∈ P , then we can find a
permutation π′ that is consistent with P and costs not more than π.

Proof. Let (i, j) ∈ P and suppose π(j) < π(i). We call such (i, j) violated. Let
K(i, j) be the set of vertices k such that π(j) < π(k) < π(i), and let (i∗, j∗) be a
violated pair such that for any vertex k ∈ K(i∗, j∗) it is the case that (j∗, k)
∈ P
and (k, i∗)
∈ P . (Note that by transitivity of P , if a violated pair exists, then
there exists a violated pair that satisfies this condition.)

Consider the permutation π′ we obtain by moving j∗ to the position just after
i∗ with probability p = 1

2 or otherwise moving i∗ to the position just before j∗.
Note that (i∗, j∗) is not violated in π′ and no new violations are created.

The expected difference in the cost of permuations π′ and π is given by

w(j∗,i∗) − w(i∗,j∗) +
1
2

∑

k∈K(i∗,j∗)

(w(j∗,k) − w(k,j∗) + w(k,i∗) − w(i∗,k))

≤ w(j∗,i∗) − w(i∗,j∗) +
1
2

∑

k∈K(i∗,j∗)

(2w(j∗,i∗)) = −w(i∗,j∗) ≤ 0,

Deterministic Algorithms for Rank Aggregation 273

where the first inequality follows from the triangle inequality, and the last equal-
ity follows since w(j∗,i∗) = 0. Hence either moving j∗ to the position just after
i∗ or moving i∗ to the position just before j∗ does not increase the cost of the
permutation, and has fewer violations. ��

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. In: STOC 2005, pp. 684–693 (2005)

2. van Zuylen, A., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting al-
gorithms for constrained ranking and clustering problems. In: SODA 2007, pp.
405–414 (2007)

3. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. In: SODA
2007, pp. 415–424 (2007)

4. Dwork, C., Kumar, S.R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: WWW 2001, pp. 613–622 (2001)

5. Wakabayashi, Y.: The complexity of computing medians of relations. Resen-
has 3(3), 323–349 (1998)

6. Ailon, N., Charikar, M.: Fitting tree metrics: Hierarchical clustering and phylogeny.
In: FOCS 2005, pp. 73–82 (2005)

7. Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In: SODA 2006, pp. 776–782 (2006)

8. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors: A PTAS for
weighted feedback arc set on tournaments. In: STOC 2007, pp. 95–103 (2007)

9. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial
rankings. SIAM J. Discret. Math. 20(3), 628–648 (2006)

10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discret.
Math. 17(1), 134–160 (2003)

11. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math (2) 160(2),
781–793 (2004)

12. Alon, N., Spencer, J.: The Probabilistic Method. Wiley Interscience, Chichester
(1992)

	Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems
	Introduction
	Our Results

	Combinatorial Pivoting Algorithms
	Two-Step Derandomization of LP-Based Pivoting Algorithms
	Constrained Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

